
Chapter 4

Void Growth to Coalescence: Unit Cell

and Analytical Modelling

4.1 Void Shape Evolution During Ductile Fracture

The voids in a ductile material subjected to plastic deformation change shape

according to the local plastic flow of the material since the voids are not internally

pressurized. As a result, the void growth rate and shape evolution are intrinsically

linked because the void shape (and orientation) induce anisotropy, altering the

stress state and the growth rate in a non-linear fashion. The standard Gurson-

Tvergaard model maintains its isotropic formulation by enforcing the void to

remain spherical. The influence of the void shape on the stress response of the

material is shown in Fig. 4.1 as well as the variation in the growth rate in Fig. 4.2 for

a practical stress triaxiality of 2/3 (equal-biaxial stretching).

To simplify the modelling procedure, it is often assumed that the voids can be

approximated as spheroids (an ellipsoid of revolution) as shown in Fig. 4.3. In

uniaxial tension, void shape evolution is significant as initially penny-shaped voids

can rapidly elongate in the principal loading direction into prolate voids. Alterna-

tively, at high stress triaxialities found ahead of a crack tip, the voids tend to grow

laterally and become oblate regardless of the principal loading direction. Penny-

shaped voids are the exception to this trend and only appreciably grow in the

opening direction even at high stress triaxiality (Lassance et al. 2006; Butcher

2011). Furthermore, a specific stress triaxiality exists for each void shape that will

enforce the void to grow in a self-similar manner and retain its shape. Conse-

quently, the mechanics for modeling void shape evolution are complex and no

analytical model has yet been developed that can account for the void shape

evolution in different stress states. As such, the adoption of heuristic parameters

in these models is currently unavoidable (Keralavarma and Benzerga 2010).

The evolution of the void shape is a function of the initial void size, fi, initial
aspect ratio, Wi , equivalent plastic strain, �εp , matrix hardening exponent, n, and
stress state, σij, in the general form

W ¼ gðfi;Wi; T; n;�ε
pÞ ð4:1Þ
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4.2 Damage-Based Material Models with Void Shape Effects

The physical foundation of a damage-based constitutive model rests upon the

accuracy of the analytical sub-models that describe void nucleation, evolution,

coalescence and material softening. While numerous micromechanical models

have been proposed in the literature that can capture damage evolution, at least

qualitatively, the veracity of these models must be evaluated over the large number

of void shapes, sizes and stress states that will be found within a real microstructure.
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Fig. 4.1 Normalized equivalent stress response of an axisymmetric voided unit cell with various

void shapes

Fig. 4.2 Variation of void growth in an axisymmetric unit cell with the initial void shape. The

assumption of a constant spherical void in the standard GT model significantly overestimates void

growth for prolate voids and underestimate growth for oblate voids in the practical triaxiality

regime (T < 1)
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Finite-element simulations of axisymmetric unit cells containing different void

geometries are required to provide the numerical benchmarks for these evolution

models. An emphasis will be placed upon the evolution of penny-shaped voids

because they are nucleated by particle cracking and have received scant attention in

the literature. The organization of the section is as follows:

• Finite-element modeling and analysis of voided unit cells

• Discussion of finite-element simulations for a range of void aspect ratios and

initial porosities

• Evaluation of current micromechanical models to predict damage evolution

• Development of unit cell correlations for damage evolution

4.3 Modeling Void Evolution Using a Unit Cell

The voids within a bulk material are assumed to be distributed throughout the

material in such a manner that the material may be considered to be composed of

identical unit cells, each containing a single void at its center. Typically, the unit

cells are assumed to be cubic or axisymmetric. The axisymmetric unit cell is

obtained by assuming the material is composed of interlocking hexagonal unit

cells. These hexagonal unit cells can be approximated as cylindrical and then

reduced to one-quarter, 2-D axisymmetric geometry for finite-element modelling

as shown in Fig. 4.4. Similarly, the geometry of a 3-D cubic unit cell can be directly

reduced to a one-eighth model due to symmetry.

The predicted trends for damage evolution are somewhat dependent upon the type

of unit cell geometry (Kuna and Sun 1996). The evolution of porosity is lowest in a

3-D model and highest in the axisymmetric model due to the 3-D material containing

more material to constrain the growth of the void and delay coalescence. As seen in

Fig. 4.5, the cubic unit cell requires a significantly larger number of elements than

the axisymmetricmodel and requires 8-node solid brick elements that are significantly

more computationally expensive than the 4-node quadrilaterals used in the axisym-

metric model. As a result, the run-times for cubic cells tend to be prohibitive unless a

specific loading condition or geometry mandates their use. In the literature, most unit

Fig. 4.3 Idealized spheroidal void shapes. (a) Penny-shaped spheroid:W ! 0, (b) oblate spheroid:

W < 1, (c) sphere: W ¼ 1, (d) prolate spheroid: W > 1
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cell studies have focused on the use of axisymmetric geometries as they are efficient

and provide a good estimate for damage evolution and fracture strains (Koplik and

Needleman 1988; Kuna and Sun 1996; Brocks et al. 1996; Pardoen and Hutchinson

2000). It should be emphasized that axisymmetric models provide a lower, and

therefore, more conservative estimate for the fracture strain (coalescence) than their

3-D counterparts. Axisymmetric unit cells are considered in the present work to

generate the void evolution trends required for validation of the micromechanical

models.

