
Chapter 3

Anisotropy

Cold worked and extruded materials always exhibit a measure of anisotropy, or

“texture” where the mechanical properties exhibit directional properties. The

rolling process used to create sheet metals orients the material grains and

precipitates/inclusions in the rolling direction and thus induces anisotropy. Typi-

cally, bulk materials that exhibit texture effects are treated as orthotropic while

sheet metals are commonly assumed to possess planar isotropy and normal anisot-

ropy. To characterize the anisotropy of sheet materials, uniaxial tensile tests are

performed with the samples fabricated from the material in different directions

relative to the rolling direction. The R-value quantifies the measure of anisotropy

and is defined as the ratio of the transverse strain to the through-thickness strain as

shown in Fig. 3.1 and Eq. (3.1)

R ¼ εw
εt

ð3:1Þ

An isotropic material will have an R-value of unity while a higher R-value

indicates that the material has a higher resistence to thinning with higher through-

thickness strength. An average value of the anisotropy parameter should be

computed from the weighted average of samples obtained from the material at

orientations of 0�, 45� and 90� to the rolling direction as

R ¼ R0 þ 2R45 þ R90

4
ð3:2Þ

The R-value is generally taken as a material constant evaluated at a typical strain

of 20 % in the tension test although some anisotropic yield criterion are capable of

modeling a dynamic R-value that evolves with deformation.
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3.1 The Hill-48 Anisotropic Yield Criterion

The yield criterion of Hill (1948) has been widely used to characterize the anisot-

ropy of sheet metals and can be considered the default or standard anisotropic

model like the von Mises criterion is for isotropic materials. The Hill-48 criterion is

not the ideal anisotropic yield criterion for many materials but it is a straightforward

model that is readily implemented into numerical codes and well suited for analyti-

cal modeling. Additionally, the criterion requires a small number of physically-

based parameters that can be directly identified from a series of tensile tests. For

sheet metals where the stress state is approximately plane stress, only four

parameters are required. More advanced non-quadratic anisotropic yield criterion

such as the Barlat yield functions (Barlat 1987; Barlat and Lian 1989; Barlat et al.

1991, 1997; Cazacu and Barlat 2003; Cazacu et al. 2006) are widely used in

industrial applications but are not well suited for analytical study due to the large

number of phemenological calibration parameters and complex flow rules. The

Hill-48 quadratic yield criterion for orthotropic materials can be expressed as

follows

2ΦðσijÞ ¼ Fðσ22 � σ33Þ2 þ Gðσ33 � σ11Þ2 þ Hðσ11 � σ22Þ2 þ 2Lσ223

þ 2Mσ231 þ 2Nσ212 ¼ 1 ð3:3Þ

where the six material constants, F, G, H, L, M, N, define the anisotropic

properties of the yield surface. If the tensile yield stresses in the principal

anisotropic directions are denoted as σ0, σ90 and σt, that correspond to the rolling,

transverse and thickness directions of sheet materials, the anisotropic constants

are expressed as

Fig. 3.1 Definition and

measurement of normal

anisotropy from a uniaxial

tensile test
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ð3:4a�fÞ

The remaining parameters can be obtained from the shear yield stresses as

2L ¼ 1

τ20
2M ¼ 1

τ290
2N ¼ 1

τ2t
ð3:5a�cÞ

For plane stress, the yield criterion reduces to

2ΦðσijÞ ¼ Gþ Hð Þσ211 � 2Hσ11σ22 þ ðH þ FÞσ222 þ 2Nσ212 ¼ 1 ð3:6Þ

and the anisotropy coefficients can be related to the R-values using the associated

flow rule to obtain

R0 ¼ H

G
R90 ¼ H

F
R45 ¼ N

Fþ G
� 1

2
ð3:7a�cÞ

The relationship between the yield stresses and R-values in the plane of the sheet
can be defined as

σ0
σ90

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ð1þ R90Þ
R90ð1þ R0Þ

s
ð3:8Þ

From Eq. (3.8), the condition for the applicability of the Hill-48 criterion is that

when R0 > R90, σ0 > σ90 and this is not the case for some materials such as certain

aluminum alloys. Assuming planar isotropy, R0 ¼ R45 ¼ R90 ¼ R, the yield crite-

rion reduces to

1

1þ R
σ211 þ σ222 � Rðσ11 � σ22Þ2 þ 2ð2Rþ 1Þσ212
h i

� σ20 ¼ 0 ð3:9Þ

3.2 Material Anisotropy in Porous Ductile Materials

The majority of research in developing damage-based constitutive models has

focused on assuming a void with a constant shape (typically spherical or cylindri-

cal) embedded within an incompressible isotropic matrix. In the past decade, a

concerted effort has been made to account for void-induced anisotropy effects by
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relaxing the constraint that the void shape remains constant and instead modelling

the void as a spheroid (ellipsoid of revolution) that evolves with deformation. It has

been shown in many works that void shape-induced anisotropy can have a consid-

erable influence on the material response (Budiansky et al. 1981; Gologanu et al.

1997; Kailasam and Ponte Castenada 1998; Pardoen and Hutchinson 2000; Aravas

and Ponte Casteneda 2004; Danas and Ponte Casteneda 2009). However, relatively

few studies have addressed the issue of anisotropic behaviour of the matrix mate-

rial. Liao et al. (1997) extended Gurson’s (1977) model for cylindrical voids to

account for anisotropy in an approximate manner that is suitable for materials with

normal anisotropy. Similar extensions were performed by Chein et al. (2001) and

Wang and Pan (2004). The assumption of a constant spherical void in these

anisotropic models is justified since considering void shape evolution significantly

increases the complexity of the model because the void orientation vectors must be

considered along with the directions of anisotropy. The influence of mechanical

anisotropy on the response of a porous material is presented in Fig. 3.2.

