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Preface

This book contains selected papers from the Fourth International Conference on
Computational Methods in Marine Engineering, held at Instituto Superior Técnico
from the Technical University of Lisbon in Portugal in September 2011. The previ-
ous editions of the conference were held in Oslo, Norway (2005), Barcelona, Spain
(2007) and Trondheim, Norway (2009).

Nowadays, computational methods are an essential tool of Engineering, which
includes a major field of interest in Marine applications, such as the maritime
and offshore industries and engineering challenges related to the marine environ-
ment and renewable energies. The 2011 Conference included 8 invited plenary lec-
tures and 86 presentations distributed by 10 thematic sessions that covered many
of the most relevant topics of marine engineering of nowadays. This book con-
tains 16 selected papers from the Conference that cover “CFD for Offshore Ap-
plications”, “Fluid-Structure Interaction”, “Isogeometric Methods for Marine Engi-
neering”, “Marine/Offshore Renewable Energy”, “Maneuvering and Seakeeping”,
“Propulsion and Cavitation” and “Ship Hydrodynamics”. The papers were selected
with the help of the recognized experts that collaborated in the organization of the
thematic sessions of the Conference, which guarantees the high quality of the papers
included in this book.

MARINE 2011 was organized in the framework of the Thematic Conferences
of the European Community on Computational Methods in Applied Sciences
(ECCOMAS). MARINE 2011 is also a Special Interest Conference of the IACM.

The conference was jointly organized by Instituto Superior Técnico of the Tech-
nical University of Lisbon, the Norwegian University of Science and Technology,
SINTEF, and International Center for Numerical Methods in Engineering (CIMNE)
in co-operation with the Technical University of Catalonia (UPC). We acknowledge
the financial support from the sponsors: Maritime Research Institute Netherlands,
Office for Naval Research Global, EDP Inovação and Caixa Geral de Depósitos.
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Part I
CFD for Offshore Applications



Viscous-Flow Calculations for Model
and Full-Scale Current Loads on Typical
Offshore Structures

A.H. Koop, C.M. Klaij, and G. Vaz

Abstract In this paper, CFD calculations for current loads on an LNG carrier and
a semi-submersible are presented, both for model and full-scale situations, for cur-
rent angles ranging from 180 to 0 degrees. MARIN’s in-house URANS code Re-
FRESCO is used. Numerical studies are carried out concerning iterative conver-
gence and grid refinement. In total, more than 100 calculations have been performed.
Detailed verification analysis is carried out using modern techniques, and numeri-
cal uncertainties are calculated. Afterwards, quantitative validation for model-scale
Reynolds number is done taking into account numerical and experimental uncer-
tainties. Scale effects on the current coefficients are investigated, having in mind the
estimated numerical uncertainties, and unsteady effects are briefly studied. Good it-
erative convergence is obtained in most calculations, i.e. a decrease in residuals of
more than 5 orders is achieved. The sensitivity to grid resolution has been investi-
gated for both model and full scale using five consecutively refined grids and for 3
current headings. The differences in the solution between two consecutive refine-
ments converge for all cases. The numerical uncertainties are larger for angles with
small values of the loads. Comparison with experiments shows that ReFRESCO
provides good quantitative prediction of the current loads at model scale: for angles
with larger forces the CFD results are validated with 15 % of uncertainty. To deter-
mine scale effects the numerical uncertainties must be considered in order to prevent
wrong conclusions drawn on basis of numerical differences rather than on physical
differences. For the full-scale results larger numerical uncertainties are found than
for model scale and for absolute values for scale effects this uncertainty should
be improved. For the LNG carrier significant scale effects, i.e. more than 40 %,
have been obtained for current angles where the friction component is dominant.
For these cases the numerical uncertainty is relatively low. For the other current
angles differences of 8–30 % between model and full scale can be observed, but
here larger numerical uncertainties are found. For the semi-submersible the numer-
ical uncertainties for the full-scale results are larger than for the LNG carrier. For

A.H. Koop (B) · C.M. Klaij · G. Vaz
Maritime Research Institute Netherlands (MARIN), P.O. Box 28, 6700 AA Wageningen,
The Netherlands
e-mail: a.koop@marin.nl
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L. Eça et al. (eds.), MARINE 2011, IV International Conference on Computational
Methods in Marine Engineering, Computational Methods in Applied Sciences 29,
DOI 10.1007/978-94-007-6143-8_1, © Springer Science+Business Media Dordrecht 2013
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the semi-submersible the pressure component of the force is highly dominant, i.e.
larger than 90 % of the total force. On average the full-scale current coefficients are
20 % lower than at model scale, but larger differences for a number of angles can be
observed.

Keywords CFD · RANS · Current loads · Verification · Validation · Scale effects ·
LNG carrier · Semi-submersible

1 Introduction

At present, most of the design of offshore structures is done based on current loads
coming from empirical methods or from model-scale experiments. These are usually
conservative and therefore adequate in this phase. However, there are some counter
arguments to this reasoning: (1) for example, a fixed cylinder experiences higher
loads at super-critical Reynolds numbers than in the drag-crisis at lower Reynolds
numbers. Or, as observed in the Current Affairs JIP [1], full-scale average forces
on a schematic semi-submersible are lower than at model scale, but both frequency
and amplitudes of full-scale loads are larger; (2) if one can improve the accuracy
of the loads used in the design phase, the safety margins can be reduced decreasing
the manufacturing costs of the structures and improving the dynamic-positioning
capabilities. Therefore, there is a real need for full-scale experiments, full-scale cal-
culations or (general) scaling rules. However, full-scale experiments are scarce, dif-
ficult to design and to carry out, and when performed kept confidential. General
scaling rules such as used for ship resistance are not easily devised for these kind of
complex flows. Thus, currently one is left to full-scale CFD calculations.

Nowadays, most engineers, including the authors, perform CFD at model scale
and in steady mode to calculate current coefficients on offshore constructions.
Again, the usual reasoning is that scale effects are small for this type of struc-
tures, that model-scale calculations are necessary for validation anyhow, and that
unsteady calculations are not needed and/or too expensive. Moreover, usually there
is no time/money to perform thorough numerical sensitivity variations, to achieve
sufficient iterative convergence, and to perform verification studies.

The major objectives of this paper are then fourfold: (1) perform detailed verifi-
cation studies for model and full-scale calculations of current loads, on two typical
offshore structures, for several current angles from 180 to 0 degrees; (2) validate the
model-scale numerical results with experimental data; (3) study the scale effects on
the current loads; (4) perform a preliminary study on possible unsteady effects on
model and full-scale loads.

Modern verification and validation techniques [2] are used in order to quanti-
tatively asses numerical, experimental and validation uncertainties. Without those,
the accuracy of the numerical results cannot be determined and conclusions on scale
effects cannot be drawn. However, this requires many calculations and in total more
than 100 calculations have been performed.



Viscous-Flow Calculations for Model and Full-Scale Current Loads 5

Fig. 1 Impression of the flow field around the LNG carrier and semi-submersible illustrated by
the vorticity distribution around the structures

An LNG carrier appended with bilge-keels and rudder (streamlined body), and
a semi-submersible constituted by four rounded-square columns mounted on large
block-coefficient ship-shaped pontoons (blunt body) are considered, since they are
typical offshore constructions. MARIN’s in-house URANS code ReFRESCO [3] is
used. Figure 1 presents the geometries and illustrates the calculated flow field for
a specific current angle. Previous work done on these structures [1, 4, 5] is here
extended, and the lessons learned from the Current Affairs JIP, see [1, 4], are con-
sidered in order to improve the accuracy of the results.

The paper is organized as follows. After this introduction, definitions and de-
tails on the structures and measurements are presented, followed by the numerical
settings used for the calculations. Afterwards, and for both the LNG carrier and
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Fig. 2 Reference frame

semi-submersible, the iterative convergence and numerical uncertainty is discussed
followed by detailed validation, and study of scale effects. Additionally, prelimi-
nary studies on unsteady effects are shown for the semi-submersible. Finally, major
conclusions and further work are presented.

2 Definitions

The reference frame and current coefficients are defined following the OCIMF [6]
convention, see Fig. 2: the x-axis points towards the bow, the y-axis points towards
portside meaning that 180 degrees corresponds to head-on current, 135 degrees to
bow-quartering current and 90 degrees to beam-on current.

The definitions of the force and moment coefficients are given in Eq. (2). The
Reynolds number and Froude number are:

Re = ρUrefLref

μ
, Fr = Uref√

gLref
. (1)

The dimensionless current coefficients are:

CX,Y = FX,Y

1
2ρU2

refLrefT
, CM = MZ

1
2ρU2

refL
2
refT

. (2)

For the LNG carrier the reference length Lref is chosen equal to Lpp. For confi-
dentiality reasons the force coefficients for the semi-submersible are scaled by the
maximum value found in the wind tunnel experiments. In Sect. 6 these scaled values
are denoted by C∗

X , C∗
Y and C∗

M .

Table 1 Nomenclature

α Current angle [deg] F = (FX,FY ,FZ) Forces [kg m s−2]
Lpp Length between

perpendiculars [m]
M = (MX,MY ,MZ) Moments [kg m2 s−2]

T Draft [m] ρ Density [kg m−3]
WD Water depth [m] μ Dynamic viscosity

[kg m−1 s−1]
Uref Reference velocity

[m s−1]
�ω =�× �u Vorticity vector [s−1]

Lref Reference length [m] ω = |�ω| Norm of the vorticity vector
[s−1]

Tref = Lref/Uref Reference time [s]
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Table 2 Main particulars of
135,000 m3 LNG carrier Description Value

Length between perpendiculars Lpp = 274.0 m

Draft T = 11.0 m

Breadth B = 44.2 m

Water-depth WD = 53.0 m

Capacity 135,000 m3

Current velocity Uref = 2.06 m s−1

3 Measurements

3.1 LNG Carrier

During the HAWAII JIP, current loads for a 135,000 m3 LNG carrier have been mea-
sured in MARIN’s shallow water basin by towing the model through otherwise calm
water for flow angles between 0 and 180 degrees, see [7]. The model of the LNG
carrier included bilge keels, propeller and rudder and the scale was 1:50. Studs were
used on the bow and stern to trigger the boundary layer to become turbulent. From a
Reynolds sensitivity check it was concluded that for the tested current velocity, the
Reynolds dependency at model scale on the measured force coefficients was less
than 5 %. The ratio of the water depth to the draft is WD/T = 4.8, indicating that
shallow-water effects might have an influence on the current forces, see also [4]. In
order for the free-surface effects to be negligible the Froude number was set small
to Fr = 0.04. During the experiments no significant waves were observed, see [7].
The model-scale Reynolds number is equal to 1.6 · 106. At full scale the Reynolds
number is equal to 5 · 108. The full-scale particulars of the LNG carrier are given in
Table 2.

3.2 Semi-submersible

Wind-tunnel tests at Force Technology [8] have been carried out at scale 1:200. The
current loads have been tested in an airflow corresponding to a vertically uniform
current. The forces and moments were measured for angles in the range 0 to 360 de-
grees in increments of 10 degrees. The tests have been carried out with 8 thrusters
placed under the pontoons modeled by a single ring. No roughness was applied
on the hull. Later in the project the semi-submersible was also tested in MARIN’s
Offshore Basin and the length of the pontoons has been changed between the wind
tunnel tests and the basin measurements. Therefore, the length of the pontoons for
the wind tunnel tests was 4.5 % shorter than used in the Offshore Basin and CFD
calculations. The comparison between the basin measurements, wind tunnel and
CFD results can be found in [5].
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Table 3 Information on computational grids for the LNG carrier and semi-submersible

LNG carrier Semi-submersible

Model scale Full scale Model scale Full scale

# cells max y+ max y+ # cells max y+ # cells max y+

Grid 1 0.70M 0.95 99.5 0.9M 1.1 1.2M 12

Grid 2 1.15M 0.77 78.5 1.7M 0.81 2.4M 9.0

Grid 3 1.85M 0.74 74.8 3.4M 0.62 4.7M 5.8

Grid 4 3.33M 0.59 68.1 7.0M 0.53 9.5M 5.0

Grid 5 5.72M 0.58 61.5 14.0M 0.36 19.3M 4.2

The Froude number based on the column diameter at water surface level is equal
to Fr = 0.11. The Reynolds number based on Lpp is equal to 2 · 108 at full scale and
equal to 5 · 105 in the wind tunnel and model-scale CFD calculations. For confiden-
tiality reasons the main particulars of the semi-submersible can not be shared in this
paper.

4 Computational Setup

4.1 Computational Grids

For both geometries five consecutively refined block-structured grids have been con-
structed using the package GridPro [9], see Table 3 and Fig. 3. At model scale the
maximum y+ value is below 1 on all grids and no wall functions are used. However,
for the LNG carrier at full scale, having y+ values below 1 requires extremely thin
cells, especially close to the bilge keels, which lead to severe numerical problems.
Using the same clustering as on model scale, we obtain maximum y+ values below
100 and wall functions are applied. For the semi-submersible the model-scale grids
are adapted by refining the first element in the boundary layer to obtain maximum
y+ values below 11 and no wall functions are used.

Wall functions model the viscous sublayer near the wall. The use of wall func-
tions effectively avoids numerical issues due to extremely thin cells but also intro-
duces an additional modelling error in the computations. The effect of using wall
functions is not addressed in this paper, but certainly deserves further investigation.

4.2 Boundary and Initial Conditions

Since the Froude number is very small, wave generation is neglected and a symme-
try boundary condition is imposed on the water surface. The bottom surface of the
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Fig. 3 Computational grid for the LNG carrier and semi-submersible. The black lines denote the
grid on the surface of the carrier and the blue lines denote the grid on the water surface

domain is positioned at the same depth as in the measurements. For the LNG car-
rier the water depth to draft ratio is equal to 4.8. In [4] the effect of the distance of
the bottom surface has been investigated and it was concluded that for this ratio the
bottom surface should be taken into account. Therefore, a free-slip wall condition is
prescribed at the bottom surface. For the semi-submersible the water depth to draft
ratio is more than 25, so a constant-pressure boundary condition is prescribed.

In [4], it was shown that, for this waterdepth-to-draft ratio, the blockage effect
of the basin side walls is negligible for the LNG carrier. Therefore, a cylindrical
domain is chosen in order to use the same grid for all current angles. The cylinder
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is centered at the origin and has radius 3.5Lpp for the LNG carrier and 4Lpp for
the semi-submersible. At the cylindrical boundary a constant uniform velocity is
prescribed corresponding with the current angle, together with the eddy-viscosity to
laminar-viscosity ratio and the turbulence intensity. For model scale the turbulence
intensity is chosen equal to 1 % and the eddy-viscosity ratio is set to 1.0. For full
scale these values are set to 10 % and 100.0, respectively. At the outflow, Neumann
boundary conditions are applied for all variables.

For the coarsest grids the initial conditions for the calculations are defined in each
computational cell by setting the velocity equal to the constant uniform velocity of
the inflow boundary, the pressure is chosen equal to the reference pressure at the
outflow boundary and the turbulence intensity and eddy-viscosity ratio equal to the
inflow boundary settings. For the calculations on finer grids the solution on coarser
grids is interpolated to the finer grid to serve as the initial condition. This procedure
reduces computational time compared to calculations started from uniform flow.

4.3 ReFRESCO

The CFD calculations in this paper are carried out using MARIN’s in-house viscous-
flow URANS code ReFRESCO [3]. ReFRESCO is targeted and optimized for hy-
drodynamic applications exclusively, and it has already been applied to several typi-
cal offshore flows. In particular, current, wind and manoeuvring coefficients of semi-
submersibles, submarines and ships have been successfully verified and validated,
[1, 4, 5, 10, 11]. For all calculations here presented the following numerical settings
have been used: (1) QUICK scheme for convection discretization of the momentum
equations; (2) Central scheme for diffusion discretization; (3) Upwind scheme for
convection discretization of the turbulence equations. The SST k − ω turbulence
model [12] is used for all calculations. Parallelization has been employed because
of the long computational times: some calculations have been carried out using 64
quad-core processors.

4.4 Verification and Validation Procedures

In any numerical calculation there are intrinsic errors which have to be controlled,
and if possible quantified, e.g. iterative and discretization errors. However, for a
complex CFD calculation this can be very time-consuming. Iterative errors are due
to non-linear algorithms and iterative solvers utilized, and in principle should be
of the same order as the round-off error. Previous studies with two different CFD
codes, see [2], have shown that the iterative error should be at least two orders of
magnitude lower than the discretization error, in order not to influence the accuracy
of the results.

Several methodologies are available to determine the numerical uncertainty re-
lated to the discretization error [13, 14]. In this paper we follow the approach as
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described in [2]. The numerical uncertainty Uφ for any arbitrary flow quantity φ is
determined using Uφ = Fs |ε|, where Fs represents a safety factor and ε denotes an
estimate of the discretization error. These are determined by applying a least-squares
fit of a error power law, αh

p
i , to the results obtained for grids with different densities

or relative step size hi . The choice of error estimator and safety factor depends on
the apparent convergence condition (monotonic, oscillatory, non-convergent) and
apparent order of convergence p (see for further details [2]).

Validation can only be done after verification and it involves numerical, experi-
mental and parameter uncertainties. The aim of validation is to estimate the mod-
elling error of a given mathematical model in relation to a given set of experimental
data. If the validation is successful one cannot say that the code is validated, only
that the model is valid for the problem at hand. A well-documented procedure [14]
already applied for other ReFRESCO applications [11, 15, 16] is here employed.
It compares the validation uncertainty Uval with the validation comparison differ-
ence E, which are defined by

Uval =
√

U2
φ + U2

inp + U2
exp, E = φi − φexp, (3)

with Uφ the numerical uncertainty, Uinp the parameter uncertainty, i.e. uncertainties
in the fluid properties, geometry and boundary conditions, and Uexp the experimen-
tal uncertainty. φi and φexp represent the numerical and experimental value, respec-
tively. The outcome of the validation exercise is decided from the comparison of |E|
with Uval:

• If |E| > Uval, the comparison difference is probably dominated by the modelling
error, which indicates that the model must be improved;

• If |E| < Uval, the modelling error is within the “noise level” imposed by the three
uncertainties. This can mean two things: if E is considered sufficiently small, the
model and its solution are validated (with Uval precision) against the given exper-
iment; else the quality of the numerical solution and/or the experiment should be
improved before conclusions can be drawn about the adequacy of the mathemat-
ical model.

For a precise validation, the experimental uncertainty Uexp is also needed. This
is rarely assessed, and few experimental data for current loads exists in the open
literature for which uncertainties are presented. In this paper, the experimental un-
certainty Uexp is assumed to be equal to 5 % for the current loads obtained in
MARIN’s shallow-water basin and 10 % for those from the wind tunnel. These val-
ues are based on in-house studies taking into account reproducibility for different
test runs, manufacturing tolerances and uncertainties of the sensors. The experimen-
tal uncertainty for the wind-tunnel experimental data is larger due to the measure-
ment procedure: the model is placed on a flat splitter plate to position the model
in an uniform airflow. However, along the splitter plate a boundary layer develops
which has an influence on the forces on the hull.
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5 Results for LNG Carrier

5.1 Iterative Convergence

The level and speed of the iterative convergence is dependent on the angle, grid
resolution and scale of the calculation. Figure 4 shows three typical convergence
histories: (1) for model scale and 180 degrees the convergence is fast, and a decrease
in residuals more than 6 orders is obtained; (2) for model scale and 140 degrees the
convergence is slower and the residuals stagnate at 5 orders of decrease; (3) for
full scale at 90 degrees, the convergence history is the worst for all calculations
presented in this paper, and the residuals stagnate at 3–4 orders. For all cases here
presented, the force coefficients become constant after a few hundred iterations and
no oscillations are seen, not even for current angles 140 degrees and 90 degrees. In
general, full-scale calculations are more difficult to converge than for model scale,
and for the same inflow angle one order less of residuals decrease is obtained.

5.2 Numerical Uncertainties

In Table 4 the current loads at model and full scale are presented for three headings
using five consecutively refined grids, together with the numerical uncertainties for
the finest grid. Figure 5 shows the results of the uncertainty procedure explained in
Sect. 4.4, for three angles, both for model and full scale. For the 140 degrees model-
scale case the convergence is not monotonic and the uncertainty procedure is not
able to perform a fit to the error power law. Nevertheless, it is able to estimate an
uncertainty value. One can see that the differences in the solution between two con-
secutive refinements are getting smaller for all cases, with already relatively small
values for grid 3. However, this has no relation with the uncertainties calculated,
which can still be large.

For model scale the numerical uncertainties are relatively small. In general, the
uncertainties are larger for the coefficients with lower absolute values. At full scale
the uncertainties are larger. Also, at full scale, the use of wall-functions adds an
additional modeling error which could explain why CX is more sensitive to grid
density than at model scale. The largest sensitivity is found at 140 degrees where
significant flow separation and recirculation contradict the assumptions underlying
wall functions. Notice though, that the uncertainty value of 94.3 % for the full-scale
CX at 140 degrees, corresponds to a variation of 2 · 10−3 in this coefficient, i.e. in
absolute magnitude this uncertainty is not relevant.

5.3 Validation with Model-Scale Experiments

From the verification exercise presented in Sect. 5.2 the numerical uncertainty Uφ

is known. Having in the mind the experimental accuracy stated in Sect. 4.4, the val-
idation procedure can be employed, and the comparison error E and the validation
uncertainty Uval can be calculated. Note that, the numerical uncertainties have been
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Fig. 5 LNG carrier: examples of numerical uncertainty analysis for CX and CY coefficient. Model
scale (left); full scale (right); 180 degrees (top); 140 degrees (middle); 90 degrees (bottom)

only computed for the angles 180, 140 and 90 degrees. For the sake of the validation
exercise we consider the maximum value of the uncertainties, for each coefficient,
for the remaining angles. This will probably lead to larger validation uncertainties,
but also to more validated results. For the LNG test-case alone around 40 calcula-
tions have been performed in total. In order to obtain Uφ for all angles and both in
model and full-scale situations, more than 100 calculations should have been done.
Table 5 shows the final results of the validation exercise. Most of the results for CY

are validated within ±15 % of uncertainty. It can be observed that for angles where
the coefficients have small values the CFD results are not validated. The value for
CX for 130 degrees shows the use of relative differences: the comparison difference
E is equal to 165 %, which is due to the fact that, coincidentally for this angle, the
CX coefficient is almost zero.

An extra outcome from the validation procedure is that the graphical comparison
between numerical and experimental results can be done using error bars as pre-
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Table 5 LNG carrier: comparison difference E between model-scale CFD results and experimen-
tal values and validation uncertainty Uval. In bold the validated results, in cursive the non-validated
results

Coefficient Angle [deg]

180 170 160 150 140 130 120 110 100 90

E CX −11 % −11 % −19 % −25 % +11 % +165 % +23 % +40 % +49 % –

CY – −20 % −8 % −5 % −8 % −7 % −4 % +10 % +11 % +14 %

CM – −7 % +4 % −4 % −16 % −21 % −17 % +0.5 % +27 % –

Uval CX 15 % 15 % 13 % 12 % 18 % 43 % 20 % 23 % 25 % –

CY – 10 % 12 % 12 % 12 % 12 % 12 % 14 % 14 % 15 %

CM – 4 % 4 % 4 % 4 % 3 % 3 % 4 % 5 % –

sented in Fig. 6. It can be observed that the global trend for the three coefficients
is correctly captured by the CFD calculations for the complete range of current an-
gles. Using this graphical presentation of the results, validation is obtained once the
uncertainty-bars for both the experiments and numerical results overlap.

5.4 Scale Effects

The full-scale results show that the force coefficients are typically lower than for
model scale as illustrated in Fig. 6 and Table 6. This means that the current loads
at model scale, either obtained using CFD or from experiments, are conservative. In
order to distinguish the real physical scale effects from possible numerical effects, a

numerical comparison uncertainty has to be considered Ucomp =
√

U2
φ,MS + U2

φ,FS .

If the difference between model and full-scale results is larger than this comparison
uncertainty then one can say that the scale effect has been captured correctly. If
not, no conclusions must be made since the numerical uncertainties taint the real
physical effects. As presented in Table 6 the comparison uncertainties are too large
for CX at 140 degrees and CY at 90 degrees. Nevertheless, we can still, with some
carefulness, observe several trends:

• Scale effects are largest when the friction component is dominant. For example,
the CX coefficient at 180 degrees is 42 ± 26 % lower at full scale than at model
scale;

• The scale effects for CY are small. For CX the scale effects are larger. For CM it
depends on the angle, but they are also clearly visible;

• The scale effect for the friction component is larger than for the pressure com-
ponent for both CX and CY . The ratio of the friction component to the pressure
component does not remain constant between model and full scale;

• Having in mind that the pressure component of the calculated coefficients, except
for CX at 180 degrees, is larger than the friction component, it is not straightfor-
ward to apply the extrapolation techniques used for ship resistance based on the
form-factor hypothesis, see for instance [17].
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Fig. 6 LNG carrier: model
and full-scale current
coefficients. CFD results
versus experimental results

6 Results for Semi-submersible

6.1 Iterative Convergence

For the semi-submersible the level and speed of the iterative convergence are also
dependent on the angle, grid resolution and scale of the calculation. Good conver-
gence is often obtained, i.e. a decrease in residuals of more than 5 orders is achieved
as illustrated in Fig. 7. However, it also occurs that the iterative convergence stag-
nates at 4 orders. In general, full-scale calculations are more difficult to converge
than for model scale, and for the same inflow angle one order less is obtained. For
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Table 6 LNG carrier: difference � between model and full-scale values with comparison uncer-
tainty Ucomp. Contribution of pressure (P ) and friction (F ) to the total force. In bold and cursive
the results where Ucomp ≤ � and Ucomp > �, respectively

Angle
[deg]

FS versus MS Model scale Full scale

CX CY CM CX CY CX CY

� Ucomp � Ucomp � Ucomp P F P F P F P F

180 −42 % 26 % – – – – 14 % 86 % – – 14 % 86 % – –

140 −16 % 96 % −7.8 % 2.5 % −29 % 13 % 74 % 26 % 98 % 2 % 57 % 43 % 99 % 1 %

90 – – −3.2 % 16 % – – – – 99 % 1 % – – 99 % 1 %

Fig. 7 Semi-submersible:
examples of iterative
convergence for model scale
at 90 degrees (top) and full
scale at 180 degrees (bottom)

all cases here presented, the force coefficients become constant after a few hundred
iterations and no oscillations are seen. Compared to the LNG carrier the conver-
gence for the semi-submersible is slower and more difficult to obtain due to the
unsteadiness of the flow and complex flow with large separated flow regions.

6.2 Numerical Uncertainties

In Table 7 the results for the semi-submersible without thrusters are presented using
subsequently refined grids for model and full scale, all for the angles 180, 150 and
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Fig. 8 Semi-submersible: examples of numerical uncertainty analysis for CX and CY coefficient.
(left) Model scale (right) Full scale; 180 degrees (top); 150 degrees (middle); 90 degrees (bottom)

90 degrees. In Fig. 8 the results of the uncertainty procedure is presented for three
angles both for model and full scale. It can be observed that the force coefficients
converge when using finer grids for all angles both for model and full scale. Also,
for all cases the results for grid 4 are at most 4 % different from the results on grid 5.

The numerical uncertainties Uφ presented in Table 7 show that for model scale
the uncertainties are small except for the CX coefficient for 180 degrees and for the
CM coefficient for 150 degrees. For 180 degrees the drag force is very small, leading
to a higher uncertainty similar to as found for the LNG carrier. The moment on the
semi-submersible is sensitive to the precise location of the flow separation. When
refining the grid this location changes slightly leading to a change in the moment.
The numerical uncertainties for the full-scale calculations are higher than for model
scale.
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Table 8 Semi-submersible with thrusters: comparison difference E between model-scale CFD
results and experimental values and validation uncertainty Uval. In bold the validated results and in
cursive the non-validated results

Coefficient Angle [deg]

180 170 160 150 140 130 120 110 100 90

E C∗
X +9 % +16 % +4 % −2 % −12 % −9 % −35 % −46 % −73 % –

C∗
Y – −27 % −27 % −15 % −8 % −12 % −10 % −11 % −11 % −11 %

Uval C∗
X 35 % 37 % 33 % 13 % 29 % 30 % 22 % 19 % 13 % 10 %

C∗
Y 10 % 12 % 12 % 13 % 13 % 13 % 13 % 13 % 13 % 13 %

Fig. 9 Semi-submersible
with thrusters: comparison of
CFD results with
experimental results

6.3 Validation with Model-Scale Experiments

In the wind-tunnel experiments eight thrusters were modelled under the hull of the
semi-submersible. For validation purposes it would have been better to test and
calculate the bare hull of the semi-submersible. In [5] the effect of modeling the
thrusters has been investigated and it was concluded that for certain current head-
ings the thrusters have a significant effect on the calculated results. Therefore, for the
comparison between the CFD and wind tunnel results, following [5], the thrusters
have been taken into account in the CFD calculations presented in Fig. 9 and Table 8.
However, in the wind tunnel simple rings were used for the thrusters. In the CFD
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calculations the exact geometry of the thrusters has been taken into account but the
thrusters have been closed. This leads to an additional uncertainty when comparing
the results between wind tunnel and CFD, which can be taken into account through
the parameter uncertainty Uinp in Eq. (3). We assume that this uncertainty due to the
thrusters is 4 %. Furthermore, as explained in Sect. 3.2, the pontoons in the wind
tunnel were 4.5 % shorter than in the CFD calculations. This leads to approximately
1 % larger drag forces and 3 % larger side forces in the CFD calculations. Therefore,
we assume that the total value for the parameter uncertainty Uinp is equal to 8 %.

From Fig. 9 it appears that good agreement between the wind tunnel and CFD
is obtained. For the angles with larger forces, i.e. the range 180 to 130 degrees
for C∗

X and the range 140 to 90 degrees for C∗
Y , the CFD results are validated and

within 12 % or lower from the wind tunnel results. However, for C∗
X the validation

uncertainty Uval is large and both the numerical and experimental uncertainty should
be decreased.

6.4 Scale Effects

Scale effects are determined for the semi-submersible without thrusters using grid 4
for both model and full scale. It can be observed in Fig. 10 and Table 9 that for the
angles with larger C∗

X value, i.e. the angles from 180 to 120 degrees, the difference
between model scale and full scale is approximately 6–30 %.

For the angles with larger C∗
Y values, i.e. the angles from 160 to 90 degrees,

the difference is larger: 6–43 %. It should be noted that the pressure component
of the force for the semi is highly dominant, i.e. more than 90 % of the total force
originates from the pressure distribution on the semi, even for the C∗

X at 180 degrees.
This is due to the blunt-body shape of the structure. The ratio between the pressure
and friction component changes slightly from model to full scale.

When considering the difference � between model and full-scale results and the

comparison uncertainty Ucomp =
√

U2
φ,MS + U2

φ,FS, as presented in Table 9, we con-

clude that the scale effects have been captured correctly for C∗
Y since the difference

� is larger than the comparison uncertainty. For C∗
X and C∗

M the numerical uncer-
tainty of the full-scale results are large indicating that one should be careful to draw
strong conclusions based on these full-scale results.

6.5 Unsteady Calculations

To investigate the change in forces due to unsteady effects preliminary unsteady
URANS calculations are carried out. These calculations require large CPU time,
and for practical applications they are usually not performed. The results here pre-
sented are for both model and full scale for current headings 180 and 150 degrees.
For 180 degrees the flow is very unsteady due to vortices being shed from the first
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Fig. 10 Semi-submersible
without thrusters: model and
full-scale current coefficients

Table 9 Semi-submersible without thrusters: difference between model and full-scale values and
contribution of pressure (P ) and friction (F ) to the total force. Results obtained on fine grid. In
bold and cursive the results where Ucomp ≤ � and Ucomp > �, respectively

Angle
[deg]

FS versus MS Model scale Full scale

C∗
X C∗

Y C∗
M C∗

X C∗
Y C∗

X C∗
Y

� Ucomp � Ucomp � Ucomp P F P F P F P F

180 −20 % 32 % – – – – 90 % 10 % – – 95 % 5 % – –

150 −9 % 22 % −36 % 33 % +20 % 37 % 92 % 8 % 98 % 2 % 97 % 3 % 99 % 1 %

90 – – −19 % 7 % – – – – 98 % 2 % – – 99 % 1 %
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columns which interfere with the columns located in the wake. At 150 degrees
significant flow separation occurs characterized by large, steady, coherent vortices
along the keel of the semi-submersible resulting in a very steady flow pattern. Dif-
ferent grid resolution and time step sizes are used: grid 3 to 5 together with time
step sizes equal to Tref/50, Tref/100 and Tref/200 with Tref the reference time here
defined by D/Uref. In the near future the same investigations for heading 90 degrees
will be carried out.

During the unsteady calculations the level of iterative convergence is aimed to
be lower than 10−4 as visible in Fig. 11(a). The number of iterations per time step
have an influence on the level of convergence: the more iterations per time step are
taken the better the level of convergence is. The velocity variables have the highest
level of residuals and these are located in the wake behind the semi-submersible as
visible in Figs. 11(b) and (c). It can also be observed that when using 100 iterations
per time step instead of 50, the regions with higher residuals decrease in size. For
model scale using a different number of iterations per time step, i.e. aiming at a
better convergence level at each time step, does not result in significant differences
in the calculated unsteady forces, provided that the convergence level at each time
step is lower than 10−4. For full scale this convergence level is more difficult to
obtain. As a result the time traces of the calculated forces differ significantly when
using a different grid resolution or time step size. Therefore, at full scale more outer
loops need to be taken to satisfy the convergence level of 10−4. However, this also
results in longer calculation times.

For model scale the calculated time-dependent forces become nicely periodic as
illustrated in Fig. 12. Using a different grid resolution and time step size results in
very similar time-dependent forces, only small differences of less than 2 % are found
for the maximum and minimum values of the forces. For full scale the time traces
of the calculated forces significantly differ when using a different grid resolution or
time step size. This is caused by the convergence problems as described above and
should be further investigated.

In Table 10 the steady and the unsteady average results obtained with CFD for
model and full scale are compared with the results from the wind tunnel. Note that
for a proper comparison the numerical uncertainty Uφ should be obtained for the
unsteady calculations. It can be observed that the unsteady average is almost equal
to the steady-state result for all cases. The model-scale values obtained with CFD
are less than 11 % different from the wind tunnel. The full-scale CFD values are
7–29 % different from the model-scale CFD values. Contrary to the obtained results
in [1] we do not find significant unsteady effects on the calculated average force
coefficients. However, only two current angles have been investigated in this paper
and only one angle in [1]. One major issue is the iterative convergence for unsteady
calculations, especially at full scale. The other point may be that the grid topology
and its refinement here used might not be adequate for unsteady calculations, where
highly refined grids are needed in the shear-layers and in particular in the wakes
of all structure components. Furthermore, the numerical uncertainty Uφ should be
obtained for these unsteady calculations using different grid resolution and time step
size.
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Fig. 11 Semi-submersible
without thrusters: unsteady
model-scale calculations at
180 degrees using grid 4 and
�t = Tref/50. (a) Residuals
during time steps. Highest
residuals in the flow field at
the last iteration of a certain
time step using (b) 50 or
(c) 100 iterations per time
step

Therefore, we recommend to investigate the unsteady effects further despite the
long calculation times required.

7 Conclusions and Future Work

In this paper, CFD calculations for current loads on an LNG carrier and a semi-
submersible are presented, both for model and full-scale situations, for current an-
gles ranging from 180 to 0 degrees. MARIN’s in-house URANS code ReFRESCO
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Fig. 12 Semi-submersible
without thrusters: unsteady
model and full-scale force
coefficients at 180 degrees

Table 10 Semi-submersible without thrusters: results for current coefficients at 180 and 150 de-
grees. The steady results and the unsteady average are compared with the results from the wind
tunnel. The full-scale values obtained with CFD are compared to the model-scale CFD results

180 degrees
C∗

X

150 degrees

C∗
X C∗

Y C∗
M

Windtunnel – – – –

Steady MS +1 % −11 % −9 % +3 %

Unsteady MS +4 % −11 % −9 % +6 %

Steady FS −20 % −7 % −26 % +29 %

Unsteady FS −22 % −7 % −24 % +22 %

is used. Numerical studies are carried out concerning iterative convergence and grid
refinement. In total, more than 100 calculations have been performed. Detailed veri-
fication analysis is carried out using modern techniques, and numerical uncertainties
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are calculated. Afterwards, quantitative validation for model-scale Reynolds num-
ber is done. Scale effects on the current coefficients are investigated, having in mind
the estimated numerical uncertainties, and unsteady effects are briefly studied.

Good iterative convergence is obtained in most calculations, i.e. a decrease in
residuals of more than 5 orders is achieved. The level and speed of the iterative
convergence is dependent on the current angle, grid resolution and scale of the cal-
culation. Nicely streamlined flows are easier to solve than flows with large separated
flow regions. Full-scale calculations are more difficult to converge than for model
scale and for the same flow angle one order less is obtained. For unsteady model-
scale calculations a better iterative convergence level does not result in significant
changes in the calculated unsteady forces, provided that the convergence level at
each time step is lower than 10−4. For full scale this convergence level is more
difficult to obtain and more iterations per time step should be taken to satisfy this
convergence level. However, the authors emphasize that an adequate absolute value
for iterative convergence is very much dependent on the employed linear solvers,
residual normalization and numerical tool.

The sensitivity to grid resolution at model and full scale has been investigated
for both cases using five consecutively refined grids and for 3 current headings.
The differences in the solution between two consecutive refinements converge for
all cases. The grid 4 results, i.e. 3 million cells for the LNG carrier and 7 million
cells for the semi-submersible, are at most 4 % different from the results on the
finest grid used with 6 million cells for the LNG carrier and 20 million cells for the
semi-submersible. However, this does not mean that the numerical uncertainties are
low. The numerical uncertainties are larger for angles with small values of the loads,
which is also expected for the experimental results. In some cases, such as CX for
180 degrees current heading at model-scale, the numerical uncertainty value is too
large, 29.5 %. In order to further decrease the numerical uncertainties, better itera-
tive convergence should be achieved and even finer grids should be used. In general,
for full-scale situations the numerical uncertainties are higher. Also, for full-scale
situations no wall-functions should be used, since this adds an additional modelling
inaccuracy, and possibility of numerical scattering due to different boundary condi-
tions for different grids.

Comparison with experiments shows that ReFRESCO provides good quantitative
prediction of the current loads at model scale. Taking into account the numerical
and experimental uncertainties, it is found that for angles with larger forces the
CFD results are validated with 15 % of uncertainty. Nevertheless, for the semi-
submersible, for some validated situations, the validation uncertainties are too large
due to the numerical uncertainties, but also due to the large experimental and input-
parameters uncertainties. This should be further investigated.

To determine scale effects the numerical uncertainties must be considered in or-
der to prevent wrong conclusions drawn on basis of numerical differences rather
than on physical differences. When the difference between model and full-scale re-
sults is smaller than the comparison uncertainty these values should be considered
with care. For the full-scale results larger numerical uncertainties are found than for
model scale and for absolute values for scale effects this uncertainty should be im-
proved. For the LNG carrier significant scale effects, i.e. more than 40 %, have been
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obtained for current angles where the friction component is dominant. For these
cases the numerical uncertainty is relatively low. For the other current angles dif-
ferences of 8–30 % between model and full scale can be observed, but here larger
uncertainties are found. For the semi-submersible the numerical uncertainties for
the full-scale results are larger than for the LNG carrier. For the semi-submersible
the pressure component of the force is highly dominant, i.e. larger than 90 % of
the total force. On average the full-scale current coefficients are 20 % lower than
at model scale, but larger differences for a number of angles can be observed. For
both the semi-submersible and the LNG carrier it is found that the ratio between the
pressure contribution and friction contribution to the force does not remain constant
comparing model scale to full scale. For the angles where the pressure component
is larger than the friction component, it is not straightforward to apply extrapolation
methods as used for ship resistance.

Lastly, a preliminary study into the unsteady effects on the current loads has been
carried out. These calculations require much CPU time and are therefore only pre-
sented for 180 and 150 degrees current heading. Contrary to the obtained results
from [1] we do not find significant unsteady effects on the average of the calculated
force coefficients. However, only two current angles have been investigated in this
paper and only one angle in [1]. More calculations for different headings should be
carried out before a valid conclusion on unsteady effects can be drawn. Unsteady
problems can be found in many offshore applications such as Vortex Induced Mo-
tions (VIM), illustrating the importance to accurately calculate the unsteady loads.
Therefore, we recommend to further investigate the unsteady effects despite the long
calculation times required.
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and Irregular Wave Simulations
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Abstract In this paper, the use of an absorbing boundary condition (ABC) is inves-
tigated for the numerical simulation of regular and irregular waves in three dimen-
sional computational domains where Navier-Stokes equations describe the motion
of the fluid. The numerical implementation of the ABC using a staggered grid ar-
rangement is explained in detail. All of the numerical modifications are incorporated
into the CFD simulation tool ComFLOW which employs a volume-of-fluid (VOF)
method. Numerical examples are provided to demonstrate the performance of the
ABC. The reflection character of the ABC is observed and the results of the compu-
tations are discussed and compared.
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1 Introduction

The CFD simulation of ocean waves remains a challenge even today. Although
highly capable numerical features are at the disposal of researchers, particular as-
pects of numerically solving wave problems in unbounded domains cause various
bottlenecks. Typically the phenomena of interest are local but embedded in a vast
spatial domain. At this point, the infinite domain, although sometimes it may not
be truly unbounded, is truncated via artificial boundaries, thus introducing a finite
computational domain and a residual infinite domain. One of the aforementioned
bottlenecks is developing a robust and efficient boundary condition to be imposed
on these artificial boundaries.

The Sommerfeld boundary condition [1] was the cornerstone of non-reflecting
boundary conditions. Engquist and Majda [2] presented a method to develop the
first hierarchy of absorbing boundary conditions. Higdon [3] generalized this theory
and showed that Engquist and Majda boundary condition is a subset of the Higdon
operators. Since high order boundary operators include high order derivatives both
in time and space, Collino and Joly [4] introduced the use of auxiliary variables
to circumvent this difficulty. This idea has found widespread interest and has been
used by Grote and Keller [5], Givoli and Neta [6], and Hagstrom and Warburton
[7] among others. For a general review regarding high order local non-reflecting
boundary conditions, see [8].

In this paper, we present the derivation of an absorbing boundary condition
(ABC) [9, 10] along with the numerical implementation of the analytical operator.
The ABC is applied in three dimensional computational domains where a regular
Stokes wave and an irregular JONSWAP spectrum wave are traveling under an an-
gle of incidence. Here, we focus our attention specifically on the reflection behavior
of the ABC for the duration of the simulations. We end the paper with some con-
cluding remarks.

2 Statement of the Problem

If we consider water as a homogeneous, incompressible, viscous fluid, we can de-
scribe fluid motion in a three-dimensional domain Ω (see Fig. 1) by the continuity
equation and the Navier-Stokes equations in a conservative form as,

∮

Γ

u · ndΓ = 0, (1)

∮

Ω

∂u
∂t

dΩ +
∮

Γ

uuT · ndΓ = − 1

ρ

∮

Γ

(pn − μ∇u · n) dΓ +
∮

Ω

FdΩ. (2)

In (1) and (2), Ω denotes a volume with boundary Γ and normal vector n,
u = (u, v,w)T is the flow velocity, ρ is the fluid density, p is the pressure, μ is
the dynamic viscosity, ∇ is the gradient operator and F = (Fx,Fy,Fz)

T represents
external body forces acting on the fluid such as gravity.
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Fig. 1 A computational domain with ΓN and ΓE as artificial boundaries

To solve the above equations in Ω , we impose four types of boundary conditions:
a free surface, a wall, an inflow and an absorbing boundary condition. On the west
and south boundaries ΓW and ΓS , the incoming wave is prescribed. The incoming
wave propagating at an angle θ (0 < θ < π/2) with the x-axis can be simulated by
using either a regular wave such as Airy wave or Stokes wave, or an irregular wave
such as a superposition of Airy waves. In either case, at every time step starting from
t = 0, free surface elevations, values of the velocity components and the pressure
are provided on ΓW and ΓS . At the bottom ΓB , we specify a no-slip no-penetration
condition which is simply the Dirichlet condition, i.e. u = 0. At the free surface
ΓFS , resulting from the continuity of normal and tangential stresses, the following
conditions are implemented for the velocity components and the pressure,

μ

(
∂un

∂t
+ ∂ut

∂n

)
= 0, (3)

−p + 2μ
∂un

∂n
= −p0 + σκ, (4)

where un and ut correspond to the normal and tangential component of the velocity,
respectively, p0 is the atmospheric pressure, σ is the surface tension and κ is the
total curvature of the free surface. If we describe the position of the free surface by
s(x, t) = 0, the displacement of the free surface can be computed via,

Ds

Dt
= ∂s

∂t
+ (u · ∇)s = 0. (5)

We now introduce two artificial boundaries ΓN and ΓE , see Fig. 1. To complete the
statement of the problem, we shall employ an ABC on these artificial boundaries. In
this study, we will restrict ourselves for a discussion about the behavior of an ABC
in wave simulations where the Navier-Stokes are implemented as the governing
equations.
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3 Absorbing Boundary Condition (ABC)

Consider the following boundary operator on ΓE :
(

cosα
∂

∂t
+ c

∂

∂x

)
Φ = 0 on ΓE. (6)

Higdon [3] showed that (6) is perfectly absorbing if α is equal to the angle of inci-
dence θ (see Fig. 1(a)) for a wave described by the wave or velocity potential Φ and
traveling with phase speed c. Such a wave which satisfies the Laplace equation has
the form

Φ = (C1e
+kz + C2e

−kz
)

sin(kx cos θ + ky sin θ − ωt + ψ), (7)

where k is the wave number, ω is the wave frequency and ψ is its phase. The un-
knowns C1 and C2 can be determined via the boundary conditions imposed on ΓFS

and ΓB .
If we replace c in (6) by the dispersion relation, namely,

c =√gh

√
tanh(kh)

kh
, (8)

we can rewrite (6) as

(
cosα

∂

∂t
+√gh

√
tanh(kh)

kh

∂

∂x

)
Φ = 0. (9)

The boundary condition (9) is perfectly absorbing for this single component but
recall that any solution to the Laplace equation for the velocity potential can be rep-
resented by a linear superposition of waves which will be referred to as an irregular
wave here and elsewhere. Each individual component of this irregular wave has its
own frequency, amplitude, wave number and phase. Therefore, the boundary condi-
tion (9) cannot annihilate all these wave components simply because it is evidently
designed for only one of them.

The corresponding velocity potential of such an irregular wave can be written as

Φ =
N∑

j=1

(
C1j

e+kj z + C2j
e−kj z

)
sin(kj x cos θ + kjy sin θ − ωj t + ψj ), (10)

where N denotes the number of modes or components. All flow variables can be
calculated by taking derivatives of (10). At this point a question crosses one’s mind:
Is it possible to develop a boundary condition which has the feature of allowing
reflection only to an acceptable threshold for all the wave components which all
together form an irregular wave? One can deduce from the way this question is
asked that we expect some amount of reflection for such a boundary condition but
it will be restricted within certain limits.
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Fig. 2 Approximation of the
dispersion relation

Now we introduce the following rational expression which approximates the dis-
persion relation (8),

ca ≈√gh
a0 + a1(kh)2

1 + b1(kh)2
, (11)

where a proper choice of coefficients a0, a1 and b1 would lead to a close approxi-
mation for the largest possible range of kh values, see Fig. 2. Thus, reflection from
the boundary will be minimized over that specific range of kh values.

As a result of strong effect of dispersion especially in deep water, any wave
behaves as the sum of a large number of wave components, each traveling at its
own dispersive phase speed. To compute these local velocities we will exploit the
exponential behavior of (7) and (10) in z direction. After straightforward algebraic
manipulations, one can derive the following relation

k2Φ = ∂2

∂z2
Φ. (12)

By employing (12) the dependency of the boundary condition on the wave number
is removed since it is calculated using the velocity potential Φ .

Finally we substitute (12) and (11) in (6) to reach the final form of the absorbing
boundary condition to be applied on ΓE

(
1 + b1h

2 ∂2

∂z2

)
cosα

∂Φ

∂t
+√gh

(
a0 + a1h

2 ∂2

∂z2

)
∂Φ

∂x
= 0 on ΓE. (13)

Following the same method, it is rather easy to write the ABC on ΓN .
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3.1 Numerical Algorithm

Since (1) and (2) are specified as the governing equations, the ABC given in (13)
must be interpreted in terms of the velocity components and pressure. As we have
a staggered grid arrangement for the solution variables inside volume cells (see
Fig. 3), the location of the outflow boundary must also be specified appropriately.

We resort to the linearized Bernoulli equation to replace the time derivative of
the velocity potential in (13), namely, ∂Φ/∂t = −pb − gzp . Here and elsewhere
the subscript b indicates that the quantity is defined at the outflow boundary and
the subscript p indicates that the quantity is evaluated at the elevation of the pres-
sure point within the cell. The spatial derivatives of the velocity potential give the
x- and y-components of velocity, i.e. ∂Φ/∂x = ub and ∂Φ/∂y = vb , while a fur-
ther time derivative gives the acceleration. Here we will use mirror cells adjacent
to the outflow boundary to obtain pb by linear interpolation (see Fig. 3(a)), i.e.
pb,k = (pn+1

I+1,k + pn+1
I,k )/2 for k = 1, . . . ,K . The shaded area contains the mirror

cells which have indices (I + 1, k) for k = 1, . . . ,K . The outflow boundary is sit-
uated at the same position along x-direction as u, therefore we can impose the fol-
lowing, ub = un+1

I,k . Note that velocity components and pressure are discretized at
the same position on the boundary and also at the same instant in time.

