
Chapter 2

Averaging Methods for Computational

Micromechanics

The averaging or homogenization process is the foundation of all unit cell models

and any yield criterion derived from them. In porousmaterials, the presence of a void

gives rise to an overall response of the bulk or aggregate material that is different

than that of a damage-free material. The averaging process is employed to transition

from the micro-scale (unit-cell) to the macro-scale to quantify the overall response

of the material and these average quantities are frequently referred to as “macro-

scopic” quantities. The study of homogenization techniques is a very rich field and a

proper treatment is outside the scope of this book and the interested reader is referred

to basic textbooks on plasticity as well as the work of Eshelby (1957), Mori and

Tanaka (1973), Nemat-Nasser (1993a, b) as well as Ponte Casteneda and Suquet

(1998). Only a brief explanation of the extremum theory of plasticity is provided

here since a great deal of attention will be paid to the application of upper and lower

bound-based yield criteria for porous ductile materials.

2.1 Defination of Average Stress and Strain

Consider an arbitrary representative volume element (RVE) or unit cell that is large

enough to statistically represent the material behaviour of the aggregate material.

For an arbitrary unit cell geometry, the macroscopic stresses are obtained as the

volume average of the microscopic stresses as

Σij ¼ 1

V

Z
V

σijðxÞdV ð2:1Þ

where σijðxÞ are the micro-stress fields in a unit cell at a point, x; Σij is the

macroscopic stress tensor and V is the volume of the unit cell. This integral can

be converted to an integration of the applied surface traction vector, TiðxÞ, over the
outer boundary of the unit cell, S, using the Gauss theorem
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Σij ¼ 1

V

Z
V

σijðxÞdV ¼ 1

S

Z
S

TiðxÞnjdS ð2:2Þ

where nj are the components of surface normal direction vector corresponding to

TiðxÞ. The average strain rate fields are similarly defined as

_Eij ¼ 1

V

Z
V

_εijðxÞdV ¼ 1

V

Z
S

1

2
viðxÞnj þ vjðxÞni
� �

dS ð2:3Þ

where _εij and _Eij are the respective microscopic and macroscopic strain rates and vi
are the components of the velocity vector on the outer surfaces of the unit cell. The

average work rate is thus defined by

_W ¼ 1

V

Z
V

σij _εijdV ¼ 1

V

Z
S

TividS ¼ Σij
_Eij ð2:4Þ

Based on the energy Eq. (2.4) and the variational method, the stress strain

relation can be obtained using the following equations

_Eij ¼ @ _W

@Σij
ð2:5Þ

Σij ¼ @ _W

@ _Eij

ð2:6Þ

2.2 Fundamentals of a Constitutive Model for Plasticity

The constitutive equation of a material is used to relate the material response

(stress) to an applied deformation (strain). The constitutive equation, or plastic

potential, ϕ , is a scalar function of the stress tensor along with some internal

variables arranged in a vector, α. The general form of the plastic potential for a

perfectly plastic material is expressed as

ϕ σij; αi
� � ¼ σ0 ð2:7Þ

From the concept of the plastic potential (Chakrabarty 1987), the microscopic

plastic strain increment, dεij , is related to the normal of the yield surface with a

scalar factor known as the plastic multiplier, dλ, and thus defines the “flow rule” of

the material as
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dε pij ¼ dλ
@ϕ σij; αi

� �
@σij

ð2:8Þ

This is known as an associated flow rule because the plastic potential is the same

as the yield criterion. Non-associated flow rules can also be implemented but are not

considered in this book.

2.3 Normality and Convexity of the Yield Surface

The fundamentals of the mathematical theory of plasticity require that the yield

surface be convex since the work dissipation for a deforming material is always

positive. They also constitute the basis for many minimum/maximum theorems in

plasticity, including the upper- and lower-bound theorems to be discussed and

utilized throughout this book. The condition of normality is fundamental to the

development of the plastic flow rule since the vector of the plastic strain increment

is always normal to the yield surface. The convexity condition forms the basis of the

principle of maximum plastic work. Taking the yield locus as an example, convex-

ity can be formulated as

Σ1 � Σ2ð Þ : @Φ
@Σ

� �
Σ1

� ΦðΣ1Þ �ΦðΣ2Þ ð2:9Þ

whereΣ1 andΣ2 indicate two different macroscopic stress tensors andΦ Σ; αð Þ is the
macroscopic plastic potential.

2.4 Principle of Virtual Work

A stress field can be said to be statically admissible if it satisfies the equilibrium

equations

@σij
@xi

¼ 0 ð2:10Þ

If we consider an admissible velocity field, vi, to be independent of the equilib-

rium stress field, the work rate done by the surface tractions and its volume-based

equivalent are

Z
TividS ¼

Z
niσijvidS ð2:11Þ
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Z
niσijvidS ¼

Z
σij

@vi
@xj

dV ¼
Z

σij _εijdV ð2:12Þ

Equations (2.11) and (2.12) define the principle of virtual work which states that

the rate of work done by the surface tractions with any virtual velocity field is equal

to the rate of dissipation of internal energy by the stress field corresponding to the

surface tractions

Z
TividS ¼

Z
σij _εijdV ð2:13Þ

2.5 Principle of Maximum Plastic Work

The work rate of plastic deformation is

dW ¼ σijdεij ð2:14Þ

For a given plastic strain increment, dε p
ij , the corresponding stress σij , can be

determined from the normality rule and the yield function and denoted as point P in

stress space. Now consider an arbitrary stress, σ�ij, that is statically admissible and

denoted by a point P* that lies on or inside the yield surface. From the principle of

virtual work, the difference between the incremental plastic works done by the two

stresses can be determined as follows

dW ¼ σij � σ�ij
� 	

dε pij ð2:15Þ

since the yield surface is strictly convex the scalar product is positive. Hence,

dW ¼ σij � σ�ij
� 	

dε pij � 0 ð2:16Þ

Equation (2.16) represents the principle of maximum plastic work: the actual

work done in a given plastic strain increment is greater than or equal to the work

done by an arbitrary stress that is less than or equal to the yield limit.

2.6 Extremum Theorems in Plasticity

The extremum principles in plasticity arise from the comparison of the work

dissipations (or work rates) associated with actual stress fields and velocity fields.

A lower bound estimate can be obtained by applying a statically admissible stress
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field at the cell boundary while an upper bound estimate is obtained by applying a

kinematically admissible velocity field. The principle of virtual work is used to

obtain the difference between the actual and possible fields.

For a mass of material with a volume, V and bounded by a surface S, the equation
of energy conservation is

Z
TividS ¼

Z
σij _εijdV þ

Z
τ½v�dSD ð2:17Þ

where SD is the surface on which a discontinuity of velocity occurs and τ and [v] are
the shear stress and relative velocity on the dislocation surface SD (Kachanov 1971).

Equation (2.17) holds for any continuous medium in equilibrium and the velocities

and stresses are, in general, not related. In other words, Eq. (2.17) is applicable to both

the actual stress distribution σij and to any kinematically possible velocity field vi
*;

it is also applicable to both to the actual velocity distribution vi and a statically

admissable stress field, σ�ij.

2.6.1 Upper Bound Solution

According to Kachanov (1974), the upper bound principle states that the total rate

of work attains an absolute minimum for the actual velocity field when

Z
Ti

�vidS �
Z

TividS ð2:18Þ

where Ti
* are surface tractions solutions corresponding to any kinematically possi-

ble velocity fields vi. Upper bound yield functions for porous materials can be

obtained by constructing a uniform velocity field on the outer surface of a unit cell.

The upper bound theorem is used to solve for the forces that arise due to deforma-

tion from a kinematically possible velocity field. In general, upper bound solutions

are easier to obtain analytically because they represent solving for the stress (load)

from an applied strain (deformation).

2.6.2 Lower Bound Solution

As stated by Kachanov (1974): the rate of work done by the actual surface tractions

on prescribed velocities is greater than or equal to the rate of work developed by

surface tractions corresponding to any statically admissible stress

Z
Ti

�vidS �
Z

TividS ð2:19Þ
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where Ti
* are obtained from any statically admissible microscopic stress fields.

Lower bound yield limits for porous materials can be obtained by constructing

stress fields instead of velocity fields. Theoretically, the yield strength obtained

using a yield criterion derived using the lower bound formulation will always be

lower than the real yield stress.

2.7 Gurson’s Upper Bound Solution for a Porous

Ductile Material

Some of the earliest work in modelling damage-induced ductile fracture was

performed by McClintock (1968) who studied the axisymmetric deformation of

an infinitely long circular-cylindrical void in an infinite, perfectly plastic matrix

material. Rice and Tracey (1969) considered the same problem but for the growth of

an initially spherical void. It is important to mention that while these studies related

the void growth and evolution to the far-field loading, the bulk behaviour of the

material was independent of the void damage. Building upon the work of Green

(1972) and the numerical results of Needleman (1972) for a cylindrical unit cell,

Gurson (1977) derived a damage-based yield criterion and flow rules for both

cylindrical and spherical unit cells. In this model, the macroscopic response of

the material is directly linked to the porosity and its evolution. The Gurson model is

based on upper bound plasticity theory and thus the model will overestimate the

material strength and underestimate the porosity in the material by restricting void

growth.

