
SpringerBriefs in Applied Sciences
and Technology

For further volumes:
http://www.springer.com/series/8884

http://www.springer.com/series/8884


Tadej Bajd • Matjaž Mihelj
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Foreword

Throughout history automatic machines and robots have always attracted human
imagination, however, robots as they are defined today have been around only for
about 50 years. The science of robotics is still growing as a conglomerate of
different disciplines covering mechanical and electrical engineering, computer
science, mechanics and mathematics, physiology and neuroscience. This multi-
disciplinarity has created synergy for entirely new world of problems and original
discoveries that distinguish robotics from any other scientific field and open
unimaginable perspectives for the future.

Few decades ago, industrial robots were introduced into factories for automating
welding, spraying, material handling, and part assembly. By the use of new robotic
technology, factories have become more flexible and productive, humans were
freed from heavy and tedious labor. From the predominant industrial focus in their
early stage, nowadays robots have been expanding in everyday’s life and in a much
wider range of applications. The new generation of robots is expected to provide
support and services to humans in homes, health care, transport, education, and
entertainment. This symbiosis between humans and robots has led to gradually
enter basic robotics knowledge into school curricula creating an increasing need for
teaching literature.

Robotics contains numerous complementary aspects in research and design and
a vast repertoire of teaching levels and curricula. Numerous books have already
been published in robotics, but the area still opens up opportunities and challenges
for many others. The present book will serve as a useful tool to those who need
basic information and guide to the kinematics of robot motion. The challenge of
this book is in a very illustrative and effective presentation of robot movements
which allows the reader quick and easy understanding of substance.

Ljubljana, September 2012 J. Lenarčič
J. Stefan Institute
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Chapter 1
Introduction

Abstract Serial chains of rigid bodies connected by the joints play an important
role in robotics. They are encountered in industrial robot manipulators, multifingered
robot hands, and arms and legs of humanoid robots. When describing mathematically
such a serial chain, pose (position and orientation) and displacement (translation and
rotation) of the robot segments must be determined. The geometric robot model is
also introduced in this chapter.

Contemporaneous robotics [1] is a branch of science studying the intelligent
systems whose main characteristic property is movement. Such systems can be
divided into two larger groups. Into the first group we can place the systems which
copy the movement of various living organisms. In the second group, there are robotic
systems whose movement was invented by humans:

mobile robots,
underwater robots,
flying robots.

As mobile robotic systems we consider autonomous vehicles, predominantly those
with wheels. These can be robotic vacuum cleaners, autonomous lawn mowers,
intelligent guides through the department stores or museums, attendants in clinical
centers, space rovers, or autonomous cars which either drive on sensory equipped
highways or in an unpredictable environment of a desert. The underwater robots
usually have the shape of smaller autonomous submarines. Often they are equipped
with a robotic arm. They are applied in research of ocean, sea floor, ship wrecks or
as attendants on oil platforms. Flying robots are smaller autonomous aerial vehicles
usually applied for military reconnaissance missions.

Biologically conceived robots can be again split into two groups. In the first
group there are robot mechanisms, which copy human movements, while in the
second group we have mechanisms inspired by the world of animals. More and
more popular are becoming robots copying the movements of snakes. They can be
usefully employed in inspection and repair in different tubes and funnels. Similar
type of movement can be encountered with robotic fishes. In addition, we know the

T. Bajd et al., Introduction to Robotics, SpringerBriefs in Applied Sciences 1
and Technology, DOI: 10.1007/978-94-007-6101-8_1, © The Author(s) 2013



2 1 Introduction

robots imitating the movements of quadrupeds, six-legged insects and eight-legged
spiders. The robot systems modeling human movements can be divided into:

robot arms,
multi-fingered grippers,
bipedal robot systems.

Most frequent robot systems are robot arms and robot wrists. These are either
independent robot manipulators or arms of humanoid robots. Usually they have six
degrees of freedom. Three degrees of freedom belong to the arm and three to the
wrist. Six represents also the minimal number of the variables, required for the
description of an arbitrary pose of an object in Euclidean space. Most of the robot
manipulators are encountered in the industry. In automobile industry they are usually
applied in welding. The industrial robots are often used in tasks where their grippers
are displaced from point to point. Such example is palletizing, this is loading of parts
into containers, while keeping them in organized order. The purpose of palletizing
is either feeding of machines or packaging of component parts. Industrial robots
are often used in aggressive environments that are dangerous for human workers.
Such an example are robots for spray painting. Robot manipulators are increasingly
entering the area of industrial assembly. Robot manipulators are not encountered only
in industrial environments. They are of more and more interest in medicine. We find
them in surgical applications (hip joint replacement) or in rehabilitation (training of
paralyzed extremity after stroke). Telemanipulators also have the shape and structure
of human arm. These are robots which are controlled by human operator. They are
used in dangerous environments and space research.

Today we encounter in industrial robot applications mainly grippers with two
fingers. However, more and more frequent are grippers with three fingers, where
each finger consists from three knuckles. These are complex systems with 9 degrees
of freedom, which are demanding from the control point of view. We make use
of approaches incorporating human demonstration and including learning process
similar to that of a small child. In the research environment there are arising new
multi-fingered grippers which are copies of human hand encompassing 22 degrees
of freedom.

The most noticeable property of humanoid robots is their ability of bipedal
walking. They walk either with statically stable or dynamically stable gait, they
can balance while standing on a single leg, they can crawl on all four extremities
or move in accordance with human co-worker. With further development of robot
vision and recognition methods, we can expect that the humanoid robots will soon
become our close collaborators.

The property which is characteristic for all human like robot mechanisms, i.e.
arms, fingers and legs, is serial chain of segments and joints. An open serial chain is
shown in Fig. 1.1. The serial chain is represented by a system of rigid bodies, where
each body is connected to two neighboring bodies. The exceptions are the first and
the last body, which are only related to a single element of the chain. Four coordinate
frames are placed into the demonstrated serial chain.
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Fig. 1.1 Serial chain of segments and joints

At the origin of the kinematic chain, there is so called base or reference frame
x0, y0, z0, which is fixed in space. At the end of the chain, there is the robot end-point
frame xn , yn , zn , which is displaced when the robot mechanism is in motion. We
shall be mainly interested into the pose of the frame xn , yn , zn with respect to the
reference coordinate frame. This is an entirely general problem of the pose of two
objects, which is of interest not only in robotics, but also in civil engineering, geodesy,
astrophysics. The pose of the last segment of a robot can be split into its position
and orientation. In our case the position is represented by a vector connecting the
origins of the frames x0, y0, z0 and xn , yn , zn , while the orientation describes how
one frame is rotated with respect to the other.

The coordinate frames xi−1, yi−1, zi−1 and xi , yi , zi are attached to two
neighboring segments of the serial chain. We shall be mainly interested into the
displacement between these two frames. The robot segments are connected through
the joints. The joints constrain the relative motion of two neighboring segments. The
robots manipulators have two types of joints, translational (T) and rotational (R). The
robot joints are characterized by only one degree of freedom. In the case of rotational
joint it will be described by the angle variable ϑ , while with the translational joint we
shall have distance variable d. The displacement will be therefore split into transla-
tion and rotation. Let us imagine several lines in the frame xi−1, yi−1, zi−1. After
translational displacement all the lines must be parallel to the lines in the initial ori-
entation. The rotation is defined as a displacement where at least one point of a rigid
object remains fixed in the initial position. Also the description of the displacement
in not only of interest in robotics. It can be usefully applied in computer graphics
and planning of virtual environments.
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The pose and the displacement will be both described by the same mathematical
tool, which is homogenous transformation matrix. The matrix is of 4 × 4 order and
can be illustrated as follows:

• • • �
• • • �
• • • �
� � � 1

The nine black circles denote the orthogonal matrix, whose inverse matrix is equal
to the transposed matrix. Its elements are nothing but direction cosines of the angles
between individual axes of the coordinate frames xi−1, yi−1, zi−1 and xi , yi , zi or
x0, y0, z0 and xn , yn , zn . When we shall be interested into the pose this matrix will
represent the orientation, when dealing with the displacement, the matrix will belong
to the rotation. In general, the matrix of 3 × 3 order is in the literature known as
the rotation matrix. We shall learn its general form, i.e. the matrix describing the
rotation around an arbitrary axis. In robotics the coordinate frames are placed by
ourselves. It would be therefore irrational not to place one of the axes (usually the
z axis) along the joint axis. In further text we shall often encounter three rotation
matrices describing the rotations around the x , y and z axes. The right columns of
black squares represents the position, when dealing with the pose, and translation,
when the displacement is considered. In robotics the displacements will occur along
one of the axes of the rectangular coordinate frame.

We shall become familiar also with the lower row of the white squares. This
row belongs to perspective transformation and is important in computer graphics.
In robotics the lower row will consist of three zeros and number one in right lower
corner.

It has been already mentioned, that six parameters are required to completely
describe the pose of an object in the space. Three parameters belong to the orientation
and the other three to the position. Rotation matrix with nine elements is therefore
a redundant description of the orientation. A non-redundant description is given by
Euler or RPY angles. In both cases we have three angles, usually denoted as ϕ, ϑ
and ψ . The Euler angles describe the orientations about a relative coordinate frame
which is not fixed. With the RPY angles, which are also used in the air and ship traffic,
the rotations are defined about the axes of a fixed coordinate frame. We shall learn the
relations between the elements of the rotation matrix and the Euler and RPY angles.
The problem with Euler or RPY description of orientation are the singularities, which
can be avoided by the use of quaternions.

The quaternion algebra was invented by William R. Hamilton [2].First he thought
that the problem of rotation in a 3D space can be solved by triple of real numbers.
Afterwards, he solved the problem ingeniously by using a quadruple. As we shall
learn later, by doing so he violated the commutative law of product. The quaternions
represent extension of the complex numbers:

z = a + ib (1.1)
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where i means the square root of −1, therefore i2 = −1. The complex numbers can
be presented geometrically, as shown in the upper Fig. 1.2, and written in exponential
form:

z = reiα (1.2)

The magnitude (absolute value) of the product of two complex numbers is equal to
the product of the magnitudes of both factors, while the angle (phase) of the product
equals the sum of the angles of both factors:

z1z2 = r1r2ei(α+β) (1.3)

Multiplying by a complex number represents the rotation in the plane. Let us
consider an example, where vector [1, 1]T is multiplied by the vector i (Fig. 1.2). The
magnitude of the vector i is 1, while the corresponding angle is π/2. With regard
to Eq. (1.3) the result is [−1, 1]T. With another words, multiplying by i rotates the
initial point (1, 1) forπ/2 into the point (−1, 1). The center of rotation is in the origin
of the coordinate frame. When going from plane into space Hamilton added two unit
vectors j and k to already existing i. The three unit vectors run along the three axes of
the rectangular coordinate frame. The following equality i2 = j2 = k2 = ijk = −1
is also valid. In this way the quaternion was born:

q = q01 + q1i + q2j + q3k (1.4)

In the textbook we shall learn the relations between quaternions, rotation matrix,
Euler and RPY angles.

We have seen that the robot joints are either translational or rotational. The
industrial robot arms have another important property. The axes of two neighboring
joints are either parallel or perpendicular. As the robot arm has only three degrees
of freedom, simple combinatorial calculus shows that all together 36 different robot

Re
Im

-1 1

π/2

1

i

Re

r

b

a

α

Im

Fig. 1.2 Geometric presentation of complex number (above) and product of complex numbers
(below)



6 1 Introduction

arms are possible. Among them only 12 are functionally different. On the market we
find five different commercially available robot arms. These are anthropomorphic,
spherical, SCARA, cylindrical, and cartesian robot arm. The anthropomorphic arm
has all three joints of rotational type, what is denoted as RRR. Among the robot arms
it resembles the human arm to the largest extent, what is evident also from its name.
The spherical robot arm has two rotational and one translational degree of freedom
(RRT). The workspace, which can be reached by the robot endpoint, has a spheri-
cal shape. Therefrom comes the name of this robot arm. Also the workspace of the
anthropomorphic arm has a spherical shape. SCARA (Selective Compliant Articu-
lated Robot for Assembly) robot is predominantly aimed for industrial processes of
assembly. Two joints are rotational and one is translational (RRT). The workspace of
SCARA robot arm is of cylindrical shape. The cylindrical shape of the workspace is
even more evident with the cylindrical robot arm. This robot has one rotational and
two translational degrees of freedom (RTT). The cartesian robot arm has all three
joints of translational type (TTT). The joint axes are perpendicular one to another.
Cartesian robot arms are known for high accuracy, while the special structure of
gantry robots is suitable for manipulation of heavy objects. The workspace of carte-
sian arm is a prism. We shall become acquainted with the enumerated structures of
the robot arms when constructing the geometric robot models.

When constructing a geometric model of a robot mechanism, we must find such
a displacement of the coordinate frame xi−1, yi−1, zi−1, that it will be completely
aligned with the frame xi , yi , zi [3, 4]. In general this can be accomplished by the
Chasles’ theorem, which says that an arbitrary displacement can be performed in only
two steps. There always exists an unique axis in the space about which an unique rota-
tion can be be performed. After performing also the translation along a line parallel
to the original axis, an arbitrary displacement can be achieved. Another displace-
ment which is performed in four steps appears to be more suitable for description
of robot mechanisms. On the first sight the approach with four Denavit-Hartenberg
(DH) parameters looks like more complex. While explaining the DH parameters, we
shall use Fig. 1.3, where a line was drawn in the frame xi−1, yi−1, zi−1. Let this line
represent the zi axis of the neighboring coordinate frame. The axes zi−1 and zi are
also the joint axes of two neighboring robot joints.

An arbitrary line is most simply plotted in the space by drawing the line through
two points. In this way 6 coordinates must be known. Usually, a line in the space is
described by a single point on the line and the direction cosines of the line, which
again requires 6 variables. Denavit and Hartenberg succeeded to draw the line in the
space with only four parameters. Their idea is based on a common normal existing
between two lines, in our case between the lines zi−1 and zi . It is possible to show,
that there exists an unique common normal between two arbitrary lines. It is at the
same time also the shortest distance between the two lines. (In further text we shall
consider two exceptions occurring when the lines either intersect or are parallel to
each other.) The line in the space can be determined by knowing the following four
parameters:
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Fig. 1.3 Determining the line in the space by the use of DH parameters

1. the length of the common normal, which will be denoted as ai ,
2. the distance between the origin of the coordinate frame xi−1, yi−1, zi−1 and the

intersection of the zi−1 axis with the common normal, which will be denoted
as di ,

3. the angle between the xi−1 axis and the common normal about the zi−1 axis,
denoted as ϑi ,

4. the angle between the axes zi−1 and zi around the common normal, denoted as αi .