Utilizing the momentum equation (2), the velocity component at the new time
step un+1 can be written in terms of the pressure pn+1 and the intermediate velocity
ũn which includes convective and diffusive effects [11]. This modification is nec-
essary to easily plug the ABC into the pressure Poisson equation which is solved
inside the computational domain for the pressure at the new time step pn+1. As a
result, the ABC has the same temporal character as the pressure Poisson equation.
Consequently, we obtain the discrete form of the ABC to be prescribed on ΓE as
follows

[
1

2
cosα + a0

√
gh

�t

�xp(I+1,k)

+
(

1

2
b1h

2 cosα + a1h
2
√

gh
�t

�xp(I+1,k)

)
∂2

∂z2

]
pn+1

I+1,k

+
[

1

2
cosα − a0

√
gh

�t

�xp(I+1,k)

+
(

1

2
b1h

2 cosα − a1h
2
√

gh
�t

�xp(I+1,k)

)
∂2

∂z2

]
pn+1

I,k

=
(

a0
√

gh + a1h
2
√

gh
∂2

∂z2

)
ũn

I,k − gzp(I+1,k) cosα on ΓE, (14)

where

�xp(I+1,k) = xp(I+1,k) − xp(I,k). (15)
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Fig. 3 Discretization of the
ABC in space

Following the same steps, one can easily derive the ABC on ΓN . The discrete ABCs
on ΓE and ΓN are equations for the pressure values in the mirror cells outside the
domain, see Fig. 3(b). The stencil for pn+1

I+1,k is plotted by a double dashed line
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in Fig. 3(a). Observing Figs. 3(a) and 3(b), we realize that a typical stencil for a
pressure point encompasses 9 flow variables 6 of which reside in the computational
domain whereas 3 can be associated with the treatment of the boundary condition.

4 Results and Discussions

We compare the results by introducing three error measures,

e(i, j) = ηn(i, j) − ηr(i, j), (16)

‖e‖2 =

√√√√√
I∑

i=1

J∑
j=1

(
ηn(i, j) − ηr(i, j)

)2
, (17)

‖e‖∞ = max
i=1,2,...,I

max
j=1,2,...,J

{∣∣ηn(i, j) − ηr(i, j)
∣∣}, (18)

where η is the free surface elevation. Here the subscript n indicates the numerical
results and the subscript r indicates the reference solution. For the regular wave
simulation, the reference solution is the analytical results arising from the Stokes
wave theory. For the irregular wave simulation, the reference solution is obtained
by solving the problem in a larger domain with the same discretization in space and
time.

The pointwise error e(i, j) provides information at particular time instances
throughout the simulation. In addition, it demonstrates the exact location of the er-
ror in the computational domain which is not the case for the other error measures.
The common property of the 2-norm ‖e‖2 and the infinity norm ‖e‖∞ is that they
display a complete picture of the error behavior in a single plot. More particularly,
we can examine the length of the error vector using ‖e‖2 whereas ‖e‖∞ captures the
maximum value in the error vector which is useful especially to check if a certain
limit for the error is breached.

4.1 Results of the Regular Wave Simulation

A fully developed fifth-order Stokes wave is generated and initialized everywhere
in the computational domain at t = 0 as depicted in Fig. 4. Since we know the exact
values of the solution variables for a fifth-order Stokes wave [12], we can compare
the numerical results with the theoretical results. The fifth-order Stokes wave with
wave height H = 9 m, wave period T = 10 s, wave length λ = 161 m, phase speed
c = 16.1 m/s is simulated by performing 7143 time-steps at �t = 0.007 s. The
length and the width of the computational domain is the same, lx = ly = 340 m, and
its depth is lz = 179 m with the water depth of h = 170 m. The grid resolution is
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Fig. 4 Initial condition for
the simulation of the
fifth-order Stokes wave.
Angle of incidence θ = 45°

�x ×�y ×�z = 2.26 m × 2.26 m × 0.95 m with 6 % vertical stretching at the free
surface.

Figure 5 shows the absolute pointwise errors e(i, j) corresponding to times
t = 8.589 s, t = 16.667 s, t = 25.256 s, t = 33.334 s, t = 42.427 s and t = 49.994 s.
The amplitudes of the maximum errors increase in time although not substantially.
The reflected waves from the outflow boundaries travel back and perturb the so-
lution in the entire computational domain. Figure 6 demonstrates the 2-norm ‖e‖2
and the infinity norm ‖e‖∞ both of which are normalized by the wave height. Ob-
serving Fig. 5, we notice that large errors are very local whereas in the major part
of the domain we have relatively small errors. This is consistent with the fact that
‖e‖2 has an oscillating character below the maximum value of 2.5 % throughout 5
wave periods. Evidently, ‖e‖∞ shows a similar behavior but it oscillates generally
between the values of 9 % and 4 %. For the maximum values of ‖e‖∞, we believe
that we are encountering the effects of reconstruction of the free surface in the VOF
algorithm.

4.2 Results of the Irregular Wave Simulation

We apply the discrete ABCs to a problem in a three dimensional computational do-
main where an irregular wave is traveling under an angle of incidence, θ = 45°. The
initial condition for the simulation of the irregular wave with 537 Fourier compo-
nents is shown in Fig. 7(a). The domain length in x- and y-direction is the same,
lx = ly = 70 m whereas lz = 8 m with the water depth h = 5 m. The grid reso-
lution is �x × �y × �z = 0.28 m × 0.28 m × 0.23 m. A JONSWAP spectrum
wave with Tp = 10 s and Hs = 1.0 m is simulated by performing 3964 time-steps at
�t = 0.007 s.

As mentioned before, we compute the reference solution by solving the problem
in a large domain ΩL which is twice the size of the small domain ΩS in x- and
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Fig. 6 The relative 2-norm
‖e‖2 and the infinity norm
‖e‖∞ in space as a function
of time for the regular wave
simulation. Both error
measures are normalized by
the wave height H = 9 m

y-direction, see Fig. 7(b) for the illustration of the problem. For each time step, the
computational solution in ΩS is compared to the reference solution in ΩL. In both
ΩS and ΩL the numerical parameters are the same. Since the flow behavior is highly
nonlinear, the linear theory fails to produce correct results under the current cir-
cumstances. Therefore, it is not possible to make a comparison with the analytical
solution for the irregular wave simulation.
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Fig. 7 The setup for the irregular wave simulations

In Fig. 8, we demonstrate the absolute pointwise errors e(i, j) corresponding
to times t = 4.504 s, t = 9.008 s, t = 13.504 s, t = 18.008 s, t = 23.008 s and
t = 27.752 s. Compared to the regular wave simulation, large errors cover wider
parts in the computational domain, thus ‖e‖2 has higher values, see Fig. 9. Grid res-
olution is more significant in irregular wave simulations because short wave compo-
nents may not be represented well on the grid. This is certainly undesirable as these
components contribute to the amount of reflection. The characters of ‖e‖∞ and ‖e‖2
are similar as they increase in time (Fig. 9). The error norms show an exponential
behavior contrary to the regular wave calculation in which they are oscillatory. This
is a result of the absence of a certain beating pattern in irregular waves. Moreover,
it should be mentioned that some amount of error is also present in the reference
solution although ΩL is relatively large. Overall, we find deviations of less than 9 %
for nearly three wave periods.

5 Concluding Remarks

In this paper, we have presented the derivation and the numerical implementation of
an ABC using the computational framework of the CFD simulation tool ComFLOW.
The ABC is applied in three dimensional free surface simulations of regular and
irregular waves propagating under an angle of incidence. For this purpose, a fifth-
order Stokes wave and a JONSWAP spectrum wave are generated at the inflow
boundaries of the computational domains. The results of the numerical computa-
tions are compared to various reference solutions to provide sufficient information
regarding the performance of the proposed boundary condition. Additionally, the
reflection character of the ABC is monitored throughout the calculations and dif-
ferent error measures are exploited to deliver a comprehensive picture for the error
behavior.
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Fig. 9 The relative 2-norm
‖e‖2 and the infinity norm
‖e‖∞ in space as a function
of time for the irregular wave
simulation. Both error
measures are normalized by
the wave height Hs = 1.0 m

Overall, the ABC demonstrated a good performance. In both regular and irregu-
lar wave simulations, we notice that reflections are less than acceptable thresholds.
The numerical results are in reasonable agreement with the reference solutions. Par-
ticularly for the irregular wave simulation, it would be insightful to observe error
behaviors for a longer duration of simulation which will be the subject of the future
work.



An Absorbing Boundary Condition for Regular and Irregular Wave Simulations 45

Acknowledgements This research is supported by the Dutch Technology Foundation STW, ap-
plied science division of NWO and the technology programme of the Ministry of Economic Affairs
in The Netherlands (contracts GWI.6433 and 10475).

References

1. Sommerfeld A (1949) Partial differential equations in physics. Academic Press, San Diego
2. Engquist B, Majda A (1977) Absorbing boundary conditions for the numerical simulation of

waves. Math Comput 31:629–651
3. Higdon RL (1987) Numerical absorbing boundary conditions for the wave equation. Math

Comput 49:65–90
4. Collino F, Joly P (1995) New absorbing boundary conditions for the finite element solution of

3D Maxwell’s equations. IEEE Trans Magn 31(3):1696–1701
5. Grote MJ, Keller JB (1996) Nonreflecting boundary conditions for time-dependent scattering.

J Comput Phys 127(1):52–65
6. Givoli D, Neta B (2003) High-order non-reflecting boundary conditions for dispersive waves.

Wave Motion 37(3):257–271
7. Hagstrom T, Warburton T (2004) A new auxiliary variable formulation of high-order local

radiation boundary conditions: corner compatibility conditions and extensions to first-order
systems. Wave Motion 39(4):327–338

8. Givoli D (2004) High-order local non-reflecting boundary conditions: a review. Wave Motion
39:319–326

9. Wellens P (2011) Wave simulations in truncated domains for offshore applications. PhD thesis,
Technical University of Delft, The Netherlands

10. Duz B, Huijsmans RHM, Wellens PR, Borsboom MJA, Veldman AEP (2011) Towards a gen-
eral purpose open boundary condition for wave simulations. In: Proc 30th conf on ocean,
offshore and arctic engineering OMAE, OMAE2011-49979

11. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-
fluid based simulation method for wave impact problems. J Comput Phys 206:363–393

12. Skjelbreia L, Hendrickson J (1961) Fifth order gravity wave theory. In: Proc 7th conf of coastal
engineering, pp 184–196



Part II
Fluid-Structure Interaction



Free-Surface Flow and Fluid-Object Interaction

I. Akkerman, K. Benner, and Y. Bazilevs

Abstract We present our free-surface flow and fluid-object interaction compu-
tational framework. The framework is an instantiation of the Mixed Interface-
Tracking/Interface-Capturing Technique (MITICT) (Akin et al. in Comput. Fluids
36:2–11, 2007; Cruchaga et al. in Int. J. Numer. Methods Fluids 54:1021–1031,
2007; Tezduyar in Arch. Comput. Methods Eng. 8:83–130, 2001) where the level-
set method is used for the air-water interface description and the ALE (Hughes et al.
in Comput. Methods Appl. Mech. Eng. 29:329–349, 1981) technique is employed to
track the moving fluid-object interface. We discuss the definition of the local mesh
size used in the level-set formulation, which is an important aspect of this work. We
show two example computations, the dam break and Fridsma hull, and validate our
methodology using the experimental data available for these cases.

Keywords Free-surface flow · Level set method · ALE-VMS · Fluid-object
interaction · Planing hulls

1 Introduction

In this work we present our efforts to develop a robust and accurate methodol-
ogy for simulating air-water free-surface flow and its interaction with rigid ob-
jects [2, 4, 5, 29]. We are interested in a class of large-scale applications in coastal,
marine, and offshore engineering. Therefore, we need a unified numerical method-
ology that is able to accurately represent the entire range of free-surface behavior,
from the smooth, quasi-steady free surface, as in the case of surface ship wakes at
low-to-moderate Froude number, to the violent free-surface motions with topologi-
cal changes, as in the case of liquids sloshing in tanks or waves impacting offshore
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structures. As a result, the methods we developed for free-surface flow are based
on the level set technique [33, 34, 36], which is an interface-capturing method-
ology [39], and which puts no limitations on the complexity of free-surface flow
behavior.

To account for the motion of floating objects, and the corresponding changes
in the geometry of the free-surface flow domain, an ALE-VMS approach [2, 12,
23, 26] is adopted. This results in a so-called Mixed Interface-Tracking/Interface-
Capturing Technique (MITICT) [1, 19, 38], where the computational mesh follows
(or “tracks”) the fluid-object interface, while the air-water interface is “captured” on
that mesh. The attractive feature of this approach is that the quality of the boundary-
layer discretization near the solid object is maintained in the simulation, even as the
object moves through space.

To enhance the accuracy of the free-surface fluid-object simulations, weakly en-
forced no-slip boundary conditions are employed [13–15] at the fluid-object inter-
face, an approach which has similarities to wall-function modeling [20].

The ALE-VMS formulation is suitable for discretization using variable-order fi-
nite elements [29] as well as Isogeometric Analysis (IGA) [17, 25]. The results in [4]
illustrate that on a per-degree-of-freedom basis, IGA based on non-Uniform Ratio-
nal B-Splines (NURBS) is more accurate for free-surface flow than lower-order
FEM.

This book chapter is outlined as follows. We briefly recall our free-surface fluid-
object interaction numerical formulation and point the reader to the appropriate ref-
erences for more details. We give a detailed discussion of the functions and mesh-
dependent parameters used to distribute the fluid properties in the air and water
subdomains. We feel this is an important aspect of free-surface flow formulations
on unstructured meshes where the element sizes in the problem domain may dif-
fer by several orders of magnitude. We then present two numerical test cases that
illustrate the accuracy and versatility of the proposed computation framework.

The first test case is the dam break problem, which involves large motions of
the free surface accompanied by violent wave breaking. This test case is well
known [21, 30, 31], and has good experimental data available, which allows one to
perform validation studies on one’s free-surface flow solver. The ability of the same
ALE-VMS formulation to deliver accurate results for very different underlying in-
terpolation functions is demonstrated by employing an unstructured mesh consisting
of linear tetrahedral elements and a block-structured mesh consisting of quadratic
NURBS. The second test case is the Fridsma planing hull [5, 22]. This problem is
not as well known in the community as the dam break problem; it involves a lab-
scale planing hull, and likewise has a very well documented experimental data set,
allowing one to perform fluid-object interaction validation studies.

2 Formulation

In the following, we provide a brief description of the free-surface fluid-object in-
teraction formulation. The reader is referred to [2, 4, 29] for additional details.
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To model free-surface flow, we use the level set method [32, 34, 36]. The level-
set function is used to separate the air and water subdomains, and provide the spatial
distribution of the fluid density and viscosity. Using variable density and viscosity
distribution, the Navier–Stokes equations of incompressible flows are solved every-
where in the fluid domain and the level-set function is convected with the computed
flow velocity. We also impose the requirement that the level-set function satisfies
the signed-distance property in order to control the size of the air-water interface in
the computations.

The Navier–Stokes equations of incompressible flows are employed in both
air and water subdomains. The Navier–Stokes and level-set equations are writ-
ten in the Arbitrary Lagrangian–Eulerian (ALE) frame [26], which is well suited
for moving domain problems. The Navier–Stokes and level-set equations are dis-
cretized using the ALE-VMS formulation [12]. The ALE-VMS formulation is a
moving-domain extension of the Residual-Based Variational Multiscale (RBVMS)
formulation, originally proposed in [6] in the context of LES turbulence modeling,
and successfully applied to simulate turbulent flow and fluid-structure interaction
in [3, 7–11, 14, 15, 24]. The level-set function is prescribed to satisfy the signed-
distance property (or “redistanced”) by solving the Eikonal partial differential equa-
tion, which is discretized on the same mesh as the fluid mechanics equations, using
the SUPG formulation [16]. Mass conservation, which is important in some cases,
is achieved by adding a small perturbation to the redistanced level-set function. This
small perturbation may be either a field [4], which results in local mass conservation,
or a global constant [2, 4, 5], which results in global mass conservation.

The rigid object is described using balance equations of linear and angular mo-
menta. The rigid-object formulation is written in terms of the linear and angular
velocities of the object’s center-of-mass. The rotation matrix is also treated as an
unknown governed by an appropriate evolution equation. The rotation-matrix equa-
tion is integrated in time using a midpoint method, which preserves the orthonormal
property of the columns of the rotation matrix, as shown in [27].

The fluid domain mesh is deformed using the equations of linear elastostatics
subject to the kinematic boundary conditions coming from the motion of the rigid
object. Jacobian-based stiffening is employed to protect the small elements in the
boundary layers near the solid surfaces [28].

The proposed methodology is an instantiation of the more general Mixed
Interface-Tracking/Interface-Capturing Technique (MITICT) where the fluid-solid
interface is tracked with the mesh, while the air-water interface is captured on
that mesh. While boundary-layer meshing is employed near solid surfaces, a fac-
tor that is important for boundary-layer accuracy, resolution of the air-water in-
terface depends on the mesh size in the neighborhood of where the interface is.
The MITICT [38] was introduced primarily for fluid-object interactions with mul-
tiple fluids (see, for example, [37]), and was successfully tested in [1], where
the interface-tracking technique used was a space–time formulation [40, 41], and
the interface-capturing method was the Edge-Tracked Interface Locator Technique
(ETILT) [38]. It was also tested in [19] by using a moving Lagrangian interface
technique [18] for interface tracking and the ETILT for interface capturing.
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In the next subsection we give a short discussion of how the air and water material
parameters are represented in our method, and give some useful definitions of the
local mesh size. We note that the free-surface flow solutions are sensitive to the
choice of the local mesh size, much like the solutions using stabilized and multiscale
methods are sensitive to the definition of the stabilization parameters.

2.1 Mesh-Dependent Parameters

Let φh be the discrete level-set function. At the air-water interface, φh = 0. For this
two-fluid case, the density and viscosity are defined as

ρ
(
φh
)= ρwHε

(
φh
)+ ρa

(
1 − Hε

(
φh
))

(1)

μ
(
φh
)= μwHε

(
φh
)+ μa

(
1 − Hε

(
φh
))

, (2)

where ρw and ρa are the densities of water and air, respectively, μw and μa are the
dynamic viscosities of water and air, respectively, and

Hε(φ) =

⎧
⎪⎨
⎪⎩

0 if φ ≤ −ε;
1
2 (1 + φ

ε
+ 1

π
sin(

φπ
ε

)) if |φ| < ε;
1 if φ ≥ ε,

(3)

is a smoothed or regularized Heaviside function. The width of the air-water inter-
face, ε, is given by ε = ε̃hφ , where hφ is the local mesh size. To define the local
mesh size we use the element metric tensor given by

G = ∂ξξξ

∂x

T ∂ξξξ

∂x
, (4)

where ∂x/∂ξξξ is the Jacobian of the mapping between the element in the parent and
physical domains, and ∂ξξξ/∂x is its inverse. The parameter ε̃ is defined by the user
and is interpreted as the number of elements in the interface layer. Smaller values of
ε̃ give a sharper interface, while larger values of ε̃ lead to a more diffuse interface.
In our computations we typically choose ε̃ ∈ [1.0,2.0].

Two types of hφ are considered: isotopic and directional. In the isotopic case,
hφ may be computed as

hφ = C√
tr G

(5)

or

hφ = C
√

tr G−1, (6)

where C is a positive constant that depends on the element topology and parametric
domain. For example, we take C = 2 for a hexahedron whose parametric domain is
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a bi-unit cube. In Eq. (5), the element’s shorter dimension is favored, while Eq. (6)
favors the element’s longer dimension.

In the directional case, we use

hφ =
√

∇∇∇φh · ∇∇∇φh

∇∇∇φh · G∇∇∇φh
. (7)

Equation (7) essentially gives the element size in the direction of the level-set gra-
dient, which is normal to the air-water interface.

Equations (1) and (2) are typically invoked at mesh quadrature points. On un-
structured grids, rapidly changing local mesh size hφ may lead to non-smooth and
non-monotone definitions of ρ and μ. To improve on this, we propose to project the
mesh size hφ to the finite-element space. Any of the above definitions of hφ may
be used. This automatically gives a continuous mesh size, which is more likely to
produce a monotone transition in the material parameters from water to air. In this
case, the fluid density and viscosity are given by

ρ =
Nn∑

A=1

ρANA (8)

μ =
Nn∑

A=1

μANA, (9)

where NA’s are the basis functions used in the discretization, Nn is their total num-
ber, and ρA and μA are the nodal values of the density and viscosity, respectively,
computed using Eqs. (1) and (2) evaluated with hA and φA, the nodal values of the
mesh size and level-set function, respectively.

3 Computational Results

In this section we present two test cases: the dam break problem and Fridsma plan-
ing hull.

3.1 The MARIN Dam Break Problem

The setup of the dam break problem, initially proposed by the Maritime Research
Institute Netherlands (MARIN) [30], is depicted in Fig. 1. The problem consists of
a column of water, initially at rest, that collapses under the action of gravity and
impacts a fixed rectangular container. We compute the problem using two types of
the spatial discretization: linear tetrahedral finite elements and NURBS. The tetra-
hedral mesh, which is completely unstructured, consists of 2,999,780 elements and
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Fig. 1 The MARIN dam break problem. Geometry definition. The computational domain is a rect-
angular box with dimensions 3.22 m×1 m×1 m. The object has dimensions 0.2 m×0.2 m×0.4 m
and is placed at the back end of the tank. The water column, initially at rest, has dimensions
1 m × 1 m × 0.55 m. The locations where pressure and water height are sampled are also depicted

517,791 nodes. The quadratic NURBS mesh is significantly more coarse. It is block-
structured and consists of only 65,356 elements and 85,464 control points. Free-slip
and no-penetration boundary conditions are applied on all surfaces, including the
top of the tank. The problem is run until T = 6 s, using 2,400 time steps of equal
size. We would like to note that significant computational savings may be obtained
for this problem when using time-step adaptivity (see, e.g., [35, 42]). Snapshots
comparing the solutions coming from tetrahedral FEM and NURBS computations
are given in Fig. 2. Large-scale features of the solution are very similar in the two
simulations, however the details of the small-scale features are better represented on
a much finer tetrahedral grid, as expected.

Time series of the pressure at different locations on the obstacle are shown in
Fig. 3. The first wave hits the block at approximately t = 0.5 s, and the second,
much smaller wave arrives at the block at about t = 5 s. The wave impact times
and pressure peaks are predicted very well with both linear elements and quadratic
NURBS. Given that the NURBS mesh has about half of the degrees-of-freedom of
the linear FEM mesh in each Cartesian direction, the accuracy of NURBS results
is remarkable; linear FEM is not capable of attaining such accuracy at this level of
resolution (see [4]), and requires a finer mesh for comparable accuracy.
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Fig. 2 The MARIN dam break problem. Snapshots of the free surface solution on the tetrahedral
(left) and NURBS (right) meshes at t = 1.0, 1.5, 2.0, 4.0, and 5.0 s
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Fig. 3 The MARIN dam break problem. Time history of the pressure at four locations on the
obstacle. Experimental data is from [30]

3.2 Fridsma Planing Hull

Planing vessels are of importance in civilian and military marine transportation.
In the associated free-surface flow problem air plays an important role and should
be modeled together with water. We present our simulation results for the Fridsma
planing hull from [5] in this section. We give a detailed definition of the hull ge-
ometry, present a mesh refinement study, and assess the effect of hull speed on drag
force and trim angle. Only flat-water (i.e., no waves), constant-hull-speed cases are
considered.

3.2.1 Hull Definition

The hull geometry definition is given in Fig. 4. The hull is comprised of idealized
shapes: the bow consisting of four ruled surfaces and a wedge-shaped straight sec-
tion with a deadrise angle of 20◦. Analytical expressions for the bounding curves
for the ruled surfaces are provided in the figure and the relevant hull parameters are
summarized in Table 1. The data pertains to the center of gravity located at 70 % of
the hull length measured from the aft [22].
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Fig. 4 Fridsma hull. Geometry definition. Top left: side view. Top right: aft view. Bottom left: top
view

Table 1 Fridsma hull.
Global geometric and inertial
parameters

Geometric parameters Inertial parameters

Length (L) 114.3 cm Mass (m) 7.257 kg

Beam (b) 22.86 cm xcg 80.01 cm

Height 14.2875 cm zcg 6.721 cm

Deadrise 20◦ Gyradius (r) 25 %L

Iyy = m(rL)2 0.6165 kg m2

3.2.2 Mesh Convergence Study

We perform a convergence study at Froude number Fr = 0.8950.1 The Froude num-
ber is defined as

Fr = u√
gL

, (10)

where u is the hull speed, g is the magnitude of the gravitational acceleration, and L

is the hull length. The Froude number represents the significance of inertial forces
relative to gravity. At this chosen Froude number, according to [22], the trim angle

1In [22] the results were reported in terms of the Speed-Length Ratio (SLR), u/
√

L, which is
a dimensional quantity. Here report the results in terms of the Froude number, which is non-
dimensional.
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Fig. 5 Fridsma hull. Coarsest mesh with water and air domains depicted

Table 2 Fridsma hull. Mesh
parameters for the four
meshes used in this work

Mesh Nodes Elements

1 111,596 615,932

2 211,429 1,165,064

3 488,419 2,721,768

4 963,731 5,373,290

is at a maximum. We use a sequence of four meshes (see Table 2 for the mesh pa-
rameters). The coarsest mesh is shown in Fig. 5, which also shows the water and
air subdomains in the undisturbed configuration. The mesh density is increased in
the boundary layer near the hull surface and in the wake. The hull is fixed in the
direction of travel, and the corresponding velocity is set at the inflow of the com-
putational domain together with the level-set function. The hull is allowed to pitch
and displace in the vertical direction. At the outflow a hydrostatic pressure profile is
imposed as a traction boundary condition. On the side, bottom, and top boundaries
of the computational domain free-slip boundary conditions are imposed. Figure 6
shows the deformed free surface colored by the flow speed relative to the hull speed
corresponding to the 2,721,768-element mesh simulation. The hull rises up and de-
velops a trim angle such that the bow is higher than the aft. Note the presence of
the “rooster tail” feature, which is typical for planing hulls. Figure 7 shows conver-
gence of the drag force and trim angle with the drag force non-dimensionalized by
the gravitational force. From the results we see that the drag force converges quickly
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Fig. 6 Fridsma hull. Free surface colored by flow speed relative to hull speed in m/s

Fig. 7 Fridsma hull. Convergence of the drag force and trim angle with mesh refinement and
comparison with experimental data from [22]

to the experimental value. The trim angle, on the other hand, is underestimated by
12 % with respect to the experimental data, and does not improve with mesh re-
finement. Possible causes for this may be the choice of the location of downstream,
lateral, and bottom boundaries. Errors in the experimental data are also possible.

3.2.3 Effect of Hull Speed

In this section the effect of hull speed on the drag force and trim angle is studied.
For this purpose the mesh of 2,721,768 tetrahedral elements is used. In addition
to the Fr = 0.8950 case, we consider Fr = 0, Fr = 0.5925, and Fr = 1.190. The
simulations are started impulsively in the configuration depicted in Fig. 5. In the
case of Fr = 0, although the hull speed is zero, a non-zero trim angle develops such
that the hull is in equilibrium with the hydrostatic forces. In all other cases, however,
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Fig. 8 Fridsma hull. Transient behavior of the drag force and trim angle

Fig. 9 Fridsma hull. Steady-state drag force and trim angle as a function of Froude number, and
comparison with experimental data from [22]

there is a rapid transient followed by a largely steady-state response. Figure 8 depicts
this transient behavior, and shows that the steady state for all cases is attained in
about 1 s. For higher hull speeds the decay in the transient response is slower. The
steady-state drag force and trim angle are plotted as a function of Froude number,
and compared to the experimental results in Fig. 9. Accurate prediction of the drag
force is attained in all cases. The trim angle is predicted very well for the first two
Froude number cases, and the 10–12 % deviation from the experiment is seen in the
remaining two cases.

4 Conclusions

A free-surface flow and fluid-object interaction computational framework is pre-
sented that can be used to compute free-surface motions of arbitrary complexity.
The numerical formulation is able to accommodate a variety of discretizations, in-
cluding lower- and higher-order FEM and IGA. Both air and water are modeled,
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which enables the application of the proposed methodology to planing hulls as well
as other engineering systems, such as offshore wind turbines. The framework is ap-
plied to the simulation of the dam break and Fridsma hull problems, where very
good comparison with the experimental data was observed. In the case of the dam
break problem, IGA showed remarkable per-degree-of-freedom accuracy.
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The Particle Finite Element Method (PFEM).
An Effective Numerical Technique for Solving
Marine, Naval and Harbour Engineering
Problems

E. Oñate, S.R. Idelsohn, M.A. Celigueta, and B. Suárez

Abstract We present some developments in the Particle Finite Element Method
(PFEM) for the solution of complex coupled problems in marine, naval and harbour
engineering involving fluid-soil-structure interaction (FSSI). The PFEM uses an up-
dated Lagrangian description to model the motion of nodes (particles) in a contin-
uum domain containing fluid, soil/rock and structures subdomains. A mesh connects
the nodes defining the discretized domain where the governing equations for each of
the constituent materials are solved with the FEM. The stabilization for dealing with
an incompressibility material is introduced via the finite calculus (FIC) method. An
incremental iterative scheme for solving the non linear transient FSSI problem is
described. The procedure to model frictional contact conditions and material ero-
sion at fluid-solid and solid-solid interfaces is described. We present examples of
application of the PFEM to solve FSSI problems in marine, naval and harbour en-
gineering such as the motion of rocks by water streams, the stability of breakwaters
and constructions under sea waves, the sinking of ships and the collision of a ship
with ice blocks.

Keywords Particle finite element method · Marine engineering · Naval
engineering · Harbour engineering

1 Introduction

The analysis of problems involving the interaction of fluids, soil/rocks and struc-
tures is relevant in many areas of marine, naval and harbour engineering. Some rep-
resentative examples are the study of off-shore and harbour structures under large
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waves, constructions hit by tsunamis, erosion of sea bed and landscape adjacent to
sea shore, motion of ships under severe sea conditions, the simulation of the sinking
of a ship, the collision of a ship with ice blocks, excavation and drilling problems in
the sea in petroleum and gas engineering, etc.

The authors have developed in previous works a particular class of Lagrangian
formulation for solving problems involving complex interactions between (free sur-
face) fluids and solids. The so-called the particle finite element method (PFEM,
www.cimne.com/pfem), treats the mesh nodes in the fluid and solid domains as
particles which can freely move and even separate from the main fluid domain rep-
resenting, for instance, the effect of water drops. A mesh connects the nodes dis-
cretizing the domain where the governing equations are solved using a stabilized
FEM.

An advantage of the Lagrangian formulation is that the non-linear and non sym-
metric convective terms disappear from the fluid equations [1, 2]. The difficulty is
however transferred to the problem of adequately (and efficiently) moving the mesh
nodes. The theory and applications of the PFEM are reported in [1–18].

The solution of a FSSI problem requires solving the momentum and mass bal-
ance equations for the underlying continuum that may include incompressible do-
mains (as it is the case for a fluid and some soils). In our work we use a stabilized
mixed FEM based on Finite Calculus (FIC) which allows us to solve incompress-
ible continua with a linear approximation for the velocity and pressure variables
[6, 9, 18, 20–23].

The layout of the chapter is as follows. In the next section the key ideas of the
PFEM are outlined. Next the basic equations for a general continuum using a La-
grangian description and the FIC formulation are schematically presented. Then an
algorithm for the transient solution is briefly described. The treatment of the cou-
pled FSSI problem and the method for mesh generation and for identification of the
free surface nodes are outlined. The procedure for treating the frictional contact in-
teraction between fluid, soil and structure interfaces is explained. We present several
examples of application of the PFEM to solve FSSI problems in marine, naval and
harbour engineering such as the motion of rocks by water streams, the stability of
breakwaters and constructions hit by sea waves, the study of the sinking of ships
and the collision of a ship with ice blocks.

2 The Basis of the Particle Finite Element Method

Let us consider a domain containing both fluid and solid subdomains (the solid
subdomain may include soil/rock materials and/or structural elements). The moving
fluid particles interact with the solid boundaries, thereby inducing the deformation
of the solid which in turn affects the flow motion and, therefore, the problem is fully
coupled.

In the PFEM both the fluid and the solid domains are modelled using an updated
Lagrangian formulation [24]. That is, all variables are assumed to be known in

http://www.cimne.com/pfem


The Particle Finite Element Method (PFEM). An Effective Numerical Technique 67

the current configuration at time t . The new set of variables in both domains is
sought for in the next or updated configuration at time t + �t . The finite element
method (FEM) is used to solve the equations of continuum mechanics for each of the
subdomains. Hence a mesh discretizing these domains must be generated in order
to solve the governing equations for each subdomain in the standard FEM fashion
[24–27].

The quality of the numerical solution depends on the discretization chosen as in
the standard FEM. Adaptive mesh refinement techniques can be used to improve the
solution.

2.1 Basic Steps of the PFEM

For clarity purposes we will define the collection or cloud of nodes (C) pertaining
to the fluid and solid domains, the volume (V ) defining the analysis domain for the
fluid and the solid and the mesh (M) discretizing both domains.

A typical solution with the PFEM involves the following steps.

1. The starting point at each time step is the cloud of points in the fluid and solid
domains. For instance nC denotes the cloud at time t = tn (Fig. 1).

2. Identify the boundaries for both the fluid and solid domains defining the analysis
domain nV in the fluid and the solid. This is an essential step as some boundaries
(such as the free surface in fluids) may be severely distorted during the solution,
including separation and re-entering of nodes. The Alpha Shape method [19] is
used for the boundary definition.

3. Discretize the fluid and solid domains with a finite element mesh nM .We use
an effect mesh generation scheme based on the extended Delaunay tessellation
[3, 4].

4. Solve the coupled Lagrangian equations of motion for the overall continuum.
Compute the state variables in at the next (updated) configuration for t + �t :
velocities, pressure and viscous stresses in the fluid and displacements, stresses
and strains in the solid.

5. Move the mesh nodes to a new position n+1C where n + 1 denotes the time
tn +�t , in terms of the time increment size. This step is typically a consequence
of the solution process of step 4.

6. Go back to step 1 and repeat the solution for the next time step to obtain n+2C

(Fig. 1).

3 FIC/FEM Formulation for a Lagrangian Continuum

3.1 Governing Equations

The equations to be solved are the standard ones in Lagrangian continuum mechan-
ics [24].
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Fig. 1 Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid
and a solid part from time n (t = tn) to time n + 2 (t = tn + 2�t )

Momentum

ρ
∂vi

∂t
= ∂σij

∂xj

+ bi in V (1)

Pressure-velocity relationship

1

K

∂p

∂t
− ∂vi

∂xi

= 0 in V (2)

In above equations vi is the velocity along the ith global (Cartesian) axis, p is
the pressure (assumed to be positive in tension) ρ and K are the density and
bulk modulus of the material, respectively, bi and σij are the body forces and the
(Cauchy) stresses. Equations (1) and (2) are completed with the constitutive rela-
tionships [12]:

Incompressible continuum

t+1σij = 2με̇ij + t+1pδij (3)

Compressible/quasi-incompressible continuum

t+1σij = t σ̂ij + 2με̇ij + λε̇iiδij (4a)



The Particle Finite Element Method (PFEM). An Effective Numerical Technique 69

where σ̂ij are the component of the Cauchy stress tensor [σ̂ ]

[σ̂ ] = 1

J
FT SF (4b)

where S is the second Piola-Kirchhoff stress tensor, F is the deformation gradient
tensor and J = det F [24]. Parameters μ and λ take the following values for a fluid
or solid material:

Fluid μ: viscosity; λ = �tK − 2μ
3

Solid μ = �tG
J

; λ = 2Gν�t
J (1−2ν)

, where ν is the Poisson ratio, G is the shear modulus
and �t the time increment.

In Eqs. (3) and (4a), (4b), ε̇ij is the rate of deformation and δij is the Kronecker
delta. t (·) denotes values at time t .

Note that t �
σij = 0 for a fluid in Eq. (4a), as the stresses depend on the rates of

deformation only.
Indexes in Eqs. (1)–(4b) range from i, j = 1, nd , where nd is the number of space

dimensions. These equations are completed with the standard boundary conditions
of prescribed velocities and surface tractions in the mechanical problem [8–13].

3.2 Discretization of the Equations

A key problem in the numerical solution of Eqs. (1)–(4b) is the satisfaction of the
mass balance condition for the fully incompressible case (i.e. K = ∞ in Eq. (2)).
A number of procedures to solve this problem exists in the finite element literature
[25, 27]. In our approach we use a stabilized formulation based in the so-called finite
calculus (FIC) procedure [9, 14, 20–23]. The essence of this method is the solution
of a modified mass balance equation which is written as

1

K

∂p

∂t
− ∂vi

∂xi

+
3∑

i=1

τ
∂q

∂xi

[
∂p

∂xi

+ πi

]
= 0 (5)

where q are weighting functions, τ is a stabilization parameter given by [9, 14,
21–23]

τ =
(

2ρ|v|
h

+ 8μ

3h2

)−1

(6)

In the above, h is a characteristic length of each finite element and |v| is the mod-
ulus of the velocity vector. In Eq. (5) πi are auxiliary pressure projection variables
chosen so as to ensure that the second term in Eq. (5) can be interpreted as weighted
sum of the residuals of the momentum equations and therefore it vanishes for the
exact solution. The set of governing equations is completed by adding the following
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constraint equation [9]
∫

V

τwi

(
∂p

∂xi

+ πi

)
dV = 0 i = 1, nd (no sum in i) (7)

where wi are arbitrary weighting functions.
The rest of the integral equations are obtained by applying the weighted residual

technique to the governing Eqs. (1), (2), (3) and (5) and the boundary conditions
[9, 12, 14, 18, 22, 26].

We interpolate next in the finite element fashion the set of problem variables. For
3D problems these are the three velocities vi , the pressure p and the three pressure
gradient projections πi . In our work we use equal order linear interpolation for all
variables over meshes of 3-noded triangles (in 2D) and 4-noded tetrahedra (in 3D).
The resulting set of discretized equations using the standard Galerkin technique has
the following form

Momentum

M ˙̄v + Kv̄ + Gp̄ = f (8)

Pressure-velocity relationship

M̄ ˙̄p + Lp̄ − Gv̄ + Qπ̄ = 0 (9)

Pressure gradient projection

�

Mπ̄ + QT p̄ = 0 (10)

In Eqs. (8)–(10) (·) denotes nodal variables, ˙
(·) = ∂

∂t
(·). The matrices and vectors

are given in [14, 18].
The solution in time of Eqs. (8)–(10) can be performed using any time integration

scheme typical of the updated Lagrangian FEM [24]. A basic algorithm following
the conceptual process described in Sect. 2 is presented in Box 1.

4 Generation of a New Mesh

A key point for the success of the PFEM is the fast regeneration of a mesh at every
time step on the basis of the position of the nodes in the space domain. In our work
the mesh is generated using the so called extended Delaunay tessellation (EDT)
presented in [4].

The CPU time required for meshing grows linearly with the number of nodes.
The CPU time for solving the equations exceeds that required for meshing as the
number of nodes increases. As a general rule for large 3D problems meshing con-
sumes around 15 % of the total CPU time per time step, while the solution of the
equations (with typically 3 iterations per time step) and the system assembly con-
sume approximately 70 % and 15 % of the CPU time per time step, respectively.
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1. LOOP OVER TIME STEPS, t = 1, NTIME
Known values
t x̄, t v̄, t p̄, t π̄ , t T̄, tμ, t f, t q, tC, tV , tM

2. LOOP OVER NUMBER OF ITERATIONS, i = 1, NITER

• Compute the nodal velocities by solving Eq. (8)
[

1

�t
M + K

]
t+1v̄i+1 = t+1f − Gt+1p̄i + 1

�t
Mt v̄

• Compute nodal pressures from Eq. (9)
[

1

�t
M̄ + L

]
t+1p̄i+1 = GT t+1v̄i+1 − Qt+1π̄ i + 1

�t
M̄t p̄

• Compute nodal pressure gradient projections from Eq. (10)

n+1π̄ i+1 = −M̂−1
D

[
QT
]
t+1p̄i+1, M̂D = diag[M̂D]

• Update position of analysis domain nodes:

t+�t x̄i+1 = t xi + t+�t vi+1�t

Define new “cloud” of nodes t+�tCi+1

Check convergence → NO → Next iteration i → i + 1
↓ YES

Next time step t → t + 1

• Identify new analysis domain boundary: t+1V

• Generate mesh: t+1M

Go to 1

Box 1 Basic PFEM algorithm for a Lagrangian continuum

These figures refer to analyses in a single processor Pentium IV PC and prove that
the generation of the mesh has an acceptable cost in the PFEM. Indeed considerable
speed can be gained using parallel computing techniques.

5 Identification of Boundary Surfaces

One of the main tasks in the PFEM is the correct definition of the boundary domain.
Boundary nodes are sometimes explicitly identified. In other cases, the total set
of nodes is the only information available and the algorithm must recognize the
boundary nodes (Fig. 2).

In our work we use an extended Delaunay partition for recognizing boundary
nodes [4]. Considering that the nodes follow a variable h(x) distribution, where
h(x) is typically the minimum distance between two nodes. All nodes on an empty
sphere with a radius greater than αh, are considered as boundary nodes. In practice
α is a parameter close to, but greater than one. Values of α ranging around 1.3 have
been found to be optimal in all examples analyzed. This criterion is coincident with
the Alpha Shape concept [19].
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Fig. 2 Modelling of contact conditions at a solid-solid interface with the PFEM

Once a decision has been made concerning which nodes are on the boundaries,
the boundary surface is defined by all the polyhedral surfaces (or polygons in 2D)
having all their nodes on the boundary and belonging to just one polyhedron.

The method also allows one to identify isolated fluid particles outside the main
fluid domain. These particles are treated as part of the external boundary where the
pressure is fixed to the atmospheric value. We recall that each particle is a material
point characterized by the density of the solid or fluid domain to which it belongs.
The mass lost when a boundary element is eliminated due to departure of a node
from the analysis domain is regained when the node falls down and a new boundary
element is created by the Alpha Shape algorithm.

The boundary recognition method is useful for detecting contact conditions be-
tween the fluid domain and a boundary, as well as between different solids as de-
tailed in the next section.

We emphasize that the key differences between the PFEM and the classical FEM
are the remeshing technique and the identification of the domain boundary at each
time step.

6 Treatment of Contact Conditions in the PFEM

6.1 Contact Between the Fluid and a Fixed Boundary

Known velocities at boundaries in the PFEM are prescribed in strong form to the
boundary nodes. These nodes might belong to fixed external boundaries or to mov-
ing boundaries linked to the interacting solids. Contact between fluid particles and
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fixed boundaries is accounted for by the incompressibility condition which naturally
prevents fluid nodes to penetrate into the solid boundaries [6, 9, 14].

6.2 Contact Between Solid-Solid Interfaces

The contact between two solid interfaces is treated by introducing a layer of contact
elements between the two interacting solid interfaces. This layer is automatically
created during the mesh generation step by prescribing a minimum distance (hc)

between two solid boundaries. If the distance exceeds the minimum value (hc) then
the generated elements are treated as fluid elements. Otherwise the elements are
treated as contact elements where a relationship between the tangential and normal
forces and the corresponding displacement is introduced (Fig. 2) [6, 10].

This algorithm allows us to identify and model complex frictional contact condi-
tions between two or more interacting bodies moving in water in an extremely sim-
ple manner. The algorithm can also be used effectively to model frictional contact
conditions between rigid or elastic solids in structural mechanics applications [16].

7 Modeling of Bed Erosion

Prediction of bed erosion and sediment transport in open channel flows are impor-
tant tasks in river and environmental engineering. Bed erosion can lead to insta-
bilities of the river basin slopes. It can also undermine the foundation of bridge
piles thereby favouring structural failure. Modeling of bed erosion is also relevant
for predicting the evolution of surface material dragged in earth dams in overspill
situations. Bed erosion is one of the main causes of environmental damage in floods.

In recent works we have proposed an extension of the PFEM to model bed ero-
sion [10, 14]. The erosion model is based on the frictional work at the bed surface
originated by the shear stresses in the fluid. The resulting erosion model resembles
Archard law typically used for modeling abrasive wear in surfaces under frictional
contact conditions [28].

The algorithm for modeling bed erosion is the following:

1. Compute at the bed surface the resultant tangential stress induced by the fluid
motion.

2. Compute the frictional work nWf originated by the tangential stresses at the bed
surface.

3. The onset of erosion at a bed point occurs when nWf exceeds a critical threshold
value Wc.

4. If nWf > Wc at a bed node, then the node is detached from the bed region and
it is allowed to move with the fluid. Also, the mass of the patch of bed elements
surrounding the bed node is transferred to the new fluid node. This mass is sub-
sequently transported with the fluid.
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Fig. 3 Modeling of bed erosion with the PFEM by dragging of bed material

Figure 3 shows an schematic view of the bed erosion algorithm described.
Sediment deposition can be modeled by an inverse process. Hence, a suspended

node adjacent to the bed surface with a velocity below a threshold value is attached
to the bed surface.

Examples of the bed erosion algorithm for modeling excavation and rock cutting
problems are presented in [16].

8 Examples

8.1 Dragging of Rocks by a Water Stream

Predicting the critical speed at which a rock will be dragged by a water stream is of
great importance in many problems in hydraulic, harbour, civil and environmental
engineering.

The PFEM has been successfully applied to the study of the motion of a 1 Tn
quasi-spherical rock due to a water stream. The rock lays on a collection of rocks
that are kept rigid.

Frictional conditions between the analyzed rock and the rest of the rocks have
been assumed.

Figure 4a shows that a water stream of 1 m/s is not able to displace the individual
rock. An increase of the water speed to 2 m/s induces the motion of the rock as
shown in Fig. 4b.
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Fig. 4 Drag of a 1 Tn rock under a water stream at speeds of (a) 1 m/s and (b) 2 m/s

Fig. 5 Breaking waves on breakwater slopes containing reinforced concrete blocks

8.2 Impact of Sea Waves on Piers and Breakwaters

Figure 5 shows the analysis of the effect of breaking waves on two different sites
of a breakwater containing reinforced concrete blocks (each one of 4 × 4 × 4 mts).
The figures correspond to the study of Langosteira harbour in A Coruña, Spain using
PFEM.

8.3 Soil Erosion Problems

Figure 6a shows the capacity of the PFEM for modelling soil erosion, sediment
transport and material deposition in a river bed. The soil particles are first detached
from the bed surface under the action of the jet stream. Then they are transported
by the flow and eventually fall down due to gravity forces into the bed surface at a
downstream point.
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Fig. 6 (a) Erosion, transport and deposition of soil particles at a river bed due to an impacting jet
stream (b) Erosion of an unprotected shoulder of a breakwater due to sea waves

Fig. 7 Erosion of a soil mass due to sea waves and the subsequent falling into the sea operating in
a road adjacent to the sea lorry

Figure 6b shows the progressive erosion of the unprotected part of a breakwa-
ter slope in the Langosteira harbour in A Coruña, Spain. The non-protected upper
shoulder zone is progressively eroded as it is hit by the sea waves.

8.4 Falling of a Lorry into the Sea by Sea Wave Erosion
of the Road Slope

Figure 7 shows a representative example of the progressive erosion of a soil mass
adjacent to the shore due to sea waves and the subsequent falling into the sea of a
2D object representing the section of a lorry. The object has been modeled as a rigid
solid.

This example and the previous ones, although still quite simple and schematic,
show the possibilities of the PFEM for modeling complex FSSI problems involving
soil erosion, free surface waves and rigid/deformable structures.

8.5 Impact of Waves over Transport Vehicles in Harbour

Figures 8 and 9 show two examples of the study of the impact of large waves on
lorries operating in roads adjacent to a breakwater.
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Fig. 8 20 mts amplitude wave hitting a 20 Tn lorry placed close to a breakwater slope

Fig. 9 Effect of an overtopping wave on a 20 Tn lorry in a road adjacent to a breakwater

Figure 8 shows the effect of a wave of 20 mts amplitude on a 20 Tns lorry adja-
cent to a breakwater shoulder.

Figure 9 displays the impact of an overtopping wave on the same lorry placed on
a road behind a breakwater.
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Fig. 10 2D simulation of the sinking of a cargo vessel due to a breach in the bow region. (a) Water
streamline at different times. (b) Water velocity pattern at different times during sinking

8.6 Simulation of Sinking of Ships

The PFEM can be effectively applied for simulating the sinking of ships under a
variety of scenarios.

Figure 10 shows images of the 2D simulation of the sinking of a cargo vessel
induced by a breach in the bow region.

Figure 11 displays a 3D simulation of the sinking of a simple fisherman boat
induced by a hole in the side of the hull.

These examples evidence the potential of PFEM for the study of the sinking of
ships.
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Fig. 11 3D simulation of the sinking of a boat induced by a hole in the side of the hull. Figures
show different views of the water flow inside the boat during sinking

Fig. 12 3D simulation of a boat colliding with five ice blocks

8.7 Collision of Boat with Ice Blocks

Figures 12 and 13 show two examples of the application of PFEM to the study of
the collision of a ship with ice blocks.

Figure 12 shows snapshots of the motion of a boat which collides with several
ice blocks.

Figure 13 displays the interaction between a boat and two ice slabs that trap the
boat in their motion.

We note that the boat and the ice blocks have been modelled as rigid bodies in
these examples. Indeed, the deformation of the ship structure due to the ice-ship
interaction forces can be accounted for in the analysis.

