
Chapter 9

Estimation of the Stress State Within Particles

and Inclusions and a Nucleation Model

for Particle Cracking

Despite great strides in developing physically motivated models for void growth,

shape evolution and coalescence, a suitable treatment for void nucleation remains

an open question. Accurate modeling of void nucleation is difficult within a

Gurson-based framework due to the intrinsic assumption that the material does

not contain any second-phase particles. Consequently, the nucleation models

employed in these constitutive models are overly simplistic as the particle shape,

composition, stress state and load-sharing are neglected, lumped into a single

calibration parameter (Beremin 1981) or indirectly accounted for in a phenomeno-

logical manner (Chu and Needlman 1980). The lack of progress in developing

physically sound nucleation models has not been for lack of effort but a result of the

inherently complex nature of the nucleation process. Void nucleation is very

difficult to capture experimentally since it is a relatively random and instantaneous

event that cannot be captured in-situ without the aid of high resolution x-ray

tomography. Additionally, the local stress state near a particle of interest is typi-

cally unknown, as well as the particle composition and mechanical properties. The

nucleation mechanism can occur by debonding or particle cracking and is influenced

by the particle size, shape, composition, distribution, strain rate and temperature. From

an engineering perspective, one can clearly see the attraction in adopting a phenome-

nological nucleation model whose parameters can be adjusted to give good agreement

with the experiment data. Nevertheless, there is ample opportunity to improve the

physical foundation of the current nucleationmodels, especially in regards to percola-

tion modeling.

A promising procedure to account for the stress state in the particles has been

proposed by Butcher (2011) by integrating a secant-based homogenization tech-

nique for particle-reinforced plasticity into an existing damage-based material

model. This model has been developed to predict ductile fracture of industrial

alloys during sheet metal forming operations where the loading is proportional

and the particle content is small. The subsequent sections will introduce the

particle-based homogenization model and its integration into a general damage-

based constitutive model. The ability to determine the stress state within the

particles will be used to model nucleation in Chaps. 10 and 11.
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9.1 Particle-Based Homogenization Theories

The development of particle-based homogenization theories to predict the bulk

behavior of a material from its constituents encompasses a large branch of materials

mechanics. As such, only a very brief review of the development of homogeniza-

tion techniques is presented here with a focus on methods amenable for implemen-

tation into a damage-based framework. Excellent reviews on the efforts to develop

particle-based homogenization techniques in the plastic regime can be found in

Ponte-Casteneda and Suquet (1998) and Chaboche et al. (2005).

The framework for particle-based homogenization problems was pioneered

by Eshelby (1957) when he obtained closed-form solutions for the stress field

within ellipsoidal inclusions embedded in a matrix material by theorizing a

stress-free transformation strain (eigen-strain) between the matrix and inclusions.

Eshelby’s work provided the analytical techniques required to estimate the average

stress within the inclusions and matrix material using his so-called fourth-order

S tensor. Hill (1965) later developed a rigorous solution for composite materials

using the incremental theory of anisotropic elasticity. Incremental approaches to

the homogenization process are based upon the tangent stiffness tensors of the

constituents. It was soon recognized that this approach led to overestimations in the

flow stress of the material due to the anisotropic nature of the tangent stiffness

tensor in the plastic regime.

To obtain more realistic predictions for the composite flow stress, Berveiller and

Zaoui (1979) modified Hill’s incremental solution to obtain a total-strain formulation

for proportional loading using the secant moduli of the matrix material. This model

was further improved by Weng (1984, 1990) and Tandon and Weng (1986) using the

mean field methods of Mori and Tanaka (1973) to account for inclusion interactions.

Although the experimental material behaviour was better described using these

models, errors arose when the inclusions remained elastic, resulting in an overly

stiff response and an overestimation of the composite flow stress. The reason for this

error was attributed to the fact that the plastic strain in the matrix was determined

from a reference equivalent stress using the volumetric average of the matrix stress

tensor. This equivalent stress can be significantly lower than the phase-average of the

equivalent stress due to the severe stress gradients that develop in the plastic regime,

resulting in the composite stress to be overestimated (Pierard et al. 2007).

This limitation led to the development of a modified secant method that defines the

stress field in the non-linear matrix phase using the second-order moment of the

volumetric stress tensor by Suquet (1995). The modified secant approach coincides

with the variational approach of Ponte Castenada (1996) and gives very good agree-

ment with the finite-element solution for a ductile matrix embedded with spherical

elastic inclusions (Segurado, J., & Llorca, J. 2002). Despite these improvements, a

fundamental limitation of secant-basedmethods is that they cannot be applied for non-

proportional loadings, resulting in a renewed interest in recent years to improve the

incremental formulations. Significant improvements have been obtained in the incre-

mental models by using only the isotropic component of the anisotropic tangent

stiffness tensors (Gonzalez and Llorca 2000; Doghri and Ouaar 2003).
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Today, it is generally agreed that both secant and tangent-based homogenization

models can provide acceptable approximations to the material behavior of compos-

ite materials in the elastic and plastic regimes (Pierard et al. 2007). As each type of

model has its advantages, the desired application of the model is perhaps the most

important factor in its selection. For materials with dilute concentrations of

inclusions (less than 10 %), Mueller and Mortensen (2006) found no discernible

difference in the predictions for the bulk and shear moduli of the composite when

they evaluated five different homogenization schemes in the plastic regime (secant,

self-consistent, generalized self-consistent, differential effective-medium, identical

hard spheres approximation). This result suggests that a simple homogenization

model can be suitable for a large range of engineering alloys.