Now we shall first translate the frame xi−1, yi−1, zi−1 for the distance di along
the zi−1 axis, then rotate it for the angle ϑi about the same axis, translate for ai along
the common normal and finally align for the angle αi about the common normal.
After these four displacements the coordinate frames xi−1, yi−1, zi−1 and xi , yi , zi

are completely aligned.
By the use of four DH parameters we shall develop the homogenous transformation

matrix describing the pose of the frame xi , yi , zi with respect to the frame xi−1,
yi−1, zi−1. In each matrix there will be only one joint variable, either ϑi for rota-
tional joints or di for translational joints. These variables are assessed by the use
of angle or distance sensors in the robot joints. The homogenous transformation
matrices are determined for each pair of the neighboring joints. By postmultiplying
the matrices from the base towards the robot endpoint, the forward geometric model
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of a robot is developed. We assume that apart from the measured joint variables,
also the dimensions of all robot segments are known. The forward geometric model
represents the pose, i.e. position and orientation, of the coordinate frame at the robot
end-point xn , yn , zn with respect to the base coordinate frame x0, y0, z0.

In robot control [5] we need the inverse geometric model of the robot. When
calculating the inverse model the position and orientation of the robot end-point are
given with respect to the base coordinate frame. Our task is to find the joint vari-
ables. As trigonometric functions appear in the homogenous transformation matrices
describing the displacements of the rotational joints, we are dealing with nonlinear
equations. The solution of the inverse model does not exist when the robot end-point
is out of the robot workspace. With more complex robot mechanisms we encounter
several solutions for the same pose of the last robot segment. Developing of the for-
ward geometric robot model by postmultiplication of homogenous transformation
matrices has the same form for all serial robotic chains. Analytical solution of inverse
geometric model must be found for each robot mechanism separately. The nonlinear
equations are solved intuitively while taking into account the geometric characteristic
properties of a selected robot mechanism. Analytical solution for a robot mechanism
with six degrees of freedom exists, when three consecutive rotational joints axes
intersect in a common point, what occurs in the case of a spherical wrist, or when
three consecutive rotational joint axes are parallel. Otherwise the inverse model must
be obtained numerically, what is slower and represents a disadvantage in case of robot
control. The advantage of numerical methods is their independence from the structure
of robot mechanism. In some cases the numerical methods do not yield all possible
solutions.

References
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Chapter 2
Rotation and Orientation

Abstract Rotation about an arbitrary axis is described by the use of Rodrigues’s
formula. Orientation of a coordinate frame with respect to another frame is expressed
with the rotation matrix. Orientation of a robot gripper is determined by the use of
rotation matrix, RPY and Euler angles, and quaternions. A brief introduction to
quaternions is also given in this chapter.

2.1 Rotation

Rotation represents circular movement about an axis [1]. The point P1 is rotated for
an angle ϑ in positive direction about an arbitrary axis, running through the origin
of a fixed coordinate frame (Fig. 2.1). Positive rotation around a selected axis in a
cartesian frame is defined by the right-hand rule (the thumb is placed in direction
of the axis, while the index of the right hand is rotated towards the palm). In a
right-handed frame the positive rotations are counter-clockwise. When determining
the direction of rotation we must look from the positive end of the axis towards
the origin of the frame. The direction of running of athletes on a stadium is also
an example of positive rotation. After positive rotation the point comes into a new
position P2.

The position of the point P1 can be denoted by the vector:

r1 = OP1

After rotation the point comes into position P2:

r2 = OP2

The direction of rotation is denoted by the unit vector s:

s = [sx , sy, sz]T

T. Bajd et al., Introduction to Robotics, SpringerBriefs in Applied Sciences 9
and Technology, DOI: 10.1007/978-94-007-6101-8_2, © The Author(s) 2013
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Fig. 2.1 Rotation of a point
about arbitrary axis

α
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O

The vector s describes the axis of rotation. By equating the following two scalar
products, we have:

rT
1 s = r1 cosα = rT

2 s = r2 cosα = |OSp| (2.1)

In Eq. (2.1) α represents the angle between the vectors r1 and s or r2 and s. The
following difference of the vectors can be seen from Fig. 2.1:

SpP1 = r1 − OSp

From where we can write the Eq. (2.2):

SpP1 = r1 − (rT
1 s)s (2.2)

SpP2 = r2 − (rT
2 s)s

The relation between the unit vector s and the vector r1, describing the absolute
value of the cross product, can also be found from Fig. 2.1:

|s× r1| = |SpP1| = r1 sin α
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Fig. 2.2 The plane perpen-
dicular to the rotation axis

N

Sp
ϑ

P1

P2

Let us now look at the plane, where the rotation between the points P1 and P2 took
place. It is perpendicular to the rotation axis (Fig. 2.2). The point, where the plane
and the rotation axis intersect, will be denoted as Sp. There also holds:

NP2 ⊥ SpP1

As the points P1 and P2 are on the same circular line, we have:

|SpP1| = |SpP2|

from Fig. 2.2 we can see:

|SpN| = |SpP2|cϑ = |SpP1|cϑ

In robotics we prefer shorter notation of trigonometric functions cϑ = cosϑ and
sϑ = sin ϑ . As the vectors SpN and SpP1 have the same direction, we can write also
the following vectorial equation:

SpN = SpP1cϑ (2.3)

In similar way we can see from Fig. 2.2:

|NP2| = |SpP2|sϑ = |SpP1|sϑ = |(s× r1)|sϑ

As the vectors NP2 and (s × r1) have the same direction, we can write also the
following vectorial equation:

NP2 = (s× r1)sϑ (2.4)
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It is our aim to find the relation between the vectors r1 and r2. Let us first write the
following sum of vectors:

SpP2 = SpN + NP2 (2.5)

By inserting the relations (2.2), (2.3) and (2.4) into Eq. (2.5), we obtain:

r2 − (rT
2 s)s = [r1 − (rT

1 s)s]cϑ + (s× r1)sϑ

As the vectors r1 and r2 are of equal lengths, we can write:

rT
1 s = rT

2 s

and after rearrangement:

r2 = r1cϑ + (s× r1)sϑ + s(rT
1 s)(1− cϑ) (2.6)

The above equation is known as Rodrigues’s formula in vectorial form. When
rewriting the equation for the components, the Rodrigues’s formula can be presented
in matrix form:

r2 = Rr1 (2.7)

The matrix R describes the rotation about an arbitrary axis. By inserting the
components of all three vectors s = [sx , sy , sz]T, r1 = [r1x , r1y , r1z]T, and
r2 = [r2x , r2y , r2z]T into the Rodrigues’s formula (2.6) and after calculating the
cross and dot products, the following rotation matrix R is obtained:

R =

⎡
⎢⎢⎢⎢⎣

s2
x vϑ + cϑ sx syvϑ − szsϑ sx szvϑ + sysϑ

sx syvϑ + szsϑ s2
yvϑ + cϑ syszvϑ − sx sϑ

sx szvϑ − sysϑ syszvϑ + sx sϑ s2
z vϑ + cϑ

⎤
⎥⎥⎥⎥⎦

(2.8)

In Eq. (2.8) the following shorter notation of trigonometric function (1−cosϑ) = vϑ
was used.

The matrix, describing the rotation about an arbitrary axis, is often used in
computer graphics or in development of virtual environments. In robotics, how-
ever, we always place one of the axes of the cartesian coordinate frame along the
axis of the rotational joint. In this way we only use the rotation matrices about the
x , y and z axes. The rotation matrix Rx , describing the rotation about the x axis, is
obtained by inserting the corresponding unit vector s = [1, 0, 0]T into Eq. (2.6). We
have the following cross product:

(s× r1) = [0,−r1z, r1y]T
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and dot product:
rT

1 s = r1x

After inserting the vectors s, r1 and r2 together with both products into Eq. (2.6), we
obtain the rotation matrix about the x axis:

Rx =
⎡
⎣

1 0 0
0 cϑ −sϑ
0 sϑ cϑ

⎤
⎦ (2.9)

When inserting the unit vector s = [0,1,0]T, running along the y axis, into the
Rodrigues’s formula (2.6), we have:

Ry =
⎡
⎣

cϑ 0 sϑ
0 1 0
−sϑ 0 cϑ

⎤
⎦ (2.10)

The rotation about the z axis is described by the matrix:

Rz =
⎡
⎣

cϑ −sϑ 0
sϑ cϑ 0
0 0 1

⎤
⎦ (2.11)

Let us consider also the inverse problem. The matrix R given, it is our aim to
determine the direction of the rotational axis s and the angle of the rotation ϑ . We
shall write the rotation matrix in the following general form:

R =
⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦

When summing up the diagonal elements:

trace(R) = r11 + r22 + r33 = 1+ 2cϑ

we obtain:

ϑ = arccos

(
trace(R)− 1

2

)
(2.12)

The above solution is not uniquely defined. The resulting angle can be also ϑ ± 2πn
and −ϑ ± 2πn. To continue we find the following differences of the off-diagonal
elements:
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r32 − r23 = 2sx sϑ

r13 − r31 = 2sysϑ

r21 − r12 = 2szsϑ

When there is ϑ �= 0, the rotational axis is given in the following form:

s = 1

2sϑ

⎡
⎣

r32 − r23
r13 − r31
r21 − r12

⎤
⎦ (2.13)

When 2π −ϑ was selected as the angle of rotation, the rotational axis has a negative
sign, i.e. −s. The axis obtained is called also the equivalent rotational axis.

When the vector r1 was rotated in the frame x, y, z about the axis s, we obtained
the rotated vector r2 after multiplication with the rotation matrix. When using in
Eq. (2.7) another notation for the rotation matrix, we have:

r2 = R21r1 (2.14)

Let us now assume that there is another axis in the same coordinate frame x, y, z.
After rotating the vector r2 about this new axis, the vector r3 is obtained:

r3 = R32r2 (2.15)

After inserting Eq. (2.14) into (2.15), we have:

r3 = R32 R21r1 (2.16)

Successive rotations in the same coordinate frame are described by premultiplication
of the rotation matrices.

Let us now consider an example where we shall make use of all knowledge
gathered in this chapter. Three successive rotations were performed in the same
coordinate frame: first the rotation for 270◦ about the z axis, afterwards the rotation
for 180◦ about the y axis and finally the rotation for 90◦ about the x axis. This can
be written by the following multiplication of the matrices:

R = Rx,90Ry,180Rz,270

=
⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣
−1 0 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣

0 1 0
−1 0 0

0 0 1

⎤
⎦ =

⎡
⎣

0 −1 0
0 0 1
−1 0 0

⎤
⎦

The three above rotations can be replaced by a single rotation for a corresponding
angle about the equivalent axis. This angle can be calculated from Eq. (2.12). As
trace(R) in our case equals 0, we have:
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ϑ = 120◦

After finding the angle of rotation, we calculate the unit vector (2.13) along the
rotational axis:

s = 1√
3

⎡
⎣
−1

1
1

⎤
⎦

We shall verify the correctness of the calculation by finding the matrix describing
the rotation about the equivalent axis. We shall make use of the Rordrigues’s formula
(2.6) and again we shall first calculate the cross product:

(s× r1) = 1√
3

⎡
⎣

r1z − r1y

r1x + r1z

−r1y − r1x

⎤
⎦

and afterwards also the dot product:

rT
1 s = 1√

3
(−r1x + r1y + r1z)

The following rotation matrix is obtained:

R =

⎡
⎢⎢⎣

1− 2
3 vϑ − 1√

3
sϑ − 1

3 vϑ 1
3 sϑ − 1

3 vϑ

1√
3
sϑ − 1

3 vϑ 1− 2
3 vϑ 1√

3
sϑ + 1

3 vϑ

− 1√
3
sϑ − 1

3 vϑ − 1√
3

sϑ + 1
3 vϑ 1− 2

3 vϑ

⎤
⎥⎥⎦

After insertingϑ = 120◦ in the above matrix, we obtain the matrix from the beginning
of this example:

R =
⎡
⎣

0 −1 0
0 0 1
−1 0 0

⎤
⎦

Let us consider another short example. The unit vector i should be rotated for
2π /3 about the axis running through the origin of the frame and the point [1,1,1]T.
The unit vector s, which is obtained by normalizing the three components of equal
length, is placed along the axis:

s = 1√
3
[1, 1, 1]T

Apart from vector s, we insert into the Rodrigues’s formula (2.6) also: r1 = [1,0,0]T,
c120◦ = −1/2, and s120◦ = √3/2. We write:
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⎡
⎣

r2x

r2y

r2z

⎤
⎦ =

⎡
⎣

1
0
0

⎤
⎦

(
−1

2

)
+ 1√

3

⎡
⎣

i j k
1 1 1
1 0 0

⎤
⎦
√

3

2

+ 1

3

⎡
⎣

1
1
1

⎤
⎦

⎛
⎝[ 1 0 0 ]

⎡
⎣

1
1
1

⎤
⎦

⎞
⎠

(
1+ 1

2

)

and the result is:
r2 = [0, 1, 0]T = j.

