
Chapter 3
Pose and Displacement

Abstract The homogenous transformation matrix describes either the pose
(position and orientation) or displacement (translation and orientation) of an object.
The displacement can be performed either with respect to a reference (fixed) coor-
dinate frame or with respect to a relative frame (attached to the object). Perspective
transformation can also be described by homogenous transformation matrix.

In the previous chapter we became acquainted with orientation and rotation. There
are, however, two other similar terms, namely position and translation. Position is
associated with a point in the space, usually in the cartesian coordinate frame. Trans-
lation represents a displacement along a line. We have learned that either rotation or
orientation can be described by the orthogonal rotation matrices of 3 × 3 order. In
a similar way position and translation are described by a 3× 1 vector, having three
components along the x , y, and z axes of cartesian coordinate frame [1].

In robotics we are interested into objects more than into points. These are either
the segments of robot mechanism or objects manipulated by the robot. When dealing
with the objects, we speak about their pose and their displacement. The pose of an
object represents its position and orientation. When defining the position of an object
in the space, we must select a point on this object. Usually this is the center of mass
or some characteristic corner. We already know that orientation of the body can be
described either by the use of rotation matrix, RPY or Euler angles or quaternions. An
arbitrary displacement of an object can be described by combination of translation
and rotation. In this chapter we shall come to know the homogenous transformation
matrices of 4×4 order, describing both the pose and the displacement of the objects.

3.1 Homogenous Transformation Matrix

Let us select a reference coordinate frame x0, y0, z0 in the space together with another
arbitrary frame x1, y1, z1, as shown in Fig. 3.1. The origins of the frames do not
coincide one with another as in Sect. 2.3. Let us select an arbitrary point P, denoted
by vector 1p in the frame x1, y1, z1. Our goal is to determine the position of the
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Fig. 3.1 Two arbitrary frames in the space

selected point or corresponding vector in the frame x0, y0, z0. The easiest way to
calculate the vector 0p is when the axes of the frames x0, y0, z0 and x1, y1, z1 are
parallel, while the frames are displaced for the distance 0d1. In the previous chapter
we learned that there always exists an equivalent axis about which the frame x1, y1, z1
can be rotated, so that it will be parallel to x0, y0, z0. The point P preserves its position
with respect to the reference frame x0, y0, z0, while vector 1p has new coordinates
in the rotated frame x1, y1, z1:

1p′ = 0R1
1p (3.1)

0R1 in equation (3.1) represents the rotation matrix, which aligns the frame x1, y1, z1
with respect to the frame x0, y0, z0. Figure 3.2 shows a bird’s-eye view on both
coordinate frames after aligning the axes of the frame x1, y1, z1 with respect to the
reference frame x0, y0, z0. Let us suppose that we have equal scales on the axes of
both frames, so that the components of all three vectors can be simply added:

0px = 1p′x + 0d1x

0py = 1p′y + 0d1 y

0pz = 1p′z + 0d1z

The position of point P in the frame x0, y0, z0 can be written by the following vector
equation:

0p = 1p′ + 0d1 (3.2)
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We are interested into a general case when the frame x1, y1, z1 is not parallel to
the reference frame x0, y0, z0, but arbitrarily rotated. In Eq. (3.2) we must take into
account that the frame x1, y1, z1 results from the rotation (3.1):

0p = 0R1
1p+ 0d1 (3.3)

The equation where the rotation matrix 0R1 appears together with the position vector
0d1, represents the general description of pose [2]. Equation (3.3) describes the
position of point expressed in the frame x0, y0, z0, while knowing its position in the
frame x1, y1, z1. Let us now suppose that we have in the space three arbitrary frames
x0, y0, z0, x1, y1, z1, and x2, y2, z2. We have a single point P in the space, which is
connected to the origins of the frames with three vectors 0p, 1p, and 2p. Let us write
the equation for the position of the point P in the frame x1, y1, z1, while we know its
position in the frame x2, y2, z2:

1p = 1R2
2p+ 1d2 (3.4)

Now we shall find the position of point P in the frame x0, y0, z0 by inserting the
Eq. (3.4) into (3.3):

0p = 0R1
1R2

2p+ 0R1
1d2 + 0d1 (3.5)

The equation describes the transformation between vectors 2p and 0p and can be
therefore adapted to the equation representing the pose (3.3):

0p = 0R2
2p+ 0d2 (3.6)
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After comparing the Eqs. (3.5) and (3.6), we can see that the following two relations
exist:

0R2 = 0R1
1R2 (3.7)

0d2 = 0d1 + 0R1
1d2 (3.8)

The first equation is already known from the previous Sect. (2.24). The second
equation only tells that two position vectors can be added when expressed in the same
coordinate frame. The vector 1d2, connecting the origins x1, y1, z1 and x2, y2, z2,
must be expressed in the frame x0, y0, z0, which is accomplished by premultiplying
the vector 1d2 by the rotation matrix 0R1. In this way the frame x1, y1, z1 is made
parallel to the frame x0, y0, z0.