9 Conclusions

The particle finite element method (PFEM) is a promising numerical technique for
solving fluid-soil-structure interaction (FSSI) problems in naval, marine and harbour
engineering involving large motion of fluid and solid particles, surface waves, water
splashing, frictional contact situations between fluid-solid and solid-solid interfaces
and bed erosion, among other complex phenomena. The success of the PFEM lies
in the accurate and efficient solution of the equations of an incompressible con-
tinuum using an updated Lagrangian formulation and a stabilized finite element
method allowing the use of low order elements with equal order interpolation for all
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Fig. 13 Simulation of the interaction of two adjacent ice slabs and boat. The ice slabs move
towards the boat that ends up out of the water and over the slabs

the variables. Other essential solution ingredients are the efficient regeneration of
the finite element mesh, the identification of the boundary nodes using the Alpha-
Shape technique and the simple algorithm to treat frictional contact conditions and
erosion/wear at fluid-solid and solid-solid interfaces via mesh generation. The ex-
amples presented have shown the potential of the PFEM for solving a wide class of
practical FSSI problems in naval, marine and harbour engineering.
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Shape-Newton Method for Isogeometric
Discretizations of Free-Boundary Problems

K.G. van der Zee, G.J. van Zwieten, C.V. Verhoosel, and E.H. van Brummelen

Abstract We derive Newton-type solution algorithms for a Bernoulli-type free-
boundary problem at the continuous level. The Newton schemes are obtained by
applying Hadamard shape derivatives to a suitable weak formulation of the free-
boundary problem. At each Newton iteration, an updated free boundary position is
obtained by solving a boundary-value problem at the current approximate domain.
Since the boundary-value problem has a curvature-dependent boundary condition,
an ideal discretization is provided by isogeometric analysis. Several numerical ex-
amples demonstrate the apparent quadratic convergence of the Newton schemes on
isogeometric-analysis discretizations with C1-continuous discrete free boundaries.

Keywords Newton-type methods · Bernoulli free-boundary problem · Shape
derivative · Isogeometric analysis · Smooth discrete boundaries · Shape-linearized
free-boundary problem

1 Introduction

In this contribution we consider the classical problem of finding efficient solution
algorithms for (steady) free-boundary problems. These algorithms find their appli-
cation in the simulation of, for example, steady free-surface flow problems in ship
hydrodynamics, hydraulics, and free-jet flows [9, 27, 28, 34]. An important model
problem for developing algorithms is the Bernoulli free-boundary problem [8, 13]
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(or Alt–Caffarelli free-boundary problem [1]). This model problem is also the sub-
ject of the current work.

Solution algorithms for the Bernoulli free-boundary problem come in three fla-
vors: trial free-boundary methods, shape-optimization methods and direct Newton-
type methods. Trial free-boundary methods alternate between solving a boundary-
value problem on a fixed approximate domain, and updating the free boundary using
the residual of the free-boundary condition that was not imposed in the boundary-
value problem, cf. [3, 13, 18, 20, 25]. These are linear convergence methods,
with, generally, parameter-dependent stability and convergence behavior. Shape-
optimization methods improve the convergence rate, but are difficult to extend to
nonvariational problems since they make use of the particular shape-optimization
formulation of the Bernoulli free-boundary problem. For details on these algorithms
see, e.g., [12, 14, 15, 22, 25, 26, 30].

Direct Newton-type methods aim at linearizing the system of equations and set-
ting up a Newton–Raphson iteration scheme. Linearization can be done by map-
ping back to a reference domain [21, 31], or in the current configuration. Methods
obtained by linearizing in the current configuration shall be referred to as shape-
Newton methods. Their derivation uses either formal asymptotics or rigorous tech-
niques from shape-differential calculus [11, 24]. The resulting schemes are partic-
ularly elegant because the effect of domain-perturbations appear only in boundary
conditions, and thus have a local effect.1 Schemes derived based on formal asymp-
totics may be found in [4, 13, 29] while those based on shape calculus are considered
by Karkkainen and Tiihonen [17, 18].

In the current work, we reconsider the derivation of Newton-type schemes us-
ing shape-calculus techniques. Our derivation is different from Karkkainen and Ti-
ihonen, in that we do not explicitly identify two sets of equations, but employ a
weak form of the complete free-boundary problem.2 Furthermore, we consider a
more general setting with nonconstant Dirichlet data. The resulting scheme yields
a boundary-value problem with a curvature-dependent boundary condition (as ob-
tained by Karkkainen and Tiihonen).

Direct discretizations based on the so-derived shape-Newton method require C1-
continuous free-boundaries for a finite curvature. Ordinary interface-fitted finite-
element based discretizations have only C0-continuous free-boundaries, and there-
fore require a cumbersome implementation with, for example, smoothing or re-
construction [13, 18]. To be able to directly discretize the shape-Newton formula-
tion, we therefore employ isogeometric-analysis discretizations. Isogeometric anal-
ysis [6, 16] is a recent extension of finite-element analysis that employs smooth
basis functions that are typically used for geometry (such as non-uniform rational
B-splines, T-splines, etc.). The relative ease with which such basis functions can
be generated with arbitrary smoothness, i.e., up to Cp−1-continuity for pth-order

1For domain-map linearization (linearization in the reference domain), domain-perturbations have
a nonlocal effect, and this nonlocality depends on the particular domain map chosen [31, 32]).
2We note that this derivation has been employed previously to obtain the linearized-adjoint opera-
tor; see [32].
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Fig. 1 Illustration of the parametrization of the free boundary Γθ by its displacement θ with
respect to the reference configuration Γ0

splines, is an enormous advantage in the current application. Other applications
where isogeometric analysis is advantageous for its smooth geometries are, e.g.,
shape optimization [5], linearized adjoints for free-boundary problems [33], and di-
rect discretization of shells [19].

The contents of the paper are arranged as follows. In Sect. 2 we introduce the
free-boundary problem, as well as a suitable very weak formulation. In Sect. 3 we
linearize the free-boundary problem by applying Hadamard shape derivatives on
the very weak form. The linearization yields Newton-like schemes which are pre-
sented in Sect. 4. Numerical examples with C1-continuous isogeometric analysis
discretizations are presented in Sect. 5. Conclusions are drawn in Sect. 6.

2 Free-Boundary Problem

2.1 Strong Form

The Bernoulli-type free-boundary problem seeks an a priori unknown domain
Ωθ ⊂ R

N (with N the number of space dimensions), for which the boundary
∂Ωθ contains a fixed part ΓD and free part Γθ , and a corresponding scalar func-
tion u : Ωθ →R such that

−�u = f in Ωθ , (1a)

∂nu = g on Γθ , (1b)

u = h on ∂Ωθ = Γθ ∪ ΓD , (1c)

where ∂n(·) := ∂(·)/∂n ≡ n · ∇(·) is the normal derivative. The data f , g ≥ g0 > 0
(g0 is constant) and h are defined on R

N , assumed to be sufficiently smooth, and
assumed to be such that there is a nontrivial solution pair (Γθ , u).

In the above, Ωθ and Γθ have been parametrized by a vectorfield θ : Γ0 → R
N

which defines the displacement of the current free-boundary Γθ with respect to the
reference free-boundary Γ0, i.e.,

Γθ := {x ∈ R
N
∣∣ x = x0 + θ(x0),∀x0 ∈ Γ0

}
.

An important advantage of introducing this parametrization is that our prob-
lem (1a)–(1c) is now posed in terms of the pair (θ , u). See Fig. 1 for an illustration.
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0. Initialize with a displacement θ (0); Set k = 0.
1. Given θ (k), solve the Neumann problem (2a)–(2c) (on Ω̂ = Ω

θ (k) ) for u∗.
2. Update the free-boundary displacement according to:

θ (k+1)(x0) = θ (k)(x0) + α
h(x) − u∗(x)

g(x)
m(k)(x), ∀x0 ∈ Γ0

(
x = x0 + θ (k)(x0)

)
.

3. Set k ← k + 1 and repeat from step 1 until convergence.

Fig. 2 The explicit Neumann scheme. In the above, the parameter α is a chosen relaxation param-
eter, and the vectorfield m(k) : Γθ (k) → R

N is a chosen vectorfield which determines the direction
of the update, e.g., m(k) = n

Remark 1 (Explicit Neumann scheme) The (continuous) explicit Neumann scheme
[13] solves (1a)–(1c) iteratively, by solving the following Neumann problem on a
fixed domain Ω̂ with free-boundary Γ̂ :

−�u∗ = f in Ω̂, (2a)

∂nu
∗ = g on Γ̂ , (2b)

u∗ = h on ΓD , (2c)

and subsequently updating the free boundary using the residual of the ignored
boundary condition, h − u∗ on Γ̂ . An outline of the explicit Neumann scheme is
given in Fig. 2.

2.2 Very Weak Form

To be able to linearize the free-boundary problem (1a)–(1c) using shape calculus,
we need to introduce a weak formulation of (1a)–(1c) that incorporates all boundary
conditions at the free boundary. This can be obtained by multiplying (1a) with a
suitable testfunction v ∈ V := {v ∈ C∞(RN) | v = 0 on ΓD }, integrating over Ωθ ,
and performing an integration-by-parts twice, thereby substituting (1b) and (1c),
yielding:

N
(
(θ , u);v)= 0 ∀v ∈ V, (3)

where we have introduced the semilinear (nonlinear with respect to its first argu-
ment) form N ((·, ·); ·):

N
(
(θ , u);v) := D(θ;u,v) −F(θ;v) − G(θ;v), (4)
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which is defined in terms of the three semilinear forms:

D
(
(θ , u);v) :=

∫

Ωθ

−u�v dΩ +
∫

∂Ωθ

h∂nv dΓ

=
∫

Ωθ

(−(u − h)�v + ∇h · ∇v
)

dΩ,

F(θ;v) :=
∫

Ωθ

f v dΩ,

G(θ;v) :=
∫

Γθ

gv dΓ.

Remark 2 (Equivalence) Note that a solution of (1a)–(1c) satisfies (3), while stan-
dard variational arguments show that if (θ , u) is a sufficiently smooth solution of (3),
then it satisfies (1a)–(1c).

3 Linearizing Free-Boundary Problems

In this section, we consider the linearization of N ((θ , u);v) at an arbitrary approx-
imation (θ̂ , û). We assume the approximation-pair to be compatible in the sense
that û is any approximation that lives on the approximate domain induced by θ̂ ,
i.e., on Ω

θ̂
. We furthermore assume that û satisfies its boundary condition at the

fixed boundary ΓD . In the sequel, for notational convenience, let us denote the
corresponding approximate domain and free boundary by Ω̂ ≡ Ω

θ̂
and Γ̂ ≡ Γ

θ̂
,

respectively.

Remark 3 (Regularity of approximations) It is important to state the smoothness
requirements on û and θ̂ that allow the ensuing linearizations to be performed. Nat-
ural requirements are that û ∈ H 1(Ω̂) and θ̂ ∈ C

1,1
0 (Γ0) such that Ω̂ is of class C1,1.

Note that the latter requirement implies that the curvature of Ω̂ is bounded [11].

3.1 Linearization with Respect to u

Since the dependence of N ((θ , u);v) on u is affine, its functional (or Gâteaux)
derivative at û in the direction δu (for fixed v ∈ V ) is simply given by:

〈
∂uN

(
(θ̂ , û);v), δu〉 := lim

t→0

N ((θ̂ , û + δu);v) −N ((θ̂ , û);v)

t

=
∫

Ω̂

−δu�v dΩ. (5)
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3.2 Hadamard Shape Derivatives

To linearize N ((θ , u);v) with respect to θ , we require the Gâteaux derivative of
functionals that depend on θ . Inspection of N ((θ , u);v) reveals that the dependence
is either via a domain integral,

∫
Ωθ

(· · · )dΩ , or a boundary integral
∫
Γθ

(· · · )dΩ .
Such derivatives can be computed using techniques of shape calculus and yield so-
called Hadamard formulas.

Consider a functional θ �→ J (θ). The Gâteaux derivative of J (·) at an approxi-
mation θ̂ in the direction δθ is defined as:

〈
∂θJ (θ̂), δθ

〉 := lim
t→0

J (θ̂ + tδθ) −J (θ̂)

t
.

In particular, for a domain and boundary integral we have the Hadamard formu-
las [11, 24]:

J (θ) =
∫

Ωθ

φ dΩ ⇒ 〈
∂θJ (θ̂), δθ

〉=
∫

Γ̂

φδθ · ndΓ,

J (θ) =
∫

Γθ

ϕ dΓ ⇒ 〈
∂θJ (θ̂), δθ

〉=
∫

Γ̂

(∂nϕ + κϕ)δθ · ndΓ,

respectively, where κ ≡ κ(Γ̂ ) is the additive curvature (sum of (N−1) curvatures)
of Γ̂ .

Remark 4 In the above formulas δθ is to be evaluated in the reference domain Γ0,
i.e. δθ = δθ(x0) with x0 + θ̂(x0) = x ∈ Γ̂ .

3.3 Shape Linearization

Applying the Hadamard formulas to the semilinear forms in (4) yields

〈
∂θD

(
(θ̂ , û);v), δθ 〉 =

∫

Γ̂

(−(û − h)�v + ∇h · ∇v
)
δθ · ndΓ, (6a)

〈
∂θF(θ̂), δθ

〉 =
∫

Γ̂

f vδθ · ndΓ, (6b)

〈
∂θG(θ̂), δθ

〉 =
∫

Γ̂

(
(∂ng + κg)v + g∂nv

)
δθ · ndΓ. (6c)

It is important to realize that (6a) can be simplified using properties of the exact
solution; cf. [17, 18]. Indeed, since û is expected to be close to the exact u, and u

equals h on the exact free-boundary Γ , we can neglect the (û − h)-term provided
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the errors u − û and θ − θ̂ are small. We thus have the approximation:

〈
∂θD

(
(θ̂ , û);v), δθ 〉≈

∫

Γ̂

∇h · ∇vδθ · ndΓ

=
∫

Γ̂

(∇Γ h · ∇Γ v + ∂nh∂nv)δθ · ndΓ

=
∫

Γ̂

(−divΓ (δθ · n∇Γ h)v + ∂nh∂nvδθ · n)dΓ, (6a�)

where in the last two steps we used the tangential gradient splitting, ∇Γ (·) = ∇(·)−
∂n(·)n, and the tangential Green’s identity (tangential integration-by-parts); see [11,
Sect. 8.5]. We furthermore introduced the tangential divergence: divΓ (·) = div(·) −
∂n(·) · n.

Combining (6a�), (6b) and (6c) yields the approximate shape linearization:
〈
∂θN

(
(θ̂ , û);v), δθ 〉

≈
∫

Γ̂

(∂nh − g)∂nvδθ · ndΓ

−
∫

Γ̂

(
(f + ∂ng + κg)δθ · n + divΓ (δθ · n∇Γ h)

)
v dΓ. (7)

4 Newton-Like Schemes

An exact Newton method applied to (3) would set up the following problem for the
update (δθ , δu):

〈
∂(θ ,u)N

(
(θ̂ , û);v), (δθ , δu)

〉= −N
(
(θ̂ , û);v) ∀v ∈ V,

and subsequently compute the total (updated) approximations:

θ∗ = θ̂ + δθ and u∗ = û + δu

(we shall later introduce a mixed total/update form; see Remark 5).
Introducing (5) and our approximation (7) we actually obtain the following

Newton-like scheme:
∫

Ω̂

−δu�v dΩ +
∫

Γ̂

(∂nh − g)∂nvδθ · ndΓ

−
∫

Γ̂

(
(f + ∂ng + κg)δθ · n + divΓ (δθ · n∇Γ h)

)
v dΓ

= −N
(
(θ̂ , û);v) ∀v ∈ V. (8)

Of course, close to the exact solution, the above scheme is almost an exact Newton
scheme. Indeed, at the exact solution the approximation in (7) is exact.
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0. Initialize with a displacement θ (0); Set k = 0.
1. Given θ (k), solve the coupled problem (9a)–(9d) (on Ω̂ = Ω

θ (k) ) for (δθ ·n, u∗).
2. Update the free-boundary displacement according to:

θ (k+1) = θ (k) + (δθ · n)m(k).

3. Set k ← k + 1 and repeat from step 1. until convergence.

Fig. 3 The coupled shape-Newton scheme. In the above, the vectorfield m(k) : Γθ (k) → R
N is a

chosen vectorfield such that m(k) · n = 1 on Γθ (k)

4.1 Coupled Scheme

Using variational arguments, we can extract the boundary-value problem for
(δu, δθ) implied by the Newton-like scheme (8):

−�δu = f + �û in Ω̂,

δu + (g − ∂nh)δθ · n + divΓ (δθ · n∇Γ h) = h − û on Γ̂ ,

∂n(δu) − (f + ∂ng + κg)δθ · n = g − ∂nû on Γ̂ ,

δu = 0 on ΓD .

Note that the above system is a coupled linear system, and that the right-hand sides
are all residual quantities.

It is natural to write the above system in mixed total/update form, that is, in terms
of u∗ = û + δu and δθ · n. We shall refer to the resulting system, as the (coupled)
shape-Newton scheme:

−�u∗ = f in Ω̂, (9a)

u∗ + (g − ∂nh)δθ · n − divΓ (δθ · n∇Γ h) = h on Γ̂ , (9b)

∂nu
∗ − (f + ∂ng + κg)δθ · n = g − ∂nh on Γ̂ , (9c)

u∗ = h on ΓD . (9d)

An outline of the algorithm implied by (9a)–(9d) is given in Fig. 3.

Remark 5 (Mixed total/update form) The importance of writing the scheme in
mixed total/update form (9a)–(9d) should not be underestimated. During iterations,
it is not required to update functions that live on different domains. Indeed, the to-
tal u∗ is directly computed on the last domain.

Remark 6 (Invariance) It is clear from (9a)–(9d) that the shape-Newton scheme is,
in essence, independent of the approximation for û. It is only driven by the approx-
imation for the free-boundary, Γ̂ .
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Remark 7 (Exact Newton scheme) Because of the above-mentioned invariance, one
may interpret the shape-Newton scheme as being obtained at the approximation
(Γ̂ , û) with û such that û = h at Γ̂ . The approximation in (7) is then exact, so that
we have an exact Newton scheme.

4.2 Decoupled Scheme

The particular case of constant Dirichlet data at the free boundary is often consid-
ered in literature. Assuming that h = h0 (= constant) at the free boundary, ∇Γ h = 0
and ∂nh = 0, so that we can simplify (9a)–(9d) by eliminating δθ · n using (9b). We
shall refer to the resulting system as the decoupled shape-Newton scheme:

−�u∗ = f in Ω̂, (10a)

∂nu
∗ + ((f + ∂ng)/g + κ

)(
u∗ − h0

)= g on Γ̂ , (10b)

u∗ = h on ΓD , (10c)

δθ · n = (h0 − u∗)/g on Γ̂ . (10d)

An outline of the algorithm implied by (10a)–(10d) is given in Fig. 4.

Remark 8 (Robin boundary condition) The boundary condition for u∗ in (10b) is
the well-known curvature-dependent Robin boundary condition; see, e.g., [4, 13,
17, 32].

5 Numerical Experiments

We will consider two 2D free-surface flow problems, both of constant Dirichlet type,
i.e. h = h0, such that we can employ the decoupled scheme (10a)–(10d) outlined in
Fig. 4.

5.1 Isogeometric-Analysis Based Discretizations

We consider Galerkin approximations for (10a)–(10d): Introducing a discrete test
function v and integrating by parts leads to the weak formulation:

Find u∗ ∈ V (Ω
θ̂
) :

∫

Ω
θ̂

∇u∗ · ∇v dΩ +
∫

Γ
θ̂

k
θ̂
u∗v dΓ

=
∫

Ω
θ̂

f v dΩ +
∫

Γ
θ̂

(k
θ̂
h0 + g)v dΓ ∀v ∈ V (Ω

θ̂
), (11)
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0. Initialize with a displacement θ (0); Set k = 0.
1. Given θ (k), solve the Robin problem (10a)–(10c) (on Ω̂ = Ω

θ (k) ) for u∗.
2. Update the free-boundary displacement according to:

θ (k+1) = θ (k) + h0 − u∗
g

m(k).

3. Set k ← k + 1 and repeat from step 1. until convergence.

Fig. 4 The decoupled shape-Newton scheme. In the above, the vectorfield m(k) : Γθ (k) → R
N is a

chosen vectorfield such that m(k) · n = 1 on Γθ (k)

where V (Ω
θ̂
) is a discrete space, to be explained below, and where we adopted, for

notational convenience,

k
θ̂

:= (f + ∂ng)/g + κ(Γ
θ̂
).

In accordance with Remark 3, and directly apparent from the curvature term
in k

θ̂
, the discrete domain Ω

θ̂
needs to be of class C1. This is most conveniently

achieved via a tensorial reference domain D = [0,Lx] × [0,Ly], which is mapped
onto the physical domain by means of a smoothness preserving map

T
θ̂

: D → Ω
θ̂
. (12)

The tensorial structure allows for function spaces of the following kind

V (D) := {vx ⊗ vy : vx ∈ V
([0,Lx]

)
, vy ∈ V

([0,Ly]
)}

, (13)

where V ([0,L]) are function spaces of the following type. A finite, piecewise poly-
nomial spline basis of degree p is obtained by partitioning the domain into disjoint
intervals [0,L] = [ξ0, ξ1] ∪ [ξ1, ξ2] ∪ · · · ∪ [ξN+2p, ξN+2p+1] and applying Cox–de
Boor recursion [7, 10]:

⎧
⎪⎨
⎪⎩

Ni,0(ξ) = 1(ξi ,ξi+1)(ξ)

Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

(14)

Choosing in particular

ξi =

⎧
⎪⎨
⎪⎩

0 i ≤ p

(i − p)L/N p < i ≤ p + N

L N + p < i,

(15)

we obtain a uniform N -element mesh supporting N +p piecewise polynomial basis
functions, with p − 1 order smoothness over element boundaries. Figure 5 shows
two realisations of this construction.
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Fig. 5 Spline bases of
polynomial order p = 2 and
p = 3 on a N = 5 element
mesh. Note the interpolation
property at both domain ends.
Further note that (like is the
case for Lagrange finite
elements) each element
supports exactly p + 1 basis
functions

Per standard finite element practice, the thus constructed function space V (D)

is used for two purposes; for constructing a geometric map T
θ̂

∈ [V (D)]2, map-
ping D onto the intended geometry, and, through inverse mapping, as test and trial
space V (Ω

θ̂
) = V (D) ◦ T−1

θ̂
. With emphasis on the former, the resulting set-up is

commonly referred to as isogeometric analysis.

Remark 9 (Implementation) The above construction via Cox–de Boor relations is
mainly instructive. A faster construction that is commonly used in practice trans-
forms from a standard polynomial basis to a spline basis of equal order via extrac-
tion operators. This process is referred to as Bézier extraction [2, 23]. An additional
advantage of the Bézier representation is that it can provide a unified interface to the
myriad of spline technologies available, in particular T-splines.

5.2 Testcase I: Parabolic Free-Boundary

The first test case is derived from a manufactured solution U , designed such that
U |Γθ

= 1 on a parabolic surface Γθ = {(x, y) : y = (3 − x2)/2,0 < x < 1}; see
[31, Sect. 6.2] for more details. The data defining the free-boundary problem is then
obtained as follows: ⎧

⎪⎪⎨
⎪⎪⎩

f = −�U,

g = ∇U · (−x,1)/
√

1 + x2,

h = 1.

(16)

On the fixed boundary ∂Ωθ \ Γθ we have the Dirichlet data h = y.
Starting from an initial domain Ω0 = [−1,1] × [0,1], Fig. 6 shows the first

three iterations (not counting the initial condition) of the algorithm outlined in
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Fig. 6 Initial domain and
subsequent three Newton
iterations for testcase I, two
update strategies juxtaposed;
on the left updates in normal
direction, on the right updates
in vertical direction. The
grayscale indicates the value
of the approximation u∗

Fig. 4, solving the decoupled system weakly by (11). After each surface update
the finite element mesh is warped to fit the new contour by solving a Dirichlet-
constrained elasticity problem, with constraints resulting from L2 projection of the
surface update. By the third iteration the anticipated parabolic shape begins to man-
ifest.

Recall that the surface updates require definition of a field m to determine the
direction of surface updates after each Newton iteration, satisfying the constraint
n ·m = 1. The iterations shown in the left half of Fig. 6 result from the trivial choice
m = n, performing surface updates strictly in normal direction. This results in vis-
ible skewing of the center most elements. An alternative choice for m that satisfies
the constraint is (0,1/ny), thus performing updates in strictly vertical direction. It-
erates for this scheme are shown in the right half of Fig. 6. The main qualitative
difference is a visibly enhanced mesh regularity.

Figure 7 shows a side by side comparison of the first four Newton and Neumann
iterations, with the latter formed according to the algorithm of Fig. 2 with relaxation
parameter α = 1

2 . The juxtaposed update strategies show no significant difference
for Neumann iterations, offset against the clear qualitative difference observed ear-
lier in Newton iterations. Inter-algorithm comparison further shows marked differ-
ences in convergence trajectories.

A quantitative comparison of the four permutations of algorithm and update strat-
egy is presented in Fig. 8, which shows the convergence in terms of the Dirichlet
error ‖u∗ − h‖

L2(Γ̂ )
, and the surface error (which compares the vertical position of

the exact and approximate free-boundary in L2-sense). Directly apparent is the su-
perlinear convergence of the Dirichlet error for Newton iterations, versus the much
slower linear convergence of Neumann. Figure 8 furthermore shows that the up-
date strategies are mutually interchangeable from a convergence perspective. The
plateau in the convergence of the surface error is due to the coarse discretization
used.
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Fig. 7 Side by side comparison of the first four Neumann (relaxation 0.5) and Newton iterations
for testcase I, superposing surface updates. Two update strategies juxtaposed as in Fig. 6

Fig. 8 Error convergence for
Neumann and Newton
iterations, comparing
Dirichlet error u∗ − h|

Γ̂
(above) and surface error
Γθ − Γ̂ (below), both
measured in L2 norm. The
latter error can be evaluated
by construction of the
testcase, to which the exact
solution is a parabola

A more detailed analysis of Newton convergence is found in Fig. 9, which com-
pares convergence for different mesh densities and polynomials orders. The surface
error plateau that is reached after 4–6 iterations can again be explained as running
into the limits of the current parametrization. This is in agreement with the ob-
servation that enriching the parametrization, by increasing either mesh density or
polynomial order, results in lowering of the plateau. Another interesting observa-
tion to be made is that Dirichlet error convergence turns linear when this plateau is
reached. This can be explained from error domination of the geometric component
in the Newton update, which obstructs superlinear convergence: The scheme is a
Newton scheme up to the level of discretization errors.
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Fig. 9 Error convergence for
Newton iterations for
different mesh densities
(graphs) and polynomial
orders (left/right), with
strictly vertical surface
updates. The plateauing of
surface error is seen to be
postponed with increasing
mesh density and polynomial
order

Fig. 10 Geometrical layout
of the domain in the notched
channel test-case

5.3 Testcase II: Free-Surface Flow over a Bump

For the second testcase we consider a more realistic problem corresponding to free-
surface flow over a bump. The data is as follows:

⎧
⎪⎪⎨
⎪⎪⎩

f = 0,

g = 1,

h = 1.

(17)

The domain is rectangular with a horizontally obstructing triangular notch, as de-
picted in Fig. 10. On the fixed boundary ∂Ωθ \ Γθ the solution is constrained at
u = 0 at the notch, and u = y everywhere else.

A spline-discretization issue arises at the notch. Having gone through lengths
to create a smooth geometric map, the three sharp corners cannot be represented
on the resulting parametrization. Although solutions to this problem do exist in the
form of T-splines [33] or degenerate meshes, we choose to approximate the notch
by straightforward spline interpolation, resulting in the domain as shown in Fig. 11.
This procedure is the direct isogeometric-analysis analogue to the usual treatment
of Dirichlet boundary conditions in finite element analysis.
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Fig. 11 Initial domain and
subsequent two Newton
iterations for testcase II,
updating in normal direction.
The grayscale indicates the
value of the approximation u∗

Figure 11 shows the first three iterations of the Newton algorithm. As the normal
and vertical update schemes are virtually indistinguishable, we present results for
vertical updates only. The shape-Newton algorithm converges very rapidly. This is
especially clear from Fig. 12 showing the first four iterations superposed. Like in
testcase I, the Neumann algorithm shows a markedly slower convergence.

Convergence for both Neumann and Newton is quantified in Fig. 13. As the ex-
act solution is unknown, the surface error cannot be evaluated directly. Instead we
compare against a converged solution on a sufficiently refined mesh. The qualitative
pattern that emerges is identical to that of testcase I.

Fig. 12 Side by side comparison of the first four Neumann (relaxation 0.5) and Newton iterations
for testcase II, superposing surface updates



100 K.G. van der Zee et al.

Fig. 13 Error convergence
for Neumann and Newton
iterations, comparing
Dirichlet error u − h|

Γ̂
(above) and surface error
Γθ − Γ̂ (below), both
measured in L2 norm. The
latter error is evaluated
approximately by comparison
against a converged solution
on a four times denser mesh

6 Concluding Remarks

We derived a shape-Newton scheme for Bernoulli-type free-boundary problems. To
obtain the linearized problem, we applied Hadamard shape derivatives to a suitable
weak formulation of the free-boundary problem. The shape-Newton method cor-
responds to a boundary-value problem with a curvature-dependent boundary con-
dition. Because of the curvature requirement, we employed isogeometric-analysis
based discretizations with C1-continuous discrete free boundaries. Numerical ex-
periments showed rapid convergence behavior which seemed to point to quadratic
convergence.
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Enabling Computational Methods for Offshore
Wind Turbines

Y. Bazilevs, M.-C. Hsu, I. Akkerman, and D.J. Benson

Abstract In this book chapter we give an overview of our recent work in com-
putational methods for geometry modeling, fluid mechanics, structural mechanics,
and fluid–structure interaction that enable high-fidelity simulations of offshore wind
turbines. Computational examples involving free-surface flow and full-scale wind
turbine simulations are presented to illustrate the capabilities of the computational
techniques developed.

Keywords Fluid-structure interaction · ALE-VMS · Offshore wind turbines ·
Isogeometric analysis · Kirchhoff–Love shells · Free-surface flow

1 Introduction

In this work, the developments are focused on the formulation and application of
high-fidelity fluid–structure interaction (FSI) methods to the simulation of offshore
wind turbines. This class of applications is characterized by the presence of free-
surface turbulent flow, time-dependent, topological changes of the free surface (e.g.,
wave breaking), 3D complex geometry, moving spatial domains, and fluid–structure
coupling. The main challenges in this work are:

• The spatial scales involved in the applications of interest are large. Besides the
obvious mesh resolution requirements, this presents a major challenge for the
validation of the proposed numerical technology, as high-quality experimental
results are typically reported for lab-scale models.
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• The flow Reynolds number is very high, which gives rise to fully developed and
physically complex turbulent flows. The presence of the free surface and bound-
ary layers near solid surfaces exacerbate the situation further. In order to simulate
the relevant turbulent phenomena for this range of Reynolds numbers and in com-
plex geometry configurations, a mathematically sound numerical formulation, to-
gether with increased grid resolution, is required.

• The applications of interest involve moving and stationary components. This re-
quires advanced mesh management and exchange of the kinematic and traction
data between the nonmatching interfaces. The interfaces may or may not be in
relative motion.

• FSI coupling needs to be sufficiently robust in order to preclude divergence of the
computational procedures.

• Implementation of the proposed framework in the HPC environment needs to be
such that good parallel scalability is attained for the fully coupled FSI computa-
tions, not just for the individual fluid and structural mechanics computations.

To address the above challenges we developed a computational framework, which
consists of the following items and features: (a) Multiscale modeling of free-surface
turbulent flows in geometrically complex configurations; (b) Modeling of geomet-
rically complex structures based on the concept of Isogeometric Analysis (IGA);
(c) Accurate and efficient treatment of fluid–structure and fluid-fluid interfaces
present in the modeling and simulation of the coupled FSI phenomena; (d) Algorith-
mic implementation suitable for modern parallel architectures. In this book chapter
we present our aerodynamics, free-surface flow, and FSI computational techniques,
as well as example simulations that illustrate the potential of the methods developed.

2 Enabling Computational Technology

2.1 Isogeometric Analysis

The concept of Isogeometric Analysis (IGA) was introduced in [1]. The motiva-
tion for introducing IGA comes from the need for a tighter integration between
engineering design, which is primarily done using Computer-Aided Design (CAD),
and engineering simulation, which is primarily based on the Finite Element Method
(FEM). The main idea behind the IGA is to focus on one, and only one, geometric
model, which can be utilized directly as an analysis model, or from which geomet-
rically precise analysis models can be automatically built. To instantiate such an
idea requires a change from the classical FEM to an analysis procedure based on
CAD representations. There are several candidate technologies from computational
geometry that may be used in IGA. The most widely used in engineering design
are NURBS (non-uniform rational B-splines), the industry standard (see [2]). The
major strengths of NURBS are that they are convenient for free-form surface model-
ing, can exactly represent all conic sections, and therefore circles, cylinders, spheres,
ellipsoids, and other special geometries, and that there exist many efficient and nu-
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merically stable algorithms to generate NURBS objects. They also possess useful
mathematical properties, such as good approximation, and the ability to be refined
through knot insertion. Because NURBS are a CAD standard, representing many
years in development, they were the natural starting point for IGA.

T-splines [3] are a recently developed generalization of NURBS technology.
They extend NURBS to permit local refinement (and coarsening). They are
backward- and forward-compatible with NURBS, which makes them an attractive
CAD technology. Preliminary investigations of T-splines as IGA technology may be
found in [4]. Recent results on linear independence and improved local refinement
algorithms may be found in [5, 6]. A recent attempt to construct solid T-splines from
existing hexahedral meshes may be found in [7].

The recent book [8], and the references therein, present in detail the mathemat-
ical developments, basis function research, geometry modeling, model quality as-
sessment, and early applications in IGA. In this work, we use IGA primarily for the
modeling of structural mechanics. Very good results using turbulent and free-surface
flows with IGA were reported in [9–16].

2.2 Variational Multiscale Methods for Fluids and Turbulence

Due to their multiscale nature, advection-dominated and turbulent phenomena to
this day remain a significant computational challenge, requiring sophisticated dis-
crete formulations and many grid points for improved resolution. Standard Galerkin
methods are not a sufficiently robust technology for advection-dominated flows. For
this reason, stabilized methods [17–25] were designed to circumvent this shortcom-
ing of the Galerkin technique. Stabilized methods, which are essentially residual-
based modifications of the Galerkin method, exhibit uniform stability and conver-
gence behavior across the full range of advective and diffusive phenomena.

The basic theory of variational multiscale (VMS) methods was developed in [26],
wherein stabilized methods were first identified as multiscale methods. Relation-
ship between stabilized methods and subgrid scale modeling was also identified
in [26], and now presents an important research direction [27]. Recently, in [9], the
authors proposed a residual-based turbulence modeling and computational frame-
work that is based on the VMS theory, named RBVMS. The main feature of this
approach is that turbulence models, viewed as subgrid-scale models, are derived
directly from the Navier–Stokes equations. The fine scales are introduced in the
coarse-scale equations in a consistent manner and are modeled in a residual-based
fashion. The underlying methodology performs well on both laminar and turbulent
flows, for a wide range of Reynolds numbers. The extension of the RBVMS frame-
work to the moving-domain case, where the motion of the fluid mechanics domain
is handled using the Arbitrary Lagrangian–Eulerian (ALE) formulation [28], was
named ALE-VMS in [29, 30].

An important additional feature of the ALE-VMS methodology is weak enforce-
ment of essential boundary conditions. Weakly enforced essential boundary condi-
tions were introduced in [31]. Weak boundary conditions produce significantly more
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accurate solutions than strongly enforced boundary conditions on meshes with in-
sufficient boundary layer resolution [10, 12, 14, 32], which is almost always the case
in practice. ALE-VMS with weakly enforced boundary conditions presents the main
computational technology behind aerodynamics and free-surface flow computations
shown in this book chapter.

2.3 Free-Surface Flow

Accurate prediction of wave loading on structures, and their motion in response to
such loads, necessitates the development of a free-surface flow simulation frame-
work, which involves the interaction between two fluids: water and air. There
are two classes of techniques that are applied to free-surface problems: interface-
tracking and interface-capturing (see [22] for the terminology and detailed discus-
sion of the relative merits of the methods). In the interface-tracking techniques, ele-
ment boundaries exactly coincide with the boundary of the two-fluid interface. They
work well when the free-surface motion is mild and enhance the fidelity of the com-
putational results. However, in the case of violent free-surface motions that involve
wave breaking and other topological changes, interface-capturing techniques are
significantly more convenient and practical to use.

In the case of an interface-capturing formulation based on the level set method,
the boundary between the two fluids is described implicitly as a zero level set of a
scalar function defined in the problem domain (see, e.g., [33–35]). The subdomains
corresponding to negative and positive values of the level set function are those
occupied by water and air, respectively. The level set function is simultaneously
a signed-distance function, meaning its magnitude at a point in 3D space is the
distance from that point to the air-water interface, and its sign determines if the point
is in the water or air domain. The signed distance property of the scalar function is
not necessary in general, however, it has several accuracy benefits.

The level set function is convected with the flow speed. This is accomplished
by solving a time-dependent pure advection equation for the level set function to-
gether with fluid flow equations. In order to preserve the signed-distance property
of the level set function, the Eikonal partial differential equation is employed. For
stability, a smoothed Heaviside function is used to distribute the fluid properties in
the epsilon-layer adjacent to the interface. Mass conservation, in its global or lo-
cal form (see [16, 36]), is enforced, which is critical for long-time integration of
the equations and accurate load prediction on structures. This interface-capturing
methodology was tested in the context of FEM in [36] and IGA in [16]. It was
shown in the latter reference that the per-degree-of-freedom accuracy is better for
IGA than for the FEM. It was also shown that besides the clear advantages for
violent free-surface motion, the interface-capturing methodology gives reasonably
accurate results also for the cases of mild free-surface deformations. As a result, the
interface-capturing methodology is applicable to the cases that involve both types
of free surface behavior, as in the case of offshore wind turbines.



Enabling Computational Methods for Offshore Wind Turbines 109

2.4 IGA Modeling of Thin Structures

Offshore wind turbine structures are predominantly curved thin shells reinforced
with structural stiffeners. As a result, to simulate such structures, discretization of
thin shell theories are employed for computational efficiency, and are key to struc-
tural modeling.

Low-order, bi-linear quadrilateral finite elements, which are widely used and are
considered standard shell element technology, exhibit several shortcomings: These
elements require the use of displacement and rotation degrees of freedom to de-
scribe shell kinematics; One needs a fine mesh to represent shell geometries with
high local curvature and to simultaneously achieve the desired solution accuracy;
Ad-hoc element technology (e.g., hourglass stabilization) is necessary to overcome
locking; In the case of explicit time stepping, the rotational inertias must be artifi-
cially increased to alleviate severe time step size stability restrictions; In the case
implicit time stepping is employed, the presence of rotational degrees of freedom
doubles the size of the solution and right-hand-side residual arrays, quadruples the
size of the left-hand-side matrix, and results in an order-of-magnitude increase in
linear solver time. Higher-order Lagrange finite elements present an alternative to
the low-order approaches. However, their use in thin shell analysis is not common
due to the observed lack of robustness relative to low-order elements. Furthermore,
the fact that Lagrange elements are C1-continuous at the inter-element boundaries
requires one to use rotational degrees of freedom.

Isogeometric shell analysis was recently proposed in [37] to address the short-
comings of standard finite element technology for thin shells listed above. It was
found that the higher-order continuity (C1 and above) of the IGA basis functions
significantly improved the per-degree-of-freedom accuracy and robustness of thin
shell discretizations, as compared to the FEM. Furthermore, the increased continuity
of the IGA discretizations enabled the use of shell kinematics without rotational de-
grees of freedom [38–40], leading to further computational cost savings. The isoge-
ometric rotation-free Kirchhoff–Love shell formulation for structures composed of
multiple structural patches, called the bending strip method, was developed in [41],
which enabled the application of the rotation-free IGA technology to real-life struc-
tures, such as wind turbine rotors (see [42–44]). Besides significant savings in com-
putational time, the rotation-free shell discretization makes FSI coupling simpler
than the discretization with rotational degrees-of-freedom.

Although NURBS are employed in this work to discretize the structural mechan-
ics equations, T-splines [4, 45] or subdivision surfaces [46–48] are also well suited
for the proposed structural modeling approach. For other rotation-free shell formu-
lations the reader is referred to [46–51].

2.5 Free-Surface Modeling on Moving Spatial Domains

Simulating the interaction of free-surface flow with rigid or flexible structures re-
quires additional computational technology that is able to track the interface be-
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tween the structure and the surrounding air-water medium. We do this as follows.
The fluid mesh is conforming to the boundaries of the floating structure and is con-
structed with appropriate boundary layer discretization. However, the free surface
is described with a level set function, which does not conform to the mesh bound-
aries (see section on free-surface flow above). During the course of the simulation,
the structure undergoes large motions under the action of forces coming from wind,
surface waves, and underwater currents. This motion changes the geometry of the
fluid mechanics domain, and must be reflected in the discretization. This may be ac-
complished by moving the problem mesh, or remeshing in the case the mesh quality
is no longer acceptable, such that the structural surface discretization remains con-
forming to the fluid–structure interface.

The proposed methodology is an instantiation of the more general Mixed
Interface-Tracking/Interface-Capturing Technique (MITICT) where the fluid-struc-
ture interface is tracked with the mesh, while the air-water interface is captured
on that mesh. While boundary-layer meshing is employed near solid surfaces,
which is important for boundary-layer accuracy, resolution of the air-water inter-
face depends on the mesh size in the neighborhood of where the interface is. The
MITICT [52] was introduced primarily for fluid-object interactions with multi-
ple fluids (see, for example, [53]). The MITICT was successfully tested in [54],
where the interface-tracking technique used was a space–time formulation [55, 56],
and the interface-capturing method was the Edge-Tracked Interface Locator Tech-
nique (ETILT) [52]. It was also tested in [57] by using a moving Lagrangian in-
terface technique [58] for interface tracking and the ETILT for interface captur-
ing.

The interface-tracking technique used in the MITICT can also be the ALE
method, employed in this work. The interface-capturing technique rides on this, and
is based on solving, over a moving mesh, in addition to the Navier–Stokes equa-
tions, the advection equation governing the time-evolution of the scalar interface
function. The ALE-based MITCT technique was formulated in [59]. The current
implementation assumes that the structures are approximated as rigid objects. The
method was tested on several problems, which involve moving and nonmoving do-
mains. Reference [60] shows validation of the proposed MITCT framework on the
planing Fridsma hull. Good agreement with experimental results is achieved. In the
case of planning hulls, unlike in the majority of free-surface flow applications, mod-
eling the air domain plays an important role. This is also the case for offshore wind
turbines.

2.6 FSI Methods and Coupling

Wind-turbine simulations incorporate FSI coupling. Recently, a fully coupled FSI
simulation methodology for wind turbine rotors was developed in [42]. The full
machine was simulated with FSI coupling in [44]. The simulations showed the im-
portance of FSI modeling for full-scale wind turbines.
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We assume strong coupling between the fluid and structure, and employ Newton–
Raphson linearization at each time step. At the level of the Newton–Raphson it-
eration, the implementation allows one to choose the degree of coupling between
the fluid and structure in the left-hand-side matrix. This leads to an hierarchy of
coupling techniques, which may be explored for the best efficiency for a given ap-
plication. However, the right-hand-side vector of the coupled equation system is
unchanged, which automatically guarantees convergence to a correctly coupled so-
lution independent of the degree of coupling in the left-hand-side matrix. Given that
the applications in this work involve relatively heavy structures and light fluids, we
are able to remove the non-standard coupling terms from the left-hand-side matrix
without degrading nonlinear convergence. This strategy was successfully employed
in simulating wind-turbine FSI in [30, 44, 61].

The FSI coupling methodology assumes a nonmatching fluid–structure interface
discretization. As a result, the mesh resolution of the structure and fluid may be
tailored to the analysis requirements of the individual subsystems, leading to better
computational efficiency. In order to take advantage of the superior accuracy of IGA
for structural mechanics applications, and to leverage the existing advanced volu-
metric mesh generation tools for the FEM, we choose to couple low-order FEM for
fluid and IGA for structural mechanics. Although IGA discretizations were shown
to produce results that are of superior per-degree-of-freedom quality to standard
FEM for fluid mechanics and turbulence applications, good-quality fluid mechanics
results for similar applications may also be achieved with standard low-order FEM
with a manageable number of degrees-of-freedom (see [32, 62–64]). It is felt that
the proposed combination of FEM and IGA has the highest potential for adoption
of IGA by industry and research labs.

Nonmatching interface discretizations in the FSI and sliding-interface problems
necessitate the use of interpolation or projection of kinematic and traction data be-
tween the nonmatching surface meshes (see, e.g., [61, 65–67], where [67] is more
comprehensive than [66]). A computational procedure, which can simultaneously
handle the data transfer for IGA and FEM discretizations, was proposed in [61].
The procedure also includes a robust approach in identifying “closest points” for ar-
bitrary shaped surfaces. While such interface projections are rather straightforward
for weakly-coupled FSI algorithms, they require special techniques [24, 67, 68]
for strongly-coupled, “direct” and “quasi-direct” methods [24, 67–70] that are
monolithic-like (i.e. become monolithic for matching discretizations).

Using nonmatching discretizations at the fluid–structure interface can serve pur-
poses beyond an implementation convenience typically associated with weakly-
coupled FSI methods. What we do here is an example of taking advantage of the
flexibility associated with using nonmatching discretizations, combining the most
appropriate discretization for each part of an FSI problem. Exploiting this kind of
flexibility, in conjunction with FSI homogenization methods [71–73], enabled com-
putation of some of the most challenging parachute FSI problems [73–75], including
parachute clusters [74, 75], where the contact model [68, 75] needed to deal with
the interaction between the parachutes took advantage of this flexibility.
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Fig. 1 Nonmatching meshes at the sliding interface between the stationary and moving subdo-
mains

2.7 Sliding-Interface Formulation for Objects in Relative Motion

In order to simulate the full wind turbine configuration, rotor–tower interaction
should be included in the modeling. In [76] a sliding-interface coupling technique
was formulated in the context of the ALE-VMS method to handle flows about me-
chanical components in relative motion. In [44, 64], the technique was applied to the
simulation of full-scale wind turbines. The sliding-interface method makes use of a
moving subdomain, which encloses the entire wind turbine rotor, and a stationary
subdomain that contains the rest of the wind turbine (see Fig. 1). The moving sub-
domain rotates with the rotor and accommodates deflection of the turbine blades.
The two domains are in relative motion and share a sliding interface. The meshes
on each side of the interface are nonmatching because of the relative motion (see
Fig. 1). As a result, a numerical procedure is needed to impose the continuity of
the fluid velocities and tractions at the stationary and rotating subdomain interface
despite the fact that the interface discretizations are incompatible. Such a procedure
was developed in [76] in the context of IGA for computing flows about rotating
components. The advantage of IGA for rotating-component flows is that the sliding
interfaces are represented exactly, and no geometry errors are incurred. In the case of
standard FEM employed here, the geometric compatibility is only approximate. We
note that in application of the FEM to flows with moving mechanical components,
the Shear–Slip Mesh Update Method [77–79] and its more general versions [52, 80]
may also be employed to handle objects in relative motion.

3 Computational Results

In this section we show two computational examples, one from [44] and another
from [59], that illustrate the performance of the computational techniques described
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Table 1 Mesh statistics for
Cases I, II and III Number of nodes Number of elements

Case I 1,319,427 4,218,459

Case II 1,326,129 4,205,519

Case III 1,440,425 4,828,692

in the previous section. In all cases, we employ the Generalized-α time integra-
tion [81–83], which is a fully-implicit second-order accurate method with control
over the dissipation of high-frequency modes.

3.1 FSI Simulations of a 5 MW Offshore Wind Turbine

In this section, we present our computations of the NREL 5 MW offshore baseline
wind turbine from [44]. The NREL 5 MW wind turbine is a conventional three-
blade upwind turbine proposed in [84] to support concept studies aimed at assessing
offshore wind technology [85–91]. The rotor-only configuration of this wind turbine
was simulated earlier in [13, 15, 32, 42, 61–63, 92] using both NURBS-based IGA
and standard FEM. The detailed geometry description and construction for the blade
surface was documented in [13]. The 63 m blade is composed of a series of DU
airfoils and the NACA64 profile. In this work, the proposed framework is applied
to the simulation of the full wind turbine configuration, including the rotor (blades
and hub), nacelle, and tower. The land-based tower is assumed to be rigid, and has a
base diameter of 6 m and a top diameter of 3.87 m. The tower height is 87.6 m and
the hub height is 90 m [84].

The cases considered in this work are as follows. Case I is a rotor-only setup,
where the rotor is enclosed in a cylindrical domain, and the rotation is applied to the
entire computational domain to simulate the spinning rotor. Case II is also a rotor-
only setup, however, the rotor is housed in a cylindrical rotating subdomain that is
enclosed by a stationary exterior flow subdomain. The sliding-interface formulation
is applied at the interface between the subdomains to weakly impose the continuity
of the kinematics and tractions. We compare the simulation results from Cases I
and II to study the effect of the sliding-interface formulation. Case III has a similar
setup as Case II, but this time the stationary subdomain contains the nacelle and
tower, and thus enables us to study the rotor–tower interaction effects.

All simulations are performed at the rated wind speed of 11.4 m/s. This setup
corresponds to one of the cases reported in [84]. The wind speed is prescribed at the
inflow boundary, the traction vector is set to zero at the outflow boundary, and the
slip condition is set on the top, bottom, and lateral boundaries. The air density and
viscosity are 1.2 kg/m3 and 2.0 × 10−5 kg/(m s), respectively.

