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Abstract

In this chapter broadband dielectric spectroscopy (BDS) is employed to poly-

meric blend systems. In its modern form BDS can cover an extraordinary broad

frequency range from 10�4 to 1012 Hz. Therefore, molecular and collective

dipolar fluctuations, charge transport, and polarization effects at inner phase

boundaries can be investigated in detail including its temperature dependence.
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In the first part of the chapter, the theoretical basics of dielectric

spectroscopy are briefly introduced covering both static and dynamic aspects.

This section is followed by short description of the various experimental

techniques to cover this broad frequency range. To provide the knowledge to

understand the dielectric behavior of polymeric blend systems, the dielectric

features of amorphous homopolymers are discussed in some detail.

This concerns an introduction of the most important relaxation processes observed

for these polymers (localized fluctuations, segmental dynamics related to the

dynamic glass transition, chain relaxation), a brief introduction to the conductivity

of disordered systems as well as polarization effects at phase boundaries. Theo-

retical models for each process are shortly discussed. In the last paragraph the

dielectric behavior of polymer blends is reviewed where special attention is paid to

binary systems for the sake of simplicity. In detail the dielectric behavior of binary

miscible blends is described. The two most important experimental facts like the

broadening of the dielectric relaxation spectra and the dynamic heterogeneity of

the segmental dynamics are addressed in depth. Appropriate theoretical

approaches like the temperature-driven concentration fluctuation model and the

self-concentration idea are introduced.

12.1 Introduction

It was proved by many investigations that broadband dielectric spectroscopy (BDS)

is a powerful technique to investigate the properties of polymeric systems (see, for

instance, references McCrum et al. 1967; Hedvig 1977; Karasz 1972; Blythe 1979;

Williams 1979, 1989, 1993; Runt and Fitzgerald 1997; Adachi and Kotaka 1993;

Riande and Diaz-Calleja 2004; Kremer and Schönhals 2003; and references

therein). This is mainly due to the fact that an extremely broad dynamical range

from the millihertz to the terahertz region can be covered by dielectric spectroscopy

in its modern form. A quite recent discussion of the basics and applications of this

method can be found in reference Kremer and Schönhals (2003). This broad

frequency range of BDS enables one to investigate motional processes which can

take place in polymers on quite different length scales (localized fluctuations, seg-

mental dynamics, and motions of the whole chain) by this method in broad range of

frequencies and temperatures. This includes furthermore that the molecular motions

in the different states of a polymeric material (i.e., the glassy or rubbery state) can be

studied in detail from both points of view of basic and applied research. Moreover,

the different motional processes as well as charge transport processes depend on the

morphology of the system under consideration. Therefore, information on the struc-

tural state of the polymeric system under investigation can be indirectly extracted

using molecular mobility and/or charge transport as probe for structure.

These considerations are absolutely relevant also for polymeric blends

which have received much attention because materials with tailor-made and

desired properties can be designed by the combination of polymers with different
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properties. Therefore, the purpose of this chapter is to discuss the dielectric

properties of polymers with special attention to polymeric blends. The motivation

is both scientific and technological.

The literature about dielectric relaxation is rich. For instance, there are several

recent reviews available for that field (Simon and Schönhals 2003; Runt 1997;

Floudas et al. 2011; Colmenero and Arbe 2007). For instance, by application of

dielectric spectroscopy to polymeric blends, the phase behavior of a system can be

probed or the degree of miscibility of the blend components in the different phases

can be discussed and estimated. This concerns also the question of the dynamic

heterogeneity in miscible blend systems or confinement effects in dynamically

asymmetric polymer blends (Colmenero and Arbe 2007).

The chapter is organized as follows. In the first part broadband dielectric spec-

troscopy is introduced. A brief review of the theoretical background of dielectric

spectroscopy is provided. This will include the basics of dielectric spectroscopy,

dielectric measurement techniques, and also data analysis. This section is followed

by a discussion of the dielectric behavior of homopolymers to provide the basics to

understand the dielectric properties of blends. In the second part of the chapter, the

dielectric behavior of polymeric blends is reviewed where both miscible and immis-

cible systems are discussed. The chapter is restricted to binary systems.

12.2 Broadband Dielectric Spectroscopy

12.2.1 Fundamentals

Broadband dielectric spectroscopy deals with the interaction of electromagnetic

fields with matter. The fundamental relationship between the electric field E
!
, the

magnetic field strength H
!
, the dielectric displacement D

!
, the magnetic induction B

!
,

the current density j
!
, and the density of charges r is given by the Maxwell

equations (Maxwell 1865, 1868). In the linear case, this means for small electric

field strengths, D
!
can be expressed by

D
! ¼ e � e0 E

!
, (12:1)

where e0 is the dielectric permittivity of vacuum (e0 ¼ 8.854 10�12 As V�1 m�1).

The material properties are characterized by the complex dielectric function or

dielectric permittivity e*. e* is time (or frequency) dependent if time-dependent

processes take place within the sample. The molecular origin of the time depen-

dence of e* will be discussed later during the course of this chapter.

In general, time-dependent processes within a material lead to a difference of the

time dependencies of the outer electric field E
!

tð Þ and the resulting dielectric

12 Broadband Dielectric Spectroscopy on Polymer Blends 1301



displacement D
!

tð Þ. In the simple case of a periodical field E(t) ¼ E0 exp(�i o t)

(o-radial frequency, o ¼ 2pf, f-technical frequency, i ¼ ffiffiffiffiffiffiffi�1
p

– imaginary unit) in

the stationary state, the difference in the time dependence of E
!

tð Þ and D
!

tð Þ is

a phase shift which can be described by the complex dielectric function

e� oð Þ ¼ e0 oð Þ � ie00 oð Þ, (12:2)

where e0(o) is the real part and e00(o) the imaginary part of the complex dielectric

function.

Equation 12.1 contains contribution to the dielectric displacement coming

from the vacuum. The polarization P
!

describes the dielectric displacement

which originates from the response only of a material to an external field. It is

defined as

P
!¼D

! �D
!

0 ¼ e� � 1ð Þe0 E
!¼ w�e0 E

!
with w� ¼ e� � 1ð Þ, (12:3)

where w* is the dielectric susceptibility of the material under the influence of an outer

electric field. For higher field strengths (>106 V/m, this order of magnitude will be

valid for the most conventional polymeric systems), nonlinear effects may take place

which can be described by a Taylor expansion of P
!
with regard to E

!
tð Þ where only

odd powers will contribute. The corresponding coefficients are called hyperpolariz-

abilities. For more details, see, for instance, reference Schönhals and Kremer (2003c).

Analogous to Eq. 12.1, Ohm’s law

j
!
¼ s � E

!
(12:4)

gives the relationship between the electric field and the current density j
!

(Ohm’s

law) where s*(o) ¼ s0(o) + i s00(o) is the complex conductivity where s0 and s00

are the corresponding real and imaginary parts, respectively. In the case of absent

magnetic fields, the current density and the time derivative of the dielectric dis-

placement are equivalent quantities. It holds

s� ¼ ioe0 e�: (12:5)

The time dependence of the dielectric properties of a material (expressed by e*
or s*) under study can have different molecular origins. Resonance phenomena are

due to atomic or molecular vibrations and can be analyzed by optical spectroscopy.

The discussion of these processes is out of the scope of this chapter. Relaxation

phenomena are related to molecular fluctuations of dipoles due to molecules or

parts of them in a potential landscape. Moreover, drift motion of mobile charge

carriers (electrons, ions, or charged defects) causes conductive contributions to the

dielectric response. Moreover, the blocking of carriers at internal and external

interfaces introduces further time-dependent processes which are known as

Maxwell/Wagner/Sillars (Wagner 1914; Sillars 1937) or electrode polarization

(see, for instance, Serghei et al. 2009).
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Because D
!
and E

!
are vectors, e*(o) and s* are in general tensors. This becomes

important for anisotropic systems like liquid crystalline (Williams 1979) or crys-

talline materials. For the sake of simplicity, the tensorial character of the dielectric

properties is neglected in the further discussion of this chapter.

In the following this chapter is organized as follows. In the first part the essential

points of electrostatics are reviewed. That means the dielectric properties are

discussed at an infinite time after an application of an outer electric field. In the

second part, using the frame of linear response theory, the formalism of time-

dependent dielectric processes is developed.

12.2.2 Electrostatics

12.2.2.1 Dipole Moments
The molecular origins of a macroscopic polarization P are dipole moments pi. Hence,

for molecules and/or particles in a volume V, the polarization can be calculated to

P
!¼ 1

V

X
p
!

i, (12:6)

where i counts all dipole moments in the system. Generally, a dipole moment is

created if the electric centers of gravity of positive and negative charges do not

collapse. In the simplest case a dipole moment is obtained if a positive

and a negative charge q are separated by a distance. Then the dipole moment is

p ¼ q * d. This picture can be generalized to any distribution of charges (Schönhals

and Kremer 2003c).

The microscopic dipole moments can have a permanent or an induced char-

acter. In the latter case the dipole moment is induced by the outer electric field

itself which distorts a neutral distribution of charges. An example of induced

polarization is the electronic polarization where the negative electron cloud of an

atom (molecule) is shifted with respect to the positive nucleus. This

process takes place at a time constant of 10�12 s because of the low mass of

the electrons. A further example is atomic polarization which has a comparable

time scale. Induced polarization effects can be abstracted in the induced polar-

ization P1.

For molecules with a permanent dipole moment m, charge separation is given by
the structure of the chemical compound. Hence, for a system containing only one

kind of dipoles, Eq. 12.6 simplifies to

P
!¼ 1

V

X
m
!
i þ P

!
1 ¼ N

V
m
!D E

þ P
!
1, (12:7)

where N denotes the whole number of dipoles in the system and <m
!
> the mean

dipole moment. If the system contains different kinds of dipoles, one has to sum up

over all kinds. This is especially true for polymeric systems where dipole moments
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can be related to molecular groups, to segments (repeating unit), or to the chain itself

(Schönhals 2003). This will be discussed later during the course of this paragraph.

Permanent dipole moments can be oriented by an electric field. This is called

orientation polarization. To calculate the mean dipole moment <m
!
> under the

influence of an electric field, several assumptions must be made. Generally, inertia

effects contribute only to P
!
1 because of the short time scale involved. Assuming

further that the electric field at the locus of the dipole is equal to the outer electric

field and that the dipoles do not interact with each other (isolated dipoles), then the

mean dipole moment can be calculated in the framework of the Debye approach

(Debye 1929). Under these assumptions the mean dipole moment is due to

a counterbalance of the thermal energy kBT (Boltzmann constant) and the interac-

tion energy W of a dipole with the electric field given by W ¼ �m
! � E!. Employing

Boltzmann statistics and further reconsidering that the electrical interaction

energy is small compared to the thermal energy, one obtains (Schönhals and

Kremer 2003c)

m
!D E

¼ m2

3kB T
E
!
: (12:8)

The polarization can be calculated by inserting Eq. 12.8 into Eq. 12.7:

P
!¼ m2

3kBT

N

V
E
!
: (14:9)

The change in the dielectric permittivity due to orientation polarization can be

obtained by combining Eqs. 12.3 and 12.9. It holds

De ¼ eS � e1 ¼ 1

3e0

m2

kB T

N

V
, (12:10)

where eS ¼ limo!0 e0 oð Þ. e1 ¼ limo!1 e0 oð Þ covers all contributions to the

dielectric function which are due to induced polarization P
!
1. In the following De

is also called dielectric strength.

The fact that the electric field at the dipole is not exactly the same as the applied

one results in shielding effects. These internal field effects were treated historically

by Lorentz (1879), Clausius (1879), and Massotti (1847). A more general approach

was developed by Onsager (1938) introducing the reaction field. Within this

approach Eq. 12.10 is modified to

eS � e1 ¼ 1

3e0
F

m2

kB T

N

V
with F ¼ eS e1 þ 2ð Þ2

3 2eS þ e1ð Þ : (12:11)

In general the Onsager factor F is an unspecific correction. A more detailed

discussion can be found in reference Böttcher (1973).
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In difference to the Onsager factor F, the interaction of dipoles plays an

important role in condensed systems. This is especially true also for polymeric

materials. Specific interactions between molecules and segments in the case of

polymers can be caused, for instance, by hydrogen bonding, steric interactions, etc.,

and can lead to associations of molecules or segments.

The problem of the interaction of dipoles was treated by Kirkwood (1939, 1940,

1946) and Fröhlich (1958). Starting point is the statistical mechanics (Böttcher

1973; Landau and Lifschitz 1979) where the contribution of the orientation polar-

ization to the dielectric permittivity is expressed by

eS � e1 ¼ 1

3kB Te0

<P
!