2.2 Orientation

Orientation describes in geometrical terms how one object is rotated with respect to
the other or how an object is aligned with respect to the reference, usually cartesian,
coordinate frame [2, 3]. As a reference frame we shall select the rectangular frame
x0, y0, z0. Unit vectors 0i, 0j, and 0k describe the selected coordinate frame (Fig. 2.3).

x0

y0

z0

x1

y1

z1

P

0i 0j

0k

1i

1j

1k

1p
0p

Fig. 2.3 Orientation of the coordinate frame x1, y1, z1 with respect to the reference coordinate
frame x0, y0, z0
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In Fig. 2.3 also the rotated coordinate frame x1, y1, z1 with unit vectors 1i, 1j, and
1k is shown. Both coordinate frames coincide in the same origin. Also shown is the
point P, which is connected to the frame origin either by vector 0p, expressed in
the frame x0, y0, z0, or vector 1p, expressed in the frame x1, y1, z1. Let us describe
the position of the point P in the frame x0, y0, z0 by the use of vector 0p with the
following equation:

0p = 0px
0i+ 0py

0j+ 0pz
0k

Vector 1p belongs to the same point, however in the frame x1, y1, z1:

1p = 1px
1i+ 1py

1j+ 1pz
1k

It is obvious that vectors 0p and 1p are equal, as they connect the same origin with the
same point P. We shall make use of this property in order to demonstrate the relation
between the axes of the coordinate frames x0, y0, z0 and x1, y1, z1. It is, therefore,
our aim to describe the orientation of the frame x1, y1, z1 with respect to the frame
x0, y0, z0. The mathematical relation between the frames x0, y0, z0 and x1, y1, z1 is
obtained by expressing a selected component of vector 0p in the frame x0, y0, z0 by
the use of the components of vector 1p, which is given in the frame x1, y1, z1. Let
us select first the component 0px :

0px = 0p 0i = 1p 0i = 1px
1i 0i+ 1py

1j 0i+ 1pz
1k 0i

In general we have equivalent expressions also for the components 0py and 0pz :

0py = 1px
1i 0j+ 1py

1j 0j+ 1pz
1k 0j

0pz = 1px
1i 0k + 1py

1j 0k + 1pz
1k 0k

The relation between both coordinate frames, given by the above three equations,
can be written in more compact matrix form:

0p = 0R1
1p (2.17)

where 0p = [0px , 0py , 0pz]T and 1p = [1px , 1py , 1pz]T. The matrix 0R1 is given as
follows:

0R1 =
⎡
⎢⎣

1i0i 1j0i 1k0i
1i0j 1j0j 1k0j
1i0k 1j0k 1k0k

⎤
⎥⎦ (2.18)

The matrix has the dimension 3×3 and represents the transformation of the point P or
the corresponding vector 1p, expressed in the frame x1, y1, z1, into the coordinates
of the frame x0, y0, z0. The above expression describes the orientation of the frame
x1, y1, z1 with respect to the frame x0, y0, z0. As we are dealing with the unit vectors,
the elements of the so called rotation matrix are simply the cosines of the angles
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appertaining to each pair of axes:

0R1 =

⎡
⎢⎢⎢⎢⎣

cosϑ1i0i cosϑ1 j0i cosϑ1k0i

cosϑ1i0 j cosϑ1 j0 j cosϑ1k0 j

cosϑ1i0k cosϑ1 j0k cosϑ1k0k

⎤
⎥⎥⎥⎥⎦

(2.19)

In a similar way we can determine the position of the point P in the coordinate frame
x1, y1, z1 from the known coordinates of the same point expressed in the frame
x0, y0, z0:

1px = 1p 1i = 0p 1i = 0px
0i 1i+ 0py

0j 1i+ 0pz
0k 1i

Similarly, we can write also the expressions for 1py and 1pz , so that we have the
following matrix equation:

1p = 1R0
0p

1R0 =
⎡
⎢⎣

0i1i 0j1i 0k1i
0i1j 0j1j 0k1j
0i1k 0j1k 0k1k

⎤
⎥⎦

The transformation, described by the matrix 1R0, is inverse transformation of the
matrix 0R1. This matrix represents the orientation of the frame x0, y0, z0 with respect
to the frame x1, y1, z1. As the dot product is commutative (e.g. 0i 1j = 1j 0i), we can
write the following equality:

1R0 = (0R1)
−1 = (0R1)

T (2.20)

The matrix, whose inverse matrix is equal to its transposed matrix, is called
orthogonal matrix. The transformation matrix 1R0 will be therefore called orthog-
onal transformation matrix. As the determinants of the matrices 1R0 and 0R1 are
equal det 0R1 = det(0R1)

T and their product equals 1, also both determinants are
either +1 or −1. In the right-handed coordinate frame the determinant is equal to
+1. The orthogonal matrices with the value of the determinant +1 or−1 are named
rotation matrices.

Let us consider the example from Fig. 2.4 and calculate the rotation matrix
representing orientation of the frame x1, y1, z1, which is rotated for the angle +ϑ
with respect to the frame x0, y0, z0. We are dealing with the following non-zero
products of the unit vectors:

0i 1i = 1
0j 1j = cosϑ
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x0

y0

z0

x1

y1

z1

ϑ

ϑ

0i 0j

0k

1i

1j1k

Fig. 2.4 Two coordinate frames rotated about the x0 axis

0k 1k = cosϑ
0j 1k = − sin ϑ
0k 1j = sin ϑ

The rotation matrix can be written in the following form:

Rx =
⎡
⎣

1 0 0
0 cϑ −sϑ
0 sϑ cϑ

⎤
⎦ (2.21)

In the same way as we determined the matrix describing the orientation obtained
after the rotation about the x axis, we shall calculate the rotation matrix about the y
axis:

Ry =
⎡
⎣

cϑ 0 sϑ
0 1 0
−sϑ 0 cϑ

⎤
⎦ (2.22)

and finally the rotation matrix about the z axis:
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Rz =
⎡
⎣

cϑ −sϑ 0
sϑ cϑ 0
0 0 1

⎤
⎦ (2.23)

We can see that the matrices describing the orientation of two coordinate frames
rotated about x , y, or z axis of cartesian coordinate frame are the same as the matrices
describing rotation, obtained in previous chapter.

Let us imagine point P expressed in three different coordinate frames by the use
of vectors 0p, 1p, and 2p. The relation between particular vectors is given with the
following equations:

0p = 0R1
1p

1p = 1R2
2p

The coordinate frames x0, y0, z0, x1, y1, z1, and x2, y2, z2 have the origin in the
same point, however they are rotated one with respect to the other. After inserting
vector 1p from the second into the first equation, we obtain the equation describing
relative position of vector 2p with respect to the frame x0, y0, z0:

0p = 0R1
1R2

2p (2.24)
0R2 = 0R1

1R2

This is different from the previous chapter, where we considered consecutive rotations
about different axes of the same coordinate frame. The consecutive orientations of
several coordinate frames are described by the postmultiplication of the rotation
matrices. We must have in mind, that consecutive orientations are related to the
previous (relative) coordinate frame.

The notion of orientation is in robotics mostly related to the orientation of the
robot gripper. A coordinate frame with three unit vectors n, s, and a, describing the
orientation of the gripper, is placed between both fingers (Fig. 2.5). The z axis vector
lays in the direction of the approach of the gripper to the object. It is denoted by
vector a (approach). Vector, which is aligned with y axis, describes the direction
of sliding of the fingers and is denoted as s (slide). The third vector completes the
right-handed coordinate frame and is called normal. There is n = s× a. The matrix
describing the orientation of the gripper with respect to the reference frame x0, y0, z0
has the following form:

R =
⎡
⎣

nx sx ax

ny sy ay

nz sz az

⎤
⎦ (2.25)

The element nx of the matrix (2.25) denotes the projection of the unit vector n on the
x0 axis of the reference frame or, when considering the matrix (2.19), the cosine of
the angle between the axes x and x0. The same is valid for the eight other elements
of the orientation matrix R. To describe the orientation of an object we do not need
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x0

y0

z0
a

s

n

Fig. 2.5 Orientation of robot gripper

all nine elements of the matrix. The left column vector is the cross product of vectors
s and a. The vectors s and a are unit vectors which are perpendicular with respect to
each other, so that we have:

s · s = 1

a · a = 1

s · a = 0

Three elements are, therefore, sufficient to describe the orientation. The orientation
is often described by the following sequence of rotations:

R : roll—about z axis

P : pitch—about y axis

Y : yaw—about x axis

This description is mostly used with orientation of a ship or airplane. Let us imagine
that the airplane flies along z axis and that the coordinate frame is positioned into the
center of the airplane. Then, R represents the rotation ϕ about z axis, P belongs to
the rotation ϑ about y axis and Y to the rotationψ about x axis, as shown in Fig. 2.6.
All rotations are performed with respect to a fixed reference frame.
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Fig. 2.6 RPY angles for the case of an airplane

The meaning of RPY angles for the case of robot gripper is shown in Fig. 2.7. As
it can be realized from Figs. 2.6 and 2.7, the RPY orientation is defined with respect
to a fixed coordinate frame. In Sect. 2.1 we learned, that consecutive rotations about
different axes of the same coordinate frame can be described by the premultiplication
of the rotation matrices, or with another words the rotations are performed in the
reverse order. We start with the rotation ϕ about z axis, continue with rotationϑ about
y axis and finish with the rotation ψ about x axis. The reverse order of rotations is
evident also from the name of RPY angles. The orientation matrix, which belongs to
the RPY angles, is obtained by the following multiplication of the rotation matrices:

RPY(ϕ, ϑ,ψ) = Rot (z, ϕ)Rot (y, ϑ)Rot (x, ψ)

=
⎡
⎣

cϕ −sϕ 0
sϕ cϕ 0
0 0 1

⎤
⎦

⎡
⎣

cϑ 0 sϑ
0 1 0
−sϑ 0 cϑ

⎤
⎦

⎡
⎣

1 0 0
0 cψ −sψ
0 sψ cψ

⎤
⎦

=
⎡
⎢⎣

cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ

sϕsϑ sϕsϑsψ + cϕcψ sϕsϑcψ − cϕcψ

−sϑ cϑsψ cϑcψ

⎤
⎥⎦ (2.26)

Equation (2.26) calculates the rotation matrix from the corresponding RPY angles.
Let us consider also the inverse problem, i.e. an example of calculating the RPY
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Fig. 2.7 RPY angles for the
case of robot gripper
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angles from a given matrix. Let us assume that the matrix (2.27) describes the
orientation of a gripper in the reference coordinate frame which is attached to the base
of a robot manipulator. It was calculated by the use of geometric robot model which
will be studied in the following chapters of the textbook. The matrix is obtained by
inserting the readings of the joint angles obtained from joint sensors, while the robot
is in a selected pose. Let us assume the following simple matrix:

R =
⎡
⎣

1 0 0
0 0.5 0.866
0 −0.866 0.5

⎤
⎦ (2.27)

It is our aim to calculate the RPY angles of the gripper with respect to the reference
frame. We shall first write a general form for the orientation matrix of the gripper
and equate it to the RPY matrix:

⎡
⎣

r1x r2x r3x

r1y r2y r3y

r1z r2z r3z

⎤
⎦ =

⎡
⎣

cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ
sϕcϑ sϕsϑsψ + cϕcψ sϕsϑcψ − cϕsψ
−sϑ cϑsψ cϑcψ

⎤
⎦

When using the most simple solutions for the elements r1z , r2z , and r3z , in many
cases singularities or inaccurate results are obtained. The accuracy of calculation



24 2 Rotation and Orientation

of an angle depends on its magnitude. Specially inappropriate is dividing by small
angle values. Let us first find the equation for the angle ϑ :

sin ϑ = −r1z

cos2ϑ = r2
1x + r2

1y + r2
2z + r2

3z

2

ϑ = arctan
−r1z√

1
2

(
r2
1x + r2

1y + r2
2z + r2

3z

) (2.28)

When calculating the angle ϕ, we make use of the following trigonometrical
expressions:

r2zr3x = cϑsψ (sϕsψ + cϕsϑcψ)

r3zr2x = cϑcψ (−sϕcψ + cϕsϑsψ)

r2zr3x − r3zr2x = sϕcϑ

r3zr2y = cϑcψ (cϕcψ + sϕsϑsψ)

r2zr3y = cosϑsψ (−cϕsψ + sϕsϑcψ)

r3zr2y − r2zr3y = cϕcϑ

ϕ = arctan
r2zr3x − r3zr2x

r3zr2y − r2zr3y
(2.29)

In a similar way we find also the angle ψ :

r1yr3x = sϕcψ (sϕsψ + cϕsϑcψ)

r1x r3y = cϕcϑ (−cϕsψ + sϕsϑcψ)

r1yr3x − r1x r3y = cϑsψ

r1x r2y = cϕcϑ (cϕcψ + sϕsϑsψ)

r1yr2x = sϕcϑ (−sϕcψ + cϕsϑsψ)

r1x r2y − r1yr2x = cϑcψ

ψ = arctan
r1yr3x − r1x r3y

r1x r2y − r1yr2x
(2.30)

Let us go back to the numerical example where the matrix (2.27) represents the
orientation of the gripper. When calculating the value of the angle ϑ , we can notice,
that the numerator (r1z) equals zero, while the denominator is non-zero, therefore
ϑ = 0. The same is valid for the angle ϕ = 0, while the angle ψ = −60◦. The
orientation of the gripper with respect to the reference frame is shown in Fig. 2.8.
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Fig. 2.8 Orientation of robot gripper

The gripper lays in the y0, z0 plane. From the figure we can read the angles between
the axes of the reference and gripper coordinate frame:

nx = cos 0◦, sx = cos 90◦, ax = cos 90◦

ny = cos 90◦, sy = cos 60◦, ay = cos 30◦

nz = cos 90◦, sz = cos 150◦, az = cos 60◦

We can see that this is the original matrix (2.27).
The orientation can be described also by the help of the Euler angles, where we

first perform the rotation ϕ about the z axis, afterwards the rotation ϑ about the new
y axis and finally the rotation ψ about the momentary z axis (Fig. 2.9). As now the
rotations were performed about the axes of the momentary coordinate frame, we
make use of postmultiplications. The Euler matrix is obtained as follows:

Euler(ϕ, ϑ,ψ) = Rot (z, ϕ)Rot (y′, ϑ)Rot (z′′, ψ)

=
⎡
⎣

cϕ −sϕ 0
sϕ cϕ 0
0 0 1

⎤
⎦

⎡
⎣

cϑ 0 sϑ
0 1 0
−sϑ 0 cϑ

⎤
⎦

⎡
⎣

cψ −sψ 0
sψ cψ 0
0 0 1

⎤
⎦

=
⎡
⎢⎣

cϕcϑcψ − sϕsψ −cϕcϑsψ − sϕcψ cϕsϑ

sϕcϑcψ + cϕsψ −sϕcϑsψ + cϕcψ sϕsϑ

−sϑcψ sϑsψ cϑ

⎤
⎥⎦ (2.31)



26 2 Rotation and Orientation

Fig. 2.9 Euler angles
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The orientation described by the matrix (2.31), is called also Z-Y-Z Euler angles.
Euler’s theorem says, that two independent orthonormal coordinate frames can be
aligned to each other through a sequence of three rotations about the coordinate
axes, where two consecutive rotations cannot be made about the same axis. In this
way 12 different rotations are possible: X-Y-Z, X-Z-Y, X-Y-X, X-Z-X, Y-Z-X, Y-X-Z,
Y-Z-Y, Y-X-Y, Z-X-Y, Z-Y-X, Z-X-Z , and our Z-Y-Z. Twelve different rotations are also
possible when describing the rotations in a fixed reference frame, however usually
the described RPY angles are used. Finally let us also state that three rotations about
the axes of the fixed coordinate frame represent the same orientation as the same
three rotations performed in reverse order about the three axes of the momentary or
relative coordinate frame.

2.3 Quaternions

We learned that rotation and orientation can be described either by rotation matrices
or by RPY and Euler angles. In the first case we need 9 parameters, while only
3 parameters are required in the latter two cases. The matrices are convenient for
computations, however they do not provide fast and clear image of e.g. orientation
of a robot gripper in the space. RPY and Euler angles nicely present the orientation
of a gripper, but they are not appropriate for calculations. In this chapter we shall
learn that quaternions are appropriate for either calculation of rotation or description
of orientation [4, 5].

Quaternions are represented by four real numbers, with operations of addition and
multiplication defined by special rules which we will learn in this chapter. Quaternions



2.3 Quaternions 27

are generalization of the complex numbers. Complex numbers enable operations with
two-dimensional vectors, while by the use of quaternions four-dimensional vectors
can be dealt with.