4.3.1 Analysis of an Axisymmetric Unit Cell

The axisymmetric unit cell is analyzed using a cylindrical coordinate system

denoted by (er, eθ, ez) along the r-radial, θ-ortho-radial and z-axial axes, respectively.
As shown in Fig. 4.6, the geometry of the cylindrical unit cell is defined by a height

Fig. 4.4 Procedure for approximating a hexagonal distribution of unit cells into an axisymmetric

cell model that can be reduced to a one-quarter, 2-D geometry for finite-element modeling

Fig. 4.5 Typical cell geometry and finite-element mesh for an initially spherical void in a one-

quarter axisymmetric unit cell (left) and a one-eight cubic unit cell (right)

104 4 Void Growth to Coalescence: Unit Cell and Analytical Modelling



of 2Lz and radius, Lr and contains a spheroidal void with radii, Rz and Rr. The void

shape is a prolate spheroid when Rz > Rr , an oblate spheroid when Rz < Rr , or a

sphere whenRz ¼ Rr. The geometry of the unit cell and void are defined using non-

dimensional parameters. The void is defined by its volume fraction or porosity, f,
and its aspect ratio, W, while the cell geometry is defined by its aspect ratio, λ.
These parameters can also be combined to calculate the void spacing ratio (liga-

ment size ratio), χ, that plays a critical role in void coalescence. These parameters

all evolve during deformation of the cell and their initial values are defined as

f0 ¼ 2Rz0

3Lz0

Rr0

Lr0

� �2

W0 ¼ Rz0

Rr0
λ0 ¼ Lz0

Lr0

χ0 ¼
Rr0

Lr0
¼ 3

2
f0

λ0
W0

� �1=3

ð4:2�4:5Þ

A number of important and useful relations can be obtained to describe the

microstructure of a voided unit cell and its evolution. First, consider a general

voided unit cell subjected to an arbitrary deformation process. The unit cell has the

half-lengths L1, L2, L3 that are coincident with the principal loading directions. The
unit cell contains an arbitrarily oriented ellipsoidal void with semi-axes denoted as

R1, R2 and R3. The porosity (void volume fraction) of the cell is defined as

Fig. 4.6 General geometry and boundary conditions used to model the one-quarter axisymmetric

unit cell
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Vvoid

Vcell

¼ f

γcell
¼ R1R2R3

L1L2L3
¼ W1

λ1

W2

λ2
χ32χ ¼ χ1χ2χ3 ð4:6Þ

where Wi are the void aspect ratios; λi are the cell aspect ratios; χi are the void

spacing (or ligament size) ratios and γcell is a shape parameter specific to the

assumed unit cell with γ ¼ 2=3 for an axisymmetric unit cell and γ ¼ π=6 for a

cubic cell.

The void aspect ratios, spacing ratios, and cell aspect ratios can be defined as

W1 ¼ R1

R2

W2 ¼ R3

R2

χi ¼
Ri

Li
λ1 ¼ L1

L2
λ2 ¼ L3

L2
ð4:7�4:11Þ

Taking the derivative of Eqs. (4.6–4.11) with respect to time, it is straightfor-

ward to obtain the following relations as a function of the macroscopic principal

strain rates as

_f

f
¼

_R1

R1

þ
_R2

R2

þ
_R3

R3

� _E1 � _E2 � _E3 ð4:12�4:17Þ

_W1

W1

¼
_R1

R1

�
_R2

R2

_W2

W2

¼
_R3

R3

�
_R2

R2

_χi
χi

¼ Ri

Ri
� _Ei

_λ1
λ1

¼ _E1 � _E2

_λ2
λ2

¼ _E3 � _E2

FromEqs. (4.12–4.17), the growth rates of the void semi-axes can be expressed as

_R1

R1

¼ _Ehyd þ 1

3

_f

f
þ 2

_W1

W1

�
_W2

W2

� �
ð4:18Þ

_R2

R2

¼ _Ehyd þ 1

3

_f

f
�

_W1

W1

�
_W2

W2

� �
ð4:19Þ

_R3

R3

¼ _Ehyd þ 1

3

_f

f
�

_W1

W1

þ 2
_W2

W2

� �
ð4:20Þ

Alternatively, using only the void spacing ratios, the evolution rate of the

porosity can be expressed as

_f

f
¼ _χ1

χ1
þ _χ2
χ2

þ _χ3
χ3

ð4:21Þ

The above Eqs. (4.6–4.21) are valid for any type of unit cell or ellipsoidal void

geometry and reduce accordingly depending on the type of geometry considered.

For example, an axisymmetric unit cell with the void semi-axes coincident with the

principal loading directions: _W2=W2 ¼ 0, _λ2=λ2 ¼ 0 and _χ2=χ2 ¼ _χ3=χ3.
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4.3.2 Unit Cell Boundary Conditions

To enforce the assumption of a periodic array of unit cells, the faces of the unit cell

must remain straight and move as rigid planes during the deformation process so

that the cell remains cylindrical. The faces of the cell at r ¼ Lr and z ¼ Lzmust have

normal displacements and retain their mutual orientations. This condition is easily

accomplished for one-quarter 2-D unit cell by designating the upper-right corner

node as a master node denoted as ‘A’ in Fig. 4.6 to control the displacements of the

radial and axial planes by using multipoint constraints. These constraints enable the

lengths of the unit cell to be defined at an arbitrary state as

Lr ¼ Lr0 þ uAr Lz ¼ Lz0 þ uAz ð4:22Þ

The formal displacement boundary conditions of the one-quarter unit-cell geom-

etry are stated as

ur ¼ 0 along the axis r ¼ 0; 0 � z � Lz

uz ¼ 0 on the bottom 0 � r � Lr; z ¼ 0

ur ¼ uAr on the lateral surface r ¼ Lr; 0 � z � Lz

uz ¼ uAz on the top 0 � r � Lr; z ¼ Lz ð4:23Þ

The boundaries of the cell are free of shear tractions and the surfaces of the void

are free of all tractions. Additionally, the matrix material is assumed to be a pure

matrix containing no secondary voids or particles. A void nucleation rule governing

the formation of secondary voids is not considered because the unit cell results

would be dependent upon that specific nucleation model and its assumed

parameters. The above conditions are applicable to all of the void geometries and

stress states considered in this chapter.

