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    Abstract   Tight junctions (TJs) are multi-protein complexes whose principal 
function is to mediate cell-cell adhesion between epithelial or endothelial cells. 
While once thought to participate solely as passive effectors of adhesion, it is 
increasingly being recognised that TJs are dynamic structures which regulate many 
aspects of cellular function and physiology. Accordingly, dysregulation of TJ-based 
adhesion or signalling is emerging as an intriguing contributor to several pathophys-
iologies including cancer. This review will attempt to summarise the current state 
of knowledge about molecular aspects which regulate, and are regulated by, TJs. 
The  fi rst section will outline selected physiological processes known to in fl uence TJ 
structure or function, under the headings of cell adhesion/polarity, cell-matrix 
signalling, ion transport, hormone effects, pro-in fl ammatory cytokines and hypoxia. 
The second section will describe selected functional behaviours within the 
pathophysiology of cancer which TJs have been demonstrated to in fl uence, encom-
passing cell proliferation and apoptosis, migration and invasion, cell fate and dif-
ferentiation, metastasis across the blood brain barrier and  fi nally angiogenesis. 
Collectively, these sections illustrate that a wealth of mechanistic information can 
be gained from interrogating the contribution of TJs to normal physiology. In turn 
they highlight how TJ-based disturbances can promote some of the functional 
behaviours associated with cancer, and thereby offer insight into new TJ-based 
targets that may offer pharmacological promise in halting tumour progression.  
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    1.1   Introduction 

 Externally, epithelial cells of the skin form a selective physical barrier between an 
organism and environmental insults including allergens and chemicals. Internally, 
the epithelial cells lining most visceral organs in conjunction with endothelial cells 
lining the vasculature also function as barriers to prevent absorption of pathogens 
and harmful substances from their external surfaces. 

 Tight junctions (TJs), adhesion complexes which connect the lateral membranes 
of adjacent epithelial or endothelial cells close to their external surfaces, are respon-
sible for sealing the intracellular space and thereby creating separate apical and 
basolateral compartments (Schneeberger and Lynch  2004 ; Tsukita et al.  2001  ) . This 
intracellular TJ seal performs several crucial functions. Firstly, TJ proteins consti-
tute a molecular barrier, which controls paracellular permeability and transport 
of ions, solutes and even cells. Secondly, homo- and hetero-typic binding of TJ 
proteins between neighboring cells aids in the establishment and maintenance of cell 
polarity by effectively linking polarity complexes with the underlying cytoskeletal 
structure of individual cells. Finally, TJ proteins can facilitate transmission of 
signals culminating in processes such as cell differentiation, growth, migration and 
invasion. 

 The molecular components of tight junctions can be broadly split into three main 
groups reviewed in detail in (Brennan et al.  2010  ) : (1) integral transmembrane pro-
teins including occludin, claudins, junctional adhesion molecules (JAMs), crumbs; 
(2) peripheral or plaque adaptor proteins which generally contain PDZ domains that 
facilitate protein-protein interactions, such as the Zona Occludens (ZO) family, 
Par3, Par6, Afadin; (3) associated regulatory/signalling proteins including cingulin 
and Rho-GTPases. 

 De fi cits in tight junction function which lead to increased paracellular perme-
ability have been linked to several pathologies including blistering skin diseases 
(Simon et al.  1999  )  and in fl ammatory bowel diseases (IBD) such as ulcerative 
colitis (Schulzke et al.  2009  )  and Crohn’s disease (Hollander  1988  )  (reviewed in 
detail in (Marchiando et al.  2010a  ) ). In addition, patients with IBD have a 
signi fi cantly higher risk of developing colitis-associated cancer, suggesting that 
ef fi cient TJ barrier function may play a crucial role in preventing cancer develop-
ment. Indeed, a wealth of evidence has recently associated alterations in several 
TJ proteins with many solid tumours including breast, lung colorectal, and gastric 
(Martin et al.  2011  ) . 

 Common putative mechanisms of TJ dysregulation in cancer include aberrant 
microRNA regulation of gene expression (e.g. JAM-A in breast cancer (Gotte et al. 
 2010  ) ), aberrant methylation control (e.g. Claudin 6 in breast cancer (Osanai et al. 
 2007  ) ) and protein mislocalisation (e.g. ZO-1 in pancreatic cancer (Prat et al.  2010  ) ). 
Furthermore, common dysregulation patterns are evident across multiple cancer 
types, such as widespread down-regulation of claudin 1 and loss of ZO protein 
expression and localization (Martin et al.  2011  ) . Intriguingly, genetic classi fi cations 
of human breast cancer subtypes describe a highly-aggressive subtype, the claudin-low 
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subtype, which is characterized by reduced expression of claudins 3, 4 and 7 and 
accompanied by increased expression of proteins involved in epithelial to mesen-
chymal transition (EMT) (Prat et al.  2010  ) . Taken together, this wealth of data 
suggests that alterations in TJ functions may in fact play a causal role in cancer. 
The easiest interpretations are that simple downregulation of TJ proteins leading to 
barrier breakdown and concomitant loss of adhesion would disrupt cell polarity and 
promote cancer cell dissemination; or that upregulation or mislocalisation of TJ 
proteins could initiate aberrant signalling cascades that culminate in abnormal differ-
entiation, proliferation, migration, and invasion. However, given the multi-functional 
roles of TJ proteins in several biological processes, it remains unlikely that a simple 
paradigm of either TJ protein loss or TJ protein gain will explain the complexities 
of different cancers. 

 In this review, we will  fi rstly outline the processes that in fl uence tight junction 
structure and function at a physiological level; then focus on emerging data 
describing mechanisms whereby alterations in TJ proteins may facilitate pro-
cesses critical for tumor formation and progression. Given the huge expansion in 
the TJ literature over the last number of years, it has not been possible to give an 
exhaustive overview of all the relevant literature. We therefore chose to focus on 
some selected aspects, and apologise to those authors whose work we did not have 
space to include.  

    1.2   Physiological Processes Which Involve Tight 
Junction Proteins 

 The strategic location of TJs at the apical-most interface of the lateral intercellular 
membrane of polarized epithelia or endothelia facilitates their dynamic regulation 
by both extracellular and intracellular factors during a variety of physiological pro-
cesses. Some of these will be summarized in the upcoming paragraphs. 