The quaternions can be written in various ways. The simplest is the following
expression:

q = q01+ q1i+ q2j+ q3k (2.32)

In the above equation qi are real numbers, while i, j, k correspond to the unit vectors
along the axes of the cartesian coordinate frame.
The sum of quaternions is obtained in the following way:

p + q = (p0 + q0) 1+ (p1 + q1) i+ (p2 + q2) j+ (p3 + q3)k,

product of a quaternion and scalar is:

wq = wq0 + wq1i+ wq2j+ wq3k

Quaternion conjugate has the following form:

q∗ = q01− q1i− q2j− q3k (2.33)

The equation reminds us on complex conjugate. Similar observation is true also
for the following rules, which we shall use when developing the product of two
quaternions:

i2 = j2 = k2 = ijk = −1

The multiplication of quaternions is not commutative. When multiplying two
quaternions we shall make use of the following table:

* 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Quaternions can be written in another way, where the sum of the scalar part q0 and
the vector part q is emphasized:

q = q0 + q (2.34)
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The vector q can be written in the usual form

q = q1i+ q2j+ q3k

Let us calculate first the product of two quaternions:

pq = (p0 + p1i+ p2j+ p3k) (q0 + q1i+ q2j+ q3k)

= p0q0 + q0 (p1i+ p2j+ p3k)+ p0 (q1i+ q2j+ q3k)

+ p1q1i2 + p2q1ji+ p3q1ki

+ p1q2ij+ p2q2j2 + p3q2kj

+ p1q3ik + p2q3jk + p3q3k2

After applying the rules, defining the algebra of calculations with quaternions, we
obtain:

pq = p0q0 + p0q+ q0p

− p1q1 − p2q2 − p3q3

+ (p2q3 − p3q2) i

+ (p3q1 − p1q3) j

+ (p1q2 − p2q1) k

The second row of the above equation represents a dot product, while the last three
rows belong to the cross product of the vectors p and q. In this way we can write the
product of two quaternions in the following form:

pq = p0q0 − p · q+ p0q+ q0p+ p× q (2.35)

After exchanging the factors, we obtain:

qp = q0 p0 − q · p+ p0q+ q0p+ q× p

Because of the cross product in the last summand, the multiplication of two
quaternions is not commutative. The multiplication of quaternions is sufficiently
complex, so that mistakes are quite frequent. We shall develop another formula
which is more error resistant. The first two summands in the right side of Eq. (2.35)
represent the following scalar:

r0 = p0q0 − p1q1 − p2q2 − p3q3

The other three summands can be written in the following form of columns:
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⎡
⎣

r1
r2
r3

⎤
⎦ =

⎡
⎣

p0q1
p0q2
p0q3

⎤
⎦+

⎡
⎣

q0 p1
q0 p2
q0 p3

⎤
⎦+

⎡
⎣

p2q3 − p3q2
p3q1 − p1q3
p1q2 − p2q1

⎤
⎦

Both expressions can be transformed into the following matrix form:
⎡
⎢⎢⎣

r0
r1
r2
r3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q0
q1
q2
q3

⎤
⎥⎥⎦ (2.36)

With this kind of multiplying the quaternions there is less chance to make a mistake.
As a numerical example let us multiply two quaternions in three different ways. First,
we shall only make use of the rules from the table. Because of the risk to make a
mistake, we shall multiply step by step:

(2+ 3i− j+ 5k)(3− 4i+ 2j+ k)

= 6+ 9i− 3j+ 15k

− 8i− 12i2 + 4ji− 20ki

+ 4j+ 6ij− 2j2 + 10kj

+ 2k + 3ik − jk + 5k2

= 6+ 9i− 3j+ 15k

− 8i+ 12− 4k − 20j

+ 4j+ 6k + 2− 10i

+ 2k − 3j− i− 5 = 15− 10i− 22j+ 19k

The same result is obtained by the use of Eq. (2.35):

⎛
⎝2+

⎡
⎣

3
−1

5

⎤
⎦

⎞
⎠

⎛
⎝3+

⎡
⎣
−4

2
1

⎤
⎦

⎞
⎠

= 6− [
3 −1 5

]
⎡
⎣
−4

2
1

⎤
⎦+ 2

⎡
⎣
−4

2
1

⎤
⎦+ 3

⎡
⎣

3
−1

5

⎤
⎦+

⎡
⎣

i j k
3 −1 5
−4 2 1

⎤
⎦

= 6+ 9+
⎡
⎣

1
1

17

⎤
⎦+

⎡
⎣
−11
−23

2

⎤
⎦ = 15−

⎡
⎣
−10
−22

19

⎤
⎦
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Finally, we shall make use of Eq (2.36):

⎡
⎢⎢⎣

2 −3 1 −5
3 2 −5 −1
−1 5 2 −3

5 1 3 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3
−4

2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

15
−10
−22

19

⎤
⎥⎥⎦

Until now we learned how to rotate vector r1 into a new position r2 by using
Rodrigues’s formula (2.6) or rotation matrix (2.7). Now we shall do the same by
the use of quaternions:

r2 = qr1q∗ (2.37)

The quaternions from Eq. (2.37) have the following meaning:

q = q0 + q

r1 = 0+ r1

q∗ = q0 − q

r2 = 0+ r2

We shall demonstrate that the expression (2.37) is equivalent to the description of
rotation with the matrix Eq. (2.7). Let us perform both quaternion multiplications, as
required by Eq. (2.37):

(0+ r2) = (q0 + q)(0+ r1)q
∗ = (−q · r1 + (q0r1 + q× r1))(q0 − q)

Before performing the second multiplication, we must know, that the first summand
in the first brackets of the above equation is a scalar, while the other two represent a
vector. We multiply by the use of Eq. (2.35):

r2 = −q · r1q0

+ q0r1 · q+ (q× r1) · q
+ (q · r1)q+ q2

0 r1 + q0(q× r1)

− q0r1 × q− q× r1 × q

In the above equation we first subtract the first two summands. The third summand is
zero. We exchange the factors of the cross product in the seventh summand and add
it to the sixth summand. The last summand is expressed according to the formula
−(q ·q) · r1+ (r1 ·q) ·q, which can be found in every mathematical reference book.
After little rearranging we have:

r2 = q2
0 r1 − (q · q)r1 + 2q0(q× r1)+ 2q(q · r1) (2.38)
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From the above equation we wish to expose r1. We replace the cross product by the
multiplication with a skew symmetric matrix:

(q× r1) =
⎡
⎣

0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤
⎦ r1

while in the last summand we perform a dot product:

qqT =
⎡
⎣

q1
q2
q3

⎤
⎦[

q1 q2 q3
]

Equation (2.38) can be rewritten into the following form:

r2 =
⎧⎨
⎩(q

2
0 − q2

1 − q2
2 − q2

3 )I+ 2q0

⎡
⎣

0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤
⎦

+2

⎡
⎣

q2
1 q1q2 q1q3

q1q2 q2
2 q2q3

q1q3 q2q3 q2
3

⎤
⎦

⎫⎬
⎭ r1

The rotation matrix R expressed with the four elements of quaternion has the
following form:

⎡
⎣

q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤
⎦ (2.39)

The following expression of a quaternion is specially appropriate to describe the
rotation or orientation in the space:

q = cos
ϑ

2
+ sin

ϑ

2
s (2.40)

In the above equation s is a unit vector aligned with the rotation axis, while ϑ is
the angle of rotation. Also the quaternion, which is describing rotation, is a unit
quaternion:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (2.41)

We will insert the quaternion q, written in the form (2.40), into Eq. (2.38). With
respect to Eq. (2.34), the quaternion will be split into scalar and vector part:
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q0 = cos
ϑ

2

q = sin
ϑ

2
s

The following equation is obtained:

r2 = cos2 ϑ

2
r1− sin2 ϑ

2
(s · s)r1+ 2 cos

ϑ

2
sin

ϑ

2
(s× r1)+ 2 sin2 ϑ

2
s(s · r1) (2.42)

When considering the following trigonometric formulas:

2 cos
ϑ

2
sin

ϑ

2
= sin ϑ

cos2 ϑ

2
− sin2 ϑ

2
= cosϑ

cos2 ϑ

2
+ sin2 ϑ

2
= 1

and while taking into account the commutative property of the dot product, we can
demonstrate that Eq. (2.42) represents the Rodrigues’s formula (2.6).

The rotation about the z axis can be written by the use of the following quaternion:

q = cos
ϑ

2
+ sin

ϑ

2

⎡
⎣

0
0
1

⎤
⎦

Individual elements of the quaternion are therefore:

q0 = cos
ϑ

2
q1 = 0

q2 = 0

q3 = sin
ϑ

2

By inserting the above elements into the rotation matrix (2.39), we have:

⎡
⎢⎣

cos2 ϑ
2 − sin2 ϑ

2 −2 cos ϑ2 sin ϑ
2 0

2 cos ϑ2 sin ϑ
2 cos2 ϑ

2 − sin2 ϑ
2 0

0 0 cos2 ϑ
2 + sin2 ϑ

2

⎤
⎥⎦
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The above matrix is the well known matrix describing the rotation about the z axis:

⎡
⎣

cosϑ − sin ϑ 0
sin ϑ cosϑ 0

0 0 1

⎤
⎦

Let us consider also the inverse problem, where we will determine the equivalent unit
quaternion from the elements of the rotation matrix. With different combinations of
the diagonal elements of the rotation matrix r11, r22, r33 we obtain:

q2
0 =

1

4
(1+ r11 + r22 + r33)

q2
1 =

1

4
(1+ r11 − r22 − r33)

q2
2 =

1

4
(1− r11 + r22 − r33)

q2
3 =

1

4
(1− r11 − r22 + r33)

When developing the above expressions, one must have in mind that we are dealing
with the unit quaternions (2.41). When calculating these quaternions we use the
signs, which we have encountered while determining the equivalent axis of rotation
(2.13):

q0 = 1

2

√
1+ r11 + r22 + r33

q1 = 1

2
sgn(r32 − r23)

√
1+ r11 − r22 − r33

q2 = 1

2
sgn(r13 − r31)

√
1− r11 + r22 − r33

q3 = 1

2
sgn(r21 − r12)

√
1− r11 − r22 + r33

(2.43)

Let us first consider a simple example, where two consecutive rotations were
performed in the same coordinate frame: first rotation for 90◦ about the z axis and
afterwards the rotation for 90◦ about the y axis. This can be written by the use of
rotation matrices as follows:

R = Ry,90Rz,90 =
⎡
⎣

0 0 1
0 1 0
−1 0 0

⎤
⎦

⎡
⎣

0 −1 0
1 0 0
0 0 10

⎤
⎦ =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦
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We will now use the quaternions instead of rotation matrices. Rotation for 90◦ about
the y axis is according to Eq. (2.40) written as follows:

p = cos 45+ sin 45◦
⎡
⎣

0
1
0

⎤
⎦

or

p0 =
√

2

2
and p = 1

2

⎡
⎣

0√
2

0

⎤
⎦

In a similar way we describe also the rotation for 90◦ about the z axis:

q0 =
√

2

2
and q = 1

2

⎡
⎣

0
0√
2

⎤
⎦

The product of two quaternions is calculated by the help of (2.35):

pq = 1

2
− 1

4

[
0
√

2 0
]
⎡
⎣

0
0√
2

⎤
⎦+
√

2

4

⎡
⎣

0
0√
2

⎤
⎦+
√

2

4

⎡
⎣

0√
2

0

⎤
⎦

+ 1

4

⎡
⎣

i j k
0
√

2 0
0 0

√
2

⎤
⎦ = 1

2
+ 1

2
i+ 1

2
j+ 1

2
k

When inserting the calculated quaternion into the matrix (2.39), the rotation matrix
R from the beginning of this example is obtained.

Let us look at another example, which was by the use of Rodrigues’s formula
solved already in Sect. 2.1. The unit vector i was rotated for the angle 2π /3 about the
axis running through the origin of the coordinate frame and the point (1, 1, 1)T.
The axis of rotation is described, as in previous example, by the unit vector
s= 1/

√
3[1, 1, 1]T, which we will insert together with cos(π/3) = 1/2 and sin(π /3)=√

3/2 into Eq. (2.40). The following quaternion is obtained:

q = 1

2
+ 1

2
i+ 1

2
j+ 1

2
k

We will insert:
r1 = 0+ i

into Eq. (2.37) describing the rotation. The following multiplication must be
performed:
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r2 = 1

2
(1+ i+ j+ k)(i)

1

2
(1− i− j− k)

= 1

4
(i− 1− k + j)(1− i− j− k)

= 1

4
(i− 1− k + j+ 1+ i+ j+ k

− k + j− i+ 1+ j+ k − 1− i)

= j

We obtained the same result as when using the Rodrigues’s formula.
Let us finally study, how to describe by the use of quaternions the orientation

of the gripper shown in Fig. 2.8 from the Sect. 2.2. The orientation of the gripper is
obtained as result of the geometric model of the robot in the form of rotation matrix
(2.27). We calculate the corresponding quaternion by the use of Eq. (2.43):

q0 = 0.866

q1 = −0.5

q2 = 0

q3 = 0

In previous chapter we have found out that the rotation matrix (2.27) belongs to the
following RPY angles: ϕ = 0, ϑ = 0, and ψ = −60◦. The orientation quaternion can
be obtained also from the RPY angles. Rotation R is described by the quaternion:

qzϕ = cos
ϕ

2
+ sin

ϕ

2
k (2.44)

The following quaternion belongs to the rotation P:

qyϑ = cos
ϑ

2
+ sin

ϑ

2
j (2.45)

while rotation Y can be written as follows:

qxψ = cos
ψ

2
+ sin

ψ

2
i (2.46)

After multiplying the above three quaternions:

RPY(ϕ, ϑ,ψ) = qzϕqyϑqxψ (2.47)
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the resulting quaternion is obtained:

q0 = c
ϕ

2
c
ϑ

2
c
ψ

2
+ s

ϕ

2
s
ϑ

2
s
ψ

2
(2.48)

q1 = c
ϕ

2
c
ϑ

2
s
ψ

2
− s

ϕ

2
s
ϑ

2
c
ψ

2
(2.49)

q2 = c
ϕ

2
s
ϑ

2
s
ψ

2
+ s

ϕ

2
c
ϑ

2
s
ψ

2
(2.50)

q3 = s
ϕ

2
c
ϑ

2
s
ψ

2
− c

ϕ

2
s
ϑ

2
s
ψ

2
(2.51)

For the selected RPY angle we have:

q0 =
√

3

2

q1 = −1

2
q2 = 0

q3 = 0

which is the expected result.
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Chapter 3
Pose and Displacement

Abstract The homogenous transformation matrix describes either the pose
(position and orientation) or displacement (translation and orientation) of an object.
The displacement can be performed either with respect to a reference (fixed) coor-
dinate frame or with respect to a relative frame (attached to the object). Perspective
transformation can also be described by homogenous transformation matrix.