A recent work by Pierard et al. (2007) provides additional insight into the

importance of selecting the appropriate homogenization scheme. In this work, a

finite-element study was conducted for a material containing aligned ellipsoidal

inclusions to obtain an ‘exact’ solution to the homogenization problem. A classical

secant (Mori and Tanaka 1973), modified secant (Suquet 1997) and a modified

incremental model (Doghri and Ouaar 2003) were then evaluated to measure their

predictive abilities. It was observed that the modified secant method gave the best

agreement with the numerical results at the onset of plastic deformation while the

classical method gave the best prediction for the composite hardening rate in the

fully plastic regime. The incremental model of Doghri and Ouaar (2003) provided

very good results in all of the cases considered. A comparison of the results with the

‘exact solution’ obtained using finite-element simulations is shown in Fig. 9.1.

What is most interesting from the work of Pierard et al. (2007) with respect to

void nucleation is that while the incremental and modified secant methods gave the

best estimates for the composite stress, the stress within the particles was best

predicted using the secant method shown in Fig. 9.2. This is an important result and
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Fig. 9.1 Predictions of the tensile stress–strain curves in the longitudinal direction for the

composite reinforced with ellipsoidal inclusions with a volume fraction of 25 %. (a) n ¼ 0.05;

(b) n ¼ 0.40. The error bars represent the standard deviation in the numerical simulations

(Reprinted with permission from Pierard et al. (2007). Copyright 2007 Elsevier)
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it emphasizes the fact that that the ability of a model to predict the overall response

of a material from its constituents does not mean that the predicted stress within the

constituents is accurate as well. It is also important to note that all of the models

underestimated the plastic strain in the matrix as the strong strain-gradients that

develop between inclusions are not captured. These results serve to highlight the

approximate nature of the homogenization models and one can see that in many

cases, there may not be a distinct advantage in selecting one model over the other.

The specific application and degree of accuracy in the metric of interest should be

used in selecting an appropriate model.

9.2 Selection of a Homogenization Theory for Modelling

Void Nucleation

For many ductile industrial alloys the volume fraction of second-phase particles is

on the order of a few percent. As such, the reinforcement of these particles on the

stress–strain curve is not of prime concern since they are generally not considered at

all in Gurson-based material models. The influence of the particles in Gurson-based

models is implicitly captured by using the experimental flow stress relation and

assuming it describes the behaviour of the ‘virgin’ matrix. Consequently, our

objective is to augment existing damage-based constitutive models by improving

their ability to predict void nucleation through knowledge of the stress within the

inclusions, not to predict the macroscopic response of the material from homogeni-

zation theory. The initiation and evolution of voids is the principal concern. If the
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Fig. 9.2 (a) Evolution of the plastic strain in the matrix as a function of the applied strain. (b)

Evolution of the von Mises equivalent stress in the ellipsoids as a function of the applied strain.

The composite was loaded in the longitudinal direction and the matrix hardening coefficient was

0.40 (Reprinted with permission from Pierard et al. (2007). Copyright 2007 Elsevier)
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material of interest contains a large volume fraction of reinforcing particles, a

sophisticated homogenization scheme may be required to predict the overall

response of the material to capture the load loss as particles nucleate voids.

For the purpose of modeling void nucleation, the secant method of Tandon and

Weng (1986) will be used to estimate the stress within the inclusions. The

advantages of adopting a secant-based method are that they are computationally

efficient, easily implemented into numerical codes and can provide reasonable

estimations for the stress in the matrix and inclusions. The issue of computational

efficiency is of paramount importance in a damage percolation model because the

homogenization procedure must be repeated for each of the large number of

particles within the microstructure at each loading step. The adoption of a more

sophisticated homogenization model is left for future work.

9.3 A Particle-Based Homogenization Model for a Dual-Phase

Composite Subjected to a Prescribed Traction

The particle-based homogenization scheme considered in this work was developed

by Tandon and Weng (1986) for a dual-phase composite subjected to a prescribed

traction. The composite is composed of three-dimensional, randomly oriented

elastic particles embedded within a ductile matrix. The particles are spheroidal

and characterized by their elastic properties, volume fraction and aspect ratio. The

homogenization theory is valid for inclusion shapes ranging from flat discs, to

ellipsoids, to elongated fibres.

The homogenization model of Tandon and Weng (1986) is a secant-based

approach that utilizes Berveiller and Zaoui’s (1979) modification to the solution of

Hill (1965) for proportional loading and incorporates the mean-field method of Mori

and Tanaka (1973) to account for particle interactions. Additional details of the

derivation of this model can be found in Tandon and Weng (1986). The following

section will present the details of this theory relevant for integration with a damage-

based constitutive model.