To simplify the analysis, the Gurson-based material is assumed to have a

periodic distribution of voids with each void located at the centre of a cylindrical

or spherical unit cell. In this manner, the randomly distributed voids in the material

are replaced with an equivalent single void. In reality, the void distribution is

random with voids and particles of many sizes as shown in Fig. 1.11. The unit

cells used by Gurson are only approximations to a periodic microstructure because

the assembling of the unit cells to represent the bulk material will neglect the

material between the cells (Fig. 2.1). These approximations of the unit cell

geometries are required to simplify the problem so that a closed-form yield criterion

can be derived. Twenty years later, Gologanu et al. (1997) followed a similar

approach as Gurson but considered ellipsoidal voids embedded in an ellipsoidal

unit cell so that the evolution of the void shape and shape-induced anisotropy could

be captured. To maintain the integrity of the presentation, the definition of porosity

in the Gurson unit cells is repeated here

Spherical: f ¼ a3

b3
Cylindrical: f ¼ a2

b2
ð1:21a; bÞ

where a is the radius of the void and b the radius of the unit cell.
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Another advantage of Gurson’s model is its implicit accounting for material

isotropy as the voids are assumed to remain spherical or cylindrical. The spherical

model is geometrically isotropic while the cylindrical void experiences transverse

isotropy. Gurson’s yield criteria for spherical and cylindrical voids are

Spherical void: Φ ¼ Σ2
eq

�σ2
þ 2 f cosh

3

2

Σhyd

�σ

� �
� 1� f 2 ¼ 0 ð2:20aÞ

Cylindrical void: Φ ¼ Σ2
eq

�σ2
þ 2 f cosh

3
ffiffiffi
3

p

2

Σhyd

�σ

� �
� 1� f 2 ¼ 0 ð2:20bÞ

where �σ is the equivalent tensile flow stress in the matrix material, neglecting

variations in local stress, and Σeq and Σhyd are the macroscopic effective and

hydrostatic stresses, respectively. Gurson’s formulation reduces to the von Mises

yield criterion for a damage free material by setting f ¼ 0 in Eq. (2.20). The

relationship between Gurson’s damage model and the von Mises criterion with

hydrostatic stress is presented in Fig. 2.2. The von Mises criterion is independent of

the hydrostatic stress because it is assumed to be free of interal defects (voids,

particles, inclusions) and because a hydrostatic stress will not induce any shear

stresses. Damage-based materials are sensitive to the hydrostatic stress because a

tensile hydrostatic stress will expand the voids, softening the material and resulting

in earlier necking and failure. Conversely, a compressive hydrostatic stress will

increase formability by shrinking the size of the voids.

The spherical void variant of the Gurson model was well-received but it was soon

realized that it provided an overly stiff response when compared to the numerical

Fig. 2.1 Top-view of a

material composed of a

periodic array of spherical or

cylindrical unit cells. Note the

material that is not included

in the homogenization

process for these cell

geometries
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solutions of porous materials. Tvergaard (1981) extended Gurson’s model to account

for shear band instabilities and introduced three calibration parameters,q1,q2 andq3 to
bettermatch the effects of voids during plastic deformation. The qi parameters serve to

artificially soften the material response and encourage void growth. Traditionally, the

parameters are assumed to be material constants with q1 � 1:25� 1:5, q2 � 1 and

q3 ¼ q1
2 based on the numerical work of Koplik and Needleman (1988). Other

researchers such as Faleskog and Shih (1997) and Ragab (2004a) have proposed

correlations for the qi parameters as functions of the stress state, void shape and

material properties and generally q1 � 1 and q2 � 1 . The variation of the yield

surfaceswith the q1 and q2 parameters are shown in Figs. 2.3 and 2.4. Themodification

of Tvergaard forms the Gurson-Tvergaard (GT) model and has become the standard

formulation of the Gurson yield surface.

2.7.1 Void Growth and Nucleation

The effects of void nucleation and void growth must be included to model damage

evolution in a material. Void nucleation and growth are considered independently

and damage development is expressed as the sum of these effects

_f ¼ _f growth þ _f nucleation ð2:21Þ
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Fig. 2.2 Gurson (1977) yield function showing the reduction in the macroscopic equivalent stress

with increasing hydrostatic stress and porosity
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Fig. 2.3 Varation of the Gurson-Tvergaard yield surface with the q1 parameter for a porosity of 1 %
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Fig. 2.4 Variation of the Gurson-Tvergaard yield surface with the q2 parameter for a porosity of 1%
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The growth rate of the voids is proportional to the plastic volume dilatation rate

_f growth ¼ 3ð1� f Þ _εphyd ð2:22Þ

where _ε phyd is the hydrostatic component of the plastic strain increment. The void

growth equation in Eq. (2.22) is valid for all other damage-based constitutive

models but the void growth rate will be different since _ε phyd is related to the shape

of the yield surface through the associated flow rule:

_ε phyd ¼ dλ � @Φ
@σhyd

ð2:23Þ

As discussed previously, void nucleation can be stress or strain-controlled. A

review of the commonly used nucleation models can be found in Chap. 1.

2.7.2 Void Coalescence

The majority of work on void coalescence has been investigated using Gurson-

based constitutive models because void growth, nucleation and material softening

are included. However, the Gurson (1977) model is not particularly useful as a

fracture criterion since material softening is a continuous process with a complete loss

of material strength occurring when the porosity reaches 100 %. Obviously, this is

unrealistic and a complete loss of load carrying capacity in a material occurs at

porosities on the order of several percent. The introduction of the qi parameters reduced

the porosity at fracture to 1=q1 or between 66.7 and 100 %, depending on the value of

q1, but it was not sufficient to bring the model prediction closer to the reality.

2.7.2.1 Critical Porosity Coalescence Model

To address the unrealistic fracture porosities in the GT model, Tvergaard and

Needleman (1984) proposed a phenomenological coalescence model that relies

upon a critical porosity to identify the onset of coalescence and failure. In this

approach, once the specified “critical porosity” has been reached, the porosity is

rapidly increased to simulate the sudden drop in load carrying capacity associated

with ductile fracture (see Fig. 2.5). The resulting criterion uses an effective porosity

term, f �, that replaces the original porosity term in the GT yield criterion:

f � ¼
f if f � fc

fc þ fu
� � f

ff � fc
ðf � fcÞ if f � fc

8<
: ð2:24Þ
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where fc is the critical porosity. Void nucleation, growth and coalescence continue

to until the failure porosity is reached, ff, where all material strength vanishes. The

ultimate porosity, fu
�, has no physical significance and is equal to 1=q1. The critical

void volume fraction and porosity at failure were initially assumed to be universal

constants with values of 0.15 and 0.25, respectively. This variant of the model is

commonly referred to as the GTNmodel (Gurson-Tvergaard-Needleman) and is the

most widely used variant of the Gurson model.

The value of ff controls the rate that the load carrying capacity is lost with a

smaller failure porosity corresponding to a steeper load drop prior to fracture. One

method to identify the value of ff is to best match the experimental drop in load

carrying capacity from a tension test. It is important to note that the value of ff does
not play a significant role in numerical modeling once the critical porosity, fc is

determined and if ff is kept the same during fitting (Zhang and Niemi 1994a, b). For

practical sheet metal forming operations where the triaxiality (ratio of the hydro-

static-to-effective stress) is low (less than 1), the post-coalescence regime is not

significant with a negligible difference between the coalescence and fracture strains

(Scheyvaerts et al. 2010).

Numerical simulations of voided unit cells show that the phemenological post-

coalescence response in Eq. (2.24) can accurately describe the material response

since the porosity and the corresponding load drop behave in a linear fashion as

shown in Figs. 2.6 and 2.7.

Becker (1987) applied the GTN model to investigate the effect of porosity

distribution on the ductile fracture of a porous iron compact. Becker observed

that the critical and final porosities were not universal constants among different

materials and suggested values of fc ¼ 0:075 and ff ¼ 0:09 for the model material.

Koplik and Needleman (1988) agreed with Becker’s conclusion that the critical

porosity is related to initial porosity and stress triaxiality and suggested that fc
should instead be specified as a material constant. To determine fc for a given

material, the value of fc is taken that best fits the load drop point in a tension test

(Sun et al. 1989) or from microscopy of the fracture surface. The critical porosity

can also be determined using a unit cell model (Koplik and Needleman 1988) but it

will still be challenging to match the experimental value.

Nowadays, it is universally recoginized that the critical porosity is not a material

constant since it is a function of the initial porosity, void shape, stress state and

Modified
Gurson (1984)

Gurson (1977)

fc ff f

f*

fc

ff

fu  = 1/q1

Fig. 2.5 Qualitative sketch

of Tvergaard and

Needleman’s modification to

simulate coalescence and

rapid loss of material strength

(Reprinted with permission

from Zhang (1998).

Copyright 1998 WIT Press

Southampton)
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material properties (Zhang and Niemi 1994a; Pardoen and Delannay 1998b;

Pardoen and Hutchinson 2000; Zhang et al. 2000). The variation of the critical

porosity with the void shape and stress triaxiality obtained from unit cell

simulations is presented in Fig. 2.8. From this figure, it is clearly shown that the
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critical porosity model is reasonable at high stress triaxialities which is the intended

regime for the Gurson model. The GTN model is well suited for fracture mechanics

and applications related to crack propagation since the stress triaxiality ahead of a

crack tip is high enough for the voids to grow in an approximately spherical

manner. The critical porosity coalescence model is still in use today because it is

available in commercial finite-element codes and some researchers have previously

characterized the fc value for their materials of interest. However, the reader is

cautioned that this coalescene model should only be used for a well-defined

material and that the critical porosity determined in one stress state will likely not

be valid in a different application.

Fortunately, the critical porosity coalescence model has largely been supplanted

by the plastic limit-load criterion of Thomason (1990) that describes the necking

failure of the inter-void ligaments. In this physically-motivated model, void coales-

cence is a function of the stress state and the microstructure geometry with fc
becoming a field quantity. By removing fc as a material constant, the nucleation

parameters can be determined from tensile tests, instead of being pre-assumed in

order to determine fc by calibration with experiments. This is a significant improve-

ment for Gurson-based models as the nucleation parameters can be easily determined

and contains a fracture criterion based on the physical mechanism of coalescence.

