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      In theory, there should be no difference between theory 
and practice, but in practice, there is.  

 –William T. Harbaugh   

 The essence of the discipline of epidemiology is the application of relatively subtle 
and abstract concepts to the practical challenges we face in the conception, design, 
conduct and reporting of research on human health and disease. As a teacher of 
epidemiology to undergraduate and post-graduate students in public health, medicine, 
dentistry and an expanding range of other disciplines in the health and social 
sciences, I have grappled for over two decades with the challenge of helping 
students link core epidemiological concepts such as bias and confounding with the 
practical challenges of completing a research project to the standard required for 
publication. Indeed, the major challenge in research supervision is to bring students 
to the level where they move seamlessly between theoretical and practical issues in 
formulating and re fi ning their research questions. 

 I am not aware of any textbook in epidemiology that bridges this chasm between 
theoretical and practical issues as effectively and comprehensively as  Epidemiology: 
Principles and Practical Guidelines . The authors, Jan Van den Broeck, Jonathan 
Brestoff and colleagues, take the reader on an excursion over 31 chapters from the 
conception of research questions to the reporting of study  fi ndings, including 
en route core issues in contemporary practice and topics, such as data cleaning, 
that are neglected in virtually all textbooks and poorly covered in the literature. 
This is a book for both students and experienced practitioners. 

 The world is not currently under-supplied with epidemiology textbooks. Vision 
and imagination were required to embark on writing this textbook which so 
effectively  fi lls an important gap in this crowded market. I salute the lead authors, 
Jan Van den Broeck, a former faculty member of our Department, and Jonathan 
Brestoff, a recent graduate from our MPH programme, for this achievement. 

    Foreword 
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In particular, I am honoured to acknowledge Jan Van den Broeck’s dedication 
and skill as a teacher and practitioner of epidemiology honed in the class room 
and in  fi eldwork over two decades and re fl ected in the scholarship displayed in this 
outstanding textbook. 

 Ivan Perry, MD, M.Sc, Ph.D, FRCP, FRCPI, MFPHM, MFPHMI 
 Professor and Head of the Department of Epidemiology & Public Health 

 University College Cork – National University of Ireland, Cork 
 Cork, Ireland   

Foreword
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    Toward integrated learning of epidemiology    

 The  fi eld of epidemiology is growing rapidly and in need of effective practical 
guides for the development, implementation, and interpretation of research involving 
human subjects. 

 There are many epidemiology textbooks covering a range of approaches, but 
almost all leave the reader asking: “How do I actually conduct a research project in 
epidemiology?” Our many attempts to address this question in the classroom 
inspired us to develop a text that supports research practice, and this book is the end 
product of that inspiration. Unlike conventional textbooks in epidemiology, we 
break down the research process into discrete stages and steps that help one to 
develop, conduct, and report epidemiological research. 

 In doing so, we have adopted a decidedly operational approach and contextualize 
discussions of research practice with theory and ethics, so that students and profes-
sionals from all academic backgrounds may develop a deep appreciation for how to 
conduct and interpret epidemiological research. Along the way, readers will develop 
skills to:
•    Search for and appraise literature critically  
•   Develop important research questions  
•   Design, plan, and implement studies to address those questions  
•   Develop proposals to obtain funding  
•   Perform and interpret fundamental statistical estimations, tests, and models  
•   Consider the ethical implications of all stages of research  
•   Report  fi ndings in publications  
•   Advocate for change in the public health setting    

 In our treatment of these topics and others, we integrate discussions of scienti fi c, 
ethical, and practical aspects of health research. Indeed, at all stages of the research 
process, each of these aspects directly in fl uences study validity. Consequently, this 
textbook expands concerns about study validity beyond the usual foci on study 
design and statistics to include other issues that may also affect the quality and 
relevance of published  fi ndings, examples of which are quality control activities, 
measurement standardization, data management, and data cleaning. As we discuss 

   Preface 
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each of these topics, we emphasize practical  fi eld methods and suggest potential 
solutions to common problems that tend to arise during study implementation. 

 The recognition that many different scienti fi c, ethical, and practical aspects 
interact to affect study quality represents one of the major originalities of the 
approach taken in this book. As we progress, we discuss a variety of emerging views 
and innovations in the  fi eld that will change the way epidemiology is practiced. 
We believe that this approach will best situate you, the reader, to conduct epidemio-
logical research. Indeed, epidemiology is a discipline in motion, and this textbook 
aims to re fl ect this dynamism and keep pace with its momentum. 

 As you read, we encourage you to use the text as a step-by-step tool to build your 
own research project. The experiences of planning and conducting a research study 
are as important as the underlying epidemiological theory and statistics. As a 
practicing or future health researcher, you have your own motivations and passions, 
and we hope this textbook will help you to use your interests to inspire your learning 
and professional development.  

Jan Van den Broeck
Jonathan R. Brestoff

Preface
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  1      Definition and Scope of Epidemiology 

             Jan     Van den     Broeck      ,     Jonathan     R.     Brestoff      , 
and     Matthew     Baum    

    Abstract 
   Epidemiology is a methodological discipline offering principles and practical 
guidelines for the creation of new quantitative evidence about health-related 
phenomena. Its aim is to contribute to knowledge in support of clinical medicine 
and community medicine. Epidemiological research uses scientifi c methods, in 
which empirical evidence is obtained from a study population to make inferences 
about a target population. In this chapter we fi rst establish a defi nition of epide-
miology and describe the wide scope of epidemiology in terms of its subject 
domains, types of research topics, types of study designs, and range of research 
activities that occur from a study’s inception to its publication. Since epidemiology 
concerns both ‘scientifi c studies’ and ‘particularistic fact-fi nding investigations,’ 
we further orient the reader to the scope of epidemiology through a discussion of 
these. We then introduce general epidemiological principles that health researchers 

  I’m not sure there is a bottom line…. Continued discussion 
and dialogue on these important subjects, a whole range 
of subjects, is important.   

 John Snow  
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should continuously keep in mind during the planning, gathering and presentation 
of the empirical evidence. All of these topics are pursued in more depth in the 
chapters that follow.  

1.1        Definitions of Epidemiology 

 Although the term ‘epidemiology’ is relatively recent, some roots of modern epidemi-
ology go back to ancient times ( See:  Chap.   3    ). It has been defi ned variously, and it 
may be surprising to learn that consensus on these defi nitions has not yet been reached. 
According to the broadest of views (Miettinen  2011a ,  b ), epidemiology is a synonym of 
 community medicine . According to this view, one can practice epidemio logy by doing 
epidemiologic research or by practicing public health outside clinical care settings. 
A community health educator, for example, could be an epidemiologist. 

 Mostly outside North America there is a competing view that defi nes epidemiology 
more narrowly as the methodological discipline that provides quantitative research 
methods to  public health , a term that refers to both community and clinical medicine. 
When epidemiology fi rst became a distinct discipline in the nineteenth century, it 
focused on the methods of creating quantitative evidence about illnesses encoun-
tered in communities at large or in variously defi ned sub-settings (clinical care 
settings are one such category of sub-settings). This long-sustained emphasis on 
methodology is refl ected in current public health practice settings (clinical or other), 
where epidemiologists are hired mostly because they are specialists in quantitative 
research methods. The editorial view for this text is in line with the latter, more 
practical view of epidemiology. 

1.1.1     Unpacking the Definition of Epidemiology 

 The defi nition of epidemiology proposed in this book is: 

  Epidemiology 

 The (1) methodological discipline providing (2) principles and practical 
guidelines for (3) creating new quantitative evidence (4) relevant for clinical 
and community medicine  

    (1) Methodological discipline 
 Epidemiology provides methods for conducting research. The knowledge achieved 
by the research adds substance to public health, not to epidemiology itself. The 
exception may be operational research that is done to investigate relative effi ciency, 
validity, and ethics of various research procedures and methods themselves.  

J. Van den Broeck et al.
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    (2) Principles and practical guidelines 
 Methods proposed in epidemiology have three dimensions:
•    A scientifi c dimension relating to validity, reproducibility, and verifi ability  
•   An ethical dimension relating to rights and values  
•   A practical dimension relating to administration and strategy    

 Hence epidemiology provides intertwined scientifi c, ethical, and practical principles 
and guidelines. Discussions of these three dimensions are integrated throughout this 
textbook.  

    (3) Creating new quantitative evidence 
 In epidemiology evidence is created through research that uses scientifi c methods. 
There is disagreement among epidemiologists as to whether epidemiology should 
concern only evidence produced using quantitative research methods (using statistics 
as the principle form of evidence) or both quantitative and qualitative research 
methods. Here, we propose the view that the use of quantitative methods is defi ni-
tional to epidemiology, but we also recognize that qualitative research methods can 
support and enhance several aspects of epidemiologic research and often can be 
codifi ed in a manner that permits quantitative analysis.  

    (4) Relevant for clinical and community medicine 
 The new evidence created should have relevance to clinical medicine and/or 
community medicine, the two of which are typically considered to be non-mutually 
exclusive elements of public health (Fig.  1.1 ; also  See:  Textbox  1.1 ). Clinical 
medicine concerns the health and well-being of individuals through the direct 
care of a recognized provider, typically in a clinical setting. Community medi-
cine concerns the health and well-being of a population through intervention at a 
community level. The distinction between clinical and community medicine is 
exemplifi ed by a hypothetical clinic established specifi cally to provide obstetric 
services to an underserved community and partially funded by a government 
program aimed at improving public health in such areas. This clinic can be said 
to practice both clinical and community medicine by caring directly for its 
patients and by directing their efforts at a community in need of obstetric services, 
respectively.

    Hint 
 A highly useful exercise, especially in the planning stages of a research 
project, is to consider how achieving knowledge about the topic under study 
might have implications for clinical medicine, community medicine, or both. 
Making theoretical or substantiated arguments about the potential clinical or 
community health benefi ts helps to motivate research teams, to increase the 
likelihood of obtaining funding, and to communicate the importance of one’s 
work to others.    

1 Defi nition and Scope of Epidemiology
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  Fig. 1.1     The place of epidemiology within clinical and community medicine . The methodological 
discipline of epidemiology is employed to achieve knowledge about clinical or community 
medicine (represented by  green spheres ). The spheres of clinical and community medicine are 
overlapping to illustrate that they interact. Clinical and community medicine interactions often 
benefi t both individuals and society (e.g., obstetric clinic described in the text body), but some-
times they can come into confl ict ( See:  Textbox  1.1 ). Studies directed at typical activities of 
clinical medicine (diagnosis, etiognosis, and prognosis) or community medicine (burden assessment, 
ecology, and forecasting) are referred to as clinical epidemiology or community epidemiology, 
respectively. Knowledge achieved by community and clinical epidemiology is used to inform 
actions that contribute to the betterment of public health       

    Textbox 1.1   Resources: When Clinical and Community Medicine Come into 
Conflict 

 In clinical medicine, a doctor is expected to act always in the best interests of 
the specifi c person seeking medical care. But when there are limited resources, 
one might need to balance the interests of the individual with that of the com-
munity. While also a concern for insurance companies, this confl ict becomes 
salient in publicly funded health care systems. A specifi c intervention might 
lead to the best outcome for the individual, for example, but be twice as 
expensive as another intervention that would lead to a slightly less-good out-
come. The public system might decide to offer the latter, less-good treatment 
to that individual so that more individuals could have access, thereby maximizing 
community but not individual health. How to and who should do the weighing 
of individual versus community health interests is a topic of continual debate. 

 

J. Van den Broeck et al.
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1.1.2        How Similar Are Clinical Medicine, Community Medicine, 
and Epidemiology? 

 Many epidemiologists combine research with clinical practice or community health 
practice. In such activities, one assesses health-related states or risks of individual 
patients and populations, respectively. These assessments do not necessarily follow 
the secure, slow path of scientifi c research. In fact, they rarely do. Instead, they are 
made mostly using clinical skills and public health skills that are quite different 
from the skills used in epidemiology. 

 As pointed out by Miettinen ( 2011b ), there is currently no scientifi c knowledge 
base of medical practice in a form that is immediately applicable and useful. Clinical 
skills, as far as diagnosis is concerned, are a mixture of experience, common sense, 
intuition, knowledge of differential diagnoses, and ability to fi nd and use literature 
and decision algorithms. In contrast with a trial, there is not a single hypothesis that 
is going to be tested using clinical trial methodology. Instead, the diagnostic know-
ledge is to be created by the clinician-diagnostician by very quickly eliminating 
thousands of rivaling diagnostic hypotheses, a process which is achieved by quickly 
proceeding to next questions asked to the patient, examination of a chosen next 
physical sign, and doing appropriate laboratory tests. This process may seem rather 
unstructured and unpredictable, but in reality it tends to have a remarkable and 
useful reproducibility. 

 Similarly, in community health practice, many of the acquired insights do not 
come from epidemiological studies and rarely do they come from causally-oriented 
epidemiological studies. Instead, the public health practitioner often uses assess-
ment methods that do not follow a design prescribed by the current epidemiological 
paradigms. These methods rather proceed in a way similar to clinical diagnosis, 
avoiding any formal hypothesis testing and trying to make sense out of a complex 
and unique situation. Like clinical diagnosis, the reproducibility and speed is often 
remarkable and useful, and the usefulness strongly depends on intuition and 
experience mixed with more technical ‘qualitative’ investigation skills. Examples 
of such assessment methods are SWOT analysis (Strengths, Weaknesses, 
Opportunities, and Threats), situation root-cause analysis, in-depth interview, focus 
group discussions, and rapid assessment procedures. Some of these methods are 
collectively labeled ‘qualitative research methods.’ Whilst their usefulness in 
community health practice is readily apparent, these methods cannot be considered 
to constitute a type of epidemiological study design because they do not follow a 
quantitative scientifi c paradigm. 

 That having been said, both clinical skills and qualitative assessment skills can 
be of crucial value in an epidemiological study. The need for persons with clinical 
skills in clinical epidemiological studies needs no argumentation. Qualitative 
assessment skills can provide fast and useful information in the design stage and 
preparation stage of an epidemiological study. Examples include assessments about 
possible confounders and effect modifi ers; likely refusal rates and reasons; local 
concepts and terminology about diseases; and culturally appropriate wordings of 
questions and response options (Kauchali et al.  2004 ).   

1 Defi nition and Scope of Epidemiology
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1.2     The Scope of Epidemiology 

 The scope of any discipline depends on one’s point of view, and epidemiology is no 
exception. Four frequently used points of view are described below. Although none 
alone fully elucidates the scope of epidemiology, when taken together they are 
cornerstones quite useful for the task. The points of view concern:
    1.    The spectrum of research activities for which epidemiology provides 

principles and guidelines: study design, conduct, analysis, interpretation, 
and reporting   

   2.    The range of subject domains within medicine served by epidemiology: infec-
tious diseases, chronic non-communicable diseases, health services, etc.   

   3.    The typology of research questions that are usually addressed by epidemiology: 
descriptive versus analytical studies   

   4.    The general study design types used in epidemiology: experimental, quasi- 
experimental, and observational studies     

1.2.1     Spectrum of Research Activities in Epidemiology 

 Research is a process that proceeds in logical, more-or-less pre-determined 
steps. Stages of all scientifi c research are study design, conduct, analysis, and 
reporting. From this point of view, the scope of epidemiology is the spectrum of 
scientifi c, ethical, and practical principles and guidelines that are relevant to the 
design, conduct, analysis, and interpretation/reporting of research on health-
related issues in epidemiologic populations. The sequence in which the research 
process proceeds is approximately refl ected in the structure of this book and is 
summarized in Table  1.1 .

1.2.2        Range of Subject Domains Within Medicine 
Served by Epidemiology 

 In the mid-nineteenth century epidemiology was mainly concerned with epidemic 
infectious diseases ( See  :  Chap.   2    ). Today, epidemiology reaches into domains such 
as normal and pathological morphology and physiology; infectious and non- 
infectious diseases; preventive and curative medicine; physical, behavioral, mental, 
and social health; and genotypic and phenotypic aspects of health and disease in 
life-course and trans-generational perspectives. Epidemiology provides methods to 
increase knowledge in both clinical medicine and community medicine, which we 
see as the basis for making a distinction between  clinical epidemiology  and 
 community epidemiology.  

 The main activities of clinical medicine are diagnosis, etiognosis, intervention, 
and prognostication. Clinical epidemiology supports these activities by providing 
methodologies for various types of research studies, as illustrated in Table  1.2 . The 
same table illustrates how activities of community medicine are served by community 
epidemiology.

J. Van den Broeck et al.
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   Table 1.1    Stages    of the research process and their common elements   

 Study stage  Elements 
 Design  Proposal and protocol development 

 Literature review, as part of study rationale development 
 Formulation of general and specifi c aims 
 Choice of general type of study design 
 Optimal size of a study 
 Identifi cation of the study base and planning to access it 
 Choice or development of measures, measurements, outcome measures, outcome 
parameters and analysis methods 
 Planning of ethical oversight and data management 
 Design of quality assurance and control protocols 
 Fundraising and stakeholder involvement 

 Conduct  Training and study preparation 
 Measurement and measurement standardization 
 Establishing and maintaining access to study base 
 Implementing data management and data cleaning plans 
 Data quality assurance and control activities 
 Study governance and coordination 
 Interaction with stakeholders during study conduct 

 Analysis  Preliminary, primary, and secondary analyses 
 Controlling for bias and confounding 
 Subgroup and meta-analysis if relevant 

 Reporting  Interpretation of results 
 Scientifi c writing 
 Reporting data quality 
 Dissemination of research fi ndings to relevant stakeholders 

   Table 1.2    The supporting role of epidemiology for clinical and community medicine   

 Clinical medicine activities  Clinical epidemiology provides methods for,  inter alia  
 Diagnosis and etiognosis  Diagnostic classifi cation; descriptive or analytical studies 

on disease occurrence 
 Intervention  Trials and observational studies on treatment effects 
 Prognostication  Studies on disease outcomes 
 Community medicine activities  Community epidemiology provides methods for,  inter alia  

 Screening, surveillance, health 
profi ling 

 Surveys, studies on screening and surveillance methods, 
modeling of disease spread, outbreak investigation 

 Public health services and 
interventions 

 Community intervention studies (including prevention 
research) 

 Evaluation of health services 
and interventions 

 Health service utilization studies, cost-effectiveness studies 

1.2.3        Typology of Research Questions in Epidemiology 

 The scope of epidemiology is often thought of in terms of the types of research 
questions addressed. There are many ways of categorizing epidemiological research 
questions, and a detailed typology is discussed in Chap.   4     (General Study Objectives). 

1 Defi nition and Scope of Epidemiology
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A broad traditional classifi cation scheme distinguishes between  descriptive  and 
 analytical  research questions and studies (Table  1.3 ). Descriptive studies investigate 
phenomena and their relationships without concern for causality. Analytical studies, 
on the other hand, aim at demonstrating causal links among phenomena. These 
types of studies investigate the effects of presumed risk factors, also called  expo-
sures  or  determinants , on health outcomes with a particular concern for demonstrating 
that reported relationships are free of potential confounders ( See:  Chap.   2    ).

   Health-related phenomena commonly studied using epidemiology are health 
states or events in individuals, health-related attributes of populations, or characte-
ristics of functional care units. One’s interest in a given health-related phenomenon 
may be its frequency, severity, causes, natural course, response to intervention, 
complications, risk factors, protective/preventive factors, and other aspects ( See:  
Chap.   4    ). Epidemiologic studies of individuals tend to focus on normal and abnormal 
morphology and function. Also of interest may be how illnesses secondarily affect 
subjective experiences, physical/psychological function, and social function e.g., 
quality of life and wellbeing, both of which are higher-level, multidimensional attri-
butes ( See:  Chap.   10     for more information about quality of life measures). 

 Population characteristics studied in epidemiology include burdens and inequali-
ties – differences in morbidity, mortality, burdens, risks, effects, etc. ( See:  Chap.   4    ). 
One may be tempted to alternatively defi ne epidemiology as the discipline concerned 
with investigating health inequalities, thereby hinting to its important social- ethical 
dimension. Indeed, many inequalities are unfair and unacceptable socially and 
ethically, and research into their existence, causes, and alleviation needs to be 
supported by a discipline that renders the investigations scientifi c and effi cient and 
that ensures studies are carried out in full respect of its participants.  

1.2.4     The General Study Design Types Used in Epidemiology 

 In epidemiology the most frequently used traditional (i.e., mainstream) general 
study designs are considered to be experimental, quasi-experimental, or observa-
tional. Examples of each are listed in Table  1.4 . In mainstream typology, e xperimental 
studies  are those in which the researcher allocates intervention levels in a randomized 
fashion and then observes and compares the outcome of interest among each ran-
domized arm. In  quasi-experimental studies  the allocation of intervention levels is 

   Table 1.3    Frequent objectives of epidemiological research   

 Classifi cation  Frequent objectives 
 Descriptive studies (phenomenological 
orientation) 

 Estimate the burden of illness 
 Describe the natural history of illnesses 
 Predict the risk of a health related event 
 Derive classifi cation of diseases 

 Analytical studies (causal orientation)  Identify the causes of illness (or protective factors) 
 Evaluate interventions 

J. Van den Broeck et al.
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non-randomized but otherwise similar to experimental studies. In   observational 
studies  the participants may or may not undergo interventions, e.g., as prescribed by 
their health care providers, but the researcher only observes and does not allocate 
intervention levels in the research context.

   Whenever the interest is in the occurrence of events or change of status over 
time, a  follow-up study  is usually preferable for validity reasons. In such follow-up 
studies, one can follow the experience of a  cohort  (a group with fi xed membership 
determined by some admission event) or a  dynamic population  (a group with non- 
fi xed membership, where entries and exits occur) over time. In a  cross-sectional 
study , one studies a cohort at a single, fi xed individual follow-up time (most 
frequently, follow-up time zero) or a dynamic population around a fi xed point in 
calendar time (e.g., a survey). This cohort or dynamic population is assessed once 
for their current health-related states of interest and for determinants of interest. In 
a  case–control study , individuals with a particular health-related state of interest 
(‘cases’) are identifi ed in a cohort or dynamic population (perhaps in a cross-section 
thereof) and their antecedent experience in terms of presumed-causal factors and 
presumed confounders is assessed and compared with the time-equivalent past 
experience of a sample of the target population from which the cases originated 
(‘controls’).  Ecological studies  typically look at concomitant variation of group 
statistics (of multiple groups) on outcomes and exposures. A more extensive discus-
sion of general study design, with a partly different typology is found in Chap.   6    .   

1.3     Particularistic Versus Scientific Studies 

 In planning a study, when the researcher has to specify the target population ( See:  
Textbox  1.2 ), there is often the choice to defi ne the target population with temporal- 
spatial constraints (‘particularistic study’) or without such constraints (‘scientifi c 
study’). Whatever the choice, a group of study subjects will have to be identifi ed in 
space and time whose characteristics fi t the defi nition of the target population and 
whose relevant experiences will be observed and measured. In addition, in both 
cases scientifi c methods of investigation (including study design) are followed. 

 In scientifi c studies, one chooses to defi ne a highly abstract population, such as 
newly diagnosed adult patients with type 2 diabetes. This choice implies that the 
researcher expects the generated evidence to be generalizable to all individuals 
sharing the defi ned attributes of the abstract population (e.g., any individual with a 

   Table 1.4    Mainstream typology of general study designs           

 Study type  Examples 
 Experimental  Randomized-controlled trial 
 Quasi- experimental   Non-randomized trial 
 Observational  Cross-sectional study 

 Cohort study 
 Case–control study 
 Ecological study 

1 Defi nition and Scope of Epidemiology
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   Textbox 1.2 Naming and Defining Populations 

 The term ‘population’ is commonly understood to be synonymous with the term 
 demographic population , defi ned as the inhabitants of a given area; however, 
a demographic population is only a particular instance of an  epidemiologic 
population . Individuals, communities, or institutions that are the focus of 
attention in epidemiological research constitute epidemiologic populations. 
They can be defi ned theoretically as target populations or directly observed as 
study populations. 

 Early in the study planning process, one must defi ne a  target population , 
the theoretical epidemiologic population about which one seeks to achieve 
knowledge. The units whose attributes/experiences are the focus of an epide-
miologic study can be individuals or groups (e.g., households, villages, etc.). 
Taking the common case of ‘individuals’ as an example, the specifi c type of 
individuals of interest in a particular research study may be further specifi ed 
by combinations of temporal, spatial, environmental, biological, and beha-
vioral characteristics. The inclusion of temporal and spatial restriction criteria 
in this specifi cation is not always necessary. If place and time criteria are not 
part of the defi nition of the target population (e.g., patients newly diagnosed 
with type 2 diabetes mellitus), a study will more often be labeled ‘ scientifi c ’. 
If place and time criteria are included in the defi nition of a target population, 
a study will often be labeled ‘ particularistic ’ (e.g., the infant with protein- 
energy malnutrition in Bwamanda in 1992). In both cases, the target population 
includes an abstract type of people. 

 A  study population  or study sample refers to the collection of observation 
units on whom data have been or will be collected to make inferences about 
the target population. A study population can be but is not always a statisti-
cally representative sample of all individuals whose individual characteristics 
fi t the defi nition of the target population. Although an epidemiologist performs 
measurements on a study population, the purpose of a study is not strictly to 
learn something about the study population. Explicitly, the aim of the epide-
miologist is to achieve knowledge about the target population. For example ,  
in a clinical trial one is not just interested in how an intervention works in the 
patients involved in the study; rather, the main interest is in knowing some-
thing about how  future patients  will react if they receive the intervention. 

new diagnosis of type 2 diabetes), irrespective of whether they participated in the 
study. This is a bold but risky position given that external validity (generalizability) 
depends on achieving internal validity during the study and other issues of credibility. 
But there is another more important reason why the position is risky. Perhaps the 
greatest possible fallacy in epidemiological thinking, and probably the root of most 
contemporary controversies about the value of epidemiology, is to think that the 
statistical results (outcome parameter estimates or test statistics) from a scientifi c 

J. Van den Broeck et al.
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study – whether it be an experimental, quasi-experimental, or observational 
study – represent estimates of ‘universally true occurrence relations’. 

 We are of the view that causally oriented epidemiological studies do not estimate 
a single, true, abstract, or universally generalizable relation between a study factor 
and an outcome. They only provide true generalizable evidence on such relations 
 conditional on an often complex, always particularistic and variable distribution 
matrix of measured and unmeasured confounders and effect modifi ers.  Failure 
to appreciate this to the fullest can lead to misguided irritations about, for example, 
the very normal fact that epidemiological studies on the same topic (including 
clinical trials) often lead to very different or even contradictory results ( See also:  
Textbox   25.1    ). 

 The set of covariates that underlie a ‘true relationship’ cannot be expected to be 
homogeneous in time and space. Modern science has revealed a staggering diversity 
within and among individuals and populations with respect to constitutional, envi-
ronmental, and behavioral-social conditions. Moreover, it is now understood that 
there are large fl uctuations in these conditions over brief periods of time (e.g., within 
the span of just a 1 day). It is not surprising that health states are greatly infl uenced 
by changes in these conditions. An equally staggering number of ever-refi ned sub- 
classifi cations of health state characteristics are now appreciated. Thus, it becomes 
increasingly diffi cult to defi ne a target population and a distribution matrix in a way 
that consistently replicates statistical study results. Generalizability only holds until 
the next paradigm shift, and the current rate of paradigm shifts in exposure and 
disease classifi cation is so high that a new focus is needed in epidemiology. The 
scientifi c task of discovery has become a task of quantifying relationships and now 
is also a task of exploring and ‘taming’ heterogeneity.   

1.4       General Epidemiological Principles 

 The scientifi c, ethical, and practical dimensions of epidemiology have led to the 
development of principles that have a bearing on all or nearly all stages of the 
research process, and we therefore refer to them as general principles. Decisions 
about design, execution, and reporting of the research should be geared towards 
epidemiology’s general principles. While many potential candidates for general 
principles might be identifi ed, Panel  1.1  aims to highlight what we consider to be 
the most important ones. 

 Without exception, these principles ultimately derive from ethical consider-
ations, even those concerning validity and effi ciency, as it is unethical to conduct a 
study that will be invalid or that wastes resources unnecessarily. While it is helpful 
to think about how our general principles relate to the broad ethical principles of 
respect for autonomy, non-malefi cence, benefi cence, and justice (Panel  1.2 ), we 
present our general principles in the form and degree of specifi cation that we 
consider most useful for those designing and carrying out epidemiologic research. 
These general principles will be frequently referred to and further discussed later in 
the book. Below we provide a basic orientation. 

1 Defi nition and Scope of Epidemiology
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  Minimize risk of avoidable, unacceptable harm:  Sometimes misleading when 
referred to only as “fi rst do no harm,” this principle refl ects the obligation not to 
expose participants to avoidable or unacceptable harm, even if doing so carries 
signifi cant costs, and to minimize exposure to avoidable risks of harm. Most studies 
will expose participants to some amount of physical, psychological, economic, or 
legal risk. The researcher has a responsibility to foresee and minimize exposure to 
such risks. It is not always clear at what threshold a harm becomes unacceptable or 
which types of harms are inherently unacceptable; ethics review boards, however, 
can be useful resources in discussing this question for a given study. 

 As a clarifying example, this general principle might translate to an obligation to 
draw blood with sterile needles (minimize risks) and to not draw blood at all if sterile 
needles cannot be found (risks cannot be minimized below a decent threshold), even 
if this means the study cannot be conducted. Or, it might translate to an obligation 
to terminate the study or to withdraw a patient from the study if doing so might 
avoid signifi cant harm even though early termination might affect the quality of the 
data. Historically, this concern was established in response to inhumane and harmful 

   Panel 1.1 General Principles of Epidemiology 

•     Minimize risk of avoidable, unacceptable harm  
•   Respect the autonomy of participants  
•   Respect the privacy of participants and confi dentiality of their data  
•   Minimize burden, preserve safety, and maximize benefi t for participants  
•   Maximize societal relevance  
•   Contribute minimally biased evidence to the overall pool of evidence 

on an issue  
•   Maximize completeness of data for analysis and archiving  
•   Guarantee verifi ability of study procedures  
•   Pursue parsimony    

   Panel 1.2 Broad Ethical Principles Relevant to Epidemiology 

     Respect for autonomy     Respecting the capacity of an individual to make an 
informed un-coerced decision   

   Benefi cence     The concept that researchers should mind the welfare of 
participants   

   Justice     The concept that researchers should act with moral rightness and 
maintain fairness and justness   

   Non-Malefi cence     The concept that researchers should minimize the exposure 
to potential harm     

J. Van den Broeck et al.
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studies of the mechanisms or natural history of a disease, such as the Tuskegee 
Study of untreated Syphilis ( See:  Textbox   16.1    ). 

  Respect for the autonomy of participants:  This principle protects participants’ self-
determination, or the ability to make one’s own decisions about one’s life (like 
whether to participate in research after having considered the risks and benefi ts). 
Seeking informed consent when enrolling participants is one method of respecting 
autonomy, as is making sure there is no coercion or undue inducement, either of 
which would invalidate that consent. At some time during the study, moreover, a 
participant may competently decide to withdraw consent; building in mechanisms 
for withdrawing from the study would respect that autonomous decision. 

  Respect for the privacy of participants and confi dentiality of their data:  Rigorous 
measures should be taken to ensure the security of identifi able information obtained 
from participants and to minimize the intrusiveness of research. Designing a study 
that uses the method of information gathering that is least intrusive into the private 
lives of participants while still enabling valid data collection might be a specifi ca-
tion of this principle. 

  Minimize burden, preserve safety, and maximize benefi t for participants:  This 
principle combines aspects of benefi cence and justice. Namely, studies should 
maximize the cost/benefi t ratio for participants and ensure that the group under-
taking the burden/risks of research are also benefi ting from the research; one 
group should not take all the risks while another benefi ts. In theory, keeping this 
principle in mind will also help ensure that the study population is generalizable 
to the target population. Although many epidemiologic studies may not have 
signifi cant safety concerns, there will at absolute minimum be the burdens of 
time spent and of possible adverse effects of participation. Execution of this 
principle, especially in populations that differ in culture from the researchers’, 
may require particularly careful consideration of or perhaps even preliminary 
research on what is considered burdensome or benefi cial to the participants. While 
this principle contains similar elements to the fi rst principle, we think it helps to 
keep them conceptually separate. 

  Maximize societal relevance:  Research should address a health issue relevant to the 
target population and have the realistic possibility of bringing society closer to 
improving related health outcomes. Research on methods may directly support the 
maximization of societal relevance. Community engagement (and engagement with 
other stakeholders) in the design, conduct, and dissemination of research may be a 
specifi cation of this principle. Because even the best conducted research will have 
little impact if it is poorly or too narrowly communicated, a specifi cation of this 
principle might be publishing clear, well written papers in appropriate journals 
and ensuring that research is disseminated in forms able to be understood by and 
meaningful to the different types of stakeholders. 

  Contribute minimally biased evidence to the overall pool of evidence on an issue:  
All research studies will have limits to their internal validity and generalizability. 
This principle represents the duty to maximize the benefi ts of research by working 
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to push back these limits. Avoiding confl icts of interest (e.g., making sure the 
research is truly independent) might be a specifi cation of this principle. Identifying 
weaknesses in existing research on a topic and designing a study that does not 
replicate these weaknesses may be another specifi cation. 

  Maximize completeness of data for analysis and archiving:  A principle again 
aimed at maximizing the usefulness of research, this one allows the epidemiology 
community to address multiple questions with the same database and to return to 
the database in the future to address newly raised questions. Following this 
principle helps to avoid the new burdens, risks, and costs of collecting new data. 
Completeness of data also enhances the precision and sometimes the unbiasedness 
of study fi ndings. 

  Guarantee verifi ability:  It is essential to be able to verify past studies, especially if 
confl icting results emerge. Rigorously detailing methods, documentation of data 
quality aspects and archiving samples can be thought of as specifi cations of this 
principle. If a study cannot be verifi ed, it cannot be trusted, and thus cannot be used 
to benefi t society. 

  Pursue parsimony:  This principle refl ects a duty not to expend resources (time, 
money, personnel, etc.) needlessly or to expose participants to needless risks or 
burdens. Specifi cations might be to enroll only as many participants and continue 
collecting data only as long as necessary to reach a scientifi cally valid and rigorous 
answer to the specifi c research question being investigated. 

 To illustrate that these principles cut across many stages of the research pro-
cess, let us consider the principle of maximizing data completeness and the many 
points in a study at which incomplete data may arise. During a clinical follow-up 
study there are many opportunities to lose participants and to miss or lose infor-
mation. When planning for the number of participants to recruit, one must try to 

  Textbox 1.3 Epidemiology and Its Link to Culture and Politics 

 There is an overarching social-ethical dimension to epidemiologic research 
that inevitably links it to culture and politics. This has implications for the 
choice of research questions and the fair allocation of resources to competing 
research questions. Investigators, research institutions, and companies have 
an ethical obligation to mind their potential contributions to society. Indeed, 
they are often required to adhere to international and national policies aimed 
at reducing unfairness. Likewise, policy makers must support epidemiological 
research on inequalities and they must take into account the foreseen effects 
of any policy decision on health inequalities, at all levels from local to global. 
To do so, they will need a trustworthy knowledge-base on health inequalities 
provided by epidemiologic research. Epidemiologists are consequently 
important stakeholders of the socio-political process. 
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identify a target number (or range of numbers) desired for analysis, and then account 
for expected rates of attrition and refusal to determine the number of participants 
to recruit. Researchers may lack the necessary resources to boost lagging enroll-
ment rates or to prolong the enrollment period. After enrollment there may be a 
few late exclusions of participants who appear not to be eligible after all, and 
some subjects may withdraw their participation or be unable or unwilling to 
accommodate certain measurements. Of the recorded data, some may prove to be 
outliers or to be the result of contamination, and re-measurement may be impos-
sible. The laborious task of data entry may be incomplete, and source documents 
may be lost or damaged. In preparations for analysis, data transformations may 
be incomplete (e.g., some data transformations cannot handle negative data), and 
fi nally, some analysis methods (e.g., multiple linear regression) can only use 
records with complete data on all the variables in the model. As a result of these 
potential problems and others, discrepancies between the targeted sample size 
and number of samples analyzed are common; in fact, serious discrepancies 
may occur. Consequently, the power of analyses and precision of estimates can 
drop below ‘useful’ levels, and, to the extent that missing information is related 
to outcomes and their determinants of interest, study validity may be com-
promised. Epidemiological guidelines on how to respect the principle of data 
completeness must therefore be taken seriously. Given the high importance of 
this particular topic, issues associated with data completeness will recur in other 
chapters of the book. A similar line of reasoning can be developed for the other 
principles listed. 

 It is important to realize that these principles form a web-like framework in 
tension with each other; principles, therefore, will at times come into confl ict. To 
extend the example above, in trying to maximize precision of estimates, one might 
seek to enroll a very large participant pool. However, this might put participants at 
needless risk and lead to ineffi cient use of public funds and time and thus come in 
confl ict with both risk minimization and parsimony. It is by the diffi cult task of 
weighing and balancing these principles that we arrive at conventions of acceptable 
levels of risk, cost, and statistical power. This balancing act is especially evident 
when dealing with “maximizing” and “minimizing” principles. 

  Hint 
 When planning a study, a useful exercise is to consider each of the general 
principles of epidemiology in a step-by-step manner, much like how problems 
leading to data incompleteness were charted above. This process may be 
time consuming but will yield high dividends and ultimately save signifi cant 
amounts of time.  

  Having armed ourselves with a defi nition of epidemiology and heightened our 
senses to its scope and key general principles, let us proceed to have a close 
look at basic concepts of epidemiology in Chap.     2      .    

1 Defi nition and Scope of Epidemiology
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    Abstract 
   Basic or core concepts are by no means simple or unimportant. In fact, the true 
hallmark of an expert is a deeper understanding of basic concepts. In this chapter 
we will introduce basic epidemiological concepts. Epidemiological research 
addresses the occurrence of health-relevant characteristics or events in a specifi ed 
type of people. The characteristic or event of interest is often referred to as the 
‘outcome’ and the type of persons in which it occurs is often referred to as 
the ‘target population’. The frequency of the outcome can be of interest itself, or, 
the interest may be in the link between the outcome’s frequency and one or more 
determinants, often called ‘exposures’. Analytical studies address causal links, in 
contrast to purely descriptive studies. Irrespective of whether a study is descrip-
tive or analytical, empirical evidence is obtained by documenting relevant 
experiences of a study population, a sampled group of individuals who are 
intended to represent the target population of interest. To describe such empirical 

           L.  T.   Fadnes ,  Ph.D.    (�) •    J.   Van den   Broeck ,  M.D., Ph.D.      
  Centre for International Health, Faculty of Medicine and Dentistry , 
 University of Bergen ,   Bergen ,  Norway   
 e-mail: lars.fadnes@cih.uib.no; Jan.Broeck@cih.uib.no   

    V.   Nankabirwa ,  Ph.D.    
  Department of Paediatrics and Child Health, School of Medicine, 
College of Health Sciences ,  Makerere University ,   Kampala ,  Uganda     

    J.  R.   Brestoff ,  MPH      
  Perelman School of Medicine ,  University of Pennsylvania ,   Philadelphia ,  PA ,  USA   
 e-mail: brestoff@mail.med.upenn.edu   

  2      Basic Concepts in Epidemiology 

                Lars     Thore     Fadnes     ,     Victoria     Nankabirwa     , 
    Jonathan     R.     Brestoff      , and     Jan     Van den     Broeck     

 The theory of probabilities is at bottom nothing but common 
sense reduced to calculus.  

 Laplace  



20

evidence, the frequency concepts of risk, rate, and odds are essential. The fre-
quency of the outcome is often compared among different levels of exposure. 
In analytical studies, this comparison must strive for freedom from the blurring 
effects of confounding. In this chapter we explain this phenomenon of confoun-
ding. We also discuss the exploration of factors that mediate or modify a causal 
link. The fi nal section of the chapter discusses types of biases in study fi ndings.  

2.1        Occurrence Relations 

 Core concepts in epidemiology are summarized in Panel  2.1 . Perhaps the most 
basic of those concepts is the  occurrence relation . In epidemiological studies, one 
investigates the occurrences of outcomes and/or the relationship between outcome 
occurrences and exposures. The most  basic occurrence relation  (Fig.  2.1 ) that can 
be studied is the relationship between a single exposure and an outcome.

   Additional elements may need to be added to the occurrence relation when 
designing a study. When the study is ‘analytical’ ( See:  next section), showing a 
causal link between an exposure and outcome usually requires taking into account 
other factors that might confound (blur) the detection of that link (discussed further 
below in the section on confounding). Thus, in analytical studies these additional 
factors, called  confounders  need to be included in the occurrence relation. The diagram 
representing the occurrence relation is then called a  causal diagram , of which the 
most basic form is shown in Fig.  2.2 .

   Panel 2.1 Summary of Basic Concepts in Epidemiology 

     Analytical studies     Studies seeking to demonstrate a causal link   
   Bias     Deviation from the true value   
   Causal link     A statistical association that is free of the distorting infl uence 

of confounding factors   
   Cohort     A fi xed group of subjects composed on the basis of a once-off 

selection criterion and followed to study the frequency of occurrence of the 
outcome   

   Confounder     A third factor that distorts (away from the true independent 
effect) the observed association between exposure and outcome   

   Descriptive studies     Studies not seeking to demonstrate a causal link   
   Dynamic population     A group of subjects with varying composition over 

calendar time because membership, based on a chosen criterion, only lasts 
for as long as the criterion is fulfi lled   

   Effect modifi er     A factor by whose level the relation between exposure and 
outcome changes   

   Exposure     Determinant; factor related (causally or acausally) to the outcome   
   

(continued)
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Exposure Outcome

  Fig. 2.1    The basic occurrence relation. A single exposure is related to a single outcome       

Panel 2.1 (continued)

Hypothesis     A scientifi c idea ( Based on Miettinen   1985 )   
   Information bias     Bias in the statistical study result caused by problems 

with measurement, data processing or analysis   
   Measurement     Investigation of an attribute of a single observation unit; and 

the recording of a ‘representation’ characterizing the attribute under the 
form of a value on a measurement scale   

   Mediator     A factor by which the exposure exerts its effect on the outcome   
   Observation unit     Person or other entity, member of the study base, whose 

characteristics or experience is to be measured   
   Occurrence relation     The object of study: the proposed relation among 

outcome, exposures (and sometimes confounders and effect modifi ers)   
   Odds     probability of having (or developing) the outcome divided with the 

probability of  not  having (or developing) the outcome   
   Outcome     The phenomenon whose frequency of occurrence is studied   
   Population cross-section     A ‘snapshot’ of a cohort at a particular follow-up 

time or of a dynamic population at a particular calendar time   
   Rate     Frequency of occurrence   
   Risk     Probability of some state or event developing   
   Selection bias     Bias in the statistical study result caused by problems of 

selection or retention of study participants   
   Study base     The real-life experience of members of a cohort, dynamic 

population or population cross-section that will be documented to provide 
empirical evidence about the occurrence relation   

   Study population     The group of people that will provide for the study base   
   Target population     The type of people about which evidence will be created 

in the research     

Exposure Outcome

Confounder

  Fig. 2.2    The basic causal diagram. A single exposure is related to a single outcome. A third vari-
able – known as a confounder – is also related to the outcome and is associated with the exposure       

 

 

2 Basic Concepts in Epidemiology



22

2.2           Target Population and Study Population 

 Occurrence relations are studied for a specifi ed  target population . As discussed in 
Chap.   1    , the target population is the type of persons the research tries to create 
evidence about. The target population can be entirely abstract (e.g., adults with a 
specifi c illness), or there may be some space or time restrictions 
(e.g., inhabitants of a specifi c area). In practice, we study the real-life experiences of 
a group of persons who represent the target population; this group is called the 
 study population . The collective experience of the study population is called the 
 study base . Chapter   5     will explain in greater detail the three possible types 
of study base that can be used: cohorts, dynamic populations, and population 
cross-sections. In brief,  cohorts  are fi xed groups of persons whose exposures and 
outcomes are documented over a defi ned period of follow-up time.  Dynamic 
populations  are non-fi xed groups whose attributes of interest are measured in the 
people fulfi lling a set of criteria during a study, with people moving in and out of 
the study population according to whether they (still) fulfi ll these criteria. A  popu-
lation cross-section  is a “snapshot” of a study population at a specifi c time. In all 
three cases, attributes and experiences in the study population are recorded either 
repeatedly or once. Because the study population represents the target population, 
the empirical evidence and relationships found in it can be used to make  inferences  
about the target population.  

2.3     Descriptive Versus Analytical Research 

 All epidemiological studies investigate health phenomena using quantitative methods 
involving statistical estimation and/or testing. As discussed in Chap.   1    , there are two 
broad types of epidemiological studies: descriptive and analytical studies. But what 
distinguishes a descriptive study from an analytical one? 

 The fundamental divide between these two study types is whether or not causality 
is addressed. In a  descriptive study , the outcome of interest might be the prevalence 
of a disease, a correlation, or a shape of a relationship in one or more groups. 
However, in such studies there is no focus on whether one phenomenon causes or 
prevents the other. In principle, descriptive research does not address questions 
regarding causal links between phenomena. The aim is rather to show if the frequency 
is different between the categories of a determinant, regardless of the reasons for 
any observed differences. 

 Analytical studies, on the other hand, are aimed at demonstrating possible 
causal links among observed health phenomena and are therefore considered to be 
causally- oriented. The causal links may be associated with an increase or decrease 
in the frequency of the outcome of interest. Put another way, analytical studies 
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investigate whether determinants (often referred to as  exposures  or presumed  risk 
factors ) are causally linked with health-relevant outcomes. 

 To further illustrate descriptive versus analytical studies, consider two different 
studies, one descriptive and the other analytical, both addressing the relationship 
between average weekly beer consumption and squamous cell lung carcinoma. In the 
descriptive study, one might compare beer consumption rates in patients with 
lung cancer versus the general population, without any attempt to address whether 
beer consumption is a causal factor for lung cancer. This would yield descriptive 
information on whether beer consumption is any higher or lower in the patients. In the 
analytical study, one would attempt to determine whether beer consumption  causes  
lung cancer and, if so, to what degree beer consumption increases or decreases the 
risk of lung cancer. This can only be achieved when it can be convincingly shown 
that the relationship is free from the effects of  confounding factors . In other words, 
it is essential to demonstrate that an observed association is not explained by 
additional factors (confounders), such as the observation that beer drinkers are more 
likely to smoke tobacco, a very well- known cause of lung cancer.  

2.4     Risks, Odds, and Rates 

 When describing empirical evidence about occurrences and occurrence relations, 
the frequency concepts of risk, odds, and rate are essential. 

2.4.1     The Distinctions Among Risk, Odds, and Rate 

 In epidemiology the term ‘ risk ’ is used to denote the probability of some state or 
event developing (Eq.  2.1 ) and is expressed as a proportion or percentage. Take, for 
example, the term ‘incidence risk.’ An incident case of a disease is a new occurrence 
in a susceptible individual (e.g., the development of lung cancer in a previously 
cancer-free individual). ‘Incidence risk’ is the probability of the outcome (e.g., lung 
cancer) newly developing over a defi ned period of time.

  Risk = =probability of a state or event developing p   (  2.1  )   

  ‘ Odds ’ is the probability of  having or developing  the outcome divided by the 
probability of  not  having or developing the outcome (Eq.  2.2 ). For example, in a 
cross-sectional study, the odds of cardiac disease is the probability of  having  cardiac 
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disease divided with the probability of  not having  cardiac disease. In a cohort study 
it would be the probability of  developing  cardiac disease divided by the probability 
of not developing it.      

    Table 2.1    The basic    two-by-two table of exposure versus outcome   

 Exposure level  Outcome: death  Outcome: no death 
  Exposed   a  b 
 (Living in area with regulated seat belt use) 
  Unexposed   c  d 
 (Living in an area without regulated seat belt use) 

  
Odds =

-
p

p1  
 (  2.2  )   

  Where: 
 p = the probability of a state being present or an event occurring  

 The concept of ‘ rate ’ will be used in this textbook to mean the ‘frequency of occur-
rence’ (Miettinen  2011 ). Rates in this sense can be of a proportion-type or density-
type. A  proportion-type rate  is the number of occurrences out of a total number of 
instances in which the occurrence could have happened. A  density-type rate , on the 
other hand, is the number of occurrences out of a total amount of at-risk time (also 
called ‘cumulative person time’ or ‘population time’). To avoid confusion, one must 
be aware that many epidemiologists only use ‘rate’ to denote the latter density-type 
rates; this restricted use of the term  rate  is still debated (e.g., Miettinen  2011 ).  

2.4.2     Practical Application of Risks and Odds 

 Risks, odds, and rates are often compared among those who are exposed to a spe-
cifi c factor and those who are not exposed to the same factor. If the outcome is cate-
gorical and binary (e.g., healthy or ill, alive or dead, or any characteristic that is 
present or absent), risk assessment can be made from a two-by-two table (Table  2.1 ). 

 To illustrate risk assessment with a two-by-two table, let us consider a theoretical 
study aimed at assessing whether seat belt use in cars is associated with a decreased 
risk of death in individuals involved in collisions between two or more cars. The 
investigators decide to compare the risk of death among those involved in car colli-
sions in areas that have introduced a regulation requiring the use of seat belts versus 
in similar areas that have not implemented such regulations. The study participants 
can be categorized according to their exposure (i.e., living in a regulated area or an 
unregulated area) and outcome status (i.e., death or no death). Table  2.1  is a two-by-
two table presenting the study results. This type of table is known among epidemi-
ologists as ‘the  basic two-by-two table ’.

L.T. Fadnes et al.



25

   With this information it is possible to calculate the risk and the odds of death 
based on the exposure status and to compare these values using the relative risk and 
odds ratio, respectively.

  Risk among the exposed =
+
a

a b
   

  
Risk among the unexposed =

+
c

c d    

  The relative risk is the risk among the exposed divided by the risk among the 
unexposed (Eq.  2.3 ):

  

Relative risk RR= = +

+

a
a b

c
c d   

(  2.3  ) 

  

  Similarly, the odds and the odds ratio can be calculated.

  

Odds among the exposed = +

+

=

a
a b

b
a b

a

b

   

  

Odds among the unexposed = +

+

=

c
c d

d
c d

c

d

   

  The odds ratio is the odds among the exposed divided by the odds among the 
unexposed:

  

Odds ratio OR= =

a

b
c

d   

(  2.4  )
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  A relative risk or odds ratio of 1 suggests equal outcome frequencies in the 
exposed and unexposed groups. The value 1 is called the  null value,  i.e., the value 
indicating a  null effect .   

2.5     The Epidemiological Approach to Showing Causal Links 

2.5.1    The Basic Temporality Criterion of Causality 

 For an exposure to be a cause, the exposure must have preceded the outcome, a 
requirement commonly referred to as the  basic temporality criterion.  The opposite 
situation is often referred to as  reverse causality,  which is when the outcome has a 
causal effect on the exposure, e.g., if a disease outcome such as cardiac failure 
causes an exposure of interest, such as inactivity. This is of particular concern in 
studies where it is diffi cult to assess the order of events, such as in many cross-
sectional and retrospective studies. In these designs, much of the information 
regards past events or experiences and is often obtained using patient recall and/or 
medical records. Take, for example, the known associations between obesity and 
depression: obesity is associated with increased risk of having a major depressive 
episode (MDE), and prior history of a MDE increases the risk of developing obesity. 
Thus, obesity is a cause of MDE, and MDE is a cause of obesity. If attempting to 
study these two health phenomena, it is therefore necessary to rule out prior exposure 
to the outcome of interest (either obesity or depression depending on the specifi c 
study question) in order to avoid issues of reverse causality.  

2.5.2     Types of Causality-Oriented (Analytical) Studies 

 In epidemiology there are two main types of studies addressing questions of 
causality: observational etiologic studies and intervention studies. These are also 
known as observational-etiognostic and intervention-prognostic studies, respectively 
(Miettinen  2004 ). They will be discussed amply in Chap.   6     (General Study Designs). 
Within each of those two broad types of causality-oriented studies, the focus can be 
on one or more of the following issues:
•    Whether a causal link exists  
•   How strong the causal link is  
•   Whether other factors can modify the strength of the causal link  
•   Whether a factor is a mediator in a causal chain   

To provide a brief introduction, in observational-etiognostic studies, such as 
cohort studies and case–control studies, the fundamental question is: to what extent 
does an exposure cause an outcome? In intervention-prognostic studies, such as ran-
domized controlled trials, the question is rather: to what extent does  imposing an 
exposure  change the frequency of an outcome. 

 Let us consider one example from each analytical study type. Both examples 
will be based on causes of decompression sickness, a serious and potentially-life 
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threatening condition that can affect divers upon ascent. A team of investigators 
is collaborating with government agencies to develop a deeper understanding of the 
causal factors contributing to decompression sickness. The researchers hypo thesize 
that the depth of diving and speed of ascent (exposure) are causal factors for the 
onset of decompression sickness (outcome). 

 They fi rst address this hypothesis using an observational-etiognostic study in 
which they monitor 1,000 divers over 10 dives each (10,000 dives total). They use 
remote electronic devices to observe and record the depth of the dive and many other 
factors, such as nitrogen pressure in the diver’s blood, the rate at which the diver 
descended, the duration of the dive, and the rate at which the diver ascended to the 
surface. Each diver phones the research team after their dives to report whether they 
required clinical assistance for decompression sickness or whether they experienced 
any hallmark signs or symptoms of decompression sickness. Based on this informa-
tion, the researchers perform regression analyses to test whether the depth of diving 
and speed of ascent increase the risk of having experienced decompression sickness 
or its signs and symptoms, and they adjust for known and potential confounders to be 
confi dent that the association will indicate the presence or absence of a true causal 
link between the depth of diving or speed of ascent and decompression sickness. 

 Let us presume that the researchers determine that the speed of ascent is a strong 
causal factor for the onset of decompression sickness. They decide that this association 
must now be tested using an alternative approach, so they employ an intervention-
prognostic study. They enroll 2,000 different divers and randomly assign them to one 
of two groups: one that will be asked to modify their diving ascent to a slower-than-
standard rate and one that will be asked to continue diving as usual (standard ascent 
rate). They then assess the same parameters as in their observational-etiognostic study 
over 10 dives per diver. Indeed, they determine that those who were assigned to the 
slower- than-standard ascent rate experienced a lower risk of decompression sickness 
than did those who were assigned to the standard diving group. Their study included 
a rigorous assessment of potential confounders that were accounted for during analy-
sis to be sure that this result was free from the infl uence of confounders. A deeper 
discussion of confounding and various examples of confounding will follow later in 
the chapter.  

2.5.3     The Counterfactual Ideal 

 In the previous example, there is a critical assumption: that the experience of the 
slower-than-standard ascent rate would have reduced the risk of decompression 
sickness in the other group had they also slowed their ascents. This assumption 
refers to what has been called the  counterfactual ideal . This ideal is a theoretical 
scenario in which:
•    A specifi c person can be exposed to both levels of exposure at the exact same 

time (slower ascent and standard ascent) and  
•   The potential outcome (decompression sickness) can be observed at both levels 

of exposure in the same person    
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 Essentially, the counterfactual ideal is a theoretical situation in which we suppose 
that the levels of exposure can be directly compared under exactly identical situations 
at exactly the same time. In such a scenario, it would be possible to ask what would 
have happened under a hypothetical change of the exposure level and therefore 
directly test causality. Unfortunately, this ideal is practically impossible. Instead we 
attempt to get as close as possible to achieving the counterfactual ideal by making 
sure that any outcome-determining characteristics and external infl uences, which 
can act as confounders, are adjusted for when contrasting the exposure levels.  

2.5.4     Cause Versus Causal Mechanism 

 In analytical studies a statistical association between an exposure and an outcome is 
potentially a causal link, and the strength of evidence for this causal link is directly 
related to how well potential or known confounders are taken into consideration or 
adjusted for. Let us assume that we have shown the existence of a confounding-free 
association and believe that we have evidence supporting a causal link between an 
exposure and an outcome. What is the meaning of that association or causal link? 
This association implies that the exposure direclty or indirectly causes the outcome 
or, put another way, that the exposure and outcome are in a causal pathway. However, 
the details of that causal pathway remain unknown. If the causal pathway involves 
intermediate steps, then those intermediate factors are called  mediators . For example, 
imagine that exposure A is causally linked to outcome X, but the causal pathway 
involves a sequence in which exposure A causes exposure B, and exposure B causes 
outcome X. In this case, exposure B also has a causal link to exposure X and serves 
as a mediator of the causal pathway that links exposure A to outcome X. Potential 
mediators can be measured and their role studied in analytical studies ( See:  Sect.  2.7.1 ). 
It is important to realize that an exposure’s causative effect could indicate that there 
is some illness-predisposing mechanism operating in those with the exposure, some 
illness-protective mechanism in the unexposed, or a mixture of both.  

2.5.5     Causal Webs 

 Traditional epidemiological approaches often involve investigating multiple sus-
pected causes simultaneously in a single etiologic study. The usual analytical 
approach is to include all of the suspected causal factors as independent variables in 
multivariate regression analyses. However, more complex networks of causation are 
increasingly recognized, and more sophisticated causal models are increasingly 
needed. Pearl ( 2010 ) has developed a general theory of structural causal modeling 
with potential for implementation for the estimation of causal effects, mediation, and 
effect modifi cation given such complex occurrence relations. Approaches to include 
hierarchically structured and nested causal factors have also been deve loped, e.g., 
multilevel modeling. Discussions of these advanced analytical strategies are outside 
the scope of this textbook.   
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2.6     Confounding 

 Epidemiologists often conduct studies to describe the causal effects of exposures, 
but in many cases end up with mere associations between exposures and outcomes 
that are not free from the blurring effects of confounders. Confounding hinders our 
ability to see the true causal effect of the exposure on the outcome. It can mask 
associations when they truly exist, or indicate spurious associations when in fact 
there are no causal relationships. 

2.6.1     Confounding: Types and Conditions 

 Observation of an association between an exposure and an outcome does not neces-
sarily imply causation. In the absence of random error and bias, there are several 
possible explanations for such associations in nature, including the following:
    1.    The exposure causes the outcome (Fig.  2.3 )
       2.    The outcome causes the exposure (reverse causation) (Fig.  2.4 )
       3.    The exposure causes the outcome and the outcome causes the exposure (Fig.  2.5 )
       4.    The non-causal exposure and the outcome share a common cause (Fig.  2.6 )
       5.    There is another determinant of the outcome, which is not a cause of the expo-

sure but whose distribution is unequal among exposure levels (Fig.  2.7 )
       6.    The causal exposure and the outcome share a common cause (Fig.  2.8 )

Exposure Outcome

Diarrhea Malnutrition

  Fig. 2.3    Exposure causes 
the outcome. For example, 
diarrhea causes malnutrition       

Exposure Outcome

Diarrhea Malnutrition

  Fig. 2.4    Outcome causes 
exposure (reverse causation). 
For example, malnutrition 
causes diarrhea       

Exposure Outcome

Diarrhea Malnutrition

  Fig. 2.5    Exposure causes outcome and outcome causes the exposure, creating a ‘vicious circle.’ 
For example, diarrhea causes malnutrition, and malnutrition may further worsen diarrhea, and so on       
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Exposure Outcome

Confounder

Coffee drinking Pancreatic cancer

Alcohol drinking

Confounding example 2

  Fig. 2.7    The third factor is a determinant of the outcome and (non-causally) associated with the 
non-causal exposure. The observed association between exposure and outcome is entirely due to 
confounding.  Thick arrows  are causal effects;  thin arrows  are observed non-causal associations. 
For example, alcohol drinking causes pancreatic cancer, but alcohol drinking is also related to coffee 
drinking. Although it appears that coffee drinking causes pancreatic cancer, that apparent association 
is due to the confounder only       

Exposure Outcome

Confounder

Chronic diarrhea Malnutrition

Celiac disease

Confounding example 3

  Fig. 2.8    The causal exposure and outcome share a common cause. The observed association 
between the exposure and outcome is partly causal but overestimated by the confounding infl uence 
of the common cause. For example, chronic diarrhea causes malnutrition, but so too does Celiac 
disease. Some of the association between Celiac disease and malnutrition is due to chronic diarrhea, 
but there is a diarrhea-independent component to malnutrition in Celiac disease. Thus, if one does 
not control for Celiac disease when assessing chronic diarrhea as a causal factor in the development 
of malnutrition, the apparent exposure-outcome relationship will be over-estimated       

Confounding example 1

Exposure Outcome

Confounder

Yellow fingers Lung cancer

Smoking

  Fig. 2.6    Non-causal exposure and outcome share a common cause. The observed association 
between exposure and outcome is entirely due to confounding. Causal effects are shown by  thick 
arrows , observed non-causal associations with  thin arrows . For example, smoking causes lung 
cancer and yellow fi ngers, which may lead to an apparent causal link between yellow fi ngers and 
lung cancer       
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       The fi rst explanation (Fig.  2.3 ) is what epidemiologists are often searching for 
and has been discussed at length earlier in this chapter. The second explanation 
(reverse causation, Fig.  2.4 ) is raised when it is unclear whether the exposure comes 
before the outcome. If the exposure always comes before the outcome – such as 
some genetic exposures and their associated diseases, or such as prospective studies 
in which the exposure is assessed before the outcome occurs – reverse causality is a 
non-issue. Figure  2.5  shows a scenario in which the exposure and outcome cause 
each other in a vicious circle, as is known to be the case with infection causing 
malnutrition and also malnutrition causing infection.

The explanations presented in Figs.  2.6 ,  2.7  and  2.8  are cases of what is referred 
to as confounding.   One of the features common to the scenarios in Figs.  2.6 ,  2.7  and 
 2.8  is that there is an imbalanced distribution – between the exposed and unexposed 
groups – of determinants of the outcome other than the exposure of interest (i.e., 
non- comparability between the exposed and unexposed groups with respect to other 
determinants of the outcome). Thus, the observed risk/rate in the unexposed does not 
equal the counterfactual risk of the exposed (i.e., the risk/rate of the exposed had they 
not been exposed). Common to all confounding are the ‘criteria’ listed in Panel  2.2 . 

 Uncontrolled confounding can cause an effect estimate to be either more positive 
or more negative than the true effect. Confounding variables that are positively asso-
ciated with both the exposure and outcome or negatively associated with both the 
exposure and outcome make the observed association more positive than the truth 
(Fig.  2.9 ). On the other hand, variables which are negatively associated with the 

Exposure Outcome

Confounder+ +

Exposure Outcome

Confounder− −

  Fig. 2.9    Confounding in a positive direction. In both cases, the confounder is related to the exposure 
and the outcome in the same directions. The confounder will increase the apparent relationship 
between the exposure and outcome       

   Panel 2.2 The Classical Confounding Criteria 

 To cause confounding, a variable should:
•    Be unequally distributed among exposure levels (because of a causal  or  

non-causal association between the confounder and exposure)  
•   Be a cause of the outcome or be strongly associated with a cause of the 

outcome  
•   Be outside the causal pathway between the exposure and outcome, i.e., it 

should not be a mediator    
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exposure and positively associated with the outcome, or vice versa, make the 
observed association more negative than the true association (Fig.  2.10 ). This direc-
tion of confounding will be true regardless of whether the main effect is protective 
or harmful.

2.6.2            Management of Confounding 

 Confounding may be prevented in the design of the study or adjusted for in the 
analysis. Methods used in the design stage include randomization, matching and 
restriction (e.g., by use of exclusion criteria making the groups more homogenous). 
Commonly used methods in the analysis stage include stratifi cation, standardiza-
tion, and multivariable analysis. Each of these methods is briefl y introduced below. 
More information is found in Chaps.   6    ,   22     and   24    . 

 Randomization is used in experimental studies and consists of randomly allocat-
ing participants to intervention arms. When successful, randomization will result in 
groups with equal distributions of the other factors associated with the outcome 
other than the intervention, and thus it breaks the links between the common causes 
of the exposure and outcome. When a study sample is suffi ciently large, on average, 
randomization will result in equal distributions of common causes of both the expo-
sures and outcome. However, randomization is unfeasible or unethical in many 
instances, for example when an exposure is clearly harmful or benefi cial. 

 Matching is sometimes used in observational studies. Subjects are deliberately 
selected such that (potential) confounders are distributed in an equal manner 
between the exposed and unexposed groups. Matching does not come without limi-
tations, though. Perhaps most notably, matching can be expensive as it makes it 
more diffi cult to recruit participants and achieve the required sample size. In addition, 
the effects of matched variables cannot be studied. 

 In restriction, the study is limited to respondents with the same value of the con-
founding variable of interest. Thus, the study population is more homogenous than 
it would be without restriction. For example, if biological sex is a known potential 
confounder, the study can be restricted to only studying either males or females 
(although this would raise ethical concerns). Restriction is often simple, convenient, 

Exposure Outcome

Confounder ++

Exposure Outcome

Confounder −−

  Fig. 2.10    Confounding in a negative direction. In both cases, the confounder is related to the 
exposure and outcome in different directions. The confounder will decrease the apparent relation-
ship between the exposure and outcome       
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and effective. And it is particularly useful when confounding from a single variable 
is known to be strong. However, restriction may make it diffi cult to fi nd enough 
study subjects, and it can limit generalizability of the fi ndings (a problem of limited 
external validity). 

 Methods of managing confounding during data analysis are discussed in Chaps. 
  22     and   24    . In brief, stratifi cation is a commonly used method to control for con-
founding in which data analysis is stratifi ed on the potential confounding variable. 
Separate analyses are conducted for those with and those without the confounding 
characteristic. Stratifi cation is cumbersome when there are multiple potential con-
founders, as the data would have to be split into several strata. This is problematic 
as it may result in severe losses in statistical power and reduce the likelihood that a 
conclusion can be made. Another approach to managing confounding is to employ 
multivariable analyses using regression methods to control for multiple confound-
ers at the same time. Such analyses can also be used to control for continuous vari-
ables without categorizing them, unlike stratifi cation. Irrespective of which approach 
is chosen, ultimately theory should always guide the selection of variables consid-
ered as confounders, and careful reasoning is necessary because confounding is 
context-dependent: a variable may be a confounder in one context but not in another. 

 When assessing confounding in an observational design, it is essential to measure 
factors that could be causally related to the outcome. Poorly accounting for known, 
potential, or plausible confounders that are not measurable or poorly measurable 
can obscure true causal links or indicate false links. Any previously unsuspected or 
unknown confounder, newly shown to be important would constitute a potential 
paradigmatic shift in the causal thinking about a disease or other health outcome. If 
a new risk factor is identifi ed, then previous causes (including previous confounders) 
thought to be genuine before may become ‘weaker’ or even disappear. Consequently, 
as small paradigmatic shifts succeed each other, the causal webs tend to re-shape, 
and the strength of the links tends to change.   

2.7     Mediation and Effect Modification 

2.7.1      Mediation 

 Mediators or intermediate factors are those factors that are in the direct causal chain 
between the investigated exposure and the outcome ( See:  Fig.  2.11 ). When investi-
gating causal links, adjusting for these factors might remove true associations or 
reduce their magnitude. For example, in a study assessing the association between 
cardiac disease (outcome) and nutrition (exposure), adjustment for nutritional vari-
ables such as plasma lipids and cholesterols is likely to reduce the measured effect 
size. This is because changes in the lipids and cholesterol might be triggered by the 
nutritional exposure. That is, changes in lipids and cholesterol are part of the mech-
anism through which the nutritional exposure causes cardiac disease (Fig.  2.11 ). 
When selecting confounders for adjustment, it is important to make sure that the 
selected confounders are not in fact partly or entirely mediators. To the extent that 
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they are, the observed effect will tend to be diluted. Statistical methods of mediation 
analysis exist to assess the mediating role of variables. These methods are beyond 
the scope of this book.   

2.7.2     Effect Modification 

 In some cases, the initial conclusions after fi rst analysis are incorrect. An example 
could be an investigation of traffi c casualties among people using helmets and those 
not using helmets. One might initially fi nd that traffi c casualties are more common 
among those using helmets (Table  2.2 ).

   Does this mean that helmet use is a risk factor? Not necessarily. What if, for 
example, helmets were used nearly exclusively by motorcyclists and rarely by those 
driving cars? Would it still be reasonable to compare the risks without taking this 

Exposure Outcome

Nutritional status Cardiac disease

Lipid status

Mediator

  Fig. 2.11    A mediator 
defi ned as a variable in the 
casual pathway between the 
exposure and outcome. For 
example, nutritional status 
causes cardiac disease by 
affecting lipid status       

   Table 2.2    Risk traffi c deaths as outcome from traffi c accident among persons not having used 
helmet and having used helmets   

 Exposure level  Died during the accident  Survived the accident  Case fatality rate (%) 
 Helmet used  200   800  20 
 No helmet used  200  1800  10 

   Table 2.3    Risk of death from traffi c accidents with and without the use of a helmet, stratifi ed into 
those driving motorcycles and those driving vehicles. Only crude point estimates presented   

 Exposure level 
 Died during 
the accident 

 Survived 
the accident 

 Case fatality 
rate (%) 

  Stratum-1: Motorcyclists  
 Helmet used  199  791  20 
 No helmet used  100  100  50 
  Stratum-2: Vehicle drivers  
 Helmet used  1  9  10 
 No helmet used  100  1700   6 

 

L.T. Fadnes et al.



35

difference between the groups into account? Table  2.3  explores this question by 
presenting results of a stratifi ed analysis among motorcyclists and people driving 
vehicles:

   This example shows that using a helmet is a preventive factor rather than a risk 
factor among the motorcyclists. This is an example of effect modifi cation (also called 
‘interaction’), which exists when the effect of the exposure on an outcome differs by 
levels of a third variable. In the helmet example, the effect of wearing a helmet in a 
traffi c accident depends on whether one was riding a motorcycle or driving a car.   

2.8     Bias in Epidemiological Research 

 Bias refers to systematic deviation of results or inferences from truth (Porta et al. 
 2008 ). It results from erroneous trends in the collection, analysis, interpretation, 
publication, or review of data (Last  2001 ). Bias may result in the overestimation or 
underestimation of measures of frequency or effect. The cause of a biased statistical 
result may be in the selection of information sources, in the gathering of information 
(measurement and data management) or in the analysis of gathered information. 
The role of measurement error is often crucial. Both random and systematic mea-
surement error can lead to biased estimates of effect ( See:  Chaps.   11     and   27    ). It is 
not feasible to completely eliminate measurement errors, but minimizing them and 
estimating their infl uence is a priority in epidemiological research. Bias is often 
categorized, according to the source of the problem, into selection bias and informa-
tion bias. A special type, publication bias, will be discussed in Chap.   31    . 

2.8.1     Selection Bias 

 Selection bias is a form of bias resulting from (i) procedures used to select subjects 
or (ii) factors that infl uence loss to follow-up. At the core of the various selection 
biases is the fact that the relationship between the exposure and the outcome for 
those participating in the study is different than for those who theoretically should 
have been included in the study. Selection bias due to sampling and enrollment 
procedures will be discussed further in Chap.   9    . 

2.8.2      Information Bias (Measurement or Analysis Bias) 

 Information bias is a form of bias resulting from problems with the measurement of 
study variables or the processing of data. This can have various reasons including 
challenges with recall of information, social desirability, use of sub-optimal mea-
surement tools, and unfortunate phrasing of questions and answer alternatives. Chapter 
  27     gives multiple examples of information bias resulting from measurement error. 
In Chap.   18     we will further discuss recall bias, social desirability bias (Zerbe  1987 ) 
and bias resulting from poor formulation of questions (Schwarz  1999 ). 

2 Basic Concepts in Epidemiology
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  In this chapter we discussed some core concepts and terms in epidemiology. 
These ideas are the result of a constant evolution in the theoretical framework 
of epidemiology, with progressive conceptual developments and sometimes 
confl icting uses of terms. The emergence, refi nements, and re-defi nitions of 
concepts in quantitative health research can be traced back to long before 
epidemiology became a discipline, even before formal quantitative statistics- 
based comparisons became used. Thus, in the next chapter we discuss historical 
roots of epidemiology and then contemplate some of the emerging issues in 
the fi eld that will very likely change the future of our discipline.       
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    Abstract 
   The fi rst purpose of this chapter is to outline the roots of epidemiology as a metho-
dological discipline, using a multiple-threads historical approach. We unravel what 
we see as the main historical threads relevant to the development of current health 
research methods involving human subjects, giving attention to the ethical, scientifi c-
theoretical, and practical aspects. Roots of epidemiological concepts and methods 
go back a long time, to before epidemiology became a named discipline and before 
formal statistical comparisons of occurrence frequencies started being made. We 
take the stance that ancient thinkers, dating back at least as far back as Aristotle, 
formed early concepts that have been essential to the development of modern 
epidemiology as we know it. We therefore treat such critical developments as 
directly relevant to the history of epidemiology. As an introduction, we begin with 
a discussion of belief systems. We then discuss a series of historical threads, 
starting from health research topics, over ways of causal thinking about health, to 
the design of empirical information, research ethics and stakeholder participation. 
Other threads relevant to epidemiology such as history of data management, analysis, 
and study reporting, are not covered. Finally, we explore some possible and 
desirable future developments in epidemiological research.  
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3.1        Belief Systems 

 Points of view established through belief systems can lead to the relief of human suf-
fering caused by illness and ignorance. Belief systems represent a continuum, on one 
end of which is faith and the other science. Perhaps driven by the raging debates on 
religion versus science, there is a common misconception that science is independent 
of belief. Although science does, by defi nition, rely on empirical evidence to support 
the existence of an occurrence or entity, scientists must always decide to what degree 
they believe in the evidence provided and in the theoretical ideas used to contextualize 
that evidence. The primary distinction between faith- and science- based belief 
systems is in their requirement for supporting empirical evidence. In faith-based 
belief systems, believing in the existence of an occurrence or entity requires no 
evidence and relies mainly on revelation, authority, anecdotal accounts, and tradition. 
In science-based belief systems, belief in a phenomenon only occurs when suffi cient 
empirical evidence is available to support its existence (Morabia  2011 ). 

 The relative importance of faith-based and science-based belief systems as alter-
native and (sometimes) competing means of achieving knowledge has changed 
throughout history (Seife  2004 ). As the self-consciousness and confi dence of man-
kind increased, so too did trust in research (which involves empirical data collection) 
as a means for achieving valid knowledge. Obtaining evidence through research 
requires many skills, including theory-based reasoning and hypothesis generation; 
thus, a discussion of the roots of epidemiology appropriately starts with acknow-
ledging the ancient Oriental and Greek philosophers for their contributions to the 
awakening of human reason and later philosophers, such as Kant, for exploring and 
describing human reason’s boundaries. 

 The  scientifi c method  is the systematic method of empirical investigation believed 
by most scientists to yield the most valid, traceable, and reproducible evidence 
about a theoretical research question. The scientifi c method – defi ned as such – has 
evolved considerably over calendar-time. Historians are divided about whether it is 
justifi able to trace the history of a discipline back to periods before it become known 
under its current name. Some epidemiologists, like Morabia ( 2004 ), take the view 
that the defi ning period for epidemiology is the seventeenth century, when formal 
comparisons of occurrence frequencies started being used. For others, the history of 
epidemiology starts in the nineteenth century when epidemiology became a recog-
nized discipline in Britain. We take the view that there were researchers and scien-
tifi c methods (plural) long before the words “researcher” and “scientifi c method” 
were used. Similarly, we believe that epidemiologists and epidemiology existed 
well before the terms came into use. After concepts, theories, empirical methods, 
and statistical approaches are introduced, they are refi ned and formalized both 
 before  and after a new discipline acquires a name. Theory-based learning from 
empirical observation has existed from ancient times and so has an interest in 
learning about health-related phenomena. Thus, although many will argue that 
Hippocrates and Fracastoro, for example, are not real epidemiologists, one can see 
that these fi gures have been crucial to the development towards current epidemio-
logical thinking. 
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 Given the defi nition of epidemiology proposed in Chap.   1    , we suggest that the 
history of epidemiology should not be confused with the history of medicine or 
public health in Western civilization. The history of epidemiology deals specifi cally 
with  the roots of  principles and methods used in comparative population based 
health-related  research  throughout history. Several historic threads can be followed 
looking at how various steps of the research process have been carried out over the 
centuries in several civilizations. When tracing these threads, the historian describes 
milestone events and new ideas, explains them by putting them in context, and indi-
cates how the events and ideas have infl uenced the subsequent practice and concep-
tualization of health research. Unfortunately, only fragments of selected historic 
threads, mainly relating to Western civilization, can briefl y be touched upon in the 
next sections. These threads are listed in Panel  3.1 . In our discussions of threads 
below, we draw mainly on publications by epidemiologists with an interest in the 
history of our discipline. 

 Historic developments in each of the aspects of epidemiology have not always 
run in parallel. Thus, each thread is discussed separately with some cross- referencing 
where relevant. Due to space restrictions we will not cover the important threads of 
data management, statistical analysis and study reporting. 

 Before we uncover some roots of epidemiology, we must introduce some key 
concepts and terms. Panel  3.2  highlights a selection of concepts and terms and 
explains their meanings as used in the sections below.   

   Panel 3.1 Historic Threads Pertinent to Epidemiology as a Methodological 
Discipline 

•     History of research topics  
•   History of causal thinking about health  
•   History of epidemiological study designs  
•   History of research ethics and stakeholder participation  
•   History of research data management and data analysis    

 History of study reporting 

   Panel 3.2 Selection of Key Concepts and Terms Relevant to History of 
Epidemiology 

     Empirical     Based on measurement   
   Health research     Systematic activity aimed at achieving knowledge about 

health – related states and events   
   History of epidemiology     The study of calendar time – dependent changes 

in how medicine has used research with human subjects to increase its 
knowledge base

(continued)
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3.2          History of Health Research Topics 

 This historical thread concerns when and why some research questions about health 
are asked and others seem to be ignored (Susser and Stein  2009 ; Krieger  2011 ), and 
is intimately linked to the next thread about causal reasoning. Hypotheses and 
presumed causal factors are never independent of the conceptual frameworks of the 
time. Naturally, humans possess a fundamental curiosity about and hunger for 
knowledge about circumstances or behaviors that lead to or protect against illness. 
Such knowledge fi rst came about by intuition and by experiential learning from trial 
and error. But at what point did humans start to use  empirical research  (in the sense 
of systematic evidence collection to answer some theory-derived question) to 
achieve desired health-related knowledge? 

 There is no clear-cut answer to this question (in part because the answer depends 
on one’s opinion of what constitutes research;  See:  Textbox  3.1 ), but McMahon 
et al. ( 1960 ) have drawn the attention of epidemiologists to  Air, Water and Places,  a 
Hippocratic text (ca 400 BC) in which are found several ideas still relevant to public 
health research. This text points out what are now known as “risk factors” at different 
nested levels of observation, like country, area, city, and individual behavior. It also 
emphasizes the need to study food hygiene, diet, clean water, and exercise for 
health, giving multiple examples. Although this text may not be considered to be 
epidemiology by all, one may perceive some roots of epidemiological thinking. 
Indeed, empirical information from observing nature and patients had an important 
role in Hippocrates’ thinking, and he used this information to make generalizations 
into the abstract about nature. But Hippocrates was not the only ancient thinker to 
ask health-related questions. For example, attempts of diagnostic and etiognostic 
classifi cations were important concerns of, for example, the Greek philosopher 
Aristotle. This ancient call for a classifi cation of disease has been echoed over the 
millennia, and one such call by Thomas Sydenham (1624–1689) was particularly 
poignant: “All diseases should be reduced to defi nite and certain species with the 
same care which we see exhibited by botanic writers in their phytologies.” 

Panel 3.2 (continued)   

   Phenomenon     A state or event ( Miettinen   1985 )   
   Research     Systematic activity aimed at achieving knowledge   
   Research ethics     Discipline providing ethical principles and guidelines for 

the design, conduct, analysis, and dissemination of research involving 
human subjects   

   Research methods     Methods of designing, conducting, analyzing, and 
reporting a research study   

   Scientifi c method     Method contemporarily believed by most scientists to 
yield the most valid evidence about a research question   

   Scientifi c research     Research using the scientifi c method     
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 At the end of the eighteenth and beginning of the nineteenth century, rapid deve-
lopments in science and philosophy (in what is known as the ‘Age of Reason’) were 
accompanied by the industrial revolution. Health inequalities were great and 
epidemics frequent. Hence there was heightened interest in public health and 
preventive medicine in that period and an increasing recognition of environmental 
and social causes of disease. There was also a strong impetus to conduct analytical 
research on epidemic diseases. 

 In the twentieth century, along with increasing success in combating infectious 
disease, issues of non-communicable disease became prominent as research ques-
tions, especially those regarding cardiovascular diseases and cancers. The interests 
in environmental, social, and heritable determinants of ill health were developed 
throughout the twentieth century, leading ultimately to a modern understanding of 
illness, in which consideration is given to:
•    Multiple interacting risk factors rather than single factors as the causes of disease  
•   Lifestyle factors that might cause or prevent disease  
•   New modern paradigms, including the ‘Barker hypothesis’, about the early-life 

origins of adult disease  
•   Other complex health phenomena    

   Textbox 3.1 When Did Population-Based Health Research and Experimentation 
Start? 

 When population-based health research started is unclear. According to 
Hetzel ( 1989 ), “One of the oldest references to goiter is attributed to the 
legendary Chinese Shen-Nung Emperor (2838–2698 BC) who, in his book 
 ‘Pen- Ts’ao Tsing’  (‘A treatise on herbs and roots’) is said to have mentioned 
the seaweed Sargasso as an effective remedy for goiter.” Hetzel also states that 
“…the Wei dynasty (AD 200–264) attribute deep emotions and ‘certain con-
ditions of life in the mountain regions’ as causes of goiter.” Clearly correct 
insights had been gained regarding the therapeutic effect of (iodine-rich) sea-
weed for goiter and the higher prevalence of endemic goiter in mountainous 
areas. It is unclear how exactly these precise insights were gained but it seems 
possible that ancient healers – proto-scientists endowed with particularly 
passionate interests in health issues – may have used systematically repeated 
trial and error runs or systematic series of observations to arrive at recommen-
dations and conclusions similar to the above. Whether such investigations 
were attempts to answer theory-based questions is also plausible, no matter 
how primitive or ‘wrong’ the theory might appear today. 

 Meinert ( 1986 ) cites an example of a planned research experiment that can 
be found in the  Book of Daniel . It consisted of a comparison of persons put on 
a 10-day diet of pulses (a legume) with persons eating another diet and found 
that those eating the former came to appear ‘fairer and fatter in fl esh’ in com-
parison with the latter. However, controversy exists and doubt remains about 
whether this can be considered an example of research (e.g., Morabia  2004 ). 
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 The twentieth century also witnessed a worldwide explosion of research into the 
effects of pharmacological preparations, surgical interventions, behavioral thera-
pies, and various types of community level interventions, each in terms of effective-
ness, safety, cost, and acceptability.   

3.3       History of Causal Thinking About Health 

 Along with the investigational interests discussed above, there have been notable 
shifts in causal theories about health. 

3.3.1     Early Paradigms About Causes of Disease 

 Since pre-history a prevailing paradigm has been that divine anger causes illness 
and divine grace cures. For example, in the Iliad (Homer, ca. 800 BC) an epidemic 
of plague is sent by Apollo, the god of healing. Disease was thought to have super-
natural origins, an idea that has never fully disappeared (Irgens  2010 ). In apparent 
contrast to supernatural causes of disease, the Hippocratic texts provided a concep-
tual framework in which disease was caused by environmental and behavioral 
factors that led to imbalances among four body fl uids: blood, phlegm, black bile, 
and yellow bile. Fever, for example, was thought to be caused by excess bile in the 
body (Krieger  2011 ). In ancient China, illness was considered to be the outward 
 manifestation of internal disturbances in complex natural systems that were subject 
to environmental and social-behavioral factors (Krieger  2011 ). 

 By the Middle Ages in Europe, the ancient works of the Hippocratic authors, 
Galen, and others had been forgotten, and disease was again mostly considered to 
have supernatural causes. The works of these ancient writers, however, had been 
preserved via the Islamic tradition and were gradually reintroduced to Europe as the 
Renaissance period began to unfold. Physicians versed in these texts took important 
roles in the medical schools emerging in European Mediterranean countries during 
the thirteenth century, thereby helping to infuse ancient ideas of disease causality 
across Europe and, eventually, much of the world. In other words, with the 
Renaissance came renewed study of ancient medical texts, and the long-forgotten 
theories on natural causes of disease re-emerged.  