In the previous chapter we became acquainted with orientation and rotation. There
are, however, two other similar terms, namely position and translation. Position is
associated with a point in the space, usually in the cartesian coordinate frame. Trans-
lation represents a displacement along a line. We have learned that either rotation or
orientation can be described by the orthogonal rotation matrices of 3 × 3 order. In
a similar way position and translation are described by a 3× 1 vector, having three
components along the x , y, and z axes of cartesian coordinate frame [1].

In robotics we are interested into objects more than into points. These are either
the segments of robot mechanism or objects manipulated by the robot. When dealing
with the objects, we speak about their pose and their displacement. The pose of an
object represents its position and orientation. When defining the position of an object
in the space, we must select a point on this object. Usually this is the center of mass
or some characteristic corner. We already know that orientation of the body can be
described either by the use of rotation matrix, RPY or Euler angles or quaternions. An
arbitrary displacement of an object can be described by combination of translation
and rotation. In this chapter we shall come to know the homogenous transformation
matrices of 4×4 order, describing both the pose and the displacement of the objects.

3.1 Homogenous Transformation Matrix

Let us select a reference coordinate frame x0, y0, z0 in the space together with another
arbitrary frame x1, y1, z1, as shown in Fig. 3.1. The origins of the frames do not
coincide one with another as in Sect. 2.3. Let us select an arbitrary point P, denoted
by vector 1p in the frame x1, y1, z1. Our goal is to determine the position of the

T. Bajd et al., Introduction to Robotics, SpringerBriefs in Applied Sciences 37
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x0

y0

z0

x1

y1

z1

P

0d1

0p

1p

Fig. 3.1 Two arbitrary frames in the space

selected point or corresponding vector in the frame x0, y0, z0. The easiest way to
calculate the vector 0p is when the axes of the frames x0, y0, z0 and x1, y1, z1 are
parallel, while the frames are displaced for the distance 0d1. In the previous chapter
we learned that there always exists an equivalent axis about which the frame x1, y1, z1
can be rotated, so that it will be parallel to x0, y0, z0. The point P preserves its position
with respect to the reference frame x0, y0, z0, while vector 1p has new coordinates
in the rotated frame x1, y1, z1:

1p′ = 0R1
1p (3.1)

0R1 in equation (3.1) represents the rotation matrix, which aligns the frame x1, y1, z1
with respect to the frame x0, y0, z0. Figure 3.2 shows a bird’s-eye view on both
coordinate frames after aligning the axes of the frame x1, y1, z1 with respect to the
reference frame x0, y0, z0. Let us suppose that we have equal scales on the axes of
both frames, so that the components of all three vectors can be simply added:

0px = 1p′x + 0d1x

0py = 1p′y + 0d1 y

0pz = 1p′z + 0d1z

The position of point P in the frame x0, y0, z0 can be written by the following vector
equation:

0p = 1p′ + 0d1 (3.2)
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Fig. 3.2 The aligned coordi-
nate frames
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We are interested into a general case when the frame x1, y1, z1 is not parallel to
the reference frame x0, y0, z0, but arbitrarily rotated. In Eq. (3.2) we must take into
account that the frame x1, y1, z1 results from the rotation (3.1):

0p = 0R1
1p+ 0d1 (3.3)

The equation where the rotation matrix 0R1 appears together with the position vector
0d1, represents the general description of pose [2]. Equation (3.3) describes the
position of point expressed in the frame x0, y0, z0, while knowing its position in the
frame x1, y1, z1. Let us now suppose that we have in the space three arbitrary frames
x0, y0, z0, x1, y1, z1, and x2, y2, z2. We have a single point P in the space, which is
connected to the origins of the frames with three vectors 0p, 1p, and 2p. Let us write
the equation for the position of the point P in the frame x1, y1, z1, while we know its
position in the frame x2, y2, z2:

1p = 1R2
2p+ 1d2 (3.4)

Now we shall find the position of point P in the frame x0, y0, z0 by inserting the
Eq. (3.4) into (3.3):

0p = 0R1
1R2

2p+ 0R1
1d2 + 0d1 (3.5)

The equation describes the transformation between vectors 2p and 0p and can be
therefore adapted to the equation representing the pose (3.3):

0p = 0R2
2p+ 0d2 (3.6)
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After comparing the Eqs. (3.5) and (3.6), we can see that the following two relations
exist:

0R2 = 0R1
1R2 (3.7)

0d2 = 0d1 + 0R1
1d2 (3.8)

The first equation is already known from the previous Sect. (2.24). The second
equation only tells that two position vectors can be added when expressed in the same
coordinate frame. The vector 1d2, connecting the origins x1, y1, z1 and x2, y2, z2,
must be expressed in the frame x0, y0, z0, which is accomplished by premultiplying
the vector 1d2 by the rotation matrix 0R1. In this way the frame x1, y1, z1 is made
parallel to the frame x0, y0, z0.

The Eqs. (3.7) and (3.8) represent a system of equations which can be written in
the following matrix form:

[
0R1

0d1
0 1

] [
1R2

1d2
0 1

]
=

[
0R1

1R2
0R1

1d2 + 0d1
0 1

]
(3.9)

As the rotation matrix 0R1 is of 3 × 3 dimension, 0 means a row of zeros [0, 0, 0].
The equation shows that the general description of pose (3.3) can be written in the
following matrix form: [

0p
1

]
= 0H1

[
1p
1

]
(3.10)

where 0H1 represents homogenous transformation matrix:

0H1 =
⎡
⎣

0R1
0d1

0 1

⎤
⎦ (3.11)

The homogenous transformation matrix is homogenizing or unifying the orientation
and position or rotation and translation into a single matrix, what we shall learn in
details in the next chapters. The orthogonality of the matrix 0R1, which is part of
the homogenous matrix 0H1, leads to rather simple calculation of inverse matrix
0H−1

1 . Equation (3.3) is multiplied on both sides of the equality sign by 0RT
1 and

after expressing the column 1p we have:

1p = 0RT
1

0p− 0RT
1

0d1

what can be written in the form of homogenous transformation matrix:

0H−1
1 =

⎡
⎣

0RT
1 −0RT

1
0d1

0 1

⎤
⎦ (3.12)

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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In a similar way as successive orientations were written by postmultiplying the
rotation matrices, the successive poses are described by postmultiplication of
homogenous transformation matrices. Equation (3.9) can be shortly written as:

0H2 = 0H1
1H2

0Hn = 0H1
1H2 . . . n−1Hn

(3.13)

In the next chapter we shall learn that Eq. (3.13) represents the geometric model of
robot.

In the case of pure translation the rotation matrix (2.18) becomes a unit matrix:

R =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

as the diagonal dot products in Eq. (2.18) are as follows:

1i · 0i = 1
1j · 0j = 1

1k · 0k = 1

All the other products of the unit vectors are zero. The homogenous matrix is as
follows:

0H1 =
⎡
⎣

I 0d1

0 1

⎤
⎦ (3.14)

Let us consider a simple example. The vector a (represented by the unit vector i)
is first rotated in the clockwise direction for 90◦ about the z axis. The new vector is
afterwards translated for 2 units into positive y direction. Finally, the vector obtained
is rotated in counter clockwise direction for 90◦ about the x axis. Let us solve this
simple example first graphically (Fig. 3.3). After rotating the vector a in the clockwise
direction for 90◦ about the z axis, the vector b is obtained. It is directed in negative
y axis. This is written by the use of homogenous matrix as follows:

b = Hz,−90a (3.15)

Translation for +2 units in y axis brings us from point b into the point c:

c = Hy,+2b (3.16)

Finally the vector c is rotated in the counter clockwise direction about the x axis:

d = Hx,90c (3.17)

http://dx.doi.org/10.1007/978-94-007-6101-8_2
http://dx.doi.org/10.1007/978-94-007-6101-8_2
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Rot (x, 90 )°

°Rot(z,−90 )

Fig. 3.3 Displacements of a vector in the space

From Fig. 3.3 we can see, that after three displacements the unit vector k is obtained.
The same result can be obtained through calculations. Equation (3.15) is inserted into
(3.16) and the equation obtained into (3.17):

d = Hx,90Hy,+2Hz,−90a

After inserting the numbers, we have:

d =

⎡
⎢⎢⎣

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦

We obtained the expected result. In continuation we shall be interested more into the
displacement of objects than vectors.



3.2 Pose 43

3.2 Pose

In the previous chapter we learned that the rotation matrix R describes either rotation
or orientation. The homogenous transformation matrix H has similar double mean-
ing, which is either pose or displacement. When a H matrix represents the pose,
than the rotation matrix R describes the orientation, while the column d means the
position [1].

Let us consider an arbitrary matrix H (3.18). When describing the orientation of
an object or coordinate frame by the use of rotation matrix, we already learned that
the first three columns of the homogenous matrix describe how the frame x1, y1, z1
is rotated with respect to the reference frame x0, y0, z0:

x1 y1 z1⎡
⎢⎢⎣
�0� �0� �1� 4
1 0 0 −3
�0� �1� �0� 7
0 0 0 1

⎤
⎥⎥⎦

x0
y0
z0

(3.18)

The fourth column represents the position of the origin of the displaced coordinate
frame x1, y1, z1 with respect to the base coordinate frame x0, y0, z0 (2.18). By using
this piece of knowledge we can plot the coordinate frame represented by the homoge-
nous matrix in the reference frame (Fig. 3.4). From matrix (3.18) we “read”, that
the x1 axis has the same direction as y0 axis of the reference frame, y1 axis the same
direction as z0 axis, while z1 axis is directed in the same way as x0 axis.

A very simple example was selected to explain the description of the pose by the
use of homogenous transformation matrix, where the axes of the frames x1, y1, z1
and x0, y0, z0 are either parallel or antiparallel. Such an example, however is not
without sense in robotics. Characteristic property of industrial robot is that the axes
of the neighboring joints are either parallel or perpendicular. Also the robots start
their movements from the so called “home” pose where the segments are placed
either parallel or perpendicular to each other. With robot home pose we encounter
the pose of the coordinate frames as shown in Fig. 3.4.

3.3 Displacement

We can explain the pose of the coordinate frame x1, y1, z1 in the reference frame
x0, y0, z0 by the displacement of the reference frame. When the matrix H represents
the displacement, then the rotation matrix R describes rotation, while the column d
belongs to translation. The matrix (3.18) can be considered as a result from three
successive steps:

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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x0

y0

z0

x1

y1

z1

-3

4

7

Fig. 3.4 The pose of frame x1, y1, z1 with respect to reference frame x0, y0, z0

H = T rans (4,−3, 7) Rot (y, 90◦) Rot (z, 90◦) (3.19)

=

⎡
⎢⎢⎣

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
−1 0 0 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 1 4
1 0 0 −3
0 1 0 7
0 0 0 1

⎤
⎥⎥⎦

When performing the displacements with respect to a relative frame, Eq. (3.19) is
read from left to right:

→
T rans (4,−3, 7) Rot (y, 90◦) Rot (z, 90◦)

→

We can examine the correctness of Fig. 3.4 and the homogenous transformation
matrix (3.18) by performing the displacements described in Eq. (3.19) which are
shown in Fig. 3.5 The coordinate frame from Fig. 3.4 can be obtained by first
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Fig. 3.5 The displacements of a frame with respect to a relative coordinate frame

translating the reference frame x0, y0, z0 for [4,−3, 7]T, then rotating it for 90◦
about the new y axis and finally for 90◦ about again new z axis.

When performing the displacements with respect to the reference frame, Eq. (3.19)
is read from right to left:

←
T rans (4,−3, 7) Rot (y, 90◦) Rot (z, 90◦)

←

Now all the displacements are made with respect to the x0, y0, and z0 axes, as shown
in Fig. 3.6.

Let us examine the displacements somewhat closer. We already learned that
multiplying a vector p, representing position of a point in space, by homogenous
matrix H displaces the vector into a new position described by the product Hp. In
the continuation we will be interested into objects, which are represented by the coor-
dinate frames attached to those objects. The pose of a free object having 6 degrees
of freedom can be described by homogenous transformation matrix. Homogenous
transformation matrix, however, describes also displacement of an object. Therefore,
we shall in continuation of this chapter denote a homogenous matrix representing the
pose of an object by P, while the homogenous matrix describing the displacement
will be written as D. When dealing with points we had product of a matrix and a
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Fig. 3.6 The displacements of a frame with respect to a reference frame

column, while with objects we have two matrices. The pose of an object P can be
either premultiplied by the displacement D:

X = DP (3.20)

or it can be postmultiplied:
Y = PD (3.21)

The new poses of the object X and Y are different. Premultiplication (3.20) represents
a displacement with respect to the reference frame, while postmultiplication (3.21)
describes a displacement with respect to the relative coordinate frame. Let us examine
both displacements by the help of simple example.

Let us select an initial pose of a coordinate frame:

P =

⎡
⎢⎢⎣

1 0 0 20
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ (3.22)
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The displacement consists from translation and rotation:

D = T rans(0, 20, 0)Rot (z, 90◦) =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 20
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (3.23)

After premultiplication (3.20) the new pose is obtained:

X =

⎡
⎢⎢⎣

0 0 1 0
1 0 0 40
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

which is shown in Fig. 3.7. The expression for displacement (3.23) was read in the
reverse order, which means, that translation with respect to the reference frame was
performed after rotation.

Postmultiplication of a pose by displacement D means a displacement with respect
to the relative coordinate frame. After multiplication (3.21) the following new pose
is obtained:

Y =

⎡
⎢⎢⎣

0 −1 0 20
0 0 −1 0
1 0 0 20
0 0 0 1

⎤
⎥⎥⎦

which is shown in Fig. 3.8. Here, the expression for displacement (3.23) was read
in usual order (from left to right), which means that rotation was performed after
translation.
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Fig. 3.7 Displacement with respect to reference coordinate frame
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Fig. 3.8 Displacement with respect to relative coordinate frame

3.4 Displacement of Objects in Space

The displacements of two neighboring robot segments will play important role when
we shall in next chapters study the geometric model of robot mechanism. We shall
therefore look more closely to the description of the displacements of rigid bodies
in the space by the use of homogenous transformations.

Let us consider the pose of the objects A and B in space, as shown in Fig. 3.9. The
goal is to displace object B into a new pose B′ on the object A, so that both objects
are connected. Let us first perform the displacement with respect to the reference
coordinate frame. We shall select an arbitrary sequence of displacements, where the
object B is first rotated for 180◦ about the x0 axis of the reference frame. A new
pose of the object B is obtained, denoted as B′′. This intermediate pose is shown in
Fig. 3.10.