2.7.2.2 Plastic Limit-Load Coalescence Criterion

To account for the physical mechanism of void coalescence, Thomason (1985a, b,

1990) theorized coalescence as the competition between stable homogeneous and

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

P
or

os
it
y 

at
 c

oa
le

sc
en

ce
 f

c 

Stress triaxiality ratio T 

Oblate void

Spherical void

Prolate void

fo = 1%     n = 0.1   

Fig. 2.8 Variation of the porosity at coalescence with the stress triaxiality and initial void shape.
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coalescence porosities were obtained from finite-element simulations of an axisymmetric unit cell
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unstable localized deformation modes. Initially, the influence of voids is small and

the deformation mode is homogenous. As voids nucleate and grow during further

plastic deformation, the energy required to achieve an unstable localized deforma-

tion mode decreases. The point at which the homogenous and localized deformation

modes become equal is taken as the onset of void coalescence and localized

deformation as shown in Fig. 2.9. At this point, the plastic limit of the inter-void

ligament has been reached and internal necking of the matrix begins, resulting in

sudden localized fracture.

Zhang and Niemi (1994b) modified Thomason’s plastic limit-load criterion to

incorporate it into the Gurson-Tvergaard-Needleman (GTN) constitutive model to

form the so-called complete Gurson model (CGM). More recently, Zhang et al.

(2000) further extended his model to include the effect of hardening. In the

modified plastic limit-load criterion, the voids are assumed to remain spherical

and the constraint factor is expressed as

Cf�Z ¼ 0:12þ 1:68nð Þ χ�1 � 1
� �2 þ 1:24χ�1=2 ð2:25a;bÞ

where n is the hardening exponent and χ is the void spacing ratio that is defined for

spherical voids as

χ ¼ f

γcell
e
3
2
ε1�εhydð Þ

� �1=3

γcell ¼ 2=3 cylindrical unit cell

π=6 cubic unit cell

�
ð2:26a;bÞ

where ε1 � εhyd
� �

c
is the principal deviatoric strain. The variants of the plastic limit-

load models by Pardoen and Hutchinson (2000) and Benzerga (2002) found in

Eqs. (1.15) and (1.16) could also be employed by setting the aspect ratio equal to unity.

Equivalent Plastic Strain

localized
1s
s

homogeneous
1s
s

Coalescence

Fig. 2.9 Qualitative sketch of competing deformation modes as envisaged by Zhang (1998)
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This modified version of Thomason’s criterion is best suited for materials with

initial porosities less than 1 % and has been applied to steel and aluminum alloys

(Chen and Lambert 2003; Zhang et al. 2000). Another successful variant of the

plastic limit-load model was proposed by Ragab (2004a) and has been applied to

many materials by Ragab (2004a). This variant was found to predict fracture strains

in much better agreement with the experimental fracture strains than other variants

of the Thomason (1990) model. For spherical voids, plastic constraint factor in the

Ragab (2004b) coalescence model is:

Cf�R ¼ 1þ 2

χ�1 � 1

� �
ln 1þ 1

2
ðχ�1 � 1Þ

� 

εlig
εuc

� �n

ð2:27Þ

where εlig is the ligament strain; εuc is the average effective strain in the unit cell;

The strain in the ligament can be related to the geometry of unit cell for spherical

voids and small void volume fractions as

εlig ¼ 2 ln
1� χ�1

1� χ�1
o

� �
f

fo

� �1
3

" #
ð2:28Þ

and the average macroscopic strain for the unit cell is taken as εuc ¼ ε1 (Ragab

2004b). The adoption of the ligament strain hardening term in Eq. (2.27) improves

the physical foundation of the model since the strain in the intervoid ligament

increases faster than the bulk strain in a unit cell. However, most engineering

materials do not infinitely harden and in the author’s numerical experience, coales-

cence does not generally occur until later in deformation when the flow stress has all

but saturated. Consequently, the ligament hardening term in Eq. (2.27) can be

omitted in materials that possess a flow stress response that saturates at higher

plastic strains. Additionally, complications arise if void nucleation is considered

because the initial geometry used in Eq. (2.28) is no longer valid.

2.7.2.3 Post-coalescence Treatment When Using a Plastic Limit-Load

Coalescence Model

The post-coalescence model of Tvergaard and Needleman (1984) in Eq. (2.24) is

retained when using a plastic limit-load coalescence model by identifying the

porosity when the coalescence condition is satisfied as the critical porosity, fc ¼ f.
The fracture porosity can also be removed as a material parameter by re-working

the physically-sound post-coalescence model of Scheyvaerts et al. (2010) as

presented in Eq. (1.19). For the Gurson-Tvergaard model where the void is spheri-

cal at coalescence and the initial aspect ratio of the unit cell is unity, the fracture

porosity in a specific unit cell geometry is
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ff ¼
4fc=χc χc � 1

2

χc þ
1� 2χ2c

ð9=2� χ2cÞ
� �

fc
χ3c

χc <
1
2

8<
: χc ¼

fc
γcell

e
3
2
ε1�εhydð Þ

c

� �1=3

ð2:29a; bÞ

where ε1 � εhyd
� �

c
is the principal deviatoric strain when the critical porosity is

reached. Equation (2.29) can also be used to estimate the failure porosity when using

the critical porosity coalescence model. Note that Eq. (2.29) is approximate since the

void shape and the initial aspect ratio are not considered, introducing error into the

computation of the spacing ratio, χ , which tends to be overestimated. For example,

fromunit cell simulations of an axisymmetric unit cell containing an initially spherical

void at a stress triaxiality of unity and a hardening exponent of 0.10, fc ¼ 6.17 % at a

strain of 0.46. The void aspect ratio at coalescence is 1.56 and the actual spacing ratio

is χ ~ 0.49. By assuming the void remains spherical, the spacing ratio is is χ ~ 0.57

and this will result in a larger predicted porosity at failure in Eq. (2.29). This

overestimation generally increases with decreasing stress triaxiality since the void

shape will not be spherical at coalescence. Fortunately, the porosity at failure is not a

critical parameter and this will not have an overly deleterious influence on the fracture

strains in a finite-element simulation of a metal forming operation.

The above modifications to the GTN framework dramatically improve the

predictive capabilities of the model by removing two material parameters, fc and
ff, and computing them using physically-sound models that predict coalescence and

fracture as a consequence of the evolution of the stress state and the microstructure.

Only the parameters related to the nucleation model remain to be identified, paving

the way for the identification of unique-nucleation parameters that are transferrable

to different stress states and this will be addressed in Chap. 4.

2.8 Lower Bound Solution of Sun and Wang

Following the success of the Gurson-Tvergaard constitutive model, Sun and Wang

(1989) derived the analogous lower bound solution using the spherical unit cell

geometry of Gurson to obtain a conservative estimate for the yield stress and

formability. While Gurson applied a velocity field to the surface of the spherical

unit cell, Sun and Wang (SW) applied a prescribed traction to obtain the lower

bound solution. Similar to the original Gurson formulation, Sun and Wang’s yield

criterion does not account for void coalescence in a meaningful way and requires

large porosities before the load carrying capacity is lost. Fortunately, the same

treatments of void coalescence described previously for the Gurson model can also

be applied to the SW model. The Sun and Wang yield criterion is expressed as

Φ ¼ Σ2
eq

�σ2
þ

b1 f cosh
3

2

Σhyd

�σ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b3 f sinh

2 3

2

Σhyd

�σ

� �s � b2 ¼ 0 ð2:30Þ
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where

b1 ¼ 2� 1

2
ln f b2 ¼ 1þ f ð1þ ln f Þ

b3 ¼ b1
b2

� �2

coth2
3Σ0

mt

2�σ

� �
� f 2sinh2

3Σ0
mt

2�σ

� �� ��1

Σ0
mt ¼ �0:65 lnðf Þ�σ

Sun and Wang’s model converts to Gurson’s upper bound solution for spherical

voids when

b1 ¼ 2 b2 ¼ 1þ f 2 b3 ¼ 0

and to the von Mises yield criterion when f ¼ 0. The variation of the SW yield

surface with the hydrostatic stress and porosity is presented in Fig. 2.10.

2.8.1 Void Growth, Nucleation and Coalescence

The same void growth, nucleation and coalescence rules discussed previously for

the Gurson model are also applicable for the Sun-Wang model. It is important to
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Fig. 2.10 Variation of the Sun and Wang (1989) yield surface with the hydrostatic stress and

porosity
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note that the resulting void growth and coalescence predictions will be different

than in the Gurson model due to the softer nature of the SW model which will

promote higher plastic strains and thus larger void growth rates and additional

material softening.

In a comparison of the upper and lower bound yield criteria with the experimen-

tal results of Shima and Oyane (1976), Sun and Wang (1989) observed yielding

closer to the lower bound solution as shown in Fig. 2.11. Shima and Oyane (1976)

used powder metallurgical samples to achieve porosities as high as 30 %. For a

typical ductile metal, initial porosity ranges between 0.01 and 1 % (Pardoen and

Hutchinson 2000). An additional work by Sun and Wang (1995) observed that the

experimental porosities in sintered iron and titanium alloys were in very good

agreement with the SW solution and well defined between the bounds of the SW

and Gurson models as shown in Fig. 2.12. The good experimental agreement with

the SW solution may be due to void distribution effects since voids that are arranged

in heterogeneous clusters experience faster void growth and yielding at lower

stresses and the SW model better represents that effect. Francescato et al. (2004)

performed a numerical limit analysis of plasticity to compare the models of Gurson

(1977), Tvergaard (1981), Richmond and Smelser (1985) and a modified form of

Sun and Wang (1989) for cylindrical voids. This study observed that Sun and

Wang’s (1989) lower bound model closely approximates the actual solution for

low porosities (f < 5 %) while the Richmond and Smelser (1985) model worked

better for high porosities (f > 5 %).