    1.2.1   Establishment of Cell Adhesion and Polarity 

 Tight junction proteins are critically important for the establishment of cellular 
adhesion and cell polarity through interactions with polarity complex proteins and 
RhoGTPases. For example, TJ barrier function is strongly regulated through homo-
typic binding of claudin proteins on adjacent cells, which control permeability 
through the formation of aqueous pores (Van Itallie and Anderson  2006  ) . However, 
formation of apico-basal polarity requires the coordinate spatial regulation of the 
Par, Crumbs, and Scribble core polarity complexes. 

 Nascent cell adhesions are enriched in the TJ proteins JAM-A and ZO1, and also 
the adherens junction protein E-cadherin (which activates Rac1 and suppresses 
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RhoA to facilitate junction formation (Nakagawa et al.  2001  ) ). Upon initiation of 
cell polarity, Par3 is transported to the apical cortex (Harris and Peifer  2004  )  where 
its association with TJ proteins such as JAM-A (Itoh et al.  2001  )  and PTEN (Feng 
et al.  2008  )  facilitates Par3-TIAM1 interactions which mediates stabilization and 
maturation of junctions (Chen and Macara  2005  ) . Subsequent binding of the small 
GTPase Cdc42 to Par6 provides the stimulus for recruitment of atypical PKC 
(aPKC) to the apical surface, which serves to maintain apical domain integrity 
(Martin-Belmonte et al.  2007  )  and to recruit the Crumbs complex to the apical cor-
tex via an interaction with PALS1 (Hurd et al.  2003  ) . The basolateral-associated 
Scribble complex is formed through co-localization of Scribble (Albertson et al. 
 2004  )  and Dlg (Dow et al.  2003  )  proteins at the basolateral cortex; with recent data 
suggesting that Scribble association with ZO1 may be critical for TJ assembly 
(Ivanov et al.  2010  ) . This data indicate that the interplay between TJ and polarity 
proteins is crucial for both maturation of apical junctions and the formation of 
apico-basal polarity.  

    1.2.2   Cell-Matrix Signaling 

 TJ proteins can also in fl uence cell-matrix interactions, transmitting signals to and 
from the microenvironment to control cell polarity and processes such as migration 
and invasion. For example, JAM-A-de fi cient neutrophils show impaired activation 
of the small GTPase Rap1A (Cera et al.  2009  ) , which is known to promote  b 1-
integrin activation in a Talin-dependent manner (Boettner and Van Aelst  2009  ) . 
JAM-A knockdown or inhibition using blocking antibodies has also been shown to 
reduce Rap1-GTPase activity and to decrease cell migration in colonic and breast 
epithelial cells (McSherry et al.  2011 ; Severson et al.  2009  ) . 

 Correct cell-matrix interactions are also critically important for developmental 
processes involving the generation of multi-dimensional glandular structures such 
as acini or organoids. For example, activity of the extracellular matrix (ECM)- 
degrading protein, matrix metalloproteinase MT1-MMP, has been shown to be cru-
cial for normal branching during mammary gland development (Mori et al.  2009  ) . 
Interestingly, the TJ protein ZO1 has recently been shown to regulate MT1-MMP 
expression in breast cell lines, suggesting that TJs may participate in modulating 
cell-matrix interactions during normal morphogenesis (Polette et al.  2005,   2007  ) . 

 Bidirectionality in the signalling cascades between cell-cell and cell-matrix com-
plexes is also evident, as typi fi ed by functional interactions between the cell-matrix 
protein CD44 and TJs. CD44 binds ECM components such as hyaluronic acid, col-
lagen,  fi bronectin, laminin, and chondroitin sulfate (Naor et al.  1997  ) . Recent studies 
have demonstrated that CD44 can regulate TJ assembly and barrier function in kera-
tinocyte epithelial cells (Kirschner et al.  2011  ) . Speci fi cally, CD44 knockout mice 
exhibited alterations in expression and/or localization of TJ proteins including 
Claudins-1 and -4, ZO1, and Par3; and a reduction in Rac1 activity culminating in a 
loss of cell polarity and decreased epidermal barrier function.  
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    1.2.3   Alterations in Ion Transport 

 A number of epithelial ion channels have emerged as important regulators of TJ 
function, of which the sodium potassium ATPase (Na +  K +  ATPase) is the best stud-
ied. This heterodimeric protein exports three sodium ions and imports two of potas-
sium against their concentration gradients in an ATP-dependent reaction to maintain 
transmembrane ion concentrations (Lingrel and Kuntzweiler  1994 ; Kaplan  2002 ; 
Malik et al.  1996 ; Sweadner  1989  ) . This serves to maintain transmembrane poten-
tial, driving multiple transport mechanisms and controlling cell volume and 
osmolality. 

 A functional Na +  K +  ATPase plays important roles in the assembly of TJs, 
establishment of cell polarity and regulation of paracellular permeability. Studies in 
various epithelial cell types by Rajasekeran et al. (Rajasekaran et al.  2003,   2007, 
  2008  )  have shown reversible inhibition of TJ formation upon inhibition of Na +  
K +  ATPase, either by K +  depletion or treatment with the inhibitor ouabain, in a 
sodium-dependent fashion. In addition, expression of Na +  K +  ATPase subunits and 
E-cadherin, in addition to adequate Na +  K +  ATPase pump function, have been shown 
to be necessary for TJ formation and normal epithelial polarization (Rajasekaran 
et al.  2003,   2007  ) . Accordingly, it has been hypothesised that Na +  K +  ATPase and 
E-cadherin function synergistically in assembling TJs (Rajasekaran et al.  2008  ) . 

 Interestingly, while treatment with high concentrations of ouabain that inhibit 
Na +  K +  ATPase pump function increase permeability and decrease transepithelial 
resistance (Rajasekaran et al.  2003 ; Contreras et al.  1999  ) ; treatment with nanomo-
lar ouabain concentrations that do not affect pump function actually  decrease  TJ 
permeability to both ions and non-ionic molecules (Larre et al.  2010  ) . The latter has 
been attributed in part to alterations in the expression of claudins -1, -2 and -4 (Larre 
et al.  2010  ) . It is intriguing to speculate that such profoundly opposing effects on TJ 
function may in fact be subject to physiological regulation by endogenous hormone-
like molecules in addition to exogenous drugs, with reports that an endogenous 
form of ouabain is synthesized and stored in the mammalian adrenal cortex and 
hypothalamus (Schoner and Scheiner-Bobis  2007  ) . 