The aerodynamics volume mesh statistics for all three cases are summarized in
Table 1. Case III has more elements and nodes compared with Cases I and II due to
the presence of the nacelle and tower. A 2D cut of the mesh at x = 0 for Case III
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Fig. 2 A 2D cut at x = 0.
The mesh is refined in the
inner region for better flow
resolution near the wind
turbine

Fig. 3 A 2D cut at 75 %
spanwise station to illustrate
the boundary-layer mesh. The
size of the first element in the
wall-normal direction is
0.02 m, and a growth ratio of
1.2 is used to generate 15
layers of prismatic elements

is shown in Fig. 2 to show the mesh quality used in our computations. The mesh is
refined in the inner region for better flow resolution. Figure 3 shows a 2D cut at 75 %
spanwise station to illustrate the boundary-layer mesh used in our computations.
Near the blade surface, the size of the first element in the wall-normal direction is
0.02 m, and 15 layers of prismatic elements were generated with a growth ration
of 1.2. The Reynolds number based on the chord length and relative speed at this
location is O(107). The same boundary-layer mesh is used in all three cases. The
time-step size is 2.5 × 10−4 s for all cases.

The rotor blades are discretized using NURBS-based IGA. The structural me-
chanics problem is governed by the isogeometric Kirchhoff–Love composite shell
formulation with the aid of the bending strip method [38, 41, 42]. Only displace-
ment degrees of freedom are employed. A symmetric fiberglass/epoxy composite
with [±45/0/902/03]s lay-up was proposed in [42] for the blade material. The de-
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Fig. 4 The aerodynamic
torque for flexible-blade FSI
computations

Fig. 5 The blade tip
z-displacement for rotor-only
(dashed, dashed-dotted, and
dashed-dotted-dotted lines)
and full-machine (solid lines)
simulations. The arrows near
the bottom of the figure show
the instants where the blade
passes in front of the tower

tails of the NURBS structure model, including the homogenization of the material
and the laminate thickness distributions, can be found in [42, 93]. There are 4,897
control points in the quadratic NURBS mesh of the blade.

We perform FSI (flexible-blade) simulations for all three cases. The rotor speed is
fixed at 12.1 rpm, however, the blades are free to deflect. We note that only the mesh
motion part associated with blade deflections is computed using the mesh mov-
ing method that we typically use, which is an elastic mesh moving technique with
Jacobian-based stiffening [94–96]. The mesh motion part associated with global
blade rotation is computed exactly (see [42] for details).

The time histories of the aerodynamic torque are shown in Fig. 4. The compar-
ison between Cases I and II shows that the presence of the sliding interface has no
effect on the prediction of aerodynamic loads on the rotor.

Figure 5 shows the tip z-displacement history of the individual blades. The solid
lines are the results from Case III (full machine), while the dashed, dashed-doted,
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Fig. 6 The aerodynamic
torque of individual blades
for flexible-blade
full-machine simulation

and dashed-doted-doted lines are from Case II (rotor only). From the comparison we
note that the rotor–tower interaction doesn’t seem to produce a pronounced response
in the blade tip displacement.

Figure 6 shows the aerodynamic torques of individual blades for Case III. Note
that the torque histories are clearly different between three blades. From Figs. 5
and 6 we also note that the individual tip displacement and torque do not settle at the
steady values. Once the initial transient decays, the tip displacement varies between
3 and 4 m during one revolution. The dynamic effect is also present in individual
torque curves shown in Fig. 6. After the initial transient decays, the torque varies
between 1,180 and 1,330 kN m during one revolution. Figure 7 compares the torque
history of individual blades between Cases II and III to show the effect of rotor–
tower interaction in FSI computations. The drop in aerodynamic torque is clearly
seen for all three blades, and is about 10–12 % per blade.

Figure 8 shows the relative air speed and streamlines at 50 % spanwise station,
rotated to the reference configuration, and superposed on the moving blade #2. The
blade mostly displaces in the flapwise direction, however, the edgewise displace-
ment may also be observed. The weak enforcement of boundary conditions results
in the flow slipping on the solid surface. Figure 9 shows the flow visualization of the
full wind turbine configuration. The tip vortex decays very slowly as it is convected
downstream. Note that no visible discontinuities are seen in the flow field at the
sliding interface, which indicates that the method correctly handles the kinematic
compatibility at this location.

The time-averaged aerodynamic torque values for all cases are summarized in
Table 2. From the FSI computation of Case III, and without considering any power
loss, the energy generated by this wind turbine design is about 4.73 MW. According
to the Betz’ law (see, e.g. [97]), the maximum power that this wind turbine design
is able to extract for the wind and rotor speeds considered is 6.57 MW, leading to
the aerodynamic efficiency of 72 %, which is quite good for modern wind turbine
designs.
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Fig. 7 The aerodynamic
torque of individual blades
for rotor-only and
full-machine simulations
(flexible blade). The drop in
the aerodynamic torque is
clearly visible
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Fig. 8 Relative air speed and streamlines at 50 % spanwise station, rotated to the reference con-
figuration, and superposed on the moving blade #2 at three different time instants: (a) t = 9.0 s,
(b) t = 10 s, and (c) t = 12.5 s

Fig. 9 Air speed contours at a planar cut (left) and isosurfaces of air speed (right) at an instant for
the flexible-blade full-machine simulation

Table 2 Time-averaged
(over one revolution)
aerodynamic torques

Flexible-Blade Aero. Torque (kN m)

Case I 3749

Case II 3751

Case III 3734

3.2 DTMB 5415 Navy Combatant in Head Waves

Here we present the simulation of the DTMB 5415 Navy combatant at lab scale
from [59]. This ship has been investigated by other researchers, both experimentally
and computationally (see, e.g., [98–100]). The length of the ship hull is 5.72 m. The
ship mass, center of gravity and inertia tensor are computed by meshing the ship
interior and performing a direct computation. The total ship volume is 1,366 m3.
The ship mass is equal to 532.3 kg. It is obtained by multiplying the volume of the
ship below the water line by the constant water density. The center of gravity and
the inertia tensor are computed assuming the ship’s effective density (i.e., the ship
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Fig. 10 DTMB 5415 in head
waves. Snapshots of the ship
negotiating high-amplitude
waves. The water surface is
colored by the fluid speed

mass divided by its total volume), which results in

X0 =
⎡
⎣

2.761
0

0.280

⎤
⎦ m (1)

and

I =
⎡
⎣

7.256E−2 2.69E−7 5.35E−2
2.69E−7 2.89 −2.44E−8
5.35E−2 −2.44E−8 2.91

⎤
⎦ kg m2, (2)

respectively.
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Fig. 11 DTMB 5415 in head waves. Time history of ship motion

We compute the ship in head waves, meaning the waves that travel in the direction
opposite to that of the ship. We assume that the ship speed is Uin = 1.873 m/s, which
gives the Froude number of 0.25 based on the ship length.

We make use of the linear Airy waves [101] to prescribe inlet boundary con-
ditions. The Airy waves may be derived using potential theory, and are specified
as follows: Given, the wave amplitude, wave length and water depth, Aw = 0.2 m,
Lw = 5.72 m and h = 3.49 m, respectively, we compute k = 2π/Lw , the angu-
lar wavenumber, ω = √

gk tanh(kh), the wave phase speed, and Av = ωAw

sinh(kh)
, the

velocity amplitude. With these definitions, the Airy waves are given by

u = Av cosh(kz) cos(kx − ωt) + Uin (3)

v = 0 (4)

w = Av sinh(kz) sin(kx − ωt) (5)

φ = Aw cos(kx − ωt) + h − z, (6)

where (u, v,w)T is the fluid velocity vector and the air-water interface in the hydro-
static configuration is assumed to be located at z = 0.

The simulation was performed on a mesh consisting of 6,285,445 linear tetrahe-
dral elements and 1,059,174 nodes. The simulation took 5,000 time steps at a fixed
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Fig. 12 DTMB 5415 in head waves. Time history of forces and moments acting on the ship

time step size of �t = 0.0025 s. The ship was allowed to move vertically, to pitch
and to roll, while the rest of the rigid body degrees-of-freedom were constrained.

Figure 10 shows the snapshots of the ship negotiating high-amplitude waves.
The bottom part of Fig. 10 shows the ship partially submerged in water, which is a
result of the oncoming wave hitting the bow of the ship. In this case, near the bow,
the free surface experiences topological changes, which necessitates the use of an
interface-capturing method for this class of problems.

The time history of the ship motion is given in Fig. 11. Although the prescribed
Airy waves only have a single frequency, multiple frequencies are present in the
ship’s response. Note that the ship develops a low-amplitude, chaotic rolling motion.

Figure 12a shows the time history of the thrust force necessary to maintain the
ship moving forward at constant speed. The time history of the forces and moments
in the unconstrained directions are shown in Figs. 12b–d.

4 Conclusions

We presented a collection of numerical techniques for modeling fluids, structures,
and FSI, which include isogeometric analysis, ALE-VMS methods for free-surface
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flow, turbulence, and FSI, and the sliding interface technique for computing me-
chanical components in relative motion. Representative computations illustrate the
veracity of the proposed methods and their potential for predictive modeling of off-
shore wind turbines.

Acknowledgements This research was supported through ARO Award W911NF-10-1-0247 and
the NSF CAREER Award. This support is gratefully acknowledged. We also wish to thank the
Texas Advanced Computing Center (TACC) at the University of Texas at Austin and San Diego
Supercomputer Center (SDSC) at the University of California, San Diego for providing HPC re-
sources that contributed to the research results reported in this paper.

References

1. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–
4195

2. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Monographs in visual communication.
Springer, New York

3. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCS. ACM Trans
Graph 22(3):477–484

4. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Seder-
berg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng
199:229–263

5. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable
T-splines. Comput Methods Appl Mech Eng 213–216:206–222

6. Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of
T-spline blending functions. Comput-Aided Geom Des 29:63–76

7. Wang W, Zhang Y, Xu G, Hughes TJR (2012) Converting an unstructured quadrilat-
eral/hexahedral mesh to a rational T-spline. Comput Mech. doi:10.1007/s00466-011-0674-6

8. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of
CAD and FEA. Wiley, Chichester

9. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Comput Methods Appl Mech Eng 197:173–201

10. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions
for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862

11. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity
in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378

12. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Comput Methods Appl Mech Eng 199:780–790

13. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar
TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and
aerodynamics. Int J Numer Methods Fluids 65:207–235

14. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow
using isogeometric analysis and the residual–based variational multiscale method. J Comput
Phys 229:3402–3414

15. Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine
aerodynamics using isogeometric analysis. Comput Fluids 49:93–100

16. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-
surface flow. J Comput Phys 230:4137–4152

http://dx.doi.org/10.1007/s00466-011-0674-6


Enabling Computational Methods for Offshore Wind Turbines 123

17. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier–Stokes
equations. Comput Methods Appl Mech Eng 32:199–259

18. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems
with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech
Eng 45:217–284

19. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlin-
ear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325

20. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for compu-
tational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–
Galerkin formulation of the Stokes problem accommodating equal-order interpolations.
Comput Methods Appl Mech Eng 59:85–99

21. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from ele-
ment matrices and vectors. Comput Methods Appl Mech Eng 190:411–430

22. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization pa-
rameters. Int J Numer Methods Fluids 43:555–575

23. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein
E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol. 3, fluids.
Wiley, New York, Chapter 2

24. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time
finite elements: Solution techniques. Int J Numer Methods Fluids 54:855–900

25. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of
stabilized and multiscale formulations in flow simulations at small time steps. Comput Meth-
ods Appl Mech Eng 199:828–840

26. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput
Methods Appl Mech Eng 127:387–401

27. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s func-
tion, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal
45:539–557

28. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formu-
lation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

29. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for
patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods
Eng 19:171–225

30. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods
for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction.
Math Models Methods Appl Sci 22(suppl2):1230002

31. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Comput Fluids 36:12–26

32. Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE–VMS:
Validation and the role of weakly enforced boundary conditions. Comput Mech. doi:10.1007/
s00466-012-0686-x

33. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Applied math-
ematical sciences, vol 153. Springer, New York

34. Sethian JA (1999) Level set methods and fast marching methods. Cambridge University
Press, Cambridge

35. Sussman M, Smereka P, Osher SJ (1994) A level set approach for computing solutions to
incompressible two-phase flows. J Comput Phys 114:146–159

36. Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suit-
able for variable-order approximations and unstructured meshes. J Comput Phys 230:4536–
4558

37. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: the
Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

http://dx.doi.org/10.1007/s00466-012-0686-x
http://dx.doi.org/10.1007/s00466-012-0686-x


124 Y. Bazilevs et al.

38. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with
Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

39. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010)
A generalized finite element formulation for arbitrary basis functions: from isogeometric
analysis to XFEM. Int J Numer Methods Eng 83:765–785

40. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free,
isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

41. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip
method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple
patches. Comput Methods Appl Mech Eng 199:2403–2416

42. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind
turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite
blades. Int J Numer Methods Fluids 65:236–253

43. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for prebend-
ing of wind turbine blades. Int J Numer Methods Eng 89:323–336

44. Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulat-
ing the full machine. Comput Mech. doi:10.1007/s00466-012-0772-0

45. Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement
with T-splines. Comput Methods Appl Mech Eng 199:264–275

46. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin shell
analysis. Int J Numer Methods Eng 47:2039–2072

47. Cirak F, Ortiz M (2001) Fully C1-conforming subdivision elements for finite deformation
thin shell analysis. Int J Numer Methods Eng 51:813–833

48. Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schröder P (2002) Integrated modeling, finite-
element analysis, and engineering design for thin-shell structures using subdivision. Comput
Aided Des 34:137–148

49. Oñate E, Zarate F (2000) Rotation-free triangular plate and shell elements. Int J Numer Meth-
ods Eng 47:557–603

50. Oñate E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell trian-
gle. Comput Methods Appl Mech Eng 194:2406–2443

51. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y,
Rabczuk T (2011) Rotation-free isogeometric thin shell analysis using PHT-splines. Com-
put Methods Appl Mech Eng 200:3410–3424

52. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and
interfaces. Arch Comput Methods Eng 8:83–130

53. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations
with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54:1011–
1019

54. Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed
interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11

55. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations in-
volving moving boundaries and interfaces—the deforming-spatial-domain/space–time pro-
cedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech
Eng 94(3):339–351

56. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations
involving moving boundaries and interfaces—the deforming-spatial-domain/space–time pro-
cedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylin-
ders. Comput Methods Appl Mech Eng 94(3):353–371

57. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) Collapse of a liquid column: numerical
simulation and experimental validation. Comput Mech 39:453–476

58. Cruchaga M, Celentano D, Tezduyar T (2001) A moving Lagrangian interface technique for
flow computations over fixed meshes. Comput Methods Appl Mech Eng 191:525–543

59. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow
and fluid–object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech

http://dx.doi.org/10.1007/s00466-012-0772-0


Enabling Computational Methods for Offshore Wind Turbines 125

79:010905
60. Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface mod-

eling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech.
doi:10.1007/s00466-012-0770-2

61. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis
with emphasis on non-matching discretizations, and with application to wind turbines. Com-
put Methods Appl Mech Eng. doi:10.1016/j.cma.2012.03.028

62. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-
performance studies for the stabilized space–time computation of wind-turbine rotor aerody-
namics. Comput Mech 48:647–657

63. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time
computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344

64. Hsu M-C, Akkerman I, Bazilevs Y (2012) Finite element simulation of wind turbine aerody-
namics: validation study using NREL Phase VI experiment. Wind Energy, accepted

65. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for
fluid/structure interaction problems with non-matching discrete interfaces: Momentum and
energy conservation, optimal discretization and application to aeroelasticity. Comput Meth-
ods Appl Mech Eng 157:95–114

66. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction tech-
niques. Comput Mech 48:247–267

67. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math
Models Methods Appl Sci. doi:10.1142/S0218202512300013

68. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure in-
teractions. Arch Comput Methods Eng 19:125–169

69. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equa-
tions in computation of fluid–structure interactions with the space–time formulations. Com-
put Methods Appl Mech Eng 195:5743–5753

70. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for
computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–
2027

71. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface
projection techniques for fluid–structure interaction modeling with moving-mesh methods.
Comput Mech 43:39–49

72. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–
structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142

73. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure inter-
action modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer
Methods Fluids 65:271–285

74. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction model-
ing of parachute clusters. Int J Numer Methods Fluids 65:286–307

75. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical
analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364

76. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of
flows about rotating components. Comput Mech 43:143–150

77. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and
high performance computing. Comput Mech 18:397–412

78. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl
Mech Eng 174:261–274

79. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow prob-
lems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–
3200

80. Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution tech-
niques. Comput Fluids 36:207–223

http://dx.doi.org/10.1007/s00466-012-0770-2
http://dx.doi.org/10.1016/j.cma.2012.03.028
http://dx.doi.org/10.1142/S0218202512300013


126 Y. Bazilevs et al.

81. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics withim-
proved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375

82. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-α method for integrating the
filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods
Appl Mech Eng 190:305–319

83. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction:
theory, algorithms, and computations. Comput Mech 43:3–37

84. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind
turbine for offshore system development. Technical report NREL/TP-500-38060, National
Renewable Energy Laboratory, Golden, CO

85. Jonkman JM (2009) Dynamics of offshore floating wind turbines–model development and
verification. Wind Energy 12:459–492

86. Jonkman JM, Matha D (2011) Dynamics of offshore floating wind turbines–analysis of three
concepts. Wind Energy 14:557–569

87. Lackner MA, Rotea MA (2011) Passive structural control of offshore wind turbines. Wind
Energy 14:373–388

88. Nicklasson PJ, Homola MC, Virk MS, Sundsbø PA (2012) Performance losses due to ice
accretion for a 5 MW wind turbine. Wind Energy 15:379–389

89. Chow R, van Dam CP (2011) Verincation of computational simulations of the NREL 5 MW
rotor with a focus on inboard now separation. Wind Energy. doi:10.1002/we.529

90. Lackner MA (2012) An investigation of variable power collective pitch control for load mit-
igation of floating offshore wind turbines. Wind Energy. doi:10.1002/we.1500

91. Sebastian T, Lackner MA (2012) Characterization of the unsteady aerodynamics of offshore
floating wind turbines. Wind Energy. doi:10.1002/we.545

92. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE–VMS and ST–VMS methods
for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction.
Math Models Methods Appl Sci. doi:10.1142/S0218202512300025

93. Hsu M-C (2012) Fluid–structure interaction analysis of wind turbines. PhD thesis, University
of California, San Diego

94. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompress-
ible flows with the finite element methods—space–time formulations, iterative strategies and
massively parallel implementations. In: New methods in transient analysis. ASME, New
York, pp 7–24. PVP-Vol. 246/AMD-Vol.143

95. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element compu-
tation of 3D flows. Computer 26(10):27–36

96. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computa-
tions of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech
Eng 119:73–94

97. Hau E (2006) Wind turbines: fundamentals, technologies, application, economics, 2nd edn.
Springer, Berlin

98. Longo J, Stern F (2005) Uncertainty assessment for towing tank tests with example for sur-
face combatant DTMB model 5415. J Ship Res 49:55–68

99. Garciá J, Oñate E (2003) An unstructured finite element solver for ship hydrodynamics prob-
lems. J Appl Mech 70. doi:10.1115/1.1530631

100. Longo J, Shao J, Irvine M, Stern F (2007) Phase-averaged piv for the nominal wake of a
surface ship in regular head waves. J Fluids Eng 129:524–541

101. McCormick ME (2010) Ocean engineering mechanics. With applications. Cambridge Uni-
versity Press, Cambridge

http://dx.doi.org/10.1002/we.529
http://dx.doi.org/10.1002/we.1500
http://dx.doi.org/10.1002/we.545
http://dx.doi.org/10.1142/S0218202512300025
http://dx.doi.org/10.1115/1.1530631


Advances in the Development of a Time-Domain
Unstructured Finite Element Method
for the Analysis of Waves and Floating
Structures Interaction

Borja Servan-Camas and Julio Garcia-Espinosa

Abstract Being capable of predicting wave-structure interaction in the time domain
is of great interest for the offshore industry. However, most computer programs used
in the industry work in the frequency domain. Therefore, the main objective of this
work is the development a time domain solver based on the finite element method
capable of solving wave-structure interaction problems using unstructured meshes.
We found good agreement between the numerical results we obtained and analytical
solutions as well as numerical solutions obtained by other numerical method.

Keywords Wave structure interaction · Ocean energy, finite element · Time
domain · Unstructured mesh, seakeeping

1 Introduction

Wave structure interaction is a topic of great interest in naval and offshore engi-
neering. This interest is growing in the last years due to the boost given by the
development of the marine renewable energy field. In this context, the development
of time-domain wave structure interaction programs is a main request from the in-
dustry.

Up to date the numerical simulation of wave structure interaction has been mostly
carried out using the frequency domain. The reason might be that the computational
cost of time domain simulations were too high and computational time was too
large. Moreover, assumptions like linear waves and the harmonic nature of water
waves made the frequency domain to be the right choice. However, nowadays com-
puting capabilities make possible to carry out numerical simulations in the time
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domain in a reasonable time, with the advantage of making easier the coupling with
other phenomena.

Regarding the numerical method usually adopted, the boundary element method
(BEM) has dominated over others like finite element method (FEM). The main ad-
vantage of BEM over FEM resides in the fact that only boundary meshes are re-
quired, while FEM demands meshing the whole volume, with the corresponding
increase in the number of variables of the discrete problem. However, despite of
the higher number of variables required by FEM, it is not clear that BEM has to be
more efficient. Mostly due to the sparse pattern in FEM and the large availability of
iterative solver preconditioners that can improve the resolution of the corresponding
linear system of equations. In [1] Cai et al. a heuristic comparison between both
methods is given and demonstrate that a solution to the boundary value problem can
be obtained more efficiently by the FEM.

In the last decade, there have been extensive applications of the finite element
method (FEM) to free surface problems. For example, Oñate and García [2] pre-
sented a stabilized FEM for fluid structure interaction in the presence of free surface
where the latter was modelled by solving a fictitious elastic problem on the moving
mesh. In [3, 4] Löhner et al. developed a FEM capable of tracking violent free sur-
face flows interacting with objects. Also García et al. [5] developed a new technique
to track complex free surface shapes. However, many works like the previous ones
are based on solving the Navier-Stokes equations, too expensive computationally
speaking when it comes to simulating many real problems regarding ocean waves
interacting with floating structures, which can be more cheaply simulated using po-
tential flow theory along with Stokes perturbation approximation.

Despite of the great effort invested in the last years to the development of FEM
algorithms, to the authors’ knowledge, yet there has not been developed a FEM
for solving first order waves, based on Stokes perturbation, interacting with struc-
tures in the time domain using unstructured meshes. The use of structure or semi-
structures meshes is a big limitation since it limits the complexity of the geometry
to be used. In this study we present a FEM for wave-structure interaction that can
be used with unstructured meshes. Besides, since it is based on Stokes wave theory,
no re-meshing or moving mesh technique are needed, which keeps computational
costs and times low. The algorithm has been adapted to include non-linear external
forces, like those used to define mooring systems, and variations on the pressure
over the free surface.

2 Problem Statement

2.1 Governing Equations

We consider the first order diffraction-radiation problem of a floating body.

∇2ϕ = 0 in Ω (1)
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∂tϕ + gη = −Pa/ρ + C in z = 0

(dynamic free surface boundary condition) (2)

∂tη − ∂zϕ = 0 in z = 0 (kinematic free surface boundary condition) (3)

∂zϕ = 0 in z = −H (4)

∇ϕ · nB = vB · nB in ΓB (5)

where ϕ and η are the first order potential and free surface elevation respectively;
Ω is the fluid domain bounded by z = 0; Pa is the atmospheric pressure; ρ is the
water density; C is a constant value; ΓB represents the wetted surface of a float-
ing body; and H is the water depth. The domain is assumed to be infinite in the
horizontal directions.

2.2 Velocity Potential Decomposition

The aim of this work is to simulate the dynamics of a floating body subjected to
the action of waves. To do so, we will first model the environment as the sum of a
number of airy waves. This can be expressed in terms of a velocity potential given
by:

ψ =
∑
m

Amg

ωm

cosh(|km|(H + z))

cosh(|km|H)
cos
(|km|(x cosαm + y sinαm − ωmt + δm)

)
(6)

where Am are the wave amplitudes; ωm are the wave frequencies; km are the wave
numbers; αm are the wave directions; and δm are the wave phases. From this point
on, we will refer to ψ as the incident potential. This potential, along with the disper-
sion relation ω2

m = g|km| tanh(|km|H), fulfils Eqs. (1)–(4), and therefore is solution
of the mathematical model in the absence of bodies.

Let ϕ = ψ + φ be the solution to the governing equations. The equations to be
fulfilled by φ are

∇2φ = 0 in Ω (7)

∂tφ + gη = −Pa/ρ + C′ in z = 0

(dynamic free surface boundary condition) (8)

∂tη − ∂zφ = 0 in z = 0 (kinematic free surface boundary condition) (9)

∂zφ = 0 in z = −H (10)

∇φ · nB = (vB − ∇ψ) · nB in ΓB (11)
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2.3 Radiation Condition and Wave Absorption

We will make use of a Sommerfeld radiation condition at the edge of the compu-
tational domain: ∂tφ + c∇φ · nR = 0 in the surface limiting of the domain in the
horizontal directions, and c is a prescribed wave velocity. Wave dissipation is also
introduced into the dynamic free surface boundary condition by varying the pressure
such that Pa/ρ = P0 +κ(x)∂zφ where κ(x) is a damping coefficient. Combining the
dynamic and kinematic boundary condition, introducing the wave absorption and
choosing C′ = P0, the governing equations for φ become:

∇2φ = 0 in Ω (12)

∂ttφ = −g∂zφ − κ(x)∂t ∂zφ in z = 0 (13)

∂zφ = 0 in z = −H (14)

∇φ · nB = (vB − ∇ψ) · nB in ΓB (15)

∂tφ + c∇φ · nR = 0 in ΓR (16)

η = − 1

g
∂tφ − Pa

ρg
+ C′

g
in z = 0

(kinematic free surface boundary condition) (17)

3 Finite Element Formulation

The discrete variational problem can be written as:
∫

Ω

∇vh · ∇φh dΩ =
∫

Γ B

vh · �

φB
n dΓ +

∫

Γ R

vh · �

φR
n dΓ +

∫

Γ Z0
vh · �

φZ0
n dΓ

+
∫

Γ Z−H

vh · �

φ
Z−H
n dΓ ∀vh ∈ Qh (18)

where
�

φB
n ,

�

φR
n ,

�

φ
Z0
n and

�

φ
Z−H
n are the potential normal gradients corresponding to

the Neumann boundary conditions on body, radiation boundary, free surface and
bottom, respectively. The associated matrix form is:

Lφ = bB + bR + bZ0 + bZ−H (19)

3.1 Boundary Conditions

The right hand side of Eq. (19) is implemented as follows:

(
bZ0

)n+1 = −MΓ Z0

(
12

g�t2 + 6κ(x)�t

(
φn+1 − 2φn + φn−1)

)

− MΓ Z0

(
10g�t

g�t + 6κ(x)

(
φZ0

z

)n +
(

g�t − 6κ(x)

g�t + 6κ(x)

)(
φZ0

z

)n−1
)

(20)
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(
bR
)n+1 = MΓ R

(
φR

n

)n+1 = 1

�t
MΓ R

(
φn − φn−1) (21)

(
bB
)n+1 = MΓ B

(
φB

n

)n+1 (22)

The free surface and pressure are computed by the following fourth order finite
difference scheme:

ηn+1 = − 1

g�t

(
25

12
ϕn+1 − 4ϕn + 3ϕn−1 − 4

3
ϕn−2 + 1

4
ϕn−3

)
(23)

P n+1 = −ρgz − ρ

�t

(
25

12
ϕn+1 − 4ϕn + 3ϕn−1 − 4

3
ϕn−2 + 1

4
ϕn−3

)
(24)

3.2 Body Dynamics

Integrating the pressure over the body surface, the resulting forces and moments
are obtained. On the other hand, the body dynamics is given by the equation of
motion:

MXt t + KX = F (25)

where M is the mass matrix; K is the hydrostatic restoring coefficient matrix; F are
the hydrodynamic forces induced over the body plus any other external forces;
and X represent the movement of the six degrees of freedom. We use an implicit
Newmark’s average acceleration method to carry out the temporal integration of
Eq. (25).

3.3 Free Surface Boundary Condition for OWC Calculations

In order to be able to simulate OWC devices, a non-linear free surface boundary con-
dition has been developed based on the characteristic curves of the Wells-turbines
type used in these devices. For instance, based on working ideal conditions, an ac-
tual 18.5 Kw Wells turbine get a power output and pressure that relates to the flux
as:

p(q) = 0.0779|q|3 − 0.065q2 + 0.1933|q| (26)

P(q) = 164.07 · q · |q| (27)

where p is the output power in kilowatts, P is the pressure drop across the turbine
in Pascals, and q is the instantaneous air flux flowing through the turbine in cubic
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Fig. 1 Left: Contour lines of free surface elevation at t = nT . Comparison between analytical
(solid line) and FEM (dot line) results. Center: Pressure induced on the cylinder by the velocity
potential at time t = nT . Comparison between analytical (up) and FEM (down) results. Right:
Horizontal force induced over the cylinder. Comparison between analytical (solid line) and FEM
(dots) results

meters per second. The pressure obtained by Eq. (27) is introduced into the dynamic
condition of the free surface as

φn+1 − 2φn + φn−1

�t2
= − 1

12
g
(
∂zφ

n+1 + 10∂zφ
n + ∂zφ

n−1)

− 1

12ρ

(
∂tP

n+1 + 10∂tP
n + ∂tP

n−1) (28)

∂tP
n+1 = (3P n+1 − 4P n + P n−1)/(2�t) (29)

4 Numerical Results

4.1 Waves Refracted by a Vertical Circular Cylinder

In this section we solve the problem of a monochromatic wave interacting with a
fix bottom mounted circular cylinder. The analytical solution for the incident and
scattered waves can be found in [6]. Next we compare numerical results obtained
by the analytical solution with numerical results obtained by our FEM schemes
for the specific case of R = 1, H = 1, A = 0.1, L = 2. Using g = 9.81 and by
mean of the dispersion relation for first order waves, we obtain the frequency value
ω = √

gπ tanh(π) = 5.5411 rad/s, and the wave period T = 1.1339 s. Figure 1 left
compares the contour lines of the free surface elevation at any time t = nT . It can
be observed that the FEM solution mostly lie over the analytical solution. Figure 1
(center) compares the pressure distribution over the cylinder obtained by the analyt-
ical solution and the FEM solution. Both pressure distributions are obtained using
the same colour scale, with a maximum value of 1500 and a minimum of 2000. Fig-
ure 1 right compares the force induced over the cylinder obtained by the analytical
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Fig. 2 Heave and pitch response amplitude operators for the GVA 4000. Dots: experimental data.
Solid line: FEM

solution and FEM. It can be seen that the forces obtained in both ways are quite
close to each other.

4.2 Seakeeping of a GVA 4000 Semisubmersible Platform

Next we carry out comparison, between experimental data [7] and numerical results
obtained via the method presented in this work, regarding the seakeeping behaviour
of the GVA 4000 semisubmersible platform. The results to be compared are the
heave and pitch response amplitude operators of the GVA 400 in heading seas, with
a range of wave periods between 6 and 32 seconds.

The platform displacement is 25940 tonnes. The center of gravity is located
21.35 m above the keel, and the horizontal position corresponds to the geometric
center of the platform. The radii of inertia are rxx = 30.40 m, ryy = 31.06 m, and
rzz = 37.54 m. The geometry of the GVA 4000 can be found in [7].

Based on [7] the model tests were carried out with the surge movement constraint
by the action of a pre-stressed spring whose mission is to keep in place the structure
during the testing. Besides, this spring creates also a pitching moment. Therefore,
the pitch movement will be influenced not just by the waves, but also by the surge
movement and the spring.

Since we have no data regarding the mechanism used by the model basin to keep
in place the platform during the tests, we cannot include it in the simulation. Instead,
simulations have been carried out in two cases: no surge and free surge. Figure 2
compares the experimental results and numerical FEM results. The experimental
results lay within the numerical results obtained for free surge and no surge cases as
expected.
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Fig. 3 Response amplitude
operator for oscillating water
column

4.3 Oscillating Water Column Test

In this section, the FEM model was used to analyze the performance of an OWC
device to absorb energy from waves. The OWC consist of a circular bell of 5 meters
in diameter (inner), 0.5 meters in thickness, and 2.5 meter in draft. The water depth
is 20 meters and the OWC device will be subject to the action of monochromatic
waves with periods ranging between 3 and 5 seconds. The free surface elevation was
analyzed within the chamber in the absence of the turbine (P = 0). Figure 3 shows
response amplitude operators obtained as ξ = Qmax/(AπR2ω), where Qmax is the
instantaneous flux amplitude; A is the wave amplitude; R is the inner radius of the
OWC device; ω is the wave frequency; and ξ represents the average amplitude of
the free surface elevation within the device.

The performance of the same OWC device was also analyzed after installing a
Wells-type turbine, the Wavegen 18.5 Kw model. The imposition of Eq. (26) implies
that the problem is no linear anymore. Therefore, the performance of the system was
analyzed for three wave amplitudes and a range of periods.

Table 1 summarizes the results obtained from the simulation, where the columns
named power provide the average power supplied by the device, and the efficiency
is obtained from dividing the average power by the power transported by a wave
front of 5 meters.

5 Conclusions

A FEM solver for wave structure interaction in the time domain has been presented.
The wave modelling is based on Stokes perturbation theory, which allows keeping
the same computational domain along the simulation. The FEM has been developed
so unstructured meshes can be used, no matter the complexity of the structure.
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Table 1 Oscillating water column results

T (s) A = 0.1 m A = 0.5 m A = 1 m

Power (kw) Efficiency Power (kw) Efficiency Power (kw) Efficiency

3 0.079 13.38 % 0.379 2.58 % 0.923 1.57 %

3.5 0.150 21.85 % 0.762 4.44 % 1.936 2.82 %

4 0.203 25.87 % 1.189 6.06 % 3.135 3.99 %

4.5 0.234 26.44 % 1.587 7.17 % 4.310 4.87 %

5 0.254 25.65 % 2.002 8.09 % 5.590 5.64 %

6 0.259 21.00 % 2.654 8.62 % 7.790 6.32 %

7 0.242 15.97 % 3.082 8.14 % 9.483 6.26 %

Both, the free surface and outlet boundary conditions are based on implicit
schemes. They have been introduced within the system matrix so that no itera-
tions are required within the time step to reach convergence among the Laplace
and boundary conditions.

FEM results have been compared to analytical results available for a circular
vertical cylinder. The agreement between both solutions shows that the algorithms
develop in this work perform well. Furthermore a comparison with experimental
data for a offshore structure has been carried out, obtaining a good agreement.

Moreover, since the present study is based on a time domain formulation, nonlin-
ear external forces and moments acting over structures can be easily brought into the
dynamics of the structure interacting with waves. Nonlinear pressure boundary con-
ditions have been implemented to show how the algorithms can be used to evaluate
wave energy converters based on oscillating water columns.
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The Variation in Wake Structure of a Tidal
Stream Turbine with Flow Velocity

R. Malki, I. Masters, A.J. Williams, and T.N. Croft

Abstract A combined Blade Element Momentum—Computational Fluid Dynam-
ics (BEM-CFD) model is applied to a 10 m diameter tidal stream turbine blade and
the supporting nacelle and tower structure in a 700 m long rectangular channel. The
modelling approach is computationally efficient and is suitable for capturing the
time-averaged influence of the turbine on the flow. A range of simulations are con-
ducted for the purpose of undertaking a comparative study of the influence of the
turbine on mean flow characteristics. Variations in flow structure around the turbine
for different flow conditions were evaluated.

Simulations are conducted for a range free-stream velocities typical of potential
tidal stream deployment sites, typically up to 3.0 m s−1. Velocity deficit profiles and
wake dimensions are evaluated for each flow condition implemented. Downstream
flow recovery is strongly linked to the flow velocity, and occurs over a longer dis-
tance with increasing velocity. For the range of velocities considered, some proper-
ties, such as wake length and the maximum wake length location increase linearly,
or nearly-linearly with velocity. Other properties, such as the maximum wake width,
and the recovery distance downstream demonstrate a tendency to converge towards
a constant value. The key findings of this study highlight the significance of the
free-stream velocity as an influence on the flow structure around and downstream of
a tidal stream turbine.

Keywords BEM · CFD · Tidal stream turbines · Wakes

1 Introduction

The extraction of tidal stream energy is a relatively new concept although it draws
upon the wide knowledge base developed for the wind power industry. Nevertheless,
there is much uncertainty associated with tidal power due to the significant contrasts
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between atmospheric and aquatic environments, for example the differences in fluid
density and viscosity. These properties have implications on the loads experienced
by the devices as well as flow Reynolds numbers.

A number of deployment initiatives are currently underway to investigate the
performance of tidal stream turbines in offshore environments [1–3]. Although the
outcomes from such initiatives will be very valuable, these deployments are very
costly and there can be significant risks to project development investments due to
the highly dynamic flows which are likely to occur at the most suitable sites for
exploiting tidal stream energy. Understanding how turbine designs are likely to per-
form in various conditions can be useful at the planning stage to maximise the return
on the investment without subjecting the devices to avoidable damage. This is par-
ticularly important at the early test trial stages on which the fate of future and more
significant scaled-up deployments for large scale power generation may depend.

Future deployments are likely to consist of numerous tidal stream turbines be-
ing deployed in predetermined configurations. To maximise the power generation
potential per device, blade diameters will be significant to increase their projected
area of influence across the flow, and hence, turbine wakes will be large. Ideally,
the spacing between the devices should be minimised to maximise the number of
devices deployed across a given site without compromising the performance of the
devices. This could occur if the devices are too close to each other and hence, tur-
bine blades fall within the wakes generated by upstream or neighbouring turbines.
Ultimately, the economics will be the deciding factor when determining the number
of devices to deploy. A loss in efficiency is acceptable if more devices increase prof-
its. However, an understanding of wake structures around the turbines is necessary
to aid the planning process.

To numerically simulate turbine blades, a moving mesh approach would be suit-
able for capturing the transient nature of the flow as it interacts with the blades [4].
However, this approach is very computationally expensive. An alternative method,
which is presented and used here, is a combined blade element momentum—
computational fluid dynamics (BEM-CFD) model where the time-averaged forces
acting on the flow due to the blades are introduced into the flow domain in the form
of momentum sink terms.

The majority of tidal stream turbine studies to date have focused on the perfor-
mance of the devices and power outputs in hypothetical flow conditions [5]. An
investigation into the wake structure downstream of a turbine and how it varies with
flow velocity is presented in this paper to assist the planning of tidal stream turbine
array layouts.

2 The BEM-CFD Model

2.1 Governing Equations

The steady-state CFD model solves the Navier-Stokes Equations, which consist
of the equations for mass continuity (1) and the conservation of momentum (2)
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whereby the fluid is treated as incompressible and turbulent.

∇.u = 0 (1)

∇.(ρuui) = − ∂p

∂xi

+ ∇.(μlam + μt)∇ui + Si (2)

k In these equations, ρ is the fluid density, ui is the ith component of the velocity
vector, p is the pressure, μlam and μt are the dynamic laminar and turbulent vis-
cosities respectively and Si represents additional source terms into the momentum
equations. Turbulence in the flow is resolved using the k − ε model [6] in which (3)
and (4) are solved:

∇.(ρuk) = ∇.

(
μlam + μt

σk

)
∇k + μtG − ρε (3)

∇.(ρuε) = ∇.

(
μlam + μt

σε

)
∇ε + ε

k
(C1εμtG − C2ερε) (4)

Equation (3) is the conservation equation for turbulent kinetic energy, k, and (4) is
the conservation equation for the turbulent dissipation rate, ε. The turbulent viscos-
ity, μt , is calculated using (3) and (4) as follows:

μt = ρCμk2

ε
(5)

In (3), (4) and (5), σk , σε , C1ε , C2ε and Cμ are constants for which standard values
are used, and G is the turbulent generation rate.

2.2 Blade Element Momentum Method

For long time scales, the time-averaged influence of turbine blades on the flow is
considered to act over all parts of a circular area with a diameter equal to that of the
blade. Forces acting on the flow due to the blade are assumed to be equal across the
circular area for equal radial distances from the centre. This time-averaged approach
allows sources that represent the force on the fluid due to the blades of the turbines
to be applied to each of the momentum equations. The advantage of this approach
is that the physical characteristics of the blade are built into the source rather than
the mesh consequently allowing the use of better quality meshes. The disadvantage
is that because of the time average principle of the approach it fails to resolve any
transient flow features due to blade position.

To define the characteristics of the rotor according to axial and radial position
the blade element momentum (BEM) [5] method is employed. Figure 1a shows
diagrammatically how a three bladed rotor is discretised using the BEM approach.
The blade properties for a blade element at a certain radius, r , are determined and
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Fig. 1 (a) Schematic diagram of the discretisation of the rotor; (b) resolution of the lift and drag
forces

are then averaged throughout the whole of the shaded region. This is performed for
each blade element throughout the radius of the rotor, R.

Each blade element has a chord length, cFb, and radial width, δr . Each element
experiences forces acting on it due to the fluid. These are shown in Fig. 1b. dT

and dFA represent the torque and axial forces respectively. The lift, dL, and drag,
dD, are dependent on the angle of attack, α, between the blade element and the
resultant velocity, vR . Ω is the angular velocity and U is the upstream longitudinal
flow velocity. The chord inclination angle and flow inclination angle are denoted by
β and φ respectively.

Following the approach described by Masters et al. [5], an axial force on a blade
element is defined by:

dFA = dL sinφ + dD cosφ (6)

and the tangential force on a blade element, which is equal to the torque/radius, i.e.
dT /r , is defined by:

dFT = dL cosφ − dD sinφ (7)

The flow inclination angle, φ, is defined by:

φ = tan−1
(

Ωr − uθ

uz

)
(8)

where uθ , uz are the local fluid tangential and axial velocities respectively, and Ω

is the angular velocity of the blades in rad/s. The lift force, dL, and drag force, dD,
are given by:

dL = 1

2
ρ|vR|2CLcFbδr (9)

dD = 1

2
ρ|vR|2CDcFbδr (10)
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Here, CL and CD are the lift and drag coefficients respectively, and:

|vR|2 = u2
z + (Ωr − uθ )

2 (11)

Substituting (9) and (10) into (6) and (7) gives the following equations:

Sz = dFA = 1

2
ρ|vR|2cFbδr(CL sinφ + CD cosφ) (12)

Sθ = dFT = 1

2
ρ|vR|2cFbδr(CL cosφ − CD sinφ) (13)

which, when resolved into Cartesian components and converted into force per vol-
ume, are substituted into the momentum equations (2) through Si .

2.3 Computational Solution

The solution to the governing equations (1)–(4) is achieved using a collocated cell-
centred finite volume scheme [7] within the software PHYSICA [8]. In the finite
volume scheme, the physical domain is represented by a mesh consisting of non-
overlapping polyhedral elements. In the cell-centred scheme, a solution node is
placed at the centre of each of these elements. The governing equations are inte-
grated over each mesh element, and the discretised equations lead to a series of
relationships between the unknown values in an element and the values in neigh-
bouring elements. The solution procedure is based on a variant of the SIMPLE [9]
algorithm, and since a collocated scheme is used, the Rhie-Chow approximation is
used to prevent checker-boarding of the pressure field [10]. The CFD equations are
typically solved for using a diagonally preconditioned conjugate gradient algorithm.
Further details of the solution procedure can be found in [8, 11].

The model domain used for the simulations was 700 m long, 100 m wide and
30 m deep. A 10 m diameter blade was centred laterally and vertically across the
channel, and positioned 300 m from the upstream boundary. This is to ensure the full
development of the boundary layer and the achievement of a uniform flow upstream
of the turbine. Also, a considerable distance is required downstream of the turbine
to evaluate the development of the flow.

An element size of 0.19 m by 0.19 m by 0.1 m was implemented within the blade
box. This is the region within which the momentum sink terms associated with the
blade are introduced, and hence, a relatively fine mesh is required to capture the
variation in lift and drag forces across the blade. The element sizes were gradu-
ally increased away from the blade box to reduce the overall mesh size, however,
to a lesser extent within the wake region downstream of the blade where the flow
structure is to be studied.

Each simulation was carried out for 15,000 iterations, which required 44 hours
of computation on a single processor. However, the simulations were conducted
in parallel on a multi-node cluster and hence, actual wall-times were significantly
reduced.
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2.4 Definitions

The tip speed ratio (TSR), the ratio between the rotational speed of the tip of the
blades and the free-stream longitudinal flow velocity, is defined by:

TSR = DΩ

2U
(14)

where U is the upstream free velocity and D is the turbine diameter.
The ‘velocity deficit’, Udef , is used in this paper in accordance with the definition

suggested by Myers and Bahaj [12] as follows:

Udef = 1 − u

U
(15)

such that a velocity deficit of 0.25 for example, is equivalent to a local velocity
equivalent to 75 % of the free-stream velocity.

3 Results and Discussion

3.1 Simulations

The simulations presented in this paper were conducted for a tip speed ratio of 3.0,
which is approximately the optimum for the blade used. A range of velocities typical
of offshore environments where tidal stream turbines are likely to be deployed were
implemented, typically ranging up to 3.0 m s−1. Since power is a function of the
cubic power of velocity, there is a significant amplification of power output with
increasing velocity (see Fig. 2b).

To fully appreciate the significance of this curve, consider a typical diurnal tidal
cycle consisting of two periods of high tide annexed together by an intermediate pe-
riod of low tide. Maximum velocities may be expected during a ‘turning’ tide which
occurs between low and high tides. However, during a slack tide, which occurs
around low and high tides, there is relatively little flow movement. When conduct-
ing feasibility studies, tidal energy developers may be tempted to estimate potential
power outputs using a rated velocity factor of 70 % [13], based on the maximum
flow velocities observed during a mean spring tide across a potential deployment
site. However, to gain a more accurate appreciation of the true return of the invest-
ment, a more detailed assessment of the power outputs over the range of velocities,
and range of tidal cycles would be required. Velocities will not only vary across
each tidal cycle, but also between different tidal cycles due to a natural variation
in low and high tide sizes, in addition to the influence of meteorological factors,
particularly wind-generated waves.
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Fig. 2 (a) A lateral view of a turbine in a channel showing a velocity contour plot for an inlet
velocity of 3.0 m s−1; and (b) variation in power output with inlet velocity. Tip speed ratio is 3.0

Fig. 3 (a) Velocity deficit profiles downstream of a 10 m diameter turbine for inlet velocities
between 0.5 and 3.0 m s−1. (b) Downstream distance required for recovery to a velocity deficit of
0.05, 0.15 and 0.25 for the range of velocities considered. Tip speed ratio is 3.0

3.2 Downstream Velocity Deficit

The reduction in velocity deficit with downstream distance from a turbine along the
flow axis through the centre of the blade is a measure of flow recovery following
the momentum extraction and velocity reduction arising due to the interaction of
the blade with the flow. This can be used to determine suitable longitudinal dis-
tances between turbines within an array to minimise wake interference between the
devices, and hence, avoid compromising the performance of downstream devices.

Velocity deficit profiles downstream of the blade along its centreline are pre-
sented in Fig. 3a for the range of inlet velocities considered. Initially, the velocity
deficit profiles are similar in magnitude, although they are slightly greater in mag-
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nitude for the lowest velocities, particularly the lowest velocity of 0.5 m s−1. The
profiles level off with downstream distance towards a constant value of 0.01. The
velocity actually recovers to the free-stream velocity (i.e. a velocity deficit of zero),
however, the free-stream velocity is estimated here based on the velocity two diam-
eters upstream of the blade, hence the slight surplus in the final velocity deficit. This
occurs at different rates, and the minimum value is reached over a longer down-
stream distance with increasing velocity. The profiles indicate some minor mesh-
dependency issues, particularly in far regions downstream, where the mesh is rela-
tively coarser than near the turbine.

To evaluate flow recovery downstream of the turbine, the distances required for
the velocity along centreline through the middle of the blade to return to velocity
deficits of 0.05, 0.15 and 0.25 are considered in Fig. 3b. The relationship between
the distance required for a recovery to 0.1 of the free-stream velocity and the inlet
velocity is linear and the recovery distance continues to increase at the maximum
velocity considered of 3.0 m s−1. Recovery to lower velocity deficits, for example
0.15 or 0.25, departs from a linear trend to a point where the recovery distance does
not appear to increase with increasing velocity. This can be seen most clearly for
the recovery to a velocity deficit of 0.25 whereby the recovery distance shows little
variation for velocities above 2.5 m s−1, and the recovery distance is approximately
16.4 diameters.

3.3 Lateral Velocity Deficit Profiles

The influence of a turbine on the flow structure is not restricted to the flow axis
through the centre of the turbine, but also affects the adjacent regions of the flow.
An understanding of this scope of influence is required to aid in the planning and
placement of multiple turbines within an array. To assess this aspect, velocity deficit
profiles are considered for lateral sections perpendicular to the flow direction.

Lateral profiles are presented at a range of downstream distances from the turbine
blade for flow velocities of 1.0 m s−1 and 3.0 m s−1 in Fig. 4a and b respectively.
These represent velocities around the lower and upper end of the operating range of
velocities in a typical offshore environment suitable for tidal stream turbine deploy-
ment. In both flows, there is initially little difference in the velocity deficit profiles
with downstream distance up to 4.0 diameters downstream from the blade. Within
this range, the velocity deficit is significant.

Beyond 4.0 diameters downstream, there is a sharp decrease in velocity deficit,
particularly for a lower flow velocity, where the velocity deficit is negligible beyond
8.0 diameters downstream. For the higher flow velocity, there is a steady decrease
in velocity deficit with distance downstream beyond 4.0 diameters, although the
influence of the turbine is still evident beyond 28.0 diameters downstream.