The principal take-away from these figures and results is not that the SW model

is superior to the Gurson model since there are surely cases where the experiment is
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better described by the Gurson model, but rather that neither of these models is

overly accurate. Only by utilizing both upper and lower bound solutions can the

material behaviour be well represented in a meaningful way since these are

approximate yield criterion with highly idealized void distributions.

2.9 Upper and Lower Bound Approach to Ductile Fracture

of Porous Materials

The Gurson model has received significant attention since its introduction while the

lower bound Sun-Wang model has gone largely unnoticed. An exhaustive number

of Gurson-based models have since been developed to account for many different

effects such as void shape (Pardoen and Hutchinson 2000; Ragab 2004a; Wen et al.

2005; Lassance et al. 2006), non-local damage development (Tvergaard and

Needleman 1995; Leblond et al. 1994; Reusch et al. 2003), and anisotropic

materials (Liao et al. 1997; Chein et al. 2001; Wang et al. 2004; Kelavelarma and
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Fig. 2.12 Increase of the void volume fraction, f, as a function of the uniaxial strain: (a)

experimental data for a Sintered CP Ti alloy from Marciniak and Kuczynski (1967). (b) Experi-

mental data for Sintered iron by Bourcier et al. (1986). The solid line denotes the SW model and

the dotted-line denotes the prediction of the Gurson (1977) model. Note that the SW model

provides the upper limit for the porosity since it is softer than the Gurson model (Reprinted with

permission from Sun and Wang (1995). Copyright 1995 Springer)
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Benzerga 2009; Cazacu and Stewart 2009). Nowadays, the GLD (Gologanu,

Devaux and Leblond) model (Gologanu et al. 1997) has largely replaced the GT

model and its variants in the academic community due to its natural ease in

describing the void shape effects that are critical to the accurate modeling of void

coalescence. Unfortunatley, Sun and Wang’s lower bound solution has only been

modified to include kinematic hardening (Yan 1992), shear localization (Sun and

Wang 1995; Sun 1995a) and a dual population of large and small voids (Sun

1995b). A lower bound solution to the ellipsoidal unit cell geometry of Golaganu

et al. (1997) would provide an excellent counterpoint to the GLD model and enable

the prediction of upper and lower forming limits using advanced void coalescence

models.

The use of both upper and lower bound damage models can provide a novel and

straightforward method to obtain estimates of the formability of ductile materials

by acknowledging the inherent limitations of the models and exploiting the differ-

ence in the yield surfaces as shown in Fig. 2.14. The shaded band in Fig. 2.13 can be

interpreted as the formability band for the actual yield stress of a material and it is

expected to fall within this range. By employing the same void nucleation and

coalescence models in both the upper and lower bound yield criteria, a range for the

limiting strains or formability band for the material can be defined.

An important distinction in this approach is that although one of the yield criteria

may be more accurate in an academic sense in that it matches the the numerical

bound obtained from FE simulations of a spherical unit cell for a given stress state,

this is of secondary importance because real materials do not adhere to such a rigid

Fig. 2.13 Yield surfaces of the von Mises, Gurson (1977) and Sun and Wang (1989) models. The

experimental yielding behaviour of a material should lie on or between the two bounds within the

shaded band. The macroscopic equivalent and hydrostatic stress are normalized by the yield stress

of the material (Reprinted with permission from Griffin et al. (2011). Copyright: Springer)
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definition of the microstructure. The actual material behaviour will generally fall

within the two bounds due to void distribution effects and other factors that are not

considered in the models such as shearing, particle-void interactions, etc. It is

important to not interpret the predicted upper and lower forming limits defined by

the GT and SW models in an absolute mathematical sense because they are

approximations to the microstructure and spherical unit cells do not strictly adhere

to the definition of a periodic microstructure. Consequently, it is possible for the

experiment behaviour to lie outside of these bounds but together they generally

provide very good estimates. The upper and lower bound approach accepts that

these models are inherently approximate and that there is value in estimating the

material behaviour within a range. The following sections will discuss the evolution

of the dual-bound approach to ductile fracture developed by the authors and its

application to a variety of metal forming operations.

2.9.1 Application of the Dual Bound Approach to Porous
Materials with Void Clusters

Inherent in the upper and lower bound formulations of Gurson (1977) and Sun and

Wang (1989) is the assumption that the voids remain spherical and the material can

be composed of a periodic assembly of spherical unit cells. However, real materials

often contain a dilute concentration of voids that are heterogeneously distributed in

clusters and the periodic assumption becomes a necessary yet questionable assump-

tion in order to obtain a tractable geometry to derive the yield criteria. In this

instance, it is important to evaluate the performance of the damage-based yield

criteria as neither is expected to perform overly well in this situation. The work of

Bilger et al. (2005) provides an interesting opportunity to evaluate this condition

since they considered the overall and local responses of porous media composed of

a perfectly plastic matrix with spherical voids in various arrangements. Bilger et al.

(2005) employed the Fast Fourier transform (FFT) method to numerically

Fig. 2.14 Three-dimensional clustered microstructures of Bilger et al. (2005): random (left),
disconnected clusters (center) and connected clusters (right) (Reprinted with permission from

Bilger et al. (2005). Copyright 2005 Elsevier)
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determine the onset of yielding in materials having microstructures characterized

by one of three void spatial distributions:

i. a random void distribution without void clustering,

ii. connected clusters of voids, or

iii. disconnected clusters of voids.

The study considered two-dimensional and three-dimensional arrangements, each

under two loading types (type-A, that combined pure shear with a superimposed

hydrostatic tension, and type-B which did not have a shear component) over a large

range of stress triaxiality. Only the three-dimensional arrangements are considered

here because there is no analogous 2-D lower bound solution of the Sun-Wang

model. The total void volume fraction in the microstructures is 0.6 % and the various

cluster arrangements are presented in Fig. 2.14.

Bilger et al. (2005) compared their results with the Gurson-Tvergaard (GT) model

which proved to be overly stiff and overestimated yielding in the different

microstructures. Griffin, Butcher and Chen (2011) noticed the overestimation of the

GT model and evaluated the lower bound criterion of Sun and Wang (1989) using the

results ofBilger et al. (2005). The SWmodel is inherentlymore sensitive to the porosity

than the Gursonmodel and experiences earlier yielding and additional material soften-

ing. The lower bound solution of SW was superimposed on the results of Bilger et al.

(2005) as shown in Figs. 2.15, 2.16 and 2.17 to evaluate the performance of the dual

bound approach first applied in Butcher et al. (2006). For clarity, Fig. 2.18 shows a

close-up view of the results at low stress triaxialities. To provide a contrast with the

traditional Gurson model, the more-commonly employed GT solution with fitting

parameter q ¼ 1.5 is shown for comparison with the original Gurson and SWmodels.

Fig. 2.15 The Gurson and SW yield surfaces have been superimposed onto the numerical results

of Bilger et al. (2005) for type-A loading (pure shear with hydrostatic tension) (Reprinted with

permission from Griffin et al. (2011). Copyright: Springer)
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Fig. 2.16 The Gurson and SW yield surfaces have been superimposed on the numerical results of

Bilger et al. (2005) for type-B loading (hydrostatic tension, no shear) (Reprinted with permission

from Griffin et al. (2011). Copyright: Springer)

Fig. 2.17 Comparison of the three-dimensional macroscopic yield surfaces with the numerical

results of Bilger et al. (2005) for two different loading conditions at low triaxialities (Reprinted

with permission from Griffin et al. (2011). Copyright: Springer)
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For low stress triaxialities the results are well captured within the upper and

lower bound predictions which is fortuitous since the practical range of stress

triaxiality is less than unity for a sheet metal forming operation. Notice that none

of the yield criteria were able to give great results for all of the stress states and

microstructures considered. Despite the different loading conditions, stress

triaxialities and microstructures, the dual bound approach is able to provide very

good upper and lower estimates for the yield behaviour.

This is a significant advantage of the dual bound approach because although neither

model was derived for void clusters or shear loading, a good representation of the

material behaviour can still be captured between the two bounds. By obtaining upper

and lower estimates for the material behaviour, the variation in the material behaviour

due to deviations from the assumption of a periodic void distribution can be better

captured than if using a single model. From a practical perspective, it is reasonable to

expect the material response to usually fall within the upper and lower limits as

predicted by the approximate models of Gurson and Sun and Wang. This result is

very attractive to industry because the original Gurson and Sun andWangmodels can

be quickly implemented in a commercial finite-element code and employed to obtain a

first-order prediction of the material behaviour in a forming process of interest.

2.10 Application of the Dual Bound Approach to a Stretch

Flange Forming Process

The first application of the dual bound concept was performed by Butcher et al.

(2006) for a stretch flange forming operation of AA5182 sheet. One example of

a stretch flanging operation is to expand a cutout in a blank to create the openings for
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Fig. 2.18 Limit punch depth versus void nucleation strain (left) and stress (right) for AA5182
1.6 mm sheet; the shaded band represents the experimental results for failure due to circum-

ferential cracking (Reprinted with permission from Butcher et al. (2006). Copyright: Springer)
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windows in car door panels. Details of the stretch flange forming process,

experiments and finite-element modeling will be discussed in detail in Chap. 6. The

lower bound SW model was implemented along with the GT model into LS-DYNA

(Hallquist 2006), a commerical finite-element solver, using user-defined subroutines.