0ð Þ P! 0ð Þ>
V

¼ 1

3kB Te0

<
X
i

m
!

i 0ð Þ
X
j

m
!
j 0ð Þ>

V
,

(12:12)

where <P
!

0ð Þ P! 0ð Þ> is the static correlation function of polarization (dipole)

fluctuations. The symbol (0) refers to an arbitrary time, for instance, t ¼ 0. In the

further consideration it is dropped for brevity. The brackets denote averaging which

has to be carried out over the whole system considering all interactions. For

complex systems including polymers, Eq. 12.12 is extremely difficult to analyze.

Therefore, a correlation factor g was introduced by

g ¼
<
X
i

mi
X
j

mj>

Nm2
¼ 1þ

<
X
i

X
i<j

mimj>

Nm2
¼ m2Interact:

m2
, (12:13)

where m2 is the mean square dipole moment for noninteracting, isolated

dipoles which can be measured, for instance, in diluted solutions. The value of

g can be smaller or greater than 1 depending on the case if the segments have the

tendency to orient antiparallel or parallel due to specific interaction as discussed

above.

The calculation of g by Eq. 12.13 involves the same difficulties as estimations

according to Eq. 12.12. Therefore, Kirkwood and Fröhlich (Kirkwood 1939, 1940,

1946; Fröhlich 1958) suggested to treat a given number of dipoles exactly where the

remaining molecules/segments were considered like in the Onsager approach as an

infinite continuum where the dielectric behavior is characterized by eS. Within this

approach one obtains

eS � e1 ¼ 1

3e0
Fg

m2

kBT

N

V
: (12:14)

In the simplest case only the nearest neighbors of a selected test dipole are

considered. For that case g can be approximated by
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g ¼ 1þ z < cosC>, (12:15)

where z is the coordination number and c is the angle between the test dipole and

a neighbor (Böttcher 1973).

12.2.2.2 Dipole Moments of Polymers
For a macromolecule the polarization can be written as

P
!¼ 1

V

X
chain

X
repeating unit

m
!
i, (12:16)

where m
!
i is the dipole moment of the repeating unit i. In difference to

low-molecular-weight compounds where the dipole moment can be well

represented by a rigid vector for long-chain molecules, there are different possi-

bilities for the orientation of a molecular dipole vector with respect to the polymer

backbone. A corresponding nomenclature was developed by Stockmayer (1967)

(Stockmayer and Burke 1969). A macromolecule where the dipole moment is

oriented parallel to the backbone is called type-A polymer. For these systems the

dielectric strength is proportional to the mean square end-to-end vector of the

chain (Adachi and Kotaka 1993). For type-B polymers the dipole moment is

rigidly attached perpendicular to the chain skeleton. Therefore, for the dipole

moment P
!

B of a type-B polymer <P
!
B � r!> ¼ 0 holds, where r

!
is the end-to-end

vector of the chain, there is no correlation between the dipole moment and the

chain contour (no long-range correlations of the dipole moments of different

repeating units). Most of the synthetic polymers are of type B. Although there is

no polymer which is solely of type-A, there are several examples of macromol-

ecules like cis-1,4-polyisoprene (Adachi and Kotaka 1993) having components of

the dipole moment parallel and perpendicular to the chain. These polymers are

also called type-A or type-AB polymers. A more detailed discussion is given by

Adachi (Adachi and Kotaka 1993).

Macromolecules having a flexible side chain carrying a dipole moment are

called to be of type C (Block 1979). A typical example are poly(n-alkyl methacry-

late)s. This definition is only appropriate under the condition that the side chain can

fluctuate on a shorter time scale than the segmental dynamics of the macromole-

cule. Otherwise the polymer is of type B.

For a type-B polymer, the mean square dipole moment can be expressed by

<m2>¼
XN
i¼1

jm!ij2 þ 2
XN
i¼1

X
j<i

jm!i j jm
!
j j < cos gij>, (12:17)

where gij is the angle between bonds i and j. j m! j ¼ m denotes the norm of the

dipole moment perpendicular to the chain.<cos gij>¼ 0 holds for the freely joined
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chain model (for definition see Flory (1989)). For real chains also short-range

intramolecular correlations (<cos gij> 6¼ 0) contribute to the mean square dipole

moment which can be described by the intramolecular dipolar correlation coeffi-

cient gintra defined as

gintra ¼
<m2>XN
i¼1

m2
i

¼ 1þ 2
XN
i¼1

X
j<i

< cos gij>: (12:18)

gintra can be regarded as the Kirkwood/Fröhlich correlation factor for an isolated

chain and is a measure for the correlations between dipole moments of neighbored

repeating units. Calculations of gintra were started by Debye and Bueche (1951).

The rotational isomeric state model (Flory 1989; Volkenstein 1963) can be used to

make more detailed estimations. A discussion can be found elsewhere (Riande and

Saiz 1992).

12.2.3 Time-Dependent Dielectric Processes

For small electric field strength, the dielectric relaxation can be described in

the framework of the linear response theory (Landau and Lifschitz 1979).

The relevant materials equation which links the time-dependent polarization

P(t) with the time-dependent electric field E(t) is given by (Schönhals and

Kremer 2003c)

P tð Þ ¼ P1 þ e0

ðt
�1

e t� t0ð Þ dE t0ð Þ
dt0

dt0, (12:19)

where P1 is the polarization for infinite time covering all contributions from

induced polarization and e(t) is the time-dependent dielectric function. e(t) can be

directly measured as response of the system caused by a steplike change of the outer

electric field as it is shown in Fig. 12.1.

If the time dependence of the outer electric field is periodically E*(o) ¼
E0 exp(�iot), in the stationary case, Eq. 12.19 becomes

P� oð Þ ¼ e0 e� oð Þ � 1ð ÞE� oð Þ, (12:20)

where e*(o) is the complex dielectric function defined above (see Eq. 12.2). The

relationship between P*(o) and E*(o) on the one hand side and e0(o) and e00(o) on
the other side is sketched in Fig. 12.2. The tangent of the phase angle d
(see Fig. 12.2) is given by

12 Broadband Dielectric Spectroscopy on Polymer Blends 1307



0 20 40 60

0

1

2

orientational polarization

induced polarization

Δε= εS – ε∞

εS

ε∞

ε(
t)

=
(P

(t
) 

– 
P

∞
) 

/ Δ
E

 ε
0

Time

ΔEE
 (

t)

Fig. 12.1 Schematic

relationship between the time

dependence of the electric

field DE (upper panel), the
polarization P(t), and the

time-dependent dielectric

relaxation function e(t) (lower
panel). For the sake of
simplicity, the vector sign is

omitted in the figure

D(t)

t

E(t)

a b

E
(t

),
 D

(t
)

δ

δ

ε�

ε�

ε∗

Fig. 12.2 (a) Phase shift between the electric field and dielectric displacement. (b) Relation between
the complex dielectric function, its real part e0 and imaginary part e00 as well as the phase angle d
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tan d ¼ e00

e0
: (12:21)

For scientific studies, however, the dielectric properties should be

characterized by e0(o) and e00(o) since they have a defined physical significance.

In electrical engineering, the reciprocal value of tan d is termed the merit factor

Q ¼ 1/tand.
Equation 12.22 further provides the relationship between the time-dependent

dielectric function e(t) and the complex dielectric function e*(o):

e� oð Þ ¼ e0 oð Þ � ie00 oð Þ ¼ e1 �
ð1
0

de tð Þ
d t

exp �iotð Þdt: (12:22)

The time dependence of the dielectric response can be due to different processes

like the fluctuations of dipoles (relaxation processes), the drift motion of charge

carriers (conduction processes), and the blocking of charge carriers at interfaces

(Maxwell/Wagner/Sillars polarization). In the following subchapters these effects

will be discussed from a theoretical point of view.

12.2.3.1 Dielectric Relaxation
Relaxation processes are due to molecular fluctuations of dipoles. For this case

Eq. 12.12 can be generalized to time-dependent processes defining a correlation

function F(t) by

F tð Þ ¼<DP tð ÞDP 0ð Þ>
<DP2>

�
<
X
i

m
!
i 0ð Þ

X
j

m
!
j tð Þ>

<
X
i

mi
X
j

mj>
, (12:23)

where t denotes a time variable. It holds F(0) ¼ 1 and F(t!1) ¼ 0. Like

Eq. 12.12 F(t) can be related to the fluctuations of microscopic dipole moments

(right part of Eq. 12.23). For more details see references Williams (1979) and

Schönhals and Kremer (2003). Equation 12.23 is difficult to handle from a micro-

scopic point of view.

From a macroscopic point of view, the simplest approach to calculate the time

dependence of the dielectric behavior is to assume that the change in polarization is

proportional to its actual value (Debye 1929; Fröhlich 1958)

dP tð Þ
d t

¼ � 1

tD
P tð Þ, (12:24)

where tD is a characteristic relaxation time. The solution of this first-order differ-

ential equation leads to an exponential decay for F(t):
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P tð Þ � e tð Þ � F tð Þ ¼ exp � t

tD

� �
: (12:25)

According to Eq. 12.22 for the complex dielectric function, one obtains

e� oð Þ ¼ e1 þ De
1þ iotD

; e0 ¼ e1 þ De

1þ otDð Þ2 ; e00 ¼ DeotD
1þ otDð Þ2 :

(12:26)

Equation 12.26 is known as Debye equation. Figure 12.3 gives the frequency

dependence of the real and imaginary (loss) part of the Debye function. e0 shows
a steplike decay with increasing frequency where e00 presents a symmetric peak

with a maximum op ¼ 2pfp ¼ 1/tp and a half width of 1.14 decades. The Debye

equation can be justified by different molecular models like in the framework of

a simple double potential model or the rotational diffusion approach.

For polymeric systems in the most cases, the measured dielectric loss is much

broader and in addition the loss peak is asymmetric. This is called non-Debye or

nonideal relaxation behavior. Formally such a non-Debye-like behavior can be

described by a supposition of Debye functions

e� oð Þ � e1 ¼ De
ð1

�1

L tð Þ
1þ iot

dlnt
ð1

�1
L tð Þdlnt ¼ 1, (12:27)

where L(t) is the dielectric relaxation time distribution. A modeling of a dielectric

relaxation process by Eq. 12.27 does not mean automatically that the underlying

molecular processes can be interpreted in terms of Eq. 12.26.

0
log (ω / ωp)

lo
g 

ε�

ωp = 2π fp

ε∞

εs

Δε = εs - ε∞ ε�

Fig. 12.3 Frequency

dependence of the real part e0

and imaginary part e00 of the
complex dielectric function

according to the Debye

function

1310 H. Yin and A. Schönhals



There were several attempts to generalize the Debye function like the Cole/Cole

formula (Cole and Cole 1941) (symmetric broadened relaxation function), the

Cole/Davidson equation (Davidson and Cole 1950, 1951), or the Fuoss/Kirkwood

model (asymmetric broadened relaxation function) (Fuoss and Kirkwood 1941).

The most general formula is the model function of Havriliak and Negami

(HN function) (Havriliak and Negami 1966, 1967; Havriliak 1997) which reads

e�HN oð Þ ¼ e1 þ De

1þ iotHNð Þb
� �g : (12:28)

In Eq. 12.28 b and g (0 < b, bg � 1) are fractional shape parameters which

describe the symmetric and asymmetric broadening of the complex dielectric

function. tHN is characteristic relaxation time. The maximum position of the

dielectric loss depends on the shape parameters according to (Diaz-Calleja 2000;

Boersema et al. 1998; Schröter et al. 1998)

op ¼ 1

tHN
sin

bp
2þ 2g

� �1
b

sin
bgp

2þ 2g

� ��1
b

: (12:29)

The separation into real and loss part yield to

e0 oð Þ � e1 ¼ De r oð Þ cos gC oð Þð Þ; e00 ¼ De r oð Þ sin gC oð Þð Þ (12:30)

with

r oð Þ ¼ 1þ 2 otHNð Þb cos
bp
2

� �
þ otHNð Þ2b

� ��g
2

(12:30a)

and

c oð Þ ¼ arctan
sin bp

2

� �
otHNð Þ�b þ cos bp

2

� �
2
4

3
5: (12:30b)

Figure 12.4 compares the calculated dielectric loss for the Debye and the HN

function for different shape parameters.

From the experimental point of view, all relevant parameters like the relaxation rate

(or time), the dielectric strength, and the shape parameters can be estimated by fitting

the HN function to the data (for details see references Schlosser and Schönhals 1989;

Schönhals and Kremer 2003). As an example Fig. 12.5 gives the dielectric loss for

poly(vinyl acetate) at the dynamic glass transition versus frequency at a temperature of

T ¼ 335.6 K. Only the HN function is able to describe the data correctly.
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12.2.3.2 Electrical Conduction
Equation 12.5 gives the relationship between the complex dielectric function and

the complex conductivity. For semiconducting disordered materials like conducting

polymers, the frequency dependence of the real part of the complex conductivity
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Fig. 12.5 Dielectric loss of

poly(vinyl acetate) versus

frequency at

T ¼ 335.6 K. The dashed line
is a fit of the HN equation to

the data including

a conductivity contribution.