The Eqs. (3.7) and (3.8) represent a system of equations which can be written in
the following matrix form:

[
0R1

0d1
0 1

] [
1R2

1d2
0 1

]
=

[
0R1

1R2
0R1

1d2 + 0d1
0 1

]
(3.9)

As the rotation matrix 0R1 is of 3 × 3 dimension, 0 means a row of zeros [0, 0, 0].
The equation shows that the general description of pose (3.3) can be written in the
following matrix form: [

0p
1

]
= 0H1

[
1p
1

]
(3.10)

where 0H1 represents homogenous transformation matrix:

0H1 =
⎡
⎣

0R1
0d1

0 1

⎤
⎦ (3.11)

The homogenous transformation matrix is homogenizing or unifying the orientation
and position or rotation and translation into a single matrix, what we shall learn in
details in the next chapters. The orthogonality of the matrix 0R1, which is part of
the homogenous matrix 0H1, leads to rather simple calculation of inverse matrix
0H−1

1 . Equation (3.3) is multiplied on both sides of the equality sign by 0RT
1 and

after expressing the column 1p we have:

1p = 0RT
1

0p− 0RT
1

0d1

what can be written in the form of homogenous transformation matrix:

0H−1
1 =

⎡
⎣

0RT
1 −0RT

1
0d1

0 1

⎤
⎦ (3.12)

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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In a similar way as successive orientations were written by postmultiplying the
rotation matrices, the successive poses are described by postmultiplication of
homogenous transformation matrices. Equation (3.9) can be shortly written as:

0H2 = 0H1
1H2

0Hn = 0H1
1H2 . . . n−1Hn

(3.13)

In the next chapter we shall learn that Eq. (3.13) represents the geometric model of
robot.

In the case of pure translation the rotation matrix (2.18) becomes a unit matrix:

R =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

as the diagonal dot products in Eq. (2.18) are as follows:

1i · 0i = 1
1j · 0j = 1

1k · 0k = 1

All the other products of the unit vectors are zero. The homogenous matrix is as
follows:

0H1 =
⎡
⎣ I 0d1

0 1

⎤
⎦ (3.14)

Let us consider a simple example. The vector a (represented by the unit vector i)
is first rotated in the clockwise direction for 90◦ about the z axis. The new vector is
afterwards translated for 2 units into positive y direction. Finally, the vector obtained
is rotated in counter clockwise direction for 90◦ about the x axis. Let us solve this
simple example first graphically (Fig. 3.3). After rotating the vector a in the clockwise
direction for 90◦ about the z axis, the vector b is obtained. It is directed in negative
y axis. This is written by the use of homogenous matrix as follows:

b = Hz,−90a (3.15)

Translation for +2 units in y axis brings us from point b into the point c:

c = Hy,+2b (3.16)

Finally the vector c is rotated in the counter clockwise direction about the x axis:

d = Hx,90c (3.17)

http://dx.doi.org/10.1007/978-94-007-6101-8_2
http://dx.doi.org/10.1007/978-94-007-6101-8_2
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Fig. 3.3 Displacements of a vector in the space

From Fig. 3.3 we can see, that after three displacements the unit vector k is obtained.
The same result can be obtained through calculations. Equation (3.15) is inserted into
(3.16) and the equation obtained into (3.17):

d = Hx,90Hy,+2Hz,−90a

After inserting the numbers, we have:

d =

⎡
⎢⎢⎣

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦

We obtained the expected result. In continuation we shall be interested more into the
displacement of objects than vectors.
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3.2 Pose

In the previous chapter we learned that the rotation matrix R describes either rotation
or orientation. The homogenous transformation matrix H has similar double mean-
ing, which is either pose or displacement. When a H matrix represents the pose,
than the rotation matrix R describes the orientation, while the column d means the
position [1].