4.3.3 Stress State and Microstructure Evolution

The microscopic stress and strain tensors describe the stress state within the unit cell

and are denoted by σij and εij. The macroscopic stress and strain tensor are applied at

the cell boundaries and are denoted asΣij andEij, respectively. Since the cell surfaces

are free of shear, the applied stress and strain directions coincide with the principal

directions. The macroscopic principal and equivalent strains are given as

Er ¼ ln 1þ uAr
Lr0

� �
Ez ¼ ln 1þ uAz

Lz0

� �
Eeq ¼ 2

3
Ez � Erj j ð4:24�4:26Þ
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The remote true macroscopic principal stresses are calculated at any instant as

the average reaction force at the cell faces per current area through

Σr ¼ 1

Lz

ZLz
0

Srjr¼Lr
dz Σz ¼ 2

L2r

ZLr
0

rSzjz¼Lz
dr ð4:27; 4:28Þ

where S is the stress vector. The corresponding macroscopic hydrostatic stress,Σhyd,

equivalent stress, Σeq, and stress triaxiality, T, are calculated as

Σhyd ¼ Σ1 þ Σ2 þ Σ3

3
Σeq ¼ Σz � Σrj j T ¼ Σhyd

Σeq

ð4:29�4:31Þ

The analysis can be simplified by defining a loading parameter, α, that can be

determined for a specified stress triaxiality as

α ¼ Σr

Σz
¼ 3T � 1

3T þ 2
ð4:32Þ

where α ¼ 0 for uniaxial tension (T ¼ 1=3) or �0.5 for pure shear ðT ¼ 0Þ. The
plastic strain increment, _�ε

p
, and flow stress, �σ, within the unit cell can be determined

from work equivalence as

_�ε
p ¼ Σij

_Ep
ij

�σð1� f Þ ð4:33Þ

by neglecting the elastic strains and assuming an incompressible matrix so that
_Ep
ij� _Eij. The microscopic plastic strain and flow stress of the unit cell are related by

the stress-strain relation of the matrix. In the present study, the ductile matrix is

assumed to be an isotropic, rate-independent material that hardens according to the

power-law relation

�σ

σy
¼ 1þ E

σy
�εp

� �n

ð4:34Þ

where σy is the initial yield stress, E is the Young’s modulus and n is the hardening

exponent. A typical value of E=σy ¼ 500 is valid for most ductile engineering

alloys where n varies from 0 to 0.40.

The void volume fraction of the unit cell can be computed from the updated

coordinates of the element nodes that define the surface of the void or from an

approximate analytical formula proposed by Koplik and Needleman (1988) using

the cell volume, V, as

f ¼ 1� ð1� f0Þ V0

V
� 3ð1� vÞ

E
Σhyd

� �
V

V0

¼ ðLr0 þ uA
r
Þ2ðLz0 þ uAz Þ

L2r0Lz0
ð4:35Þ
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This approximation provides very good agreement with numerical integration of

the void surface as observed in previous studies (Koplik and Needleman 1988;

Pardoen and Hutchinson 2000; Siad et al. 2008) and reduces the amount of post-

processing. It should be noted that this approximation in Eq. (4.35) is not valid for a

porous matrix material (secondary voids). The void aspect ratio, cell aspect ratio

and the void spacing ratios can be readily determined from the geometry using

Eqs. (4.2–4.5).

4.3.4 Identification of Void Coalescence

The termination of homogeneous deformation within the unit cell is marked by the

onset of void coalescence when deformation becomes unstable and localized within

the inter-void ligament while the material outside the ligament unloads elastically

as shown in Fig. 4.7. The transition to void coalescence is identified by the radial

strain rate approaching 0 as the unit cell deforms in a type of uniaxial stretching

Fig. 4.7 Typical deformation history of a voided unit cell. Initially, the deformation mode is

homogeneous and characterized by stable void growth until the onset of coalescence when the

deformation mode becomes unstable and localized within the ligament. Note the abrupt change in

the transverse growth of the void during coalescence compared to the vertical displacement of the

cell. These results were obtained for an initially spherical void with an initial porosity of 0.1 % and

subjected to a stress triaxiality of unity
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mode, regardless of the stress triaxiality. In this regime, the void expands rapidly in

the transverse direction as the ligament length approaches 0 and the load-bearing

capacity of the material is lost. Physically, this represents the collapse of the

ligament as the void is beginning to link-up with a neighbouring void from an

adjacent unit cell to form a larger void. However, in the finite-element simulation,

the ligament will shrink and become highly deformed as the length approaches 0,

ultimately requiring a re-meshing scheme to model the post-coalescence regime.

In the present study, the finite-element simulations are terminated after the onset

of void coalescence as the results of the model in the post-coalescence regime are

not of prime importance. For the practical range of stress triaxiality found in sheet

metal forming operations ðT � 1Þ, the collapse of the ligament occurs almost

instantaneously and thus the coalescence strain can be used as an excellent approx-

imation to the fracture strain. The procedure for identifying the onset of coalescence

using the radial strain rates is demonstrated in Fig. 4.8 and the associated loss of

load-bearing capacity with coalescence is illustrated in Fig. 4.9.

4.3.5 Numerical Solution Procedure

To obtain general trends for damage evolution and coalescence within a unit cell,

the stress triaxiality must be kept constant throughout the cell during deformation.

Since the compressibility of the cell varies during deformation, the stress triaxiality

will steadily increase and fluctuate unless a control scheme is used to adjust the

displacements of the cell faces. This problem becomes acute near the onset of void

Fig. 4.8 Typical relationship of the macroscopic radial and axial strains for a voided unit cell. The

onset of void coalescence is identified when the radial strain rate is 0
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coalescence where deformation becomes unstable within the inter-void ligament.

Fortunately, using ABAQUS finite-element software, the modified Riks-algorithm

(Riks 1979) is ideally suited to incrementing the load on the unit cell to maintain

equilibrium. The Riks method is an iterative scheme that allows equilibrium

solutions to be found for nonlinear, unstable problems such as buckling or an abrupt

change in the deformation mode such as a snap-through process or void

coalescence.

The Riks-option within ABAQUS is employed to determine the displacements on

the unit cell faces in such a way to enforce the loading parameter,α, in Eq. (4.32) to be
a constant prescribed value based upon the specified stress triaxiality. The axial stress,

Σz, is set to unity and the corresponding radial stress isΣr ¼ α. Consequently, the axial
direction is the principal loading direction for all simulations in the present study since

α < 1 for the range of stress triaxialities considered (1=3 � T � 3). Convergence

studies were performed to test for mesh dependence and it was found to be minimal if

the element shape within the ligament is rectangular and the mesh is sufficiently

refined near the void surface as seen in Figs. 4.5 and 4.7. The accuracy of the unit cell

results was verified through comparison with previous cell studies in the literature by

Pardoen and Hutchinson (2000), Lassance et al. (2006) and Scheyvaerts et al. (2010).