3.3.2     Religion Versus the Scientific Method 

 Throughout the Renaissance, faith- and science-based belief systems co-existed 
mostly without confl ict (Seife  2004 ). During the era of Galileo Galilei (1564–1642) a 
few individuals and organizations, fearful of the potential of science (particularly 
cosmology) to disprove the existence of God, deployed propaganda campaigns that 
effectively created confl ict between religion and science as approaches to achieving 
valid knowledge. Science was portrayed as heretical (Seife  2004 ). Simultaneously, 
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Francis Bacon (1561–1621) proposed the inductive or ‘scientifi c method,’ and the 
scientifi c community had increasingly come to accept this approach as a valid way of 
achieving knowledge. Bacon stated that scientifi c reasoning depends on making 
generalizations (inductions) from empirical observations to develop general laws of 
nature. He suggested that scientists carefully observe persons and nature rather than 
only resort to explanations based on faith, classic texts, or authority. Bacon’s description 
of the scientifi c method brought a modern conceptual framework to Hippocratic texts 
that proposed observing environmental and behavioral factors to explain illness. 

  Discussion Point   Belief in a supernatural cause that occurs prior to any form 
of natural cause is perfectly compatible with the theories and practice of 
modern science   

3.3.3     Contagion Versus Miasma as Causal Paradigms 

 During the Renaissance, a controversy arose between proponents of the theory of 
contagion and those of the theory of miasma or ‘bad air’ as main causes of disease. 
Saracci ( 2010 ) has drawn the attention of epidemiologists to the fascinating 
scientist Gerolamo Fracastoro (1478–1553) from Padua, Italy, who claimed in ‘ De 
Contagione et Contagionis Morbis et Eorum Curatione’  (1546) that diseases are 
caused by transmissible, self-propagating material entities. Initially, there was no 
idea that these entities could be living; the contagions were thought of more as sub-
stances than as germs. Fracastoro claimed that the contagions can be transmitted 
directly from person to person, or, indirectly from a distance. He also theorized 
about strategies to combat contagions that are still relevant today:
•    Destruction by cold or heat  
•   Evacuation from the body  
•   Putrefaction  
•   Neutralization by antagonistic substances    

 Fracastoro also suggested that syphilis was spread through sexual intercourse, 
based on observations that the spread of the disease followed the movement of army 
regiments (Irgens  2010 ). During the nineteenth century the miasma-contagion 
debate would reach a high and the contagion theory (also known as the germ theory) 
eventually prevailed in no small part due to the strong experimental work of Louis 
Pasteur (1822–1896). 

3.3.3.1     Recognition of Specific Non-infectious Causes of Disease 
 As important as the contagion-miasma controversy and the concluding contribu-
tions of Louis Pasteur have been, this debate concerned only vague infl uences of the 
environment on health. While the debate raged, the causal role of several more 
specifi c non-infectious environmental hazards had become recognized. For example, 
in 1700, Bernardo Ramazzini, called ‘the father of occupational medicine,’ produced 
an infl uential work ‘ De Morbis Artifi cum Diatriba ’ dealing with a wide range of 
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occupational hazards (Franco    and Franco  2001 ). And in 1775, Percivall Pott 
recognized that chimneysweepers’ exposure to soot was carcinogenic (Susser and 
Stein  2009 ).   

3.3.4     Philosophical Contributions to Causal Reasoning 

 Several philosophers, such as Immanuel Kant and John Stuart Mill, have infl uenced the 
way scientists thought about causality. In Mill’s ‘ Canons’  (1862), he describes some 
analytical approaches – general strategies to prove causality – that are still used today:
•    ‘Method of difference.’ This method recognizes that if the frequency of disease 

is markedly different in two sets of circumstances, then the disease may be 
caused by some particular circumstantial factor differing between them. This 
method is akin to the basic analytical approach now taken in trials and cohort 
studies, i.e., showing that disease outcome is more or less frequent in the presence 
of a particular exposure  

•   ‘Method of agreement.’ This method refers to situations where a single factor is 
common to several circumstances in which a disease occurs with high frequency. 
This method is akin to the approach taken in traditional case–control studies, i.e., 
showing that an exposure is more common in cases  

•   ‘Method of concomitant variation.’ This method refers to situations where the 
frequency of a factor varies in proportion to the frequency of disease. This kind 
of reasoning is often used in ecological studies, i.e., showing that exposure and 
disease outcome vary together     

3.3.5     Causal Interpretation Criteria 

 Koch (1843–1910) and Henle described a sequence of studies and results needed for 
proving that a single infectious agent causes a disease (these are known as the 
Henle-Koch postulates). These causal criteria have been very helpful in identifying 
the infectious causes of a number of diseases. Evans ( 1976 ) proposed a revision of 
the Henle-Koch postulates describing the sequence of studies and results needed for 
proving the causal role of an exposure in general. The mainstream modern approach 
to showing causality actually involves two steps. Step one is showing an association 
between the determinant and the outcome phenomenon free of bias, confounding, 
or reverse causality. Step two is further evaluation of credibility, perhaps also using 
some of the Evans criteria or Hill criteria (Hill  1965 ), which will be discussed in 
Chap.   27    . The modern Bayesian approach rests upon modifi cation of prior beliefs 
about causal links by evidence in research data.   

3.4     History of Epidemiological Study Designs 

 Study design has two main aspects: general design ( See:  Chap.   6    ) and planning of 
measurements. These two aspects will be discussed separately below. 
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3.4.1     Roots of Approaches to General Study Design 

 Learning from trial and error may be seen as the fi rst quasi-experimental approach. 
The Hippocratic approach to gathering empirical evidence could be considered 
‘qualitative’ as there was no quantitative formal hypothesis testing or effect estima-
tion, nor were there formal comparisons of quantifi ed outcomes among determinant 
levels. Comparisons between determinant levels were made but only informally by 
using the ‘computing power of the mind.’ The fi rst clear types of more formal 
designs are the early case series studies. An often cited example was published by 
Lancisi (1654–1720) in  ‘De Subitaneis Mortibus’  (1707), where he described a 
detailed pathological investigation of a case series of sudden deaths in Rome, prob-
ably due to myocardial infarctions (Saracci  2010 ). This was an early case series 
study of a non-communicable disease. Case series studies are the prototype of 
observational study designs. 

3.4.1.1     Experimentation 
 As to experimental study designs, one of the earliest known clinical trials – on 
scurvy, a major problem for British sailors – was performed by James Lind (1716–
1791) ( See:  Textbox  3.2 ). 

 The precursor of randomization in clinical trials was presented at the congress of 
scientists in Pisa, 1838. At that meeting, the idea was brought forward of alternating 
allocation to treatment alternatives as a means to better show superiority of new 
treatments. But the fi rst modern randomized controlled trial would not occur until 
1946 with the MRC trial of Streptomycin on tuberculosis (MRC  1948 ).  

3.4.1.2     The Idea of Formally Contrasting Determinant Levels 
 Early clinical trials contrasted outcomes frequencies among treatment levels. Such 
quantitative comparative approaches had been taken earlier for observational studies, 
most notably by demographer John Graunt (1620–1674) who performed formal 
subgroup comparisons with observational data. However, the most famous example 
of the importance of contrasting determinant levels comes from the work of John 
Snow (1813–1858), in which he performed an outbreak investigation that ultimately 
led to the elimination of an exposure to a pathogenic source. During the cholera 
epidemics in London in 1849 and 1854, Snow postulated a water-borne cause of 
cholera. He noted that the disease was more frequent in those areas of the city that 

   Textbox 3.2 The Early Trial of James Lind 

 Twelve sailors with scurvy took part in a trial aboard the ship HMS Salisbury 
(20 May – 16 June, 1747). James Lind assigned six treatments, presumably in 
a random way, to two men each: cider; vitriol; vinegar; seawater; oranges plus 
lemons; and a concoction of garlic, mustard, radish, Peru balsam, and myrrh. 
Within 6 days those receiving citrus fruits were fi t for duty. The others 
remained sick. 
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received their water supply from a particular water company that used water from a 
‘dirty’ part of the river. He then went on to close the water pumps of that company 
to show that the disease rate dropped dramatically after the closure.  

3.4.1.3     Sample Size Considerations 
 In the abovementioned trial by James Lind, there were only two subjects in each 
treatment arm. There must have been some expectation on the part of Lind that two 
per arm would be more reliable than one per arm. However, a deep appreciation of 
the importance of sample size was not achieved until the contributions of William 
Farr (1807–1883), who is known to have made several contributions to study design. 
He pointed out the need for sample size considerations and formally introduced the 
concept of retrospective and prospective studies.    

3.4.2       Modern Epidemiological Study Designs 

3.4.2.1     Ecological, Cohort, and Case–Control Studies 
 Formal ecological studies have been very popular for exploring possible causal 
links since the nineteenth century. They are still used today as evidence of an 
association between an exposure and outcome, but this study design comes with 
serious limitations that are often diffi cult or impossible to address ( See:  Chaps.   5    , 
  6     and   27     for more details on ecologic studies), so they are not considered to be a 
popular approach. 

 Today, more popular than ecological studies are cohort studies. The Framingham 
Heart Study, which was started in 1948, is often considered a landmark cohort study 
(Dawber et al.  1957 ). Approximately 5,200 men and women aged 30–62 years in 
Framingham, Massachusetts, were followed long-term. This research program 
identifi ed major risk factors for heart disease, described the natural history of car-
diovascular disease, and set the standard for modern cohort studies, which have long 
been the paradigm for observational etiognostic research. Only relatively recently 
has the at-least-equivalent usefulness of the case–control approach become fully 
clear. Examples of case–control studies are available from the fi rst half of the twen-
tieth century. Doll and Hill ( 1950 ) are often credited with popularizing the case–
control design with a landmark study showing an association between smoking and 
lung cancer. Even after the Doll and Hill paper, however, case–control and case- 
base approaches have long been considered inferior to the cohort approach and 
became only very progressively recognized as alternatives. A  Lancet  editorial in 
1990 discussed rankings of methodological strength (as found in contemporary 
methodological books) and stated “The case–control study…falls behind the ran-
domized controlled trial and the prospective and retrospective follow-up study and 
barely overtakes the humble anecdote.” This point of view is now considered anti-
quated, as case–control studies with density sampling are quite robust. Olli Miettinen 
( 1976 ,  1985 ,  1999 ) has been perhaps most infl uential in promoting the proper use of 
secondary study bases in study design, a process that is still ongoing.  
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3.4.2.2     Modern Developments in Study Design 
 In the second half of the twentieth century, many important epidemiological 
concepts around  object design  became fi rmly established ( See:  Chaps.   2     and   5    ). 
Olli Miettinen has been a main driving force in developing object design con-
cepts ( See also:  Morabia  2004 ). In modern study design, the case–control 
approach and the primary cohort-based approaches are generally seen as equiva-
lent for observational etiognostic studies. Miettinen ( 2010 ) has proposed a new 
approach, called ‘the single etiologic study’ that is an improvement of the tradi-
tional designs, but it has not yet trickled down into common epidemiological 
thinking and practice. Recently, Mendelian randomization and other designs 
using instrumental variables have come to be added to the armamentarium of the 
observational epidemiologist. Clinical trial design has evolved into various types, 
including stepped and cross-over designs, and improved randomization and min-
imization methods have been gradually deve loped. The serious limitations of 
classical diagnostic performance studies are also becoming clearer and constitute 
an important challenge for traditional clinical epidemiology and evidence-based 
medicine (Miettinen  2011 ).   

3.4.3     History of Measurements of Health-Related 
States and Events 

 Developments in measurement methods are driven by and run in parallel to 
the changing interests in particular research questions and, consequently, with 
changing conceptual paradigms of objects under study. For example, the develop-
ment of microscopy can hardly be imagined without a theoretical interest 
in objects (e.g., microbes) that cannot be visualized with the naked eye. 
Anthropometry is one of the oldest of types of measurements (so too are autopsy 
and the counting of deaths and survivors). In an old Hindu textbook on surgery, 
the ‘ Sushruta Samhita’  (c. 600 BC), it is stated, “Adult stature is 120 times a 
man’s fi nger width.” In Hellenistic times it was known that total height is 7.5 
times the height of the head. Hippocratic texts recognized that climate infl uences 
body size and shape, and it was recognized by Galen (130–200 AD) that body 
proportions are linked to health. 

 Patient observation, interview, and physical exam have been and will likely 
always remain important for assessments in clinical care and research. Various 
forms of highly technical measurement instruments and questionnaire-based scales 
for latent attributes now often aid physical examination and interview-based mea-
surements. In the past decades, these methods of assessment have rapidly been 
supplemented with more sophisticated measurements and more advanced methods 
of data extraction from administrative or health records. Moreover, routine objects 
of measurement now include molecular analyses of biological samples and complex 
physiologic measurements as well as physical and biochemical assessments of the 
environment.   
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3.5     History of Research Ethics and Stakeholder Participation 

3.5.1     History of Research Ethics 

 Subject protection and Good Clinical Practice guidelines are relatively recent phe-
nomena in research history and were developed mainly after World War II (WWII). 
Before the war and until some time thereafter, it was usually assumed that the high 
ethical standards of patient care, as advocated by Hippocrates and Sydenham, would 
guarantee subject protection in research. History has proven that assumption very 
wrong. For example, highly unethical research has been conducted in the United 
States before, during, and after WWII (Beecher  1966 ; White  2000 ; Kahn and Semba 
 2005 ; Horner and Minifi e  2010 ). The same has happened in several other countries 
but most notably in Nazi-Germany and Japan (Tsuchiya  2008 ). It is the particular 
atrocity and scale of the Nazi medical experiments that eventually awoke spirits and 
led to important post-war milestone events, starting with the Nuremberg Doctors 
Trial in 1946 (McGuire-Dunn and Chadwick  1999 ). The judgment pronounced in 
this trial of Nazi doctors included a set of ethical guidelines known as the Nuremberg 
Code. This document started the modern era of human subject protection in research. 
As pointed out by McGuire-Dunn and Chadwick ( 1999 ), the Nuremberg Code 
stated, among other important points, that:
•    There should be no expectation of death or disabling injury from the experiment  
•   Informed consent must be obtained  
•   Only qualifi ed scientists should conduct medical research  
•   Physical and mental suffering and injury should be avoided    

 In the decennia after the dissemination of the Nuremberg Code, the international 
medical community gradually developed more elaborate codes of ethical conduct in 
research, most notably the successive versions of the Declaration of Helsinki (World 
Medical Association  2010 ) and the guidelines of the Council for the International 
Organization of Medical Sciences (CIOMS  2010 ), the latter with increased rele-
vance for research in low- and middle-income countries. CIOMS has recently pro-
duced international ethical guidelines for epidemiological studies (CIOMS  2010 ). 
Along with the response from the international medical community, there have been 
important milestones in legislation, mainly spearheaded by the United States. One 
such milestone was the publication in the U.S. Federal Register of the Belmont 
Report in 1979. A reprint of this important document can be found in McGuire- 
Dunn and Chadwick ( 1999 ). The Belmont report outlined three ethical principles 
upon which regulations for protection of human subjects in research should be 
based. These three principles are now widely known as:
•    Respect for persons,  
•   Benefi cence, and  
•   Justice/fairness in the selection of research subjects.    

 These have been the guiding principles for the U.S. Code of Federal Regulations 
(also reprinted in McGuire-Dunn and Chadwick  1999 ), and they have inspired 
similar legislation in other countries. The translation of these principles into 
guidelines and laws has been slow and progressive. It is worth noting, for example, 

J. Van den Broeck and J.R Brestoff



49

that even in 1986 there were debates in major medical journals about whether fully 
informed consent was the appropriate thing to do (Simes et al.  1986 ). At that point 
the arguments against fully informed consent were still based on the abovemen-
tioned fallacious idea that highly ethical patient-doctor relationships were suffi -
cient to protect research subjects. In that period it was also still possible to engage 
in trial participant dropout recovery programs without disclosing alternatives for 
similar-quality health care outside of the trial (Probstfi eld et al.  1986 ). 

 A very important recent process has been the development of Good Clinical 
Practice (GCP) guidelines for investigators of pharmaceutical products and medical 
devices. High-income countries with important stakes in the pharmaceutical indus-
try initiated this process. The most important milestone publication is recognized to 
be the ICH-6 Guidelines (the International Conference on Harmonization 6,  1997 ), 
as this document provided a reference for clinical research in the European Union, 
Japan, and the USA. Since the ICH-6 Guidelines were released, the concept and 
practice of GCP have been more widely adopted, adapted, and expanded, and some 
have now been incorporated into legislation. Some countries have designed their 
own GCP guidelines (e.g., South Africa) adapted to local contexts.  

3.5.2     History of Stakeholder Participation 

 Governments have always been important stakeholders of health research. The pro-
cesses involved in research funding were relatively informal before WWII, but after 
the war the need for ethics review and for national and international funding agen-
cies became clearer. Other important stakeholders include potential manufacturers 
and providers of remedies for illnesses. The dangers surrounding the relationship 
between physicians and pharmacists have been long recognized. In the earliest medical 
schools in Europe, for example in the School of Salernum (thirteenth century), there 
were strict prohibitions around any incentives given by ‘pharmacies’ to doctors. The 
twentieth century has seen the explosion of a huge pharmaceutical industry. This 
industry is now an important initiator of pharmacological research, a scenario that 
has led to great concerns about the validity of industry-funded studies, and indeed, 
problematic industrial incentives to doctors continue to exist. In modern times, the 
role of public-private partnerships in public health research is becoming increasingly 
important (Textbox  3.3 ).    

   Textbox 3.3 The Increasing Importance of Public-Private Partnerships 

 On one level,  government agencies  are now frequently involved in determining 
research priorities of the private sector. As an example, the USA Federal 
Drug Administration (FDA) directly infl uences pharmaceutical development 
projects by advising the sponsoring company on safety concerns that will 
need to be addressed.

(continued)
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3.6       The Future of Epidemiology 

3.6.1     Epi-Optimism 

 Reigning in some epidemiological circles over the past decades has been pessimism 
about the fi eld. Part of this pessimism seems to be rooted in the observation that so 
many analytical studies on the same topic produce very different and sometimes 
contradictory results. We do not hold this view and wish to invoke a sense of opti-
mism about epidemiology (epi-optimism). Indeed, the mere existence of inevitable 
inter- and intra-subject differences and the various types of study designs with many 
different approaches to dealing with effect modifi cation and confounding predict 
that effect estimates will be highly different across studies, including clinical trials 
(Maldonado and Greenland  2002 ). As it appears, epidemiological thinking has yet 
to come to grips with the phenomenon of heterogeneity, which should no longer be 
seen as chaos but as the essence itself of theoretical occurrence relations. 

 We argue that the understanding of dogmatic concepts such as a ‘true relation-
ship’ or ‘true effect size’ should become more nuanced. Scientifi c generalizability is 
a valid concept, but it is, in epidemiology especially, heavily ‘conditioned’ by hetero-
geneity in distribution matrices of confounders and effect modifi ers. Another way of 
viewing heterogeneity is as an opportunity for achieving a deeper understanding of a 
disease process ( See : Sect.   3.6.2.1    ). A greater ‘heterogeneity tolerance’ may posi-
tively infl uence the way epidemiology and epidemiologic study results are perceived 
by the wider public and, indeed, by future generations of epidemiologists.  

3.6.2     The Focus of Future Epidemiological Research 

3.6.2.1     Effect-Modification Research 
 Given the heterogeneity just described, epidemiology must shift its focus 
from searching for universal true relationships to documenting effect modifi cation. 

Textbox 3.3 (continued) 

 On another level,  private public health organizations , such as The Gates 
Foundation, often partner with governments and organizations around the 
world to develop research priorities, implement necessary studies, and deploy 
demonstrably effective public health measures. Organizations such as these 
highlight the importance of international and global communities as stake-
holders in health-related research. 

 On the ground level, members of the community are now frequently 
involved in reviewing study proposals and in establishing local research pri-
orities (as in community-based  participatory research ). Consequently, 
public- private partnerships in health-related research have simultaneously 
become more globalized and more localized. 
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‘Epi- pessimism’ will hopefully give way to enthusiasm for more comprehensively 
studied effect modifi cation, more uniformly reported effect modifi cation in single 
studies, and better modeling of effect size differences in meta-analyses. Such a shift 
in thinking may have substantial consequences for the way studies are designed and 
results reported and interpreted. Sample size concerns, for example, will have to 
focus on the need to create credible evidence about a range of potential modifi ers. 
These should include individual susceptibility factors as well as contextual factors. 
For intervention research, the contextual factors to be studied as effect modifi ers 
include intervention delivery aspects and background factors. Part of the future may 
lie in collaborative multicenter studies involving diverse, well-documented distribu-
tion matrices of covariates. In scientifi c reports, recommendations such as “This 
relationship needs to be explored in other settings” could become more specifi c as 
to what effect modifi ers should be better examined. 

 Greater study of effect modifi cation will ultimately pave the road towards better- 
personalized care and better-adapted delivery of community interventions. The dog-
matic concept of a single best treatment modality for all patients with a given 
condition will, through the study of heterogeneity, give way to the realization of 
individually-oriented interventions (i.e., ‘personalized medicine’). As we advance 
towards personalized care, important questions will arise regarding research methods 
and their development.  

3.6.2.2     New Diagnostic Research 
 As pointed out by Miettinen ( 2001 ), a vast area of diagnostic research remains virtu-
ally unexplored. This includes diagnostic prevalence studies, or in other words, 
diagnostic research that documents the probability of certain illnesses 
given a specifi c individual profi le of antecedents, signs, symptoms, and diagnostic 
test results. The implementation of these ideas will be a huge but exciting 
challenge ahead and will rely partially on the development of methods for risk 
prediction modeling and more serious investigation of diagnostic performance 
tests (Miettinen  2011 ).  

3.6.2.3     More Research on Research 
 The problem of publication bias reveals one of the weaknesses of the contemporary 
research process ( See also:  last section of this chapter). It would seem that more 
operational research is needed on research itself: where is research most likely to go 
wrong in individual studies, a collection of studies on a given topic, or even an 
entire fi eld? When? Why? With the growing importance of Good Clinical Practice 
guidelines and regulations, data cleaning and other aspects of data handling should 
emerge from being mainly gray literature subjects to become the focus of compara-
tive methodological studies and of process evaluations. Such types of studies should 
focus on the optimal procedures (balancing validity and cost-effectiveness) given 
local resources and cultural factors. Better understanding of processes in research 
will require epidemiologists to learn more from process analysts, psychologists, and 
social scientists.   
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3.6.3     Research Tools of the Future 

 The future will no doubt bring many paradigm shifts, changes in the use of termi-
nology, new ethical challenges, new tools, and tools adapted from other scientifi c 
disciplines. 

3.6.3.1     New Approaches to Study Design 
 To some extent, study design developments have tended to follow the identifi cation 
of needs in research, and this is likely to continue. For example the need to study 
rare diseases quickly must have contributed to the refi nement of the case–control 
design. Structural Causal Modeling is an example of a newly evolving area in etiog-
nostic study design ( See:  Pearl  2010 ). Another is the single etiologic study design 
proposed by Miettinen ( 2010 , 2011). In etiognostic research, the distinction between 
experimental and observational cohorts could become blurred: for example, mixed 
observational-experimental multinational cohorts may include long observational 
run-in periods to extensively document relevant effect modifi ers before any experi-
mental perturbation of determinants. After the intervention, continued observational 
follow-up of the cohort will become the rule, to determine long-term outcomes 
and to look at how responses to earlier interventions modify responses to later 
interventions.  

3.6.3.2     New Research Databases 
 We are currently witnessing the emergence of large bio-banks of prospectively 
collected biological samples with addition of varying amounts of clinical, environ-
mental, and behavioral information. These could give a boost to research and help 
to advance research methods, but the ethical and legal issues around making 
bio-banks internationally and easily accessible are not fully resolved (Kaye  2011 ; 
Zika et al.  2011 ). 

 There is a wider problem of public accessibility of research data in general. 
Epidemiology has yet to develop global, publically accessible banks of anonymized 
research databases. In other words, before deciding on setting up a new study 
involving the collection of new data, it should become possible for epidemiologists 
to fi nd an answer to the question: where can I fi nd an existing dataset that I could 
use to address the research question I have in mind? Perhaps one day most analytical 
studies will make individual participant data available for meta-analyses. Perhaps 
we should also expect more intelligent electronic libraries, semi-automated system-
atic reviews, global libraries of validated questionnaires or questions, and libraries 
of research methods for specifi c types of research questions.  

3.6.3.3     New Assessment Technologies 
 New technologies will have a substantial impact on the development of epidemiol-
ogy and of epidemiological research (Hofman  2010 ). The search for better and 
more objective measurement instruments will continue in medicine and outside of 
it; these innovations will continue to improve measurements in epidemiological 
research. To deal with confounding, mediation, and effect modifi cation, a continuing 
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challenge will be to measure the hitherto unmeasured. As measurement innovations 
come into play, scientifi c concerns will continue to prompt scientists to focus on 
measurement standardization. Although greater capabilities come with improved 
measurement tools, new technologies in epidemiologic research will raise newly 
encountered ethical challenges, both in health care and in health research. 

 Mobile phone technologies in particular are expected to have huge potential to 
improve measurements in epidemiologic research. The use of mobile phones for 
health purposes (irrespective of whether it is for personal, clinical, or research uses) 
is known by the generic term  m-health  (Vital Wave Consulting  2009 ; OpenXdata 
 2010 ). The interactive user interface may facilitate data collection, and thereby 
enable the large-scale diagnostic prevalence studies that are currently lacking. 
Phones are also easily adapted with other technologies, such as cameras, that allow 
imaging in the fi eld and photograph-, video-, or audio-based data collection for 
analysis later. 

 Another challenge ahead in the near future is how to make optimal use of 
metabolomics, genomics, and proteomics. Integrating the “-omic” technologies 
and epidemiologic research are very challenging but not outside the realm of 
possibility ( See:  caBIG, as discussed in Textbox  3.4 ). There are currently still 
some problems with the validity of these approaches as methods for diagnosis and 
prognosis, but the “-omics” hold great promise for gaining an understanding of 
human health and illness and will therefore continue to be an important area for 
research in the future. 

   Textbox 3.4 The Future of Turning to Already Existing Databases 

 Many great questions are left unaddressed not because someone failed to 
think of the questions but because the researcher was unable to realize that 
evidence was at their fi ngertips. Substantial resources have been invested in 
the creation of  large databases , such as the National Health and Nutrition 
Examination Survey (NHANES), and many of these are available to the 
research community-at-large. Data from many more studies are privately held 
by investigators worldwide. Among all of these public and private databases, 
one might be suitable to answer a research question raised by non-affi liated 
epidemiologists. Gaining access to that database would reduce the need to 
repeat the study; enable preliminary analyses that might be necessary to justify 
larger, more expensive studies; be useful for the design of other experiments 
(e.g., by estimating the variance of a factor under investigation); and facilitate 
meta-analyses using original data. 

 One could imagine the existence of a  database of databases  (DOD), 
where an investigator can search for variables and retrieve a list of all logged 
studies that contain them (or sub-components thereof). Such a DOD would 
address many of the issues addressed above in this textbox. Such a DOD 

(continued)
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 Other areas of research on measurement technologies that will be important to 
epidemiology in the future include:
•    The development and application of nanotechnologies  
•   Three-dimensional imaging  
•   Safety assessment and monitoring of test products during research  
•   The assessment of human resources, including needs-based planning  
•   Qualitative methods (e.g., qualitative pilot studies on health among cultur-

ally and socioeconomically diverse countries; one current approach is the use 
of the Rapid Epidemiologic Assessment, promoted by the World Health 
Organization)    

  New analysis methods  – The statistical analysis methods, as they are currently 
used in epidemiological practice, are nearly restricted by the easier options  
available in standard statistical packages. This situation has had some unfortunate 
consequences:
•    It has contributed to a dominance of statistical testing over statistical 

estimation  
•   Within statistical testing, it has led to a nearly complete attention on null hypoth-

esis testing  
•   It has lead to the failure of or delays in incorporating important new methods into 

standard software    
 Several eminent epidemiologists have warned against improper and excessive 

use of statistical testing. Some have even argued that statistical testing should be 
abandoned altogether (Rothman  2010 ) in favor of the use of statistical estimation. 
What we are likely to see, though, is a shift in balance towards more estimation than 
testing, not a complete disappearance of testing. 

 More and more causal effects are being demonstrated, more causal pathways 
have been progressively unraveled, and the complexity of causal networks leading 
to health-related outcomes has become better appreciated. Surveillance systems and 

raises issues of data exchange regulation and privacy to participants (among 
other things) for privately held databases, although these issues don’t exist 
as prominently for databases already publicly available to the research com-
munity. Investigators might also fi nd useful and productive collaborations 
around the world. 

 Currently, one of the best-developed systems to identify potential collabo-
rators is  caBIG  (  www.cabig.nih.gov    ), run by the NIH National Cancer 
Institute. caBIG has some data-sharing capabilities and provides excellent 
practical advice on how to make your databases shareable. 

Textbox 3.4 (continued)
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health databases of the future will gather an increasingly wider array of longitudinal 
data on health determinants. Analysis methods will need to keep up with this 
evolution. For example, statistical methods to adjust for time-varying confounders 
have not yet found broad application, but this may change. Along with this evolu-
tion, applications of structural causal modeling, data mining, multilevel analyses, 
and related methods may gain prominence as the methods-of-choice for arriving at 
useful simplifi cations. 

 As to analysis aids, we can expect improved friendliness of statistical packages 
and an increased range of analyses included in them. Analysis tools in support of 
new study designs, as the ones proposed by Miettinen ( 2011 ), will hopefully be 
included.    

3.6.4       The Future Architecture of Health Research 

 The continuing problems of publication bias ( See:  discussion point and Chap.   31    ) 
and of limited measuring and reporting of data quality unfortunately indicate that, 
after centuries of progressive sophistication of scientifi c methods, epidemiology is 
still too often defeated by subjectivity. It would seem, therefore, that behavioral sci-
ences and epidemiology have a joint mission that promises many battles. The health 
research community and the International Committee of Medical Journal Editors 
seem rather slow in responding to the publication bias problem. And the registration 
of clinical trials has been insuffi cient to curb publication bias. A signifi cant 
response is becoming a pressing need. Such a response will require the joint efforts 
of various stakeholders in research and will undoubtedly give an enormous boost 
to epidemiology. 

3.6.4.1     Globalization in Health Research 
 Today, health care is considered to be a global public good and international and 
global initiatives to boost health research in specifi c domains are becoming more 
common (Keush et al.  2010 ). More and re-enforced consortia on broad topics of 
interest are needed (Nwaka et al.  2010 ) to provide better opportunities for, among 
others:
•    Access to each other’s cohorts, tools, data, publications, and expertise  
•   Multidisciplinary work  
•   Collaborative research grants  
•   Training and sharing of research management and ethics expertise  
•   Laboratory capacity building (Wertheim et al.  2010 )  
•   Research-based partnerships with private sector, including the development and 

delivery of new health products (Keush et al.  2010 )  
•   Communication between researchers themselves and policy makers ( See:  

Chap.   30    )        
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  Publication bias  is the skewed representation of the overall available evidence 
on a research topic in a body of published literature resulting mainly from the 
tendency of:
•    Researchers to submit for publication only studies with positive fi ndings 

(i.e., showing a statistically signifi cant difference) and to withhold nega-
tive study fi ndings (i.e., statistical results supporting the absence of effects)  

•   Journal reviewers to recommend acceptance of articles with positive fi nd-
ings and rejection of articles with negative fi ndings  

•   Journal editors to preferentially send to peer-review and accept for publi-
cation articles with positive fi ndings     

  Discussion Point   What could be ways to combat publication bias?  

  This chapter was the third in a series of chapters introducing epidemiology 
(Part I). Here we have touched on some of the roots of epidemiology and, to a 
lesser and more speculative extent, how these roots are expected to nurture 
fruits of the future. Among current epidemiologists different opinions exist 
about what a proper scientifi c epidemiological approach should be. 
Epidemiology is in motion. Yet, there is enough commonality in views and 
practices for the next chapters to contain a general description of modern 
study designs and implementation methods.        

 Structural changes are needed to improve global fairness in access to research, 
research tools, and educational materials (Van den Broeck and Robinson  2007 ). 
Low- and middle-income countries have not been given enough support to build 
research capacity. Assertions have been made that one cannot adequately manage 
the clinical research process in resource-poor settings. It is important that this mis-
apprehension, which contributes to perpetuating poverty, be resolved, and that all 
countries are given a chance to be involved. Although there are many challenges to 
high-standard clinical trial research in resource-poor settings, solutions are not far- 
fetched. There are many good examples of high-standard clinical research performed 
in low-income countries ( See:  Doumbo  2005 ). Research infrastructure – including 
staff, facilities, equipment, and training – can be developed in any setting provided 
appropriate funding is made available. The capability to perform clinical research 
does exist in most countries but needs more recognition by sponsors through stable, 
continued funding support and assistance in building centers of excellence (Van den 
Broeck and Robinson  2007 ). International and global networks and partnerships 
with the private sector will be crucial for this purpose, as will be an enhanced focus 
on research on ‘neglected diseases’ (Keush et al.  2010 ; Moon et al.  2010 ). 
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    Abstract 
   This chapter provides advice on the identifi cation, justifi cation, and formulation 
of general study objectives. There are fi ve major types of research topics that can 
be addressed: diagnostic, etiognostic, intervention-prognostic, descriptive- 
prognostic, and methods-oriented topics. Within each major type we discuss 
topics in clinical medicine separately from topics in community medicine. 
Commonly, the researcher has many research questions, perhaps as a result of 
previously conducted research, but needs to include into the study rationale the 
interests of stakeholders, the virtual importance for public health, and the avail-
ability of resources. Decisions to do a study may require an updated insight into 
existing evidence on the topic with the aim of identifying knowledge gaps. We 
therefore briefl y discuss methods of the literature review. One considers at this 
earliest stage of planning that not all research requires new data collection; other 
potential sources of new evidence include existing research databases, and the 
joining of ongoing studies.  
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4.1        Types of Research Topics 

 Epidemiological research aims to augment the knowledge-base of clinical medicine 
and community medicine, and the discipline of epidemiology provides the metho-
dology to achieve this aim. General scientifi c knowledge in support of diagnosis, 
etiognosis, and prognosis (with and without intervention) of illnesses, considered 
together with the particular profi le of the patient, allow the scientifi cally educated 
health care worker to propose clinical decisions to the patient. 

 Epidemiology also provides methods to produce estimates of the burden of illness 
(past, present, and projected future with or without intervention) and capacity of 
health care in populations, thus contributing to informed public health intervention 
decisions. 

This chapter deals with the types of issues that are often found compelling as top-
ics for investigation.   In Chap.   1    , we noted that the typology of research questions 
includes descriptive and analytical studies. Here, we refi ne that typology by describ-
ing the fi ve major types of research questions:
•    Diagnostic  
•   Etiognostic  
•   Intervention-prognostic  
•   Descriptive-prognostic  
•   Methods-oriented    

 This typology builds on work by Miettinen ( 2002 ). In addition to the four types 
proposed by Miettinen we included a fi fth type, the methods-oriented research 
question. The justifi cation is that not all studies aim directly at creating medical 
knowledge. Some studies aim to contribute to this only indirectly by creating or 
improving the methodology to be employed in other epidemiological studies that 
more directly aim at creating medical knowledge. This latter type of research is 
sometimes referred to as ‘design research.’ Table  4.1  lists these fi ve types with brief 
examples of research questions and annotations regarding whether or not they 
address causality.

   For the researcher conceiving a new study it is crucial to be able to place the 
general aims correctly in one of the fi ve types because the consequences in terms of 
study design options are important. To enable that critical task, we describe the fi ve 
types in detail in the next sections (using Panel  4.1  terminology), distinguishing 
questions asked in clinical settings from questions asked in community medicine, as 
this distinction also has important implications for study design ( See:  Chap.   6    ).   

4.2       Diagnostic Research 

4.2.1     Diagnostic Research Questions in Clinical Medicine 

 Most illnesses (diseases, defects, states and processes resulting from injuries) are 
readily classifi able according to the International Classifi cation of Diseases ICD-10 
(WHO  2010 ). They are known to have and are often defi ned on the basis of having 
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combinations of signs, symptoms, and lab results, depending on the severity and 
stage of illness. Most have known risk factors and medical antecedents. The tradi-
tional clinical diagnostician, keeping in mind that unusual combinations do occur 
and that patients often present with more than one illness, uses this knowledge for 
comparison with a presenting patient’s profi le of antecedents, risk factors, signs, 
symptoms, and lab results. Based on this mental (subjective) comparison, a set of 
differential diagnoses emerges in the mind of the clinician, as well as an idea of 
what sequence of additional signs and lab tests could be useful to progressively 
restrict the differential diagnostic set until a classifi cation (‘the diagnosis’) is 
reached. Parallel decisions may further relate to the desired degree of illness sub- 
classifi cation. In settings with very restricted resources, for example, one may even 
forego classical diagnosis and conclude to limit the diagnostic assessment to a mere 
combination of signs and symptoms compatible with various illnesses but consid-
ered detailed enough (usually based on a perceived high probability for one illness) 
to usefully base an intervention upon it (Van den Broeck et al.  1993 ). There are 
several ways in which epidemiological research can assist with the diagnostic 
process roughly described above. 

 The traditional types of  clinical diagnostic research  listed in Panel  4.2  have 
proven their usefulness, but they also have an important limitation: such research 
tends to have a design with a backward directionality. The approach of traditional 
diagnostic research studies is usually to look back at certain antecedent features and 
test results in cases of a specifi c illness and non-cases. The practical problem of the 

   Table 4.1    Types    of research questions in epidemiology   

 Type of general aim 
 Causal 
orientation 

 Example of a research question (abbreviated in the 
form of a title) 

 Diagnostic  No  Community medicine: Gender inequality in the 
incidence of H1N1 infection 
 Clinical: Signs and symptoms of patients presenting 
with H1N1 infection 

 Etiognostic  Yes  Community medicine: Effect of infrastructural factors 
on H1N1 attack rate 
 Clinical: Effect of hand hygiene practice on the risk 
of H1N1 infection 

 Descriptive- prognostic   No  Community medicine: Prediction model for 
resurgence of small area H1N1 epidemics 
 Clinical: Risk prediction model of bacterial 
pneumonia in H1N1 infection 

 Intervention- 
prognostic  

 Yes  Community medicine: Effect of hand hygiene 
promotion campaigns on H1N1 incidence 

 Clinical: Effect of antiviral treatment on the duration 
of illness from H1N1 

 Methods-oriented  No/yes  Validation of a simplifi ed tool for measuring nutrition 
knowledge in children 
 Causes of observer error in anthropometric 
measurements 
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   Panel 4.1 Selected Terms and Concepts Relevant to Conceiving and 
Formulating General Study Objectives in Epidemiology 

     Adverse effects     Unintended undesirable effects of intervention, foreseeable 
or unforeseeable   

   Course of illness     Temporal changes in presence, severity, and sickness 
associated with illness and illness complications   

   Defect     Structural somatic defi cit   
   Diagnosis     (Process of gaining) probabilistic knowledge about the presence 

of a defi ned illness ( based on  Miettinen  2001a ,  b    )   
   Diagnostic profi le     The set of signs, symptoms, antecedents and test results, 

present at some stage of the diagnostic process, taken into consideration at 
that point by the diagnostician as information relevant for decision making 
about next steps towards diagnosis   

   Differential diagnostic set     Set of illnesses still under consideration at the 
current stage of the process of diagnosis   

   Disease     Pathological somatic process   
   Effectiveness     (1) Compliance- or coverage-dependent effi cacy (2) Balance 

of the modifying effects of negative and positive modifi ers of the compli-
ance- or coverage-dependent effi cacy   

   Effi cacy     Whether or not, or, degree to which, the intended effect of an inter-
vention is achieved   

   Effi ciency     The reciprocal of the resources spent to achieve a defi ned goal   
   Epidemic     Pattern of illness occurrence in which the incidence of the illness 

exceeds expectation   
   Health     Freedom from illness (Miettinen  1985 )   
   Illness     Presence of disease, injury or defect   
   Injury     Infl iction on the body causing a defect and/or a pathological process   
   Latent illness     Illness undiagnosed on behalf of a lack of illness manifestations   
   Literature review     A summary and interpretation of the body of evidence 

existing around a research question   
   Morbidity     The distribution of illnesses in a population (Miettinen and 

Flegel  2003 )   
   Mortality     The occurrence of death in a population   
   Placebo     Mock intervention   
   Prognosis     Expected future course (Miettinen  1985 )   
   Prognostic profi le     Set of attributes or experience indicative of the future 

course of illness or morbidity pattern   
   Screening regimen     Scheme of successive assessments/tests leading to early 

diagnosis and treatment of asymptomatic patients with a defi ned illness   
   Secular trend     Currently refers to a trend over a very long calendar period 

of at least 15 years; Formerly referred to a trend over a century ( Latin: 
S aeculum, Century)   

   Test intervention     An intervention willingly introduced to study its effects 
on individual health or morbidity/mortality   

   Test product     Substance of which the effects are assessed in a trial     
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clinician, however, is not how to arrive at the diagnosis of one single pre-specifi ed 
illness. The problem is of a totally different, forward-oriented nature. Specifi cally, 
it is about knowing what is the differential diagnostic set associated with a presenting 
patient’s profi le and which sequence of questions, signs, examinations and tests 
leads to the fastest and most effi cient narrowing of that differential diagnostic set. 
Miettinen has pointed out a potentially more useful (and relatively neglected) type 
of diagnostic research study design (Miettinen  2001a ,  b ), one in which there is for-
ward directionality – the diagnostic prevalence study, also called the diagnostic prob-
ability study (Miettinen  2011  and Panel  4.3 ). 

 Diagnostic prevalence studies can produce tools, such as  diagnostic probability 
functions , that may have useful applications in clinical practice (Miettinen  2011 ) 
( See also:  Chap.   24    ). Miettinen also notes that, with such applications, the useful-
ness of doing an additional diagnostic test should be determined based on how 
much the post-test probability for the illness will increase compared to the prior 
probability of the illness given the patient’s profi le (Miettinen 2001,  2011 ). This 
new paradigm, although very compelling, has not yet been widely accepted in 
epidemiology. In the future, this type of diagnostic research may use artifi cial 
intelligence based tools. 

 As pointed out above, the diagnostician’s main goal is to arrive at a diagnosis for 
ill patients presenting with a certain diagnostic profi le. But not all people with a 
disease display overt clinical signs or symptoms; that is, some people with a disease 
are in a latent phase. Thus, another concern in clinical medicine is the diagnosis of 
 latent  cases of illness through screening, especially for illnesses that tend to have a 
better prognosis when diagnosed and treated earlier rather than later.   

4.2.1.1         Screening 
 Screening is the application of a screening regimen aimed at diagnosing latent cases 
of illness. The screening regimen always starts with an initial test to identify indi-
viduals with a high enough probability of latent illness to warrant one or more fur-
ther tests, and so on, until a fi nal diagnosis of latent illness is reached. Development 
and evaluation of a screening regimen involves answering intervention-prognostic 
research questions. Relevant research questions about the diagnostic productivity of 
a screening regimen are listed in Panel  4.4  ( See also : Miettinen  2008 ):    

   Panel 4.2 Traditional Types of Diagnostic Research Questions in Clinical 
Medicine 

•     Frequency of  illness manifestations  by severity, natural history, and medical 
antecedents  

•   Description of  normal development,  e.g., growth standards  
•   Usefulness of (sequences of)  diagnostics tests  mostly as judged by their 

so-called ‘predictive’ value or by their likelihood ratio    
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4.2.2       ‘Illness Burden’ and ‘Response Capacity’ Questions 
in Community Medicine 

 Whereas clinical diagnosis focuses on overt or latent illnesses of individual patients, 
community health ‘diagnosis’ focuses on the burdens of illnesses in  populations . 
Clinical diagnosis eventually informs proper treatment. Likewise, knowledge of the 
burdens of illnesses and response capacity in a community can help in making 
proper decisions about how best to respond, e.g., through health education, the orga-
nization of health care, etc. Community health workers often engage in surveillance, 
assessment, improving response capacities, health education, vaccination, and other 
community services. In a way, community epidemiology allows for the achieve-
ment of knowledge needed for the fair allocation of public resources to activities 
that will best enhance health of the population. This includes knowledge of mone-
tary costs of illnesses and interventions. The decision of what constitutes fair alloca-
tions of public resources is not straightforward and needs to be based at least partly 
on knowledge about burdens and response capacities. Decisions also need to be 
based on the acceptability and preferences of the population concerned and to be 
brought about in a participatory manner. 

   Panel 4.3 Research Questions Addressed by Diagnostic Probability Studies 

•     Given a particular individual profi le of antecedents, risk factors, signs, 
symptoms and test results, what is the probability (prevalence) of having a 
defi ned illness?  

•   Given such a profi le, which illness out of a differential diagnostic set is 
most likely?  

•   Which sequence of tests, by adding the test results to the individual’s diag-
nostic profi le, has the greatest and fastest potential of singling out the ‘true’ 
illness or illnesses?    

   Panel 4.4 Research Questions Around Screening 

•     In what proportion of people does applying the screening regimen produce 
a diagnosis at a latent stage, and is this proportion higher than for diagno-
ses made outside the screening regimen?  

•   How frequently are healthy people unnecessarily subjected to the further 
diagnostic work-up after the initial screening test?  

•   How frequently does the initial or follow-up test lead to complications?  
•   What proportion of cases of latent illness remains undiagnosed and per-

haps falsely re-assured in spite of participating in the screening regimen?  
•   What is the probability of diagnosing of latent illness in a screened person 

as a function of age and other personal characteristics?    
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 Whereas most of this burden and response capacity research is particularistic 
(i.e., aiming at characterizing the burden or response capacity in a particular popula-
tion), there is also research that aims at generalization ‘into the abstract’ beyond the 
particular study population. For example, epidemics of specifi c illnesses often have 
shared characteristics, and their natural evolutions seem to follow certain patterns 
that are amenable to scientifi c investigation. Indeed, illness burden and response 
capacity research poses a variety of types of research questions that are shown in 
Panel  4.5 . This can be called ‘ community-diagnostic research ’.   

4.3        Etiognostic Research 

4.3.1     Etiognostic Research Questions in Clinical Medicine 

 The clinician has a natural interest in knowledge about causes of illness and in 
knowing to what extent these causes have played out in a particular patient. 
Knowledge of the causes of illness aids in diagnosis by allowing identifi cation of 
antecedents of disease in future patients. But such knowledge has other important 
uses as well. For instance, it may allow targeted actions to prevent the worsening of 
the patient’s condition or sometimes even to cure the patient. And by extension, it 
may also help to defi ne actions that might prevent the illness in that patient’s family 
members. Even on a much broader level, knowledge of causes of disease often is the 
basis of general health advice to patients who do not yet have an illness in question 
(e.g., protection from heart attack by eating a diet rich in soluble fi ber). 

   Panel 4.5 Diagnostic Research Questions in Community Medicine 

•     What is the current burden of illnesses and risk factors in the community, 
in terms of prevalence, incidence, severity, relative frequency distribution, 
or clustering within individuals?  

•   How do illnesses cluster in time and space (Some of the most ancient types 
of research questions in epidemiology are those relating to short-term 
temporal- spatial clustering of illnesses: epidemics)?  

•   How do illness burden patterns evolve over longer calendar time periods 
(sometimes over very long periods: secular trends)?  

•   What resources are available to tackle illnesses in the community? What is 
the availability, accessibility and functionality of health services e.g. 
human resources in health? What are the monetary costs of possible 
interventions?  

•   What are the inequalities (gaps, disparities) in health, health education, 
health information and health care among subpopulations defi ned by sex, 
age strata, ethnicity, built environment, socio-economic status, country 
regions, countries and world regions?    
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 All diseases and developmental defects have genetic  and  environmental causes. 
Figure  4.1  shows a diagram of categories of etiologic factors affecting individual 
health. Gene expression continuously requires interaction with the environment e.g. 
nutrients. It is this interaction that allows the formation and maintenance of a func-
tioning human body. This interactive process starts in utero with little more than a 
collection of recombined genetic codes embedded in a mainly maternal  environment. 
From that moment somatic-functional development proceeds but can be delayed, 
accelerated, disharmonized, or arrested prematurely, locally or entirely. No matter 
how this development has worked out in the particular presenting patient,  ultimately 
the process will end, either after slow degenerative processes, or after bursts of 
decay caused by injury and disease, or very suddenly by a fatal event. In the mean-
time, the whole process will have supported a unique human experience, always 
worth living and an end-on-itself. All individuals transmit knowledge, environment 
and sometimes genes to next generations.

   From this it follows that there are three broad classes of factors causally related 
to individual health i.e. three types of factors related to the success of the construc-
tive and maintenance stages of the described interactive process:
•    Genetic and constitutional  
•   Environmental  
•   Behavioral    
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  Fig. 4.1    Simplifi ed diagram of categories of etiologic factors affecting health       
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  Clinical etiognostic research  focuses on the extent to which particular individual 
exposure experiences (broadly speaking episodes of gene/constitution – environ-
ment interaction through behavior) affect measurable aspects of somatic-functional 
integrity in a causative or preventive way. Whenever an undesirable health-related 
event has occurred or an undesirable state developed in a patient, a multitude of 
such experiences obviously has preceded throughout the patient’s lifetime up till 
that point. Always, previous generations have contributed, individual susceptibili-
ties have developed, societal factors have played out, physical-chemical and bio-
logical factors have had their infl uence. The question is thus not whether, in this 
patient, trans-generational, behavioral, societal, constitutional or environmental fac-
tors are causally linked to the outcome. They are! 

 The question in clinical etiognostic research is, rather: are there any specifi c 
types of experiences that, if they would or would not have happened or if they would 
have been made more intense or less intense, through some purely hypothetical 
modifying action, could have prevented the outcome or made it less severe in at 
least a proportion of patients, and, in what proportion of patients? 

 To answer such questions researchers have often addressed one or very few 
potential risk factors at the time in their studies. This approach has been labeled 
‘single risk factor epidemiology’. As risk factor epidemiology unveils the impor-
tance of increasing numbers of related causal factors to the same health related 
states and events, there is an increasing need for a form of integration linking the 
various causes in complex hierarchical models. Interestingly, single risk factor epi-
demiology and complex multilevel modeling of causal pathways have erroneously 
been presented as very different paradigms. We rather see that one complements 
and reinforces the other in several useful ways. For example, data mining exercises 
sometimes come up with best models that do not seem to make any intuitive sense, 
sometimes because part of the variables considered are unrelated to the outcome as 
known through single risk factor epidemiology. The selection of variables for con-
sideration in complex models should be based at least partly on evidence from sin-
gle risk factor epidemiology and common sense. 

 Occupational medicine has an interest in the causal role of exposures in work-
places on the occurrence of illnesses (Panel  4.6 ). In occupational epidemiology the 
exposures suspected to infl uence health are often obvious from the kind of work 
being carried out. For example, in agricultural workers, the health consequences of 
exposure to pesticides are a topic of interest. Among hospital personnel it is nee-
dle-sticks and hospital pathogens that are of special concern. However, particular 
situations may arise in epidemiology when it is not clear from the outset what the 
exposures of interest actually are. The task may simply be to investigate ‘the 
causes’ of a worrying increase in number of cancer cases in the hospital or work-
place or to discover ‘the source(s)’ of contamination in some localized infectious 
epidemic. To address this kind of question, qualitative or semi-quantitative pre-
liminary investigations may need to be carried out to identify and specify the 
potential causes worthy of including in the main study’s object design. This exer-
cise requires, from the part of the researcher, scientifi c knowledge of the etiology 
of the outcome and particularistic knowledge of research settings and areas. Small 
qualitative research projects or ‘rapid assessments’ may help to refi ne this knowledge. 
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Note that the result of such preliminary situation assessments may be so convincing 
in pinpointing a cause that further scientifi c epidemiologic study is considered 
unnecessary.   

4.3.2       Etiognostic Research Questions in Community Medicine 

 Community health questions arise about factors causally linked to health burdens, 
disparities in burdens, and changes in burdens in populations. Research addressing 
such topics is called  community-etiognostic research . Observation units in this type 
of research may be individuals, ‘geographical areas,’ or other groups. The exposures 
of interest may be the same as in clinical etiognostic research, comprising the whole 
spectrum of constitutional, environmental, and behavioral factors. Again, it may not 
always be clear from the beginning of such a research project what the exposures of 
interest are (for example, when one starts investigating the causes of an unexplained 
rise in incidence of cancer in a particular sub-area revealed by surveillance). 
Community-etiognostic research may also concern the  impact  of policy interventions 
that were implemented non-experimentally outside research contexts. Ecological 
variables are also frequently of interest as exposure variables.   

4.4     Intervention-Prognostic Research 

 Etiognostic studies are not the only type of studies that address cause-and-effect 
relationships. Other types that equally have such an ‘analytical’ aim include some 
methods-oriented studies ( See:  below) and intervention-prognostic studies. With 
the latter, the issue of interest is whether a change in outcome would be brought 
about by introducing a particular  test intervention  compared to  no intervention  or 
 another intervention.  Among the latter can be a ‘mock intervention’ or placebo. The 
issue addressed is fundamentally different depending on what type of reference 
intervention level will be used. Comparison with ‘no intervention’ addresses the 
 full effect  of the intervention on the outcome, whereas comparison with another 

   Panel 4.6  Etiognostic Research Questions in Occupational Medicine 

  Research questions may concern the potential causal role of:  
•     Ergonomic hazards , e.g., lifting heavy loads, high-risk situations for 

injury, straining body postures, long working hours with computers  
•    Psychosocial hazards  at work, causes of job-related stress  
•   Undesirable  environmental exposures : dust, dirt, noise, toxic chemicals, 

biological substances; the interest here may be in specifi c agents or in mix-
tures, or even in the effects of broad, incompletely characterized exposure 
situations    
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intervention, addresses the  difference in effect  between the two interventions 
(whether or not one of them is a ‘mock intervention’). Addressing full effects is 
often unethical as it tends to mean leaving part of the patients or communities suf-
fering without help. Most research questions are thus geared towards comparing 
alternative intervention strategies, notably in situations where there is equipoise as 
to the possible superiority of a test intervention. 

 Several aspects of the interventions need to be compared:
•    Firstly, interventions can have multiple intended effects, and (compliance- 

dependent) effi cacy in achieving the effects may need to be compared. The interest 
may be in the existence of an effect, it’s size, or its modifi ers or mediation  

•   Secondly, interventions can have unintended benefi cial and adverse effects. As to 
the latter, one is interested in studying the incidence, timing, and severity of 
those that are foreseeable and of those that are not foreseeable. Undue effects 
may be associated with elements of the intervention strategy, or there may be 
special risks associated with poor compliance or with stopping an intervention 
once it has been started  

•   Thirdly, all interventions have various types of costs both to participating indi-
viduals concerned and to communities, and these costs have a level of accept-
ability attached to them for the individuals concerned, for society, and for policy 
makers. This latter type of issue, however, belongs to the diagnostic domain (as 
described above), not the intervention-prognostic domain    
 In both clinical and community health research the comparisons of these different 

useful properties can usually best be made separately. Indeed, it will be up to the 
individual patient to weigh knowledge on effectiveness, safety risks, likely indi-
vidual/family costs and thus (s)he must be informed about these aspects separately. 
Likewise, for community health, the expected effectiveness at the expected degree 
of coverage must be weighed against expected public costs and acceptability issues, 
but each community and group of policy makers has different problems and priorities. 

4.4.1     Intervention-Prognostic Research Questions 
in Clinical Medicine 

 Intervention may be needed, even in the absence of or before a refi ned diagnosis, to 
stabilize vital functions and relieve pain. Thus, in emergency medicine and nursing 
there are important research questions about how to achieve this in the most effi -
cient and safe way, and, if possible, in a way that will not make subsequent refi ned 
diagnosis impossible. When resources are available and the patient, guardian, or 
close relatives permit, a refi ned diagnosis and a detailed individual profi le of prog-
nostic indicators (including contra-indications, markers of responsiveness, etc.) can 
be made to inform and propose a specifi c intervention strategy to the patient. The 
stated intended effects of that intervention strategy may be (in order of preference 
ignoring safety, cost, and preference issues) of the types listed in Panel  4.7 . 

 Intervention-prognostic clinical research (also called  clinical intervention 
research ) usually compares intervention strategies that have the same type of 
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   Panel 4.7 Possible Intended Effects of a Clinical Intervention 

•     To cure or to speed up cure  
•   To improve the health state  
•   To stabilize the health state  
•   To slow worsening of the health state  
•   To diminish suffering without an intended effect on a health state itself  
•   To prevent future illnesses in that individual or in others, e.g., through 

genetic counseling or prophylactic (preventive) measures for communica-
ble disease    

intended effect, as listed above. Occasionally, however, it makes sense to  compare 
a strategy to cure, at considerable foreseen safety risk, with a strategy to improve 
only but with fewer foreseen safety risks. In such instances the choice of an 
appropriate effectiveness outcome parameter may be more challenging. Types of 
clinical intervention strategies that are often studied include new drugs, drug 
dosing regimens, and routes of administration as well as technical health care 
interventions (such as surgical operations) and composite therapeutic strategies/
regimens. 

 Discussion Point   The purpose of intervention-prognostic research  cannot  
be to document the harm caused by an intervention known to have (a high 
chance of) a harmful effect. This limitation, imposed by the general ethical 
principle of  non malefi cence,  has not always been taken seriously by medical 
researchers. 

  Importantly, clinical intervention research should not consider all patients with 
the same diagnosis as equal and simply study average outcomes of intervention 
strategies in large groups or in a few disease severity and age/sex categories, as has 
too often been done in the past, without much concern for the modifying role of the 
individual patient profi le. Knowledge on intervention strategies is incomplete, 
also in the common sense view of the patient him/herself, without a focus on how 
the individual patient profi le, including the stage of the illness at the start of treat-
ment, infl uences the intervention-prognosis ( See also:  Chap.   24    , Sect.   24.4    ). In the 
context of screening for latent illness, the modifying effect of illness stage on the 
treatment effect is one of the issues to investigate. 

 In clinical intervention research, one is often faced with the diffi culty that not all 
aspects of an intervention strategy can be studied simultaneously. Thus, the corre-
sponding research questions are often addressed in different phases (Panel  4.8 ).   
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4.4.2          Intervention-Prognostic Research Questions 
in Community Medicine 

 Public health professionals intervene in communities, such as during infectious epi-
demic outbreaks, or propose structural interventions to policy makers. They can 
also propose changes to clinical intervention strategies. The knowledge-base for 
these types of activities partly rests on intervention-prognostic research, although, 
as we have mentioned, observational-etiognostic research can also provide evidence 
about the impact of policies and interventions, specifi cally those that were imple-
mented non-experimentally outside research contexts. Intervention-prognostic 
research questions addressed in community medicine often concern primary pre-
vention methods (e.g., vaccines, health care delivery strategies, health education, 
and infrastructural interventions). The stated interest may be, among others, in the 
potential outcomes listed in Panel  4.9 . 

 Intervention-prognostic research in community medicine ( community interven-
tion research ) may address the potential for (1) coverage-dependent effectiveness 
after wider scale implementation, and (2) unintended ‘collateral’ effects, for example 
effects on (inequalities in) other disease burdens. To make a parallel with the clinical 

   Panel 4.8 Types of Trials According to Drug Development Phase 

•      Phase-1 trials  – Pharmacologic studies on a limited number of healthy 
volunteers, after animal experiments have shown acceptable results. The 
purposes are short-term safety profi ling, tolerability assessment, and phar-
macologic profi ling (absorption, blood levels, elimination) depending on 
the dose and route of administration  

•    Phase-2 trials  – Small-scale trials, done after phase-1 trials have shown 
acceptable results. The purposes are to further assess safety and sometimes 
effi cacy in a limited number of patients, usually 30–300. Phase-2 trials can 
provide proof of principle that the treatment works or works at least as well 
as the reference treatment, though effect sizes are not usually possible to 
estimate reliably.  

•    Phase-3 trials  – Large-scale trials done after phase-2 trials have proven 
acceptable safety. These studies are always randomized and involve large 
numbers of patients. Detailed effi cacy profi ling is done, including esti-
mates of  effect size  and the identifi cation of  effect modifi ers , i.e., the role 
of individual intervention-prognostic profi les. Medium-term safety profi l-
ing is also assessed, usually in a more rigorous manner than in previous 
phases  

•    Phase-4 trials  – Post-marketing studies done after licensing and market-
ing. The main purpose is surveillance of long-term safety and effi cacy as 
well as survival. Sometimes new studies are done after marketing to look 
at specifi c pharmacologic effects and specifi c risk profi les    
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research, this type of research needs more attention to particular profi les of prognostic 
factors that modify the relationships and predict that the outcomes will be different 
for different community strata and communities.    

4.5       Descriptive-Prognostic Research 

 Etiognostic and intervention-prognostic research questions have an ‘analytical’ 
aim: they address cause-and-effect relationships. This is in contrast with descriptive- 
prognostic research questions. This study type aims at predicting future changes in 
health states or health state distributions. Indeed, prediction can sometimes be made 
without knowledge of causation, and knowledge of causation does not necessarily 
allow for effi cient prediction. A risk factor can be strongly associated with an 
outcome yet poorly predictive of it (Ware  2006 ). For example, smoking is strongly 
related to lung cancer but poorly predictive of it. It is true, however, that strong 
causative or preventive factors tend to be better predictors than a-causal factors. Of 
interest in descriptive-prognostic research can be single predictors of an outcome of 
interest, or how several prognostic indicators jointly predict an outcome of interest. 

4.5.1     Descriptive-Prognostic Research Questions 
in Clinical Medicine 

 The interests of both the clinical health worker and the patient are, naturally, the 
probabilities of possible future courses of the patient’s illness(es), including possi-
ble complications; the probability of newly acquiring another or the same illness; 
and sometimes the duration of the patient’s life. Naturally also, the interest of both 
the clinical health worker and the patient lies in knowledge of how the patient’s 
individual profi le of prognostic indicators (age, sex, interventions, etc.) affects all of 
these probabilities. Such research topics are addressed in what is commonly known 
as  clinical prediction research .  

   Panel 4.9 Possible Intended Effects of a Community Intervention 

•     The disappearance of an illness from a community, e.g., elimination of 
polio  

•   To decrease the total burden of an illness in current or next generations  
•   To slow an ongoing increase in the size of an illness burden  
•   To decrease disparities and inequalities in an illness burden  
•   To prevent a burden of zero form becoming non-zero, or to prevent the 

development of an inequality  
•   To develop intervention strategies for specifi c illnesses or groups of 

illnesses (including making them more effi cient and less costly, so as to 
free up resources to combat other burdens)    
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4.5.2     Descriptive-Prognostic Research Questions 
in Community Medicine 

 In community medicine descriptive-prognostic research questions are analo-
gous to the ones posed in clinical medicine. Health policy makers, community 
health workers, and the general public are interested in knowing how current 
health burdens and their inequalities (as well as the relevant response capacities 
to address them), are likely to change in the future. There are also questions 
about the probability of new epidemics and of the recurrences of epidemics. 
Finally, community health workers and public are interested in how particular 
prognostic indicators of (sections of) communities modify all of these probabi-
lities. The type of research addressing these topics is often referred to as  
forecasting research .   

4.6     Methods-Oriented Research 

 All of the types of research questions discussed so far are addressed in studies that 
employ epidemiological tools: abstract design tools as well as instruments and other 
equipment. All these tools have a certain degree of validity, effi ciency and ethical 
acceptability. Among alternatives, what tool is most valid, effi cient, or acceptable is 
not always clear or easy to determine. Many investigators resort to using traditional 
study designs, ‘accepted tools,’ and ‘well-trained observers’ without too much 
further concerns about any limitations and their potential consequences. Some 
investigators will do pilot studies to learn more about validity, effi ciency, and 
acceptability issues before starting the actual study. And some will collect special 
data on accuracy and precision during the course of an ongoing study. However, it 
also happens that studies are specifi cally set up to investigate methodological issues 
alone, separate from any ‘mother study’. Such studies tend to aim at verifying, 
expanding or refi ning the epidemiological toolkit or at ‘locally adapting’ an existing 
tool for later use by others. 

 Methods-oriented studies can address aspects of performance and usefulness of 
new or potentially improved observer selection and training schemes, sampling 
schemes, instruments, tests, quality control methods, data management methods, 
analysis methods and other aspects of methodology. They can focus on accuracy, 
precision, cost and other effi ciency aspects, and on acceptability issues. Such 
studies are sometimes referred to as ‘operational studies’ (examples of questions are 
given in Panel  4.10 ). 

 Epidemiologists have traditionally focused on measurement methods, and there 
has been much less interest in potential improvements to methods of recruitment 
and data management/handling. 

 Finally, it is worth noting that methods-oriented studies can have descriptive or 
analytical aims. As an example of the latter, one may investigate factors causally 
related to measurement error, data handling error, or analysis error. Ultimately, the 
goal of such studies is also to improve the epidemiological toolkit albeit more 
indirectly.   
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4.7       Choice of Topic and Source of Evidence 

 The possible range of topics to study is probably infi nite. Some form of prioritiza-
tion is thus required (Viergever et al.  2010 ;  See also:  Chap.   8    : Funding and 
Stakeholder Involvement). A compelling study rationale from a public health per-
spective precedes concerns about feasibility and study design, meaning that the 
choice of a topic is one of the fi rst issues that must be considered in detail. After 
having identifi ed a topic and its rationale, it is an ethical imperative to carefully 
investigate all possible sources of valid evidence, including prior studies as well as 
already-established databases before collecting data on new participants. 

4.7.1     Multiple Research Questions in the Same Project 

 Addressing multiple research questions in the same study seems to be the logical 
thing to do from an effi ciency point of view. And, indeed, this is becoming the rule: 
studies with a single research question are nowadays rare. Health surveys, for exam-
ple, involve a large number of outcomes, and clinical trials always have effi cacy  and  
safety outcomes and may also address prediction issues (Miettinen  2010 ). 

 A problem with multiple outcomes can arise when one wishes to make a clear 
distinction between primary and secondary objectives of a study. The primary 
objective demands the best information and gathering that information is of prime 
importance; this is one reason that estimates of optimal study size tend to be geared 
towards the achievement of the primary objective. Gathering ample information on 
an array of secondary research questions can constitute a distraction from the pri-
mary objectives and dilute the precision and decrease the accuracy of information 
collected on the main outcome. 

 Multiple outcomes may also be planned with the goal of analyzing them together 
in a single multivariate analysis. This approach can be useful when the researcher 
suspects and intends to examine whether all these outcomes are related to a same set 
of determinants (and with what strength). In addition, multiple outcomes may be 
targeted in a study not only because there is a separate interest in the occurrence of 

   Panel 4.10 Examples of Important Questions in Methods-Oriented Research 

•     What is the validity of this  new measurement method  in comparison with 
a more invasive gold-standard method?  

•   Can we replace this traditional measurement method with a new one that is 
 cheaper and simpler?   

•   How can this measurement method be optimized for use in  another set-
ting  or in  another type of patient ?  

•   Can observer error be reduced by better  standardization  of some aspect of 
the measurement technique?    
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each, but also because they are conceived as belonging to a same single construct, 
e.g., the construct of intelligence. In that case the aims may be to study each out-
come separately and to combine them into a single score, e.g., an intelligence quo-
tient. Another example is a study of the effect of a treatment on preventing malignant 
neoplasm. The desired information is the occurrence of various specifi c types or 
classes of cancers in addition to the overall occurrence of all classes combined into 
the construct ‘malignant neoplasm.’  

4.7.2     Existing Summarized Evidence 

 Having developed an interest in a certain topic and a set of related research ques-
tions, the epidemiological researcher is often faced with the task of updating her/his 
knowledge of any relevant evidence. Experienced researchers tend to be broadly 
knowledgeable about past and current research in their area of expertise and have 
their preferred ways of remaining up-to-date with the literature in their fi eld. They 
may have subscribed to automated content alerts and other modern web services, 
read open access literature online, visit libraries and/or have personal subscriptions 
to some of the specialist literature relevant to their domain of research. In addition 
they may be used to keeping an eye on methodology-oriented papers in epidemio-
logical journals. This situation may be very different for students faced with litera-
ture review and critical appraisal assignments and with dissertation requirements. 

4.7.2.1     Strategies for Assessing Existing Summarized Evidence 
 When trying to fi nd out more about existing evidence on a research question, one 
cannot trust brief summaries of evidence commonly found in introduction and dis-
cussion sections of papers that have addressed the topic or a very similar topic. For 
example, Fergusson et al. ( 2005 ) describe an instance of how inadequate citing of 
previous trials by investigators has led to an excess of unnecessary trials of a spe-
cifi c product. What are generally needed are recent systematic literature reviews as 
well as sources of expert opinion, such as narrative literature reviews, editorials, and 
commentaries, though these types of publications cannot substitute for reading the 
most relevant original research on a topic. 

 In some instances there are systematic literature reviews and expert opinion 
pieces available on a topic. In many other instances they are not available at all, or 
only on a tangentially related topic. In these latter cases there is a need for the epi-
demiological researcher to personally identify, assess, and summarize all relevant 
studies in a systematic literature review. In the former case there may be a need to 
update or improve existing literature review(s), depending on the results of a critical 
evaluation of the existing review(s) and opinion articles and a search for recent 
evidence.  

4.7.2.2     Appraising Literature Reviews and Expert Opinion Articles 
 Critically reading recent expert reviews and opinion papers has become a key skill 
to gain insight into existing evidence. The scientifi c spirit demands this critical 
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approach because ‘authority and fame’, often perceived as signs of high expertise, 
on themselves do not provide for meaningfully summarized evidence. It would be a 
mistake to think that all systematic reviews are conducted by true experts in the fi eld 
or that all experts meticulously apply guidelines of systematic literature review. 

 When critically reading reviews, one must take into account that reviews can be 
outdated. Depending on how frequently the topic is researched, the ‘deadline’ for 
considering a review outdated may be as short as a few months. A simple electronic 
search may give an indication as to recent papers. If several reviews exist, checking 
whether there is overlap of cited papers from defi ned periods may reveal that they 
were all incomplete. Another possible problem is that reviews may not be system-
atic enough. In nearly all cases the evidence presented by reviewers tends to be 
biased to an unknown degree by publication bias. Finally, the evidence presented, 
even if unbiased and about the broad topic of interest, may be partly irrelevant to the 
currently considered project, for example because it does not give enough detail 
about how the determinant – outcome relationships depend on modifi ers. Some 
important questions in the review of reviews are listed in Panel  4.11 . 

 Some organizations have specialized in setting up databases of systematic 
reviews. Pioneering work on systematic reviews was done by the Cochrane 
Collaboration ( http://www.cochrane.org ) and the United States Preventive Services 
Task Force ( http://www.ahrq.gov/clinic/uspstfi x.htm ). The Campbell Collaboration 
focuses on social and educational policies and interventions (  http://www.campbell-
collaboration.org/  )   

4.7.2.3       First a Literature Review? 
 The researcher planning a new study will have to decide whether some form of 
new or updated systematic literature review is needed for the planned study. The 
spectrum of existing types of literature review is listed in Panel  4.12 . 

 Narrative reviews are inherently more subjective than systematic reviews and 
may not be very reproducible in their approach. They are not without importance as 
they tend to describe valuable insights of experts, even if they are usually backed up 
by a more or less ad hoc selection of referenced materials. An important difference 

   Panel 4.11 Some Key Questions When Evaluating the Quality of Review Articles 

•     Is the research question specifi c enough?  
•   How systematic is the review? Is it a ‘Cochrane type’ review? How old is 

it? Was the search strategy comprehensive?  
•   Was the quality of the selected papers assessed systematically? If yes, 

how? How were strengths and limitations of papers taken into account in 
the overall summary of evidence?  

•   Does the review give due attention to sources of heterogeneity in study 
results in addition to attention to central tendency in the fi ndings?  

•   Was there any evidence of publication bias? How was this issue examined?    
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between the narrative and (semi-)systematic literature reviews is that the latter has 
a detailed methods section describing search strategies, quality assessment meth-
ods, and methods of synthesizing the evidence of the selected papers. Semi- 
systematic reviews, often performed by students, do use such a detailed methods but 
the search strategy is not as comprehensive as in a real systematic review (a task that 
often involves a committee and hired staff). Methods of systematic review will be 
further discussed in Chap.   25    , which also deals with meta-analysis.   

4.7.3        Is a New Study Warranted? 

 Within the context of research groups focusing on specifi c domains of medicine, the 
need for a specifi c new study is often a simple conclusion reached by a previous 
piece of research carried out. Even when that is the case, it is good to do a new check 
of evidence available in the literature before engaging with the new plans. Whenever 
a topic is relatively new to the student, investigator, or group, preparatory literature 
review is even more essential. However, identifying gaps in knowledge, usually 
through critical reading of reviews or doing or updating reviews, is only one of the 
considerations in the decision to embark on a new study. There are many additional 
questions and, ultimately, the opinions of stakeholders (especially the sponsors), 
may be decisive, as may be the opinion of the ethics committee. 

 Important questions include whether existing datasets can be used to answer the 
proposed research question and whether there is any ongoing research on the same 
topic. Epidemiology has yet to design a comprehensive and user-friendly system of 
identifying existing publicly available research databases and whether the available 
ones are fi t for a particular new research question. For information on ongoing clini-
cal trials one can consult registries of trials or consult research sponsors. Most often, 
however, the only way to fi nd out if similar initiatives are under way is to remain 
up-to-date in the particular fi eld of research, e.g., through conference attendance. 

 Effi ciency questions may arise as to whether it will be possible to piggyback the 
new study as an add-on to an ongoing cohort study, or upon any planned and pos-
sibly already funded study. One should consider any adverse effects resulting from 
the supplementary and secondary status of the prospective new project component. 
Another concern is quality of any data that will be borrowed from the host study and 
the effect of the ancillary study on the quality of the host study. The necessary data 
for answering the proposed research question may also be available from registries 
or non-research datasets with similar concerns about validity and completeness. 

   Panel 4.12 Types of Literature Reviews 

•     Narrative  
•   Semi-systematic  
•   Systematic  
•   Systematic with meta-analysis    
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 Ultimately, it may appear that an independent study with new data collection is 
desirable, especially if there seems to be suffi cient potential access to observation 
units, excellent measurement tools, and if (in analytical studies) all potential con-
founders can be identifi ed and measured reliably. Studies that are too small may fail 
to detect important effects or produce estimates that are too imprecise to be useful. 
No health authority is interested in or will immediately act upon statements such as 
“the prevalence of the disease in the area is 10 % (95 %CI: 1–19 %)”. Misinterpretation 
of results of small studies frequently happens and may do more harm than good. On 
the other hand, results of small scientifi c studies, if well designed, may contribute to 
later meta-analyses. In the short term, however, sponsors and other stakeholders 
have outspoken preferences for studies that are expected to produce strong high- 
precision evidence. 

4.7.3.1     Stakeholder Opinions on Whether a Research 
Question Should be Pursued 

 In the present era research sponsors are becoming the main decision makers about 
what research questions will be addressed. Sponsors often advertise their preferred 
research areas or even very specifi c research questions they are interested in. 
Research institutions like to ensure that research questions addressed within the 
institute fi t well within the larger research programs and strategies and that they 
have great potential for attracting external funding. Finally, patients, health authori-
ties, hospital management and communities may have their opinion on how useful 
and acceptable a planned study is. Health authorities may also defi ne research prior-
ity areas. As a basis for interaction with the sponsors and other stakeholders it is 
advisable to write a pre-proposal.    

4.8     Developing a Pre-proposal 

 Pre-proposals usually are no longer than three to fi ve pages. Key content includes:
•    An informative title  
•   A summary of relevant evidence in the literature  
•   Aims and objectives accompanied by a rationale for why they are relevant, fea-

sible, and potentially important  
•   Brief description of methods, including study size  
•   List of key papers  
•   Timeline and preliminary budget estimate    

 The pre-proposal must be refi ned and improved through discussions with scien-
tifi c collaborators and stakeholders. If all indicate interest and potential support, a 
more comprehensive proposal must be developed. The necessary elements for 
inclusion into a full detailed proposal are discussed in detail in Chaps.   5    ,   6    ,   7    ,   8    ,   9    , 
  10    ,   11    ,   12    ,   13    , and   14    . Full proposals form the basis of development of ethics pro-
posals, grant proposals and, eventually, the fi nal and offi cial study protocol. Each of 
these will have to comply with the specifi c requirements of the institutions or com-
mittees concerned. 
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  In this chapter we discussed broad study objectives, presented a classifi cation 
of research topics, and showed that this classifi cation system is applicable to 
both clinical and community medicine. In the next chapter we introduce con-
cepts and terms used to pinpoint the more specifi c aims of research studies.      
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    Abstract 
   When proposing a study, one fi rst briefl y formulates the ‘general study objectives’ 
and then describes the ‘specifi c aims’ to clearly articulate the essence of the 
design used to generate empirical evidence about the research question(s) at 
hand. This is a crucial step in the development of the research plan. Indeed, 
reviewers of study proposals often consider the ‘specifi c aims section’ as the 
most important section of the proposal, as this section provides them a fi rst 
insight into the validity and effi ciency of the design and methods to be used. 
This chapter explains that the essence of a study design lies in specifi cations 
of the study domain, occurrence relation(s), study base, study variables, and 
outcome parameters. This chapter also offers practical advice for investigators in 
pinpointing and describing the specifi c aims of a research project.  
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5.1        What Are Specific Aims? 

 The specifi c aims describe the essence of the design of a study by briefl y describing 
for each research question to be addressed:
•    The  study domain  (the type of persons and situations about which the evidence 

obtained in the study will be applicable, e.g., children with type 1 diabetes)  
•   The  occurrence relation  (the phenomena that will be studied and related, e.g., 

age as a determinant of body adiposity)  
•   The  study base  (the cohort, dynamic population, or population cross-section that 

will be used, e.g., a cross-section of type 1 diabetic children from a national 
patient registry in 2006–2010)  

•   The  study variables  (the statistical variates that will express the attributes/
experiences of the study base representatives, e.g., a body mass index variable 
representing the level of adiposity)  

•   The  outcome parameter  (the statistic that will summarize the empirical evidence 
about the occurrence relation, e.g., a t-test statistic comparing mean body mass 
index between boys and girls)    
 These essential elements of the study design should be briefl y presented in the 

specifi c aims section of study proposals (one will provide more in-depth treatments 
of each element in other sections of the proposal) and in offi cial protocols. Here, we 
will expand on each of these elements (using Panel  5.1  terminology) and conclude 
the chapter with an example of a specifi c aims section.   

   Panel 5.1 Selected Terms Relevant to the Formulation of Specific Aims 
of Epidemiological Studies 

     Cohort     A fi xed group of subjects composed on the basis of a once-off 
selection criterion and followed to study the frequency of occurrence of the 
outcome   

   Confounder     A third factor that distorts the observed association between 
exposure and outcome (away from the true independent effect)   

   Confounding variable     Variable representing a confounder in a statistical 
model   

   Determinant     Factor related (causally or acausally) to the outcome   
   Determinant variable     Variable representing a determinant in a statistical 

model   
   Dynamic population     A group of subjects with varying composition over 

calendar time because membership, based on a chosen criterion, only lasts 
for as long as the criterion is fulfi lled   

   Effect modifi er     A factor by whose level the relation between exposure and 
outcome changes   

   Exposure     Determinant; factor related (causally or acausally) to the outcome   
   Exposure variable     Variable representing an exposure in a statistical model   

(continued)
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5.2       The Study Domain 

 The study domain is the type of persons or situations about which the empirical 
evidence will be applicable. This concept is roughly equivalent to the concept of 
‘target population’ ( See:  Chaps.   1     and   2    ). The latter concept tends to be used only 
when the observation units are individuals. 

 A study domain is usually well-characterized by three main elements (Panel 
 5.2 ). Firstly, one needs to specify whether the  observation units  are individuals or 
groups (e.g., children). Secondly, one must specify whether  time-space restric-
tions  apply (e.g., children residing in Zululand in 2010). The choice to include  
space and calendar-time restrictions in the description of the study domain implies 
that there is no ambition to generalize beyond that particular chosen place and 
period. In contrast, a choice for a type of individuals or group without space or 
time restriction implies that, through the study, one expects to make scientifi c 
inferences about this type of individuals or group  in general . Thirdly,  other 
domain restrictions  may apply. If the study concerns the course of an illness, then 
it is natural to limit the study domain to subjects with that illness (e.g., children in 
Zululand in 2010 with type 1 diabetes). 

   Occurrence relation     The object of study: the proposed relation among 
outcome, exposures (and sometimes confounders and effect modifi ers)   

   Outcome     The phenomenon of which the frequency of occurrence is 
studied   

   Outcome parameter     Type of statistic used to summarize the evidence 
about the occurrence relation (e.g., a prevalence or an incidence rate ratio 
or a P value)   

   Outcome variable     Variable representing the outcome in a statistical model   
   Population cross-section     A ‘snapshot’ of a cohort at a particular follow-up 

time or of a dynamic population at a particular calendar time   
   Primary analysis     Analysis carried out to produce evidence about the most 

important specifi c aim   
   Study base     The real-life experience of members of a cohort, dynamic 

population or population cross-section that will be documented to provide 
empirical evidence about the occurrence relation   

   Study domain     The type of persons and situations about which the evidence 
obtained in the study will be applicable   

   Study variable     A variable representing an outcome, exposure, effect modi-
fi er, confounder, or mediator     

Panel 5.1 (continued)
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 To adhere to the study domain (and to convince reviewers that one will adhere to 
the study domain), the investigator requires strict defi nitions for all elements in the 
description of the study domain. For illnesses, case defi nitions are mostly based on 
clinical characteristics, laboratory values, scoring systems, and/or statistical diag-
nostic cut-offs. Case defi nitions may be simple or complex and may depend 
on accepted international classifi cation systems (International Classifi cation of 
Diseases-10). One sometimes prefers to study existing prevalent cases of an illness. 
For example, consider a study among prevalent cases of hypertension. There may be 
untreated as well as treated cases of hypertension, and some of the treated individu-
als might be non-responsive to their medications or other therapies. The study 
domain may include all or some of those types, and the description of the study 
domain must be clear about this. 

 It is an ethical requirement to include in a study only subjects whose potential 
data will be informative about the research question. This means that one will need 
to exclude non-informative observation units from the study domain. It is also an 
ethical requirement to exclude persons with contra-indications for particular study 
interventions. Further restriction of the study domain may be needed to exclude rare 
categories of confounders or effect modifi ers ( See:  Chap.   9    ). 

 Note that the description of the study domain will be a basis for making the list 
of inclusion- exclusion criteria for the enrollment phase of the study ( See:  Chap.   9    ).   

5.3       The Occurrence Relation 

 The concept of occurrence relation is a basic concept in epidemiology ( See:  
Chap.   2    ). The basic elements of an occurrence relation are:
•    The outcome (always)  
•   Determinants (sometimes)  
•   Effect modifi ers (sometimes)  
•   Confounders (sometimes)    

 More complex occurrence relations can be of interest in observational- etiognostic 
research, where causal webs may further include instrumental variables and media-
tors among other factors. In this section we only discuss the listed basic elements. 

   Panel 5.2 Elements in the Description of the Study Domain 

     1.     Type of observation unit : individual or group; type of group in the latter 
case (e.g., schools, villages, …)   

   2.     Time and space restrictions : none for a scientifi c study; one or both for a 
particularistic study   

   3.     Other restrictions :
•    Restrictions relating to an illness or morbidity profi le  
•   Restrictions regarding age, sex, or other characteristics that are not 

direct constituent parts of an illness or morbidity profi le        
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5.3.1     Outcomes and Determinants/Exposures 

 There can be several research questions in one study and, correspondingly, several 
specifi c aims and occurrence relations. Each specifi c aim concerns the occurrence 
of a health-related state or event, or ‘the outcome’ (e.g.,  level of adiposity ), usually 
within the same study domain. The outcome is often studied in relation to one or 
several determinants (e.g.,  age ). The concept ‘determinant’ is used in a broad sense 
of ‘a factor related to the outcome’, without any connotation to whether this relation 
may be causal (causative or preventive) or non-causal. The term can thus be used in 
the context of research on possible causal effects but also in purely descriptive 
research aimed only at demonstrating associations. An alternative term for determi-
nant, equally popular in epidemiology, is ‘exposure.’ A distinction is made between 
past exposure episodes and current exposure states. When the temporal relationship 
between two phenomena is considered, the one that occurs after the other is to be 
termed the outcome, and the other is said to be the determinant/exposure. This dis-
tinction is an extension of the basic temporality criterion discussed in Chap.   2    . Only 
cross-sectional state relationships and relationships of outcomes with past expo-
sures are allowable in epidemiology.  

