
Chapter 10

Modelling Void Growth to Coalescence in a 3-D

Particle Field

10.1 Void Growth and Shape Evolution

Modeling of the growth and shape evolution of the voids and cracks in the

percolation model requires certain assumptions since the evolution models are

designed for spheroids and not for general 3-D ellipsoids. The main challenge in

adapting these models to the general case is their implicit dependence upon the

loading direction. By assuming a periodic distribution of axisymmetric voids, the

void aspect ratio can be defined as a state variable with a definitive initial value that

can evolve during deformation. However, in the general case, the loading direction

is not constrained to a specific direction and the aspect ratio is not an independent

variable, but a function of the loading direction. This point is best illustrated if we

consider a penny-shaped void that has just nucleated from a cracked particle. If the

principal loading direction happens to be aligned with the opening direction of the

void, it will appear as a penny-shaped void as viewed from the loading direction and

there is no issue. If the loading direction happens to be transverse to the void

opening direction, the penny-shaped void appears as an extremely prolate or

needle-shaped void that will experience negligible growth and shape evolution.

Certainly the void growth and shape evolution rules for a penny-shaped void do not

apply in this case.

With this in mind, all void/crack growth and shape evolution will be governed by

the principal loading direction and how the geometry of the void appears from this

direction. The development of general three-dimensional void evolution models

that explicitly accounts for the viewing direction would be a welcome contribution

to the percolation model.
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10.2 Procedure forModeling Void Growth and Shape Evolution

Eliminating the void aspect ratio as a state variable requires the determination of the

void dimensions and shape relative to the principal loading direction. Consider an

arbitrary void or crack with the semi-axes (a, b, c) corresponding to the vectors n1,

n2, n3. The principal loading direction is defined by the vector u, as seen in

Fig. 10.1. The distance from the center of the void to its surface along the direction

u, is denoted R1. A line-projection of the void is then taken with u as the viewing

direction to obtain an ellipse with semi-axes R2 and R3 that coincide with the p and
n directions. The reconstructed geometry of the void as viewed from the principal

loading direction is an ellipsoid with semi-axes, R1, R2, R3 and the equivalent aspect

ratio is defined as

W ¼ R1ffiffiffiffiffiffiffiffiffiffi
R2R3

p (10.1)

This aspect ratio is used to evaluate the void growth and shape evolution models

but the porosity of the actual void is used in these models and not the porosity of the

equivalent void.

The void growth and shape evolution rates can now be determined from knowl-

edge of this effective aspect ratio. The void growth rate, _f=f , is determined using

the calibrated void growth rule of Ragab (2004b) using the unit cell correlations

obtained in Chap. 4. Similarly, the evolution rate of the effective void aspect ratio,
_W=W, is also determined using the unit cell correlations in Chap. 4. These evolution

rates were obtained for the equivalent void and are not truly representative of the

actual void since these growth rates are not aligned with the semi-axes of the actual

void. A clever application of the unit cell geometric relationships from Chap. 4
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Fig. 10.1 Procedure for modeling an arbitrary ellipsoidal void as an axisymmetric void as viewed

by the principal loading direction. (a) Ellipsoidal void, (b) void projection and (c) model ellipsoi-

dal void
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enable the calculation of the radial growth rates of the equivalent axisymmetric

void as a function of the principal strain rates as

_R1

R1

¼ _Ehyd þ 1

3

_f
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þ 2
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W

� �
(10.2)
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(10.3)

The evolution rates of the equivalent void semi-axes are taken as the growth

rates of the actual void but in the directions u, p, n. The problem can now be treated

as the stretching of an ellipsoid along three arbitrary directions as shown in

Fig. 10.2. The stretch values of the void in the u, p, n directions are

S1 ¼ 1þ
_R1

R1

S2 ¼ 1þ
_R2

R2

S3 ¼ S2 (10.4a, b, c)

The solution for the arbitrary stretching of an ellipsoid requires an eigenvalue

solution where the eigenvalues are related to the new void semi-axes with their

orientation defined by the eigenvectors. The solutions for the line projection of an

ellipsoid, the distance from an ellipsoid center to its surface and for the arbitrary

stretching of an ellipsoid are presented in Butcher (2011).

The novelty of this modeling procedure is that the evolution of the void orienta-

tion is naturally accounted for in the model, and this is not captured using the

standard growth and shape models in the literature. The void will naturally grow

and rotate itself to be aligned with the preferential loading direction. If the
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Fig. 10.2 Stretching of a void in three arbitrary directions resulting in a new void size and

orientation. (a) Stretching of the void in the u, p, n directions and (b) new void size and orientation

10.2 Procedure for Modeling Void Growth and Shape Evolution 247



directions of the semi-axes and principal loading directions are aligned, the void

will not rotate. Additionally, the growth and shape evolution rates are calculated

using the library of unit cell correlations and therefore provide very good estimates

for the evolution rates.

10.3 Void Coalescence

As with void growth and shape evolution, departing from a periodic microstructure

containing axisymmetric voids in favour of a general distribution of 3-D ellipsoids

introduces challenges for void coalescence modeling. The plastic limit-load coales-

cence model has been widely used in the literature as well as validated in Chap. 4.

The model is robust and can give very strong predictions of coalescence if one

happens to have two identical voids horizontally aligned transverse to the principal

loading direction. Certainly, this is not the general case and some modifications are

required to utilize this criterion in the percolation model. Butcher and Chen (2009a,

b, c) have appended the plastic limit-load model in a prior 2-D version percolation

model. Scheyvaerts et al. (2010) considered the possibility of coalescence on angles

in a periodic microstructure in plane strain tension with shear. The modeling of void

coalescence in a general particle field will be separated into four categories that

require consideration:

Determination of the stress state when the voids are located in different elements

Identification of the coalescence plane and appropriate stress transverse to the

arbitrarily oriented ligament

Determination of the spacing ratio and equivalent void geometry for two arbitrary

ellipsoidal voids

Merging procedure to create the coalesced crack (void)

10.3.1 Coalescence Between Elements

The stress state within each percolation element is assumed to be uniform since the

presence of the voids and particles are not explicitly modeled in the finite-element

program. Therefore, if the coalescence criterion is to be evaluated for two voids

located in different parent elements, the average stress tensor of the elements is

computed as

Σc
ij ¼

Σe1
ij þ Σe2

ij

2
(10.5)

This is a rather simplistic approach to estimating the stress tensor in the region

between the two elements; however, it is reasonable if the element resolution is
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such that the variation in the stress state between elements is small. Future work

could take advantage of the integration points within the element to better estimate

the stress in a specific region of the element.