4.4 Unit Cell Simulation Results

A large number of finite-element models have been developed with an emphasis

placed on small void aspect ratios (W < 1) that best resemble the conditions

observed in particle cracking and debonding. Typical void shape evolution models

Fig. 4.9 Typical macroscopic stress and strain curve for a voided unit cell. Note that the loss of

load-bearing capacity of the material is approximately linear in the post-coalescence regime
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are only valid for an aspect ratio greater than 1/6 while voids nucleated by particle

cracking have an aspect ratio close to 0. Knowledge of the deformation of the void

at small aspect ratios is critical since many alloys nucleate voids by particle

cracking. To best represent an isolated void within a real material the initial

porosity of the voids is taken to be 0.01 and 0.1 %. Smaller porosities could be

considered with the use of an adaptive remeshing algorithm since very large strains

would be required to grow the void to coalescence. Finally, the simulations are

terminated shortly after the onset of coalescence as mesh distortion effects become

significant, especially for initially flat voids. Fortunately, the load drop, the void

growth rate and shape evolution all become linear within the post-coalescence

regime and their behaviour can be reliably extrapolated to estimate their value at

fracture (Scheyvaerts et al. 2010).

The aspect ratios considered in the analysis are: 0.001, 0.01, 0.05, 1/6, 1 and 6 for

porosities of 0.1 and 0.01 % for a general hardening exponent of 0.10. To enable the

results to be generalized to any material, the parameters in the flow stress relation for

the material in Eq. (4.34) are E=σy ¼ 500, which is applicable to a wide range of

engineering materials (Pardoen and Hutchinson 2000). The stress triaxialities range

from 1/3 to 3 to capture void evolution in stress states ranging from uniaxial tension to

the severe conditions found ahead of a crack tip. It is important to note that the stress

states considered are purely triaxial and that no shear stress is present. The influence of

shear on void growth and shape evolution is currently a very active area of research

and complex boundary conditions are required to enforce a constant stress state.

The interested reader is referred to Barsoum and Faleskog (2007a, b) and Scheyvaers

et al. (2010) for further information.

4.4.1 Penny-Shaped Voids: Wo ¼ 1/100

The evolution of the porosity and the aspect ratio of an initially penny-shaped void

for a wide range of stress triaxialities are presented in Figs. 4.10 and 4.11,

respectively. What is most remarkable about these figures is that the voids grow

exceedingly fast and in an approximately linear fashion in each stress state. In

uniaxial tension (T ¼ 1/3), the void enlarges from 0.1 % to nearly 9 % while the

aspect ratio changes by a factor of over 100 and is roughly spherical at fracture. The

linear nature of the penny-shaped voids evolution is attributed to it opening in the

load direction and experiencing negligible lateral growth. As most nucleated voids

are initially penny-shaped, the proper modeling of this geometry is of prime

importance for modelling damage in alloys where void nucleation is significant

as in the 5xxx series Al-Mg alloys (Chen 2004; Orlov 2006; Butcher 2011).

The rapid expansion of initially penny-shaped voids is an interesting result since

SEM micrographs commonly observe spherical dimples that are indicative of

ductile fracture as shown in Fig. 4.12. During the final stage of ductile fracture,

the high stress triaxiality surrounding the primary voids nucleates voids from the
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surrounding particles and the rapid growth of these penny-shaped voids can explain

the spherical-shaped voids on the fracture surface. The high stress triaxiality will

also encourage pre-existing voids to grow in a spherical manner and may even

cause prolate voids to turn into oblate voids if the value is high enough.

Fig. 4.11 Evolution of the void aspect ratio of an initially penny-shaped void subjected to various

triaxial loadings

Fig. 4.10 Porosity history of a penny-shaped void subjected to various triaxial loadings

4.4 Unit Cell Simulation Results 113



4.4.2 Oblate Voids: Wo ¼ 1/6

The growth and shape evolution of an initially oblate void is presented in Figs. 4.13

and 4.14, respectively. The expected non-linear response of the voids begins to

emerge where void growth is slow at low triaxiality and rapid at high triaxiality.

The high growth rate at high large stress triaxiality occurs because the void has

sufficient height to be expanded by the lateral stress. This is in contrast with the

Fig. 4.12 SEM micrograph

of the fracture surface in an

AA5182 alloy. Note the

presence of the smaller

secondary dimples

surrounding the dimple from

a primary void in the top of

the figure

Fig. 4.13 Porosity history of an initially oblate void subjected to various triaxial loadings
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initially penny-shaped void whose growth rate is nearly linear and much less

sensitive to the hydrostatic stress.

Conversely, in uniaxial tension, the void becomes prolate and the void growth

rate is very slow compared to the penny-shaped case. Prolate voids do not grow

significantly at low triaxiality because plastic flow of the material over the void

surface becomes easier as the voids laterally contract and become needle-like. In

the limit, the void essentially closes and the matrix can deform almost as if the void

were not present.

4.4.3 Spherical Voids: Wo ¼ 1

The well-known void evolution trends for spherical voids are presented in Figs. 4.15

and 4.16. The void growth trends for spherical voids are similar to that of the oblate

void with the difference in the growth rates between stress states more exaggerated.

The trend for the aspect ratio shows a new development compared to the previous

cases in that the void becomes oblate at high stress triaxiality. The height of the void is

sufficiently large for the hydrostatic stress at high triaxiality to cause the void to grow

laterally and cause the aspect ratio to decrease despite the principal loading direction

being vertical. This is a counterintuitive butwell documented phenomenon for voids at

high stress triaxiality and highlights the difficulties in developing a shape evolution

model because the void grows laterally when one would expect it to grow axially.

Fig. 4.14 Shape evolution of an initially oblate void subjected to various triaxial loadings
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4.4.4 Prolate Voids: Wo ¼ 6

Finally, the void growth and shape evolution for initially prolate voids are presented in

Figs. 4.17 and 4.18. The trends are again similar to the spherical case with the

influence of the stress state more dramatic. What is most apparent is that the growth

of the voids is completely negligible in uniaxial tension as the void becomes extremely

Fig. 4.16 Shape evolution (right) of an initially spherical void subjected to various triaxial

loadings

 
Fig. 4.15 Porosity history of an initially spherical void subjected to various triaxial loadings
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prolate but occupies nearly the same volume. Void growth remains very low at a

triaxiality of 2/3 which corresponds to equal-biaxial tension. Since the void is initially

prolate and much taller than it is wide, it is very susceptible to lateral growth at high

triaxiality and the void shape becomes nearly spherical at fracture. From a modeling

perspective, prolate voids are not of paramount importance since their growth rates are

so small in the practical regime found in metal forming (T < 1).