Benzerga and Besson (2001) first accounted for the influence of both void shape

and orthotropy and recently Moncheit et al. (2008) performed a limit analysis to

obtain an analytical solution for a matrix material with elliptical voids that obeys

the Hill (1948) model for anisotropy. A few attempts have been made in this area in

recent years through the continual development of advanced anisotropic damage-

based yield criteria that also account for anisotropy effects due to void shape

(Benzerga et al. 2004) and orientation (Danas and Aravas 2012; Keralavarma and

Benzerga 2010).

The lack of attention to material anisotropy in the development of damage-based

material models can perhaps be attributed to the inherent difficulty in developing a

general anisotropic model. Researchers in this area rely upon unit cell simulations

Fig. 3.2 Results of unit-cell calculations for two transversely isotropic matrix materials

containing either oblate (w0 ¼ 1/2) or prolate (w0 ¼ 2) voids. (a) Normalized effective stress

with the effective strain and (b) evolution of the void volume fraction. The initial porosity is 0.1 %

with a matrix hardening exponent of 0.1 with a constant stress triaxiality ratio of unity. For

comparison, the results for an initially spherical void in an isotropic matrix are shown. (Reprinted

with permission from Keralavarma and Benzerga 2010. Copyright 2010 Elsevier)
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to model void growth, shape evolution and coalescence under a variety of stress

states and use this data to develop their constitutive models. From a practical

perspective, the assumption of an isotropic matrix enables the results of these

studies to be readily generalized to the whole range of isotropic materials through

the matrix hardening exponent. Conversely, anisotropy cannot be characterized in

such a general manner as the anisotropy coefficients are specific to the material of

interest and the yield criterion used to describe the matrix. The choice of the

appropriate yield criterion is related to the material crystal structure (FCC, BCC,

HCP) and may use non-quadratic yield surfaces that contain many calibration

parameters that are determined from a variety of experiments. As a result, it is

difficult to generalize unit cell results for void growth and shape evolution to

another material. This problem becomes particularly acute when considering

materials with an HCP crystal structure.

Fortunately, there has been a renewed interest in accounting for anisotropy

effects on ductile fracture as industry has moved to using lighter weight, higher

strength components out of more exotic and advanced aluminum and magnesium

alloys that display significant anisotropy and damage sensitivity. The aforemen-

tioned anisotropic models are suitable for materials with cubic crystal structures

such as most steels and aluminums because they assume the same yield stress in

both tension and compression. For magnesium and titatium alloys that possess an

HCP crystal structure, a tension-compression asymmetry in yielding is observed

because the deformation mechanisms are related to twinning in compression and

non-Schmid slip in tension (Cazacu and Stewart 2009). The variation of an undam-

aged yield surface with varying degrees of tension-compression asymmetry is

shown in Fig. 3.3.

Fig. 3.3 Representation of

the octahedric plane of

Cazacu et al.’s (2006)

isotropic yield surface

corresponding to a ratio

between the yield stress in

tension and compression:

σT/σc ¼ 0.82, σT/σc ¼ 1

(von Mises) and σT/σc ¼ 1.21

(Reprinted with permission

from Cazacu and Stewart

2009. Copyright 2006

Elsevier)
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Magnesium alloys are of great interest in particular to the automotive industry as

they offer significant weight reduction and gains in fuel efficiency, but are notori-

ously anisotropic and prone to void-induced cracking. Cazacu and Stewart (2009),

Yoon et al. (2011) and Stewart and Cazacu (2011) have made progress in modelling

void damage in HCP materials by extending the Gurson (1977) model for spherical

voids into the Barlat-type yield criterion of Cazacu et al. (2006). It should be noted

that unlike the traditional Gurson-based models that predict no void growth or

material softening in shear-dominated stress states, the HCP damage models con-

tain an explicit dependence upon the third invariant of the stress deviator due to

their tension-compression asymmetry.

The proceeding sections will review the unit cell concept and its application

to a porous sheet metal to first establish a lower bound solution for an isotropic,

rigid-plastic matrix. In the sequel, the matrix material is considered as anisotropic

and a quasi-exact yield criterion will be developed using fundamental unit cell

theory. Finally, the models will be compared with existing models in the literature

and with experimental results for the yielding of porous materials.

3.3 An Approximate Unit Cell for Porous Sheet Metals

Following the approach of Gurson (1977), the microstructure of the porous

material is idealized as a periodic distribution of cylindrical unit cells with an

interior cylindrical void. For sheet metals, the geometry can be reduced from a

cylinder to a disk from the assumption of plane stress and subjecting the cell to a

general biaxial loading that mimics a sheet metal forming operation as shown in

Fig. 3.4.

The isolated unit cell is best analyzed using a polar coordinate system, r � θ, as
shown in Fig. 3.4b. The cell model has an outer radius, b, an inner radius, a, and an
infinitesimial thickness, t. The porosity of the unit cell is thus defined as

f ¼ a2

b2
ð3:10Þ

3.3.1 Stress and Strain Rate Fields Inside the Unit Cell

From an analytical perspective, the two extreme conditions for the stress field

within the unit cell are either: completely elastic or completely plastic. In reality,

the stress fields will lie between these two cases where plastic deformation occurs in

the vicinity of the void with the remaining material in an elastic state. This situation

can be classified as “partially plastic with rigid sections”. The influence of the void

distorts the stress and strain fields within the unit cell at distances up to ten times the
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void radius and the stress concentration effect of the void is illustrated in Fig. 3.5.