9.4 Effective Moduli of a Randomly-Oriented Composite

The ductile matrix material is treated as phase 0 and the embedded elastic particles

are defined as phase 1 with a volume fraction, f1, and aspect ratio, W1. The

respective isotropic Poisson’s ratio, and bulk, shear and elastic moduli of the r-th
phase are denoted by vr, κr, μr and Er with a superscript, s, used to denote a secant

quantity such as the secant shear modulus of the matrix, μs0. The stress and strain

tensors for the r-th phase are denoted by σðrÞij and εðrÞij which can be decomposed into

their respective deviatoric and hydrostatic components as σðrÞij ¼ σð
0rÞ
ij þ δijσ

ðrÞ
hyd with
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σðrÞhyd ¼ σðrÞkk =3 and εðrÞij ¼ εðrÞij þ δijε
ðrÞ
hyd with εðrÞhyd ¼ εðrÞkk =3 where δij is the Kronecker

delta. Any property or quantity associated with the composite is denoted using an

overbar symbol such as �σij for the composite stress tensor.

In a composite material the constituents are generally in a triaxial state of stress

that should be characterized using the equivalent measures for the stress, strain and

plastic strain as

σðrÞeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þσð0rÞij σð

0rÞ
ij

q
εðrÞeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þεð0rÞij εð

0rÞ
ij

q

�εpeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ�εpij�εpij

q
(9.1a, b, c)

The components of the stress and strain in the composite are related through the

effective secant shear and bulk moduli as

�σ
0
ij ¼ 2�μs�ε

0
ij �σhyd ¼ 3�κs�εhyd (9.2a, b)

To determine the stress and strain in the composite and its constituents during

plastic deformation, the effective secant elastic moduli of the matrix and composite

must first be determined as functions of the matrix plastic strain, εpð0Þeq . The secant

elastic modulus and Poisson’s ratio of the matrix are expressed as

Es
0 ¼

1

1
E0
þ εpð0Þeq

σð0Þeq

¼ 3E0μs0
E0 þ μs0ð1� 2v0Þ vs0 ¼

1

2
� 1

2
� v0

� �
Es
0

E0

(9.3, 9.4)

The secant bulk and shear moduli are obtained using the standard isotropic

relations μs0 ¼ Es
0=2ð1þ vs0Þ and κs0 ¼ Es

0=3ð1� 2vs0Þ. The matrix material is

assumed to be plastically incompressible and thus the secant bulk modulus remains

constant at κs0 ¼ κ0. The effective secant moduli of the composite material can be

determined as

�κs ¼ κ0
ð1þ f1p2s=p1sÞ �μs ¼ μs0

ð1þ f1q2s=q1sÞ (9.5, 9.6)

where pis and qis are functions of the particle shape, volume fraction, elastic moduli

of the constituents and the fourth-order Eshelby (1957) S tensor. The expressions

for pis and qis are rather lengthy and are not presented here for brevity but can be

found in Tandon and Weng (1986).
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9.5 Average Stress in the Composite and Its Constituents

The respective hydrostatic and deviatoric stresses in each constituent are deter-

mined from the composite stress tensor using the stress concentration factors, aðrÞ

and bðrÞ as

σðrÞhyd ¼ aðrÞ�σhyd σð
0rÞ
ij ¼ bðrÞ�σ

0
ij σðrÞeq ¼ bðrÞ�σeq (9.7a, b, c)

that are defined for the matrix material and particles as

að0Þ ¼ 1=p1s að1Þ ¼ 1� ð1� f1Það0Þ
� �

=f1 (9.8a, b)

bð0Þ ¼ 1=q1s bð1Þ ¼ 1� ð1� f1Þbð0Þ
� �

=f1 (9.9a, b)

The stress in the composite and its constituents must be in equilibrium and thus

�σij ¼ ð1� f1Þσð0Þij þ f1σ
ð1Þ
ij (9.10)

The onset of yielding of the matrix occurs when �σeq � σð0Þy =bð0Þ with bð0Þ

determined using the elastic moduli of the matrix in Eq. (9.3) and (9.4).

9.6 Average Strain in the Composite and Its Constituents

Due to the presence of the elastic inclusions, the composite is not plastically

incompressible and the composite plastic strain must be determined from the

unloading process as

�εpij ¼
1

2�μs
� 1

2�μ

� �
�σ

0
ij þ δij

1

3�κs
� 1

3�κ

� �
�σhyd (9.11)

The matrix is assumed to be isotropic and obey J2 plasticity (von Mises material)

from which the plastic strain components can be readily determined by integrating

the J2 flow rule for proportional loading to yield

εpð0Þij ¼ 3

2

εpð0Þeq

�σ
�σ

0
ij (9.12)

The particles are assumed to remain elastic during deformation and the strain in

the particles can be expressed as
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εð1Þij ¼ bð1Þ�σ
0
ij

2μ1
þ δij

að1Þ�σhyd
3κ1

(9.13)

The solution for the secant moduli of the composite and subsequent stress and

strain in the constituents is nonlinear and an iterative solution is required in the

plastic regime. The required material parameters to determine the behaviour of the

composite and stress in the constituents are E0, v0, E1, v1, f1, andW1. A simple fixed-

point algorithm can be easily implemented to determine the required value for εpð0Þeq

and is described in Tandon and Weng (1986). However, this solution method must

be modified in the present work because the homogenization method is to be

coupled with a damage-based constitutive model to account for the influence of

voids on the subsequent stress and strain in the constituents.