The solid line represents the
relaxational contribution

according to the HN function.

The dashed-dotted line
represents the Debye function
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s0(o) displays a kind of similar behavior (Dyre and Schroder 2000). (1) At tem-

peratures where charge transport is enabled, s0(o) has a plateau s0 for frequencies

o smaller than a given crossover frequency oc. (2) For frequencies o> oc a gradual

dispersion sets in the form of a power law s0(o)�os, with 0.5 � s � 1. The

parameter s increases with decreasing temperature and increasing frequency.

(3) In a good approximation a time-temperature superposition can be assumed

by scaling the normalized conductivity s0(o)/s0(0) with respect to

a normalized frequency o/oc. (4) Between s0(0) and oc the Barton-Nakajima-

Namikawa (BNN) relationship s0(0)�oc holds (Barton 1966; Nakajima 1971;

Namikawa 1975).

A variety of models exist to explain these similarities on a microscopic level.

The simplest of them is the random free energy barrier model developed by Dyre

(1988). In this model hopping is assumed to be basic mechanism for conduction

where hopping takes place over spatially varying energy barriers. Within the

continuous time random walk approximation (Montroll and Weiss 1965), this

model results in

s� oð Þ ¼ s 0ð Þ iote
ln 1þ ioteð Þ

� �
, (12:31)

where 1/te is the attempt frequency to overcome the highest energy

barrier determining the DC conductivity s(0). For the real s0(o) and imaginary

part s00(o),

s0 oð Þ ¼ s 0ð Þotearctan oteð Þ
0:25 ln2 1þ o2t2e

	 
þ arctan oteð Þ (12:32)

s00 oð Þ ¼ s 0ð Þoteln 1þ oteð Þ
0:25 ln2 1þ o2t2e

	 
þ arctan oteð Þ (12:33)

is delivered. For the exponent s one obtains s ¼ 1�2/ln(ote) (Dyre 1988).

12.2.3.3 Interfacial Polarization
Interfacial polarization or Maxwell/Wagner/Sillars (MWS) polarization (Wagner

1914; Sillars 1937) is a phenomenon that is characteristic for phase-separated or

multiphase systems like immiscible polymer blends. Precondition for the observa-

tion of a MWS polarization is that the different phases have nonidentical properties.

As a result of this, for instance, accumulation of charges takes place at the interfaces

of the different phases. Steeman and van Turnhout (2003) published a compilation

concerning polymeric materials including polymer blends.

MWS polarization gives rise to a dielectric behavior that can be very difficult to

be distinguished from dipole relaxation. All properties of the process related to

MWS polarization like its position, its strength, and its shape depend strongly on
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the complex permittivity, the geometry and conductivity of the dispersed phase,

as well as the dielectric properties of the matrix. As an example, a dispersed

phase is considered having the complex dielectric function ef
*(o) with the

volume fraction ff where the matrix exhibits a complex dielectric

permittivity eM
* (o). In a mean field approach, the complex dielectric function

eC
* (o) of the heterogeneous system can be calculated to (Steeman and van

Turnhout 2003)

e�C oð Þ ¼ e�M oð Þ ne�f oð Þ þ 1� nð Þe�M oð Þ� �þ 1� nð Þ e�f oð Þ � e�M oð Þff

� �
ne�f oð Þ þ 1� nð Þe�M oð Þ� �� n e�f oð Þ � e�M oð Þff

� � : (12:34)

n (0 � n � 1) is the shape factor of the dispersed phase in the direction of the

electric field lines. For spheres the values n in three directions (a, b, c) are

identical with na ¼ nb ¼ nc ¼ 1/3. For rodlike phase 0 � n � 1/3 holds with

the limiting case of a needle na ¼ 0 and nb ¼ nc ¼ 1/2. For a platelike

particle na ¼ 1 and nb ¼ nc ¼ 0 holds. For more details see reference van

Beek (1967).

Considering these equations one has to keep in mind that the morphology of

phase-separated polymer systems is often more complex or even not well defined.

This makes a quantitative modeling quite difficult.

12.2.4 Dielectric Instrumentation

The complex dielectric function e*(f) can be measured in the extremely broad

frequency regime from 10�3 to 1012 Hz. To do so different methods based on

different physical principles must be combined. A detailed overview can be found

elsewhere (Kremer and Schönhals 2003).

For lower frequencies (10�3–107 Hz), the sample is modeled as a parallel or

serial circuit of an ideal capacitor and an ohmic resistor. The spatial extent of the

sample on the distribution of the electric field is neglected. This is called lumped

circuit approximation. For frequencies higher than 100 kHz, firstly, parasitic

impedances caused by cables, connectors, etc., become important. Secondly,

the wavelength of the electromagnetic field decreases to the order of magnitude

of the sample dimension. This means the geometrical dimensions of the

sample capacitor become more and more important limiting the application

of the lumped circuit methods to about 10 MHz. For higher frequencies the

so-called distributed circuit approach has to be applied. By the application

of both waveguide and cavity techniques, complex propagation factor

(in reflection or transmission) can be measured from which the complex dielec-

tric function can be deduced in the frequency range from 107 to 1011 Hz. For

even higher frequencies quasi-optical setups and Fourier transformation tech-

niques can be employed. A detailed discussion of these methods is beyond the

scope of this chapter.
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The complex dielectric function is related to the complex capacity C* of

a capacitor filled with a polymeric material under study by

e� oð Þ ¼ C� oð Þ
C0

¼ J� oð Þ
ioe0 E� oð Þ ¼

1

ioZ� oð ÞC0

, (12:35)

where C0 is the (geometrical) capacitance of the unfilled sample capacitor. For

a periodical field in the linear range with the angular frequency o, the complex

dielectric function can be expressed by measuring the complex impedance Z*(o) of
the sample where J*(o) is the complex current density. Different experimental

setups (Kremer and Schönhals 2003) like Fourier correlation analysis in combina-

tion with dielectric converters (10�6–107 Hz) (Pugh and Ryan 1979; Schaumburg

1994, 1999), impedance analysis (101–107 Hz), RF reflectometry (106–109 Hz)

(Böhmer et al 1989; Jiang et al. 1993), and network analysis (107–1011 Hz) (Collin

1966; Hewlett Packard 1985; Pelster 1995) are employed. In the following selected

methods which have implications on polymeric blend systems are described in

more detail.

12.2.4.1 Fourier Correlation Analysis in Combination with Dielectric
Converters

The principle of the Fourier correlation analysis is given in Fig. 12.6. A generator

provides a sinusoidal voltage U1(t) with angular frequency owhich causes a current

IS(t) through the sample having an impedance ZS
*(o). The resistor R converts

IS(t) into a voltage U2(t). Both voltages U1(t) and U2(t) are analyzed with respect

to their amplitude and phase with regard to the base frequency o by Fourier

analysis. Technically this is carried out by employing two phase sensitive

correlators providing the complex voltages U1
*(o) and U2

*(o). Hence, the sample

impedance is given according to Ohm’s law by

Z�
S oð Þ ¼ U�

S oð Þ
I�S oð Þ ¼ R

U�
1 oð Þ

U�
2 oð Þ � 1

� �
(12:36a)

where for Uj
*(o) ¼ Uj

0(o) + i Uj
0 0(o) (j ¼ 1,2),

Generator

Sample
capacitor Specimen

IS*

ZS*

U2*U1*

R

VVA Ch1 VVA Ch2

Fig. 12.6 Circuit diagram of

Fourier correlation analysis

(VVA vector voltage analyzer)
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U0
j oð Þ ¼ 1

NT

ðNT
0

Uj tð Þ sin o tð Þdt and (12:36b)

U00
j oð Þ ¼ 1

NT

ðNT
0

Uj tð Þ cos o tð Þdt (12:36c)

holds. N is the number of cycles with duration T¼ 2p/o, US
*(o) is the complex voltage

at the sample, and IS
*(o) is the complex current through the sample. Technically the

Fourier analysis is done by frequency response analyzers or lock-in amplifiers which

are state-of-the-art equipments. Digital components like filters are employed.

A fixed resistor R especially for low frequencies f suffers several limitations.

Therefore, the resistor R is replaced by an amplifier with a variable gain according

to Fig. 12.7. This results in a variable impedance ZX
* (o) which can be adjusted to the

impedance of the sample ZS
*(o). For the sample impedance, then

Z�
S oð Þ ¼ U�

1S oð Þ
I�S oð Þ ¼ �U�

1S oð Þ
U�

2S oð Þ Z
�
X oð Þ (12:37)

holds. The accurateness in the determination of ZS
*(o) is limited by phase and

amplitude errors in the amplifier and correlators as well as by the contribution of the

cables. These errors can be minimized by measuring a known impedance ZR
* (o)

under the same condition as the sample. Analogous to Eq. 12.37

Z�
R oð Þ ¼ U�

1R oð Þ
I�R oð Þ ¼ �U�

1R oð Þ
U�

2R oð Þ Z
�
X oð Þ (12:38a)

holds. By combining Eqs. 12.37 and 12.38a, one obtains for the impedance of the

sample

converter

Specimen

−

+

Sample
capacitor

Generator

VVA Ch1 VVA Ch2

U1* U2*

ZR*

ZS*

ZX*

IS*

IR*

Fig. 12.7 Circuit diagram of

Fourier correlation analysis

with a dielectric converter for

the low-frequency range and

a variable reference

impedance ZR
* (o) (VVA

vector voltage analyzer)
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Z�
S oð Þ ¼ U�

1S oð Þ
U�

2S oð Þ
U�

2R oð Þ
U�

1R oð Þ Z
�
R oð Þ: (12:38b)

12.2.4.2 Impedance Bridges
In principle impedance bridges are the extensions of the Wheatstone resistance

bridge to complex resistances (impedances). Historically one has to consider the

Schering bridge or the bridge according to Giebe und Zickner (see, for instance,

McCrum et al. 1967).

The principle of modern impedance bridges is given in Fig. 12.8. In the sample

branch a generator generates the sinusoidal voltage US
*(o) with an angular fre-

quency o. This voltage causes a current IS
*(o) through the sample with the imped-

ance ZS
*(o) at point P1. In the comparison branch a second generator generates

a voltage which can be varied with regard to both its phase and its amplitude. This

voltage is adjusted in that way that it drives a current IC
* (o) through a compensation

impedance ZC
* (o) which is equal to � IS

*(o). Hence, in the balanced state at P1

I0
* ¼ IS

* � IC
* ¼ 0 is valid and for the sample impedance

Z�
S oð Þ ¼ U�

S oð Þ
I�S oð Þ ¼ �U�

S oð Þ
U�

C oð Þ Z
�
C oð Þ (12:39)

is obtained.

12.2.4.3 High-Frequency Methods
For frequencies higher than 106 Hz, the electromagnetic waves have to be guided in

coaxial waveguides because the use of cables will lead to parasitic losses mainly

due to inductivities. Moreover, standing waves may arise at frequencies higher than

107 Hz. A modern approach to measure the dielectric properties in the frequency

range from 106 to 109 Hz is coaxial reflectometry (Böhmer et al. 1989; Jiang

et al. 1993; Agilent Technologies 2000). By this approach the sample is modeled

as a part of the inner conductor of a coaxial short. The principle of this technique is

illustrated in Fig. 12.9. The impedance of the specimen is estimated from a complex

reflection coefficient G* defined by the ratio of the complex voltages of the incident

(UInc
* ) and reflected (URef

* ) waves:

Sample
capacitor

Generator

Specimen
Compensation
impedance Zc

Variable
Amplitude-
Phase-
Generator

DetectorUS* UC*
IS*

ZS*

I0*

I0* = 0

IC*

P1

Fig. 12.8 Circuit diagram of

an impedance bridge
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G� ¼ Gx � iGy ¼ U�
Ref

U�
Inc

Z� ¼ Z0

1þ G�

1� G� : (12:40)

Z0 is the wave resistance of the coaxial line.

To derive Eq. 12.40 ideal coaxial lines have to be assumed which is not the case

in practice. Therefore, calibration procedures have to be applied. First, the influence

of the measuring cell has to be obtained and considered during the calculation of the

sample impedance. Second, the direction-dependent resistance of the line has to be

measured by a second calibration procedure because it cannot be obtained by an

equivalent circuit diagram.

At frequencies above 1 GHz, network analysis might be applied where both the

reflected and the transmission of the signal through the sample are analyzed with

respect to phase and amplitude (Kremer and Schönhals 2003).