5.3.2     Effect Modifiers and Confounders 

 Sometimes the interest is also in how the determinant-outcome relationship 
changes by levels of other attributes. An effect modifi er is an attribute that infl u-
ences the (degree of a) relationship between a determinant and an outcome (e.g., 
sex may be a modifi er of the relation between age and adiposity) ( See also:  Chap.   2    ). 
Here again, ‘effect’ and ‘effect modifi er’ are terms that can be used in a broad 
sense, without connotations to the possible causal or non-causal nature of 
relationships. 

 Only when there is an explicit interest in possible  causal effects,  will potential or 
known confounders become elements of the occurrence relation. As pointed out in 
Chap.   2    , a confounder is an extraneous factor that distorts the estimated causal 
effect of a determinant on an outcome. In studies of possible causal effects the 
occurrence relations can involve several confounders and their interrelationships. 
Complex occurrence relations can nowadays often be formally specifi ed and ana-
lyzed through graphical theory and structural causal modeling (Pearl  2010 ). In such 
instances the description of the occurrence relation may usefully include a causal 
graph (Greenland et al.  1999 ).  

5.3.3     Clarifying the Attributes 

 There is a need for clear defi nitions of all attributes that will be part of the occur-
rence relation. Height, for example, could be defi ned as ‘the linear dimension of a 
person standing maximally erect and looking straight forward, from the soles to 
top of the head.’ Not all attributes can have such specifi c defi nitions, however. 
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An example of a less clearly defi ned construct (a ‘latent construct’) is intelli-
gence. We don’t know exactly what intelligence is but we think that we can mea-
sure some manifestations of it. When specifying an occurrence relation there 
should always be a preference (to the extent possible) for attributes with clear 
defi nitions that can be measured using validated measurement tools with accept-
able reproducibility. 

 The exact nature of an attribute will often be intuitively clear (e.g.,  height ), and 
in such cases the defi nition does not need to be described in the specifi c aims, per-
haps only in later sections of the study proposal. But if there are several competing 
and rather different defi nitions of the same attribute (e.g.,  social class ), clarifying 
the attribute in the specifi c aims may be useful. Attributes can also have a composite 
nature that needs clarifi cation. For example, attributes often used in experimental 
research are ‘treatment failure’ or ‘treatment success,’ classifi cations that are 
entirely dependent on the measurement of other attributes and often-subjective defi -
nitions of what constitutes success or failure. Such composite attributes may need to 
be explained briefl y in the specifi c aims section. Finally, it may be necessary to 
specify whether the attributes in the occurrence relation are intrinsically continuous 
(e.g., percent body fat) or have some other scale property (e.g., body mass index 
between 30.0 and 34.9 kg/m 2 ), although this issue will be often clear enough with-
out specifi c mentioning.  

5.3.4     Clarifying the Relationships of Interest 

 Descriptions of specifi c aims do not just name or graphically depict the phenom-
ena/attributes that constitute the outcome, determinants, effect modifi ers, and con-
founders. For outcomes and determinants, one must specify whether the interest is 
in the mere existence of a relation between these phenomena/attributes or in any 
particular shape or strength of a relation (e.g., the interest may be only in the  exis-
tence of a difference in adiposity between boys and girls ). With respect to an effect 
modifi er one should be clear about whether it is seen as a factor to control for 
(perhaps by standardization) or whether there is a specifi c interest in the strength 
or shape of the determinant-outcome relation at each or a few levels of the effect 
modifi er. 

 When describing the occurrence relation one needs to pay attention to the fact 
that the determinants, confounders, and effect modifi ers can be nested. For exam-
ple, a specifi c aspect of behavior can be part of larger type of behavior or lifestyle; 
a specifi c exposure to a toxic substance may be part of a wider range of undesired 
exposures in a workplace context; and, a specifi c bodily dysfunction can be part 
of a set of related dysfunctions. This potentially nested status of attributes has 
important consequences when conceiving to adjust a determinant-outcome rela-
tion for another attribute (an effect modifi er or a confounder). This is illustrated in 
Textbox  5.1 .   
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5.4        The Study Base 

 The study base is a sample’s collective real-life experiences that will need to be 
empirically measured and related to address the research question. Note that, 
when the study is of a particularistic nature, as in a survey, the study domain can 
also be the study base. In experimental and quasi-experimental studies, the expe-
rience of the study base is manipulated for study purposes (by an intervention). 
For reviewers of study proposals it is diffi cult to acquire a clear idea of the general 
study design without being informed about the study base, the direct source of 
empirical evidence. Thus, it is helpful to mention the study base in the specifi c 
aims section. 

 Specifi cation of the study base also requires a stipulated duration and calendar- 
time of this real-life experience. With respect to the calendar timing of the study 
base, three basic types are possible:
•     Retrospective study base:  The study base experience has already happened, i.e., 

before the currently conceived study will be in the data collection phase  
•    Prospective study base:  The study base experience will happen after enrollment  

   Textbox 5.1 Three Scenarios Illustrating the Effect of  Nesting  When Adjusting 
a Determinant-Outcome Relation for Another Factor 

  Factor Є Determinant  
 The adjustment factor is nested (Є) within the determinant. Say, the determi-
nant under investigation is the general level of pollution at an occupational 
setting. The contemplated covariate to adjust for is exposure to a specifi c toxic 
substance. This strategy would make the estimated determinant-outcome rela-
tion independent of the specifi c toxic substance and would thus investigate an 
association with the entirety of all other remaining exposures. 

  Determinant Є Factor  
 The determinant is nested within the adjustment factor. This circumstance 
should generally be avoided. For example, the determinant may be ownership 
of a car, and the adjustment factor may be general socio-economic status. This 
leads to situations where the ‘remaining’ association after adjustment is dif-
fi cult to defi ne. 

  Factor ~ Determinant  
 The adjustment factor is another determinant. For instance, alcohol consump-
tion and tobacco smoking often go together. Controlling for this factor will 
make the estimated determinant-outcome relation independent of the adjust-
ment factor. One may have diffi culty ascertaining the independent effect of 
one factor without valid measurement and control for the other. 
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•    Ambispective study base:  The study base experience has partly happened already 
but will partly happen after enrollment into the currently conceived study 
(Kleinbaum et al.  1982 )    

 This leads to a ‘three times three’ characterization of the study base, as illustrated 
in the study base wheel (Fig.  5.1 ).

5.4.1       Membership Conditions 

5.4.1.1     Cohorts 
 A cohort is a closed population, i.e., a population with fi xed membership. Its mean-
ing derives from its use during the ancient Roman Empire, in which a cohort was a 
subdivision of an ancient Roman legion. Soldiers were enrolled into the cohort as 
fast as possible and forever. Numbers alive decreased over time. Membership of a 
cohort is defi ned by a one-time criterion and membership duration is eternal (though 
an individual can be lost to follow-up). For example, when someone becomes a 
member of the 2010 birth cohort in Norway, one was always born in 2010 in 
Norway, irrespective of time of death or emigration to another country. An illustri-
ous historical example of use of a cohort in epidemiology is the Framingham study, 
in which a cohort of adults 30- to 62-years-old living in Framingham in 1948, were 
followed for 20 years to study coronary heart disease (Dawber et al.  1957 ). 

 Cohorts are used as a study base in many different study designs, in the whole 
range from experimental to quasi-experimental to observational studies. In an 
 experimental cohort study (a trial) , one investigates the effects of a test intervention 

Membership conditions
• Population cross-section
• Dynamic population
• Cohort

Calendar timing
• Retrospective
• Prospective
• Ambispective

Manipulation of experience
• Experimental
• Quasi-experimental
• Observational

  Fig. 5.1    The 3 × 3 study base wheel. The study base is the sample’s collective real-life experi-
ences that will need to be measured. The study base may be defi ned by three main categories: 
membership conditions, calendar timing, and manipulation of experience. Within each are three 
main alternatives. Only one alternative per category may be chosen when defi ning the study base       
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in a cohort. In  quasi-experimental cohort study , one investigates the effects of a 
researcher-allocated but non-randomized intervention in a cohort.  Observational 
cohort studies  do not involve any experimental or quasi-experimental allocation of 
interventions to a cohort, though that does not mean that subjects in observational 
cohort studies cannot undergo intervention. They can, but not as a manipulated 
component of the research design. Such observational cohort studies can have diag-
nostic, etiognostic, or descriptive-prognostic aims. 

 Another special type is the  test-retest study , a method-oriented type of study, 
in which subjects are re-measured after a very short follow-up interval during 
which no measurable change in the measured attribute is expected. Any observed 
change in values is therefore due to instrument problems or ‘observer error,’ though 
such studies must be careful to control for time-of-day effects (e.g., circadian 
rhythms) and many other factors. Test-retest studies using quality instruments 
and appropriate design elements can therefore be done to document observer 
performance. 

 Given the fact that cohorts are used as a study base in several very different types 
of studies, the common use of the term ‘cohort study’ can be confusing. It would be 
better to characterize studies by making reference to what really distinguishes 
between them. Yet, ‘cohort study’ has now become the standard term to refer to a 
single particular study type, which is the traditional cohort-based observational etio-
logic study ( See:  Chap.   6    ), of which the Framingham study is an example.  

5.4.1.2     Dynamic Populations 
 A dynamic population is an open population, with turnover of membership. The 
term is borrowed from demography, where a population is not seen as fi xed but 
there are  ins  (births and immigrations) and  outs  (deaths and emigrations). 
Membership of a dynamic population is defi ned by a state (Miettinen  1985 ), for 
example the state of living in a particular town in a particular year, e.g., Durban in 
2010. Membership duration is for the duration of that state. For instance, someone 
who lived in Durban only in January 2010 was a member for 1 month. As another 
example, to study coronary heart disease-related mortality over 5 years in a village, 
rather than using a cohort of all subjects older than 38 years living in the village (as 
in the Framingham study), one could instead be interested in all subjects older than 
38 years that will ever live in the village in a period of 5 years and follow them for 
the time (within those 5 years) that they are present in the village. In the latter case, 
the study uses a dynamic population instead of a cohort. Dynamic populations are 
also used in a range of studies, both descriptive and analytical. For example, they 
are commonly used:
•    As a primary study base in an etiognostic study, as in the example described 

above (the alternative to the Framingham study design)  
•   As a secondary study base in an etiognostic study  
•   In descriptive population surveillance studies    

 On this basis we propose that the expression ‘dynamic population study’ should 
not be used as if it indicated any particular type of general study design (as has been 
the case for ‘cohort study’).  
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5.4.1.3     Population Cross-Sections 
 A population cross-section is either a cohort at a single follow-up time (usually 
follow-up time zero; e.g., baseline characteristics of a cohort) or a dynamic popula-
tion at a fi xed point in calendar time (e.g., a survey). It follows that a population 
cross-section is  not  necessarily a group of people all present at one moment in time. 
In health research, not everybody can be examined at the same time. At best, a 
group of people can be selected and examined once within the shortest possible 
time. For example, a cross-sectional study of presenting symptoms at diagnosis of a 
rare disease could take 20 years to complete and not all participants may even be 
alive at the same time. Typical characteristics of a cross-sectional study are that the 
attributes and experiences of interest are/were assessed once without individual 
follow-up and that all units of observation were assessed within the shortest possi-
ble time. 

 Similar to cohorts and dynamic populations, population cross-sections are com-
monly used as the study base in a variety of study designs ( See:  Chap.   6    ) and there-
fore ‘cross-sectional study’ cannot be used to indicate any particular type of study 
design. Also, as indicated, a population cross-section still concerns either a cohort 
or a dynamic population (whether or not explicitly defi ned).   

5.4.2     Variation in and Restrictions to the Study Base 

 There is a general principle that for a study to be informative about a determinant- 
outcome relationship there should be variation of the determinant in the study 
base, and, for a study to be effi cient, that variation should be wide (Miettinen 
 1985 ). For example, if all participants get the same dose, the effect of dose can-
not be studied; or if all participants are females, the role of gender as a determi-
nant of the outcome cannot be assessed. Thus, in experimental research there is 
an interest in highly contrasting two- or three-point designs (i.e., two or three 
intervention arms differing by dose prescribed), whereas in observational 
research there is a general interest in choosing a study base with wide variation 
of the determinant. 

 When proposing a general design, there is often no objection to being selective 
about determinant levels. For instance, in an etiognostic study with a cohort as the 
primary study base and with the only aim to demonstrate the existence of an effect, 
there may be no objection to limit the cohort to subjects belonging to the non- 
exposed and highly exposed, leaving out the intermediately exposed. This princi-
ple is well recognized in occupational and environmental epidemiology, where it is 
an aim to have strong representation of the extreme exposure zones in etiognostic 
research (Corn and Esmen  1979 ). This is a strategy that can also help to reduce the 
total sample size required. Thus, when an appropriate study base is identifi ed, this 
does not necessarily mean that all persons whose experience constitutes the study 
base must be potential study participants. It may be more effi cient to take a repre-
sentative sample.   
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5.5     Study Variables 

 There are three main types of study variables that represent the basic elements of 
occurrence relations in statistical analyses:
•    Outcome variables  
•   Determinant variables  
•   Covariates    

 The term ‘covariate’ is used to denote any variable that would need to be ‘con-
trolled for’ in the analysis when studying the relation between determinant variable 
and outcome variable. This is used in a broad sense without any connotation regard-
ing whether such a covariate is seen as a potential confounder (in analytical research) 
or a factor from which the determinant-outcome relation needs to be independent 
(in descriptive research). 

5.5.1     General Requirements for Study Variables 

 A general requirement for study variables is that the measurement values must be 
highly correlated with the underlying attribute and come close to measuring the 
true dimension on average (i.e., high intrinsic validity). For reviewers of study 
proposals, this tends to be very important information and it is advantageous if the 
specifi c aims section gives already a good indication of the intrinsic validity of key 
variables. For example, it is good practice to avoid using proxy variables to the 
extent possible. A proxy variable is a variable that does not directly refl ect the 
attribute of interest but is assumed to correlate well enough with it to represent it 
in an analysis. However, the highest possible intrinsic validity is not always 
required or affordable. The particular study aims determine the required intrinsic 
validity of measures, so this issue must be considered on a case-by-case basis. For 
example, consider an occupational health study and a pharmacological study, both 
looking at the effects of exposure to a particular chemical substance on a particular 
health outcome. In the occupational health study it may suffi ce to measure environ-
mental exposure levels as a proxy for true individual exposure levels, whereas in 
the pharmacological study it may be required to assess blood/tissue levels of the 
chemical in each individual. 

  Comment 
 A general ethical consideration for all study variables is that they must be based 
as much as possible on  non-invasive  measurements if human subjects are the 
units of observation. Invasive procedures are those involving direct entry into 
living tissues or the exertion of potentially painful and damaging mechanical or 
physical forces on living tissues. An ‘invasive question’ is a sensitive question. 
The ‘sensitivity’ may be related to stigma associated with the condition under 
study or to perceived inappropriateness of the interview questions, e.g., not being 
culturally acceptable.  
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 Further, one should aim for the highest possible measurement level whenever it 
is feasible from a budgetary and ethical perspective. Measurement levels are ranked 
from lower to higher as follows:  nominal < ordinal < numerical discrete < numeri-
cal continuous . Their distinguishing characteristics are described briefl y in Panel 
 5.3 . A common advantage of using higher measurement levels is higher statistical 
effi ciency and a wider range of possible statistical analyses. But higher-level mea-
surements tend to be more expensive and sometimes also more invasive. When the 
underlying intrinsic scale property is nominal (e.g., sex), the variable and measure-
ment scale can only be nominal, too. When the intrinsic scale property is higher, 
such as continuous (e.g., age), there may be a choice for the variable and its mea-
surement scale between, say, ordinal (young or old) and continuous (age measured 
as calendar time elapsed since birth). In such instances, the preference generally 
goes to higher measurement levels.   

   Panel 5.3 Types of Variables According to Measurement Level 

•     A  nominal variable  is defi ned as a variable measured on a nominal scale, 
i.e., on a measurement scale consisting of a number of mutually exclusive 
categories that have no meaningful order. Examples are sex and ethnic 
group  

•   An  ordinal variable  is measured on an ordinal scale, i.e., on a measure-
ment scale consisting of a fi xed number of mutually exclusive categories in 
which there is a meaningful order but the differences between categories 
do not refl ect meaningful differences in the ‘amount’ of attribute. An 
example is letter grades on a test  

•   A  discrete numerical variable  is measured on a discrete numerical scale, 
i.e., on a measurement scale for non-continuous underlying characteristics, 
consisting of a fi nite and ordered number of numerical values, with the dif-
ferences between values having a meaning. Examples are parity and 
gravidity  

•   A  continuous variable  is a numerical variable measured on a continu-
ous numerical measurement scale, i.e., on a scale for measuring con-
tinuous underlying attributes, expressing measurement values as 
multiples (with any number of decimals) of a measurement unit. This 
comprises the interval and ratio measurement scales. Only the ratio 
scale has a true zero point as the lowest possible value corresponding to 
the lowest possible amount of attribute. In practice there is not much 
advantage of a ratio scale over an interval scale except that ratios of 
measurement values have a more straightforward constant interpretation 
when a ratio scale is used    
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5.5.2       Variables Expressing Latent Constructs 

 Sometimes a researcher cannot measure the attribute accurately with a single ques-
tion or other type of measurement. Instead, (s)he can only think of a series of 
 questions (or other measurements) that each measure some component of the attri-
bute and, if somehow the answers to all of these questions could be taken together, 
a reasonably accurate measurement could be obtained. Common examples include 
quality of life (QOL;  See:  Chap.   10    ), socioeconomic status, and diagnostic ques-
tionnaires for psychiatric conditions. In such situations it might be preferable to 
develop a new measurement tool (Howitt and Cramer  2008 ; Streiner and Norman 
 2008 ), or adapt an existing tool for local circumstances. The term ‘scaling’ refers to 
such creation of a new tool, often based on a  series of questions , for the measure-
ment of the latent attribute. 

 As pointed out in a previous section, every effort should be made to specify the 
nature of the attributes we wish to measure. When refl ecting on this issue in the 
context of latent attributes, it may appear that there are several aspects to the latent 
attribute that may need to be measured on a  subscale . The need for subscales can 
also be identifi ed by a statistical technique called factor analysis ( See : Chap.   10    ). 
For example, nutritional health-friendliness of schools may be viewed as multidi-
mensional attribute composed of:
•    Nutritional care at school  
•   Provisions for physical activity at school  
•   Nutritional health education at school  
•   Other aspects    

 Different series of questions may then be needed to measure  sub-scores  on the 
corresponding subscale. In other instances it may seem reasonable to measure the 
latent attribute on a single scale, using a single series of questions (unidimensional 
scale). In this case all items should correlate about equally well with the total score. 
This can be verifi ed using a statistical exercise called item analysis. 

 For more guidance on developing a new measurement scale,  See:  Chap.   10    , and 
Streiner and Norman ( 2008 ).  

5.5.3     Outcome Variables 

 The one study variable that is always necessary is the outcome variable. Outcome 
variables express a (change in) health-related state or event for each observed indi-
vidual or other observation unit. When group attributes rather than individuals’ 
attributes or experiences are the outcomes of interest in a study, that study will often 
be labeled an ‘ecological study’. The outcome variables of such studies are ‘eco-
logical variables,’ of which there are three types according to Morgenstern ( 1998 ), 
as shown in Panel  5.4 . We propose that, similar to ‘dynamic population studies’ and 
‘cross-sectional studies,’ the term ‘ecological study’ should not be used as if it 
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   Panel 5.4 Types of Ecological Variables# 

•         Summary environmental measures:  summarizing for the whole group 
an exposure that actually  varies considerably at the individual level , e.g., 
global level of air pollution in a workplace  

•    General environmental features:  exposure that is  identical for each indi-
vidual  in the group, e.g., existence of a specifi c law or policy in the area  

•    Statistical estimates:  summary statistics of variables that are based on 
single measurements, repeated measurements, or combinations of several 
variables; e.g., prevalence estimates of a disease. This type of ecological 
variable is often  based on individual-level measurements . Note that eco-
logical studies using this type of ecological outcome variables could also 
be called ‘meta-analytical.’    

 # Panel adapted from Morgenstern ( 1998 ) 

   Panel 5.5 Types of Variables According to Number and Timing of Underlying 
Measurement Acts: Some Examples 

•      Single measurements 
 –    Single systolic or diastolic blood pressure reading     

•    Combinations of measurements for single assessment 
 –    Systolic blood pressure based on average of three replicates  
 –   Presence of hypertension based on diastolic and systolic blood 

pressure     
•    Repeated assessments 

 –    (Baseline-adjusted) change in systolic blood pressure  
 –   New occurrence of hypertension       

 represents any particular type of general study design. ‘Ecological study’ should 
simply refer to the fact that the outcome variable of the study, whatever its design, 
is an ecological variable. 

 One of several ways to broadly classify outcome variables is according to  number 
and timing of underlying measurement acts, as illustrated in Panel  5.5 .   

5.5.4          Determinant Variables and Covariates 

 Outcome variables frequently represent health-related constitutional or functional 
attributes or individual subjective experiences around them. Determinant variables 
and covariates tend to represent behavioral, environmental, or constitutional factors. 
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The reasons for this have been explained in Chap.   4    : A complex and ever-changing 
interaction of these three types of factors is what creates each individual’s personal 
life experience. A researcher often uses ‘summaries of episodes’ of that interaction 
as determinants. Examples are cumulative doses of exposure over time, and broadly 
described exposure situations or types of exposure histories, e.g., ‘was a manual 
labor worker (yes/no)’. 

 Determinant variables and covariates cannot represent experiences or states that 
temporally follow the outcome. Temporality issues with covariates are important. 
Time-dependent and time-modifi ed confounding are issues that have only recently 
started receiving attention (Platt et al.  2009 ). These phenomena are especially rele-
vant to situations where the outcome variable is derived from time-series data.   

5.6     Outcome Parameters 

 In epidemiology an outcome parameter is a statistic that summarizes the  evidence 
in the data about the occurrence relation under study. Design of the outcome param-
eter is part and parcel of the general study design (Miettinen  2004 ). Typical exam-
ples of outcome parameters in epidemiology are prevalence and the odds ratio, 
either crude (unadjusted) or adjusted. The adjustments may be for  undesired effects 
on the outcome parameter estimate such as by confounding, bias, and imprecision 
of measurement. Outcome parameters traditionally fall into two categories:  estima-
tors  and  test statistics . Estimators will be discussed in Chap.   22     (Statistical 
Estimation) and test statistics in Chap.   24     (Statistical Testing). The outcome param-
eter of a particular study could be a difference in prevalence, which is an estimator. 
But in the same study, an outcome parameter could also be a chi-square test statistic 
with P-value addressing the same occurrence relation. In many study reports, esti-
mators and test statistics are reported alongside each other. Estimates have the 
advantage that they allow for more easy assessment of  magnitudes  of effects in 
addition to assessing the  existence  of effects. 

  Hint 
 The three terms  outcome ,  outcome variable , and  outcome parameter  sound quite 
similar but have very different meanings. An ‘outcome’ is a health-related state 
or event that is under study (e.g., stroke). An ‘outcome variable’ is a statistical 
variate representing the observed values of the outcome in a statistical model or 
showing them in a database column (e.g., coding ‘no stroke’ as 0 and ‘stroke’ as 
1). An ‘outcome parameter’ is a type of statistic that expresses the study ‘result’ 
(e.g., an odds ratio).  

 Estimators can capture a frequency of occurrence (e.g., a single prevalence, or a 
single incidence rate), in which case they are called ‘measures of frequency.’ They 
can also express a contrast of occurrences between two categories/groups (e.g., a 
difference between two prevalence estimates, or an incidence rate ratio), in which 
case we call them ‘measures of association’ or ‘measures of causal effect’  depending 
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on whether the aim is descriptive or analytical. There are two main approaches to 
formally contrasting outcome rates among levels of a determinant: the approach 
using a risk/rate  ratio  and the now less-frequently used approach using a risk/rate 
 difference . Miettinen ( 2004 ) has pointed out that logistic regression analysis can 
provide for valid outcome parameters of most types of occurrence relations in 
epidemiology.  

5.7     Presenting the Specific Aims in a Study Proposal 

 Thus far we have discussed the elements that are typically required or useful to 
include in a specifi c aims section. The content and format of the specifi c aims sec-
tion may depend on the expectations and guidelines imposed by the particular spon-
sor or ethics committee for which the document is intended. It is therefore not 
possible to provide a standardized example of how a specifi c aims section must be 
structured. However, systematic consideration of the points raised in this chapter 
leads to a logical template that is, at the very least, a helpful tool for formulating a 
specifi c aims section. Creating such a template for a particular study ensures that the 
most important information is included. 

 We propose that the specifi c aims section fi rst indicates the general aims/objec-
tives of the present study so that the link with the specifi c aims will become clear. If 
the study domain is common to all of the ensuing specifi c aims, it can be included 
as part of the purpose summary statement and/or as a separate line. In other instances 
the study domain may be different for some specifi c aims (perhaps a sub-domain of 
the study domain), in which case it is advisable to list the domain under the relevant 
specifi c aim. We then recommend listing one specifi c aim after the other. Some 
investigators prefer indicating a ranking of specifi c aims, with a primary aim, sec-
ondary aims, tertiary aims, etc. The primary aim is considered the main reason why 
the study is set up. Attempts to achieve an ‘optimal’ sample size are usually geared 
towards it. As an example, Textbox  5.2  shows a specifi c aims section of the study 
proposal in the domain of dentistry. It is an example of a hypothesis-generating 
descriptive diagnostic research project. 

   Textbox 5.2 Example of a Specific Aims Section of a Dentistry Study Proposal 

    Periodontal disease in childhood is associated with substantial morbidity and 
increases the likelihood of needing costly medical procedures. However, the 
prevalence of periodontal disease and its risk factors in primary schoolchil-
dren in Cork, Ireland are unknown, making it diffi cult to plan for related 
healthcare costs and to intervene if necessary. We therefore propose the fol-
lowing specifi c aims: 

(continued)
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  In this chapter we discussed specifi c aims and their elements. Patterns exist in the 
combinations of these elements, some patterns being more common than others 
because they serve the purposes of general study objectives. These patterns/
combinations can be called ‘general study designs,’ the topic of Chap.     6      .    

Textbox 5.2 (continued)

  Study domain:  Primary schoolchildren in Cork, Ireland in 2010 
  Specifi c aim 1:  
 To estimate the prevalence of periodontal disease (ICD10-defi ned) overall 
and in 1-year age categories in a representative population cross-section 
(N = 400) 
  Specifi c aim 2: 
    (a)    To quantify the differences in prevalence rate of periodontal disease 

(ICD10-defi ned) according to degree of body adiposity, as represented by 
World Health Organization-defi ned body mass index (BMI)-for-age cat-
egories, by taking the category of BMI >18–25 Kg/m 2  as the reference 
category for the calculation of prevalence odds ratios for the other 
categories   

   (b)    To examine, by stratifi ed analysis, if the prevalence odds ratio for peri-
odontal disease (ICD10-defi ned), for ‘overweight or obese’ relative to 
‘normal BMI’ (as defi ned above), is modifi ed by usual frequency of 
brushing teeth (times per week <7 or ≥7)     
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    Abstract 
   In the previous chapter we explained that the necessary elements of general study 
design are the study domain, the occurrence relation, the study base, the study 
variables, and the outcome parameters. Different combinations of these elements 
tend to take different recognizable forms (‘jackets,’ mostly simply referred to as 
‘designs’) depending mainly on type of research question. These designs are 
known under specifi c names, e.g., survey, forecasting study, randomized con-
trolled trial, etc. For each we discuss here how the ‘jacket’ is tailored with design 
elements from Chap.   5     (we therefore advise careful study of the two preceding 
chapters before embarking on this one). In, this chapter we (1) aim to help 
researchers fi nd the best general study design for a particular research question, 
and (2) provide a broad classifi cation of general design types that parallels the 
typology of research questions proposed in Chap.   4    .  
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6.1        Classification of General Study Designs 

 A classifi cation of mainstream study designs was introduced in Chap.   1     ( See:  
Table   1.4    ). That typology of general study designs described experimental, quasi- 
experimental, and observational studies. The classifi cation proposed in this chap-
ter – summarized in Table  6.1  – differs from the mainstream classifi cation in that (1) 
it makes a clear link with a typology of research questions ( See:  Chap.   4    ); (2) it 
includes some recent advances in study design, and (3) it includes some designs that 
are not consistently mentioned within the scope of epidemiology. Table  6.1  contains 
a series of design labels that fall within each design class. Each design label has 
been given a code, and these codes will be referenced throughout the chapter to ori-
ent readers.

   These designs are explained and justifi ed in the next sections by specifying their 
design elements. Possible design elements have been discussed in Chap.   5    . To facil-
itate the present chapter, Panel  6.1  explains some of the important terms and con-
cepts as they are used here, though additional terms and concepts listed in Panels 
  2.2    ,   4.1    , and   5.1     are also directly relevant. These four panels may serve as useful 
resources when reading Chap.   6    .   

    Table 6.1    Classifi cation of general study designs   

 Designs used for:  Code  Design label 
 Diagnostic research  1.a  Case reports 

 1.b  Case series studies 
 1.c  Diagnostic probability studies 
 1.d  Traditional diagnostic performance studies 
 1.e  Surveys 
 1.f  Epidemic pattern studies 
 1.g  Cost studies of illness and intervention 
 1.h  Meta-analytical diagnostic projects 

 Etiognostic research  2.a  Traditional etiologic studies (cohort, 
case-control) 

 2.b  The single etiologic study 
 2.c  Before – after etiognostic studies 
 2.d  Meta-analytical etiognostic projects 

 Intervention-prognostic research  3.a  Randomized controlled trials 
 3.b  Quasi-experimental trials 
 3.c  Cross-over trials 
 3.d  N-of-1 trials 
 3.e  Meta-analytical intervention-prognostic projects 

 Descriptive-prognostic research  4.a  Clinical prediction studies 
 4.b  Forecasting studies 

 Methods-oriented research  5.a  Procedural validity studies 
 5.b  Procedural reproducibility studies 
 5.c  Procedural cost studies 
 5.d  Procedural acceptability studies 
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   Panel 6.1 Selected Terms and Concepts Relevant to General Study Design 

     Blinding     The deliberate act of not revealing the particular intervention 
 regimen to which a participant has been assigned in a trial #    

   Cases     Individuals who have the outcome of interest   
   Controls     Individuals who are members of a reference or comparison group   
   Cross-sectional study     Study in which the participants are/were only 

assessed once for relevant characteristics (as opposed to a follow-up study 
where they are/were assessed more than once)   

   Diagnostic study     Study concerned with generating evidence relevant to 
diagnosis in individuals or relevant to the description of patterns of mor-
bidity/mortality in populations   

   Directionality     Study characteristic of looking at the future occurrence of 
outcomes according to exposure level (forward directionality, as in  classical 
observational follow- up studies) or of looking at past exposures according 
to outcome status (backward directionality, as in case–control studies)   

   Etiognostic study  (or  etiologic study )    Study concerned with generating 
evidence about the possible causal role of one or more determinants of ill-
ness or illness outcome, or a study investigating the causal origins of morbid-
ity, mortality, or health care inadequacies   

   Etiognostic time  (or  etiologic time )    Time period during which the outcome 
can possibly develop due to a causal effect of the exposure   

   Follow-up study  (or  longitudinal study )    Study in which the participants 
are/were assessed more than once for a same characteristic   

   Matching     Method of selecting participants with the goal of equalizing the 
distribution of one or more (potential or real) confounders among levels of 
the exposure of interest   

   Prognostic study     Study concerned with questions about how elements of a 
prognostic profi le predict a particular outcome, future course of illness, or 
change in morbidity/mortality in a population   

   Prospective study     Study with a prospective study base, i.e., the relevant 
experiences of the participants are still to happen after the start of data 
collection   

   Randomization     Method of allocating intervention levels to trial partici-
pants, whereby each participant has a known and independent chance of 
being assigned to a particular intervention level   

   Retrospective study     Study with a retrospective study base, i.e., the relevant 
experiences of the participants have already occurred by the start of data 
collection   

   Treatment arm     A group of participants for whom the intervention consists 
of a specifi c medical treatment regimen   

   Trial     Experimental or quasi- experimental study looking at the effi cacy and 
safety of a test intervention   

    # Defi nition contributed by D.Willie  
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6.2       General Design of Clinical Diagnostic Studies 

 Clinical diagnostic studies, as described in Chap.   4    , aim to generate information that 
the clinical health worker can use for diagnosing patients. As a brief reminder, the 
types of research information considered useful for this purpose are:
•    Descriptive information from patients with an illness (or a sub-domain thereof) 

about the natural history of an illness and its antecedents  
•   Developmental information from persons without illness, attempting to describe 

the variability of what is ‘normal’  
•   Information about the probability of illnesses as a function of diagnostic profi le 

indicators  
•   Information about the diagnostic productivity of screening regimens  
•   Information about the diagnostic performance of tests used to identify a particu-

lar illness-related state    

6.2.1     Case Reports  (Code 1.a)  

 The  study domain  of a case report is a known, usually rare illness, a totally ‘new’ 
illness, or a particularly unusual disease presentation. Examples include a disease 
caused by a ‘new’ pathogen, or an enigmatic patient with a particular diagnostic 
profi le for which none of the known illnesses seem to have a high probability. 

 The  occurrence  under study – The unusual aspects of antecedents and course of 
illness are the main outcomes of interest (Susser and Stein  2009 ). There is often a 
hypothesis-generating ‘before-after’ outlook on sequences of health-relevant phe-
nomena. For example, ‘It was noted that the onset of symptoms followed shortly 
after intake of substance  x .’ This type of particularistic study is therefore often con-
sidered relevant for etiognosis too (Vandenbroucke  2008 ) as well as for prognosis, 
in addition to being informative about how an illness presentation or course can 
pose a challenge to a diagnostician. 

 The  study base  is a cohort of size one (one individual), followed retrospectively 
from any time in relevant history until the present. Treatment may or may not have 
been given. Of note, occasionally treatment responses constitute diagnostically 
relevant information. 

 The  outcome parameters  can be various types of measures summarizing the 
unusual character of antecedents and/or the course of illness. Comparisons are made 
using evidence in the literature, if any is available, or using accepted ‘normal ranges’ 
for a parameter. For example, if plasma sodium levels were 160 mEq/L (normal 
range: 135–145 mEq/L), that individual can be said to have elevated plasma sodium.  

6.2.2     Case Series Studies  (Code 1.b)  

 The  study domain  of a case series study can consist of persons with an identical 
illness profi le (a case series in the traditional sense) but can, in fact, be any type of 
target population, ill or healthy. For example, the World Health Organization’s 
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Multicenter Growth Reference Study (WHO-MGRS) aimed at the construction of 
international child growth standards. The study domain was  healthy  children under 
5-years-old who were fed according to international feeding recommendations 
(   WHO  2006 ). Another example of the utility of this study design is the series of 
eight cases of Kaposi’s sarcoma in homosexual men that initiated the awareness of 
AIDS as a diagnostic entity (   Hymes et al.  1981 ). 

 The  occurrence  under study may be aspects of the antecedents and course of ill-
ness or aspects of normal physical or mental development, often viewed in relation 
to basic determinants such as sex, age, and others. For example, in the WHO-MGRS 
study outcomes included attained triceps skinfold thickness, seen in relation to the 
determinants age and sex. 

 The  study base  can be a cohort, a dynamic population, or a population cross- 
section. In the WHO-MGRS study, use was made of a cohort of newborns followed 
till age 24 months and of a population cross-section of children 18–71 months. 

 The  outcome parameters  are often descriptors of distributions of outcome vari-
ables by sex and age (e.g., the construction of growth and development standards 
or ‘reference distributions’ of any type of attribute with any scale property). As to 
estimation methods, in longitudinal case-series studies, the description of the age- 
dependent distributions may require growth reference curve construction meth-
ods. For orientation about the choice of such methods,  See:  Borghi et al. ( 2006 ). 
In addition, the LMS modeling method of Cole and Green ( 1992 ) is fl exible, often 
appropriate, and easily applicable (e.g., via :  Growth Analyzer  2009 ). In the 
WHO-MGRS study the outcome parameters estimated were selected centile val-
ues; Z-score values; and L, M, and S values describing the distributions of attained 
weight, length, triceps skinfold thickness, and other outcome variables for each 
age and sex.  

6.2.3     Diagnostic Probability Studies  (Code 1.c)  

 This type of study, also called the diagnostic prevalence study, has been discussed 
in depth by Miettinen et al. ( 2008 ) and Miettinen ( 2011b    ). 

 The  study domain  of a diagnostic probability study consists of patients present-
ing with a diagnostic profi le containing some defi ned common key elements, for 
example ‘adult patients presenting with cough and fever.’ It is a type of patient that 
poses a diagnostic challenge. 

 The  occurrence relation : The outcomes are the presence (yes/no) of one or 
more defi ned illnesses, say pneumonia and fl u. The determinants are a range of 
features that are part of the diagnostic profi le of the patient. Those features include 
elements of the  manifestation profi le  (signs, symptoms, test results) and of the  risk 
profi le  (environmental and behavioral risk factors known to be associated with the 
outcome). The interest is in how these features jointly determine (‘predict’) the 
probability of having one or more illnesses (e.g., pneumonia and fl u). As was 
mentioned in Chap.   4    , this type of knowledge can then be used to assist the clini-
cian with the diagnostic process and with the evaluation of the informativeness of 
new diagnostic tests. 
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 The  study base  is a cohort whose current status and past experience is to be docu-
mented as from etiognostic time zero (t = 0), which is practically-speaking the time 
of the fi rst manifestation of the diagnostic profi le. 

 The  outcome parameter  is a diagnostic probability function that allows calculat-
ing the probability of the defi ned illness as a function of the diagnostic profi le indi-
cators. The construction of diagnostic probability functions can be based on experts’ 
opinions on the probabilities of illnesses associated with a variety of hypothetical 
diagnostic profi le scenarios (Miettinen  2011b ). Alternatively, it can be based on prev-
alence estimates of the defi ned illness based on a gold-standard diagnostic proce-
dure applied to real patients. When diagnostic probability functions are available, 
the informativeness of a diagnostic test can be assessed by producing both a pre-test 
diagnostic probability function and a post-test diagnostic probability function and 
comparing their relative ability to arrive at a high enough probability for diagnosis, 
treatment, or referral. A general way of expressing the contribution of the test would 
be to quantify its informativeness as 1 − R, where R is the correlation coeffi cient of 
the pre- and post-test probabilities (Miettinen  2011a ). Another approach would be 
to model an indicator variable for whether the post-test probability would fall in a 
‘decisive’ range, as a function of the diagnostic profi le indicators (Miettinen  2011a ). 
For further information about modeling of diagnostic probability functions,  See:  
Chap.   24    .  

6.2.4     Traditional Diagnostic Performance Studies  (Code 1.d)  

 This is a family of designs widely used in clinical epidemiology to evaluate the 
performance of diagnostic tests and strategies. 

 The  study domain  consists of all patients with a type of illness for whom the 
diagnostic value of a ‘test’ or diagnostic algorithm is of interest. Note that a ‘test’ 
can be a sign, symptom, or technical assessment. 

 In the  occurrence relation  the outcome is illness status and the determinants are 
the characteristics measured by the tests. Unlike the diagnostic probability study 
described above, illness status is related to  preceding  test results. The purpose is to 
determine how well the tests, and sometimes their sequences, ‘ predicted ’ (past 
tense) illness status. The somewhat odd reverse orientation of this approach (from 
illness or non-illness back to the test) tends to hamper the generalizability of the 
fi ndings. 

 The  study base  is usually a patient series and a non-patient series. The diffi culty 
is that the exact study domain and study base are diffi cult to defi ne, as the patient 
series may have peculiar characteristics related to referral patterns or other selection 
processes, and the same applies to the non-cases. This issue casts doubt about the 
scientifi c generalizability of the fi ndings of traditional diagnostic performance studies. 

 The  outcome parameters  most often used are sensitivity, specifi city, positive pre-
dictive value, negative predictive value, and the likelihood ratio associated with 
specifi c test result levels. Figure  6.1  illustrates these concepts, which are important 
in practice but one needs to be aware of their scientifi c limitations as parameters of 
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test performance. The estimates can be diffi cult to interpret due to the abovemen-
tioned selection/referral processes and the fact that some parameters strongly 
depend on the relative sizes of the patient series and the non-patient series.

   The  sensitivity  of a test may depend on the mix of illness severity levels among 
those selected into the patient series. The test may tend to miss mild cases more 
often than severe cases. Thus, sensitivity as a parameter of test performance only 
makes sense in relation to a clearly described severity distribution. A similar 
problem exists with  specifi city , as false positive test results may occur more often 
in association with certain subject characteristics distributed among the non-
patients. Such an association is therefore crucial to know about.  Positive predic-
tive value ,  negative predictive value , and  likelihood ratio of a positive test  depend 
on the relative proportion of patients and non-patients in the particular setting in 
which the test is going to be used. Consequently, these parameters may not be 
immediately relevant to practical diagnostic challenges. An additional problem 
with traditional test performance measures is that each of them only summarizes 
one aspect of the test’s utility. Hence, indices have been proposed that integrate 
several aspects of diagnostic performance. The Clinical Utility Index (Mitchell 
 2011 ), for example, is calculated as the product of sensitivity and positive predic-
tive value. 

 The analysis of a traditional diagnostic performance study will often involve 
2 × 2 tables and may include some adjustments for estimated sources of error. 
Receiver Operating Characteristic (ROC) curves are also used for assessing optimal 
diagnostic cut-offs for continuous test results and for comparing diagnostic perfor-
mance among alternative tests. For further orientation,  See:  Sackett et al. ( 1991 ).   

dc-

ba+

Truly –
(Non-
patient 
series)

Truly +
(Patient 
series)

Test 
Result:

Sensitivity
= a / (a+c)

Specificity
= d / (b+d)

Positive Predictive Value

PPV = a / (a+b)

Negative Predictive Value

NPV = d / (c+d)

Likelihood ratio of a 
positive test = a / b

  Fig. 6.1    The traditional 2 × 2 table for assessing test performance. The sensitivity of a test is the 
proportion of patients with a disease who are correctly identifi ed by the test. The specifi city is the 
proportion of non-patients who are correctly identifi ed as not having the illness. The positive pre-
dictive value is the proportion of individuals with a positive test result who truly have the disease. 
The negative predictive value is the proportion of individuals with a negative test result who truly 
do not have the disease. The likelihood ratio of a positive test is the proportion of patients with a 
positive test result divided by the proportion of non-patients with a positive test result (i.e., the odds 
of having an illness if there is a positive test result)       
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6.3     General Design of Community-Diagnostic Studies 

 Community-diagnostic research is performed in community epidemiology with the 
aim of ‘diagnosing’ the burden of illness in (segments of) a population and/or to 
generate information about a societal ‘response capacity’ to morbidity ( See:  Chap.   4    ). 
Such studies are useful for policy makers to inform decisions about health care 
resource allocation, or for clinical diagnosticians by creating awareness about an 
epidemic that might facilitate the diagnostic process. There are some traditional 
types of general designs that are used in diagnostic-type research in community 
epidemiology: 

6.3.1     Surveys  (Code 1.e)  

 The  study domain  of a survey is a particular segment of a demographic population, 
or, within a geographical area, a collection of institutions or other functional units 
in health care. The population surveyed can be very large, as in national surveys, or 
relatively small, as when a single school or village is surveyed. 

 The  occurrence relation  usually involves many different outcomes of inter-
est. For example, the outcomes can be a range of health-related phenomena. For 
any particular outcome multiple determinants can be of interest, including 
demographic sub-populations and various types of risk factors. The interest may 
be whether a factor has an association with the outcome and/or whether 
determinant- outcome relations differ according to third variables (i.e., effect 
modifi cation). 

 The  study base  is one or several population cross-sections. 
 The  outcome parameters  depend on which of the following are of interest:

•    Outcome frequencies and/or comparisons of outcome frequencies among deter-
minant categories  

•   Independent and interactive effects of several determinants on the outcome  
•   Patterns of co-occurrence of several outcomes    

6.3.1.1     Outcome Frequency Estimation 
 If the interest is in the occurrence frequency of the outcome ( not  in relation to a 
determinant), the commonly used outcome parameters depend on the level of 
measurement. If the outcome variable is continuous or discrete numerical, mul-
tiple descriptors of its distribution may be used, such as their mean and standard 
deviation or their median and 10th and 90th centiles, etc. Alternatively, the entire 
frequency distribution can be reported or summarized by a histogram or box-
plot. If the outcome variable is categorical, the entire frequency distribution is 
often described. If the outcome variable is nominal or 2-category ordinal, then 
the  prevalence rate  is often used. Note that the survey sampling method may 
necessitate some form of weighted estimation, a topic that is discussed in Chap. 
  22    .  Incidence  is sometimes calculated in surveys based on recorded histories of 
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events over defi ned calendar periods preceding the survey and with proper 
 adjustment for missing information from persons who have left the dynamic 
population. However,  incidence is not a common outcome parameter in surveys 
because concerns about recall bias and proper adjustments are diffi cult to address 
adequately.  

6.3.1.2     Types of Frequency Comparisons 
 Comparing outcome frequencies among determinant categories can be done using 
informal, semi-formal, and formal approaches. Informal comparisons are made by 
mentally comparing rates, distributions, confi dence intervals, etc. available from a 
stratifi ed analysis. In the semi-formal comparison, one transforms estimates to 
make them more comparable, a process that is accomplished using a method known 
as direct standardization ( See:  Chap.   22    ). Formal comparisons are made using sta-
tistical estimations of differences between means or proportions, estimations of 
 prevalence rate ratios , and statistical testing. Common approaches to making for-
mal comparisons are described in Chaps.   22    ,   23     and   24    . 

 Regression models can be used to describe how the outcome frequency is related 
to several determinants. The beta-coeffi cients obtained from these models are esti-
mates of the independent (descriptive) effects of those determinants. Independent 
relations of several determinants with a nominal or 2-category ordinal outcome 
variable are often assessed in  multiple logistic regression  analyses ( See:  Chap.   24    ). 
Independent relations of several determinants with a continuous, Normally distrib-
uted outcome variable are often assessed using  multiple linear regression  analyses. 
By inclusion of product terms in a regression model, one can also assess interactions 
between several determinants.   

6.3.2     Epidemic Pattern Studies  (Code 1.f)  

 This is a family of study types used to describe changing illness frequencies over 
calendar time in communities. The occurrence patterns over time and geographical 
space are considered essential to monitor. 

 The  study domain  of an epidemic pattern study consists of a population in which 
a health-related event of interest does or could occur. 

 In the  occurrence relation  the outcome is frequently the attribute of having 
acquired the illness of interest. In the case of infectious diseases the two categories 
‘ill or not ill’ can be further split into four or more attribute levels, e.g., latently ill, 
patently ill, susceptible, non-susceptible/immune. The relative occurrence frequen-
cies of these attribute levels over calendar time is then important. Many populations 
are under surveillance for notifi able diseases and for vital events such as births and 
deaths. Determinants of interest - in addition to calendar time – are age, sex, geo-
graphical area, exposure histories, etc. 

 The  study base  is a dynamic population under surveillance, a cohort sharing 
some common exposure history, or repeated population cross-sections. 
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 The  outcome parameters  can be various statistics potentially useful for public 
health decision-making. In  outbreak studies  important descriptive outcome 
 parameters (which we will not discuss further) include: attack rate, infectious 
 contact rate, the basic reproductive rate, effective transmission factor, the herd 
immunity  threshold, and measures of recurrence. In  surveillance  studies one is 
interested in time trends in numbers of cases detected or in incidence or prevalence 
rates. Modeling of the calendar time trends can be done using a moving averages 
method, cubic spline smoothing, fi tting of polynomial functions, or other methods 
( See:  Chap.   24    ). 

 When the size of a dynamic population is very large and approximately stable, 
then  pure counts  of cases in successive periods are a valid way of describing the 
pattern. Any rate calculation, i.e., dividing the counts by population size (prevalence 
rate) or population time would lead to a useless gain in validity. Additional param-
eters may be calculated that help with the interpretation as to whether an increase in 
counts in the population or in a particular segment of it (e.g., in a small area) is truly 
unexpectedly high. For example, such increases (known as  epidemics  when real) 
can be caused by new diagnostic methods that allow for the new identifi cation of an 
already-existing condition, increased public awareness of the phenomenon in ques-
tion, or altered notifi cation behaviors for the event in question. These issues need to 
be ruled out to determine whether an apparent increase in counts is refl ective of a 
true epidemic. 

 Another type of outcome parameter commonly used in epidemic pattern studies 
is  pseudo-rates  (Textbox  6.1 )   

   Textbox 6.1 Pseudo-rates 

 Pseudo-rates are ratios that intend to approximate real prevalence or incidence 
rates. This is typically the case for world health statistics, for which the use 
of pseudo-rate outcome parameters is entirely justifi ed for effi ciency reasons. 
Examples include the crude birth rates and crude death rates reported by inter-
national institutions (e.g., World Bank  2010 ).  See also:  Chap.   22    . 

  Crude birth rate , a pseudo-rate of population’s fertility, is calculated as 
the ratio of (1) 1,000 times the number of live births to residents in the area in 
a calendar year, to (2) the estimated mid-year population in the same area in 
the same year. Both the numerator and the denominator of the ratio could be 
derived separately from different registries. 

  Crude death rate , a pseudo-rate of mortality burden in a population, is 
calculated as the ratio of (1) 1,000 times the number of deaths in the area in a 
calendar year, to (2) the estimated mid-year population in the same area in the 
same year 
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6.3.3       Cost Studies of Illness and Intervention  (Code 1.g)  

 The economic burden of disease can be estimated with cost-of-illness studies, while 
the costs of interventions to prevent or manage disease are estimated in 
 cost-of-intervention studies. The aim of this sub-section is to provide introductory 
guidance about how to design prospective cost-of-illness or cost-of-intervention 
studies. With suffi cient methodological attention, cost data collected alongside 
 epidemiological studies can later be utilized in full economic evaluations. By com-
bining cost-of-illness and cost-of-intervention data with information about the 
incremental health effects of alternative actions, the analyst can provide important 
information that can be used to determine the best way to prevent or manage the 
disease in situations of resource scarcity. 

6.3.3.1     The Cost-of-Illness Study  (Code 1.g. i)  
 Cost-of-illness studies measure the economic burden of disease. In other words, 
they estimate the maximum monetary amount that could be gained if the disease 
was hypothetically eradicated. The aim could be, for example, to highlight the 
magnitude of the burden of asthma in school-going children in an area. In addition, 
cost-of-illness information is commonly used as input data for economic evaluations 
(e.g., cost-effectiveness studies,  See:  Chap.   24    ). 

 The  study domain  is determined by what is considered to be the appropriate cost 
perspective (i.e., the perspective from which the cost is relevant). Illnesses typically 
incur costs to patients or their families; to employers; and to governments and/or 
third party payers, such as insurance companies. Each of these entities represents 
its own cost perspective. The most comprehensive studies include all the above 
perspectives, in which case the perspective is called societal. 

 The  occurrence relation : Total cost can be decomposed in terms of direct and 
indirect costs, capital and recurrent costs, or variable and fi xed costs ( See:  Chap.   10    ). 
Determinants of those can be, for example, sub-sections of society, duration or 
severity of illness episodes, types of health care seeking behavior, or modifi ers of 
effi cacy of treatments. 

 The  study base  is multiple for analyses with a societal perspective, because the 
calculation of the outcome parameters is based on cost information from a variety 
of sources and experiences. The familial costs are often obtained from case-series 
or intervention study data, whereas the costs of health care utilization may require 
fi nancial information obtained from health facilities, health authorities, or health 
insurance companies. There are two broad approaches to cost estimation. The fi rst 
is to model the cost retrospectively, while the second approach is to undertake pro-
spective costing alongside clinical or epidemiological studies. Calculation of illness 
costs can be incidence-based or prevalence-based. Incidence-based studies estimate 
lifetime costs of disease, and will therefore typically provide information about the 
value of averting a case. Prevalence-based costs are less data-demanding and 
 therefore more commonly estimated; they represent a “snapshot” of the costs for a 
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specifi ed unit of time, and do not attempt to include longitudinal dimensions of 
disease progression and incidence. 

 The  outcome parameter  can be the costs (total, direct, indirect, familial, societal, 
etc.) associated with the illness episode, perhaps as a function of determinants. 
These estimates are expressed in monetary units, often US$, Euros, or a local cur-
rency. When the analyst wishes to adjust the cost outcomes according to purchasing 
power parities (e.g., to improve comparability across countries), International 
Dollars may be used.  

6.3.3.2     The Cost-of-Intervention Study  (Code 1.g. ii)  
 Related to cost-of-illness studies, cost-of-intervention studies attempt to estimate 
the various costs associated with an intervention. 

 The  study domain : The study domain of a cost-of-intervention study is always 
particularistic because costs depend on pre-existing resources and functionalities 
within each particular community, and because local epidemiological and socioeco-
nomic factors usually infl uence the fi ndings. Like cost-of-illness studies, the chosen 
cost perspective will determine the study domain. A more comprehensive approach, 
including costs of patients and caretakers, is warranted in the societal perspective. 

 The  occurrence relation : The outcome variable is the total projected cost of 
implementation of the preventive or therapeutic intervention. The costs are provided 
for a defi ned population, level of service provision, and time period with respect to 
the cost perspective of the study. Frequently, the total cost of one intervention is 
compared to the total cost of ‘status quo’ care and/or to the cost of one or more 
alternative intervention strategies. Adjustments are then often made to account for 
the effectiveness of the alternative interventions. 

 The  study base  may be a prospective experimental cohort if the cost-of-interven-
tion study is nested within a trial. Several study bases are often used since the cost 
data and intervention effectiveness data may be from multiple sources, both primary 
and secondary ( See also:  Evans et al.  2005 ; Manheim  1998 ). 

 The  outcome parameters  may be a difference in costs between alternative inter-
ventions, typically called  incremental costs . Sensitivity analyses or simulations are 
frequently performed to explore how sensitive the outcome parameters are to uncer-
tainty in single parameters (such as coverage) and to consider the impact of the 
combined uncertainty in all the parameters.   

6.3.4     Meta-analytical Diagnostic Projects  (Code 1.h)  

 Although meta-analysis is usually done with trials and etiologic studies, it can also 
be done with diagnostic studies. Such meta-analytical diagnostic projects are usu-
ally ecological studies, though sometimes the individual data of the various studies 
can be pooled. A more detailed discussion of meta-analytical studies is found in 
Chap.   25    . 

 The  study domain  and  study base  tend to be the same as for the individual 
studies. 
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 The  occurrence relations  of interest are of variable nature. Determinants are 
 frequently calendar time and geographical area. The  outcome parameters  are meta- 
regression parameters and pooled estimates e.g., using prevalence modeling.   

6.4     General Design of Etiognostic Studies 

 Traditional etiologic studies  (Code 2.a)  comprise the traditional cohort study and 
case–control studies (also called case-referent studies). They are the most important 
and most widely used designs in observational causal-oriented health research 
today, although their validity has now been challenged (Miettinen  2010 ;  See:  
Design  2.b ). 

6.4.1     Cohort Study  (Code 2.a. i)  

 In scientifi c cohort studies the  study domain  consists of an abstract type of persons 
who are at risk for the outcome. Cohort studies may have a particularistic study 
domain, however, if the aim is to study which factors were causal in a particular 
group of people (rather than an abstract group). 

 The  occurrence relation  under study is the relation between the health-related 
outcome and the determinant(s), conditional on potential and known confounders. 
The occurrence relation might also address mediators of disease and/or effect 
modifi ers. The outcomes can be changes in continuous variables but are usually 
fi rst-time occurrences of events of interest. Presumed causal exposures must pre-
cede the outcome; therefore, the cohort is usually selected based on the absence of 
the outcome(s) of interest. The exposure experience can be a time-delimited event 
in the past (e.g., exposure to high-dose radioactive fallout), a summary character-
istic of a particular period in the past, or a stable characteristic (e.g., gene variants) 
present during the period that participants are at risk (i.e., before they develop the 
outcome of interest). The exposure must have had the time to act upon the develop-
ment of the illness outcome. This is critical in diseases with a long induction and/
or latency period, e.g., cancers. In other words, the exposure period must be etio-
logically relevant. For example, it makes no sense to study the effect of exposure 
yesterday on the occurrence of cancer next week. In cohort studies the interest 
may be in multiple exposures and multiple outcomes. When there are multiple 
exposures of interest, their independent causal effects, interactions (effect modifi -
cation), and roles in mediating outcomes may be studied. As to the potential con-
founding factors, the evident concern is always with prognostic factors at the start of 
the etiological period and with changes in prognostic factors during the follow-up 
experience that are not caused by the determinant levels themselves. Special design 
decisions can help avoiding biases resulting from confounding or from other 
sources of bias ( See:  below). 

 The s tudy base  is a cohort. The cohort’s experience can be retrospective, 
 prospective, or ambispective in reference to the start of study implementation. 
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The study base is primary, meaning that the cohort of at-risk subjects is sampled 
fi rst and cases of outcome are identifi ed subsequently in a defi ned risk period. The 
start of individual follow-up is usually considered to be the start of that risk period. 
Thus, etiologic time is considered positive, with time zero (t = 0) being the start of 
individual follow-up. Secondary study bases are used in case–control studies (next 
sub- section). The basic strategy of a cohort study is shown in Fig.  6.2 .

   The  outcome parameters  commonly made use of are adjusted relative risks, inci-
dence rate ratios, hazard ratios, and beta coeffi cients of a Cox regression or log- 
linear regression ( See  :  Chaps.   22     and   24    ). Possible approaches to adjust for 
confounding during analysis are mentioned in Chap.   22    . As secondary outcome 
parameters (i.e., derived from the estimators mentioned above) we mention the 
attributable fraction ( See:  Chap.   22    ) and etiognostic probability functions ( See:  
Chap.   24    ).  

6.4.2     Case–Control Studies  (Code 2.a. ii)  

 In scientifi c case–control studies the s tudy domain  consists of an abstract category 
of persons who potentially have the outcome as a result of the exposure(s). 
Sometimes, however, the study domain is a particular confi ned group of people in 
whom an outcome of unknown etiology occurred. For example, case–control stud-
ies are often done to study the causes of a particular infectious disease outbreak 
(Giesecke  1994 ). 

Exposed

And without
outcome

Unexposed

And without
outcome

Newly develop outcome

Do not develop outcome

Newly develop outcome

Do not develop outcome

T = 0

Positive etiologic time

  Fig. 6.2    The basic strategy of a typical  cohort study . A cohort of at-risk subjects is selected fi rst. 
By defi nition, at-risk members do not yet have the outcome. Members are followed during a risk 
period that usually begins at the start of individual follow-up (t = 0).  Positive etiognostic time  rep-
resents the interval between t = 0 and end of follow-up, which can occur due to developing the 
outcome, death, or loss-to-follow-up. Outcome frequency is compared among exposed and unex-
posed cohort members       
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 The  occurrence relation  is the potentially causal relationship between the 
 health- related outcome and the exposures(s) under study, conditional on potential 
and known confounders. There can also be an interest in mediators and effect 
modifi ers. 

 Similar to cohort studies, presumed causal exposures must precede the outcome, 
and here too the exposure experience can be a time-delimited event in the past, a 
feature of a past exposure period, or a current feature. In any case, exposures must 
have had suffi cient time to infl uence the development of the outcome. Confounding 
factors are any potential or known determinants of the outcome that could be unbal-
anced between levels of the exposure under study. Special design decisions can 
minimize the effects of confounding and sources of bias ( See:  next sub-section). 

 The  study base  is secondary (in contrast to the primary study base of the cohort 
study). This means that cases of the outcome are identifi ed fi rst. Thereafter, one 
secondarily identifi es a group of persons (called the ‘controls’) who collectively 
represent the source population from which the cases arose. The controls must rep-
resent the source population in terms of the ‘usual’ distribution of exposures, the 
purpose being to compare this distribution with the ‘suspected unusual’ exposure 
distribution among the cases. Proper selection of cases and controls and types of 
selection bias are discussed in Chap.   9    . Defi nition of the source population and of 
the secondary study base is briefl y discussed below. The basic strategy of the case–
control study (Fig.  6.3 ) is thus to determine whether a past exposure distribution is 
different between cases and controls. In the cohort study, the anchor point of 
 etiognostic time (t = 0) is the start of follow-up; however, in case control studies, 
the anchor point of etiognostic time is the time of manifestation (cases) or 
 non- manifestation (controls) of the illness of interest. Etiognostic time in a case–
control study is thus considered to be negative: one identifi es cases and controls and 
then counts backward in time to compare past exposure histories. For example, one 
would ask newly diagnosed lung cancer patients (cases) and appropriate controls 
about their smoking during the period 5–10 years before the cancer occurred (or did 
not occur).

  Fig. 6.3    Basic strategy of a 
typical  case–control study . 
Cases are identifi ed fi rst and 
their exposure histories are 
characterized. Secondarily, a 
group of controls is 
identifi ed, and the exposure 
histories of the cases and 
controls are compared       
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   The  outcome parameters  tend to be different from those used in cohort studies. 
Often used in case–control studies are adjusted odds ratios, i.e., beta coeffi cients of 
a multiple logistic regression. In Chap.   22     we show that under certain conditions 
adjusted incidence rate ratios can be calculated, and we provide an overview of 
methods used to adjust for confounding during analysis. Methods to control for 
confounding at the study design stage are discussed in Sect.  6.4.3 . 

6.4.2.1     Defining the Source Population and Study Base 
in Case–Control Studies 

 The source population of the cases is the dynamic population from which the 
cases arose. It is comprised of all people who would have been eligible to be a 
case had that individual also developed the illness of interest. For example, if 
cases are identifi ed in a hospital, then the source population is all individuals who 
would
•    Be referred for treatment to that particular hospital if they developed the illness 

of interest  
•   Come to the attention of the case–control researchers  
•   Fit the eligibility criteria for participation    

 As mentioned, the controls must collectively represent the source population. 
They are a group of participants with an exposure pattern that is typical of the 
source population. Control sampling will have to be independent of exposure, i.e., 
any level of exposure must not be ‘over-represented’ or the inverse. Controls must 
not be a special group who actively avoided or engaged in the exposure. This is a 
frequent problem when using controls identifi ed in hospitals and less of a concern 
with controls identifi ed from the source population-at-large. When identifying such 
a group one needs to take into account the implications of the defi nition of the 
source population. For example, patients of a doctor who refers cases of the illness 
to another hospital cannot become controls. If controls can be sampled from a 
completely enumerated source population (e.g., from a well-defi ned occupational 
cohort or a complete list of residences), the case–control study can be labeled as 
population-based. 

 In  nested case–control studies , the source population of the cases is simply the 
cohort in which the cases were identifi ed. In such studies the controls are usually 
selected from those cohort members who did not become cases (Gordis  2004 ; 
Porta et al.  2008 ). Nested case–control studies are often carried out to study the 
effect of exposures that are very expensive or cumbersome to assess, such as those 
requiring certain biochemical analyses. The nested case–control approach leads 
to the possibility of doing these assessments only in cases and in a sample of the 
other cohort members, thereby reducing study costs without compromising study 
validity. 

 In  cross-sectional status-based case–control studies  the source population is 
usually assumed to be adequately represented by the non-cases in the population 
cross-section. With this design, there is no documentation of past exposure history 
preceding the manifestation of the illness of interest. The most critical assumption 
is that the illness of interest cannot cause the exposure (reverse causality). This is 

J. Van den Broeck et al.

http://dx.doi.org/10.1007/978-94-007-5989-3_22


117

easiest to argue in the case of biological sex, socio-economic status, and other stable 
distal determinants of illness (e.g., genotype). A further condition is that the cross- 
sectional occurrence of the outcome must be nearly only infl uenced by frequency of 
development of the condition, not by the frequency of its disappearance (by death, 
preferential emigration out of study area, or cure). Study domain restrictions can be 
very useful to increase the likelihood that the study will approach this ideal. For 
example, in a cross-sectional status-based case–control study on possible causes of 
hypertension in adolescents, one may restrict the study domain to adolescents who 
never used anti-hypertensive medication or followed a salt-restriction diet, thereby 
reducing the likelihood of including cured cases in the study.   

6.4.3      Designs Measures to Avoid Bias in Etiologic Studies 

     1.     Restriction of the study  to single narrow levels, preferably null levels, of sus-
pected confounders can avoid confounding. For example, in a study of the poten-
tial causal effect of  x  on  y , the confounders of interest may be alcohol consumption, 
socioeconomic status, and obesity. This confounding would be avoided by doing 
this study in normal-weight individuals of high socio-economic status who have 
never consumed alcohol.   

   2.     Exposure group matching  can be an option in cohort studies .  One can try to 
select the ‘comparison groups’ such that prognostic factors are similarly distrib-
uted. For example, in a cohort study of the effect of occupational exposure  x  on 
outcome  y , with a concern for confounding by age, one could opt for a primary 
study base composed of workers from two occupational settings: one in which 
exposure  x  is frequent and the other in which it is non-existent. If several candi-
date settings with non-existing exposure to x are eligible, one would choose the 
one in which the age distribution is very similar to the age distribution in the 
index setting.   

   3.     Individual matching  may also be considered in cohort studies. This approach 
consists of matching ‘exposed’ with ‘non-exposed’ subjects on the basis of 
potential confounders. It can be a helpful strategy if the study base is primary. 
When the study base is secondary (case–control studies), the matching of cases 
and non-cases (‘controls’) is generally ineffective as a means of control for con-
founding. To see this, simply recall that in order to eliminate confounding, the 
distribution of the confounder needs to be equal(ized) across levels of the expo-
sure, not across levels of case status. Individual matching in case–control studies 
must therefore be discouraged (Miettinen  1999 ).   

   4.     A prospective design  may avoid some bias by allowing better standardization of 
aspects of health care; follow-up procedures; the timetable of contacting par-
ticipants; and the types, accuracy, and precision of measurements. However, 
even with this added level of control, loss to follow-up may be more strongly 
related to prognosis in one exposure group than in the other, even if occurring 
at a similar rate in exposed and non-exposed participants. This may thus 
spuriously change the contrast in the remaining subjects. Losses to follow-up 
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(censoring of information) therefore need to be carefully avoided, and reasons 
for any losses to follow-up need to be recorded. This may be more feasible in a 
prospective study. 

 Another issue, typical for prospective designs, is whether there are any design 
decisions that can prevent dilution or reversal of exposure contrasts. This issue is 
common in studies where the exposure is not a past event but a ‘continuous’ 
exposure ongoing during follow-up. Let us consider an example in which a 
researcher is comparing a group of smokers (exposed) with a group of non- 
smokers (non-exposed). During follow-up some of the exposed may quit smok-
ing (i.e., reversal of exposure), and some of the unexposed may start smoking. It 
is often unethical to infl uence reversal of exposures. Indeed, it would be unethi-
cal to advise people to continue or start smoking. A prospective study, however, 
allows for monitoring and documenting behavioral changes during follow-up, 
thereby allowing for adjustments in the analysis stage of the study.   

   5.     Blinding of the researchers  may be of help to control for confounding. 
Researchers may have strong expectations about the existence or direction of an 
association between risk factor and outcome. Indeed, preconceptions can infl u-
ence the researcher’s performance. This may lead to an unintentional trend to 
positively identify expected outcomes among exposed or to mistakes in the anal-
ysis. This can happen with retrospective as well as in prospective designs. 
Blinding of measurers/investigators as to the exposure status during data collec-
tion and analysis can be a useful design decision.      

6.4.4     The Single Etiologic Study  (Code 2.b)  

 We have mentioned that, in traditional cohort studies, etiognostic time is seen as 
positive and the study base is primary. In case–control studies etiognostic time is 
negative and the study base secondary. The single etiologic study proposed by 
Miettinen ( 1999 ,  2004 ,  2010 ,  2011b ) differs from both these traditional approaches: 

 The  study domain  and  occurrence relation  are as usual but etiognostic time is 
always treated as negative, irrespective of whether the  study base  is chosen to be 
primary or secondary. This is considered necessary because etiognostic time can 
logically only be negative: etiognostic issues can only be about whether something 
occurring in a defi ned period  prior to  an outcome was causally linked to that out-
come. Note that the traditional cohort study fails in this respect, as etiognostic time 
is positive in a cohort study. If a secondary study base is chosen, that study base 
needs to be a representative sample of the source population of the cases,  without 
any consideration around case or non-case status  (in contrast to the typical 
case–control study). No matter whether the study base is primary or secondary, a case 
group is compared to a reference series, the latter being a group preferably ran-
domly sampled from the source population. Note also that the traditional  case– control 
study typically fails to defi ne the reference series as a random sample of the source 
population. This representative sampling is necessary because it is the proper way 
to arrive at valid direct estimation of the incidence rate ratio as the  outcome param-
eter  in etiognostic studies (Fig.  6.4 ).
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6.4.5        Before-After Etiognostic Studies  (Code 2.c)  

 The before-after etiognostic study, like the previous study types, compares two lev-
els of a determinant in terms of outcome frequency, and control for confounding is 
attempted albeit in a less formal way. The aim is often to assess the impact of a 
non- randomized policy intervention in a particular population. 

 The  study domain  is always particularistic. 
 As to the  occurrence relation,  the outcome in the simplest before-after etiog-

nostic study is a change in a population’s burden of an illness over a specifi ed 
period, and the determinant is a policy intervention implemented (usually) over 
the same period (Fig.  6.5 ). One frequently omits measurement of the outcome 
under the reference level of the determinant (in an area where the policy was not 
implemented) based on the assumption that the change in the population’s bur-
den of illness would be zero without the intervention, or based on the assumption 
that some trend or projection (as estimated from an external source) will apply to 
the null level and can therefore serve as a reference state for comparison (as a 
‘counterfactual’). Formal control for confounding is also frequently foregone, 
based on the assumption that, during the observed period, no other major factors 
caused a change in the population’s burden of illness aside from the implemented 
policy.

   The  study base  is the dynamic population under study. 

  Fig. 6.4    The basic strategy of the  single etiologic study . Exposure history (in the relevant negative 
etiognostic time segment) is characterized fi rst in a group of cases arising from a source popula-
tion, which can be a cohort or a dynamic population. Once the source population is defi ned, a 
representative/random sample of it is identifi ed and the exposure history of the reference series is 
assessed       

Exposed

Unexposed

Exposed

Unexposed

T = 0

Negative etiologic time

Cases

Source population

Random sample of source population
= reference series
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 The  outcome parameter  is usually the change in population burden as such, or, 
the amount by which the change differs from an expected value. 

 It should be noted that before-after etiognostic studies can be valid and yield 
convincing results, provided of course that the mentioned assumptions are reason-
able. For example, a dramatic decrease of incidence of a water-born infectious dis-
ease may be shown to follow a massive immunization campaign against this disease, 
while over the same period, no simultaneous policies to improve sanitation and 
hygiene were implemented and no decrease due to seasonal variation is expected.  

6.4.6     Meta-analytical Etiognostic Projects  (Code 2.d)  

 The discussion on meta-analyses here is shortened for space constraints; however, a 
further discussion of meta-analyses is found in Chap.   25    . 

 The s tudy domain  of a meta-analytical etiognostic consists of the type of indi-
viduals or other observation units who potentially have the outcome of interest as a 
consequence of the exposure(s). 

 The  occurrence relation  is usually the overall relationship between the 
determinant(s) and the health-related phenomenon, adjusted for potential and 
known confounders. However, there is often also interest in effect modifying factors 
that cause heterogeneity in individual study results. In other words, meta-analyses 
often aim to determine the overall exposure-outcome relationship and seek to iden-
tify sources of heterogeneity that might explain why some studies report one result 
whereas others report a contradictory result. 

 The  study base  is the collective original cohorts, dynamic populations, and/or 
population cross-sections. 

Cases

T = 0

Introduction of exposure;
other prognostic factors about stable

Population of
unexposed at T = 0

Cases

Population of exposed
and unexposed at T = 1

  Fig. 6.5    Basic strategy of a typical  before – after etiognostic study . The population burden of the 
outcome is assessed before and after the exposure occurs or is introduced. The change in popula-
tion burden is attributed to the exposure assuming there that the infl uence of confounders was 
negligible or was adjusted for       
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 The  outcome parameters  are statistics demonstrating heterogeneity as well as 
overall fi xed and/or random effect estimates summarizing the collective evidence 
from the original individual studies ( See  :  Chap.   25    ).   

6.5     General Design of Intervention-Prognostic Studies 

 This section deals with the general design of some typical types of intervention- 
prognostic studies: the randomized controlled trial, the quasi-experimental trial, and 
the cross-over trial, as well as one rare type of intervention study: the N-of-1 trial. 
We also briefl y mention meta-analyses of trials. A  trial  is a follow-up study looking 
at the effects, intended and unintended, of one or more levels of at least one test 
intervention (assigned in the context of the research study) on outcomes of interest. 
One type or level of intervention is chosen to be the reference with which the other 
intervention levels (called index levels) are compared. A  randomized trial  is a study 
in which each observation unit has an independent and known chance of being allo-
cated to each of the intervention schemes under study. In a  quasi-experimental trial , 
considerations other than independent chance alone determine the allocation of 
intervention levels (e.g., considerations of personal preference of participants or 
communities). In a  cross-over trial , observation units undergo randomized 
sequences of intervention levels. In an  N-of-1 trial , which is a particularistic inter-
vention study, there is only one observation unit, but the interventions under study 
are allocated in successive, presumably independent treatment periods. 

6.5.1     Randomized Controlled Trials: RCT  (Code 3.a)  

 This class is a family of related general study designs and, before describing the 
design elements common to all, we give an overview of the most prominent family 
members, some of which form a family of their own.
    1.    The  traditional clinical trial  compares the course of illness between index and 

reference patients over a specifi ed and fi xed period of individual follow-up time 
after the start of an intervention. Individuals are assigned to the index or refer-
ence groups in a random fashion by randomization, with the aim of making the 
groups prognostically comparable at the start of the intervention. The basic strat-
egy of a typical traditional clinical trial is illustrated in Fig.  6.6 .

       2.    The  dose–response trial  addresses several levels of a same type of treatment and 
has a special interest in the shape of the relationship between treatment level and 
outcome variable. In a simple dose–response design there is randomization into 
interventions of different intensity (e.g., differing drug doses). Usually, it has 
more than two intervention arms. In a  randomized withdrawal design  random-
ization is into two groups with equal initial interventions, but then one arm’s 
intensity of intervention is gradually decreased during follow-up.   

   3.    In the  cluster-randomized fi eld trial  intervention levels are targeted to (members 
of) groups (clusters). They can be useful for a number of reasons (Smith and 
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Morrow  1996 ). First, the tested intervention may naturally concern whole 
 communities, e.g., education or sanitation interventions. Second, there are logis-
tical advantages of individuals living close together. Third, if all individual mem-
bers of a selected cluster are treated, one avoids the potential embarrassment 
created by visiting only certain individuals in close communities. In the classic 
design, clusters would be randomized to study intervention at baseline. The 
 stepped wedge design  is an alternative design where all clusters would eventu-
ally receive the intervention, though commencement of the interventions occurs 
at multiple time points. Indeed, it is the use of multiple time points, at which 
clusters cross from no intervention to the study intervention that allows compari-
son between clusters. An example is the introduction of a new vaccine or new 
vaccine protocol following demonstrated  effi cacy  in Phase 3 trials. For opera-
tional logistic reasons the vaccine would be introduced in districts or other geo-
graphical areas (clusters) in staggered sequence. This staggered introduction 
could be done in the context of a trial with a stepped wedge design.   

   4.     Multiple intervention designs  allow the investigator to study multiple interven-
tion types simultaneously. The most frequently used is the  factorial trial , in 
which all possible combinations of the different treatments defi ne the study 
arms. In the simplest case, the 2 × 2 factorial design trial, there are two treat-
ments,  a  and  b,  to be combined into four intervention levels:  a  alone,  b  alone,  a  
plus  b , and no  a  plus no  b . The advantage of the 2 × 2 factorial design is that the 
total sample size required to estimate the main effects is only half the total sam-
ple size required to do the two intervention experiments separately (this is 
because one intervention is equally distributed within the other, so data can be 
used to study the effects of both interventions). An additional advantage of the 
factorial design is that it allows estimation of the effects of one treatment at each 
level of the other treatment, which allows for examining interactions between 
treatments. There exist many other typical designs that combine the study of 

Representatives of
target population

• No intervention or
• Placebo or
• Other intervention

Test intervention

Improved Improved
Not

improved
Not
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Randomization

  Fig. 6.6    Basic strategy of 
a typical  traditional clinical 
trial . A sample of 
representatives of the target 
population is randomly 
assigned to either receive a 
test intervention or a 
comparison intervention. 
Outcomes of interest (in the 
example, improvement yes/
no) are assessed during a 
fi xed follow-up period       
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many intervention types in a single experiment. Unlike the factorial design, they 
do not combine all possible levels of all treatments and are therefore referred to 
as ‘ incomplete experimental designs .’ These types of studies are often done in 
industrial and agricultural sciences, yet are seldom in epidemiology. Examples 
are Latin squares, Graeco-Latin squares, and incomplete block designs. For fur-
ther reading on multiple invention studies,  See:  Kirk ( 1994 ) and Armitage and 
Berry ( 1988 ).     
 Common design features of randomized controlled trials include the following: 
 The  study domain  consists of a type of individual or population in which the 

index intervention level(s) could have a benefi cial effect and a favorable safety 
profi le. 

 In the  occurrence relation  the interventions are the exposures of interest. The 
outcomes of interest may be the occurrence and/or timing of desired and undesired 
events, or changes in continuous health-relevant attributes. The outcome variable is 
sometimes chosen to be a biomarker (Textbox  6.2 ) or a dichotomous variable 
expressing the attribute of ‘treatment failure or success’. Sometimes a set of possi-
ble ‘endpoints’ (e.g., death, abandonment of treatment, illness worsening, etc.) may 
be involved in the defi nition of a composite attribute. There is always an interest in 
controlling for confounding, and there may also be an interest in effect modifi ca-
tion. As to the potential confounding factors, the evident concern is always, as will 
be described below, with how successful the randomization was in balancing prog-
nostic factors among intervention arms, and with possible changes in prognostic 
factors during follow-up (that are not caused by the intervention levels themselves). 
This is equivalent to the concerns about confounding in follow-up based etiognostic 
studies. 

 The  study base  is a prospective experimental cohort (or rarely a dynamic popu-
lation). The duration of follow-up in intervention-prognostic studies can be planned 
according to interests in short-, medium-, or long-term effects of the intervention, 
but in practice the actual duration is guided by ethical principles relating to moni-
toring for changing degrees of equipoise and shifting balances of safety 
parameters. 

 The  outcome parameter  can be an (adjusted) relative risk, incidence rate ratio, 
hazard ratio, difference in incidence risk/rate/median time till events, or an (adjusted) 
difference in change in a continuous outcome variable. When the study aim is quali-
tative (about the existence of an effect) rather than quantitative (about the magnitude 
of an effect), the P-value from a statistical test is the typical outcome parameter. 
 Intention to treat analyses  produce estimates and P-values based on comparisons of 
intervention groups  as initially randomized  (White et al.  2011 ), irrespective of 
whether a participant is known to be non-compliant with the randomly assigned 
intervention. In RCT’s a secondary outcome parameter can be, among others, the 
‘number needed to treat’ (Cook and Sackett  1995 ), and the preventive fraction. 
Miettinen ( 2010  , 2011b ) has proposed that evidence from trials can be used to 
construct prognostic probability functions ( See:  Chap.   24    ), and presented as a 
smooth- in-time risk prediction function (Hanley and Miettinen  2009 ) that uses 
intervention level as well as individual prognostic factors as predictor variables.   
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6.5.1.1      Methods of Randomization 
 Random allocation of intervention types or levels aims to ensure that treatment 
groups are comparable as to the baseline prognostic factors that could act as 
confounders (known and unknown). Several methods of randomization exist, 
though not all are optimal. Randomization must be fully concealed, i.e., it must 
be impossible for the researcher to know what treatment the next enrolled subject 
will get. Poorly concealed methods – such as tossing a coin, the sealed envelope 
method, and lists of random numbers for sequential allocation – are amenable to 
undue manipulation and are therefore sub-optimal. Better methods include third-
party randomization, in which an independent person allocates a random assign-
ment (over the phone, online, or by some other method) and keeps the 
randomization list secret until after the study analysis is complete. A similar 
approach might involve an independent pharmacist, who prepares randomly 
numbered medication or placebo packages and conceals the chemical contents 
from the patient and physician; packages are then sequentially allocated to 
patients. In general, randomization methods that involve third-party randomiza-
tion are considered best. 

 With non-stratifi ed randomization, chance alone decides the allocation. 
However, there may still be considerably more patients with a worse prognosis in 
one of the randomized groups.  Stratifi ed randomization  (in strata of a prognostic 
factor) can alleviate this issue by optimizing the prognostic comparability of treat-
ment groups. In other words, stratifi ed randomization increases the likelihood that 
both groups are equal in prognosis. Such a method involves separate randomiza-
tion lists within prognostic groups, e.g., subjects with a good prognosis are ran-
domized using one randomization list and subjects with a poor prognosis are 
randomized using another list. 

   Textbox 6.2 Biomarkers 

  Biomarkers  include cellular, biochemical, or molecular indicators of biologi-
cal, subclinical, or clinical effects (Porta et al.  2008 ). Biomarker levels are most 
commonly used as primary endpoints in clinical trials in situations where the 
biomarker is strongly correlated with the clinical outcome-of-interest and yet 
measurable earlier in the course of disease/follow-up. An example would be 
the use of biochemical lipid profi les as an outcome rather than coronary 
events, even though reduction in risk of coronary events is the long-term goal. 
Beyond the use of biomarkers as primary endpoints, biomarkers can also be 
used in interim analyses of clinical trials as a  basis for stopping rules . If a 
‘validity trial’ indicates that a surrogate biomarker is a valid predictor of an 
adverse outcome-of-interest, that biomarker can be analyzed during the trial 
to monitor for potential harm to participants. Such interim analyses are often 
conducted by independent Data Safety Monitoring Boards. 
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  Block randomization  aims to ensure a constant balance of numbers enrolled in 
the different arms throughout the enrollment period. It bases the allocations on ran-
domly ordered intervention arms within small blocks of a fi xed size. The rationale 
is usually to maintain balanced treatment group assignments even when enrollment 
is prematurely halted. 

  Minimization  is an alternative to blocking and stratifi cation (Treasure and 
MacRae  1998 ). With minimization, the chances of a next participant being allocated 
to a particular treatment arm depend on any random imbalances among treatment 
arms in terms of important prognostic factors. For example, if there is an accumula-
tion of individuals with a bad prognosis in group  A , the next individual with a bad 
prognosis is more likely to be assigned to group  B , the result being to decrease the 
imbalance between groups.   

6.5.2     Design Decisions to Avoid Bias in Trials 

 In addition to randomization, there are many other design decisions that can enhance 
the internal validity in a trial, including the following:
    1.     Standardization of procedures  – To maintain comparability between intervention 

groups during follow-up, the groups need to receive equal attention (through 
standardization of procedures) with regards to study contacts (frequency, dura-
tion); concomitant treatments and support; and types and quality of measure-
ments. Put most simply, differential treatment of groups needs to be avoided.   

   2.     Blinding  – To avoid prognostic divergence for reasons other than the interven-
tion, it is crucial to include blinding of treatment allocations. In  single blinding , 
the patient does not know his or her type of intervention (but the study staff is not 
blinded). This approach is usually inadequate, as study staff may have a con-
scious or unconscious bias towards one treatment group or another. In the more 
preferable  double blinding , neither the patient nor the investigator/data collec-
tors know what type of intervention the patient is receiving. In  triple blinding , 
the data analysts are also blinded from the treatment allocation and are only told 
whether a participant has been assigned to group  A, B, C,  etc. It is worth noting 
that for blinding to be successful, the intervention’s appearance, taste, texture, 
and other discerning properties need to be the same in each treatment arm. If the 
study participant, investigative staff, or analysts can discern one group from the 
other, then blinding is not possible.   