9.7 Procedure for Integrating a Particle-Based Homogenization

Theory into an Existing Damage-Based Constitutive Model

To integrate a particle-based homogenization theory into a damage-based constitu-

tive model, we assume that the bulk material can be idealized as a three-phase

composite composed of a matrix material with embedded particles and voids. It is

assumed that this idealized three-phase composite can be decomposed into its

constituents by applying two successive homogenization schemes: (i) a Gurson-

based constitutive model for the voids embedded in a ductile ‘composite matrix’

which is composed of the particles and matrix material and (ii) separation of the

composite matrix into its constituents to determine the stress within the matrix and

particles using a secant-based homogenization scheme.

Let us consider a bulk material which contains both voids and hard elastic

particles/inclusions within a ductile matrix. To mitigate the influence of the

voids, the experimental flow stress relation for the bulk material can be obtained

from a torsion or compression-type test or from a tensile test if the initial porosity is

negligible (Pardoen 2006). This flow stress relation is essentially that of a two-

phase composite composed of the matrix and particles.

Now, the bulk material is subjected to a deformation process such as a sheet

metal forming operation where the pre-existing voids will grow and additional

voids will be nucleated from particle cracking and/or debonding from the matrix.

The presence of the voids results in material softening which further promotes void

evolution resulting in ductile fracture as the voids coalesce and link-up throughout

the material. The influence of the voids on the response of the bulk material can be

described using a damage-based constitutive model such as the Gurson (1977)

model. Gurson-based models are the result of a homogenization procedure for a

material composed of voids embedded within a virgin matrix. Therefore, a Gurson-

based model can be applied to the bulk material to account for void damage by

modeling the bulk material as a material which contains voids embedded within a
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so-called composite matrix. The composite matrix is composed of the virgin matrix

and particles whose composite behaviour is described using the experimental flow-

stress relation for a two-phase composite as described above.

The typical procedure for the integration of the Gurson-based material model is

now applied to the bulk material. The material has a void volume fraction or

porosity, f, and is subjected to a monotonic proportional loading with a macroscopic

strain, �Eij. The stress state is then integrated using the damage-based yield surface

to determine the macroscopic stress, Σij . The equivalent plastic strain and flow

stress within the composite matrix are, �Ep
eq and �σ ¼ �σð �Ep

eqÞ. Void evolution is very

sensitive to the stress state which is characterized by the stress triaxiality ratio

defined as T ¼ �Σhyd=�Σeq.

Due to the presence of the voids, the bulk material is softer and thus the

composite matrix must work-harden to a greater extent to reach the applied strain

of �Eij than if no voids were present. Since the voids do not contribute to load-

sharing, the entire stress must be borne by the matrix and particles. Therefore, from

the perspective of the constituents, it is equivalent to subjecting the composite

matrix to a larger applied strain denoted�εij, that results in the same equivalent stress

and plastic strain as when softening was considered.

The situation for the composite matrix now resembles that of a particle-based

homogenization problem for a prescribed traction. The equivalent stress state

within the composite matrix is known and the stress state in the constituents must

be determined that is in equilibrium with this prescribed stress. The secant-based

homogenization method of Tandon and Weng (1986) can now be applied to

determine the effective secant moduli of the composite matrix which satisfy the

stress state defined by the damage-based stress integration.

The general integration procedure is presented in Fig. 9.3 and can be

summarized in the following steps:

(a) A bulk material containing voids and particles within a ductile matrix is

subjected to a macroscopic loading.

(b) The voids within the material are homogenized into an equivalent void embed-

ded in a composite matrix.

(c) The material is now that of a Gurson-based material with the composite matrix

taking the place of the virgin matrix

(d) A damage-based constitutive model is applied to determine the stress in the

composite matrix by accounting for the influence of the voids. This decouples

the void from the composite matrix.

(e) With the voids removed from the composite matrix, a particle-based homoge-

nization theory for a prescribed traction is applied to the composite matrix to

determine the stress within the matrix and particles.

(f) The particles can now be tested for nucleation using an appropriate model for

the material.

(g) The evolution of the voids must obey the plasticity of the matrix. Combine the

isolated void and the virgin matrix to obtain the traditional voided unit cell.
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(h) The standard models for void evolution are evaluated using the stress state and

plastic strain of the matrix.

To create a stress state in the composite matrix equivalent to that of the voided

bulk material, the applied strain, �εij , must be determined to produce a stress, �σij ,
subject to the constraints that �σeq ¼ �σ, �εpeq ¼ �Ep

eq and �σhyd=�σeq ¼ T. It is important

to mention that the equivalent stress,Σeq, identified in the damage-based integration

is not equal to the flow stress within the composite matrix due to the presence of the

voids. The procedure to determine the applied strain, �εij, and stress, �σij, within the

composite matrix using a secant-based homogenization scheme for monotonic,

proportional loading is described in the following section.