10.3.2 Identification of the Maximum Stress Transverse
to the Ligament

The plastic limit-load coalescence model assumes that the neighbouring voids are

aligned so that the center-to-center vector is transverse to the maximum principal

stress. Obviously this is not the general case and this condition must be relaxed to be

applied for a general void distribution.

First, consider two arbitrary ellipsoidal voids subjected to an arbitrary loading

where the principal loading direction is not transverse to the inter-void ligament as

defined by the center-to-center vector, w, in Fig. 10.3. In a two-dimensional model,

a simple stress transformation can be used to obtain the stress transverse to the

ligament and the evaluation of the criterion can proceed. In the three-dimensional

case, a plane exists that is transverse to the ligament and the stress will vary within

this plane. The maximum tensile stress within this plane must be determined to

evaluate the plastic limit-load criterion. This stress will be referred to as the

‘maximum in-plane tensile stress’ and is denoted, Σip
1 . The second in-plane stress

that is transverse to both Σip
1 and the ligament is denoted, Σip

2 .

Fig. 10.3 Void coalescence geometry showing the in-plane tensile stress values transverse to the

inter-void ligament vector, w
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The in-plane stresses can be determined by selecting an arbitrary coordinate

system using the vectors u, v, and w. Within this plane exists an angle, θ, that will
rotate u and v about w to be aligned with the in-plane stress vectors. The solution for

these vectors has been framed as an optimization problem to enable its extension in

future work to minimize the plastic limit-load by accounting for the variation in the

dimensions of the voids as a function of θ. For an assumed vector, v ¼ [v1,v2,v3],
and center-to-center vector, w ¼ [w1,w2,w3], the trial in-plane stress is defined

using a vector, s ¼ [s1,s2,s3], as a function of θ by

Σip
1 ðθÞ ¼ sTΣc

ijs (10.6)

s1 ¼ v21 þ ð1� v21Þ cos θ
� �

w1 þ v1v2ð1� cos θÞ � v3 sin θð Þw2

þ v1v3ð1� cos θÞ þ v2 sin θð Þw3

s2 ¼ v1v2ð1� cos θÞ þ v3 sin θð Þw1 þ v22 þ ð1� v22Þ cos θ
� �

w2

þ v2v3ð1� cos θÞ � v1 sin θð Þw3

s3 ¼ v1v3ð1� cos θÞ � v2 sin θð Þw1 þ v2v3ð1� cos θÞ � v1 sin θð Þw2

þ v23 þ ð1� v23Þ cos θ
� �

w3

An iterative Newton–Raphson search quickly converges to the solution by

iterating with respect to θ. The value of θ in the n-th + 1 iteration is

θnþ1 ¼ θn � dΣip
1 ðθÞ=dθ

d2Σip
1 ðθÞ=dθ2

(10.7)

Once θ has been determined, the vectors u and v can be rotated to the optimal

directions and the in-plane stress values can be determined using the standard stress

transformations

Σip
1 ¼ uTΣc

iju Σip
2 ¼ vTΣc

ijv (10.8)

In many cases, void coalescence will be triggered by the maximum in-plane

tensile stress but coalescence can also occur in the second in-plane stress direction

depending on the void alignment and stress state. It is cautioned that a preoccupa-

tion with the maximum tensile stress governing coalescence can lead to erroneous

predictions in equal-biaxial stretching when Σip
2 � Σip

1 . In the interest of being

conservative, coalescence will also be evaluated in the second in-plane stress

direction whenever Σip
2 > 0. Knowledge of the tensile stress along the vector, w,

is not important even in triaxial loading since the void spacing ratio will be zero as

the voids are aligned in this direction and the plastic limit-load to coalescence will

be infinite. This type of coalescence is rare and is known as ‘necklace’ coalescence

and cannot be predicted by the plastic limit-load model.
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10.3.3 Effective Geometry for the Evaluation of Coalescence

A procedure must be developed to effectively homogenize the two voids into an

equivalent geometry of two identical voids to be amenable to the evaluation of the

coalescence model. The plastic limit-load criterion requires knowledge of the void

aspect ratio, W, spacing ratio, χ, and the maximum tensile stress transverse to the

ligament. The maximum in-plane tensile stress has been determined in the optimi-

zation procedure above. The void spacing ratio is readily determined from the

center-to-center distance, dc2c ¼ xc1 � xc2k k, between the void centroids, xci, as

χc ¼
Rw1 þ Rw2

dc2c
(10.9)

where Rw1 and Rw2 are the distances from the voids, measured from their center to

their surface along the center-to-center vector, w, as seen in Fig. 10.4. The center-

to-center distance is used for modeling coalescence so that the spacing ratio reduces

to its original definition in the plastic limit-load formulation when the voids are

aligned and have the same orientation. It is important to state that χc in Eq. (10.9) is
not the absolute minimum spacing ratio between the two voids. The minimum

spacing ratio is not employed because it is computationally expensive and requires

an iterative solution for every void-neighbour pair in every element at each time

step. Overall, the center-to-center spacing ratio is a good approximation to the

minimum spacing ratio provided the voids are not very close together and have

similar orientations.
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Fig. 10.4 Void coalescence geometry showing the identification of the relevant dimensions
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The principal approximations and uncertainties introduced into the coalescence

model are related to the determination of the equivalent aspect ratio. The voids have

arbitrary sizes and orientations and are far from the idealized geometry of two

identical spheroidal voids. The aspect ratio of the equivalent axisymmetric void is

defined as

Weq ¼ Ru

Raxi
(10.10)

where Ru is the radius along the in-plane stress direction and Raxi is the equivalent

axisymmetric radius. The height of the equivalent spheroidal void, Ru, can be

estimated by averaging the distance from the void centers to their surfaces along

the in-plane stress direction as

Ru ¼ Ru1 þ Ru1

2
(10.11)

To determine the equivalent axisymmetric radius, each void is first sectioned

transverse to the in-plane stress direction to obtain an ellipse with semi-axes (asi, bsi)
as shown in Fig. 10.4. For clarity,Rw1 andRw2 are shown to be alignedwith the section

of the ellipse in Fig. 10.4 but the semi-axes of the sectioned ellipsoid are generally not

equal to the Rw distance due to the void orientation.