 Other ion channels which have been implicated in regulatory control of TJ func-
tions include the Na+/glucose co-transporter SGLT-1. Glucose uptake by apically-
expressed SGLT-1 in the intestinal brush border has been shown to induce a drop in 
transepithelial electrical resistance and to increase in the paracellular uptake of 
small nutrients in vitro (Turner et al.  1997  )  and in vivo in both rats (Pappenheimer 
and Reiss  1987  )  and humans (Turner et al.  2000  ) . This has been associated with TJ 
strand disruption (Madara and Pappenheimer  1987  ) , dissociation of ZO1 from tight 
junctions (Atisook and Madara  1991  )  and phosphorylation of myosin regulatory 
light chain at the epithelial perijunctional ring (Turner et al.  1997  ) . 

 Energy-dependent ion channels are not the only ones to have been functionally 
linked to TJs, with the passive transport chloride transporter ClC-2 also known to 
localise at TJs in intestinal epithelia. Activation of this channel reportedly stimu-
lates an increase in transepithelial electrical resistance and a concomitant reduction 
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in paracellular permeability (Moeser et al.  2004  ) . Furthermore expression of the 
chloride channel CFTR has been shown to increase transepithelial resistance 
(LeSimple et al.  2010  ) ; while CLIC-4 co-localises with ZO1 in apical regions of 
epithelial cells, suggesting a possible but unproven role in regulation of TJs 
(Berryman and Goldenring  2003  ) . Finally, the transmembrane water channels 
termed aquaporins are also thought to regulate TJs, with aquaporin-5 in particular 
being shown to modulate epithelial paracellular permeability (Turner et al.  1997 ; 
Murakami et al.  2006  ) .  

    1.2.4   Hormone Effects 

 Several hormones from the steroid receptor family and otherwise have been shown 
to regulate TJs, consistent with the physiological need to actively modulate tissue 
permeability or other important functions of TJs at different stages of development 
or hormonal cycles. 

 Among the most prominent, estrogen has been demonstrated to profoundly affect 
the TJs of sex hormone-sensitive epithelia ranging from reproductive tissue to the 
intestinal tract. In cervico-vaginal epithelium, oestrogen can reportedly decrease the 
resistance of both epithelial TJs and the lateral intercellular space via matrix metal-
loproteinase 7-induced modulation of occludin, with the net effect of increasing 
epithelial permeability (Gorodeski  2005,   2007  ) . 

 Oestrogen receptor- b  (ER b ) is expressed in intestinal epithelial cells, where it 
appears to regulate paracellular permeability in a manner not strictly dependent on 
the oestrus cycle. In fact both male and female rats that under-express ER b  exhibit 
greater epithelial permeability and susceptibility to barrier-disruptive injury than 
their wild type female counterparts (Wada-Hiraike et al.  2006 ; Looijer-van Langen 
et al.  2011  ) . Female rats under-expressing ER b  also show ultrastructural evidence 
of altered TJ and desmosomal morphology (Wada-Hiraike et al.  2006  ) . 

 Hormonal regulation of mammary epithelial permeability during pregnancy and 
lactation occurs via not just the complex effects of oestrogen, but rather its interplay 
with other hormones such as progesterone, glucocorticoids, prolactin and serotonin 
(5-HT). During pregnancy the mammary gland reaches the expanded alveolar stage 
of development, however milk synthesis cannot begin until after parturition in con-
junction with prolactin and glucocorticoid secretion which dynamically regulate TJ 
opening to facilitate the delivery of milk proteins during breastfeeding. (Thompson 
 1996 ; Zettl et al.  1992 ; Stelwagen et al.  1999  ) . 

 The neurotransmitter serotonin (5-HT) also appears to regulate epithelial homeo-
stasis in several organ systems including the mammary gland, where it is locally 
synthesized (Matsuda et al.  2004  ) . 5-HT regulates the lactation to involution switch, 
and exhibits biphasic effects on tight junctions in vitro; increasing transepithelial 
resistance at low concentrations and early time points via protein kinase A while 
disrupting TJs via p38 MAP kinase signalling following sustained exposure to 
higher concentrations (Pai and Horseman  2008 ,  2011  ) .  
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    1.2.5   Pro-in fl ammatory Cytokines 

 Prototypic pro-in fl ammatory cytokines including interleukins-1, -6, -17, -18 (IL-1, 
-6, -17, -18), tumour necrosis factor- a  (TNF- a ) and interferon- g  (IFN- g ) are secreted 
from multiple cellular sources under physiological and pathophysiological circum-
stances. Among their pleiotrophic effects include profound remodelling of TJs, 
which often induces endothelial or epithelial barrier disruption and perpetuates 
in fl ammation (for a recent review see (Capaldo and Nusrat  2009  ) ). The near-ubiq-
uitous expression of cytokine receptors has fuelled reports of cytokine-induced TJ 
disruption in most epithelial and endothelial barriers, yet despite functional overlap 
between different cytokines there is no unifying paradigm of speci fi c alterations 
which are essential for barrier dysfunction. 

 IL-1 has been reported to induce a variable combination of reduced transepithe-
lial resistance or increased paracellular permeability in conjunction with occludin 
and ZO-1 degradation/redistribution in epithelial cells from the intestine (Al-Sadi 
and Ma  2007  ) , thyroid (Nilsson et al.  1998  )  and cornea (Kimura et al.  2009  )  in addi-
tion to models of the blood-brain barrier (Bolton et al.  1998  ) , blood-retinal barrier 
(Bamforth et al.  1997  )  and blood-testis barrier (Lie et al.  2011  ) . The barrier-disruptive 
mechanisms associated with IL-1 exposure in both intestinal (Al-Sadi and Ma  2007 ; 
Al-Sadi et al.  2008,   2010  )  and corneal (Kimura et al.  2009  )  epithelial cells as well 
as an in vitro model of the blood-brain barrier (Afonso et al.  2007  )  have been 
ascribed to canonical NF k B signalling via upstream activators such as MEKK and 
downstream effectors including myosin light chain kinase. 

 In addition to phenocopying several noted effects of IL-1 on barrier function and 
occludin/ZO-1 distribution, TNF- a  has been observed to reduce the structural com-
plexity (Schmitz et al.  1999  )  of claudin-containing TJ strands (Furuse et al.  1998  ) . 
Also in common with IL-1 signalling mechanisms, TNF-dependent reductions in 
barrier function have been linked to activation of NF k B in retinal endothelial cells 
(Aveleira et al.  2010  )  and corneal epithelial cells (Kimura et al.  2008  ) . Barrier dis-
ruption downstream of TNF- a  signalling in intestinal epithelial models has alter-
nately been proposed to re fl ect expressional enhancement of speci fi c micro-RNAs 
targeting occludin for degradation (Ye et al.  2011  )  or enhanced removal of occludin 
from tight junctions via caveolar-mediated endocytosis (Marchiando et al.  2010b  ) . 