Void nucleation was assumed to be either stress- or strain-controlled using the

nucleation models of Chu and Needlemen (1980) described in Eq. (1.5). The rather

simplistic critical porosity coalescence model of Tvergaard and Needleman (1984)

was used since a detailed metallographic and numerical analysis of the material was

performed by Chen (2004) and an appropriate critical porosity was identified. The

controlling parameters used in the simulations are presented in Table 2.1. A minor

limitation in this study was that the qi parameters were not set to unity so that the

formal upper bound of Gurson (1977) was slightly artificially softened by using the

suggested qi values of Koplik and Needleman (1988).

2.10.1 Predicting the Limit Punch Depth

Cutout sizes ranging from 88 to 98 mm were considered and the effect of the cutout

size on the limiting punch depth was small. No correlation was observed between

the onset of a radial crack at the cutout edge or the formation of a circumferential

crack. The FE model was only able to predict the onset of a circumferential crack

because the model was axisymmetric. Consequently, the experimental limit punch

depths for the circumferential cracks for all of the cutout sizes are presented as a

single shaded band in Fig. 2.18 (Chen 2004). The nucleation stress and strain were

then parametrically identified in the SW and GT models until the predicted

formablity band matched the experimental band for the limit punch depth. It was

observed that a nucleation strain of 0.70 and a nucleation stress of 4:25σy
(~500 MPa) gave good results.

2.10.2 Damage Evolution During Forming

Damage evolution is expressed as a function of punch displacement in the element

of interest (EOI) and the punch displacement is measured relative to the main

punch. The backup punch moves upwards to close the drawbead and stretching

begins as the main punch moves downward as described in Chap. 6. To clearly

Table 2.1 Controlling parameters in GTN-based and Sun and Wang material models

Model q1 q2 q3 fo fc ff fu fn

sn

(% εN, σN)
GTN 1.25 0.95 1.5625 0 0.01 0.02 0.80 0.00768 20

Sun-Wang – – – 0 0.01 0.02 0.80 0.00768 20
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present damage evolution as a function of punch displacement, the change in

direction of the punches is neglected and drawbead closure corresponds to a displace-

ment of 0 mm. Damage development is typically negligible until the blank leaves

the drawbead and enters the punch profile. Upon entering the punch profile, void

growth and nucleation occur resulting in the formation of a circumferential crack in

the side-wall of the flange or at the punch nose as shown in Fig. 2.19. In the

simulation, this coincides with the onset of element deletion, forcing the porosity

measurement to zero and the termination of the simulation. The limit punch depth is

then extracted. The element initially in contact with the male drawbead typically

exhibits the highest damage rate during stretch-flange forming. Therefore, it is chosen

as the element of interest (EOI) to characterize damage evolution.

2.10.3 Comparison of the Predicted and Measured Porosity

To validate the predicted damage evolution in the element of interest, the porosity

history obtained using the strain and stress-based nucleation rules are comparedwith

the damage measurements of Chen (2004) in Figs. 2.20 and 2.21, respectively. To

experimentally measure damage evolution in the element of interest, Chen (2004)

performed a series of interrupted tests to obtain damage measurements as a function

of punch displacement. In each test, the area of interest which was sectioned and the

through-thickness porosity measured using standard thresholding techniques.

It is important to note that the porosity measurements of Chen (2004) are not

definitive due to the digital imaging process. To measure porosity, the sample is

digitally scanned with a high resolution digital camera. From these images, the

background can be eroded to leave the voids which will be darker than the back-

ground. This process can be very sensitive to the parameters used in the imaging

process and small variations in the parameters may lead to different porosity

measurements. This sensitivity is further compounded by the small damage level

required to cause fracture in the 5xxx series alloys. With this in mind, the porosity

Fig. 2.19 Element deletion due to void coalescence at limit punch depth (Reprinted with

permission from Butcher et al. (2006). Copyright: Springer)
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results are presented to provide a guideline of actual damage evolution in the stretch

flange forming.

For strain-controlled nucleation, Figs. 2.20 and 2.21 demonstrates that porosity

is not accurately predicted as both upper and lower bound models predict marginal

damage development until a punch depth greater than 15 mm. However, the Gurson

model gives a reasonable prediction of porosity for a nucleation strain of 0.5 while

both models significantly underestimate damage for a strain of 0.7.
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Fig. 2.20 Comparison of experimental and predicted damage evolution in the EOI for an 88 mm

cutout and nucleation strain of 0.5
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Fig. 2.21 Comparison of experimental and predicted damage evolution in the EOI for an 88 mm

cutout and nucleation strain of 0.7
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Damage evolution for the stress-based nucleation model clearly gives much

better agreement with the experiment as demonstrated in Figs. 2.22 and 2.23.

Both upper and lower bound models capture the experimentally measured porosity

with the Gurson model giving a better prediction since the lower bound model fails

prematurely at this nucleation strain. For a nucleation strain of 4.25σy (Fig. 2.24),
both upper and lower bound models give very good agreement with the experiment.
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Fig. 2.22 Comparison of experimental and predicted damage evolution in the EOI for an 88 mm

cutout and nucleation stress of 3.75σY
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cutout and nucleation stress of 4.25σY
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The lower bound model provides an upper limit on porosity with the Gurson model

giving a lower limit. Despite the scatter in the porosity measurements, stress-based

nucleation gives realistic damage predictions in both models.

2.11 Application of the Dual Bound Approach to Ductile

Fracture in Tube Hydroforming

Tube hydroforming is attractive to the automotive industry since it can produce low

weight, high strength and uniform parts while eliminating traditional welding and

stamping operations. A typical hydroforming operation involves pressurizing the

inside of a tube to conform to the cross-section of a die. The hydroforming of

advanced high strength steels (AHSS) such as DP600 offers benefits such as a more

continuous yielding behaviour, higher work hardening limit and total elongation-to-

failure compared to traditional high-strength low alloy steels (HSLA). Despite the

apparent advantages of hydroformed AHSS components, formability is limited due

to the initiation of microvoids (damage) that grow and coalesce leading to sudden

fracture.

While void damage has typically been neglected in hydroforming simulations,

Baradari (2006), Varma et al. (2007) and Butcher et al. (2009) have shown that

good predictions of formability can be obtained using Gurson-based constitutive

models. A previous study by the authors (Butcher et al. 2009) applied an advanced

Gurson-based constitutive model to the hydroforming of DP600 steel that

accounted for void shape effects, stress- and strain-based nucleation and coales-

cence due to both internal necking and shearing. While this model has shown some

success in predicting formability, a large number of material parameters were

required to describe each stage of damage evolution. The subsequent identification

of these parameters can be prohibitive to the adoption of these models by industry.

The dual bound approach provides a straightforward solution to this problem by

focusing on using simpler damage-evolution rules and exploiting the upper and

lower bound nature of the models. Instead of expecting a complicated single-bound

Fig. 2.24 One-eighth finite-element model of the initial tube (left) and formed tube (right)
(Reprinted with permission from Butcher et al. (2009). Copyright: Springer)
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model to provide an absolute prediction of ductility, the focus is to capture the

behaviour within a band. In this manner, it is not essential that a single-bound

completely describe the material behaviour just that the formability lies within the

limits defined by both models.

The dual bound approach was applied to the straight-tube hydroforming model

of Butcher et al. (2009) for DP600 steel tubes to determine the burst pressure,

formability and failure location. Compressive axial loads of 0 and 133 kN were

applied to the tube during forming to evaluate performance of the models in

different loading conditions. A simple strain-controlled void nucleation rule was

adopted for both damage models and calibrated to provide forming limits that

capture the experiment data. Finally, the performance of the calibrated dual-

bound models is compared with the formability predictions of Butcher et al.

(2009) who used an advanced variant of the Gurson (1977) model.

2.11.1 Constitutive Modeling

The dual constitutive models are the same as used in the previous section with the

exception that the qi parameters in the GT model are set to unity to recover the

upper bound solution of Gurson (1977) and that void nucleation is strain-controlled.

The continuous nucleation model of Gurland (1972) was adopted where the nucle-

ation rate is proportional to the plastic strain rate

_f nucleation ¼ AN _ε
p ð2:31Þ

where AN is the nucleation intensity and _εp is the plastic strain rate. The continuous

nucleation model only requires one parameter, AN, to be identified from experiment

compared to three parameters in the well-known Chu and Needleman (1980)

model. Zhang and Niemi (1994a) demonstrated that the simpler continuous nucle-

ation model can perform equally as well as the Chu and Needleman model (1980)

where the nucleation intensity is assumed to follow a normal distribution. The

authors have also observed that the continuous strain nucleation model can provide

nearly equivalent predictions to the more complicated Chu and Needleman (1980)

in some unpublished numerical studies.

2.11.2 Material Characterization

2.11.2.1 Material Properties

Tensile samples were obtained from the tubes at orientations of 3, 6 and 9 o’clock

relative to the weld seam and averaged to determine the flow stress-strain relation

(Bardelcik 2006). Although the stress state in hydroforming is biaxial stretching,
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using the uniaxial flow stress relation is reasonable for DP600 since the forming

limit curve (FLC) determined using sheet specimens gives very good agreement

with the FLC determined using hydroformed tubes (Asnafi and Skogsgardh 2000).

The averaged flow stress curve was converted to a plastic strain-true stress curve in

the form of �σ ¼ Kεn and linearly extrapolated from approximately 0.15 strain

(ultimate tensile strength point) to 0.60. The tube stock had an average thickness

of 1.85 mm with an outer diameter of 76.2 mm. The mechanical properties of

DP600 are presented in Table 2.2.