First, the hydrostatic stress of the composite matrix can be computed directly

from the requirement of an equivalent triaxiality as

�σhyd ¼ �σð�Σhyd=�ΣeqÞ (9.14)

From the definition of the effective secant moduli in Eq. (9.2) and the equivalent

stress and strain in Eq. (9.1a, b), the equivalent strain in the composite matrix is

�εeq ¼ �σ=3�μs (9.15)

(b) Homogenize the random voids into
a single void and homogenize the

particles to an average size and shape

(a) Bulk material:
Composed of random voids and 

particles embedded within a ductile 

(c) Gurson-based material: 
Equivalent void embedded within a

'composite matrix' of 
randomly-oriented particles

Σ1

Σ1

Σ1

Σ1

(e) Apply a particle   
homogenization 

scheme  to split the 
composite matrix 

into its constituents

σ1
composite

σ1
matrix

σ1
matrix

σ1
matrix
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matrix

σ1
particle
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Fig. 9.3 Schematic of the integration process of a particle-based homogenization theory into a

damage-based constitutive model (Butcher 2011)
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Only the deviatoric stress and strain of the composite matrix remain unknown

and only one is required to be pre-determined as they are related through the secant

shear modulus. The deviatoric strain in the composite is assumed to be proportional

to the deviatoric strain in the damage-based model or three-phase composite as

�ε
0
ij ¼ ξ �E

0
ij (9.16)

so that ξ ¼ �εeq= �Eeq, and the stress and applied strain in the composite matrix can be

derived as

�σij ¼ 2

3

�σ
�Eeq

� �
�E
0
ij þ δij�σhyd �εij ¼ 1

3�μs
�σ
�Ep
eq

� �
�E
0
ij þ δij

�σhyd
3�κs

(9.17, 9.18)

which satisfies the requirements that �σhyd=�σeq ¼ T and �σeq ¼ �σ. The stress within
the composite matrix can be evaluated immediately following the stress integration

of the damage-based constitutive model while �εij requires knowledge of the

effective secant moduli which have yet to be determined.

9.8 Iterative Solution for the Effective Secant Moduli

An iterative procedure is required to determine the effective secant moduli of

the composite matrix from which the stress and strain within the constituents can

be determined. The iterative solution is developed through the final constraint that

the secant elastic moduli must result in a plastic strain in the composite matrix of

�εpeq ¼ �Ep
eq . The plastic strain of the composite matrix must account for the elastic

heterogeneity of the particles and from substituting Eq. (9.11) into Eq. (9.2) and

utilizing Eq. (9.1c), the required secant shear modulus of the composite matrix is

�μs� ¼ �μ�σ �σ þ �μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 �Ep

eqÞ2 � 2 1=�κs � 1=�κð Þ2�σ2hyd
q� ��1

(9.19)

All of the parameters in Eq. (9.19) are constant during the iteration loop except

for the secant bulk modulus, �κs, which varies with the plastic strain of the matrix.

A fixed-point algorithm is used to obtain the solution to the non-linear equations

for the secant moduli by iterating upon the secant elastic modulus of the matrix, Es
0.

A trial value for Es
0 is assumed from which the subsequent trial values for the secant

shear, bulk and Poisson’s ratios of the matrix can be determined from Eqs. (9.3) and

(9.4) and used to evaluate the expressions forpis and qis, as well as�κs in Eq. (9.5) and
�μs� in Eq. (9.19). A new estimate for μs0 can be determined by setting �μs ¼ �μs� in

Eq. (9.6) and evaluating Eq. (9.3) to obtain a new estimate for Es
0. If this new value

of Es
0 is equal to the trial value, the solution has been obtained, otherwise the
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algorithm is repeated using the current Es
0 as the new trial value. Upon convergence,

the stress concentration factors to determine the stress and strain tensors of the

matrix and particles can be evaluated using Eqs. (9.7a–c), (9.12) and (9.13). This

algorithm generally achieves convergence within three iterations to a tolerance of

0.001 and is straightforward in its implementation.

9.9 Application of the Particle-Based Homogenization

Scheme into a Gurson-Based Constitutive Model

for Ductile Fracture

The integration of a homogenization scheme into a Gurson-based damage framework

improves all aspects of the damagemodel and couples the various damagemechanisms

that are often considered independently. The advantages of the proposed fully-coupled

damage-based constitutive model are:

• Modeling of void nucleation is improved through knowledge of the stress state

within the particles as a function of their shape, content and composition.

• As particles nucleate voids, the stress state within the matrix becomes more

severe due to increased material softening (higher porosity) as fewer particles

are available for load sharing.

• The stress state within the matrix and particles becomes progressively more

severe as the particle content decreases due to nucleation. This promotes addi-

tional nucleation, void growth and material softening.

• The plastic strain within the matrix material is higher than in the composite

matrix and thus promotes void evolution and coalescence.

• The model reverts to its original formulation if the material does not contain any

second-phase particles or inclusions.

• The flow stress relation of the matrix material does not have to be predetermined.

• An absolute minimum number of new parameters have been introduced into the

damage-based framework. The elastic properties of the constituents as well as

the average particle shape and content are typically known from standard

material characterization techniques used in damage-based modeling.

• The particle-based homogenization scheme is computationally efficient and

easily implemented into any existing damage-based constitutive model.