The analytical description of the two extreme stress conditions in the unit cell will

be discussed in the subsequent sections.

3.3.2 Elastic Stress State in the Unit Cell

Since the stresses and strains are linearly related in the elastic regime, the principle

of superposition can be used to obtain the resultant stress or strain in a system from

the algebraic sum of their effects (Bayoumi 1999). The principle of superposition

b
a

ij
σ

σ

θ

r

mb
Σ=

a b

Fig. 3.4 (a) Idealized periodic microstructure of a porous sheet material (left) and (b) single unit

cell approximated as a disc due to the assumption of plane stress (infinitesimal sheet thickness).

The isolated unit cell experiences uniform radial stresses on its surface and the voids are assumed

to remain cylindrical while subjected to in-plane tractions in the longitudinal direction, L, and

transverse direction, T (Reprinted with permission from Landry and Chen (2011). Copyright:

Elsevier)

σij, εij

Σij,Εij
.

.

Fig. 3.5 Finite-element

description of the distortional

effect of the void on the stress

field. The darkest area
neighbouring the void

indicates the high stress level

in the vicinity of the void and

describes the microscopic

stresses. The remaining

region of the unit cell

describes the uniform

macroscopic stress

distribution. The influence of

the void on the strain

distribution is similar
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can be invoked to decompose the general biaxial loading on the unit cell into two

separate uniaxial loading conditions as demonstrated in Fig. 3.6.

By applying the governing stress equations, biharmonic equations and equilib-

rium equations, we can obtain a solution for the microscopic stress fields as

σLr ¼ L

2
1� x�2
� �þ 1� 4x�2 þ 3x�4

� �
cosð2θÞ� �

x ¼ r=a

σLθ ¼ L

2
1þ x�2
� �� 1þ 3x�4

� �
cosð2θÞ� �

σLrθ ¼ � L

2
1þ 2x�2 � 3x�4
� �

sinð2θÞ ð3:11�3:13Þ

where σLij is the microscopic stress field due to the loading, L, and x is the

normalized radial distance away from the void with x ¼ 1 corresponding to

the surface of the void. Similarly, the stress solutions for the transverse uniaxial

case, σTij, are readily obtained by subtracting an angle of π 2= in Eqs. (3.11–3.13).

The complete solution for the elastic microscopic stress fields is

σij ¼ σLij þ σTij

σrθ ¼ � L

2
1þ 2x�2 � 3x�4
� �

sin 2θð Þ þ � T

2
1þ 2x�2 � 3x�4
� �

sin 2θ � πð Þ

σθθ ¼ L

2
1þ x�2
� �� 1þ 3x�4

� �
cos 2θð Þ� �þ T

2
1þ x�2
� �� 1þ 3x�4

� �
cos 2θ � πð Þ� �

σrr ¼ L

2
1� x�2
� �þ 1� 4x�2 þ 3x�4

� �
cos 2θð Þ� �

þ � � � T
2

1� x�2
� �þ 1� 4x�2 þ 3x�4

� �
cos 2θ � πð Þ� �

ð3:14�3:17Þ

+=

T

T

T

L a

b

r

θ

T

L
L L

Imaginary 
unit cell 
boundary 

Fig. 3.6 Schematic representation of the linear decomposition of a biaxial stress state into a series

of separate, isolated loadings using the principle of superposition
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A schematic plot of the microscopic effective stress is presented in Fig. 3.7

where a very large stress concentration exists on the boundary of the void (x ¼
r/a ¼ 1). Farther away from the void, the effective stress field becomes uniform

and approaches a constant value.

3.3.3 Plastic Stress State in the Unit Cell

An analytical solution exists for the fully plastic state in the case of axisymmetric

loading (Kachanov 1974). In an axially symmetric loading condition, the stress

components, σr and σθ become the principal stresses and the yield surface on the (σr,
σθ) plane is an ellipse as shown in Fig. 3.8 for an isotropic material.

The principal stress components can be readily expressed from the parametric

equations for an ellipse as

σr ¼ 2σ0 cos ωþ π

6

� �
ð3:18Þ

σθ ¼ 2σ0 cos ω� π

6

� �
σθ > σr ð3:19Þ

Fig. 3.7 Distribution of the microscopic effective stress in a disk-shaped unit cell containing an

isotropic matrix material with a circular void with a porosity of 10 % (x ¼ r/a, T ¼ 0.25σ0,
L/T ¼ 1.5). Note that the stress response is periodic with respect to theta since the matrix is

isotropic (Reprinted with permission from Landry and Chen (2011). Copyright: Elsevier)
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where ω defines a position (stress state) on the yield locus in Fig. 3.8. For

equilibrium in the radial direction

dσr
dr

þ σr � σθ
r

¼ 0 ð3:20Þ

we obtain the implicit solution to the simultaneous Eqs. (3.18), (3.19) and (3.20),

r2 ¼ C

sinω
e�

ffiffi
3

p
ω ð3:21Þ

Where C is the integral constant that is determined by the boundary condition of the

unit cell, i.e. σr ¼ 0 on the surface of the void (r ¼ a), see Fig. 3.9.