Let us consider an arbitrary matrix H (3.18). When describing the orientation of
an object or coordinate frame by the use of rotation matrix, we already learned that
the first three columns of the homogenous matrix describe how the frame x1, y1, z1
is rotated with respect to the reference frame x0, y0, z0:

x1 y1 z1⎡
⎢⎢⎣
�0� �0� �1� 4
1 0 0 −3
�0� �1� �0� 7
0 0 0 1

⎤
⎥⎥⎦

x0
y0
z0

(3.18)

The fourth column represents the position of the origin of the displaced coordinate
frame x1, y1, z1 with respect to the base coordinate frame x0, y0, z0 (2.18). By using
this piece of knowledge we can plot the coordinate frame represented by the homoge-
nous matrix in the reference frame (Fig. 3.4). From matrix (3.18) we “read”, that
the x1 axis has the same direction as y0 axis of the reference frame, y1 axis the same
direction as z0 axis, while z1 axis is directed in the same way as x0 axis.

A very simple example was selected to explain the description of the pose by the
use of homogenous transformation matrix, where the axes of the frames x1, y1, z1
and x0, y0, z0 are either parallel or antiparallel. Such an example, however is not
without sense in robotics. Characteristic property of industrial robot is that the axes
of the neighboring joints are either parallel or perpendicular. Also the robots start
their movements from the so called “home” pose where the segments are placed
either parallel or perpendicular to each other. With robot home pose we encounter
the pose of the coordinate frames as shown in Fig. 3.4.

3.3 Displacement

We can explain the pose of the coordinate frame x1, y1, z1 in the reference frame
x0, y0, z0 by the displacement of the reference frame. When the matrix H represents
the displacement, then the rotation matrix R describes rotation, while the column d
belongs to translation. The matrix (3.18) can be considered as a result from three
successive steps:

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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Fig. 3.4 The pose of frame x1, y1, z1 with respect to reference frame x0, y0, z0

H = T rans (4,−3, 7) Rot (y, 90◦) Rot (z, 90◦) (3.19)

=

⎡
⎢⎢⎣

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
−1 0 0 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 1 4
1 0 0 −3
0 1 0 7
0 0 0 1

⎤
⎥⎥⎦

When performing the displacements with respect to a relative frame, Eq. (3.19) is
read from left to right:

→
T rans (4,−3, 7) Rot (y, 90◦) Rot (z, 90◦)

→

We can examine the correctness of Fig. 3.4 and the homogenous transformation
matrix (3.18) by performing the displacements described in Eq. (3.19) which are
shown in Fig. 3.5 The coordinate frame from Fig. 3.4 can be obtained by first
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Fig. 3.5 The displacements of a frame with respect to a relative coordinate frame

translating the reference frame x0, y0, z0 for [4,−3, 7]T, then rotating it for 90◦
about the new y axis and finally for 90◦ about again new z axis.

When performing the displacements with respect to the reference frame, Eq. (3.19)
is read from right to left:

←
T rans (4,−3, 7) Rot (y, 90◦) Rot (z, 90◦)

←

Now all the displacements are made with respect to the x0, y0, and z0 axes, as shown
in Fig. 3.6.

Let us examine the displacements somewhat closer. We already learned that
multiplying a vector p, representing position of a point in space, by homogenous
matrix H displaces the vector into a new position described by the product Hp. In
the continuation we will be interested into objects, which are represented by the coor-
dinate frames attached to those objects. The pose of a free object having 6 degrees
of freedom can be described by homogenous transformation matrix. Homogenous
transformation matrix, however, describes also displacement of an object. Therefore,
we shall in continuation of this chapter denote a homogenous matrix representing the
pose of an object by P, while the homogenous matrix describing the displacement
will be written as D. When dealing with points we had product of a matrix and a
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Fig. 3.6 The displacements of a frame with respect to a reference frame

column, while with objects we have two matrices. The pose of an object P can be
either premultiplied by the displacement D:

X = DP (3.20)

or it can be postmultiplied:
Y = PD (3.21)

The new poses of the object X and Y are different. Premultiplication (3.20) represents
a displacement with respect to the reference frame, while postmultiplication (3.21)
describes a displacement with respect to the relative coordinate frame. Let us examine
both displacements by the help of simple example.