The proposed integration procedure has been implemented into the well-known

GT constitutive model in Butcher (2011) and is also used in the percolation model

by applying the homogenization procedure to each particle in the material. The

variation in the principal stress state in the particles with the macroscopic stress

state is shown in Fig. 9.4.
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9.10 Continuum Nucleation

The treatment of void nucleation on the continuum scale in a damage-framework

can be substantially improved using the the proposed integration scheme to obtain

the stress in the particles. For example, the nucleation stress in the Chu and

Needleman (1980) nucleation model can now be predicted as a function of the

particle content, shape and elastic moduli as

_f nucleationð fp;Wp;Gp; κp;ΣijÞ ¼ WNξnfp

sNσy
ffiffiffiffiffi
2π

p exp � 1

2

σp � σN
sNσy

� �2
" #

_σp (9.20)

whereWN is the aspect ratio of the nucleated void andξn is the fraction of particles that
will nucleate voids. The particle stress term, σp, can be either the equivalent stress in
the particles for general nucleation modelling or the maximum principal stress in the

particles to better represent particle cracking. The yield stress of the material, σy, is
simply a normalizing factor and could be changed to the particle yield stress if it

happens to be known. Unlike the traditional Chu and Needleman nucleation model

(1980), the stress in the particles will evolve as particles nucleate voids, increasing the

stress in the remaining particles and promoting nucleation. Furthermore, the determi-

nation of the mean nucleation stress, σN, through calibration with the experiment will

have a stronger physical foundation since the stress in the particles was determined as

a function of the global stress state and the particle morphology.
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Fig. 9.4 Normalized principal stress within the spherical elastic particles/inclusions with a volume

fraction of 10 % for three loading conditions in a model material based upon AA5083 (Butcher

2011). The initial voids in the material have an aspect ratio of 1/6 and a porosity of 0.1 %. The bulk

material ruptures due to void coalescence when loaded in plane strain and equal-biaxial tension
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9.11 Void Nucleation in a Particle Field

The dominant void nucleation mechanisms in ductile materials are particle cracking

and interface fracture (debonding). Particle cracking occurs primarily in strong,

rigid particles in a brittle-type fracture in the direction transverse to the maximum

principal stress. Void nucleation due to interface separation is strongly related to the

particle geometry and the interface strength between the inclusion and the surrounding

matrix. Similar to particle cracking, debonding occurs preferentially in the principal

loading direction unless the stress triaxiality is high.

From a modeling perspective, particle cracking and debonding will occur simul-

taneously in a material and thus two nucleation models and their parameters must

be determined for each type of inclusion present. The identification of the appro-

priate material parameters for even a single nucleation model is a complicated

process as nucleation is exceptionally difficult to measure experimentally. Conse-

quently, most treatments of nucleation rely on a phenomenological model such as a

normal-distribution (Chu and Needleman 1980) with either assumed or calibrated

parameters obtained from a combination of finite-element simulations and experi-

ment data (Butcher and Chen 2011).

In a damage percolationmodel, an approximate treatment for nucleation is required

to reduce the number of required nucleation parameters while retaining a physically

sound description of the nucleation mechanism. A proper accounting of nucleation

requires both a nucleation model and a treatment for determining the initial

dimensions and orientation of the nucleated void. For practical considerations, an

emphasis is placed upon developing an accurate representation of particle cracking as

this is the dominant nucleation mode in many advanced automotive alloys. Addition-

ally, the nucleated void by particle cracking gives rise to a penny-shaped void whose

growth and evolution is relatively well understood from finite-element simulations in

Chap. 4. The implementation of a sophisticated particle debonding criterion into the

percolation framework is left for future work.

9.12 Modeling Void Nucleation Using Penny-Shaped Voids

In particle cracking, the void is assumed to nucleate transversely to the maximum

principal direction as illustrated in Fig. 9.5. This cracking behaviour is similar for

both oblate and prolate ellipsoidal inclusions with prolate inclusions particularly

prone to cracking. At the instant of nucleation, the particle is in two pieces that have

yet to appreciably separate and the void is said to be penny-shaped. From unit cell

simulations of penny-shaped voids, it has been shown that the growth of the void

and response of the material converges for aspect ratios lower than 1/100. This is an

extremely beneficial result that allows us to assume an aspect ratio for the nucleated

void with the confidence that is a physically sound approximation.
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For particle debonding, we will first consider an oblate ellipsoidal particle as

viewed from the principal loading direction (the particle would appear as a prolate

ellipsoidal if viewed from the transverse direction). The interface may fracture at

the top and/or bottom surfaces of the inclusion. At the onset of interface fracture,

the vertical height of the debonded void, δ, is negligible and we assume nucleation

occurs over the entire top/bottom surface. Since it is not possible to estimate

whether the top and/or the bottom interface will debond first, we can take the

average of the three possible cases and simply place the void at the center of the

particle. As shown in Fig. 9.6, this approximation yields a penny-shaped void and

can receive the same treatment for particle cracking to provide a good estimate for

the initial void dimensions.

For the debonding of a prolate ellipsoidal inclusion, interface separation occurs

at the top and/or bottom poles of the inclusion as shown in Fig. 9.7. Similar to the

oblate inclusion, the debonded regions can be approximated by a penny-shaped

void at the centroid of the inclusion.

This type of debonding is not as well represented using this treatment compared

to debonding of the oblate inclusion. However, this approximation is not entirely

unreasonable if it is assumed that sufficient material debonds at the pole so that the

cross-sectional area of the inclusion is a good estimate for the debonded area.