Fig. 4.17 Porosity history of an initially prolate void subjected to various triaxial loadings

Fig. 4.18 Shape evolution of an initially prolate void subjected to various triaxial loadings
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4.4.5 Selection of a Minimum Void Aspect Ratio

There are only so many finite-element simulations and unit cell geometries one can

consider and the argument can always be made for why different stress states or

geometries should have been included. Overall, a maximum initial aspect ratio of 6

seems reasonable for the modeling of prolate voids since most voids will be

nucleated by particle cracking and debonding and best described as penny-shaped.

If penny-shaped cracks are the most important void geometry then what is the

minimum shape that can be considered? In the limit, the penny-shaped void has no

initial height, the aspect ratio is 0, and it cannot be modeled using regular finite-

element techniques. Mesh distortion issues also arise when modeling increasingly

small voids so there is a practical limit to the geometry one can consider.

Fortunately, the void growth rate and shape evolution for extremely flat voids are

essentially the same as shown in Fig. 4.19, which is caused by deformation

primarily occurring in the opening direction of the void. The void opens in the

loading direction at a high enough rate that the solutions for aspect ratios of 1/1,000

and 1/100 are quite similar. This is an extremely fortuitous result since any void that

is nucleated by particle cracking can be assigned an arbitrary aspect ratio of 0.01,

removing a parameter that otherwise would have had to been predetermined. A

similar result has also been reported by Lassance et al. (2006).

4.5 Theoretical Models for Void Growth, Shape

and Coalescence

With the benchmark trends for void growth and shape evolution established, the

validity of the analytical evolution models can be evaluated. It is important to state

that these models are all expected to perform at least reasonably well in some stress

states, or they would be without merit in the first place. However, it is of great

Fig. 4.19 Comparison of void growth and shape evolution for different penny-shaped voids for

the extreme cases for the stress triaxiality
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practical interest to evaluate the performance of these models in a variety of

conditions to establish confidence in the model predictions for a wide range of

stress states.

4.5.1 Yield Criterion

The yield criterion of Gurson and Tvergaard (GT) described in Eq. (1.23) is adopted

to describe material softening and will be used to integrate the stress state in the

analytical model. The extension of Ragab (2004a) is adopted to account for the

influence of the void shape in the GT model. In this extension, q1 and q2 parameters

in the yield function are no longer material constants but related to the stress state,

void shape and material hardening.

4.5.2 Void Growth, Shape Evolution and Coalescence

Due to the large number of void shape growth and shape evolution models available

in the literature, it is prohibitive to evaluate all of them since they are all valid for

certain situations. Fortunately, the semi-empirical void growth and evolution models

of Ragab (2004a) provide a logical and reasonable benchmark. Ragab (2004a)

developed and validated a set of semi-empirical equations by performing a large-

scale meta-analysis of the definitive analytical and numerical studies of void growth

and shape evolution in the literature (McClintock 1968; Rice and Tracey 1969;

Budiansky et al. 1982; Huang 1991; Lee and Mear 1992a, b; Yee and Mear 1996;

Sovik and Thaulow 1997; Pardoen and Hutchinson 2000). In his analysis, Ragab

(2004a, b) individually calibrated the qi parameters in the GT yield criterion as

functions of the void shape, porosity, stress state and hardening exponent. The

calibrated (q1, q2) parameters not only enabled improved modelling of an isolated

void but also improve the accuracy of the yield criterion by accounting for void shape

effects while preserving the relatively simple Gurson framework. This is very

advantageous since other damage-based models such as the GLD model and its

variants (Gologanu et al. 1997; Benzerga 2002) that account for void shape effects

are more cumbersome to implement compared to the GT model. An approximate

method for estimating the influence of the void shape on the yield criterion is

preferable to implementing these rigorous models.

It is important to note that the semi-empirical equations of Ragab (2004a) were

not derived directly from finite-element simulations of a voided unit cell but from a

large range of published analytical and numerical data for a large range of void

geometries, stress states and material hardening exponents. As a result, it is of interest

to directly compare the final equations with the finite-element simulations to best

evaluate their performance. Butcher (2011) performed a large-scale finite-element
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study of cylindrical unit cells with void shapes ranging from penny-shaped to prolate

to validate the Ragab (2004a, b) void growth and shape evolution models.

4.5.2.1 Void Growth

The associated flow rule of the GT model can be employed to obtain an alternate

expression for the void growth rate using the first principal strain rate:

_f growth ¼
3f ð1� f Þq1q2 sinh q2

3
2

Σhyd

�σ

� �

3
Σ1�Σhyd

�σ

� �
þ fq1q2 sinh q2

3
2

Σhyd

�σ

� � _Ep
1 ð4:36Þ

and simplified by Ragab (2004a) by assuming small porosities and axisymmetric

deformation to obtain

_f growth
f

¼ 3

2
q1q2 sinh q2

3

2

Σhyd

�σ

� �
_Ep
1 ð4:37Þ

that was then calibrated to the void growth results available in the literature.

The semi-empirical equations of Ragab (2004a) for the variation of the qi
parameters in the GT model are valid for a large range of stress triaxiality from

1=3 � T � 8=3, and for hardening exponents up to 0.40. The qi relations are

q1 ¼ Aþ BT þ CT2 þ DT3

A ¼ 2:28� 3:55nþ 3:84n2 B ¼ �0:92þ 1:32n� 0:32n2

C ¼ 0:53� 2:31nþ 2:35n2 D ¼ �0:10þ 0:27nþ 0:70n2 � 1:78n3 ð4:38Þ

q2 ¼ Wη

ηðW < 1Þ ¼ 0:206 lnðTÞ � 0:266� 0:02n

ηðW � 1Þ ¼ �3:484þ 11:614T � 13:72T2 þ 6:54T3 � 1:06T4 þ 0:2n ð4:39Þ

4.5.2.2 Void Shape Evolution

For a constant strain-path, the evolution law of Ragab (2004a) for the void aspect

ratio is

ln W=W0ð Þ ¼ 1:1 ωð þ 2� Σhyd=�σ þ nÞ 1ð � f0ÞEp
eq ð4:40aÞ
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Where ω is defined for initially oblate ð1=6 � W0 � 1Þ and prolate voids

ð1 � W0� 6Þ as

ωoblate ¼ �lnðW0Þ 0:109þ 1:224Ep
eq

� �.