Fig. 3.8 Von Mises yield

locus in the (σr , σθ) plane

σθ

σr σ0

r

a

Fig. 3.9 Schematic of the

stress distribution around the

void in the fully plastic state

under axisymmetric loading

(Reprinted with permission

from Xia and Chen (2007).

Copyright: Springer)
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It is straightforward to find that stress distribution decays to its uniform value in

the radial direction according to

r

a

� �2
¼

ffiffiffi
3

p

2

1

sinω
e
ffiffi
3

p
π
3
�ωð Þ ð3:22Þ

A qualitative plot of the stress components σr and σθ is provided in Fig. 3.9. This
method can be similarly applied to an anisotropic material through the anisotropic

parameters.

A quantitative analysis of the problem shows that the distortion of the stress field

distribution caused by the void tends to disappear when r a= is suffientiently large.

According to the calculations in Eqs. (3.18–3.22), both σr and σθ reach σ0 at infinity.
Note that r is a measure of the distance from the void surface so that if we set a

boundary in Fig. 3.6 to form an imaginary unit cell (namely set r ¼ b, the outer

radius of the imaginary unit cell), the porosity is a b=ð Þ2 for the planar case.

However, as previously discussed, unit cell model assumes its outer boundary as

the infinity. Therefore, errors are introduced in unit cell approximation with the

error for various unit cell sizes presented in Table 3.1. If an error in the stress of 3 %

is acceptable, the material located at a distance 10 times the void radius can be

classified as being located at infinity.

3.4 Derivation of a Lower Bound Yield Criterion for Porous

Sheet Metals

A lower bound solution for the isotropic matrix under a biaxial loading can be

developed from the previous solutions for the microscopic stress fields in the elastic

case in Eq. (3.14–3.17) since the material is elastic before the onset of yielding. As

discussed in the previous section, the unit cell model creates artificial stress

boundary conditions prescribed on the outer surface of the unit cell and conse-

quently, the yield function is treated as a lower bound solution. The sheet metal

matrix obeys von Mises yield criterion with the effective stress defined as

Table 3.1 Evaluation of the accuracy of the unit cell model for different unit cell sizes

Ratio (r a= )

Porosity a b=ð Þ2
(assuming r ¼ b)

3.1 σr σ0=
(unit-cell model)

Error percentage on

σr σ0= (%)

1.5 0.444 0.360 63.98

1.7 0.346 0.452 54.81

2 0.250 0.557 44.32

5 0.040 0.894 10.57

8 0.017 0.955 4.49

10 0.010 0.971 2.94
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σeq ¼ 1ffiffiffi
2

p σ2rr þ σ2θθ þ σrr � σθθð Þ2 þ 6σ2rθ

h i1
2 ð3:23Þ

The matrix will begin to yield when the microscopic effective stress in a region

of the cell reaches the yield limit

maxðσeqÞ ¼ σ0 ð3:24Þ

The macroscopic stresses on the outer surface of the cell are obtained by

integrating over the cell volume as

Σ11 ¼ 1

V

Z
V

σ11dV ¼ 1� fð ÞL Σ22 ¼ 1

V

Z
V

σ22dV ¼ 1� fð ÞT
Σ12 ¼ 0

ð3:25�3:27Þ

3.4.1 Numerical Results

Figures 3.7 and 3.10 show the distribution of the effective microscopic stress over

the unit cell for two specific loading ratios (L/T). For a given loading ratio, it is

straightforward to obtain the solution for the macroscopic stresses at the onset of

yielding. It is worth noting that an intense stress concentration occurs on the inner

surface of the unit cell that results in considerably lower yield limits due to the

retention of a predominantly elastic unit cell. Therefore, the outer surface is chosen

to calculate the maximum effective stress. As shown in Fig. 3.10, the onset of

yielding in the unit cell is defined when the outer surface of the cell has begun to

yield

max ðσeÞjx¼ ffiffiffiffiffi
1=f

p ¼ σ0 ð3:28Þ

A similar technique was utilized by Gurson (1977) to account for the rigid

sections in the unit cell and by Sun and Wang (1989) to construct the stress field

causing a partly plastic state in the unit cell.

Figures 3.7 and 3.10 show the respective microscopic effective stresses over

the entire unit cell for an entirely elastic loading scenario and an elastic–plastic

loading. Note that the stresses in the elastic region of Fig. 3.10 have been scaled

accordingly to generate an approximate stress surface that accommodates

for load sharing between the elastic and plastic regions. The value of this scaling

factor can be seen in Fig. 3.11. Approximating this value as unity imposes a

maximum 5 % deviation under a void volume fraction of 0.05 for all loading

paths.
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Following the calculation procedure discussed previously, the yield limits are

numerically solved with a series of specified loading ratios (L/T). For simplicity, the

sheet metals are assumed to have the same yield limits under tensile and compres-

sive loadings. The numerical results are plotted with Gurson’s (1977) upper bound

criterion and von Mises yield function in Fig. 3.12. A comparison indicates that the

Fig. 3.11 The mean value and statistical dispersion of the load balancing scaling factor when

evaluated under uniaxial, biaxial and shear loading for various void volume fractions (Reprinted

with permission from Landry and Chen (2011). Copyright: Elsevier)

Fig. 3.10 Distribution of the microscopic effective stress in a disk-shaped unit cell containing an

isotropic matrix material with a circular void with a porosity of 10 % (x ¼ r/a, T ¼ 0.25 σ0,
L/T ¼ 2.0). The yield surface is truncated at unity where the material has yielded at the void

surface (Reprinted with permission from Landry and Chen (2011). Copyright: Elsevier)
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numerical results of the current model provide a more conservative yield point for

uniaxial and shear loading. Due to the contrasting methodology used between the

Gurson and current approach, the trend for biaxial loading shows that the Gurson

yield criterion is in fact conservative in this instance. It is important to note that the

yield locus never exceeds the von Mises yield locus even during equal biaxial

loading due to the presence of the voids.