   3.     Promotion of retention and adherence  – The degree to which the patient cor-
rectly adheres to the allocated treatment is a prognostic factor. This generally 
means that good compliers tend to fare better than poor compliers, even under 
placebo treatment. Propensity to compliance can be randomized but, especially 
without double blinding, compliance rates may diverge over time, e.g., if 
groups are differentially infl uenced by participant-staff interactions or by 
whether the participants believe they have been assigned to a particular group. 
Drop-out for reasons unrelated to prognosis tends to only affect the power of 
statistical analysis. But if drop-out is more related to prognosis in one group 
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than in another, then drop-out tends to also affect comparability and create 
bias. Efforts to avoid  drop- out should therefore be equal in all comparison 
groups, and the reasons for dropout should be monitored with a special focus 
on whether the drop-out is prognosis-related. Additional issues of retention 
and adherence are discussed further in Chap.   17    .   

   4.     Avoidance of unplanned cross-over  – A special form of lack of adherence is 
unplanned cross-over, which changes the exposure contrast between intervention 
groups. Maintaining the exposure contrast during follow-up can be challenging. 
Figure  6.7  illustrates this for a hypothetical scenario in which patients are be 
randomized to receive either medical or surgical treatment. In this particular 
example, cross-over is largely unavoidable. Occasionally one may be able to 
defi ne the treatments not strictly as ‘medical’ and ‘surgical’ but as broader types 
of treatment strategies (including rules about changes in treatment under certain 
conditions). This could then be accompanied by a restriction in study domain to 
patients with levels of severity that allow any of the alternative strategies to be 
initiated.

6.5.3            Quasi-Experimental Trials  (Code 3.b)  

 In a quasi-experimental trial other considerations than chance determine the alloca-
tion of intervention levels. 

 The  study domain  of a quasi-experimental trial, in principal, does not differ from 
the study domain of a randomized controlled trial. 

Group 1

Group 1
Accept surgery

Group 1
Refuse surgery

Medical care

Group 2

Group 2
Medical care

Group 2
Require 
surgery

Representatives of
target population

RandomizationSurgery Medical care

  Fig. 6.7    An example of 
 unplanned cross-over  among 
treatment arms in a trial. 
Participants are randomly 
assigned to receive either 
medical or surgical treatment. 
Part of those assigned to 
surgery refuse surgery and 
get medical treatment, and 
part of those assigned to 
medical treatment require 
surgery during follow-up. 
The consequence is an 
unintended change in contrast 
between the initially 
randomized groups       
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 The  occurrence relation  is also similar to the randomized controlled trial, but in 
the quasi-experimental trial confounding cannot usually be effectively controlled 
for by design decisions. Thus, confounders more often need measurement and for-
mal inclusion into the occurrence relation at the analysis stage. In quasi- experimental 
trials, intervention-level allocation can be preference-based (preference of patient 
and/or physician) or involve some other systematic approach, e.g., alternate alloca-
tion, alternate-day allocation. The treatment allocation method is thus infl uenced by 
factors other than chance alone. These other factors may be related to prognosis, 
e.g., the physician may be convinced that the test treatment is superior and make 
sure all of the high-risk patients get it, leaving the control arm to the low-risk 
patients. The result is that the treatment arms are unlikely to be prognosis- equivalent 
at baseline. Randomization is therefore generally preferred, as it intends to ran-
domly distribute prognostic factor levels over the treatment arms, and thus to make 
the treatment arms comparable in terms of prognosis. Nevertheless, adjustment of 
all relevant baseline prognostic factors in the analysis can help to overcome the 
aforementioned disadvantage of quasi-experimental trials. 

 The  study base  of a quasi-experimental trial is usually a cohort. It is generally 
preferable to have  concurrent controls . However, sometimes person-time from  his-
torical (treated or untreated) controls  is used, in which case the researcher must 
rely on the quality of the controls’ medical records, and special concerns arise about 
comparability of information with the treated group. 

 For  outcome parameters ,  see : randomized controlled trials. When historical con-
trols are used, effi cacy of the test intervention is sometimes estimated by (1) con-
structing a prediction model of the outcome of interest by using the controls’ data, 
and (2) comparing model-predicted outcomes with observed outcomes among those 
receiving the test intervention.  

6.5.4     Cross-Over Trials  (Code 3.c)  

 Cross-over trials differ from randomized controlled trials in that the observation 
units are not randomized into a single intervention level but into a sequence of sev-
eral intervention levels, often including a run-in null intervention period and some-
times also ‘washout’ null intervention periods between active intervention periods 
(Fig.  6.8 ). The purpose of the cross-over trial is  not  to learn about the relative effects 
of particular sequences but about the effects of the component treatments, obviously 
under the assumption that ‘carry-over’ effects between phases are negligible. 
Consequently, cross-over trials are not useful if one or several treatments included 
in the sequence have a substantial effect on the course of illness, e.g., if it cures the 
disease within follow-up time or if one of the treatments is surgical.

   The  study domain  is usually a chronic disease about which the treatments being 
evaluated might provide relief of symptoms. 

 The  occurrence relation:  The outcome is illness status or symptom status; the 
determinants are the intervention types or levels. Confounders are taken into account 
through randomization. Effects can be modifi ed by period (period effects). 
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 The  study base  is a cohort experience over specifi ed successive periods. A run-in 
period may allow the researcher to do extensive baseline assessments and some-
times to increase comparability of the groups, e.g., by standardizing diet for 2–4 
weeks prior to the fi rst intervention period. When a small carry-over effect from one 
intervention period to the next is considered plausible, then a washout period of an 
appropriate length may be inserted before start of the next period. 

  Outcome parameters : The main effects of the treatments are usually studied with 
t-tests. Even with washout periods, there can be period effects, i.e., the effect of a 
treatment may depend on whether it comes fi rst or second. Therefore, more advanced 
analytical approaches may be necessary to investigate treatment-period interac-
tions. For further reading on this topic,  See:  Armitage and Berry ( 1988 ).  

6.5.5     N-of-1 Trials  (Code 3.d)  

 N-of-1 trials can be useful in illnesses where individual variation in treatment 
responsiveness is known to be large and the optimal dose or type of intervention 
cannot be assessed in another way. 

 The  study domain  is particularistic because the aim of an N-of-1 trial is to select 
the optimal treatment for a single individual patient. 

 That individual solely constitutes the study base (i.e., a cohort of size 1). 
Generalizability (external validity) beyond the individual patient is obviously lim-
ited. The N-of-1 trial must therefore be seen as a structured attempt at therapy or as 
a procedure to assess patient responsiveness rather than as a scientifi c experiment. 
The methodology of N-of-1 trials developed from investigations of adverse drug 
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  Fig. 6.8    Basic strategy of 
the typical  cross-over trial.  
Enrolled participants are 
randomly allocated to a 
sequence of treatment 
periods, possibly interrupted 
by short washout periods       

 

J. Van den Broeck et al.



129

reactions, as in ‘de-challenge and re-challenge’ tests. Similar to such tests and to 
cross-over trials, the N-of-1 trial is based on an assumption that changes in treat-
ment will have fast effects. 

 As to the  occurrence relation , we briefl y mention the most widely used method 
(Sackett et al.  1991 ). This method involves a single patient who undergoes a series 
of pairs of treatment periods. Each pair of treatment periods includes one period of 
the ‘experimental therapy’ and one period of a placebo or other control treatment. 
The order of treatment type within each pair is determined by randomization, and to 
the extent possible, both the clinician and patient are blinded to the treatment being 
given during any given period. The outcomes are usually relief of symptoms/signs 
and these are monitored continuously or very often.  

6.5.6     Meta-analytical Intervention-Prognostic Projects  (Code 3.e)  

 In meta-analyses of trials the s tudy domain  consists of the type of person who 
potentially benefi t from the intervention. 

 The  occurrence relation  under study is (1) the overall relationship between the 
health-related outcome and the intervention(s), conditional on the potential and known 
confounders, and (2) modifying factors related to heterogeneity in study results. 

 The  study base  is the evidence from the included cohorts and/or dynamic 
populations. 

 The  outcome parameters  are statistics demonstrating heterogeneity as well as 
overall fi xed and/or random effect estimates summarizing the aggregate effect 
observed in the collection of individual studies included in the analysis ( See  :  
Chap.   25    ).   

6.6     General Design of Descriptive-Prognostic Studies 

 Addressing descriptive-prognostic research questions typically involves the con-
struction of risk functions and/or survival functions for outcome events of interest. 
Descriptive-prognostic studies can be set up specifi cally and uniquely with this goal 
in mind. More often, however, descriptive-prognostic research questions are part of 
a set of research questions addressed in one study that also addresses etiognostic or 
intervention-prognostic questions. 

6.6.1     Clinical Prediction Studies  (Code 4.a)  

 The  study domain  of a clinical prediction study can be either a type of persons for 
whom the risk of development of a particular illness or a particular sickness pattern 
is of interest, or, a type of ill persons for whom the risk for a particular course of 
illness is of interest. 
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 The  occurrence relation  of a descriptive-prognostic study only concerns the 
 outcome and determinants, and there are  no concerns about confounding or media-
tion . The outcome is an event potentially occurring sometime after the prognosis is 
made. The predictors tend to be individual prognostic indicators, individual treat-
ments, behaviors, and adherence issues. 

 The  study base  can be an experimental cohort, though observational cohorts are 
most often used. 

 The  outcome parameters  are the coeffi cients and terms of the risk prediction 
function, together with the results of validation studies of this prediction model 
( See:  below and Chap.   24    ). The construction of the risk function tends to be a 
straightforward extension of the analysis of a trial or follow-up etiognostic study. 
For example, a logistic regression function, which is a common output from etiog-
nostic studies, can readily be transformed into a risk function. Similarly, a trial can 
be analyzed using treatment level as one of the independent variables in a logistic 
regression analysis, and the logistic regression results can be transformed into a risk 
function (Miettinen  2010 ). Nevertheless, issues of over-fi tting and useful model 
reductions may require special attention. An extensive overview of issues and prac-
tical methods of developing validated clinical prediction models can be found in 
Steyerberg ( 2009 ).  

6.6.2     Forecasting Studies  (Code 4.b)  

 The community medicine equivalent of the clinical prediction study is called the 
forecasting study. The general design is equivalent. 

 The  study domain  of a forecasting study consists of a type of community for 
which there is an interest in the future risk for a particular pattern of morbidity or in 
the risk of a particular change in an existing pattern. 

 In the  occurrence relation  the outcome is represented by an ecological variable, 
e.g., the prevalence of malaria or increase of malaria incidence above a chosen 
alarming threshold value. The predictors also tend to be only ecological variables 
although individuals’ data may be involved when a multi-level approach to analysis 
is taken. In the example of alarming malaria incidence, the predictors in a dynamic 
forecasting function may include, among others, mosquito density, species compo-
sition and behavior, hydrological and meteorological variables, parameters of resis-
tance to anti-malarial drugs, and other variables characterizing the epidemic pattern 
of malaria in the same or surrounding areas. 

 The  study base  is one or several experimental or observational cohorts that have 
provided measurement values of outcomes and predictors. 

 The  outcome parameters  are the coeffi cients and terms of a forecasting function, 
usually together with the results of validation studies. If a surveillance system is in 
place, then predictor information can be used to give early warnings about a com-
munity health issue. It is important to note that the predictors themselves may 
require separate modeling exercises.  
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6.6.3     Descriptive-Prognostic Model Validation 

 The validation of a clinical prediction or forecasting model can be internal or 
external. 

  Internal validation  uses part or all of the data that were used for model construc-
tion. Classical methods of internal validation include the split-sample method and 
bootstrap validation . External validation  is based on the application of the risk 
model to a group of subjects whose data were not used for model construction, e.g., 
patients from another site. In instances where the risk prediction score can be 
dichotomized and then validated against a gold standard dichotomous outcome, the 
area under the ROC curve (a plot of sensitivity against 1-specifi city) can be used to 
compare the performance of alternative prediction models (Fig.  6.9 ).

   The accuracy of the prediction model can be assessed by the goodness-of-fi t 
between the predicted and observed risks, which can be done separately in catego-
ries of predicted risk. Making a risk function applicable to another population may 
require re-calibration of the function and models, and any validated function may 
require updating after some time ( See:  Chap.   24    ).   

6.7     General Design of Methods-Oriented Studies 

 The purpose of any methods-oriented study is to create evidence about some aspect 
of the performance or utility of a research procedure ( See  :  Chap.   4    ). 

 The domain of a methods-oriented study is the type of methodological issue 
or situation about which evidence is created. That domain can be either 
 general- scientifi c or it may be restricted to a particular situation (i.e.,  particularistic). 
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  Fig. 6.9    Example of the use 
of Receiver Operating 
Characteristic (ROC) curves 
in the evaluation of 
prognostic models. Two 
alternative prognostic models 
for death within a specifi ed 
period are compared. Model 
A appears superior since the 
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 upper left corner  (i.e., the 
point of perfect sensitivity 
and specifi city) and has a 
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For example, information on the agreement between measurement values obtained 
by two highly standardized but different measurement methods (for the same attri-
bute) may be highly generalizable. On the other hand, the acceptability and the 
validity of a tool may pertain to a particular cultural setting alone and not be gener-
alizable to other settings. 

 The  study base  of a methods-oriented study can be a cohort followed for a very 
short period (e.g., in test-retest studies), but it can also be a population 
cross-section. 

 In the remainder of this section, we give a brief overview of possible  occurrence 
relations  and  outcome parameters  in a number of broad sub-types of methods- 
oriented studies. 

6.7.1     Procedural Validity Studies  (Code 5.a)  

 In such studies the interest may be in the internal consistency of a single complex 
procedure, such as a multi-item measurement scale. Cronbach’s α is a frequently 
used outcome parameter. There may also be an interest in rates of missing values, 
particular rates of misclassifi cation, or of erroneous outliers, perhaps as a function 
of different circumstances. The interest of a procedural validity study may also be 
in determining causes of bias. In such instances, regression methods can be used to 
model bias as a function of a set of determinants. The aim is then descriptive or 
analytical. 

 It is sometimes possible to compare a procedure’s results with those of a ‘gold 
standard’ procedure. The results of these comparisons, based on paired measure-
ments, are frequently expressed as rates of misclassifi cation, average bias, limits of 
agreement (Bland and Altman  1986 ), Kappa statistics (Siegel and Castellan  1988 ), 
Sign test statistics, and correlation coeffi cients. For more details,  See  :  Chap.   11    . As 
an extension of this logic, sometimes the relative validity of two procedures can be 
assessed by comparing both with a gold standard method. The procedure leading to 
the lowest misclassifi cation rates, highest agreement, etc. would then be considered 
the more valid of the two. If there is no gold standard, then the relative validity of 
two alternative procedures can sometimes be compared using their convergent 
validity. In other words, if the attribute being measured by the two alternative pro-
cedures is known to be very strongly related to another attribute, one can examine 
which of the two procedures leads to the strongest relationship with that other attri-
bute. The procedure with the strongest relationship would then be considered the 
more valid of the two.  

6.7.2     Procedural Reproducibility Studies  (Code 5.b)  

 In this study type, the interest is in the reproducibility of a single procedure. Based 
on independent replicate measurements, one often calculates one or more of the fol-
lowing reproducibility statistics: coeffi cient of variation (CV); technical error of 
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measurement (TEM); reliability coeffi cient (RC); and intra-class correlation 
 coeffi cients (ICC). These can be calculated in test-retest studies. In a test-retest 
study, the replicates can be made by the same observer, a different observer, or a mix 
of both. In this way inter- and intra-observer reproducibility statistics can be 
obtained. For more detail,  See  :  Chap.   11    . 

 The interest may also be in the reproducibility of a procedure under special cir-
cumstances. Comparison is then needed with the degree of reproducibility obtained 
in usual circumstances. F-tests may be used to make these comparisons in the case 
of continuous outcome variables.  Determinants of reproducibility  can be studied by 
modeling error rates or variances.  

6.7.3     Procedural Cost Studies  (Code 5.c)  

 The overall purpose of procedural cost studies is to determine the cost of specifi c 
research procedures or to determine the most cost-effective procedure for a given 
research aim. This may be accomplished through one or more of the following 
activities:
•    To collect information on and evaluate costs associated with various stages of a 

research study. This activity is usually performed in ‘pilot’ or feasibility studies. 
Examples include assessing the cost of different sampling and recruitment strate-
gies, such as conducting surveys by going door-to-door versus sending surveys 
in the post. The fi nancial feasibility will differ by geographical location, charac-
teristics of the study population, nature of the study questionnaire, and availabil-
ity of study personnel, among other factors  

•   To compare the effi ciency of two or more alternate procedures, usually weighing 
fi nancial costs with validity    
 The cost of a research design or procedure consists of capital costs (e.g., procure-

ment of necessary machinery and tools), operational costs (e.g., wages and infra-
structure resources), cost to research participants (e.g., reimbursements for travel), 
and time allocation on the part of researchers and participants. There are also cost 
implications of different sample size scenarios, sampling schema, recruitment strat-
egies, retention strategies, and follow-up procedures. Pilot studies may be con-
ducted specifi cally to defi ne these attributes and hence the costs of a research study.  

6.7.4     Procedural Acceptability Studies  (Code 5.d)  

 Even if one procedure is determined to be more valid than another, sometimes it 
may be less acceptable and therefore be less desirable. If study participants fi nd the 
procedure to be unacceptable, they will not consent at the time of enrollment, and 
they may refuse a certain procedure after enrollment. These are undesirable circum-
stances; therefore, when planning a study it is important to select the procedure that 
best balances validity and acceptability. Documenting acceptability may be chal-
lenging, but is usually assessed indirectly using refusal rates and directly by asking 
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participants questions about acceptability. Qualitative research methods (e.g., focus 
group discussions) are commonly seen as a useful alternative. 

  When the specifi c aims are clear and the appropriate general study design is 
chosen and described, the essence of the research plan is in place and some 
practical and effi ciency considerations are next on the agenda of the proposal 
developer. First, there are considerations around study size, which will be a 
major determinant of a study’s effi ciency and the amount of information that 
will be produced. This brings us to Chap.     7      .       
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Abstract
In planning and proposing a study, a paramount concern is the likelihood that the 
study will provide useful or meaningful information. An important factor in 
demonstrating that a study will be informative is sample size. If a study has a 
sub-optimal number of subjects, it may be under-powered to detect statistical 
significance even in the presence of a true effect, or estimates produced by the 
study may lack useful precision. On the other hand, if a study has too many sub-
jects, one may encounter resource limitations and ethical issues associated with 
exposing an unnecessarily large number of subjects to risk. An optimal study 
size therefore balances the need for adequate statistical power or precision, the 
limited nature of resources, and the ethical obligation to limit exposure to risk. 
As such, study proposals and scientific papers often include sections on the 
planning of study size. This chapter begins with an exploration of various factors 
that contribute to optimal study size. We then briefly review some useful sample 
size calculations in the contexts of surveys, cohort studies, case–control studies, 
and randomized trials.
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Validity considerations alone are often sufficient to imply that 
zero is the optimal size.
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7.1	 �The Concept of Optimal Study Size

Assuming that a study is perfectly valid, we are presented with an issue of how 
informative that study will be, a main determinant of which is sample size or study 
size. These synonymous terms are used to describe the number of subjects in a 
study. A concern of most reviewers of study proposals is whether the amount of 
information produced by a study will be large enough to make a ‘substantial 
contribution.’ Therefore, study size becomes a critical issue not only for planning 
studies but also for obtaining funding.

This situation raises many difficult questions: What is a ‘substantial contribution?’ 
Is a ‘substantial contribution’ the same for all stakeholders and for all study 
objectives? Is there – or under what conditions is there – a way to determine optimal 
study size? These questions demand complex answers that have been the subjects of 
many textbooks. Space constraints preclude a fully comprehensive review of this topic 
here; however, the present chapter deals with these questions in an introductory 
manner and provides useful tools and equations to make arguments about study size. 
Selected terms and concepts relevant to this discussion are listed in Panel 7.1.

Panel 7.1  Selected Terms and Concepts Relevant to Study Size Planning

Clinical relevance  Potential to have a meaningful effect on clinical practice
Community health relevance  Potential to have a meaningful effect on 

community health
Dropout rate  Proportion (or percentage) of enrolled participants who have 

an unplanned early cessation of individual follow-up
Optimal study size  A desirable yet realistic number of study participants 

based on ethical, scientific, and efficiency considerations. Only participants 
who contribute data to the analysis (i.e., those who do not drop out of the 
study) are included in optimal study size figures

Population size (Abbr., N)  The total size of a target population
Power  The probability of detecting a statistically significant association of 

a particular magnitude or greater when a true association exists
Precision (of an estimate)  Degree of lack of random error. In practice, 

precision is taken to be the narrowness of the confidence interval
Refusal rate  Rate of non-participation among eligible observation units 

invited to participate (those who refuse to participate cannot, by definition, 
contribute to a dropout rate)

Sample size (Abbr., n; Syn., study size)  (1) Number of sampled individuals 
to be approached for possible inclusion as participants. (2) Number of 
observation units that contribute data available for analysis

(continued)
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7.1.1	 �Factors Influencing Optimal Study Size

The planning of study size is often presented as a pure matter of statistical calculations 
of sample size and/or power. We urge readers who have not already done so to 
embrace a broader view: that there are generally no statistical means of determining 
what the optimal study size is (Miettinen 1985) because non-statistical factors 
greatly influence what is considered to be the optimal study size. A few reflections 
may clarify and illustrate this point.

First, problems with internal validity reduce the amount of information gained 
by all studies to varying degrees, even when that information is generated from very 
large studies. If we imagine that an idealized perfect study provides 100 ‘units of 
information,’ any real study will provide only a fraction of that amount. In a real 
study, the maximum amount of information that a study can provide depends on the 
design of the study, and as that study progresses, information is lost from various 
errors or issues. Thus, even if it were possible to design a perfect study with the 
potential to provide 100 ‘units of information,’ measurement error and the most 
minor ethical mishaps (both of which are impossible to avoid completely) will 
cause information to be ‘lost.’ Since we cannot measure the amount of information 
that a study can potentially provide or how much has been lost, we cannot account 
for ‘information loss’ using statistical means of determining optimal study size. By 
an extension of logic, therefore, using only statistics to determine optimal study size 
is impossible. Statistical calculations of study size do indeed help us to maximize 
the likelihood that a given study will be provide an acceptable amount of information; 
however, study size calculations must always be contextualized and modified with 
non-statistical factors.

Second, apart from validity concerns and ‘information loss,’ a variety of additional 
factors co-determine what study size will be perceived as useful or optimal, and 

Sample size calculation  An aspect of study size planning consisting of a 
statistical determination of the number of participants needed to satisfy 
concerns about precision of estimates or power to detect an anticipated 
effect

Sampling fraction  Sample size n divided by target population size N
Sample size planning  Determination of optimal study size
Significance level (of a null hypothesis test)  A pre-determined P-value (α) 

below which an obtained P-value is labeled ‘statistically significant’ or at/
above which an obtained P-value is labeled ‘statistically non-significant’

Stakeholders (of a research study)  Persons, institutions, or communities 
with an interest in a research study or that can be affected by a study or its 
results

Panel 7.1  (continued)
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these factors tend to differ according to the study design. For example, the optimal 
size of a Phase-1 trial is very low (typically n = 6–12) because of ethical consider-
ations. This type of study carries high risk because it represents the first time humans 
are being exposed to a new pharmaceutical formulation. The risks are unknown and 
therefore considered to be very high; therefore, an optimal sample size might be 
n = 10 in spite of statistical arguments suggesting that n = 50 is better. In this case, 
ethical considerations are valued more highly than the additional information that 
40 more participants would provide. On the other hand, a Phase-3 trial might be 
very large (on the order n = 10,000). At this stage, the short-to-medium-term safety 
and tolerability of a pharmaceutical formulation is better understood, and only 
reasonably safe interventions are considered suitable for a Phase-3 trial. In this study 
design, the primary objective is to assess effect sizes and medium-to-long-term 
safety, both of which can be quite small and relate to rare events. Consequently, the 
optimal size of a Phase-3 trial using the same formulation as a Phase-I study might 
be three orders of magnitude larger.

Third, financial and other resource limitations can ultimately weigh heavily on 
the perceived usefulness of study size. Since resource availability is sometimes 
dynamic during a study, the perceived optimal size of a study can change during the 
data collection phase of a prospective study. Such changes in perceived optimal study 
size can relate to an entire study, but sometimes optimal study size changes for one 
specific aim but not another. To illustrate this point, let us consider a 3-year-long 
prospective study in which Specific Aim 1 is to investigate whether zinc deficiency 
increases the risk of acquiring acute cholera and the severity of the disease, and Specific 
Aim 2 is designed to test whether various factors are effect modifiers for the effect 
of zinc deficiency. In year 2, the funding agency experiences financial difficulties that 
force redistribution of research funding, requiring the research team to scale back the 
study. Since effect modification tends to increase the optimal study size considerably, 
the research team and the funding agency meet and agree to re-craft Specific Aim 2 
to address only the two most important effect modifiers. Such a decision reduces the 
overall study size by 30 % and reduces the optimal study size for Specific Aim 2, 
while potentially having no study size consequences for Specific Aim 1.

From the above we deduce that scientific, ethical, and practical concerns drive study 
size planning. Though we highlighted only one factor for each of the three dimensions, 
many factors may need to be considered when optimal size is to be determined. 
Table 7.1 summarizes several of these factors, most of which are derived directly 
from the general principles of epidemiology (See: Chap. 1). The discussion above 
and Table 7.1 indicate that study size optimization is complex process involving the 
simultaneous consideration of numerous counter-acting phenomena.

7.1.2	 �Useful Precision or Power

One of the major considerations listed in Table 7.1 concerns a desired limit of precision 
for an estimate or a minimum power and significance for the detection of an anticipated 
effect, beyond which evidence is considered increasingly useless. The epidemiological 
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and statistical literature on sample size has mainly focused on this aspect, and later in 
this chapter we will further expand on such statistical aspects of study size planning. 
As mentioned previously, the use of statistics to determine the optimal study size 
must be contextualized with the factors discussed above and in Table 7.1.

7.1.2.1	 �The Range of Useful Precision
Outcome parameter estimates consist of a point estimate, surrounded by an interval 
estimate. For example, a point estimate of a prevalence rate is surrounded by a 95 % 
confidence interval. The interval estimate is an expression of the uncertainty 
surrounding the point estimate and derives mainly from sampling variation as well 
as measurement variation/error. In general, the degree of uncertainty is inversely 

Table 7.1  Considerations for determining optimal study size for a single specific aim

Dimension of concern Factor influencing optimal study size

Usual direction  
of influence  
on study size

Ethical Need to maximize societal relevance through 
stratified analysis for sub-layers of society 
(Particularistic studies)

↑

Need to minimize cumulative burden of study 
participation in non-minimal-risk studies

↓

Need to minimize potential harm ↓ to 0
Scientific/methodological Scientific interest in effect modification ↑

Internal validity problems that cannot be 
adequately adjusted for in the analysis

↓ to 0

Need for adjustments of outcome parameter 
estimates

↑

Need for efficiency and parsimony of design ↓
Minor design decisions, e.g., choice for a 
continuous outcome variable rather than a 
categorical one

↓

Interest in effect size or shape of relationship 
rather than the mere existence of an effect

↑

Existence of a desired limit of precision  
for an estimate; a minimum statistical power 
and significance level for the detection of an 
anticipated effect, beyond which evidence  
is considered increasingly useless  
(e.g., to a main stakeholder)

To within size 
leading to useful 
precision

Meta-analysis ↑ to maximum
Practical Existence of an upper threshold of study 

budget or a requirement to minimize costs
↓

Existence of a restriction in access to a vital 
implementation resource, e.g., a particular 
type of study personnel

↓

Natural limits to the amount of accessible 
observation units or information

↓ to limit

Expected refusal and dropout rates ↑
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related to the size of the study. On one hand, if a study is too small, the uncertainty 
may increase to a level considered to be undesirable or useless (an exception, 
however, is that well-designed small studies may contribute meaningfully to later 
meta-analyses; see: Chap. 25). On the other, as the study size increases, the degree 
of uncertainty decreases, and the interval estimate becomes narrower.

In the latter case, increasing study size to achieve higher precision may be con
sidered undesirable and useless beyond some threshold. For example, in case–control 
studies it is generally accepted that having more than 4 ‘controls’ for each case is 
inefficient. In practice, the starting question is thus often: What range of study 
sizes – at analysis – will give us an interval estimate narrow enough to be considered 
useful but not so exceedingly narrow as to be inefficient? Note that this refers to final 
precision, after any necessary adjustments in the analysis, e.g., after corrections for 
misclassification of outcome or determinant.

Can this range in fact be determined, considering that ‘usefulness’ and ‘optimal’ are 
both subjective perceptions? We argue that subjectivity does not imply total arbitrariness. 
As pointed out by Snedecor and Cochran (1980), what is needed is careful thinking 
about the use to be made of the estimate and the consequences of a particular margin 
of error. In this respect, the researcher planning study size may consider that:
• Perceived usefulness of a particular precision is often influenced by the fact that 

narrower confidence intervals enhance the precision of any subsequent projec-
tions of cost or efficiency of envisaged larger-scale policies. Thus, when the 
research study falls within a comprehensive evaluation of a possible new policy, 
high precision tends to become a necessity.

• It may be necessary to get the opinion of some stakeholders on the matter 
(especially those that are providing funding). Sometimes there is an explicit wish 
of a sponsor to obtain evidence with a specific margin of uncertainty, e.g., a 
desire to know the prevalence ‘within ± 1 %.’ This is frequently the case in diag-
nostic particularistic studies, such as surveys. The stated reasons for this are not 
always clear. Perhaps a similar margin was used in a previous study about the 
same occurrence and, if a similar level of precision is reached at the end of the 
new study, a 2 % or higher increase in prevalence could then roughly be seen as 
evidence for the existence of a real change in prevalence, although this is not the 
ideal way make such a determination (Altman et al. 2008). When there is such a 
desirable margin of uncertainty, the required study size to achieve this is usually 
easy to calculate (See: Sect. 7.4). When using this approach one should not forget 
to take into account possible necessary adjustments, perhaps for an expected 
refusal rate, the sampling scheme, finite population correction, measurement 
error, covariate adjustment, or other reasons, as will be discussed below.

• The perceived clinical or community health relevance of particular effect sizes is 
important. Stakeholders sometimes set a prior threshold for an effect size as a 
basis for decisions, e.g., about pursuing further research, about further develop-
ment of a drug or clinical strategy, or about further exploration of a public health 
policy. For instance, it may be stated that ‘only if the effect can, with reasonable 
certainty, be larger than x can it be considered clinically relevant.’ This type of 
expectation is generally easier to take into account using a power-based outlook 
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(See: below) rather than a precision-based outlook, although the latter has also 
been proposed (e.g., Greenland 1988; Bristol 1989; Goodman and Berlin 1994).

• When there is a desire for very high precision, it is unrealistic to aim for a preci-
sion that is so high that it approximates the expected variation due to measure-
ment error.

• There are possible (dis)advantages of wide or narrow confidence intervals, 
beyond issues of cost and feasibility. Narrow confidence intervals can give a false 
impression of validity and a false impression of generalizability (Hilden 1998). 
Wide confidence intervals often give a false impression of lack of validity.
Sometimes, given the multiplicity of factors influencing optimal study size 

(Table 7.1), there is little room for choosing a sample size in studies that plan for 
estimation. For example, there may be an upper limit to study size that is lower than 
statistical calculations suggest. The question may then become: given the maximum 
sample size imposed, will the precision be useful and worth the effort, resources, 
and potential risks? The issue of sample size calculation then becomes an issue of 
precision calculation.

7.1.2.2	 �Power to Detect an Anticipated Effect  
with a Chosen Confidence

Many studies plan for statistical testing. In such studies the outcome parameters are 
test statistics with P-values, e.g., a t-test statistic with an associated P-value. 
Statistical power is interpreted as the probability of detecting a statistically significant 
association of a particular magnitude or greater (Daly 2008). An important question 
in study size planning is then often: What range of study sizes – at analysis – will 
give enough statistical power (e.g., one often uses a power of 80 % at a 95 % level 
of confidence) to detect true differences of magnitudes considered meaningful?  
If the true effect is smaller than this anticipated meaningful effect, then we can 
accept a non-significant test result (Daly 2008). This refers to final power after any 
necessary adjustments in the analysis, e.g., after corrections for misclassification of 
the outcome or determinant (Edwards et al. 2005; Burton et al. 2009). Based on this, 
a statistical sample size calculation can often be done. In the later sections of this 
chapter examples will be given.

In current epidemiological practice, the abovementioned type of sample size or 
power calculation is frequently performed, not only in studies that plan for testing 
but also in studies that plan for the estimation of effects. This may partly be because 
the methods for precision-based sample size calculation are not yet fully part of 
epidemiological tradition and are less well known, less developed, and sometimes 
more difficult to use. This is one of the factors that perpetuate the use of statistical 
testing in studies that do not need it.

Sometimes there is little room for choosing a study size in studies where statistical 
testing is planned. The question that needs to be addressed in that case may be 
whether the statistical power of the study is expected to be useful or whether the 
power would only provide for detecting effects that are so extreme that one might as 
well abandon the study plans. The issue of sample size calculation then becomes an 
issue of power calculation.
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7.2	 �The Process of Study Size Planning

As we have noted above, the process of study size planning is not only a matter of 
statistical calculations but also a matter of many other considerations. Below we 
describe the usual process of study size planning in studies where there is indeed 
room for choice:

In the balancing of considerations listed in Table 7.1, the focus should first go to 
those factors that would require reductions of the study size to zero. In other words, 
any major issues about design validity and ethics should be addressed and solved 
first. This is obviously something that should already have been done at the stage of 
designing general objectives, specific aims, and general study design. However, it 
happens regularly that proposal reviewers, statisticians consulted for sample size 
and power calculations, and even article reviewers come across problems of this 
nature. This suggests that it is valuable to reconsider this aspect at this stage of the 
study planning process.

Conditional on satisfying concerns about design validity, design efficiency, and 
ethics, remaining major issues are the useful precision of statistical estimates 
(or, when statistical testing is planned, the statistical power to detect useful effects 
with some degree of certainty) and the costs of various hypothetical study sizes. 
Both may need to be calculated and balanced. At this stage statistical methods may 
be useful. Once an opinion is formed regarding the optimal study size, the next step 
is to project what sizes at preceding study stages (recruitment, sampling, eligibility 
screening, and enrollment) are expected to lead up to this optimal size at analysis. 
This determination will require considerations of expected rates of non-contact, 
refusal, and attrition as well as anticipated adjustments for measurement error and 
confounders, etc.

The process described is repeated for each specific aim separately. It may then 
turn out that optimal sizes, at analysis or before, for different specific aims are 
incompatible. This may even lead to the abandonment of one or more of the initial 
specific aims or to their ‘downgrading’ to a secondary or tertiary level aim because 
of expected lack of useful precision or power. The balancing exercise may also 
entail other study design changes, e.g., a choice for a more efficient design, a choice 
for another measurement level for the outcome variable, a reduction in the size of a 
reference series, etc. The balancing effort may even lead to the conclusion that 
financial resources, time, and availability of subjects do not allow for continuation 
of the study plans (Miettinen 1985).

7.3	 �The ‘Sample Size and Power’ Section  
of the Study Proposal

Written justifications of the chosen study size are usually located in the ‘sample size 
and power’ section of the study proposal or the methods section of a paper. These 
justifications may need to include elements listed in Panel 7.2.
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Let us now look at study size planning and sample size calculation in some par-
ticularly common situations. In the next sections we will discuss the optimal size of 
surveys, cohort studies, case–control studies, and trials. For each of those we will 
discuss how optimal sample size is influenced by ethical, scientific, and practical 
concerns. As far as sample size calculation is concerned, the next sections give 
examples both of the precision- and power-based approach. However, it should be 
noted that both approaches are not given for a given scenario; if the alternative 
approach is desired, we recommend consulting Kirkwood and Sterne (2003) or 
another book of medical statistics or sample size planning.

7.4	 �Size Planning for Surveys

A typical survey addresses multiple specific aims, each of which often contains two or 
more sub-aims. These sub-aims frequently entail subgroup analyses, such as com-
parisons of estimates for different catchment areas or across subgroups (e.g., age 
categories). The planning of study size therefore often requires an extensive 
exploratory phase to determine the size requirements for different subgroup analyses 
and to use this information to derive an optimal size for the entire study. A common 
approach in determining optimal study size is to prioritize the specific aims and 

Panel 7.2  Elements for Inclusion in the ‘Sample Size and Power’ Section  
of the Study Proposal

• Specify for which specific aim the calculations were done and why, or 
present the calculations separately for each specific aim

• Indicate whether a precision-based or power-based approach (or both) was 
used

• Indicate whether or not a more-or-less fixed or maximum study size 
imposed itself; if so, explain the rationale and how a precision- or power-
calculation was done

• If a precision-based approach was used, mention what precision was 
desired and why

• If a power-based approach was used, indicate what anticipated or desired 
effect size was used for the calculation and what level of significance 
was used

• Specify formulas used, assumptions made, and sources of inputs into the 
calculation method

• Mention if, why, and how adjustments of estimated study size were done 
to allow for expected refusals, dropouts, measurement error, subgroup 
analyses, and control for confounders

• Mention the results of the calculations
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sub-aims and to consider each in the context of resource limitations. This process 
may then lead to revisions to or refinements of one or more specific aims and/or 
sub-aims. Such revisions sometimes involve abandoning certain sub-aims (especially 
if the associated sub-aim is very resource intensive). A common alternative approach 
is to retain the sub-aim in question while acknowledging that findings may be 
statistically imprecise or underpowered.

As discussed in Chap. 9, target populations are rarely studied in their entirety, 
unless that population is very small and is contained within a small area. Attempting 
to survey an entire target population becomes increasingly inefficient as the size of 
the target population or its catchment area increases, introducing an ethical issue 
concerning the appropriate use of limited resources. Therefore, large surveys  
are more likely to require statistical sampling and, as will be discussed below, the 
sampling proportion then becomes an important consideration in the sample size 
calculation. When exploring the study size implications of the various research 
questions addressed in the survey, the following sample size calculations may be 
helpful. 

A note on notation:

N Capital N Refers to the size of the target population
n Lower-case n Refers to the size of the sample

7.4.1	 �Sample Size Calculation for Estimating a Prevalence

When the purpose of a survey is to estimate the prevalence of a health phenomenon, 
a main concern is the degree of confidence in the prevalence estimate. Therefore, it 
is said that sample size calculations for estimating prevalence are precision-based. 
The following formula is often used (Kirkwood and Sterne 2003): 

	 n
p p

e
=

−( )1
2

	 (7.1)

Where:
n = sample size for estimating a prevalence
p = expected proportion (e.g., 0.12 for a prevalence of 12 %)
e = desired size of the standard error (e.g., 0.01 for ±1 %)
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As an example, consider a proposed Study A, in which one purpose is to estimate 
the prevalence of depression in people over the age of 18 years. Based on similar 
studies from another region in the same country, the researchers predict that the 
prevalence of depression will be 12 % (p = 0.12) in their study. They want to achieve 
a standard error of 1 % around their estimate (i.e., 12 % ±1 %). In order to achieve 
this degree of precision, the researchers will likely need to have at least n = 1056 
participants (based on Eq. 7.1), a value that can be usefully rounded up to n = 1100.

It is important to note that the above equation is valid only if the calculated 
sample size (n) is less than 5 % of the target population (N). The value of n/N is 
known as the sampling fraction. If n/N is greater than 0.05 or 5 %, then a finite 
population correction is necessary. The use of a finite population correction is 
usually not necessary, as most studies do not usually sample 5 % or more of the 
target population. Since such a scenario is rare, we do not discuss the topic further 
in this chapter.

7.4.2	 �Sample Size Calculation for Estimating a Mean

A similar approach is used when the purpose of the survey is to estimate the mean 
value of a continuous health-related parameter. Again, a main concern is the degree 
of confidence in the estimated mean; therefore, in this case too a precision-based 
approach is useful. The following formula is often used: 

	 n
e

=
σ 2

2
	 (7.2)

Where:
n = sample size for estimating a mean
σ = expected standard deviation, and
e = desired size of the standard error

As an example, consider a sub-aim of Study A, in which the goal is to compare 
the mean body mass index (BMI) of participants with depression and those without 
depression. Previous studies of the target population indicate that the standard devi-
ation of BMI is expected to be 4.0 (σ = 4), and the desired standard error is 0.5 kg/
m2 (e = 0.5). Based on Eq. 7.2, Study A will likely need at least n = 64 participants in 
each group to achieve the desired degree of precision. This is a very realistic propo-
sition because the researchers anticipate a 12 % prevalence of depression with a 
sample size of n = 1,100; therefore, the smallest group in which BMI will be mea-
sured will likely be 0.12 * 1,100 = 132 participants. This sub-aim of Study A will 
therefore likely achieve greater-than-desired precision.
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7.4.3	 �Sample Size Calculations When Comparing  
Proportions

When the outcome parameter is the difference between two proportions, such as 
prevalence estimates, a power-based approach is usually taken to calculate sample 
size. The following series of formulas can be useful: 

	 n
c p p p p

p p

pp=
−( ) + −( ) 

−( )
1 1 2 2

1 2

2

1 1
	 (7.3)

Where:
n = sample size for estimating the difference between two proportions
c

pp
 = constant defined by the selected P-value and desired power

p
1
 = expected prevalence in group 1

p
2
 = expected prevalence in group 2

The constant c
pp

 is determined by taking the square of the sum of the Z scores for 
the selected P-value and desired power: 

	 c Z Zpp = +( )α β

2
	 (7.4)

Where:
c

pp
 = constant defined by the selected P-value and desired power

Zα = Z score defined by the P-value (See: Table 7.2)
Zβ = Z score defined by the statistical power (See: Table 7.2)

For example, the Z score for a P-value of 0.05 is equal to 1.96, and the Z score 
for 80 % power is 0.840. The sum of these values is 1.96 + 0.84 = 2.8, and this 
quantity squared is 7.8. This calculation has been performed for various common 
P-value and power combinations; the results of these calculations are shown in 
Table 7.2.

It is critical to note that Eq. 7.3 assumes that groups 1–2 are of equal size. Such 
a scenario is fairly uncommon, however. Therefore, one may need to adjust the 
value n to account for unequal group sizes. After using Eq. 7.3, one can employ 
Eq. 7.5 to execute the adjustment: 
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Table 7.2  Values for c
pp

 based on common P-value and statistical power Z scores

Power (1-β)

80 % 90 % 95 % 99 %
P-value (α) Z scores Zβ,80

 = 0.840 Zβ,90
 = 1.282 Zβ,95

 = 1.645 Zβ,99
 = 2.326

0.05 Zα,0.05
 = 1.960 7.84 10.51 13.00 18.37

0.01 Zα,0.01
 = 2.576 11.67 14.88 17.82 24.03

	 ′ =
+( )

n
n k

k

1

4

2

	 (7.5)

Where:
n′ = calculated sample size with adjustment for unequal group sizes
n = calculated sample size assuming equal sample size (i.e., unadjusted)
k = the ratio of planned sample sizes of the two groups, where the larger 

group’s size is divided by the smaller group’s size.

Equation 7.5 can be used to adjust for unequal group sizes in other sample 
size calculations, not just for the comparison of two proportions.

As an example, imagine a study in which one is comparing the prevalence  
estimates of ovarian cancer in women aged 45–50 years versus 70–75 years. 
Significance was set at P < 0.05, and power of 90 % is considered acceptable for this 
study. For this P-value and this power, the correct value for c

pp
 is 10.51 (Eq. 7.4 and 

Table 7.2). Based on previous studies, it is hypothesized that the prevalence of ovar-
ian cancer will be 1 % in the younger age group and 4 % in the older age group. 
Using this information and Eq. 7.3, N is calculated to be 564 people per group.

This value assumes that one desires groups of equal size. However, if one 
anticipates or desires different group sizes, the value 564 must be adjusted to 
account for unequal group sizes. If your study will involve 3-times as many 
women in the younger age category than in the older age category (as the preva-
lence of ovarian cancer in women aged 45–50 years is much lower), then the 
ratio k will be 3/1 = 3. Using this value and n = 564 (the value to be adjusted), the 
total sample size for the entire study, n’, will be 752. This value can be usefully 
rounded to 800 participants in total. Let us assume that only women in the 
45–50 and 70–75-year-old age groups will be enrolled in the study. Since one 
plans to enroll 3-times as many women in the younger age group than the older 
age group, the 800 total participants will be composed of 800 ÷ (3 + 1) = 200 
women aged 70–75 years and 800–200 = 600 women aged 70–75 years 
(600 ÷ 200 = k = 3).
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7.4.4	 �Sample Size Calculation When Comparing Means

When the outcome parameter is the difference between two means, the following 
equation can be used to calculate the sample size: 

	 n
c

D

pp=
+( )σ σ1

2
2
2

2
	 (7.6)

Where:
n = Sample size for estimating the difference between two means
σ = expected standard deviation of the mean difference
c

pp
 = constant defined by the selected P-value and desired power (Table 7.2)

D = expected minimum difference between the means

For example, consider a study in which one wishes to compare the magnitude of 
weight loss in ovarian cancer patients being treated with regimen A or regimen B. 
Both groups are expected to lose weight on average, however, one hypothesizes that 
regimen A will be associated with greater weight loss than B. A pilot study allowed 
the investigator to predict the standard deviations of the weight loss for A to be 7 kg 
(σ

1
) and for B to be 9 kg (σ

2
). The investigator considers a minimum difference in 

weight loss of 3.0 kg (D = 3.0) to be clinically important. A power of 95 % and 
P-value of 0.05 were considered adequate for this study; using these parameters and 
Eq. 7.4, c

pp
 was determined to be 13.00 (Table 7.2). These pieces of information can 

be plugged into Eq. 7.6 to calculate a total sample size of n = 188. As discussed in 
the previous sub-section, Eq. 7.5 can be used to adjust this result to account for 
unequal group sizes.

7.5	 �The Size of an Observational Etiognostic Study

The sample size calculations discussed thus far relate to fairly straightforward, 
common scenarios in epidemiology, the estimation or comparison of proportions or 
means. Yet many investigators wish to address questions about etiology, or the 
causal factors that contribute to a health phenomenon. In this section we discuss 
sample size calculations in two typical etiognostic research scenarios, the traditional 
cohort study and the traditional case–control study. Such studies require additional 
considerations based on specific details of the study design. For example, choosing to 
contrast more levels of a determinant, to study a larger number of causal co-factors, 
or to study more effect modifiers will tend to increase the required sample size beyond 
what sample size calculations suggest. On the other hand, making a strategic decision 
to use a more sensitive measure that does not compromise specificity will tend to 
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reduce the required sample size (Miettinen 1985). Study design factors will need to 
be considered on a case-by-case basis and their implications for sample size may 
need to be addressed.

7.5.1	 �Sample Size Calculation for a Traditional  
Case–Control Study

In case–control approaches the following formula is often found helpful for 
developing an argumentation about study size: 

	 n
Z p p p p Z p p

p p

ave ave
=

−( ) + −( ) + −( )





−( )

2 1 1 2 11 1 2 2

2

2 1

2

β α
	 (7.7)

Where:
n = sample size of a case–control study
Zα = Z score for the desired level of significance
Zβ = Z score for the desired power
p

1
 = expected proportion of exposure among controls, as derived from p

2
 and 

an anticipated odds ratio (See: Eq. 7.8)
p

2
 = expected proportion of exposure among cases

p
ave

 = average of p
1
 and p

2

To use this equation, one must establish an anticipated odds ratio (OR). This 
quantity can sometimes be based on knowledge of the strength of association for 
other risk factors, but ultimately, the anticipated OR should be driven primarily by the 
hypothesis being tested. A second piece of information that must be obtained is an 
expected proportion of exposure among cases (p

2
). The value p

2
 can often be antici-

pated using external survey data, employing pilot studies, or locating relevant 
literature. These two pieces of information, the anticipated OR and p

2
, can be 

plugged into the following equation to compute p
1
:

	 p
p OR

p OR2
1

11 1
=

+ −
( )

( ) 	 (7.8)

As an example, consider a case–control study aimed at investigating whether 
chronic chewing of smokeless tobacco is associated with increased odds of develop-
ing any form of mouth cancer. Patients with mouth cancer (cases) and without 
mouth cancer (controls) are recruited to the study. A pilot study allowed the investi-
gator to estimate that 24 % of cases will have a history of chronic chewing of smoke-
less tobacco (p

2
 = 0.24). The investigator anticipates that the OR of having a history 
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of chronic chewing of smokeless tobacco is 6. The values p
2
 = 0.24 and OR = 6 can 

be plugged into Eq. 7.8 to determine that p
1
 = 0.05. In other words, this investigator 

predicts that 24.0 % of cases and 5 % of controls will have a history of chronic 
chewing of smokeless tobacco. The average of p1 and p2 is equal to 0.145 (p

ave
). The 

investigator has set the level of significance at 0.05 and desires to achieve a power 
of 90 %; the corresponding Z scores are Zα = 1.96 and Zβ = 1.282 (Table 7.2). With 
all of these pieces of information at hand, it is possible to calculate that this study 
will likely need to include N = 141 participants in total, a value that can be usefully 
rounded up to 150 total participants. Assuming that this case–control study uses a 
fairly common ratio of 4 controls for each case, this study should include approxi-
mately 30 cases and 120 controls (based on Eq. 7.5).

7.5.2	 �Sample Size Calculation for a Traditional Cohort Study

To develop an argument around study size for a traditional (independent) cohort 
study, a slightly more complicated calculation can be useful: 

	 n

Z
m

Z
p p

m
p p

p

p p

=

+





 −( ) + −( )







 + −( )











α β1

1
1

1
11 1

2 2

2

1 −−( )p2

2
	 (7.9)

Where:
n = total sample size of a cohort study
Zα = Z score for the desired level of significance
Zβ = Z score for the desired power
m   = the number of unexposed participants per exposed participants
p

1
   = the probability of event in unexposed participants

p
2
   = the probability of event in exposed participants

p mp p m= + +( ) / ( )1 2 1

To illustrate this equation, let us consider a study in which an investigator aims 
to determine whether obese adults are more likely to develop colon cancer than are 
non-obese adults. The investigator has set the level of significance at 0.05 and 
desires to achieve a power of 80 %. The investigator hypothesizes that obese partici-
pants will have a twofold increase in the risk of developing colon cancer compared 
to non-obese participants (i.e., a relative risk or RR = 2). Since RR = 2 = p

2
/p

1
, the 

probability of developing esophageal cancer in one group (either non-obese or 
obese) is sufficient to predict the probability of developing the disease in the other 
group. Assuming that the study will last for 5 years and that the probability of devel-
oping colon cancer in non-obese participants during that time is estimated (based on 
previous work by other researchers) to be 5 % (p

1
 = 0.05), the expected probability 

of developing colon cancer in the obese group is 10 % (p
2
 = 0.10). The investigator 

J.R. Brestoff and J. Van den Broeck



153

plans to enroll three non-obese participants per obese participant (m = 3). Knowing 
p1, p2, and m, it is possible to calculate the value p  = 0.0625. With all of this infor-
mation on hand, the investigator executes Eq. 7.9 and determines she will likely 
need to enroll at least 271 participants, an estimate that can be usefully rounded up 
to n = 300. Since the investigator plans to enroll 3-times as many non-obese people 
as obese people, she used Eq. 7.5 to determine that her study should include approx-
imately 75 obese participants and 225 non-obese participants.

There is an important caveat, however, that must be considered in cohort studies on 
the existence of relatively minor effects. In such cases, sample size calculations tend 
to produce under-estimates. One way to address this issue is to increase the number of 
exposed participants, though this approach requires more resources. A more efficient 
approach is to over-represent extreme degrees of exposure in the exposed group. For 
example, of the 75 obese participants in the example above, it may be wise to include 
more severely obese participants than might be enrolled by chance alone. Two 
critical assumptions of this approach are that there is a dose-dependent relationship 
between the exposure and the outcome, and that all potential confounding exposures 
in obese and severely obese participants are similar. If such an approach is taken, it 
should be clearly reported in the methods section, and these assumptions should be 
tested with their results disclosed in detail in the results section.

7.6	 �The Size of an Intervention Study

Study size gains elevated importance in intervention studies, such as randomized 
controlled trials (RCTs), because the risks associated with intervention studies are 
generally greater than diagnostic or etiognostic studies. Any intervention poses 
some degree of risk to the participants; therefore, over-enrollment could expose an 
unnecessarily large number of participants to a potentially harmful intervention 
when fewer participants would have been sufficient. In other words, in intervention 
studies, sample size becomes a major ethical issue, where the main concern is to 
balance the needs for attaining useful results and for limiting potential harm.

The degree of importance of sample size in an intervention study is directly propor-
tional to the riskiness of that study and is informed by the aims of the study. For example, 
the optimal size of a Phase-1 clinical trial, the first time a new drug is given to humans 
for safety and tolerability testing, is very heavily influenced by ethical considerations. 
Consequently, Phase-1 trials tend to be very small (e.g., n = 6–12). In a Phase-2 study, 
when a drug’s dosing regimen is being evaluated, safety and tolerability are better estab-
lished but still unclear; therefore, Phase-2 studies tend to be larger than Phase-1 studies 
but still relatively small (e.g., n = 15–60). The increase in study size in Phase-2 studies 
often allows preliminary hypothesis testing of efficacy and negative outcomes, though 
only large effect sizes tend to be detected in such small studies. In a Phase-3 study, on 
the other hand, the planned study size must be larger than in a Phase-3 study because 
effect size must be determined. In order to get to Phase-3, safety was previously estab-
lished in Phases 1–2; therefore, the risk of harm is lower in a Phase-3 study. Consequently, 
depending on the goals of the study and the predicted effect size, Phase-3 studies can be 
as small as n = 200 and as large as n = 22,000 (e.g., Physician’s Health Study-I).
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In any intervention study, it is generally useful to consider ways to increase the 
efficiency of the study without compromising statistical power. One commonly 
employed approach is to tweak elements of the study design in order to increase the 
total number of participants who are likely to experience an outcome of interest. 
Such tweaks often include: selecting subjects from high-risk populations, lengthening 
the follow-up period, maximizing compliance, and minimizing drop-out/attrition rates 
(See: Chap. 17). In making such tweaks, one must be very careful to avoid introduc-
ing unacceptable bias or ethical errors, and it is critical to report these intentional 
tweaks in the methods section so others can critically appraise the results.

When calculating sample size for an intervention study, by far the most common 
approach is to use formulae for the calculation of study size for the comparison of 
means or proportions (see: Eqs. 7.3 and 7.6). Therefore, in this chapter we will not 
further discuss study size planning formulae for intervention studies. However, there 
are many comprehensive resources covering a wide range of intervention scenarios. 
Readers interested in this topic may find useful additional information in statistical 
textbooks and books on clinical trials, e.g., Meinert (1986).

7.7	 �Accounting for Attrition

In every study there will be some proportion of participants who withdraw from the 
study or are otherwise lost to follow-up. The best way to account for these pheno
mena is to increase study size calculations by a known factor based on previous 
studies or a pilot study. However, such information is not always available, so a 
common approach is to round up to a useful study size (e.g., n = 271 can be usefully 
rounded up to n = 300). Although this approach provides some leeway, some 
researchers have advocated for a simple further adjustment: to add an additional 
10 % (e.g., n = 271 is rounded to n = 300 and 10 % is added to make n = 330). Though 
such accounting is helpful for planning and budgeting studies, it should be noted 
that there is no standardized approach to dealing with this issue. Indeed, there is a 
great deal of controversy regarding approaches to account for attrition. In order to 
limit potential criticisms, an important task for writing successful grants or other 
funding requests, we recommend making adjustments to sample size based on pilot 
studies or literature, and resorting to the 10 % add-on approach if no such pilots or 
literature are available.

An ideal scenario is to plan the size and procedures of a study from a scientific 
point-of-view only and, consequently, to aim for very high power/precision 
and to employ only the most accurate, sophisticated procedures (which are 
often the most expensive). However, in practice, such an ideal scenario is 
quite rare in part because stakeholders typically put some level of restriction on 
such ambitions. It is therefore quite evident that interactions with stakeholders, 
a topic that is discussed in the next chapter, are crucial if one wants to develop 
a realistic and ethical plan for a study.
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  8      Funding and Stakeholder Involvement 

             Jan     Van den     Broeck       and     Jonathan R.     Brestoff     

    Abstract 
   This chapter clarifi es the concept of research sponsorship and provides general 
advice for seeking and applying for research grants. Funding bodies and other 
research sponsors represent an important group of stakeholders, and their 
involvement and roles in research projects are discussed here as well as in Chap. 
  30     (Dissemination to Stakeholders). Sponsors and research institutions carry 
ethical obligations that are directly relevant not only to society but also to the 
researchers applying for funding. Some of these obligations are discussed here. 
After identifying funding bodies and sponsors, submitting a grant application 
typically initiates a variable and competitive review process; knowledge of a 
funding body’s review process is useful in constructing successful grant applications. 
An ongoing process after the receipt of funding – grant management – is critical 
to achieving the grant’s specifi c aims and to completing studies within resource 
constraints, and practical advice on grant management is accordingly provided.  

 Donors don’t give to institutions. They invest in ideas and people 
in whom they believe.  

 G.T. Smith  
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8.1        Sponsors and Other Stakeholders of Research 

 Sponsors and other stakeholders of research play a pivotal role at all stages of the 
epidemiological research process. In this section we introduce the concepts of 
‘stakeholdership’ and sponsorship and we zoom in on sponsor roles in general and 
on funding of research. Selected terms and concepts relevant to these topics are 
found in Panel  8.1 . 

8.1.1     Stakeholders of Research 

 Stakeholders are all individuals, institutions, or communities who are interested or 
can be affected by a research project. This implies that epidemiological research has 
many stakeholders at many levels, from individuals to society-at-large. Pivotal 
stakeholders are the research participants, the investigators themselves, and the 
funding bodies supporting the research project. Table  8.1  lists some categories of 
stakeholders and the types of research studies they often support.

8.1.2        Sponsors of Research 

 A research sponsor is an individual, company, institution, or organization taking 
responsibility for the initiation, management, and/or fi nancing of a research study. 

   Panel 8.1 Selected Terms and Concepts Relevant to Funding and Stakeholder 
Involvement 

     Funding  (of a research project)    (Provision of) availability of fi nancial 
resources in support of a research project   

   Grant management     Administrative management of the use of a research 
grant   

   Grant proposal     Research proposal document submitted to a funder of 
research in view of the obtainment of a research grant   

   Peer review  (of a grant proposal)    A check, by scientists knowledgeable of 
the type of content at issue, of the scientifi c soundness, feasibility and 
acceptability of the grant proposal   

   Research grant     An amount of money allocated to a specifi c research study 
by a funder of research (variably accompanied by other forms of support)   

   Sponsor     An individual, company, institution, or organization that takes 
responsibility for the initiation, management, and/or fi nancing of a study   

   Stakeholders  (of a research study)    Persons, institutions or communities 
who have an interest in a research study or can be affected by its activities 
or by the study results     
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This defi nition implies that sponsors can facilitate research in several ways, including 
sponsorship without fi nancial support. It also means that for any given research 
study there can be several sponsors, each taking on one or more roles. Their 
sponsorship may include:
•    Funding  
•   Protocol development  
•   Organization of scientifi c and ethical oversight and support  
•   Facilitation of recruitment, sampling, and enrollment  
•   Training, quality assurance, and quality control support  
•   Technical assistance with devices, instruments, drugs, etc.  
•   Dissemination of results    

 The scope of responsibilities of a sponsor can be very wide and nowadays 
encompasses setting research priorities (Textbox  8.1 ). For investigators and grant 
applicants it is very important to have a good insight into what specifi c responsibilities 
a sponsor is willing and able to take. For example, many sponsors will not directly 
engage in infrastructure building (unless the grant is specifi cally for this purpose, 
such as a Construction Grant), and some sponsors provide guidance on study design 
and protocol development. Clarity about mutual responsibilities helps facilitating 
contacts between investigators and sponsors. Researchers should ask about the 
sponsor’s expectations about these and other issues:
•    Time commitment of the investigators  
•   Frequency and content of progress and budget reports  
•   Frequency and content of any data and safety monitoring reports; and collaboration 

with study monitoring activities  
•   Which Good Clinical Practice guidelines should be followed  

      Table 8.1    Some categories of stakeholders and types of research they often sponsor   

 Stakeholder category 
  Examples of types of studies frequently 
supported 

  Research institutions, academia, 
individual investigators  

 All types of studies 

  Public health authorities, government   Surveys 
 Surveillance studies; outbreak investigations 
 Forecasting studies 
 Community intervention studies 
 Cost-effectiveness studies 

  Industry   Intervention studies 
  Methods-oriented studies focusing on 
performance of new devices 

  Patient advocacy groups    Studies on the particular illness of interest to 
the group 

  Public interest groups, community 
organizations  

  Studies on community diagnosis, etiognosis, 
prognosis 

  Charitable individuals  (Volunteers, 
Maecenas),  foundations, trusts  

  Studies on particular illnesses or public health 
problems of interest to the charitable entity 
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•   Issues of confl ict of interest and intellectual property ( See:  Chap.   31    )  
•   Issues of contractual agreements, e.g., about publications    

 Researchers often appeal to multiple stakeholders to take on some sponsorship 
role, especially that of funding. Some sponsors will fund studies when approached 
in the right way; thus, fundraising skills are important. Strategies for fundraising 
include:
•    Seeking project grants  
•   Seeking core grants and program grants  
•   Partnerships with the private sector  
•   Investment in research (often for-profi t companies)  
•   Capital fundraising (often for-profi t companies)    

 Only the seeking of project grants is further discussed in this chapter because of 
its particularly high relevance to many individual epidemiologists.   

8.2           Project Grant Seeking 

 Project grant seeking is the main form of fundraising by most investigators and their 
institutions. 

8.2.1     General Principles of Grant Seeking 

 Some sponsors/funders are open to novel research ideas and designs and will 
consider grant proposals within the scope of their mission. Others have strictly 
defi ned, specifi c research areas or even specifi c research questions that they are 
interested in only. It is essential that investigators-applicants are well aware of such 

   Textbox 8.1 Sponsor Responsibilities in Setting Research Priorities 

  Sponsors of research, especially funders, are increasingly involved in setting 
research priorities  

  Research priority setting  needs to be based on existing evidence about ill-
ness burdens and knowledge gaps. It needs to involve intensive communica-
tion between expert scientists and policy experts. Sponsors and funders of 
research all over the world should give consideration to international ethical 
issues, such as equality in access to research on a global scale (e.g., require-
ments to publish papers in an open-access manner), fair distribution of 
research burdens, possibilities for research into specifi c health issues of devel-
oping countries. Similarly, national sponsors should pay attention to equality/
fairness and special research issues within a country, and the same applies to 
other levels. Viergever et al. ( 2010 ) provide a checklist with advice for good 
practice in these matters.  See also:  Tomlinson et al. ( 2011 ). 
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specifi cations. For example, (1) the United States National Institutes of Health 
(NIH) regularly call for proposals in specifi c health domains, and (2) pharmaceutical 
companies often fund research on topics with clear commercial prospects. Internally, 
sponsors tend to allocate their funding budgets over periods of 1–5 years to keep 
pace with changing priorities. In support of budgeting processes, some sponsors 
involve members of the scientifi c community or other stakeholders in outlining their 
specifi c areas of interest. 

 General rules of scientifi c writing ( See:  Chap.   28    ) apply to grant proposals in 
principle, but in practice applicants are expected to abide by the rules, guidelines, 
and preferences of the specifi c funder (even with respect to preferred concepts, 
terminology, and style). Funders only invest in ideas and people whom they believe 
will further their own goals and who have followed their preferred procedures from 
the earliest contact. In principle, key to an applicant’s pecuniary success in grant 
seeking is the ability to induce grant proposal reviewers to have a perception of 
scientifi c rigor, feasibility, innovation, and potential for having a large impact. 
Grants are obtained when the sponsor believes in the principal investigator, research 
team, and institution. If that belief is reinforced by successful completion of a project, 
it may become easier to obtain future funding.  

8.2.2     Project Grant Seeking as a Process 

 A basic introduction to grant seeking is found in Devine ( 2009 ). The author describes 
the process of grant seeking from the perspective of the investigator-applicant. 
A synopsis (slightly adapted) of the key steps follows:
•    First, one develops a pre-proposal or a typical proposal ( See:  below) and discusses 

it with potential collaborators, institutions, and non-funding stakeholders  
•   Having become familiar with the current interests and granting methods of 

relevant sponsors, one shortlists sponsors whose interests and methods fi t best 
with the specifi c research question addressed in the (pre-)proposal  

•   Usually one fi rst creates a revised version of the (pre-)proposal that maximizes 
the fi t with each shortlisted sponsor; it is important to discuss this revised (pre-)
proposal with scientifi c collaborators and institutions involved  

•   Next, one contacts one or more potential sponsors-funders at an appropriate time 
with respect to the sponsors’ ‘funding cycles.’ Many sponsors use triage methods 
such that a full proposal is not required initially but only at the fi nal stage  

•   To develop a full grant proposal (if required), one should carefully follow the 
sponsor-specifi c guidelines  

•   The research institution(s) of the investigator should provide administrative 
review of the grant application. By authorizing to send a proposal to a potential 
sponsor, the institution is confi rming that, in it’s best estimation:
 –    The research project can be performed at the proposed funding level  
 –   Any unique policies of the institution have been considered  
 –   The proposal meets the requirements of the potential sponsor  
 –   The institution will comply with all legal requirements  
 –   The investigator will adhere to the institutional policies        
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8.2.3     Developing a Project Grant Proposal 

 As highlighted by Schroter, Groves, and Højgaard ( 2010 ), currently there are no 
uniform requirements for the format of grant proposals, although a large proportion 
of funders would be sympathetic to that idea. The particular instructions of each 
sponsor must be followed. Yet, there are elements that tend to be common to all, 
allowing for the construction of a typical detailed grant proposal structure (Panel 
 8.2 ). This structure is useful in the early stages of proposal development and can be 
easily adapted to follow a sponsor’s particular instructions (usually available on the 
sponsor’s website). In addition, one can use a ‘model proposal,’ i.e., a proposal that 
was previously successful. Someone in the team has to accept the main responsibility 
of proposal development, and consequently, must drive that process. 

 Writing a grant proposal is very similar to writing a scientifi c paper albeit with 
other emphases and without results and discussion sections. Much of the advice that 

   Panel 8.2 Typical Structure of a Detailed Project Grant Proposal 

     1.    Title and summary   
   2.    Investigators, collaborating institutions, and research capacity   
   3.    Table of contents   
   4.    General objectives and specifi c aims   
   5.    Background and signifi cance   
   6.    Preliminary studies   
   7.    Research design and methods

    (a)    Study design: study area, target population, general design, inter ventions   
   (b)    Outcome measures, case-defi nitions   
   (c)    Study eligibility   
   (d)    Study procedures   
   (e)    Laboratory methods   
   (f)    Sample size and power   
   (g)    Data management   
   (h)    Data analysis   
   (i)    Time frame   
   (j)    Possible pitfalls and alternative strategies       

   8.    Ethical issues   
   9.    Literature cited   
   10.    Budget and budget justifi cation
11. Possible addenda

    (a)    Curriculum vitae of investigators   
   (b)    Letters of institutional support   
   (c)    Letters of support from other stakeholders   
   (d)    Questionnaire drafts   
   (e)    Standard operating procedures         
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will be given in Chap.   28     (Scientifi c Writing) applies. For example, to overcome 
writer’s block, one can simply start by typing out the structure of the document with 
necessary sections and sub-sections. Since the process of proposal development can 
be very complex, we recommend that those new to the process or looking for new 
approaches begin writing their proposals by adding bullet points under each subsec-
tion. This approach is effi cient and useful because the proposal development 
process is non-linear; ideas relevant to different sections are often inspired non-
sequentially. The bullet points then can be progressively developed into text and 
new ones added as ideas come up. 

 The title and the summary are crucial elements of the proposal because they play 
a key role in most sponsors’ review processes (Bordage and Dawson  2003 ). The 
summary is written last and focuses mostly on refl ecting specifi c aims, research 
design, and methods. Literature evidence on the topic is concentrated in the section 
on background and signifi cance, although literature on methodological issues 
is useful to cite (if available) in the sections on research design and methods. 
A systematic approach to reviewing the existing evidence is typically viewed 
favorably ( See:  Chap.   25    , Sect.   25.1     on Systematic Literature Reviews). All scientifi c 
statements must be correct and referenced; inaccuracies and incorrect interpreta-
tions strongly work against the proposal and may themselves lead to poor reception 
by reviewers. It may be useful to include a list of abbreviations and a glossary of 
 technical terms. The section on specifi c aims (object design) is one of the most 
important sections of a grant proposal (Textbox  8.2 ).   

8.2.3.1         Feasibility Arguments 
 Proposals do not typically have a section dedicated to feasibility, but one can embed 
feasibility arguments in various sections of the proposal. For example, Sect. 2 
(Investigators, collaborating institutions, and research capacity) and 6 (Preliminary 
studies) of the grant proposal allow one to put appropriate emphasis on some aspects 
of feasibility. One can show that the investigator and team are qualifi ed, experienced, 
and motivated by including the bio-sketches of investigators and collaborators, an 

   Textbox 8.2 Key Sections of a Grant Proposal 

 The soundness of the  specifi c aims section  is seen by most reviewers of study 
proposals and grant proposals as an important sign of scientifi c quality. 
Adherence to the principles and guidelines of general study design ( See:  
Chaps.   5     and   6    ) must be apparent in the description of the specifi c aims as 
well as throughout the  section on research design and methods . If there are 
several specifi c aims, then the following should normally be briefl y  described 
separately for each : study attributes of interest and their proposed relations 
(outcomes, determinants, effect modifi ers, and confounders), sample size/
power descriptions, study variables (measurements, case defi nitions), outcome 
parameters, and analysis plan. 
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overview of previous publications in the fi eld of research, and evidence of serious 
time commitment. If laboratory measurements are to be used (e.g., enzyme- linked 
immunosorbence assays or ELISA’s), then preliminary data showing that the specifi c 
research team can in fact measure the parameter using the stated technique is very 
helpful. Other aspects of feasibility are documented by letters of support from 
institutions and other stakeholders and by providing evidence of access to the 
necessary infrastructure. 

 In order to show competence it is also important to deliver a proposal with 
correct syntax and spelling, a consistent format, and a polished scientifi c writing 
style expressing coherence and sound logic. Further signals indicating investigator 
competence may be due attention to data management and ethical issues. In addi-
tion, timelines should be realistic and take account of the time necessary for 
study preparations, training, recruitment, follow-up, analysis, and writing. Timelines 
should also take into account the expected turn-around time of ethical and grant 
review. An unrealistic or overly ambitious timeline carries many risks, including 
potentially being seen as naïve to the tasks required to completing the study. Finally, 
the budget should be realistic and well justifi ed, and it should be made in con-
sultation with experienced epidemiologists and the home institution’s grant offi cials 
to increase the likelihood that adequate funding is being requested.  

8.2.3.2     Budget Plan and Justification 
 Failing to request enough fi nancial resources necessary to complete a project can ruin an 
otherwise strong proposal. A well thought-out, realistic fi nancial plan is important to 
ensure that the project will be suffi ciently funded. Concerns over cost reduction should 
not compromise the validity of a proposed study; in fact, it is good practice for budget 
item justifi cations to repeatedly refer to their contributions to study validity. Even if the 
potential funder only requires a global budget, the provided budget must be based on a 
careful costing exercise for the entire study. If cost estimates are very high and are felt to 
compromise the likelihood of being funded, it may be worth approaching multiple 
funding bodies (an approach that should be made clear in the application and perhaps in 
advance of formal submission to notify all funding bodies) and/or considering whether 
some elements of the study are, in fact, unnecessary and can therefore be cut. 

 Budget items may fall into the broad categories listed in Panel  8.3 . This list 
should not be considered all-inclusive, as the range of possibilities is wide. 

 One should check which budget items are allowable by the sponsor and be 
exhaustive in listing justifi able budget items. The fi nancial resources needed are 
obviously very study-specifi c and the nature of budget items may be quite different 
according to the type of study. In intervention studies, for example, the budgeting 
must be inspired by cost estimations around the use of drugs, devices, and other 
treatments. Consideration should be given to their purchase/donation, shipment, 
storage, stocks, administration to participants, adherence assessment, side-effects 
management, and adverse events monitoring and reporting. It is worth noting that 
some items are easily forgotten in budget plans, examples of which include:
•    Costs of data management (including data cleaning) and quality control  
•   Costs associated with ethical review and scientifi c oversight  
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•   Costs associated with systematic reviews and meta-analyses, e.g., staff salary, 
internet and library access, article purchase, copying and printing costs, and 
translation of foreign language articles  

•   Costs of grant management      

8.3         Reviewing a Project Grant Proposal 

8.3.1     Internal Review of Grant Proposals 

 Extensive internal review is required before sending a grant proposal to sponsors. 
When reviewing, in addition to verifying completeness of the content offi cially 
required by the sponsor, use can be made of the checklist of areas of concern listed 
in Panel  8.4 .   

8.3.2       External Peer Review of Grant Proposals 

 A newly submitted full project grant proposal will fi rst be assessed internally by the 
funder to check for completeness and for compatibility with the sponsor’s interests. 
Any missing elements (even minor ones) in the submission may lead to immediate 
rejection. Many sponsors then use external reviewers to assess the project grant 
proposals that survived the initial screening. The reviews are currently based on 
funder-specifi c guidelines. Usually three or more grant reviewers are involved. 

   Panel 8.3 Budget Item Categories Often Used in Budget Specifications (Exact 
Categories and Terms to Be Used in a Grant Application are Sponsor-Specific) 

•     Overhead costs (Indirect costs; this is dependent on the home institution)  
•   Direct costs

 –    Personnel-related costs  
 –   Procurement of Research and Development services  
 –   Equipment purchase

   Transport-related  
  Communication-related  
  Measurement procedures-related e.g., for lab analyses  
  Intervention-related     

 –   Operating costs
   Travel and dissemination  
  Training      
  Space rental  
  Miscellaneous costs          
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Based on the reviewers’ reports proposals are ranked and a shortlist is made of 
proposals recommended for funding. The recommendation is made to a board that 
will make the fi nal choices. Some sponsors organize review committee meetings to 
rank the proposals before recommendation to the board. 

8.3.2.1     Why Project Grant Proposals Fail 
 There are tree main groups of reasons why grant proposals fail to be successful. The 
fi rst group of reasons has to do with the interests and budget of the sponsor; the 
second with quality characteristics of the grant proposal itself; and the third with 
quality of the grant proposal review system:
    1.    Failure due to the interests and budget of the sponsor 

 At any point in time sponsors have a set of areas of research that interest them 
most. A high quality grant proposal may fail if the sponsor sees the proposal as 
unrelated or only tangentially relevant to the main interests of the moment. In 
addition, sponsors may receive many more good quality grant applications than 
they are able to fi t within their budget of the period.   

   Panel 8.4 Checklist for Reviewing the Quality of a Grant Proposal 

•     Informative title  
•   Suffi cient and convincing abstract  
•   Clearly stated specifi c aims  
•   Scholarly, pertinent background and rationale  
•   Appropriate referencing and use of citations  
•   Relevant prior work, pilots, expertise  
•   Suffi cient space, human resources, time, and commitment  
•   Appropriate target population and sampling strategy  
•   Effi cient recruitment methods; realistic projected enrollment and attrition 

rates  
•   Accurate and precise measurements  
•   Detailed quality control plan  
•   Detailed data management plan  
•   Adequate sample size and/or power  
•   Scientifi cally sound analysis plan for each specifi c aim  
•   Ethical issues addressed: oversight, consent, confi dentiality, privacy, safety, 

fairness  
•   Tight realistic budget without compromising quality  
•   Realistic timetable  
•   Clear, concise, well-organized document  
•   Helpful table of contents and subheadings  
•   Good schematic diagrams and tables  
•   Neat and free of errors    
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   2.    Failure due to proposal-related factors 
 Reasons given by grant reviewers in a study of the NIH (Cuca and McLoughlin 

 1987 ) were:
•    Questionable or unsuitable methodology  
•   Inadequately defi ned hypothesis (lacking, faulty, diffuse, or unwarranted)  
•   Confusing data collection procedures or inappropriate instruments, timing, or 

conditions  
•   Inappropriate composition of the study group or control group  
•   Vague or unsophisticated data management and analysis plans that are 

unlikely to give accurate and clear-cut results  
•   Determination that the proposal is unimportant, unimaginative, or unlikely to 

provide new information or insight  
•   Assessment that the principal investigator has inadequate expertise, familiarity 

with the relevant literature, poor past performance, or insuffi cient time  
•   Inadequate study setting, support staff, lab facilities, access to the appropriate 

patient population, or collaboration      
   3.    Failure due to reasons related to the peer review process 

 When peer review is used to assess grant proposals, as is usually the case, the 
poor reproducibility of the peer review process (Hartmann and Neidhardt  1990 ) 
combined with a small number of reviewers per grant proposal, may lead to mis-
classifi cation of a good quality grant proposal as mediocre or poor. Occasionally, 
not all reviewers may be equally well-qualifi ed, or not all of the well-qualifi ed 
reviewers may have approached the task at hand with the same seriousness. Also, 
rare examples are known of good quality grant proposals falling victim to sex bias, 
theft of ideas, cronyism, and bias against less reputable applicants or institutions 
(Wessely  1998 ; Groenveld et al.  1975 ). Another ethical problem around grant 
reviewing is that, along with the increased competitiveness in grant seeking, such 
vague criteria as ‘elegance,’ ‘sophistication,’ and ‘innovation’ are now weighing 
more and more heavily in comparison with the criteria of ‘importance of the tar-
geted knowledge’ and ‘validity of methods.’ The danger is that these vague and 
ethically less important criteria overshadow the truly important ones. To avoid dis-
appointment, young investigators-applicants do well keeping in mind that important 
studies, targeting new knowledge that is very needed in public health, nowadays 
have a reduced chance of being funded if the methods required to validly achieve 
this knowledge are standard, common, or easy. However, this should not detour 
one from pursuing genuinely good ideas on important topics if the required 
methods are ‘simple.’ Rejection of a grant proposal is more common than accep-
tance, and there may be opportunities in the future to obtain funding for that study.        

8.4     Project Grant Management 

 Institutions and investigators share responsibility for the fi nancial management of 
research grants. Institutions are often the offi cial receivers of the grant. And grant 
management requires devoted time and expertise. The project grant manager may 
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be an administrative person employed at the institution who may have more than 
one project to manage. Within a project, grant managers often take on other adminis-
trative management roles than only fi nancial ones. The roles of a grant manager 
may include any of the following and more:
•    Accountancy  
•   Human resources management  
•   Stocks and fl ows management; purchases  
•   Liaison with sponsor  
•   Liaison with regulatory authorities  
•   Liaison with collaborating institutions and other stakeholders  
•   Harmonize study activities with institutional policies    

 There is a strong ethical dimension to grant management. Consider, for example, 
that misuse of research funds (deviation of funds to items not initially budgeted by 
the sponsor-approved protocol) is unethical. Grant managers help to harmonize 
study activities with institutional policies on a variety of issues, including:
•    Suspected scientifi c misconduct  
•   Mentorship of young researchers  
•   Support for and from students  
•   Sexual harassment; avoidance of dual relationships within research teams; 

discrimination  
•   Intellectual property rights    

  As pointed out in this chapter, grant proposals explain the main purpose of a 
study and highlight the specifi c aims. They also contain information on a 
range of study-specifi c issues, such as recruitment, sampling, enrollment, 
measurements, quality assurance, data handling, and data analysis plans. In 
the following chapters we discuss the planning of these study-specifi c aspects. 
The next chapter deals with methods of securing the most precious of all 
resources: the research participants themselves!      
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    Abstract 
   In the previous chapters we discussed specifi cations of research questions, general 
study designs, and study size. The next step in developing a study proposal is to 
create a practical plan for how to fi nd and enroll participants or other observation 
units. It is important to be clear about what particular characteristics are needed 
(inclusion and exclusion criteria), how to identify an appropriate number of partici-
pants (recruitment, sampling, and eligibility screening), and how to get the neces-
sary permissions to access secondary data or to obtain new information after 
informed consent and enrollment. The principles and guidelines for each of these 
tasks are described in this chapter (terminology in Panel  9.1 ), except that we devote 
a separate chapter (Chap.   16    ) to the management of the informed consent process.  

9.1        Defining the Study Population 

 Earlier in the development of a study plan, one defi nes the study domain (target 
population) and one chooses a type of study base (cohort, dynamic population 
or population cross-section; prospective, retrospective, etc.…) and a study size 
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( See:  Chaps.   5    ,   6     and   7    ). Another step in the planning consists of selecting and 
describing the actual study population/sample; that is, the individuals whose collec-
tive experiences will serve as the study base. The defi nition of the study domain has 
a great infl uence in defi ning the study population; however, in every study, one must 
further specify characteristics of the study population. Such specifi cations usually 
involve a clear description of the study area and setting as well as of practical inclu-
sion and exclusion criteria that will be used to identify individuals eligible for 
enrollment. 

9.1.1     Describing Study Area and Setting 

 A clear description of the study area and study setting (where study activities take 
place) helps one to properly target recruitment, sampling, and enrollment efforts. By 
highlighting important characteristics of the study area and setting, one gives study 
proposal reviewers insight into the contextual factors that may be important for 
planning tasks and for interpreting study fi ndings. General study area characteristics 
of usual interest are:
•    Socio-economic status profi le  
•   Ethnicity profi le  

   Panel 9.1 Selected Terms and Concepts Related to Recruitment, Sampling 
and Enrolment 

     Cases     Individuals who have the outcome of interest   
   Controls     Individuals who are members of a reference or comparison group   
   Eligibility screening     Checking potential participants’ characteristics against 

the inclusion and exclusion criteria   
   Enrolment     (1) (− procedure) Interactive process composed of sampling, 

eligibility screening and informed voluntary consent, intended to lead to 
actual study participation (2) (− act) Actual inclusion as participant   

   Informed consent process     Process of fully informing potential study subjects 
about the study and of obtaining their voluntary agreement to participate or 
to continue participation   

   Recruitment     (1) Study activity of informing potential participants and their 
communities about general features of a study to enhance enrollment 
(2) Sometimes used as synonym for enrollment   

   Refusal rate     Rate of non-participation among eligible observation units 
invited to participate   

   Sampling     Process of identifying and establishing access to potentially eligible 
observation units or to existing information about them   

   Sampling fraction     Sample size divided by population size   
   Selection bias     Bias in the statistical study result caused by problems of 

selection or retention of study participants     

J. Van den Broeck et al.

http://dx.doi.org/10.1007/978-94-007-5989-3_5
http://dx.doi.org/10.1007/978-94-007-5989-3_6
http://dx.doi.org/10.1007/978-94-007-5989-3_7


173

•   Urban – rural distribution  
•   Burden of diseases  
•   Any information on the population distribution matrix of modifi ers and con-

founders of interest    
 Specifi cations of the study setting may concern, among others:

•    Clinical and/or community-based study setting, e.g., home visits  
•   Type, number, and distribution of clinical settings, e.g., all hospitals and health 

centers in the study area  
•   Location of the study coordination center  
•   Justifi cations for the choices made      

9.1.2       The Difference Between Inclusion and Exclusion Criteria 

 Inclusion criteria and exclusion criteria are sometimes diffi cult to conceptualize. 
Imagine a 10-year-long prospective study in which one aims to address whether using 
oral contraceptive pills is a causal factor in the development of breast cancer. Though 
men may develop various forms of breast cancer, cases in men are rare. In addition, the 
likelihood of developing breast cancer is low for, say, a 30-year-old woman. For these 
reasons, the investigators decide to include in their study only women older than 
55-years-old. Which are the inclusion criteria? Which are the exclusion criteria? 
Indeed, by including only women, one by defi nition excludes men. And by only enroll-
ing women 55-years-old or older, one by defi nition excludes women under the age of 
55-years-old. It is no surprise that there is considerable confusion about these terms. 

 What distinguishes inclusion criteria from exclusion criteria? To answer this 
question, we suggest that there are two fundamental phases in defi ning the study 
population. The fi rst phase is an attempt to defi ne observation units that broadly 
represent the target population. Such criteria are  inclusion criteria . In other words, 
inclusion criteria allow us to defi ne a preliminary study population that approxi-
mates the target population. In the second phase, one defi nes characteristics that 
whittle the preliminary study population to the actual study population. To use 
sculpture as an analogy, inclusion criteria are like the additive process of molding clay 
into an approximate shape resembling the form of a sculpture (where the sculpture 
is the study population), and exclusion criteria are like the subtractive process used 
to give fi nal form to the sculpture. 