ωprolate ¼ �0:535þ 0:0235Ep
eq

� �
lnðW0Þ ð4:40b; cÞ

4.5.3 Comparison with Unit Cell Results

4.5.3.1 Void Shape

The predictions of the semi-empirical model of Ragab (2004a) for the void aspect

ratio for the range of initial shapes considered are presented in Figs. 4.20 through

4.23. Unlike the void growth model, the predictions for the initial penny-shaped

void in Fig. 4.21 are in very good agreement with the unit cell data. This is a

surprising result since the model was not calibrated for this regime. Overall, the

model gives decent predictions for the void aspect ratio for oblate, spherical and

prolate voids in most stress states. The predictions are the least accurate in the case

of prolate voids but the accuracy is reasonable at low strains, say, of 0.30. This is

not a significant limitation since initially prolate voids with an aspect ratio of 6 are

not as common as initially penny-shaped or oblate voids since these shapes best

resemble the void at nucleation by particle cracking and partial debonding. In

Fig. 4.20 Comparison of the analytical void shape evolution model with the unit cell data for an

initially penny-shaped void
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general, the shape evolution model is quite reasonable and suitable for use in a

typical damage-based constitutive model and is very attractive for its simplicity.

4.6 Calibration of the Void Evolution Models

4.6.1 Void Growth

The void growth model of Ragab (2004a) used a simplified version of the growth rule

obtained for the Gurson model. In the present work, we will use the original form of

the growth rule in Eq. (4.36) because unlike Ragab (2004a), the unit cell data has

been obtained first-hand and not taken from the literature. The q2 parameter cannot be

solved for explicitly in Eq. (4.36) and a Newton-Raphson method is used to deter-

mine the q2 value obtained at each time-step in the unit cell simulation. The calibrated

q2 values for each void geometry and stress state were determined to create a library

of highly accurate void growth correlations in Table 4.1. The calibrated q2 values for
several of the void shapes considered are shown in Fig. 4.24. The calibrated q2 value
converges to a value of unity for a spherical void which is the value derived by

Gurson (1975). The calibrated void growth model is compared with the unit cell data

in Fig. 4.25 and the agreement is excellent.

Fig. 4.21 Comparison of the analytical void shape evolution model with the unit cell data for an

initially oblate void
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4.6.2 Void Shape Evolution

Although the semi-empirical equations of Ragab (2004a) give pretty good results

for the void aspect ratio, a calibration is required because void growth is tightly

coupled to the void shape throughq2 ¼ Wη. Due to this exponential dependence, the

Fig. 4.22 Comparison of the analytical void shape evolution model with the unit cell data for an

initially spherical void

Fig. 4.23 Comparison of the analytical void shape evolution model with the unit cell data for an

initially prolate void
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Table 4.1 Void growth calibration parameters for various void volume fractions, void shapes and

stress triaxiality ratios

fo (%) Wo T ζ

Range of the aspect ratio

(W) that correlation is valid

Range of the equivalent strain

(εeq) that correlation is valid

Wo Wlimit εo εlimit

0.1 0.01 1/3 �0.4310 0.01 1.00 0 0.62

2/3 �0.3150 0.42 0.29

1 �0.2530 0.29 0.19

2 �0.2081 0.18 0.09

3 �0.2310 0.14 0.06

0.05 1/3 �0.4785 0.05 1.00 0 0.50

�0.7580 1.00 4.00 0.50 1.22

2/3 �0.3300 0.05 1.00 0 0.51

�0.1200 1.00 1.36 0.52 0.71

1 �0.2440 0.05 0.69 0 0.40

2 �0.1170 0.36 0 0.15

3 �0.3210 0.31 0 0.08

1/6 1/3 �0.5850 1/6 1.00 0 0.41

�0.8879 1 6.00 0.41 1.33

2/3 �0.3600 1/6 0.97 0 0.41

�0.3000 1 2.39 0.43 1.01

1 �0.2350 1/6 0.98 0 0.57

2 �0.0850 0.47 0.19

3 �0.1120 0.45 0.09

1 1/3 �0.0700 1 33.25 0 2.00

2/3 �0.1695 10.46 1.94

1 �0.0780 1.94 0.76

2 �0.0580 0.75 0.22

3 �0.6290 0.59 0.12

6 1/3 �0.6030 6 27.07 0 0.97

2/3 �0.1900 17.97 1.06

1 �0.0980 8.14 1.00

3 0.0850 1.81 0.06

0.001 1/3 �0.4045 0.001 1.00 0 0.62

2/3 �0.3100 0.42 0.30

0.01 1 �0.2540 0.29 0.19

2 �0.2180 0.17 0.09

3 �0.2320 0.13 0.06

1 1/3 �0.8881 1 35.43 0 2.03

2/3 �0.7000 7.03 1.37

1 �0.0890 2.14 1.06

2 �0.2200 0.62 0.30

3 �0.4140 0.71 0.11

6 1/3 �0.1200 6 147.72 0 2.09

2/3 �0.1240 39.03 1.84

1 �0.0960 9.30 1.50

2 0.0330 1.02 0.31

3 0.1200 1.03 0.10

(continued)
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Table 4.1 (continued)

fo (%) Wo T ζ

Range of the aspect ratio

(W) that correlation is valid

Range of the equivalent strain

(εeq) that correlation is valid

Wo Wlimit εo εlimit

1/6 1/3 �0.5180 1/6 1.02 0 0.47

�0.5200 1 2.57 0.47 0.98

1 2/3 �0.3260 1/6 0.83 0 0.42

1 �0.2210 0.53 0.25

2 �0.1970 0.34 0.10

3 �0.2920 0.28 0.05

1 1/3 �0.7200 1 9.22 0 1.21

2/3 �0.3100 3.52 0.85

1 �0.1900 1.59 0.41

2 �0.5000 0.88 0.13

3 �5.8000 0.84 0.04

6 1/3 �0.6750 6 137.63 0 2.05

2/3 �0.1750 21.27 1.20

1 �0.1050 7.30 0.64

2 0.0050 2.95 0.14

3 0.3410 3.29 0.04

A piece-wise correlation is used for certain void shapes at low triaxialities and the ranges that the

calibration parameters are accurate are given for both the void shape and equivalent strain