 Observations of IFN- g -induced epithelial (Madara and Stafford  1989 ; Youakim 
and Ahdieh  1999 ; Adams et al.  1993  )  or microvasculature endothelial (Oshima 
et al.  2001  )  barrier disruption in conjunction with degradation/mislocalization of 
ZO/occludin proteins might seem to mirror the cellular mechanisms discussed 
above in response to IL-1 or TNF- a  exposure. However several lines of evidence 
suggest not only overlapping mechanisms but also unique ones whereby IFN- g  dis-
rupts barrier function. One contends that the barrier-disruptive effects of IFN- g  in 
intestinal epithelia involve PI3-kinase/NF k B cross-talk (Boivin et al.  2009  ) ; another 
that macropinocytotic internalisation of occludin is responsible for induced de fi cits 
(Bruewer et al.  2005  ) , while yet another possibility is that IFN-induced protease 
activation cleaves supporting TJ proteins such as claudin-2 (Willemsen et al.  2005  ) . 
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Reported alterations in the lipid composition of membrane microdomains following 
IFN/TNF co-treatment (Li et al.  2008  )  also offer a novel explanation for putative 
sub-membranous displacement of occludin and ZO-1 from tight junctions. 
Accordingly, although synergism between IFN- g  and TNF- a  has been reported in 
many instances (Rodriguez et al.  1995 ; Wang et al.  2006 ; Bruewer et al.  2003  ) , it is 
interesting to note that this can be dissociated from the pro-apoptotic effects of 
some pro-in fl ammatory cytokines (Bruewer et al.  2003  ) .  

    1.2.6   Hypoxia 

 The adaptive response to reduced oxygen tension, termed hypoxia, also plays an 
important role in in fl uencing TJ structure and function in physiological and 
pathophysiological settings. Physiological differences in vascular perfusion between 
tissues dictate that some body compartments exist in normoxic states (e.g. lung 
alveoli) while others are relatively hypoxic (e.g. colon). In pathophysiological set-
tings, hypoxia reportedly activates Notch signalling (Chen et al.  2010  ) ; which in 
turn has been implicated in reducing gene expression of TJ components such as 
occludin and ZO-1 during EMT in airway epithelial cells (Aoyagi-Ikeda et al.  2011  ) . 
While this implies that Notch activation secondary to hypoxia exerts a negative 
effect on lung epithelial barrier function, it is interesting to note that  inactivation  of 
Notch signalling may have a similar net effect in intestinal epithelia (Dahan et al. 
 2011  ) . Whether this re fl ects innate differences in sensitivity to hypoxic signalling in 
tissues with disparate basal oxygen tensions, or merely illustrates the importance of 
carefully balancing Notch activity levels for barrier function homeostasis in any 
epithelial tissue is not yet clear. 

 What is clear is that regulation of epithelial barrier function by hypoxic signal-
ling is complex and multi-factorial. Temporal activation of the transcription factors 
Slug and Snail during hypoxia (Kurrey et al.  2005  )  can also trigger junctional disas-
sembly via repression of occludin, ZO-1 and claudin-1 expression (Martinez-Estrada 
et al.  2006 ; Ohkubo and Ozawa  2004 ; Wang et al.  2007  ) . Similarly, reduced expres-
sion of occludin and claudin-1 have been demonstrated both in vitro and in vivo in 
renal epithelial cells de fi cient in the tumour suppressor gene von Hippel-Lindau 
(VHL) (Harten et al.  2009  ) . Consequently, VHL inactivation has been associated 
with loss of barrier function and structural disorder of the renal epithelial phenotype 
(Calzada et al.  2006  ) . Since a major function of the VHL protein product is to pro-
mote proteasomal degradation of hypoxia inducible factors (HIFs) (Maxwell et al. 
 1999  ) , much interest has focussed on the potential role of HIFs in regulating TJs in 
various tissues. Recent evidence has suggested that HIF-1 a  antagonism can temper 
occludin/ZO-1 redistribution and the associated defects in intestinal epithelial bar-
rier function induced by pro-in fl ammatory cytokines (Liu et al.  2011  ) . A similar 
regulatory role has been noted in endothelial tight junctions, with loss of HIF-1 a  
promoting TJ re-sealing in brain microvascular endothelial sheets compromised by 
prior exposure to either high glucose levels (Yan et al.  2012  )  or hypoxia-reoxygenation 
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injury (Yeh et al.  2007  ) . Taken together with the links between enhanced HIF activity 
and tumour progression or metastasis (Liao et al.  2007  ) , the importance of hypoxia 
as an upstream regulator of tight junctions and barrier function cannot be 
underestimated. 

 As described above, TJ proteins are important for the maintenance of cell polar-
ity and for hormonal and cytokine regulation of cellular homeostasis among a myr-
iad of associated functions. Disruptions in cell polarity and tissue architecture are 
hallmarks of de-differentiation and early features of malignancy (Molitoris and 
Nelson  1990  ) . In addition, several TJ-associated proteins have recently been shown 
to be targeted by oncogenes such as ERBB2 (Aranda et al.  2006  )  and MYC (Zhan 
et al.  2008  )  to facilitate malignant transformation. Furthermore, TJ proteins includ-
ing Scribble (Javier  2008  )  and ZO2 (Glaunsinger et al.  2001  )  have been shown to be 
targeted by oncogenic viruses such as the human papilloma virus. Collectively, 
these studies provide strong evidence that TJ proteins may indeed act as key regula-
tors of cancer initiation and progression. This will next be addressed.   

    1.3   Pathophysiological Processes in Cancer In fl uenced 
by Tight Junctions 

    1.3.1   Regulation of Cell Proliferation and Apoptosis 

 Tumour formation requires the acquisition of alterations that facilitate sustained 
proliferative capacity, whilst resisting cellular senescence and apoptotic cell death 
(Hanahan and Weinberg  2011  ) . Several studies have described how alterations in 
several TJ-associated proteins may upset the delicate balance of growth and death 
signalling to result in malignant transformation. As noted earlier, however, the com-
plex and tissue-speci fi c regulation of TJ function in various endothelial and epithe-
lial cells makes it unlikely that a single paradigm of simple expressional upregulation 
or downregulation will emerge to explain the many functional events associated 
with tumour initiation and progression. 