A closed form of the yield function is required for its practical application and

this can be accomplished in a phemenological manner by introducing three fitting

parameters into the equivalent stress equation in principal stress space as

Φ ¼ Σeq � �σ ¼ 0

Σeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 q1 Σ11 � Σ22ð Þ2 þ q2Σ2

11 þ q3Σ2
22

� �r

q1�3 ¼
8:586 f 2 þ 7:1329 f þ 1

5:857 f 2 þ 0:5734 f þ 1

15:258 f 2 þ 2:6973 f þ 1

8>><
>>: f � 0:20 ð3:29�3:31Þ

These parameters are valid for porosities up to 20 % and allows the function to

revert to the von Mises yield criterion when f ¼ 0. The numerical process

employed here to obtain a closed form of the yield function is effective but

admittedly, not mathematically elegant. The performance of Eq. (3.30) can be

seen in Fig. 3.13 for a relatively large porosity of 10 %.

Fig. 3.12 Comparison of the numerical results for yielding in the unit cell with a porosity of 10 %

compared with the yield surfaces of Gurson and von Mises (Reprinted with permission from

Landry and Chen (2011). Copyright: Elsevier)
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3.4.2 Comparison of the Lower Bound Solution with Experiments

The lower bound yield function in Eq. (3.29) is evaluated using the experimental

results of Shima and Oyane (1976) for sintered iron and copper alloys in Figs. 3.14

Fig. 3.13 Comparison of the numerical results for yielding in the unit cell with a porosity of 10 %

compared with the fitted-yield surface in Eq. (3.25) along with the yield surfaces of Gurson and

von Mises (Reprinted with permission from Landry and Chen (2011). Copyright: Elsevier)

Fig. 3.14 Comparison of the fitted yield function in Eq. (3.25) and the Gurson yield criterion with

the experimental results of Shima and Oyane (1976) for sintered copper specimens. The closed
dots represent yielding in uniaxial compression while + indicates uniaxial tension (Reprinted with

permission from Landry and Chen (2011). Copyright: Elsevier)
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and 3.15, respectively, for a large range of porosities. For comparison, the Gurson

yield surface is also evaluated. As seen previously in the work of Sun and Wang

(1989), the Gurson yield criterion overestimates the yield stress and the lower

bound solution performs much closer to the experimental results. For both sintered

alloys, Eq. (3.29) provides a mid-range solution for lower porosities (f < 7.5 %)

while its lower bound characteristics becomes apparent at higher volume fractions.

It is worth noting that Shima et al.’s tests were performed for uniaxial loading and

that a true evaluation of the proposed yield surface would require its application to

other multi-axial stress states.

3.5 Derivation of a Quasi-Exact Lower Bound Anisotropic

Yield Criterion for Porous Sheet Metals

A quasi-exact yield criterion can now be derived for anisotropic porous ductile

sheet metals using the concepts and fundamentals established in the previous

development of the isotropic model. The same disk-shaped unit cell is adopted

under axisymmetric loading and the matrix material is assumed to be rigid-plastic

and obey the Hill-48 quadratic yield function for normal anisotropy.

3.5.1 Derivation of the Flow Rule and Equivalent Plastic Strain

In cylindrical coordinates, the Hill-48 yield criterion can be written as

Fig. 3.15 Comparison of the fitted yield function in Eq. (3.25) and the Gurson yield criterion with

the experimental results of Shima and Oyane (1976) for sintered iron specimens. The closed dots
represent yielding in uniaxial compression (Reprinted with permission from Landry and Chen

(2011). Copyright: Elsevier)
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Φðσij;RÞ ¼ 1

1þ R
σ2rr þ σ2θθ þ Rðσrr � σθθÞ2 þ 2ð2Rþ 1Þσ2rθ
� �

� σ2y ¼ 0 ð3:32Þ

From the associated flow rule of plasticity, the relations between the incremental

plastic strain and the stress in a rigid-plastic material are

dεrr ¼ dλ
@F

@σrr
dεθθ ¼ dλ

@F

@σθθ
dεrθ ¼ 1

2
dλ

@F

@σrθ

dλ ¼ 1

2

dεeq
σeq

ð3:33�3:37Þ

Using the quadratic yield function, the stress and strain components can be

expressed in matrix form using Voigt notation as

dεrr

dεθθ

dεzz

dεrθ

dεrz

dεθz

2
666666664

3
777777775
¼ dλ

2

1þ R

	 

1þ R �R �1 0 0 0

�R 1þ R �1 0 0 0

�1 �1 2 0 0 0

0 0 0 1þ 2R 0 0

0 0 0 0 1þ 2R 0

0 0 0 0 0 1þ 2R

2
666666664

3
777777775

σrr

σθθ

σzz

σrθ

σrz

σθz

2
666666664

3
777777775

ð3:38Þ

that can be manipulated to obtain

σrr � σθθ

σθθ � σzz

σzz � σrr

σrθ

σrz

σθz

2
666666664

3
777777775
¼ 1

dλ

1þ R

2þ 4R

	 

dεrr � dεθθ

dεθθ � dεzzR

dεzzR� dεrr

dεrθ

dεrz

dεθz

2
666666664

3
777777775

ð3:39Þ

By substituting Eqs. (3.39) into (3.32) the work-conjugate of the effective stress,

the effective strain increment, can be expressed as

dε2eq ¼
1þ R

ð1þ 2RÞ2
�
ðdεθθ � dεzzRÞ2 þ ðdεzzR� dεrrÞ2 þ Rðdεrr � dεθθÞ2

þ 1þ 2R

2
ðdε2rθ þ dε2rz þ dε2θzÞ

�
ð3:40Þ
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3.5.2 Analytical Derivation of the Yield Function

The matrix material is assumed to be ideally rigid-plastic, incompressible, and

under axisymmetric loading, i.e.