Now, it is not difficult to realize, that we shall reach the final pose B′ by the use of
translations only. The object in the pose B′′ is first lifted for at least 1 unit in the z0
direction, in order not to collide with the object A. Afterwards we slide over the object
A for 3 units in the x0 direction. After displacing the object for two units in the y0
direction, the objects A and B are connected. As we are dealing with a displacement
in a reference frame, the individual displacements are written in reverse order:

D = T rans(3, 2, 1)Rot (x, 180◦)
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Fig. 3.9 Initial and final pose of objects A and B in space

The displacement can be written by the use of corresponding homogenous
transformation matrices:

D =

⎡
⎢⎢⎣

1 0 0 3
0 1 0 2
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 2
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦

When calculating the final pose of the object B′, a coordinate frame must be attached
to the object B. A relative coordinate frame is attached to the object B in the cor-
ner [0, 5,−1]T, as shown in Fig. 3.9. The pose of the object B is described by the
following homogenous transformation:
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Fig. 3.10 The rotation of object B about the x0 axis of reference coordinate frame

B =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦

The final pose B′ is obtained by premultiplication with matrix D:

B′ = DB (3.24)

B′ =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 2
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦

We can check the correctness of the obtained final pose by the use of Fig. 3.9.
The task can be solved also by calculating the total displacement from the known

initial and final pose, without decomposing the displacement into particular rotations
and translations. After attaching a relative coordinate frame to the object B, the matrix
B can be determined from Fig. 3.9, describing the initial pose, and the matrix B

′
,

describing the final pose of the object. When postmultiplying Eq. (3.24) by B−1 on
the right and the left side of the equals sign, we calculate the transformation D in the
following form:

D = B
′
B−1
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The inverse matrix B−1 is obtained by Eq. (3.12):

B−1 =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

The desired displacement of the object in the reference frame is calculated as product
of following matrices:

D =

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 2
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦

We obtained the same homogenous matrix as in the first example.
Let us now place the object B over the object A with respect to relative coordinate

frame attached to the object B. We now rotate the object B for 180◦ about the x axis,
which is aligned along the edge of the object. The new pose of the object B′′ is shown
in Fig. 3.11.

We can reach the final pose B′ from the pose B′′ with only translational
displacements. To avoid the object A, the object B′′ must be lifted for at least 4
units. Therefore, we first perform a translation for −4 units along the z axis. Then
we slide with the object for −8 units along the y axis and finally translate it for −3
units along the x axis. Finally we drop the object for 1 unit, i.e. translate it for 1 along
the z axis.
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B

x0

y0

z0

x

y

z

Fig. 3.11 The rotation of object B about the x axis of relative coordinate frame
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We are dealing with the following displacement, written in the same order in which
particular displacements were performed:

D = Rot (x, 180◦)T rans(−3,−8,−3)

D =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 −3
0 1 0 −8
0 0 1 −3
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 −3
0 −1 0 8
0 0 −1 3
0 0 0 1

⎤
⎥⎥⎦

The final pose of the object B′ is obtained by postmultiplication of the initial pose B
by the transformation matrix D:

B′ = BD (3.25)

B′ =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 −3
0 −1 0 8
0 0 −1 3
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦

We can check by use of Fig. 3.9 that the final pose of the object was attained. The task
can be solved in the same way as in previous example by only knowing the initial B
and final pose B′, which can be found from Fig. 3.9. By premultiplying Eq. (3.25)
on both sides of the equals sign by B−1, we obtain:

D = B−1 · B′

D =

⎡
⎢⎢⎣
−1 0 0 0

0 −1 0 5
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0 3

0 1 0 −3
0 0 −1 2
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 −3
0 −1 0 8
0 0 −1 3
0 0 0 1

⎤
⎥⎥⎦

The same homogenous matrix was obtained as in the example when selected rotation
and translation were performed with respect to the relative coordinate frame. The
last problem can be solved without any calculations. The displacement D is equal
to the pose of B′ with respect to B, which can be determined directly from Fig. 3.9
without considering the reference frame.

3.5 Perspective Transformation Matrix

When defining the homogenous transformation matrix (3.11), three zeros and a
one were written into the fourth line. It appears that their aim is only to make the
homogenous matrix quadratic. In this section we shall learn that the last line of the
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a b

f

Fig. 3.12 Image formation by the lens

matrix means perspective transformation. The perspective transformation [3] has no
meaning in robotics, it is however interesting in computer graphics and designing of
virtual environments. The perspective transformation can be explained by formation
of the image of an object through the lens with focal length f (Fig. 3.12). The lens
equation is:

1

a
+ 1

b
= 1

f
(3.26)

Let us place the lens into the x, z plane of cartesian coordinate frame (Fig. 3.13).
The point with coordinates [x, y, z]T is imaged into the point [x ′, y′, z′]T. The lens
equation is in this particular situation as follows:

1

y
− 1

y′
= 1

f
(3.27)

The rays passing through the center of the lens remain undeviated:

z

y
= z′

y′
(3.28)

Another equation for undeviated rays is obtained by exchanging z and z′ with x and
x ′ in Eq. (3.28). When rearranging the equations for deviated and undeviated rays,
we can obtain the relations between the coordinates of the original point x , y, and z
and its image x ′, y′, z′:

x ′ = x

1− y
f

(3.29)
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Fig. 3.13 Image of a point through the lens

y′ = y

1− y
f

(3.30)

z′ = z

1− y
f

(3.31)

The same result is obtained by the use of homogenous matrix P, describing the
perspective transformation:

P =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

f 0 1

⎤
⎥⎥⎦ (3.32)

The coordinates of the imaged point x ′, y′, z′ are obtained by multiplying the
coordinates of the original point x , y, z by the matrix P:

⎡
⎢⎢⎣

x ′
y′
z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

f 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x
y
z

1− y
f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x
1− y

fy
1− y

f
z

1− y
f

1

⎤
⎥⎥⎥⎦ (3.33)

The same relation between the imaged and the original coordinates was obtained as
in Eqs. (3.29–3.31). When the element−1/f is at the bottom of the first column, we
are dealing with perspective transformation along the x axis, when it is at the bottom
of the third column, we have projection along the z axis.

As an example let us solve the inverse problem. Let us consider the lens with
the focal length f = 2, which is placed into the x, z plane of cartesian coordinate



3.5 Perspective Transformation Matrix 55

frame (Fig. 3.13), so that the center of the lens coincides with the origin of the frame.
A point [x, y, z]T is imaged into the point [−1,−3,−2]T. It is our aim to calculate
the coordinates of the original point. We need the inverse perspective matrix P−1.
Knowing that the product P P−1 equals the unit matrix, it is not difficult to realize:

P−1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1

f 0 1

⎤
⎥⎥⎦ (3.34)

In this way the following numerical solution of simple example is obtained:

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1

2 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1
−3
−2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1
−3
−2
− 1

2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
6
4
1

⎤
⎥⎥⎦

The correctness of the solution can be checked by the use of Eqs. (3.29–3.31).
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Chapter 4
Geometric Robot Model

Abstract Geometric robot model describes the pose (position and orientation) of a
coordinate frame attached to the gripper with respect to the reference frame attached
to the robot base. In a robot manipulator we only measure the angles of rotational
and the distances of the displacements of translational joints. The geometric model
must be therefore expressed by the help of joint variables. Geometric models of three
robot arms are presented in this chapter.

The robot manipulator consists from a chain of segments, i.e. rigid bodies, which are
connected by the joints [1]. The joints of industrial robots have only single degree
of freedom. This degree of freedom corresponds to the joint variable qi . The robot
joints are either rotational or translational. The position of a rotational joint will be
described by angle ϑi , while the position of a translational joint will be denoted as
distance di . The structure of segments and joints represents an open robotic chain.
One end of the chain is attached to the robot base. On the other side of the chain,
there is the robot end-point with robot end-effector, which is usually robot gripper
enabling manipulation of object in space.

Let us consider a manipulator consisting from (n+1) segments which are
connected by n joints (Fig. 4.1). The aim of the geometric robot model is to determine
the pose (position and orientation) of the robot end-effector as a function of joint
variables. The description of the position and orientation of the gripper with respect
to the reference coordinate frame was already discussed in the second chapter. The
position of the robot end-point is described by a positional vector connecting the ori-
gin of the reference frame to the frame attached to the gripper. We have also learned,
how the orientation of the gripper can be expressed either by RPY or Euler angles
or quaternions. In general the geometric robot model can be expressed with respect
to the reference frame by the following homogenous transformation matrix:

0An(q) =
[

n0(q) s0(q) a0(q) p0(q)
0 0 0 1

]
(4.1)

T. Bajd et al., Introduction to Robotics, SpringerBriefs in Applied Sciences 57
and Technology, DOI: 10.1007/978-94-007-6101-8_4, © The Author(s) 2013
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n
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Fig. 4.1 Geometric model of a robot

In the above matrix q is a vector of n joint variables qi , while n, s, and a are the
unit vectors of the frame attached to the robot gripper and we know them already
from the second chapter (2.25). The vector p0 connects the origin of the reference
frame x0, y0, z0 to the origin of the frame at the robot end-effector xn, yn, zn . It is
important to be aware that the vectors n, s, a, and p0 are all functions of joint variables.
The coordinate frames will be placed also in all joints of the robot mechanism. The
geometric relation between two neighboring frames xi−1, yi−1, zi−1 and xi , yi , zi

will be described by the matrix i−1Ai (qi ). The values of the joint variables qi are
assessed by the sensors in individual joints. As we are dealing with a relative pose
of a coordinate frame with respect to the neighboring frame, the geometric model of
a robot will be obtained by the following postmultiplication of singular matrices:

0An(q) = 0A1(q1)
1A2(q2) . . .

n−1An(qn) (4.2)

4.1 Denavit–Hartenberg Parameters

Each joint connects two and only two consecutive segments. It is, therefore,
appropriate to consider first the geometric relation between two consecutive seg-
ments. Afterwards, we will recursively (4.2) compose the model of the complete
robot manipulator. Here, we shall make use of the knowledge gathered in previous
chapters regarding the expressions of position and orientation of a rigid body and
relative transformations between coordinate frames of neighboring segments.

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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First, it is our aim to describe in a systematic and quite general way the relative
position and orientation of a robot segment i with respect to the segment (i − 1),
which is placed in the chain before the segment i . We have to determine two
coordinate frames attached to each of the segments and calculate the transformation
of the coordinates between them. In general the coordinate frames can be arbitrarily
attached to robot segments. Nevertheless, it was found practical to develop special
rules how to place the coordinate frames [2, 3].

Let us consider that the i th axis connects the segments (i − 1) and i . Denavit
and Hartenberg (DH) define the pose of the i th frame of the robot segment in the
following way:

1. Select the zi axis along the joint axis (i + 1)!
2. Locate the origin Oi at the intersection of the zi axis with the common normal

to the axes zi−1 and zi ! The common normal represents the shortest distance
between both axes and is perpendicular to each of the axes.

3. Select the xi axis along the common normal to the axes zi−1 and zi , so that it is
directed from the joint i towards the joint (i + 1)!

4. Select the yi axis in order to complete a right-handed frame!

The pose of the frame xi , yi , zi is shown in Fig. 4.2. We shall draw the point O′i
into the intersection of the common normal and the i th joint axis. Afterwards we
draw also the common normal to (i − 1) and i th axes. In this way the origin Oi−1
is obtained. The zi−1 axis goes along the i th joint axis, while xi−1 axis is aligned
with the new common normal. After determining the coordinate frames of both
segments, the pose of the ith frame with regard to the frame (i − 1) is completely
defined by the following four DH parameters:

1. ai - distance between Oi and O
′
i along xi axis.

i

i

(i + 1)(i − 1)

(i − 1)

αi

ϑi
Oi

Oi

xi

yi
zi

ai

xi− 1

yi− 1

Oi− 1

zi− 1 di

Fig. 4.2 Graphical illustration of DH parameters
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2. di - distance between Oi−1 and O
′
i along zi−1 axis.

3. αi - angle between axes zi−1 and zi about xi axis. The angle is positive in the
case of counter-clockwise rotation.

4. ϑi - angle between axes xi−1 and xi about zi−1 axis. The angle is positive in the
case of counter-clockwise direction.

The parameters ai and αi are always constant. They only depend on geometry and
relations between two consecutive segments connected by the i th joint. One of the
remaining two parameters is a variable, depending on the type of the joint connecting
i th and (i − 1) segment:

• when i th joint is rotational, the variable is ϑi ,
• when i th joint is translational, the variable is di .

Denavit and Hartenberg developed and published their method already in 1955
(Journal of Applied Mechanics, pp. 215–221). In their paper they are mainly dealing
with the universal joint and mechanisms transforming continuous rotational into
translational movements. It is our aim, however, to use their method, characterized
by only four scalar parameters, to describe the relation between the neighboring axes
of robot manipulators. In industrial robot manipulators the axes of two neighboring
joints are either parallel or rectangular. Because of this property and because the
serial chain of robot segments is open, we introduce the following exceptions:

1. The axes zi−1 and zi are parallel. When two lines are parallel, then the common
normal is not uniquely defined. This is no inconvenience to our method, as it does
not matter where along the axis we shall place the origin of the coordinate frame.
When describing the robot mechanisms we shall strive for as simple as possible
DH notation. We shall therefore select di = 0.

2. The axes zi−1 and zi intersect. When two neighboring axes intersect, the normal
cannot be determined. The origin of the frame is placed into the intersection of
both axes. The xi axis is perpendicular to the zi−1 axis. Of course, the xi axis is
perpendicular also to the zi axis, which runs along the axis of the (i + 1) joint.

3. In the case of the base coordinate frame, only the z0 axis is determined. The
position of the origin O0 and the direction of the x0 axis are therefore arbitrary.
We will develop our geometric robot models in such a way, that the origin O0 will
be placed in the center of the first joint. The number of nonzero DH parameters
can be decreased in such a way, that we first determine the direction of x1 axis,
and afterwards we select x0 parallel to x1 axis.

4. Only the direction of the xn axis is determined in the end-effector frame, i.e. nth
coordinate frame. The axis should be, as in the second point, perpendicular to the
zn−1. As there is no (n+1) joint, the direction of the zn axis cannot be determined
and can be arbitrarily selected. In our geometric robot models it will be parallel
to the precedent zn−1 axis.

5. With the translational joint, the zi−1 axis is directed along the translation. The
origin Oi−1 will be placed to the initial position of the translation. In our modeling
we shall because of simplicity assume that the translational joints are displaced
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from 0 to the final position di . In reality, the segments with translational joints
always have some constant initial length li , so that the final length of the segment
is li + di .