An example for a broadband dielectric measurement is given in Fig. 12.10, where

the dielectric loss versus frequency is given for poly(propylene glycol)

(M¼ 200 g mol�1). The data were obtained by a combination of Fourier correlation

analysis and coaxial line reflectometry.

12.2.4.4 Thermostimulated Currents
The dielectric properties of a polymeric system can be also investigated in the

temperature domain by the method of thermally stimulated currents (TSC) devel-

oped by Bucci et al. (1966). This method was broadly applied to polymers by van

Turnhout (1975), Lacabanne (Larvergne and Lacabanne 1993), and Teyssedre

(Teyssedre et al. 1997) (see also the references given therein). In principle the

method is based on the temperature dependence of the relaxation times and the fact

that a given value of the relaxation time corresponds to an experimental time scale

signal
source bidirectional

coupler

specimen

Incoming
signal

U*in U*ref

reflected
signal

ideal
specimen
holder

real
specimen
holder

Fig. 12.9 Scheme of a coaxial line reflectometer with sample head
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(heating rate) at a certain temperature. In the simplest approach assuming a Debye-

like response (see Eq. 12.24), the sample is polarized by a field EP for a given time

at a polarization temperature TP. After that, the sample is cooled down

to a temperature TS with applied electric field. TS should be low enough that

t(TS) is long enough to prevent any depolarization of the sample at the experimen-

tal time scale. The frozen-in polarization P0 is estimated to P0 ¼ N m2

3 kB TP V
EP .

A subsequent heating of the specimen with a heating rate k ¼ dT/dt leads to

a depolarization current or depolarization current density J(T). By measuring

the current density as function of time, a peak is observed when groups or

segments become mobile and frozen-in polarization can be released. According

to Eq. 12.24 the temperature dependence of the polarization can be described

theoretically by

P Tð Þ ¼ P0 exp �
ðT
TS

dT0

kt T0ð Þ
� �

: (12:41)

Experimentally the temperature dependence of the polarization can be obtained

by integrating J(T) between T and a temperature Tf at which J(T) becomes zero:

P Tð Þ ¼ 1

k

ðTf

T

J T0ð ÞdT0: (12:42)

Depending on the heating rate, a TSD measurement corresponds

to a conventional dielectric measurement carried out at a low frequency of 10�4
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Fig. 12.10 Dielectric loss e00

versus frequency for poly

(propylene glycol) (M ¼
2,000 g mol�1) at the given

temperatures. The peak at

lower frequencies

corresponds to the normal

mode process, whereas the

peak at higher frequencies is

due to the a-relaxation. The
data were obtained by

a combination of Fourier
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12 Broadband Dielectric Spectroscopy on Polymer Blends 1319



to 10�3 Hz. For this reason a TSC curve can be also directly compared to

a corresponding differential scanning calorimetry (DSC) measurement.

A relaxation time can be calculated from the measurements according to

(Teyssedre et al. 1997)

t Tð Þ ¼ � P Tð Þ
dP=dT

(12:43)

without any further hypothesis.

In addition to these general considerations, methods have been developed

considering also a distribution of relaxation times based on partial heating tech-

niques or the fractional depolarization approach (Teyssedre et al. 1997).

Because currents can be measured with a high accuracy, the TCS method is

a quick and sensitive method to investigate the dielectric properties of polymers.

But it should be noted that, for instance, in the glass transition range, the data

depends on the experimental conditions like heating and cooling rates which make

the quantitative analysis of these measurements more difficult (Kubon et al. 1988;

Schrader and Schönhals 1989).

The application of the TSC method to miscible blends is discussed below (see

Sect. 12.4.2). Some further discussion can be found in references Vanderschueren

et al. (1980), Topic et al. (1987), Migahed and Fahmy (1994), Topic and Veksli

(1993), Sauer et al. (1997), Sauer and Hsiao (1993), and Sauer et al. (1992).

12.3 Dielectric Relaxation of Amorphous Homopolymers

In the following section the essential properties of amorphous polymer systems in

the bulk will be discussed briefly. In general, for dense polymers one has to consider

that the fluctuations of segments or whole chains are influenced not only by

intramolecular but also by intermolecular correlations. In order to calculate the

mean square dipole moment (see Eq. 12.16) or the corresponding correlation

function, one has to sum up over all chains in the system (Schönhals 2003).

The most amorphous polymers have two relaxation regions. At low temperature

(or high frequencies) a so-called b-relaxation is observed as a broad peak in the

dielectric loss. At higher temperatures or lower frequencies than the b-process, the
a-relaxation is observed which is also called principal relaxation or dynamic glass

transition. For type-A polymers (see Sect. 12.2.2.2) having a component of the

dipole in the direction of the chain backbone at frequencies lower than that of the

a-relaxation, a further dielectric active process is observed which is called a0- or
normal mode relaxation related to the overall chain dynamics. As an example for

the last two processes, Fig. 12.10 depicts the dielectric loss for poly(propylene

glycol) (M¼ 2,000 g mol�1) as a type-A polymer in the frequency range from 10�4

to 109 Hz. The relaxation processes are indicated as peaks in the dielectric loss. The

process at higher frequencies is the a-relaxation which is related to the dynamic

1320 H. Yin and A. Schönhals



glass transition, whereas the peak at lower frequencies corresponds to the normal

mode process. In the following the characteristic properties of the b-, a-, and the

normal mode relaxation of amorphous polymers are briefly discussed. Apart from

these processes amorphous polymers can also exhibit further dielectrically active

relaxation processes.

12.3.1 b-Relaxation

There is a general agreement that the dielectric b-relaxation of amorphous

polymers arises from localized rotational fluctuations of the dipole vector.

There are two different approaches to discuss the b-relaxation on a molecular

level. At the one hand side, Heijboer (1978) developed a nomenclature for the

molecular mechanisms which can be responsible for this process. According to

this picture, fluctuations of localized parts of the main chain and the rotational

fluctuations of side groups or parts of them can be discussed. There are studies

on model systems which seem to support this approach (Buerger and Boyd 1989;

Katana et al. 1993; Corezzi et al. 1999; Tetsutani et al. 1982a, b). Moreover,

detailed investigations on poly(n-alkyl methacrylate)s in dependence on the

length of the alkyl side chain seem to favor this idea also (Tetsutani

et al. 1982a, b; Gomes Ribelles and Diaz Calleja 1985; Garwe et al. 1996;

Zeeb et al. 1997). Regarding the latter class of materials, one has to keep in

mind that the relaxation behavior of the poly(n-alkyl methacrylate)s is quite

unusual compared to other polymers. Also a degeneration of the calorimetric

glass transition with increasing length of the side chains (Hempel et al. 1996)

and indications for a nanophase separation (Beiner and Huth 2003) are detected.

Moreover, the b-peak can consist of different relaxation processes. This is

demonstrated by Fig. 12.11 where the b-peak of poly(bisphenol A carbonate)

is deconvoluted in to two processes (Yin et al. 2012) in agreement also with the

literature (Alegrı́a et al. 2006; Arrese-Igor et al. 2008).
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The second approach to assign the b-relaxation on a molecular level was

outlined by Goldstein and Johari (1970; Johari 1973). In their approach the

b-relaxation is a generic feature of the glass transition and the amorphous state.

The main argument is that such b-relaxation processes could be observed besides

for polymeric systems for a great variety of glass-forming materials like

low-molecular-weight glass-forming liquids and rigid molecular glasses (Johari

1973). Also for polymers in which the dipoles are rigidly attached to the main

chain, the dielectric b-relaxation was well known. Recently the b-relaxation is

intensively discussed because it is supposed that the investigation of this process

can help to understand the nature of the dynamic glass transition which is a topical

problem of soft matter physics (Anderson 1995; Angell 1995). As a general con-

clusion one can state that the b-relaxation can be of intra- and/or intermolecular

nature.

In the following the properties of the b-relaxation are briefly given in

terms of its relaxation rate, its dielectric strength, and the shape of the relaxation

function.

12.3.1.1 Relaxation Rate fp,b
In general the temperature dependence of the relaxation rate of the b-relaxation
follows the Arrhenius equation:

fp,b ¼ f1b exp � EA

kB T

� �
: (12:44)

fp1 is the preexponential factor which should be in the order of 1012–1013 Hz.

The activation energy EA depends on both the internal rotational barriers and the

environment of a fluctuating unit. Typical values for EA are 20–50 kJ mol�1.

12.3.1.2 Dielectric Strength D«b
For most of the polymers for the relaxation strength of the b-relaxation,
Deb << Dea holds. Here Dea is the dielectric strength of the a-relaxation. This is
true for such polymers like polycarbonate (Katana et al. 1993), poly(vinyl chloride)

(Matsuo et al. 1965; Colmenero et al. 1993), poly(propylene glycol) (Schönhals and

Kremer 1994), or poly(chloroprene) (Matsuo et al. 1965), just to mention a few.

This is also the case for semicrystalline polymers poly(ethylene terephthalate)

(Coburn and Boyd 1986; Hofmann et al. 1993) or poly(ethylene 2,6 naphthalene

dicarboxylate) (Hardy et al. 2001). For some polymers containing flexible side

groups like poly(n-alkyl acrylate)s (Kremer et al. 1992; Williams and Watts 1971),

Deb � Dea is valid. The exceptions of these rules are the poly(n-alkyl methacrylate)s

for which Deb > Dea is measured (McCrum et al. 1967; Garwe et al. 1996; Williams

and Edwards 1966; Sasabe and Saito 1968). Untill now the molecular reason for this

behavior is not clear. NMR measurements show that the motions of the main and the

side chain are coupled (Kulik et al. 1994). This might be a molecular reason for

this exception.
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12.3.1.3 Shape of the Relaxation Function
The peak related to the b-relaxation is rather broad and symmetric. Using the

half-height width of the loss peak, it can be four to six decades wide. With

increasing temperature, the width of the b-peak decreases. Quite often the width

of the b-relaxation is modeled by both a distribution of the activation energy

and the preexponential factor (in the sense of Eq. 12.27) which might be related

to a distribution of molecular environments of the relaxing dipole. In most cases it

is difficult to extract information on the basic mechanisms of molecular

motion. In other cases the broadness of the b-peak can be also due to the

overlapping of different relaxation processes as demonstrated for polycarbonate

(see Fig. 12.11).

12.3.2 a-Relaxation (Dynamic Glass Transition)

Untill today the dynamic glass transition (a-relaxation) which is related to the

thermal glass transition is a topical problem of soft matter research (Anderson

1995; Angell 1995; Schönhals and Kremer 2012). For polymers the dynamic glass

transition is related to segmental dynamics which is related to conformational

changes. These changes are not independent from each other and many degrees

of freedom are involved in such a process. A variety of models have been developed

for such a process. Examples for such models are the Shatzki crankshaft (Shatzki

1962) and the so-called three-bond motion (Valeur et al. 1975a, b) which are

critically discussed in reference Hall and Helfand (1982). Today, the understanding

of the segmental dynamics in an isolated chain is based on ideas of Helfand

et al. (Hall and Helfand 1982) and/or Skolnik et al. (Skolnik and Yaris 1982).

They describe the segmental motion as a damped diffusion of conformational states

along the chain. A conformational transition can occur spontaneously and iso-

lated, but due to the disturbed bond lengths and also the angles, the probability

that in a neighbored segment also a conformational transition will take place is

enhanced. For this reason a conformational state seems to diffuse along the

backbone. At some point this process will stop because of the fact that the

probability for a conformation change in a neighbored segment is smaller than

one. This means not each conformational change in a segment will lead automat-

ically to a conformational transition in the neighbored unit. So the diffusion of

conformational states along the chain is damped.

The model developed for isolated chains in solutions should be also applied in

the dense state. But for bulk systems besides the intermolecular interactions, also

the intramolecular interactions have to be taken into account. This can be done, for

instance, by considering a test segment which fluctuates in the environment of other

fluctuating segments (Schönhals and Schlosser 1989).

12.3.2.1 Relaxation Rate fp,a
It is well known that the temperature dependence of the relaxation rate of the

a-relaxation does not follow the Arrhenius law. Very often close to the thermal
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glass transition temperature Tg, it can be described by the Vogel/Fulcher/

Tammann/Hesse (VFT) formula (Vogel 1921; Fulcher 1925; Tammann and

Hesse 1926):

logfpa ¼ logf1a � A

T� T0

: (12:45)

log fa1 (fa1 � 1010–1012 Hz) and A are constants where T0 is the

so-called Vogel temperature which is found to be 30–70 K below Tg. Empirically

and also by temperature-modulated DSC (Schick 2012), it was shown that the glass

transition temperature corresponds to relaxation rates of 10�3–10�2 Hz.