Since the locations of the semi-axes in the section planes may be different for the

two voids, these dimensions cannot be directly averaged. Instead an equivalent

axisymmetric radius is defined for each void as

R1�axi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
as1bs1

p
R2�axi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
as2bs2

p
(10.12)

and the axisymmetric radius of the equivalent void and its aspect ratio are computed as

Raxi ¼ R1�axi þ R2�axi

2
Weq ¼ Ru1 þ Ru1

R1�axi þ R2�axi
(10.13, 10.14)

The coalescence criterion in Eq. (1.15) can now be evaluated using Weq, χc, Σ
ip
1 ,

and the matrix flow stress, �σ . The geometry of the voids used in the coalescence

model is shown in Fig. 10.5.

10.3.4 Creation of a New Crack: Merging Operation

When the coalescence criterion is satisfied for two voids/cracks, a new crack must

be created by merging the two voids together. The merging operation plays a

significant role in the fracture process since the size of the resulting crack will
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influence coalescence with other neighbouring voids. The simplest merging opera-

tion is to use the maximum void dimensions of the two voids to make a large crack

that encompasses both voids as in Worswick et al. (2001). The disadvantage of this

model is that the crack size is uncharacteristically large and coalescence quickly

spreads throughout the particle field.

The bounding box method presented in Fig. 10.6 is used to define the new crack

dimensions. The crack is assumed to be oriented with its semi-axes along the u, v,
w vectors identified in the previous section for the in-plane stresses. The dimensions

and points that will define the bounding box for the new crack must be identified in

the three planes defined by u, v, w. Each void bounding box will have four points

that lie above and four points that lie below the plane and the distances from these

points to the plane are calculated as Da1i, Db1i for void 1 and Da2i, Db2i for void 2.

The semi-axis of the crack in this plane is then computed as

R ¼ maxðDa1i;Da2iÞ þmaxðDb1i;Db2iÞ
2

i ¼ 1 . . . 4 (10.15)

This process is repeated for each plane to obtain the three semi-axes of the crack.

The center of the crack can be determined by constructing the bounding box for the

crack by using one void centroid as the reference point. The centroid is the midpoint

of the bounding box coordinates.

The maximum distances above and below the planes are employed to ensure that

the crack will progressively enlarge as it coalesces with other voids and cracks. The

average void dimensions could be used but only for void-void coalescence and not

for void-crack or crack-crack coalescence as the amplification effect of the crack
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Fig. 10.5 Equivalent void geometry for evaluation of the plastic limit-load coalescence model
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size will be lost. If the voids that compose the crack belong to different parent

elements, the parent element of the crack is identified as the element with the

minimum distance from the element center to the crack centroid.

Overall, this merging procedure is about as good as one can achieve without

resorting to an optimization algorithm to determine the minimum ellipsoid that

envelops both voids. This merge procedure works very well for most void

geometries except for coalescence between a large and small void where the

crack size is overestimated as shown in Fig. 10.7. Fortunately, this does not become

significant until large cracks have first formed which typically does not occur until

prior to fracture when coalescence is sweeping throughout the element and failure is

imminent. Nevertheless, future work could extend the merge operation to account

for the relative sizes of the voids in determining the size of the new crack.

10.3.5 Mandatory Coalescence: Object Intersections

It is not uncommon for voids and cracks to overlap as they evolve with deformation

or coalesce with their neighbours. This type of void/crack impingement is not

realistic since the material between the voids will fail before the voids come into

2Rw

Ru

y

x

w

z

Crack

Void 2

Void 1

Fig. 10.6 Two-dimensional schematic of coalescence between two voids showing their bounding

boxes and the creation of the new crack
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contact (Thomason 1990). As a result, when a void or crack overlaps with another

neighbouring void, the coalescence process is enforced using the merging process

described above. The minimum distance algorithm of Lin and Han (2002) is

evaluated prior to testing for coalescence at each time step. There are no restrictions

placed upon particles coming into contact with voids, cracks or other particles for

the sole reason of reducing the number of intersection tests. Each percolation

element may contain thousands of particles and their overlapping is of secondary

importance compared to the voids. A worthwhile extension would be to treat the

particles as rigid bodies that cannot intersect to model the creation of deformation-

induced particle clusters as the particles pile up with their neighbours. The proxim-

ity of a particle next to an existing crack would also promote premature void

nucleation.

10.4 Development of the Percolation Model

In this chapter, the void growth and evolution models developed in the previous

chapters are amalgamated into a complete framework to model damage evolution in

a material with a heterogeneous particle distribution. The void evolution models are

adapted to a general three-dimensional particle field and stress state by removing

the periodic assumption used in their development in Chap. 5. The percolation

model was then integrated into a commercial finite-element code, LS-DYNA

(Hallquist 2006) to create so-called ‘percolation elements’ by mapping the particle

distributions to the elements. This enables the percolationmodel to be directly coupled

Crack

Void 1
Void 2

++

Fig. 10.7 Schematic of coalescence between a large and small void and the resulting crack

geometry
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to the macro-scale as damage evolution at themicron-scale will control the stress state

in the elements, and ultimately, that of the entire structure via the FE method. This

represents a significant contribution in the modeling of ductile fracture as the particle

distribution can be accounted for in finite-element simulations of metal forming

The development of a sophisticated constitutive model of this scale requires

careful consideration and justification of each step in the modeling process to ensure

that the model has a strong physical foundation. The development of the percolation

model will be separated into two main categories: macroscopic models and micro-

scopic models. The macroscopic models are used to transition from the micro-scale to

the macro-scale and vice versa.

10.4.1 Principal Assumptions

The principal advantage of the damage percolation model is that the microstructure

no longer is assumed to be periodic and a measured particle/void distribution can be

used to model ductile fracture. A concerted effort has been made in this work to

improve the physical foundation of the percolation model and significant progress

has been achieved in reducing the number of assumptions inherent in the modeling

of ductile fracture. Nevertheless, extending the micromechanical models to a

general three-dimensional case requires numerous approximations and assumptions.