Now lateral profiles of velocity deficit are compared for different inflow veloc-
ities at two different sections: 2.0 and 10.0 diameters downstream from the blade
(Fig. 5a and b respectively). Immediately downstream of the blade, there is little
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Fig. 4 Lateral profiles of velocity deficit downstream from a 10.0 m diameter turbine for inlet
velocities of (a) 1.0 m s−1; and (b) 3.0 m s−1. Tip speed ratio is 3.0

Fig. 5 Lateral profiles of velocity deficit at a downstream distance of (a) 2.0 diameters; and
(b) 10 diameters from a 10.0 m diameter turbine for inlet velocities between 0.5 and 3.0 m s−1. Tip
speed ratio is 3.0

difference in velocity deficit profiles for different inflow velocities. Velocity deficits
are slightly higher for the lowest velocities considered, particularly 0.5 m s−1, and
to a lesser extent, 1.0 m s−1.
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Fig. 6 (a) Wake outlines based on a wake edge velocity of 95 % of the inlet velocity for inlet ve-
locities between 0.5 and 3.0 m s−1; and (b) wake diameter profiles downstream of a 10 m diameter
turbine for inlet velocities between 0.5 and 3.0 m s−1. Tip speed ratio is 3.0

At 10.0 diameters downstream, there is little difference in the lateral velocity
deficit profiles for inlet velocities above 1.5 m s−1. A slightly lower velocity deficit
is observed with a velocity of 1.5 m s−1, and this decreases significantly for a veloc-
ity of 1.0 m s−1. For an inlet velocity of 0.5 m s−1, the velocity deficit is negligible.

3.4 Wake Diameter Profiles

The turbulent wake region arising downstream of a tidal stream turbine may have
environmental implications as well as an influence on the performance of neigh-
bouring devices. It is therefore useful to quantify the total area of influence of the
wake. The wake edge is defined as the contour around and downstream of the turbine
where the velocity is 95 % of the inlet velocity. The wake outlines are presented in
Fig. 6a for the range of inlet velocities considered. The lack of symmetry observed
for higher inlet velocities can be linked to the wakes being longer and hence, ex-
tending into a region where the mesh is coarse.

To evaluate wake sizes, diameters were determined by calculating the lateral dis-
tance between the two outer edges of the wake along the horizontal plane at hub-
level, and this was performed at 1.0 m increments over the length of the wake. Wake
diameter profiles are presented in Fig. 6b for the range of inlet velocities considered.
The wake size, both in terms of total length and maximum diameter, are linked to
the Reynolds number of the flow, as dictated by the inlet velocity. Wake expansion
is initially evident downstream of the turbine in all cases, followed by a rapid reduc-
tion due to wake dissipation. Wake expansion continues over a considerably greater
distance downstream of the blade with an increasing free-stream velocity.
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Fig. 7 Variation in (a) wake length; (b) maximum wake width; and (c) maximum wake width
location with inlet velocity for a tip speed ratio of 3.0

The increases in wake length and diameter with inlet velocity are summarised
in Fig. 7a and b respectively. A significant increase in wake length occurs. The
relationship is linear and equates to approximately 80.0 % of the increase in velocity.
Increases in the maximum wake diameter were less significant ranging between 1.42
and 1.92 diameters for velocities between 0.5 m s−1 and 3.0 m s−1. There was less
of an increase in wake diameter with velocity at the higher velocities considered
indicating that there is a limit to the increase in the diameter of the wake.

Wake expansion is observed in the simulation results. The expansion of the wake
continues over a longer downstream distance with increasing velocity as shown in
Fig. 7c. Despite the maximum wake width showing less variation with velocity at
higher inlet velocities as shown in Fig. 7b, its location continues to move further
downstream from the blade.

4 Conclusion

A combined Blade Element Momentum - Computational Fluid Mechanics model
was used for modelling a tidal stream turbine in a range of flow conditions typical of
offshore aquatic environments. Simulation results were used to assess the influence
of the turbine on flow structure and the size of the wake arising downstream.

The velocity downstream along the turbine centreline recovers to the free-stream
velocity, and the distance required for flow recovery increases linearly with inlet ve-
locity initially. However, above a certain free-stream velocity, the recovery distance
length converges to a certain value. For instance, a recovery to a velocity deficit of
0.25 occurs over a distance equivalent to approximately 16.4 blade diameters for
inlet velocities greater than 2.5 m s−1.

The influence of the turbines on the flow extends across the flow direction away
from the centreline through the middle of the blade, and this was reflected in lat-
eral velocity profiles. Immediately downstream of the blade, velocity deficits were
slightly higher for lower velocities. However, for lower flow velocities, there was
also a rapid reduction in velocity deficits with downstream distance.

These trends were evaluated by characterising the wake edge as having a veloc-
ity equivalent to 95 % of the inlet velocity. Using this definition, variation in wake
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length, maximum wake width and wake expansion were evaluated. For the range of
velocities considered, wake length increased linearly with velocity, and wake expan-
sion continued over a longer distance downstream of the blade. The maximum wake
width increased with velocity up to 3.0 m s−1, however, the wake width appeared to
converge towards a constant value of approximately 1.92 diameters. Further work
is required to assess the significance of transient flow features on the overall wake
structure. Minor mesh-dependence was also identified and needs to be addressed.

It is widely believed that blade diameter is the most significant feature of a tidal
turbine to influence the surrounding and downstream flow structure. The observa-
tions identified in this paper highlight that some wake characteristics are linearly re-
lated to the flow velocity, while others are not, or even converge towards a constant
value. The key point is that the flow velocity is a significant parameter in determin-
ing wake characteristics. The relationships identified here can serve as a predictor
of likely levels of wake interference between devices for different tidal turbine array
arrangements to aid in layout planning.
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Viscous-Flow Calculations for KVLCC2 in Deep
and Shallow Water

Serge L. Toxopeus

Abstract In the SIMMAN 2008 workshop, the capability of CFD tools to predict
the flow around manoeuvring ships has been investigated. It was decided to continue
this effort but to extend the work to the flow around ships in shallow water. In this
paper, CFD calculations for the KLVCC2 are presented. The aim of the study is to
verify and validate the prediction of the influence of the water depth on the flow
field and the forces and moments on the ship for a full-block hull form.

An extensive numerical investigation has been conducted. For each water depth,
several grid densities were used to investigate the discretisation error in the results.
In general, the uncertainties were found to increase with increased flow complexity,
i.e. for larger drift angles or yaw rates. A dependency of the uncertainty on the wa-
ter depth was not found. The predicted resistance values were used to derive water-
depth dependent form factors. Comparisons with resistance measurements and with
an empirical formula given by Millward show good agreement for deep as well as
for shallow water depths. The CFD results give insight into the forces and moments
acting on the ship as a function of the drift angle, yaw rate and water depth. A clear
dependence of the forces and moments on the water depth is found for steady drift
conditions. For pure rotation, this dependence is much more complex and only de-
velops fully for larger non-dimensional rotation rates. The paper shows that CFD is
a useful tool when studying the flow around ships in restricted water depths.

Keywords KVLCC2 · Manoeuvring · Shallow water · CFD · RANS

1 Introduction

In the SIMMAN 2008 workshop [1], the capability of CFD tools to predict the
flow around manoeuvring ships has been investigated. Within the NATO RTO Ap-
plied Vehicle Technology group on Assessment of Stability and Control Prediction
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Methods for NATO Air & Sea Vehicles (AVT-161) it was decided to continue this
effort but to extend the work to the flow around ships in shallow water, see e.g.
Toxopeus [2]. Accordingly, the KVLCC2 hull form was selected, since for this ship
captive model tests in various water depths are available. In this paper, CFD calcu-
lations performed by MARIN for the KLVCC2 are presented. The aim of the study
is to investigate the uncertainty in predicting the forces and moments on a full-block
hull form in various water depths; validate the predictions using model test results;
and to obtain information about the influence of the water depth on the flow around
the ship and the forces and moments on the hull.

2 Coordinate System

The origin of the right-handed system of axes used in this study is located at the
intersection of the water plane, midship and centre-plane, with x directed forward,
y to starboard and z vertically downward. The forces and moments presented in this
paper are given according to this coordinate system.

In the present calculations, a positive drift angle β corresponds to the flow com-
ing from port side (i.e. β = arctan−v/u). The non-dimensional yaw rate γ is cal-
culated with γ = r · Lpp/V and is positive for a turn to starboard when sailing at
positive forward speed.

3 KVLCC2

The KVLCC2 (KRISO Very Large Crude Carrier) hull form was one of the subjects
of study during the CFD Workshops Gothenburg 2000 [3] and 2010 [4] and the
SIMMAN 2008 Workshop [1]. For straight ahead conditions, the flow features and
resistance values were measured, see Lee et al. [5] and Kim et al. [6].

Captive model tests for the bare hull KVLCC2 were conducted by INSEAN in
preparation for the SIMMAN 2008 Workshop [1], see also Fabbri et al. [7, 8] and
Campana and Fabbri [9]. A set of PMM tests comprising amongst others the mea-
surement of the forces and moments for steady drift motion and oscillatory yaw
motion was performed. During the tests, the model was free to heave and pitch. For
the present work, only the tests with the bare hull form are considered.

4 Viscous Flow Solver and Computational Setup

4.1 ReFRESCO

REFRESCO is a MARIN spin-off of FRESCO [10], which was developed within
the VIRTUE EU Project together with Technische Universität Hamburg-Harburg
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(TUHH) and Hamburgische Schiffbau-Versuchanstalt (HSVA). REFRESCO is an
acronym for Reliable and Fast Rans Equations solver for Ships, Cavitation and Off-
shore. It solves the multi-phase unsteady incompressible RANS equations, comple-
mented with turbulence models and volume-fraction transport equations for each
phase. The equations are discretised using a finite-volume approach with cell-
centred collocated variables. The implementation is face-based, which permits grids
with elements with an arbitrary number of faces (hexahedrals, tetrahedrals, prisms,
pyramids, etc.). The code is targeted, optimised and highly validated for hydro-
dynamic applications, in particular for obtaining current, wind and manoeuvring
coefficients of ships, submersibles and semi-submersibles [11–14]. For all cases
presented in this study the y+ values in the first cell from the wall are below 1, such
that the equations are integrated down to the wall.

4.2 Turbulence Closure Models

Several different turbulence closure models are available in REFRESCO. In this
study, the SST version [15] of the two-equation k − ω turbulence model is used. In
the turbulence model, the Spalart correction (proposed by Dacles-Mariani et al. [16])
of the stream-wise vorticity can be activated.

4.3 Implementation of Rotational Motion

For ship manoeuvres, not only oblique flow is of interest, but also the flow around
the ship when it performs a rotational (yaw) motion. In RANS, the rotational mo-
tion can be modelled in several ways, such as moving the grid in a rotational mo-
tion through a stationary flow (inertial reference system), or by letting the flow
rotate around the stationary ship (non-inertial reference system). For this work a
non-inertial reference system is chosen. Centrifugal and Coriolis forces to account
for the rotation of the coordinate system are added to the momentum equation as
source terms. More information about the implementation can be found in Tox-
opeus [14].

4.4 Grid Generation

For best performance of REFRESCO, multi-block structured O–O grids are used
for this study. Grid points have been clustered towards the hull surface and bottom to
ensure proper capturing of the boundary layers. The far field boundary is generated
as a cylindrical surface, to facilitate the use of a single grid for all computations. An
example grid is given in Fig. 1.
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Fig. 1 Example grid, KVLCC2, deep water (coarsened for presentation)

Fig. 2 Water depth to draught ratios considered in this study

Grids were generated with GridPro for four different water depth h to draught T

ratios, i.e. h/T = 31.8 representing deep water, h/T = 3.0 representing an interme-
diate water depth, h/T = 1.5 representing shallow water and h/T = 1.2 represent-
ing very shallow water, see Fig. 2. Basically, the grid topology around the hull for
the four water depths was the same, the only difference being the addition of grid
blocks between the bottom of the hull and the sea floor for each water depth.

Based on these grids, geometrically similar grids were generated using GridPro
in order to be able to assess the discretisation errors and to accelerate the iterative
procedures by using coarse grid solutions as initial flow fields for fine grid compu-
tations. Additional grids are obtained by coarsening the finest grid in all directions.
Table 1 lists the grid densities used for this study.

4.5 Boundary Conditions

The calculations presented in this study were all conducted without incorporating
free-surface deformation. Based on the speeds used during the tests and the range of
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Table 1 Overview of grid
densities h/T Grid cells (×10−3)

31.8 (Deep) 12721, 8455, 5388, 3340, 2270, 1590, 121

3.0 (Intermediate) 13005, 8597, 5573, 3446, 2374, 1604, 137

1.5 (Shallow) 11659, 7688, 4936, 3106, 2112, 1437, 119

1.2 (Very shallow) 11031, 7270, 4664, 2899, 1999, 1351

drift angles or rotational rates studied, the effects of Froude number and free-surface
deformation on the forces on the manoeuvring ship are likely to be reasonably small
and assumed to be smaller than the uncertainties due to e.g. discretisation errors or
errors in the experimental results. To simplify the calculations, symmetry boundary
conditions were therefore applied on the undisturbed water surface and dynamic
sinkage and trim was neglected. On the hull surface, no-slip and impermeability
boundary conditions are used. For all calculations, even for deep water, the boundary
condition on the bottom surface is set to moving-wall/fixed slip (u = V ∞).

Calculations for ships at drift angles or rotation rates are conducted by setting
the boundary conditions at the exterior to the proper inflow velocities. This is done
using the BCAutoDetect boundary condition, which automatically applies inflow
conditions or outflow (Neumann) conditions on the cell faces, depending on the
normal velocity at each cell face on the boundary. Therefore, the computational
domain does not need to be changed for each new calculation and a single grid for
different manoeuvring conditions can be used. Details about BCAutoDetect can
be found in Toxopeus [14].

4.6 Acceleration of the Calculations

In order to efficiently generate results for many drift angles, a routine was used
to automatically increment the drift angle during a single simulation. Simulations
begin with a pre-set drift angle, until a specified number of iterations is reached,
or when the maximum change in the residuals is less than a specified convergence
criterion. Next, the drift angle is incremented by �β , by changing the inflow condi-
tions, and the solution is continued from the solution from the previous drift angle.
Starting the calculations from a converged solution at a slightly different drift angle
saves time compared to performing each calculation separately from undisturbed
flow. This procedure is repeated until the desired maximum inflow angle is reached.
In Toxopeus [14], it is demonstrated that this approach provides the same results as
those obtained with multiple single-drift angle calculations.

This procedure was designated drift sweep and the application has already been
presented in e.g. Toxopeus [14], Vaz et al. [12] and Bettle et al. [17].
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Table 2 Overview of computations

Condition Deep
h/T = 31.8

Intermediate
h/T = 3.0

Shallow
h/T = 1.5

Very shallow
h/T = 1.2

Drift
sweep

5388 × 103 Cells,
0°–32°, 2° incr.

5573 × 103 Cells,
0°–32°, 2° incr.

4936 × 103 Cells,
0°–32°, 2° incr.

4464 × 103 Cells,
0°–38°, 2° incr.

β = 0◦ All 7 grids All 7 grids All 7 grids All 6 grids

β = 4◦ All 7 grids All 7 grids All 7 grids All 6 grids

γ �= 0 12721 × 103 Cells,
0.1–0.6, 0.1 incr., 0.65

All 7 grids,
0.1–0.6, 0.1 incr.

All 7 grids,
0.1–0.6, 0.1 incr.

All 6 grids,
0.1–0.6, 0.1 incr.

γ = 0.4 All 7 grids All 7 grids All 7 grids All 6 grids

5 Programme of Calculations

Most calculations were conducted for a Reynolds number of Re = 3.7 × 106 which
corresponds to the Reynolds number during the INSEAN model tests (see [7–9]).
The conditions are specified in Table 2. Sinkage and trim and free surface deforma-
tion were not taken into account. Furthermore, it was assumed that the flow domain
was not restricted in horizontal direction, i.e. the basin walls were neglected. During
the measurements, the model was free to sink and trim and basin walls were present.
Especially for the shallow water conditions, this may lead to differences between the
model test results and the computations.

Additional calculations were conducted for the deep water condition, at straight
ahead sailing and a Reynolds number of Re = 4.6 × 106. This condition was chosen
in order to be able to compare the REFRESCO results with wind-tunnel measure-
ments of the flow field around the KVLCC2, see Lee et al. [5] and with towing tank
experiments performed by Kim et al. [6]. The calculations comprised the change of
Reynolds number and variations in the turbulence modelling.

6 Presentation and Discussion of the Results

6.1 Iterative Error

All calculations were run until the maximum normalised residual resmax (the so-
called L∞ norm) between successive iterations had dropped well below 1 × 10−5

or when further iterative convergence was not obtained. The changes in the non-
dimensional integral quantities (forces and moments) were well below 1 × 10−7.
A representative convergence history of the residuals and the changes in the forces
for a calculation on the finest grid is presented in Fig. 3.
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Fig. 3 Iterative convergence, deep, β = 4◦

6.2 Discretisation Error

Using the procedure proposed by Eça et al. [18], the uncertainties in the forces and
moments are estimated. Based on an analysis of the results for each grid, it was
decided to use the 5 finest grids for the uncertainty analysis. The number of grids ng

used depended on the scatter in the results for the coarsest grids. It was found that
for grids with a relative step size hi of 2 and above, the results are not consistent
with the finer grid results. This means that with the present grid layout, grids of more
than about 1.6 × 106 cells are required to obtain a reliable solution of the forces and
moments. As an example of the verification results, plots are presented for β = 4◦
with deep and very shallow water in Fig. 4.

Verification studies have been performed for all other calculations with β = 0◦,
β = 4◦ and γ = 0.4, but the results have not been included in this paper. These stud-
ies have indicated that the uncertainties for the rotational motion cases are higher
than for the pure drift cases (β = 0◦ and β = 4◦). This can be attributed to the in-
creased complexity of the flow. Especially for the large rotation rates (γ ≥ 0.4), the
uncertainties increase. For rotational motion, the uncertainties in X and Y are large,
while the uncertainty in N is reasonable. This is probably caused by the fact that
during pure yaw motion, the yaw moment (sum of contributions) is better defined
than the longitudinal force or side force (difference between contributions). The the-
oretical order of convergence should be 2 for REFRESCO. However, due to flux
limiters, discretisation of the boundary conditions and other factors, the apparent
order of convergence is expected to be between 1 and 2 for geometrically similar
grids in the asymptotic range. Considering uncertainty estimates for the various wa-
ter depths and conditions, the apparent orders do not always follow this expectation.
This indicates that either even finer grids are required, or that scatter in the results
spoils the uncertainty estimate. A relation between the uncertainties and the water
depths was not found.

Additionally, the influence of the grid density on the flow field at the propeller
plane has been investigated. It was seen that with increasing grid density, the agree-
ment between the CFD results and the experiments becomes qualitatively slightly
better, but the hook shape in the propeller plane as visible in the experiments [5]
is not well resolved (see Fig. 6). The sensitivity of the flow field to grid refinement
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Fig. 4 Uncertainty analysis, deep (left) and very shallow (right) water, β = 4◦

is judged to be small. Between densities of 3340 × 103 and 12721 × 103, the flow
field does not change significantly. Looking at the differences between the solu-
tions obtained on the six grids, it is not thought that the solution will improve upon
grid refinement and therefore modelling errors are expected to exist in the CFD re-
sults. Alternative turbulence models might improve the results, as was shown for
e.g. PARNASSOS during the Gothenburg 2010 CFD Workshop [19].

6.3 Comparison with the Experiments

6.3.1 Manoeuvring Conditions

Comparisons between the CFD results and the experiments are shown in Fig. 5. In
general, the agreement is qualitatively reasonable, but quantitatively, considerable
differences are seen. In most cases, validation of the solution is not achieved, which
indicates that modelling errors are present in the simulations or that the uncertainties
claimed for the experimental results are optimistic. When the solution is validated,
the level of validation is generally large, e.g. larger than 10 %D. Especially for the
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Fig. 5 Comparison between calculations (blue lines with symbols) and experiments (black sym-
bols), relation with β (left) and with γ (right)

X force, discrepancies are found and the trends do not appear to be represented well.
Similar results and deviations from the trends were obtained by Zou [20]. Reasons
for the discrepancies might be the neglect of free surface and dynamic trim and
sinkage. However, large scatter exists in the experimental data and therefore the
uncertainty in the experiments is expected to be relatively large. Furthermore, it is
questioned whether the false bottom used during the tests was sufficiently sealed
at all sides to correctly model shallow water conditions and whether blockage of
the basin walls influences the results, see also Simonsen et al. [21]. This should be
investigated further.

6.3.2 Straight Ahead Sailing

For the calculation for deep water, β = 0◦ and Re = 4.6 × 106, comparisons were
made with the experiments performed by Lee et al. [5] and Kim et al. [6]. The
agreement between the CFD results and the experiments is good for the two most
upstream planes (x = −0.35Lpp and x = −0.4Lpp, not presented here). Further
downstream, differences appear which increase when going aft. The comparison
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Fig. 6 Comparison of flow field between experiments (left) and calculations (right), without (top)
and with (bottom) correction for vorticity, deep water, β = 0◦

for x = −0.4825Lpp is shown in the top half of Fig. 6. As discussed in Sect. 6.2,
it was expected that improvements can be made by selecting alternative turbu-
lence modelling. This assumption was tested using additional calculations in which
the Spalart correction of the streamwise vorticity according to Dacles-Mariani
et al. [16] was activated. With this correction, the strain rate S is replaced by
Sc = Ω + C · min(0, S − Ω) in which the constant C should be chosen, see Eça
[22]. In the present calculation with active correction, C was set to 10 (which is far
outside the normal range of application), and the results are given in the lower half of
Fig. 6. It is seen that with this correction, the agreement between the computations
and the experiments improves considerably, which demonstrates the sensitivity of
the results to the turbulence modelling. These findings correspond to those of Eça
[22] and Eça et al. [19], based on results obtained with the viscous-flow solver PAR-
NASSOS.

In Table 3, the predicted resistance in deep water is compared to previous calcu-
lations and to the experiments1 (indicated by D, with UD = 1.0 %D) performed by
MOERI [6]. Additionally, results from tests by Kume et al. [23] with the KVLCC2M

1During the Gothenburg 2010 CFD workshop, it was concluded that the MOERI experiments were
performed with the rudder attached to the model. Therefore, the G2010 KVLCC2 case contribu-
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Table 3 Resistance prediction, deep water, β = 0◦, γ = 0

ncells × 10−3

(Half ship)
CT ×103 CF ×103 CPV ×103 E (%D)

Experiments [6] – 4.110 – – –

Experiments (KVLCC2M) [23] – 4.152 – – 1.0

Mean G2010 [4] – 4.180 – – 1.7

PARNASSOS [19] 6000 4.077 3.325 0.752 −0.8

REFRESCO 6361 4.185 3.457 0.728 1.8

REFRESCO (DM C = 10) 6361 4.109 3.280 0.829 0.0

hull form (identical to the KVLCC2 except for some fairing of the propeller shaft)
are added (UD′ = 3.3 %D′). The KVLCC2M resistance value has been corrected
for the difference in Reynolds number, using a form factor (1 + k) = 1.2. In order to
compare with other resistance predictions for the KVLCC2 found in literature, the
values in the table have been made non-dimensional using the wetted surface. The
total resistance is indicated with CT , the friction component by CF and the pressure
component by CPV .

The resistance predicted by REFRESCO is about 1.8 % higher than the value
found in the experiments. Assuming that the numerical uncertainty USN is the same
for Re = 4.6 × 106 as for Re = 3.7 × 106, i.e. USN = UI + UG ≈ UG = 1.3 %S,

the validation uncertainty is about UV =
√

U2
D + U2

SN ≈ 1.6 %D. The validation
uncertainty and the comparison error for the uncorrected REFRESCO results are
found to be of similar orders of magnitudes, although strictly validation of results is
not obtained.

The Spalart streamwise vorticity correction used to improve the wake field also
leads to a reduction of the comparison error. However, although the streamwise
vorticity correction appears to improve the results, care should be taken with this
modification since it is not guaranteed that the correction will lead to better results
for other conditions as well. It just demonstrates that the turbulence modelling can
have a large impact on the computational results.

6.4 Influence of Water Depth

6.4.1 Forces and Moments

In Fig. 7 and Fig. 8 the forces and moments as a function of the drift angle and rota-
tion rate are shown for each water depth. The influence of the water depth is already

tions comprised calculations including the rudder, while the present calculations are for the bare
hull. The KVLCC2M test results were obtained for the bare hull.
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Fig. 7 Influence of drift angle and water depth

evident in these graphs at h/T = 3.0. For the forces and moments as a function of
the drift angle β , consistent trends are found. The relation between the forces and
moments and the rotation rate is much more complex, however. Noteworthy is the
trend observed in the yaw moment N : for yaw rates below γ = 0.4, the influence
of the water depth is hardly visible, while a considerable increase in yaw moment
is found for the larger yaw rates when the water depth is reduced. Unfortunately,
the influence of yaw rate on forces and moments in shallow water has hardly been
published by other authors and therefore it cannot be determined whether this is a
modelling error or a physical feature. Therefore, more attention to rotational motion
in future studies is strongly recommended.

During free sailing tests with the KVLCC2, see Quadvlieg and Brouwer [24], the
maximum drift angle and non-dimensional yaw rate during the manoeuvres were
respectively β ≈ 20◦ and γ ≈ 0.8. Figure 7 and Fig. 8 indicate that for these con-
ditions the influence of the water depth on the forces and moments is much larger
for a fixed drift angle than for a given yaw rate: e.g. the yaw moment for β = 20◦
increases by a factor of 4.7 between deep and very shallow water, while for γ = 0.6
the increase is only by a factor of 1.6.
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Fig. 8 Influence of yaw rate and water depth

6.4.2 Form Factor

To extrapolate the resistance obtained during model tests to full scale values, use
is commonly made of a parameter called the form factor, see e.g. Larsson and
Raven [25]. The form factor (1 + k) is the ratio between the viscous resistance
of the hull and the frictional resistance of a flat plate with the same length and wet-
ted surface area. The form factor is assumed to be the same for model scale as for
full scale. In experiments, this factor is determined for each individual hull form
from low speed resistance measurements where the wave resistance components are
supposed to vanish according to a certain rule:

1 + k = lim
Fn→0

R

RF

The flat plate resistance RF is determined by the formula

RF = 1

2
ρV 2SwaCF ,
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Fig. 9 Influence of water depth on form factor

with Swa the wetted surface. The coefficient of frictional resistance CF is often
determined using the ITTC-1957 formula for model-ship correlation:

CF = 0.075

(10 log(Re) − 2)2

All calculations in this study have been performed with the double-body assump-
tion which corresponds to the case Fn → 0. Therefore, the obtained resistance can
be used directly to calculate the form factor. For a drift angle of β = 0◦, i.e. straight-
ahead sailing, the relation between the water depth and the form factor as presented
in Fig. 9 is found. Note that the presentation is given using two different parameters
on the horizontal axis: the form factor is given as a function of the water depth to
draught ratio h/T and as a function of T/(h − T ) in the left and right graphs re-
spectively. It is seen that in the latter presentation the points do not all collapse near
the h/T = 0 axis and a clearer relation between the influence of the water depth on
the form factor is found.

The form factor as calculated with the viscous flow calculations changes from
about 1.22 in deep water to 1.73 in very shallow water. Assuming the same form
factor on model scale and full scale, this clearly shows that resistance extrapolation
to full scale for shallow water conditions cannot be done using a form factor that
was obtained in deep water. Millward [26] published a method to correct form fac-
tors found for deep water to shallow water conditions. According to Millward, the
increase of the form factor due to shallow water is:

�k = 0.644

(
T

h

)1.72

For h/T = 1.2, this amounts to �k = 0.471, such that the form factor becomes
(1 + k) = 1.22 + 0.471 = 1.69 which is reasonably close to the form factor found
in the CFD calculation for this water depth. The relation between the form factor
based on Millward’s formula and the water depth has been plotted in the graph.
The agreement between Millward’s formula and the form factors predicted by CFD
is encouraging. It is therefore recommended to investigate whether the form factor
correction proposed by Millward can be applied to other ships as well. Furthermore,
studies are currently conducted at MARIN to investigate whether the form factor on
model scale is the same as the form factor on full scale.
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Fig. 10 Axial velocity in deep (top) and very shallow (bottom) water, β = 0◦

6.5 Local Quantities

In Figs. 10, 11, and 12, flow fields around the hull are presented for deep and very
shallow water, with β = 0◦, β = 4◦ and γ = 0.4. After examination of the flow fields
for these conditions and for the other drift angles and rotation rates, it is observed
that for reducing water depth, the pressures below the hull decrease, while the ve-
locities increase (which is according to expectations). Flow separation is detected
in restricted water, just below the propeller hub, see Fig. 10. The flow separation at
the aft ship increases and grows upward for decreasing water depths. For straight
ahead condition, the flow separation is much more pronounced than for the drift or
rotation condition. The wake near the water surface does not change significantly
when changing the water depth. However, the wake around the propeller hub be-
comes thicker as the water depth reduces. Furthermore, the wake starts to extend
to the sea floor, resulting in bulging contour lines. The vortices developing around
the aft body, responsible for the famous hook shape in the propeller wake plane, are
less concentrated at reduced water depth, which is demonstrated in more detail in
Fig. 13.
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Fig. 11 Axial velocity in deep (top) and very shallow (bottom) water, β = 4◦

7 Conclusions

An elaborate numerical study has been conducted for the KVLCC2 hull form sail-
ing in various water depths. The calculations give clear insight into the forces and
moments acting on the ship as a function of drift angle, yaw rate and water depth.
Uncertainty estimates were made for the various calculations. In general, the uncer-
tainties increase with increased flow complexity, i.e. for larger drift angles or yaw
rates. A dependency of the uncertainty on the water depth was not found.

The correspondence between the experiments and the calculations is qualitatively
reasonable. Quantitatively, it is difficult to draw conclusions because of the scatter
in the INSEAN experimental data. Additional measurements, with a larger range
of drift angles and rotation rates and combinations thereof, are very much desired.
Comparisons between resistance measurements by MOERI and the computations
show a good correlation, with a comparison error of the same order of magnitude
as the validation uncertainty. The resistance predicted by REFRESCO is therefore
judged to be good. By varying the settings of the turbulence modelling, the compar-
ison error could be cancelled completely. This clearly demonstrated the sensitivity
of the results to the turbulence modelling.
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Fig. 12 Axial velocity in deep (top) and very shallow (bottom) water, γ = 0.4

Fig. 13 Axial vorticity in deep (left) and very shallow (right) water, β = 0◦
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For steady drift conditions, a clear dependence of the forces and moments on
the water depth was demonstrated. For pure rotation, this dependence is much more
complex and only develops fully for non-dimensional rotation rates above γ = 0.3.
Further study is required to investigate this phenomenon. The influence of the water
depth on the relation between the forces and moments and the drift angle is found
to be much larger than the relation with the rotation rate.

Based on the results, form factors for deep and shallow water were derived. The
calculated form factors change from about 1.22 in deep water to 1.73 in shallow
water. This clearly shows that resistance extrapolation to full scale for shallow water
conditions cannot be done using a form factor that was obtained in deep water. It
was found that for the KVLCC2 the trends closely follow the empirical formula
proposed by Millward. Future research is recommended to investigate whether the
Millward correction can be applied to other hull forms as well.

In shallow water, the flow separation at the stern increases. For straight ahead
condition, the flow separation is more pronounced than in manoeuvring conditions.
The aft body vortex, responsible for the hook shape in the propeller wake plane,
reduces considerably in reducing water depth.
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Computational Investigation
of Non-body-of-Revolution Hull Form
Maneuvering Characteristics

Keegan P. Delaney

Abstract Maneuvering characteristics for traditional body-of-revolution (BOR)
hull forms are well understood through decades of testing, while less traditional
non-body-of-revolution (Non-BOR) hull forms are not nearly as well understood.
A computational investigation on the maneuvering capability for two Non-BOR hull
forms (Single and Twin Tail stern configurations) and an equivalent BOR hull form
is completed, and compared to prior experimental tests. Initially, global forces and
moments on the hull forms over various static angles of attack are computed and
studied. Next, steady turn computations are used to determine global forces and
moments on the hull forms over various turning radii. Force and moment informa-
tion from the static and steady turn computations are combined to compute indices
of stability for each hull form. Stability indices are used as a means of quantifying
maneuvering stability for all of the hull forms in the vertical and horizontal planes.
Computationally predicted stability indices displayed the same maneuvering char-
acteristics as previous experiments. The Twin Tail hull form was shown to be highly
stable in both the vertical and horizontal planes. The Single Tail hull form was unsta-
ble in the vertical plane and highly stable in the horizontal plane. The BOR proved
to be marginally stable to stable in both planes. The results of this study show that
the Twin Tail hull form would be more suitable from a maneuvering standpoint than
the Single Tail hull form in future Non-BOR design studies.

Keywords RANS · Maneuvering · Underwater body · Non-BOR

1 Introduction

In this study, Reynolds Averaged Navier-Stokes (RANS) computations are used to
shed insight into maneuvering characteristics for the DTMB Series 66 non-body-
of-revolution (Non-BOR) hull forms. Non-BOR hull forms are of interest due to
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Fig. 1 Series 66 hull forms
with configurations used in
this study marked with
arrows

Table 1 Series 66 geometric
properties Model length

(ft)
Beam to-height Surface area

(ft2)

BOR 10.4125 1.0 30.161

Twin tail 10.4125 2.5 57.587

Single tail 12.2751 2.5 61.118

their potential for increased storage capacity and midbody modularity vice tradi-
tional body-of-revolution (BOR) hull forms. Maneuvering characteristics of BOR
hull forms are well understood from decades of testing, while less traditional Non-
BOR hull forms are not nearly as well understood.

Series 66 is a systematic sequence of bodies: Single Tail, Twin Tail, and an equiv-
alent BOR hull forms. Figure 1 shows the complete Series 66 hull form family.
Only the BOR, wide-body long Single Tail, and wide-body Twin Tail configura-
tions (marked with arrows in Fig. 1) are investigated in this study. Other Series 66
hull forms will be investigated in future studies. The wide-body Single and Twin
Tail hull forms share the same bow and midsection, which are essentially the BOR
body with added beam at constant height, while only the sterns are different. Table 1
shows the geometric hull form characteristics for the three Series 66 hull forms used
in this study.

This computational investigation of the Series 66 Non-BOR hull forms is com-
plementary to experimental tests performed by Roddy et al. [4] at the Naval Surface
Warfare Center, Carderock Division (NSWCCD). All experimental data presented
in this study is from the work of Roddy et al.

Initially, global forces (vertical and horizontal) and moments on the hull forms
over various angles of attack are studied. Both bare hull and X-configuration stern
appended hull forms are compared to analyze the effect of stern appendages for
each of the hull forms. Figure 2 shows larger views of the Single and Twin Tail
stern appended hull forms.

Next, steady turn computations are performed for all of the stern appended con-
figurations over varied turning radii. Vertical and horizontal plane steady turn ma-
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Fig. 2 Series 66 Single (left) and Twin (right) Tail stern appended hull forms

Table 2 Index of stability
(G) definitions G Degree of stability

Negative Unstable

Positive Stable

0 to 0.2 Marginally stable (satisfactory in the horizontal
plane)

0.5 to 0.7 Stable (satisfactory in the vertical plane)

>0.8 Highly stable

neuver computations are used to compute rotary derivatives from the resulting force
and moment curves.

Finally, information from the force and moment computations is combined with
rotary derivatives to compute indices of stability. Indices of stability in the vertical
(Gv) and horizontal (Gh) planes quantify the maneuvering stability of the underwa-
ter body. Table 2 shows the relationship between stability indices and maneuvering
stability. Typical applications that the Series 66 hull forms would be used for tar-
get Gv and Gh values of 0.6 and 0.2, respectively. It is typically desired that the
underwater body be slightly more stable in the vertical plane. It is important for
an underwater body to not have too high of an index of stability or else the body
will not turn and maneuver readily enough. Conversely, it is important for the hull
form’s index of stability to not be too low, or else the body will have a hard time
maintaining steady course in turning maneuvers.

2 Numerical Methods

NavyFOAM V1.0’s single-phase RANS solver is used for this work. NavyFOAM
V1.0 [5] was developed from the extended version of OpenFOAM (www.wikki.co.
uk), which is extended from the standard release (www.openfoam.com). The solver
employs a cell-centered finite-volume method that permits use of arbitrary polyhe-
dral elements including quadrilateral, hexahedral, triangular, tetrahedral, pyramidal,
prismatic, and hybrid meshes. The single-phase solver is run in parallel using do-
main decomposition and message passing.

http://www.wikki.co.uk
http://www.wikki.co.uk
http://www.openfoam.com


174 K.P. Delaney

For incompressible flows the continuity (mass conservation) and momentum
equations can be written as Eqs. (1) and (2), respectively.

∂Ui

∂xi

= 0 (1)

DUi

Dt
= − 1

ρ

∂p

∂xi

+ ∂
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Where ρ is the density of the fluid, ν is the kinematic viscosity, p is the pressure,
Ui is the mean velocity component and u′

i is the fluctuating velocity component. The

term u′
iu

′
j is the Reynolds stress. The Boussinesq approximation is used to relate the

Reynolds stress to velocity gradients by Eq. (3).
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Where k is the turbulent kinetic energy and νt is the turbulent viscosity. Closure
for the RANS equations is achieved by modeling νt using Menter’s shear stress
transport (SST) turbulence model, which is a two-equation k − ε/k − ω hybrid
model [3].

3 Grid Generation

Due to the necessity for quick turnaround time and relatively complex geometry
around the various appendages and stern sections unstructured gridding methods
are preferred over structured gridding methods for this study. Multi-element un-
structured grids are developed using SolidMesh [1], a suite of tools developed at
Mississippi State University. SolidMesh provides tools for geometry preparation and
surface grid generation. The volume grid is generated by using an advancing normal
methodology for the boundary layer prism elements and an Advancing Front/Local
Reconnection technique [2] to develop isotropic elements. Using these tools, multi-
element unstructured grids can be created around complex geometries, like those
presented in this work, significantly faster than traditional structured grids. Typi-
cal unstructured grids used in this study contained 5 to 25 million cells. All grids
were created to solve down to the wall, with a non-dimensional normal wall spac-
ing (y+) of 1. Figure 3 shows typical unstructured surface meshes used for these
computations.

4 Force and Moment Computations

Results from pitch (vertical) and drift (horizontal) angle computations are presented
for the various hull forms under bare hull and stern appended configurations. Com-
putational results for all hull forms are compared to experimental data up to 20
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Fig. 3 Views of the unstructured mesh on the Twin Tail bow and a stream-wise centerline plane
(left) and on the stern (right)

degrees angle of attack as a means of comparison between the solver and exper-
iment. However, for maneuvering purposes of this study only the forces and mo-
ments from +/−4 degrees are important as stability indices include the slope of
force and moment curves over this range. All forces and moments are presented in
non-dimensional form according to Eqs. (4) and (5).

F ′ = F

1
2ρU2L2

(4)

M ′ = M

1
2ρU2L3

(5)

Where L is the characteristic length of the hull form, F and M are the dimensional
forces and moments, and F ′ and M ′ are the non-dimensional forces and moments.
All moments for computation and experiment are taken about the center of mass.

Figure 4 shows the Single Tail hull form forces and moments plotted over a
range of pitch and drift angles. As an important note, all of the experimental results
at large negative drift angles used in this study should be considered unreliable. In
the experimental tests two struts were connected to the body, and at negative drift
angles the body was turned into the wake of the struts, thus altering experimental
results. Nevertheless, Fig. 4 shows that for the appropriate conditions computational
predictions match experimental measurements very well over a wide range of pitch
and drift angles for both bare hull and stern appended hull form configurations.

One interesting note from the pitch angle results is that the Single Tail bare hull
and stern appended cases yield similar lifting force and pitching moment results for
both computation and experiment. This indicates that the stern appendages add little
control in the vertical plane. In the horizontal plane there is a noticeable difference
in forces and moments for the bare hull and appended cases. Also, in general the
forces and moments in the vertical plane are an order of magnitude larger than in
the horizontal plane. This is to be expected, as the body appears as a well-rounded
BOR in the horizontal plane, whereas there is a large flat midsection that is exposed
to the flow in the vertical plane.

As previously mentioned for stability index purposes the slope of the force and
moment curves around 0 angle of attack is important. Figure 5 shows pitch and drift
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Fig. 4 Single Tail forces and
moments for the bare hull
(BH) and stern appended
(StAp) hull forms

forces around 0 degrees angle of attack for the Single Tail hull form. At times there
is a slight offset in the experimental data as the drift angle force plot shows, where
the force and/or moment curve does not cross through 0 exactly at 0 degrees angle
of attack. Despite the slight offset in force for the drift angle case the experimental
and computational slopes line up very well.

Figure 6 shows the Twin Tail hull form force and moment results. There are no
Twin Tail bare hull form experimental drift angle results to compare to, so only
computational predictions are presented. As in the Single Tail case the experimen-
tal measurements and computational predictions agree very well over a wide range
of attack angles. The stern appendages seem to alter the force and moment results
slightly more than in the Single Tail case, but again the vertical plane difference
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Fig. 5 Single Tail forces and
moments around 0 degrees
angle of attack

is minimal compared to the horizontal plane difference. Again, the forces and mo-
ments in the vertical plane are an order of magnitude larger than in the horizontal
plane, because the flat midsection is directly exposed to the incoming flow in the
vertical plane.

Lastly, Fig. 7 shows the forces and moments for the equivalent BOR hull form.
The plot on the left is presented with the experimental data in original form, and the
plot on the right is presented with experimental results shifted by an offset to make
forces and moments cross through 0 at 0 degrees angle of attack. The vertical and
horizontal plane results are presented in one plot, as the body is symmetric in both
panes. The forces and moments of the BOR are of the same order of magnitude as
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Fig. 6 Twin Tail forces and
moments for the bare hull
(BH) and stern appended
(StAp) hull forms

the Single and Twin Tail drift angle results. This makes sense, as the Non-BOR hull
forms appear as a BOR in the horizontal plane profile. There is a slight disagreement
in computed and experimental results that is exaggerated by the offset, but generally
the results and slopes agree well.

5 Steady Turn Results

Steady turn computations are completed for all of the stern appended hull forms with
the intention of computing rotary derivatives that are needed for stability indices.
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Fig. 7 Body-of-Revolution
forces and moments without
(top) and with (bottom)
adjusted experimental data

The various hull forms undergo a steady turn maneuver (similar to a rotating arm
tow tank experiment) at various radii. Computations are done for vertical steady
maneuvers where the simulated body undergoes a constant pitch, and for horizontal
steady maneuvers (the body is rotated 90° from the vertical turn) where simulated
body undergoes a constant drift. Equation (6) defines the non-dimensional radii used
for this work.

r ′ = L

R
(6)

Where R is the dimensional radius of the steady turn. Figure 8 shows the computa-
tional domain for the Twin Tail hull form at r ′ of 0.10. The relative velocity varies
with the radius as the contours and vectors show.

Figure 9 shows computed rotary forces and moments for various turning radii in
the vertical plane for the Single and Twin Tail hull forms. Rotary derivatives that
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Fig. 8 Twin Tail hull form r ′ = 0.1 steady turn plot with relative velocity contours and velocity
vectors on the cut plane

are used to compute stability indices are taken as the slope of rotary curves like
those in Fig. 9. The magnitude of the force throughout the range tested is similar
for the Single and Twin Tail hull forms; however, the Single Tail hull form creates
approximately twice the rotary moment magnitude than the Twin Tail hull form.
This behavior indicates that as the bodies go through a turn the Single Tail hull will
experience higher rotary moments (for similar forces on the body), which can be
destabilizing.

Figure 10 shows some results from the Twin Tail hull form r ′ = 0.1 compu-
tations. The port/starboard asymmetry in the flow field is due to the varied angle
of attack over the body. The asymmetry is most noticeable in the relative velocity
contours in the stern wake.

There are no steady turn experimental results to compare with; instead experi-
mental rotary derivatives were computed from planar motion mechanism (PMM)
tow tank tests. The experimental PMM tests were performed by dynamically pitch-
ing (or drifting) the body as it is pulled down the tow tank. These differences will
be discussed in greater detail in the next section.

6 Stability Indices

The stability indices from Table 2 are computed from slopes of the translational
(pitch and drift) and rotary (vertical and horizontal) curves as discussed in the pre-
vious sections. Equations (7) and (8) show the vertical (Gv) and horizontal (Gh)
indices.

Gv = 1 − M ′
w · (Z′

q + m′)
Z′

w · M ′
q

(7)

Gh = 1 − N ′
v · (Y ′

r − m′)
Y ′

v · N ′
r

(8)
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Fig. 9 Computed rotary
vertical force and moment
curves for the Single (top)
and Twin (bottom) Tail hull
forms

Where m′ is the dimensionless mas, m/(0.5ρL3), Z′
w and M ′

w are the slopes of the
straight ahead vertical force and moment curves, respectively. Z′

q and M ′
q are the

slopes of the vertical rotary force and moment curves, respectively. Y ′
v and N ′

v are
the slopes of the straight ahead horizontal force and moment curves, respectively.
Y ′

r and N ′
r are the slopes of the horizontal rotary force and moment curves, respec-

tively.
Computational rotary derivatives were calculated from the steady turn runs

above; however, experimental rotary derivatives were determined from dynamic
pitch and drift PMM tests in a straight ahead tow tank. Given the scope of this
project it was not feasible to perform computational PMM predictions or experi-
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Fig. 10 Twin Tail hull form r ′ = 0.1 steady turn contour plot with relative velocity on the cut
plane and pressure on the body

Table 3 Computational
(CFD) and experimental
(EXP) Stability Indices for
the Series 66 hull forms

BOR Twin Tall Single Tail

Gv Gh Gv Gh Gv Gh

CFD 0.14 0.14 1.66 1.48 −0.50 1.35

EXP 0.37 0.37 0.94 2.63 −2.08 2.70

mental steady turn runs. Thus, the stability indices for computation and experiment
were calculated in different manners. As a result of the different rotary tests and their
individual modeling errors, there are fundamental differences in the stability index
formulations. The computational formulation contains RANS and steady turn mod-
eling assumptions; while the experimental model contains free surface, strut wake
interference, tank blockage, and radii quantification effects. Nevertheless, stability
indices for the various bodies are compared between experiment and computation.
However, it is unrealistic to expect the indices to agree completely. Instead if the
stability indices that are computed from steady turn and PMM tests show the same
overall maneuvering performance characteristics it is considered a successful com-
parison.

Table 3 shows the experimental and computational stability index comparisons
for the various stern appended hull forms. For all cases experiment and computation
display the same maneuvering characteristics, but in differing degrees. Both show
that the equivalent BOR hull form is stable in the vertical and horizontal planes.
More specifically, in the vertical plane both show the BOR to be marginally stable.
In the horizontal plane computations show the body to be marginally stable (which
is satisfactory), while experiments show the body to be more stable. Both experi-
ment and computation indicate that additional control surfaces or modifications to
existing surfaces need to be added to the body to achieve the acceptable amount of
vertical stability.

Both experiment and computation show the Twin Tail hull form to be highly
stable (to varying degrees) in both the vertical and horizontal planes. The Twin Tail
hull form is different from the BOR in that a ship designer would need to remove
stability from the body for typical applications. If the hull form were too stable then
the body would be difficult to readily turn and maneuver.

Meanwhile experiment and computations show that the Single Tail hull form is
highly stable in the horizontal plane and unstable in the vertical plane. Thus, new
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control surfaces or modification to existing surfaces would be needed to improve
vertical plane stability performance, while reducing the horizontal plane stability.

Between the two Non-BOR hull forms it would appear that the Twin Tail hull
would be a better candidate to select for future design based on the greater inherent
stability. The Twin Tail hull form’s superior stability as compared to the Single Tail
hull form is most likely due to the wedge-like section in between the two tails which
acts as a vertical stabilizer.

7 Conclusions

In conclusion, a computational investigation on the maneuvering capability for
two non-body-of-revolution (Non-BOR) hull forms and an equivalent body-of-
revolution (BOR) hull form was completed. This study was complimentary to pre-
vious experimental tests done by Roddy et al. at NSWCCD. Initially, global force
and moment predictions over various pitch and drift angles were analyzed. Compu-
tational predictions on the Single Tail hull form showed that the stern appendages
did not seem to affect control in the vertical plane, but had a significant effect in the
horizontal plane. The stern appendages seem to make a relatively larger difference
for the Twin Tail configuration in the vertical plane, and show the same significant
effect in the horizontal plane. For both Non-BOR hull forms the forces and moments
in the vertical plane are an order of magnitude larger than horizontal forces and mo-
ments. This is to be expected as the large flat midsection is exposed to the flow in the
vertical plane. Meanwhile, in the horizontal plane the bodies appear more as a fared
traditional BOR in profile, thus resulting in lower forces and moments. Equivalent
BOR computations confirmed that the forces and moments are of similar magnitude
to Non-BOR horizontal plane results.

Next, steady turn computations were completed with the intention of using the
results to compute rotary derivatives that are used in stability indices. Experimental
results used planar motion mechanism (PMM) tests to determine rotary derivatives.
Each method for computing rotary derivatives includes their own uncertainties and
modeling errors.