Nevertheless, the approximation of all nucleated voids as penny-shaped voids

sufficiently covers the range of nucleation modes to be an effective and straightfor-

ward treatment as only one nucleation model is required per inclusion type. This

nucleation treatment can be considered as ‘cracking-centric’ since it best represents

particle cracking and is only approximate for debonding.
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Fig. 9.5 Void nucleation by the cracking of an oblate ellipsoidal inclusion. Nucleation occurs in

the same manner for a prolate ellipsoid. (a) Oblate ellipsoidal particle or inclusion and (b) particle

cracks to form a penny shaped void
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9.13 A Nucleation Model for Particle Cracking

A void nucleation model for particle cracking is fundamentally a model of brittle

fracture and must account for the stress within the particle, particle size, shape and

composition. It is well known that hard large particles are predisposed to cracking

since they are irregularly shaped and experience higher stresses via load sharing

with the matrix compared to their smaller neighbours. From a statistical perspec-

tive, a large particle has a higher probability of containing internal defects than a

smaller particle. This effect can be clearly seen in the SEM micrographs in Fig. 9.8

that show the presence of surface cracks on the particles in an as cast AA5182 alloy.
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Fig. 9.6 Void nucleation by the debonding of an oblate ellipsoidal inclusion and its approxima-

tion as a penny-shaped void. (a) Oblate ellipsoidal particle or inclusion, (b) debonding may occur

at the top and/or bottom surfaces of the particle, and (c) debonded regions approximated as a

penny-shaped void at the particle centroid
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These cracks are a result of the solidification process and act as preferential sites for

particle break-up during the hot and cold rolling processes. In a metal forming

operation, these particles are smaller but still contain cracks that can nucleate voids.

Since brittle fracture is associated with negligible plastic deformation, the particles

can be assumed to remain elastic during the deformation process, enabling the use

of linear elastic fracture mechanics to relate the stress state with the distribution of

internal cracks within the inclusions.

To model the break-up of the large intermetallic particles in AA5182 during the

rolling process, Moulin et al. (2009) performed an extensive finite-element and

experimental study of irregularly shaped inclusions. It was observed that the stress

distribution within these particles is not homogeneous and that only certain regions of

the particle will achieve the stress required for particle break-up. These high stress

regions were termed the ‘active volume’ of the inclusion, Va. Since the particles are

brittle and contain cracks, the fracture mechanism is one of mode I failure and is a

function of the critical material toughness, K1C, and the distribution of the cracks.

Assuming a homogeneous distribution of cracks with an effective length, aeff, the
crack will propagate according to Griffith’s criterion for mode I fracture when the

principal stress in the particle satisfies the inequality

σP1 � K1Cffiffiffiffiffiffiffiffiffiffi
πaeff

p (9.21)

This equation originates from the energy requirement that the stored elastic

energy within the inclusion must satisfy the energy released by the creation of the

two fracture surfaces. By assuming a homogenous distribution of cracks, the

inclusion is expected to contain a crack that is perpendicular to the principal loading

direction that can propagate to cause fracture. The critical length of this crack, ac,
that must be present within the active volume of the inclusion can be estimated as

Fig. 9.8 SEM observation from Moulin et al. (2009) showing the intermetallic particles in as-cast

AA5182 (left) and the typical morphology of the large Fe-rich particles (right) (Reprinted with

permission from Moulin et al. (2009). Copyright 2009 John Wiley & Sons)
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ac � α

π

K1C

σth

� �2

α � 1 (9.22)

where α is a geometry parameter to account for various effects such as crack

blunting and interactions and σth is a threshold stress for the maximum principal

stress within the active volume. The critical volume that contains a crack transverse

to the loading direction is defined as V3
c ¼ a3c and particle fracture will occur when

the critical volume is equal to the active volume (Moulin et al. 2009)

Va � Vc � α

π

� �3 K1C

σth

� �6

(9.23)

9.13.1 Stress State and Nucleation

The criterion of Moulin et al. (2009) in Eq. (9.23) is ideally suited for the modeling

of void nucleation since it is a volume-based metric that accounts for the stress

within the inclusion, the material toughness and has a strong physical foundation

based upon the energy required for crack propagation via the Griffith criterion.

However, the model cannot be readily implemented into the percolation model

because the threshold stress and active volume of the particles are functions of the

particle size, shape, composition and loading condition. In Moulin et al. (2009),

they were determined by using finite-element techniques.

Fortunately, since the inclusions in the percolation model are assumed to be

ellipsoidal, the stress and strain distributions within the inclusion are uniform as

proven by Eshelby (1957). This favourable result indicates that the activated volume

in Eq. (9.23) must be equal to the volume of the inclusion and that the threshold stress

must be equal to the principal stress in the inclusion. The homogenization scheme for

particle-reinforced plasticity is now used to determine the stresswithin the particle as a

function of the particle size, shape and composition. The fracture criterion can now be

expressed in terms of a nucleation stress

σp1 � σN (9.24)

σN ¼ 1ffiffiffi
π

p K�
1C

V
1=6
p

K�
1C ¼ K1C

ffiffiffi
α

p
α � 1

where K�
1C is the effective critical toughness of the particle material and is the sole

parameter in the nucleation model. The K1c value can be estimated if the composi-

tion of the particle is known or else it can be identified by calibrating the effective

K�
1C with the experimental nucleation data. A realistic range for the value of K1c for
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brittle materials is 1–10 MPa · m1/2 (Moulin et al.). The geometry factor,α, does not
have to be determined and can be lumped into the K�

1C value.