2.11.2.2 Selection of Damage-Based Material Parameters

The DP600 steel tubes are composed of 5.5 % martensite in a banded-type formation

and is considered to be initially damage-free with an initial porosity, fo, of zero
(Winkler et al. 2008). Uniaxial tensile tests were conducted by Winkler et al. (2008)

using the same tube material used in the hydroforming experiments. 2-D metallo-

graphic analysis revealed the porosity (area fraction) near the fracture surface to be

about 0.7 % and this value is taken as the critical porosity. The porosity at fracture is

assumed to be 2 % (Maire et al. 2008). The only parameter required to be identified is

the nucleation intensity, AN, which is determined parametrically by comparing the

numerical formability predictions of both damage models to the hydroforming test

data. The value of AN is selected that yields the best agreement with the experimental

forming limits for both end-feed loads. The controlling parameters used in the

damage-based constitutive models are shown in Table 2.3. Note the few parameters

that exist in the model with the major parameters being the critical porosity and

the nucleation intensity. If the plastic-limit load coalescence model was used then

the critical porosity term can be removed from the analysis (Butcher et al. 2009).

The initial porosity can safely be set to zero or a small value for a clean material

such as DP600 and the porosity at fracture has minimal impact on the solution.

2.11.3 Finite-Element Model

The tube was modeled with 80,000 eight-node constant stress brick elements and

the surfaces of the steel die and end-feed rams are rigid and meshed using

Table 2.3 Controlling

parameters in the material

models

fo fc (%) ff (%) AN

0 0.7 2 Identified parametrically

Table 2.2 Mechanical

properties of DP600 steel

tubes reported by Bardelcik

(2006)

Material E (GPa) v σy (MPa) K (MPa) n

DP600 206 0.30 413.54 795.8 0.115

2.11 Application of the Dual Bound Approach to Ductile Fracture. . . 55



quadrilateral shell elements. Contact between the tube, die and rams is modeled

using a penalty-based contact algorithm available in LS-DYNA (Hallquist 2006).

The coefficients of friction (COF) between the tube and die and tube and rams were

experimentally determined using a twist-compression test as 0.035 and 0.08,

respectively (Bardelcik 2006).

A null shell mesh coincident with the solid mesh of the tube is used to apply the

pressure load. The tube is pre-pressurized to 35 MPa to avoid buckling before the

end-feed load is applied and maintained using load control. The full EF load is

applied from 35 to 38 MPa and then pressure is linearly increased to 152 MPa. For

the zero end-feed case, the rams remain stationary and the end-feed load is adjusted

to counteract the internal pressure on the face of the ram. The initial and formed

tube models are shown in Fig. 2.24. The forming limit is detected at the onset of

element deletion signifying localized necking and the onset of failure. The satisfac-

tion of the post-coalescence criterion in Eq. (2.24) triggers element deletion in the

finite-element model with widespread fracture of the tube occurring at the onset of

element deletion.

2.11.4 Measuring Formability

Formability is defined using the corner-fill expansion (CFE) which measures the

change in the cross-section of the tube from circular to rectangular with a CFE of

100 % corresponding to a perfect square. A section of the hydroforming die

showing corner-fill expansion is presented in Fig. 2.25.

Corner-fill expansion is expressed as

CFE ð%Þ ¼ 100δ

δmax

ð2:32Þ

The maximum corner distance between the tube and die is 16.14 mm. However,

the maximum CFE achievable is 84.3 % of this distance due to the fillet corner

radius as shown in Fig. 2.25. To present formability using an absolute scale, CFE in

the present work is defined as

Fig. 2.25 Section of the

hydroforming die showing

corner-fill expansion

(Reprinted with permission

from Bardelcik (2006).

Copyright 2006 Bardelcik)

56 2 Averaging Methods for Computational Micromechanics



CFE ð%Þ ¼ 100

0:843

δ

16:14 mm
¼ 7:35δ ð2:33Þ

Corner-fill expansion was measured at 90 % of the average burst pressure for

each end-feed load and the results of Bardelcik (2006) have been restated according

to Eq. (2.33). Further details related to the hydroforming experiments and develop-

ment of the finite-element model can be found in Bardelcik (2006).

2.11.5 Results

A parametric study was conducted to determine the void nucleation intensity that

provides good agreement with the experimental burst pressure, formability and

failure location for each end-feed load and material model. A nucleation intensity of

0.021 successfully captures the experimental burst pressure and formability within

the band defined by the upper and lower bound material models.

2.11.5.1 Tube Burst Pressure

The resulting band for burst pressure is compared with the experimental results in

Fig. 2.26. The dual bound approach is able to capture the experimental burst

Fig. 2.26 Comparison of the experimental burst pressure with the upper and lower limits obtained

using the Gurson and Sun and Wang material models for end-feed loads of zero and 133 kN. The

nucleation intensity is 0.021
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pressure for both end-feed loads. The lower bound model gives best agreement in

the 0 kN EF case while the upper bound Gurson model performs best for the 133 kN

EF load. Conversely, the Gurson and SW models over/underestimate the burst

pressure for zero and 133 kN EF, respectively. It is likely that the upper bound

Gurson model performs well in the high EF case as EF promotes a more uniform

stress state, thus the material can be formed to higher strain levels, which better

matches the upper bound approximation of the material. The addition of a com-

pressive axial load during tube expansion reduces the stress triaxiality resulting in a

lower void growth rate that is better described by the more rigid Gurson model. The

dual bound approach can reliably predict fracture in both EF cases as well as define

a range for the burst pressure.

2.11.5.2 Corner-Fill Expansion

The formability band for corner-fill expansion is compared with the experiment in

Fig. 2.27. The experimental and numerical CFE were obtained at 90 % of the burst

pressure. No standard deviation for CFE was reported as the tests showed little

variation (Bardelcik 2006). Similar to the trend for burst pressure, the lower bound

model is able to accurately predict the CFE for zero EF while the upper bound

model obtains excellent agreement for the 133 kN EF case. Overall, the

Fig. 2.27 Comparison of the experimental corner-fill expansion with the upper and lower limits

obtained using the Gurson and Sun and Wang material models for end-feed loads of zero and

133 kN. The experimental and numerical corner-fill expansion is obtained at 90 % of the burst

pressure. The nucleation intensity is 0.021
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experimental results of CFE are captured within the formability band defined by the

upper and lower bound models, which clearly demonstrates the advantage of the

dual bound approach since CFE could not be described by a single bound model.

2.11.5.3 Failure Location

Regardless of the end-feed load, tube failure occurs in the transition region where

the tube loses contact with the die and becomes free to expand (Bardelcik 2006).

The material in this ‘free-expansion zone’ in Fig. 2.28 is under a state of plane-

stress while the remaining material is under a three-dimensional state of stress. The

friction between the tube and die and through-thickness compressive load due to

internal pressure retard material flow into the plane-stress free-expansion zone,

leading to the formation of a localized neck. The formation of a localized neck

increases the local plastic strain and stress triaxiality, driving void nucleation and

damage development leading to coalescence and fracture. As shown in Fig. 2.29,

the application of a compressive end-feed load reduces the severity of the stress

state and delays damage evolution enabling forming to higher strains.

The experimentally observed failure locations and porosity contours for 0 and

133 kN end-feed are compared with the failure location in the FE models in

Figs. 2.30 and 2.31, respectively. No quantitative results for failure location were

reported by Bardelcik (2006) so the comparison is qualitative. The upper and lower

bound models both predict that damage becomes localized in the transition region

bordering the free-expansion zone.

2.11.5.4 Void Damage

The void damage histories are presented in Fig. 2.32, which were obtained from the

first element to fail for each end-feed case. The porosity histories for both upper and

lower bound models exhibit a similar trend, with the softer SW model experiencing

a faster rate of damage development compared to the more rigid Gurson model.

End-feed effect suppresses nucleation because the compressive load forces

more material into the die, reducing the effective strain and damage evolution.

Fig. 2.28 Schematic of the stress state and localization during straight tube hydroforming

(Reprinted with permission from Simha et al. (2007). Copyright 2007 ASME)
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The dual bound approach enables a porosity band to be obtained for each loading

condition which is valuable for comparison with experiment due to the variation

present in porosity measurements. Experimental porosity data was not available for

the fractured tubes and the porosity trends should be considered qualitative in

nature. Overall, the porosity trends seem to be physically reasonable since the

initial, critical and final porosities are based upon experimental observations.

Fig. 2.29 History of stress triaxiality within the first element to fail for end-feed loads of zero and

133 kN. The stress state is obtained from the material model which gives the best performance for

a particular end-feed load

Fig. 2.30 Experimental

failure locations for end-feed

loads of: (a) 0 kN and

(b) 133 kN (Reprinted with

permission from Butcher

et al. (2009). Copyright:

Springer)
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2.11.6 Evaluation of the Dual Bound Approach for Tube
Hydroforming

The advantages of the dual bound approach are clearly illustrated in Fig. 2.33 which

compares the dual bound burst pressures to the results of Butcher et al. (2009) who

employed a more sophisticated variant of the Gurson-Tvergaard-Needleman (GTN)

model. This extended model accounted for the influence void shape evolution and

coalescence due to internal necking and shearing of the inter-void ligaments. The

stress- and strain-based nucleation models of Chu and Needleman (1980) were also

considered. Despite the improved physical foundation of this model, it performed

no better than the Gurson (1977) model. Only the dual bound approach could

capture the burst pressure for each end-feed load.