 Regardless, members of the largest family of integral membrane TJ proteins, the 
claudins, are frequently dysregulated in many cancers and appear to have a central 
role in determining cell fate (Escudero-Esparza et al.  2011  ) . With respect to tumour 
initiation, Claudin-6 downregulation has been shown to result in increased resis-
tance to apoptosis in vitro (Osanai et al.  2007  ) . Claudin-1 expression, though 
increased in senescent cells (Swisshelm et al.  1999  ) , has been reported to be 
decreased throughout several tumour types (Martin et al.  2011  ) . Similarly down-
regulation of occludin has been correlated with dedifferentiation and progression of 
several cancers including endometrial (Tobioka et al.  2004a  )  and lung (Tobioka 
et al.  2004b  ) . These effects may be due to occludin-mediated regulation of apoptosis, 
as occludin loss results in decreased expression of pro-apoptotic proteins including 
Bax (Osanai et al.  2006  ) . 
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 Alterations in proteins of the junctional adhesion molecule (JAM) family 
have also been shown in breast and renal cancers (McSherry et al.  2011 ; Gutwein 
et al.  2009  )  and melanoma (Langer et al.  2011  ) , where many have demonstrated 
prognostic value in determining levels of JAM-A expression in patient cohorts. 
Indeed aberrant expression of microRNA mir145 may be mechanistically 
responsible for observed overexpression of JAM-A in breast cancer patient tis-
sues which correlate strongly with poor survival outcomes (Gotte et al.  2010 ; 
McSherry et al.  2009  ) . Although generally accepted as primarily functioning in 
adhesive and barrier roles at the TJ, compelling data have recently emerged 
regarding a role for JAM-A in both apoptosis and proliferation control. Colonic 
epithelial cells of JAM-A-de fi cient mice show enhanced crypt proliferation as 
measured by Ki67 staining (Laukoetter et al.  2007  ) . Speci fi cally, JAM-A appears 
to control cell proliferation through inhibition of Akt-dependent  b -catenin acti-
vation (Nava et al.  2011  ) ; with Akt inhibition reversing crypt proliferation in 
JAM-A-de fi cient mice. Somewhat conversely in the context of cancer, JAM-A 
de fi cient mice display signi fi cantly reduced tumor growth in a pancreatic tumor 
model, likely due to decreased angiogenesis and increased immune responses 
(Murakami et al.  2010  ) . Furthermore, in a breast cancer mouse model, JAM-A 
de fi cient mice show signi fi cantly decreased tumour growth; with tumour cells 
displaying increased rates of apoptosis in vivo and in vitro (Murakami et al. 
 2011  ) . Together these studies suggest that, in contrast to loss of TJ proteins 
such as claudins and occludin, upregulation of JAM-A may in fact facilitate 
increased tumor growth and survival by promoting signalling events which pro-
tect cells from apoptosis. 

 As mentioned, JAM-A associates with the peripheral TJ protein Par3 during 
junctional maturation and establishment of cell polarity (Ebnet et al.  2001  ) . In a 
mouse model of mammary morphogenesis, Par3 depletion in mammary progenitor 
cells disrupted mammary development, resulting in ductal hyperplasia. Re-expression 
of full length Par3 (but not truncated Par3) rescued this defect, demonstrating that 
Par3/aPKC interaction is essential for normal breast morphogenesis (McCaffrey 
and Macara  2009  ) . The interaction of another TJ-associated protein and Par polarity 
complex member, Par 6, with aPKC has also been shown to be required for ErbB2 
oncogene-driven evasion of apoptosis and disruption of breast cellular morphogen-
esis in vitro (Aranda et al.  2006  ) . 

 Interestingly, association of ZO-1 with the transcription factor ZONAB can 
directly promote expression of the ErbB2 oncogene (Balda and Matter  2000  ) . 
Furthermore, ZONAB is a critical determinant of cell cycle progress through effects 
on cyclin D1 and cdk4 (Balda et al.  2003  ) . Similarly ZO2 can control cell prolifera-
tion through sequestration of transcription factors such as Jun and Fos at the TJ in a 
density-dependent manner (Huerta et al.  2007  ) . Finally, interactions between ZO1 
and the polarity complex member Scribble play an important role in normal regula-
tion of cell adhesion (Ivanov et al.  2010  ) . Interestingly, correct localization and 
expression of Scribble mediates pro-apoptotic signalling critical for both normal 
mammary gland morphogenesis and resisting MYC–induced transformation (Zhan 
et al.  2008  ) . 
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 In summary, data suggests that TJ proteins may be critical determinants of cancer 
initiation through effects on oncogene expression and imbalances in cell prolifera-
tive and apoptotic signaling.  

    1.3.2   Migration and Invasion 

 Although uncontrolled growth is a fundamental requirement during transformation, 
cancer cells must acquire both migratory and invasive capabilities in order to suc-
cessfully disseminate from a primary tumour before seeding metastases at distant 
sites. Generally, cell migration consists of three main steps: the activation of Rho 
GTPases extend cell protrusions (through assembly of focal contacts with extracel-
lular matrix proteins), the cell is dragged forward (through myosin II-mediated cell 
contraction), and  fi nally cell adhesions are disassembled at the rear of the cell. This 
cyclical process (similar to regulation of apico-basal polarity and establishment of 
cell adhesion) requires crosstalk between junctional proteins, core polarity regulators 
(Etienne-Manneville and Hall  2001 ; Huo et al.  2011  ) , and Rho family GTPases 
(Etienne-Manneville  2008 ; Iden and Collard  2008  ) . Malignant cells can hijack these 
pro-migratory pathways and several TJ associated proteins have been implicated as 
having a causal role in cancer progression. 

 Loss of claudin-7 expression has been correlated with increased migration and 
invasion in lung (Lu et al.  2011  ) , colorectal (Oshima et al.  2008  )  and oesophageal 
cancer (Lioni et al.  2007  ) . Speci fi cally, claudin-7 loss or mis-localisation in oesoph-
ageal cancer can lead to decreased E-cadherin expression and increased three-
dimensional invasion in vitro (Lioni et al.  2007  ) . Furthermore, re-expression of 
claudin-7 in claudin-7 de fi cient lung cancer cells resulted in decreased hepatocyte 
growth factor-mediated in vitro migration and invasion, and decreased in vivo 
tumour growth via regulation of ERK/MAPK signalling (Lu et al.  2011  ) . Several 
other claudins have been implicated in regulating invasion through effects on matrix 
degrading enzymes from the matrix metalloproteinase (MMP) family. Claudin-1 
expression in liver cancer cells promotes increased MMP2 activity and migration 
and invasion through activation of a c-Abl-PKCdelta signaling pathway (Yoon et al. 
 2010  ) . Conversely, claudin-6 loss has been demonstrated to increase MMP activity 
and promote invasion of breast cancer cells (Osanai et al.  2007  ) . 