 Since inclusion criteria broadly refl ect the defi nition of the target population, 
they often relate to the study area/setting as well as age category, sex, and other 
features that are defi nitional to the target population. In the above example, inclusion 
criteria might be:
•    Women living within 75 km of each of four study-affi liated clinical sites  
•   55-years-old or older  
•   No prior history of any form of breast cancer  
•   No current diagnosis of any form of breast cancer    

 Exclusion criteria may be very extensive and are usually intended to increase 
internal validity, by eliminating the infl uence of a known confounder and/or reducing 
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attrition, increase statistical effi ciency or to avoid an ethical issue. Common reasons 
for exclusion are:
•    It is impossible for the subject to have the outcome of interest  
•   It is impossible to measure the health-related state or event of interest or the 

exposure(s), e.g., plans to emigrate relatively shortly after enrollment  
•   The subject has a particular contraindication for the test intervention  
•   It would be unethical to include a subject with this particular characteristic 

because of vulnerability-related reasons ( See:  next sub-section)  
•   The subject is not able to collaborate because of disease or mental disability  
•   Informed consent was not obtained or is not obtainable, e.g., due to refusal ( See:  

Chap.   16    )  
•   The subject has a characteristic which is a rare effect modifi er, and exclusion 

makes the study domain more homogeneous  
•   The subject may have a characteristic which is a relatively uncommon con-

founder whose infl uence can be eliminated by restriction of the study domain  
•   Another individual from the same family (or household) is already enrolled in 

the study, a scenario that may complicate the analysis by increasing the level of 
non- independence of observations    
 It should be noted that if many exclusion criteria are applied, this may limit 

generalizability of the fi ndings to other relevant populations.  

9.1.3     Ethical Issues Around Inclusion and Exclusion Criteria 

 General epidemiological principles (Panel   1.1    ) prescribe respect for autonomy, 
avoidance of harm, and minimization of burdens, among others. At the stage of 
recruitment and enrollment one is often faced with the reality that some potential 
participants are especially vulnerable to coercion, harm, or burdens. Not excluding 
them could expose them to those risks. However, research on such individuals may 
be justifi able if they have a particular health issue that needs to be studied. For 
example, pregnant women are a vulnerable group of people, but the disease pre- 
eclampsia can only be studied in a sample of pregnant women. 

 According to the general ethical principle of fairness and justice there should be a 
fair distribution of the burdens and benefi ts of research among all layers of society and 
among societies. The selection of participants in research should be fair, with persons 
being selected only because of the specifi c subject area being studied (e.g., pre-
eclampsia), and not because of their easy availability or their reduced autonomy. 

 Vulnerable persons are all those who have:
•    Diminished ability to protect their own interests  
•   Reduced capacity to give informed consent  
•   Incapacity to understand or communicate  
•   No position to make a voluntary decision  
•   Increased risk of harm or an increased burden of participation    

 Examples of vulnerable persons are given in Panel  9.2 . 
 Special justifi cation is required to invite such persons to participate in research, 

and the CIOMS Guidelines (Council for International Organizations of Medical 
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Sciences  2009 ,  2010 ) require that additional measures be taken to protect their 
rights and welfare. The principle of fairness and justice further dictates that the 
distribution of research burdens and benefi ts should not be inspired by racial, 
gender- related, sexual, or cultural considerations. In practice this implies that spe-
cial justifi cation will be needed if the investigator wishes to restrict the study to one 
gender, race etc.   

9.2        Recruitment Before the First Study Contact 

 When new information is to be collected, obtaining a suffi cient volume of quality 
data strongly depends on enrollment rates, which, in turn, depend on how well 
potential participants and their communities are reached and informed about the 
study. Such outreach efforts can be strongly infl uenced by recruitment activities that 
occur before the fi rst study contact. 

9.2.1     Overview of Recruitment Strategies 

 Frequently used recruitment strategies, before sampling and fi rst study contact, are 
listed in Panel  9.3 . 

 We expand briefl y on the use of study information sheets and media coverage 
because these can be important for the success of the recruitment and enrollment pro-
cess. For more information on obtaining community consent, we refer to Chap.   16    .   

9.2.2       Study Information Sheets 

 Information sheets, fl yers, or brochures are often used to raise awareness of the 
existence or arrival of a study among potential participants and other stakeholders. 

   Panel 9.2 Examples of Vulnerable Persons Whose Inclusion Requires Special 
Justification 

•     Pregnant women  
•   Prisoners  
•   Children  
•   Fetuses  
•   Mentally disabled or mentally ill patients  
•   Terminally or seriously ill patients  
•   Persons in dependent positions  
•   Educationally or economically disadvantaged persons  
•   Persons who are under the infl uence of drugs or alcohol  
•   Traumatized individuals    
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They can be useful to inform populations about large upcoming population-based 
studies (e.g., surveys and surveillance systems) and smaller-scale studies. All infor-
mation sheets need to be approved by the research ethics committee. For possible 
content of information sheets,  See:  Panel  9.4 . 

 There are some advantages and disadvantages to the use of study information 
sheets. Their main advantages are that they:
•    Can be part of a strategy to boost enrollment rates  
•   Allow people to think about and discuss with others the pros and cons of 

participation  
•   Potentially avoid situations in which people are taken by surprise when 

approached for eligibility screening  
•   Can make approaching people more acceptable  
•   May avoid some unnecessary screening contacts with non-eligible subjects  
•   Make the informed consent process easier once subjects are found to be eligible  
•   Can be of use after enrollment as part of an ongoing informed consent process  
•   Raise awareness and potentially enhance the reputation and status of the investi-

gators and the research institution  
•   Are often perceived as a sign of transparency in participant selection    

 There may be some downsides as well. For instance, some people do not like the 
necessary shortness and lack of detail in a brief information sheet and may perceive 
that as a deterrent.  

9.2.3     Media Coverage During Recruitment 

 Local media coverage can be useful whenever maximum participation rates 
are required in population-based studies. An effective recruitment strategy might be 

   Panel 9.3 Examples of Recruitment Strategies Before Sampling and First Study 
Contact 

•     Information sheets  
•   Posters at strategic points  
•   Media coverage  
•   Meetings with opinion leaders, traditional leaders, and local authorities; 

attempting to obtain so-called ‘community consent’  
•   Community information meetings; mobile shows; drama  
•   Community Advisory Board involvement  
•   Personal contacts in person or by mail, email, or telephone  
•   Meetings with health facility staff  
•   Meetings with neighborhood health committees or community-based 

organizations  
•   Patient advocacy groups    
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    Panel 9.4 Frequent Concerns About Upcoming Research Projects and Possible 
Responses for Inclusion in Information Sheets and During Media Coverage 

•     Are the researchers trustworthy and competent?
 –    Provide information on research institution and main investigators  
 –   For media coverage, introduce yourself before communicating     

•   Is the topic of research relevant to me and my community?
 –    Describe the health problem in lay terms  
 –   Mention the burden of the problem in the community  
 –   Mention the importance of the new information that may be obtained     

•   Are they communicating with me in a respectful manner?
 –    When communicating with individuals, use a personalized approach in 

an appropriate style  
 –   Express appreciation to prospective participants     

•   What is in this for me? Will I be part of something big and exciting?
 –    Emphasize that participants will contribute to something important     

•   What will they ask from me if I participate? Is it going to be easy?
 –    Make it clear whether there will be an intervention and what kind  
 –   Provide an idea of timing (start, duration) of participation  
 –   State whether there will be home visits, clinic visits, biological samples  
 –   Specify whether there will be several rounds of data collection     

•   Is it safe to participate?
 –    Provide an idea of the general level of risks and discomfort imposed by 

the study  
 –   Re-assure that safety protections, confi dentiality, anonymity, and privacy 

will be complied with  
 –   Give opportunities for questions and discussion by providing a telephone 

number, a website, and/or an email address     
•   What do other people think about this project?

 –    Mention support from community leaders and opinion leaders     
•   How many people do they want to participate?

 –    Mention targeted sample size       

to fi rst publish an article about the upcoming study in the local newspaper and 
then to insert a copy of this article in the invitation letter or add it to the infor-
mation sheet. 

 Communication about a study in the early recruitment phase needs to address 
concerns that most people have about research. It is, in fact, the same kind of infor-
mation that will need to be provided later during fi rst study contacts and in the 
informed consent form, although usually not in as much detail. Some frequent 
concerns about a new study are listed in Panel  9.4 .   
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9.3        Overview of Sampling Methods 

 In a broad epidemiological sense, the term ‘sampling’ refers to the process of 
facilitating access to a suitable selection of observation units or to the existing 
information about them. Sampling helps to create opportunities for fi rst contact 
with potentially eligible individuals or their data. There are two general types of 
sampling methods: statistical and non-statistical sampling. The former involves 
generating a list of potentially eligible observation units (i.e., defi ning a sampling 
frame) and using a statistical scheme to select from the sampling frame a number of 
units to be approached for enrollment. Non-statistical sampling does not involve a 
sampling frame or such statistical schema. Though there is a perception that a study 
population must be statistically representative of a large population, that idea is a 
misconception (Miettinen  1985 ). In fact, statistical sampling methods tend to be 
restricted to large surveys, cluster-randomized trials, and some etiognostic study 
types. Indeed, in epidemiology non-statistical sampling methods tend to be suitable 
for most studies. 

9.3.1      Non-statistical Sampling Methods 
(Non-probability Sampling) 

 There are many types of non-statistical sampling methods. Perhaps the most 
commonly used are consecutive sampling, convenience sampling, and snowball 
sampling. These methods are described in Panel  9.5 . These sampling methods are 
frequently used in cross-sectional studies, observational follow-up studies, and in 
experimental and quasi-experimental studies. A basic assumption of these methods 
is that the mix of recruited subjects will be roughly typical of the target population. 
Each has distinct advantages and disadvantages (e.g., snowball sampling can be 
useful to recruit individuals who are diffi cult to reach, such as drug addicts). 

 Non-statistical sampling methods are sometimes used to achieve a quota of units 
with defi ned characteristics. Such quotas are intended to ensure that a suffi cient 
number of units in different exposure or outcome levels are achieved, or to balance 
a known confounding or effect modifying characteristics across groups. For exam-
ple, in a study of how ethnicity modifi es an outcome parameter, one may sample an 
equal number of participants from different ethnic groups. This approach is often 
called  quota sampling .   

9.3.2       Statistical Sampling Methods (Probability Sampling) 

 These methods, unlike non-statistical sampling methods, use sampling frames. 
Statistical sampling methods are mostly used in surveys, cluster-randomized trials, 
and sometimes etiognostic studies. The main goal of statistical sampling is to 
achieve a study population that is statistically representative of the target popu-
lation. Statistically, the ideal scenario is to sample a complete target population 
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(100 % sample), as this avoids sampling error and is, by defi nition, the most repre-
sentative study population possible. However, complete sampling is practically 
impossible in almost every conceivable scenario in epidemiology. If a sampling 
frame exists or can be constituted, statistical sampling methods can be affordable 
and effi cient. They allow us to sample a fraction of the target population (sampling 
fraction); though smaller sampling fractions introduce error, they can also increase 
internal validity because data collection may be managed by a smaller team of people. 
Thus, it may be more feasible to fi nd experienced data collectors and to supervise 
and pay them properly. Such teams tend to collect more accurate data than an army 
of less- well-trained temporary staff hired on an extremely tight budget. 

 A statistical sample can be only as good as the sampling frame (Herold  2008 ). 
If the sampling frame is biased, so too will be the sample. Therefore, if there is 
either certainty or serious suspicion about the lack of quality of an existing sampling 
frame, the only solution may be to constitute a new sampling frame in preparation 
for a study. Table  9.1  gives examples of survey sampling frames with expected 
limitations in relation to representativeness of the target population.

      9.3.2.1 Random Sampling with or Without Replacement 
 With random sampling each member of the sampling frame has a known and fully inde-
pendent chance of being selected. The preferred way to execute random sampling is:
•    To assign a random unique number (generated using a random number function 

in statistical software or a spreadsheet) to each member of the population,  

   Panel 9.5 Common Types of Non-statistical Sampling Methods 
Used in Epidemiology 

•      Consecutive sampling  
 With this method, all eligible subjects are found consecutively. These units 
can be found sequentially or in regular intervals. For example, the investi-
gators approach every  n th patient presenting to the emergency room 
(where  n  is 1 if every patient will be approached). Alternatively, the 
investigators could approach all patients presenting on every  n th day 
(e.g., every Wednesday).  

•    Convenience sampling  
 In this method, subjects are approached at the time of data collection. This 
approach is particularly useful if attempting to recruit subjects in a public 
location, such as a shopping center. This approach can be used in studies 
with very broad inclusion criteria, e.g., ‘adults.’  

•    Snowball sampling  
 Participants are successively recruited through referrals from other partici-
pants. For example, in a study on cocaine addiction, one might ask a par-
ticipant to refer others with cocaine addiction to the study. This approach 
is particularly useful for patient populations that are diffi cult to reach.    
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•   To rank the sampling frame according to the randomly assigned numbers, 
and then  

•   To select the fi rst  n  of the ordered random numbers, where  n  is the required 
sample size    
 Other methods, such as the lottery methods and the use of tables of random 

numbers, are more prone to human error but are useful alternatives in situations 
where no statistical software package is available. 

      Table 9.1    Examples of sampling frames and their limitations in relation to representativeness of 
the target population   

 Sampling frame  Limitations 
 Census  A proportion of individuals may never be listed because they 

were never found at home during the census 
 Homeless people or itinerants may be missed 
 If the census was not conducted very recently, it may be 
outdated in areas with substantial in- and outmigration 

 Taxpayer list  People may try to avoid being listed as a taxpayer 
 Only approximately representative if it can be shown that 
only a small proportion avoids tax 

 List of postal or email addresses  Mail addresses, business addresses and living addresses are 
sometimes different 
 People may have several mail addresses and several living 
addresses 
 In rural areas or informal settlements houses may not be 
numbered or have a clear postal address 
 Variation in number of subjects per postal address 
 People may have several email addresses 
 Many people do not have an email address, and these people 
may be different from those who have email addresses 

 List of (landline) phone 
numbers 

 Decreased probability of inclusion of several types of 
individuals, such as those who have no landline phone 
(e.g., those who have cellular phones only, or, those who are 
too poor to afford any type of phone), those who are never or 
rarely at home, those whose landline does not function for 
whatever reason, et cetera 
 Variation in number of subjects per landline phone 

 List from hospital or health 
center information systems 

 Sick people only 
 Rapidly outdated; Patients may frequently change health care 
provider 
 If lists are obtained from public facilities only, the listed 
patients may differ from those who seek services at private 
facilities 

 List of schools, pupils, villages, 
employees, or administrative 
areas 

 Lists of schools are sometimes only available for the public 
sector 
 Rapidly outdated 

 List of geo-referenced 
homesteads; satellite maps 
showing bounded structures 

 Not all bounded structures are inhabited 
 Variation in number of subjects per homestead 
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 Each individual has exactly the same probability of being selected in ‘simple 
random sampling with replacement’ (SRS-WR), i.e., when the sampled individual 
continues to be part of the sampling frame (thus possibly giving a sample with 
duplicates). Each individual has  approximately  the same probability of being 
included in ‘simple random sampling without replacement’ (SRS-WOR) if the 
sampling frame is very large, and this method is often preferable since duplicates 
can be effectively avoided.  

    9.3.2.2 Systematic Sampling 
 With systematic sampling every  nth  person or unit is selected from the sampling 
frame, where the selection interval  n  is determined by dividing the size of the 
sampling frame by the study sample size. The fi rst unit is usually sampled randomly. 
Systematic sampling with a random starting point is not fully random because the 
chance of a unit being selected is not independent of the prior unit selected. The 
likelihood of being sampled is, in fact, dependent on the selected starting point, 
and this non-randomness comes at a cost.  Starting point bias  can arise if there is 
a pattern in the characteristics of the sampled units that runs in phase with the 
sampling interval. For example, this may occur if the sampling frame is the list of 
consecutive houses in a specifi c street and every  n th house is mostly a corner house 
or a shop.  

    9.3.2.3 One-Stage Cluster Sampling 
 When the population is large, widespread, and not completely enumerated, cluster 
sampling may save time, money, and effort. Rather than engaging in a complete 
census prior to the study and sampling widely scattered participants after the cen-
sus, it could be advantageous to randomly select some clusters and then try to enroll 
all eligible subjects in those clusters. The clusters can be villages, electoral districts, 
schools, households, any natural grouping of people, or even artifi cial groupings 
like grid cells placed over a satellite photograph. The practical advantages of cluster 
sampling are considerable, as participants in each cluster will usually live relatively 
close to each other, making them more easily accessible. If all individual members 
of a selected cluster are visited, one avoids the potential embarrassment, discontent, 
or stigma created by visiting only certain individuals in close communities. The 
disadvantage is that there is usually some loss of statistical precision compared to 
what could have been achieved with SRS with the same number of participants. 
This is because the variation between individuals from the same cluster is often 
smaller than the variation between individuals from different clusters. A small 
 number of clusters and a small sampling fraction may lead to poor representation of 
the target population. This could happen, for example, by sampling less than ten 
clusters that represent less than half of all the clusters. Larger numbers of clusters or 
pre-sampling information on cluster heterogeneity for variables of interest may be 
needed. 

 Table  9.2  illustrates the essential differences between the main forms of statistical 
sampling.
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       9.3.2.4 Multi-stage Cluster Sampling 
 Cluster sampling is done in stages for successively-smaller hierarchically-nested 
groups within the population until the required observation unit level (usually 
individuals) is reached. It starts with cluster sampling and can end with random 
sampling of individuals. For example, in a  two-stage sampling  exercise one may 
fi rst take a random sample of schools and then take a random sample of children 
from each school. Multi-stage cluster sampling can also involve several successive 
cluster sampling steps. For example, a  three-stage sampling  exercise could consist 
of randomly sampling schools fi rst, classes within each school next, and then pupils 
within each class. 

 Clusters may differ in size (e.g., large villages, small villages; large households, 
small households), so if a fi xed  number  of individuals is selected from each 
cluster, individuals living within a large cluster would have a lower probability 
of being selected. Weights would need to be applied during analysis to adjust for 
this. Alternatively, one can apply  self-weighted sampling  (Armitage    and Berry 
 1988 ), where in the fi rst stage the chance of selecting each particular cluster is 
proportional to the size of the population within it. The second-stage samples can 
then have a fi xed number without creating bias. Another version of self-weighted 
sampling would be to select clusters with equal probability and then select a 
number of individuals from each cluster that is proportional to the size of the 
cluster.   

9.3.3     Additional Aspects of Survey Sampling 

    9.3.3.1 Stratifications in Survey Sampling 
 Stratifi ed sampling divides the population into non-overlapping subgroups (strata) 
according to some important characteristic, such as sex, age category, or socioeco-
nomic status, and selects a sample from each subgroup. The number of individuals 
sampled from each stratum can be made proportionate or disproportionate to the 
frequency of the characteristic in the population. Disproportionate stratifi ed sampling 
is sometimes used to ensure that persons belonging to a less common subgroup or a 
certain category of a potential modifi er are represented in large enough numbers to 

   Table 9.2    Illustration of random sampling, systematic sampling, and cluster sampling   

 Type of statistical 
sampling 

 Sampling unit: 
example  Sampling frame: list, sampled units in bold 

 Random sampling  Individual school 
children in a region 

 1,  2 , 3, 4,  5, 6,  7,  8 , 9, 10, 11,  12, 13, 14 , 15, … 
 (Individuals are randomly chosen from the list)  

 Systematic sampling  Individual school 
children in a region 

 1,  2 , 3,  4 , 5,  6 , 7,  8 , 9,  10 , 11,  12 , 13,  14 , 15, … 
 (Every n th  individual is chosen from list)  

 Cluster sampling  Classes of school 
children in a region 

 1, 2,  3, 4 , 5,  6,  7, 8, 9,  10, 11, 12,  13, 14,  15 , … 
 (Classes are randomly chosen from the list; all 
pupils from the selected classes are invited)  
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enable the calculation of precise enough estimates for this subgroup. For example, 
if old age is a potential modifi er for a phenomenon under study, one may decide to 
disproportionately ‘over-sample’ the oldest age group to enable the calculation of 
an adequately precise estimate for that age group. When disproportionate stratifi ed 
sampling is used, it will still be possible to estimate an overall outcome parameter 
(e.g., for all ages combined) and achieve a robust standard error by using procedures 
called weighting ( See:  Chap.   22    ). Stratifi ed sampling can even reduce the overall 
sampling error if there is a lot of heterogeneity in outcome parameter estimates 
between strata (Armitage and Berry  1988 ). Note that disproportionate statistical 
sampling is a type of quota sampling ( See:  Sect.  9.3.1 )  

    9.3.3.2 The Use of Subsamples in Surveys: ‘Multi-phase Sampling’ 
 In large surveys the amount of information that can be collected on each participant 
is often limited because of logistical and budgetary constraints. If more detailed 
information is desired (e.g., plasma lipid profi les), it may be cost-effi cient to gather 
that information only in a nested subsample. The process of defi ning a nested sub-
sample is known as  multi-phase sampling  and, in its simplest form, involves two 
phases of random sampling, where the sample frame for the subsample is the entire 
study sample. The precision of the estimates in the subsample will be less than in 
the study sample. However, surveys are often designed with large sample sizes to 
produce suffi ciently precise estimates of primary outcomes for several sub-regions, 
ethnic groups, and age-sex categories. Therefore the size of even a 10 % subsample 
may be large enough to produce adequately precise estimates of secondary outcomes 
for the entire target population, perhaps even if stratifi ed on a variable of interest 
(e.g., sex).  

    9.3.3.3 Complications Created by Non-enrolments in Surveys 
 Sampling of individuals creates opportunities for initial contact with potentially 
eligible individuals. Complications can arise if many of the sampled subjects are not 
enrolled because of missed contacts (after several attempts), lack of eligibility, or 
refusal. For example, after a systematic sampling exercise involving visits to every 
nth house, it may appear that only 90 % of the targeted sample size was reached. 
In order to fi nd the remaining 10 %, should one continue with a second round of 
systematic sampling, with the same selection interval but from another starting 
point? This strategy could create bias as the remaining 10 % of participants 
would be found mostly in the beginning of the round in a relatively small area 
not representative of the total area. To avoid this problem a new larger selection 
interval must be used in the second round. Another solution may be to fi nd an 
immediate replacement for any missed enrolment, perhaps the nearest eligible 
person. Alternatively, an anticipated 10 % non-enrolment rate can be taken into 
account in the calculation of the selection interval  n  for the fi rst round, but this may 
still result in a slight over- or under-enrollment. Similarly, when simple random 
sampling or cluster sampling is used, a certain percentage can be added to allow for 
non-enrollments. To enable evaluation of possible selection biases one should try to 
collect information on the non-enrolled.    
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9.4     First Study Contact, Eligibility Screening, 
and Maximizing Response Rates 

 First study contacts are made personally, via an invitation letter, email, telephone 
call, or by a house-visit. During fi rst contacts, the same common concerns listed 
above in the section on recruitment activities should be kept in mind ( See also:  
Textbox  9.1 ). If the fi rst contact is via a letter or email, the message should be clear, 
brief, personal, and professional. It should also have an attractive layout, use the 
header of the institution, and be signed. If the fi rst contact is face-to-face, it is 
important that the researcher behaves respectfully and complies with culturally 
acceptable dressing, language, and etiquette. In some cultures this implies greeting 
and informing the head of household before any other household members. 
Introductory letters and wearing personal IDs with a picture will usually increase 
the credibility of and trust in the researchers. In a telephone survey, respectful and 
culturally appropriate language and tone of voice are important. 

 In (e-)mail or telephone surveys the response rate strongly depends on the 
number of attempted contacts, on fl exibility and variation of the contact strategy for 
individual cases, and on whether candidates are given enough time for refl  ection. 
Whether there should be multiple contact attempts – and, if so, when and how fre-
quent these should be – is very culturally dependent. A common strategy is to make 
two or three attempted contacts. An approach that has worked well for mail surveys 
in the U.S.A. is to start with a pre-notice (a phone call or a letter) followed by 
mailing of the questionnaire and a cover letter (Dillman  2000 ). If no response was 
received, up to three reminders were sent that were slightly different in formulation. 
In that study setting, inclusion in the mail of small incentives in the form of cash, 
checks, lottery tickets, or pencils was associated with better response rates. After 
failing to contact a person by mail one may switch to a telephone- or visit-based 
strategy, possibly making multiple attempts to phone or visit if necessary. 

 After a proper introduction and briefi ng about the study, it is usually natural to 
ask a few simple and straight-forward questions (e.g., about age and residence) to 
determine whether an individual is eligible. Eligibility screening is usually con-
ducted before an individual is asked to give informed consent to participate, but 
if particularly sensitive information is needed to determine eligibility, informed 
consent should be obtained fi rst. 

 White and colleagues ( 2008 ) provide a good overview of what is known about 
factors associated with participation rates and selection bias in Anglo-Saxon high- 
income countries. Their overview suggests, among others, that non-participants 
tend to be poorer, have an unhealthier lifestyle, and are more likely to be male and 
non-white. Younger age has also been reported among important factors associated 
with non-participation (Moorman et al.  1999 ). However, examples of studies showing 
the contrary also exist (Galea and Tracy  2007 ). Anyhow, these factors may have limited 
relevance for research in other cultural settings and in low- and middle income 
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  Textbox 9.1 Selected Ethical Aspects of First Study Contact and Eligibility 
Screening 

 In instances when sampling is done from client registries of care facilities, it 
is appropriate to have the  list of  statistically sampled  candidate subjects 
reviewed by the caregivers  before any contact is made with the candidates. 
This allows exclusion of terminally ill persons, persons with severe mental 
illness and other persons with characteristics that are exclusion criteria. It may 
also prevent unnecessary efforts to contact persons who are no longer clients 
or prevent bothering family members of persons who recently died. 

 Efforts must be made to ensure that  invitation letters or calls  by them-
selves do not cause any unwarranted health or confi dentiality concerns. 
Letters, information sheets and other recruitment strategies, informed consent 
forms, personal introductions by enrollers, and questions and exams related to 
eligibility, all need to be culturally adapted to the local setting and must 
express respect, empathy, professional seriousness as well as give reassurance 
about common concerns. If this is not ensured, enrollment rates are bound to 
be affected. 

 Endeavors at maximizing participation by  repeatedly attempting to 
contact persons  who do not respond to invitation letters or are not available 
when visits or calls are made must be balanced against the risk that people 
perceive that their privacy is being invaded. Non-response and unavailability 
may refl ect unwillingness to participate, and in such situations repeated 
reminders may create antipathy, also among other community members, and 
thereby impinge on their potential study participation. 

 In communities, the fact that some persons are visited and others not can 
lead to  embarrassment and stigma . This problem can occur more frequently 
with certain sampling schemes. For this reason, sometimes all community 
members are indeed visited but detailed information collected only from 
those required to undertake the study. 

 It is usually inappropriate to offer  monetary or other incentives  beyond 
compensation for costs of traveling and time. When making fi rst contact 
with persons who will be ‘cases’ in a case–control sampling strategy, offering 
monetary or other incentives is often perceived as inappropriate or even 
offensive (Coogan and Rosenberg  2004 ). 

 Although  eligibility screening  is usually a non-invasive process, in some 
studies it  may require invasive procedures  such as blood sampling and 
generation of sensitive personal information such as HIV status. Informed 
consent is always needed for this kind of eligibility screening and the informed 
consent process needs to make it clear that the subject may end up being 
non-eligible. 
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countries. More methods-oriented research is needed worldwide on the factors that 
infl uence enrollment and refusal rates. 

 Finally, it is crucial to make a plan for monitoring accrual and refusal rates and 
for gathering information about reasons for non-participation. These issues will be 
discussed in detail in Chap.   17     (Accrual, Retention and Adherence).   

9.5       Sampling and Enrollment in Cohort Studies 

 We will now discuss some particularities of sampling and enrollment in etiognostic- 
type studies. We focus on sampling and enrollment procedures (‘selection’) for 
cohort studies in the present section and for case control studies in the next one. For 
each, we will point out the possible sources of selection bias. 

9.5.1     Selection Strategies in Cohort Studies 

 In cohort studies there are some special issues in relation to inclusion and exclusion 
criteria. The most notable issue is that subjects should, to the extent possible, be 
excluded if they are not at risk of the outcome. This concerns those who already 
have the outcome and those who cannot logically ever develop the outcome. 
Furthermore, in prospective cohort studies there should be a reasonable possibility 
for follow-up and repeated assessment of study attributes. Generally, it is better to 
exclude those who have near-term emigration plans or other characteristics that will 
likely lead to rapid loss to follow-up. 

 Two modes of selecting members into a cohort can be distinguished:
•     Cohort selection mode-1:  selection of the exposure groups separately. For 

example, one may select workers of a factory using a dangerous substance and, 
separately, workers of another nearby factory where the same substance is not 
used. Mode-1 is often the preferred mode when the exposure is relatively rare, 
such as exposure to radiation during pregnancy. Group matching and individual 
matching for confounding variables ( See:  Chap.   6    ) can be helpful as part of this 
approach.  

•    Cohort selection mode-2:  the commonly preferred method, consisting of selection 
of one single group, with consideration of exposure levels during  measurement 
and analysis. For example, the Framingham Study population was enrolled 
irrespective of their smoking status, and later split up according to smoking habit 
categories. This mode can be more expensive than mode-1 when the exposure is 
relatively rare.    
 With either mode, non-statistical sampling methods are often used for the forma-

tion of the cohort. Sometimes a statistical sample is used. For example, a subsample 
of a survey can be selected for inclusion into a cohort study. Participants of large 
case–control studies may, under certain conditions, also be used for a subsequent 
cohort study. When the controls of a case–control study are truly a representative 
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sample of the source population, they may form a natural group of candidates 
for follow-up in an ensuing cohort study. Strategies have also been described for 
selecting both the cases and the controls of a case–control study into a subsequent 
cohort study. An example of this is known as the ‘reconstructed population method’ 
( See:  Sommerfelt et al.  2012 ).  

9.5.2     Selection Bias in Cohort Studies 

 The purpose of a cohort study is to set up a valid contrast of outcome frequency 
between exposure levels. This means that one should try to ensure that the exposed 
and unexposed groups have a comparable prognosis at baseline (i.e., a comparable 
mean risk of developing the outcome) and, further, one should try to avoid prognos-
tic imbalances arising during follow-up (except those mediated by the exposure). If 
this cannot be achieved, imbalances in prognostic factors at baseline and during 
follow-up should be measured and adjusted for during analysis. With cohort selec-
tion mode-1 (separate selection of exposure groups) one tries to achieve the ideal 
baseline prognostic equivalence by carefully selecting the groups and making sure 
they have similar distributions of confounders, sometimes by using individual 
matching. 

 It is not uncommon, though, for a researcher to select the groups to the best of 
her/his abilities but remain uncertain about or be unaware of some prognostic 
imbalances. Consider the example of a study in which the outcome frequency 
among workers in an industrial setting (exposed) is to be compared to the outcome 
frequency in a group selected from the general population (unexposed). A ‘healthy 
worker effect’ can occur if healthy persons with relatively good prognosis are more 
likely to be employed in the industrial setting or if those at risk of the illness are 
more likely to stop working or switch to different types of jobs. In this case, the 
exposed and unexposed would have different baseline prognoses, and it would be 
unclear how this prognostic imbalance could be measured accurately enough for 
adequate adjustment in the analysis. Consequently, a biased outcome parameter 
estimate would be expected. On the other hand, a ‘sick worker effect’ can occur if 
the bias resulting from a baseline prognostic imbalance is created by a specifi c job 
that attracts people with poorer health prognosis on average, e.g., night watchmen 
(Miettinen  1985 ). It is a problem in epidemiology that several types of individual 
prognostic factors, such as an inclination to follow health advice, a tendency to react 
poorly to stressful situations, and other susceptibilities to important behaviors are 
diffi cult to measure accurately. 

 Selection bias can also occur through erroneous determinations or assessments 
of eligibility criteria. For example, in a cohort study comparing the rate of appendi-
citis among smokers and non-smokers, bias can arise if enrollers neglect to verify 
appendectomy as a study exclusion criterion (and if this is not adjusted for in the 
analysis). This example can also be used to illustrate the point that sub-optimal 
selection processes can contribute to confounding. 
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 Finally, remember that in Chap.   2     (Basic Concepts in Epidemiology), biases 
resulting from various patterns of loss-to-follow up were also treated as a form of 
selection bias in cohort studies.   

9.6     Sampling and Enrollment in Case–Control Studies 

 The general design of case–control studies has been discussed in Chap.   6    . This 
included a discussion of the concepts of  source population  and  secondary study 
base , both of which are important to keep in mind when reading this section. Here, 
we expand on practical strategies of sampling and enrollment and highlight common 
sources of selection bias in case–control studies. 

9.6.1     Selection of Cases in Case–Control Studies 

 In the typical case–control study, the selection of cases and controls constitutes two quite 
different activities. We therefore discuss them separately, starting with case selection. 

    9.6.1.1 Incident Versus Prevalent Cases 
 An important decision to make is whether the study will target prevalent cases or 
incident cases. The distinction between the two is that incident cases (i.e., new cases) 
cannot include individuals who manifestly have had the illness for longer than a defi ned 
time cut-off, whereas prevalent cases can. When incident cases are selected, the 
study tends to be less prone to certain types of bias. For example, with long-standing 
prevalent cases there are more frequently recall problems about the exact nature of 
the diagnosis, timing of diagnosis, and antecedent exposures. This can be especially 
problematic when diagnostic and exposure-related information is obtained via inter-
view, e.g., if the identifi cation is based on questions such as ‘have you ever been 
diagnosed with asthma?’ Note that people with mild chronic conditions may 
remember symptoms more easily than the correct medical term for their condition. 

 A separate problem arises if the illness has a high fatality rate. Prevalent cases 
may then represent a special select group of long-term survivors. And if the expo-
sure under study is a true cause of the development of the illness, it is likely to be 
also a causal determinant of the course of illness and the outcome. Thus, when 
prevalent cases are used in such instances, the preponderance of survivors among 
the cases may under-represent the exposed, which is expected to result in an 
 underestimation of the odds ratio. On the other hand, with incident cases it usually 
takes longer to get adequate numbers of participants (an effi ciency concern).  

    9.6.1.2 Case Ascertainment and Eligibility Assessment 
in Case–Control Studies 

 Selection of cases involves case ascertainment, which requires clear and valid case 
defi nitions. Up-to-date accepted diagnostic criteria are preferred as a basis for the case 
defi nition. A choice of incident cases or of severe cases will require incorporating 
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extra criteria into the defi nition of case eligibility. Additional criteria might include 
accepted grading systems to assess severity and a specifi c maximum time since fi rst 
manifestation of illness to distinguish incident from prevalent cases. High sensitivity 
and specifi city of case ascertainment is necessary and the use of proxy variables 
should be avoided if possible.  

    9.6.1.3 Sources of Cases in Case–Control Studies 
   Case Recruitment in the Community 
 Cases can be identifi ed during surveys. With this approach the identifi ed cases are 
likely to be representative of all cases, and the source population for the subsequent 
selection of controls can be clearly defi ned. However, consider that, although the cases 
are recruited in the community, referral bias ( See:  next subsection on Case Selection 
Biases) is still possible. The cases may be identifi ed during home visits by asking the 
question ‘have you ever been diagnosed with illness x’. This illness may be one that 
is typically diagnosed in a hospital after referral, and this referral may be associated 
with the exposure. The selected cases could thus be a group with increased exposure 
odds in comparison with all true cases (some of whom remained undiagnosed).  

   Cases Identified in Disease Registers 
 National or regional disease registers can be a useful source of cases, but since cases 
must have come to diagnostic centers, they may represent a selected group of all 
cases. Referral bias arises when the cases’ inclusion in the register was infl uenced 
by whether or not they were exposed. All eligible cases can be included or they can 
be randomly sampled if that is needed for budgetary purposes.  

   Case Recruitment in Care Settings 
 Historically, this has been the most frequently used source of cases in case–control 
studies. Enrollment activities can be conducted in hospitals, clinics, private prac-
tices, or combinations thereof. There are some advantages to this approach, not the 
least being the ready availability of cases in a setting that may easily allow the use 
of valid up-to-date diagnostic procedures. If the care settings have well-defi ned 
catchment areas and, nearly all cases occurring in these catchment areas are expected 
to end up in the local facilities, then defi ning the source population becomes easier. 
If not, selection of controls truly representing the source population of the cases can 
be diffi cult to achieve and demonstrate. Health care utilization surveys can be helpful 
for this purpose. Such surveys could show, for example, that the initially targeted 
referral center(s) only catch(es) a minor proportion of cases developing in the sur-
veyed area. This would indicate a need to include more referral centers for case 
identifi cation, or a need to redefi ne the catchment area/source population. 

 A requirement for case recruitment in care centers is that the whole process of 
referral, case diagnosis and enrollment should be independent of exposure ( See:  
Sect.  9.6.3 ). This requirement is more likely to be fulfi lled for  severe  cases. Hence, 
some epidemiologists have suggested that such case–control studies should be 
done with severe cases only (e.g., Miettinen  1985 ). When recruiting cases from care 
settings, one should preferably target cases from several care settings in the region 
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because risk factors (antecedent exposure) may be unique to a single hospital due to 
referral patterns and other factors. If one would involve only a tertiary care hospital 
a problem could be that this hospital has a very large catchment area with a complex 
referral pattern. This may hamper a clear defi nition of the source population.  

   Cases Recruited by Snowball Sampling 
 This approach tends to involve identifi cation of some cases in care settings or surveys, 
followed by the identifi cation of additional cases via snowball sampling. This type 
of case recruitment has been used mainly when eligible persons are diffi cult to 
reach, such as intravenous drug users. A limitation to this approach, however, is that 
defi ning the source population of these cases can be particularly challenging.  

   Cases Developing During Follow-Up of Well-Defined Cohorts 
or Dynamic Populations 
 In traditional nested case–control studies, the cases are usually all new cases 
developing in the defi ned cohort or, more rarely, in an enumerated dynamic popula-
tion. Sometimes only a sample of all newly developed cases is taken. The cohort can 
be a research cohort, an occupational, or educational cohort, or any cohort for which 
relevant exposure and follow-up data are or can be made available.    

9.6.2      Selection of Controls in Case–Control Studies 

 A subject is eligible as a control if one can answer “Yes” to this question: “If the 
subject had been sick with the case-defi ning illness, would (s)he have been in the 
study as a case?” This question captures the requirement that controls should be 
representatives of the source population ( See:  Chap.   6    ). As a group, the controls 
should refl ect the expected exposure distribution in the source population. 
Consequently, control selection must be independent of exposure such that exposed 
persons are not over- or underrepresented (a requirement that is similar to that for 
case selection). Controls must not be a special group that actively avoids or engages 
in the exposure. This would exaggerate or underestimate, respectively, the odds 
ratios estimated in the study. 

     9.6.2.1 Sources of Controls in Case–Control Studies 
 Possible sources of controls are equivalent to the above-listed sources of cases:
•    Controls sampled in communities  
•   Controls from national or regional disease registers  
•   Patient controls identifi ed in care settings  
•   Neighbors, friends and relatives  
•   Controls selected from an enumerated cohort or dynamic population under 

follow-up    
 For each of these possible sources of controls we can list advantages and dis-

advantages for feasibility and validity, in a similar fashion as for case selection. 
For example, identifying controls directly in the communities where the cases 
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occurred is logistically diffi cult but has the least potential for selection bias. When 
cases are selected from a hospital, controls are often selected among patients having 
other diseases in the same hospital. Such hospital controls are easier to fi nd and 
enroll than community controls and, once enrolled, there may be less danger for 
recall bias and non-response. However, the danger of selection bias tends to be 
higher. With hospital controls it is generally more diffi cult to convincingly argue 
that they validly represent the true source population. It is also sometimes unclear 
whether the illness of controls is truly unrelated to the exposures studied. In addition, 
it may be diffi cult to convincingly argue that their referral, diagnosis, eligibility 
assessment and acceptance of participation were also exposure-independent. A better 
option is often to recruit the controls among clients of doctors who would refer their 
clients to the hospital where the cases were recruited (if they would acquire the 
case-defi ning illness). When identifying such a group one needs to take into account 
the implications of the defi nition of source population. For example, clients of a 
doctor who refers such clients to another hospital cannot be controls. 

 When neighbors, friends and relatives are chosen as controls, the possibility of 
selection bias is generally very high. Thus these sources cannot be recommended 
as a general strategy but can be an option when cases are recruited via snowball 
sampling. The problem is that neighbors, friends, and relatives of cases often have 
very similar environmental and behavioral exposure patterns to the cases, not typical 
for the source population at large.  

    9.6.2.2 Control Selection Modes in Case–Control Studies 
 Sampling schemata for controls can be distinguished fi rstly according to whether 
the controls are sampled:
•    As a group, among non-cases considered to represent the source population (‘tra-

ditional approach’)  
•   Concurrently with the cases (‘concurrent sampling approach’)  
•   From the entire source population regardless of whether they happen to be cases 

or not (‘inclusive approach’) (Rodriguez and Kirkwood  1990 )    
 The inclusive approach has regrettably remained very exceptional. It has the 

advantage that it leads to direct estimation of the incidence rate ratio ( See:  Chap.   22    ). 
When the traditional approach is used, a group of eligible non-cases is selected into 
the study. One considers the date of their inclusion, which is typically identical for 
all, as the end of their individual exposure and risk period (the zero time-point of 
negative etiologic time,  See:  Chap.   6    ). When concurrent sampling is used, one or 
more controls are sampled each time a case becomes manifest, out of a source of 
eligible subjects who were at risk for developing the case-defi ning condition but did 
not develop it. Here, the zero time-points of etiologic time are spread out over 
calendar time both for cases and for their selection time-matched controls. If the 
subjects at risk at the time a case develops are a well-enumerated group, then they 
are said to form the ‘risk set’ at that time and the control sampling is then often 
called ‘risk-set sampling’. With this method controls can be sampled more than 
once and controls can later become cases. Risk-set sampling is often done in nested 
case–control studies. Figure  9.1  illustrates the method.
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   A second way to classify sampling schemata for controls is according to how 
many controls are selected for each case, and if several are selected for each case, 
whether these are all of the same type or of different types. Multiple ‘same type’ 
controls are used to increase the power of the study, but there is little advantage in 
having more than four controls per case ( See:  Chap.   7    ). ‘Different type’ controls may 
be, for example, one hospital control and one community control, or, two different 
control diseases. This is sometimes used to study possible biases. When similar 
fi ndings are obtained with each type of control, this is sometimes interpreted as 
indicating lack of bias, although it is obviously not a strong argument since bias 
may be equally big in the two control groups.   

9.6.3      Types of Selection Bias in Case Control Studies 

 In case-control studies the selection of cases and controls is usually done separately. 
Hence there can be case selection bias, control selection bias, or both. 

    9.6.3.1 Case Selection Biases 
 Most case selection biases arise from the cases’ survival, referral, diagnosis, 
eligibility assessment, or acceptance of participation being associated with the 
exposure(s) under study. In Panel  9.6  we describe the types of case selection bias 
accordingly. 
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  Fig. 9.1    Illustration of the principle of  risk-set sampling  in a nested case–control study with a 
control-to-case ratio of 1.  Horizontal lines  represent the person time contributed over calendar time 
by the fi rst ten subjects in a cohort. The position for each subject refl ects the time of enrollment. 
 Lines  represent person time of subjects. Case development is denoted by X, and loss to follow-up 
is indicated by a diamond. The fi rst subject developing the case-defi ning condition is subject 4 at 
t = 1. The second case occurs at t = 2. At t = 1 the risk set is composed of subjects 1, 2, 5, 6, 7, 8, 9, 
and 10. One control is randomly selected from this risk set. At t = 2 the risk set from which a 
 control may be sampled consists of subjects 1, 2, 5, 6, 8, and 9       
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 As to case ascertainment bias, when misclassifi cation in case ascertainment is 
 non-differential  (i.e., similar in the exposed and unexposed), the lack of sensitivity 
and/or specifi city tends to bias the estimated odds ratio towards the null value 
(i.e., towards an odds ratio of 1). To illustrate this further, a scenario is described in 
Textbox  9.2 . 

 Similarly, still with a causative exposure, a non-differential lack of specifi city of 
case ascertainment among exposed and unexposed will tend to preserve the expo-
sure odds among controls but will decrease the exposure odds in the cases and will 
thus also underestimate the odds ratio. 

 When misclassifi cation in case ascertainment is  differential  as to exposure 
level (sensitivity and/or specifi city are different among exposed and unexposed) the 
effect will not necessarily be an underestimation of the odds ratio, but could be an 
overestima tion of it, depending on how the exposure odds in cases and controls 
are affected.   

    Panel 9.6 Types of Case Selection Bias in Case–Control Studies 

•      Case survival bias  –  See:  discussion about disadvantages of using prevalent 
cases.  

•    Case referral bias  – Cases may have had a higher chance of being referred 
from lower level facilities to the study hospital/clinic or diagnostic center if 
exposed (or unexposed). For example, consider a clinic-based case–control 
study about malnutrition as a possible causal risk factor for persistent 
diarrhea. Patients with persistent diarrhea may have been more likely to be 
referred if malnourished than if well-nourished. This would tend to infl ate 
the observed exposure odds among cases which could lead to an overesti-
mation of the odds ratio.  

•    Case ascertainment bias  – Diagnosis may be more often made among 
the exposed, so that the unexposed are less likely to become a case. An 
example is given in Textbox  9.2 . Some epidemiologists classify this type 
of bias as information bias, although case ascertainment is a necessary step 
in case selection.  

•    Case eligibility assessment bias  – Inclusion as a case in a case–control 
study also passes through a phase of eligibility screening. This involves more 
than only diagnosis. It can also involve severity assessment, assessment of 
time since fi rst manifestation of illness, and assessments of other eligibility 
criteria. All these steps can theoretically lead to bias if the decisions made 
are infl uenced by exposure status.  

•    Case non-participation bias  – Refusal can be associated with exposure. 
Imagine a case–control study on blood transfusion as a risk factor for HIV 
infection. HIV-positives may be more likely to consent to participation if they 
think they got HIV through blood transfusion than if they think they got it 
through sexual contact with commercial sex workers. HIV-negatives’ willing-
ness to participate would probably be more independent of the exposure.    
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         9.6.3.2 Control Selection Biases 
 As mentioned, in practice the selection process of controls is usually separate from 
the selection of cases, which leads us to consider control selection biases as a sepa-
rate class of bias. We list them in Panel  9.7 . Note that case selection biases and 
control selection biases often co-occur. What the expected overall effect is on the 
estimate of the odds ratio is in such cases not always clear, but the biases may cancel 
each other out or be superimposed on each other.   

    Textbox 9.2 Non-differential Misclassification in Case Ascertainment: Effect 
on the Estimated Crude Odds Ratio in a Case–Control Study 

 Consider a case control study of the effect of poor housing conditions on the 
occurrence of asthma, and assume there is a true effect e.g., an odds ratio 
(OR) of 2.67, with the true odds of exposure among the 100 cases being 4 and 
the true odds of exposure among 200 controls being 1.5:

 Asthma  True 
 Poor housing  +  −   OR  
 +  80  120 
 −  20   80 

 Exposure odds  4.0  1.50   2.67  

    High specifi city but poor sensitivity in the diagnosis of asthma implies that 
a proportion of children with asthma are not diagnosed but nearly all those 
diagnosed will be true cases. When the low sensitivity is non-differential i.e., 
equal in the exposed and unexposed, the exposure odds of 4 among the cases 
(numerator of the odds ratio) will be preserved. However, among the controls, 
the exposure odds (denominator of the odds ratio) could falsely become 
higher if there are non-diagnosed children with asthma (who have more 
frequently been exposed) amongst them. The trend will be one of relative 
over- representation of the exposed among the controls. The consequence will 
thus be an underestimation of the crude odds ratio. How much underestima-
tion there will be depends on such factors as exact sensitivity, type of controls 
used, and the prevalence of asthma in the total source population. A possible 
observed scenario is:               

 Asthma  Observed 
 Poor housing  +  −   OR  
 +  80  140 
 −  20   60 

 Exposure odds  4.0  2.33   1.71  
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9.7         Duration of the Recruitment, Eligibility Screening 
and Enrollment Periods 

 The recruitment period is not necessarily the same as the screening and enrollment 
periods; there may be slight timing differences among the three. Initial enrollment rates 
are often lower or higher than expected and the recruitment and enrollment periods 
can often be shortened without too many problems except if enrollment was scheduled 
to be evenly spread over seasons of the year or another calendar period. This is 
sometimes planned for studies aiming at estimating a period prevalence or at 
eliminating seasonality as a confounder. Prolongation of the enrollment period 
may have infl uences on study budget and usually requires renewed ethics approval. 
Issues around faster or slower than expected enrollment rates are discussed in 
greater detail in Chap.   17     (Accrual, Retention and Adherence). 

 In follow-up studies the total follow-up phase of the study is approximately the 
duration of the enrollment period plus the duration of the individual follow-up. 
When the enrollment period is very long, there is a greater risk of so-called ‘cohort 
effects’ occurring. This means, in this case, that subgroups enrolled over different 
calendar periods tend to have or acquire, during the follow-up period, different dis-
tribution matrices of determinants and covariates. In other words, a lot may happen 
over a long enrollment period. The early and the late enrollees may have been 
exposed to quite different circumstances. 

   Panel 9.7 Types of Control Selection Bias in Case–Control Studies 

•      Control source bias  – the chosen source is inadequate; Subtypes are:
 –     Control sampling frame bias  – The frame from which the controls are 

sampled may not adequately represent the source population  
 –    Exposure-related control illness bias  – For example, in a study about 

smoking as a risk factor for cardiovascular disease, patients with chronic 
obstructive pulmonary disease would be poor controls since this is a 
smoking-related illness. Patient controls can also be a highly medicalized 
group of people who deliberately avoid a variety of exposures including 
the exposure of interest  

 –    Exposure-related healthy control bias  –  See:  text above about the use 
of neighbours, friends and relatives of cases (Sect.  9.6.2 )     

•    Control survival, referral, and diagnosis biases –  These types of control 
selection biases can occur if patient controls are chosen. The mechanisms 
are the same as those operating for the corresponding types of case selection 
bias ( See:  Panel  9.6 )  

•    Control non-participation bias  – Refusals among controls can be asso-
ciated with the exposure    
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  In this chapter we discussed aspects of planning recruitment, sampling, 
eligibility screening, and enrollment activities. In the course of a prospective 
study, apart from measurements done in pilot studies and for eligibility 
screening, the ‘real’ data collection phase of the study usually starts with 
the enrollment of the fi rst subject. To guide data collection, a measurement 
plan is needed as well as a plan for quality assurance. Therefore, in the next 
chapter we discuss the measurement plan.      
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Abstract
In epidemiological research measurements are carried out most importantly to 
document data on outcomes, exposures, and third factors, but measurements 
related to procedural or methodological considerations should not be ignored.  
At the planning stage, it is crucial to conduct a step-by-step critical analysis of 
the measurement processes that will be employed in the study and to consider how 
errors at each step can be avoided. By carefully documenting this process for 
each planned measurement, one assembles a measurement and standardization 
protocol that conforms with general epidemiological principles by respecting 
participants and by enhancing reproducibility, completeness, unbiasedness, and 
precision. We briefly review planning and standardization issues according to 
type of attribute. Finally, special sections are devoted to quality of life and cost 
measurements in order to highlight the increasing importance of these in practice.
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If you can’t describe what you are doing as a process, you don’t 
know what you are doing.
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10.1	 �Study Measurements

A critical task in epidemiology is to define attributes in need of measurement. 
Selecting these attributes is part of a study’s general design; therefore, discussions 
on this topic are found mainly in Chaps. 5 and 6. Recall that there is a general pre
ference for higher measurement levels, non-invasive measurements, attributes with 
clear definitions, attributes measurable with validated measurement tools, and direct 
measurement as opposed to vague proxies. In this chapter we proceed from general 
design to methods design, specifically to the planning of the actual measurement 
activities. See Panel 10.1 for selected terms and concepts relevant to this chapter.

(continued)

Panel 10.1  Selected Terms and Concepts Relevant to Measurement Planning

Analog display (of a measurement instrument)  A display on which the 
measurement value is suggested by the position of a movable arrow or line 
on the graduated scale. The actual value is meant to be estimated (‘read’) 
in reference to the values of the nearest graduation mark(s)

Anthropometry  Practice and science of measuring bodily dimensions 
using non-invasive instruments, scoring the measurement values and 
making inferences about growth and nutritional status or about health risks 
of individuals or populations

Assessment  Determination of the importance, size or value of something
Biometry  Branch of statistics that supports research concerning living 

beings in biology, medicine and agriculture. Syn. Biostatistics
Calibration (status) checks  Assessment of the accuracy of a technical 

measurement instrument
Calibration status  Degree of accuracy of a technical measurement instrument
Continuous measurement scale  Scale for measuring continuous underlying 

attributes, expressing measurement values as multiples (with any number 
of decimals) of a measurement unit

Data  Recorded information regardless of form
De-calibrated  Status of a measurement instrument that lost accuracy to an 

unacceptable degree
Decimals  In the notation of algebraic numbers, any digits that indicate 

fractions of integers
Digital display  A display that does not show (part of) a graduated measure-

ment scale for reading of the measurement value but directly presents the 
measurement value itself

Duplicate measurements  Two measurements repeated independently 
within an interval considered short enough for no measurable change of 
the underlying dimension to have occurred
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Table 10.1 gives an overview of measurement activities; the types of research 
staff usually involved in those measurement activities; and the study phase  
in which these measurement activities are typically planned, performed, or 
considered.

The planning of the measurement activities involves (1) identifying, for each 
attribute, the source of data (if any can be found) and a strategy of accessing this 
source, and (2) developing a well-standardized technical measurement plan that 
maximizes completeness and optimizes validity and precision in an efficient  
and ethical fashion. These topics are covered in a general way in the next two 
sections, after which some planning issues for specific types of measurement are 
reviewed.

Independent measurements  Repeated measurements, with each repeat done 
under conditions that minimize any influence of the previous measurements 
on the results

Instrument  Question(s) or apparatus that helps in obtaining a key description 
of an attribute or experience of interest. Syn.: Measurement tool

Integer  Whole number i.e., a number without a fraction or decimal (In 
mathematics also comprising numbers with an infinite number of nines as 
the decimals)

Interview  Method of data collection based on asking questions orally 
(face-to-face or over some communication medium) to persons and 
recording the elicited responses or their inferred meaning

Measurement  An act or process that leads to the recorded description of an 
attribute or experience of a single observation unit in the form of a value 
placed on a measurement scale or a brief textual summary

Measurement plan  A plan as to who should measure what, when and how 
during a research study

Measurement schedule  Planned timing of the sequence of measurements 
within measurement sessions and/or planned timing of the measurements 
during individual follow-up

Measurement value  Result of a measurement, expressed as a particular 
position on a measurement scale

Non-invasive  Not involving any direct entry into body tissues nor any 
potentially painful and damaging mechanical forces on body tissues

Score  Position of a measurement value on an ordinal or numerical (discrete 
or continuous) measurement scale

Scoring  Locating an individual measurement value on an ordinal or numerical 
reference scale

Panel 10.1  (continued)
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10.2	 �Data Sources and Collection Strategies

10.2.1	 �Sources of Data

Epidemiological studies produce primary or use secondary data, or both. This distinction 
is based on whether the data are collected specifically for the research study at hand 
or for some other purpose. Primary data are collected for principal use by the 
researcher. Secondary data are collected for other purposes but are now used for the 
study at issue. Common sources of primary and secondary data are listed below 
(Table 10.2).

Issues of primary or secondary data collection are in principle unrelated to 
timing of the study base experience, be it retrospective, prospective, or ambispective. 
In retrospective studies, a question arises as to whether primary data on that past 
experience will be newly collected in the future (by anamnesis) or if any secondary 
data collected previously will be used. In prospective studies, the same question may 
arise: shall the researcher collect new data or use data collected for other purposes? 
Depending on the particular situation, either collection of primary or secondary data 
may be more cost-effective or unbiased.

�10.2.1.1 Medical Records and Chart Reviews
There are important differences between clinical history taking and standardized 
questionnaire administration. Similarly there are differences between clinical physi-
cal exams and biomedical measurements done for research purposes. In a traditional 
clinical context, history taking and physical examination of a presenting patient 
involves a continuous mixture of observations and subjective interpretations in a 
typically unpredictable subjective sequence. For example, selecting which systems 
should be subjected to a detailed physical examination depends on an interpretation 
of the patient’s presenting symptoms and clinical history. Since no two patients are 

Table 10.1  Overview of measurement activities in epidemiological research

Type of measurement activity Research staff usually involved
Study phases usually 
concerned

Measurements to inform  
study design and operations

Investigators, study coordinators, 
supervisors, data collection staff, 
laboratory staff

Systematic literature 
review, pilot studies

Training and test 
measurements

Same as preceding row Study preparation

Eligibility screening 
measurements

Screening and enrollment staff Screening and enrollment

Exposure, confounder, and 
effect modifier measurements

Data collection staff, laboratory 
staff

Exposure and covariate 
data collection

Outcome measurements Same as preceding row Outcome data collection
Quality control and adherence 
measurements

Quality control staff, supervisors, 
study coordinator

Pilot studies, study 
preparation phase, entire 
data collection phase

J. Van den Broeck et al.



201

identical, examination of k number of patients by m number of clinicians will most 
likely proceed in k*m number of ways. A scientific approach, as should be taken in 
research, should attempt to avoid all interpretations until the end of the study. All 
participants should be examined the same way except where the object design calls 
for a difference. Standardized questionnaires and bio-measurements are meant to 
provide complete data on all relevant attributes of all participants, whereas medi-
cal records tend to provide scattered, incomplete data on a mix of attributes (aimed 
at clinical relevance) that may be different among patients.

One must therefore consider the limitations of medical records and verify the 
completeness and format (especially units and levels of measurement) of the data 
that need to be extracted from medical records before deciding to use this source of 
data in a research study. One must also acknowledge the fact that ‘no information’ 
about a condition does not imply ‘no existence’ of that condition. For clinical studies 
with a prospective approach, it may be possible to add a research component to an 
existing medical record system by adding, for example, an addendum to a partici-
pant’s paper or electronic chart.

Table 10.2  Sources of primary and secondary research data

Common sources of primary research data
Common sources of secondary data used  
for research

Questionnaires Patient files (‘patient charts’)
Biological samples Electronic medical record systems
Bio-measurements (e.g., anthropometry) Census data and vital statistics
Medical imaging National health information systems
Information from direct observation Hospital discharge statistics
Audio-recordings Health center utilization/service statistics
Videos Health and safety surveillance programs

Disease registries
Public or private archives or research data

Textbox 10.1  Electronic Medical Records as a Secondary Source of Research 
Data

Electronic medical records (EMR)
EMR, also known as electronic health records, are becoming an integral 
component of many clinical practices. Many countries have implemented pro-
grams to promote the use of EMR systems, and the financial commitments by 
many governments to support health information technologies continue to 
grow. The perception is that EMR systems will reduce healthcare costs and 
improve the quality and efficiency of healthcare in the long run. However, 
EMR systems will hardly realize their full potential until the data contained 
within them contribute to future healthcare innovations via research. 

(continued)
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Textbox 10.1  (continued)

Epidemiologists will thus be challenged to leverage EMR systems as if they 
were research databases (Frankovich et  al. 2011). There are also ethical 
challenges to this as data obtained for these databases are primarily for clini-
cal purposes.

Structured versus unstructured EMR data
EMR data can be divided into two main types: structured data and unstructured 
data. Structured data are ready to be directly operated on by a computer system. 
Most simply, these are alphanumeric fields that the computer recognizes, 
such as name, phone number, lab values, and vital signs. Structured data are 
more ready for extraction, data cleaning, transformations, and analysis than 
are unstructured data. Unstructured data often involve free text fields or 
images that aren’t as immediately meaningful to a computer program. For 
example, scanned images of lab values or a typed referral letter are not 
immediately available for processing. However, with optical character recogni-
tion, natural language processing (NLP) and careful data mining techniques, 
useful information can be obtained from unstructured data. Data mining from 
unstructured data is a relatively new field that is rapidly growing because data 
sources, such as physicians’ progress notes, often contain critical knowledge 
not captured elsewhere in the patient’s electronic chart.

Natural Language Processing (NLP)
Narrative text is unavoidable in the EMR, but NLP technologies offer a 
solution to convert free text data into structured representations. While not 
perfect, it can be less error-prone than the laborious, resource-intensive task 
of manual structuring of data. NLP technologies are based on ‘linguistic 
ontologies’ that can be customized for particular projects. While this adapt-
ability is a great strength of NLP technologies, customization requires very 
careful programming, such that “hypertension” and “high blood pressure” 
and typographical errors of these terms are classified similarly. But they also 
must correctly identify acronyms (e.g., HTN for hypertension) that often 
vary considerably among providers and subtle yet critical words, such as 
negations, that may exist in a clinician’s note on a patient.

Clinical Data Repository (CDR)
All raw EMR data for a patient are stored electronically in a CDR, a database 
that underlies all of an EMR’s applications. A CDR allows the user to run 
reports and searches, analyze statistics, perform computations, import and 
export data, and manipulate data sets. The primary use today is for budgeting 
and internal health system monitoring. Obtaining the schema or data model 
for a research institution’s CDR may be helpful in defining future research 
questions.

(continued)
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Identifying relevant records for data extraction
When planning a research project using EMR data, one must realize that an 
initial query for just the most critical attributes will produce a very long 
screening list of ‘encounters’ i.e., episodes during which information on the 
attribute(s) may have been recorded. New clinical data for a given patient are 
virtually always entered in association with an encounter number. Encounters 
are associated with a date, location, provider, and one or more diagnoses and are 
created in association with an inpatient stay, an outpatient visit, a patient phone 
call, old imported records, or even an e-mailed question to a physician about 
a patient. These are considered encounter-level data. Without an encounter, 
the data are considered to be patient-level. Patient-level data, such as name, 
contact information, primary care physician and other, are associated with a 
patient’s medical record number, a unique and anonymous identifier.

EMR-based research projects
One of the primary challenges in this endeavor is the standardization of 
disparate health data from the nation’s many health care organizations and 
providers. Traditionally, EMR data are stored inconsistently and in multiple 
silos. Researchers may need to work closely with their local IT department to 
discern the schema or clinical data model in question. In some cases one may 
be able to access a secure data mart or a custom dashboard for creating 
queries, much like a familiar relational database. For some projects it may 
be appropriate to obtain EMR data provided by a systems administrator in a 
format as simple as a spreadsheet.

Privacy and Security
A common misconception about health IT is that it excessively exposes pro-
tected health information to unauthorized parties. EMR can actually provide 
more security than paper medical records. In the early days of health informa-
tion privacy laws, caregivers were taught that it was a violation to look at the 
records of a patient for whom the caregiver had no clinical responsibility. In 
an EMR, doing so creates mandatory electronic audit trails making it virtually 
impossible to do it secretly. However, when a paper record is accessed or 
altered, there is no automatic audit of who saw what when and for how long. 
Being familiar with privacy laws and working cooperatively with the institu-
tion’s legal department and ethics committee will ensure that patient privacy 
is respected while not creating unnecessary barriers to innovation.

Textbox 10.1  (continued)

10.2.2	 �Data Collection Modes

A distinction can be made between direct measurements and staged measurement 
processes that involve some intermediate storage of material for final measurement 
and recording. An advantage of the latter is that re-measurement can usually be done 
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easily and by different observers, which offers possibilities for quality assurance 
and control.

Measurement frequently involves recording values on questionnaires (See: 
Chap. 18) that are later transferred into an electronic database manually or using an 
optical scanner. Sometimes electronically stored results are an immediate output of 
the measurement process without a need for intermediate recording on a form. 
The Ulmer stadiometer, for example, reads a person’s standing height automatically 
and simultaneously transfers it to a database. Results of biochemical analyses on 
biological samples increasingly involve automated reading and electronic recording 
as well. Other electronic aids often used in data recording include computer-based 
questionnaires (that may involve the Internet or mobile devices) and tape- or video-
recorded encounters.

General advantages and frequently encountered disadvantages of some common 
data collection modes are listed in Table 10.3. Space constraints preclude detailed 
discussions of each here. Environmental and bio-measurements are discussed further 
in Sect. 10.4. Questionnaire administration modes are discussed in Chap. 18. As to 

Table  10.3  General advantages and frequently encountered disadvantages of various data  
collection modes

Mode of data collection Advantages Disadvantages
Secondary data look-up Inexpensive Cumbersome formatting

Fast Incomplete data
Limited variables

Direct observation  
of behavior or environment

Inexpensive Subjects may display unnatural 
behaviors in research context

High objectivity possible Lower order measurement scales
Face-to-face interviews Personal contact facilitates 

higher response rates
Expensive

Independent of literacy Time consuming
Interpersonal dynamics can 
inappropriately interfere
Interviewer variation

Telephone interview Inexpensive No non-verbal cues
Wide area of coverage 
possible

Suspicions often aroused
Questionnaire needs to be short
Less feasible in many low- and 
middle-income countries

Mail, email, and Internet 
questionnaires

No interviewer variation Low response rates
Anonymous Time consuming

Difficult to elicit detailed responses
Depends on literacy
Less feasible in many low- and 
middle-income countries

Bio-measurements High validity possible Can be invasive
Can be expensive
Depends on high instrument quality
High technical operator skills 
required
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self-administered questionnaires, these can be mailed, transmitted electronically, or 
be handed out in person (e.g., at a medical consultation). The latter approach tends to 
increase response rates (Herold 2008), which otherwise tend to be quite low. Mailed 
or emailed questionnaires are most useful for closed-circle target populations, 
such as employees or members of organizations (Herold 2008). Not all parts of  
a questionnaire need to be delivered the same way. For example, questions about 
eligibility may be asked over the phone, and if the person is eligible, then an invita-
tion is issued for a face-to-face interview.

Chosen data collection mode(s) influence(s) the required type and number of data 
collection personnel and their training (See: Chap. 15). In many studies data collec-
tion is an activity of study personnel specially hired and trained for the purpose. 
In clinical studies it may be the investigator-physician herself who (also) collects data. 
When making decisions about who collects data, one should take into account that 
problems of inaccurate reporting can arise if the person collecting data is also the person 
administering an intervention. Consider, for example, a study of the effect of various 
modes of repeated postnatal counseling about exclusive breastfeeding on time to cessation 
of exclusive breastfeeding. The measurement plan may include that, at each contact, 
the same interviewer-counselor first counsels about the virtues and modalities of 
breastfeeding and, immediately afterwards, asks questions about whether the child is 
still exclusively breastfed. This plan would amount to an invitation to misreporting.

�10.2.2.1 Mobile Devices as Research Tools
The use of mobile devices as interview aids is on the increase and has several 
advantages. Modern cell phones can display the question; guide the interviewer/
examiner or participant through the data collection process; and facilitate direct 
protected data entry (Vital Wave Consulting 2009; OpenXdata 2010). This system 
tends to be cost-effective despite the cost of electronic devices; allows automatic record-
ing of the date, time, and location of an interview/examination; and often enables 
incorporation of audio or visual media into the interview/exam or database. Mobile 
devices also facilitate quality control procedures, as members of the study team can 
rapidly consult each other or important references as issues arise. Even real-time 
analysis in remote places can be made possible with cell phones. There are also some 
limitations associated with the use of mobile devices as research tools. An important 
one is that technical difficulties may compromise data collection processes. If one 
wants to employ mobile devices in a study, logistical aspects of their use and pro-
gramming will need to be investigated thoroughly to confirm feasibility and utility 
for the given scenario. Data management issues are further discussed in Chap. 12.

10.2.3	 �Exposure History Taking

Exposures are aspects of gene-constitution-environment interaction. Perhaps the 
most common approach to documenting exposures is history taking. This involves 
extraction of information from the participant’s memory via a structured question-
and-answer approach i.e., via structured anamnesis.
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�10.2.3.1 Fine-Tuning of Design Preceding Anamnesis Planning
Preliminary explorations may be needed to clearly define the exposures of interest 
and the relevant etiologic period for each of those. Some studies have a broad mission 
to investigate the causes of an epidemic. In such circumstances it may be unclear 
what exactly needs to be measured. Only when there is clarity about the nature of 
the exposures, their range of intensities, and their relevant etiologic period can one 
design a measurement plan. In other words, refined object design may be needed. 
Defining the object design in a study must always precede measurement planning. 
Preliminary explorations and design efforts may require close collaborations with 
technical experts and/or basic biomedical researchers. It is thus useful to remain 
aware of major relevant developments in other disciplines.

�10.2.3.2 Reconciling Valid Recall Period and Etiologic Period
The next step in planning questions is to consider carefully what a valid recall 
period is. How long ago was the exposure period at the time the participant is asked 
the question? For this particular exposure and for this particular type of participants, 
what is already known about the accuracy and reproducibility of a question (or set 
of questions) as a function of recall period? This crucial information helps to verify 
the compatibility of the etiologic period of interest and the valid recall period. This 
exercise may lead to the dramatic conclusion that the plans for a study need to be 
abandoned or that the entire object design needs to be revised from scratch. For 
example, the initial plan may have been to assess, by history taking in a group of 
mothers of 1-year-olds, the duration of exclusive breastfeeding as a determinant of 
a particular health outcome at age 1 year. Careful study of the epidemiologic litera-
ture will show that exclusive breastfeeding duration cannot be accurately measured 
in this way because the recall period is too long to produce accurate information 
(Bland et al. 2003). Situations arise where no reliable information about the recall 
period–accuracy relationship can be found in the literature. This may be a reason for 
doing a methods-oriented pilot study first. Another possible conclusion from the 
comparison between etiologic period and valid recall period is that only a part of the 
etiologic period can be addressed in the study, which may or may not be a satisfac-
tory solution sufficiently in line with the general objectives of the study.

There are instances where present exposure can be taken to fairly represent past 
exposure in the relevant etiologic period. In cross-sectional association-based etiog-
nostic studies (See: Chap. 6), this is a necessary assumption that needs to be met 
strictly. An example is current exposure to environmental factors in a confined 
setting (e.g., a work setting) that has not changed appreciably over the etiologic 
period considered.

�10.2.3.3 �Questions on Timing and Intensity Patterns  
of Exposures

Within the relevant etiologic time span, the exposure to ask questions about may be:
•	 A single event, e.g., having eaten a particular food item on a particular occasion
•	 Repeated events, e.g., instances of exposure to X-rays
•	 A permanent characteristic e.g., sex
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•	 An episode of interaction between body and environment, e.g., a visit to a 
particular geographical area

•	 Repeated similar periods of interaction between body and environment, e.g., 
periods of working in a particular type of workplace
The type of exposure tends to have a bearing on the statistical analysis methods 

that can be used in the study. For example, longitudinal analysis methods will tend 
to be more useful for repeated events exposures than for a single event exposure. 
Depending on the object design, questions of interest may concern the exact timing, 
duration, and frequency of exposure; the intensities and patterns of exposure; or the 
exact nature of an exposure (if subtypes of the exposure are of interest).

With information on exact timing available, one may classify subjects according to 
mutually exclusive reported exposure time categories. Miettinen gave an example of 
a simple, correctly classified time exposure history in an etiognostic study (Miettinen 
1985): the classifications were (1) never used a contraceptive pill; (2) current use only; 
(3) past use only, 1–5 years ago; (4) past use only, 5–10 years ago; (5) past use only, 
10–20 years ago; or (6) other. In this example it is clear that the ‘Other’ category is 
important in that it represents the experience of all those who used a contraceptive pill 
in more than one of the historical time segments. With such a classification of expo-
sure histories, it is possible to validly contrast any of the categories of past use with 
the ‘never used contraceptive’ category, except for the ‘Other’ category, which is a 
mixed bag category of little further use in the synthesis of the data. Alternatively, one 
may wish to use more information from this ‘Other’ category and treat each historical 
segment as a separate attribute, each with a separate exposure variable representing 
it in a regression analysis. In any case, characterization of exposures in historical 
segments usually requires separate questions concerning each of the segments. For 
instance, in Miettinen’s example, it would be important to ask separate questions 
about the different time segments before attempting to arrive at the proposed classifica-
tion. The reason is that it would require the respondents to possess a high capacity 
for abstraction to be able to select the appropriate options about ‘past use only’.

�10.2.3.4 Measuring Cumulative Exposure Using Anamnesis
Sometimes there will be only an interest in cumulative exposure over the entire 
etiologically relevant period, not in any patterns of how this accumulation came 
about. In this case the ‘amount of exposure’ may be approximated, for example, by 
a summation of intensity-weighted exposure durations in pre-defined mutually 
exclusive time segments. If the exposures are repeated events, the number of events 
(perhaps intensity-weighed) is sometimes taken to represent cumulative exposure 
amount (e.g., pack-years of smoking).

10.2.4	 �Prospective Follow-Up Measurement Strategies

The scheduled length of follow-up is an element of the general design of longitu-
dinal studies. This does not mean, however, that all individual observation units are 
followed for the same length of time. If the study base is a dynamic population, 
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individuals are only followed for the time they fit the inclusion criteria. Units scheduled 
to be followed for the entire study period may be lost to follow-up for various reasons 
or acquire an ‘endpoint’ and therefore no longer contribute needed data.

�10.2.4.1 �Choice of Measurement Intervals and Time  
of Measurement

In any study, the ideal measurement interval may vary according to the study variable 
at issue. When cumulative or chronic exposure patterns need to be documented and 
the attribute shows considerable fluctuations within individuals, then more frequent 
or even continuous follow-up measurements will better characterize the exposure 
pattern. For continuous characteristics, the measurement interval must permit the 
potential for a change larger than the expected measurement error. For example, it 
would be senseless to measure a child’s height every day over a long observation 
period; a minimal interval of 6 weeks to 2 months would allow detection of small, 
true gains in height. Height gains over shorter periods would tend to be indistin-
guishable from measurement error.

A related problem arises when variables are known to fluctuate normally according 
to the time of day. For example, the circadian rhythm of blood pressure is well docu-
mented. Although the amplitude of this cycle is small at approximately 5 mmHg, 
taking measurements at different times of day in different groups nearly guarantees 
irreconcilable bias. Many physiological parameters are known to cycle in a circadian 
manner, examples of which include various white blood cell counts; hematocrit; 
some serum electrolytes; and many hormones, such as cortisol, melatonin, and 
catecholamines. One should turn to the literature for each variable potentially liable 
to time-of-day effects.

When secondary data are used, more follow-up data may be available than are 
actually needed. For instance, if the outcome is baseline-adjusted change in weight 
from start till end of follow-up, then weights obtained in the middle period of 
follow-up may be irrelevant. When events must be recorded by history taking, con-
cerns about recall bias and desirability bias should guide selection of an appropriate 
interval between interviews. It may be possible to instruct participants to keep a 
diary on particular behaviors or of signs and symptoms for later use during structured 
interviews. This may improve accuracy and precision and may also decrease the 
number of follow-up visits needed.

�10.2.4.2 �Cost Saving Strategies in Prospective  
Follow-Up Studies

When the optimal measurement technique is highly reliable but very expensive, one 
may be led to consider the cost-reducing strategies at the expense of some accuracy 
(White et al. 2008). One option is to validate a less expensive (and less reliable) 
method against the expensive one in a sub-sample only. Another may be to pool 
samples within each main comparison group to determine a single (mean) level in 
each pool. Sometimes it is possible to analyze only a selection of the collected 
samples. This may be useful when the timing of an event needs to be estimated on the 
basis of a series of samples. For instance, when the timing of HIV seroconversion 
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needs to be estimated, it makes economic sense to analyze only the full series of 
samples from individuals whose last sample showed seroconversion. Whether it 
also makes ethical sense to delay analysis of samples until the end of the data 
collection needs to be judged on a case-by-case basis.

10.3	 �Measurement Standardization

Measurement standardization is the application of an identical standard to measure-
ment procedures.

10.3.1	 �Aims of Measurement Standardization

In epidemiological studies it is essential to ensure that all measurers uniformly 
apply optimal measurement procedures. What constitutes the optimal procedure 
depends on scientific, ethical, and practical considerations. For example, one might 
consider standardizing measurement procedures to reduce observer fatigue (an ethical 
issue) with the aims of improving overall measurement reliability (a scientific issue) 
and cost-efficiency (a practical issue). Properly executed measurement standardiza-
tion creates data that are comparable among subjects, populations, or subgroups 
(Textbox 10.2). Failure to execute measurement standardization properly renders 
data incomparable and can lead to biased study findings.

More information on how measurement error affects validity of study findings 
can be found in Chaps. 11 and 27. In this section we deal with important ways of 
avoiding these problems of measurement bias.

Achieving successful measurement standardization can be complex, especially in 
studies involving many measurers. The preferred approach is to enroll all measurers in 
a study-specific tutorial, allowing them to be trained simultaneously or in batches. In 
small studies, however, a training process might amount to a few meetings of measurers 

Textbox 10.2  Types of Standardization in Epidemiology

Not to be confused with measurement standardization (the topic of this 
section) is the standardization of measurement values (See: Chaps. 12 
and 13), which refers to the scoring of measurement values in relation to a 
‘reference distribution,’ thereby making scored values comparable. The stan-
dardization of estimates (See: Chap. 22) involves taking one population as a 
reference and using its underlying distribution of determinants to calculate 
adjusted estimates for another population. This process produces expected 
estimates had the underlying distribution of the determinants been the same as 
in the reference population.
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and investigators. A special case arises in epidemiologic studies that involve only ques-
tionnaires completed individually and without assistance of research staff. In this case, 
subject-measurer contacts are indirect, so measurement standardization often takes the 
form of proper questionnaire development (See: Chap. 18).

Measurement standardization is critical to the general epidemiological principles 
listed in Chap. 1 (Panel 1.1), for example:
•	 To obtain accurate and precise measurement values
•	 To enhance data completeness
•	 To contribute to overall unbiasedness of evidence by making data comparable 

within subjects and observers (over time) and among observers and studies
•	 To ensure that measurements are efficient, such that no participant undergoes 

unnecessary lengthy or otherwise burdensome measurement sessions
•	 To ensure that measurements are taken in the safest possible way

Consider the example of venous blood sampling in children. Minimally, the 
measurement standardization plan should limit the number of attempts to find venous 
access, prescribe a sequence of body sites for those attempts, define conditions for 
referral to a pediatrician or expert phlebotomist, and instruct on the use of anesthetic 
skin creams or adhesives. The requisite elements of measurement standardization 
plans are shown in Panel 10.2.

10.3.2	 �Sources of Measurement Variation

A measurement plan should be based on what the expected sources of measurement 
variation are. When considering possible error sources one should keep in mind that 
each single measurement value is the end-result of a complex interaction between 
measurement instruments, the environment in which measurement occurs, a subject 
(and any accompanying persons), and usually also one or several measurers 
(Fig. 10.1). These interactions potentially make the measurement value inaccurate. 
As an example, consider measurement of usual alcohol consumption in a 17-year 
old adolescent boy, by questions asked in a face-to-face interview administered during 

Panel 10.2  Requisite Elements of Adequate Measurement Standardization

•	 Uniformity in prescribed procedures to be applied to each participant and 
by each measurer; it is preferable to use validated formal guidelines

•	 Detailed descriptions of procedures and the successive measurement 
processes

•	 Descriptions of what to do (and why) and also of what not to do (to avoid 
error); protocols/standard operating procedures should be employed to 
enhance objectivity and reduce subjectivity

•	 Training of the technical procedures up to or close to an expert level
•	 Proof of standardization through documentation of data quality (See: 

Chaps. 11 and 29)
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a home visit. The interviewer visiting the home is a 22-year old female research 
assistant. The accuracy of the boy’s responses may be influenced, among others, by:
•	 Formulating questions about alcohol consumption in a way that suggests alcohol 

drinking is for adolescents anything but neutral e.g., bad, unhealthy, or ‘cool’
•	 Preceding questions about condom use; E.g., the boy has become embarrassed 

and is now very much looking forward to the end of the interview
•	 The television in the room is showing an exciting soccer match
•	 The boy’s mother, who is strongly opposed to adolescent alcohol consumption, 

is listening at the other end of the table to what the boy answers
•	 The interviewer finds the boy attractive and impresses upon him with non-verbal 

cues; the boy recognizes these cues and, in turn, tries to make a favorable impres-
sion upon the interviewer through his answers
The example illustrates how the quality of the instrument, the behavior of the 

subject, the characteristics of the measurement environment, the measurement skills 
of the observer, and the behavior of accompanying persons can be sources of error. 
The example also implies that standardization can avoid these errors.

The interactions shown in Fig. 10.1 are those occurring during a single direct 
measurement act. Some of these separate measurement acts may be indirect, on sampled 
materials. For many attributes, several separate measurement acts will be needed to 
produce the final measurement values. Total error will then be determined by the 
accumulation of all errors occurring at all stages. With biological sampling, total error 
variance will be the sum of variance in sampling and storage technique, variance of the 
actual sample analyses, and variance from data handling after recording of analysis 

Subject Observer(s)/
measurer(s)

Accompanying
person(s)

Instrument(s) and
sample(s)

Measurement Environment

Recording

Recorded
measurement

Data entry

Data cleaning

Data transformation

Data analysis

Downstream of
Measurement Environment

Fig. 10.1  Sources of error in a study variable that depends on a simple direct measurement act. 
All components of the measurement environment interact to influence the recording. Downstream 
of the measurement environment, the recorded measurement values are manipulated in a series of 
steps leading to data analysis. Errors can be introduced at any point from the first contact between 
the subject and the measurement environment through the completion of data analysis
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results. What is needed at the planning stage of the study is a step-by-step critical 
analysis of the measurement process and consideration of how errors at each step 
can be avoided. All the different measurements and their possible sequences need to 
be considered. The result should be a measurement and standardization protocol.

10.3.3	 �The Measurement and Standardization Protocol

A measurement protocol may contain long lists of detailed instructions. Each separate 
instruction may contribute little to overall data quality, but the combined effect of 
standardizing a large number of procedural components greatly enhances quality and 
comparability. Hence, all details are important. Instructions in a measurement protocol 
may represent a prevailing choice among possible alternatives. This choice may or 
may not be evidence-based and often represents a consensus among experts. Even for 
the most common measurements, there is still a need for methods-oriented research.

Panels 10.3, 10.4, and 10.5 provide a checklist of issues to consider when 
designing a measurement and standardization plan. Protocols for using devices may 

Panel 10.3  Overview of Standardization Issues with Instruments

Choice of instrument
•	 Intrinsic validity
•	 Precision of the measurement scale
•	 Design features influencing accuracy or precision
•	 Applicability to the whole study population
•	 Usefulness in field studies

Instrument calibration
•	 Recognized and demonstrated validity
•	 Use of certificates of calibration
•	 Assembling; conditions of usage
•	 Checking of calibration status at start of research data collection
•	 Frequency of calibration checks during usage
•	 Equipment needed for calibration checks
•	 Technical calibration protocol

Maintenance of instrument
•	 Frequency
•	 Availability of well-described technical guidelines
•	 Robustness of instrument
•	 Cost, affordability
•	 Cleaning requirements

Instrument storage and transport
•	 Sensitivity to exposure to sunlight, temperature, humidity, dust, etc.
•	 Sensitivity to physical impact
•	 Best mode of transportation
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Panel 10.4  Overview of Standardization Issues with Environment, Subjects, and 
Observers-Measurers

Measurement environment
•	 Privacy
•	 Light, room temperature
•	 Space requirements; necessary furniture; placement of instrument
•	 Attractiveness; comfort for subject and observer
•	 Interference; sources of sensory stimuli e.g., radio, TV, loud voices

Subjects and accompanying persons
•	 Motivation; relationship; encouragement by accompanying persons
•	 Knowledge of what will happen
•	 Availability, time of day
•	 Physical condition; sickness, memory

Observers-measurers and assistants
•	 Number needed per measurement; number needed for the study
•	 Training and experience; skills, knowledge and specific training of the 

technical measurement protocol
•	 Motivation and attitude; mood; pre-conceptions
•	 Time; working hours, schedules; remunerations
•	 Physical condition; sickness, memory; alertness

Panel 10.5  Standard Sections of a Technical Measurement Protocol

•	 Preparation of subject
•	 Step-by-step instructions for:

–– Interaction of subject with instrument
–– Handling/application of instrument by observer

•	 Reading and recording instructions
•	 Replicate measurements
•	 Value checks; when to re-measure

need input from technical experts, such as environmental hygienists, industrial 
manufacturers, or laboratory technicians. The source of expertise may vary, but an 
epidemiological researcher must always acquire insight into any elements of the 
protocol that may affect validity, ethics, or efficiency.