Fig. 4.24 Calibrated q2 parameter for an initially penny-shaped void (top-left), spherical void
(top-right) and prolate void (center) subjected to various stress triaxialities
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previous void growth calibration is in vain unless the aspect ratio is also highly

accurate because errors in the aspect ratio will be magnified in the growth rule.

Unlike the growth rule, the semi-empirical equation for the void shape is a pure

correlation and its form is not readily amenable to calibration. To ensure that the

void aspect ratio is modeled to a high degree of accuracy, a second-order polyno-

mial was observed to be suitable to very large strains. If higher strains are required,

the curve is linearly extrapolated with the slope selected to give good agreement to

high strains. The correlation function for the aspect ratio is a function of the

equivalent strain and initial aspect ratio as

W ¼ a2E
2
eq þ a1Eeq þWo Eeq � El

W ¼ b1 Eeq � El

� �þWl Eeq > El

ð4:41Þ

where El is the limit strain and a1, a2, and b1, are the calibration coefficients. Wl is

the aspect ratio at the limit strain. For nearly all geometries considered, b1 was

selected so that it can be computed as the derivative of quadratic correlation

evaluated at the limit strain. The calibrated parameters are presented in Tables 4.2,

4.3 and 4.4.

Fig. 4.25 Comparison of the calibrated void growth model with the unit cell data for an initially

penny-shaped (top-left), spherical (top-right) and prolate void (center)
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A limitation of the void shape evolution rule in Eq. (4.41) is that the initial void

aspect ratio must be known and that it is not readily amenable to non-proportional

loadings. However, it is compact, highly accurate and can be used to predict the

void shape in uncoupled damage models where porosity-induced softening is minor

and the void shape is only of interest for modelling coalescence. If a rate-based void

shape evolution model is required, it is suggested to use the void shape evolution

model from the GLD model or its variants (Pardoen and Hutchsinon 2000;

Lassance et al. 2006; Scheyvaerts et al. 2010).

Care must be taken when calibrating the void aspect ratio because the trend for

the aspect ratio departs from that of an isolated void prior to coalescence as shown

in Fig. 4.26. Prior to coalescence, the void begins to interact with its neighbour,

raising the local stress triaxiality and flattening the void. These interactions must be

avoided during the calibration process as they are geometry dependent and the

voids are assumed to be isolated. The limit strain in the correlation is selected to

ensure interaction effects are avoided. The correlation functions for the different

void geometries are compared with the unit cell data in Fig. 4.27, which shows that

they accurately predict the aspect ratio to high strains while avoiding interaction

effects.

Table 4.2 Parameters for the void aspect ratio for an initial porosity of 0.01 % and a hardening

exponent of 0.10

Aspect

ratio T a2 a1 W0

Limit

strain ε1 R2
Aspect ratio at

strain limit Wl

Slope for

extrapolation bl

0.001 1/3 0.68 1.19 0.00 0.635 1.000 1.031 2.114

2/3 �0.25 1.49 0.00 �0.275 1.000 0.393 1.357

1 �1.25 1.73 0.00 0.190 1.000 0.300 1.256

2 �3.37 2.16 0.00 0.090 1.000 0.168 1.553

3 �5.76 2.57 0.00 0.059 1.000 0.133 1.894

1/6 1/3 2.69 1.84 0.17 0.900 0.999 4.008 12.000

2/3 1.14 1.34 0.17 1.800 1.000 6.278 5.450

1 �0.51 1.94 0.17 0.850 1.000 1.448 1.072

2 �7.61 2.95 0.17 0.140 1.000 0.431 0.821

3 �66.36 9.68 0.17 0.063 0.998 0.513 1.316

1 1/3 3.51 2.34 1.00 0.800 1.000 5.115 11.000

2/3 1.86 1.83 1.00 1.500 1.000 7.921 7.400

1 �0.73 1.87 1.00 0.950 1.000 2.118 0.482

2 2.67 �2.00 1.00 0.250 1.000 0.667 �0.664

3 49.38 �7.04 1.00 0.063 0.994 0.753 �0.817

6 1/3 15.00 7.15 6.00 1.000 0.999 28.144 56.000

2/3 6.37 4.89 6.00 1.500 0.999 27.672 24.007

1 0.06 2.31 6.00 0.750 1.000 7.767 2.402

2 65.28 �35.12 6.00 0.240 1.000 1.331 �3.785

3 1547.53 �166.15 6.00 0.050 0.995 1.561 �11.397

The shaded values of b1 were manually adjusted and do not correspond to the derivative of the

quadratic correlation
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4.6.3 Void Coalescence

It is of interest to evaluate the performance of the coalescence models since

coalescence is predicted as a function of the void geometry. The coalescence

model will only be as accurate as the sub-models that describe the void geometry.

The models of Pardoen and Hutchinson (2000) and Benzerga (2002) in Eqs. (1.15)

and (1.16) were evaluated using the geometry of the voids from the unit cell

simulations to obtain their predictions under ideal conditions. The predictions of

each model with the numerical coalescence strains are presented in Figs. 4.28 and

4.29, respectively.