Finally, stability indices were computed for all of the stern appended bodies in the
vertical and horizontal planes. Computationally predicted stability indices displayed
the same maneuvering characteristics as experimental measurements. The Twin Tail
hull form was shown to be highly stable in both the vertical and horizontal planes.
The Single Tail hull form was unstable in the vertical plane and highly stable in
the horizontal plane, indicating that additional control surfaces would be necessary
to add stability in the vertical plane for typical applications. The wedge-like surface
that connects the twin tails likely added vertical stability that made the Twin Tail hull
form stable, while the Single Tail hull form lacked any such surface and suffered a
lack of vertical stability. The BOR proved to be marginally stable to stable in both
planes. The results of this study show that the Twin Tail hull form would be more
suitable from a maneuvering standpoint than the Single Tail hull form in future
Non-BOR design studies.
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Future work will center around altering the two Non-BOR configurations and
analyzing the effect on maneuvering. The length-to-beam ratios of the bodies will be
altered, and the resulting vertical and horizontal stability indices will be compared.
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Propulsion and Cavitation



Numerical Prediction of Erosive Collapse Events
in Unsteady Compressible Cavitating Flows

Michael S. Mihatsch, Steffen J. Schmidt, Matthias Thalhamer,
and Nikolaus A. Adams

Abstract The objective of the present investigation is the numerical prediction of
the potential of a flow to inflict surface damage by cavitation. For this purpose, phys-
ical criteria are derived that detect and quantify relevant flow phenomena. In partic-
ular, we present a numerical approach for tracing isolated collapses of vapor clouds
during the numerical simulation of the flow. The suggested “collapse detector” pro-
vides the frequency of collapses, their positions, and resulting maximum pressures,
as well as the maximum condensation rate of each event. This data, together with
the maximum wall pressure, allow for an automatic indication of erosion-sensitive
areas.

The employed flow solver CATUM (CAvitation Technische Universität München)
is a density-based 3-D finite volume method equipped with a Low-Mach-number
consistent flux function. All fluid components (liquid, vapor, saturated mixture) are
modeled by closed form equations of state.

To assess this novel approach we simulate an experimentally investigated nozzle-
target flow. A comparison of numerically predicted collapse events with the exper-
imentally observed areas of cavitation erosion substantiates the proposed method-
ology. The obtained data represents a time-history of collapse events together with
their position and strength, and may be used to estimate erosion rates.

Keywords Cavitation · Erosion · Numerical simulation · Multiphase flow

1 Introduction

Hydrodynamic cavitation and cavitation erosion are well-known phenomena in
naval engineering [1, 2]. Distinctive examples include cavitation on suction sides
of propeller blades and cavitating tip vortices. The basic mechanisms of hydrody-
namic cavitation are flow-induced evaporation due to the pressure drop of an ac-
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celerated liquid, and inertia controlled recondensation of liquid-embedded vapor
bubbles due to pressure recovery. The collapse-like recondensation results in the
generation of shock waves that are supposed to constitute the main mechanism of
cavitation erosion. These shocks propagate approximately with the speed of sound
cl = O(103) m/s of the liquid and their intrinsic time scale is about 2 orders of
magnitude smaller than the time scale of the underlying shear flow.

Since the simulation of erosive collapses in cavitating flows requires the resolu-
tion of both time scales, time step sizes of the order of nanoseconds are inevitable
and millions of time steps have to be computed to cover the characteristic time in-
terval of the shear flow. It is neither reasonable to store the enormous amount of
data generated by such a simulation, nor is it feasible to evaluate manually the data
with respect to collapse characteristics and erosion aggressiveness. Instead, new ap-
proaches have to be developed that allow for automatic detection and evaluation
of aggressive collapse events predicted by 3-D unsteady simulations of cavitating
flows.

2 Underlying Numerical Model

We apply our flow simulation code CATUM (CAvitation Technische Universität
München [3]), which is a density based finite volume method employing a Low-
Mach-number consistent flux function and an explicit time marching procedure.
The spatial reconstruction of the velocity field is a WENO-3 procedure; density and
internal energy are reconstructed by monotonic TVD limiters (“minmod”). Time
marching is performed through an explicit low storage 4-step Runge-Kutta method
with an optimized stability region. The combination of both methods results in a
2nd order numerical approach in space and time for smooth flow, and it ensures
a sharp representation of discontinuous flow features such as shocks and contact
waves. In this investigation we focus on the simulation of inertia-driven effects and
wave dynamics and we neglect viscous effects. Hence, the governing equations are
the compressible Euler equations.

In the present investigation the thermodynamic properties of the working fluid,
in this case water, are characterized by closed-form equations of state: the liquid
phase is specified by a modified Tait law, saturated two-phase regions are modeled
by polynomial fits of the IAPWS [4] data, and pure vapor is modeled by an modi-
fied ideal gas law. In order to allow for the simulation of shock formation and wave
propagation, the compressibility of the fluids (liquid and vapor) is taken into ac-
count. Therefore, the numerical time step is necessarily proportional to the ratio of
the smallest length scale (minimum grid size) and the fastest signal speed (∼speed
of sound of the liquid).

The phase transition model is based on local equilibrium assumptions for pres-
sure, temperature, and specific Gibbs functions. We have observed that this assump-
tion is justified since most of technically relevant hydrodynamic cavitation processes
occur close to the equilibrium vapor pressure. Although this observation is question-
able for incipient cavitation, it applies to developed cavitating flows, such as the one
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investigated within the presented research work. Previous investigations show that
CATUM is able to predict even delicate flow features, such as irregular break-up
patterns of partial cavities of developed cavitating flows [5].

We adopt body-fitted hexahedral grids to discretize the flow field. The data struc-
ture is based on local blocks, and a pre-processor load balance strategy is utilized to
obtain approximately linear scaling on multi-processor systems.

3 Modeling and Implementation of Erosion Indicators
and Collapse Detectors

Shock waves initiated by violent cloud collapses can generate intense pressure peaks
on the order of several thousand bars. If such a shock wave is emitted sufficiently
close to a solid surface, its impact on the solid material may result in dynamic loads
that lead to material fatigue. Thus, instantaneous maximum loads may provide an
indication of locations where erosion is likely to occur. Therefore monitoring the
maximum pressure arising in each computational cell during the whole simulation
is one efficient approach for detecting erosion sensitive areas within the flow field,
and especially along solid walls. Although this procedure was applied successfully
in previous investigations [5], it has several obvious drawbacks: The approach nei-
ther provides information about the frequency of collapse events, nor does it allow
to distinguish between stagnation pressures and instantaneous maximum loads with
durations of only a few microseconds. However, even this limited amount of achiev-
able information allows for the indication of erosion-sensitive areas.

Our recent development focuses on a more detailed approach that we denote as
“collapse detector”. The concept involves the derivation of a set of physical criteria
to detect collapses of isolated clouds and to characterize the strength of the gen-
erated shock waves as predicted by our numerical simulations. Figure 1 shows a
schematic of consecutive stages of a cloud-collapse. In the lower part of this figure
the average divergence of the velocity field around the collapsing cloud is depicted.

The onset of condensation results in the formation of a velocity field that is ap-
proximately directed towards the center of the cloud—similar to an elementary sink
flow. Thus the divergence of the velocity field is negative and decreasing. Since we
assume that the specific Gibbs functions remain in equilibrium, and due to disregard-
ing solved or dissolved gas, the pressure within the cloud remains approximately
constant. Hence the surrounding liquid is further accelerated towards the center of
the cloud until the vapor completely condenses at the last stage of the collapse. At
that point the inertia of this sink flow results in a massive increase of the pressure.
The maximum pressure is reached when the mass flow towards the center vanishes.
At that point, the divergence changes its sign and the negative radial pressure gra-
dient leads to an outward directed velocity field. Consequently, the pressure at the
center decreases and may even lead to a re-evaporation of the liquid (rebound of
the cavity). These considerations motivate the following definition of a numerical
“collapse detector”:



190 M.S. Mihatsch et al.

Fig. 1 Sketch of consecutive stages of the collapse of a vapor cloud together with the temporal
evolution of the divergence of the velocity field

• We denote as “candidates” such computational cells where the vapor volume con-
tent condenses completely during the last time step. If the surrounding cells of a
“candidate” contain liquid only, an isolated collapse is detected.

• Once a collapse is detected, the maximum pressure is generated at that instant in
time when the divergence of the velocity field changes its sign.

• The strength of the collapse is characterized by its maximum (negative) diver-
gence and its maximum pressure.

The main advantages of the “collapse detector” as compared to the maximum
pressure approach are as follows:

• The collapse detector automatically distinguishes between collapse-induced max-
imum pressures and high pressures at stagnation points or due to wave interaction.

• The number of collapse events, as well as their position, and their strength provide
important information about a possible stress profile the material is exposed to.
This information can be used to estimate erosion rates.

An apparent deficiency of the “collapse detector” could be the missing informa-
tion of the collapse intensity at the material surfaces. To overcome this drawback, an
efficient projection method is proposed. We adopt the linear decay law of spherical
waves to estimate the resulting pressure at the wall pwall from the known maximum
pressure in the collapse center pcollapse and from the distance of the collapse to the
wall rwall. The linear decay law states that the amplitude of a linear spherical pres-
sure wave is inversely proportional to the radial distance of the wave front measured
from its origin, hence p(r) ∼ 1/r . We assume that the initial radius of the wave front
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Fig. 2 Sketch of the
experimental setup [8].
Reprint with permission of
ASME

is proportional to the cube root of the volume Vcell of the cell where the collapse was
detected. Thus, we obtain

pwall ∼
3
√

Vcell

rwall
pcollapse. (1)

This concept allows for the reduction of grid dependencies of the predicted maxi-
mum pressures as well. Instead of the maximum pressure, the value pcollapse · 3

√
Vcell

may be used to characterize the strength of a collapse. Preliminary investigations
demonstrate the applicability of this approach [6, 7].

4 Results

We simulate an experimentally investigated nozzle-target flow [8] to evaluate the
numerical predictability of erosion-sensitive areas. The experimental setup results
in an axisymmetric stagnation flow as shown in Fig. 2. At the exit of the nozzle the
fluid accelerates along a small radius and forms a radial cavitation pocket. Collapse-
induced erosion is observed in the experiment within an annulus at the surface of the
target disc. The remaining parts are manufactured out of highly resistant material.

Figure 3 shows a cut through the computational domain. In accordance with
the experiment, water at approximately room temperature enters the nozzle with
the inlet-velocity uin = 31 m/s. An asymptotic pressure boundary condition
pe = 10.1 bar is imposed at the exit of a circular reservoir attached at a radial
distance of 100 mm. All solid boundaries are treated as inviscid adiabatic walls.
The computational grid consists of 5 · 105 body-fitted hexahedrons structured in
56 blocks.

Figure 4 shows the time history of the vapor volume fraction within the computa-
tional domain. The time intervals 1 and 2 correspond to a grid-sequencing-technique
where the numerical solution is initially obtained on a coarse grid (interval 1) and
interpolated to the fine grid. Only a short time interval (interval 2) is required until
the solution on the fine grid establishes. The analyzed part of the simulation (inter-
val 3) consists of 2.5 · 106 time steps with a time step-size of �t ≈ 2.8 · 10−8 s. This
corresponds to a simulated physical time interval of 7 · 10−2 s. The computation
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Fig. 3 Cut through the numerical domain and imposed boundary conditions. The grid consists of
5 · 105 cells in 56 blocks and the numerical time step size is �t ≈ 2.8 · 10−8 s. The simulation is
performed for the whole 360° domain

Fig. 4 Time history of the vapor volume fraction referred to the volume of the whole computa-
tional domain. Interval 1: Preliminary calculation on a coarse grid. Interval 2: Interpolation to the
fine grid. Interval 3: Analyzed part of the simulation on the fine grid

required 3920 CPU-hours (70 hours on 56 cores, Intel Nehalem-EP based 8-way
nodes).

Figure 5 shows instantaneous vapor structures at 4 equidistant instants in time
(�t = 8.4 · 10−5 s). Blue iso-surfaces correspond to a vapor volume fraction of
α = 0.1. We observe the onset of sheet-cavitation at the rounding of the nozzle
outlet. The fragmentation of the sheet and its transient shedding are strongly non-
uniform in circumferential direction. The collapse of the vapor structures is enforced
by the positive pressure gradient in radial direction.

Figure 6 depicts the spectrum of the integrated vapor volume. The dominant fre-
quency is 408 Hz (arrow), which corresponds to the radial shedding. Lower fre-
quencies might be circumferential modes. The highest well-defined frequencies at
1139 Hz and 1182 Hz are supposed to be related to the collapse of small clouds.
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Fig. 5 Iso-surfaces of the vapor volume fraction (α = 0.1) at 4 equidistant instants in time
(�t = 8.4 · 10−5 s). Left side: Perspective view with an additional axial cut plane showing the
contour of the vapor volume fraction. Right side: Top view

Figure 7 shows a perspective view of two consecutive instants in time (�t =
2.8 · 10−5 s). On the left side, a couple of vapor structures marked in red are ob-
served at a radial position of ≈2.6 · 10−2 m. On the right side, most of these vapor
structures have already collapsed and a shockwave has formed. Hence, the dura-
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Fig. 6 FFT of the time history of the vapor volume fraction

tion of the complete collapse is about 2.8 · 10−5 s, which is in our case resolved by
approximately 1000 time steps.

Figure 8a shows a photograph (from an angle) of an eroded target disc. The
damage exhibits an almost perfect circular shape. The red circles indicate the area
where pitting was found in the experiment [8], while the narrower dark gray ring
indicates material removal.

Figure 8b shows the maximum pressure for each computational cell on the target
disc recorded during the analysis interval (interval 3). Only pressures about one or-
der of magnitude higher than the stagnation pressure are shown, the highest recorded
value is 1.56 · 108 Pa. We observe a convincing analogy of the cell-wise maximum
pressure and the experimentally detected areas of pitting. However, further investi-
gations using much larger analysis intervals are required to improve the statistical
relevance of the prediction.

In the following subsection we present the results of the “collapse detector”.
Since the detected minimum divergence is comparable to the detected maximum
pressure for the investigated test cases, we focus on the presentation of the maximum
collapse pressure exclusively. However, these two quantities may not necessarily be
equivalent in other test cases.

Figure 9 shows the collapses detected within the gap between the nozzle and
the target disc during the analyzed part of the simulation. The collapses are indi-
cated as spheres that are plotted at the position of their occurrence. The diameter
of each sphere and its color represent the collapse intensity. On the left side (a),
the collapse pressure pcollapse is visualized and on the right side (b), the maximum
pressure referred to the target wall pwall (Eq. (1)) is depicted. In both cases most of
the collapses are found within the marked area.

Compared to Fig. 9a, in Fig. 9b the agreement with the experiment even improves
when the collapse pressure is projected onto the target.

Figure 10 shows the radial positions of all collapses plotted against the time of
their occurrence. According to Fig. 9b, size and color of each sphere represent the
collapse pressure referred to the target wall (pwall). One observes that all violent
collapses (red and yellow spheres) are located within the marked area. The lower
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Fig. 7 Perspective view of two time instants (�t = 28 µs) showing the collapse of a vapor structure
and the resulting shock. Vapor structures are indicated by iso-surfaces (α = 0.1). The color on the
target wall and on the axial cut plane shows the static pressure

Fig. 8 (a) Photograph of an eroded target from the experiment—slightly perspective view [8].
According to experimental observation, erosion damage occurs within r = 19 mm and r = 32 mm
(red circles) [8]. Reprint with permission of ASME. (b) Maximum pressure observed in the simu-
lation on the target during the analysis interval [9]

Fig. 9 Visualization of all collapses detected during the analysis interval (�t = 7 · 10−2 s). Each
collapse is represented by a sphere at the position of its occurrence. Size and color represent the
collapse intensity. On the left side, the maximum pressure at the collapse center is shown—on the
right side, the collapse pressure referred to the surface of the target is depicted [9]
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Fig. 10 Time history of collapses detected during the analysis interval. The diagram shows the
radial position of each detected collapse against the time of its occurrence. Size and color of the
collapses represent the collapse pressure referred to the surface of the target

Table 1 Collapse events in
the whole domain per time
unit

Collapse pressure Number of
collapse events

Events per time
unit

1.5 · 108 Pa 11 157 1/s

1.25 · 108 Pa 31 442 1/s

1.0 · 108 Pa 139 1986 1/s

0.75 · 108 Pa 498 7114 1/s

Table 2 Collapse events in
the whole domain per time
unit. The collapse pressure is
referred to the surface of the
target

Collapse pressure referred to
the surface of the target

Number of
collapse events

Events per time
unit

1.5 · 108 Pa 2 29 1/s

1.25 · 108 Pa 4 58 1/s

1.0 · 108 Pa 12 170 1/s

0.75 · 108 Pa 65 928 1/s

bound at r = 19 mm is perfectly captured by the simulation while the upper bound
might be slightly overestimated. Assuming that the positions of collapses are statis-
tically distributed in circumferential direction, this time history represents a possible
load profile that the material might be exposed to over a long time period.

Table 1 quantifies the observed collapses with respect to their intensity and fre-
quency. One observes that the number of collapse events strongly decreases when
the pressure threshold is increased. As expected, the number of collapses decreases
significantly as well when the collapse pressure is referred to the surface of the tar-
get (Table 2). This data may offer a possibility for calibrating thresholds for the
collapse pressure by making a comparison of the numerically predicted loads to
experimental pitting tests and pit counts.
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Fig. 11 Cumulative
spectrum of collapse events.
The diagram shows the
collapse pressure referred to
the surface of the target
against the rate of
collapse-events per time unit
and area. Red solid line:
simulation. Black dashed
line: exponential decay

Figure 11 shows the cumulative spectrum of collapse events as a diagram of the
collapse pressure referred to the surface of the target against the rate of collapse
events per time unit and area.

One observes an exponential decrease of the rate of events with increasing col-
lapse pressure. This behavior has been reported from experiments of the same setup
[10, 11] when plotting the rate of events against a measure for the intensity of the
causal collapse event (e.g. diameter of a pit [10], or maximum force of a peak on a
pressure sensor [11]).

5 Conclusions

We present a novel approach referred to as “collapse detector” for the numerical
prediction of cavitation erosion. Based on a set of physical criteria we detect and
characterize isolated collapses of vapor structures within unsteady cavitating flows.
The collapse detector is implemented into our flow solver CATUM, which enables
the simulation of cloud collapses and the subsequent formation and propagation of
shocks due to the compressible treatment of the working fluid. By comparing our
results with experimental data we demonstrate the ability of the proposed methodol-
ogy to predict the position of cavitation erosion. Additionally we provide informa-
tion about the relative strength and the time history of collapse events. Currently the
significance of solved gas and its effect on cavitation erosion are being investigated.
Further research will focus on the comparison of our numerical predictions to ex-
perimental pitting tests, as well as the application of our collapse data to a material
law as proposed by Karimi [12].
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Numerical and Experimental Investigation
into Propulsion and Cavitation Performance
of Marine Propeller

Nobuhiro Hasuike, Shosaburo Yamasaki, and Jun Ando

Abstract This paper discusses the application of the CFD to transitional and cavi-
tating flow around marine propellers. Especially the emphasis is put on the adaption
of the 3 equations turbulence model for the non-cavitating flow and tip vortex resolu-
tion on cavitating flow. This research finds 3 equations turbulence model is effective
for prediction of the propeller open characteristics in the wide range of Reynolds
number. Next, numerical simulation of cavitating flow with tip vortex resolution is
validated. Furthermore, simple cavitation erosion index is applied and shows good
agreement with experimental results. Finally, effect of tip vortex resolution on the
pressure fluctuation at the top of the propeller is discussed.

Keywords CFD · Transitional flow · Cavitation · Pressure fluctuation

1 Introduction

In the design of marine propeller, it is necessary for designers to achieve higher
propeller open efficiency and good cavitation performance. Therefore, the higher
accuracy prediction tool is expected for estimation of propeller open characteristics
(POC in short), erosion risk and pressure fluctuation caused by cavitation at initial
design stage.

For realizing high performance in full scale, it is necessary for propeller designers
to estimate the scale effects of POC in higher accuracy. Further, in wake flow, pres-
sure distribution on the blade surface and cavity void fraction effect on erosion risk
and cavity volume time variation gratefully effects on pressure fluctuation ampli-
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tude. Therefore, numerical tool which gives detail flow characteristics of cavitating
flow is highly expected.

In this paper, newly developed 3 equations k − kL − ω model is applied to
the transitional flow around model propellers and compared with other typical
turbulence models and experimental results. Secondly, POC in the wide range of
Reynolds number between model and full-scale is predicted and the boundary layer
characteristics and variation of propeller efficiency is discussed.

Further, detailed cavitation simulation including tip vortex cavitation is con-
ducted. Simple cavitation erosion index is introduced and validated with high speed
video observation and paint erosion test result.

Finally, simulated pressure fluctuation and variation of cavity volume is com-
pared with the experimental results and the effectiveness of numerical simulation is
investigated.

2 Numerical Model

In this research, transitional and cavitating flow around propeller were simulated us-
ing SOFTWARE CRADLE SCRYU/Tetra V9 software, which was based on a finite
volume method with an unstructured grid. The k − ε model, the Shear-Stress Trans-
port k − ω model [1, 2] were applied to the transitional flow. In addition to these
widely used turbulence models, newly developed 3-equations k−kL −ω model was
also applied. For the non-uniform cavitating flow simulations, the k − ε model and
the full-cavitation model was applied and the simple erosion index was introduced.

2.1 Transitional Flow Simulation

It is important to predict the transition point of a flow around a propeller in operating
in low-Reynolds-number. LKE (Laminar Kinetic Energy) model [3] was developed
to simulate the transitional flow.

In the LKE model, the disturbance energy in a pre-transitional region of a bound-
ary layer is represented as Laminar Kinetic Energy (kL), while the turbulence energy
is as k. The transport equation of kL is solved by using two equations of fully tur-
bulent model. SC/Tetra introduces the following k − kL − ω model [4] which was
developed based on the k − ω model:

∂ρkT

∂t
+ ∂ρuikT

∂xi

= ρ(PkT
+ RBP + RNAT − ωkT − DT ) + ∂

∂xi

((
μ + ραT

σk

)
∂kT

∂xi

)
(1)

∂ρkL

∂t
+ ∂ρuikL

∂xi

= ρ(PkL
− RBP − RNAT − DL) + ∂

∂xi

(
μ

∂kL

∂xi

)
(2)
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√
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]
+ ∂
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μ + ραT
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)
∂ω
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)
(3)

The parameter PkT and PkL are both production terms of kT and kL .
The parameter νT,s and νT,l are the eddy viscosities of small scale and large scale,

respectively. The sum of these values (νt = νT,s +νT,l) is used for the eddy viscosity
of the momentum equation. The parameter RBP and RNAT are the contributions of
the bypass transition and the natural transition, respectively. The contribution of the
bypass transition increases as the turbulent intensity in the external flow increases.

2.2 Cavitating Flow Simulation

The full-cavitation model [5] accounts for all first-order effects, i.e., phase change,
bubble dynamics, turbulent pressure fluctuations and non-condensable gases con-
tained in the liquid.

The fluid density is a function of vapor mass fraction f , which is computed by
solving a transport equation coupled with the mass and momentum conservation
equations. Suffixes v, g, l denote the vapor phase, non-condensable gas (NCG in
short), liquid respectively. �ν is velocity vector. γ is diffusion coefficient of the va-
por mass fraction. Net phase change rate is expressed as Re − Rc. The source terms
Re and Rc denote vapor evaporation and condensation rates. Where, k and σ are the
turbulent kinetic energy and the surface tension. The phase change rate Re and Rc

are derived from the Rayleigh-Plesset equation and limiting bubble size (interface
surface area per unit volume of vapor) is considered. Ce and Cc are the empirical
components. It is assumed that saturated vapor pressure Pv depends on the turbu-
lence kinetic energy. ((8), (9)) Subscripts turb denotes the turbulence.

1

ρ
= fv

ρv

+ fg

ρg

+ 1 − fv − fg

ρl

(4)

∂

∂t
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P ′
turb = 0.39ρk (9)
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Fig. 1 Computational
domain

Fig. 2 Prism mesh
arrangement near blade
surface

Fig. 3 Mesh near the blade
surface

2.3 Numerical Grids

The computational domain is composed of the inner rotational part including the
propeller and the outer stationary part. The stationary part and the rotational part
are connected discontinuously. Constant velocity and zero pressure are prescribed
at the inlet and the outlet boundary. Figure 1 shows the computational domain. The
numerical mesh is an unstructured grid, and basic cells are tetrahedral and prismatic
cells are applied to near the blade surface for resolving the boundary layer (Fig. 2).
The first layer thickness of the prism layer was set to a non-dimensional wall dis-
tance for a wall-bounded flow (y+ in short) = 50 in the case of the k − ε model.
y+ = 50 was set in the case of the SST k − ω model and the k − kL − ω model.
In this research, fine meshes are applied near the tip region for the resolution of tip
vortex (Fig. 3).
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Table 1 Principal particulars
of DTMB P4119 propeller
[6, 7]

DTMB P4119

Number of blades 3

Diameter 0.3048 m

Pitch ratio (0.7R) 1.084

Skew angle 0°

Fig. 4 DTMB P4119
propeller [6, 7]

3 Numerical Simulation of Propeller Open Characteristics

3.1 Propeller Open Characteristics

POC at model scale gratefully depends on mixture ratio of laminar and turbulent
flow. DTMB P4119 propeller [6, 7] was selected for the benchmark. This propeller’s
experimental dataset was used as 22nd ITTC benchmark of RANS calculations.
Table 1 and Fig. 4 show the principal particulars and propeller shape. The k − ε

model, the SST k − ω model with low Reynolds correction [2] (SST k − ω (Low)
in short), the SST k − ω model without low Reynolds correction (SST k − ω (w/o
corr.) in short) and the k − kL − ω model were applied. Turbulent intensity Tuin at
inlet was set to 1 % for the k − ε model and the SST k − ω models and set to 5 %
for the k − kL − ω model.

First of all, POC in a different operation point is compared in Fig. 5. In the case
of the k − ε model, thrust coefficient KT was overall small compared with the ex-
periment, and torque constant KQ was large excluding advancement ratio J = 1.1.
The SST k − ω (Low) predicted higher KT and corresponding KQ value compared
with experiment. Predicted open efficiency ηo was overestimated at design point
J = 0.833. On the other hand, the k − kL − ω model gave corresponding KT and
little smaller KQ value. Propeller open efficiency ηo was more corresponding well
than the other turbulence models at design point J = 0.833.
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Fig. 5 Propeller open
characteristics

Fig. 6 Boundary layer
profiles at r/R = 0.7, back
side, x/C = 0.9

Next, the velocity distributions in boundary layer are compared in Fig. 6. Y/C

and VB/VR denote non-dimensional distance from wall and velocity in the bound-
ary layer divided by outer flow respectively. The k−ε model shows good agreement
with the experimental measurement results shown in figure as “Tripped” which
means the state of with roughness on the leading edge of the propeller. The esti-
mated boundary layer thickness by the SST k − ω (Low) model is thinner than the
experimental measurement results shown in figure as “Smooth” which means the
state of without roughness on the leading edge of the propeller. The k − kL − ω

model gave better result than the SST k − ω (Low) in case of “Smooth”.
Turbulence kinetic energy distributions around the blade section at 70 % radius

are compared in Figs. 7(a)–(d). The k − ε and the SST k − ω (w/o corr.) predicted
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Fig. 7 Turbulent kinetic energy at r/R = 0.7

the fully turbulent flow. Underestimation of ηo was mainly due to overestimation
of viscous component of KQ. On the other hand, the flow field simulated by the
SST k − ω (Low) was fully laminar and which causes underestimation of viscous
component of KQ. In the case of the k − kL − ω model, flow field was mainly
composed by laminar flow and partially composed by turbulent flow. In propeller
open water test, leading edge roughness was not applied. Therefore, the k − kL − ω

model gave more corresponding ηo for the POC prediction at model scale.

Table 2 Principal particulars
of model propellers MP2293R MP0193R

Number of blades 5 5

Diameter 250 mm 250 mm

Pitch ratio (0.7R) 0.703 0.7506

Expanded area ratio 0.4 0.4

Skew angle 20° 20°
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Table 3 Principal particulars
of model propellers [1] Number of blades 5

Diameter 400(950) mm

Pitch ratio 0.95

Expanded area ratio 0.65

Skew angle 10.5°

3.2 Transitional Flow Simulation

Prediction accuracy of the transitional position by using the k − kL − ω model was
validated with experimental results. MP2293R propeller has ‘MAU’ blade section
which was traditionally used in past decades. MP0193R has laminar flow type of
blade section. Principal particulars of propellers are shown in Table 2. Experimen-
tal and simulated results are shown in Figs. 8 and 9. Back side transitional line
was located at about 60 % chord length from leading edge in case of MP2293 and
located at about 70 % in case of MP0193. Further, face side oil flow pattern was
largely different among these two propellers. Simulated results of both MP2293R
and MP0193 show good agreement with experimental results. It was confirmed that
the k − kL − ω model predicted the effects of blade section on transitional region.

3.3 Scale Effects of Propeller Open Characteristics

Seiun-Maru conventional model propellers (CP, Table 3), which experimental data
includes open water test results in the wide range of Reynolds number were selected
for the calculation. Experimental results were referred from Funeno’s literature [8].
Calculation results are compared with experimental results in Figs. 10, 11, 12. Sub-
scripts p and v denote pressure component and viscous component respectively.
Figure 13 shows typical representative of flow pattern. Turbulent flow is located
at outer side of critical radius (C.R.). Figure 14 shows calculation results of flow
pattern.

(1) SST k − ω (w/o corr.), SST k − ω (Low), Tuin = 5 %
Simulated flow field was fully turbulent. Pressure component of KT in-

creased and frictional component of KT decreased when Reynolds number in-
creased. Pressure component of KQ increased and frictional component of KQ

decreased when Reynolds number increased. KQ much depended on frictional
component and decreased totally. As a result, ηo simply increased, however ηo

was lower than experimental results at lower range of Reynolds number because
of the overestimation of the frictional component.

(2) SST k − ω (Low), Tuin = 1 %
Simulated flow field was mixture of laminar and turbulent flow and its critical

radius was fixed in the range of Rn(K) = 2.5 × 105 ∼ 3.7 × 105. In this range
of Reynolds number, ηo increased by decrease of boundary layer thickness.
In the range of Rn(K) = 3.7 × 105 ∼ 1 × 106, critical radius moved toward
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Fig. 8 Surface streamlines of
MP2293

Fig. 9 Surface streamlines of
MP0193
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Fig. 10 Effect of Reynolds
number on KT

Fig. 11 Effect of Reynolds
number on KQ

inner radius and turbulent area increased when Reynolds number increased. ηo

decreased by increasing wall shear stress of turbulent flow part. Over the range
of Rn(K) = 1 × 106, flow field was fully turbulent. By decreasing of turbulent
boundary layer thickness, ηo increased at this range of Reynolds number.

(3) k − kL − ω model, Tuin = 5 %
Simulated flow field was mixture of laminar and turbulent flow and its crit-

ical radius was fixed in the range of Rn(K) = 2.5 × 105 ∼ 1 × 106. In this
range of Reynolds number, ηo increased by decrease of boundary layer thick-
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Fig. 12 Effect of Reynolds
number on ηo

Fig. 13 Oil flow
visualization in the
Experiment
(Rn(K) = 6.75 × 105) [9]

Table 4 Principal particulars
of model propellers [10] Number of blades 4

Diameter 241.8 mm

Pitch ratio 0.69

Expanded area ratio 0.49

Skew angle 15°
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Fig. 14 Effect of Reynolds number on surface streamline

ness. This tendency was corresponding to propeller open water test. In the
range of Rn(K) = 1 × 106 ∼ 3 × 106, critical radius moved toward inner ra-
dius and turbulent area increased when Reynolds number increased. ηo de-
creased by increasing wall shear stress of turbulent flow part. Over the range
of Rn(K) = 3 × 106, flow field was fully turbulent.

4 Numerical Simulation of Cavitating Flow

4.1 Experimental Data of Partially Eroded Propeller

Cavitation performance test of a propeller for large bulk carrier was conducted.
Principal particulars of model propeller and wake pattern are shown in Table 4 and
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Fig. 15 Wake patten [10]

Fig. 15. The wake distribution was simulated by wire mesh. High speed video ob-
servation was conducted at IHI Corporation R&D Center (IIC in short). KT and σn

were set to 0.16 and 1.68 respectively. Observation result is shown in Fig. 16. Cavi-
tation remained around trailing edge like a patch and collapse drastically at the 67°
in the rotating position. Paint erosion test was conducted at the University of Tokyo
(UT in short). KT and σn were set to 0.16 and 1.53 respectively. Lower σn was ap-
plied for promoting cavitation erosion. Test result is shown in inset of Fig. 17. Paint
removal was confirmed at trailing edge near the tip.

4.2 Numerical Evaluation of Cavitation Erosion Risk

Cavitation erosion is a fatigue phenomenon caused by the impact load generated
when the cavitation bubble collapses acts repeatedly on the solid surface in neigh-
borhood.

Nowadays, the generation of impact load is predictable in the state of the sin-
gle bubble. However, flow analysis for actual turbo machinery needs to treat many
bubbles collapse and needs to treat comparatively long time phenomenon. How-
ever, such detail simulation is not practical for actual design procedure in current
computer ability.

Therefore, it is thought to be practicable that the physical index obtained from
the global flow analysis is related to the strength of cavitation erosion. Nohmi et
al. [11] conducted the analysis of cavitating hydrofoil by the barotropy model in
combination with the bubble dynamics, and suggested the simple four indexes [11]
related the strength of cavitation erosion from their finding.

In this research, one index of them was applied to the cavitating flow around
propeller and the evaluation of the erosion risk was conducted. The index is shown
in expression (10). Expression is the product of the numerical value of the cavity
void fraction α at the surface position and the pressure recovery.

Index = α · max
[
(p − pv),0

]
(10)
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Fig. 16 High speed video observation (IIC [10])

Fig. 17 Cavitation extent and contour of erosion index. Inset: Paint erosion test result (UT [10])

The adaptive mesh refinement methodology was used for the resolution of tip
vortex. To calculate efficiently, the flow field around only one blade out of four
blades was divided by fine meshes. This blade is called “Key blade” here and fo-
cused.

The propeller is rotated 1800° by 1° per cycle to develop flow field, after that 0.3°
per cycle was adopted during the final time step. The second order accuracy of the
convective term was adapted. The full-cavitation model was used in the calculation.
NCG was set to 1 ppm and the empirical constants Ce and Cc were set to 0.02 and
0.01 respectively. KT and σn were set to 0.16 and 1.68 respectively.

Simulated cavity extent (cavity void fraction α = 0.1) and contour of erosion
index are shown in Fig. 17. Red color in contour map of erosion index means higher
erosion risk.

In this case, cavitation remained like a patch at the 50–70°. This type of cavitation
pattern is thought to be erosive. Simulated results show higher value of erosion index
at the 55–65° and correspond well with experimental results.
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Fig. 18 Pressure pulse
(Experiment) (IIC [10])

Fig. 19 Pressure pulse
(Calculation)

4.3 Pressure Pulse Evaluation

Pressure pulse at the propeller top position was measured at IIC as shown in Fig. 18.
Pressure pulse amplitude is thought to be gratefully related to the second order time
differential of cavity volume. In this research, pressure pulse and cavity volume
variation were compared with experimental results in Figs. 19 and 20. Experimental
pressure pulse was measured with transducer in flat plate. However, simulation were
conducted without plate.

For considering this difference, illustrated pressure pulse in Fig. 19 is product of
simulated pressure and solid boundary factor 2.

By using fine mesh for tip vortex resolution, higher order blade frequency com-
ponent increased. Simulated pressure pulse wave agrees comparatively well with
experimental results in this case.
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Fig. 20 Second order time
differential of cavity volume
(Calculation)

On the other hand, calculated wave pattern of second order time differential of
cavity volume was also corresponding well to experimental pattern. It was con-
firmed that pressure fluctuation was gratefully affected by second order time differ-
ential of cavity volume.

Authors also conducted the many simulations of other cases, simulated pressure
pulse wave patterns were often quite different from pressure pulse measurement
results, although the wave pattern of the second order time differential of cavity
volume corresponded well to the experimental results.

In current situation, authors think that evaluation by using the second order time
differential of cavity volume is available for improving cavitation performance.

5 Conclusions

• The k − ε model predicted the boundary layer thickness in good agreement with
experimental results in the fully turbulent flow case.

• The SST k − w model underestimated the boundary layer thickness in model
scale and predicted Reynolds number of transition to fully turbulent flow was
lower than open water test tendency.

• The k − kL − ω model predicted boundary layer thickness and POC in compara-
tively good accuracy in the range of transitional Reynolds number.

• The cavitation simulation of the eroded propeller was conducted and erosion in-
dex was introduced. RANS predicted the erosive cavitation pattern. Predicted ero-
sive position showed good agreement with experimental results.

• Cavitation simulation with tip vortex resolution is necessary for analyzing the
higher order component of pressure pulse.

• Prediction accuracy of pressure pulse was not enough. Much improvement of
discretizing accuracy is necessary. However, the evaluation by second order time
differential of cavity volume gives valuable information for improving the pres-
sure level of designing propeller.
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Advanced Lagrangian Approaches to Cavitation
Modelling in Marine Applications

Sergey Yakubov, Bahaddin Cankurt, Thierry Maquil, Patrick Schiller,
Moustafa Abdel-Maksoud, and Thomas Rung

Abstract The paper scrutinizes different approaches to cavitation modelling in the
framework of volume of fluid based marine engineering Navier-Stokes simulations.
Traditional Eulerian cavitation models compute the vapor content based on com-
putationally efficient, semi-empirical mass-transfer models for cavitation. In con-
junction with Lagrangian cavitation models, separate equations for the bubble size
and momentum are solved for each individual bubble/nuclei of a dispersed vapor
phase, and a subsequent mapping procedure provides the vapor-volume fraction of
the Eulerian mixture. The paper aims to advocate the benefits of a combined ap-
proach, which reduces the computational effort of the Lagrangian approach whilst
maintaining its enhanced predictive realm in critical flow regimes. Validation ex-
amples refer to 2D hydrofoils and outline the strong parameter dependency for the
Eulerian cavitation models as well as its insensitivity to water-quality aspects. On
the contrary, Lagrangian cavitation models return an improved accuracy and capture
the influence of water quality. Results of an open-water propeller flow investigation
confirm these findings and display a fair predictive agreement in conjunction with a
combined modelling approach which allows to perform accurate cavitation predic-
tions at reasonable cost.

Keywords Computational methods · Marine engineering · Cavitation ·
Euler-Euler · Euler-Lagrange

1 Introduction

In many hydrodynamic engineering applications liquid-embedded vapor cavities oc-
cur due to the evaporation of liquid in low pressure regions of an accelerated flow.
These cavities—which are usually formed by a number of vapor bubbles—may vio-
lently collapse owing to re-condensation once they reach a region where the ambient
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pressure recovers. Rational models for this complex phenomenon have been attract-
ing a vast amount of researchers for decades. The modelling fundamentals of bubble
dynamics, i.e. bubble growth and collapse, trace back to the work of Rayleigh [17]
and later on the work of Plesset [16]. Hence, the equation describing the bubble
dynamics is commonly referred to as the Rayleigh-Plesset equation.

When attention is directed to computational modelling of cavitation three main
categories, i.e. barotropic cavitation models (based on barotropic equation of state),
Euler-Euler models and Euler-Lagrange techniques, are employed in Navier-Stokes
based engineering simulations. All approaches employ two-phase flow models for
a vapor and a liquid phase. Euler-Euler and barotropic approaches are mostly em-
ployed in conjunction with volume of fluid methods, which assume that the two
phases share the kinematic field. In conjunction with the barotropic model, all trans-
port effects are neglected and the vapor volume fraction is directly computed from
local pressure Using an Euler-Euler model the vapor volume fraction is advanced by
a transport equation along with a source term, describing the mass transfer between
liquid and vapor. Accordingly, cavitation physics is reduced to modelling the source
term which refers to a simplified Rayleigh-Plesset equation. For some flows these
approaches are shown to be quite efficient. However, they both ignore local (inho-
mogeneous) water properties and are restricted to simplified bubble dynamics which
often requires a questionable, case-dependent calibration of model parameters.

Within the Euler-Lagrange approach the non-dispersed field properties follow
from Eulerian conservation equations whereas the vapor part is governed by New-
tonian motion of individual, spherical bubbles driven by the surrounding flow field.
Several authors considered different forces acting on a bubble such as drag, lift,
buoyancy, volume variation, etc. An overview of the forces acting on spherical bub-
bles and the influence of them on a bubble’s trajectory can be found in [2, 15].
Euler-Lagrange approaches allow to consider bubble deformation, bubble splitting,
and bubble-bubble or bubble/wall interactions. Examples refer to Apte et al. [20],
who have implemented the collision of bubbles via a standard collision model,
Chahine [3], who has modelled non-spherical deforming and splitting bubbles, and
Lauterborn et al. [8] focusing upon acoustic cavitation based on a Lagrangian ap-
proach. Using different bubble number spectra for the approaching water provides
access to water-quality influences which is considered to be a major advantage of
Lagrangian cavitation models. The information exchange between liquid and vapor
components can be performed in various ways. According to Elghobashi [4] and
Sommerfeld [22], dispersed flows can be classified by the interaction between the
bubbles and the carrier flow. Using a one-way-coupling, the solution of the Eule-
rian field is imposed on the Lagrangian part in order to move the bubbles under the
influence of pressure and velocity fields. This strategy is suitable to investigate cav-
itation inception, as demonstrated by Oweis [15] and Chahine [3], who employed
a one-way-coupling to capture cavitation inception in vortical and propeller flows.
However, for developed cavitating flows the interaction between the liquid and va-
por parts should be taken into account in both ways. In this case the bubbles have
a significant influence on the flow field but bubble-bubble interactions still remain
small. Implementations of two-way couplings have been only recently been reported
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[2, 5, 20]. The main drawback of the Euler-Lagrange approach is the large computa-
tional effort due to large number of bubbles required for the simulation of complex
3D applications. This motivates the development of non-trivial parallelization tech-
niques and hybrid cavitation modelling strategies.

The present paper aims to convey the merits of Lagrangian cavitation models.
Supplementary, means to enhance the computational efficiency of Euler-Lagrange
models based upon hybrid MPI/OpenMP parallelization techniques are outlined and
a combined Euler-Euler/Euler-Lagrange model is presented. Investigated examples
are confined to a 2D hydrofoil and a propeller in open-water for different operating
conditions. The paper is organised as follows: Sect. 2 briefly describes the numerical
method. Section 3 is devoted to the rationale of the Euler-Euler model and the related
results. The 4th section describes the Euler-Lagrange cavitation model, outlines the
associated hybrid parallelisation method and displays the predictive performance
for the investigated examples. Section 5 is concerned with the performance of the
combined Euler-Euler/Euler-Lagrange model. Final conclusions follow in Sect. 6.

2 Numerical Method

Results of the present study were obtained from the Navier-Stokes procedure
FreSCo+, a joint development of Hamburg University of Technology (TUHH) and
the Hamburgische Schiffbau-Versuchsanstalt (HSVA) [18]. The procedure uses a
segregated algorithm based on the strong conservation form of the momentum equa-
tions. It employs a cell-centered, co-located storage arrangement for all transport
properties. Structured and unstructured grids, based on arbitrary polyhedral cells
or hanging nodes, can be used. The implicit numerical approximation is second-
order accurate in space and time. Integrals are approximated using the conventional
mid-point rule. The solution is iterated to convergence using a pressure-correction
scheme. Various turbulence-closure models are available with respect to statistical
(RANS) or scale-resolving (LES, DES) approaches. Since the data structure is gen-
erally unstructured, suitable pre-conditioned iterative sparse-matrix solvers for sym-
metric and non-symmetric systems (e.g. GMRES, BiCG, QMR, CGS or BiCGStab)
can be employed. FreSCo+ is efficiently parallelized for several hundred (or more)
processes. Multi-phase flows are modelled using a VOF-type mixture-fraction ap-
proach, which can be coupled to a number of Euler-Euler or Euler-Langrange mod-
els for cavitation.

2.1 Governing Equations

The fluid mixture of liquid and vapor is described by the standard isothermal Navier-
Stokes equations

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)
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∂ρu
∂t

+ (u · ∇)(ρu) = −∇p + ∇ · τ + f, (2)

where τ is the viscous stress tensor which is composed from modelled turbulent and
laminar contributions. The two phases of the mixture are considered to be immis-
cible and changes of the mixture fraction are attributed to cavitation. The mixture
density ρ and mixture viscosity μ are computed as a sum of partial densities and
viscosities of the liquid (l) and vapor (v), viz.

ρ = αρv + (1 − α)ρl

μ = αμv + (1 − α)μl

(3)

Here α is the vapor-volume fraction defined as the ratio between the vapor volume
and the total volume of a control volume

α = Vv

Vv + Vl

(4)

A control volume (CV) filled with liquid yields α = 0.0, with vapor α = 1.0, respec-
tively. Values out of α ∈ [0.0,1.0] describe non-realizable situations. The prediction
of the vapor-volume fraction follows different routes for the Euler-Euler and Euler-
Lagrange model.

Examples included were all based upon fully-turbulent Reynolds-averaged flow
simulations using a k − ω turbulence model and monotonicity preserving QUICK
scheme for the approximation of convective terms.

3 Euler-Euler Cavitation Model

Within the Euler-Euler approach, the vapor-volume fraction is computed by an ad-
ditional transport equation:

∂α

∂t
+ ∇ · (αu) = Scav (5)

Several empirical Eulerian cavitation models, which express the source term Scav
differently, are available from the literature. The present work employs the source
term reported by Zwart et al. [25] and Sauer [19] . The Zwart-model uses different
formulations for vaporisation and condensation, i.e.

Scav =

⎧
⎪⎨
⎪⎩

Fvap · 3 αnuc
R0

·
√

2
3

|p∗
v−p|
ρl

(1 − α), p∗
v < p

Fcond · 3
R0

·
√

2
3

|p∗
v−p|
ρl

α, p∗
v > p

(6)

based on two empirical constants Fvap and Fcond which allow to distinguish be-
tween vaporisation and condensation. Two additional model parameters are the ini-
tial nucleation-site volume fraction αnuc and the corresponding initial nucleation-
site radius R0. Mind that all parameters are assigned to constant values and do not
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Table 1 Investigated
cavitation model coefficients
of the Zwart model [22]

Fvap Fcond

Small 5 0.001

Medium 25 0.005

Default [25] 50 0.010

vary in space or time. They are thus not designed to account for an inhomogeneous
water quality. The vaporisation and condensation parameters Fvap and Fcond are de-
liberately varied in the present study in order to enhance the predictive accuracy.
Accordingly, three parameter sets are investigated as displayed in Table 1. Mind
that the investigated parameter range is in the range of frequently employed combi-
nations.

The Sauer-model uses the same formulations for vaporisation and condensation

Scav = 4πR2
bn0

√
2

3

|p∗
v − p|
ρl

(1 − α) sign
(
p∗

v − p
)
, (7)

where n0 denotes the bubble density and Rb refers to a representative local bubble
radius.

Note that the original vapor pressure used in both models is replaced by a modi-
fied pressure p∗

v to take into account turbulence influence on the cavitation inception
as suggested by Singhal et al. [21]

p∗
v = pv + 0.195ρk, (8)

with k being the turbulent kinetic energy. The latter proved to be adequate for sheet
cavitation prediction in case of using adjusted internal model constants [1].

3.1 Cavitating Hydrofoil Flow

The cavitating flow over a NACA 6-series hydrofoil has been experimentally inves-
tigated by researchers of the University of Rostock together with the Hamburgische
Schiffbauversuchsanstalt (HSVA) in the K22 cavitation tunnel of HSVA under the
aegis of the KonKav-I project funded by the German Ministry of Economics and
Technology (BMWi). The tunnel features a test section with a 0.57 m wide square
cross section and a length of 2.20 m. The investigated hydrofoil is a span two-
dimensional cambered NACA662-415 foil with a chord length of c = 0.2025 m.
Experimental data for various air contents, angles of attack, cavitation numbers, in-
let velocities are measured as well as bubble distributions upstream the profile. The
present simulations are confined to two test cases with the flow conditions outlined
in Table 2. The two cases are hydrodynamically not very different and thus suitable
for a sensitivity study.
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Table 2 2D foil flow
conditions Case 1 Case 2

Vinlet 5.5 [m/s] 5.5 [m/s]

Angle of attack 10.4° 10.0°

Air content 47 % 50 %

Cavitation number 3 2.5

Unsteady RANS simulations were performed with a 2D unstructured grid of
30,000 cells. Fluid properties were set to water properties at 24°. At the inlet a con-
stant velocity of Vinlet = 5.5 m/s was applied. The outlet is assigned to a uniform
pressure boundary condition, where the outlet pressure matches the experimental
cavitation number σ , i.e. poutlet = 1

2ρlV
2σ + pv . The tunnel walls are considered

as slip walls and a no-slip boundary condition is used along the hydrfoil. The Zwart
et al. [25] cavitation model was used for this sensitivity study and model parameters
were varied as outlined in Table 1.

The contour plots of the predicted vapor-volume fraction for both cases are de-
picted by Figs. 1 and 2. Supplementary to the predictions, the experimentally re-
ported cavitation regime is added to the results in Fig. 1 (Case 1; black line) and
the measured cavitation thickness in Fig. 2 (Case 2; black line). The figures re-
veal a strong dependency of the predictive accuracy on the employed model coef-
ficients. For the higher cavitation number of Case 1, the cavitation extent is under-
predicted with all three parameter sets, whereas for Case 2, the cavitation length is
over-predicted when using the default set and agrees quite well for the medium set.

3.2 Cavitating Flow over the PPTC Propeller

Cavitation tests for a five-blade controllable pitch propeller were conducted in
the cavitation tunnel K15A of the SVA Potsdam. The propeller diameter refers to
D = 250 mm. It features a chord length at r/R = 0.7 of c/D = 0.417, a pitch ra-
tio of 1.635 at r/R = 0.7, a hub-diameter ratio of 0.3, an area ratio of 0.779 and a
skew angle of 18.8°. The operating conditions for the two selected cases are given
in Table 3.