The principal assumptions used in the development of the percolation model are:

• The stress state within the element is uniform and homogeneous. Local stress

and strain heterogeneity within void and particle clusters is neglected.

• The particles, voids and cracks do not interact. Voids/cracks grow as isolated

voids.

• Void evolution models obtained using axisymmetric unit cells can provide a

reasonable approximation to the growth of voids in a real material if the shear

stress is small compared to the tensile stress.

• The particles, voids and cracks remain ellipsoidal during deformation.

• Nucleation via debonding is not explicitly modeled. An emphasis is placed upon

void nucleation via particle cracking.

• Void coalescence occurs by necking failure of the inter-void ligament. Ligament

shearing is not considered.

• Size effects are negligible at the length scales considered and continuum-based

models for void initiation and evolution are valid at the micron-scale and higher.

Deformation of voids and particles that are smaller than 1 μm would require

considering dislocation dynamics.

• The grains and texture-related effects are not accounted for in the model. It is

assumed that the bulk properties of the particle field are isotropic and rate-

independent although deformation of the voids at the local-scale is dependent

upon the loading direction.
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Each of the above assumptions will introduce a degree of uncertainty into the

model with the major limitations being the assumption of a uniform stress distribu-

tion, no shear coalescence, negligible size effects and neglecting anisotropy and the

grains in the material. The rationale for these assumptions is discussed in the

following sections.

10.4.1.1 Assumption of a Homogeneous Stress State – No Void and Particle

Interactions

Although the stress state is assumed to be homogeneous within the percolation

element, the stress state is not homogeneous because severe local strain-gradients

develop within particle and void clusters. As a result, the voids and particles will

interact and not evolve as isolated objects. This assumption is unlikely to be

overcome without explicitly modeling every void and particle using finite-element

techniques; however, it can be improved by using a sufficient number of percolation

elements. In the limit, each percolation element would contain a single void/particle

and the isolated assumption becomes realistic.

10.4.1.2 Assumption of Internal Necking Coalescence as the Dominant

Coalescence Mode

The omission of a shear-based coalescence model is an unfortunate limitation of the

present work and is attributed to the lack of a robust model akin to the plastic limit-

load criterion for internal necking coalescence. Butcher and Chen (2009a) proposed

a shear-extension to the plastic limit-load for combined tension and shear based

upon the work of Xue (2008). However, this model is better suited for a general

constitutive model and not for individual voids. A recent work by Schyvearts et al.

(2011) has found that the plastic limit-load model can give good predictions for

necking coalescence in combined tension and shear by accounting for the void

orientation with shear. The percolation model is also expected to perform well in

this situation as it accounts for the orientation of the voids and cracks as well as

their rotation when they evolve and change shape in shear loading.

10.4.1.3 Assumption of Size-Effects Being Negligible Above the Micron-Scale

All multi-scale models are only valid for a range of length scales. The percolation

model has been designed to model void initiation and evolution from the micron-

scale to the macro-scale. The typical size of a second-phase particle in many alloys

is on the order of several microns or larger in diameter. It is assumed that

continuum-scale models can be used to describe the deformation of the particles

and voids at this scale. Size effects are unavoidable and it is well known that sub-

micron sized voids tend to grow slower than their larger counterparts (Liu et al.
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2003; Tvergaard and Niordson 2004; Wen et al. 2005). At the sub-micron scale,

dislocation dynamics must be considered using a strain-gradient plasticity model

(Fleck and Hutchinson 1997) that includes a length scale parameter for the size

effects. Fortunately, a numerical study by Wen et al. (2005) has found that the void

size effect is limited in uniaxial tension and for a small volume fraction of voids.

Since most metal forming operations occur in the low triaxiality regime (T < 1)

and have failure porosities on the order of several percent at most, the size effect

can be neglected as a first-order approximation of the material behavior. An

extension of the percolation model that accounts for dislocation dynamics on

void nucleation and evolution would improve the physical foundation of the

model and enable it to incorporate events from the nano-scale to the macro-scale.

10.4.1.4 Neglecting the Influence of Texture Effects and Grains

The percolation model does not account for influence of material texture or for the

presence of grains in the material. This assumption implies that it is the presence of

the micro-voids in the material that are responsible for the promotion of localization

and fracture. For example, in a uniaxial tensile test, geometric softening causes the

material to form a localized neck. The stress state in the center of the necked region

becomes severe and spurs void nucleation and growth, softening the material in the

neck and causing additional necking. Ultimately, the sample fails as the voids

coalesce throughout the necked region. This type of fracture mechanism can be

well described using a damage-based approach such as the percolation model.

This type of fracture process is not always the case since anisotropy and the grain

structure of the material can be responsible for the initial localization by the

formation of shear bands. These shear bands provide the high local plastic strains

required to drive void nucleation and growth, softening the material in the shear

band and promoting additional localization until fracture occurs. In this situation,

the isotropic percolation model would overestimate the strain and porosity at

fracture since higher levels of porosity would be required to trigger the localization

process without the presence of the shear bands.

Overall, the percolation model provides an excellent tool for the modeling of

ductile fracture and can describe a large portion of the fracture process. A future

extension of the percolation model should account for material anisotropy in the

yield criterion and void evolution models. The influence of the grains could be

accounted for by coupling the percolation model with a crystal plasticity model.

The coupled crystal plasticity – percolation model would provide insight into the

complete fracture process by accounting for the entire microstructure.

10.4.1.5 Terminology Used in Development of the Percolation Model

The particle field is assumed to be composed of particles/inclusions, voids and

cracks and referred to as ‘objects’ if the modeling treatment is the same for each
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constituent. Particles are modeled as a single class but their composition and type

may be variable to accommodate different particle types in the material. Cracks are

subjected to the same modeling treatments as voids but are defined as a crack to

discriminate between the primary and nucleated voids with the voids that form due

to coalescence. A crack is formed by the coalescence between a void and a crack,

two voids or two cracks.

10.4.2 Macroscopic Models

Quantities at the element scale are defined as macroscopic because the stress state

within the element is obtained by homogenizing the voids within the microstructure

using the GT yield criterion. In this definition, the element is analogous to the typical

unit cell except the cell contains a particle field instead of a single void. The purpose

of the macroscopic modeling process is to accept the nodal displacements from the

finite-element code and determine the stress and strain according to the adopted

constitutive model for the element. The failure criterion for the element is then

evaluated and the element is deleted or the stress returned to the finite-element solver.