Σrr ¼ Σθθ ¼ L Σzz ¼ T Σrθ ¼ Σzθ ¼ Σzr ¼ 0 ð3:41a�cÞ

where Σij are the macroscopic stress components; L is the macroscopic stress in the

sheet plane, and T is the macroscopic stress normal to the sheet plane. In axisym-

metric loading with planar isotropy and normal isotropy, the microscopic strain rate

in the z-direction, the thickness direction of the sheet, that is normal to the unit-cell

plane is

dεz ¼ dEz ð3:42Þ

where dEz is the macroscopic strain increment that is assumed to be independent of

the radius, r. The boundary conditions associated with the unit-cell model are

σrrjr¼a ¼ 0 σrrjr¼b ¼ L ð3:43a; bÞ

The shear stresses, shear strains and the circumferenctial velocity are all zero for

axisymmetric loading

σrθ ¼ σrz ¼ σzθ ¼ 0 dεrθ ¼ dεrz ¼ dεzθ ¼ 0 vθ ¼ 0 ð3:44a�cÞ

and the equilibrium equation in the radial direction becomes

@σrr
@r

þ 1

r
ðσrr � σθθÞ ¼ 0 ð3:45Þ

with incremental strains defined as

dεrr ¼ @vr
@r

dεθθ ¼ vr
r

ð3:46a; bÞ

The assumption of a rigid incompressible matrix material leads to the volume

conservation constraint

dεrr þ dεθθ þ dεzz ¼ 0 ð3:47Þ

Combining equations (3.42), (3.46) and (3.47), the radial velocity is

vr ¼ A

r
� r

2
dEz ð3:48Þ
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where A is an integration constant that is independent of r and related to the

anisotropic parameter, R, and the void volume fraction, f. Substituting the radial

velocity (3.48) into (3.46), we obtain

dεrr ¼ � A

r2
� 1

2
dEz dεθθ ¼ A

r2
� 1

2
dEz ð3:49a; bÞ

The effective strain rate is obtained by substituting Eqs. (3.42) and (3.49) into

(3.40)

dε2eq ¼
1þ R

ð1þ 2RÞ
2A2

r4
þ 1

2
þ R

	 

dE2

z

� �
ð3:50Þ

3.5.3 Solution for the Macroscopic Radial Stress

According to the flow rule, and because σeq ¼ σ0 in the completely plastic state

σrr � σθθ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

1þ 2R

r
2σ0A=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A2

r4
þ 1

2
þ R

	 

dE2

z

� �s ð3:51Þ

Using (3.51) in the equilibrium Eq. (3.45) results in

σrr ¼ �
Z r

a

σrr � σθθ
r

dr

¼ �σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

1þ 2R

r Z r

a

ffiffiffi
2

p ð ffiffiffi
2

p
A=r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

A

r2

	 
2

þ 1

2
þ R

	 

dE2

z

" #vuut
1

r
dr ð3:52Þ

Define new variables as

c ¼ dEz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ R

	 
s
x ¼

ffiffiffi
2

p
A

cr2
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

1þ 2R

r
ð3:53a�cÞ

Manipulating the identity in Eq. (3.53b), we obtain

1

r
dr ¼ � 1

2x
dx ð3:54Þ
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Using Eqs. (3.53) and (3.54) in (3.52), σrr is solved as

σrr ¼
ffiffiffi
2

p

2
σ0B sinh�1xa � sinh�1x
� � ð3:55Þ

where xa ¼
ffiffi
2

p
A

ca2 . Similarly, we define xb ¼
ffiffi
2

p
A

cb2 . According to the boundary

condition (3.41), the boundary radial stress is

Σrr ¼ σrrjr¼b ¼ L ¼
ffiffiffi
2

p

2
σ0B sinh�1xa � sinh�1xb
� � ð3:56Þ

3.5.4 Solution for the Macroscopic Through-Thickness Stress

By definition, the macroscopic stress Σzz is

Σzz ¼ 2

b2

Z b

a

σzzrdr ð3:57Þ

The normal stress is manipulated as

σzz ¼ σrr þ ðσzz � σrrÞ ð3:58Þ

Substituting Eqs. (3.42), (3.49) and (3.50) into (3.53c) gives

σzz � σrr ¼ 1þ R

1þ 2R

σ0
dεeq

dεzzR� _εrrð Þ ¼ σ0B

ffiffiffi
2

p
x=2þ mffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ R

r
ð3:58a; bÞ

Substituting Eqs. (3.55), (3.58) into (3.57) results in

Σzz ¼ T ¼ �Bσ0xb

ffiffiffi
2

p

2
sinh�1xa
� � Z xb

xa

x�2dx�
ffiffiffi
2

p

2

Z xb

xa

x�2 sinh�1x
� �

dx




þ
ffiffiffi
2

p

2

Z xb

xa

1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p dxþ m

Z xb

xa

1

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p dx

�

Note the second term is

ffiffiffi
2

p

2

Z xb

xa

x�2 sinh�1x
� �

dx ¼ �
ffiffiffi
2

p

2

1

x
sinh�1x

� �xb
xa

þ
ffiffiffi
2

p

2

Z xb

xa

1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p dx
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Therefore,