�10.3.3.1 Measurement Sessions
The planning of measurement sessions should foresee enough time for all measure-
ments. The session should not be too long in total, and pauses of appropriate lengths 
should be inserted where appropriate. Sessions should be held at appropriate times 
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of the day and, in follow-up studies, at appropriate intervals. Within sessions, the 
sequence of measurements and timing of any necessary replicate measurements can 
have an important influence on data quality. For example, sensitive questions or 
invasive measurements are best located at the end of a session, and, independent 
replicates should be made more independent by inserting other measurements in 
between. As to technical measurement protocols, one can sometimes make use of 
internationally accepted protocols, such as those available for blood pressure or 
standing height measurement.

There can also be issues of standardization over time. In prospective studies spe-
cial problems may arise if, in the middle of the data collection period, an improved 
measurement method becomes accessible. Conversely, at times the optimal method 
may need to be replaced with a less optimal method. Similarly, in retrospective 
studies, changes in measurement techniques may have occurred. When measure-
ments are not of the direct type, the solution may be re-analysis of old material. 
If not, the challenge is to replace values obtained with the sub-optimal method 
with predicted values under the better method. Regression modeling will require a 
set of doubly measured items and may lead to a simple conversion factor or a more 
complex model.

Pre-conceptions can influence the researcher’s performance. Researchers may 
have strong expectations about the existence or direction of an association between 
risk factor and outcome. This may lead, for example, to an unintentional trend to 
positively identify expected outcomes among exposed and unintentional mistakes in 
the analysis. Blinding of measurers and investigators as to the exposure status dur-
ing data collection and analysis can be a useful design decision.

10.4	 �Measurement Issues According to Type of Attribute

10.4.1	 �Measurement Issues of Occupational and Environmental 
Exposures

Data collection about occupational and environmental exposures, including treatments 
and other interventions, may use:
•	 Interviews, questionnaires
•	 Measurements of the workplace environment (e.g., water, noise, air pollution)
•	 Measurements of individual micro-environments (e.g., office, nearby machines)
•	 Human tissues (e.g., blood, urine, biological markers of past exposures)

Each of these sources of data has its limitations and will need to be considered 
on a case-by-case basis. As a brief example, measurements in the general workplace 
environment may ignore inter-individual exposure variation, and measurements in 
micro-environments may have unclear long-term relevance and may not reflect true 
exposure.

A chosen exposure measure tends to have greater validity when measuring ‘closer 
to the physiological impact’. An example is a clinical trial in which the intake of 
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test drug could be measured alternatively as ‘dose prescribed’, ‘dose taken’, or 
‘plasma levels after intake’. Proxies for exposure have often been used in studies in 
occupational and environmental health, for example an individual’s distance to the 
source of pollution in the workplace. In relation to this example, one should keep in 
mind that those who do the most dangerous work may tend to also have more dan-
gerous living conditions at home or partake in riskier activities. Such confounders 
need accurate measurement.

In the measurement of environmental exposures, short-term fluctuations often 
need to be controlled for by standardization. Continuous or frequent monitoring 
may be more relevant than a single or small number of scattered measurements. 
For example, exposure levels within a workplace may fluctuate according to par-
ticular circumstances, such as deadline-related workload, atmospheric conditions, 
technical problems with equipment, and human error. For further reading, See: 
White et al. (2008).

�10.4.1.1 The Measurement of Interventions Received
Measuring intervention levels tends to be relevant in etiognostic and prognostic 
(intervention-prognostic and descriptive-prognostic) research. Attention should be 
given to the different components of the intervention strategies. The intervention of 
interest is likely to be accompanied by additional interventions which can be pre-
scribed under the study protocol, initiated by health care workers (biomedical or 
alternative) or imposed by policy makers. Forms of additional interventions that are 
particularly frequent but not always accurately measured include (1) various types 
and intensities of advice and counseling and to what extent they are followed and 
(2) the use of non-prescribed medications (Bland et al. 2004).

Individual clients, patients, or other units may undergo different levels of actual 
exposure, adherence, or policy penetration of both the main intervention and the 
additional interventions. Ideally, all these individual levels of exposure should be 
captured accurately in all comparison groups during a study. The description of an 
intervention level as ‘usual care’ or ‘standard care’ is problematic; it does not allow 
clarity about the actual intervention contrast between index groups and reference 
group. But accurate measurement of the intervention can be difficult. One reason is 
that misreporting of adherence during interviews is frequent. Secondly, carefully 
observing intake or exposure at an individual level can be misleading. For example, 
part of the doses of drugs taken may not be absorbed due to spitting, vomiting, or 
malabsorption. Repeatedly measuring plasma levels is invasive and expensive, and 
often unacceptable to participants. Even integrated plasma levels may not adequately 
reflect what happens at the receptor level. Concentrations of many drugs can be 
measured in hair or nails, where they accumulate and reflect intake in the last weeks 
to months. This may be a preferred method in some settings, for example for the 
monitoring of adherence to antiretroviral drug treatments (Ghandi et al. 2009). 
The sampling is easy and non-invasive. However, there can be cultural taboos around 
the collection of hair or nails. Infant hair, for example, is particularly difficult to 
obtain in some African areas.
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10.4.2	 �Measurement Issues of Constitutional Attributes

The following methods are frequently used to characterize constitutional factors.

�10.4.2.1 Traditional Anthropometry
Weight and height measurements are among the most frequently performed of all 
measurements in medical research. They are variably used to construct indices of 
general nutritional status, general heath status, and total body adiposity (through the 
calculation of body mass index). Other frequent measurements are circumferences 
of head, neck, left mid-upper arm, waist and hip. The exceptional popularity of 
weight and height derives from their non-invasiveness, perceived simplicity of 
measurement, and widely accepted usefulness for assessing adiposity and obe-
sity-related morbidities. Issues of economy and efficiency, especially in large stud-
ies, have made it common practice to ask subjects to report their body weight and 
height in lieu of direct measurement by research staff. Unfortunately, self-reported 
weight and height tend to be highly inaccurate, with increasing degrees of error for 
both as individuals become heavier. No reliable standardization protocols currently 
exist to adjust self-reported weight and height, so it is highly recommended to 
employ direct measurements.
•	 For an overview of the use of anthropometry, See: WHO (1995)
•	 For anthropometric standardization guidelines, See: Lohman et al. (1988) and 

Growth Analyzer (2009)

10.4.2.2 �Medical Imaging
This family of methods is sometimes classified under anthropometry. Medical 
imaging, like traditional anthropometry, tends to be non-invasive. Yet, there may be 
concerns about, for example, exposure to radiation during X-rays, and the required 
preparations for patients who undergo imaging procedures may be burdensome. In 
research, the main roles of medical imaging are in case diagnosis and case severity 
assessment, and in assessment of body composition. Similar to traditional anthro-
pometry, a main challenge lies in achieving high enough sensitivity and specificity 
through standardization of measurement and quality control of observer perfor-
mance. A common fallacy is to judge the level of standardization on the basis of 
reproducibility and accuracy of readings of images without taking into account 
measurement variation attributable to subject preparation and technical aspects to 
imaging. It is also important to blind image assessors to the exposure level of the 
participant.
•	 Imaging techniques are not always within the area of technical expertise of epi-

demiologists and thus a good collaboration with radiologists and radiographers 
is often important in the research setup

10.4.2.3 �Blood Pressure Measurement
Diastolic and systolic blood pressure measurements are other examples of widely 
performed non-invasive measurements used in many research projects. They are 
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usually done in the context of measuring cardiovascular or renal health. Accurate 
and reproducible measurement of cardiovascular health aspects through blood 
pressure is very challenging, and elaborate standardization plans are required. This 
standardization plan should explicitly account for the time of blood pressure 
measurements given the well-characterized normal fluctuations in blood pressure 
over the course of the day.
•	 For standardization of sphygmomanometer-based blood pressure measurements 

See: Perloff et al. (2001), Chobanian et al. (2003), Pickering et al. (2005), and 
Shea et al. (2011)

10.4.2.4 �Measurements Involving Laboratory Analyses
Methods sections of study proposals and study reports need to describe any biological 
sampling and laboratory methods used to measure constitutional characteristics or 
traces of environmental impact on the body. Panel 10.6 is a list of some major issues 
regarding laboratory methods that need to be addressed in the study proposal or 
protocol.

Panel 10.6  Checklist for the Description of Biological Sampling and Lab 
Methods

•	 Places and circumstances of biological sampling
•	 Type of tissue, secretions, excretions
•	 Method of accessing and collecting samples

–– Body site, timing
–– Preparation of subjects for sampling or direct measurement
–– Equipment used during sampling e.g., syringes, intubation, endoscopic 

equipment, tubes, rectal swabs
–– Drainage, aspiration, biopsy
–– Special considerations around environment of sampling

•	 Handling of samples before arrival at lab
–– Splitting in subsamples for different purposes: spare sample, samples 

for different types of analyses
–– Manipulations: centrifuging, addition of reagents, preserving agents
–– Storage: place, timing, duration, equipment e.g., cooler box, fridge, 

freezer (including temperature of storage at minimum)
–– Dispatch to laboratory: transport means, route, maximum delays, cold 

chain issues
–– Good Laboratory Practice guidelines followed

•	 Lab storage conditions of samples until processing e.g., freezer temperature
•	 Lab analysis method
•	 Use of lab analysis results to calculate study variables
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10.4.3	 �Measurement Scales for Mental-Behavioral Characteristics

Accurate measurement of mental and behavioral characteristics can be very chal-
lenging because direct measurement is often impossible. The researcher is often be 
forced to resort to an extensive questions-based measurement tool with a series of 
questions that all measure ‘something of’ the attribute of interest. Such measurement 
tools are developed by a method called ‘scaling’. Their relevance and use is well 
established in psychiatric research. An excellent example of the development of a 
set of psychometric ‘diagnostic tools’ is the Composite International Diagnostic 
Interview (CIDI and CIDI-SF) for eight psychiatric conditions, including major 
depressive episodes, general anxiety disorder, and others (See also: National 
Comorbidity Survey website). The study of children’s mental health is particularly 
challenging given the need for proxy information. There is a serious risk of 
underreporting of risk exposures, such as violence or abuse, due to fear of stigma, 
legal consequences, or denial.

Subjective experiences (attitudes and perceptions) around health-related pheno
mena have become increasingly popular topics for investigation. An illustration of 
this is the wide interest in quality of life measurements (next section) and in the 
measurement of health state preferences in cost-effectiveness analyses. We therefore 
further discuss scaling and methods of local adaptation of questions-based measure-
ment scales in this section.

Scaling uses methods that have been developed in psychometrics. We briefly 
describe the phases of a typical scaling exercise. For further introduction, See: 
Howitt and Cramer (2008) and Streiner and Norman (2008). This type of develop-
ment and adaptation exercise may require a preparatory sub-study prior to use of the 
final scale in the main epidemiological study. The phases of development are as 
follows.

10.4.3.1 �Phase-1: Designing Questions for Scale Construction
The construction of a new scale starts with designing a series of questions that are 
all thought to capture something of the underlying attribute. The questions may be 
selected from a variety of sources, including personal experiences and questions 
borrowed from existing questionnaires. This is not an exact science. To cite Howitt 
and Cramer (2008), “Writing appropriate and insightful items to measure psycho-
logical characteristics can be regarded as a skill involving a range of talents and 
abilities.” Patients or potential research subjects are excellent sources for creating 
questions (Streiner and Norman 2008). Focus group discussions and key informant 
interviews can be helpful in designing relevant and appropriately worded questions 
about subjective experiences, attitudes, opinions, and knowledge. While borrowing 
questions from existing sources allows other researchers to perform secondary 
analysis across surveys and measurements, a word of caution is in order. First, the 
mere fact that something has been used by others is insufficient proof of quality. 
Secondly, as discussed below, there are many possible reasons why an existing tool 
may need adaptation. There exist publicly accessible databases of questions-based 
measurement scales in certain domains. Table 10.4 lists some examples.
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Some thought must go into whether it makes sense to regard the attribute as 
one-dimensional or multi-dimensional. If the multidimensional nature of the attri-
bute seems obvious and one can clearly conceive the different aspects of it then it 
becomes necessary to design questions for each of those aspects. One may want to 
separately measure one or more of these aspects in addition to the overarching attri-
bute. A larger number of questions will need to be devised for the aspect one chooses 
to document separately. In general at this stage, the more questions the better, 
because redundant questions are eliminated in the phase of scale construction. 
When compiling questions about an underlying attribute, the aim is to get as much 
variation in responses as possible. For example, if a questionnaire intends to test 
knowledge, there should be a mix of questions with various degrees of difficulty. 
One should limit opinion questions on issues that nearly everybody will know or 
strongly agree with, although this cannot always be anticipated. The set of chosen 
questions should be developed into a questionnaire that can be piloted. When the 
attribute is an attitude or a perception one should make sure that about half of the 
questions gauging agreement or disagreement are worded negatively and half of 
them positively. This is because some people have a tendency to always agree with 
statements whereas others have a tendency to always disagree.

10.4.3.2 �Phase-2: Selecting Questions for Final  
Scale Construction

Once the questionnaire is devised it should be tested in a group of people similar to 
future study participants. One should use the data from this exercise to eliminate 
questions that tend to get the same answer from everybody and questions that 
many people do not answer. Questions which participants found unclear or overly 
intrusive should be reworked or dropped. The list can be made shorter still and also 
more internally consistent by eliminating questions that do not seem to measure the 
same attribute as the others. This can be done using item-total correlation analysis 
or factor analysis.

In item-total correlation analysis, one calculates for each question the correlation 
of the question’s response with the total score from the remainder of the questions. 
Questions that do not correlate with the total score can be eliminated. This is a 

Table  10.4  Selected publicly available sources of questions-based measurement scales for 
mental-behavioral characteristics

Type of attribute Public source
Personality aspects Goldberg et al. 2006 http://ipip.ori.org
Pain, fatigue, emotional 
distress, physical 
functioning

Cella et al. 2007 www.nihpromis.org

Quality of life Generic scales: SF-36 www.sf-36.org/ and www.proqolid.org
Physical activity International Physical Activity Questionnaire (IPAQ) https://

sites.google.com/site/theipaq/
Work performance  
and health

Health and Work Performance Questionnaire (HPQ) http://www.
hcp.med.harvard.edu/hpq
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matter of judgment. What constitutes a ‘good enough’ question-total correlation is 
arbitrary (Howitt and Cramer 2008). Kline (1987) has proposed a correlation coef-
ficient cut-off of 0.2 for deciding which questions to eliminate.

Factor analysis is often made use of for scale construction. It is a statistical 
method that aims to detect virtual underlying factors in a set of variables such as 
answers to a series of questions about an attribute. Factor analysis can be useful:
•	 To explore whether the attribute is one-dimensional or multi-dimensional. The 

conclusion may be that the attribute was one-dimensional if a single factor 
was detected or that it was multi-dimensional with the different sub-dimensions 
represented by meaningful factors

•	 To detect the nature of the underlying attributes represented by the factors. By 
looking at all the questions that have a high loading on a particular factor and 
then looking at all those that do not have a loading on the same factor one can 
usually ‘see’ what kind of attribute is represented by the factor. This is a matter 
of insight into psychological processes and common sense

•	 To drop questions that do not seem to load on any relevant underlying factor
•	 To calculate a factor score for each participant on a dimension that one wishes to 

further use as an epidemiological study variable

�10.4.3.3 �Phase-3: From Multiple Questions to a Measurement  
Scale and a Normative Range

A frequently used approach to integrating the responses to all questions is to give 
each question a separate score (e.g., 0 or 1 for each yes/no question) and construct 
a total score based on the summation of all the question scores. When each question 
gets the same maximum score and the total score is the sum, it is assumed that all 
questions have the same importance. At times, however, some questions may seem 
more important than others. This could be based on tacit expert knowledge about 
what is crucial and what is accessory. Based on this assessment, a weight can be 
given to each question, and the score of each question is then multiplied by this 
weight before the total score is calculated. Another form of weighting gives each 
question a weight proportional to its standardized beta-coefficient in a regression of 
total scores on question scores (Streiner and Norman 2008). This method is based 
on the idea that questions explaining more of the variance in total scores should get 
proportionally more weight. In practice, this form of weighting has been found to 
rarely impact the total score’s ability to predict clinical outcomes known to be 
related to the attribute (Streiner and Norman 2008). More research is needed in this 
area. Weighting may also be needed because:
•	 The attribute is multi-dimensional but the number of questions for each aspect is 

not in proportion to the perceived relative importance of the aspect
•	 Some questions are so highly correlated that they can be considered to measure 

the same aspect, artificially inflating the importance of this aspect in calculating 
the total score
The next step in scaling is to standardize the raw scale for purposes of compara-

bility among scales and populations. For this it is useful to study the distribution of 
raw scores in the target population through examining a representative sample of 
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that target population. Another step may be the selection of normative cut-offs and 
assessment of discriminatory power.

10.4.3.4 �Adapting an Existing Questions-Based Measurement  
Tool to a Local Context

Adaptations of existing measurement tools, using the same approached as outlined 
above, are frequently needed because of issues with (1) Locally unacceptable or 
locally invariant questions (2) Locally poorly understood questions; (3) Outdated 
terminology, (4) Translation, and (5) Issues of different factor loadings in different 
contexts. Questions use concepts and terms that can bear different meaning and can 
have different uses in different cultures and languages. They can also acquire differ-
ent meanings over time. This can complicate translation and local adaptation of 
questions-based measurement scales (Herdman et  al. 1997). Formal permission 
from the original developers may be needed to facilitate dissemination and use of 
the adapted instrument by others. The use of appropriate translation procedures 
to achieve linguistic, dialectal, and cultural appropriateness is also needed. This 
will often require the involvement of appropriate translators and/or ethnographic 
experts.

10.4.4	 �Physical Activity Measurements

Physical activity is a frequently measured behavioral characteristic. In some 
studies it is possible to quantify certain aspects of physical activity prospectively 
using a pedometer or accelerometer. The former measures the number of steps an 
individual takes but cannot distinguish between different intensities of movement 
(e.g., walking versus running), whereas the latter generally has a greater degree of 
freedom and can make this distinction by measuring a person’s changes in acceleration. 
Data generated by both devices may need to be standardized to a person’s metabolic 
rate or a proxy measure thereof. Questions-based assessment of physical activity has 
been greatly facilitated by the IPAQ questionnaire (See: Table 10.1). The IPAQ score 
allows categorization of an individual’s daily life into low, moderate, and high levels 
of physical activity. New technologies such as small Global Positioning System 
devices are allowing new types of physical activity measurement. A comprehensive 
list of measures of physical activity is found in Bauman et al. (2006).

This concludes the first part of the chapter, in which we have discussed several 
aspects of measurement planning. It is not possible to discuss many types of 
measurement; however, there are two that we wish to explain in greater detail 
in the rest of the chapter to highlight their increasing importance in health 
research. The first is the measurement of health related quality of life, and the 
second is cost measurement.
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10.5	 �The Measurement of Health Related Quality of Life

There are two main objectives motivating the development of instruments to measure 
and value health related quality of life. The first is to monitor and compare value-
adjusted burdens of disease across settings, space and time. The second objective is 
to measure value-adjusted health improvements from health interventions. Health 
improvement is a key element in all economic evaluations in which alternative and 
competing health interventions are compared.

Health related quality of life, sometimes called health state preferences or health 
utilities, can be evaluated using monetary and non-monetary approaches. The distinc-
tion refers not to whether cost is included but to whether health status is converted 
into dollar estimates. The monetary techniques are not commonly applied in epide-
miology or economic evaluation of health interventions, although they can be useful 
in some situations. In the remainder of the chapter we will therefore mainly focus 
on the non-monetary approaches of health valuation.

10.5.1	 �Requirements for Instruments for Valuation  
of Health Related Quality of Life

There are some general requirements for instruments to measure and value health 
state preferences to be useful in economic evaluation such as cost-utility analyses. 
First, the instrument should be able to capture differences and compare changes 
across diseases and interventions. Second, they should preferably have “ratio scale” 
i.e., containing a true zero, and “interval properties.” ‘Interval property’ means that a 
constant change has the same value across the entire scale. A change from 0.2 to 0.3 
should in other words have the same value as a change from 0.8 to 0.9. A final 
requirement for the usefulness of health indices as input to economic valuation is that 
they should represent the values and preferences of affected individuals or the society.

The question of whose preferences are elicited is critical not only for theoretical 
reasons but because the numbers obtained can vary widely. Two aspects of preference 
elicitation are relevant here. First, who is asked? The individuals participating in the 
preference elicitation exercise could be medical experts, lay persons, or individuals 
who suffer from the disease in question. This latter category can be further divided 
into patients who have recently developed the disease, and patients who have 
accommodated to their current health state. Due to the remarkable ability of the 
human spirit to accommodate dramatic changes in physical states, asking the same 
question of these two different groups often yields very different answers. For 
instance, the self-assessed health status of recent quadriplegics can be much lower 
than the self-assessed health status of the same individual even a year later. Second, 
given a particular type of participant in preference elicitation studies, should a 
societal or individual perspective be taken? Certain types of measurements induce a 
frame of mind closer to an objective policymaker, whereas others induce the more 
personal view of a caregiver in the field. Here, again, results vary widely depending 
on how the question is framed.
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10.5.2	 �Ethical Considerations for Calculating Quality-of-Life

As a society we feel hesitant about putting a quantitative value on human life. 
Everyone experiences the world differently, and on a fundamental level comparing 
one person’s life to another is an impossible task. The measures used to calculate 
quality of life certainly do not pretend to be able to encapsulate everything about the 
human experience.

Despite ethical concerns listed in Panel 10.7, it is often very useful to put a 
numerical value on human life. In a world of finite resources, we must have a way 
to make difficult decisions about where best to spend our money. A valuation of 
health and quality of life enables us to systematically compare across many differ-
ent diseases, treatments, and health care delivery settings. These valuation methods 
put a value on the health related quality of people’s life years, creating a unit which 
is commensurable with the length of their lives. This reflects the important fact that 
people are willing to make trade-offs between those two aspects. It also enables us 
to assess the relative values of two very different health states, and thus identify 
potential resource distributions that could maximize societal welfare. In a world 
where all resources are finite and scarcity is a fact of life, these tools are imperfect 
but necessary for societal decision-making.

Panel 10.7  Important Ethical Concerns Around Numerical Quality of Life 
Measures

•	 Is it morally right to use these calculations to deny anyone a treatment that 
could extend her or his life, even for a short time or with considerable 
impairment? In theory everyone agrees that we need to reduce health care 
spending, but far fewer people actually want those limits imposed on them.

•	 Some valuations over-weight the young vs. the elderly. Since the elderly 
tend to have lower quality-of-life by most metrics, a policy focused on 
maximizing quality-life-years would disproportionately reward resources 
to the young. The “fair innings” argument is an opposite position, in which 
it is considered to be more fair to accrue additional weight to loss of health 
among the young individuals.

•	 Similarly, when looking at a measure of “cost per quality-of-life,” highly 
prevalent, low-burden conditions may be favored if rounding error occurs 
in weighting. For instance, if dental caries is given a weight of 0.01 but this 
value was not exact but simply meant “very small” in the minds of the 
interviewed, then since many people have dental carries their burden could 
be disproportionately large.

•	 These valuations do not measure objective differences in the need for a 
treatment, but rather how individuals subjectively value different health 
states. For example, a value measurement could theoretically be the same 
for fistula surgery vs. cosmetic surgery, but support for spending public 
funds on the former would be considerably greater than for the latter.
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10.5.3	 �Non-monetary Valuation of Health

In all the non-monetary techniques for measuring health related quality of life, one tries 
to capture one or several intrinsic elements of “health-related.” Exactly what this intrin-
sic aspect of “health” should be depends on the objectives of the study. This choice of 
health outcome measure must be done carefully, as it will influence the commensura-
bility and usefulness of the results in a broader context. Commensurability means that 
health outcomes are measurable by the same standard, which is a prerequisite for  
comparison with other diseases and interventions. Many health economists therefore 
consider commensurable health outcome measures to be the gold standard. In other 
situations, incommensurable measures of health may be sufficient to meet study  
objectives. An overview of alternative non-monetary outcome measures is given below.

10.5.4	 �Incommensurable Measures of Health

Incommensurable health outcome measures are useful foremost for comparison 
within a single disease, but pose restrictions regarding comparability and usefulness 
in a broader context. They provide valuable information regarding epidemiology and 
clinical practice, and many are also commonly used as measures of health improve-
ment in cost-effectiveness studies.

Disease incidence or prevalence are typical examples of incommensurable 
measures. It is not meaningful to compare a study presenting the cost per averted 
case of tuberculosis with a study reporting the costs per prevented case of malaria. 
On the other hand, if the study objective was to compare different malaria preven-
tion strategies, malaria incidence would be an appropriate choice of outcome mea-
sure and the cost per prevented case of malaria for the alternatives would be highly 
relevant information for decision-makers.

Survival rates for fatal or non-fatal outcomes are also common incommensurable 
outcomes in clinical trials. They are crude measures because they do not distin-
guish well between survival at different ages and because they only bluntly capture 
differences in disease severity. Survival rates are not useful as health outcome 
measures in economic evaluation, but may be very useful as intermediate outcomes 
or for other purposes.

10.5.5	 �Commensurable Measures of Health

Commensurable measures of health can be applied to a wide range of diseases, 
including chronic or acute based disease and somatic or psychiatric conditions. 
The instruments can be one-dimensional, whereby the health state preferences are 
directly measured. Alternatively, health state preferences can be measured indi-
rectly, using multi-dimensional instruments. Some of the most common approaches 
are explained in more detail below.
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10.5.5.1 �One-Dimensional Health Valuation Instruments
One-dimensional valuation instruments ask participants to report overall health in 
a single number. Since health is a multidimensional construct, individuals must 
therefore implicitly weight different aspects of health to provide an answer.

The simplest way to measure health state preferences is to use a Visual Analogue 
Scale (VAS) (Fig. 10.2). The VAS scale resembles a “thermometer” with values 
typically from 0 to 100. The value 0 is often set to represent the condition “worst 
imaginable health,” whereas 100 represents “best imaginable health”. The respon-
dents, who most commonly are patients, are asked to indicate on the scale how good 
or bad they consider their health state to be at a specified point of time (e.g., today). 
The VAS scale is very easy to apply, is usually considered cognitively easy to respond 
to, and provides results that can be interpreted straightforwardly in the sense that the 
preference value is given directly from the scale. On the other hand VAS scales are 
considered to be overly simplistic by many researchers. Because responding does not 
include any explicit elements of weighting or trade-off, VAS scales tend to result in 
disease states being weighed as more severe than with other instruments.

With Time Trade-off (TTO) instruments, respondents are asked to hypothetically 
trade-off a long life with an inferior health state and a shorter life with perfect health. 
This process starts out with clearly describing the condition in question, including 
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Fig.  10.2  Visual Analogue Scale (VAS). The value 0 is often set to represents the condition 
“worst imaginable health”, whereas 100 represents “best imaginable health.” Tha VAS can be 
employed in many circumstances, as long as answering a question on a 0-to-100 scale makes sense 
and is appropriate
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details about different aspects of health such as somatic and psychiatric symptoms, 
pain and functionality. An example of this type of hypothetical question is:
•	 “Imagine yourself in the described health state. Given that you would live T years 

in this health state, how much of the final time would you be willing to give up 
in order to live in best imaginable state all the time (t)?”
TTO instruments can be well-suited for health state valuation, especially for 

chronic conditions (Fig. 10.3). Also, respondents are “forced” to weight quality-of-
life against duration-of-life; proponents of the method believe this makes the responses 
more carefully considered. Empirical experience has shown that TTO methods 
typically rate diseases as less severe than VAS. TTO questions are a bit more cogni-
tively challenging to answer than VAS, which may reduce survey response rates.

With Person Trade-off (PTO) instruments respondents are given hypothetical 
choices between saving the life of one person and treating N persons with a speci-
fied health condition. As for TTO, the health condition in question is first described 
in detail. An example of a PTO question is:
•	 “For a given sum of money one may either save the life of one person or prevent 

N cases of illness X. How great would N have to be for you to consider the two 
programs equally good?”
Although hypothetical, PTO questions have clear resemblance to policy deci-

sions where limited resources must be prioritized between patient groups. PTO 
instruments are therefore less appropriate for estimating health state preferences 
of patients or care takers, but can be used to estimate societal preferences. The 
health related quality of life weights (h) are given with the formula h = 1 − 1/N.

Both TTO and PTO are simplistic in the sense that they ignore a very important 
aspect of valuation of benefits, namely uncertainty. According to welfare economic 
theory, people have preferences for risk, which subsequently will influence the 
value they attach to alternative outcomes.

Fig. 10.3  Illustration of how Time Trade-off methods can be used to calculate health related 
quality of life weights. Respondents are asked to indicate how much of their remaining life expec-
tancy (T) in an inferior health state (h) they would be willing to give up in order to live in the best 
imaginable health (H) all the time. The size of this time sacrifice is found by equaling the two 
shaded areas, as indicated by the formula

H = 1

h

0 Tt = ?

Calculation: H * t = h * T  h = t/T

J. Van den Broeck et al.



227

In Standard Gamble (SG) instruments, risk is included through asking hypo-
thetical questions about preferences for a long life in a specific inferior health state 
(which must be clearly described) versus a risky intervention that will result in one 
out of two possible outcomes: the best imaginable health state or death. An example 
of a SG question is:
•	 “Imagine yourself in the described health state over T years. You are offered a 

chance to receive a treatment which will either cure you completely with some 
probability or lead to your death. What is the lowest probability (p) of a successful 
outcome you would require in order to choose the intervention rather than living 
in the described health state?”
The health state preference weights (h) are directly given with the following 

formula h = p, where p is the probability from the standard gamble.
By incorporating uncertainty, SG is the only of these four instruments for direct 

valuation of health state preferences that is consistent with welfare economic theory. 
Despite this advantage, the method has not become very popular, primarily because 
such questions are cognitively rather demanding to answer. In particular, people 
tend to mis-assess small risks and treat losses and gains differently (Kahneman and 
Tversky 1979).

10.5.5.2 �Multi-dimensional Health Valuation Instruments  
and Summary Measures of Health

With the one-dimensional instruments described above, health state preferences 
were directly assessed by asking questions about “health” as such. Although these 
approaches are computationally simple, we have claimed that they either tend to be 
overly simplistic (VAS), or cognitively demanding for respondents (TTO, PTO and 
SG). These are among the reasons why it is common to see multi-dimensional instru-
ments in empiric research on health state preferences. By dividing “health” into several 
sub-dimensions (e.g., pain, physical functioning, psychological state, etc.), each with 
independent response alternatives, multi-dimensional instruments are generally easier 
for patients and others to respond to. To create a summary measure of overall health, 
a weighting between the dimensions of health must be established.

Summary measures of overall health take two forms: “health gain” and “health 
gap” measures. Health gain measures assess how much “health” or “quality of life” is 
added by an intervention or policy. Health gap measures assume a baseline state of 
“ideal health” and assess how the gap between someone’s actual health state and the 
ideal health state shrinks following an intervention or policy. These are two conceptu-
ally different but numerically related ways of measuring health. Figure 10.4 shows the 
relationship between the two. Health gain measures put no limit on how much health 
someone can achieve; health gap measures assume a limit (an “ideal” state of health).

The most common health gain measure used is the quality-adjusted life-year 
(QALY), and the most common health gap measure is the disability-adjusted life 
year (DALY). The World Health Organization measures the global burden of disease 
using DALYs, whereas cost-effectiveness studies almost universally use QALYs.

A multi-dimensional quality-of-life metric mathematically represents the 
overall weighted value of all relevant dimensions of health. For instance, a minor 
tooth ache might be given a disutility of 0.05 (or 0.95 of full health), whereas a 
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painful chronic illness might be given a disutility of 0.7 (0.3 of full health). In order 
to provide a generic model in which we might investigate the different types of 
multi-dimensional metrics which exist, we provide the following basic formula for 
the common (linear) case: 

Full health
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Fig. 10.4  The relationship between health-related quality of life (HRQoL) and life expectancy 
(Time) can be used to illustrate the difference between health achievements that health systems 
seek to maximize, and health gaps that one wishes to minimize

Multidimensional quality of life of individual i
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Where:
Superscripts refer to the jth condition
Subscripts refer to the ith individual
cj

i
 = a “health profile”: a numeric measure of the extent to which individual  
i has the jth condition. This could be an indicator variable (e.g., presence  
of blindness) or a measurement on a continuous scale (e.g., mobility)

wj = the linear weight given to the jth condition

Weighting or value functions such as those described above are used to transform 
the health profiles into health indices, a single numerical value representing the 
health state preference of the patient population in question. Preference basis is a 
prerequisite for the validity of the estimates as input in for example economic evalu-
ation of health interventions. For an estimate to be valid in economic evaluation – for 
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example as input for a quality-adjusted life year (QALY) calculation – the health 
profiles and indices should have generic properties, i.e., they should be applicable 
to all types of health conditions and patients groups. When this is the case, the 
instruments are commensurable. Non-commensurable instruments cannot be used 
to calculate QALYs, and are far less applicable in economic evaluation. In the next 
paragraphs we explain how health profiles and indices are generated for two popular 
multi-dimensional generic instruments.

Perhaps the most commonly used multi-dimensional instrument is the EQ-5D.  
It was developed by the Euroqol group, and as the name indicates it has five sub-
dimensions of health: Mobility, self-care, usual activities, pain/discomfort and 
anxiety/depression. Each dimension has three severity levels: No problems (level 1), 
some or moderate problems (level 2), and extreme problems (level 3). The exact 
wording of each level is customized to each dimension being measured. This makes 
the instrument very simple for patients to respond to. With five dimensions and three 
levels, EQ-5D has 243 potential health profiles, although some combinations are not 
very likely. A patient with moderate anxiety/depression, and no other problems, has 
the following EQ-5D health profile: (1 1 1 1 2). Someone confined to bed (severe 
mobility problems), having some problems with washing and dressing (self-care), 
but otherwise having no problems, has the following profile: (3 2 1 1 1).

EQ-5D has an additive weighting function. The starting point is health profile 
(1 1 1 1 1), which represents the best possible health state with an index value of 
1.0. For each health dimension where the level deviates from 1, a certain value is 
subtracted from 1. More value is subtracted for level 3 than for level 2 scores, and 
the more dimensions that deviate from level 1 the lower is the remaining health 
index value. Value sets have been developed for several countries, and are impor-
tant for the subsequent size of the health index. Robberstad and Olsen (2010) 
illustrate how the use of a UK value set produced health state preferences for 
severe AIDS that were much lower than when a value set from Zimbabwe was 
applied.

EQ-5D is considered to be easy to use, to be well tested and reliable, and the 
instrument has a well-defined protocol for adaptation and use. The instrument is 
criticized by some for being a bit “blunt,” with relatively few dimensions and levels. 
In particular, many consider the instrument to be invalid for assessment of minor 
health decrements, and that this leads to non-severe health conditions being rated 
too severely. In the literature, this is referred to as a “ceiling effect.” In 2012, a 
version of EQ-5D was launched with five rather than three levels for each dimen-
sion. Potentially, five levels might reduce sensitivity challenges and ceiling effects 
of EQ-5D, but the empirical evidence regarding this is still limited.

The Health Utilities Index Mark 2 (HUI2) has seven dimensions of health, with 
3–5 levels within each health dimension. These are Sensory (four levels), Mobility 
(five levels), Emotion (five levels), Cognitive (four levels), Self-Care (four levels), 
Pain (five levels) and Fertility (three levels). With a maximum of 24,000 hypothetical 
health states, it can be argued that the instrument is more suitable to capture minor 
health changes than the less detailed EQ-5D. The health index value is calculated using 
a multiplicative scoring function. The starting point is 1.06 (best possible health), 
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corresponding to health profile (1 1 1 1 1 1 1). For each dimension, this value is 
multiplied with a score between 0 and 1 depending on the level.

HUI2 has some apparent attractiveness over EQ-5D in terms of level of detail, 
but the instrument has fewer translations and is not as well validated as the latter. 
Other commonly used descriptive systems have adopted even more detailed classi-
fications of “health.” For example, the Australian AQoL (Assessment of Quality of 
Life) has five main dimensions of health (illness, independent living, social relation-
ships, physical senses and psychological wellbeing), each with three sub-dimensions 
and four levels. The Finish 15D has 15 dimensions with five levels for each, and 
thus a total number of hypothetical health states exceeding 30 million. An overview 
of available instruments is provided by the Quality of Life Instruments Database 
(www.proqolid.org).

10.5.6	 �Monetary Valuation of Health

As mentioned, monetary valuation techniques have been less dominant in practice, 
partly due to measurement challenges and partly because measuring health benefits 
in monetary terms has not communicated well with the health care disciplines nor 
health care decision makers. Briefly, there are two main approaches to monetary 
valuation of health that both relate to how much people are willing to pay to achieve 
health improvements. The underlying assumption of the first approach is that people 
implicitly prioritize and value health together with other commodities they need 
or desire, and that the value of health thus can be estimated through observing 
how much they actually pay for various health improvements or how much health 
they give up in exchange for undertaking risk. Classic studies in this stream of 
research have used the additional wage required to be paid to employees to take on 
a riskier job.

The other more commonly applied approach is to ask people questions about 
how much they would be willing to pay for certain types of health care or health 
benefits. Several techniques have been developed to elicit willingness to pay, 
broadly labeled as “contingent valuation.” Questions can be open-ended: How much 
would you be willing to pay? Or questions can be closed-ended: Would you be 
willing to pay X to achieve Y? Questions can be organized as bidding games, where 
values are changed upward or downward depending on the previous answer; or 
through payment cards, where alternative values are suggested ranging from zero to 
a value assumed to exceed a realistic maximum, and people are asked for the 
maximum they are willing to pay.

10.6	 �Cost Measurement

In Chap. 6, you were briefly introduced to two categories of costing studies, namely 
“cost-of -illness” and “cost-of-intervention” studies. As the names indicate, the former 
is concerned about the cost imposed by disease on different parties of society, while 
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the latter is concerned with the costs related to preventing or treating the illness. While 
these objectives are clearly distinct, the two types of studies share some metho
dological issues that are most reasonably dealt with simultaneously. Below we discuss 
how costing studies should be designed to be useful in planning and decision making 
processes, or as input into further research such as full economic evaluations.

All costing exercises involve three common steps: (1) Identification, (2) Measure
ment and (3) Valuation. It is important for transparency and reproducibility that 
these steps are performed explicitly, and that measurement and valuation results are 
reported separately. It is a common mistake in costing exercises that cost estimates 
are not reported disaggregated into quantities (units) and unit prices. This makes it 
difficult for readers to assess the validity of the results, reduces the usefulness of the 
results for e.g., budgeting purposes, and precludes translation of the results into dif-
ferent settings (where unit prices may be different). Presenting quantities and unit 
prices separately is called the ingredient approach. Below, we discuss important 
aspects of the three steps of costing.

10.6.1	 �Costing Step-1: Identification

Before it is possible to consider the quantities and values of various cost items, we 
need to consider and justify a list of items that should be included in the analysis. 
This identification exercise is far from trivial, and will strongly affect the down-
stream results and the range of conclusions that can be drawn from the study. For 
example, the analyst needs to decide from whose point of view the costs should be 
‘considered, i.e.’ “the perspective” of the study. These can be broadly categorized 
into health sector, patients and families and other parties (Fig. 10.5). Sometimes 
productivity losses are categorized as a separate perspective, while others will see 
this as a sub-category of the perspectives previously mentioned. When all these pers
pectives are combined, the costing exercise is done from a societal perspective.

Health
Sector

Other
Parties

Patients
and

Families

Societal Perspective

Fig. 10.5  Venn diagram  
of possible perspectives  
for economic evaluation
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10.6.1.1 Study Perspective
Disease imposes costs on the health sector. Because planning of health care services 
is a very common motivation for doing cost studies, it is rare to see costing exercises 
that exclude this perspective. There is, however, great variation in how the health 
sector is defined in applied studies. The point of care is usually included, e.g. the 
district hospital or primary health services that actually deliver the health care to 
patients. The degree to which up-stream levels of the health sector are included 
varies considerably. Horizontal health care programs involve sector-wide planning, 
co-ordination, training and monitoring at district, regional and national levels. 
Vertical programs involve the same processes, although differently since they are 
typically organized through international donor-based activities. It is quite common 
to see that costing exercises fail to include the full range of up-stream costs. Such 
studies can be insufficient as input for budgeting of e.g. scale-up exercises. If they 
are used naively, they will result in budget deficits and subsequent implementation 
problems for the new activities.

Arguably, illness always entails costs to patients and their families. Typically, 
illness will impose direct costs to pay for treatment, drugs and transport. User fees 
and drug costs are important determinants for health seeking behavior, especially 
in low-income situations, and better knowledge of such factors may be of great 
relevance. In addition, illness typically is associated with indirect costs in terms of 
reduced ability to work for the patient, or because family members must divert 
efforts from their usual activities to take care of the patient. Malaria is a typical 
low-income disease resulting in acute illness as well as in high prevalence of chronic 
anemia and resultant fatigue. Therefore, malaria imposes indirect costs for patients 
and their families in terms of reduced ability to perform subsistence activities both 
in the short and longer terms. Generally, chronic illnesses represent substantial costs 
to patients and families, both direct and indirect, and reducing these costs through 
illness control efforts can therefore be valuable to society.

In addition to the health sector and patients/families, other sectors are also com-
monly involved. Third party payers have important roles in funding health care, 
and are thus influenced by the occurrence and management of disease. Examples of 
third party payers are private or collective insurance schemes, which are common in 
most high income settings and increasingly important in low and middle income 
settings. Different types of governmental social insurance schemes may exist outside 
the health sector.

As mentioned, productivity losses include indirect costs incurred on patients and 
their families. Illness does however affect the society more broadly. It will for example 
affect employers in the short term through reduced production, and in the longer 
term through increased costs for recruiting and training of employers to replace 
those who are ill. It will affect governmental income, through reduced taxes from 
both the employers and the employed, and subsequently morbidity will affect 
national income and overall economic development. Other effects are far more 
difficult to estimate, and they are therefore often pragmatically ignored in costing 
exercises. Nutritional disorders, such as iodine deficiency, are for example known to 
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affect the cognitive development and learning abilities of school children. But the 
down-stream effect of this on personal development and national income is 
extremely difficult to estimate. In such situations, consider presenting sensitivity 
analyses based on different assumptions about down-stream effects.

The choice of study perspective should be decided by the research question and 
the objectives of the study. A societal perspective provides the most comprehensive 
and complete picture of costs related to morbidity and its management. In low-
income settings the governmental expenditure on health care typically represents 
around 50 % of the total health care expenditures, while private money and to a 
varying degree insurance schemes represent most of the rest. Costing exercises that 
only focus on the public health sector costs therefore very poorly represent societal 
costs in such settings. In high income countries the governmental share of total 
health care expenses is typically much higher, with some important exceptions 
including the USA. It can be argued that social planners should be concerned about 
total welfare in society, and that the societal perspective therefore should be applied 
for all types of social planning. Indeed, prominent guidelines from academics 
and journals single out the societal perspective as the appropriate one. However, 
identifying, measuring and valuing all societal costs is a costly and demanding 
exercise. With a narrower study objective, a more narrow costing perspective can 
therefore sometimes be defended. If for example the objective of the costing study 
is to improve internal organization of hospital services, a more narrow health sector 
perspective might be justified. In this case, since the objective relates to hospital 
budgets, other societal costs are ex ante assumed not to matter for the decision.

10.6.1.2 Cost-of-Illness Versus Cost-of-Intervention
Since health interventions usually are delivered by the health system, the health 
systems perspective naturally becomes the core element of most cost-of-intervention 
studies. This does not rule out the relevance of other perspectives, since different 
health interventions may influence stakeholders differently. An example is the choice 
between facility based and community based services for tuberculosis patients.  
A facility based service is typically more costly to patients who regularly have to 
travel to a hospital to receive treatment and follow-up. Community based services 
on the other hand require an extension service program, and are typically more 
costly to the health care provider. Inclusion of patient costs may in this situation 
represent important information for the health care planners. Cost-of-illness studies 
aim at estimating the economic burden of specific morbidities to society and should 
therefore have a broader perspective than simply focusing on the intervention costs. 
The exact framing of a study should be based on the nature of the disease.

Cost items can be categorized according to activities (e.g. administration, training, 
patient treatment), according to input categories (e.g. salaries, medical supplies) or 
according to organizational level (e.g. facility, district, region, national level). What 
is more practical depends on the nature of the study question, but it is important 
that all relevant cost categories are covered to avoid underestimation, and that the 
categories are not overlapping, which may result in double counting.
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10.6.2	 �Costing Step-2: Measurement

Once all relevant cost-items have been identified, the second step of a costing 
process is to measure the quantities of each. Broadly speaking, measurement can be 
done prospectively, for example alongside a clinical trial, or retrospectively, through 
modeling.

Measuring resources used by a health care activity alongside a clinical trial has 
several advantages. With this prospective approach it is possible to monitor 
resource use relatively accurately. The trial situation is a good opportunity to 
expand existing data collection tools to include information for example about 
how many hours of work different categories of health personnel use to perform 
the various activities. One can track patients through the different procedures and 
accurately take account of the time and resource consumption associated with 
their treatment. While prospective costing can yield accurate estimates of resource 
use in a particular setting, thus representing high internal validity, the external 
validity is not necessarily good. This is because organizational factors, popula-
tions and epidemiology differ substantially between settings, and resource use in 
one setting therefore is not necessarily representative of another setting. The simple 
fact that a clinical trial in itself represents a special case, typically with more 
resources and higher standards of care than what is common in a country, calls 
for caution. In a study on the costs of breastfeeding promotion in Uganda, Chola 
et  al. (2011) describe how estimates on resource use from a clinical trial were 
adjusted to better represent resource use in an assumed national scale up of the 
intervention.

While prospective costing alongside clinical trials has several advantages in 
terms of accuracy, the most common approach in applied economic evaluation is 
to measure resource use retrospectively. In many cases this is a consequence of 
clinical trial designs failing to properly include costing aspects during planning 
and implementation. In other cases researchers aim for results that are more 
generic and that can be transferred and used in broader contexts. The wider imple-
mentation of a trial’s test intervention has organizational and resource use impli-
cations at many levels of society, including for the patients, that are not captured 
through the core design of clinical trials. In both cases modeling of resource use 
can be helpful.

Modeling, in short, implies that clinical, epidemiological, socio-economic and 
institutional factors are considered jointly. The relationship between these factors 
and how they influence resource use is based on assumptions that should be based 
on best available evidence, which can come from a variety of sources. Robberstad 
et al. (2011) illustrate how different sources including registry data, evidence from 
clinical trials and cost databases can be combined to model resource use and soci-
etal costs of morbidity preventable by pneumococcal vaccines in Norway. Modeling 
introduces a great level of flexibility, and is applicable in most situations. But differ-
ent sources of evidence must be combined cautiously since they may represent situ-
ations that are not compatible.
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10.6.3	 �Costing Step-3: Valuation

The third step in costing processes is valuation, which should always be based on 
the concept of opportunity cost (sometimes called alternative cost). The opportunity 
cost concept is fundamental in all economic thinking. It captures the idea that the true 
cost of a resource is represented by what we have to give up when we choose to use 
it. It is a simple fact that when we choose to spend a sum of money on an activity, 
the same amount of money is no longer available for other activities. According to 
economic theory it is the value of these foregone activities that represent the true 
cost of an activity, and this value is not necessarily the same as the amount of 
money paid.

Opportunity costs are straightforward to estimate for commodities or resources 
that can be bought in well-functioning markets, in which case the opportunity cost 
is reflected through the market prices. Good examples of this are commodities 
such as stationary, furniture and fuel. The opportunity cost of capital (money) can 
likewise be extracted from the financial markets, for example the interest rate one 
has to pay to lend money to fund the necessary investments. There are two common 
situations when market prices are no longer good proxies for opportunity cost; the 
first is for non-market goods, and the second is when the markets are regulated 
through taxes or subsidies. We will start with a brief discussion about adjustment of 
taxes and subsidies.

Taxes are important sources of income for both low- and high-income coun-
tries, and a sales tax or value-added tax (VAT) increases the price the consumers 
have to pay for certain goods and services. Whether or not VAT should be 
included as a cost depends, however, on the perspective of the analysis. From a 
societal perspective, where all parties in society are taken into account, VAT is 
but a transfer of resources from one party to another (usually the government). 
From a societal point of view VAT is thus not a cost, and it should be deducted 
from the price of goods and services to reflect opportunity cost. If the perspec-
tive is narrower, e.g. a pure health care provider perspective, it may be correct 
to include VAT as a cost since this reflects the situation of e.g. the hospital in 
question.

Subsidies are also common in the health care sector. In many ways subsidies are 
negative taxes, but whereas taxation is usually done by governments, subsidies are 
commonly provided also by non-governmental organizations. For example, the prices 
of antiretroviral drugs to treat AIDS are usually strongly subsidized in low income 
countries. Leading pharmaceutical companies now provide their products at 90 % 
discount to low-income high-prevalence countries, compared to their prices in high- 
income countries. This represents a kind of cross-subsidization where buyers in the 
best-off countries subsidize buyers in the worst-off countries. Like taxes, subsidies 
should be dealt with in economic analyses depending on the perspective. In a societal 
perspective, subsidies are merely a transfer of resources between different parties 
and do not represent cost-reduction. From a societal perspective, prices should 
therefore not be adjusted for subsidies.
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While the size of subsidies and taxes is relatively easy to observe, the true 
opportunity cost of non-market goods is often much more difficult to assess. What 
is, for example, the opportunity cost of the time a mother uses to bring her sick child 
to the hospital? What is the value of volunteer time, which is important for the run-
ning of many community health services? For patients and care takers who are 
employed, the valuation of time use can be based on the wage rates. This is called 
the human capital approach, which is considered to be a good approximation in a 
short time horizon. With a longer time horizon, work absenteeism can be compen-
sated through recruitment and training of new employees, in which case the friction 
cost approach may be more appropriate. For self-employed people, time is often a 
non-market good, and it may be necessary to consider a shadow wage rate that rep-
resents the value of the lost production. For e.g. subsistence farmers, the conse-
quences for crop production may be much higher in the wet-season, when planting 
and weeding require attention, compared to the dry season. A pragmatic approach 
is to apply governmental minimum wage rates as proxies for the value of time, but 
the validity of such a proxy will vary with local circumstances.

Above we have reflected on some issues regarding valuation of resource use. 
The bottom line is that market prices do not always reflect the opportunity costs of 
resource use, in which case it may be necessary to make price adjustments or to 
value the resource use with alternative techniques. When this is adequately done, 
the analysis represents the economic costs. It is, however, also common in economic 
analyses to present unadjusted prices, in which case the results are the financial 
costs of an activity or a disease. While economic costing is appropriate when 
considering resource allocation (prioritization), financial costing has a role to play 
for budgeting purposes. In the following paragraphs we will briefly look at a few 
cross-cutting topics that are important in costing exercises.

10.6.3.1 Cost Items that Are Durable
Some types of cost items are consumed continuously throughout the period of an 
activity. A good example is pharmaceutical drugs that need continuous purchasing 
and re-stocking. Such consumables are called recurrent cost items, and they should 
be valued and allocated directly to the point of time in which they occur. Other costs 
items represent investments that should last for several years. Good examples are 
building facilities, vehicles and expensive diagnostic equipment. Such durables are 
labeled capital cost items, and they need to be treated differently from recurrent cost 
items in costing exercises to reflect the true opportunity costs of undertaking the 
activity.

Capital goods represent two types of costs: (1) the opportunity cost of the 
money invested to purchase the item, and (2) depreciation. The opportunity cost 
of the investment can commonly be reflected by the interest rate for money in the 
mortgage market. The money invested in e.g. a new car could have been put in a 
bank account and yielded interest that could have been used for other purposes, 
such as better coverage of essential drugs. Alternatively, if the money to buy the 
car needs to be lent, interest will have to be paid to the bank. In any case, the inter-
est represents a stream of cost that must be included in the economic assessment 
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of the activity. Depreciation, on the other hand, represents the tear and wear on the 
equipment. Capital goods have a limited life time, and during the lifetime the 
value of the item is gradually reduced until eventually it is zero. The stream of 
opportunity and depreciation costs represents the capital cost of an item, and the 
process of calculation is called annuitization. When the stream of costs is calcu-
lated as constant annual values, the result is called equivalent annual value (E), 
calculated as:
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Where K denotes purchase price, S is the value at the end of the period, A is the 
annuity factor, r is the discount rate, and n is the useful life of the equipment.

Equivalent annual values can conveniently be calculated by using a spreadsheet:

Equivalent Annual Value (E) Calculation
Excel: =-PMT(r,n,K)
Lotus 1-2-3: @PMT(K, r, n)

10.6.3.2 Costs and Quantities of Output
Above you were introduced to the difference between recurrent and capital costs 
and how to deal with cost items that last for more than a year. Another important 
dimension of costing is to consider how the costs are likely to change when the level 
of output of an activity is increased or decreased. What are for example the cost 
implications of increasing the number of patients that are treated in a certain program? 
To answer this, it is necessary to understand the concepts of fixed and variable costs, 
and how they can produce information about marginal costs that is crucial for 
budgeting purposes and for consideration about how much a health care provider 
should offer for a service.

Fixed costs do not depend on the level of output. They are constants that do not 
change with output, at least not within the limits that are relevant in the context of 
the analysis. In order to provide a service, a facility is usually required, and this 
facility needs electricity for lighting and insurance. These costs are the same if the 
facility is used to treat 10 patients or if 100 patients are treated in a day – they are, 
in other words, fixed (at least in the short term – a facility that consistently sees 
100 patients a day might need to build a new building to accommodate the 
demand). By increasing from 10 to 100 patients there are, however, other costs 
that will increase. For example, ten times as many drugs and other consumables 
are likely to be required. These cost items, which depend on the level of output, 
represent the variable costs of service provision. The sum of fixed and variable 
costs is the total cost.
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When the variable and fixed costs are known for different levels of output, a 
number of useful calculations and projections can be made. An apparent outcome is 
total average cost (total costs/total number of output), for example the total cost per 
patient. This is useful information for budgeting of an activity that will deliver a 
certain level of output. A related outcome is average variable cost (variable costs/
total number of output). Average unit costs are, however, insufficient information to 
consider the appropriate level of service provision. Appropriate assessment of level 
of service provision, i.e. the level of scale-up, requires information about marginal 
costs, defined as the change of total costs when the level of output is increased or 
decreased by one unit.

Marginal costs bear particular significance for all profit maximizing actors, who 
according to economic theory will increase production until marginal costs equal 
marginal revenue. Public health service providers are usually not profit-maximizers 
but it is still relevant to consider the marginal costs for budgeting purposes. In addi-
tion, such evidence is highly relevant as input in full economic evaluations, because 
marginal costs are likely to affect the cost-effectiveness at different levels of output. 
Essential childhood vaccines are for example highly cost-effective in most situations, 
and according to demographic health surveillances the coverage is generally high 
(70–90 %), including in low income countries. Increasing the immunization coverage 
towards 100 % is, however, not necessarily cost-effective for two reasons. First, the 
marginal cost of reaching the last mother-baby pair is likely to be much higher than 
the average cost since it is increasingly difficult to reach them. This could be due to 
poor infrastructure in the most remote areas or information challenges to reach the 
least motivated mothers. Second, the marginal benefits are likely to be smaller for 
the last individuals due to herd immunity. In sum, cost-effectiveness is generally 
likely to decrease with immunization coverage.

10.6.3.3 Future Costs
Rather than occurring within one year, most health projects and diseases involve 
streams of costs ranging over several years, often the entire life-time of patients. 
This generates some challenges, since costs in one year are not directly comparable 
to costs in another year. This phenomenon is caused by two factors: (1) inflation, by 
which the real value of currencies decrease over time, and (2) the time value of 
money, whereby individuals prefer consumption today to consumption tomorrow and 
therefore demand a real interest rate as compensation for that deferred consumption 
(the opportunity cost). In effect, the purchasing power of e.g., one Euro is diminishing 
with time, and so is the opportunity cost. In order to make costs occurring at differ-
ent points of time comparable, it is necessary to calculate present values, and the 
technique for doing this is called discounting. The following formula calculates the 
present value (PV) of a stream of future values (FV) for a number of individual 
years (t = 1, 2, … n), where r denotes the discount rate.
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All costs should be discounted at the same rate. In addition, in order to be 
consistent with economic welfare theory, all health benefits should be discounted at 
the same rate. In practice, opposition to discounting health benefits can be signifi-
cant, and several cost-effectiveness guidelines therefore recommend that health 
benefits be included and presented both discounted and undiscounted. If health ben-
efits are not discounted, considerable care should be exercised to make sure that 
nonsensical results do not result. For instance, consider the case of the varicella 
vaccine, which is delivered to children but helps prevent shingles in the elderly. 
Ignoring contagion effects (which are substantial) we have an intervention which 
costs money now to prevent health outcomes five to six decades later. If the health 
benefits are not discounted by time, the vaccine will appear to be much more valu-
able than is sensible. In practice, the pharmaceutical firm which developed it will 
price it significantly higher than welfare theory would suggest is reasonable, in 
order to capture governmental willingness to pay for the vaccine based on the study. 
Individuals seeking to purchase the vaccine through unsubsidized channels, how-
ever, will see too high a price relative to benefits in their own view (which likely 
discounts future health), and will be unlikely to purchase it.

In this chapter we discussed the planning of measurements. The goal of this 
planning is to establish optimal measurement procedures and schedules in 
terms of intrinsic validity, error avoidance, efficiency, and respect for persons. 
To achieve this goal, one requires a twin plan that focuses on verifying and, if 
necessary, adjusting the planned measurement procedures and schedules once 
they become functional. In other words, there is a need for a quality control 
plan. Chapter 11 deals with this topic, placing quality control (QC) in the 
wider framework of study quality assurance (QA).
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Abstract
Quality assurance relates to all actions taken to ensure respect for general 
epidemiological principles. Consequently, quality assurance includes many aspects 
of study design and conduct, including quality control activities. Quality control 
(QC) relates to the monitoring and documentation of the validity and efficiency of 
study procedures and, if necessary, actions for adapting procedures or improving 
adherence to them. Ultimately, the purpose of QC is to achieve optimal data quality. 
In this chapter we outline QC methods and tools, prime among them being the 
monitoring of measurement error and other factors that could bias the statistical 
results of a study.

11.1	 �Quality Assurance

11.1.1	 �Minimum Data Quality

A fundamental question that is asked about every study is this: are the study data of 
high enough quality to make inferences about the target population? This question 
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Only two things are infinite: the universe and human stupidity. 
And I am not sure about the former.
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is ultimately about the success of quality assurance (QA), a broad concept that 
encompasses all actions taken to increase the internal and external validity of the 
study as well as to ensure the study’s ethical value. High quality data are valid and 
useful for making inferences. In fact, even slight suspicion that data are not of good 
quality (e.g., by being non-attributable or construed) can prohibit any inferences 
from being made. In order for data to be of high quality, they must have some 
minimum characteristics:
•	 Each data point must be original (not construed), legible, and verifiably attribut-

able to a particular observation unit and source document
•	 Data used for analysis should be accurate enough and complete enough; Required 

minimum levels of accuracy and completeness are rather study-specific and need 
specification in the study planning, as they depend on ambition, availability of 
tools and other resources, specific aims, and study design
To increase the likelihood that data will meet the specified minimum standards 

(an ethical obligation), it is necessary to create a quality assurance and control 
(QA/QC) plan. Such a plan includes QC procedures for monitoring the validity and 
efficiency of study procedures and, if necessary, for adapting these procedures to 
improve adherence to them.

The focus of the remainder of this chapter will be on quality control only. 
Quality control functions and methods will be reviewed, after which the focus 
will be on (patterns of) measurement error and on how individual and group 
performance in avoidance of measurement error can be monitored and steered 
in the ongoing study (See: Panel 11.1 for terminology).

Panel 11.1  Selected Terms and Concepts Around Quality Assurance and Control

Accuracy  Proximity to true value (mostly used in respect of measurement 
values or estimates)

Adherence  Implementation according to protocol or guideline
Bias  Deviation from true value
Data quality  The accuracy and completeness of data as well as their confi-

dentiality, and their verifiable originality and attributability (i.e., their 
belonging to particular measurements of particular observation units)

Error  A departure from what is correct (from Latin errare = wandering off 
the correct path)

Gold standard  Test or measurement procedure considered to yield results 
that are valid enough to serve as a measure of truth against which the results 
of other tests/measurements can be compared to determine their validity#

Instrument error  Inaccuracy in measurement value due to a fault inherent 
in the measuring instrument, not due to the observer or subject#

Misclassification  Act or result of an act of attributing a wrong level of a 
categorical variable to one or more observation units

(continued)
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Observer accuracy  Degree to which an observer tends to measure accurately 
when using an accurate instrument

Observer precision  Degree to which an observer, when making independent 
replicate measurements with an accurate instrument, tends to obtain values 
that are close to each other

Precision (of measurement)  Degree of agreement among a set of replicate 
measurement values obtained using the same accurate instrument (Syn: 
Reproducibility)

Protocol violation  Not executing, or applying a different or altered proce-
dure than the procedure prescribed by the official study protocol

Quality assurance  Study activities aimed at optimizing and maintaining 
data quality

Quality control  Screening, diagnosing and, if possible, correcting problems 
with the performance of individuals, procedures and systems involved in a 
research study

Replicate measurements  Measurements repeated independently within an 
interval considered short enough to assume that no measurable change of 
the underlying dimension has occurred

#Definition contributed by Douladel Willie

Panel 11.1  (continued)

11.1.2	 �Quality Control Functions and Methods

Quality control has some specific functions, as listed in Panel 11.2. These functions 
are ultimately aimed at preventing, detecting, and correcting human error caused by 
factors affecting personal performance or inadequacies and failures of systems and 
procedures. Because QC is ultimately about the sensitive issue of human error caused 
by study staff, QC planning and implementation is a very delicate task. ‘People skills’ 
are therefore important for those who plan and implement QC activities. Panel 11.3 
offers some selected general recommendations on approaching QC issues.

�11.1.2.1 Quality Control Tools
For the screening and diagnostic function of QC, a number of tools are available  
to the designer of the QA/QC plan (Table  11.1). All these tools are commonly 
employed, as they tend to complement each other well. What needs to be screened 
and diagnosed is triple: (1) individual errors occurring in routine study procedures, 
(2) overall performance of systems, and (3) individuals’ problem solving capacities 
in special (not routine) circumstances. Self-checks and supervisor checks are usually 
the most important field methods. For example, interviewers themselves should 
check the completeness and correctness of recorded data before submission to the 
supervisors. Preferably, such self-checks should be done in the measurement setting, 
so that immediate corrective action can be taken. Supervisors must then check the 
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Panel 11.3  General Advice for Approaching Quality Control

•	 Find an acceptable balance between controlling people and trusting people
•	 Encourage all study personnel and investigators to be self-critical and open 

to change and improvement; Do not in any way punish personnel who admit 
making errors; Reward/praise those who show that they are self-critical

•	 Intensive communication is the rule; One must involve personnel in diagnostic 
processes and in decision making processes

•	 Re-start the study’s implementation phase if necessary, redo the analysis if 
necessary, publish error corrections about a published paper if necessary

•	 Act before it is too late; but do not always act if the foreseen effect on study 
results is negligible

•	 If time permits, retrain people, enhance systems instead of using a tabula 
rasa approach

Panel 11.2  Functions of Quality Control

Screening function
•	 Check to what extent prescribed procedures are followed
•	 Check reliability and efficiency of systems put in place
•	 Check whether personnel attempt to respect general epidemiological 

principles in situations for which no detailed written guidelines were made 
available

Diagnostic function
•	 If prescribed procedures are not followed, is this random or systematic? 

What could be the cause of non-adherence to procedures and what could 
be the remedy? What is the possible effect on study results?

•	 If a procedure is not as efficient as hoped for, where is the weakness and its 
origins? What is the projected effect on study results? Are the causes of the 
inefficiency changeable? At what cost? How urgent is a change?

•	 If ad hoc decisions, made by personnel in unforeseen situations, are sub-
optimal in respect of general epidemiological principles, is there a remediable 
cause?

Corrective function
•	 Create conditions that better allow study personnel to comply with prescribed 

procedures, have low error rates and respect general epidemiological 
principles. This may include developing new guidelines, retraining, and 
actions to increase motivation

•	 Change quality assurance systems or delete and install new ones; If necessary 
suspend the study
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Table 11.1  Screening and diagnostic tools of quality control and their general usefulness

Quality control tool

Usefulness of the tool for screening/diagnosis of:

Individual errors  
in routine study 
procedure

Poor general 
performance of 
systems and persons

Poor individual problem 
solving skills in special 
circumstances

Self-checks ++ ± −
Supervisor checks ++ ++ −
Witnessing ± ++ ±
Repeats ++ ++ −
Scenario plays − + +
Group discussion ± ++ −
Data cleaning checks ++ ++ −
Special data collection 
for validation

± + −

completeness and internal consistency of all data collection forms before sending 
them to data-entry staff. This screening for data abnormalities must be done within 
a few days, preferably on the same day of the original data collection.

A percentage of routine questionnaire interviews and bio-measurements con-
ducted by each interviewer should be directly witnessed by supervisors, peers, the 
study coordinator, quality control persons and/or invited experts. The same wit-
nesses should also independently repeat a percentage of the routine procedures so 
that results can be compared on a case-by-case basis. These comparisons may also 
be used to compute observer performance statistics (discussed below). Such repeat 
measurements should be completed within a few hours of the original measurement. 
Scenario plays (e.g., mock interviews) can help detect areas of poor performance 
before they occur during the actual data collection.

In addition to the tactics discussed above, regular group discussions among 
members of the research team regarding problems of study implementation should 
be part of the QC plan. Such discussions are particularly useful to identify system-
atic problems that can be addressed during the study. Another useful strategy to 
identify systematic problems (as well as individual personnel issues) is to conduct 
error screening during and after data entry. This may reveal, for example, an unusual 
frequency of outliers among the values obtained by a particular measurer. These 
error screens should ideally be done within a few days after initial recording for the 
early detection of individual and system weaknesses (See: Chap. 12: The Data 
Management Plan, and Chap. 20: Data Cleaning). Lastly, special validation data 
may be collected in a subset of observation units using a ‘gold standard method.’ 
This allows one to make accuracy assessments for individual performance.

As to the corrective function of QC, the tools generally available include retraining, 
re-motivation, error editing, procedural adjustments, temporarily halting the study, 
and re-starting the study. The screening and diagnostic efforts of QC often lead to 
the conclusion that data quality problems are more frequent or severe at the extremes 
of the range of the measured attribute or among participants with extreme values 
for important study variables. For example, the quality of ultrasound-based fetal 
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measurements may be lower at the extremes of gestational age. Another example 
would be the finding that non-response to certain questions is found to be more 
frequent among very old participants. The consequence is that efforts of correction 
may have to focus on ensuring more uniform data quality over sub-domains.

11.2	 �Patterns of Measurement Error

Errors during routine measurements have the potential to create bias in outcome 
parameter estimates. This implies that a major QC effort must be undertaken to assess 
the performance of measurers. To appreciate the foundation for QC strategies around 
measurers’ performance, it is helpful to consider possible patterns of error that may 
be discovered for a single observer using an accurate instrument (Table 11.2).

A measurement on a categorical, ordinal, or discrete numerical scale yields a 
value that is either correct or incorrect (misclassified). In contrast, a measurement 
value on a continuous measurement scale is always incorrect to some degree, as 
determined by the limitations of the instrument and the observer. This implies that, 
for measurements of continuous variables, the frequency of error can only concern 
errors of a specified size or direction. Errors can be randomly distributed (random 
error) or their distribution may depend on relevant factors (systematic error). 
Random error in an observer’s measurement values means that the error distribution 
is unrelated to the levels of the variable itself and to other study variables in the 

Table 11.2  Theoretical patterns of measurement error (of a single observer using an accurate 
instrument)

Measurement level Patterns of measurement error that can be examined
Continuous How are sizes and directions of error distributed? Randomly?

How do sizes and directions of error relate to the magnitude of the attribute?
How do sizes and directions of error relate to other study variables?

Multi-rank ordinal or  
discrete numerical

How frequent is misclassification?
How are sizes and direction of misclassification distributed? Randomly?
Does frequency, size or direction of misclassification depend on 
attribute level?
Does frequency, size or direction of misclassification relate to other 
study variables?

Multi-level categorical How frequent is misclassification?
Is there a level to which the misclassification is preferentially 
directed (‘direction’)?
Does frequency or ‘direction’ of misclassification depend on the 
attribute level?
Does frequency, ‘direction’ or level-relatedness relate to other study 
variables?

Binary categorical How frequent is misclassification?
Is it random or is one level misclassified more often than the other?
Does frequency or level-relatedness of misclassification relate to 
other study variables?

J. Van den Broeck and J.R. Brestoff



247

Panel A: Example of a distribution of random measurement errors on a continuous 
measurement scale: 

True value

Fig. 11.1  Illustration of the distribution of random errors around the true values for measure-
ments by the same observer using an accurate instrument. Dashed lines are lines of symmetry of 
error distribution. Random errors in continuous variables (Panel A) and in ordinal variables (Panel 
B) tend to be symmetrically distributed around the true values. This distribution tends to be Normal 
for continuous variables and tends to be more frequent in adjacent ranks for ordinal variables. 
Random errors in binary variables (Panel C) tend to be approximately equally frequent for both 
levels (equal sensitivity and specificity)

Panel B: Example of a distribution of random measurement errors on an ordinal 
measurement scale:

321

5% of 
subjects 
with true 2

1% of 
subjects 
with true 1

6% of 
subjects 
with true 3

6% of 
subjects 
with true 1

2% of 
subjects 
with true 3

5% of 
subjects 
with true 2

1

2

3

True rankClassified 
level by 
observer

occurrence relation. A random error distribution for a continuous variable is illustrated 
in Fig. 11.1 (Panel A). The observer’s errors tend to be approximately normally 
distributed around the true values. Systematic error in an observer’s measurement 
values occurs when the error distribution tends to be skewed in one direction away 
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Panel C: Example of a distribution of random measurement error on a binary 
measurement scale:

True level

BA

11% of 
subjects 
with A 

9% of 
subjects 
with B

A

B

Classified 
level by 
observer

Sensitivity for A:  89%
Specificity for A:  91%

Fig. 11.1  (continued)

from the true values, i.e., when there is a correlation between errors and true values, 
or when there is a dependence of the error pattern upon other study variables.

Errors in ordinal and categorical variables can also be randomly distributed 
(examples illustrated in Fig. 11.1, Panels B and C). Similarly, in ordinal and cate-
gorical variables, a deviation from the random distribution pattern or an unexpected 
relatedness of errors to attribute levels or other study variables raise concerns about 
systematic error. For example, when the variable is dichotomous, as is common in 
epidemiology, systematic error may consist of a trend for one level to be misclassified 
more frequently than the other.

Measurement error is not only an issue of recorded values. There is an additional 
issue of missing values, i.e., non-recorded values. Missingness too can be random or 
systematic.

When errors are random, they affect the ‘precision of the variable’. For example, 
a larger amount of random error in the measurements for a continuous variable 
will add more error variance to the true variance of the variable (‘lower precision’). 
It will inflate the observed variance without affecting estimates of the mean, which 
therefore remain unbiased, as shown in Fig. 11.2, Panel A. Note that, if a continuous 
variable is measured but then categorized to estimate the proportion falling within 
an extreme category (e.g., the prevalence of stunting, wasting, obesity, anemia, etc.), 
the effect of random measurement error with inflated variance in the continuous 
variable will lead to overestimation of that proportion.

Figure 11.2, Panel B, illustrates that a systematic error pattern can bias the 
estimate of a mean and variance. When an exposure variable is measured impre-
cisely, effect estimates (odds ratios, rate ratios) will be attenuated (For illustrations, 
See: Chap. 27). The power of statistical testing will also be diminished. Systematic 
errors usually cause biased estimates of means, rates, odds ratios, and rate ratios. 
Thus, both random and systematic errors can bias outcome parameter estimates 
in epidemiology. Given these effects of measurement error, the QC of observer 
measurement performance is crucial in every epidemiological investigation.
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Fig. 11.2  Illustrations of the effects of random and systematic error on the estimation of mean 
and variance of a continuous variable (height). Panel A shows the (vertically aligned) probability 
density curves for the scenario in which the error pattern was random, resulting in an unbiased 
estimate of the mean but an inflated variance. Panel B Shows a scenario where a systematic error 
pattern, consisting of a tendency for negatively biased measurement values, resulted in underesti-
mation of the mean and an inflated variance

Panel A: Illustration of the effect of random errors on estimates of mean and variance:
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True distribution
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Variance 

inflated

Panel B: Illustration of the possible effect of systematic errors on estimates of mean 
and variance:
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Height (cm)

True distribution
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biased measurement values
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of mean

Variance 
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11.3	 �Observer Performance

This section focuses on quantifying performance of ‘observers.’ Observers are 
understood to be measurers of the personal attributes or living conditions of others 
who are often called ‘subjects.’ They can also be measurers of characteristics 
of other observation units. The quality of the measurements of observers can be 
influenced by:
•	 Problems with the instrument
•	 Inadequate measurement environment; interference with measurement
•	 Poor subject preparation
•	 Un-cooperative subject
•	 Poor general measurement skills
•	 Particular observer problems during particular measurements

Out of all the sources of error listed, all except the first can result in what is com-
monly called ‘observer error.’ The term ‘observer error’ is thus a misnomer in the 
sense that it results from a combination of non-instrument sources of error, including 
errors that are due to the measurement environment and the measured subjects’ 
behavior. It is, however, implicit that it should be part of an observer’s skills to 
adequately prepare the measurement environment and solicit adequate cooperation 
from subjects.

The performance of an observer can be documented by several types of per
formance statistics. Discussed below are statistics of error frequency, observer 
accuracy statistics, observer precision statistics, and terminal digit preference 
statistics.

11.3.1	 �Single-Observer Error Frequency Statistics

During a study, error frequency statistics can be monitored over time for each 
observer. Such statistics describe the frequency of missing, erroneous, or otherwise 
unacceptable values (according to some hard criterion). One can consider calculating 
these frequencies for variables separately as well as jointly for groups of related 
variables. One can also examine whether the error frequencies are related to the level 
of the variable or whether they are related to other study variables. Frequency statistics 
are usually calculated separately for outliers and missing values.

As to outliers, sometimes it is clear that a value is erroneous or has an unac-
ceptable degree of error even if the true value is unknown. This is the case when 
the value does not pass a hard validation criterion (e.g., a height value of 300 cm). 
We can document the frequency with which recorded values exceed some expected 
‘normal range’ of possible values. The limitation of error frequency statistics is 
thus that they only allow a rough estimate of the frequency of severe errors. Less 
severe errors are more frequent but they often lead to values well within the 
‘normal range’ (‘erroneous inliers’) of which the frequency cannot easily be 
estimated.

J. Van den Broeck and J.R. Brestoff



251

11.3.2	 �Single-Observer Accuracy Statistics

The aim of this type of statistic is to document the observer’s tendency to contribute 
to systematic error in important study variables. There are several aspects to observer 
accuracy because deviance from a ‘symmetric’ random error pattern and related-
ness of the errors to true values and to other variables can take several forms. 
Observer accuracy statistics can thus differ in what they capture exactly. Common 
approaches include:
•	 Calculation of the average of deviations from the true dimension (on a continu-

ous or discrete numerical scale) called average bias. According to this criterion 
an observer is considered to be accurate if, on average, (s)he measures the real 
dimension when using an accurate instrument in a series of independent replicate 
measurements. Oppositely, an inaccurate observer tends to record values that are 
higher (positively biased) or lower (negatively biased) on average. The observer 
is thus considered accurate if her/his errors are random.

•	 Monitoring whether sensitivity tends to be different from specificity for dichoto-
mous variables. Random error tends to lead to equal sensitivity and specificity. 
The meanings and calculations of specificity and sensitivity are discussed in 
Chap. 6 (General Study Designs).

•	 Bland-Altman plots can be used to examine whether errors in continuous vari-
ables are related to the magnitudes of true values (Bland and Altman 1986). 
These are scatter-plots of the difference between paired measurement values 
(e.g., weight measured by two independent observers) against the mean of the 
paired measurement values. Each set of paired values must represent the same 
attribute and must be obtained (1) by two different observers or (2) by two differ-
ent techniques (by one observer).

•	 Sign tests can be used to capture asymmetry in error distribution in continuous 
variables (WHO 1983). They are based on the expectation that, if there is no 
reason why the first of a pair of measurement values would be greater than the 
second, then the probability of having a particular number of first values being 
greater follows a binomial distribution.
The listed approaches all require that one has some approximate knowledge 

of what the true value is behind each recorded value. They are based on a 
comparison between observed values and so-called gold standard values. The 
understanding is that gold standard values for continuous or discrete numerical 
variables are not necessarily exact true values, but values considered close 
enough to the truth to serve as a yardstick for observer accuracy. Gold standard 
values represent those obtained by a highly accurate expert observer, or using a 
different, more accurate method. Gold standard data can be obtained at different 
study stages (Panel 11.4).

One needs to decide what size of average bias (or other statistic) should be a 
reason for concern. Availability of standards for this decision is highly dependent 
on the research domain, measures, procedures, and systems used. If no such 
standard exists, then deciding the threshold for concern is a matter of judgment. 
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For average bias, it may be reasonable in most cases to be concerned only when it 
is greater than the technical error of measurement (TEM) of an expert, a statistic 
that is discussed further below.

Plots of error rates or average bias over time are used for monitoring individual 
observer accuracies. Figure 11.3 is an example of a plot of the average bias of two 
observers during a data collection period. This is not only useful for follow-up 
studies, but also in cross-sectional studies if the data collection period is longer than 
a month. Observer accuracy statistics can then be calculated every fortnight or every 
month, for example. If the observer’s accuracy seems to drift, this information may be 
used as feedback to the observer and may alert the investigative team to individuals 
in need of re-training.
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Fig. 11.3  Example of an average bias monitoring plot for height measurements

Panel 11.4  Strategies for Obtaining Gold Standard Data for Assessing  
Observer Accuracy

Strategies based on independent replicate measurements by experts
•	 Expert replicates during training and piloting phases
•	 Expert replicates a proportion of routine study data

–– Random spot-checks
–– Planned quality control re-measurements

•	 Expert replicates in specially organized sessions outside routine data 
collection

Strategies based on control measurement with a more accurate gold 
standard technique
•	 Validation data collected during a pilot validation study or training session
•	 Validation measurements for a proportion of routine data
•	 Special sessions for quality control, with use of the gold standard method
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11.3.3	 �Single-Observer Precision Statistics

The aim of this type of statistic is to document the observer’s tendency to contribute 
to inflating the variance of important study variables. Such increases are mostly due 
to random error, but systematic errors can also increase variance. The common 
approach to calculating single-observer precision statistics consists of quantifying 
the consistency of the observer’s independent replicate measurements on the same 
subject or item. An observer operating on a multiple-ranks ordinal, discrete numeri-
cal or continuous scale is said to be precise if her/his measures values tend to be 
close to each other and not widely dispersed across the scale. These repeat measure-
ments must be of the same item during an interval in which there was no change in 
the measured attribute, and the observer must have been using an accurate instru-
ment. For a categorical scale, the total agreement among the observer’s replicate 
assessments (related to total error variance) expresses the observer’s precision.

The measures of dispersion or disagreement can be obtained after doing a lot of re-
measurements on a single observation unit, or, by doing just one or two repeats on a 
series of observation units. The first option (many replicates, same unit), tends to place 
higher burdens on measured individuals and it is also difficult to make the replicate 
measurements truly independent. When replicate values are obtained from multiple 
observation units, these may be obtained at different study stages (See: Panel 11.5).

The general preference is to obtain replicate data during routine data collection 
because this usually allows for replicates on a large number of individuals and is 
directly relevant to the study results. On the other hand, collecting replicates during 
training or during special quality control sessions allows for easier and more imme-
diate feedback on reasons for the lack of precision. Organization of such sessions 
(‘test-retest exercises’) is discussed separately in the next sub-section.

Single-observer precision statistics are often calculated on the basis of the 
replicate values include:
•	 For categorical variables:

–– Kappa coefficient
•	 For continuous variables:

–– Technical error of measurement
–– Coefficient of variation
–– Reliability coefficient (Intra-class correlation coefficient)

Panel 11.5  Strategies for Obtaining Replicate Data on Single  
Observer Precision

•	 Observer replicates during training and piloting
•	 Observer replicates during routine data collection

–– Systematic duplicates or triplicates on the variables e.g., blood pressure
–– Duplicates or triplicates in a proportion of observation units only

•	 Observer replicates during special quality control sessions outside routine 
data collection
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For continuous variables in which two or more repeat measurements are taken, 
the technical error of measurement (TEM) can be calculated. The simplest form of 
the TEM equation involves duplicate measurements and is shown below. If there 
are more than two replicates, then the calculation of TEM is more complicated (See: 
Uliaszek 1999 for the appropriate TEM equation).

The Kappa coefficient is a measure of agreement in assigning the levels of a 
categorical variable to a series of observation units, i.e., agreement among k observ-
ers or agreement over k different occasions. In the case of monitoring individual 
performance, it is the agreement among k different replicates which is applicable. 
The Kappa coefficient is a number between 0 (no agreement) and 1 (perfect agree-
ment) calculated as the ratio of the proportion of times that there is agreement to the 
proportion of times there could theoretically be agreement (where both proportions 
are corrected for chance agreement):

 
Technical Error of Measurement (TEM) = D

N

2

2

Where:
D = differences between two independent replicates
N = number of subjects measured

TEM of an observer should approach that of an expert measurer or a TEM 
typically reached in high quality studies. For example, the ranges of acceptable 
TEM values for most anthropometric measures are fairly well known (e.g., Chumlea 
et al. 1990). For variables with an unknown expert TEM, a reference TEM may be 
obtained by involving an expert in training sessions in the study preparation phase 
or in the early data collection period. This can be part of the QA/QC plan. Formal 
comparison of observer TEM with expert TEM is done using an F-test of TEM-
squared (Mueller and Martorell 1988).

 
Kappa coefficient =

−
−

P P

P
A E

E1

Where:
P

A
 = proportion of times there is agreement between independent replicates

P
E
 = expected proportion of chance agreement
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Fig. 11.4  Example of a monitoring plot of technical error of measurement in height measurements

 

Observer coefficient of variation = TEM

m

Where:
TEM = technical error of measurement
μ = mean

Plots of TEM over time are used to monitor individual observer precision during 
a study (Fig.  11.4). An intuitive way of using these plots is to determine if the 
observer’s TEM starts exceeding the expert TEM by more than a chosen threshold 
percentage. Repeatedly deteriorating TEM values, even when they do not reach the 
threshold of concern, warrant feedback because such a trend could indicate subop-
timal performance. The TEM-based monitoring strategy outlined above has an 
equivalent for categorical variables under the form of repeated assessments of kappa 
statistics and appropriate comparisons with kappa statistics from experts.

The coefficient of variation (CV) of an observer expresses the amount of dispersion 
in her/his replicate measurement values as a fraction of the mean value. The adjustment 
for mean value renders this statistic more comparable among continuous variables 
for different attributes and for different mean sizes.

The observer reliability coefficient (ORC or RC), also known as the intra-class 
correlation coefficient (ICC), is the ratio of true subject variance over the observed 
variance (which is the sum of true subject variance and measurement error vari-
ance). An RC of zero means that all observed variation is due to error. Assuming the 
observed variance reflects that of the target population and that errors are nearly 
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uncorrelated with true values, one can use a formula to calculate RC using observed 
variance of the variable and TEM obtained from the repeat measurement values:

Observer reliability coefficient (RC) =
−s
s

o

o

TEM2 2

2

σ2 = observed variance
TEM = technical error of measurement

TEM tends to be more useful than CV or RC for interpreting individual perfor-
mances. This is, first of all, because TEM has the same units as the relevant measure-
ments and is therefore more intuitively interpretable. For example, an observer has 
an intra-observer TEM of 0.25 cm for height measurement. The interpretation is that 
duplicates of this observer will be within about ± 2 * TEM (i.e., within 1 cm) 95 % of 
the time. This can be readily understood when explained to trainees. On the other 
hand, CV and RC/ICC are more valid and useful than TEM for comparing observer 
precision among several measures, for example for knowing if systolic blood pres-
sure is measured as precisely as diastolic blood pressure. They are also useful for 
comparing an observer’s precision across the range of magnitudes of the attribute. 
Such comparisons, however, are not always of prime interest for individual perfor-
mance monitoring in the context of quality control during study implementation.