This is the typical procedure for any finite-element program with the only notable

difference being that the constitutive model is rather complex. An overview of the

macroscopic modeling process is presented in Fig. 10.8.

The elements provide the link to the relevant length scales for engineering (mm

and higher) because the stress state within the elements controls the deformation of

the global structure. Therefore, a brief review of the relevant kinematics of the

finite-elements is required as they play a major role in the percolation model.

10.4.3 Relevant Finite-Element Kinematics

Finite-element discretization is achieved in the initial (reference) configuration by

using either four or eight node isoparametric elements to interpolate the position of

the element nodes, Xa, during deformation as

X ¼
Xn
a¼1

Naðξ; η; ζÞXa (10.16)

whereNaðξ; η; ζÞ are the standard shape functions defined in dimensionless element

coordinates and n is the number of nodes (Fig. 10.9). During deformation the

current position of the nodes, xaðx; y; zÞ as well as the nodal velocities, va, can be

expressed in terms of the shape functions as
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x ¼
Xn
a¼1

NaxaðtÞ v ¼
Xn
a¼1

Nava (10.17, 10.18)

By enforcing the displacement of the nodes by an arbitrary increment, ua, the
displacement can be interpolated as

u ¼
Xn
a¼1

Naua (10.19)

Call Subroutine for the Constitutive Model

Update Stress Tensor
and Plastic Strain

Determine the Macroscopic Stress Tensor
and Plastic Strain in the Element

Test for
Element  Failure

Delete Element
Yes

No

Call User Defined Subroutine for the Percolation Elements

Obtain Nodal Displacements of the Elements from the FE Code

Finite-Element Simulation at Time t

Call the Percolation Subroutine and Update Global Porosity

Compute the Strain Increment of the
Element from the Nodal Displacements

Divide the Nodal Displacements and
Strain Increment into Sub-increments

Reached Number of
Sub-increments? 

No

Fig. 10.8 Flow-chart of the macroscopic modeling process
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The deformation gradient tensor, F, maps the element from its initial configura-

tion to its deformed configuration and can be interpolated within the element using

the relations

F ¼
Xn
a¼1

xa � @N

@x

@N

@x
¼ J�1 @N

@ξ
J ¼

Xn
a¼1

xa � @Na

@ξ
(10.20a, b, c)

where J is the Jacobian matrix. The deformation gradient can be used to determine

the strain measure of interest such as the Cauchy-Green strain. The strain matrix for

specific elements will be discussed in a subsequent section.

The velocity gradient tensor, L, is related to the rate of change of the deformation

gradient as

L ¼ _FF�1 (10.21)

The deformation gradient tensor can be decomposed into a stretch and rotation

tensor. The rotational rate of deformation can be measured using the antisymmetric

spin tensor, Ω, as

Ω ¼ 1

2
ðL� LTÞ (10.22)

Fig. 10.9 Finite-element discretization (Reprinted with permission from Bonet andWood (1997).

Copyright 1997 Cambridge University Press)
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10.4.4 Percolation Element Types

The types of percolation elements considered are eight-node isoparametric brick

elements and four-node isoparametric plane elements. The type of element integra-

tion such as reduced-point integration is controlled by the finite-element code. The

geometry and local node numbering of the elements are shown in Fig. 10.10.

10.4.4.1 Eight-Node Isoparametric Brick Element

The geometry and local node numbering of the eight-node brick element is shown in

Fig. 10.10. The center of the element is computed from the element nodal points as

xc ¼ 1

n

Xn
a¼1

xa (10.23)

where n is the number of element nodes. The half lengths of the element sides (a, b, c)
are

a ¼ 1

8
x2 � x1ð Þ þ x3 � x4ð Þ þ x6 � x5ð Þ þ x7 � x8ð Þ½ � (10.24a)

b ¼ 1

8
y4 � y1ð Þ þ y3 � y2ð Þ þ y7 � y6ð Þ þ y8 � y5ð Þ½ � (10.24b)

c¼ 1

8
z5 � z1ð Þ þ z6 � z2ð Þ þ z7 � z3ð Þ þ z8 � z4ð Þ½ � (10.24c)
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Fig. 10.10 Local node numbering and coordinate systems for a 4-node (left) and 8-node (right)
isoparametric element
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Any point of interest within the element can be transformed to dimensionless

element coordinates using the relations

ξ ¼ x� xc
2a

η ¼ y� yc
2b

ζ ¼ z� zc
2c

(10.25a, b, c)

The shape functions for an isoparametric eight-node brick element at a node, a, are

Na ¼ 1

8
ð1þ ξaξÞð1þ ηaηÞð1þ ζaζÞ (10.26)

with derivatives

@Na

@ξ
¼ ξa

1þ ξaξ

� �
Na (10.27)

The strain in the element can be interpolated using the shape functions. For an

eight-node brick element, the macroscopic strain rate tensor is defined as

_Eij ¼

_Ex
_Ey
_Ez

2 _Exy

2 _Eyz

2 _Exz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
Xn
a¼1

@Na

@x 0 0

0 @Na

@y 0

0 0 @Na

@z
@Na

@y
@Na

@x 0

0 @Na

@z
@Na

@y

@Na

@z 0 @Na

@x

2
6666666664

3
7777777775

ua
va
wa

8<
:

9=
; ¼

Xn
a¼1

Baua (10.28)

10.4.4.2 Four-Node Isoparametric Plane Element

The relevant equations for a four-node isoparametric element can be readily

determined from the equations for the eight-node element above by replacing the

factor of 1/8 with 1/4 and setting any z-related quantities to zero. The strain rate

tensor for the plane elements is slightly different and is written as

_Eij ¼
_Ex
_Ey
_Ez

2 _Exy

8>><
>>:

9>>=
>>;

¼
Xn
a¼1

@Na

@x 0

0 @Na

@y

0 0

@Na

@y
@Na

@x

2
66664

3
77775

ua
va

� �
þ

0

0

_εz

8<
:

9=
; ¼

Xn
a¼1

Baua þ _Ez (10.29)
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where the strain increment in the z-direction (thickness direction) is not computed

from the shape functions. If the element is a plane strain element then _Ez ¼ 0:

If the element is a plane stress element, then _Ezwill be iteratively determined during

the stress integration routine to obtain the value of _Ez that results in Σz ¼ 0: Once
the proper strain in the thickness direction has been determined, the component

of the deformation gradient in this direction can be obtained. Assuming no shearing

in the thickness directions, for a plane strain element, Fz ¼ 0. For plane stress,

the determinant of the Jacobian can be used to solve for Fz using the cumulative

strains as

Fz ¼ 1þ Ex þ Ey þ Ez

FxFy � FxyFyx
(10.30)

10.4.5 Constitutive Model to Account for Material Softening

The percolationmaterial modelwaswritten as a user-defined subroutine for LS-DYNA

to integrate the stress state, analyze the microstructure for void evolution and return the

stress tensor and plastic strain to the finite-element program. The extended Gurson-

based yield criterion described in Chap. 4 with the calibrated q2 parameter is used to

account for material softening by using the global porosity, �f d , and the average �q2
value of the voids and cracks as

Φ ¼ Σeq

�σ

� �2

þ 2�f dq1ðΣhyd; Σeq; nÞ cosh �q2
3

2

Σhyd

�σ

� �
� q21ðΣhyd; Σeq; nÞ�f d2 � 1 ¼ 0

(10.31)

where

�f d ¼
Xnv
i¼1

f vi þ
Xnc
i¼1

f ci �q2 ¼
1
�f v

Xnv
i¼1

f vi q
v
2i þ

1
�f c

Xnc
k¼1

f cj q
c
2j (10.32a, b)

with the subscripts v and c denote quantities for the voids and cracks, respectively,

and an overbar symbol denotes a global quantity. The q1 parameter does not require

an averaging procedure since it is a function of the stress triaxiality and hardening

exponent and these quantities are assumed to be homogeneous in the element.
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10.4.6 Degradation of the Elastic Moduli

The elastic constants will degrade with the evolution of the porosity in the material

and contribute to additional material softening. From a practical perspective, the

porosity in most metals is too small to be a significant factor, but should be

accounted for in the model for completeness. Since this is a secondary effect, the

relations of Mori and Tanaka (1973) for spherical voids can provide a good

approximation for the materials of interest and are well suited for random and

clustered distributions of voids (Kachanov et al. 1994; Cramer and Sevostianov

2009). The degraded bulk and shear moduli of a voided material are expressed as a

function of their initial values and the porosity as

�κd ¼ 4�κð1� �f dÞ�μ
4�μþ 3�f d�κ

�μd ¼
ð1� �f dÞμ

1þ �fd

�
6�κ þ 12�μ

9�κ þ 8�μ

� (10.33a, b)

The elastic modulus and Poisson ratio can be computed from the bulk and shear

moduli using the standard isotropic relations. The elastic constants of the average

particle in the material are computed as a weighted average of the composition of

each particle as

�μp ¼ 1

�f
p

Xnpt
i¼1

Xnp
j¼1

f pijμ
p
j �κp ¼ 1

�f
p

Xnpt
i¼1

Xnp
j¼1

f pij κ
p
j

�f p ¼
Xnpt
i¼1

Xnp
j¼1

f pij (10.34a, b, c)

where fp is the total particle volume fraction and the subscripts i and j correspond to
the particle type and particle number.

10.4.7 Global Coalescence and Failure of the Element

The onset of profuse void coalescence signalling failure of the particle field is easily

identified because the voids will rapidly link-up throughout the field to form a

single crack that encompasses the entire field. Failure of the particle field is

identified by homogenizing all of the individual voids into an equivalent void and

evaluating the coalescence model in Eq. (1.15) at each time-step. Since the porosity

increases so rapidly at the onset of profuse coalescence, the choice of global failure

criterion is not an important factor. Assuming a global failure porosity of 2 % as

suggested by Chen (2004) for AA5182 sheet led to similar results identified by

using Eq. (2.25) and by visual means. Ultimately, the coalescence criterion of
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Pardoen and Hutchinson (2000) in Eq. (1.15) was adopted since it does not

introduce any additional parameters into the model.

An additional advantage of this modeling treatment is that fracture is computed

using the same procedure used in standard damage-based constitutive models. In

this manner, the percolation model could be viewed as a sophisticated void evolu-

tion sub-model that is used in a standard Gurson-type model of ductile fracture. To

compute the plastic limit-load for the global equivalent void, the void is assumed to

be located at the center of the element and the element is treated as the unit cell. The

global aspect ratio is computed as the weighted average of the voids and cracks in

the material as

�W ¼ 1
�f v

Xnv
i¼1

f vi W
v
i þ

1
�f c

Xnc
j¼1

f cj W
c
j (10.35)

The ligament spacing ratio of the global void is computed from the unit cell

geometry as

�χ ¼
�f dλe
ηcell �W

� �1
3

(10.36)

where ηcell ¼ π=6 for a cubic unit cell and λe is the aspect ratio of the element with

respect to the principal loading direction. The plastic limit-load criterion in

Eq. (1.15) can now be evaluated using �W, �χ, the principal macroscopic stress, Σ1,

and the material flow stress, �σ.

10.5 Microscopic Models

The micromechanical modeling procedure used in the percolation routine is

presented in Fig. 10.11. The term ‘microscopic’ defines a quantity that is measured

or defined within the element such as the equivalent plastic strain. At the macro-

scale, the stress and damage are uniform and homogeneous and an equivalent void

is used to account for material softening. Within the element at the micro-scale, the

void and particle distributions are not homogeneous and vary within the element

volume.

The microscopic models for void nucleation, growth, shape evolution and

coalescence are detailed in Sects. 10.1, 10.2 and 10.3, respectively. At each time-

step in the simulation and for each particle, void and crack, these sub-models are

evaluated. The coalescence treatment is applied to each void/crack pair using the

nearest neighbour information. The following sections will detail the kinematics for

the voids, cracks and particles within each percolation element and the treatment

used to identify the neighbouring objects and percolation elements.
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10.5.1 Object Kinematics

10.5.1.1 Object Translation

The objects (particles, voids and cracks) will translate and rotate within the element

during deformation. The location of the object is fixed within the dimensionless

element coordinate system but its position will change in the global system as the

element deforms as shown in Fig. 10.12. The centroids of each object are updated at

each time step using the nodal displacements of the objects parent element and its

shape functions evaluated at the object centroid. The position of the object center in

the global system is calculated using Eq. (10.23).