Therefore, a dielectric glass transition temperature Tg
Diel can be defined by

Tg
Diel ¼ T (fpa � 10� 3...10� 2 Hz).

An analogous representation for the temperature dependence of the

relaxation rate of the a-relaxation is the Williams/Landel/Ferry (WLF) relation

(Ferry 1980):

logaT Tð Þ ¼ log
fpa Tð Þ

fpa TRefð Þ ¼ � C1 T� TRefð Þ
C2 þ T� TRef

, (12:46)

where aT(T) is the so-called shift factor, TRef is a reference temperature and

fpa(TRef) is the relaxation rate at this temperature. C1 and C2 ¼ TRef – T0 are the

WLF parameters. Equations 12.45 and 12.46 are mathematically equivalent. More-

over, it has been discussed that the WLF parameters should have universal material-

independent values if TRef ¼ Tg is chosen (Ferry 1980). However, it was found

experimentally that these estimates are only rough approximations.

aT(T) is often used to construct master curves in the framework of the time-

temperature superposition (TTS) principle (Ferry 1980).

The VFT equation can be used to describe the temperature dependence of the

relaxation rate close to the glass transition temperature. For higher

temperatures (T ¼ Tg + 80 . . . 100 K) deviations are observed. It is discussed

in the literature whether the data at higher temperature have to be

described by a second VFT law with different parameters or by an Arrhenius

equation.

There are several models to understand the strong temperature dependence

of the relaxation rate of the dynamic glass transition. Besides mode coupling theory

(see, for instance, Götze 2009), one of them is the free volume approach

discussed in detail in reference Schönhals and Kremer (2012). The cooperativity

approach was pioneered by Adam and Gibbs (1965). They introduced

the cooperatively rearranging region (CRR) which is defined as the smallest

volume which can change its configuration independently from the neighboring

regions. If z(T) is the number of segments per CRR, the relaxation rate can be

expressed as
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1

t
� fp � exp � z Tð ÞDE

kB T

� �
� exp � s�DE

kBTSC

� �
� exp � C

TSC

� �
: (14:47)

DE is a free energy barrier for a conformational change of a segment, SC is the

total configurational entropy, and s* is the configurational entropy related to such

a rearrangement. The right-hand part of Eq. 12.47 corresponds to the

original formulation of Adam and Gibbs theory (Adam and Gibbs 1965). The

configurational entropy SC can be related to the change of the specific heat capacity

Dcp at Tg by

Sc Tð Þ ¼
ðT
T2

Dcp
T

dT: (12:48)

With T2 ¼ T0 and Dcp � 1/T, the VFT equation is obtained. At the

Vogel temperature the configurational entropy vanishes, z(T) diverges like

z(T) � (T � T0)
� 1, but no information about the absolute size of a CRR can

be obtained. The approach of Adam and Gibbs was extended by Donth (1992, 2001)

to obtain the size of a CRR. Within a fluctuation model a formula was developed

which allows to calculate a correlation length x (or volume VCRR) from the height

of the step in cp and the temperature fluctuation dT of a CRR at Tg as

x3 ¼ VCRR ¼ kB T
2
gD 1=cp

	 

rdT2

, (12:49)

where r is the density and D(1/cp) the step of the reciprocal specific heat capacity at
the glass transition where cV� cp was assumed. dT can be extracted experimentally

from the width of the glass transition (Donth 1982; Schneider et al. 1981; Donth

et al. 2001a, b). Within that approach the size of a CRR was estimated for several

polymers to be in the range of 1 to 3 nm in accord with the above estimation. This

corresponds to 10–200 segments (Hempel et al. 2000; Beiner et al. 1998b; Kahle

et al. 1997).

12.3.2.2 Dielectric strength D«a
Generally, for the a-relaxation Dea decreases with increasing temperature. This

seems in accord with Eq. 12.11, but the experimental results show that the depen-

dence is much stronger than predicted. Especially close to Tg the increase of Dea
with decreasing temperature is quite strong. It is clear that this increase of Dea with
decreasing temperature cannot be explained by the increase of the density with

decreasing temperature. Also its modeling by a temperature-dependent g-factor

remains formal because g was introduced to describe static correlations between

dipoles like association. Apart from polymer a similar temperature dependence of

Dea was also observed for low-molecular-weight glass-forming materials

(Schönhals 2001). It can be argued that this temperature dependence results from
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an increasing influence of (intermolecular) cross-correlation terms to m2 with

decreasing temperature. In other words the reorientation of a test dipole is

influenced increasingly by its environment with decreasing temperature. This is

in agreement with the cooperativity approach to the glass transition as discussed

above.

12.3.2.3 Shape of the Relaxation Function
In general the a-process shows in the frequency domain a broad (the width ranges

from two up to six decades depending on structure) and asymmetric peak. Gener-

ally, it is assumed that in contradiction to the b-process, the shape of the relaxation
function of the dynamic glass transition is not related to a distribution of relaxation

times due to local spatial heterogeneities. Rather this broad, asymmetric loss peak is

an intrinsic feature of the dynamics of glass-forming systems.

12.3.3 Normal Mode Process

A dielectric normal mode process is observed only for polymers having a dipole

moment in parallel to the chain backbone, the so-called type-A polymers like

cis-1,4-polyisoprene or poly(propylene glycol). The resulting dipole moment is

proportional to the end-to-end vector of the chain. Therefore, the normal mode

relaxation is directly related to the overall chain dynamics. Figure 12.10 shows that

the corresponding relaxation rate fp,n is always located at frequencies lower than

that characteristic for the a-relaxation. fp,n depends strongly on the molecular

weight of the polymer chain. Figure 12.12 shows the dielectric loss versus temper-

ature at a fixed frequency for cis-1,4-polyisoprene for different molecular weights.

While the low-temperature (high-frequency) a-relaxation shows only a weak

dependence on the molecular weight M, the high-temperature peak caused by the

normal mode process depends strongly on M.
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The temperature dependence of the relaxation rate for the normal mode process

follows in a wide temperature range the VFT equation but with different parameters

than for the a-relaxation.
For chainswith a lowmolecularweight (unentangledcase), theRouse theory (Adachi

andKotaka 1993;Rouse 1953) can be employed to describe it because excluded volume

effects and hydrodynamic interactions are screened out (de Gennes 1979).

For higher molecular weights (entangled case), in principle the reputation theory

(de Gennes 1979; Doi and Edwards 1986) and its generalization (contour length

fluctuations and/or constrained release) have to be used (Milner and McLeish 1998;

Likhtman and McLeish 2002; Liu et al. 2006; Zamponi et al. 2006; Chávez and

Saalwächter 2010). A more detailed discussion of the normal mode process is

beyond this chapter. The reader is referred to the relevant literature (Adachi and

Kotaka 1993; Schönhals 1993; Gainaru and Böhmer 2009; Abou Elfadl et al. 2010).

To conclude this section Fig. 12.13 gives the relaxation map where the relaxation

rates for the different processes are plotted versus inverse temperature for poly

(propylene glycol) with a molecular weight of 4,000 g mol�1. While the temperature

dependence of the b-relaxation follows the Arrhenius equation, the relaxation rates

for both the a-process and the normal mode process are curved when plotted 1/T.

12.4 Dielectric Relaxation of Polymer Blends

12.4.1 General Consideration

The blend miscibility is governed by the free energy of mixing:

DGM ¼ DHM � TDSM, (12:50)

where DGM is the change in the Gibbs free energy of mixing. DHM and DSM denote

the excess enthalpy and the mixing entropy. Mixing will take place for DGM < 0.
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For polymers the contribution of the entropy of mixing DSM to the free enthalpy

of mixing DGM is small. According to the lattice model of Flory/Huggins

(Sperling 1986), DGM is assumed to be

DGM ¼ �kBTDSM þ kF1F2: (12:51)

Here Fi are the volume fractions, Ni are the degrees of polymerization, and k
denotes the Flory/Huggins interaction parameter. For the entropy of mixing DSM,

DSM ¼ � F1

N1

lnF1 þ F2

N2

lnF2

� �
(12:52)

is assumed. Based on the principle of thermodynamics, the conditions for misci-

bility, the critical (solution) temperature for phase separation TC, or the binodals

can be calculated from Eqs. 12.51 and 12.52. In general the Flory/Huggins

theory can be used to describe systems with an upper critical solution

temperature. This means at temperatures above TC, the two components are

miscible on a molecular level, whereas below TC phase separation occurs. The

composition of these phases follows the binodal. That means even in the phase-

separated state, a certain degree of mixing (depending on k and on Ni) is observed

which leads to a component 1 and to a component 2 rich phase. Systems with

a lower critical solution temperature cannot be described by the Flory/Huggins

theory.

Because for most systems the entropy of mixing is small, attractive interactions

between both components are needed to obtain a homogeneous mixed state. In the

opposite case miscible polymer blends for which k�0 (no or weak interactions) are

called athermal blends.

In general the b-, the a-, and even the normal mode process will be modified in

the case of miscible blends or in systems with partial miscibility. Only for

completely phase-separated materials (as the limiting case), the relaxational

characteristic of both compounds is fully maintained. The most sensitive process

with regard to blending is the a-relaxation. Figure 12.14a shows the expected

relaxation map for a miscible system. From the theoretical point of view, a single

a-process should be observed which is located – depending on the

composition – in between the traces obtained for each component. There are

several models like the Flory/Fox or the Gordon/Taylor equation for the depen-

dence of the glass transition temperature on the composition for a homogeneous

blend which can be found in standard textbooks of polymer science (Sperling

1986; Strobl 1996). For more theoretical discussion see, for instance, reference

Lu and Weiss (1992). A recent comparison is given in reference Brostow

et al. (2008). Discussions in the frame of the self-concentration model (for

a detailed discussion see below) are given in Lodge and McLeish (2000). This

concerns also the Brekner equation (Brekner et al. 1988).

For a phase-separated blend with a partial miscibility, two a-processes will be
observed where the location of both processes depends on the composition of both
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phases (see Fig. 12.14b). Therefore, dielectric spectroscopy is expected to provide

valuable information on the local fluctuations of concentrations and on the local

miscibility.

Therefore, dielectric spectroscopy can be used to detect and to define criteria of

miscibility on a molecular level (Zetsche et al. 1990) by studying the dynamic glass

transition. Moreover, both components of a blend will have different polarities in

general. One component can be dielectrically more visible than the other one. In the

limiting case one component can be dielectrically invisible (Zetsche et al. 1990).

Extending this idea by blending a type-A and a type-B polymer, the overall chain

dynamics can be studied only for the polymer of type A employing dielectric

spectroscopy. Taking advantage from the fact that the chain dynamics of type-B

polymer is dielectrically invisible, one can raise the question how the chain motion

of the type-A polymer is influenced by the second component. The normal mode

relaxation senses a larger length scale than the segmental one, so information about

composition fluctuations on different length scales can be deduced. This was

discussed, for instance, for blends of polybutadiene and cis-1,4-polyisoprene
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(Adachi and Kotaka 1993; Adachi et al. 1995; Poh et al. 1996), polystyrene and

cis-1,4-polyisoprene (Se et al. 1997), cis-1,4-polyisoprene and poly(vinyl ethylene)
(PVE) (Hirose et al. 2003), or poly(n-butyl acrylate) and poly(propylene glycol)

(Hayakawa and Adachi 2000a, b).

Concerning the localized b-relaxation, it was found if the interaction of the

two components are weak (athermal blends) the effect of blending on this relaxation

process is small (see, for instance, Schartel and Wendorff 1995; Pathmanathan

et al. 1986; Cendoya et al. 1999; Urakawa et al. 2001; Dionissio et al. 2000). These

dielectric results are also in agreement with quasielastic neutron scattering inves-

tigations (Arbe et al. 1999) and are probably a consequence of the rather small

length scale (localized fluctuations) of motions involved in these processes. This is

further discussed also in reference Fischer et al. (1985).

12.4.2 Miscible Polymeric Blends

12.4.2.1 Dynamic Glass Transition: Experimental
There is a considerable large literature body concerning the dielectric relaxation of

binary polymer blends especially in the temperature range of the dynamic glass

transition (see, for instance, Floudas et al. 2011; Colmenero and Arbe 2007;

Zetsche et al. 1990; Adachi et al. 1995; Poh et al. 1996; Se et al. 1997; Hirose

et al. 2003; Schartel and Wendorff 1995; Dionissio et al. 2000; Arbe et al. 1999;

Wetton et al. 1978; Alexandrovich et al. 1980; Miura et al. 2001; Rellick and Runt

1986a, b, 1988; Angeli and Runt 1990; Alvarez et al. 1997; Hoffman et al. 2002;

Cangialosi et al. 2005, 2006; Alegria et al. 2002; Leroy et al. 2002, 2003; Lorthioir

et al. 2003; Schwartz et al. 2007a, b; Jin et al. 2004; Ngai and Roland 2004;

Watanabe et al. 1991, 1996; Urakawa et al. 1993a, b, 2006; Katana et al. 1995,

1993, 1992; Zetsche and Fischer 1994; Karatasos et al. 1998; Sy and Mijovic 2000;

Roland et al. 2006; Zhang et al. 2005; Mpoukouvalas et al. 2005; Pathak et al. 1999;

Krygier et al. 2005).