The cylindrical computational domain extends 2D upstream of the propeller
and 4D in downstream direction. The radius of the domain denotes 1.34 D, pro-
viding the same cross-sectional area size as in the experimental tunnel. Two non-
conformal body-fitted fully hexahedral unstructured grids have been generated us-
ing NUMECA HEXPRESS™ software. One has 4 · 106 cells with refinement for
one blade in order to assess the blade resolution dependency and another grid has
12 · 106 cells with additionally refined region in tip vortex (Fig. 3). The fine mesh
has been generated in line with the experience that Euler-Euler models require a
very fine resolution in the tip vortex region [24].
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Fig. 1 Cavitating flow over the NACA662-415 2D hydrofoil at σ = 3. The figure illustrates the
sensitivity to modelling coefficients using Fvap/Fcond = 5/0.001 (left), 25/0.005 (middle), 50/0.01
(right)

Fig. 2 Cavitating flow over the NACA662-415 2D hydrofoil at σ = 2.5. The figure illustrates the
sensitivity to modelling coefficients using Fvap/Fcond = 5/0.001 (left), 25/0.005 (middle), 50/0.01
(right)

Table 3 PPTC propeller flow conditions

Case 1 Case 2

Vinlet 5.3 [m/s] 8.1 [m/s]

Advance coefficient 1.01 1.269

Number of revolutions 21 [1/s] 25 [1/s]

Cavitation number based on number of revolutions 1.96 1.424

Air content (% of saturation) 80 % 53.5 %

At the outlet boundary a uniform pressure was specified matching the given cav-
itation number. No-slip walls with wall functions were assigned to the hub and pro-
peller blades. A slip-wall boundary condition was employed along the outer circum-
ference.

At first results of this more practical problem are scrutinised with respect to their
sensitivity for the choice of Zwart et al. [25] cavitation model parameters. Therefore,
a parameter study has again been performed with 4 · 106 cells grid for the Case 2
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Fig. 3 Illustration of the employed PPTC propeller grids: 4.7 · 106 cells grid (left, centre) and
refinement box for the 12 · 106 cells grid (right)

Fig. 4 Sensitivity of the predicted cavitation pattern of the PPTC propeller (Case 2) to model
coefficients for the Euler-Euler cavitation model of Zwart et al. [22] employing 4 · 106 control
volumes; Displayed isosurface corresponds to 20 % vapor-volume fraction using different model
coefficients, i.e. Fvap/Fcond = 25/0.005 (left), 5/0.005 (centre) and 0.1/0.001 (right)

Table 4 Predicted thrust for
the PPTC propeller (Case 2)
using different coefficients of
the Zwart model [25] (4 · 106

control volumes)

Fvap/Fcond KT

25/0.005 0.137

5/0.005 0.211

0.1/0.001 0.242

Non-cavitating measurements 0.245

to investigate the respective influence of Fvap and Fcond on the predicted thrust co-
efficient Kt = T/(n2D4ρ). Three different parameter sets as displayed in Table 4
were used. Mind that they are well within the range of recommended values. The
table reveals, that the computed thrust coefficients might differ substantially from
the non-cavitating case, depending on the choice of coefficients. Experienced vari-
ations reach from 50 % reduction for high parameter values to virtually no changes
for small values. The result can be attributed to different predictions of the cavitation
volume, which is clearly seen from Fig. 4. For Fvap = 25, Fcond = 0.005, an exces-
sive vapor volume is produced in the propeller regime. It displaces the primary flow
and is convected over a large portion of the domain downstream of the propeller
which is of course unphysical (but the solution is converged). In conjunction with
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Fig. 5 Euler-Euler simulations of PPTC propeller (Case 1), employing 4 · 106 control volumes.
Experimentally observed cavitation pattern (left), snapshot of predicted vapor volume fraction
(α = 0.2, centre, right)

Fig. 6 Euler-Euler simulations of the PPTC propeller (Case 1) employing 12 · 106 control vol-
umes. Experimentally observed cavitation pattern (left), snapshot of predicted vapor volume frac-
tion (α = 0.2, centre, right)

smaller values cavitation exists only in regions near the propeller hub and tip and
with the smallest values cavitation region gets very small.

This study shows that Euler-Euler cavitation models may require case-dependent
calibration of constants which might be inappropriate for their industrial use. The
conclusion applies not only to the employed Zwart model but also any other mass-
transfer model of this type.

Finally, Case 1 from Table 3 was computed with Sauer [19] model for both com-
putational grids in attempt to resolve tip vortex cavitation. Figure 5 shows isosurface
of vapor volume fraction equal to 0.2 obtained on the 4 · 106 cells grid by the Sauer
Euler-Euler model. As expected, sheet cavitation on the blade suction side and hub
vortex cavitation are predicted quite well, but no cavitation is observed in the tip
vortex cavitation. The resolved vortex is not strong enough to cause the required
pressure reduction in it’s core which is the only mechanism in the Euler-Euler ap-
proach responsible for the cavitation inception. Similar results were obtained with
use of other Euler-Euler models [1].

With grid refinement in the tip vortex region, computed pressure drops enough to
start cavitation. As one can see on Fig. 6 cavitation pattern is now reproduced quite
successfully. It required about eight million additional nodes to resolve tip vortex
correctly with a current model. Less dissipative turbulence models like LES/DES
or special techniques aimed at reduction of turbulent viscosity in the vortex region
i.e. vorticity confinement methods [9] might reduce such severe requirements to the
grid quality. That is the subject of further studies.
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4 Euler-Lagrange Cavitation Model

Within Euler-Lagrange approach, the vapor-volume fraction is obtained by mapping
Lagrangian bubbles on the Eulerian mixture field. The local vapor volume in a cell
is thus computed as a sum of volumes of individual spherical bubbles, residing in
this cell. Moreover, a kernel-based interpolation procedure based upon a normalised,
compact-support function is applied to get a smooth Euler field which is limited to
its physical bounds.

The trajectory of a bubble can be described by the equations of motion [2, 14, 15]:

dx
dt

= v;

mb

dv
dt

= (mb − mf )g + mf

Du
Dt

− 1

2
mf

(
dv
dt

− Du
Dt

)
+ FD + FL + FV ,

(9)

where mb is the bubble mass, mf is the equivalent mass of the mixture phase. The
Euler-Lagrange approach features two velocity fields, i.e. the bubble velocities v
and the mixture velocities u (interpolated to the present centre of the bubble). The
terms on the right-hand side refer to the forces due to buoyancy, fluid acceleration
and added mass. The three last terms—FD,FL,FV —denote to the drag, lift, and
volume variation forces.

Assuming mb � mf , replacing mf with 4
3πR3ρf (where R is the bubble radius)

and using empirical correlations for lift, drag and volume variation forces [6, 13, 15],
Eq. (9) can be written as:

dv
dt

= −2g+3
Du
Dt

+ 3

4

CD

R
|u−v|(u−v)+ 3

4
CL

(u − v) × ω

α
+ 3

R
(u−v)

dR

dt
. (10)

Here α = |ω|R/|u − v|, CL is a lift coefficient and CD is a drag coefficient as given
in [15].

While the equation of motion (10) provides the bubble’s trajectory, the Rayleigh-
Plesset equation—including a term accounting for the effect of the slip velocity
between the bubble and the carrier phase—determines the time-varying radius of
the bubble [7]:

RR̈ + 3

2
Ṙ2 = 1

ρf

[
pν + pg − p∞ − 2σ

R
− 4μf

R
Ṙ

]
+ (u − v)2

4
. (11)

In turbulent flows it might be important to take into account bubble break-up
which occurs due to turbulent fluctuations and bubble/turbulent eddy collision. The
probability based model of Martinez-Bazan et al. [11, 12] displayed very good
agreement with experiments for a bubble break-up in a fully developed turbulent
flow over a wide range of bubble sizes. This model has been implemented into the
current framework.

To obtain fluid parameters needed for solution of Eqs. (10) and (11) a gradient-
based interpolation from the fluid mesh cell center to the position of the bubble
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(defined by the position of it’s center) is performed for each bubble [23]. The vapor-
volume fraction is calculated from the discrete bubbles for each fluid mesh cell via
Gaussian kernel-based interpolation as suggested by Shams et al. [20].

4.1 Hybrid MPI/OpenMP Parallelization

The parallelization of the Navier-Stokes algorithm (Eulerian part of the model) is
done using a traditional domain-decomposition technique based on a Single Pro-
gram Multiple Data (SPMD) message-passing model, i.e. each process runs the
same program on its own subset of data. Inter-process communication employs the
MPI communications protocol. Load balancing is achieved using the ParMETIS
partitioning software.

Parallelization of the Lagrangian part is done based on the domain decomposi-
tion of the fluid field, i.e. a bubble is computed on the same process the local fluid
field is assigned to. The latter is motivated by the fact that Eqs. (10) and (11) reveal
strong links between the background fluid and the particles but no inter-particle in-
formation exchange. No additional data exchange between the fluid and the discrete
phase is needed. When a bubble crosses a domain boundary it is transferred to an-
other process. Such an approach can lead to an unbalanced parallelization because
in general spatial distribution of bubbles is non-uniform and bubbles tend to get
trapped in local areas of the flow (e.g. recirculation zones). An alternative option
would be to uniformly distribute bubbles among processes. But in this case data ex-
change between phases based upon inter-process communications is needed which
would lead to significant loses in efficiency.

To reduce unbalance, a hybrid MPI/OpenMP approach is implemented. At the
moment, typical computational cluster has a certain amount of nodes, each of them
has about 8–24 CPU cores which share the same memory. OpenMP routines work
quite efficiently on these cores. For example, if we start 8 MPI processes on 8-cores
node, each of these processes can start specific number of OpenMP threads, propor-
tional to the number of bubbles, belonging to this process.

In order to assess the parallel performance, validation tests were done with a
coupled Euler/Lagrange model for a cavitating propeller flow on a computational
grid of about 4 ·107 cells and 100,000 bubbles. Figure 7 shows parallel performance
for this case. Although the bubble distribution in the domain is highly non-uniform,
the performance is still satisfactory. The overall speed-up on 128 processors is about
63 times. Such performance allowed to compute one revolution of the propeller for
3 wall-clock hours which is more than affordable for engineering applications.

4.2 Cavitating Hydrofoil Flow

Cavitating flow over a 2D hydrofoil at σ = 3 analysed in Sect. 3.1 was also com-
puted with the Euler-Lagrange model. The only free parameter for this model is ini-
tial bubble distribution/bubble density which are released under no slip conditions
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Fig. 7 Parallel performance of the coupled Euler-Lagrange simulations using 100,000 bubbles
inside 4 Mio control volumes grid on an Intel cluster (XEON X5570 8-core CPUs)

Fig. 8 NACA662-415
hydrofoil. Measured bubble
spectrum upstream the foil

upstream the profile. The bubble distribution is defined by water quality effects and
flow conditions. Simulations were performed with a fixed bubble diameter or with
the use of an experimentally reported size distribution. Figure 8 shows typical bub-
ble diameter distribution reported for the cavitation tunnel K22 of the HSVA. One
can see that bubble diameter is within range of 6 to 256 microns.

Euler-Lagrange simulations were performed with use of this distribution, as well
as with two fixed-diameter bubbles of 50 and 90 microns which all featured the same
vapor-volume rate. As indicated by Fig. 9, results obtained from the experimen-
tally reported bubble spectrum provides the best predictive agreement for cavitation
length and thickness. This is most probably due to presence of bigger (diameter of
150 microns and more) bubbles in the initial distribution as compared to used fixed
values. The smaller the bubble diameter is, the more pressure difference is needed
to overcome surface tension forces and initiate the growth of vapor bubbles. Thus
a small number of big bubbles produces substantially more cavitation then a large
number of small bubbles. In general, the Euler-Lagrange model produces more re-
alistic results as compared to Euler-Euler model.
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Fig. 9 Sensitivity of the predictions returned by the Euler-Lagrange cavitation model to the nuclei
diameter spectrum imposed upstream the 2D flow over a NACA662-415 hydrofoil at σ = 3 and a
frozen nuclei-volume rate. Fixed initial bubble diameter of 50 micron (left) and 90 micron (centre),
measured initial bubble distribution from P.D.F. (right)

Fig. 10 Measured nuclei
distribution and
bubble-release area upstream
the tip for the PPTC propeller
case at σ = 1.96 and 80 %
saturation

4.3 Cavitating Flow over the PPTC Propeller

The Euler-Lagrange model was used to compute cavitating propeller flow (Case 1,
as described in Sect. 3.2). The nuclei distribution required for the Euler-Lagrange
model has been measured experimentally with the Phase Doppler Anemometry
(PDA) technique under the aegis of the BMWi-project KonKav-I. Experimental
work was performed by the Institute for General Electrical Engineering of the Uni-
versity of Rostock. Figure 10 displays measured bubble spectra for the considered
test case. Measured bubble diameters lay within range of 10 to 200 microns with
most of bubbles within 20–120 microns range. At every Eulerian time step 140
bubbles were injected in the area upstream the propeller at radius of tip blade as
shown in Fig. 10. Number of injected bubbles corresponds to the number of nuclei
measured in the experiment and their radius is randomly chosen according to the
measured probability density function. Injected bubbles travel downstream and en-
ter the tip vortex region of one blades. Note that the bubble-release area is restricted
to the upstream region of one blade tip and doesn’t cover the whole domain in order
to reduce the amount of injected bubbles.
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Fig. 11 Application of the Euler-Lagrange model to the PPTC propeller (Case 1) employing 4 ·106

control volumes. Experimentally observed cavitation pattern (left) and snapshot of computed vapor
bubbles (centre, right)

Fig. 12 Application of the Euler-Lagrange model to the PPTC propeller (Case 1) employing
12 · 106 control volumes. Experimentally observed cavitation pattern (left) and snapshot of com-
puted vapor bubbles (centre, right)

Figure 11 displays instantaneous snapshot of vapor bubbles on 4 · 106 cells grid.
In contrast to the results obtained from the Euler-Euler cavitation model displayed
in Fig. 5, the Euler-Lagrange model predicts tip vortex cavitation even with this
grid. However, the cavitating vortex weakens and disappears downstream the blade
quite rapidly. Vapor bubbles grow in the low pressure region at the blade tip and are
convected downstream. They are subsequently exposed to premature condensation
due to the inability of the coarse grid to accurately resolve the confined low-pressure
regime of the vortical flow aft of the propeller. A few single vapor bubbles are also
found near the upper part of the blade. Such phenomena cannot be observed with
the Euler-Euler model, because of the assumed unified kinematics shared by both
phases and the relatively high pressure in this region. In conjunction with the Euler-
Lagrange model, single bubble may penetrate into high pressure regions due to their
individual momentum. Mind that no cavitation is predicted in the near-hub region,
since no bubbles were injected that could be convected into that zone.

Similar to the Euler-Euler simulations, the low-pressure regime continues aft of
the propeller when the tip vortex resolution is improved. As indicated by the bubbles
displayed in Fig. 12, a substantial amount of vapor remains in the downstream re-
gion of the vortex. Generally, the cavitation pattern predicted by the Euler-Lagrange
model is in a fair agreement with the experiment as well as with the Euler-Euler
model results. It should be mentioned, that in spite of the observed similarity for
the cavitation pattern, the Euler-Lagrange model offers potential benefits arising
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from the discrete treatment of the vapor phase, which better corresponds to cavita-
tion physics. Among these benefits are erosion predictions, which require to mimic
impact pressures from individual bubbles located near the wall, acoustic pressure
calculations, which also rely on individual bubble information and water quality or
scale effects [10], which are not considered by the Euler-Euler approach.

5 Combined Euler-Euler/Euler-Lagrange Cavitation Model

The main drawback of the Euler-Lagrange approach is the increased computational
demand due to the large number of bubbles. Typically, momentum and Rayleigh-
Plesset equations are advanced in time for several millions bubbles. Note that the
Lagrangian time step is about thousand times smaller than the Eulerian time step
due to the very small bubble sizes. Although the hybrid MPI/OpenMP paralleliza-
tion has been implemented as described in Sect. 4.1, the model is still computation-
ally expensive particularly as regards full-scale simulations. In order to reduce the
computational cost, a combined Euler-Euler/Euler-Lagrange approach is suggested.
Within this approach bubbles are only initialized upstream a selected area of par-
ticular interest (e.g. tip vortex) and Euler-Lagrange solution is used in those cells
which host bubbles. In the remainder of the domain an Euler-Euler cavitation model
is employed. The latter is tightly coupled to the mapped vapor-volume fraction of
the Lagrangian approach. The algorithm of the combined model for one Eulerian
time step (non-parallel version) can be described as follows:

1. Update Eulerian time tn+1
f = tnf + �tf

2. Calculate new mixture pressure, velocities and turbulent quantities by solving
equations (2)

3. Inject specified number of nuclei at initial position. The initial nuclei spectra
(nuclei concentration and initial diameter distribution) depends on a water quality
and is either known from experiments or estimated. The initial position is defined
by a release area upstream of the region of interest. Bubbles are started randomly
within this area

4. For each of the bubbles proceed while Lagrangian time tvi
≤ tn+1

f :

• Update Lagrangian time for ith bubble tvi
= tvi

+ �tvi

• Update bubble size and position solving iteratively equations (10) and (11)

5. Using above described probability based model compute bubbles break-up
6. Calculate vapor-volume fraction from bubbles
7. Solve vapor volume fraction equation (5) imposing vapor-volume fraction from

bubbles (in cells where this is greater than zero)
8. Update mixture density and viscosity
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Fig. 13 Application of the combined Euler-Euler/Euler-Lagrange model to the PPTC propeller
(Case 1) using 12 · 106 control volumes and 50,000 bubbles. Experimentally observed cavitation
pattern (left), snapshot of computed vapor bubbles (centre), snapshot of computed vapor volume
fraction (α = 0.2, right)

Table 5 Computational
effort associated to the
investigated cavitation
models for one revolution of
the PPTC propeller case 1 on
an 8-core Intel XEON
Gainestown CPU (X5570,
2.93 GHz) machine

Cavitation model CPU h

Euler-Euler 83

Euler-Lagrange (tip vortex only) 101

Euler-Lagrange (whole domain) 373

Combined Euler-Euler/Euler-Lagrange 112

5.1 Cavitating Flow over the PPTC Propeller

As discussed above, a combination of the Euler-Euler and Euler-Lagrange ap-
proaches inheres most of the predictive benefits of the Euler-Lagrange model in
regions of interest. Since the simplified Euler-Euler approach usually covers the
major portion of the computational domain, the combined model can be performed
at significantly reduced computational costs. Figure 13 shows results for the Case 1
(see Table 3) obtained with the combined model with the grid of 12 · 106 cells de-
scribed in Sect. 3.2. As expected, the predicted tip vortex cavitation is very similar
to results returned by the Euler-Lagrange model (cf. Fig. 12). The fair prediction of
root cavitation offered by the Euler-Euler approach (cf. Fig. 6) is also transfered to
the combined modelling approach.

Table 5 analyses CPU-effort by means of the wall-clock time required to simu-
late one propeller revolution (360 time steps) with different models. All simulations
were performed with the 12 · 106 cells grid on the North-German Supercomputing
Alliance (HLRN-II) supercomputing system ICE2 (www.hlrn.de) using 128 Intel
Xeon Gainestown CPU cores with 8 cores per CPU. The Euler-Euler simulation re-
quired 5.2 wall-clock hours (83.2 CPUh) to simulate one revolution. On the contrary,
the simulation with the Euler-Lagrange model required 30 % more time although
the bubble-release was restricted to a focal area upstream the tip vortex region. Ap-
proximately 50,000 bubbles were employed to investigate the tip vortex. Performing
Euler-Lagrange simulations with bubbles injected to the whole 5-blade domain, re-
quires fifteen times more bubbles, which drastically increases the computational
time. In conjunction with the combined Euler-Euler/Euler-Lagrange model the sim-

http://www.hlrn.de
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ulation effort increased by 35 % as compared to the Euler-Euler model. Again bub-
bles were released in a restricted area upstream the tip vortex region.

6 Conclusions

Euler-Euler, Euler-Lagrange and a combined hybrid approach to cavitation mod-
elling are investigated for cavitating marine engineering flows. The Euler-Euler ap-
proach is computationally inexpensive, but restricted to simplified dynamics and
requires case-specific calibration of constants. The Euler-Lagrange approach allows
to take into account inhomogeneous and transient water-quality effects, depending
on air content and bubble spectra. At the same time, it requires significantly more
computational resources and is prone to a successful implementation of a sophisti-
cated parallelization strategy.

Results obtained from an Euler-Euler model for a cavitating flow over a 2D hy-
drofoil and a marine propeller in open water conditions reveal a strong dependence
of the predictive success on appropriately chosen model constants. As opposed to
this, the Euler-Lagrange model delivered a fair predictive agreement with experi-
ments when using measured initial nuclei distribution. It should thus outperform tra-
ditional Euler-Euler techniques when calibrated model parameters are not available.
Moreover, as illustrated by the investigated marine propeller flow, the Euler-Euler
model usually fails to predict tip vortex cavitation unless using locally extremely
fine grids. Having no convection term, the Euler-Lagrange model also seems to be
slightly less demanding to the local grid arrangement/cell size but still requires a
reliable prediction of the pressure and velocity fields.

The combined model returns tip-vortex predictions which are very close to the
results of the Euler-Lagrange model at significantly lower computational expenses.
It seems a viable approach to utilize the benefits of both approaches and can be
applied to a wide range of multiphase engineering applications. Potential areas of
application include acoustic pressure calculation and erosion risk estimation, study
of water quality aspects as well as scale effect simulations.
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CFD in Ship Hydrodynamics—Results
of the Gothenburg 2010 Workshop

Lars Larsson, Frederick Stern, and Michel Visonneau

Abstract The Gothenburg 2010 Workshop on Numerical Hydrodynamics gathered
33 groups with computations for one or more of 18 test cases. All results were col-
lected and discussed at a meeting in Gothenburg in December 2010. In the present
paper some representative examples from the workshop are presented. The complete
results are found in the workshop Proceedings.

Keywords Computational fluid dynamics · Hydrodynamics · Validation ·
Assessment · Workshop

1 Introduction

In 1980 an international workshop on the numerical prediction of ship viscous flow
was held in Gothenburg [1]. The purpose was to assess the state-of-the-art and to
find directions for the future developments in the field. Participants in the workshop
had been invited long before and had delivered results for two well specified test
cases to the organizers. Detailed information on the features of each participating
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method had also been submitted and compiled in a table. By comparing the com-
puted results on the one hand, and the details of the methods on the other, the most
promising approaches could be sorted out.

Now, more than 30 years have passed since this first workshop and the event
has been repeated a number of times. In 1990 the second workshop was held, again
in Gothenburg [2]. While practically all methods participating in the 1980 work-
shop had been of the boundary layer type, now all but one were of the RANS type.
A huge improvement in the prediction of the flow around the stern was noted. The
workshop idea was picked up in Japan in 1994 and the third workshop was held in
Tokyo in 1994 [3]. Notable from this workshop is that free-surface capabilities had
become available in many of the methods. The fourth workshop in the series was
held in Gothenburg in 2000 [4, 5]. Now, three modern hull forms were introduced
as test cases, and these hulls have been kept ever since. At this time formal veri-
fication and validation (V&V) procedures were introduced. While in the previous
workshops the emphasis had been on the wake and waves for a towed hull, self-
propulsion was introduced in 2000. This was kept in the fifth workshop in Tokyo in
2005 [6], where some sea-keeping and manoeuvring cases were introduced as well.
Even though the same three hulls were used this increased the number of test cases
significantly. A further step in this direction was taken at the most recent workshop,
held in Gothenburg in December of 2010. This workshop is the topic of the present
paper.

2 Hulls

The three hulls used in the workshop were:

(1) The KVLCC2, a second variant of a Korean VLCC
(2) The KCS, a Korean container ship
(3) The DTMB 5415, a US combatant

The KVLCC2 was designed at the Korea Research Institute for Ships and Ocean
Engineering (now MOERI) around 1997 to be used as a test case for CFD predic-
tions. Extensive towing tank tests were carried out, providing data for resistance,
sinkage and trim, wave pattern and nominal wake at several cross-planes near the
stern [7–9]. Mean velocity and turbulence data were obtained by Postech [10] in a
wind tunnel. At the CFD Tokyo Workshop in 2005 [6] there was a slight modifica-
tion of the stern contour of this ship and it was therefore renamed as KVLCC2M.
The modification is explained in Hino [6]. In the present workshop the original de-
sign was used.

Also the KCS was designed by MOERI for the same purpose as the KVLCC2,
and similar tests were carried out for this hull [7–9]. Self-propulsion tests were
carried out at the Ship Research Institute (now NMRI) in Tokyo and are reported
in Hino [5]. Data for pitch, heave, and added resistance are also available from
Force/DMI measurements [11].
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Fig. 1 The three ships used in the workshop (upper: KVLCC2; middle: KCS; bottom: 5415)

Table 1 Main particulars of the three ships

Main particulars (full scale) KVLCC2 KCS DTMB 5415

Length between perpendiculars LPP (m) 320.0 230.0 142.0

Maximum beam of waterline B (m) 58.0 32.2 19.06

Draft T (m) 20.8 10.8 6.15

Displacement � (m3) 312622 52030 8424.4

Wetted area w/o rudder SW (m2) 27194 9424 2972.6

Wetted surface area of rudder SR (m2) 273.3 115.0 30.8

Block coefficient (CB ) �/(LPP · B · T ) 0.8098 0.6505 0.507

Service
speed

Speed U (knots) 15.5 24.0 18.0, 30.0

Froude number Fr 0.142 0.26 0.248, 0.413

Model 5415 was conceived as a preliminary design for a Navy surface com-
batant around 1980. The hull geometry includes both a sonar dome and transom
stern. Propulsion is provided through twin open-water propellers driven by shafts
supported by struts.

The model test data for the 5415 includes:

• Local flow measurements (Mean velocity and cross flow vectors) [12].
• PIV-measured nominal wake in regular head waves (Mean velocity, turbulent ki-

netic energy, and Reynolds stresses) [13].
• Resistance, sinkage, trim, and wave profiles [12].
• Wave diffraction (Waves, 1st harmonic amplitude of mean velocities, turbulent

kinetic energy, and Reynolds stresses) [13].
• Roll decay (Motion, free surface, mean velocities) [14].

Side views of the three hulls are seen in Fig. 1 and the main particulars are given
in Table 1. No full scale ships exist.
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Table 2 Test cases

Case
number

Hull Attitude Measured quantity

1.1a KVLCC2 FX0 Mean velocity, Reynolds stresses (Postech WT)

1.1b FX0 Wave pattern (MOERI)

1.2a FX0 Resistance (MOERI)

1.2b FRzθ Resistance, sinkage and trim (MOERI)

1.4a FRzθ Pitch, heave, added resistance (INSEAN)

1.4b FRzθ Pitch, heave, added resistance (NTNU)

1.4c FRxzθ Surge, Pitch, heave, added resistance (Osaka Univ)

2.1 KCS FX0 Wave pattern, mean velocities (MOERI)

2.2a FX0 Resistance (MOERI)

2.2b FRzθ Resistance, sinkage and trim (MOERI)

2.3a FX0 Self propulsion at ship point (thrust, torque, force
balance or RPM, mean velocity), local flow (NMRI)

2.3b FRzθ Self propulsion at model point (thrust, torque, force
balance or RPM), sinkage and trim (FORCE)

2.4 FRzθ Pitch, heave, added resistance (FORCE)

3.1a DTMB 5415 FXστ Mean velocity, resistance, wave pattern (INSEAN)

3.1b FXστ Mean velocity, resistance, wave pattern, Reynolds
stresses (IIHR)

3.2 FRzθ Resistance, sinkage and trim (INSEAN)

3.5 FXστ Wave diffraction, Mean velocity (IIHR)

3.6 FRϕ Roll decay (IIHR)

3 Test Cases

Several types of computations were requested, namely:

(1) Local flow at fixed condition, either zero sinkage and trim (denoted FX0) or
dynamic sinkage and trim (FXστ )

(2) Resistance, sinkage and trim either at FX0 or at heave- and pitch-free condition
(FRzθ )

(3) Self-propulsion at FX0 or FRzθ

(4) Heave and pitch in waves either at FRzθ or with free surge (FRxzθ )

(5) Forward speed diffraction at FXστ

(6) Free roll decay at FXστ and free to roll (FRϕ)

Note that maneuvering was not included, since it was the topic of the recently
held SIMMAN workshop in the spring of 2008 [15].

All test cases for the three hulls are listed in Table 2. The measurements were
taken at the organizations within brackets. See the references above. There are alto-
gether 18 cases and the participants were free to select which cases to compute.
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4 Participants and Methods

The workshop participants are listed in Table 3, together with the main features of
their methods. In the first column the acronym of the participating group is given.
This is used in combination with the code name of column three to identify each
submission. The cases computed are given in column two. In the remaining columns
the features of each method are given.

The majority of methods use two-equation turbulence models, k − ε or k − ω.
There are also some one-equation models, either Spalart-Allmaras or Menter. The
anisotropic models are either of the algebraic stress or Reynolds stress type. Note
that there are also some LES/DES methods and even a DNS method.

Most of the participants use no-slip wall boundary conditions, but there are also
several methods with wall functions, both with and without pressure gradient cor-
rections.

The Volume of Fluid (VOF) technique is the most popular one for the free-surface
modeling, but there are also several level set methods. There are only three entries
with surface tracking.

The propeller is represented either as an actual rotating propeller or through a
body force approximation.

Simulations were performed using both finite difference and finite volume codes,
but there was no finite element method. 2nd or 3rd order accurate schemes were used
and limited studies used 4th order schemes.

The grids used were either single- or multi-block structured ones (butt-joined or
overlapping) or unstructured ones. Most methods are pressure based but there are
also several solving the equations directly or with an artificial compressibility.

5 Selected Results

The Workshop Proceedings [16] contain a large number of figures and tables, as well
as all papers contributed to the Workshop. A comprehensive analysis of all results
will become available as a book [17], where additional calculations are also included
to improve the evaluation of the results. With the space limitation of the present
paper only a few examples from the Proceedings can be given. The examples will
be presented by subject (cf. “Types of computations” in Sect. 3): resistance, self-
propulsion, wave pattern, local flow, heave and pitch, and roll decay. Unfortunately,
sinkage and trim, wave diffraction and the very extensive discussions on Verification
and Verification (V&V) will have to be left out.

5.1 Resistance

In Table 4 a statistical analysis of all computed total resistance coefficients is pre-
sented. While the case and Froude number are presented in columns 1–3, column 4
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Table 4 Resistance statistics, all cases

Hull Case No. Fr Emean %D σ %D UD %D No. of
entries

KVLCC2 1.2a (fixed) 0.1423 −1.7 (0.0) 1.3 (6.2) 1.0 (0.7) 5 (13)

1.2b (free) 0.10∼0.15 −2.1 – 1.0 1

KCS 2.2a (fixed) 0.26 −1.3 (−1.1) 1.2 (4.2) 1.0 8 (11)

2.2b (free) 0.11∼0.28 −0.2 1.2 1.0 27

2.3a (fixed, prop.) 0.26 −0.3a (−0.9) 3.1 (1.0) – 14a (4)

2.3b (free, prop.) 0.26 7.2 3.3 – 3

5415 3.1a (fixed s&t) 0.28 2.5 (1.6) 3.8 (5.3) 0.6 (2.2) 5 (11)

3.1b (fixed s&t) 0.28 −2.6 4.4 0.6 5

3.2 (free) 0.138 −2.8 4.4 1.3 5

0.28 0.1 (−1.9) 2.1 (–) 0.6 (2.2) 6 (1)

0.41 4.3 1.4 0.6 5

Mean of all cases Emean = −0.1 %D σmean = 2.1 %D 89 (40)

aResults from MARIC with a hub cap are excluded

gives the mean comparison error Emean in per cent of the measured data value, D.
According to the sign convention of the Workshop Emean is defined as D − Smean,
where Smean is the mean of all simulated values for the particular case. The standard
deviation, σ , is given in column 5 in per cent of the data value, and in column 6 the
estimated data uncertainty is presented. Finally, in the last column the number of
entries for the case is seen. Values within brackets are from the 2005 Workshop [6].

Comparing the 2010 and 2005 results a substantial reduction in the standard de-
viation (%D) for the towed KVLCC2 and KCS cases is noted, from 6.2 to 1.3 and
from 4.2 to 1.2 respectively in the fixed condition. Also, |Emean| for these conditions
is well below 2 %D, which indicates that all predictions for this condition are quite
accurate, although still not within the experimental accuracy. There is only one sub-
mission for the free KVLCC2 condition and |Emean| for all Froude numbers is of
the same size 2.1 %D. The free KCS condition has several submissions and very
small comparison errors (0.2 %D) and standard deviations, around 1 %D for both.

The self-propelled KCS has standard deviations around 3 %D and the compari-
son error is very small for the fixed case. However, for the free case |Emean| is quite
high: 7.2 %D. All three submissions under predict the resistance significantly. It
should be noted that the fixed KCS in self-propulsion is the only case for which the
standard deviation has increased compared to 2005.

5415 with sinkage and trim fixed to the dynamic values have comparison errors
below 3 %D and standard deviations around 4 %D. In view of the fact that the
only difference between 3.1a and 3.1b is the Reynolds number (apart from a very
small difference in sinkage and trim), the difference is large, but the statistical basis
is too small for a comparison. For the free 5415 in 3.2 both the mean error and
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Fig. 2 Comparison error of
all resistance submissions vs.
grid size (turbulence model
parameter)

the standard deviation seem to depend strongly on the Froude number. The best
results are obtained at Fr = 0.28, where the water just clears the transom. For this
condition the mean error is practically zero and the standard deviation among the 6
submissions is 2.1 %D.

Table 4 shows the statistics for all cases, and indicates the accuracy obtainable for
each case. Even more interesting is however the information found on the last line:
the mean error and the mean standard deviation (weighted by number of entries) for
all cases. The mean error for all computed cases is practically zero; only −0.1 %D,
while the mean standard deviation is 2.1 %D; a surprisingly small value. In the 2005
Workshop the mean error of all 40 submissions was in fact equally small: 0.1 %D,
while the mean standard deviation was 4.7 %D. While the distribution between
“simple” and “difficult” cases is not the same in the two Workshops, it seems safe
to conclude that the scatter has been reduced considerably. In fact, even the largest
standard deviation in the present computations (cases 3.1b and 3.2) is smaller than
the mean standard deviation in 2005.

Figure 2 shows the comparison errors for all submitted cases versus grid size. For
each submission the turbulence model is denoted by a symbol. It is seen that about
90 % of all computations are made with grids smaller than 10M cells. The scatter
within this range seems to be significantly larger than for the larger grids. However,
this is mainly caused by the large scatter of the self-propulsion submissions (rep-
resented by filled symbols), so if these are excluded, and only towed resistance is
considered, there is no error decrease above 3M grid points. All points seem to be
within approximately +/−4 %D. Not even the very large grid at 300M cells (moved
into the figure and marked) shows any significant improvement; it is slightly below
3 %D. However, below 3M cells the maximum errors increase to about 8 %D.

There is a large number of entries for the 2-equation models and the results are
generally good. For the others there are rather few entries. The relatively poor result
for the more advanced methods is a surprise. However, EASM and RS, ARS suffer
from one bad point for a very coarse grid and two bad points computed for the
self-propulsion cases, which may be more difficult than the towed cases. The three
very good results for the Menter model were obtained with the same code and user.
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It would be interesting to investigate the performance of each model in different
ranges of grid density, but that has not been done so far.

There is a large number of entries for the 2-equation models and the results are
generally good. For the others there are rather few entries. The relatively poor result
for the more advanced methods is a surprise. However, EASM and RS, ARS suffer
from one bad point for a very coarse grid and two bad points computed for the
self-propulsion cases, which may be more difficult than the towed cases. The three
very good results for the Menter model were obtained with the same code and user.
It would be interesting to investigate the performance of each model in different
ranges of grid density, but that has not been done so far.

5.2 Self-propulsion

Self-propulsion results were requested only for the KCS hull and only at one Froude
number: 0.26. In Case 2.3a the hull was kept fixed in the zero speed attitude, while in
2.3b the hull was free to sink and trim. Experimental data are available from NMRI
for a 7.3 m hull in 2.3a and from FORCE for a 4.4 m hull in 2.3b. The NMRI hull
was without a rudder, while a rudder was fitted to the FORCE hull.

In 2.3a computations were requested for the model at the ship point, i.e. the hull
was towed to account for the larger skin friction at model scale compared to full
scale. This force, the skin friction correction, SFC, was pre-computed and was the
same as in the measurements. In the experiments the thrust T , was adjusted by
varying the rpm, n, such that T = RT (SP) − SFC, where RT (SP) is the resistance
in self-propulsion. Most of the participants did the simulations in this way, i.e. the
force balancing was automatically achieved by the flow code. An alternative was to
avoid the balancing and use the measured rpm in the simulation. In the first case
the achieved n was requested, while in the second case the resulting towing force
RT (SP)−T was to be reported. In 2.3b computations were carried out for the model
point, so no towing force was applied, but the balancing was carried out in the same
way as in 2.3a.

The dependence on the grid density of the thrust coefficient, KT , torque coeffi-
cient KQ, achieved n for force balancing and towing force RT (SP) − T for given n

are plotted in the Proceedings, but cannot be presented here due to the space limita-
tion. There is a clear difference in scatter between the three predictions in the range
10–24M cells and those below 10M. For KT , KQ and n the maximum scatter in
the upper range is around +/−7 %, 5 % and 2 %, respectively, while in the lower
range it is within 19 %, 18 % and 6 %. For the towing force RT (SP) − T there are
very few entries and the largest error is for an 11.5M grid. All quantities but n have
considerably larger errors than resistance.

Of more interest is perhaps the difference between the actual and modeled pro-
pellers and between the force-balanced and fixed rpm cases. Difficulties of handling
the free-to-sink-and-trim case may be revealed by comparing 2.3a and 2.3b, so the
available set of results may be cut in different directions. To get a quantitative base
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Table 5 Error statistics, Cases 2.3a and 2.3b

Items
(No. Entries/Total)

KT KQ n RT (SP) − T

E %D

mean
|E %D|
mean

E %D

mean
|E %D|
mean

E %D

mean
|E %D|
mean

E %D

mean
|E %D|
mean

Actual prop. (9/17) 3.3 4.1 −1.4 2.9 −2.1 2.1 −7.8 7.8

Modeled prop. (8/17) −2.4 6.5 −3.9 8.1 1.6 2.8

Given SFC (12/17) −0.2 6.0 −2.6 6.5 0.4 2.6

Given n (5/17) 2.4 3.2 −2.6 2.6 – – −7.8 7.8

Case 2.3a (14/17) −0.6 5.0 −4.6 5.1 0.6 2.3 −7.8 7.8

Case 2.3b (3/17) 6.2 6.3 6.7 6.7 −0.3 3.6 – –

Mean (Case 2.3a&b) 0.6 5.2 −2.6 5.4 0.4 2.6 −7.8 7.8

Mean σ (Case 2.3a&b) 7.0 6.0 3.1 8.7

for these comparisons Table 5 has been prepared. Here actual propeller results may
be compared with those from modeled propellers, computations with a given SFC
with those with a given n, and the fixed attitude results from 2.3a with the free atti-
tude results from 2.3b. The comparisons are made in terms of the mean error Emean

and the mean absolute error |E|mean, both in per cent of the experimental data.
A standard deviation is not meaningful, except in the comparison between 2.3a and
2.3b, since the other comparisons include two cases.

There is a clear trend of smaller scatter for the actual propellers in KT , KQ and
n (for RT (SP) − T there are only actual propellers represented). All three quantities
have a smaller |E|mean for the actual propellers than for the modeled ones, and the
difference is particularly large KQ. For the mean error Emean there is no clear trend.
The actual propeller exhibits a considerably smaller error in KQ, but for KT and n

the errors are slightly larger.
The scatter in the KT and KQ results is quite different between a given towing

force and a given rpm. |E|mean for given n is only half of that for given towing force,
while the mean signed error Emean is larger for KT . The most surprising result here
is the large over prediction of the towing force for given rpm. If n is given, the
towing force is significantly over predicted, while if SFC is given (and the forces
balanced) the rpm is computed very well (see the relatively small values of Emean

and |E|mean for n). If the propeller is relatively lightly loaded a small (percentage)
change in n may correspond to a relatively large (percentage) change in trust and a
corresponding large change in towing force to acquire force balance.

It is seen in Table 5 that the small number of results for 2.3b (only 3) makes it
very difficult to draw conclusions concerning the differences in accuracy between
the fixed and free cases. Emean and |E|mean for all quantities have been computed
and presented in the table, but we will refrain from drawing any conclusions.

The last two lines of Table 5 are the most interesting ones. They present the
mean values of all self-propulsion submissions, i.e. a weighted average of the results
in 2.3a and 2.3b. These numbers may give a general indication of the accuracy
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obtainable in self-propulsion predictions. The last line gives the weighted mean of
the standard deviations in the two cases. For KT the mean error is 0.6 %D and the
mean standard deviation 7 %D and the corresponding values for KQ are −2.6 %D

and 6 %D, respectively. The predicted n for a given SFC has a mean error of 0.4 %D

and a standard deviation of 3.1 %D, while the numbers are larger for the towing
force for given n: −7.8 %D and 8.7 %D, respectively.

5.3 Wave Pattern

Wave pattern predictions were reported for cases 1.1b (KVLCC2), 2.1 (KCS) and
3.1a, b (5415). The hulls represent completely different ship types and Froude num-
bers, so the capability of the codes to predict the free surface was tested over a
wide range of possibilities. Several different graphs were used to evaluate the per-
formance of the codes. A general overview was provided in the wave contour plots,
where the wave height was given in a region surrounding the hull. Wave cuts at
three distances from the center plane were also presented for all hulls. These cuts
enabled a very detailed comparison between computed and measured waves, since
the measured data were presented in every plot.

Since the predicted waves are strongly dependent on the grid density near the
surface every participant was requested to provide the following grid information:
number of grid points per fundamental wave length along the waterline, number of
grid points in the transverse direction on the surface at midship and step size in the
vertical direction near the hull at midship. This information was plotted in a graph
that is presented after the wave figures for each case in the Proceedings.

Due to the space limitation only one example will be given here, namely the
most challenging one: case 1.1b. The Froude number for KVLCC2 is quite low,
0.142, which means that the fundamental wave length 2πFr2 is only 1/8LPP, so
a large number of cells are required to get a sufficient number of cells per wave
length. Small cells are also required in the vertical direction, since the maximum
wave height is less than 1 % of LPP.

Wave contours for KVLCC2 are presented in Fig. 3. The measurements by
MOERI reveal a complex wave pattern with very short waves essentially located
at the edge of the Kelvin wedge. For a hull of this type with pronounced shoul-
ders four wave systems should be expected: one from the high pressure regions at
each end of the hull and one for each shoulder. However, the speed is so low in
this case that no waves seem to be generated near the stern. The dominating wave
system is that from the bow, but close inspection also reveals a more weak system
originating at the forward shoulder and merging with the bow system after a short
distance.

The best results were obtained by ECN/CNRS-ISISCFD, which is an unstruc-
tured grid solver with surface capturing and the VOF technique. The results, as
seen in Fig. 3, reveal all the details of the wave pattern. In fact, the computations
display the generated shoulder wave system more clearly than the experiments. It
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Fig. 3 Wave pattern around the KVLCC2 at Fr = 0.142. Top: measurements from MOERI, bot-
tom: computations by ECN/CNRS-ISISCFD

is seen inside the main system from the bow and merges with the latter around
x/LPP = 0.75. ISISCFD has a newly implemented grid adaptation technique where
the original grid is refined in several steps and concentrated in regions where a large
grid density is required. The total number of grid points was 5.5M, but grid conver-
gence was reported even with 2.7M grid points. The grid density plot (not shown
here) shows that along the hull the step size has two peaks, like in most grid plots,
one at the bow and one at the stern. In this case the maximum grid density at the
bow is around 200 points per wave length (ppwl), while at the stern the density is
somewhat lower, around 150 ppwl. Along the main part of the hull the density is
around 70 ppwl. There is an interesting variation in the grid density in the trans-
verse direction. Like in all methods the transverse grid density is very large close
to the hull, in order to resolve the boundary layer, so there is first a rapid drop in
ppwl, moving outwards. In most methods this drop is gradually reduced and a rel-
atively smooth curve is obtained from the hull towards the outer edge of the free
surface domain. However, in this case the adaptivity created a peak in the region
y/LPP = 0.15–0.25. This is where the bow wave system passes x = 0, where the
grid density is reported. In the vertical direction the step size was reduced to about
3×10−4LPP close to the surface, which corresponds to about 20 cells per maximum
wave height.
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Fig. 4 Cross-flow vectors, 2D ‘streamlines’ and axial velocity contours at the propeller plane of
the KVLCC2. (a) Measurements at Postech [10]; (b) Computations by IIHR-CFDShip Iowa-V.4.5
(ARS)

5.4 Local Flow (Steady Case)

A large number of local flow results were requested at the Workshop. Contours of
axial velocity and cross-flow vectors were to be provided for all three hulls both
under steady (all hulls) and unsteady (5415) conditions, even with an operating pro-
peller (KCS). This information was requested for one or more cross-planes. Velocity
profiles in the propeller plane were also asked for. Turbulence data at the propeller
plane were requested for KVLCC2 and 5415. For KVLCC2, wake fraction con-
tours and limiting streamlines were to be reported and surface pressure distributions
should be given for KVLCC2 and KCS.

Here only one example can be given, and to be able to compare with previous
workshops we select the flow at the propeller plane of the KVLCC2. The flow at
model scale around this hull is characterized by the gradual development of an in-
tense stern bilge vortex which creates a strong distortion of the axial velocity iso-
contours at the propeller plane. See Fig. 4. This distortion is due to the transport
of low momentum fluid from the vicinity of the hull to the center of the flow field
under the action of the longitudinal vortex. Under the main vortex, one can guess
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the existence of a secondary counter-rotating vortex close to the vertical plane of
symmetry. This leads to the so-called hook-shape of the iso-wakes which is clearly
visible both in the towing tank experiments from MOERI and wind tunnel experi-
ments from Postech. In Fig. 4 the Postech results are presented. There is however a
difference between the two results particularly in the vicinity of the vertical plane of
symmetry (the level U = 0.4). These local differences may be attributed to block-
age effects, the tunnel blockage being more than 6 % while the towing tank block-
age is only 0.3 %. On the other hand, it seems easier to control the quality of the
measurements (in terms of flow symmetry for instance) in a wind tunnel than in a
towing tank where small free-surface deformations may create perturbations. These
various sources of experimental errors will have to be considered during the com-
parisons with computations which were performed without any blockage effect and
free-surface deformation.

At the propeller plane the bilge vortex has developed and its impact on the
iso-wakes is very large. A first group of results is in very good agreement with
experiments, namely IIHR/CFDShip-Iowa-V4.5 (ARS, DES), NTNU/FLUENT,
NMRI/SURF, Chalmers/SHIPFLOW4.3, MARIC/FLUENT6.3 and NavyFOAM/
NavyFOAM. The IIHR/CFDShip-Iowa-V4.5 (ARS) results are displayed in Fig. 4.
Except NavyFoam/NavyFoam which uses a k − w model (original version of 1998
according to their paper), all other results are based on various anisotropic turbu-
lence models. IIHR/CFDShip-Iowa-V4.5 used both an algebraic Reynolds Stress
model (ARS) and an ARS based DES version while both Chalmers/SHIPFLOW4.3
and NMRI/SURF use the Explicit Algebraic Stress Model developed by ECN-
CNRS some years ago. Computations performed with FLUENT (NTNU/FLUENT
and MARIC/FLUENT6.3) are based on a more complex Reynolds Stress Transport
Model which solves additional transport equations for the Reynolds Stress compo-
nents. It is interesting to notice that all these results agree better with the towing
tank than with the wind-tunnel experiments. The main stern bilge vortex is very ac-
curately captured and the hook-shape of the iso axial velocity contours is very well
reproduced. A second counter-rotating vortex, hardly visible in the experiments, is
present in all these computations. In that region, the agreement between the best
solutions and the experiments is less good. One can also notice that the ARS based
DES solution contains more intense longitudinal vortices, a characteristic already
observed in other test cases (case 3.1a for instance).

On the other hand, linear eddy viscosity models without ad-hoc rotation
correction under estimate the intensity of the bilge vortex (ECN-BEC/Icare,
HSVA/FreSCo+, IST-MARIN/PARNASSOS-SST, VTT/FINFLO). A noticeable
exception is NavyFoam, based on the Wilcox’s k − w 1998 model, which gives
a prediction similar to that obtained with algebraic Reynolds stress model. As this
model is not as widely used as the SST model for example, and this peculiar per-
formance needs to be further validated by other flow solvers. IST/MARIN presents
some good predictions for the nominal velocity obtained with linear eddy-viscosity
model with rotation correction or with a linear turbulence model. The improve-
ment obtained by those ad-hoc modifications seems to be limited only to the mean
velocity field at propeller plane. In particular, the recirculation region seems to be
extended more upstream.
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It is well known that turbulence anisotropy is an additional source of longitudinal
vorticity production. In fact the turbulence anisotropy acts as a direct source term
in the transport equation of the longitudinal vorticity. Having the normal Reynolds
stresses available at the propeller plane makes possible a detailed verification of the
amount of measured anisotropy in the plane. If one compares the relative values of
the normal turbulent stresses, one can notice a strong anisotropy inside the character-
istic hook shape found in the iso-axial velocity contours. For instance, max(uu) =
0.016, max(vv) = 0.007 and max(ww) = 0.008 while max(k) = 0.016. Most of
the codes using explicit anisotropic turbulence models are able to predict with a
reasonable agreement the turbulence structure at this cross-section. For instance,
NMRI/SURF finds max(uu) = 0.014, max(vv) = 0.008 and max(ww) = 0.010.
The relative weights of the respective normal turbulent stresses are correctly pre-
dicted by DES, RSTM and EASM turbulence models while the linear isotropic
models fail to reproduce the measured turbulence characteristics. Therefore, in-
stead of using the right mechanism to enhance the longitudinal vorticity produc-
tion, correction factors are used to limit the production of turbulence and conse-
quently, to reduce locally the level of turbulent viscosity. This is illustrated by com-
paring the normal turbulent stresses computed by IST-MARIN/PARNASSOS(SST)
to IST-MARIN/PARNASSOS(RCSST), for instance. One cannot see any signifi-
cant difference on the normal turbulent stresses while the iso axial velocity con-
tours differ. If one compares also the turbulent normal stresses predicted by the
Reynolds Stress Transport model implemented in Fluent, one can notice a remark-
able agreement between NTNU/FLUENT and MARIC/FLUENT6.3. Both organi-
zations found max(uu) around 0.01, max(vv) around 0.004 and max(ww) around
0.005, results which are consistently smaller than the experiments. This is again an
illustration of a consistent trend associated to a specific turbulence modeling, in-
dependently from the grid (which has to be fine enough) and from the user of the
solver (who has to be experienced enough. . . ).