Let us select an initial pose of a coordinate frame:

P =

⎡
⎢⎢⎣

1 0 0 20
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ (3.22)
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The displacement consists from translation and rotation:

D = T rans(0, 20, 0)Rot (z, 90◦) =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 20
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (3.23)

After premultiplication (3.20) the new pose is obtained:

X =

⎡
⎢⎢⎣

0 0 1 0
1 0 0 40
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

which is shown in Fig. 3.7. The expression for displacement (3.23) was read in the
reverse order, which means, that translation with respect to the reference frame was
performed after rotation.

Postmultiplication of a pose by displacement D means a displacement with respect
to the relative coordinate frame. After multiplication (3.21) the following new pose
is obtained:

Y =

⎡
⎢⎢⎣

0 −1 0 20
0 0 −1 0
1 0 0 20
0 0 0 1

⎤
⎥⎥⎦

which is shown in Fig. 3.8. Here, the expression for displacement (3.23) was read
in usual order (from left to right), which means that rotation was performed after
translation.
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Fig. 3.7 Displacement with respect to reference coordinate frame
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Fig. 3.8 Displacement with respect to relative coordinate frame

3.4 Displacement of Objects in Space

The displacements of two neighboring robot segments will play important role when
we shall in next chapters study the geometric model of robot mechanism. We shall
therefore look more closely to the description of the displacements of rigid bodies
in the space by the use of homogenous transformations.

Let us consider the pose of the objects A and B in space, as shown in Fig. 3.9. The
goal is to displace object B into a new pose B′ on the object A, so that both objects
are connected. Let us first perform the displacement with respect to the reference
coordinate frame. We shall select an arbitrary sequence of displacements, where the
object B is first rotated for 180◦ about the x0 axis of the reference frame. A new
pose of the object B is obtained, denoted as B′′. This intermediate pose is shown in
Fig. 3.10.

Now, it is not difficult to realize, that we shall reach the final pose B′ by the use of
translations only. The object in the pose B′′ is first lifted for at least 1 unit in the z0
direction, in order not to collide with the object A. Afterwards we slide over the object
A for 3 units in the x0 direction. After displacing the object for two units in the y0
direction, the objects A and B are connected. As we are dealing with a displacement
in a reference frame, the individual displacements are written in reverse order:

D = T rans(3, 2, 1)Rot (x, 180◦)
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Fig. 3.9 Initial and final pose of objects A and B in space

The displacement can be written by the use of corresponding homogenous
transformation matrices:

D =

⎡
⎢⎢⎣

1 0 0 3
0 1 0 2
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 2
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦

When calculating the final pose of the object B′, a coordinate frame must be attached
to the object B. A relative coordinate frame is attached to the object B in the cor-
ner [0, 5,−1]T, as shown in Fig. 3.9. The pose of the object B is described by the
following homogenous transformation:
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Fig. 3.10 The rotation of object B about the x0 axis of reference coordinate frame

B =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦

The final pose B′ is obtained by premultiplication with matrix D:

B′ = DB (3.24)

B′ =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 2
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦

We can check the correctness of the obtained final pose by the use of Fig. 3.9.
The task can be solved also by calculating the total displacement from the known

initial and final pose, without decomposing the displacement into particular rotations
and translations. After attaching a relative coordinate frame to the object B, the matrix
B can be determined from Fig. 3.9, describing the initial pose, and the matrix B

′
,

describing the final pose of the object. When postmultiplying Eq. (3.24) by B−1 on
the right and the left side of the equals sign, we calculate the transformation D in the
following form:

D = B
′
B−1
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The inverse matrix B−1 is obtained by Eq. (3.12):

B−1 =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

The desired displacement of the object in the reference frame is calculated as product
of following matrices:

D =

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 2
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦

We obtained the same homogenous matrix as in the first example.
Let us now place the object B over the object A with respect to relative coordinate

frame attached to the object B. We now rotate the object B for 180◦ about the x axis,
which is aligned along the edge of the object. The new pose of the object B′′ is shown
in Fig. 3.11.