Broadening of the Relaxation Spectrum
It is known for a long time (Wetton et al. 1978) that the relaxation function

measured for a miscible blend is considerably broadened compared to the spectra

of the pure polymers (Colmenero and Arbe 2007). To be more precise the

broadening is more or less symmetric. As an example this is shown for

a miscible blend of polystyrene (PS) and poly(vinyl methylether) (PVME) in

Fig. 12.15 (Colmenero and Arbe 2007; Katana et al. 1992; Zetsche and Fischer

1994). Compared to PVME the dipole moment of PS is weak, and therefore, the

contribution of PS to the dielectric loss of the blend is negligible. In other words

the fluctuations of PVME are selectively monitored by dielectric spectroscopy,

whereas the fluctuations of the PS segments are dielectrically invisible. For the

blend (see Fig. 12.15b), the loss peak is much broader than that for the single

component PVME (see Fig. 12.15a). Moreover, the loss peak narrows as temper-

ature increases. For the PVME/PS blend system, it was proven by a combination
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of dielectric, NMR, and quasielastic neutron scattering investigations using

deuterated polystyrene that the shape of the relaxation function is similar to

that of the corresponding homopolymer at high temperatures (Colmenero and

Arbe 2007).

The broadening of the dielectric spectra for miscible polymer blends is not only

observed for the PS/PVME system. This further demonstrated by Fig. 12.16 where

the normalized dielectric loss is plotted for a blend poly(ethylene-co-vinyl acetate)

(EVA70, 70 % vinyl acetate) with poly(vinyl chloride) (PVC). With increasing

concentration of PVC in the blend, the loss peak systematically broadens in

comparison to that of both components (Rellick and Runt 1988).

The broadening of the dielectric spectra has to be considered as an intrinsic

feature of the dielectric properties of miscible blends. Moreover, the broadening

of the a-relaxation increases with the difference of the glass transition temperatures.

A phenomenological treatment is most simple if one component is dielectrically

more or less invisible as it is the case for polystyrene. In this case the broadening

of the loss peak can be described by a distribution function ec in the sense of

Eq. 12.27:
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e00Blend oð Þ ¼
ð1
0

ec tð Þ e00Vis otð Þdt: (12:53)

e00Vis (o) is the relaxation function of the dielectrically visible component of the

blend. Clearly ec should be related to the molecular structure of the miscible blend.

Equation 12.53 is derived under the assumption that the “live time” of ec is much

longer than the longest relaxation time for the a-relaxation. Often ec is assigned on

a molecular level to temperature-driven composition fluctuations (Katana

et al. 1995; Zetsche and Fischer 1994) which will be discussed in detail later.

Adachi et al. (Hayakawa and Adachi 2000b) suggest the following formula for

the complex dielectric function of a miscible blend:

e�Blend oð Þ ¼ F1e�1 zBlend
z1

o
� �

þ F2e�2 zBlend
z2

o
� �

, (12:54)

where e*i are the complex dielectric function of pure components and zi the
corresponding monomeric friction coefficients (for definition see Ferry 1980;

Sperling 1986; Strobl 1996). This formula is firstly based on the idea that the dipole

moment of the mixture is a weighted sum of the dipole moments of each compo-

nent. Secondly, the segmental mobility in the blend can be described by a common

friction coefficient zBlend. According to this assumption the segmental relaxation

time ti for the pure component i has to be changed to ti
zBlend
zi

. For the friction

coefficient of the blend zBlend,

ln zBlend ¼ F1ln z1 þ F2 ln z2 þ kF1F2 (12:55)

was suggested. k is a parameter which characterizes the interaction between

the two components. Please note that the k parameter can be different from the

Flory/Huggins interaction parameter. This model can also qualitatively describe

experimental results (Hayakawa and Adachi 2000a, b).
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Dynamic Heterogeneity
For the simple theoretical approach outlined in Fig. 12.14a, one should expect that

for a blend which is fully miscible on a molecular level, only a single relaxation

process with a single average relaxation rate (or time) should be observed. In

other words this would correspond to a single average <Tg> measured by DSC.

Figure 12.17 gives the dielectric spectra of poly(vinyl ether) (PVE) and cis-1,4-
polyisoprene (PI) together with results for the blend PVE/PI (50 %/50 %) according

to reference Arbe et al. (1999). For the PVE/PI system both components are

dielectrically visible. For the blend a two peak structure is observed. It is worth to

point out that this double peak structure is observed independently of the already

discussed broadening of the a-relaxation peak. That was proven by quasielastic

neutron scattering investigations where both components of the blend were selec-

tively deuterated (Hoffman et al. 2000). This effect observed for a variety of

miscible binary polymer blends and is called “dynamic heterogeneity.”

Further evidence for the dynamical heterogeneity in miscible polymer blend

was provided by a combination of DSC and TSC measurements. While DSC is

sensitive to the molecular dynamics of the whole blend, TSC monitors

selectively the molecular fluctuations of the polar component. Figure 12.18 com-

pares the temperature dependence of specific heat capacity with that of the depo-

larization current for the blend system PVME/PS (Leroy et al. 2002). For the polar

component PVME, the peak in the TSC curve collapses with the midpoint of the

steplike change of the specific heat capacity usually taken as thermal glass transi-

tion temperature. This indicates that both methods sense the same process which is

the molecular fluctuation of PVME segments responsible for the glass transition.

For the blend a broad DSC trace is observed but with a single step in the specific

heat capacity indicating miscibility. In difference to the thermal data, the TSC peak

is observed at essential lower temperatures. This means the effective (“local”) Tg,eff

due to the polar PVME segments is observed at much lower temperatures than the

overall Tg (<Tg>) of the blend and proves that an Tg,eff different from <Tg> exists

(Leroy et al. 2002).
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In reference Leroy et al. (2002), this was investigated for three different blend

systems. Also Lodge and coworkers evidenced the existence of two different glass

transitions in miscible blends by DSCmeasurements alone (Lodge et al. 2006) or by

a combination of DSC and TSC investigations (Herrera et al. 2005). A similar

conclusion was provided by a combination of dielectric spectroscopy with adiabatic

calorimetry (Sakaguchi et al. 2005) or employing temperature-modulated DSC

(Miwa et al. 2005). Results provided in reference Schwartz et al. 2007b can be

discussed in the same direction. In conclusion, besides the broadening of the

relaxation spectrum, the dynamic heterogeneity must be considered as the second

main feature of the (dielectric) properties of miscible blends.

Kirkwood/Fröhlich Correlation Factor
In Sect. 12.2.2.1 the Kirkwood/Fröhlich correlation factor g as a measure of static

correlations between dipoles is introduced and discussed (see Eq. 12.14). It seems

to be an interesting question in which way g is changed in miscible blends. Data are

provided, for instance, in references Wetton et al. (1978), Alexandrovich

et al. (1980), and Malik and Prud’homme (1984) using Eq. 12.14. As a result it

was observed that the g parameter is only weakly affected by blending
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(Alexandrovich et al. 1980; Rellick and Runt 1986b) in the whole

considered concentration range. This means the conformation of segments was

not significantly changed in the blend. Runt et al. (Rellick and Runt 1986b)

derived an equation to assess the effect on blending on the g-factor relative to

the unblended state:

gBlend ¼ 9e0 kBT
De 2esþe1ð Þ

n eS

g1n1m
2
1 e11 þ 2
	 
2 þ g2n2m

2
2 e21 þ 2
	 
2 , (12:56)

where subscript i indicates the component, n the overall dipole density in the blend,

and ni the mole fraction of the component i in the blend. The numerator is the

effective squared dipole moment in the blend where the denominator was obtained

by a linear combination of the dielectric properties of the blend. Then gBlend is

a measure of the polarization of the blend with respect to an unblended environment

(Rellick and Runt 1986b; Angeli and Runt 1989).

12.4.2.2 Dynamic Glass Transition: Theoretical Models
Most researchers will agree that the molecular fluctuations of a segment i of

a polymer “A” in binary blend are controlled by the local composition fi in some

volume around that segment. This local concentration which is different from the

macroscopic blend composition will give rise to a relaxation time ti which is

different from the mean relaxation time. In general we have a distribution of

different environments having different compositions fi which will lead to

a distribution of relaxation times and hence results in a broadening in the loss

curve. A further consequence of this distribution at a segment i is a distribution of

local Tg.

One approach to model this effect is based on the coupling scheme of Ngai

et al. (Roland and Ngai 1991, 1992a, b). In this scheme a so-called coupling

parameter determines the shape of the relaxation function. In its application to

blends, the local concentrations fi lead to a distribution of the coupling parameter

which will consequently cause a broadening of the relaxation function.

Besides the coupling model two other groups of model have been

developed during the last 15 years: the model of “temperature-driven composition

fluctuations” at the one side and the idea of “self-concentration” on the other side.

Temperature-Driven Concentration Fluctuations (TCF)
The idea of temperature-driven concentration or composition fluctuation traces

back to Karazs et al. (Wetton et al. 1978). One of the first models was developed

by Fischer et al. (Katana et al. 1995; Zetsche and Fischer 1994). This work was

further extended in several directions by Kumar and Colby et al. (Salaniwal

et al. 2002; Kamath et al. 2003a, b, 1999; Kumar et al. 1996, 1999; Kant

et al. 2003).

The temperature-driven concentration fluctuation approach is based on the

following assumptions (see Fig. 12.19):
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1. The sample is divided into i subcells of the volume V having a composition fi

and thus a local glass transition temperature Tg
i (fi).

2. A distribution P(fi) of the composition fi is introduced. This will lead to

a distribution of relaxation times and also a distribution of the local glass

transition temperatures Tg
i (fi). In the approach by Fischer et al. (Katana

et al. 1995; Zetsche and Fischer 1994), P(fi) was assumed to be Gaussian with

a variance <(df)2>. In this model <(df)2> is the only adjustable parameter.

Extending this model non-Gaussian distributions have been also discussed, for

instance, by Kumar (Kumar et al. 1996).

3. The system is incompressible which means that density fluctuations do not exist.

4. The lifetime of the composition fluctuations is much longer than the longest

relaxation time for the a-relaxation.
One open point in the discussion untill now is the size of the volume V. Usually

it is assumed that V is related to the cooperatively rearranging region

(CRR, V � VCRR, see discussions above) characteristic for the glass transition.

It can be estimated taking advantage from the fact that for a Gaussian distribution

P(fi) V should be inversely proportional to < (df)2 > (V � < (df)2 >�1).

A quantification can be done by assuming the CRR to be spherical and

relating <(df)2> to the static structure factor S(Q) in the same way as it was

proposed by Ruland for density fluctuations (Ruland 1957). This approach is

based on the random phase approximation (de Gennes 1979). In reference Katana

et al. (1995), a comparison is made between the values estimated from that

approach and the VCRR calculated from the fluctuation approach by Donth

(see Eq. 12.49). The data are in the same order of magnitude but do not agree

quantitatively.

The TCF models are able to describe the broadening of the relaxation function as

temperature approaches the average glass transition temperature <Tg>. It can be

also seen from Fig. 12.19 that the extra-broadening due to blending decreases with

increasing temperature. The main problem of that approach is the fact that these

Distribution
P(φi)

Low Tg
Component

lo
g 

(R
el

ax
at

io
n 

ra
te

)

Temperature

High Tg
Component

Fig. 12.19 Scheme of the

temperature-driven

concentration fluctuation

approach to binary miscible

blends

1336 H. Yin and A. Schönhals



models have no explanation for the heterogeneous behavior. Moreover, the esti-

mated length scales for glass transition x � VCRR
1/3 grow too strongly as temperature

decreases towards <Tg> and can become larger than 10–20 nm. This is much too

large than expected for the glass transition. A more detailed discussion can be

found, for instance, in reference Colmenero and Arbe (2007).

Self-Concentration Models (SC)
The idea of self-concentration in polymer blends was mainly developed by Lodge

and McLeish (2000) based also on earlier works of Kornfield et al. (Chung

et al. 1994a, b). For reviews in relation to dielectric spectroscopy, see, for instance,

references Colmenero and Arbe (2007) and Maranas (2007). The basic idea is that

due to chain connectivity the average composition in local environment around any

selected segment is enriched in the same kind of segments (correlation hole effect).