The transformation between the i th coordinate frame and the frame (i−1) is described
by the following four displacement:

i−1Ai (qi ) = T rans(0, 0, di )Rot (zi−1, ϑi )T rans(ai , 0, 0)Rot (xi , αi ) =

=

⎡
⎢⎢⎣

cϑi −sϑi 0 0
sϑi cϑi 0 0
0 0 1 di

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 ai

0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

cϑi −sϑi cαi sϑi sαi ai cϑi

sϑi cϑi cαi −cϑi sαi ai sϑi

0 sαi cαi di

0 0 0 1

⎤
⎥⎥⎦ (4.3)

The transformation matrix is function of only one variable, ϑi for rotational joint and
di for translational joint.

4.2 Examples of Geometric Robot Models

At this stage it appears to be most appropriate to study few examples of developing
a geometric robot model by using the DH parameters. Let us consider a robot arm
with only three degrees of freedom. Figure 4.3 shows SCARA industrial manipulator
with one translational and two rotational joints. The distance variable d1 belongs to
the first joint, while the angle variables ϑ2 and ϑ3 appertain to the second and third
joint. First we shall draw the coordinate frames into the schematic presentation of
the SCARA robot. As the first joint is translational, we shall in accordance with the
5th exception place the origin of the base reference frame into the starting point of
the translational displacement. In accordance with the 1st DH rule, we shall place the
z0 axis along the translation. The direction of the x0 axis is arbitrary. With the goal
to have as many zero DH parameters as possible, we shall first draw the x1 axis and
afterwards make the x0 axis parallel to the x1 axis. With SCARA robot the axes of
all three joints are parallel. This means that we have an infinite number of common
normals between the axes z0 and z1. In our case it is most appropriate to select the
common normal which runs along the horizontal segment through the center of the
second joint. The origin of the second frame will be therefore placed into the center
of the second joint. The z1 axis goes with the rotational axis. In accordance with the
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Fig. 4.3 SCARA robot
manipulator

ϑ3ϑ2
d1

3rd DH rule we now draw the x1 axis, which is directed towards the third joint. We
go back to the first joint by drawing the x0 axis parallel to x1. The axes y0 and y1
complete the right-handed frames and it is not at all necessary to draw them. The
axis of the third joint is also parallel to the axis of the second joint. We are again
dealing with an infinite number of common normals. According to the 1st exception
we shall select the common normal where d3 = 0. The origin of the third frame will
be again placed into the center of the joint. As in the case of the second joint, the z2
axis runs along the rotational joint axis. The x2 axis goes with the common normal.
There remains only the frame with its origin at the robot end-point. In accordance
with the 4th exception we place the x3 axis perpendicular to the z2 axis and the z3
axis parallel to the z2 axis. The SCARA robot with the coordinate frames is shown
in Fig. 4.4.

Table of DH parameters represents an important step in development of geometric
robot model. The table is the essence of the standardized approach to modeling of
robot mechanisms. For a roboticist it is sufficient to see the table of DH parameters,
and he will know exactly what are the characteristic properties of a robot mechanism
designed by another roboticist from a laboratory or company in the other part of the
world.

The table contains 5 columns which are for practical reasons always written in
the same order. The first column belongs to index i , running from one to the number
of degrees of freedom of the robot mechanism under consideration. We insert the
values of the parameters ai and αi into the second and third column. Both parameters
belong to the xi axis. The first parameter represents a displacement, while the second
a rotation about the xi axis. The values of the parameters di and ϑ i are written into
the fourth and fifth column. These two parameters relate to the zi−1 axis. The first
one means displacement, while the second one rotation about zi−1 axis. The number
of the lines of the table equals to the number of the degrees of freedom of the robot
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Fig. 4.4 SCARA robot manipulator with coordinate frames

considered. The line with i index contains the DH parameters, which relate the pose
of the i th coordinate frame to the frame (i − 1).

The table for our simple SCARA robot will consist from 5 columns and 3 lines.
First, we shall insert into the table the joint variables d1, ϑ2, and ϑ3. Each line of the
table contains only one variable, as each homogenous transformation matrix written
by the use of DH parameters contains a single variable. As with SCARA robot all
joint axes are parallel, all α angles are zero. We have zeros also in the second and the
third line of the di column, because the origins of the frames x1, y1, z1, x2, y2, z2, and
x3, y3, z3 were placed into the same plane, which is also the plane where rotations of
the second and third segment occur. Zero can be written also into the first line of the
last column, as we have purposefully made the x0 axis parallel to the x1 axis. There
remains only the second column representing the lengths of individual segments. The
first segment consists from a vertical column, which is changing its length between 0
and d1 (which was taken into account already in the third column) and horizontal part
denoted as the length a1 which must be included into the first line of the ai column.
The second and third segments run along the x2 and x3 axes respectively and are as
the lengths a2 and a3 written into the second and third line of the same column. The
segment lengths a1, a2, and a3 must be inserted also in Fig. 4.4. The correctly written
table and the matrices describing the relations between the neighboring coordinate
frames are as follows:
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i ai αi di ϑi

1 a1 0 d1 0
2 a2 0 0 ϑ2
3 a3 0 0 ϑ3

0A1 =

⎡
⎢⎢⎣

1 0 0 a1
0 1 0 0
0 0 1 d1
0 0 0 1

⎤
⎥⎥⎦

1A2 =

⎡
⎢⎢⎣

c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

2A3 =

⎡
⎢⎢⎣

c3 −s3 0 a3c3
s3 c3 0 a3s3
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

The geometric model of SCARA robot mechanism with three degrees of freedom
has the following final form:

0A3 = 0A1
1A2

2A3 =

⎡
⎢⎢⎣

c23 −s23 0 a1 + a2c2+ a3c23
s23 c23 0 a2s2+ a3s23
0 0 1 d1
0 0 0 1

⎤
⎥⎥⎦

In the last matrix the following abbreviations sin(ϑ2 + ϑ3) = s23 = s2c3 + c2s3
and cos(ϑ2 + ϑ3) = c23 = c2c3− s2s3.

In another example of developing the DH geometric model we will consider
cylindrical robot shown in Fig. 4.5. The displacement of the first rotational joint is
described by the angle variable ϑ1. The rotational joint is followed by two transla-
tional joints with distance variables d2 and d3. Again we start the DH procedure by
drawing the coordinate frames. With three degrees of freedom we are dealing with
four coordinate frames. Their axes will be denoted by the indices from 0 to 3. The
displacement of the i th coordinate frame with respect to the frame (i − 1) must be
determined by only one joint variable. With respect to the 3rd exception we place the
origin of the first coordinate frame x0, y0, z0 into the center of the first joint. Accord-
ing to the 1st DH rule, the z0 axis runs along the rotational joint. As in the previous
example, we shall wait with drawing the x0 axis. The second joint is translational.
We have to apply the 5th exception saying that the origin of the coordinate frame is
to be placed to the start of the displacement of the translational joint. In our example
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Fig. 4.5 Cylindrical robot
manipulator

ϑ1

d2

d3

this is the center of the rotational joint, which means that the origins of x0, y0, z0
and x1, y1, z1 coincide, while the axes z0 and z1 are colinear. The rotational axis
of the first joint namely runs in the same direction as the translational axis of the
second joint. Also the third joint is translational, which means that the origin of the
frame x2, y2, z2 is placed to the starting point of translation, which is in this case
in the center of the second joint. Now we can finally determine the direction of the
x2 axis. We make use of the 2nd exception. As the axes z1 and z2 intersect, the x2
axis must be perpendicular to the plane determined by both axes. This means that
the axis can be directed either into the list of paper or out of it. After selecting the
x2 axis, we draw into the same direction also the axes x0 and x1. There remains only
the coordinate frame at the robot end-point. The 4th exception only requires that the
x3 axis is perpendicular to the z2 axis, which does not prevent us to make the robot
end-point frame parallel to the precedent frame. The schematic presentation of the
cylindrical robot with the appertaining coordinate frames is displayed in Fig. 4.6.

We will continue with the table of DH parameters, which as in the previous case
has 5 columns and 3 lines. First we shall write into each line a single joint variable
ϑ1, d2, and d3. In the first column we have the index i running from 1 to 3 as in
the previous example. We insert into the second column the distances between the
neighboring coordinate frames ai , running along the xi axes. We can notice at the
first sight that the origins of all four coordinate frames lay in the same plane, so that
three zeros can be written into the ai column. The following column αi represents
the angles between the axes zi−1 and zi about the xi axis. The pairs of axes z0, z1 and
z2, z3 have the same direction. We can therefore write zero in the first and third line.
The axes z1 and z2 intersect perpendicularly. As we look at the plane, represented
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Fig. 4.6 Cylindrical robot manipulator with coordinate frames

by the axes z1 and z2, from the positive x2 axis, we can notice that the direction of
the rotation from z1 axis towards the z2 axis is clockwise. We write −π/2 into the
second line. In accordance with the definition of DH parameter di , we can see that d1
equals zero, what must be input into the first line of the penultimate column. There
remain the second and the third line of the last column, where the angle ϑi must be
inserted. According to the definition of the DH parameters this is the angle between
the xi−1 and xi axes about the zi−1 axis. As we made all the x axes parallel and
directed out of the list of paper, we can write zeros into both places. In the case of
drawing the x0 and x1 axes along the horizontal segment, then the angle between the
x1 and x2 axes would be −π/2, which should be written into the second line of the
last column.

i ai αi di ϑi

1 0 0 0 ϑ1
2 0 −π/2 d2 0
3 0 0 d3 0

The DH parameters of each line are input into the matrix (4.3) yielding the following
relation between the neighboring coordinate frames:
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0A1 =

⎡
⎢⎢⎣

c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

1A2 =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 −1 0 d2
0 0 0 1

⎤
⎥⎥⎦

2A3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

⎤
⎥⎥⎦

The geometric model of the cylindrical robot mechanism with three degrees of free-
dom has the following form:

0A3 = 0A1
1A2

2A3 =

⎡
⎢⎢⎣

c1 0 −s1 −d3s1
s1 0 c1 d3c1
0 −1 0 d2
0 0 0 1

⎤
⎥⎥⎦

The geometric robot model represents the pose (position and orientation) of the
robot end-point coordinate frame with respect to the base reference frame. Let us
displace our cylindrical robot for an angle ϑ1 in the positive direction and let us look
at it from above as shown in Fig. 4.7. In this way we can only see the horizontal
segment with the length d3. Let us draw also the base coordinate frame and the
end-point frame, as determined in the DH procedure.

The orientation of the robot end-point frame with respect to the base frame will
be described by the matrix (2.19), where we have stressed that the elements of the
rotation matrix are cosines of the angles between the pairs of axes appertaining to
both coordinate frames. Let us remember that the three columns of the rotation matrix
belong to the axes of the coordinate frame whose orientation is to be determined with
respect to the frame with its axes belonging to the lines of the rotation matrix. Now
we can simply read the angles between the corresponding pairs of the axes of both
frames from Fig. 4.7 and write them into the homogenous transformation matrix:

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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0A3 =

x3 y3 z3

⎡
⎢⎢⎣

cosϑ1 cos 90◦ cos(90◦ + ϑ1) −d3 sin ϑ1
cos(90◦ − ϑ1) cos 90◦ cosϑ1 d3 cosϑ1
cos 90◦ cos 180◦ cos 90◦ d2
0 0 0 1

⎤
⎥⎥⎦

x0
y0
z0

The first two elements of the fourth column can be also simply read from Fig. 4.7,
while the third element is evident from Figs. 4.5 or 4.6. In this way the same matrix
was obtained as after multiplying the three DH matrices. Of course, this is only pos-
sible with such simple mechanism as the cylindrical robot. When developing geo-
metric model of a robot with six degrees freedom, the Denavit-Hartenberg approach
is advantageous. From this example we have clearly learned the meaning of the
geometric model of a robot mechanism.

As the third example we shall consider a spherical robot mechanism shown in
Fig. 4.8. The first and the second joint are rotational with the joint variables ϑ1 and
ϑ2, while the last joint is translational. Its displacement is described by the distance
variable d3. First we draw the coordinate frames into the schematic presentation of
the spherical robot. As in both previous examples, we place the origin of the base
coordinate frame into the center of the first joint. The z0 axis runs along the rotational
axis. We shall again wait with the x0 axis. First we shall determine the direction of
the x1 axis. The axes of the two rotational joints intersect, the origin of the next
coordinate frame is to be placed into the intersection of both axes. The z1 axis runs
along the rotational axis of the second joint. Its direction makes no difference. The
x1 axis is perpendicular to the plane defined by the axes z0 and z1. Also this axis
can be drawn in one or another direction. The x0 axis has the same direction as x1
axis. The selected directions of the axes are drawn in Fig. 4.9. The frame belonging
to the translational joint is placed to the start of displacement, which is in our case

d3

ϑ1

x3

y3

z3

x0

y0

z0

Fig. 4.7 Look at the cylindrical robot from above
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the center of the second joint. Also the axes z1 and z2 intersect, so that the x2 axis is
perpendicular to them as shown in Fig. 4.9. It is most appropriate to make the robot
end-point frame x3, y3, z3 parallel to precedent frame x2, y2, z2.

Let us compose the table of DH parameters. First we insert into the last columns
the joint variables ϑ1, ϑ2, and d3. The column ai represents the distance between
the origins of two neighboring frames along the xi axis. In our case all four z axes
intersect in the same point, so that three zeros are to be written into the ai column.
The z1 axis is perpendicular to z0 axis. When looking at the plane z0, z1 from the
positive x1 axis, then the rotation from z0 to z1 is counter clockwise. We write+π/2
into the first line of the column αi . Also the rotation from z1 to z2 axis around the
positive x2 axis is counter clockwise. The second line of the αi column contains
+π/2. The frames x3, y3, z3 and x2, y2, z2 are parallel and displaced for the joint
variable d3. It is therefore evident that there are apart from the variable d3 all zeros
in the last line of the DH table. Also the parameter d2 equals zero, as the frames
x1, y1, z1 and x2, y2, z2 have the same origin. The frames x0, y0, z0 and x1, y1, z1
are displaced for the constant distance l1 along the z0 axis. We have the following
table of DH parameters:

i ai αi di ϑi

1 0 π/2 l1 ϑ1
2 0 π/2 0 ϑ2
3 0 0 d3 0

DH parameters of each line are input to the matrix (4.3), while obtaining the following
relations between the neighboring frames:

ϑ1

ϑ2

d3

Fig. 4.8 Spherical robot manipulator
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Fig. 4.9 Spherical robot manipulator with appertaining coordinate frames

0A1 =

⎡
⎢⎢⎣

c1 0 s1 0
s1 0 −c1 0
0 1 0 l1
0 0 0 1

⎤
⎥⎥⎦

1A2 =

⎡
⎢⎢⎣

c2 0 s2 0
s2 0 −c2 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

2A3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

⎤
⎥⎥⎦

The geometric model of a spherical robot mechanism with three degrees of freedom
has the following form:

0A3 = 0A1
1A2

2A3 =

⎡
⎢⎢⎣

c1c2 s1 c1s2 d3c1s2
s1c2 −c1 s1s2 d3s1s2
s2 0 −c2 l1 − d3c2
0 0 0 1

⎤
⎥⎥⎦

Let us for a while consider the initial pose of the robot mechanism. This is the pose
where the joint variables ϑi and di equal zero. After drawing the coordinate frames
into the robot mechanism, we left the mechanism in an arbitrary pose. Let us see
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Fig. 4.10 Two initial poses od spherical robot manipulator

what is the initial pose of our simple spherical mechanism by considering the second
joint. The angle ϑ2 is defined as the angle between the axes x2 and x1 about the z1
axis. From Fig. 4.9 we can see that zero angle occurs when the axes x2 and x1 are
superimposed. This is the initial pose of the spherical robot which is shown in the
left side of Fig. 4.10. Such initial pose cannot be reached by real industrial robots
because of the limitations in joint movements. The producers of robots select such
initial poses of robot mechanisms that the robot end-point is above the working area
where the robot is supposed to execute its task. In our example of spherical robot
such pose can be e.g. the one displayed in the right side of Fig. 4.10.