We can reach the final pose B′ from the pose B′′ with only translational
displacements. To avoid the object A, the object B′′ must be lifted for at least 4
units. Therefore, we first perform a translation for −4 units along the z axis. Then
we slide with the object for −8 units along the y axis and finally translate it for −3
units along the x axis. Finally we drop the object for 1 unit, i.e. translate it for 1 along
the z axis.
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Fig. 3.11 The rotation of object B about the x axis of relative coordinate frame
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We are dealing with the following displacement, written in the same order in which
particular displacements were performed:

D = Rot (x, 180◦)T rans(−3,−8,−3)

D =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 −3
0 1 0 −8
0 0 1 −3
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 −3
0 −1 0 8
0 0 −1 3
0 0 0 1

⎤
⎥⎥⎦

The final pose of the object B′ is obtained by postmultiplication of the initial pose B
by the transformation matrix D:

B′ = BD (3.25)

B′ =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 −3
0 −1 0 8
0 0 −1 3
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦

We can check by use of Fig. 3.9 that the final pose of the object was attained. The task
can be solved in the same way as in previous example by only knowing the initial B
and final pose B′, which can be found from Fig. 3.9. By premultiplying Eq. (3.25)
on both sides of the equals sign by B−1, we obtain:

D = B−1 · B′

D =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 −3
0 −1 0 8
0 0 −1 3
0 0 0 1

⎤
⎥⎥⎦

The same homogenous matrix was obtained as in the example when selected rotation
and translation were performed with respect to the relative coordinate frame. The
last problem can be solved without any calculations. The displacement D is equal
to the pose of B′ with respect to B, which can be determined directly from Fig. 3.9
without considering the reference frame.

3.5 Perspective Transformation Matrix

When defining the homogenous transformation matrix (3.11), three zeros and a
one were written into the fourth line. It appears that their aim is only to make the
homogenous matrix quadratic. In this section we shall learn that the last line of the
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a b

f

Fig. 3.12 Image formation by the lens

matrix means perspective transformation. The perspective transformation [3] has no
meaning in robotics, it is however interesting in computer graphics and designing of
virtual environments. The perspective transformation can be explained by formation
of the image of an object through the lens with focal length f (Fig. 3.12). The lens
equation is:

1

a
+ 1

b
= 1

f
(3.26)

Let us place the lens into the x, z plane of cartesian coordinate frame (Fig. 3.13).
The point with coordinates [x, y, z]T is imaged into the point [x ′, y′, z′]T. The lens
equation is in this particular situation as follows:

1

y
− 1

y′
= 1

f
(3.27)

The rays passing through the center of the lens remain undeviated:

z

y
= z′

y′
(3.28)

Another equation for undeviated rays is obtained by exchanging z and z′ with x and
x ′ in Eq. (3.28). When rearranging the equations for deviated and undeviated rays,
we can obtain the relations between the coordinates of the original point x , y, and z
and its image x ′, y′, z′:

x ′ = x

1− y
f

(3.29)
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x

y
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z

z

f

x

y
z

[x , y , z ]T

[x, y, z]T

Fig. 3.13 Image of a point through the lens

y′ = y

1− y
f

(3.30)

z′ = z

1− y
f

(3.31)

The same result is obtained by the use of homogenous matrix P, describing the
perspective transformation:

P =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

f 0 1

⎤
⎥⎥⎦ (3.32)

The coordinates of the imaged point x ′, y′, z′ are obtained by multiplying the
coordinates of the original point x , y, z by the matrix P:

⎡
⎢⎢⎣

x ′
y′
z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

f 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x
y
z

1− y
f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x
1− y

fy
1− y

f
z

1− y
f

1

⎤
⎥⎥⎥⎦ (3.33)

The same relation between the imaged and the original coordinates was obtained as
in Eqs. (3.29–3.31). When the element−1/f is at the bottom of the first column, we
are dealing with perspective transformation along the x axis, when it is at the bottom
of the third column, we have projection along the z axis.

As an example let us solve the inverse problem. Let us consider the lens with
the focal length f = 2, which is placed into the x, z plane of cartesian coordinate
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frame (Fig. 3.13), so that the center of the lens coincides with the origin of the frame.
A point [x, y, z]T is imaged into the point [−1,−3,−2]T. It is our aim to calculate
the coordinates of the original point. We need the inverse perspective matrix P−1.
Knowing that the product P P−1 equals the unit matrix, it is not difficult to realize:

P−1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1

f 0 1

⎤
⎥⎥⎦ (3.34)

In this way the following numerical solution of simple example is obtained:

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1

2 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1
−3
−2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1
−3
−2
− 1

2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
6
4
1

⎤
⎥⎥⎦

The correctness of the solution can be checked by the use of Eqs. (3.29–3.31).
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