Each coalescence model gives excellent agreement with the numerical coales-

cence strain to a surprising level of accuracy. This is not entirely unexpected since

Table 4.3 Parameters for the void aspect ratio for an initial porosity of 0.1 % and a hardening

exponent of 0.10

Aspect

ratio T a2 a1 W0

Limit

strain ε1 R2

Aspect ratio

at strain

limit Wl

Slope for

extrapolation bl

0.01 1/3 0.66 1.20 0.01 0.600 1.000 0.966 1.921

2/3 �0.25 1.49 0.01 0.300 1.000 0.435 1.341

1 �1.28 1.73 0.01 0.190 1.000 0.300 1.240

2 �3.54 2.15 0.01 0.092 1.000 0.178 1.500

3 �6.41 2.58 0.01 0.059 1.000 0.140 1.820

0.05 1/3 1.86 0.88 0.05 1.200 0.999 3.789 6.800

2/3 0.27 1.70 0.05 0.500 1.000 0.966 1.968

1 �1.01 2.01 0.05 0.400 1.000 0.693 1.203

2 �5.54 2.83 0.05 0.130 1.000 0.324 1.388

3 �26.80 5.42 0.05 0.075 0.999 0.305 1.419

1/6 1/3 2.07 1.17 0.17 1.200 0.993 4.552 6.144

2/3 0.45 1.75 0.17 0.950 1.000 2.244 2.618

1 �0.94 2.01 0.17 0.480 1.000 0.914 1.107

2 �6.23 2.71 0.17 0.160 0.999 0.441 0.717

3 �52.43 7.20 0.17 0.050 0.999 0.395 1.954

1 1/3 4.02 2.04 1.00 1.000 0.999 7.060 14.500

2/3 1.62 2.01 1.00 1.750 1.000 9.484 7.690

1 �0.85 1.92 1.00 0.750 1.000 1.957 0.637

2 3.18 �1.72 1.00 0.180 1.000 0.794 �0.572

3 48.87 �6.29 1.00 0.055 0.995 0.802 �0.914

6 1/3 14.9765 7.1021 6.00 1.100 0.999 31.934 62.000

2/3 6.1131 5.0528 6.00 1.500 0.999 27.334 23.392

1 �0.0903 2.4216 6.00 0.890 1.000 8.084 2.261

2 69.2512 �33.6241 6.00 0.170 1.000 2.285 �10.079

3 11.9209 �12.2347 6.00 0.070 1.000 5.202 �10.566

The shaded values of b1 were manually adjusted and do not correspond to the derivative of the

quadratic correlation
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Table 4.4 Parameters for the void aspect ratio for an initial porosity of 1 % and a hardening

exponent of 0.10

Aspect

ratio T a2 a1 W0

Limit

strain ε1 R2

Aspect ratio

at strain

limit Wl

Slope for

extrapolation bl

1/6 1/3 1.21 1.27 0.17 1.200 1.000 3.430 12.000

2/3 �0.11 1.66 0.177 0.400 1.000 0.811 1.566

1 �1.54 1.84 0.17 0.230 1.000 0.509 1.133

2 �4.78 2.15 0.17 0.090 1.000 0.322 1.294

3 �13.74 2.87 0.17 0.054 1.000 0.281 1.396

1 1/3 3.05 2.36 1.00 0.800 0.999 4.838 9.000

2/3 0.64 2.42 1.00 0.900 1.000 3.693 3.565

1 �1.20 1.95 1.00 0.375 1.000 1.564 1.053

2 2.25 �0.77 1.00 0.080 0.999 0.953 �0.411

3 6.40 �3.51 1.00 0.040 0.998 0.870 �3.003

6 1/3 15.13 7.32 6.00 1.000 0.999 28.453 56.000

2/3 5.33 6.14 6.00 1.200 1.000 21.038 26.000

1 �1.15 2.92 6.00 0.600 0.997 7.340 1.543

2 34.27 �25.85 6.00 0.085 0.999 4.050 �20.026

3 47.34 �26.88 6.00 0.080 1.000 4.153 �19.306

The shaded values of b1 were manually adjusted and do not correspond to the derivative of the

quadratic correlation

Fig. 4.26 Comparison of the void aspect correlation function with the model of Ragab (2004a)

and the unit cell data. The limit strain is selected to void including the spurious interaction effects

prior to coalescence
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Fig. 4.27 Comparison of the void shape correlation with the unit cell data for an initially penny-

shaped void (top-left), spherical void (top-right) and prolate void (center)

Fig. 4.28 Comparison of the numerical and predicted coalescence strains using the coalescence

model of Pardoen and Hutchinson (2000) in Eq. (1.15)
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these models have been previously compared to unit cell simulations in the litera-

ture. There is no clear advantage to using either coalescence model based upon the

present results. Even though the Pardoen and Hutchinson (2000) model accounts

for hardening but not flat voids, and the Benzerga model (2002) assumes a perfectly

plastic material, both models give very good predictions. The presence of flat voids

does not translate to infinite ductilities in practice since these voids rapidly deform

to shapes that are within the domain of the model. The strong agreement of both

models attests to the strong underpinnings of the Thomason (1990) model that they

are based upon.

The important conclusion from this validation is that the coalescence models can

accurately describe void coalescence by internal necking. If the other analytical

models can predict void growth and shape evolution to a similar degree of accuracy,

the coalescence predictions will be sound and will agree with that of the unit cell.

4.7 Summary

A rigorous validation and calibration programme was undertaken to evaluate the

analytical models used to describe void evolution and coalescence. Finite-element

simulations of voided unit cells were performed to obtain benchmarks for the

analytical models for a wide range of stress states. Emphasis was placed upon

penny-shaped voids because they will be used extensively in the percolation model

in Chap. 10 and the present evolution rules in the literature do not apply to voids of

this shape. The principal contributions of this chapter are:

Fig. 4.29 Comparison of the numerical and predicted coalescence strains using the coalescence

model of Benzerga (2002) in Eq. (1.16)
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• The analytical models for void evolution were calibrated using the unit cell data

by developing a vast library of correlation parameters.

• The semi-empirical void growth model of Ragab (2004a) was improved by

calibrating the model using first-hand unit cell data and extended to the penny-

shaped void regime.

• The growth and shape evolution of isolated voids within the percolation model

will be representative of the actual case by virtue of the calibrated models.

• Void coalescence can be accurately predicted using the plastic limit-load model

of Pardon and Hutchinson (2000) or Benzerga (2002).

• The GT yield criterion was improved by calibrating the q2 parameter in the void

growth model. Although designed for spherical voids, this calibration enables

the model to give good results from penny-shaped to prolate voids
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