11.3.4	 �Test-Retest Exercises

Test-retest exercises are special measurement sessions during which independent 
replicate data are obtained from a minimum of 10 but preferably 15 or 20 subjects. 
The replicates are obtained by the observer(s) to document observer precision. The 
sessions are usually supplemented with additional replicates by the trainer-expert to 
enable the evaluation of observer accuracy. Often, 2 or 3 replicates are done by the 
observer and 1 or 2 by the trainer. The subjects are re-measured after a short interval 
during which no measurable change in the measured attribute is expected so that 
any change in measurement values is due to instrument or observer error. When an 
accurate instrument is used, the changes seen are attributable to observer error only. 
Test-retest exercises can be useful as a part of training and quality control.

When setting up a test-retest exercise, a few issues should be kept in mind. Most 
importantly, the goal should be to identify the effect of the observers’ performance. 
Therefore, one must try to minimize all other sources of measurement variation. For 
example, an anthropometric test-retest exercise in children may achieve this goal by 
aiming for the following setup:
•	 All instruments are highly accurate and precise
•	 Instruments are calibrated at the beginning and in the middle of the exercise
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•	 All observers measure the same subjects, or, each observer measures a set of 
subjects with a similar distribution of key variables, e.g., age

•	 Every subject is measured in the same room and in the same part of the day by all
•	 Every subject is measured with the same instrument by all
•	 Every observer works with the same assistant(s)
•	 Assistants (e.g., holding the head during a length measurement) perform in a 

highly standardized way
•	 Errors in data processing are avoided by double data entry

A second goal is to ensure that the replicate measurements are truly independent. 
Achieving this goal is difficult if the observer knows the exact value of the previous 
measurement. Continuing with the example of an anthropometric test-retest study 
in children, the following strategies can help to increase the likelihood of obtaining 
independent replicate measurements:
•	 There should be enough time between replicates (at least 20 min)
•	 Between replicates the observer should be busy measuring other subjects and 

measuring other dimensions on the same subject
•	 The observers should have no access to the written result of previous measure-

ments (patient files or record forms) taken by her/himself or by others
•	 The observers should be encouraged to not attempt to remember the results of 

previous measurements
A third goal is to simulate the real study conditions in the test-retest scenario. 

In other words, the special test-retest study should not be too different from the 
real study in terms of characteristics of the subjects (e.g., the same age category), 
the instruments that will be used in the real study, and the type of assistance that 
will be available in the real study, etc. By meeting this goal, the performance statis-
tics from the test-retest study are more likely to reflect the reliability that may be 
achieved in the real study.

Finally, a fourth goal is to limit the total number of measurements that each sub-
ject will undergo to minimize the burden of participation and the total workload of 
the participating observers. For example, for an anthropometric test-retest study this 
usually means that:
•	 The total daily participation time of each subject should preferably not exceed 

15 min for newborns, 30 min for infants, 45 min for young children, and 60 min 
for older children

•	 There should be enough time between measurements
•	 The total duration for observers should never exceed 4–6 h of effective measuring 

per day

11.3.5	 �Single Observer Terminal Digit Preference

Inaccuracies of individual measurement values may have a frequency of occur-
rence, an average magnitude, or a spread. But they can also lead to strange patterns 
identifiable in the recorded data values. For example, particular end-digits of 
recorded values of continuous variables may be recorded more frequently than 

11  The Quality Assurance and Control Plan



258

expected, particularly the end-digits 0 and 5. The frequency of certain end-digits 
can be used for monitoring individual measurement performance for continuous 
variables. For example, one can plot for each observer the percentage of digits end-
ing with 0 or 5 among all measurement values of a variable taken by that observer 
over a fortnight and repeat this for successive fortnights. The usefulness of this 
monitoring method is restricted to continuous variables and is greater for continu-
ous variables measured using instruments with an analogue display than for instru-
ments with a digital display. Chi-square tests (with one degree of freedom) can be 
used to test whether a particular observer’s data show terminal digit preference. In 
addition, the chi-square test statistic can be used as a measure of degree of terminal 
digit preference (Altman 1991). Terminal digit preference is discussed in more 
detail in Chap. 29 (Reporting Data Quality).

11.4	 �Team Performance

Multi-center studies have site teams whose performance is of separate interest. 
Teams within a single site can also be of interest, as some teams tend to operate 
quite differently than others. In analogy with single observer performance, the main 
parameters of team measurement performance concern completeness of data 
collection, outliers, team accuracy, team precision, and terminal digit preference.

11.4.1	 �Team Accuracy

Team accuracy in measuring numerical variables is conveniently quantified as team 
average bias, a statistic based on pairs of observed and gold standard values. This 
statistic is analogous to that of single observer accuracy, but in this context the paired 
values of all observers of the team in question are pooled. The strategies for collect-
ing the paired data at different stages of a study are also completely similar to the 
strategies used for single observer accuracy; therefore, monitoring a team’s accuracy 
over time occurs in parallel with monitoring single observer accuracy. The accuracy 
of one team can be compared with the accuracy of another team or with all remaining 
teams together using a Student’s t-test. For categorical variables, a common approach 
is to monitor sensitivity and specificity of data collected by the entire team.

One can check if team average bias or sensitivity/specificity tend to differ across 
levels of other important study variables. Based on this, one can assess how they 
could potentially bias outcome parameter estimates.

11.4.2	 �Team Precision

The question at issue is how much of the total measurement variation in data pro-
duced by a team of observers is attributable to the observer errors of all observers 
combined. For numerical variables this can be evaluated by calculating a team’s 
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TEM, which is calculated using the same formula as for single observer TEM, but 
with the replicate values of all observers in the calculation. Team TEM naturally has 
an intra-observer and an inter-observer component. For team TEM to be maximally 
relevant, each observer in the team should contribute a number of replicates propor-
tionally to her/his contribution to the routine data collected in the relevant study 
period. Otherwise, the strategies for collecting the replicate data at different stages 
of a study are similar to the strategies used for single observer accuracy.

For categorical variables a team Kappa coefficient can be calculated. The monitoring 
of the team TEM and Kappa coefficients over time runs in parallel with the monitor-
ing of single observer precision. F-tests can be used to check if a single observer’s 
precision for a numerical variable can be considered as different from the joint 
precision of the other members of the team. Similarly, the precision of one team can 
be compared with another team or with all other teams together, using F-tests.

11.5	 �Instrument Performance

Recall that total measurement error is composed of instrument error and observer 
error. When the quantification of observer error was discussed in the previous 
sections, it was assumed that the instrument – each time it was used – was highly 
accurate and precise. This may be a reasonable assumption over the short term if a 
quality technical device was used. Yet, it is wise to check the calibration status of 
instruments frequently. The cost of not monitoring instrument performance can be 
very high, especially after the sudden detection of a problematic instrument without 
any idea when the problem started and how many previous measurement values 
were affected or to what degree. Thus, each measurement value in a study should be 
linked not only to information on the observer-measurer but also to information on 
the specific device or devices that were used for its measurement.

The main aspect of performance worthy of monitoring in a technical device is 
instrument accuracy. An instrument for measuring a discrete numerical or numeri-
cal variable is accurate (‘well calibrated’) if, on average, it measures the true value 
when applied correctly. An instrument is called inaccurate (‘de-calibrated’) if it has 
an inherent tendency to yield values that are too low or too high in comparison with 
the true values. The quantification of instrument accuracy requires an observer to 
make measurements of high technical quality on subjects or items for whom/which 
the true value is exactly known. This is called a calibration (status) check, and it yields 
differences between true values and (average) high-quality measurement values. 
The items measured can be special calibration materials, e.g., calibration blocks of 
known weight to check a weight scale. A calibration log should be kept during the 
study with the results of the calibration checks. De-calibrations of a magnitude 
raising concern should lead to appropriate corrective action, the success of which 
must be verified by new checks.

A technical instrument is considered to be imprecise if it has properties that contribute 
to inflating error variance, even if it is accurate on average. Instrument precision mainly 
depends on the graduations of the measurement scale. Widely spaced graduations lead 
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to readings that are widely distributed around the true values and thus contribute to 
error variance. There may be other intrinsic characteristics (‘stability’) of an instrument 
leading to some random error variation. This is not always monitored during quality 
control but should always be a concern when purchasing instruments.

Validated measurement procedures with a robust QA/QC plan (Chaps. 10 
and 11) allow one to obtain high quality data during the data collection phase 
of a study. The next chapter focuses on what should be done with these data to 
make them available for statistical analyses.
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    Abstract 
   Data management in research is a process geared towards making recorded 
information available for use in analyses. This process involves a computerized 
data system that structures and stores electronic data. The main purposes of a 
computerized data system are to archive, retrieve, and extract data, and these 
processes must maintain the integrity of original data. In support of these pur-
poses, data systems should be set up to make input, retrieval, and extraction as 
effi cient (fast, easy) as possible. Moreover, privacy and confi dentiality concerns 
should be of primary consideration when creating and limiting the range of 
possibilities for data retrieval and extraction. Thus, the principles of validity, 
effi ciency, and ethics apply to the way data systems are set up and managed.  

12.1        Data Handling Capacity 

 The management of research data requires software, hardware, infrastructure, 
human resources, and a data management protocol. The extent of resources needed 
for data management can range considerably according to the scale and particularities 
of a study. On one end of the spectrum, a small study may require only a single 
person delegated to handle all the data management tasks. For example, a hospital 
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nurse may wish to conduct a small cross-sectional study on a series of her patients. 
Any personal computer with a spreadsheet program, together with some printed 
questionnaires to be stored in a drawer may be all that is needed for data manage-
ment (in addition to some basic skills of spreadsheet use and a brief data management 
plan). On the other end of the spectrum, very large studies may require many well 
trained data management staff, a suite of computers, multiple data servers, expen-
sive software, outside contractors, and a detailed data management plan. Indeed, 
data handling is as crucial for the validity of a study as is study design. In this 
chapter, therefore, we provide a rough outline of the data handling capacity typically 
needed in a medium-to-large size study and provide practical hints for developing 
and implementing a data management plan. It should be noted that this chapter is 
mainly targeted to researchers and students who have limited experience with data 
management. Panel  12.1  introduces terminology used in this chapter.   

   Panel 12.1   Selected Terms and Concepts Relevant to Designing a Data 
Management Plan 

     Access control     Restriction and monitoring of access to data   
   Audit trail  (of data processing)    Documentation that allows reconstruction 

of the course of data processing events in a study   
   Analysis dataset     Selection of fi elds and records extracted from a database, 

used for a particular statistical analysis   
   Backup  (of a database or analysis dataset)    Time-stamped duplicate, separately 

and safely stored as a security measure against loss of the original   
   Barcode     Sequence of variably spaced bars of variable width, used mostly 

as a code that uniquely identifi es a source document or biological sample 
and its origin   

   Code list     List of possible values of a categorical variable   
   Coding     Designing a code list   
   Data capture     Process of transforming raw data into electronic data   
   Data dictionary     List of metadata   
   Data entry     Transfer of information into an electronic format suitable for 

inclusion into a database   
   Data handling      See:  Data processing   
   Data handling protocol     A plan as to how data should be recorded, stored, 

cleaned, and prepared for analysis.  Syn.  Data management plan   
   Data management     The organization of data processing   
   Data manager     Member of study personnel to whom the investigator has 

delegated responsibility for data management   
   Data processing     Recording, storing and extracting data, and cleaning and 

preparing data for analysis ( q.v.,  data handling)   
   Data system     Infrastructure, logistics and offi cial procedures of data handling   

(continued)
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12.1.1      Human Resources for Data Management 

 The fi rst and most important element of data handling capacity is human resources. 
Recruitment and training of appropriate personnel can take up considerable study 
time, and it is notably diffi cult to attract experienced information technology (IT) 
and data management staff to data centers located in resource-poor areas (Van 
den Broeck et al.  2007 ). In medium-size and large studies the data management 
team may include:
•    Investigators  
•   Data managers  
•   Software programmer-developers and IT personnel  
•   Data collection personnel  
•   Data entry clerks  
•   Data quality control personnel  
•   Archivists  
•   Transport, communication, administrative, and maintenance personnel    

 Listed fi rst, the investigator must always be involved in data management even 
if most of the responsibilities are delegated to a data manager and to software 
programmers/developers. 

 In the study preparation phase there will be the needs to train relevant staff in 
data management procedures and to gradually refi ne standard operating procedures 
(SOP) for data handling. Pilot runs are helpful in these tasks and should help staff 
to standardize their data collection, transfer, entry, quality control, and maintenance 
procedures. Pilots are also helpful to identify problems that need reconciliation or 
clarifi cation, to re-enforce responsibilities of each team member, and to establish 
clear lines of communication.  

   Database     Organized set of data collected in the study, kept as a source for 
extracting analysis datasets   

   Dataset      See:  Analysis dataset   
   Good Clinical Practice guidelines     A standard for all stages of conduct of 

clinical trials aimed at: (1) optimizing validity and credibility of data and 
results, and (2) ensuring that the rights, integrity, and confi dentiality of 
data of trial subjects are protected   

   Metadata     Data about data   
   Pre-coding     Designing a list of possible values of a categorical variable to 

be used for fi rst recording of measurement values   
   Standard Operating Procedures  (SOP)    Detailed written instructions to 

achieve uniformity of the performance of a specifi c function     

Panel 12.1  (continued)
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12.1.2     Data Management Infrastructure 

 The second element of data handling capacity is appropriate data management 
infrastructure. Typically the main elements of data management infrastructure con-
sist of transport facilities, a data centre, and an archive. In large multi-centre studies 
with a decentralized data management model (e.g., Onyango et al.  2004 ), these 
three elements are often present in each centre. Below we briefl y review the require-
ments for transport and for setting up a data centre. 

   12.1.2.1  Transport Facilities for Data Management 
 Transport capacity is typically a crucial aspect of data management in population- 
based studies. More transport capacity is needed if the study uses paper source 
documents as opposed to direct electronic data recording. If there are paper source 
documents, the required transport capacity depends on such factors as:
•    Volume of data  
•   Data collection schedule  
•   Batching method and schedule for archiving  
•   Querying frequency  
•   Number of data collection sites  
•   Distances between data collection sites and the data centre  
•   Maximum allowable delays between data collection and arrival at a data centre  
•   Distance between data centers and the archive  
•   Retrieval frequency    
 The needs may vary over the course of a study. In prospective follow-up studies, for 
example, there may be a gradual increase in needs in the beginning of the data col-
lection phase and a gradual decrease near the end.  

   12.1.2.2  Data Centre 
 The main function of a data centre is to serve as a central location where the periph-
erally collected data arrive, are initially verifi ed, and entered or consolidated into a 
database, and cleaned. It is also a centre of communication and feedback about data- 
related issues. When planning a data centre, one should consider the requirements 
for space and equipment, again keeping in mind the projected changes over the 
course of the study. 

 When planning for physical space, one may consider that the needs are determined 
by space needs for:
•    Staff  
•   Computers, printers, and telecommunication  
•   Data storage (e.g., fi ling cabinets, shelves)  
•   Storage of consumables (e.g., printer cartridges)    

 Data centers require both hardware (e.g., computers, external data storage 
devices) and software. They may also need special equipment arising from the 
method of data collection. For example, reliable communication networks and battery 
recharging options are needed for mobile devices.   
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12.1.3     Software for Data Management 

 When setting up a data system, consider that multiple types of software may be needed. 
This is certainly the case if one chooses to set up a data system ‘from scratch’ with the 
help of programmers-developers. The software needed may include, for example:
•    Questionnaire development software  
•   Barcode printing software  
•   Data entry and query generating software  
•   Optical scanning software  
•   Electronic fi ling software  
•   Database software  
•   Post-entry data cleaning software  
•   Data extraction software  
•   Networking software  
•   Web interface software    

 Software systems combining database with data entry facilities, data analysis 
facilities, and data reporting facilities do exist and there is a natural attraction to 
them. However, when in considering whether or not to use aggregate software sys-
tems, beware of a possible drawback: their apparent gain in overall functionality is 
sometimes offset by a lack of functional fl exibility in their components. For example, 
some combined data entry and database systems have data entry facilities that do not 
include the possibility of multiple validated data entry that one would expect from 
dedicated data entry software. Large volumes of data and decentralized multi-centre 
studies necessitate a system for simultaneous data entry by multiple data entry clerks 
( See:  Textbox  12.1 ). Special software needs arise with use of mobile technology or 
with use of GIS.   

   Textbox 12.1 Efficiency of Large Data Systems 

 It is the perception of many investigators that, in spite of claims to the contrary 
by data managers and data system developers, the effi ciency of a data system, 
defi ned as the resources required per volume of quality data available for 
analysis within a defi ned time span, does not usually improve with increasing 
size of a study. The impression is rather that, in line with the well-known ideas 
of the philosopher Ivan Illich, effi ciency rapidly levels off and then decreases 
with increasing study size and with the increasing refi nement and complexity of 
the data system that goes along. Which view is closer to the truth requires further 
operational research, as do possible methods to increase cost-effectiveness of 
data management in health research. Common sense would suggest, however, 
that the use of mainstream user-friendly database systems and other ready 
available and simple to use software packages will often be more effi cient than 
the programming of data systems ‘from scratch’ or than using systems that 
require high technical expertise for development and maintenance. 
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12.2        The Data Management Protocol 

 The data management protocol ( Syn.  data handling protocol) is a plan for how data 
should be recorded, stored, cleaned, and prepared for analysis. 

12.2.1     Elements of the Data Management Protocol 

 The data management protocol commonly includes the following elements:
•    Procedures for retrieval of source documents from an inventory for printing  
•   Data collection procedures  
•   Source data accumulation and transportation plan  
•   Database construction and accessibility plan  
•   Data entry plan  
•   Data cleaning plan  
•   Change control and backup plan  
•   Archiving and retrieval plan    
 Data collection and data cleaning are aspects that are covered in other chapters. The 
other aspects of the data management plan are discussed in this chapter. 

 It is recommended that standard operating procedures, i.e., detailed written 
instructions to achieve uniformity in the performance of a specifi c function, be 
developed for each plan. Guidelines for GCP in data management are available 
from various sources and can be used to guide the development of a study-specifi c 
data management protocol. Special requirements exist for data handling in clinical 
trials, some of which are discussed in the next sub-sections.  

12.2.2     Guidelines for Computerized Systems for Clinical Trials 

 Guidelines for good practice in the use of computerized systems have been devel-
oped for clinical trials (FDA  2007 ) but they have some relevance to all health 
research and are therefore mentioned here. Below is a list of selected guidelines 
[with minor edits] with general relevance to health research:
•    “The Study Protocol needs a specifi cation on how the computerized system will 

be used to create, modify, maintain, archive, retrieve or transmit data”  
•   “For each study, documentation should identify what software and, if known, 

what hardware is to be used in computerized systems that create, modify, main-
tain, archive, retrieve, or transmit data. This documentation should be retained as 
part of study records”  

•   “Clinical investigators should retain either the original or a certifi ed copy of all 
source documents sent to a sponsor or contract research organization, including 
query resolution correspondence”  

•   “Computerized systems should be designed to preclude errors in data creation, 
modifi cation, maintenance, archiving, retrieval, or transmission”  

•   “Security measures should be in place to prevent unauthorized access to the data 
and to the computerized system”  
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•   “Data should be retrievable in such a fashion that all information regarding each 
individual subject is attributable to that subject”  

•   “The computerized system should comply with study protocol specifi cations 
about metric units and blinding”  

•   “Changes to electronic records require an ‘audit trail’ and should never obscure 
the original information”  

•   “All software, operating systems, development tools should be available in a 
format that allows review”  

•   “Preclude unintended interaction with non-study software: isolate study software 
logically and physically as much as possible”  

•   “Controls must be in place to prevent, detect and mitigate effects of computer 
viruses”  

•   “Contingency plan: there must be an SOP in place describing how to continue 
the study in the event the computerized system fails”  

•   “Back-up and recovery SOP for regular backups, storage in a different building. 
Keep detailed backup and recovery logs”     

12.2.3     The Change Control Plan 

 Change control refers to the process of monitoring and documenting changes in 
versions of software, hardware and other equipment used in a research study. One 
should be able to trace the fl ow of information in a study, and this is a strict require-
ment for clinical trials. The practical implication is that investigators must docu-
ment and justify any changes made to data or the data system. In addition to the 
audit trail discussed separately below, change control also includes software 
upgrades and version control of data collection forms or questionnaires. Any 
changes to the computerized system such as software upgrades or replacement of 
equipment must be validated and documented. While newer versions of software 
usually have enhanced built-in functions and solutions to technical bugs, one may 
wish to retain the possibility (if necessary by contractual arrangement with the sup-
plier) to continue running old versions for the purpose of performing study audits.  

12.2.4     The Plans for Backups, Archiving, and Retrieval 

 The structure and location of data archives are essential for good data management. 
For example, paper records should have a well-organized system of fi ling and link-
ing that allows easy retrieval. Electronic data archiving systems should differentiate 
between the current updated database and its previous iterations. There may be a 
large number of iterations, and as the database progresses from untouched to fi nal, 
there should be regularly scheduled backups to ensure that work is not lost if an 
unforeseen computer or technical problem arises. Storage of backups in different 
physical locations may be part of the plan. The frequency of backups is pre- 
determined and depends on the volume of data entry and edits per time unit. 
An encrypted dataset that has all identifying data should be separately maintained 
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and properly secured to avoid leaking confi dential information. The principal 
investigator will specify occasions that warrant re-linking identifi ers and plan ahead 
for how the process will be managed. 

 The retrieval SOP should specify the process whereby investigators gain access 
to source documents. Retrieval may be needed for data verifi cation or addressing 
data or protocol queries. Named individuals, usually a data manager, are responsible 
for data retrieval. The SOP will ideally specify how the request for retrieval is 
handled and what feedback is needed from investigators once they have viewed 
retrieved information. Finally, the SOP should also specify the processes around 
safe transmission of data, for example via copying rules and rules for electronic 
transmissions.   

12.3     Database Systems 

 A database is an organized set of data collected in the study, kept as a source for 
extracting analysis datasets. It consists of one or more database tables which are 
matrices of database fi elds and records. The database fi elds are the ‘columns’ in a 
database table which contain or are intended to contain data on a particular ‘variable’. 
Database records are the rows in the database table which contain data on particular 
observation units. 

12.3.1     Database Software and Hardware 

 The requirements for database software and hardware are determined by the study 
size, design, and type of quantitative and qualitative information. While software 
and hardware are generally specifi ed in institutional policies and practices, there 
may be specifi c study situations that warrant special attention. For example, special 
measures to secure electronic transfer of scanned forms or the use of secure servers 
may be necessary in studies in remote fi eld sites in resource poor locations, where 
transport of data forms may be irregular or power outages frequent. 

 Software systems may combine database facilities with data entry, data analysis 
and data reporting facilities, and within these systems there are several options that 
researchers may fi nd useful. Popular examples are Epidata ( 2011 ) and Epi Info TM  
( 2011 ) software. Some of these allow double entry verifi cation. Unless there is easy 
and timely access to database programmers, most researchers prefer to use such 
proprietary software for database-related functions. However, these database sys-
tems can be expensive, prompting some developers to publish open source (free) 
database software. When open-source software is chosen, it may be ideal to have 
database programmers included in the study team should consultation or adapta-
tions be necessary. Special software for qualitative data or for multiple media fi les 
should be planned by or with experts in this area. Finally, with all systems and 
components of a database, ease of exporting and compatibility with existing statistical 
software is an important concern.  
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12.3.2     Structure of the Database 

 The structure of the database is selected based on considerations of several factors, 
the most important of which are the study design and planned statistical analyses. 
Many studies are able to employ the simplest database structure, known as a  hori-
zontal data table ( or  short format database ). In a horizontal structure, there is a 
single record (row) for each participant irrespective of the number of waves of data 
collection. Columns represent study variables for each record. Horizontal structures 
are usually suitable for simple descriptive studies involving only one wave of data 
collection (e.g., surveys). 

 Sometimes, however, a more complex structure – the  vertical data table (or long 
format database ) – is needed. In a vertical structure, there is a new record (row) for 
each of  n  waves of data collection for each participant. Again, columns represent 
study variables. Vertical structures are routinely helpful for studies involving more 
than one wave of data collection (e.g., longitudinal studies), though it is possible to 
employ a horizontal structure if necessary. 

 The type of database structure selected has implications for how variables are 
named and for how waves of data collection are identifi ed and extracted for analy-
ses. In a horizontal database, the variable name from one wave must be different 
from that of the next wave. In this case, the  waves are identifi ed  in the names of 
each variable (e.g., height-1, height-2, height-3, where each number represents a 
separate wave). In a vertical database, the same variable names can be retained for 
each wave because separate records identify separate waves. Analysts may change 
the data table structure at the analysis stage depending on what is easier for the 
specifi c analysis. 

 Both horizontal and vertical structures can be compounded to create more com-
plex database structures. For example, imagine a study in which the design calls for 
relating child-level data to adult- and school-level data. In this circumstance, the 
database structure can be designed to capture, manipulate, and analyze hierarchical 
or multi-level data. Compound databases (also called relational databases) are usu-
ally required for such studies and necessitate consultation with database designers 
with more experience in such designs. 

   Hint  
 Reporting requirements from oversight bodies may strongly infl uence the chosen 
database structure. It can be helpful to consult with oversight bodies during 
the study planning stages to ensure that the correct database structure has been 
chosen.   

12.3.3     Database Variables and Coding 

 Data managers should keep a code book with a list of variables and their value 
codes. 
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 The paragraphs below illustrate that the development of a questionnaire and the 
development of a database and code book go hand in hand. Code books need to be 
updated each time form versions change and/or new variables are created. 

   12.3.3.1  Coding of Single- and Multiple-Response Items 
 If multiple-response items are planned (e.g., categorical data collection containing 
fully or partially non-mutually exclusive response options), care must be taken to 
have separate variables assigned for each possible option (Table  12.1 ). The response 
will then be coded as 0 (not selected) or 1 (selected) for each variable. The example 
in Table  12.1  shows a single question (item) with three answer options. Each answer 
option will become its own variable in the database and contain a 0 or 1 to represent 
whether or not the answer option was selected. If the subject selects ‘none,’ then 
community rehabilitation and medication must not be selected. If the subject selects 
‘community rehabilitation,’ then the subject is free to select ‘medication’ also but 
cannot logically select ‘none.’ Such a pattern (selecting ‘none’  and  one or both 
treatment options) would indicate a problem with data quality; therefore, questions/
items with  partial  mutual exclusivity can be useful QA/QC tools ( See:  Chap.   11    ).

   If there is a single-response item with fully mutually exclusive answer options, 
then the database will contain only one variable for that item (Table  12.2 ). The 
example in Table  12.2  shows an alternative version of the question asked in 
Table  12.1 . In this alternative version, there are four possible answer options that are 
fully mutually exclusive; therefore, the subject is only allowed to select a single 
response. In the dataset, the item will be indicated with a single variable, and the 
answer will be indicated with a 0, 1, 2, or 3 to indicate the selected answer.

        Table 12.1    Coding of multiple response type items: an example   

 Question/item a  Question/item 
 Variable 
in database 

 Value for 
variable 

 D.1.  What are the current treatment needs of the child? 
 ( Tick   all   the options that apply ) 
  None  D.1.1  0 or 1 
  Community rehabilitation  D.1.2  0 or 1 
  Medication  D.1.3  0 or 1 

    Table 12.2    Coding of single response type items: an example   

 Question/item a  Data collection tool 
 Variable 
in database 

 Values for 
variable 

 D.1.  D.1. What are the current treatment needs of the child? 
  (Tick   only one   option)  

 D.1. 

  None  0 
  Community rehabilitation  1 
  Medication  2 
  Community rehabilitation and medication  3 
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       12.3.3.2 Avoidance of Derived Database Variables 
 Only variables that cannot be derived from other variables should be entered into 
the database. Derived variables can be added to the database  at the analysis stage  
after applying QA/QC measures. The following is an example of the type of prob-
lem that can arise if derived variables are entered into the database. An investigator 
collected data on each subject’s date of birth (DOB) and date of measurement 
(DOM). Instead of entering this raw data into the database, (s)he has included the 
variable  age , derived as DOM minus DOB. If errors in the DOM or DOB are cor-
rected at a later stage (usually during the application of QC measures), this error 
will not be automatically corrected in the age variable, and analyses will have 
reduced validity. 

 One of the few reasons to record a derived variable at the time of data collection 
or data entry is for ‘live’ databases, where such a variable is needed to trigger an 
essential action. For example, knowing the age of a participant might automatically 
help to apply inclusion/exclusion criteria.  

   12.3.3.3  Coding of Non-responses 
 Sometimes questions do not provide subjects with every plausible answer, and in 
these circumstances it is important to provide the option to select responses such as 
‘Don’t know,’ ‘Unknown,’ ‘Not applicable,’ and ‘Other.’ These response options 
prevent unanswered questions and forced answers. The early identifi cation of ques-
tions/items that are prone to non-responses (or that have incomplete or illogical 
response codes) is an important function of data collection piloting so that timely 
improvements can be made. 

 An extension of this point concerns scenarios where questionnaires have embed-
ded series of questions that are contingent on prior responses. For example, a list of 
14 questions might be part of a validated diagnostic tool to identify individuals with 
a high probability of having pathologic anxiety. The fi rst question in this list might 
be ‘Have you had anxieties of any type in the past 12 months?’ Mutually exclusive 
response options are ‘Yes,’ ‘No,’ and ‘Not sure.’ If the subject answers ‘Yes’ or ‘Not 
sure,’ then they progress through the 13 other questions, but if the subject answers 
‘No,’ then they skip the next 13 questions. This is called a  skip pattern . In the latter 
scenario, responses on forms and their corresponding database variables should be 
left blank. 

 If a subject willingly decides not to respond this will often lead to a blank item 
on the questionnaire and a blank corresponding variable in the database. Some 
questionnaires, however, foresee a response option ‘Prefers not to respond’ in the 
options list which can be coded. More generally, whenever special reasons for 
incomplete questionnaires are anticipated, then an option list can be created for 
interviewers to capture these reasons. This situation may arise if participants are 
reluctant to provide sensitive information, or the participant has ‘interview fatigue.’ 
In the case of assessments of children, it may be important to differentiate between 
children who do not have the capacity to complete a questionnaire or activity and 
those who simply got distracted or tired. This distinction may have implications for 
study validity. Whether an entire section of the form was not completed during an 
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interview can be identifi ed by having a question in the form about the success of its 
completion (Fig.  12.1 ).

   All blank responses will have to be carefully scrutinized during pilot studies to 
develop optimal skip patterns and lists of response options. Final skip patterns 
require automated coding of variables to appropriately refl ect skipping as the reason 
for missing responses. This means that even though the item is left blank on the 
questionnaire in line with skip instructions, the database program creates an auto-
matic ‘not-applicable’ type response.  

    12.3.3.4 Pre-coding or Post-coding 
 During their initial design, questionnaires may have items that are captured as 
 strings or ‘free text’  and that are later recognized to be amenable to multiple option 
coding. For example, an item may be aimed at recording medications being taken. 
In this case, the capacity of the interviewer to code this type of data should be deter-
mined before deciding whether coding should occur at data collection (pre-coding), 
at data entry (pre-coding), or during data analysis (post-coding). In our example, a 
lay-interviewer may fi nd it easier to record as text the name of the medication rather 
than assigning a category such as ‘anti-hypertensive’ or ‘anti-depressant.’ The latter 
categorization is more easily done by a professional interviewer with clinical train-
ing. Thus, in the presence of a lay interviewer the coding of the database variable 
will have to be performed at the data editing stage (post-coding).  

    12.3.3.5 Variable Names and Attributes 
 Variable names should be carefully constructed. Considerations include that some 
software truncates variable names when they exceed a specifi ed length limit, and 
that certain characters are allowed in variable names in some software but not in 
others. For longitudinal and compound (relational) databases, it is important to 

  Fig. 12.1    Items to indicate reasons why a section in a questionnaire was not completed. A simple 
skip pattern is also included in item  F.15  for individuals who fully completed  Section F        
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carefully test uniformity of variable names’ lengths and other properties across 
tables so that ‘merging’ or ‘concatenation’ becomes hassle-free. Merging and 
appending data from multiple data fi les will not have accurate results if the variable 
attributes and arrangement of the unique identifi ers chosen for merger have not been 
synchronized across all data fi les involved in such merging. Thus, to achieve unifor-
mity of data, questionnaires should include consistent instructions about variable 
properties and units of measurement. For example, instructions should clarify that a 
particular continuous variable always be recorded as a 3-digit number with one 
decimal and in a specifi ed unit of measurement; or that dates are always recorded in 
the DD-MMM-YYYY format (e.g., 07-JUN-2012). 

   Hint  
 Date and time variables should be formatted to allow calculations and extraction 
of time intervals.    

12.3.4     The Database Inventory 

 A database inventory provides an overview of collected data and tracks data man-
agement activities. Each individual data table is listed in the inventory and orga-
nized to refl ect the hierarchy of measurement and relational nature between tables. 
The database inventory should indicate the version of the data collection form that 
was used at the time of creation of a data snapshot so that associated changes in 
structure of the database can be monitored and/or accommodated in analyses. The 
inventory should further have a rolling summary of the number of records captured 
to date within each sub-database. An example of a spreadsheet that displays a data-
base inventory is shown in Table  12.3 .

12.4         Data Entry 

 As discussed in previous chapters ( See:  Chaps.   1     and   11    ), data entry errors cause 
information loss and can lead to biased study fi ndings. Guarding against infor-
mation loss and the introduction of bias are scientifi c and ethical imperatives in 
epidemiology; therefore, even the seemingly simple task of entering observa-
tions into a database is a matter of good scientifi c and ethical practice. In this 
section, we describe data entry systems and guidelines that help to reduce data 
entry errors. 

12.4.1     General Guidelines for Data Entry Systems 

 In general, data entry screens should mirror the structure of paper data collection 
forms. This reduces data entry fatigue by limiting the amount of effort required to enter 
data. The same rationale is used to justify the implementation of simplifi ed data entry 
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processes that minimize typing, e.g., by using simple codes and ‘drop- down’ lists. 
The following are a list of approaches that can decrease the burden of data entry and 
therefore increase effi ciency and accuracy:
•    Create an ergonomic workspace for data entry clerks, e.g., providing them with 

a stand to mount paper forms side-by-side with the screen  
•   Implement data entry software functions that facilitate accurate data entry, e.g., 

clicking on a data entry fi eld to trigger a selectable drop-down list displaying all 
possible answers for the relevant item  

•   Employ data error checks to immediately fl ag data for verifi cation  
•   Use double data-entry methods (Day et al.  1998 )  
•   Check all or a proportion (e.g., 10 %) of electronic entries against source forms  
•   Use logic checks, e.g., fi elds associated with a skip pattern are left blank if the 

leading question indicates that a series of questions should be skipped    
 In addition, the following guidelines may be useful for all research studies, even 

though they were developed for clinical trials (FDA  2007 ; only a selection is shown, 
with minor edits):
•    Use electronic signatures for authority to proceed, i.e., a series of symbols autho-

rized by an individual to be the legally binding equivalent of the handwritten 
signature  

•   Design a computerized system so that every entry can be attributed to an elec-
tronic signature  

•   Display the printed name of the subject on the screen during whole entry 
session  

•   Use a log-off system when a data entry clerk leaves a workstation, or, an automatic 
screensaver that prevents entry until a password is entered  

•   Change passwords regularly  
•   Put in place controls to ensure that the system’s date and time are correct 

(e.g., synchronized with a trusted third party) and cannot be modifi ed by entry 
personnel  

•   Include and describe help features for data entry, such as range and consistency 
checks to reduce errors or lists of codes that are compatible with the analysis plan      

  Textbox 12.2 Data Entry with Mobile Devices 

 Some steps in data entry are removed when mobile devices are used for data 
collection. An advantage is that absence of transcription eliminates transcrip-
tion error. It is important to recognize that other sources of error still remain 
and that error rates may differ for different types of mobile technology 
(Patnaik et al.  2009 ). These considerations infl uence the choice of mobile 
device, the structure and format of data collection tools and the specifi c steps 
for training and monitoring of data entry. 
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12.5        Dataset Creation and Data Export 

 A well-designed database system should be able to extract data in the form of data-
sets and export these to statistical software packages. The exported datasets should 
preserve data defi nitions, variable labels, and entered values, and the exported data-
sets should be readable in standard statistical software programs, such as R, SPSS, 
and Stata. To ensure that database information can be exported and read by statisti-
cal software, it is recommended to include in an SOP routine checks for database- 
to-statistical software compatibility (this can be done on a monthly basis for large 
studies). With each export it is also important to verify that date and time variables 
and values have been exported properly. 

12.5.1     Merging Data from Multiple Databases or Datasets 

 Merging procedures should be tested early, and for compound/relational databases 
the results of merging should be carefully reviewed to ensure that the correct units 
of analyses are used and that the number of records in the merged dataset is as 
anticipated. This is especially critical for datasets that share anything more complex 
than a one-to-one relationship (e.g., a single record in the parent table links to two 
or more records in the child table). 

 Anonymity of the data is to be maintained at all times through removal of partici-
pant identifi ers. This includes names, addresses, and other identifying features (e.g., 
unique tattoos or markings) as well as GPS coordinates. If the latter is necessary 
(e.g., for geospatial analyses), then GPS coordinates should be exported as a sepa-
rate fi le and then encrypted and secured with a password. All exported data should 
be safely stored and time-stamped.   

12.6     Metadata 

12.6.1     The Data Dictionary 

 A data dictionary is a central table that provides information about each table in the 
database as well as the data contained in each table. These metadata (i.e., data about 
data) will include names of individual tables and, within each table, many of the 
following:
•    Variable names and labels  
•   Type of data (e.g., numeric, text, date)  
•   Format of each variable (e.g., 0,1,2…; yes, no, …; DD-MMM-YYYY)  
•   Some descriptive information on data contained in each fi eld  
•   Codes  
•   Value labels    

 Table  12.4  is an example. For tables that contain derived variables or fi elds (age 
derived from date of interview and date of birth), the data dictionary will have to 
document the process of derivation.
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   Software applications like Epidata automatically create a data dictionary during 
the database design. The other option is to manually create the dictionary. The data 
dictionary makes it easier to achieve consistency in analytic and reporting stages. 
This ‘memory’ is especially useful for large or multi-site projects and those span-
ning a long duration.  

12.6.2     File Names and Labels 

 Paper forms should be clearly labeled and named. The use of footers and headers 
with fi lename and version number and date modifi ed should be standard procedure, 
and all study staff and investigators should follow computer fi le-naming rules. An 
example of a fi le-naming rule is: 

 <ProjectName > _ < FileName > _ < VersionNumber > _ < DateModifi ed > _ < LastM
odifi edBy > _ < FileExtension> 
 E.g., ProjectXXX_Clinical_Diagnostic_Questionnaire_V1.2_2011may31_SK.docx  

12.6.3     The Form Inventory 

 As forms are being developed, there may be many versions and drafts of each version. 
The number of fi les can become overwhelming without an inventory list to track 
the different forms. Indeed, deploying the wrong form can be a major, potentially 
irreconcilable mistake. An example of form inventory is illustrated in Table  12.5 . 
Only authorized personnel should be tasked with monitoring and maintaining such 
inventory. This should be centralized to prevent duplication and ensure better con-
trol of forms.

12.6.4        The Audit Trail 

 Despite great efforts during study design and piloting, form and database changes are 
unavoidable and in many cases indicate that there is a well functioning feedback loop 
among data collectors, data managers, and investigators. Especially when data are 

   Table 12.4    Excerpt of a data dictionary   

 Table name  Variable name  Variable label  Variable type  Variable format  Value labels 
 Parent  PARENT_ID  Unique 

parent ID 
 Numeric  String  None 

 HOUSE_ID  House ID  Numeric  String  None 
 SURNAME  Surname  Text 
 DATE_INT  Date of 

interview 
 Date  DD-MMM-YYYY 

 EMPLOY  Employed  Numeric  Numeric  1: No 
 2: Yes 

 Child  CHILD_ID  Unique child ID  Numeric  String  None 
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collected for novel hypotheses or in novel settings and populations, many potential 
database changes are likely to need consideration in the course of the study. An audit 
trail is a system that helps to keep track of changes made to the electronic forms and 
records. Audit trails should describe when, by whom, and the reasons changes were 
made to the database or other documents (e.g., forms). In order to maintain data 
integrity from collection to dataset export, only authorized edits (additions, deletions, 
and modifi cations) of the design and data elements should be permitted. Computer-
generated time-stamped audit trails can facilitate tracking these changes especially if 
there are numerous edits that need to be made; however, sometimes it is necessary 
to supplement audit trails with diaries documenting changes and comments from 
colleagues. With recent developments in technology, the project diary can be shared 
among investigators and include logs of all project- related correspondence. 

 Audit trails must be secure and, when possible, computer-generated and time- 
stamped. They must also be readily accessible in a chronological format that allows 
immediate auditing. Personnel creating, modifying or deleting electronic data 
should not be allowed to change audit trails, but rather to add records whenever 
necessary. WORM (Write Once, Read Many) computer data storage systems allow 
the user to write data to such a storage system only a single time, but to read any 
number of times. This prevents the user from accidentally or intentionally altering 
or erasing data. Ideally, any changes noted in the audit trail should be attached to a 
tag in the database/document alerting the user that a change was made at some point 
(as well as when and by whom).       

 In this chapter we discussed issues related to data management. In making a 
data management plan, the goal is to facilitate making high quality data 
available for analyses. Analyses also require planning and will be the subject 
of the next chapter. 
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Abstract
Carefully designing an analysis plan is an important part of study protocol 
development. Analysis plans specify the chosen outcome parameters, the analysis 
procedures, and the way in which the statistical findings will be reported. Planned 
analysis procedures can include data transformations to prepare study variables, 
descriptions of sample characteristics, methods of statistical estimation, and 
methods of statistical testing. However, one cannot foresee every detail of how 
the analysis will proceed. Indeed, particularities of the data, unknown at the 
study’s planning stage, will guide many decisions during the actual data analysis. 
This chapter therefore deals with general issues that arise in the preparation of an 
analysis plan and in the setup and approach to analysis, and provides a broad 
framework for analysis planning applicable to most epidemiological studies.

13.1	 �The Usefulness of an Analysis Plan

An analysis plan can be useful for the following purposes:
• To develop an overall analysis strategy that will be applicable if the collected 

data have anticipated distributional characteristics and quality
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• To help potential collaborators, research ethics committee, sponsors, and other 
stakeholders judge the proposal. A written plan allows readers to scrutinize 
statistical aspects of the study and to relate these aspects to the data collection, 
data handling, and even the object design (Miettinen 1985)

• To simulate outcomes under different scenarios, with foci on precision and power 
(See: Chap. 7). Attention can focus on the ideal and expected scenarios, but it is 
sometimes helpful to consider less likely scenarios as well. These simulation exer-
cises can also provide insight into required study size and study feasibility. 

See Panel 13.1 for a list of key terms and concepts relevant to analysis plans. 

Panel 13.1  Key Terminology Used in the Description of Analysis Plans

Analysis dataset  Selection of fields and records extracted from a database, 
used for a particular statistical analysis

Analysis plan  Plan specifying the study outcome parameters, their calculation 
procedures, and how they will be reported

Analysis variables  Variables representing determinants, outcomes, confounders 
and effect modifiers used in a analysis

Confidence interval  A range of values within which the true population 
value is expected to fall, given the evidence in the sample data

Data  Recorded information regardless of form
Data analysis  Activities done to maximize and summarize relevant information 

contained in datasets, usually including data transformations and statistical 
analyses

Database  Organized set of data kept as a source for extracting datasets
Data transformations  Creation of derived variables in a database or dataset 

needed to facilitate analysis
Derived variable  Variable whose values are not created on the basis of measure-

ment but by transforming and/or combining values from existing variables
Interval estimates  Confidence intervals: a range of values within which the true 

population value is expected to fall, given the evidence in the sample data
Null hypothesis  A statistical hypothesis stating that two or more variables 

are expected to be statistically unrelated
P-value (of a null hypothesis)  Probability of finding a value for the test 

statistic at least as extreme as the value obtained in the study, in a situation 
where the null hypothesis is true

Point estimates  ‘Best guess’ estimates of the population value, inferred 
from the sample

Primary analysis  Analysis carried out to produce evidence about the most 
important specific aim

Score  Position of a measurement value on an ordinal or numerical measurement 
scale

(continued)
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13.2	 �General Structure of the Analysis Plan

Figure 13.1 shows the general process by which one typically carries out an analysis 
and, accordingly, constructs an analysis plan. It is most efficient to construct the 
analysis plan in a linear manner, starting first with ‘data extraction’ and ending with 
‘statistical analyses.’ This order is recommended because each major step tends to 
influence the next one. The structure of an analysis plan can recapitulate the order 
of this process.

13.3	 �Planned Data Transformations

Study variables represent determinants, outcomes, confounders, and effect modifiers 
used in analyses. Some variables are directly available from the database (e.g., 
reported sex or gender), but others may require derivation (e.g., age based on 

Scoring  Locating an individual measurement value on an ordinal or numerical 
reference scale

Significance level (of a test)  A particular a priori P-value α used to label 
obtained P-values as ‘significant’ if the obtained P-value is smaller than α 
or ‘non-significant’ if the obtained P value is greater or equal to α

Statistical analysis  The calculation of statistics to summarize some aspect 
of the data

Statistical estimation  The calculation of point and interval estimates
Statistical methods  Methods for sampling from sampling frames, summa-

rizing and presenting data, estimation of population parameters and 
hypothesis testing

Statistical package  A computer program especially designed to facilitate 
the use of statistical methods

Statistical testing  Computation of a P-value (Miettinen 1985)
Stratified analysis  Separate calculation of outcome parameters for differ-

ent levels of suspected modifiers or confounders (usually but not necessar-
ily accompanied with calculation of a pooled estimate)

Subgroup analysis  Analysis done separately for one or for several levels of 
a presumed effect modifier

Syntax  A set of instructions (statements) written by a computer user in a 
syntax screen within a statistical software package, submitted to trigger the 
execution of chosen procedures with the data

Table  Matrix of rows and columns used to summarize relevant information 
about categories of interest

Panel 13.1 (continued) 
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date-of-birth and date-of-measurement). The derivation of variables may involve 
re-arrangements of information, scoring, categorization, collapsing, and normaliz-
ing transformations.

13.3.1	 �Data Extraction and Re-arrangements of Information

The first step of every analysis plan relates to the extraction of an analysis dataset 
(also referred to as a dataset) from a database (i.e., source master-file). The dataset 
must include all information needed for the calculation of planned study variables. 
As mentioned in the previous chapter, if information from several databases needs 
to be combined, correct match-merging by unique subject identifiers (or, more gen-
erally, unique observation unit identifiers) is essential to avoid duplication of data. 
Before embarking on any systematic transformations one should explore all ‘fields’ 
(i.e., columns with data on a specific variable) as to the appropriate length, number 
of decimals, formats, allowable values, outliers, and inconsistencies. This explora-
tion should give the analyst an indication of the general qualities of the data and 
raise any data management issues that need to be addressed before further work 
with the dataset.

13.3.1.1 �Derived Variables
As mentioned above, some variables are directly available from the dataset but 
others need to be derived using a process known as data transformation. Perhaps the 
most common data transformations are the calculations of age from date-of-birth 

Data extraction
• Extraction of data from 

a database(s) to create 
a dataset
• Data exploration

Data transformation
• Systematic corrections
• Missing values
• Scoring
• Categorization
• Derivation of variables

Subject 
characterization
• Definitions of attributes to 

be used to describe subjects

Statistical 
estimation
• Adjustments of crude 

estimates
• Strategies to obtain 

interval estimates

Statistical testing 
and modeling
• Choice of tests
• Choice of models and 

simulations
• Level of significance

Fig. 13.1  General analysis process and structure of an analysis plan. This order is recommended 
because each major step tends to influence the next one
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and date-of-measurement/enrollment, and ‘time into study’ from date-of-enrollment 
and date-of-measurement. In performing these or other transformations, statistical 
packages may require the analyst to recode missing values, such that all missing 
data have a uniform notation.

One should keep in mind that the precision of a derived variable cannot be better 
than the least precise element in the transformation used to make that derivation. 
For example, in a self-administered questionnaire, self-reported height may be 
recorded alternatively as number of centimeters (cm) or as number of feet and 
inches (ft, in.), according to the preference of the respondent. When these data are 
merged into a single variable, a precision problem arises because inches are less 
precise than centimeters; thus, the overall precision for height cannot exceed that 
of inches. As another example, if in the calculation of body mass index, weight was 
recorded with high precision, to the nearest 10 g, but height was recorded only 
roughly to the nearest 5 cm, the precision of the resulting body mass index variable 
would be very poor in spite of the precise weight measurements. One should be 
attentive to such problems whenever different measurement units were used during 
data collection.

Hint
The precision of a derived variable cannot be better than the least precise element 
contributing to that variable

13.3.1.2 �Systematic Corrections
In some instances, there is a known systematic measurement error, and data can 
be transformed using a validated correction factor. For example, measurements 
during a certain period may have been made using a spare instrument that was 
discovered to be slightly decalibrated in comparison with the routinely used 
instrument. If the amount of inaccuracy is known and constant, a single correction 
value can be added to the relevant subset of values during analysis. Corrections 
may become more complex than this example, especially if part of the data were 
collected using a totally different method altogether (e.g., a study in which self-
reported body weight is collected for all subjects and directly measured in only a 
sample thereof). In such instances, the relationship between values obtained with 
both methods needs to be the subject of careful regression modeling. Put another 
way, a prediction model must be constructed to replace the values obtained 
with the less reliable method with imputed values virtually obtained with the 
better method. Acceptable prediction may or may not be achieved with a simple 
conversion factor.

The issue of systematic corrections can also arise in situations where surrogate 
measures need to be used, such as when current exposure is to be used as a proxy 
for past exposure. Feasibility studies may have shed some light on historical expo-
sure changes and may allow some corrections to be applied to the current exposure 
data (Esmen 1979; Cherrie et al. 1987; White et al. 2008). If such information exists, 
it is very helpful to reference it in the analysis plan and to develop a strategy for 
obtaining an acceptable correction factor.
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13.3.1.3 �Dealing with Missing Values
After missing values have been appropriately dealt with in data cleaning (See: 
Chap. 20), a question may arise as to whether, for analysis, one should remove from 
the dataset records with missing values for an important analysis variable. Statistical 
packages do this automatically for standard regression analyses. However, deleting 
records can introduce bias and reduce precision of the outcome parameter estimates. 
It may therefore be preferable to find an alternative solution, if a valid one exists, 
under the form of imputation, weighted regression, or adjustment for predictors of 
missingness (See: Textbox 13.1).

Textbox 13.1  Approaches to the Handling of Missing Data

The most appropriate solution to handling missing data depends on the process 
that led to the missing data, especially whether that process was random or 
systematic in some way. Accordingly, the analysis plan may specify how 
patterns of missing values will be assessed and may foresee alternatives 
to complete case analysis (See: Donders et  al. 2006). With complete case 
analysis, one only uses data from observation units with complete data on the 
variables needed to calculate the outcome parameter estimate. The alternative 
may be some form of imputation, i.e., replacement of missing values with an 
estimated value. Single imputation based on regression modeling tends to 
overestimate precision, whereas multiple imputation performs better in this 
regard, as it takes into account the imprecision of multiple imputations (Little 
and Rubin 2002; Sterne et al. 2009).

Complete case analysis and imputations tend to lead to unbiased esti-
mates only if the missingness is unrelated to the study variables. When 
missingness is systematically associated with the outcome event and data on 
other study variables are near-complete, as is often the case in prospective 
longitudinal studies with losses to follow-up, complete case analysis using 
multiple regression can be as valid as multiple imputation if proper statisti-
cal adjustments are made (Lewis 1999; Committee for Proprietary Medicinal 
Products 2004; Groenwold et  al. 2011). Alternatively, current multiple 
imputation methods allow specification of various patterns of non-random 
missingness and can yield valid results. In weighted regression, one gives 
more weight to data from subject categories that are underrepresented due 
to missing data.

Non-recommended approaches include the use of missing data indicator 
variables and treating missing data as a level of a variable (Greenland and 
Finkle 1995). One should not create categories or indicator variables for missing 
values unless one is examining whether missing values for a variable are more 
likely in some groups than in others.
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13.3.2	 �Scoring

Scoring is the location of individual measurement values on an ordinal or continuous 
measurement scale (i.e., on an index). It allows expression of a value’s magnitude in 
reference to an expected distribution. Scoring is also helpful to make magnitudes of 
one variable comparable across levels of another variable, such as age and sex, as 
the reference distribution can be made age- and sex-specific (e.g., anthropometric 
scoring in children, discussed below). Scoring can be based on known indices (external 
scoring) or without pre-existing indices for that variable (internal scoring).

External scoring systems use an accepted reference distribution for the variable 
in question. A typical example of external scoring is anthropometric scoring, in 
which measurement values of, for example, height and weight are scored using 
accepted anthropometric indices, such as height-for-age or weight-for-height refer-
ence distributions. When the reference distribution is continuous, as is the case in 
anthropometric scoring, the scores can take the form of a centile position, or, more 
commonly, of a Standard Deviation Score (also called a Z score). The latter 
expresses the position of the measurement value within the reference distribution as 
the number of standard deviations away from the reference mean:

Z score
Measurement value Reference mean

Reference standard devi
=

-
aation

Mean and standard deviation (SD) adequately describe a Normal or a Normalized 
reference distribution. When the reference distribution is non-Normal and without 
kurtosis, the Z score can be described adequately by three parameters: an L-value 
(skewness parameter), S-value (a parameter of dispersion), and M-value (median) 
(Cole and Green 1992). For example, the WHO child growth standards mainly 
consist of age- and sex-specific L, M and S values (WHO 2006, 2007). With such 
reference values the Z scores can in principle be calculated as follows:

Z score

Measurement value
M

SL

L

=

æ
è
ç

ö
ø
÷ -1

In internal scoring, it is assumed that the measurement values have a particular 
underlying distribution  –  a distribution for which no valid external reference 
exists –  that can serve as an internal reference distribution. To perform internal 
scoring, one often calculates an internal Z score (after a normalizing transformation, 
if necessary) for each measurement value based on the mean and standard deviation 
of the internal reference. Internal scoring is commonly employed to develop in-study 
scoring systems for latent variables based on multi-item questionnaires, though 
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there are other uses. As with external scoring, internal scoring can also include 
adjustments for other variables (for an example, See: Van den Broeck et al. 1998; 
Francis et al. 2009).

13.3.3	 �Categorizing Variables and Collapsing Categories

Measured variables and scores are often continuous variables, but they will not 
necessarily be used in analyses as continuous variables. There are several good 
reasons to categorize continuous variables, and the analysis plan can be explicit 
about these:
• To create contingency tables that show how variables are distributed across levels 

of another variable
• To make a histogram (e.g., during data exploration)
• To prepare determinant variables with a non-linear relation to the outcome 

(e.g., a J–shape or U-shape) for analysis
• To prepare for stratified analyses aimed at controlling for confounding or to 

demonstrating effect modification
• To create indicator categories (e.g., hypertension or obesity)
• To prepare for subgroup analyses

13.3.3.1 �What Number of Categories Is Optimal?
The answer to this question is context-dependent. For indicator categories the optimal 
number is usually two, as implied by the definition of the indicator (e.g., obese vs. 
non-obese), but more can be chosen if the object design calls for it (e.g., morbidly 
obese vs. obese vs. non-obese). For histograms, seven categories are often enough. 
For adequate control of confounding using stratified analyses and for evaluating 
dose–response relationships, four-to-five categories are usually sufficient.

Irrespective of context, though, there are two general rules to keep in mind. First, 
if more data are available, then more categories can be made (though this does not 
mean that more categories is better). And second, one should avoid having categories 
with sparse data if possible. If sparely populated categories exist in an analysis, the only 
viable solution may be to reduce the number of categories, perhaps by collapsing 
the spare category with a neighboring category.

13.3.3.2 �Where to Place the Cut-Offs?
There is no generally accepted method to define cut-offs for a categorical variable, 
making this task prone to manipulation to obtain expected or statistically significant 
results. One of the most common methods to defining cut-offs is to use accepted 
indicator definitions (e.g., body mass indices of 25.0–29.9 and 30.0–34.9 are cate-
gorized as ‘overweight’ and ‘obese,’ respectively). Alternatively, if there is an 
unusually shaped distribution (e.g., peaks and gaps), natural cut-offs may become 
apparent. If neither accepted nor natural cut-offs exist, a common approach is to 
categorize data into centiles (e.g., tertiles, quartiles, quintiles, etc.).

By creating categories, one raises an additional issue: is it okay to have extreme 
categories that are uncensored (e.g., age 65+)? This creates a heterogeneous category 
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somewhat incomparable with other categories. For example, age may be categorized 
by decades from 25 through 64.9 years with an uppermost category of 65+ years. 
The uppermost category will include subjects ranging in age from 65 to the oldest 
person in the study, whereas all other categories will range from 0 to 10 years only. 
The uppermost category can create confounding in analytical studies; consequently, 
in analytical studies one prefers closed extreme boundaries, even if it results in a 
category with small numbers.

13.3.4	 �Transforming the Distribution Shape  
of Analysis Variables

Knowledge or anticipation of the distributional characteristics of important study 
variables is essential for planning statistical estimations and testing. The analysis 
plan may specify how distribution shapes will be investigated and how any transfor-
mations of shapes will be done. By far the most frequent type of transformation is 
the Normalizing transformation, usually successfully done by replacing data values 
by their logarithm or by raising them to some power. Checking Normality can be 
done by a combination of approaches that may include:
• Histogram inspection
• Shapiro-Wilk test
• Kolmogorov-Smirnoff test
• Calculation of kurtosis and skewness statistics
• Q-Q plots

13.4	 �Description of Subject Characteristics

After having planned the data transformations, the usual next step is to plan the 
description of subject characteristics. The importance of this task is highlighted by 
its position in most epidemiologic papers: at the beginning of the results section. 
These descriptions can involve both tables and graphical displays and usually focus 
on relevant variables for the total sample and for determinant levels of interest (e.g., 
treatment groups), perhaps further stratified by levels of major effect modifiers, 
such as biological sex.

The normality of continuous variables must be examined to assess which measure 
of central tendency is appropriate to report. If the distribution is Normal or near-
Normal, one traditionally reports the mean and standard deviation. Non-Normal 
distributions are often reported using the median, interquartile range (P25–75), 
P10–90, or range (max-min). To assess data distributions, the usual starting point is 
to graphically depict the data. Different graphical styles are preferred for different 
types of data:
• Histograms and box-plots are popular for displaying the distribution of continuous 

variables and to compare those distributions across subgroups
• Bar charts and pie charts are popular for displaying distributions of categorical 

variables with three or more categories
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• The frequency of a single category (e.g., females) is popular for describing 
frequency distributions of dichotomous variables (e.g., males/females), as the 
frequency of the remaining category is easily implied
However, one should not use graphs to display data from two-by-two contingency 

tables.
This description of subject characteristics may include a description of the fre-

quency distribution of the outcome variable (e.g., hypertension: yes or no) or of 
variables used to derive the outcome variable (systolic and diastolic blood pressure). 
One or both of these approaches are commonly taken when the actual outcome param-
eter (e.g., the prevalence odds ratio of hypertension in males vs. females) is not simply 
a distributional characteristic of the outcome variable. Thus, when reporting the find-
ings of a cross-sectional study about determinants of hypertension, for example, a table 
could be planned to describe systolic and diastolic blood pressure by age and sex.

13.5	 �Statistical Analysis Strategy for Outcome Parameters

The next major step in planning an analysis is to describe the strategy that will be 
taken to compute the desired outcome statistics.

13.5.1	 �Primary and Secondary Analyses

It is usually recommended to specify a primary analysis and one or more secondary 
analyses. The former addresses what is seen as the main research question; study 
design and implementation are geared towards optimal validity and efficiency in 
creating empirical evidence about the question addressed in the primary analysis. 
Secondary analyses may address additional research questions of a different nature, 
or they may concern interesting sub-group analyses.

13.5.2	 �Estimation, Testing, or Both

There is a close link between statistical estimation and testing (Miettinen 1985; 
Rice 1988). For example, if the difference in the effect of two treatment levels is 
significant at the 5 % level (a matter of testing), then the associated 95 % confidence 
interval of the difference will exclude zero (a matter of estimation). Thus, the sig-
nificance of a hypothesis test can often be inferred simply from inspection of two 
confidence intervals. Only estimation, however, can provide clear insight into what 
the magnitude of the parameter could be.

The choice between estimation, testing, or the use of both depends commonly on 
what the objective of the study is:
• If aiming to create evidence about the possible existence of a determinant-

outcome relationship, with no ambition to actually quantify the magnitude or 
precise shape of such a relationship, then the choice for statistical testing of a 
null hypothesis is logical
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• If aiming to create evidence about the magnitude or shape of a relationship 
whose existence is considered highly probable or certain already, then it may 
be possible to perform statistical estimation only, although there may be an 
additional perceived need to actually address the existence of the relationship 
with testing

• If aiming to create evidence about both the existence and the magnitude or shape, 
then it is logical to choose both estimation and testing
In the analysis plan, both estimation and testing can be the basis for sample size 

calculations (See: Chap. 7). Consider a study of the difference in systolic blood 
pressure between diabetics and non-diabetics. One may choose the sample size to 
ensure that each estimate of mean blood pressure is surrounded by a margin of error 
of a certain width. One may equally choose the sample size to ensure a certain 
power and significance level for a t-test.

Hint
In addition, one must decide whether the analyses will be performed using 
Bayesian or frequentist approaches. There is a great divide between these two 
statistical approaches, and no consensus exists in the field regarding one’s blanket 
superiority over the other. This chapter deals only with analysis plans employing 
a frequentist approach.

13.5.3	 �Simulation of Potential Scenarios

Sometimes analyses can be simulated using hypothetical data; this process can be 
useful for estimating precision of the outcome parameters under a range of circum-
stances (such as expected distributions of confounders and modifiers), including 
extreme circumstances that could become realities. On the basis of this exercise, a 
refinement of the analysis plan may be possible, as one typically gains insight into 
how categorizations should be done and may also realize the need to adjust the 
planned study size.

13.6	 �Basic Choices in Statistical Estimation

This section gives an overview of basic choices in estimation that deserve mention-
ing in the analysis plan, without explaining the actual methods listed: Statistical 
estimation is more extensively discussed in Chap. 22.

13.6.1	 �Crude and Adjusted Estimates

Crude (unadjusted) estimates can often be obtained without resorting to regression 
analysis or other modeling approaches. However, because evidence in epidemiology 
is very often properly presented under the form of probability functions, regression 
modeling has become a predominant method in statistical estimation in this discipline. 
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It conveniently allows for the estimation of both crude and adjusted estimates and is 
commonly applicable to various diagnostic, etiognostic, prognostic, and methods-
oriented research projects, as will be discussed in Chap. 24.

Crude estimates may need adjustment for a variety of reasons. The analysis 
plan may describe which adjustments will be considered and how. Examples of 
adjustments are:
• Stratifications, with or without pooled estimates
• Age standardization
• Adjustment for confounding
• Adjustment for measurement bias or imprecision
• Adjustment of one variable for another, by creating a composite variable incor-

porating information from both variables (e.g., Disability Adjusted Life Years 
lost and cost-of-intervention estimates adjusted for intervention efficiency)

• Calculation of robust estimators (e.g., down-weighting of outliers)
• Adjustment for clustering
• Adjustment for missing information

13.6.2	 �Strategies to Obtain Interval Estimates

Each crude or adjusted estimate needs to be composed of a point estimate and at 
least one interval estimate. There are three main options available for the calculation 
of interval estimates:
• Classical standard-error-based interval estimates
• Bootstrapping: estimation of the standard error and confidence interval of an 

outcome parameter based on the distribution of parameter values obtained in a 
large number of random samples with replacement of size n drawn from the 
original sample (of size n)

• Likelihood-ratio-based interval estimates
The aims of the study and the type of statistical analysis will greatly inform which 
interval estimation strategy is best for a given study.

13.7	 �Basic Choices in Statistical Testing

This section gives an overview of basic choices in statistical testing that should be 
mentioned in the analysis plan. Statistical testing is more fully discussed in Chap. 
23. In epidemiology, null hypotheses are usually tested. Analysis plans tend to spec-
ify that null hypothesis testing will be performed; the chosen test(s), conditional on 
distributional characteristics; the choice of one- or two-sided P-values; and the level 
of significance.

The most important assumption underlying any statistical test is full stochas-
ticity. Only if the null-hypothesis testing concerns an occurrence relation that is 
fully stochastic (as opposed to partly or fully deterministic by structure) does 
testing make sense. An example of flagrant violation of the assumption of full 
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stochasticity – where null hypothesis testing would be meaningless – would be testing 
for the existence of a difference in body mass index between obese and non-obese 
persons, with obesity defined on the basis of body mass index. Before considering 
testing, it is wise to check if the determinant variable, or any variable from which it 
is derived, is computationally incorporated in the outcome variable. When that is the 
case, stochasticity may be compromised and null hypothesis testing meaningless.

13.7.1	 �Choice of Test

If the assumption of full stochasticity is not violated, then the planning of null 
hypothesis testing can move ahead. In Chap. 23 advice can be found on the choice 
of null hypothesis tests. This choice commonly requires determining or anticipating 
the following:
• The measurement scale of the outcome variable (categorical vs. ordinal vs. numerical)
• The distributional characteristics of an outcome variable if it is numerical 

(Normal vs. non-Normal distribution)
• Whether or not the determinant variable will be dealt with as a continuous variable
• The number of determinant categories/groups to be compared (single group 

comparison against a theoretically expected frequency distribution; two groups; 
or k groups)

• Whether observations in comparison groups are unrelated (unpaired or indepen-
dent) or related (paired or interdependent)

13.7.2	 �One-Sided or Two-Sided P-Values

A P-value is the probability of finding a value for a statistic at least as extreme as the 
value obtained in a situation where the null hypothesis is in fact true. It is customary 
to carry out two-sided tests. If a one-sided test is used, this decision needs to be 
justified by showing that the expected difference between comparison groups can 
only go in one specific direction. For example, in a disaster area with a high burden 
of acute starvation, a study was done to look at whether young children were still 
growing in length during a 6-months observation period. The chosen statistical 
test was a one-sided paired t-test of length measured at baseline and after 6 months. 
A one-sided test was appropriate because children do not shrink in length.

13.7.3	 �Level of Significance

The concept of significance level will be discussed extensively in Chap. 23. In brief, 
it is a P-value threshold used for interpretation of the test result. A P = 0.05 cut-off 
is usually chosen as a rough guide to evaluate how likely it is that the null hypothesis 
holds (with P-values lower than 0.05 considered to indicate that the null hypothesis 
is unlikely to hold), but this interpretation also depends on sample size, prior 
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credibility of the null hypothesis, the number of tests that are being done, and 
biases. For example, in very large studies, a P-value of 0.001 can be found for a 
difference of a magnitude that is irrelevant or unimportant and can be easily caused 
by a small bias.

An important issue is when to do adjustments of the habitual P < 0.05 criterion. 
When the sample size is very large, the prior credibility of the null hypothesis very 
high, or many tests are done, most researchers tend to use lower levels of signifi-
cance for interpretation, for example P = 0.01 or P = 0.005. Adaptations towards 
lower P-values are often advocated for repeated interim analyses, subgroup analy-
ses, and multiple comparisons in the same study. The Bonferroni method adjusts the 
critical value for statistical significance (The Bonferroni method provides a Q value, 
which is an adjusted P-value) when multiple comparisons are being performed. 
For a critical discussion of this controversial topic, See: Chap. 23.

13.8	 �The Statistical Methods Section of a Study Proposal

Many sponsors and journals only require minimal information on the statistical 
analysis plan. The essential and required information almost always includes a clear 
description of which analysis is primary and which are secondary, and for each 
specific aim of the study an outline of:
• Any scoring systems to be used (and whether they have been validated)
• The chosen descriptive summary statistics
• Outcome parameters

–– Point and interval estimates
–– Adjustments
–– What tests will be used and why? How will the assumptions underlying the 

tests be verified? What is the level of significance?
• Target sample size and power of each analysis
• The chosen statistical software packages that will be used and whether the use of 

any software will involve any particular macros or syntaxes

In this chapter we sketched the usual main steps in data analysis and outlined 
a corresponding structure for the analysis plan. The essence of this plan needs 
to be described in a special section of the study protocol. In the study protocol, 
most sections on study design focus mainly on scientific aspects. However, 
important ethical issues also require adequate planning, and study protocols 
must contain a special section on relevant ethical issues. The next chapter 
introduces some important ethical issues that deserve special consideration in 
a study proposal and protocol.

J. Van den Broeck and J.R. Brestoff

http://dx.doi.org/10.1007/978-94-007-5989-3_23


295

References

Cherrie J et  al (1987) An experimental simulation of an early rock wool/slag wool production 
process. Ann Occup Hyg 31:583–593

Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized 
likelihood. Stat Med 11:1305–1319

Committee for Proprietary Medicinal Products (2004) Points to consider on adjustment for 
baseline covariates. Stat Med 23:701–709

Donders AR et al (2006) Review: a gentle introduction to imputation of missing values. J Clin 
Epidemiol 59:1087–1091

Esmen N (1979) Retrospective industrial hygiene surveys. Am Ind Hyg Assoc J 40:58–65
Francis D et al (2009) Fast-food and sweetened beverage consumption: association with overweight 

and high waist circumference in Jamaican adolescents. Public Health Nutr 12:1106–1114
Greenland S, Finkle WD (1995) A critical look at methods for handling missing covariates in 

epidemiologic regression analyses. Am J Epidemiol 142:1255–1264
Groenwold RHH et al (2011) Dealing with missing outcome data in randomized trials and obser-

vational studies. Am J Epidemiol 175:210–217
Lewis JA (1999) Statistical principles for clinical trials (ICH E9): an introductory note on an 

international guideline. Stat Med 18:1903–1942
Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New York
Miettinen OS (1985) Theoretical epidemiology. Delmar, New York, pp 1–359. ISBN 0827343132
Rice JA (1988) Mathematical statistics and data analysis. Wadsworth, Belmont, pp 1–595. ISBN 

0534082475
Sterne JA et  al (2009) Multiple imputation for missing data in epidemiological and clinical 

research: potential and pitfalls. Brit Med J 338:b2393
Van den Broeck J et al (1998) Fatness and muscularity as risk indicators of child mortality in rural 

Zaire. Int J Epidemiol 27:840–844
White E, Armstrong BK, Saracci R (2008) Principles of exposure measurement in epidemiology: 

collecting, evaluating, and improving measures of disease risk factors, 2nd edn. Oxford 
University Press, Oxford, pp 1–428. ISBN 9780198509851

World Health Organization (2006) WHO child growth standards. Length/height-for-age, weight-
for-age, weight-for-length, weight-for-height and body mass index-for-age. WHO, Geneva, pp 
1–312. ISBN 924154693X

World Health Organization (2007) WHO child growth standards: methods and development. Head 
circumference-for-age, arm circumference-for-age, triceps skinfold-for age and sub-scapular 
skinfold-for-age. WHO, Geneva, pp 1–217. ISBN 9789241547185

13  The Analysis Plan



297J. Van den Broeck and J.R. Brestoff (eds.), Epidemiology: Principles 
and Practical Guidelines, DOI 10.1007/978-94-007-5989-3_14,
© Springer Science+Business Media Dordrecht 2013

    Abstract 
   In order to facilitate the conducting of successful epidemiological research, with 
the utilization of human subjects, several elements of protections for the subjects, 
as well as an internal resource for the investigator, make up the framework of a 
research support program. The program must include an Ethics Committee 
and may have several other ancillary Committees (e.g., a Confl icts of Interest 
Committee). The elements of research support programs, and the role of the 
investigator and their research team, are described within this chapter, along with 
how the two entities may interact. Finally, the expectations for investigators to 
facilitate ongoing oversight while research is being conducted, via monitoring, is 
outlined, along with the overall benefi ts of an organized program for providing 
ethics support to those conducting research with human subjects.  
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14.1        Research Participant Protection Frameworks 

 The ethical conduct of ethical epidemiological research involving humans is a 
primary obligation shared by all members of the research community including, the 
research team, the institution, the Ethics Committee (EC) or Institutional Review 
Board (IRB), and, the subject, the funding agency, the sponsor and national or 
federal agencies (Fig.  14.1  and Panel  14.1 ). This shared responsibility can only be 
achieved when all constituencies have an adequate understanding of the ethical 
principles that underpin the research process.

   In addition to application of ethical principles, the EC/IRB will consider the 
science of the proposal to verify that the research objectives appear attainable and 
that the plan for evaluation of the data provides the best potential for achieving 
generalizable information in the intended area of science. Some of these scientifi c 
elements will align with the research regulations (e.g., enrolling the proper popula-
tion of subjects or using the appropriate data to answer the research question), but 
the overall assessment of the science relates to whether an EC/IRB should allow a 
study to expose a subject to any element of risk, for research that doesn’t seem well 
supported by current needs of the scientifi c community. 

   Panel 14.1 Selected Terms and Concepts Relating to the Organization 
of Ethics Support 

     Clinical monitor     Person designated by the trial sponsor to check if the 
actual trial procedures conform with study protocol, standard operating 
procedures and regulatory requirements   

   Confl ict of interest  (in research)    Study personnel’s personal, fi nancial or 
other interests that may intentionally or unintentionally infl uence the 
procedures and outcomes of a research activity   

   DSMB     Data and Safety Monitoring Board. Independent oversight commit-
tee installed by a research sponsor in support of a particular ongoing study, 
charged with the regular review of data quality and participant safety, and 
advising investigators and sponsor on these   

   Ethics Committee     Independent committee that decides, based on independent 
ethical review, about initiation or continuation of a research study   

   Expedited review     A procedure for documents submitted for review to an ethics 
committee to be reviewed not by the full committee during its scheduled 
meetings, but either by a smaller number of committee members outside 
the scheduled full committee meetings, or by appointed designee(s) of the 
IRB Chairperson. The criteria for approval under an expedited mechanism 
are the same as the criteria for approval by the convened IRB.   

(continued)
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Funding agencies

Sponsor

Research Subjects

Federal/National
Agencies

Investigator/Research
Team

IRB/EC Institution

Human subject protection in research

A shared responsibility

  Fig. 14.1    Human subject protection: a shared responsibility       

   Independent ethics review     Evaluation of planned or ongoing research in 
terms of respect for dignity, rights, safety and wellbeing of individuals and 
communities and fairness of distribution of the benefi ts and burdens of the 
research among all groups and classes in society   

   Informed consent process     Process of fully informing potential study subjects 
about the study and of obtaining their voluntary agreement to participate or 
to continue participation   

   Investigator     A person responsible for the conduct of a research study   
   IRB     Institutional Review Board.  See:  Ethics Committee   
   Minimal risk study     Study in which the harm to participants anticipated on 

the basis of the apparent nature of interventions, contacts and measure-
ments, is judged by the ethics committee to be not greater than risks run 
ordinarily in routine medical checkups or psychological tests.   

   Protocol amendment     Written description of a change made to an earlier 
version of the offi cial study protocol   

   Sponsor     An individual, company, institution, or organization that takes 
responsibility for the initiation, management, and/or fi nancing of a study     

Panel 14.1 (continued)

 Various organizations around the world have created guidelines for ethical 
conduct in human subject research. The World Medical Association’s Declaration 
of Helsinki and the US Belmont Report are the most commonly referenced and 
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comprehensively describe the three originating fundamental principles of ethical 
research conduct: i.e. respect for persons, benefi cence, and justice (World Medical 
Association  2010 ; The Belmont Report  1979 ). Derived from these fundamental prin-
ciples are codes of conduct such as, for example, the International Ethical Guidelines 
for Epidemiological Studies from The Council for International Organizations of 
Medical Sciences ( 2009 ), and Good Clinical Practice guidelines for trials. 

 The codes of conduct and the general philosophy that has contributed to the evo-
lution of these codes have resulted in the research community adopting an expanded 
evaluable framework from which one can determine that human subjects’ research 
is ethical (Emanuel et al.  2000 ). This framework, if adhered to by all members of 
the research community, as previously characterized, signifi cantly enhances the 
likelihood of human research being carried out in an ethical manner. Among the 
major structural elements in the framework are the informed consent process 
( See:  Chap.   16    ) and independent review, the latter being one of the main topics of 
the present chapter. 

 Adherence to general codes of conduct by all constituencies is enforced by numer-
ous regulatory agencies throughout the world. For example in the US, the Department 
of Health and Human Services, Offi ce of Human Research Protections enforces 
regulations to ensure ethical conduct in research. In addition, the Food and Drug 
Administration also imposes regulations concerning human subjects’ protection as it 
relates to the evaluation of therapeutics and devices. One approach to formalizing the 
protection of subjects (or their affi liated data) is to develop Human Research 
Protections Programs (HRPPs), which can function as the offi cial frameworks 
created at research sites/institutions where human subjects research is carried out. 
They are designed to facilitate an understanding of and compliance with the neces-
sary regulations. Below we expand on this mode of organizing ethical support.   

14.2       Elements of a Human Research Protection Program 

 The fundamental components of a HRPP and their individual responsibilities are 
listed in Table  14.1  and are described in greater detail below. The components of an 
HRPP that exist at any research site will be determined by many factors including 
the type of research being conducted. Additional components, other than those 
listed in Table  14.1 , may be an offi ce that handles processing of grants and contracts 
that fund the research protocol (these may be referred to as the Offi ce of Research 
Services, Offi ce of Research Support Services or Contract/Grants Offi ce). For insti-
tutions that also conduct complex biomedical research there are typically several 
additional elements to the HRPP including: a scientifi c committee responsible for 
oversight of high risk studies such as “fi rst time in man” research, or those involving 
gene transfer or cellular therapy or committees that oversees studies that use novel 
advanced diagnostics. Finally, an additional element may be a Community Advisory 
Board. This is a committee of individuals representing the views of a community in 
which the study takes place. The common goal is to maintain informed participation 
with research activities perceived as relevant and feasible by the community. 
This committee is often established in large community-based studies.
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   Within an HRPP the responsibility of the research subject is to ensure that (s)he 
(1) understands what participation entails (2) has a clear appreciation of the possible 
risks, benefi ts and alternatives, (3) proactively seeks clarifi cation and maintains and 
open dialogue with the research team and (4) adheres to what is required of them as 
a subject. 

 Below we further discuss the other fundamental elements of an HRPP.  

14.3     The Ethics Committee 

 The one common element to all HRPPs is the independent Ethics Committee (EC), in 
some countries referred to as the Institutional Review Board (IRB). The EC/IRB 
structure may vary greatly between institutions and may be designed to support the 
type of research conducted. The EC/IRB is typically supported by a dedicated offi ce 
that is staffed with administrators who are career professionals with expertise in 
human subjects research. These individuals are responsible for a preliminary review 
of all ethics committee submissions and making a determination of what level of 
review is required (see below). In addition the staff organizes the convened committee 
meetings. A review committee is typically composed of members who are physicians, 
scientists, nonscientists, and individuals who are not affi liated with the institution 
conducting the research. EC/IRB staff and committee members adhere to common 
ethical principles and apply the codes of conduct referred to above. ECs/IRBs are 
required to review all human research; however the level of review will be determined 
by the risk of the proposed research. Whilst the initial emphasis is placed, by the 

       Table 14.1    Important elements of a human research protections program   

 Element  Responsibility 
  Ethics committee/IRB   Independent review of proposed research 

 Ongoing oversight of research conduct 
 Service to the research community: subjects, research 
team and the institution 

  Confl ict of Interest Committee   Independent evaluation of possible individual and 
institutional confl icts of interest 
 Creation of a confl ict of interest management plan 

  Monitoring and auditing  
(Clinical monitor, Data 
and Safety Monitoring Board) 

 Independent evaluation of patient level or aggregate data to 
ensure human subject safety, data integrity and appropriate 
research conduct 

  Research team  
(Investigator, research 
nurses and support staff) 

 Propose scientifi cally and ethically sound research 
 Conduct the research in keeping with the approved 
protocol 
 Uphold the highest ethical standard to maximize safety 
and respect participants 
 Respect the opinions of the community of subjects 
expected to participate 

  Research subjects   Be fully informed about what they are agreeing to do 
 Adhering to the requirements of the study 
 Asking questions when information is missing or unclear 
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research community, on achieving approval for a research protocols from the review 
committees, many of the compliance and other oversight issues don’t arise until 
research activities are underway. Thus ECs/IRBs are required to (1) establish that the 
initial criteria for approval are met and (2) provide ongoing  assessments of ethical 
research conduct throughout the life cycle of the research study to include review at 
least annually of research activity, review of modifi cations to the research protocol, 
review of deviations from the approved protocol that may increase the risks of harm 
to research subjects or may negatively impact the integrity of the data, and review of 
unanticipated events that might impact human subject safety. 

14.3.1     How Does the Independent Ethics Committee Review 
Process Work? 

 Once an investigator has established an idea for a research proposal, (s)he has to 
consider what approvals will be required from the relevant ethics review committees 
and any other human subjects’ research oversight offi ce(s) prior to initiating any 
research-specifi c activities with human subjects. It is important to distinguish activi-
ties that are considered preparatory to research (i.e. assessing records for feasibility) 
versus actually beginning the research. An easy way to differentiate these activities is 
to consider whether information you derive from your assessment will be solely for 
verifi cation that the site has a good representation of the available population needed 
for enrollment into the research or whether you will be collecting specifi c information 
relating to these potential subjects for inclusion into the research dataset for analysis. 

 When the research proposal has been written, the corresponding EC/IRB appli-
cation materials should be completed. Many offi ces now have electronic submission 
options and templates available to assist the investigators with their submissions. 
Templates are typically very useful because they will incorporate any “required” 
language agreed to by the institution and may provide guidance text for the investi-
gator/research staff to use when completing the document. 

 The overall expectation of risk based on the description of research procedures is 
the catalyst driving the level of review required. Research that is considered to be no 
greater than minimal risk and falls within one of the categories of research that is 
defi ned by the regulations can be reviewed in an expedited manner by an EC/IRB staff 
member, whereas research that is greater than minimal risk and minimal research not 
falling within the defi ned categories eligible for expedited review will require review 
by a convened committee. For example, research questions answered by querying 
existing data sets or bio-repositories are generally considered minimal risk activities, 
in contract to research questions that are answered by comparing two interventions 
would typically be considered greater than minimal risk. Common types of proce-
dures are listed in Table  14.2  together with an example of how their associated level 
of risk and required level of initial review could be defi ned by an ethics committee. 
When compiling the application, the investigator will need to have an idea of what 
level of ethical review their application will initially require. This level of review may 
defi ne the processing time needed by the EC/IRB to complete of the review.
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   The regulations that are used to establish if the criteria for approval are met will 
be determined by the research type and design. If a clinical trial is being conducted 
to evaluate the safety and/or effi cacy of a drug or a device an additional set of 
 international standards, Good Clinical Practice guidelines, will be applied ( See:  
Chap.   21    : Good Clinical Practice). Recognizing that data derived from studies that 
assess investigational agents are used to support approval of those agents, trial data 
must be verifi able and reproducible, and most importantly must have been derived 
from an ethically rigorous protocol. Once the research team has submitted the pro-
posal to the ethics committee the formal review will occur. This process is system-
atic and requires that the proposal is assessed to determine if the criteria for initial 
approval have been met.  

14.3.2     The Initial Criteria for Ethics Approval 

     1.    Risks to subjects are minimized: The ECs evaluate the proposal to ensure that the 
procedures/interventions (a) are consistent with sound research design, (b) do 
not unnecessarily expose subjects to risk, (c) are necessary to achieve the pro-
posed objectives of the research and (d) whenever appropriate, are also required 
for diagnostic or treatment purposes as predicated by the provision of standard 
medical care.   

   2.    Risks to subjects are reasonable in relation to anticipated benefi ts to subjects, 
and the importance of the derived knowledge that may be reasonably expected: 
In evaluating risks and benefi ts, the ECs consider only those risks and benefi ts 
that may result from the research (as distinguished from risks and benefi ts of 
therapies subjects would receive even if not participating in the research).   