Update Centroids of All Objects in the Element 
using the Nodal Displacement Increment

Evaluate the Deformation gradient, Spin Tensor and Plastic Spin Tensor 
for All Objects and Update the Object Orientation

Determine the Stress State within the Particles
and Evaluate the Nucleation Model

Nucleation?

Create Penny-Shaped Void

Yes

Test for Coalescence for ALL Void 
and Crack Neighbours

Search for Neighbour Elements, Particles, 
Voids and Cracks using Characteristic 

Lengths

Evaluate Growth and Shape Evolution of the Voids and Cracks

Coalescence 
or Overlap?

Merge Objects to 
Create a New Crack

Update the Total Porosity in the Material 
and Other Volume Averaged Statistics

Call the Percolation Subroutine and Update Global Porosity

Return Averaged Properties to the Constitutive Model to 
Account for Material Softening and Failure of the Element

Yes

Fig. 10.11 Flow-chart of the percolation modeling process
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10.5.1.2 Object Rotation

The rigid body rotation of the objects is computed from the material spin tensor of

the element in Eq. (10.22). However, this rotation is not sufficient to describe the

complete motion of the objects within the material as they may rotate due to plastic

deformation within the element. In uniaxial tension, the material spin is zero but the

objects will still rotate to align themselves with the principal loading direction. This

effect should be considered because of its implications on the fracture mechanism

because the objects will orient themselves to create favourable conditions for

nucleation, growth and coalescence. Voids are more likely to coalesce when they

are aligned transversely to the principal loading direction and particles will crack

transversely to the loading direction. Particle and void rotation is especially impor-

tant in torsion as shown in Fig. 10.13 where the voids and particles will rotate to

align themselves at 45� to the loading direction.

The influence of plasticity-induced rotation has largely been neglected in the

modeling of damage-induced ductile fracture. Typically, the voids have been

assumed to remain stationary or to rotate with the material spin (Benzerga 2002;

Pardoen 2006). More recent models by Keralavarma and Benzerga (2010) and

Schyvaerts et al. (2011) have employed the nonlinear homogenization solution of

Kailasam and Ponte Casteneda (1998) in its reduced form for voids as used by

x

y

u1

v1 v2

u2

u3u4

v4 v3

h

h

z

z

Element coordinate system Global coordinate system

Fig. 10.12 Percolation element in the dimensionless element coordinate system (left) and in the

global coordinate system (right) where the voids and particles have translated and rotated with the
deformation of the element
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Aravas and Ponte Casteneda (2004). These solutions are based upon a rigorous

homogenization scheme to obtain expressions for the plastic spin rate in a compos-

ite material. This model has been shown to give very good agreement with the void

rotation as validated by Schyvaerts et al. (2011) using finite-element simulations

(Fig. 10.14).

The model of Kailasam and Ponte Casteneda (1998) will also be adopted to

account for particle and void/crack rotations within the percolation element, albeit

in a slightly reduced version. The solution of Kailasam and Casteneda (1998) can

account for any number of different particle types in addition to the voids as well as

their distributions. However, the computation of the spin rates requires many

intermediate calculations of fourth-order tensors and matrix operations. With

thousands of particles and voids within the percolation element and different

particle types to be evaluated, this can be a computationally expensive process.

Therefore, the rotation rate of each object type will be evaluated by neglecting

interactions with the other object types, considerably reducing the expression for

the rotation rate.

By also neglecting the distributional effects of the ellipsoidal objects within the

material, the average deformation rate, Do, and the average spin, Ωo, of the local

representative ellipsoidal object can be expressed as

Do ¼ Ao : _E
p Ωo ¼ Ω� Co : _E

p
(10.37, 10.38)

Where Ω is the material spin rate of the element and Ao and Co are fourth-order

“concentration tensors” for the objects and are defined as

Fig. 10.13 Digitally compressed montage of 500 � 500 μm2 area of an undeformed AA6061

alloy (left) and a montage after being subjected to a strain of 98 % in torsion (right) (Reprinted
with permission from Agrawal et al. (2002). Copyright 2002 Elsevier)
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Ao ¼ ½I� ð1� f oÞSðI� ½LM��1
LoÞ��1

(10.39)

Co ¼ ð1� f oÞΠo Lo � LM
� ��1

LM þ ð1� f oÞS
h i�1

(10.40)

where f o is the object volume fraction; LM and Lo are the fourth-order viscosity

(elastic) tensors of the matrix and object that are defined as a function of their shear

and bulk moduli as L ¼ (3κ, 2 μ). The fourth order tensors, S and Π, are Eshelby

tensors (1957) whose expressions are given in Butcher (2011). For the rotation of

the voids and cracks, the expressions in Eq. (10.39) and (10.40) are computed by

setting Lo ¼ 0. In the limit that the object volume fraction approaches zero, the

solutions reduce to those of Eshelby (1957).

The ellipsoidal object is defined as having semi-axes (a, b, c) where a > b > c
are corresponding vectors, n1, n2, n3. The microstructural spin, ω, in the global

frame is defined as

ω ¼ Ωo þ 1

2

X3
i;j¼1

i 6¼j

wi 6¼wj

w2
i þ w2

j

w2
i � w2

j

ninj þ njni
� �

: Do
	 


ninj ðw3 ¼ 1Þ (10.41)
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Fig. 10.14 Comparison of the analytical rotation model of Kailasam and Ponte Casteneda (1998)

with the void rotation obtained from unit cell simulations (Reprinted with permission from

Schyvaerts et al. (2010). Copyright 2010 Elsevier)
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where wi are the aspect ratios of the object and are

w1 ¼ c

a
w2 ¼ c

b
w3 ¼ 1 (10.42a, b, c)

Finally, the plastic spin of the object is expressed as

Ωp ¼ Ω� w (10.43)

and the rotation rates of the semi-axes of the ellipsoid relative to the rotation of the

continuum are

_ni ¼ Ωpni (10.44)

The plastic spin will be zero if the material spin is zero and the object is aligned

in the loading direction. Otherwise, the object will rotate until it is aligned with the

principal loading direction. In the case that two of the aspect ratios are equal such as

w1 ¼ w2, Ωp
12 in Eq. (10.43) becomes indeterminate and is set to zero (Aravas and

Ponte Casteneda 2004). If the object is spherical, the material is locally isotropic the

plastic spin vanishes since Co ¼ 0.