 JAMs also have established roles in promoting normal leukocyte (Ostermann 
et al.  2002  )  and neutrophil migration (Cera et al.  2009  ) , with JAM-A loss in endothe-
lial cells functioning to decrease motility (Bazzoni et al.  2005  ) . With respect to can-
cer, the majority of studies suggest that JAM proteins signal to increase cancer cell 
migration and invasion. JAM-A overexpression is associated with increased breast 
cancer metastasis (McSherry et al.  2009  ) ; potentially due to downstream regulation 
of the migratory protein  b 1-integrin through AF-6 and Rap1 GTPase adaptor proteins 
(McSherry et al.  2011 ; Severson et al.  2009  ) . Furthermore, JAM-C is required for mel-
anoma cell transendothelial migration in vitro (Ghislin et al.  2011  ) ; with its increased 
expression linked to melanoma invasion and metastasis in vivo (Fuse et al.  2007  ) . 
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 JAM proteins interact with several TJ adaptor proteins including AF6 and ZO 
proteins (Schneeberger and Lynch  2004  ) . Fusion of AF6 and MLL represents 
the most common alteration in mixed lineage leukemia (MLL), where the Ras 
association-1 domain of AF6 likely activates the oncogenic potential of the 
MLL-AF6 protein (Liedtke et al.  2010  ) . Recently, loss of AF6 in breast cancer 
has also been linked with poor prognosis (Letessier et al.  2007  ) . Further work has 
demonstrated that AF6 loss dramatically increased heregulin-induced in vitro 
migration and invasion through activation of RAS/MAPK and Src kinase pathways; 
as well as signi fi cantly increased tumour growth and metastasis in an SKBR3 
orthotopic mouse model (Fournier et al.  2011  ) . 

 Interestingly, ZO1 has been shown to regulate the expression of the matrix 
metalloproteinase MT1-MMP, with knockdown of ZO1 in breast cancer cell lines 
reducing MT1-MMP expression and three-dimensional in vitro invasion (Polette 
et al.  2005  ) . Recently, the TGF- b /Smad pathway (known to target the Par polarity 
complex (Viloria-Petit et al.  2009  ) ) was demonstrated to induce breast cancer cell 
invasion through up-regulation of MMPs -2 and -9, reinforcing a potential link 
between matrix degradation and TJ-associated proteins (Wiercinska et al.  2011  ) . 

 Furthermore, interactions between the Par complex members Par6 and aPKC 
lead to Rac GTPase activation in non-small cell lung cancer (NSCLC) cells, which 
drives anchorage-independent growth and invasion through activation of MMP10 
(Frederick et al.  2008  ) . The evidence for an involvement of Par3 in cancer cell 
migration has also been strengthened by studies demonstrating that Par-3 engages 
in the spatial regulation of Rac activity. Par3 directly interacts with Tiam1, a Rac1-
speci fi c guanine nucleotide exchange factor, to form a complex with aPKC-PAR-6-
Cdc42, leading to Rac1 activation (Chen and Macara  2005  ) . Recently, Par3 has 
been suggested to also be important in regulating squamous cell carcinoma collec-
tive cell migration. Recruitment of Par3 by DDR1 reduced actinomyosin contractile 
activity at cell-cell contacts and antagonized ROCK activity to Rac activation, thus 
keeping migrating cells clustered together and promoting more ef fi cient collective 
migration (Hidalgo-Carcedo  2011  ) . 

 Finally loss or mislocalisation of the ZO1 interacting protein, Scribble, increases 
migration and invasion of breast cancer cell lines (Zhan et al.  2008 ; Vaira et al.  2012  ) , 
and cooperation of Scribble with the Ras oncogene increases MEK-ERK-dependent 
matrix invasion in a 3D breast acinar morphogenesis model (Dow et al.  2008  ) . 

 Together, the above studies underline the importance of TJ proteins in mediating 
pro-migratory and pro-invasive signals and also suggest that targeting these proteins 
in cancer may be of therapeutic value.  

    1.3.3   Cell Fate and Differentiation 

 Recent work has provided evidence that several TJ proteins may regulate cell fate 
and differentiation during normal development (Balda and Matter  2009 ; Koch and 
Nusrat  2009  ) . Expression levels of Claudin-4, ZO1 and ZO2 regulate murine stem 
cell commitment to hematopoetic or endothelial cell lineages (Stankovich et al.  2011  ) . 
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In addition, JAM proteins have been shown to be required for maintenance of 
hematopoietic stem cells in bone marrow (Arcangeli et al.  2011  ) , spermatid differen-
tiation (Gliki et al.  2004  )  and dendritic cell differentiation (Ogasawara et al.  2009  ) . 
Furthermore, as mentioned above, TJ proteins interact with polarity complexes such 
as the Scribble and Par complexes to in fl uence cell fate through processes including 
EMT, which allows cancer cells to alter their cell morphology and acquire pro-
invasive phenotypes that might facilitate their migration to optimally-supportive 
growth niches (Viloria-Petit et al.  2009 ; Dow et al.  2008 ; Ozdamar et al.  2005  ) . 

 The claudin-low aggressive breast cancer subtype is characterized by near 
absence of luminal differentiation markers, and increased expression of EMT and 
cancer stem cell-like markers (Prat et al.  2010  ) . Indeed, gene expression signatures 
derived from normal human breast cells undergoing EMT in response to snail/slug 
activation or TGF  b   treatment were recently shown to closely resemble those derived 
from claudin-low breast cancer tissues (Taube et al.  2010  ) . Poor prognosis claudin-
low tumour cells could undergo EMT through changes in several Zeb1 transcription 
factor–regulated genes. Zeb1 expression, through its repression of junctional pro-
teins, may therefore also have a causal role in cancer types including breast (Aigner 
et al.  2007  )  and colorectal (Spaderna et al.  2008  ) . Downregulation of Mir200c in 
breast cancer cells prevents expression of Zeb1, and reduces cancer cell migration 
(Cochrane et al.  2010  ) . Furthermore, knockdown of Zeb1 in MDA-MB-231 breast 
cancer cells promotes EMT reversion whereby induced re-expression of the TJ 
proteins JAM-A, Occludin, Crumbs and PATJ partially re-establishes cell polarity 
and epithelial morphology, and signi fi cantly decreases cancer cell migration. 
Encouragingly, Zeb1 knockdown in a mouse model of metastatic colorectal cancer 
resulted in complete suppression of liver metastasis (Spaderna et al.  2008  ) , suggest-
ing that targeting Zeb1 may be a valuable therapeutic modality. 