T ¼ Lþ σ0Bxbm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xa2
þ 1

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xb2
þ 1

r� �
ð3:59Þ

3.5.5 Solution for the Yield Function

Noting that f ¼ xb xa= , Eq. (3.59) can be rewritten as

T � L

σ0

	 
2

¼ 1þ R

2
1þ f 2 � 2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xb2ð Þ 1þ xa2ð Þ

p
� xaxb

� �h i
ð3:60Þ

Rearranging Eq. (3.56), we can obtain

ffiffiffi
2

p
L

σ0B
¼

ffiffiffi
2

p
L

σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2R

1þ R

r
¼ sinh�1xa � sinh�1xb
� � ð3:61Þ

Using the following identity

cosh sinh�1xa � sinh�1xb
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xb2ð Þ 1þ xa2ð Þ
p

� xaxb ð3:62Þ

and combining Eqs. (3.60), (3.61) and (3.62) give

T � L

σ0

	 
2

¼ 1þ R

2
1þ f 2 � 2f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2R

1þ R

r ffiffiffi
2

p
L

σ0

 !" #
ð3:63Þ

The macroscopic effective stress in the Hill-48 yield criterion is

Σ2
eq ¼

1

1þ R

� Σ22 � Σ33ð Þ2 þ Σ33 � Σ11ð Þ2 þ R Σ11 � Σ22ð Þ2 þ 2ð1þ 2RÞΣ12

h i
ð3:64Þ

Note L ¼ 1
2
Σ11 þ Σ22ð Þ and Σ2

eq ¼ 2
1þR T � Lð Þ2 thus, an equivalent form of

Eq. (3.63) is obtained. Finally, the yield function is expressed as (Xia and Chen 2007)

Σeq

σ0

	 
2

þ 2 f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2R

2 1þ Rð Þ

s
3Σhyd

σ0

 !
� 1� f 2 ¼ 0 ð3:65Þ
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When R ¼ 1, the yield function (3.65) is reduced to the derivation of Gurson (1977)

for a cylindrical unit cell subjected to axisymmetric loading

Σeq

σ0

	 
2

þ 2 f cosh
ffiffiffi
3

p 3

2

Σhyd

σ0

	 

� 1� f 2 ¼ 0 ð3:66Þ

3.5.6 Effect of Mechanical Anisotropy in a Porous
Ductile Material

Two different R values, 0.8 and 1.8, are selected to quantify the influence of

mechanical anisotropy on the yield surface in Fig. 3.16 for FCC and BCC materials,

respectively. The material does not possess any void-induced anisotropy since the

void is assumed to remain circular during deformation. The yield surface contracts

slightly with an increase in the R-value for a constant porosity, indicating that

anisotropy increases pressure sensitivity. The effect of anisotropy becomes more

pronounced in plane stress loading as demonstrated in Fig. 3.17.

It is worth noting that for a given porosity value, the yield points on the vertical

axis for various R values (Fig. 3.17) coincide with each other. This implies that for

pure shear, the yield behavior of porous sheet metal is independent of normal

anisotropy. It should be cautioned however that the influence of shear may be

different if a cubic unit cell geometry was assumed. The cylindrical unit cell

geometry is restricted to axisymmetric stress states resulting in a yield criterion

that is independent of the third invariant of the stress deviator that is used to

characterize shear loading via the lode parameter. The variational model of

Danas and Ponte Casteneda (2009) shows evidence of the third stress invariant on

Fig. 3.16 Comparison of the

yield loci of the current yield

function (3.61) for various

values of R and f. The solid
curves indicate the yield loci

for isotropic materials

(R ¼ 1) (Reprinted with

permission from Xia and

Chen (2007). Copyright:

Springer)
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yielding of a porous ductile material. As expected, the influence of the R-value
becomes more pronounced at higher stress triaxialities since the R-value acts as a

scaling factor for the hydrostatic stress dependence of the yield surface.

3.5.7 Assessment of the Uniqueness of the Current Yield Function

A limitation of the unit-cell model is that the geometry of the unit-cell must be

constructed so that the specified porosity is satisified even though the cell may not

be large enough for the outer surface to be regarded as infinity (Gurson 1977). In

this sense, the stress field inside the unit cell could be considered a statically

admissible stress field and the yield function in Eq. (3.65) would be classified as

an analytical lower bound solution rather than an exact solution. If one takes this

view, the current yield function can provide a benchmark to assess other lower

bound yield criteria. Conversely, if we ignore the limitation of the unit cell model,

the only remaining approximation is that the normal strain rate is independent of the

unit cell radius. This limitation can be reasonably ignored for a comparison between

unit cell models and since the unit cell is assumed to be in a fully plastic state, the

yield stress is likely overestimated since the actual unit cell would likely contain

rigid regions. From this perspective, the current solution could be interpreted as an

analytical solution and used to evaluate upper bound yield criteria. In other words,

the uniqueness of the current model may make it a valuable reference for a variety

of situations.