Our minimalistic geometric model can be easily adapted to the required initial
pose where the initial angle in the second joint ϑ2 is π/2. In the DH table we simply
exchange ϑ2 by (ϑ2 + π/2). In the geometric model 0A3 we exchange all s2 with
sin(ϑ2 + π/2), which is equal to c2, and all c2 with cos(ϑ2 + π/2), which is equal
to –s2.
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Chapter 5
Geometric Model of Anthropomorphic
Robot with Spherical Wrist

Abstract In forward robot modeling we calculate the pose (position and orientation)
of the gripper from the known joint variables. The inverse geometric robot model rep-
resents calculation of joint displacements from the known pose of the robot gripper.
Forward and inverse geometric model of a six degrees of freedom industrial robot
are presented in this chapter.

5.1 Forward Model

In the last chapter we shall get acquainted with forward and inverse geometric model
of anthropomorphic robot with a spherical wrist, i.e. robot mechanism with six
degrees of freedom. We shall develop model of the Stäubli robot (Fig. 5.1), which is
produced by the Swiss after the legendary American Puma robot. Both robots were
playing and still play an important role in industrial and research robotics.

Geometric models of robots, such as developed in previous chapter are also called
forward models. With the forward geometric model we calculate the pose (position
and orientation) of the robot end-segment or robot gripper from known joint variables.
When developing an inverse geometric model, we know the position and orientation
of the robot end-segment, while it is our task to calculate the joint variables [1].

The schematic presentation of anthropomorphic robot with a spherical wrist is
shown in Fig. 5.2. Rotational joints are characteristic for anthropomorphic robot
mechanisms. The axis of the first joint runs vertically from the robot base. This
is a property of almost all industrial robots, enabling large workspace around the
robot base. The axes of the following two joints remind us of human shoulder and
elbow. They are parallel and perpendicular to the axis of the first joint. The remaining
three rotational joints represent the robot wrist. The axes of all three joints intersect
in the same point what will make possible to calculate separately the first three
joint variables, which belong to the robot arm, from the last three joint variables,
appertaining to the robot wrist. The joint variables are denoted from ϑ1 to ϑ6.

T. Bajd et al., Introduction to Robotics, SpringerBriefs in Applied Sciences 73
and Technology, DOI: 10.1007/978-94-007-6101-8_5, © The Author(s) 2013
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Fig. 5.1 Anthropomorphic Stäubli robot
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Fig. 5.2 Schematic presentation of Stäubli robot

Considering the DH rules, we have drawn all seven coordinate frames in the joints
of the Stäubli robot shown in Fig. 5.2. The z0 axis is placed into the center of the first
joint. The x0 axis is made parallel to the x1 axis. The axes of the first and the second
joint intersect. The origin of the frame x1, y1, z1 is in the intersection of both axes.
The x1 axis is perpendicular to the plane defined by the axes z0 and z1. The axes z1
and z2 are parallel. The origin of the frame is placed in the center of the third joint
yielding thus d2 = 0. The x2 axis runs along the common normal in the direction
from the lower to higher index. The z3 axis intersects with the axis of precedent
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joint z2. The origin of the frame x3, y3, z3 is placed into the intersection of both axes.
The x3 axis is perpendicular to the plane defined by the axes z2 and z3. The center of
the wrist, where all three axes intersect, is denoted by the letter Q. The axes z4 and
z5 are placed into wrist center Q. The x4 axis is perpendicular to the plane defined
by the axes z3 and z4, while the x5 axis goes perpendicularly to the axes z4 and z5.
The robot end-point or robot gripper point is denoted by the letter P. The axes of
the corresponding frame are parallel to the axes of the precedent coordinate frame.
The fingers of the gripper are rotated in such a way that the unit vectors n, s, and a
are placed into the robot end-point. We got acquainted with these vectors already in
Fig. 2.5. In order to make Fig. 5.2 more clear, the y axes have been not drawn.

From Fig. 5.2 it is not difficult to read the DH parameters, which are inserted into
the table. The lengths of the segments d1, a2, d4, and d6 are denoted in Fig. 5.2.

i ai αi di ϑi

1 0 π/2 d1 ϑ1
2 a2 0 0 ϑ2
3 0 −π/2 0 ϑ3
4 0 π/2 d4 ϑ4
5 0 −π/2 0 ϑ5
6 0 0 d6 ϑ6

We write the matrices (4.3) with the DH parameters of each line. The matrices
describe the relative poses of the neighboring coordinate frames:

0A1 =

⎡
⎢⎢⎣

c1 0 s1 0
s1 0 −c1 0
0 1 0 d1
0 0 0 1

⎤
⎥⎥⎦ (5.1)

1A2 =

⎡
⎢⎢⎣

c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (5.2)

2A3 =

⎡
⎢⎢⎣

c3 0 s3 0
s3 0 −c3 0
0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦ (5.3)

http://dx.doi.org/10.1007/978-94-007-6101-8_2
http://dx.doi.org/10.1007/978-94-007-6101-8_4
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3A4 =

⎡
⎢⎢⎣

c4 0 s4 0
s4 0 −c4 0
0 1 0 d4
0 0 0 1

⎤
⎥⎥⎦ (5.4)

4A5 =

⎡
⎢⎢⎣

c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦ (5.5)

5A6 =

⎡
⎢⎢⎣

c6 −s6 0 0
s6 c6 0 0
0 0 1 d6
0 0 0 1

⎤
⎥⎥⎦ (5.6)

The geometric model of the robot arm is represented by the product of first three
matrices:

0A3 = 0A1
1A2

2A3 =

⎡
⎢⎢⎣

c1c23 −s1 −c1s23 a2c1c2
s1c23 c1 −s1s23 a2s1c2
s23 0 c23 d1 + a2s2
0 0 0 1

⎤
⎥⎥⎦ (5.7)

Even more complex is the geometric model of robot wrist, represented by the product
of the last three matrices:

3A6 = 3A4
4A5

5A6

=

⎡
⎢⎢⎢⎣

c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5 −d6c4s5

s4c5c6 + c4s6 −s4c5s6 + c4c6 −s4s5 −d6s4s5

s5c6 −s5s6 c5 d4 + d6c5
0 0 0 1

⎤
⎥⎥⎥⎦ (5.8)

The matrix (5.8) reminds us of the matrix (2.31), describing Euler transformation.
The forward geometric model of the complete robot mechanism will be written by
the help of unit vectors n, s, and a in the gripper and vector p describing the position
of the point P in the base coordinate frame:

0A6 =

⎡
⎢⎢⎣

nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

⎤
⎥⎥⎦ (5.9)

http://dx.doi.org/10.1007/978-94-007-6101-8_2
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After multiplication of the matrices (5.7) and (5.8) the following extensive expressions
are obtained for each element of the matrix (5.9):

nx = −s1(s4c5c6 − c4s6)+ c1(s23s5c6 + c23(c4c5c6 − s4s6)) (5.10)

ny = −s1s23s5c6 + c1(s4c5c6 + c4s6)+ s1c23(c4c5c6 − s4s6) (5.11)

nz = s23c4c5c6 − s23s4s6 + c23s5s6 (5.12)

sx = −c6(s1c4 + c1c23s4)+ s6(s1s4c5 + c1(s23s5 − c23c4c5)) (5.13)

sy = c1(c4c6 − s4c5s6)− s1(−s23s5s6 + c23(s4c6 + c4c5s6)) (5.14)

sz = −s23s4c6 − s6(s23c4c5 + c23s5) (5.15)

ax = s1s4s5 − c1(s23c5 + c23c4s5) (5.16)

ay = −s1s23c5 − s5(s1c23c4 + c1s4) (5.17)

az = −s23c4s5 + c23c5 (5.18)

px = d6s1s4s5 − c1(−a2c2 + s23(d4 + d6c5)+ d6c23c4s5) (5.19)

py = a2s1c2 − s1s23(d4 + d6c5)− d6s5(s1c23c4 + c1s4) (5.20)

pz = c23(d4 + d6c5)+ a2s2 − d6s23c4s5 + d1 (5.21)

The anthropomorphic robot is in Fig. 5.2 displayed in an arbitrary pose. In Fig. 5.3 the
same robot mechanism is shown in its initial reference pose, when all joint variables
equal zero and the x axes of the neighboring coordinate frames overlap.

5.2 Inverse Model

When developing the inverse geometric model of robot mechanism, we know the
position and orientation of robot end-segment, while it is our aim to calculate the
joint variables [2, 3]. With another words, we know all nine elements of matrix (5.9)
and it is our task to write the expressions for the variables ϑ1 . . . ϑ6.

Beside the elements of matrix (5.9) we know also the lengths of all robot segments.
From Fig. 5.2 it is not difficult to realize the relation between the points P and Q.
When knowing the position of the point P, px , py , pz , we know also the position of
the point Q, qx , qy, qz :

q =
⎡
⎣

qx

qy

qz

⎤
⎦ =

⎡
⎣

px

py

pz

⎤
⎦ − d6

⎡
⎣

ax

ay

az

⎤
⎦ (5.22)
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Fig. 5.3 Anthropomorphic
robot in initial reference pose
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For the sake of more simple developing of inverse model, we shall lift the base
coordinate frame x0, y0, z0 to the level od the second joint. In this way we shall
limit our consideration to the second and third segment representing “upper arm”
and “forearm” of the anthropomorphic robot. From the situation presented in left
Fig. 5.4, we shall calculate the angles ϑ1, ϑ2, and ϑ3. In Fig. 5.4 the joint variables
ϑ1, ϑ2, and ϑ3 are defined with respect to the initial pose shown in Fig. 5.3. From
the right Fig. 5.4 we first determine the distance between the origin of the shifted
coordinate frame x0, y0, z0 and the center of the wrist Q:

r =
√

q2
x + q2

y + (qz − d1)2 (5.23)

We write the cosine rule for the triangle from the right Fig. 5.4 with the sides r, a2,
and d4:

r2 = a2
2 + d4

2 − 2a2d4 cosα (5.24)

With Stäubli robot as well as in general with anthropomorphic robots and also with
human arm, the length of the forearm is equal to the length of the upper arm, i.e.
a2 = d4. The ratio of the segment lengths 1 : 1 at selected constant collective
length of both segments, results in maximal volume of the robot workspace [1].
Equation (5.24) is rewritten as:
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Fig. 5.4 Second and third segment of anthropomorphic robot

r2 = 2a2
2 − 2a2

2 cosα (5.25)

From where the angle α is expressed:

α = arccos

(
1 − 1

2

(
r

a2

)2
)

(5.26)

The center of the wrist Q can be positioned into a selected point of a workspace in
two different ways, which are called “elbow up” and “elbow down”. Both poses of
the second and the third segment are together with the corresponding angles shown
in Fig. 5.5. From Fig. 5.5 we can read the “elbow up” angle ϑ3 = α + π/2 and for

Fig. 5.5 Two poses of the
second and third segment:
“elbow up” and “elbow down”
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the “elbow down” ϑ3 = π/2 − α. As the triangle from the right Fig. 5.4 is because
of equal segment lengths a2 = d4 isosceles, we can write:

γ = (π − α)/2

From the right Fig. 5.4 we can also read:

δ = arctan2
qz − d1√
q2

x + q2
y

(5.27)

For the pose “elbow up” the angle in the second joint is equal to ϑ2 = δ + γ , while
for “elbow down” we have ϑ2 = δ− γ . From the left Fig. 5.4 we read also the angle
in the first joint:

ϑ1 = arctan2
qy

qx
(5.28)

The inverse trigonometric function arctan2 takes into account the quadrant of the
solution. It is defined as a function of a fraction a/b while taking into consideration
the sign of the numerator a and the denominator b. The function is given in the table:

a > 0 and b > 0 arctan2 a/b = arctan a/b

a > 0 and b < 0 arctan2 a/b = π + arctan a/b

a < 0 and b > 0 arctan2 a/b = arctan a/b

a < 0 and b < 0 arctan2 a/b = arctan a/b − π

When the three axes of the wrist intersect in the same point, we can separately
consider the displacements of the robot arm (ϑ1, ϑ2, ϑ3) and the displacements of
the robot wrist (ϑ4, ϑ5, ϑ6). Figure 5.6 shows the robot wrist, while the robot arm
is placed into the initial pose. Now, the unit vector of the robot end-segment a can
be decomposed into components along the base coordinate frame ax0, ay0, and az0.
The angle in the fourth joint is obtained by the Eq. (5.29):

ϑ4 = arctan2
ay0

ax0
(5.29)

The relation between an arbitrary orientation of vector a and the orientation of
vector a0, when the first three joints are in the initial pose, is given by the following
equation:

a0 = 0RT
3 a (5.30)

The rotational part of the matrix (5.7) is first transposed and afterwards multiplied
by the vector [ax ,ay,az]T, yielding:
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Fig. 5.6 Robot wrist

ax0 = ax c1c23 + ays1c23 + azs23 (5.31)

ay0 = ayc1 − ax s1 (5.32)

az0 = −ax c1s23 − ays1s23 + azc23 (5.33)

The joint variable ϑ5 is defined as the angle between the axes x4 and x5, as evident
from Fig. 5.6. When replaced by an equivalent angle between the segments d4 and d6,
the following relation is obtained:

ϑ5 = arctan2

√
a2

x0 + a2
y0

az0
(5.34)

There remains only the angle ϑ6. We express s6 from Eq. (5.13) and input it
into (5.16), while expressing c6:

c6 =
( nz

s4

(
c4c5 + c23

s23 s5
) − sz

)
s23s4

(c4c5s23 + c23s5)2 + s232s42 (5.35)

The function arccos yields the values between 0 and π . We therefore use + arccos c6
in the first half of rotation about the vector a, and − arccos c6 in the second half.
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