 The TJ peripheral protein Par6 has been demonstrated to be required for TGF b -
induced EMT in breast epithelial cells (Viloria-Petit et al.  2009  ) . Speci fi cally, 
TGF b -dependent phosphorylation of Par6 mediated recruitment of Smurf I (an E3 
ubiquitin ligase) to promote degradation of RhoA and dissolution of the TJs, a cru-
cial step in EMT (Ozdamar et al.  2005  ) . In addition, TGF b -Par6 signalling led to a 
loss of cell polarity and induced local invasion of MMECs in vitro and in vivo 
(Viloria-Petit et al.  2009  ) . 

 ZO1 and its associated transcription factor ZONAB have also been implicated in 
the regulation of epithelial homeostasis and differentiation (Balda et al.  2003 ; 
Georgiadis et al.  2010 ; Sourisseau et al.  2006  ) , through downstream regulation of 
cell cycle genes such as cyclin D1 and PCNA. Overexpression of ZONAB or knock-
down of ZO-1 in mouse epithelial cells resulted in increased proliferation, and 
induced EMT-like morphological and protein expression changes that disrupted 
normal epithelial differentiation. This suggests that ZO1 loss, as seen in several 
cancers (Hoover et al.  1998 ; Kaihara et al.  2003  ) , may phenocopy ZONAB over-
expression in vitro thus altering cell differentiation through the induction of EMT. 

 Finally, several recent studies have suggested novel roles for TJ-associated pro-
teins in controlling cellular homeostasis through regulation of spindle orientation 
and cell division. As mentioned above, transplantation of Par3-depleted stem cells 
into murine mammary fat pads resulted in disrupted ductal morphogenesis 
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(McCaffrey and Macara  2009  ) . Interestingly however, an expansion in the luminal 
progenitor cell population and reduction in myoepithelial cell population was evident 
in Par3-depleted mammary glands. This suggests a role for Par3 and its TJ binding 
partners in the regulation of progenitor differentiation and epithelial morphogenesis 
in vivo. 

 Recent studies in MDCK renal epithelial cells have shown that Par3 knockdown 
disrupts aPKC association with the apical cortex, and causes spindle misorientation 
leading to the appearance of multiple lumens in 3D cysts (Hao et al.  2010  ) . Similarly, 
depletion or inhibition of Par6B or aPKC induces misorientation of the mitotic spindle 
to drive formation of aberrant Caco-2 intestinal epithelial cysts, with cell survival 
and apical positioning dependent upon aPKC expression levels (Durgan et al.  2011  ) . 
Together these results suggest that TJ-associated proteins may have a role in spindle 
orientation and cell differentiation in vivo, and that their alteration may facilitate 
tumour formation by affecting the spatial regulation of cell division.  

    1.3.4   Metastasis and the Blood-Brain Barrier 

 In addition to their regulatory roles in cell fate and differentiation, the functional 
integrity of TJs also play an intrinsic part in preventing cancer metastasis. In order 
for metastasis to occur, invading cells must  fi rst detach from the primary tumour and 
invade into the bloodstream. At the site of metastasis, the tumour cells must 
extravasate. This is similar to leukocyte extravasation and consists of three steps; 
 fi rstly loose attachment and rolling on the endothelial surface, secondly tight attach-
ment to the endothelium, and thirdly diapedesis or transmigration through the 
endothelium, either by the transcellular or paracellular route. While leukocytes and 
tumour cells share many similarities during the  fi rst two steps, the third step of dia-
pedesis differs in that tumour cell migration irreversibly alters endothelial morphology 
(Heyder et al.  2002  ) . This in turn induces endothelial cell retraction and in some 
cases apoptosis, possibly due to loss of cell-cell contacts (Brandt et al.  2005 ; Uchide 
et al.  2007 ; Kebers et al.  1998  )  via molecules including N-cadherin (Qi et al.  2005 ; 
Strell et al.  2007  ) . The net effect of this destructive form of transmigration is the 
formation of gaps in the endothelial barrier, which can allow permissive access of 
tumour cells to the circulation and facilitate the early steps of metastasis. 

 A unique and highly-specialised form of the endothelium that poses a signi fi cant 
barrier to metastasis is the blood brain barrier (BBB), a complex structure consist-
ing of nonfenestrated brain microvascular endothelial cells (BMECs) held together 
by abundant TJs and adherens junctions [reviewed in (Arshad et al.  2010 ; Abbott 
et al.  2010  ) ]. Relative to other endothelial cells, BMECs exhibit higher transepithe-
lial resistances and lower solute permeability, while TJs are structurally more com-
plex and restrictive to diffusion of polar solutes via the paracellular pathway. The 
basement membrane is also thicker, and a layer of underlying astrocytes adds an 
extra regulatory component that restricts  fl ow across the barrier. Collectively, the 
layers that compose the BBB represent a formidable challenge to the cancer cells 
which must breach it in order to form brain metastases. Since the brain lacks 
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lymphatic drainage, brain metastasis occurs solely via the haematogenous route. 
It often carries a dire prognosis due to limited available treatment modalities, since 
the BBB is as impermeable to most drugs as it is to cells. Thus in recent years much 
interest has focused upon the regulation of BBB TJs, both to prevent cross-traf fi cking 
of tumour cells and also to understand mechanisms of selectively enhancing perme-
ability to facilitate chemotherapeutic drug delivery. In particular, claudins have 
emerged as promising targets since losses in claudins-3 and -5 have been associated 
with increased leakiness of the BBB (Wolburg et al.  2003 ; Nitta et al.  2003  ) . 

 With regard to speci fi c types of cancers, melanoma displays the highest propen-
sity of all primary tumours to metastasize to brain (Denkins et al.  2004  ) . Melanoma 
cells have been shown in vitro to degrade brain endothelial TJs, resulting in decreased 
transepithelial resistance and decreased expression of claudin-5, ZO-1 and occludin 
(Fazakas et al.  2011  ) . While the mechanisms of such events remain incompletely 
understood, TJ protein degradation may be facilitated by the fact that melanoma 
cells express several proteases, including matrix metalloproteinases (Hofmann et al. 
 2000  ) , urokinase type plasminogen activator (Artym et al.  2002  ) , seprase (Piñeiro-
Sánchez et al.  1997  )  and serine proteinases (Fazakas et al.  2011  ) . 