10.5.2 Implications of the Rotation Model on the Percolation
Model

The adoption of the above rotation model significantly improves the physical

foundation of the percolation model and has implications on void nucleation,

growth and coalescence as these are all related to the direction of the maximum

principal stress. During plastic deformation, the predictions of the rotation model

are improved by computing the elastic tensor of the matrix, LM, using the secant

shear modulus, �μs, determined as part of the homogenization process to determine

the stress within the particles. In this manner, another level of integration is

achieved in the percolation model.

The rotation model can be evaluated for the bulk values of each object type and

applied uniformly to rotate each object within the particle field. However, this

method neglects the individual object dimensions and any strain-gradients that exist

within the element. This has been accounted for in the implementation of the model

by evaluating the material deformation gradient, spin tensor and strain increment at

the centroid of each object in the element using the equations in the previous

section. The equations for the local plastic spin can then be determined using the

above procedure by assuming that the local strain rate is a close estimate to the local

plastic strain rate. This implementation provides an immense contribution to the

model when shear loading is present as the shear-induced rotational distribution is

captured by the model. Objects located in the center of the material will experience

less rotation than the objects near the surface of the material where the shear
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traction is applied. Overall, the treatment of particle and void rotation in the

percolation model is physically sound and superior to the existing implementations

of this model.

10.5.3 Neighbours – Element and Object

Since fracture is a local phenomenon originating within specific regions of the

material, the spatial distribution of the neighbours of each object must be accounted

for. This is accomplished by creating neighbour lists on the macro- and the micro-

scale through the use of characteristic length parameters. If the distance from the

centroid of an object to the centroid of a neighbour object is less than the charac-

teristic length, it is appended to a neighbour list of that object. The size of the

characteristic length controls the sphere of influence of the object. In the percolation

model, up to four distinct characteristic lengths can be input to determine element

neighbours, particle neighbours and void/crack neighbours.

At the global level, a characteristic length can be defined for the elements, Le, to
locate the neighbouring percolation elements and identify the objects within them

for potential interactions (Fig. 10.15). This characteristic length is not a significant

parameter except for crack propagation prior to final fracture as it enables the crack

front to progress through neighbouring elements. For the most part, this parameter

is used to reduce the number of interaction searches for each time step by limiting

the size of the global neighbourhood. The simplest choice of selecting element

neighbours is by using common nodes so that only the surrounding elements are

considered. If more elements are required, the center-to-center distance between

elements is used to identify the neighbours.

Within the global neighbourhood defined by the element length, up to three

additional characteristic lengths can be adopted for:

Particle-particle neighbours: Lpp
Particle-void/crack neighbours: Lpv
Void-void, void-crack, or crack-crack neighbours: Lvc

It is important to have different characteristic lengths to be able to easily test for

different interactions. For example, in modeling void nucleation within particle

clusters, the particle-particle characteristic length will play a central role which is

not likely to be the same as for void-crack interactions. The particle-void character-

istic length could be used in modeling nucleation since the proximity of a particle to a

crack will increase its propensity to nucleate a void. In the simplest case where no

interactions are considered (isolated voids and particles) a single length can be used

to define the local neighbourhood. In this case, any reasonable choice for this value

such as five average diameters will be sufficient to identify the neighbouring particles,

voids and cracks for nucleation and coalescence.

In the event of void coalescence, the new void inherits the neighbours of its

parent particle and the new void is added to the lists of its neighbours. Similarly,
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when two voids or cracks coalesce, the new crack will inherit the neighbour lists

both parents and is added to these neighbours’ lists as well. In this manner,

coalescence will naturally sweep through the particle field, inheriting neighbours

and coalescing with them as cracks propagate through the elements. The advantage

of this method is that it is computationally efficient, physically sound, and relegates

the characteristic length to a third-tier parameter. Of course, if the computational

resources are available, every object within every element can be compiled into a

neighbour list and no characteristic lengths are required.

10.6 Summary

Damage percolation modeling provides a unique tool to study and understand

ductile fracture in heterogeneous materials. The present model has made significant

in-roads into developing a physically sound framework to model fracture from first

principles. The significant features of the present percolation model are:

• The model accepts a three-dimensional particle distribution of arbitrary ellipsoidal

particles and voids.

• The particle fields are mapped to finite-elements to capture the development of

the complex stress- and strain-gradients that develop in the microstructure.

• The initiation and evolution of damage at the micro-scale controls the bulk

material behavior of the element and ultimately the structure in the finite-

element model

• The Gurson-based yield criterion has been calibrated through the development

of a library of correlations to model void evolution.

L

Fig. 10.15 Schematic of the

identification process for

neighbouring elements in an

assemply of series of

percolation elements at the

continuum-scale where the

voids within each percolation

element have been

homogenized into a single

void located in the center of
the element. This process is

a natural analog to the

non-local treatments of void

damage
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• The stress state within the particles is determined based upon a homogenization

scheme and is a function of the particle shape, size and composition.

• A sophisticated void nucleation model for particle cracking is used to predict

nucleation as a function of the particle stress (from homogenization theory),

composition, fracture toughness, size and shape.

• Physically sound treatments for void growth, shape and coalescence have been

developed that place no restriction on the void shape or orientation.

• The void growth, shape evolution and coalescence models have been calibrated

and validated from an extensive study of voided unit cells.

• An advanced rotation law based upon homogenization theory has been adopted

to account for the plastic spin of the particles, voids and cracks within the

material.

• No material calibration parameters are required by the model or have been

introduced. All parameters are directly related to the material such as the particle

composition, flow stress relation of the matrix, etc. The only parameter that

could be calibrated with experiment would be the fracture toughness of the

particles if it cannot be predetermined. Otherwise fracture is a natural conse-

quence of microstructure evolution.

The theoretical development of the percolation model concludes with this

chapter. The subsequent chapters will develop a particle field generator to populate

the percolation elements with statistically representative particle fields. Finally, the

complete finite-element percolation model will be evaluated in Chap. 11 to predict

damage initiation and failure in an aluminum-magnesium alloy.
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