In consequence this will lead to different average relaxation times for the segment

of the two components in the blend and hence each component will sense its own

glass transition temperature which is of course composition dependent. For this

reason the self-concentration can account for the heterogeneity effects in the

dynamic of polymer blends.

In the formulation of Lodge and McLeish (2000) (LM model) for a binary blend

with the components i (i ¼ 1,2), the effective concentration is

fi
eff ¼ fi

self þ 1� fi
self

	 

< f > , (12:57)

where <f> is the overall macroscopic composition of the blend. Because of

the chain connectivity, the relevant intramolecular length scale to estimate the

self-concentration is the Kuhn segment length lk (Strobl 1996) which is only

weakly temperature dependent. The self-concentration can be estimated from

the volume fraction due to monomers in a volume spanned by the Kuhn length

(Vk � lk
3) as

fself ¼
C1M0

krNAVK

, (12:58)

where C1 is the characteristic ratio, r density, M0 the molar mass of the repeating

unit, NA Avogadro number, and k counts the number of backbone per repeating

unit. The effective glass transition temperature is defined as

Ti
g, eff ¼ < Tg > f ¼ fi

eff

	 

: (12:59)

Besides the self-concentration the Lodge and McLeish model assumes further

that the composition of the volume V is similar to the macroscopic one. Basically

this means that one distribution of relaxation times (or Tg) is involved. The LM

model treats in contradiction to the TCF approach only mean values. But it is

interesting to note that also self-concentration effects decreases with increasing

temperature.
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In Fig. 12.20 the DSC and TSC data for the blend system PVME/PS discussed in

Fig. 12.18 are analyzed in the framework of the LMmodel (for details see reference

Leroy et al. 2002). The glass transition temperature of the blend measured by DSC

is described by the Brekner formula (Brekner et al. 1988):

Tg f2
	 
 ¼ T1

g þ T2
g � T1

g

� �
1þ K1ð Þf2 � K1 þ K2ð Þ f2

	 
2 þ K2 f2
	 
3h i

:

(12:60)

f2 is the blend concentration of the polymer with the higher Tg value, and Tg
i

(i ¼ 1,2) are the glass transition temperatures of the pure polymers. K1 and K2 are

fitting constants. By combining Eqs. 12.57, 12.59, and 12.60 according to Lodge

and McLeish (2000), the glass transition temperature for the individual components

can be estimated. For the component with the higher Tg
2, one obtains

T2
g, eff f2

	 
 ¼ T1
g þ T2

g � T1
g

� �
1þ K1ð Þf2

eff � K1 þ K2ð Þ f2
eff

	 
2 þ K2 f2
eff

	 
3h i
:

(12:61)

An analogous equation can be obtained for Tg
1. For details see reference Leroy

et al. (2002). Figure 12.20 reveals a remarkably good agreement between the

experimental data and the predictions of the LM model.
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Fig. 12.20 Glass transition temperatures for the blend system PVME/PS versus the concentration

of PS. The open spheres are data measured by DSC indicating the macroscopic Tg of the sample.

The solid squares are data measured by TSC for the dielectrically visible component PVME. The

dashed line is a fit of the Brekner equation to the DCS data. The solid line corresponds to the

prediction of the LM model according to Eq. 12.61 (Data were taken from reference Rellick and

Runt (1986))
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The same approach was also applied by Colmenero et al. to poly

(vinyl methylether) blended with poly(o-chlorostyrene) (PoClS) (Leroy

et al. 2002). The difference to the PVME/PS is that in the case of PVME/PoClS

system, both components are polar and therefore dielectrically visible.

Figure 12.21 shows the results for this system also obtained by a combination

of DSC and TSC investigations. Again a good agreement with the LM model is

obtained.

The self-concentration model by Lodge and McLeish can be also employed to

describe the relaxation map of a miscible blend system. In reference Mpoukouvalas

and Floudas (2008), Floudas et al. report dielectric data for the miscible blend poly

(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) (see Fig. 12.22).

As expected, with increasing concentration of PEO the relaxation rates shifts to

lower temperatures. The data can be modeled by assuming the Vogel temperature

T0 in the VFT equation (see Eq. 12.45) to be dependent on the effective concen-

tration according to Eq. 12.57:

�logfip ¼ logti feff ;Tð Þ ¼ logti1 þ Ai

T� Ti
0 feffð Þ , (12:62)

where Ai and t1
i are the VFT parameters for the two components. In this approach

only the Vogel temperature depends on composition according to
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Fig. 12.21 Glass transition temperatures for the blend system PVME/PoClS versus the con-

centration of PoClS. The open spheres are data measured by DSC indicating the macroscopic

Tg of the sample. The solid squares are data measured by TSC for PVME, whereas the stars are

TSC data measured for PoClS. The dashed line is a fit of the Brekner equation to the DCS

data. The solid line corresponds to the prediction of the LM model for both the low and the

high glass transition temperature component (Data were taken from reference Leroy

et al. (2002))
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Ti
0 feffð Þ ¼ Ti

0 þ Ti
g feffð Þ � Ti

g

h i
, (12:63)

where T0
i are the Vogel temperatures of the pure polymers and T0

i (feff) the value of

the Vogel temperature for the polymer i in the blend. As Fig. 12.22 shows this

approach can reasonably describe the segmental dynamics of PMMA in the blend

PMMA/PEO under the condition that lk is adjusted to 1.62 nm which is larger than

the theoretical value of 1.38 nm (Mpoukouvalas and Floudas 2008). This means, the

self-concentration approach covers some intrinsic features of the molecular dynam-

ics in polymer blends. A better agreement can be obtained by adjusting lk for each

blend composition.

As discussed above the self-concentration idea is able to describe one essential

experimental fact of the molecular dynamics of polymer blends, the dynamic

heterogeneity. But nevertheless there are some strong problems of this approach

which are discussed in detail in reference Colmenero and Arbe (2007). Here only

the main arguments are summarized:

1. The most important drawback of the self-concentration approach is the fact that

the model cannot describe the broadening of the relaxation function induced by

blending. Attempts to combine the self-concentration idea with that of

temperature-driven composition fluctuations are discussed, for instance, in ref-

erence Leroy et al. (2003) and more recently in Shenogin et al. (2007).
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Fig. 12.22 Temperature dependence of the relaxation times of the segmental dynamics

(a-relaxation) for the blend system PMMA/PEO at the indicated concentrations: solid squares,
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pure polymers. The dashed lines are due to fits of the LMmodel with the Kuhn lengths for PMMA

as adjustable parameter (lk ¼ 1.62 nm, theoretical value 1.38 nm) (Data were taken from reference

Mpoukouvalas and Floudas (2008). The concentration dependence of the whole blend was

described by the Fox/Flory equations. For details see also reference Mpoukouvalas and Floudas

(2008))
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2. In the original version of the LM model, fself
i is assumed to be independent of

temperature that is found in some cases. But in other cases the data can be only

described allowing fself
i to be temperature dependent. This concerns also the

relevant length scale x, which is in the LM approach the Kuhn length known

to be only weakly temperature dependent. Experimentally it was motivated

that x could be dependent on temperature (Colmenero and Arbe 2007) as well

as on pressure (Mpoukouvalas and Floudas 2008). This length scale can be also

dependent on the composition and the components (Lutz et al. 2005;

He et al. 2003).

Combination of the Self-Concentration Approach with the Adam/Gibbs
Theory
In the framework of the Adam and Gibbs theory, the temperature-dependent

size of a CRR is related to the spatial extent of cooperative segmental

fluctuations at the dynamic glass transition. For polymer blends the effect of

chain connectivity depends on temperature and can be less or more pronounced.

Therefore, the assumption of a temperature-dependent CRR has some conse-

quences for the relevant length scale responsible for glassy dynamics. Recently

the approach of self-concentration was combined with the theory of Adam

and Gibbs to the glass transition (Cangialosi et al. 2005). Two essential

assumptions are made. Firstly, the systems should behave athermal – this

means that thermodynamic quantities are additive according to the

composition. Secondly, both the configurational entropy SC and the constant

C (see Eq. 12.47) are assumed to be depend on the effective concentration

according to Eq. 12.57:

S
1=Blend
C ¼ f1

effS
1
C þ 1� f1

eff

	 

S2C; C1=Blend ¼ f1

effC
1 þ 1� f1

eff

	 

C2: (12:64)

It is worth to note that SC
1/Blend and C1/Blend are related to a region (radius rC)

centered around a segment of the polymer 1 relevant to the dynamics of the

a-relaxation. (Similar equations can be written down for polymer 2).

Depending on the value of rC with respect to the Kuhn length lk, the self-

concentration can be estimated using simple geometrical arguments to

fself ¼
lk lP

2p r2C
for rC < lk and fself ¼

3lp

2p rC
for rC > lk: (12:65)

lP is a packing density. In the Adam/Gibbs approach, the number of correlated

segments is proportional to SC
�1. Therefore, rC can be related to the configurational

entropy by rC ¼ a SC
�1/3where a is a constant which can be obtained in principle by

fitting experimental data. With that the self-concentration can be expressed by the

configurational entropy:
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fself ¼
lk lP

2pa2
S
2=3
C for rC < lk and fself ¼

3lp

2pa
S
1=3
C for rC > lk: (12:66)

To apply this approach to experimental data, several further assumptions

have to be made: (1) the prefactor for the temperature dependence of the

relaxation times or rates of the blends is similar to that of the pure components,

(2) the configurational entropy SC is expressed by the excess entropy

SC � SEx ¼ SMelt � SCrys where Eq. 12.64 applies also for SEx, and (3) the

contribution of the vibrations to the excess entropy is similar for the two

components in the blend. Under these assumptions the temperature dependence

of the relaxation times for the blends can be described for several systems. This is

demonstrated in Fig. 12.23 for the blend system PS/PoClS (Cangialosi

et al. 2005).

This approach was further extended in reference Cangialosi et al. (2007) to

estimate the absolute size of a CRR. Therefore, the parameter a has to be obtained

quantitatively. As a result for a variety of polymers, the size of a CRR was found to

be between 1 nm and 3 nm at the glass transition. These numbers are in agreement

with the fluctuation approach by Donth (Donth et al. 2001b; Hempel et al. 2000;

Beiner et al. 1998; Kahle et al. 1997) as well as with more recent theories using

approximations of higher order correlation functions (Berthier et al. 2005; Dalle-

Ferrier et al. 2007).
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model to the data of the pure components. For details see reference (Data were taken from

reference Cangialosi et al. (2005))
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12.4.2.3 Dynamically Asymmetric Polymer Blends:
Confinement Effects

Besides the dynamic heterogeneity discussed above, binary miscible polymer

blends can be considered as dynamically asymmetric if the two components have

a large difference in the glass transition temperatures. Usually the dynamic asym-

metry is defined by D ¼ t1/Blend/t2/Blend where ti/Blend is the relaxation time of the

component i in the blend and 1 is the polymer with the higher glass transition

temperature (Colmenero and Arbe 2007). It becomes clear from Fig. 12.19 that the

dynamic asymmetry decreases with increasing temperature.

Figure 12.24 gives schematically the relaxation map for the a-relaxation of

a polymer blend where the two components have a large difference in their glass

transition temperatures. The solid lines indicate the behavior of the pure polymers

where the dashed lines correspond to the heterogeneous dynamics of miscible blends

which can be estimated by the LM model. It becomes clear from Fig. 12.24 that the

dynamic asymmetry D is small and both blend components behave as expected.

With decreasing temperature D increases strongly and the segmental dynamics of

the polymer 1 (component in the blend with the higher Tg) slows more and more

down. This will have some implications onto the dynamics of the component

2 having a lower Tg. These segments have to fluctuate in a kind of more and more

frozen environment built by the segments of the component 1 which will act as

a rigid confinement. As it is known for low-molecular-weight glass formers and

polymers confined to nanoporous glasses (Zorn et al. 2002; Schönhals et al. 2005),

polymer segments embed between liquid crystalline structures (Turky et al. 2012),

as well as water intercalated in the intergalleries of clays (Swenson et al. 2001) or

in pores (Gallo 2000), such a confinement will lead to a crossover from a VFT

behavior at high-temperature behavior to an Arrhenius-like dependence at

low temperatures because of the fact that the molecular fluctuations become

localized due to the confinement relative to that what is expected for the confined

state. According to Fig. 12.24 this is also expected for dynamically asymmetric

blends.
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Figure 12.25a shows dielectric results for the blend system PVME

(Tg ¼ 249 K)/PS (Tg ¼ 373 K) at a composition of 20 % PVME/80 % PS which

is rich in the component with the higher Tg PS (see reference Cendoya et al. 1999).