The variation of the particle nucleation stress with the volume is presented in

Fig. 9.9. The criterion captures the particle size-effect where small particles nucle-

ate at high strains while large particles nucleate at low stresses and are roughly

independent of the particle size. The nucleation model also predicts that brittle

phases are more likely to crack than more ductile phases. It should be emphasized

that the nucleation stress is deeply coupled with the particle size, shape, composi-

tion, fracture toughness and the applied stress state as

σN ¼ σNð fp;Wp;Gp; κp;Σij;K
p
1c Þ (9.25)

and that successful prediction of nucleation relies upon the interrelationships

among variables.

The principal contribution of this nucleation treatment is that it is physically

realistic and does not contain any calibration parameters. The percolation model is

now completely deterministic where fracture is a natural consequence of void

nucleation and evolution and no adjustable parameters are employed. The particle

distribution, stress state and material properties are solely responsible for the fracture

process. All parameters are intrinsic material properties that can be quantified or

estimated such as the K1c value.
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9.14 Determination of the Initial Dimensions

for a Nucleated Void

A three-dimensional ellipsoidal inclusion with semi-axes (a, b, c) and orientation

vectors (n1, n2, n3) is embedded within a ductile matrix as shown in Fig. 9.10. The

matrix and inclusion are subjected to an external loading that gives rise to a maximum

principal stress, Σ1, along the direction, u. The loading is severe enough to induce the
particle to fracture or debond from the matrix to form a void. It is assumed that the

particle cracks through its center in the direction transverse to the principal loading

direction. The dimensions and orientation of the void in this plane are obtained by

sectioning the inclusion to form an ellipse on the p-n plane where the vectors p and n
correspond to the semi-axes of the ellipse denoted as and bs. The void height, cW, is
determined from the assumed aspect ratio for the void at nucleation,WN. For penny-

shaped voids, any value forWN < 0.01 can accurately represent the void. The height

of the void can then be calculated as

cW ¼ WNRaxi ¼ WN

ffiffiffiffiffiffiffiffi
asbs

p
(9.26)
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Fig. 9.10 Procedure for modeling void nucleation. (a) Ellipsoidal inclusion in a ductile matrix,

(b) cross-sectional area of the nucleated void, (c) penny-shaped void geometry, and (d) ordered

void geometry and orientation
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Finally, the void semi-axes, (cW,as,bs), and their respective directions, (u, p, n),
are ordered so that the semi-axes are now defined as (a, b, c) with directions (n1, n2,
n3) and a � b � c. The inclusion that nucleated the void is then removed from

further analysis as it is assumed that the particle can only crack once, has a

negligible ability to reinforce the material (true for particle cracking) and that any

pieces of the broken particle do not significantly impact the subsequent growth of

the void (Lassance et al. 2006).

When the principal stresses are comparable as in equal-biaxial tension, the

particle may crack transverse to either direction. In this case, the cracking direction

is selected as the direction that has the largest particle aspect ratio because prolate

particles are more prone to cracking than oblate particles.

9.15 Summary

An approximate integration scheme has been presented to implement a secant-based

homogenization theory for particlere inforced plasticity into an existing damage-

based constitutive model for ductile fracture. The resulting model can account for the

influence of the second-phase particles on void growth, shape evolution, coalescence

and material softening. The stress state within particles can also be determined as a

function of the particle content, shape and elastic properties. Additionally, the stress

state within the matrix material can be estimated with no prior knowledge of its

hardening profile. The results for the local stress states will be used to predict void

nucleation through particle particle fracture and decohesion in the percolation

modelling of ductile fracture in actual particle fields. The present model is best suited

for application to sheet metal forming of damage-sensitive industrial alloys where the

loading is proportional and the volume fraction of the second-phase particles is low,

which is true for most metal forming processes.

9.15 Summary 243


	Chapter 9: Estimation of the Stress State Within Particles and Inclusions and a Nucleation Model for Particle Cracking
	9.1 Particle-Based Homogenization Theories
	9.2 Selection of a Homogenization Theory for Modelling Void Nucleation
	9.3 A Particle-Based Homogenization Model for a Dual-Phase Composite Subjected to a Prescribed Traction
	9.4 Effective Moduli of a Randomly-Oriented Composite
	9.5 Average Stress in the Composite and Its Constituents
	9.6 Average Strain in the Composite and Its Constituents
	9.7 Procedure for Integrating a Particle-Based Homogenization Theory into an Existing Damage-Based Constitutive Model
	9.8 Iterative Solution for the Effective Secant Moduli
	9.9 Application of the Particle-Based Homogenization Scheme into a Gurson-Based Constitutive Model for Ductile Fracture
	9.10 Continuum Nucleation
	9.11 Void Nucleation in a Particle Field
	9.12 Modeling Void Nucleation Using Penny-Shaped Voids
	9.13 A Nucleation Model for Particle Cracking
	9.13.1 Stress State and Nucleation

	9.14 Determination of the Initial Dimensions for a Nucleated Void
	9.15 Summary