This is also the first time that DES results are available for the KVLCC2. The spa-
tial distribution of uu is organized around two peaks of uu with maximum values
around 0.02, greater than the measurements supposed to be around 0.016. The same
structure in two peaks is observed for vv and ww with maximum values around
0.003 and 0.004, respectively. The turbulence anisotropy is therefore more pro-
nounced than what is observed with the anisotropic non-linear turbulence closures.
This is probably related with the more pronounced longitudinal vorticity which is
found in the DES computations. Although the boundary delimitating full RANSE
and full LES formulations is not known, one can suspect that this effect is due to
the LES formulations by comparing with the normal turbulent stress distribution
obtained with the ARS model.

The turbulent shear stresses uv and uw were also measured and can be used
to perform a detailed assessment of the computations. The agreement of all the
computations is reasonable for uv except for the DES computations which again do
not reproduce the measured spatial distribution. For uw, most of the contributors
find a zone of uw > 0.002 which is consistently smaller than what is observed in
the experiments, except the DES closure implemented in CFDShip-Iowa which is
in good agreement with the experiments.
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Compared to the situations in 2000 and 2005, one can observe that much progress
has been made towards consistent and more reliable computations of afterbody
flows for U-shaped hulls. The intense bilge vortex and its related action on the ve-
locity field is accurately reproduced by a majority of contributors employing very
similar turbulence models implemented in different solvers and on different grids.
The debate on the relative importance of discretization vs. modeling errors opened in
the mid-nineties should now be closed by the acknowledged prominent role played
by turbulence anisotropy as long as a reasonable grid is used. From that point of
view, around 3 million points are enough to assess the turbulence closures without
any significant pollution from discretization errors. The turbulence data confirm that
the turbulence anisotropy is large in the propeller disk and more specifically in the
core of the bilge vortex. Explicit Algebraic Stress and Algebraic Reynolds Stress
Models reproduce satisfactorily the measured structure of the turbulence and appear
to be, up to now, the best answer in terms of robustness and computational cost for
this specific flow field, compared to RSTM or DES strategies. Having recourse to
Delayed DES will probably strongly improve the present DES results. A more de-
tailed analysis of the turbulence characteristics remains to be done through the use
of the Reynolds stress anisotropy tensor, anisotropy invariant maps and the analysis
of the turbulent kinetic energy budget.

5.5 Heave and Pitch

Several seakeeping cases were included in the workshop. Test cases 1.4a,b and 2.4
are for pitch and heave in regular head waves for KVLCC2 and KCS, restrained
in surge. In test case 1.4c for KVLCC2 the surge is also released. Test case 3.5 is
forward speed diffraction for 5415 fixed at dynamic sinkage and trim, while case
3.6 is free roll decay for 5415 at the same attitude. These test cases have not been
included in previous CFD Workshops, except test case 3.5, which was included at
CFD Workshop Tokyo 2005.

New model tests were conducted for KVLCC2, without appendages, rudders,
and propellers. The tests were carried out for all three 1.4 cases (a,b,c). The free
surge tests were conducted in the Osaka University’s towing tank for a 1/100 scaled
model (LPP = 3.2 m) using a spring to attach the model to the towing carriage. Fixed
surge tests were conducted with the same model in the INSEAN 220 × 9 × 3.5 m
towing tank and for a larger model (LPP = 5.5172 m) at NTNU.

For cases 1.4a–c calm water, four experimental data sets are available which
show different values for resistance, sinkage, and trim. Unfortunately, uncertainty of
the data was not studied so the origin of the differences cannot be assessed. For the
heaving and pitching motions the surge, neglected in 1.4a and b, may be important,
since data for surge motion shows that its amplitude increases with wavelength,
reaching up to 50 % of the wave amplitude for the range of wavelengths tested.
For case 1.4a, there was no phase reference recorded for the data, so phases are not
used for CFD error studies. Also, for test case 1.4b the surge motion was partially
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constrained by a spring system, and as a result the measured resistance amplitude is
not used for comparison.

The CFD simulations of cases 1.4a–c included 12 submissions from 5 institutions
with the number of grid points of 0.3–4.73M. Verification studies are performed by
one submission for case 1.4a in calm water and waves. Assessment of CFD predic-
tions for seakeeping separated capability for 1st order vs. higher order terms. The
1st order quantities are resistance calm water, 0th and 1st harmonic of resistance,
and 1st harmonic of heave and pitch. The higher order quantities are calm water
sinkage and trim and 0th harmonic of motions. CFD has achieved the prediction of
1st order quantities for cases 1.4a, b, c with the average error of 19 %D and 14 %D

including and excluding the error for resistance amplitude, respectively. For higher
order quantities, CFD overall prediction error is 33 %D. For steady and 0th har-
monic of resistance, the average error is around 8 %D and 18 %, respectively, while
the 1st harmonic amplitude and phase are predicted by 31 %D. For motions, the
prediction error is 10 %D for steady and 33 %D for 0th harmonic while it is around
16 %D for 1st harmonic amplitude and phase. Therefore, for resistance, the largest
error values are observed for the 1st harmonic amplitude and phase, followed by 0th
harmonic amplitude and then steady. For both heave and pitch motions, the largest
error values are observed for the 0th harmonic amplitudes followed by 1st harmonic
amplitude and phase and then steady.

The number of grid points seems to have an obvious effect on both motions and
resistance results. For most conditions, the smallest errors are for the submission
with largest number of points. The other submissions are usually with higher errors
based on how coarse their grids are. It may be that all codes would reach the small
level of error, if using the finest grid. The smallest error averaged over amplitudes
and phase for resistance is 11.19 %D for case 1.4c with λ/L = 1.1 for CFDShip-
Iowa with 4.73M grid points. Also the smallest error averaged over amplitudes and
phase for motions is 2.66 %D for case 1.4c with λ/LPP = 1.1 for CFDShip-Iowa
with 4.73M grid points.

Six submissions were available for test case 2.4, only one of which included
verification studies. The mount used in the experiments allowed small surge motions
which might have affected 1st harmonic resistance. Average prediction error was
smaller for 1st order terms (17 %D and 8 %D including and excluding resistance
amplitude) compared to higher order terms (83 %D). For steady and 0th harmonic
of resistance, the average error is around 6 %D and 21 %, respectively, while the 1st
harmonic amplitude and phase are predicted by 40 %D. For motions, the prediction
error is 5 %D for steady and 83 %D for 0th harmonic while it is around 6 %D for
1st harmonic amplitude and phase. Increasing the number of grid points seemed to
reduce only the resistance error.

5.6 Roll Decay at Forward Speed

The model-scale test for 1/46.6 scale 5415 bare hull with bilge keels free to roll-
decay advancing in calm water was performed in the IIHR towing tank [13]. The
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Fig. 5 Time history of roll
angle (Open circle:
Experiments; Solid black line:
CFD
(GL&UDE-OpenFOAM))

flow conditions were Re = 2.56 × 106, Fr = 0.138, sinkage = 2.93 × 10−4LPP,
trim = −3.47 × 10−2 degrees and initial roll angle φ = 10 degrees. Data were pro-
cured for the forces and moments using a strain gage load cell, the unsteady ship roll
motion using a Krypton Motion Tracker, the unsteady wave elevation on the star-
board side using four servo wave probes, and unsteady velocities at x/LPP = 0.675
in a region near bilge keels using a 2D PIV system.

Four organizations (ECN-ICARE, ECN/CNRS-ISISCFD, GL&UDE-
OpenFOAM, and SSRC/Univ of Strathclyde-Fluent 12.2) contributed for this test
case, all using URANS methods. All the submissions show non-linear oscillations
for the total resistance as observed in the experiments. The mean resistance is pre-
dicted within 10 %D of the experimental data. The amplitude and period of the roll
motions are predicted very well within 0.85 %D as shown in Fig. 5.

The ECN-ICARE simulation on a 0.8M grid fails to predict the Kelvin wave
pattern and the development of the wave troughs and crests due to the roll motion.
Likewise, the SSRC/Univ of Strathclyde-Fluent 12.2 predictions on a 3M grid also
show poor Kelvin wave predictions, and this was claimed to be due to grid resolution
issues.

On the other hand, the ECN/CNRS-ISISCFD predictions on 4.9M grid shows
overall good agreement for the Kelvin wave pattern and the development of wave
troughs and crest at the shoulder, but the waves are closer to the hull compared to
the data and dissipated away from the hull. Overall, the wave elevation predictions
improve with grid resolution, but for such low Fr (which exhibits a small Kelvin
wavelength) even larger grids are required to accurately predict the wave elevation
pattern.

The coarse grid ECN-ICARE simulation over-predicts the boundary layer thick-
ness and under-predicts the cross flow velocities by 30 %D. However the general
trends in the cross-flow pattern at the different roll phases are well predicted. This
suggests that the generation of the bilge keel vortices is predicted well, but the vor-
tex strengths are under-predicted and significantly diffused compared to the exper-
imental data. ECN/CNRS-ISISCFD predictions on a finer grid compare very well
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Fig. 6 Contours of U velocity at x/LPP = 0.675 during second cycle of roll decay (t/Te = 0)
(a) Experiment (IIHR, Irvine et al. 2004); (b) Computations by ECN/CNRS-ISISCFD

with the experiments, where the minimum and maximum velocities compare within
6 %D, see Fig. 6. The cross-flow predictions are slightly better than the axial veloc-
ity, where latter shows over-prediction of the transport of low momentum fluid away
from the bilge keel. This suggests that the vortex advection due to roll motion is pre-
dicted well, but the bilge keel vortex inception is not predicted accurately. Even finer
grids near the bilge keel are required to capture the vortex inception accurately.

Overall, the results show that the force and roll motion predictions are not signif-
icantly dependent on grid resolution, but it is more important for the wave elevation
and flow predictions. A further point to note is that the anisotropic turbulence mod-
els do not show significant improvement over the isotropic models for the global
variable predictions. This is because the vortex generation is imposed by the ge-
ometry of the bilge keels, and thus the turbulence models do not influence the flow
predictions. This is different from the KVLCC2 test case 1.1a or 5415 test cases
3.1 and 3.5, where the vortices are advected and the anisotropic turbulence models
show improved predictions.

6 Conclusions

The Gothenburg 2010 Workshop on numerical Ship Hydrodynamics was huge effort
by a large number of people. 33 groups participated and computed one or more
of the 18 test cases for the three hulls. The results represent the state-of-the-art in
computational hydrodynamics at present. For the areas covered in the present paper
the main conclusions are:
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• The mean error (data(D) − simulation) for all computed resistance cases is prac-
tically zero; only −0.1 %D, and the mean standard deviation is 2.1 %D. The
latter represents a considerable improvement since 2005, where the mean stan-
dard deviation was 4.7 %D.

• Of the reported self-propulsion predictions 9 used an actual rotating propeller,
while 8 used a hybrid approach with a potential flow propeller model linked to
the viscous method. The scatter between the former predictions is roughly half
of that of the latter, while the mean error is about the same. The total mean error
for KT and KQ is 0.6 %D and −2.6 %D, respectively, while the mean standard
deviation is 7.0 %D and 6.0 %D, respectively.

• Very accurate predictions of the wave pattern over the entire discretized free sur-
face were obtained in the most accurate solutions for all three hulls. Even for the
most challenging case, at Fr = 0.142, all details of the wave pattern were captured
by a method with adaptive gridding.

• The details of the nominal wake of the tanker hull can be predicted very well with
methods using anisotropic turbulence models. This holds both for mean velocity
and turbulence. The mean velocity distribution can also be captured with isotropic
models with rotation correction, but with an erroneous distribution between the
normal Reynolds stresses. DES seems to over-predict the anisotropy, thereby ex-
aggerating the bilge vortex strength and the “hooks” in the wake contours.

• Three new sets of data were provided for the workshop in the seakeeping area.
The tanker was tested in head waves free in pitch and heave at two organizations
and free also in surge at a third laboratory.

• For seakeeping, the average error for steady and 0th harmonic of resistance is
around 7 %D and 18 %, respectively, while the 1st harmonic amplitude and phase
are predicted by 34 %D. For motions, the prediction error is 9 %D for steady and
54 %D for 0th harmonic while it is around 13 %D for 1st harmonic amplitude
and phase. Therefore, for resistance, the largest error values are observed for the
1st harmonic amplitude and phase, followed by 0th harmonic amplitude and then
steady. For motions, the largest error values are observed for the 0th harmonic
amplitudes followed by 1st harmonic amplitude and phase and then steady.

• For the roll decay the mean error in resistance was around 10 %, while the am-
plitude and period were predicted very well, 0.85 % on the average. Waves were
predicted rather well by a method using adaptive grids and 4.9M cells, but other
methods with coarser grids failed. This complicated case at low Froude number
(0.138) calls for larger grids, at least if they are not adapted. This is the case also
for the mean velocities in the boundary layer.
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Prediction of the Transom Flow Regime
with Viscous Free Surface Computations

Auke van der Ploeg and Bram Starke

Abstract A steady free-surface fitting RANS method is used to accurately and ef-
ficiently compute the flow near a ship’s transom. The chosen block topology is very
well suited for the prediction of such flows: viscous free-surface flow solutions have
been obtained for all transom flow regimes (from completely dry, partly wetted to
completely wetted) and the agreement with available measurements is good. We
will show that scale effects on the flow aft of the transom can be significant: they
can affect the wave length and wave amplitude aft of the transom, and can even
change the transom flow regime from partly wetted to completely dry.

Keywords Computational fluid dynamics · Transom sterns · Scale effects

1 Introduction

Ship resistance and propulsion are principal aspects for the fuel efficiency of mar-
itime transport. Modern CFD techniques in principle permit a further improvement
of that efficiency by precisely predicting resistance and scale effects. Especially, an
accurate prediction of viscous free-surface flows near a ship’s transom is important,
since this is a pre-requisite for the computation of the effect of stern wedges and
stern flaps which can be used to improve the ship powering performance [4].

A (partly) wetted transom poses additional challenges on a computational
method: the details of the free surface and the recirculating flow behind the wet-
ted part of the transom, the transition between the wetted and dry regime along the
transom, and the possible occurrence of a spilling breaker when the transom is close
to becoming wetted. Scale effects affect the wave length and wave amplitude aft of
the transom, but might become even more important when the transom flow regime
changes between model and full scale.

In [10] a detailed study of the flow off a 2D transom stern was presented. For
dry-transom flow, ‘inviscid’ computations using our RANS solver showed excellent
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agreement with nonlinear potential-flow solutions available in the literature. Vis-
cous effects were shown to cause a substantial reduction of the trailing wave length,
and a scale effect on that wave length. The transom immersion was systematically
increased to investigate the limits of the dry-transom regime. A local vanishing of
the longitudinal velocity at the wave surface near the first wave crest was used as an
indication of wave breaking. The critical Froude number at which this happens is
substantially increased by viscous effects, and much more so for model scale than
for full scale. Therefore, in a range of transom Froude numbers a smooth flow will
occur at full scale, but a spilling breaker just aft of the transom at model scale. It
was shown that the width of this range may depend on the hull form (in 3D cases),
as it results from two opposing scale effects.

For wetted transom flows, the predictions at model scale in [10] showed good
agreement with experimental data for the water level at the transom and the trailing
wave system. The transom immersion was systematically decreased to investigate
the clearance of the transom. It was shown that at a given transom immersion the
clearance is larger at full scale than at model scale. Thus it was shown that there is
a range of conditions where the transom is just cleared at full scale, with a spilling
breaker downstream, while the flow is still attached to the transom at model scale.

The question is whether such scale effects are similar for 3D ships. Strictly speak-
ing, no direct comparability exists between 2D and 3D since in the 2D computa-
tions

(1) there is no effect of the waves coming from upstream;
(2) there is no decay of the waves as in 3D, so one can expect steeper waves at some

distance aft in 2D computations;
(3) there is no effect of the wakes of any upstream appendages or the propulsion;

Therefore in this paper we will present viscous free-surface computations at both
model and full scale for three different ships: the KRISO Container Ship (KCS),
DTMB model 5415 (M5415) and the VIRTUE Container Ship (VCS) (Fig. 1). The
first two test cases have extensively been used in many international workshops,
most recently in the Gothenburg 2010 Workshop on Numerical Ship Hydrodynam-
ics [11]. The last test case has been used in the EU-sponsored VIRTUE project. All
three test cases are transom-stern vessels and for all three test cases experimental
data at model scale is available. Some characteristics of the ships and the flow con-
ditions are listed in Table 1. In Sect. 2 we will present our RANS method, with some
emphasis on the free-surface treatment and the adopted block topology. In Sect. 3
we will present results of systematic grid-refinement studies, and comparison with
available experimental data, followed by a discussion on the predicted scale effects
near the transom in Sect. 4.

2 The Computational Method

2.1 RANS Solver

The method used is PARNASSOS, a code developed and used by MARIN and IST

[3, 7]. It solves the discretised Reynolds-averaged Navier-Stokes (RANS) equations
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Table 1 Characteristics of the three test cases

Rn (model) Rn (ship) LPP [m] Fn T [m]

Kriso Container Ship (KCS) 1.40 · 107 2.5 · 109 230 0.26 10.8

DTMB 5415 (M5414) 1.19 · 107 6.5 · 108 142 0.28 6.15

VIRTUE Container Ship (VCS) 1.85 · 107 2.0 · 109 246.4 0.272 12.5

Fig. 1 Geometries for the three test cases: top KCS, middle VCS, bottom M5415

for a steady, 3D incompressible flow around a ship’s hull. Various eddy-viscosity
turbulence models are available. For the computations for the VCS and the M5415
presented in this paper, the one-equation turbulence model of Menter [6] was used.
For the computation for the KCS we also used the two-equation k − ω SST model
by Menter [5]. Both models were extended with a correction for the longitudinal
vorticity [2].

The discretisation is of finite-difference type. All terms in the momentum and
continuity equations are discretised by second or third-order accurate difference
schemes. PARNASSOS can handle body-fitted, generally non-orthogonal HO-type
grids, either single or multi-block structured.

For the cases studied here, the inflow boundary is located 0.5LPP in front of
the bow, and the outflow boundary was located 1.5LPP behind the transom. Due
to symmetry considerations, only the starboard side of the ships are taken into ac-
count. The lateral outer boundary is a quarter of a cylinder with axis y = z = 0
and radius 1.0LPP. At this boundary tangential velocities and pressure found from
a potential-flow computation are imposed. Since that computation gives good re-
sults already for much of the wave pattern, these boundary conditions (although of
Dirichlet type) hardly cause any wave reflection.

The momentum and continuity equations are solved in fully coupled form. There-
fore, the continuity equation need not be recast in a pressure correction or pressure
Poisson equation, but can simply be solved as it is. After discretisation and linearisa-
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tion, the three momentum equations and the continuity equation give rise to a matrix
equation containing 4 × 4 blocks, which is solved using preconditioned GMRES.
This fully coupled solution has been found to be robust and quite insensitive to the
mesh aspect ratio. This allows solving the discretized equations on extremely con-
tracted grids close to the wall. As a result, wall functions are not necessary, not even
at full scale. More details about the solution strategy can be found in [7].

2.2 Free-Surface Treatment

We have used the ‘steady iterative formulation’ [1, 9] which, contrary to almost all
other RANS/FS methods, involves no time-dependent terms; neither in the momen-
tum equations, nor in the free-surface boundary conditions. The problem is solved
by an iterative procedure, instead of by time integration. This iteration is based on
the use of the “combined free-surface condition”:

Fn2(uψx + vψy + wψz) − w = 0 at z = ζ, (1)

where ψ is the non-dimensional hydrodynamic pressure. This condition is obtained
by substituting the wave elevation from the dynamic condition into the kinematic
condition. Together with the dynamic condition it describes exactly the same prob-
lem as the original set of conditions; but it has the advantage of permitting a suc-
cessful iterative procedure.

In the present applications, the ‘balanced discretisation’ derived in [9] has been
used, which reduces the numerical damping of the waves to 5th order in the longi-
tudinal step size �x, and the numerical dispersion to 3rd order in the vertical spac-
ing �z. This contributes to a good accuracy of the wave pattern even at a distance
from the hull.

2.3 Grids Suited for Both Dry and Wetted Transom

We use a special block topology that can handle both wetted and dry transoms,
and even transoms that are partly dry and partly wetted. This topology, illustrated
in Fig. 2, consists of four blocks. One block upstream of the transom contains an
HO-type grid with a mild stretching towards the bow and the stern in longitudi-
nal direction, and the usual strong contraction in wall-normal direction towards the
hull in order to have y+-values below 1 near the wall. This upstream block has a
non-conformal matching with three blocks downstream of the transom, containing
HH-type grids. The grid nodes in the block immediately behind the transom are
both contracted towards the symmetry plane and the free surface to get sufficient
resolution near the transom, also in vertical direction at a possibly wetted part of the
transom.
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Fig. 2 Left: bird’s-eye view of the adopted block topology. Right: a cross section of the computa-
tional mesh in the three blocks aft of the transom: the black line indicates the transom edge in the
upstream block

2.4 Grid Density

The typical grid density we need for such computations is illustrated for the M5415
in Fig. 2. This grid consists of 3.7 million cells for all four blocks together. In the
model-scale computations the block upstream of the transom (indicated in red in
Fig. 2), consists of 290 × 120 × 52 cells in the streamwise, wall-normal and girth-
wise directions, respectively, adding up to a total of 1.8M cells for this block. For the
full-scale computations, the number of cells in the wall-normal direction is increased
(in order to keep y+-values below 1), resulting in a total number of 4.2 million at
full scale. The block immediately behind the transom (green in Fig. 2), consists of
144 × 99 × 99 = 1.4M cells, and the remaining cells are distributed evenly over the
two other blocks. For the other two test cases, similar grid densities are used.

3 Grid Dependence Studies and Comparison with Experiments

For all test cases, several grid dependence studies were performed and the grid de-
pendence was shown to be limited, giving good agreement with measured wave
heights, wake fields and resistance values [8, 11]. An example of such a study is
shown in Fig. 3, in which both pictures show a comparison between the computed
and measured wave patterns for the M5415. The computed wave elevation shown
in the picture on the left was obtained using the 3.7M base grid described above,
whereas the picture on the right compares the wave elevation computed on a grid
that was refined by a factor of two in the main stream direction. Hence the total
number of cells increased to 7.4 million. Even with the wave height multiplied by a
factor of five in these figures hardly any difference can be seen between the predicted
wave patterns, indicating that the basis grid resolution in the streamwise direction
was sufficient. The predicted wave height corresponds well with the measured wave
height.



266 A. van der Ploeg and A.R. Starke

Fig. 3 Comparison between the computed and measured wave elevation for the M5415. Left: com-
puted on the base grid. Right: computed on the base grid after halving the cell size in streamwise
direction

Fig. 4 Top: wave elevation along a longitudinal wave cut y = 0.072LPP for the M5415. Bottom:
The influence of grid refinement in successive directions and comparison with experiments at a
wave cut y = 0.082LPP

Similar studies have been made for the grid resolution in the other directions,
which is illustrated for a wave cut in the bottom picture in Fig. 4. At this longitudinal
position the influence of grid refinement is negligible in all three directions, and
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Fig. 5 Computed and measured wave elevations at three longitudinal positions aft of the transom
of the VCS

very reasonable agreement is obtained with the experimental data along most part
of the ship, with the exception of details near the bow and the stern. For example,
the local wave top near the stern in the measurements near x = 1.15LPP seems
not to be present in the computations. However, for a wave cut slightly closer to
the symmetry plane this local peak is present in the computations as well, as is
illustrated in the top picture in Fig. 4. Also the height of the computed bow wave at
the wave cut y = 0.072LPP is closer to the measured height of this wave a the wave
cut y = 0.082LPP.

For the VCS, wave height measurements behind the transom of the model were
obtained using a dedicated test rig supporting a set of line lasers in combination
with a water spray curtain behind the transom that was installed on the towing car-
riage [8]. A comparison between measured and computed wave heights aft of the
transom along three wavecuts is shown in Fig. 5. The agreement between computa-
tions and measurements is excellent, for the wave amplitude as well as for the wave
length. Two sets of computational results are shown; the blue lines in Fig. 5 show
results computed on the base grid, the red lines show results computed on a grid
in which the mesh size in main stream direction was halved. As the blue lines and
the red lines are practically indistinguishable, the grid dependence in the computed
wave height is negligible.
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Fig. 6 Scale effects in the wave elevation for the VCS. Right: a close-up of the transom-region

4 Scale Effects on the Free Surface

It is well known that scale effects on the free surface are mainly restricted to the stern
wave system. Along the bow and most part of the hull of slender ships the boundary
layer is thin and does not affect the pressure distribution on the hull. Therefore, the
wave patterns generated at model and full scale (and even for non-linear potential
flow solutions) are similar, the very basis of Froude’s hypothesis. Near the stern
however the boundary can grow considerably (of course depending on hull form and
flow conditions) thus reducing the pressure rise towards the stern and the velocity
distribution in the wake. This in its turn affects the wave generation and propagation
aft of the transom. All this is illustrated in Fig. 6 for the VCS. The entire bow-
wave system and wave pattern along the hull are equivalent at model and at full
scale. Only in the stern-wave system aft of the transom noticeable differences can
be found. There viscous effects, which are larger at model scale than at full scale,
result in a reduction of the wave elevation and, although not that clear from these
graphs, a reduction of the transverse wave length aft of the transom. This is similar
to what we have found in the 2D study discussed in Sect. 1. An illustration of the
scale effect on the flow off the transom for all three test cases is given in Fig. 7.
This figure shows the wave elevation aft of the transom with the predicted axial
velocity in main stream direction projected on the free surface as colored contours.
Black colors indicate regions with flow reversal. Figure 8 shows a more detailed
study of the scale effect along a longitudinal wave cut along the symmetry plane,
and comparison with experimental (model scale) data. Below we discuss the scale
effects shown in Figs. 7 and 8 for each case.

KCS At model scale the flow is characterised by a region with low axial velocities
in the top of the wave crest around the center line. This indicates that in
reality a spilling breaker might occur, or that the flow is close to forming
a spilling breaker. At full scale, however, the top of the first wave crest is
located further downstream, while the velocity reduction towards the top of
the wave crest is less strong than at model scale. Therefore, the flow at full
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Fig. 7 Scale effects on the flow off the transom, model scale results on the left, full scale results
on the right; KCS (top): dry at model scale, dry at full scale; VCS (middle): partly wetted at model
scale, dry at full scale; M5415 (bottom): wetted at model scale, wetted at full scale

scale is further away from forming a spilling breaker than at model scale.
In both conditions the transom is dry.

VCS At model scale the transom of the VCS is partly wetted, and in [11] it has
been shown that the width of this region compares well with the experimen-
tal data. At full scale, however, our computations indicate that the transom
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Fig. 8 Scale effects at the wave cut in the symmetry plane aft of the transom for the KCS (top),
VCS (middle) and the M5415 (bottom). Black: measurements model. Blue: computation model.
Red: computation ship

is completely dry, thus showing a scale effect on the transom regime. In
addition, in Fig. 8 we see a clear increase (about 40 %) of the wave ampli-
tude from model to full scale and the top of the first wave crest behind the
transom shifts slightly further downstream.

M5415 The model of the M5415 has a completely wetted transom. At full scale
the transom is predicted to be wetted as well, but the water level at the
transom decreases from model to full scale. This is in agreement with the
conclusions of our 2D study of the wetted regime, where the higher shear
forces that act on the recirculation region at full scale result in a reduction
of the pressure inside this region, and thus an increased clearance of the
transom, compared to model scale. These effects can be seen more clearly
in Fig. 9, which shows the scale effects in the pressure distribution in a cross
section at the transom.
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Fig. 9 Scale effects in the pressure coefficient in a cross section near the transom of the M5415.
The black dots indicate grid points on the transom edge

5 Conclusions

With the free surface RANS method described in this paper, the viscous flow near
the transom can be computed for several transom flow regimes, from completely
dry to (partly) wetted. The steady iterative approach as used in PARNASSOS is
very efficient to compute the free surface and the block structure as described in this
paper is well suited to compute the viscous flow including the free surface accurately
near the transom, since it enables local grid refinement near the wetted part of the
transom.

Compared to many surface capturing methods, the surface fitting approach used
in PARNASSOS has as advantage that the free surface is sharp: it is not ‘smeared
out’ in the direction normal to the surface across several cells. The ‘balanced dis-
cretisation’ derived in [9] has been used, which reduces the numerical damping of
the waves to 5th order which further enhances the accuracy of the computations.
We have shown that for the three test cases the grid dependence in the results is
limited and we get good agreement with model-scale measurements. Unfortunately,
experimental data for full scale is not available. However, as mentioned earlier, we
found excellent agreement between ‘inviscid’ computations using our RANS solver
and nonlinear potential-flow solutions for the 2D test case mentioned in Sect. 1.
Together with the similarity between model-scale computations and measurements
this sustains the confidence in the computed scale effects:

• For all three test cases, scale effects on the free surface are mainly restricted to
the stern wave system.

• For the test case for which the transom at model scale is dry, similar scale effects
were observed as for the 2D test case described in [10]: the waves behind the
transom become steeper, the wavelength decreases and the velocity in the top of
the first wave behind the transom decreases when going from full scale to model
scale. However, an additional scale effect for this 3D test case which was not
observed for the 2D test case is the increase in wave amplitude from model to full
scale.

• For the test case with a partly wetted transom at model scale, significant scale
effects were observed: at full scale the transom is completely dry, and the wave
amplitude increases significantly from model to full scale.

• The test case in which the transom is completely wetted at model scale showed a
decrease of the water level at the transom from model to full scale.
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Anisotropic Mesh Refinement in Ship Flow
Simulation with Free Surface

Jeroen Wackers, Ganbo Deng, Emmanuel Guilmineau, Alban Leroyer,
Patrick Queutey, and Michel Visonneau

Abstract For the simulation of water flow with waves, grid refinement must be an-
isotropic to limit the total grid size. For these flows, the grid has to be refined at the
water surface, to resolve the conservation law which indicates the surface position,
and below the surface to resolve the water flow. A combined criterion is presented,
based on the free-surface position and on the Hessian of the pressure. It is shown
that this criterion creates suitable grids for two- and three-dimensional flows.

Keywords Combined criteria · Anisotropic refinement · Free-surface waves

1 Introduction

The simulation of water flows with a free water surface is inherently a multiphysics
problem, as the surface deformation through waves interacts with the viscous, turbu-
lent flow below the surface. In a hydrodynamics flow solver, a model for the surface
position is added to the standard Navier-Stokes equations. Accurate simulation of
water flow requires a good resolution of this additional model, as well as the flow
equations, on the same grid. Thus, adaptive grid refinement applied to water flows
must take into account both these models. And therefore, refinement criteria that are
a combination of different sensors are essential.

An adaptive grid refinement method has been developed [1, 2] for ISIS-CFD, the
unstructured Reynolds-averaged Navier-Stokes solver developed by LHEEA. This
commercialised flow solver is aimed at the simulation of realistic flow problems in
all branches of marine hydrodynamics. The method is therefore developed to be gen-
eral and flexible, featuring anisotropic refinement on unstructured hexahedral grids,
derefinement of previous refinements to enable unsteady flow computation, and full
parallelisation including integrated dynamic load balancing. The anisotropic refine-
ment is metric-based. Thus, the refinement criteria are 3 × 3 symmetric tensors in
each cell, which indicate the local desired cell size in all directions. This formulation
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allows the straightforward implementation of highly differing refinement criteria.
The refinement method has already been successfully applied to different test cases
in marine flow simulation [2].

The focus of this paper is on the development of refinement criteria for hydro-
dynamic flows in this metric-based context. We discuss which features are relevant
as refinement criteria and how multiple refinement criteria can be combined into
one. Sections 2 and 3 introduce the flow solver and the mesh refinement method.
Then Sect. 4 discusses the necessity of combined criteria for flows with a free water
surface. Section 5 shows the construction of a criterion that combines directional
refinement at the free water surface with a pressure Hessian criterion. Three test
cases in Sect. 6 indicate that the criterion generates effective meshes for two- and
three-dimensional free surface flows.

2 Finite-Volume Method

The grid refinement is applied to a finite-volume method on unstructured grids, with
a surface-capturing discretisation of the water surface, as implemented in the flow
solver ISIS-CFD developed by LHEEA. This section describes the finite-volume
discretisation and the type of meshes used, concentrating on those aspects that are
most important for grid refinement and the construction of refinement criteria. Full
details of the discretisation can be found in [3].

The ISIS-CFD flow solver resolves the incompressible Unsteady Reynolds-
Averaged Navier Stokes equations in a two-fluid formulation. Free-surface water
flows are modelled with a convection equation for the volume fraction of water ci .
The flow equations are discretised in a finite-volume framework. Pressure-velocity
coupling is obtained through a Rhie & Chow SIMPLE-type method: in each time
step, the velocity updates come from the momentum equations and the pressure is
given by the mass conservation law, transformed into a pressure equation. As the
volume fraction ci is discontinuous, its convection equation is discretised with com-
pressive flux functions. The resolution of this equation in each time step is decoupled
from the pressure and velocity updates.

The discretisation is face-based. While all unknown state variables are cell-
centered, the systems of equations used in the implicit time stepping procedure are
constructed face by face. Fluxes are computed in a loop over the faces and the con-
tribution of each face is then added to the two cells next to the face. This technique
poses no specific requirements on the topology of the cells. Therefore, the grids
can be completely unstructured, cells with an arbitrary number of arbitrarily-shaped
faces are accepted.

For this study, unstructured hexahedral meshes are used (see Fig. 1). These
meshes are generated with the HEXPRESS grid generator from NUMECA Inter-
national. They offer the flexibility of an unstructured grid, yet have large regions
where the mesh is structured. Variations in mesh size are handled by having small
cells laying next to larger cells, a situation called ‘hanging nodes’ by other authors.
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Fig. 1 Cut through an
unstructured hexahedral mesh

In ISIS-CFD, due to the face-based algorithm, these cells are treated in exactly the
same way as all the others: the larger cells are simply seen as cells with more than
6 faces.

Unstructured hexahedral grids are ideal for automatic grid refinement. Isotropic
or anisotropic grid refinement can be applied to any of the hexahedral cells, the result
will still be an unstructured hexahedral mesh. Therefore, locally refined meshes can
be used directly in a flow solver that supports unstructured hexahedral meshes; no
changes to the flow solver are needed to incorporate grid refinement.

3 Grid Refinement Procedure

The grid refinement procedure developed for ISIS-CFD [1, 2] is integrated com-
pletely in the flow solver. The method is entirely parallelised, including automatic
redistribution of the grid over the processors. During a flow computation, the re-
finement procedure is called repeatedly. In such a call, first the refinement criterion
is calculated, then in a separate step of the procedure the grid is refined based on
this criterion. For steady flow, the refinement procedure converges: once the grid is
correctly refined according to the criterion, further calls to the procedure no longer
cause any changes.

3.1 Anisotropic Refinement

Anisotropic refinement is essential for our type of grid refinement. Isotropic refine-
ment is very costly in three dimensions, since each refinement means a division in
eight (for a hexahedron). Thus, creating very fine cells to accurately resolve a local
flow phenomenon becomes almost impossible. However, by applying anisotropic
refinement for flow features that need a fine grid in only one direction (notably, the
water surface!), the total number of cells required can be greatly reduced or much
finer flow details can be resolved.
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Also, in unstructured hexahedral original grids, cells of completely different as-
pect ratios lie side by side (see Fig. 1). Therefore, when refining, we need to control
the size of the fine cells in all their directions independently, otherwise refined grids
may have smoothly varying sizes in one direction, but repeated changes from fine
to coarse and back to fine in another. Isotropic refinement is not enough to prevent
this. Therefore, directional refinement is the mandatory choice.

3.2 Tensor Refinement Criteria

For directional refinement, a way is needed to specify different cell sizes in different
directions. The use of metric tensors as refinement criteria is such a way. This tech-
nique was first developed for the generation and refinement of unstructured tetra-
hedral meshes [4, 5]. It is also an extremely useful and flexible framework for the
refinement of unstructured hexahedral meshes.

For tensor-based refinement, the refinement criterion in each cell is a 3 × 3 sym-
metric positive definite matrix Ci . The refinement of the cells is decided as fol-
lows. Let the criterion tensors Ci in each cell be known (they are computed from
the flow solution, see Sect. 5). In each hexahedral cell, the cell size vectors dj,i

(j = 1, . . . ,3), which are the vectors between the opposing face centres in the three
cell directions, are determined. Next, the modified sizes are computed as:

d̃j,i = Cidj,i . (1)

Finally, a cell is refined in the direction j when the modified size exceeds a given,
constant threshold value Tr :

‖d̃j,i‖ ≥ Tr . (2)

The tensors Ci are direct specifications of the desired cell sizes: in the refined grid,
the cell sizes are inversely proportional to the magnitude of the Ci .

4 The Need for Combined Refinement Criteria

Water waves are usually generated by the pressure and velocity disturbances created
when the water flow passes around a foreign body, either a stationary object or
a floating body such as a ship. These disturbances are not only generated at the
surface, but also well below it; even a fully submerged object may create waves
(see for example Sect. 6.2). Once the waves are created, they propagate through
orbital velocity fields in the water. Thus, to correctly resolve the generation and the
propagation of a travelling surface wave, a good resolution is needed for the pressure
and velocity fields below the surface.

Accurate resolution of the volume fraction equation is of prime importance as
well. As the water surface is physically a discontinuity, the interface region for ci
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must be as sharp as possible. It can be shown [3], that a diffused interface increases
numerical damping, so a too coarse grid at the surface will damp out waves. In our
experience, the grid at the surface needs to be about twice as fine as the grid used in
the vicinity of the surface.

Thus, to create suitable grids, a grid refinement criterion for water wave sim-
ulation must be based both on the pressure and velocity field and on the volume
fraction. For these two, different indicators must be used. The reason for this, is that
ci is discontinuous at the surface and constant everywhere else, while the pressure
and the velocity are smooth in the whole flow field except at the surface. Therefore,
gradient- or second-derivative based error indicators can be used to identify the re-
gions of importance for the flow field below the surface, but not for ci . They go to
infinity at the surface, thus causing infinite refinement unless the criterion is artifi-
cially limited. Also, grid misalignment must be avoided in the surface region, as it
leads to large errors in the volume fraction. Therefore, the refined grid must be as
uniform as possible near the surface. Numerical evaluations of the derivatives of ci

are never smooth, so they cannot guarantee uniform grids.
Therefore, a suitable refinement criterion for water flow with waves is an error

indicator for the flow field and a simpler criterion for ci , combined into one.

5 Pressure Hessian—Free Surface Criterion

A possible criterion for the simulation of flow with waves is based on the Hessian
matrix of second derivatives of the pressure, combined with a criterion that refines
in the normal direction of the surface for those cells where ci is neither 0 nor 1.

5.1 Free-Surface Criterion

To resolve accurately the volume fraction, which is a discontinuity that is convected
with the flow, it is sufficient to refine the grid in the direction normal to the water
surface. When the surface is locally aligned with the cell directions, anisotropic
refinement can be used to keep the total number of cells as low as possible.

The free-surface criterion is therefore based on a vector, normal to the surface,
with length 1. Thus, from Eq. (2) it follows that the threshold value Tr directly
indicates the desired cell size at the surface. The normal direction to the surface
is computed from a ci field that is smoothed out by averaging over a cell and its
neighbours, a given number of times. The gradient of this field gives the normal
directions. The criterion vectors vi are then chosen as the unit vectors in this nor-
mal direction for those cells where the smoothed ci field is non-zero, and as zero
everywhere else. Switching based on the smoothed field guarantees that the mesh is
refined also next to the surface, to create a margin of safety.

In tensor form, the free-surface criterion is implemented as matrices having only
one non-zero eigenvalue, associated with the direction of the vector. In the directions
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normal to the vector, the eigenvalues are zero, so the desired grid size is infinity.
Thus, the grid is only refined in the direction of the vectors. The tensors CS,i are
computed as follows (with ⊗ representing the tensor product):

CS,i = vi ⊗ vi . (3)

The free-surface criterion has been used on its own in our earlier work [1, 2].

5.2 Pressure Hessian

Hessian-based criteria are often used to control anisotropic grid refinement [4]. We
base this criterion on the pressure as this variable is insensitive to boundary layers,
where we consider that the original unrefined grid should be sufficiently fine to
ensure the best grid quality.

Hi =
⎡
⎣

(pi)xx (pi)xy (pi)xz

(pi)xy (pi)yy (pi)yz

(pi)xz (pi)yz (pi)zz

⎤
⎦ . (4)

We compute the Hessian in each cell using a least-squares fit of a third-order poly-
nomial to the solution in the cell, its neighbour cells and its neighbours’ neighbours.
There is no better third-order polynomial fit to these points, so the fit is fourth-order
accurate. Therefore, its second derivatives are second order accurate, independent of
the configuration of the neighbour cells. This is very important on refined meshes.

To compute the refinement criterion, the Hessian is modified with a power law:

CH,i = (Hi )
p, (5)

where (Hi )
p has the same eigenvectors as Hi and eigenvalues that are those of Hi

(in absolute value) to the power p. In general, we use p = 1
2 .

5.3 The Combined Criterion

For the final criterion, the two criteria above are combined. Even if the current im-
plementation of the Hessian criterion has a behaviour similar to a free-surface cri-
terion at the water surface, the real free-surface criterion is used as well because it
guarantees that the grid at the surface is absolutely regular and that a safety zone of
refined cells is generated around the surface.

The criteria are combined into one tensor criterion by taking a weighted max-
imum of the two tensors. We want Tr to indicate directly the desired cell size (as
for the free-surface criterion), so we apply a weighting factor c only to the Hessian
criterion:

CC,i = max(CS,i , c CH,i). (6)
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The (approximate) maximum of the two tensors is computed using a procedure sim-
ilar to the one in [5]. First, the eigenvalues and eigenvectors of the two tensors are
computed. Then new eigenvalues are set for each tensor, as the maximum of the
original eigenvalue and the length of the corresponding eigenvector when it is mul-
tiplied by the other tensor. This gives two approximations to the maximum tensor;
the final tensor in each cell is a weighted average of these two.

6 Test Cases

6.1 Prism Impacting on a Water Surface

As a first test, we present the impact of a freely falling 2D prism on a water surface.
This test is based on experiments by Peterson et al. [6]. In the present context, the
interest of the case is that the 2D nature allows us to see in detail the functioning of
the directional refinement. The prism for this test has a bottom angle of 20°, a width
W and an initial height H both of 61 cm, and a mass of 50 kg/m. The water has a
density of 998.4 kg/m3, the gravity is 9.81 m/s2. Viscosity is neglected. The only
movement allowed for the prism is vertical translation.

The numerical setup of the case is as follows. The free motion of the prism is
computed using Newton’s laws based on the integrated fluid forces on the prism, the
motion is incorporated in the flow computation by block movement of the mesh. The
same original mesh is used for all computations, this mesh has some local refinement
around the prism. Refinement is called every 4 time steps. For this first test, the free
surface criterion is used on its own; refinement is applied for ci between 0.3 and 0.9
to prevent perturbations from the tiny droplets in front of the main jet.

Figures 2a–c show the mesh for three settings of the refinement threshold Tr

(Eq. (2)). The figures show how the criterion adapts the refined mesh both to the
shape of the water surface and to the original mesh. Directional refinement is applied
where possible, notably around the horizontal water surface and in the wall-aligned
grid on the prism. Cells in the fine part of the original grid are not refined as often
as cells further from the prism, so that the grid around the surface has a uniform
size (Fig. 2a is an extreme example, where the finest part of the mesh is not refined
at all). Note that the mesh is not refined around the tip of the water jet, due to the
limitation to ci > 0.3.

The solution is characterised by a very strong pressure peak that moves out-
ward over the prism during impact. As this peak is a highly localised feature, grid
refinement is an effective way of resolving it well. Figure 3 shows the highest pres-
sure on the prism as a function of time for the three simulations, compared with an
asymptotic analytic solution by Scolan et al. [7]. As can be seen from this figure,
the threshold has a very strong influence on the magnitude of the pressure peak; the
agreement for the finest threshold is excellent. Also in Fig. 3, while the total number
of cells increases with the reduction of the threshold, this increase is moderate, due
mainly to the use of directional refinement.
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Fig. 2 Mesh and ci = 0.05 and 0.95 isolines for the falling prism at t = 0.0175 s after ini-
tial impact. The figure is zoomed in on the left tip of the prism. The refinement threshold is
Tr = 0.0033 (a), Tr = 0.00165 (b), and Tr = 0.000825 (c). Figure (d) represents the Tr = 0.00165
case with convection buffer layers

Fig. 3 Pressure peak (left) and total number of cells (right) as a function of the time after initial
impact, for the computations at three settings of the refinement criterion Tr , without convection
buffer layers. The pressure peak is compared with the asymptotic solution of Scolan et al. [7]

6.2 Immersed NACA0012 Wing

The second test case is meant to evaluate the behaviour of the combined refinement
criterion for a two-dimensional wave field. We study the influence of the ratio pa-
rameter c from Eq. (6). The case is the geometry studied by Duncan [8], a wave train
generated by an immersed NACA0012 profile of chord 0.203 m at 5 degrees angle



Anisotropic Mesh Refinement in Ship Flow Simulation with Free Surface 281

Fig. 4 Refined mesh around the immersed profile for the Duncan case with c = 0.001

Fig. 5 Refined meshes at the first wave for the Duncan case with surface-only refinement
c = 0.0 (a), with c = 0.001 (b), c = 0.002 (c), and c = 0.004 (d)

of attack, with its centre point at 0.236 m below the surface. The inflow velocity is
0.8 m/s and Re = 1.42 · 105. The problem geometry can be found in Fig. 4.

Four simulations are performed, starting from an original mesh that has some
refinement around the profile but none at the surface. For each simulation, the grid
is refined around the free surface to a target size Tr = 0.002 m. Different values of
c give different sizes of the grid below the surface. The grid for c = 0.001 is given
in Fig. 4, it shows refinement around the profile (notably at the leading edge), in a
specific region between the profile and the surface, and in the wave field. A zoom
of the meshes around the first wave is given in Fig. 5; the first figure is the re-
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Fig. 6 Duncan test case,
free-surface positions of the
four computations

Table 1 Number of cells in
the refined meshes, Duncan
test case

c 0 0.001 0.002 0.004

cells 3539 10244 37035 189860

sult with refinement around the surface only, the last figure with c = 0.004 has
pressure-based refinement below the surface with the same size as the refinement
specified by the free-surface criterion. Interestingly, while the refinement procedure
is fully anisotropic, the pressure Hessian criterion creates only square cells below
the waves.

In Fig. 6, the position of the free surface is given for the four cases. The results
on the three grids produced with the combined criterion are very similar. Thus, it is
not necessary to refine the grid below the surface to the same size as the grid at the
surface, twice and even four times coarser cells are acceptable. As the total number
of cells increases strongly with the parameter c (Table 1), this parameter should be
kept low.

6.3 Series 60 Wave Pattern

The final test concerns the flow around a Series 60 ship in still water at Froude
number Fr = 0.316 and Re = 5.3 · 106. The computation is started from a coarse
mesh that has no initial refinement at all around the free surface, it is used to show
that a sensible refined mesh for free-surface ship flow can be obtained entirely with
automatic grid refinement. The grid is obtained with a target cell size Tr = 0.001L

and a ratio c = 0.004, the original grid has 253k cells and the final grid 2.81M cells.
Four X cross-sections of the refined mesh can be seen in Fig. 7. The free-surface

criterion applies directional refinement around the undisturbed surface; without this
refinement, the interface would be dispersed in front of the ship, so accurate com-
putations would be impossible. Refinement in all directions appears in the strongest
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Fig. 7 Series 60, cross-sections of the grid at X/L = 0.0 (a), at X/L = 0.4 (b), at X/L = 0.8 (c)
and behind the ship at X/L = 1.2 (d)

Fig. 8 Wave pattern of Series 60, compared with experimental results from IIHR [9]

waves. Pressure-based refinement is seen at the bow of the ship, below the hull at
the stern, and below the waves. It is concentrated near the sharp peaks of the wave
system. As for the Duncan test case, the refined cells below the waves are predomi-
nantly square.

The wave pattern, compared with experiments from IIHR [9], is given in Fig. 8.
The correspondance is good, comparable with the results obtained in [3] on struc-
tured grids of 3.8M cells. Given the results of the Duncan test, a similar accuracy
can probably be obtained with fewer cells if c is reduced. This is a subject for further
study.
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7 Conclusion

It is shown that anisotropic grid refinement is essential for water flow with a free
surface. Also, refinement criteria for these flows must refine both around the surface,
to resolve the convection equation for the volume fraction, and in the region below
it in order to capture the orbital flow fields. Due to the discontinuous solution at the
surface, different criteria must be used to control the refinement in these two regions.
Tests show, that a criterion which combines refinement normal to the surface with
Hessian-based refinement can accurately resolve free-surface flows when starting
from uniformly coarse original grids. Optimal results are obtained when the grid at
the surface is two to four times finer than directly below it.
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