It is important to mention that the small difference between the burst pressures

obtained using the Gurson (1977) and the variant employed by Butcher et al. (2009)

is coincidental because the two independently calibrated models possess different

Fig. 2.31 Failure location and porosity contours for end-feed loads of (a) 0 kN using the Sun and

Wang model and (b) 133 kN using the Gurson model. The failure location is obtained from the

material model which gives the best performance for a particular end-feed load. One-eighth of the

tube is modeled due to symmetry
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Fig. 2.32 Damage evolution within the first element to fail for end-feed loads of zero and 133 kN

obtained using the Gurson and Sun and Wang constitutive models. The nucleation intensity is 0.021

Fig. 2.33 Comparison of the experimental burst pressure with the forming limits obtained using

the dual bound approach and the extended Gurson-based model of Butcher et al. (2009) for strain-

controlled nucleation

62 2 Averaging Methods for Computational Micromechanics



models for damage evolution. Consequently, there are many combinations of

models and parameters that can produce similar results. While a direct comparison

is not possible, Fig. 2.33 reveals that none of the three models considered could

capture the burst pressure for both end-feed loads. Only by combining the upper and

lower bound models into a formability band could the burst pressure be properly

described. This is a very attractive result because the dual bound approach employs

simpler damage models with fewer parameters and may obtain burst pressures as

good as, or better than, a single advanced model.

2.12 A Dual Bound Approach to Determining

the Void Nucleation Parameters

in Sheet Materials

The success of Gurson-based constitutive models in predicting ductile fracture

depends on the identification of the material parameters governing void nucleation

and coalescence. The void growth rule in the Gurson (1977) model does not require

any material parameters since the voids are assumed to remain spherical. By

adopting a coalescence rule based upon the stress state and microstructure geome-

try, the plastic limit-load criterion of Thomason (1990) has enabled void nucleation

to be directly linked to fracture by removing the critical porosity as a material

constant (Zhang 1996). The nucleation parameters in a Gurson-based material

model can now be uniquely determined using notched tensile tests.

However, calibrating the nucleation parameters using a single-bound model like

the GT yield criterion introduces an unavoidable bias because the parameters will

reflect the formulation of the yield criterion. For example, void nucleation is used to

effectively soften the Gurson (1977) model by increasing the porosity (lower

nucleation stress/strain) to achieve coalescence at the experiment fracture strain.

Conversely, the calibrated nucleation stress/strain would be higher in the Sun and

Wang (1989) model to effectively stiffen the material by suppressing damage to

avoid premature failure before the experimental strain is reached in the simulation.

This bias can be mitigaged by using a dual bound approach since the nucleation

parameter is identified using both bounds and thus captures the material behaviour

within a band as shown in Fig. 2.34.

In this section, the dual bound approach to ductile fracture is used to identify the

nucleation stress and strain parameters in AA5182 sheet using notched tensile

specimens. Three specimen geometries were considered to identify the parameters

over a range of stress states commonly found in a sheet metal forming process. The

geometry of the microstructure is characterized from particle field measurements

and implemented into the coalescence model to obtain physically reasonable

porosities at fracture.
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2.12.1 Constitutive Modeling of Ductile Fracture

The dual bound constitutive models described in the previous sections were

adopted with the exception of removing the critical porosity coalescence criterion

and replacing it with a modified plastic-limit load criterion that eliminates the

critical porosity as a material parameter. The same stress- and strain-controlled

nucleation models of Chu and Needleman (1980) were again considered for this

alloy, AA5182.

2.12.1.1 Void Coalescence

The PLL of Thomason (1990) was derived using an upper bound approximation to

the material behaviour and should not be implemented into the lower bound SW

model to ensure a consistent upper and lower bound analysis. This inconsistency is

overcome by adopting the PLL model of Ragab (2004b) in Eq. (2.27) who replaced

the plastic constraint factor derived by Thomason (1990) with the notch constraint

factor of Bridgman (1952) for axisymmetric loading that was not derived using

either upper or lower bound approximations. It is important to note that the use of a

Thomason-based variant of the plastic constraint factor in the lower bound SW

model is a minor issue and is only addressed in this work to provide a strict

representation of the dual bound approach.

An additional consideration in selecting the Ragab variant of the plastic limit

load in this application is because it has been shown to give much better fracture

predictions than the variants of Pardoen and Hutchinson (2000) or Benzerga (2002)

when applied to a large range of real materials (Ragab 2004b). While these variants

of the plastic limit-load are accurate when compared to unit cell simulations, they

tend to overpredict fracture in actual materials because the influence of secondary

voids, shearing and other conditions are not considered. The Ragab model provides
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Fig. 2.34 Schematic

representation of fitting the

nucleation strain using the

dual bound approach for

notched tensile tests. In

notched tensile specimens, a

higher notch ratio

corresponds to a higher stress

triaxiality
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a much lower plastic constraint condition and coalescence occurs sooner and is in

better agreement with the experiments. From a physics perspective, the Pardoen

and Hutchinson or Benzerga variants are the best but from an engineering perspec-

tive, the Ragab model is preferable. Coalescence occurs for spherical voids in the

Ragab (2004b) PLL model when the condition in Eq. (2.27) is satisfied.

2.12.1.2 Material Properties

The flow stress relation for 1.5 mm thick AA5182-O sheet was determined using

three standard tensile test specimens as shown in Fig. 2.35. The average flow stress

response was expressed as a Voce hardening law (Voce 1948):

�σ ¼ σs � σs � σy
� �

exp �α �εpð Þβ
h i

ð2:34Þ

with σy ¼ 122:7 MPa; σs ¼ 398:1 MPa; α ¼ 7:631 and β ¼ 0:905:AA5182 alloys

exhibit different hardening regimes as shown in Fig. 2.35b where it initially

resembles a high-strain hardening material with a peak hardening exponent of

about 0.33 before the flow stress saturates and the matrix resembles that of a

perfectly plastic material, n ! 0. The strain hardening parameter of AA5182 is

computed at each stage during deformation using the relation

n ¼ �εp

�σ

d�σ

d�εp
ð2:35Þ

The modulus of elasticity was estimated from the tensile tests to be 65.33 GPa

and the Poisson’s ratio was assumed to be the standard 0.33 for aluminum alloys.
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Fig. 2.35 Average experimental flow stress relation for AA5182 sheet with its Voce law

representation (left) and the variation of the material hardening exponent obtained from the

Voce law
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2.12.1.3 Selection of Damage-Based Material Parameters

The average area fraction of second-phase particles is 1.23 % (Chen 2004; Lievers

et al. 2004; Orlov 2006) and is essentially damage-free with an initial porosity of

0.053 % (Orlov 2006) and failure porosity of 2 % (Chen 2004). The second-phase

particles are essentially spherical with an average aspect ratio of 1.14 (Chen 2004)

and exhibit significant clustering with an average particle spacing ratio, χp, of 0.588
(Butcher and Chen 2009b, c). The initial unit cell aspect ratio must be determined

from the particle distribution to characterize the microstructure in the coalescence

model. Since voids are nucleated at the particles, the initial unit cell geometry for a

periodic arrangement of cubic unit cells can be obtained from the particle field data.

Therefore, the aspect ratio of the cubic unit cell containing a spherical particle is

determined to be λ2o ¼ π
6

χp
3

fp
¼ 8:68. It is assumed that area-based estimates of the

microstructural variables are reasonable approximations to the volume-based

measurements used in the damage-based constitutive model.

The only remaining parameters are related to void nucleation. Typically, nucle-

ation in this alloy has been assumed to obey the strain-controlled model in Eq. (1.5)

with nucleation strains reported in the range of 0.20–0.70 (Lievers et al. 2004;

Butcher et al. 2006; Chen and Worswick 2008; Butcher and Chen 2009a, b, c) and

nucleation stress of 440–500 MPa (Butcher et al. 2006). The standard deviation of

the nucleation stress/strain in Eqs. (1.5) and (1.7) is assumed to be 15 % the

nucleation stress or strain (Chen 2004; Orlov 2006). The nucleation stress and

strain will be determined parametrically through calibration with the tensile test

data (Table 2.4).

2.12.2 Notch Tensile Test Experiment

Notched tensile specimens of 1.5 mm thick AA5182 sheet with a notch radius, R, of
3 mm and gage length, L, of 12.5 mm were tested to failure in an Instron 1,332

testing machine with a crosshead velocity of 0.03 mm/s. The notch ligament length

was varied to achieve various stress states and was characterized using the notch

ratio defined as

ρ ¼ 2R

w
ð2:36Þ

Table 2.4 Controlling parameters in the Gurson and SW material models

fo fn ff
λ2o c

sN

εN σN(%) (%) (%) (% εN, σN)
0.053 1.23 2.00 8.68 0.35 15 Identified parametrically Identified parametrically
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where w is the sample width. The notch ratios considered were 0.25, 0.33 and 0.50

and correspond to ligament lengths of 18, 12 and 6 mm. A total of six specimens for

each notch ratio were tested to failure. All of the samples were fabricated with the

loading direction aligned with the rolling direction of the sheet. The typical

specimen geometry is presented in Fig. 2.36.

Notched tensile specimens are used to alter the stress state in the ligament and

force localization to occur within the ligament. Two experimental fracture strains

are used in the calibration of the nucleation models: (i) the ligament strain, εligf , and

(ii) the axial strain εaf . The ligament strain is adopted because it is representative of

deformation where the specimen fractures. The axial strain at failure is used to

provide a metric that is independent of the fractured region and representative of

bulk deformation. The axial and ligament strains at fracture are defined as

εaf ¼ ln
Lf
Lo

� �
εligf ¼ ln

ligf

ligo

� �
ð2:37�2:38Þ

where the initial ligament length is ligo ¼ w� 2R . The axial strain at failure is

recorded at the appearance of a macro-crack at the notch root and not final failure

since the objective of the finite-element models is to predict the formation of a

macro-crack and not the subsequent tearing process of the ligament. Finite-element

modeling of this process would require additional modelling considerations such as

the use of cohesive elements.