Fig. 3.17 Yield loci for various R values for a porosity of 5 % in the (a) Σ11–Σ22 plane and

(b) Σ11–Σ33 plane (Reprinted with permission from Xia and Chen (2007). Copyright: Springer)
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As an example, the lower bound solution of Sun and Wang (1989) and the

energy-based solution of Qiu and Weng (1993) are compared with the current yield

function. In Sun and Wang’s derivation, the stress field in a spherical unit-cell was

decomposed into an elastic and plastic part. Qiu and Weng (1993) eschewed the

unit cell approach and derived a yield criterion for randomly- oriented voids using

an energy-based approach to obtain

Σeq

σ0

	 
2

þ f

4 1þ 2
3
f

� � 3
Σhyd

σ0

	 
2

� 1� fð Þ2
1þ 2

3
f

¼ 0 ð3:67Þ

It is worth noting that the Sun andWang and Qiu andWeng models were derived

for spherical voids while the current yield function assumes circular (cylindrical)

voids. To provide an equal comparison, a scale factor of 1=
ffiffiffi
3

p
is applied to the the

hydrostatic stress component in Eq. (3.65) with reference to the Gurson’s (1977)

conversion from the cylindrical model to the spherical void yield criterion as

Σeq

σ0

	 
2

þ 2 f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2R

6 1þ Rð Þ

s
3Σhyd

σ0

 !
� 1� f 2 ¼ 0 ð3:68Þ

It is more reasonable to compare yield function (3.68) with Sun and Wang’s

yield function (Eq. 2.31) and Qiu and Weng’s yield function (3.67).

Figure 3.18 shows the yield loci of Eq. (3.22) with R ¼ 1 in comparison with

Sun and Wang’s (1989) lower bound yield function (Eq. 2.31) and Qiu and Weng’s

(1993) yield function in Eq. (3.67). Large discrepancies are observed between the

current yield function and Sun and Wang’s criterion, as shown in both figures. This

is because the unit cell in Sun and Wang’s lower bound approach is assumed to be

partially plastic while the cell was assumed to be completely plastic in our deriva-

tion. In contrast, the current yield loci are in better agreement with Qiu and Weng’s

results who considered both the elastic and plastic energies in the material.

Fig. 3.18 Comparison between the current yield function (3.64) with Sun and Wang’s lower

bound yield function (Eq. 2.31), and Qiu and Weng’s energy based yield function, Eq. (2.31)

(Reprinted with permission from Xia and Chen (2007). Copyright: Springer)
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3.5.8 Evaluation of the Quasi-Exact Anisotropic Yield Criterion

If the prescribed stresses and normal strain rate are assumed to be actual quantities,

the yield criterion should be considered an “exact” solution because the macro-

scopic stresses in the unit cell were direcly obtained from the equilibrium equation.

However, it is better to describe the yield function as “quasi-exact” due to the

assumed independence of the normal strain rate on the unit cell radius. The other

principal source of error in the model can be attributed to the prescribed boundary

condition on the unit cell that can lead to significant errors for high porosities as

discussed in Sect. 3.3.3. Fortunately, this model has been developed for application

to sheet materials where the porosities at failure are on the order of a few percent.

It is important to discuss the work of Liao et al. (1997) who obtained the same

result as Eq. (3.65) using the upper bound theory of plasticity by decomposing the

velocity field into volume and shape-changing fields and then constructing each

field seperately. Although the resulting yield surfaces are equivalent, very different

mathematical approaches were used to obtain the macroscopic yield stress. Conse-

quently, the model of Liao et al. (1997) is approximate since Eq. (3.65) was derived

from the analytical stress field solutions in the unit cell. From the perspective of

extremum theory, the model of Liao et al. (1997) is an upper-bound solution whilst

Eq. (3.65) is an “exact” solution.

The current result coincides with the yield surface of Liao et al. (1997) for the

following reasons:

• The same disk-shaped unit cell geometry was used and subjected to axisymmetric

loading

• Similar form of solutions to the velocity fields: Liao et al. (1997) utilized the

flow rule and the equilibrium equation while the present method solves for the

velocity fields directly from volume conservation.

• Both models assume that the matrix material in the unit cell has achieved a

completely plastic state

It is also interesting to note that the anisotropic yield function of Benzerga and

Besson (2001) for porous orthotropic materials also reduces to Eq. (3.68) when

simplified to normal anisotropy. In the model of Benzerga and Besson (2001), the

velocity field was envisaged as a linear combination of Rice and Tracey’s (1969)

solution for volume change and the other is for a uniform shape change. Strictly

speaking, the present result should not be considered to be a special case of

Benzerga and Besson (2001) since their result is also an approximate upper

bound solution like the model of Liao et al. (1997).

Despite that the closed form yield function is derived under an axisymmetric

loading condition, it still remains valid and provides acceptable predictions of

plastic deformation under universal loading conditions as investigated by Liao

et al. (1997) for rigid plastic materials, and Chien et al. (2001) for a three-

dimensional unit cell of hardening materials. Liao et al. generated all possible

planar deformation modes by specifying the macroscopic strain rate ratio
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dE11 dE22= and obtained the corresponding solutions for the macroscopic stresses

Σ11 and Σ22 . Their numerical results indicate that the closed form yield criterion

matches well with the numerical results. Also, as Benzerga and Besson (2001)

discussed about Gurson’s results (1977) although Gurson considered axisymmetric

loading conditions, it was proved by Leblond et al. (1995) that the analysis and

corresponding results remain valid for general loading conditions.
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