 Similarly, breast cancer displays a high propensity for brain metastasis, with a 
prevalence of approximately 30% at autopsy (Tsukada et al.  1983 ; Cho and Choi 
 1980  ) . Risk factors include young age, grade and stage, oestrogen receptor negativ-
ity and Her2/neu overexpression (Pestalozzi et al.  2006 ; Hicks et al.  2006  ) . While 
many soluble and cell- fi xed factors are potentially involved in the transit of breast 
cancer cells across the BBB, one intriguing pathway that has recently emerged 
involves the chemokine stromal cell derived factor-1 a  (SDF-1 a ) and its receptor 
CXCR4. SDF-1 a  is secreted by several organs including the central nervous sys-
tem, and SDF-1 a  treatment has been shown to increase the permeability of BMEC 
monolayers to breast tumour cell invasion by activating the PI-3K/AKT signalling 
pathway and causing endothelial cell retraction (Lee et al.  2004  ) . Interestingly 
CXCR4 is expressed on breast cancer cells and is sensitive to upregulation by the 
oncogene Her2/Neu, which is associated with aggressive and highly-metastatic 
forms of breast cancer (Li et al.  2004  ) . As with melanoma metastasis, however, it is 
clear that many other pathways could also govern transit of breast cancer cells 
across the BBB. Some of these mechanisms are likely to be convergent, for example 
the activity of degradative enzymes such as MMP-2 and -3 has been shown to be 
increased in in vivo breast cancer models (Mendes et al.  2005 ; Tester et al.  2004  ) , 
while that of MMP-1 and -9 has been shown to be increased in in vitro settings of 
breast cancer (Stark et al.  2007  ) . Given the links between MMPs and TJs alluded to 
earlier in this article, cross-regulation in the context of enhancing BBB permeability 
could therefore have serious implications for the development of brain metastases.  

    1.3.5   Angiogenesis 

 Metastasis is a complex and multi-step process which requires many forms of 
sophisticated functional adaptation in addition to the relatively simple requirement 
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for mechanical movement of cells across biological barriers. One biological process 
which exerts a key in fl uence on the ability of metastasized tumours (and indeed 
primary tumours) to survive is the generation of a vascular supply to nourish the 
growing tumour, termed tumour angiogenesis. Several TJ proteins have been impli-
cated in both physiological and pathological angiogenesis. Junction adhesional 
molecules, and in particular JAM-A, are known to be important regulators of angio-
genesis. JAM-A is expressed in the early vasculature of the developing mouse 
embryo (Parris et al.  2005  ) , and is a vital component of basic  fi broblast growth fac-
tor (bFGF)- induced angiogenesis. In the latter context it forms an inhibitory com-
plex with  a v b 3 integrin, which disassembles in response to bFGF signalling. JAM-A 
then facilitates MAP kinase activation, which in turn induces endothelial tube for-
mation and angiogenesis (Naik et al.  2003 ; Naik and Naik  2006  ) . Accordingly, tran-
sient knockdown of JAM-A has been shown to prevent bFGF-induced endothelial 
cell migration in an ECM substrate-speci fi c fashion (Naik et al.  2003  ) . Similarly, 
bFGF cannot induce angiogenesis in JAM-A de fi cient mice (Cooke et al.  2006  ) , and 
pancreatic islet cell carcinomas grown in JAM-A null mice have been shown to 
exhibit a small decrease in angiogenesis compared to JAM-A-expressing mice 
(Murakami et al.  2010  ) . 

 Other JAM proteins also appear to regulate angiogenesis in ways that could be 
relevant to tumour angiogenesis, or the pharmacological antagonism thereof. 
Soluble JAM-C levels have been shown to be increased in the serum of patients with 
rheumatoid arthritis, and treatment with exogenous JAM-C has the potential to 
induce angiogenesis in vitro (Rabquer et al.  2010  ) . Furthermore JAM-C blockade 
has been shown to reduce angiogenesis by 50% in a mouse model of hypoxia-
induced retinopathy (Orlova et al.  2006  ) . Others have reported that functional 
antagonism of JAM-C with a monoclonal antibody can inhibit angiogenesis both 
in vitro and in vivo (Rabquer et al.  2010 ; Lamagna et al.  2005  ) . Conversely, overex-
pression of JAM-B in a mouse model of Downs syndrome has been shown to inhibit 
the angiogenic response to vascular endothelial growth factor (VEGF) (Reynolds 
et al.  2010  ) . 

 Other TJ proteins such as the claudins also play a complex role in angiogenesis. 
Claudin-5 has been shown to reduce endothelial cell motility via N-WASP and 
ROCK signalling cascades (Escudero-Esparza et al.  2011  ) . Claudin-4-expressing 
ovarian epithelial cells reportedly feature upregulation of several genes encoding 
pro-angiogenic cytokines, and can induce angiogenesis both in vitro and in in vivo 
mouse models (Li et al.  2009  ) . Claudins -1, -2 and -5 are expressed in normal murine 
retinal vessel development; while claudins -2 and -5 are overexpressed in vessels in 
an oxygen-induced retinopathy model (Luo et al.  2011  ) . 

 Similarly expression of occludin can be altered by a number of angiogenic 
factors. Increased occludin expression has been linked with the secretion of 
angiopoetin-1 from pericytes (Hori et al.  2004  ) , while decreased occludin expres-
sion in conjunction with increased paracellular permeability has been noted in 
retinal endothelial cells treated with vascular endothelial growth factor (VEGF) 
(Antonetti et al.  1998 ; Behzadian et al.  2003  ) . 
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 Taken together, the above points illustrate a complex and dynamic relationship 
between TJ proteins and angiogenic cascades. We believe this shows much potential 
for interrogation to better understand not only the mechanisms of tumour angiogenesis, 
but also to drive forward the design of new TJ-based therapeutics aimed at interfer-
ing with this process.   

    1.4   Conclusion 

 This review has attempted to summarise the molecular aspects of TJs regarding 
their regulation by normal physiological processes and their contributions to 
pathophysiological behaviours characteristic of cancers. What has emerged is that 
TJs are intrinsic downstream components of a number of important cascades regu-
lating physiological processes as diverse as polarity, ion transport and responsive-
ness to paracrine or endocrine factors. Perhaps more importantly, it has also 
illustrated that while TJs may act as upstream regulators of functional behaviours 
intrinsically associated with cancer, there is no universal paradigm whereby simple 
loss or gain of TJ proteins drives processes like cell proliferation, migration or 
angiogenesis. Instead this review suggests that complex spatial and temporal regula-
tion of TJ signalling must be elucidated on an individual protein basis, but may bear 
fruit in the design of future drugs to target tumourigenic behaviour.      
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