Tensile specimens with notch ratios of ~1/3 or lower will exhibit visible cracking

at the notch root prior to fracture as shown in Fig. 2.37. The onset of cracking at the

Fig. 2.36 Geometry of a

typical notched tensile sheet

specimen. The loading and

rolling directions are collinear

with the x-axis. The specimen

is symmetric about the x, y
and z axes
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notch root is readily identified from the experimental load-elongation curve as the

appearance of the crack corresponds to an abrupt load drop as shown in Fig. 2.38.

2.12.3 Finite-Element Model

Due to symmetry, only one-eighth of the geometry is represented in the finite-

element model. A velocity boundary condition is applied to the free-end of the

specimen. A sinusoidal velocity profile is used to limit inertial effects with a peak

velocity corresponding to a strain rate of 100 s�1. As shown in Fig. 2.39, the tensile

specimens were modeled with eight-node constant stress brick elements with

24,000, 18,000 and 12,000 elements for notch ratios of 0.25, 0.33 and 0.50,

respectively. The mesh sensitivity for each notch ratio was negligible.

2.12.4 Identification of the Fracture Strains

The finite-element simulation is terminated at the onset of element deletion

signifying localized necking and the onset of failure. The satisfaction of the post-

coalescence criterion in Eq. (2.24) triggers element deletion in the finite-element

model with widespread fracture of the specimen occurring at the onset of element

deletion. The resulting ligament strain and elongation-to-failure are then obtained

from the finite-element model and compared with the experiment values. The

optimal nucleation parameter is identified when the formability band best captures

the material behaviour over the range of notch ratios. Since the objective is to

Fig. 2.37 Crack initiation at

the notch root in a 1.5 mm

thick AA5182 tensile

specimen with a notch ratio of

0.125 and notch radius of

1 mm
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Fig. 2.38 Comparison of the average experimental and predicted load-curve for an AA5182

notched tensile specimen using the GT model. The predicted load-curve using the SWmodel is not

presented because there was no visible difference in the response. The insensitivity of the load

curve to the damage model is due to the small initial porosity and the fact that significant damage

evolution occurs in a very small region of the notch. Tensile samples with a smaller notch ligament

and a higher porosity at fracture would result in a larger difference in the predicted load-

displacment responses

Fig. 2.39 Typical boundary conditions of the one-eighth FE model of the tensile specimens and

the respective meshes for notch ratios of 0.25–0.50
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capture the fracture behaviour within a band, the experimental fracture strains are

expressed using two-tailed 95 % confidence intervals.

2.12.5 Results and Discussion

2.12.5.1 Ligament Strain and Elongation-to-Failure

A parametric study was conducted to calibrate the void nucleation models in the

Gurson and SW material models using notched tensile test data. Stress- and strain-

controlled nucleation models with values ofσN ¼ 3:8σy (466.26MPa) andεN ¼ 0:375

can provide good agreement with the experimental ligament strain and elongation-to-

failure as shown in Figs. 2.40 and 2.41, respectively. The nucleation stress is in good

agreement with the range of 440–500 MPa suggested by Butcher et al. (2006). The

nucleation strain is also reasonable as Butcher and Chen (2009a, b, c) and Orlov (2006)

suggested values of 0.42 and 0.30 in uniaxial tension. The performance of the dual

bound approach is sensitive to the assumed nucleation model. A single bound model is

sufficient if strain-controlled nucleation is adopted since the difference in the fracture

predictions of the Gurson and SW models is marginal. The opposite behaviour is

observed using stress-based nucleation which yields a meaningful formability band

that captures the material behaviour and highlights the benefits of the dual bound

approach.

Fig. 2.40 Comparison of the experimental and numerical true ligament strains determined by the

Gurson and SW models using stress- and strain-controlled nucleation for various notch ratios. The

experimental true ligament strain is presented as a 95 % confidence interval
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2.12.5.2 Load-Elongation

In addition to providing good agreement with the ligament strain and elongation-to-

failure, both the Gurson and SW models provide excellent agreement with the

experimental load-elongation curves for each notch ratio as shown in Fig. 2.42. A

crack originated at the notch root for notch ratios of 0.25 and 0.33 which then

propagated throughout the ligament leading to fracture. The onset of cracking in

these specimens is accompanied by a sudden load drop as seen in Fig. 2.42. Fracture

occurred abruptly for a notch ratio of 0.50 with no visible cracks at the notch root.

2.12.5.3 Fracture Location

The predicted fracture locations and porosity contours obtained using both stress

and strain-controlled nucleation are presented in Figs. 2.43 and 2.44, respectively.

Damage development in the stress-controlled nucleation model mimics the stress

triaxiality distribution and damage occurs over a larger area compared to the strain-

controlled nucleation model. The fracture locations for both nucleation models are

in good qualitative agreement with the experiment as fracture originates at the

notch root for ρ ¼ 0.25 and 0.33. The failure location for ρ ¼ 0.50 is unknown

since the ligament abruptly fails with no visible cracking at the notch root.

Void damage is highly localized in the strain-controlled nucleation model as the

plastic strain is highest at the notch root for each notch ratio. Void nucleation occurs

Fig. 2.41 Comparison of the experimental and numerical elongation-to-failure determined by the

Gurson and SW models using stress- and strain-controlled nucleation for various notch ratios. The

experimental elongation is presented as a 95 % confidence interval
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Fig. 2.42 Comparison of the experimental and numerical load-elongation curves for each notch

ratio. The finite-element results were obtained using the Gurson model with a nucleation stress

of σN ¼ 3.8σy. The load-displacement curves for the SW model are not shown for clarity

(Reprinted with permission from Butcher and Chen (2011). Copyright: Elsevier)
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Fig. 2.43 Contours of porosity prior to fracture for notch ratios of 0.25, 0.33 and 0.50 (left to
right) obtained using the Gurson model with stress-controlled nucleation, σN ¼ 3.8σy. The general
contours are similar using the Sun and Wang model but the porosity is higher (Reprinted with

permission from Butcher and Chen (2011). Copyright: Elsevier)
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over a wider area using stress-controlled nucleation since it is dependent upon the

flow stress (plastic strain) and hydrostatic stress. While the plastic strain is highly

localized at the notch root, the peak hydrostatic stress moves from the notch root for

ρ ¼ 0.25 to the center of the ligament for ρ ¼ 0.50. Void nucleation occurs over a

larger region as it is the sum of these two distributions.

Overall, the range for the stress triaxiality (ratio of hydrostatic to effective stress)

is not large among the different geometries. The stress triaxiality in the center of

the specimen varies from 0.33 to 0.60 for notch ratios of 0.25 to 0.50. Future work

could consider using both sharp and circular notches to obtain a larger range of stress

triaxiality and assess the transferability of the parameters to these stress states.

2.12.5.4 Void Damage

The sensitivity of the dual bound approach to the nucleation model is caused by the

different porosity profiles that develop in the material. The porosity histories

obtained for a notch ratio of 0.33 using both nucleation models are presented in

Fig. 2.45. The histories are similar for the other notch ratios. Void nucleation using

the stress-based model exhibits progressive nucleation throughout deformation as

the stress state evolves. Stress-based nucleation is related to both the hydrostatic

stress and flow stress (function of plastic strain). Unlike the strain-controlled

nucleation model, nucleation can occur at an earlier stage of deformation in a

region where the plastic strain is lower but where the hydrostatic stress is signifi-

cant. The ability to nucleate voids earlier in the deformation process leads to a

larger contribution of void growth. A larger void growth component highlights the

difference between the Gurson and SW models since voids grow faster in the softer
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Fig. 2.44 Contours of porosity prior to fracture for notch ratios of 0.25, 0.33 and 0.50 (left to
right) obtained using the Gurson model with strain-controlled nucleation, εN ¼ 0.375.

The contours are similar using the Sun and Wang model (Reprinted with permission from Butcher

and Chen (2011). Copyright: Elsevier)
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SW model and slower in the more rigid Gurson model. Consequently, the fracture

strains predicted by the Gurson and SW models diverge and define a formability

band.

In the strain-based nucleation model, void nucleation is negligible until the latter

stages of deformation where rapid nucleation occurs leading to sudden fracture.

This burst of nucleation overshadows any difference in the porosity between the

Gurson and SW models due to void growth and fracture occurs at similar strains. In

this case, coalescence is nucleation driven with marginal void growth.

The porosities at the onset of coalescence are physically reasonable which

suggests the microstructure characterized using the particle distribution is repre-

sentative of the material in the coalescence model. The porosity at coalescence

ranges from about 0.5 to 0.7 % which is in general agreement with the experimental

results of Smerd et al. (2005) who reported porosities near the fracture surface of

tensile specimens of 0.5–1 % for various strain rates. A detailed analysis of the

AA5182 microstructure in the notch tensile tests is discussed in Chap. 7 in regards

to damage percolation modelling. Overall, both stress and strain-controlled nucle-

ation models can be adopted for AA5182 sheet. It is important to mention that the

Gurson and SW models are approximate yield criteria that are based on many

simplifying assumptions and the calibration of the nucleation models will artifi-

cially correct for some of their deficiencies. The present results should only be

considered valid for these specific nucleation rules and are dependent upon the

coalescence model and its parameters.

Fig. 2.45 Damage evolution within the first element-to-fail for a notch ratio of 0.33 using both

upper and lower bound models and stress and strain-controllednucleation rules. The trends are

similar for the other notch ratios
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