Due to the low dipole moment of PS, it is dielectrically invisible in the blend and

only the segmental dynamics of the low Tg component PVME is dielectrically

monitored. It is evident from Fig. 12.25a that the temperature dependence of the

PVME segments in the blend is curved and follows the VFT equation. In the broad

range of the glass transition of the whole blend measured by DSC (see Fig. 12.25b),

this VFT temperature dependence crosses over to an Arrhenius-like behavior which

is fully developed at even lower temperatures. Because of the fact that the blend is

rich in PS, the DSC measurement monitors mainly the glass transition of polysty-

rene. This fact implies that the crossover in the temperature dependence of PVME is

really due to the freezing of the PS segments. In the same temperature range also

characteristic deviations in the temperature dependence of the forward scattering

intensity S(Q!0) obtained from small angle neutron scattering from the predic-

tions of the random phase approximation are observed for the same system

(Koizumi 2004). These deviations are consistent with the formation of a gel-like

structure due to the freezing of the PS segments.
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Similar results have been also reported by Adachi et al. (Urakawa et al. 2002) for

PVME/PS, for the blend PMMA/PEO (Maranas 2007), or for blends of PVDF/

PMMA (Sy and Mijovic 2000). Besides dielectric spectroscopy quasielastic neu-

tron scattering is found to be quite useful to investigate the molecular dynamics of

dynamic asymmetric polymer blends because spatial information is provided by

this technique (see, for instance, Tyagi et al. 2006, 2007). For a more detailed

discussion, the reader is referred to the literature (Colmenero and Arbe 2007).

Besides of the segmental dynamics also the chain dynamics in blends is affected

by the dynamical asymmetry (Brodeck et al. 2010). Recently a generalized

Langevin approach was presented to calculate the chain (Rouse dynamics) for

dynamically asymmetric blends (Colmenero 2013). A further discussion is beyond

the scope of this chapter.

12.4.2.4 Dielectric Relaxation of Blends Under Pressure
Besides temperature pressure is an important quantity. Moreover, from the appli-

cative point of view, pressure has a direct implication in processing. From the point

of basic research, the properties and the thermodynamics of polymer blends are

often discussed assuming incompressibility (properties are unaffected of pressure)

like in the random phase approximation (de Gennes 1979; Binder 1994) or in the

approach of temperature-driven concentration fluctuations (Katana et al. 1995). The

effect of pressure on the dielectric properties of blends has been intensively

discussed by Floudas et al. (Floudas et al. 2011; Floudas 2003) and is also reviewed

in reference Roland et al. (2005). On the one hand as a general result, the assump-

tion of incompressibility seems to be in contradiction to the results obtained by

dielectric spectroscopy under pressure (Floudas et al. 2011) as it was also found by

other methods in reference Beiner et al. (1998a). Moreover, pressure can increase or

decrease miscibility. But one has also to consider that the number of dielectric

relaxation studies under pressure is quite limited and different (partly contradictory)

results have been found (see discussion in reference Roland et al. 2005). From the

experimental point of view, this indicates that the influence of pressure on

the molecular dynamics is complex and that more experimental studies should

be carried out. Theoretical approaches have been pioneered by Rabeony

et al. (Rabeony et al. 1998), by Kumar (Kumar 2000), and by Lipson et al.

(lattice-based equation of state) (Lipson et al. 2003, 1998; Tambasco et al. 2006).

Recently Colmenero et al. (Schwartz et al. 2007) combined the approach of Adam

and Gibbs with the idea of self-concentration as described above by considering

also pressure. For the PVME/PS blend system, this approach can describe the

temperature dependence of the dielectric relaxation times measured under the

different pressures (Schwartz et al. 2007).

12.4.3 Immiscible Blends

Immiscible blends are inhomogeneous systems. For dielectric spectroscopy this

fact – like for semicrystalline polymers – has several implications: Firstly,
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appropriate mixing rules for the dielectric permittivity have to be applied. For

a completely phase-separated structure and if the two components having approx-

imately the same dipole moment in the most simplest case, one can write for the

dielectric function of the blend to

e�Blend oð Þ ¼ F1e�i oð Þ þ F2e�2 oð Þ: (12:67)

However, in most cases a limited miscibility (depending on Ni and k) (see

Eq. 12.52) is observed leading to two phases enriched in one component which can

be described by a concentration Ci. In principle the concepts developed in

Sect. 12.4.2 can be employed to model the dielectric properties of each phase. In

principle by analyzing the frequency position of the a-relaxation and its dielectric

strength, the unknown concentration of each component can be estimated assuming

appropriate mixing rules. In practical work this can be difficult. Of special interest is

again the case where one component is dielectrically invisible as also discussed

in Sect. 12.4.2.

12.4.3.1 Blends with a Semicrystalline Component
Miscible blends where one component of the blend is a semicrystalline polymer

and the other one are typical examples for two or more phase systems. In such

a system in the amorphous state, both components are miscible, whereas the

crystallites appear as a second phase. As a first fact of course, the crystallinity

measured, for instance, by DSC or by wide angle X-ray diffraction might be

changed by blending. This further implies that the volume fraction of dipoles in

the amorphous phase which can become mobile at the glass transition will

decrease with increasing crystallinity. This will result in a decrease in the dielec-

tric relaxation strengths. Secondly, the frequency (or temperature) position of the

glass transition will shift to lower frequencies (higher temperatures) with increas-

ing crystallinity.

Even for semicrystalline homopolymers it is well-known fact that its morphol-

ogy cannot be described by a simple two-phase model. A characteristic feature of

semicrystalline homopolymers is the so-called rigid amorphous fraction (RAF)

(Wunderlich 2003). The RAF is phase which is amorphous in structure but

immobilized at the dynamic glass transition of the amorphous phase. Therefore,

the steplike change of the heat capacity at the glass transition is smaller

than expected. Probably the RAF is located between the crystals and the mobile

amorphous regions. Besides DSC the rigid amorphous phase can be also investi-

gated by dielectric spectroscopy (Schlosser and Schönhals 1989; Huo and Cebe

1992a, b, 1993; Cebe and Huo 1994; Kalika and Krishnaswamy 1993). Like for

the thermal measurements, the dielectric strength is found to be smaller than

expected.

For miscible blends an even more complex behavior is observed as discussed in

reference Runt et al. (1991) with regard to interphases. As discussed (Runt

et al. 1991) interphases can be consists on the one hand side of segments of the
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semicrystalline polymer. Examples for that are blends of poly(vinylidene fluoride)

with PMMA or blends of poly(ethylene oxide) also with PMMA. On the other side

the interphase can contain segments of both polymers. This is, for instance, the case

for blends of poly(butylene terephthalate) with polyarylate or poly(e-carpolactone)
(PLA) mixed with poly(vinyl chloride). As an example for the latter system,

Fig. 12.26 depicts the temperature dependence of tan d for the blend

system PLA/PVC at a frequency of 2 kHz. Two relaxation processes are indicated

by peaks in tan d. The process located at lower temperatures is assigned to

the discussed interphase where the peak at higher temperatures is related to

the segmental fluctuations in the blended PLA/PVC amorphous phase. The

interphase process shifts a bit to higher temperatures with increasing concentration

of PVC. For concentration greater than 15 % of PVC, the interphase peak

disappears.

The discussed situation can become even more complex for cases where

a variety of different morphologies have been observed like for blends of

polyimides (Hudson et al. 1992; Sauer and Hsiao 1993; Hsiao und Sauer 1993; Li

and Kim 1997). This includes the observation of multiple glass transitions (Bristow

and Kalika 1997). In this connection one has to note that the existence of a given

morphology will depend on the thermal history of a sample like for instance

crystallization rates.

12.4.3.2 Interfacial Polarization
Due to the phase-separated structure of immiscible polymer blends including phase

boundaries in the corresponding dielectric spectra, Maxwell/Wagner polarization

process can be observed especially at low frequencies. As discussed in

Sect. 12.2.3.3, the theoretical equations are complex and hard to solve. For certain

model systems like inclusion in poly(carbonate filled) with poly(ethylene oxide)

(Hayward et al. 1992), it could be shown that for low concentrations the most

important quantities are the volume fraction, the geometry of the dispersed phase

200 225 250 275 300
0.00

0.02

0.04

0.06

Mixed PLC/PVC
amorphous phase

PCL
05 % PVC
10 % PVC
15 % PVC
20 % PVC

ta
n 

δ

T [K]

Interphase

Fig. 12.26 Temperature

dependence of dielectric tan d
at a frequency of 2 kHz for

melt crystallized PCL/PVC

blends at the indicated

concentrations (Data were

taken from reference Runt

et al. (1991))
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(expressed by the shape factor n), and its conductivity as well as the permittivity of

the matrix. Also for model systems it was early shown that the shape factor

n extracted from the dielectric measurements is in good agreement with the

observed morphology using electron microscopy (Steeman et al. 1994). This

suggests that from a careful analysis of the dielectric spectra, quantitative conclu-

sions about the morphology of immiscible polymeric blends can be drawn. That

also includes the detection of the first stages of a phase-separated structure

(Dionisio et al. 1996). Higher concentrations of the dispersed phase were consid-

ered, for instance, in reference Banhegyi (1986, 1991).

The most complete theoretical treatment of Maxwell/Wagner polarization pro-

cess in polymer blends was done by Steeman and coworkers (Steeman and van

Turnhout 2003) especially also for higher concentrations of the dispersed phase and

multicomponent polymer blends (Steeman et al. 1994; Steeman and Maurer 1990,

1992). Quantitative conclusions about the phase structure of the different systems

can be drawn including the modeling also of interfaces. This has also some impact

on blend compatibilization by grafted copolymers (Eklind et al. 1997).

12.5 Conclusions

Broadband dielectric spectroscopy is a powerful method to investigate the molec-

ular dynamics of polymeric blend systems. This is particularly due to the fact that

an extraordinary broad dynamic range can be covered by this technique in its

modern form. Different dielectric active processes can be observed in this extended

frequency range like relaxation processes due to the fluctuation of molecular dipole

moments, charge transport related to the drift motion of charge carriers, or polar-

ization effects due to the presence of both interfaces and interphases. In this chapter

broadband dielectric spectroscopy is discussed in relationship to polymer blends

where mainly binary blends are considered. The impact of blending on the different

relaxation processes is discussed where special attention is paid on the dynamic

glass transition related to segmental dynamics. The main features of miscible

binary polymeric blends like broadening of the relaxation function as well as

dynamic heterogeneity are discussed in detail. The experimental results are related

to theoretical approaches like temperature-driven concentration fluctuations and the

self-concentration phenomenon characteristic for chain molecules. Immiscible

polymeric blends are briefly reviewed.

12.6 Cross-References
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List of Important Symbols and Abbreviations

aT Shift factor

C Concentration

C1, C2 Parameters of the WLF equation

D Dielectric displacement

E Electric field strength

EA, DE Activation energy, barrier heights

f Frequency

fi Relaxation rate at maximal loss, i ¼ b, a, n
f1i Preexponential factor, i ¼ b, a, n
Fi Volume fraction

fi Weight fraction

g, gintra Dipolar correlation coefficients

DGM Free energy of mixing

G* Reflection coefficient

I, J Current, Current density

kB Boltzmann constant, kB ¼ 1.380662 10�23 J K�1; kB ¼ R/NA

M, MW Molecular weight, weight average

NA Avogadro number (NA ¼ 6.022 1023 mol�1)

R Gas constant R ¼ 8.314 kJ mol�1

SC Configurational entropy

DSM Mixing entropy

s*, s0, s0 Complex conductivity, real and imaginary part

T Temperature

T0 Vogel temperature, ideal glass transition temperature

Tg Glass transition temperature

tan d Dielectric loss tangent

b, g Shape parameter of the HN function

«0 Permittivity of vacuum (e0 ¼ 8.854 10�12 As V�1 m�1)

«*, «0, «0 Complex dielectric function, real and imaginary part

D«i Dielectric relaxation strength, i ¼ b, a, n,
z Monomeric friction coefficient

j Correlation length

k Flory/Huggins interaction parameter

m Dipole moment

v Angular frequency (o ¼ 2*p*f)
t Relaxation time

tHN Relaxation time of the HN function

te Time constant for conduction

PEO Poly(ethylene oxide)

PI Cis-1,4-Polyisorene
PMMA Poly(methyl methacrylate)

PPG Poly(propylene glycol)

PS Polystyrene
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PVAC Poly(vinyl acetate)

PVME Poly(vinyl methylether)

PoClS Poly(o-chlorostyrene)

PVC Poly(vinyl chloride)

U Voltage, different meanings

ZS
*(v); ZR

* (v) Sample impedance; Reference impedance

<. . .> Correlation function; Averaged quantities
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S. Zeeb, S. Höring, F. Garwe, M. Beiner, A. Schönhals, K. Schröter, E. Donth, Polymer 38, 4011
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