   Table 14.2    Examples of research procedures and corresponding levels of risk and initial review   

 Procedure  Risk 
 Level of 
initial review 

 Average time to review (Note: 
Time will vary from site to site) 

 MRI (without contrast)  Minimal  Expedited  1 week 
 Urine collection, nail clipping  Minimal  Expedited  1 week 
 EEG/ECG/ECHO  Minimal  Expedited  1 week 
 Collection/analysis of 
identifi able data 

 Minimal  Expedited  1 week 

 Blood draw ≤ 50 mL in 
 patients  in an 8-week period 
and ≤ 2 sticks per week 

 Minimal  Expedited  1 week 

 X-ray/CT/PET  Potentially 
minimal 

 Convened  4 weeks 

 Skin biopsy  Potentially 
minimal 

 Convened  4 weeks 

 Investigational Intervention 
(drug/device/biologic) 

 Greater than 
minimal 

 Convened  4 weeks 

 Invasive procedures solely for 
research purposes 

 Greater than 
minimal 

 Convened  4 weeks 
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   3.    Selection of subjects is equitable: In making this assessment the ECs evaluate 
whether the subject population that will be invited to participate is ethically 
appropriate for the study question; i.e. that only those subjects who will be nec-
essary to support meeting the objectives of the research will be enrolled and no 
subjects will be denied enrollment. When some or all of the subjects are likely to 
be vulnerable to coercion or undue infl uence, such as children, prisoners, preg-
nant women, mentally disabled persons, or economically or educationally disad-
vantaged persons, additional safeguards must be included in the study to protect 
the rights and welfare of these subjects.   

   4.    Informed consent will be sought from each prospective subject or the subject’s 
legally authorized representative and documented. The ECs evaluate the 
informed consent document to ensure that all required information is included 
and subject autonomy is preserved. The elements of informed consent are 
described in Chap.   16    . The EC also evaluate the proposed consenting process 
recognizing that the existence of an informed consent document, and any other 
related informational materials that are provided for subjects when considering 
participation, must be coupled with an appropriate process for obtaining and 
maintaining voluntary informed consent at the point of enrollment and through-
out the subjects’ participation in the research study.   

   5.    Respect for enrolled subjects: The ECs evaluate whether adequate plans for 
monitoring research subjects and the data collected exist to ensure the safety of 
subjects during the execution of the research in studies that are considered to be 
greater than minimal risk. That the proposed research allows for subject with-
drawal without compromising the rights and welfare of the participant.   

   6.    Privacy and confi dentiality: The ECs assess whether there are adequate provisions 
to protect the privacy of subjects and to maintain the confi dentiality of data. 
In certain types of research, such as retrospective chart reviews and epidemio-
logical studies, the risk of loss of confi dentiality exists. Indeed in many situations 
this may be the only anticipated risk of the research. In these situations, having 
special protections in place for storing and analyzing data mitigates the likelihood 
of a breach of confi dentiality. Additionally, the ECs review the research procedures 
and the consenting process to ensure that the study team is striving to protect the 
privacy of the research participants.      

14.3.3     EC/IRB Decisions 

 The ECs/IRBs may make the following decisions upon initial review of a research 
protocol:
    1.    Approve   
   2.    Withheld approval pending the research team making minor changes and 

clarifi cations to the protocol or consent document   
   3.    Table with requests for signifi cant changes and/or explanations that affect 

human safety   
   4.    Disapprove     
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 Typically, the most common decision is withheld approval. When this decision is 
made the submission is returned to the research team to address the defi ciencies and 
resubmitted to the EC for fi nal approval. Tabled submissions typically require more 
in-depth revision by the research team. The most common defi ciency in tabled pro-
tocols is a failure on the part of the investigator to adequately address two key ethi-
cal principles: Respect for Persons (appropriate targeted population of subjects and 
appropriate process for initial and ongoing consent of subjects) and Respect for 
Enrolled Subjects (an appropriately defi ned research plan that balances risks to ben-
efi ts successfully). The EC staff or the chair of the committee will communicate 
directly with the investigator to facilitate the revisions. When the EC receives the 
revised submission it is returned to the committee for further review. It is unusual to 
disapprove a submission. Most protocols can be revised so that they ultimately meet 
the criteria for approval.  

14.3.4     Review of Protocol Amendments 

 Protocol amendments proposed by investigators and sponsors need approval by all 
ethics committees involved. Some examples of important amendments:
•    Any change to the informed consent form or process  
•   Request for adding ancillary study components  
•   Change in treatment strategy imposed by new laws and regulations, by compelling 

changes in standard of care, or by the discovery of unexpected rates of side-effects  
•   Expansion of sample size, study area, recruitment and enrollment strategy and 

period, frequency of contacts, number or wording of potentially sensitive questions 
and volume of biological samples  

•   Correction of major previously undetected errors in the study protocol  
•   Some amendments entail suspension of enrollment e.g. major changes proposed 

for enrollment procedures. Ethics committees should have a system for rapid 
decision if enrolment needs to be suspended or not     

14.3.5     Protection of Participants After Study Cessation 

 Ethics committees also pay attention to the safety and rights of participants after 
study cessation. For patients, study cessation, whether early or foreseen and for 
whatever reason, may entail safety issues. Firstly, sudden cessation of certain types 
of medication is known to have unwanted, possibly serious, side-effects. To avoid 
this, there should be a transition period of gradual dosage decrease and intensive 
treatment monitoring around the time of cessation of individual follow-up. The par-
ticipants’ health care providers must be involved in this process. Secondly, study 
cessation may imply a return to local standard of care. This switch may again carry 
safety risks that need to be handled appropriately. The ethics committee may decide 
that the best solution includes a period of continued treatment with the test regimen, 
an extra window of study follow-up, or a referral to the patient’s doctor for a gradual 
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monitored change to another regimen. If several ethics committees are involved 
in a study the proposed solutions can differ or even be contradictory among 
committees.  

14.3.6     Collaboration with Other Ethics Committees 

 In multi-country studies and multi-center studies there may be an issue of collabora-
tion between several ethics committees, each linked to a different data collection 
site. It may also arise in single-site studies when there is a local ethics committee in 
the country of data collection and another committee in the country of the investiga-
tor’s institution. The ethics committees involved may take contradictory decisions 
and impede progress with study preparations. Their level of insight into local study 
setting and local standards of care can vary substantially. They may also have widely 
different review times, ranging from a few weeks to a few years. At this stage no 
guidelines seem to be available for collaboration and harmonization but, clearly, 
ethics committees have some responsibility towards each other, if only in respecting 
and recognizing each other’s areas of special competence.   

14.4     The Conflicts of Interest Committee 

 There has been an increasing focus on the potential for confl ict of interest in bio-
medical research, particularly as it relates to the research involving drugs and 
devices. The ethical principles applied to the conduct of research require that the 
semblance of a confl ict, whether perceived or real, is disclosed to the research par-
ticipant prior to them agreeing to participate in the research study. This information 
is included in the informed consent document. The Ethics Committee will review 
the description of the confl ict and will opine on whether the description is adequate. 
In addition, a Confl ict of Interest Committee will conduct a formal assessment of 
the confl ict and will determine whether the confl ict is manageable. A manageable 
confl ict is one where the conduct of the study and the analysis of the data will be 
managed in such a way that the outcome of the study will not be infl uenced by the 
participation of the confl icted member of the research team. The Confl ict of Interest 
Committee will determine the most appropriate management plan to mitigate the 
confl ict. In some centers or institutions the confl ict of interest assessment may be 
incorporated into the ethical review as conducted by the EC/IRB and no separate 
committee will exist.  

14.5     The Role of Investigator and Research Team 

 Throughout this epidemiology book, ethical responsibilities of epidemiologists 
relevant to particular stages of the research process are mentioned alongside the 
scientifi c validity and practical guidelines relevant to the same stages. Chap.   1     
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gave an overview of major responsibilities of epidemiologists and their link with 
the originating fundamental ethical principles and with codes of conduct was 
pointed out. 

 The investigator is held to the highest standards of ethical research conduct. (S)
he is responsible for the conduct of the other members of the research team. Human 
research protection begins here. The investigator’s responsibilities include designing 
the research protocol to include all elements listed in Panels  14.2  and  14.3 ; submitting 
it to all necessary review bodies and securing approval prior to initiating any 
research activities. Following receipt of approval and study initiation the investigator 
is required to:
•    Adhere to the approved protocol, actively monitor the safety of participants and 

adhering to the approved monitoring plan (more details in the next section)  
•   Seek permission from oversight bodies (EC, monitors, etc.) whenever possible 

prior to deviating from the approved protocol  
•   Report to oversight bodies when unanticipated events occur that can impact 

human subject safety  

   Panel 14.2 Elements of a Research Proposal Important for Ethics Review 

•     Background and Rationale  
•   Objectives and Specifi c Aims  
•   Study Design  
•   Study procedures  
•   Study Population (inclusion and exclusion criteria)  
•   Assessments (safety and effi cacy)  
•   Monitoring plan (for more than minimal risk studies)  
•   Ethical justifi cation ( See:  Panel  14.3 )  
•   Finances  
•   Publication plan  
•   References    

    Panel 14.3 Elements for Inclusion in the Ethics Section of a Research Proposal 

•     Relevance, feasibility, and value  
•   Justifi cation for study population and recruitment process  
•   Assessment of risk and benefi t and how risks will be minimized  
•   A description of the informed consent process  
•   How privacy and confi dentiality will be maintained  
•   Plans to protect subject safety  
•   Research oversight    
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•   Modify the study procedures in a timely fashion when necessary to ensure 
ongoing subject safety  

•   Provide an annual progress report to the EC/IRB  
•   Keep subjects informed of any changes to study procedures or safety profile 

inclusive of any changes that may affect their willingness to participate in 
the study  

•   Maintain data integrity and to ensure that all research-related documentation is 
protected, yet accessible for review by monitors and auditors when necessary      

14.6          The Monitoring Plan 

 Oversight of human subject safety is of paramount importance and all clinical trials 
require monitoring. Different levels of monitoring can occur and the degree of mon-
itoring is typically driven by the type of research being conducted. For example, in 
a study that involves the comparison of two ‘standard of care’ treatment regimens, 
it may be appropriate that the investigator her/himself monitors the safety of enrolled 
subjects. In Phase-1 and early Phase-2 clinical trials it may be suffi cient to identify 
a single clinical monitor, independent of the study team, who is willing to evaluate 
ongoing oversight and provide independent safety assessments when requested to 
do so either by the investigator, the sponsor or the review bodies such as the EC/
IRB. This common type of monitoring involves site monitoring visits, which will be 
further discussed in Sect.   21.6    . 

 For more complex Phase-3 clinical trials the monitoring plan may include the 
existence of an independent Data Monitoring Committee, also called a Data and 
Safety Monitoring Board (DSMB). This is a group of individuals with pertinent 
expertise that, on a regular basis, reviews accumulating data from an ongoing 
clinical trial. The DSMB advises regarding the continuing safety of current par-
ticipants and those yet to be recruited, as well as the continuing validity and sci-
entifi c merit of the trial. The committee may decide that the clinical trial (1) may 
continue without interruption, (2) requires modifi cations, (3) be suspended or 
terminated. 

14.6.1     DSMB Composition 

 The selection of DSMB members is extremely important as the DSMB is assigned 
critical responsibilities in protecting the safety and well-being of trial participants. 
Membership should include individuals with expertise in the medical management 
of the condition under study, biostatistics, clinical trial conduct, ethics and clinical 
pharmacology. All members must be devoid of serious confl icts of interest and must 
agree to maintain confi dentiality of the interim results they have reviewed. In some 
circumstances a representative from the intended community of subjects will be 
also be included. A DSMB may have as few as 3 members, but may need to be 
larger when representation of multiple scientifi c and other disciplines or a wider 
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range of perspectives is desirable. For logistical reasons it is sensible to keep the 
DSMB as small as possible, while still having representation of all needed skills and 
experience.  

14.6.2     The DSMB Monitoring Plan 

 All DSMBs should have a well-defi ned monitoring plan that is documented in the 
form of a DSMB charter. The topics that are typically addressed by the DSMB 
include (1) schedule and format for meetings, (2) interim analysis plans and format 
for presentation of data, (3) specifi cation of who will have access to interim data and 
who may attend all or part of DSMB meetings, (4) procedures for assessing confl ict 
of interest of potential DSMB members and (5) the method and timing of providing 
interim reports to the DSMB.   

14.7     The Benefits of a Human Research Protection Program 

 One of the greatest advantages of a functional HRPP is that all components work 
together to optimize the research enterprise and maximize human subject safety. In 
addition, it provides every member the opportunity to understand the contribution and 
role each plays in this endeavor. While the primary responsibility of the HRPP is to 
verify that protection of human subjects is being adequately addressed, a secondary 
goal of the HRPP should is to facilitate the research process. For example, if a clinical 
trial is being conducted at multiple sites, the regulations allow for review of the multi-
site trial by a single IRB. However, the practice at most institutions is to require the 
investigator to seek approval from her institution’s EC/IRB. Not too surprisingly, mul-
tiple reviews leads to multiple opinions and often contradicting decisions. In a effort to 
address, many institutions are beginning to allow alternative and collaborative review 
models that will markedly reduce effort on the part of the research team and time to 
achieve approval from reviewing entities. An additional example of an attempt to reduce 
burden is the creation of a shared electronic submission system, which with appropriate 
alerts facilitates communication between all individuals engaged in the research pro-
cess. Going forward the focus will remain the same – human subjects’ protection, but 
the manner in which it is achieved will continue to become more effi cient. 

  This chapter was the fi nal chapter of Part II: Study Design. The cross-cutting 
topic of Part II was the development of a study protocol, which has important 
implications for planning projects and developing proposals to obtain fi nan-
cial support for them. In Part III: Study Conduct, the overarching topic will be 
the implementation of the study protocol, starting with training and study 
preparations (Chap.     15      ).      
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    Abstract 
   Study implementation starts with the necessary training of personnel, planning 
of logistics, and establishment of infrastructure. At this stage of the study, man-
agement and training skills as well as practical experience become as important 
for the investigators as theoretical scientifi c skills. Literature on this important 
aspect of a study is sparse; therefore, in this chapter we present experience-based 
recommendations for preparing for the implementation of a study.  

15.1        General Management of Training 
and of Study Preparations 

 Identifying members of the research team with strong management skills is one of 
the fi rst tasks to complete when preparing for a study. The principal investigator is in 
a position of leadership and is a natural choice to serve as the primary manager, but 
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other members of the investigative team usually are responsible for managing some 
or most elements of the study. For example, it is common practice for investigators 
with many projects to delegate part of the management responsibilities to a study 
coordinator, a data manager, and other managers. Their level of involvement and 
responsibility may need to increase gradually because these persons may need some 
training themselves before becoming independent in the full range of their charged 
tasks. It is thus up to the investigators to make sure that the delegation of management 
duties is planned appropriately, taking into account that, by the time ‘real’ data are 
collected, all managers need to be fully immersed in the study and in constant 
communication with each other about harmonizing and complementing tasks. Panel 
 15.1  introduces selected terms relevant to this chapter 

 When hiring managers one can, among others, verify their familiarity with some 
of the management goals that need to be kept in mind during the study preparation 
phase. Goals for the study preparation phase are:
•    To identify and document roles and responsibilities of each member of the team  
•   To train all study personnel to perform optimally before start of data collection; 

develop training material and plan suffi cient time for practice in mock runs  
•   To get the full team operational before starting enrollments  

   Panel 15.1 Selected Terms and Concepts Relevant to Training 
and Study Preparations 

     Certifi cate     An offi cial document testifying of an individual’s successful 
completion of a specifi c course or educational program, or of another 
signifi cant educational or professional achievement   

   Fieldwork     Study implementation activities carried out in places away from 
the study coordination center   

   Manager     Member of study personnel responsible for the practical organization 
of a defi ned set of study procedures   

   Manual of operations      See:  Operations manual   
   Measurement standardization     Making sure optimal measurement procedures 

are outlined, trained for and uniformly applied   
   Operations manual     Manual describing in detail the procedures to be followed 

by study personnel during the execution of specifi c research activities   
   Protocol adherence     Implementation of procedures prescribed by the offi cial 

study protocol   
   Standard Operating Procedures  (SOP)    Detailed written instructions to 

achieve uniformity of the performance of a specifi c function   
   Study personnel     All offi cial employees and volunteers involved in research 

study operations   
   Supervisor     Member of study personnel responsible for quality assurance 

and control regarding other personnel’s performance of specifi c tasks   
   Training course     A detailed plan to enhance learning about a specifi c topic 

or task     
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•   To document all regulatory and ethical approvals  
•   To establish reporting and monitoring processes  
•   To inform all stakeholders before starting fi eld operations  
•   To avoid or minimize delays in the start of operations  
•   To hold regular feedback meetings with staff to inform them of the progress of 

the study and discuss challenges  
•   To work with team members to develop acceptable solutions to recruitment chal-

lenges, data integrity problems, data fl ow issues, data management, and reporting    
 Many of the management goals in the study preparation phase are oriented 

towards achieving the target study start date or minimizing delays to starting the 
study. It is therefore helpful to know the most frequent bottlenecks for starting 
studies. In our experience, these include issues related to:
•    Approvals from sponsors and ethics committees  
•   Ensuring support from communities  
•   Development of SOPs  
•   Money transfers  
•   Recruitment of personnel and training  
•   Logistics readiness (including laboratory preparedness)  
•   Printing of questionnaires or readiness of mobile devices for data collection    

 Even after addressing the issues listed above, it may be necessary to do additional 
groundwork before embarking on the main study’s data collection. Examples of 
common preparatory activities include mock runs of all study procedures, ascertaining 
competency of each member of the team in assigned tasks, establishing routines, 
and ascertaining participant and community acceptance. For studies that involve 
biologic materials, compliance with safety precautions through procedural skills, 
use of personal protective gear, appropriate waste disposal and subsequent handling 
of biologic material need confi rmation. 

  Hint 
 Before starting the data collection phase it is useful to have a pre-initiation checklist 
to verify one last time that all is in place, and to put copies of Standard Operating 
Procedures (SOP) at appropriate locations in case procedural questions arise.    

15.2       Selection of Personnel for Enrollment 
and Data Collection 

 The success of data collection starts with well-considered selections of personnel 
that will be involved in enrollment and data collection. No gender, age, or race dis-
crimination are acceptable in hiring study personnel; however, for reasons of study 
acceptability and validity, one may prefer hiring personnel with a particular profi le. 
For example, female interviewers may be preferable in a community-based study on 
sensitive female reproductive health issues. But even in this particular study, there 
may be subjects who prefer to speak with a male interviewer. Personnel profi les 
are complex but can generally be adequately summarized by their professional 
background, social skills, motivations, and skills/talents. 
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15.2.1     Professional Background of Personnel 

 It is usually advantageous to hire persons with experience working on similar types 
of studies, though it is not feasible in most circumstances to assemble a team entirely 
composed of such individuals. In addition, it is preferable to avoid hiring staff that 
are overqualifi ed for the job, as this scenario can decrease motivation, reduce will-
ingness to learn from training, and increase the likelihood of quitting the job during 
the data collection period. Thus, one must strive to balance various professional 
backgrounds. Some additional points to consider include the following:
•    Secondary school level education is usually suffi cient for surveys, questionnaire 

administration, and simple measurements (e.g., anthropometry)  
•   The candidates should have no emigration plans for the study’s data collection period  
•   In community-based studies, interviewers’ knowledge of the study area and living 

in that area may be preferable to being a stranger in an unknown territory. On the 
other hand, participants may prefer to be interviewed by strangers if highly sensitive 
information is being collected     

15.2.2     Desirable Social Skills of Personnel 

 Communication skills are crucial for recruitment and enrollment activities (such as 
conducting the informed consent process) and for collecting data. The capacities to 
empathize, to express an ethical attitude, and (if relevant) to be ‘good with children’ 
are among the determinants of a successfully conducted informed consent process. 
For data collection, good communication skills are always important but especially 
so for conversational interviewing ( See:  Sect.   18.4    ) and for follow-up studies where 
one needs to build good long-term relationships with subjects. 

 Data collectors must speak the local languages except small minority languages 
(though not every data collector must be able to speak every language spoken in the 
area). Non-verbal communication issues also have their importance. They can affect 
the participant-interviewer relationship, especially during face-to-face interviews or 
during any other measurements requiring close proximity. In such cases it is good 
to pay attention to:
•    Culturally appropriate dress code  
•   Personal hygiene  
•   Body language; having a warm voice may help interviewers, particularly during 

telephone interviews  
•   A confi dent demeanor may inspire confi dence in participants, but on overly confi dent 

demeanor can cause some subjects to feel uncomfortable    
 Individuals with good social skills are usually able to succeed in a team-based 

work environment. Indeed, good functioning of the team requires quality interactions 
among its members, but it also requires a clear distribution of tasks and responsibilities. 
Candidates must accept the idea of being supervised and not perceive supervision 
as an act of distrust. Data collectors sometimes have to work in small teams, e.g., in 
anthropometry or for fi eldwork in ‘diffi cult’ locations (rough terrain or unsafe). 
Good personal relationships within such fi eld teams are crucial. 
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  Hint 
 Where fi eld work involves household visits, adequate preparation is needed to 
ensure easy identifi cation of fi eld workers by members of the communities involved 
in the study; this facilitates acceptance and hence response rates.   

15.2.3     Motivation of Prospective Personnel 

 Poor motivation can affect accuracy of recorded data, lead to various forms of dis-
respect towards participants, and reduce work effi ciency. Each of these issues has 
the potential to considerably slow down the research process. Keeping motivation of 
personnel high is certainly a responsibility of the investigator, but baseline motiva-
tion should be present already at the stage of hiring, as shown by:
•    Agreement with proposed remuneration scheme  
•   Interest in contributing to research  
•   Eagerness to learn about the research project  
•   Willingness to be trained    
 Ongoing motivation is enhanced by regular feedback to personnel on progress of 
operations; encouraging discussion on project goals and procedures; sharing project 
milestones with operational staff; and, for studies with a long duration, providing 
appropriate raises and promotions to those who earn them.  

15.2.4     Measurement Skills or Talent 

 Last but not least, one should verify the relevant measurement skills of prospective 
data collection personnel, or at least the talent and aptitude for measuring.
•    Basic writing skills and – for some tasks – mathematical skills are a 

pre-requisite  
•   Specialized types of measurement may require prior experience and qualifi cations 

such as for phlebotomy, ultrasound examinations, and use of GIS equipment  
•   Anthropometry requires good visual acuity (with or without corrective lenses) to 

read values from instrument displays and good fi ne motor skills  
•   Data collection personnel should be inclined to handle instruments and source 

documents carefully  
•   Candidates must have the ability and discipline to meticulously follow detailed 

standard operating procedures. They should not be easily distracted when focusing 
on a task and should not have a tendency for satisfi cing      

15.3     Who Needs Training and Who Should Train? 

15.3.1     Who Needs Training and Why? 

 In any study it is rare to have any persons who do not need any training or retraining 
at some point during the study. 
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    15.3.1.1 Training for Investigators and Study Coordinators 
 The principal investigators and study coordinators are never too experienced, 
skilled, or intelligent to undergo some degree of training for a particular study. This 
training may be relatively informal and consist of an active effort to ensure that 
one’s skillset is in accordance with the highly detailed study protocol. Indeed, in 
clinical research, the study protocol and operations manual may prescribe proce-
dures that are more detailed than usual in a clinical care context. These procedures 
might even differ from one’s traditional approach, thereby necessitating re-training 
for study purposes. This is especially crucial where new types of devices and tools 
will be used. Investigators and study coordinators need to be exceptionally well 
versed in the procedural aspects of a given study if they intend to participate in data 
collection or train other staff.  

    15.3.1.2 Training for Enrollment and Data Collection Personnel 
 For fi eldworkers and other data collection personnel one purpose of training is to be 
well aware of the important aspects of the study protocol. They should also be 
prepared for answering questions from the part of the participants and be trained in 
research ethics. Data collectors further require training to use appropriate commu-
nication skills, to be sensitive when addressing concerns of participants, and to 
know when to consult the supervisor. Finally, they need training on the use of 
devices and other tools / instruments. 

  Hint 
 In studies with long data collection periods there can be considerable turn-over 
of personnel and new recruits tend to undergo less extensive training than the 
initial group. This pitfall may be avoided by training some  reservists  similarly in 
respect of methods, schedules, and certifi cation criteria.   

    15.3.1.3 Data Handling Personnel and Technical Collaborators 
 Personnel involved in data handling, laboratory personnel and technical staff needs 
training to acquire a good understanding of data collection and data handling proce-
dures. They should be especially aware of fl ow of procedures between different 
sections of the study and their role in interacting with other components. An example 
would be the response of the data team to missing data or to observed problems with 
legibility. For data handling personnel and technical staff it is very important to 
acquire or refresh skills in Good Clinical Practice or Good Clinical Laboratory 
Practice, as applicable.   

15.3.2     Who Should Train? 

 Investigators, study coordinator, and managers will usually be the key trainers. 
Investigators and study coordinators may take on a variety of training roles, but 
managers should introduce the trainees to the specifi c domain of activities they 
manage. The head of the research institution or a person delegated by her / him may 

J. Van den Broeck et al.



319

welcome the trainees and introduce them to the institution’s organizational structure 
and infrastructure. Furthermore it is important to put trainees in contact with 
same- level personnel with prior experience but also with fi rst-in-line supervisors. 
Generally, trainees are very curious and sometimes anxious to get to know their 
fellows, their supervisors, and the methods of supervision. External experts may be 
called in for specifi c training, for example for particular measurements or for patient 
counseling, e.g., HIV counseling and testing or psychosocial counseling. Research 
projects may have several capacity strengthening aims incorporated, and these 
require planning so that they happen at appropriate stages of the study and maintain 
staff motivation.   

15.4     Training Modules 

 In our experience it is worthwhile training all study personnel on the following 
topics: 

15.4.1     Introduction to Scientific Research 

 Research is a systematic activity aimed at achieving new knowledge, but not all 
research is scientifi c. Journalists, for instance, can do research but they do not 
(usually) do so in a scientifi c manner. By eliciting, during the training, some 
characteristics of the scientifi c methods used in epidemiology one easily arrives at 
principles and responsibilities that are relevant to all study personnel, such as the 
pursuit of validity, standardization of procedures, documentation of procedures, 
and quality control measures. It may also be useful to clarify basic concepts like 
precision and bias.  

15.4.2     Elementary Training in Research Ethics and Good Clinical 
(Laboratory) Practice 

 Formal research ethics training with certifi cation is a Good Clinical Practice require-
ment for study personnel of clinical trials. However, ethics training is recommended 
for all epidemiologic studies. For English-speaking trainees with access to the 
Internet, this can be done online, for example on the website of The United States 
National Institutes of Health ( 2011 ). Academic institutions may also offer online 
courses and certifi cation. In low- and middle-income countries, it may be a better 
option to design a local research ethics training guide or adapt an existing one 
(particularly for data collectors in fi eld studies). 

 A fi rst notion to convey during this training is that for research to be ethical, it 
should be relevant, feasible, and valid. Further ethics training must focus on such 
basic ethical principles as autonomy, non-malefi cence, benefi cence, and justice/
fairness as well as basic epidemiological principles ( See:  Chap.   1    ). The main 
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concern should be for each trainee to understand how ethical principles translate 
into concrete day-to-day responsibilities, or, viewed from another angle, how there 
is an ethical dimension to all decisions and activities (See: Textbox  15.1 ). For discus-
sions of these ethical and epidemiologic principles, we refer readers to Chaps.   1    ,   16    , 
and   21    .   

15.4.3       Training on Study Protocol, Study Organization, 
and General Expectations 

 All members of the study team must know important aspects of study protocol, organiza-
tion and context, so that all are capable of explaining the study to interested parties. To 
achieve this, the following aspects commonly need to be addressed during training:
•    There may be a need to give an introduction about the health-related issue 

investigated in the study.  

   Textbox 15.1 The Importance of an Ethical Attitude 

 Knowledge of ethical principles and the following of guidelines that are 
derived from them are insuffi cient to guarantee the ethical conduct of research. 
The other pillar of ethical research is the expression of an  ethical attitude . 

 The need for ethical attitude implies, fi rst of all, that study personnel 
should be empowered to use internalized ethical principles as a guide to 
making decisions in diffi cult or  unforeseen situations  for which no clear 
guidelines exist. This should be accompanied by a keen sense of when it is 
necessary to consult with a study coordinator, physician, or principle investi-
gator before taking action. Case scenarios can be useful for learning about 
management of dilemmas and other unforeseen crisis situations. 

 Secondly, an ethical attitude is often necessary for  good relationships  
among members of the study team. Responsibilities to colleagues and col-
laborators, to the community at large, and to sponsors and other stakeholders 
are sub-domains of research ethics that have remained relatively under- 
developed in comparison with the sub-domain of research participant protec-
tion. It can be devastating for individual researchers, members of study teams, 
and/or entire studies when some persons are treated unethically. This goes for 
hierarchical relationships within the study as well as for how personnel oper-
ating within the same hierarchical level treat each other. Each member of 
study personnel should have regular chances to express concerns, make sug-
gestions, and be taken seriously. An open discussion can be held with the 
trainees on how this will be done in the upcoming study. As far as relation-
ships among collaborating scientists are concerned, respect for colleagues 
includes treating them as scientists, e.g., responding in a scholarly way to 
their scholarly concerns about a scientifi c issue. 
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•   Information should be given about the community and setting in which the 
research will take place. The study’s organizational structure with the main lines 
of responsibility and reporting must be clear. It is useful to have an organiza-
tional chart clarifying this.  

•   It is necessary to outline fi eld operations and quality assurance and control activ-
ities. The concept of measurement standardization must be conveyed to all. 
Sometimes studies employ treatment regimens that differ slightly from national 
or regional standards of care. For trials this is true almost by defi nition. It may 
then be diffi cult to convince data collection personnel, health workers and some-
times participants that a particular regimen should be adhered to. Field staff 
should be committed to the regimen or regimens used in the study and should be 
empowered to deal with questions and objections.  

•   One should outline to all personnel the points of view and expectations of the 
different stakeholders of the study regarding projected achievements of the proj-
ect and general performance standards of each type of study personnel.     

15.4.4     Job-Specific and Task-Specific Training Modules 

 Crucial for smooth study operations is that everybody should know exactly what 
is expected of them. This should be refl ected in unambiguous job descriptions, 
task lists, and SOP. Tasks that require intensive technical training usually include 
tasks related to bio-measurements ( See:  Chap.   10    ), questionnaire administration 
( See:  Chap.   18    ), and data handling ( See:  Chap.   12    ). Training should cover but 
not be restricted to technical acts and procedures; training should also deal with 
the principles behind the guidelines and all other aspects that normally form part 
of an operations manual, such as timing and scheduling, getting the equipment 
ready, informing and preparing participants, personal preparation for the task, 
recording of information, limits of responsibility, reporting of diffi culties, risk 
management, communication with stakeholders, and general administration. 
During these training elements, objective job-specifi c performance standards must 
be made clear to all. 

  Hint 
 Consider training personnel for more skills than just for those that will be needed 
for their routine tasks. People generally like to broaden the range of their skill 
set, and any study can use reservists for unforeseen circumstances.  

 Staff who are in direct contact with study participants may occasionally encoun-
ter situations where there is a need to refer participants to public services. It is 
important to provide some training for this task. An example is participants who 
need referral for co-existing conditions to medical or social services. The identifi ca-
tion, referral process and anticipated handling by the participant and services need 
to be clarifi ed. Simulated case scenarios may be used to establish an acceptable 
referral procedure.  
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15.4.5     Training Format 

 General training is best organized as a group event during which new personnel 
get the opportunity to talk with each other and with investigators, study coordinators, 
managers, supervisors, and perhaps stakeholders. Job-specifi c or task-specifi c 
training modules are usually best organized in stages. The fi rst stage of a session 
can again be a group event, but at some point individual hands-on training 
may need to be provided, followed by a period of practice under supervision. 
Sometimes formal testing of skills with subsequent certifi cations of aptitude is 
appropriate (such certifi cates can be useful motivators during the training sessions). 
For the format of task-specifi c training, consider the recommendations listed in 
Panel  15.2 .   

15.5        Infrastructure and Logistics 

 When establishing the infrastructural and logistical environment of a study, the 
investigator may be confronted with some diffi cult choices and be forced to make 
some compromises. Consider, for instance, the issues of sharing, borrowing, and 
using materials originally intended for purposes other than research (e.g., personal 
vehicles, cellular phones, computers, desk space, etc.) On the one hand, use of these 
materials could lead to cost savings and streamlining of activities. On the other 
hand, the quality of already used materials might not be adequate, a scenario that 
could endanger study quality. The safer approach is to try and develop a study envi-
ronment that is rather autonomous with strict regulations about uses of dedicated 
equipment and space. 

   Panel 15.2 Considerations for the Format of Task-Specific Training Modules 

•     Use the operations manual as one of the training tools  
•   Discuss and practice the correct implementation of SOPs repeatedly  
•   Consider various training aids, e.g., a video showing a correct measurement 

act, online training modules, group discussions, etc.  
•   Always incorporate individually supervised training of technical acts  
•   Leave opportunity for discussion and for improved local adaptation of 

operational procedures  
•   Document each individual’s level of skills before the start of data collection, 

preferably using intra-observer accuracy and reproducibility statistics 
( See:  Chap.   11    )  

•   Document team-level performance before start of data collection, preferably 
using group accuracy and reliability statistics ( See:  Chap.   11    )  

•   Provide formal certifi cation of the successful completion of training    
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15.5.1     Space Requirements and Office Equipment 

 ‘Borrowing’ research space from service sites such as schools, hospitals, and 
work environments necessitates respect for scheduling systems and etiquette 
prevailing in that environment. This can be accommodated through formal agree-
ments or memoranda of understanding, with the ultimate goal being the establish-
ment of an environment that is conducive to the activities of all parties. In clinical 
care settings, overlap of research with routine clinical activities may become nec-
essary, such as overlap in the use of routine waste disposal systems. In school 
settings, especially those with limited space available for researchers, special con-
sideration needs to be given to the appropriateness of available space for the 
nature of research activities, scheduling around exams, sports events, vacations, 
and class schedules. Irrespective of whether the borrowed space is in a hospital, 
industrial setting, or school, the expectation generally is to limit disruption of 
routine non-research activities at the study site. These logistics can be tested in 
the study’s preparatory phase. 

 Logistics of space allocation need careful consideration. A useful example is 
that of studies in which investigators are conducting interviews that result in 
sharing sensitive personal information. One should aim to achieve an operational 
set-up that not only allows the interview to take place in adequate privacy but 
also allows the participant some ‘personal space’ away from a busy waiting 
room. It is also important to prevent participants being identifi able by other par-
ticipants or community members as having a stigmatizing condition. This can 
easily occur if fi eld-workers known to be involved in a study that only enrolls 
HIV-infected participants are seen making regular visits to specifi c homes in the 
community. Figure  15.1  is a fl oor plan of a research site organized with the inten-
tion to avoid stigma.

   In addition to the types of space shown in Fig.  15.1 , a study may also need:
•    Desk space for study personnel, with computers (if necessary) and offi ce supplies  
•   Fridge and freezer space for samples (must be separate from fridge and freezer 

space for foods and beverages)  
•   Pharmacy space with secure drug cabinets and refrigerators with back-up power  
•   Source document archiving space with secure fi ling cabinets    

 During study preparations, the optimal functioning of each study space must be 
established. This optimization process usually begins with strategizing the use of 
available space so that the participants are ensured privacy during interviews, the 
data team has ready access to instruments, and the fi ling systems allow easy retrieval 
of source documents. If biologic samples, medications, or disposable test kits are 
stored, responsibilities for handling inventories and expiration dates are described 
in an SOP and assigned to a qualifi ed staff member. 

 In Chap.   12     advice can be found on the choice of hardware and software. All 
hardware and software should be available and tested during the preparatory 
phase. Ongoing availability and licenses should be confi rmed for the duration of the 
study. If researchers are using open-source software, then support systems should 
be identifi ed prior to the initiation of use.  
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15.5.2     Supply Systems, Local Transport, and Communication 

 Transport and communication solutions are especially important when recruitment, 
enrollment, interventions, or data collection happen in several geographically distant 
places. Persons and supplies must reach their destinations effi ciently and in good 
condition. In turn, source documents and samples need return to the study coordinating 
center or laboratories promptly to ensure data integrity. This indicates a need for 
good coordination between fi eld logistics and data management teams. 

    15.5.2.1 Supply Systems and Transportation 
 Supply systems tend to become more effi cient when the number of intermittent steps 
is decreased and when systems for various items or activities are combined and har-
monized, perhaps even with other studies or with existing health care supply sys-
tems. It is important to preserve and monitor the good condition of all the moving 
persons and objects, e.g., by ensuring an optimal temperature during transport. 
Likewise, storage of items must be under conditions that preserve their integrity and 
any undue exposures and expiration must be monitored. These guidelines may trans-
late, for instance, into setting up fridge and freezer temperature tracking systems, 
establishing effi cient stocks and fl ow management systems, and putting in place vari-
ous safety regulations and contingency plans. One might also consider the purchase 
of a suffi ciently powered electricity generator and a CO 

2
  backup system for freezers 

if biological samples need to be transported or stored at a certain temperature. 
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  Fig. 15.1    Floor plan of research site. Private entrances are denoted by || and there is separate exit 
from the HIV testing room directly to the garden, bypassing the common waiting area. These 
design elements help to protect the privacy of subjects       
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 Depending on pre-existing means of transport and on considerations of cost and 
timing, budgeted solutions for transport may include subsidized personal transport; 
the use of public transport; and / or the purchase of vehicles, motorbikes, or bicycles 
for the project. Large research institutions may even establish their own car rental 
system and charge individual research projects for the use of vehicles, fuel, and 
maintenance services. 

  Hint 
 Study preparations should include administrative procedures for maintaining 
transport logbooks, procurement procedures, and a database of suppliers.   

    15.5.2.2 Communications 
 Diffi culties during fi eld operations require fast communication possibilities. 
Depending on the existence of wireless networks or other communication systems 
and considerations of cost and timing, budgeted solutions for fast communication 
may include subsidized air time for personal cellular telephones, use of public tele-
phones, purchase of cellular phones and air time for the project, Internet-based 
communication, etc. Such communication systems are obviously in addition to the 
much-needed opportunities for face-to-face communication and regular meetings. 
It is important to realize that communication should not only be about what goes 
wrong but also about what goes well.   

15.5.3     Printing 

 Printing of forms is done in at least two batches: one small batch for piloting, followed 
by one or more larger batches of documents that were amended based on the pilot. 
Expedited review by ethical oversight committees may be required for substantial 
changes made to printed documents in the piloting phase. Printing may be needed of:
•    Questionnaire forms, including adverse events forms  
•   Standard operating procedures  
•   Manuals of operation  
•   Study information sheets  
•   Informed consent forms and participant statement forms  
•   (Barcode) labeling system of samples    

 Note that, even if data collection is designed to be paperless and based on mobile 
devices, a paper back-up system may be desirable, especially in resource-poor areas 
with unstable Internet connectivity or erratic electricity supply. Depending on the 
available printing capacity within the project, study coordinators may decide to out-
source printing jobs or use in-house production. Especially with regular in-house 
printing of data collection forms, responsibility should be assigned to ensure that 
correct form versions are printed, and that formatting is maintained. 

 For data collection forms in clinical trials, the choice may go to a write-through type 
of form (e.g., carbon copies) that consists of duplicate or triplicate sheets. Commonly, 
one sheet is then needed for the patient fi le and one for data processing and archiving.  
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15.5.4     Laboratory Readiness and Technical Collaborations 

 In some clinical studies, consideration needs to go to the question if one should set 
up a special new research laboratory or use an existing one. If an existing laboratory 
needs to be contracted, the question frequently is: should it be a local laboratory that 
will perhaps need some capacity building to deal with the specifi c analyses for the 
study or, alternatively, one that has very high standards but is located farther away? 
There may also be a need for one or more small transportable laboratories to process 
samples before transport. In these matters local capacity building is often preferable 
but sometimes diffi cult. In resource-poor areas especially, capacities of local labo-
ratories may be already stretched because of purely clinical work. Using an existing 
lab may still require extra training, quality control, and bio-safety precautions. 
Thus, there may be instances where local capacity building would become an unaf-
fordable cost for a single research project. Laboratory capacity building can take 
considerable time and effort and is a responsibility that may transcend the individ-
ual investigator, as it also concerns institutions and health authorities. There are 
examples (Wertheim et al.  2010 ) of networks of hospitals and research institutions 
that have tried to enhance laboratory capacity in a region. Investigators and sponsors 
may wish to check the possibility of initiating or joining such initiatives.   

15.6     Preparatory Information Gathering 

 In prospective studies, before starting enrollment and data collection, there is com-
monly a need to gather various types of information for the purpose of fi ne-tuning 
methods and procedures. The specifi c purposes of preparatory information collec-
tion may include those listed in Panel  15.3 : 

   Panel 15.3 Possible Purposes of Preparatory Data Collection in Prospective Studies 

•     To construct an up-to-date sampling frame  
•   To learn more about the nature and optimal measurement of relevant attributes  
•   To fi ne-tune the sample size and power calculations and the analysis plan 

via estimation of frequency of modifi ers, confounders, and population size  
•   To develop a new measurement tool or adapt a measurement scale to a 

local context  
•   To fi ne-tune questionnaires, user’s manuals, and informed consent form  
•   To optimize effi ciency in logistics and quality control  
•   To learn about the required level of liaison and awareness among stakeholders 

and how best to achieve this  
•   To get an idea about likely enrolment rates, potential for follow-up, likely 

frequency of particular reasons for refusal, and overall feasibility of a study    
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 Methods employed for the creation of this preparatory information may include:
•    Rapid assessment procedures  
•   A census  
•   A preparatory survey, perhaps combined with a census  
•   A measurement scale development exercise  
•   Methods-oriented studies  
•   Simple pilot test runs  
•   Focus group discussions and other qualitative research methods    

 Rapid assessments and preparatory surveys are especially relevant for large 
population- based studies. They can provide useful information, among others, for:
•    Establishing a statistical sampling frame  
•   Documenting characteristics of the target population  
•   Describing the distribution matrix of exposures, effect modifi ers, and confounders 

in view of refi ning object design and to inform study size planning  
•   Announcing the upcoming main study (a role in recruitment)  
•   Assessing perceptions around the upcoming main study    

 The aim of rapid assessments can also be the defi nition and description of the 
exposures if these are unclear from the outset. This is often the case in fact-fi nding 
investigations in occupational and environmental epidemiology. Thereby it is often 
useful to defi ne exposure zones within the work or living environment and use these 
as strata within which study participants will be sampled. This exercise has been 
called ‘zoning’ (Corn and Esmen  1979 ; Corn  1985 ). The advantage of this approach 
is that one can maximize representations of persons from extreme exposure zones 
in the study sample. White et al. ( 2008 ) provided a good summary of the defi nition 
and use of exposure zones. 

 Sometimes rapid assessments aim at fi nding correction factors or equations for 
exposure measurement. For instance, when past occupational exposure to an agent 
must be estimated by current exposure, a small study may yield correction factors 
that take into account changes in production processes, physical characteristics of 
agents, protective devices, and output of the product of interest (Esmen  1979 ; 
Cherrie et al.  1987 ; White et al.  2008 ). 

 The preparation of an epidemiological study may require an extensive prepara-
tory sub-study to develop or optimize a particular measurement tool. This will often 
be needed when one or more of the attributes in the occurrence relation cannot be 
measured directly but only indirectly via a series of questions in a questions-based 
measurement tool. This is particularly frequent with attributes that are mental- 
behavioral characteristics. The development and adaptation of questions-based 
measurement tools is discussed in Chap.   10     (The Measurement Plan).   

15.7       Pilot Test Runs 

 Subsequent to all preparatory activities already described, and prior to embarking on 
formal data collection, a pilot test run is conducted. During this pilot all procedures are 
conducted to mimic the real study’s situation and context. After such a pilot run, all 
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study teams and investigators meet to share feedback and strengthen communication. 
During such feedback, compliance with protocol and standard operating procedures 
are confi rmed or adapted; completeness of data and range checks verifi ed; and 
electronic data entry systems tested. The latter may include documenting the time 
required for and the accuracy of transcription. All steps, from data collection to data 
export, should be clearly tracked and sources of errors documented in a study diary 
or logbook. 

 Pilot testing the database is coupled with piloting the process of data entry. 
Associated with the latter are documenting the time required for and accuracy of 
transcription, as well as piloting the data verifi cation procedures. The lag between data 
collection and electronic database update is established and taken into account when 
designing monitoring plans. Backup routines are tested during study preparation. 
This includes testing whether the back-up routine is successful with multiple data 
entry personnel working in parallel. Strict organization of current and archived data 
folders is needed to ensure data integrity. Data export routines should be assessed for 
syntax errors or ‘bugs’. This is the best opportunity to amend these errors.      

 In this chapter we started our discussion of various aspects of study imple-
mentation. Here, we considered the appropriate selection and training of per-
sonnel and the establishment of adequate logistics and a functional 
infrastructure. When these elements have been achieved and stakeholders are 
informed about the study team’s readiness to proceed, the actual enrollment 
process can go ahead. This enrollment process is dependent on an informed 
consent process, the topic of the next chapter. 
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    Abstract 
   Informed consent is the process of fully informing potential study subjects about 
the study and obtaining their voluntary agreement to participate or (if already 
enrolled in the study) to continue their participation. Informed consent is an 
ongoing process and a key responsibility of researchers using information or 
biological samples provided by human subjects. Ethics committees play vital 
roles in ensuring that necessary steps are taken to fulfi ll the ethical obligations 
linked to the informed consent process, but even with the best intentions, the 
informed consent process can be mismanaged. The chapter outlines the principles 
and the stages of the informed consent process, and it highlights issues to consider 
when managing and executing the informed consent process.  
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16.1       Informed Consent as a Key Responsibility 
in Human Subjects Research 

 Whenever a member of an investigative team approaches a candidate research 
participant, there is informational asymmetry that puts the candidate in a vulnerable 
position. The staff member knows the reasons for the study, the procedures that will 
take place should the potential subject enroll, and the risks and benefi ts associated 
with those procedures. The potential subject, on the other hand, may be assumed to 
have no prior knowledge of the study or its basis. Consequently, that individual can-
not make a rational, un-coerced decision to participate without being informed 
about the study and its potential risks and benefi ts. The informed consent process 
is specifi cally intended to ensure that potential subjects are fully informed about 
the study so that they can make an autonomous, voluntary decision about whether 
or not to participate, a decision that must be made without any coercion. Indeed, it 
is a key responsibility of research staff to obtain informed voluntary consent 
(also referred to as informed consent) from all subjects prior to enrollment and to 
continually confi rm informed consent as a study progresses. 

 The principles of informed voluntary consent are contained within the very 
meanings of the three words informed, voluntary, and consent (IVC):
•     Informed:  Full disclosure of pertinent study information is an absolute requirement  
•    Voluntary:  The decision to participate should be made freely and without 

 coercion or undue infl uence  
•    Consent:  Agreement to participate must be given prior to study participation and 

should be clearly indicated orally or in writing   
Terms and concepts relevant to the informed consent process are provided in 

Panel  16.1.    

   Panel 16.1 Selected Terms and Concepts Relevant to the Informed 
Consent Process 

     Assent     Documented agreement to participation after thoughtful consideration 
by a subject not in a position to give informed consent legally   

   Coercion     Intentional threat of harm, explicit or implicit, to obtain agreement   
   Community consent     General approval from a community through its 

leader(s) that an activity may proceed in that community. This does not 
replace individual consent but may be a necessary prelude to obtaining 
individual consent #    

   Enrolment     (1) (- procedure) Interactive process composed of sampling, 
eligibility screening and informed voluntary consent, intended to lead to 
offi cial study participation (2) (- act) Offi cial inclusion as participant   

   Harms     Foreseen or unforeseen effects of a research procedure or of research 
participation experienced by the participant as burdensome or negatively 
affecting her/his health, wellbeing or (perceived) position in her/his com-
munity or the wider society   

(continued)
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16.1.1     Historical Glance at Informed Voluntary Consent 

 The 2009 edition of the International Ethical Guidelines for Epidemiological 
Studies, prepared by the Council for International Organizations of Medical 
Sciences in collaboration with the World Health Organization, defi nes Informed 
Voluntary Consent as:

  …a decision to participate in research, taken by a competent individual who has received 
the necessary information; who has adequately understood the information, has arrived at 
a decision without having been subjected to coercion, undue infl uence or inducement, 
or intimidation.  

   ICF      See:  Informed consent form   
   Impartial witness     An independent person who attends the informed consent 

process, reads the informed consent form to the potential study participant 
and may co-sign the participant’s statement   

   Informed consent form     Written information in lay terms, read to, discussed 
with and given to, potential study subjects to enable them to voluntarily 
decide about study participation   

   Informed consent process     Process of fully informing potential study subjects 
about the study and of obtaining their voluntary agreement to participate or 
to continue participation   

   Participant’s statement     Statement, signed by study participant or legal 
representative and usually co-signed by enroller and witness, that all study 
information was given and understood and that participation is voluntary   

   Research ethics     Discipline providing ethical principles and guidelines for 
the design, conduct, analysis and dissemination of research involving 
human subjects   

   Therapeutic misconception     Tendency of prospective or actual research 
participants to assume that participation in a research study will provide 
them with more health benefi ts than non-participation   

   Undue infl uence     An offer, explicit or implicit, of an excessive, unwarranted 
or improper reward in order to obtain agreement for study participation   

   Vulnerable subject     Potential research subject whose willingness to partici-
pate may be unduly infl uenced by expectations of benefi ts, fear of retalia-
tion, or lack of capacity to engage in a comprehensive informed consent 
process   

   Yes-doctor syndrome     A pattern of behavior often observed in the study 
enrollment process where potential research participants tend to relinquish 
their autonomy before an authoritative fi gure, such as a doctor   

    # Defi nition contributed by Dr. M. Chhagan. 

Panel 16.1 (continued)
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  There was a time when IVC was not among the primary considerations in research 
involving human subjects. In fact, it was not until 1948 that the fi rst international 
document addressing voluntary participation and informed consent was produced, in 
the form of the Nuremberg Code. The code, which states that “the voluntary consent 
of the human subject is absolutely essential” in experiments, was established 
following the Doctors’ Trial in Nuremberg, Germany, 1946–1947. In this trial, 
German doctors and administrators were charged for conducting medical experi-
ments (which often resulted in death or disability) on concentration camp prisoners 
without their consent. However, even though the Nuremberg Code emphasized the 
principle of IVC worldwide, it took time for research practices to change. For example, 
the Tuskegee Study of Untreated Syphilis (Textbox  16.1 ) employed intentionally 
misleading practices to obtain and retain participants (White  2000 ). 

 Since then, IVC has assumed great importance in epidemiology. This is evi-
denced by its inclusion in all the major human subject research guidelines, including 
the original (1964) and successive versions of the  Declaration of Helsinki     (World 
Medical Association  2010 ) and the  Belmont Report  (National Commission for the 
Protection of Human Subjects of Biomedical and Behavioral Research). The latter 
guideline came about as a result of public outcry against the aforementioned 
Tuskegee Study, leading to the National Research Act of 1974 in the United States. 
The main thrust of the Belmont report is the identifi cation of some key ethical prin-
ciples that should govern the practice and regulation of research involving human 
participants. One such principle –  respect for persons  – captures the essence of IVC 
and calls for the recognition of persons as autonomous agents.   

   Textbox 16.1 The Tuskegee Study of Untreated Syphilis 

 In 1932, the United States Public Health Service and the Tuskegee Institute 
recruited 399 African American men with untreated latent syphilis and 201 
healthy controls to a study on the natural course of untreated syphilis. The 
study was conducted in Tuskegee, Alabama, and has become infamous due to 
a number of ethical violations. Among the most problematic was the  failure 
to obtain informed voluntary consent  from the participants. The men were 
not informed about the real aims of the study and were told that they would 
receive free medical examinations and treatment for “bad blood,” a non- 
specifi c colloquial term for many disorders or diseases such as syphilis, ane-
mia, and fatigue. Those with syphilis were not told of their diagnoses or 
offered proper treatment, even after penicillin was discovered in the mid 
1940s to be effective in treating syphilis. Instead, men were given placebo 
injections and minerals, thereby allowing the disease to progress beyond 
latency to tertiary disease and death. In addition, participants were not given 
an option to quit the study, an element of the study that also constitutes an 
 informed consent failure . The study lasted for 40 years, and was not stopped 
until a newspaper article about the study caused public protests. 
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16.2       The Informed Consent Process 

 The informed consent process may vary among studies with respect to duration and 
exact procedures. Possible reasons for variation include:
•    The nature of the study (e.g., questionnaire only versus taking biopsies)  
•   Candidate research participants (e.g., literacy levels and cultural norms)  
•   Enrollment setting (e.g., crowded clinic versus private home)    

 Despite variations in modalities, a well-managed informed consent process 
should, at a minimum, have the following stages (also  See:  Fig.  16.1 ):

    Stage-1: Presentation of complete study information  
  This information should be adapted to the capacities of the candidate research 
participant. The candidate should be made aware of ( See also:  Sect.16.3):
•    The purpose of the study  
•   The reason (s)he is being invited to participate  
•   The nature and frequency of the procedures that will be undertaken  
•   The known risks and benefi ts associated with her/his participation  
•   The alternatives to participation  
•   Any compensation  
•   Conditions that might accompany participation  
•   How the collected information will be stored and used, including who will have 

access to the information  
•   Individuals who can be contacted for further study information  
•   General research advice       
 This constitutes a lot of information, so there is a clear need for persons conducting 
the informed consent process (the enrollers) to have an excellent knowledge and 
understanding of all aspects of the study and to have good communication skills. 
Training of enrollers is highly recommended, and often required, to achieve this.

   Stage-2: Discussion  
  There should be many opportunities for the candidate research participant to ask 
questions. As with the previous step, the discussion should be held at a level that is 
comprehendible to the potential participant, and the enroller should be knowledgeable 
about the study proposal. The process should be conducted in strict privacy.   

   Stage-3: Assessment of understanding  
  Assessing the candidate participant’s understanding of the study details is often 
based on perceptions during the discussion but can also be based on explicit ques-
tions or more formal assessments when this is acceptable.   

   Stage-4: Time to refl ect and discuss with signifi cant others  
  After the enroller has ensured that all the relevant information is adequately under-
stood, the candidate participants must be allowed to make their own balance of the 
 pros  and  cons  of participation. They should be clearly advised that they are free to 
choose whether or not to participate and that once they participate they are free to quit 
at any time without any repercussions. It is preferable that the informed consent 
process not be conducted by a doctor, direct care-giver, or any other person who is 
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(or is perceived to be) at an unequal power level with the candidate. The doctor or 
investigator should, however, be available for clarifi cation if necessary. Panel  16.2  
lists factors that are commonly perceived as pros or cons of participation by candi-
date research participants. 

 Researchers are generally required to prepare an informed consent form containing 
all relevant study information ( See:  Sect.  16.3 ). It is important that the candidate 
participant reads this form carefully (with or without assistance, as the case warrants). 

Presentation
of complete

study
information

Discussion
Assessment of
understanding

Consideration
of whether to

participate
Decision

Enroller-
mediated 
processes 

Enroller-
independent 
processes

Yes No

No further
contact

Confirmation
of decision to

participate

Expression of
gratitude and

promise of
feedback on
study results

Repeat cycle 
as necessary 
or appropriate

  Fig. 16.1    The steps of a typical informed consent process. The informed consent process usually 
begins with a series of enroller-mediated steps, the fi rst of which is the presentation of complete 
study information. This explanation should be adapted to the capacities of candidate research 
participants and be appropriate for the study and setting. This presentation naturally leads to a 
discussion between the enroller and the candidate participant. The candidate participant should be 
given ample opportunities to ask questions and seek clarifi cations. During and after this discussion, 
the enroller will assess the candidate participant’s understanding using multiple strategies (some 
validated, some creative). Based on the information conveyed to the candidate participant, that 
individual will contemplate whether or not to participate. This is the fi rst enroller-independent 
step, and it usually involves self-refl ection and discussions with friends and family. Ultimately, the 
participant makes a decision about whether or not to enroll in the study and communicates that 
decision to the enroller. If the decision is “No,” then there should be no further research-related 
contact. If the decision is “Yes,” then the enroller must confi rm that decision by obtaining the 
necessary information and signatures on the informed consent form (or by other actions, e.g., by 
clicking “Agree to Participate” button in an online form). The enroller should express their 
gratitude and promise to provide feedback regarding study results. If necessary or appropriate, this 
entire process may need to be repeated on multiple occasions. Common reasons for repeating this 
process are follow-up studies, cases of suspected misunderstanding, changes in health status of the 
participant, and/or availability of new information       
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Enrollers should accept that the time required to do this may vary among individuals. 
As candidates read, discussions between the enroller and the candidate participant are 
encouraged and should be facilitated by the setting. After reading the informed consent 
form, ideally the candidate participant should be allowed as much time as they need 
to make a decision. Ideally, this can even include going home to discuss participation 
with family members and/or friends. In practice, however, the latter is not practiced in 
many studies, especially in surveys in which researchers do same-day data collection. 
Nevertheless, in clinical studies involving interventions, invasive biological sampling, 
or overnight hospital stays, allowing enough time for decision-making is of the utmost 
importance. Irrespective of the study details, candidate participants should never be 
made to feel as though they need to make a decision hurriedly.   

   Stage-5: Communication of the decision made  
  After all due considerations are made, the candidate participant will usually arrive 
at a decision and communicate it to the enroller. The enroller must accept this deci-
sion as fi nal. In the case of a decision of non-participation, the enroller should not 
make further efforts to infl uence the decision, and all research-related contact should 
stop here. The remaining steps pertain only to a decision to participate.   

   Stage-6: Offi cial confi rmation of decision to participate  
  Confi rmation of a decision to participate is normally accomplished by having the 
participant sign a statement. Confi rmation of agreement to participate is considered 
‘giving consent.’ 

 The signature of the individual or that of her/his legal guardian is generally 
required, though there are situations in which other indications of consent are 
acceptable. Thumbprints can be used in cases where persons are unable to sign. 
In some cases verbal consent is acceptable. In other cases completion of the ques-
tionnaire (for example a mailed questionnaire) is considered  implied consent  where 
a person’s follow-up actions demonstrate agreement to participate in the absence of 

   Panel 16.2 Factors Commonly Perceived as Pros or Cons of Participation 
by Candidate Research Participants 

     Pros: 
•    Making a contribution to society  
•   Liking of any foreseen benefi ts and incentives  
•   Social and entertainment aspects of participation  
•   Opportunity to please the doctor, superiors, or group     

   Cons: 
•    Costs of time, effort, mental-emotional commitment, money  
•   Possible harms to health, well-being, privacy, and confi dentiality  
•   Fear that participation will bring displeasure to one’s spouse, family, 

employer/colleagues, or friends       
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a signed document. However, questions are often raised regarding this approach 
since there is no easy way of assessing that such an implied consent is truly 
informed. In the case of minors,  assent  is also usually sought after receiving consent 
from the parent/guardian ( See:  Sect.  16.4.3 ). 

 If a study includes both interviews and collection of biological samples for tests 
that give results of a sensitive nature, such as testing for HIV and sexually transmit-
ted infections, separate informed consent must be obtained from the participants for 
each test ( See:  UNAIDS/WHO Working Group on Global HIV/AIDS and STI 
Surveillance: Guidelines for measuring HIV Prevalence in population-based sur-
veys  2005 ). If there is an intention to provide feedback on the results of such tests 
to each individual participant, it is also necessary to obtain permission for this action 
because some participants may not wish to receive such information. As part of the 
IVC process, it should also be made clear if some test results are mandatorily 
reported to government agencies.   

   Stage-7: Issuing renewed information and discussions during follow-up  
  The informed consent process extends beyond initial enrollment. This is usually 
apparent in studies that are ongoing for prolonged periods, involve follow up visits, 
and/or have lengthy data collection periods. In these cases new information some-
times becomes available, either directly from the particular study (through interim 
results) or from other non-study related activities in that particular area, which puts 
the study in a new light. It is important that this information is communicated to 
participants, as this is essential for ongoing consent to be truly informed. One practi-
cal way of providing new information is issuing timely study newsletters to partici-
pants and their families. Renewed consent may be required; consultation with the 
ethics advisory boards may help to determine whether renewed consent is required. 

 In the event that a participant decides to withdraw from a study, that decision 
should be fully respected. However, if the researcher is certain that the decision was 
made because of a misunderstanding it may be acceptable to attempt to clarify 
issues so that an informed decision is made. 

 In situations where the participant’s health status changes over time, thus making the 
conditions and potential study effects different from those under which (s)he initially 
had agreed to participate, it may be necessary to provide such persons with additional 
information. Instances in which a person’s understanding of study information fades 
or changes over time may also arise. It is generally expected that under these 
 circumstances researchers should repeat the presentation of relevant information.   

   Stage-8: Expressions of thanks and feedback  
  This can be done after each study contact. Participants should be promised feed-
back on study results, and this promise should be honored.      

16.3       The Informed Consent Form 

 As mentioned above, in addition to dialogue between the enroller and the candidate 
participant, information is usually presented in writing in the informed consent form. 
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16.3.1    Recommended Content of an Informed Consent Form 

 Panel  16.3  is a checklist of desirable elements of an informed consent form. 
 It is common practice to write the informed consent form in a conversational 

mode, as if the researcher were speaking directly to the candidate participant. 
Researchers should be careful to use terminology appropriate for the candidate 
participants, defaulting to simple language, avoiding technical terms, and including 
relevant explanations as far as possible and necessary. In studies with lengthy and 
complicated procedures, researchers often include a shortened version of the consent 
form. If this short form is used it is essential that it is presented along with, not 
instead of, the full version. The latter should be available for perusal.   

   Panel 16.3 Checklist for the Content of an Informed Consent Form 

 A well written informed consent form typically contains:
•    An explanation that this is research; if necessary, explain what research is  
•   Aims of the research study  
•   Foreseen number of participants  
•   Reasons for inviting particular individuals to participate  
•   A description of the number of contacts, types of contacts, duration of the 

study, interventions, and procedures  
•   A description of what is experimental (if there is an experimental component)  
•   A description of foreseen benefi ts and risks to the participant and society, 

including minor discomforts  
•   A statement that there may be no direct health benefi ts; in trials this 

requires explaining that the test intervention may or may not turn out to be 
superior to the comparator intervention  

•   Reference to any compensation for travel and time costs and for possible 
injuries  

•   Description of how privacy and confi dentiality will be maintained  
•   A statement indicating the voluntary aspect of participation and right to 

withdraw at any time  
•   Emphasis on the absence of any repercussions or changes in quality of 

health care in case of non-participation or withdrawal  
•   Information on who the sponsor and investigator of this study are  
•   Information on whom to contact with questions (e.g., sponsor, investigator, 

study physician, ethics committee)  
•   The participant’s statement declaring that the presented information is 

understood and participation agreed  
•   Signatures of enroller, participant, (and sometimes impartial witness) and 

dates of all signatures    
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16.3.2      Consent for Storage and Future 
Use of Biological Specimens 

 The main thrust of bio-banking is to create a repository of biological specimens to 
be made available for research. Two types of bio-banks exist based on whether they 
are intended for research in a specifi c area of health or whether there is no specifi c 
area of future focus. The issue of consent for storage and future use of specimens 
has generated much debate within the scientifi c community and among other 
stakeholders (Van Diest and Savulescu  2002 ). This is because the norms of the IVC 
process are challenged and in many instances are impractical and even impossible 
to uphold. The informed consent process previously described in this chapter has 
full disclosure of study information and voluntariness as its tenets. The former is 
impossible if future uses are not defi ned when obtaining informed consent. 
Similarly, the ability to ‘volunteer’ or even opt out of specifi c sub-studies is also 
under threat. 

 Different positions have been arrived at through considerations of general ethical 
principles and empirical data on persons’ preferences. One school of thought sup-
ports giving prospective consent, whereas another supports consent for each new 
study being done (Wendler  2008 ). In the former scenario, participants are asked 
either (1) to give blanket consent at the initial collection for their samples to be used 
for any study in  specifi c  area(s) of health/disease or (2) give blanket consent at the 
initial collection for their samples to be used for  any  area of health research. 
Variations of the above-described approaches also allow for decisions to be made 
regarding how the samples are stored, who uses them, whether data will be de- 
identifi ed or anonymized, and what information (if any) will be provided to the 
donors for each of the studies for which their data are used. 

 The tremendous potential for research and development that lies in bio-banking 
cannot be ignored. Managing the informed consent process in this context requires 
selecting the position that ensures ethical treatment of research participants while 
serving research interests. Empirical data suggest that most persons are not averse 
to having their samples stored for future use (Wendler  2008 ). One assessment 
showed that the majority of persons are satisfi ed with giving initial consent for 
future use and then having an ethical review board make decisions regarding 
particular new studies (Clayton  2005 ). The distinction between research for 
academic versus commercial purposes, however, also needs to be considered as 
people have been shown to be slightly less likely to give samples for research for 
commercial gain. It may be best to present the potential research participant 
with several options regarding the use and storage of their samples and ways in 
which they can opt out of research after submitting samples. Researchers should 
consider empirical data available, cultural norms, and ethical principles as these 
options are being developed. Effective communication is a key factor in the actual 
process to ensure that prospective participants understand the options being 
offered and are aware of what they are getting involved in. This may even include 
awareness of the uncertainty related to what the samples may be used for in the 
future.   
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16.4    Challenges to Informed Voluntary Consent 

16.4.1    The ‘Yes-Doctor’ Syndrome 

 The ‘yes-doctor’ or, more generally the ‘yes-authority’ syndrome, is a pattern of 
behavior often observed during a study where (potential) research participants tend 
to relinquish part of their autonomy before an authoritative fi gure, such as a doctor. 
Many people tend to decrease their role as an autonomous agent within an unequal 
relationship. Some examples of statements of participants revealing the ‘yes-doctor’ 
syndrome are:
•    “If the doctor says it’s okay for me to participate, then surely it’s in my best interest 

to do so”  
•   “I am happy to let you, doctor, decide whether I should participate or not”  
•   “I don’t want to disappoint the doctor because I have a good relationship with 

her/him”   
  What can be done to avoid the ‘yes-doctor’ syndrome?  
•  Enrollment, in our view, should be done by a person perceived to be the candi-

date participants’ ‘equal’ whenever possible  
•   Never accept that people give up their autonomy if they have the capacity to 

decide for themselves  
•   Where appropriate, potential participants should be encouraged to carefully 

consider any burdens and risks as well as any other pros apart from the chance to 
please a doctor they like     

16.4.2    Therapeutic Misconceptions 

 In clinical trials misunderstandings are common among (potential) participants and 
health care personnel about the purposes of the study and about the concepts of 
equipoise and randomization (Flory et al.  2008 ). Many fail to fully understand that 
none of the intervention arms may be superior to the others and that they might well 
be allocated to the comparison arm rather than the test intervention. There is a gen-
eral trend towards optimism that participation will bring extra health benefi ts that 
are beyond what a non-participant could expect from routine treatment (Flory et al. 
 2008 ). Such expectations can certainly be caused by an inappropriate or unsuccess-
ful informed consent process and can, in that case, be called a ‘therapeutic miscon-
ception.’ However, the expectation of extra health benefi ts is often present among 
persons who understand equipoise and randomization and who are fully informed 
about risks and potential benefi ts. In fact, expecting some extra health benefi ts is 
often not unrealistic as patients/clients in many trials often receive more frequent 
and higher quality medical attention than they would get in the routine health care 
system. This is often the case with trials in resource-constrained settings where 
issues concerning health care accessibility exist. In low- and middle-income countries 
especially, it is therefore not unusual that trial participation is (quite realistically) 
perceived as bringing extra health benefi ts and even as offering an increase in the 
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quality of life. For many potential participants, these are all good reasons to have 
high expectations. 

 A brief digression on ‘post-trial obligations’ and therapeutic misconceptions is 
appropriate here. Some ethical guidelines prescribe that, after a trial, the best treat-
ment should be given to all participants. This type of requirement remains somewhat 
controversial among epidemiologists. Results of a single trial can rarely be used in 
isolation to create fi rm knowledge or to establish a new care practice. In reality one 
cannot normally equate a positive observed effect in a single trial with general 
knowledge about safety, effi cacy, and effectiveness of the treatment. More than one 
trial is normally required to provide a proper basis for establishing a new standard of 
care. Thus, promising continued treatment may be realistic, but promising the  best  
treatment may be unrealistic and can induce a therapeutic misconception. 

 Based on the above considerations, a therapeutic misconception can be defi ned 
as an unrealistic level of optimism about health benefits of trial participation. 
Of special interest is the degree to which this level of optimism is induced by 
failures during the informed consent process prior to or after enrollment.
  What can be done to avoid therapeutic misconceptions?  
•  The uncertainty related to potential  direct  health benefi ts of study participation 

should be emphasized in the informed consent process  
•   During the informed consent process the concepts of equipoise and randomiza-

tion should be conveyed  
•   Concerning post-trial provisions, one should take care not to make promises that 

are unrealistic  
•   In resource-poor settings, some strengthening of the routine care system via the 

research project may be envisaged, discussed, and carried out when deemed 
acceptable by the local health authorities     

16.4.3     Vulnerable Persons 

 In research, vulnerable persons are those who for some specifi c reason(s) have 
diminished capacity to protect their own interests. These reasons can include, but 
are not limited to, legal restrictions against decision making; diminished mental 
capacity due to age or impairment; and reduced social and/or fi nancial standing. 
Special justifi cation will be required to invite vulnerable persons to participate in 
research, and the  CIOMS Guidelines  require that safeguards are employed to protect 
their rights and welfare. These may involve, among others, further research regarding 
their condition, limits to the amount of risk they may be exposed to, employment 
of consent monitors, and proxy consent provided by caregivers using a ‘best interests 
standard’ (For more information on these approaches,  See:  CIOMS  2009 ,  2010 ). 

 Research among persons with vulnerability raises ethical concerns because of 
the existence of a real possibility for exploitation or unintentional maltreatment of 
these persons. Researchers have the responsibility to ensure that their actions are in 
the best interest of these persons and in accordance with existing ethical guidelines 
and relevant legal requirements. 
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   16.4.3.1 Children 
 Children should not be enrolled as research participants unless it would otherwise be 
impossible to answer a research question relevant to their health and well-being. 
Moreover, The Declaration of Helsinki, Article 25, states: “When a subject deemed 
legally incompetent, such as a minor child, is able to give assent to decisions about 
participation in research, the investigator must obtain that assent in addition to the 
consent of the legally authorized representative.” If the legally authorized representa-
tive consents to the child’s participation, the child should also be informed about the 
study (describing the rationale and procedures to the extent that (s)he can understand) 
and asked to sign an assent form or to give verbal assent in the presence of the legal 
representative and a witness. It should be made clear to the child that (s)he should 
honestly indicate her/his willingness to participate and that (s)he is free to decline 
even if the parents or guardians consented to her/his participation. In such a case the 
researcher should yield to the wishes of the child. To determine if it is necessary or 
appropriate to receive assent, the researcher will need to be fully conversant with the 
legal requirements of the particular locale regarding the age of consent in research. 
The researcher will also need to assess objectively the child’s ability to give assent.  

   16.4.3.2 Persons in Dependent Positions 
 Persons in dependent positions include college students, employees, and prisoners. 
When seeking to involve these persons in research, researchers need to take care that 
participation is informed and voluntary and not due to fear of adverse  repercussions 
of non-participation, such as loss of a job and/or privileges. The converse is also 
important: participation should not be due to expectations of unwarranted benefi ts.  

   16.4.3.3 Patients with Cognitive Impairment 
 Similar procedures as those utilized in research involving children should be 
 followed in research involving persons with cognitive impairment. It is also advised 
that research should not involve these persons unless it would otherwise be impos-
sible to answer research questions that are essential to their health and well-being.   

16.4.4    Cultural Challenges and Vulnerable Communities 

 General guidelines and best practices for the informed consent process have been 
described above. It is important to note that situations may arise in which these 
guidelines and practices have to be adjusted to suit the cultural context or setting in 
which the research is (to be) undertaken. This is a very important consideration that 
should be duly acknowledged, as study participants must deem research acceptable. 

   16.4.4.1 Community Consent Versus Individual Consent 
 The importance of treating the individual as an autonomous agent was emphasized 
earlier. Notwithstanding, researchers have come to recognize that in many settings 
the community (which may be delineated by geographical, social, cultural or reli-
gious boundaries) has pivotal roles in infl uencing and determining an individual’s 
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decision. These situations can be diffi cult to navigate, as the researcher is called 
upon to balance usual research standards and practices with community acceptabil-
ity. The researcher will need to be creative and prudent in these negotiations but also 
needs to ensure that persons are participating because they have a personal desire to 
do so, not because community leaders have told them to. The specifi c procedures by 
which one should obtain community consent vary among different communities, 
and there may be important local variations within a country. It is therefore useful 
to gather information from candidate study communities regarding the procedures 
‘outsiders’ are expected to abide by to gain the trust and consent of the community 
to recruit and enroll participants. Failure to abide by such required procedures may 
result in the whole community refusing to participate.  

   16.4.4.2 Internet-Based Surveys and Informed Consent 
 Internet-based surveys are simple, effi cient instruments that are easy to create, dis-
tribute, and administer. Data management and analysis is also usually highly effi -
cient in Internet-based surveys. It is not surprising therefore that many researchers 
are drawn to this method. Internet-based surveys often include information about 
the study along with an invitation to participate and a means of declaring agreement 
to participate. It is readily noted, however, that it is diffi cult or impossible to conduct 
many of the recommended activities for gaining IVC for such surveys. For example, 
researchers will not be easily able to assess whether the consent was truly informed 
since it is diffi cult to guarantee that the respondent read or understood the study 
information (though questions about the study itself can precede the survey ques-
tions as an additional safeguard). Many of these surveys rely on implied consent, 
and even if a participant statement is signed, there is no guarantee that the person 
who signs is the one who fi lls out the questionnaire, or that either of those persons 
is the intended respondent. There are also fewer assurances that can be given regard-
ing confi dentiality and privacy, as IP addresses can be traced (removing anonymity) 
and computers where data are stored can be hacked (though it can be argued that 
offi ces, fi ling cabinets, and offl ine databases can also be compromised). The bene-
fi ts of internet-based surveys cannot be downplayed, so the guidelines for informed 
consent will need to ‘catch up’ to the technology and advise accordingly. 
Notwithstanding, the ‘spirit’ or essence of the IVC process is still applicable and the 
onus is on the researcher to ensure that research activities are still in keeping with 
these ideals.   

16.4.5    Manipulative Temptations of Researchers Regarding 
Informed Consent 

 Investigators, enrollers, and data collectors all have direct responsibilities in the 
informed consent process. They also have professional and career interests and 
often have time constraints and undergo peer pressure. Under such circumstances 
they may succumb to a temptation to shorten the time taken to inform and discuss 
with candidate participants, or they may be brief in their answers to questions from 
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participants, forget to mention some minor but relevant aspects of risks, delay a 
planned information session on study progress and interim fi ndings, or postpone a 
meeting with a community leader. Subtle signs of the yes-doctor syndrome may be 
disregarded or even welcomed as a way to increase study effi ciency and gain 
time for other activities. These examples concern relatively mild but regrettable 
deviations from an optimal informed consent process. More serious deviations 
also occur that clearly fall into the category of violation of duties and that create 
liability to prosecution in most countries. These include failure to provide relevant 
information, enrollment without consent, coercion, and failure to document consent, 
among others.   

16.5    Informed Consent, Scientific Validity, 
and Study Efficiency 

 In this chapter the essence of the informed consent process has been described as an 
expert-guided information exchange and as a process of (re-)enabling participants 
to make a personal choice and follow it through. To enable free choice, the candi-
dates are informed about study purposes, risks, and benefi ts and about the nature of 
the activities required. They need to be well aware that their contribution is signifi -
cant to the study only if they are able to provide accurate information and adhere to 
scheduled study activities/interventions. The link between the informed consent 
process and scientifi c validity is therefore quite direct; consent to participate should 
be associated with a commitment to contribute to scientifi c validity. 

 There are also negative links between informed consent, scientifi c validity, and 
study effi ciency. Misinformation or misunderstandings about study purposes and 
procedures may ultimately lead to disappointments about the actual burden of par-
ticipation and be detrimental to the relationship with study personnel. Two types of 
reactions are common in such situations: manifest refusal or ‘hidden refusal’ with 
poor adherence and misreporting. Both may also be attributed to factors other than 
a poorly managed informed consent process. Frequent refusals, widespread inac-
curate reporting, extensive loss to follow-up, and poor adherence are signs of the 
existence of strong factors that tend to swing people’s perception of the balance of 
pros and cons of study participation to the negative side. 

  In this chapter we discussed the informed consent process, which enables 
persons to make decisions about participation in the study. Accrual rates in a 
study strongly depend on both the content and the style of communication, 
and so do rates of retention and levels of adherence to prescribed study 
procedures. This brings us to the topic of Chap.     17      : Accrual, Retention, and 
Adherence.      
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    Abstract 
   This chapter offers practical advice on how to monitor and optimize enrollment 
rates, retention rates, and adherence levels in a study. The advice is partly based 
on a framework of thinking about dynamics of research participation. When 
problems arise with levels of research participation, two dynamics are worth 
considering to gain insight into causes of the problems and to start designing 
responses. The fi rst is that potential and enrolled research participants continu-
ously entertain fundamental concerns about personal safety, personal gain, social 
acceptability, and personal competing interests. The second is that these concerns 
are continuously infl uenced by changing internal and external factors, the latter 
of which includes practical circumstances and opinions of various stakeholders 
or opponents of participation with the research study.  

17.1        Dynamics of Research Participation 

 Relatively few studies have formally compared strategies for optimizing recruit-
ment, enrollment, retention, or adherence. However, a wealth of useful information 
has come from experiential knowledge shared by epidemiologists and from indi-
vidual, mostly non-methods-oriented studies (e.g., Lovato et al.  1997 ; Swanson and 
Ward  1995 ; Ross et al.  1999 ; White et al.  2008 ). Indeed, the anecdotal evidence has 
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been the most informative on this topic, as many authors have reported their experi-
ences dealing with recruitment, enrollment, and retention problems and their suc-
cesses with changes in strategy (for terminology  See:  Panel  17.1 ). From these 
sources some basic insights into the dynamics of research participation can be 
gained. Strategies for optimizing accrual, retention, and adherence need to be based 
on a minimum understanding of these dynamics of research participation, of which 
two are particularly helpful to understand well.
    1.    It is important to keep in mind that potential and enrolled participants have vari-

able levels of motivation to participate. They can perceive benefi ts of participa-
tion of a fi nancial, social, health-related, or other nature. However, before or 
after enrollment, there are many factors that can offset the perceived benefi ts at 
any time. These so-called ‘negative factors’ include misinformation, fears, dis-
likes of particular study-related persons/institutions, social desirability concerns, 
practical feasibility concerns, and real burdens. External factors (e.g., unforeseen 
fi nancial hardship) and internal factors (e.g., health-related experiences that may 
occur during participation) tend to infl uence the person’s balancing of the pros 
and cons of participation. When participation levels are a problem, the challenge 
for the researchers is therefore to (a) fi nd out whether there is a problem with any 
of the aforementioned negative factors, and (b) to fi nd appropriate ways to 
resolve those problems.   

   2.    Problems with research participation and strategies to resolve them are highly 
situational. However, in general, it is evident that problems with enrollment 
rates, retention rates, and adherence levels (and solutions to those problems) are 
associated with one or more broad levels of infl uence. Table  17.1  lists several 
levels of infl uence and illustrates how each can support or impair enrollment, 

   Panel 17.1 Selected Terms and Concepts Around Accrual, Retention, 
and Adherence 

     Accrual     The gradual completion of the foreseen number of enrolled 
participants   

   Adherence to treatment     The correct following by the participant of all 
instructions concerning the allocated treatment regimen   

   Dropout rate     Rate of early unplanned cessation of individual follow-up 
among study participants   

   Enrollment rate     Rate at which new participants are offi cially included in 
the study   

   Loss to follow-up     Dropout from study participation not due to death   
   Participation rate     Rate of participation among a group of persons one 

would have liked to participate completely   
   Refusal rate     Rate of non-participation among eligible observation units 

invited to participate   
   Retention     Avoidance of loss to follow-up     
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retention, and adherence. In examining Table  17.1 , it should be kept in mind that 
the various levels of infl uence are linked in complex ways. For example, study 
personnel can be members of the local community, so their practices and attitudes 
are infl uenced by prevailing perceptions in the community, local opinion leaders, 
and local authorities. Generally speaking, what happens on one level of infl uence 
also affects what happens on other levels; therefore, each infl uence has both 
direct and indirect effects on an individual’s practices and attitudes with respect 
to study participation.

17.2               Monitoring and Optimizing Enrollment Rates 

 Once enrollment has started, accrual needs close monitoring to be successful 
(Lovato et al.  1997 ). The accrual trend can be shown as monthly or weekly numbers 
with a smoothed trend line. Ideally, accrual rate should be about constant to 
minimize uneven or excessive workloads (Schoenberger  1987 ; Lovato et al.  1997 ). 

         Table 17.1    Levels of infl uence on individual research participation   

 Level 
of infl uence 

 Examples of infl uence on 

 Enrollment  Continued participation  Adherence 
 Family, friends  Negative advice from 

family member 
 A sick family member 
requires increased care 
effort 

 Husband helps with 
taking study medication 
correctly 

 Local 
community 

 Positive advice from 
community leaders 

 A negative rumor about 
the study is circulating 

 Adherence is promoted 
during community 
meetings 

 Co-participants  Enthusiasm shown by 
those already enrolled 

 Within 2 weeks two 
study children died 

 One participant convinces 
others that there is no strict 
need to adhere 

 Circumstances  Intention to emigrate 
during study period 

 The participant found a 
job and is now 
extremely busy 

 Bus fares have gone up 
recently, making it more 
diffi cult to attend study 
visits 

 Study personnel  Enrollers show 
empathy and respect 

 The newly hired 
interviewer makes many 
mistakes, which is noted 
by participants 

 Time is taken to 
repeat explanations 
of procedures at each 
study visit 

 Investigators 
and research 
institutions 

 Good reputation, 
perceived competence 

 Institution received 
positive media 
attention 

 Due attention is paid by 
the investigator to 
monitoring adherence 

 Study 
characteristics 

 Adequate provisions 
are in place to preserve 
confi dentiality 

 A study protocol 
amendment increases 
the burden for 
participants 

 The schedule for taking 
study medication is 
complex 

 Personal health  The person easily gets 
tired when traveling to 
the health center 

 Death  Participant tends to 
become nauseous when 
taking study medication 
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Based on extrapolation of the trend line, one can forecast the number and proportion 
enrolled by the end of the offi cial enrollment period, perhaps with allowance for 
some expected future changes in enrollment capacity. The forecast can serve as a 
basis to accelerate or decelerate enrollment. The forecast may also be used for 
reports to the Data Monitoring Committee (DMC), also known as Data and Safety 
Monitoring Board (DSMB), in clinical trials. In prospective follow-up studies it 
may be used in the context of periodic renewal of ethics approval. 

 In addition to total enrollment numbers and forecasts, the quantifi cation of 
response rates and their relation to exposure categories is a common concern. The 
monitoring process may reveal a worrying differential rate among important expo-
sure categories. The concepts of ‘response rate’ and ‘participation rate’ have been 
unclear and variably defi ned in the epidemiologic literature because the nature of 
the denominator population varies among studies who report these rates (Galea and 
Tracy  2007 ). Investigators variably use as the denominator: persons sampled; sam-
pled and approached; sampled, approached, and screened; or, sampled, approached, 
screened, and eligible. When reporting a ‘response rate’ or ‘participation rate,’ the 
exact nature of the denominator should be described and justifi ed. 

17.2.1     Reasons for Poor Enrollment Rates 

 Enrollment rates are often slower than expected (Lovato et al.  1997 ) or they can 
initially be as expected only to taper gradually later in the study. When that happens, 
a careful situation assessment is warranted to identify possible reasons and to 
develop for a suitable remedy. First, one examines at what stage of the process the 
problems appear. This point is referred to as an  enrollment bottleneck . Examples of 
common reasons for enrollment bottlenecks are listed in Panel  17.2 . For each 
bottleneck, one may want to verify if any of the types of sources of failure listed 
previously in Table  17.1  could be in play.   

    Panel 17.2 Examples of Enrollment Bottle Necks (Listed in Succession) 

•     The pool of eligible subjects is smaller than expected  
•   The recruitment strategy fails to reach a suffi cient proportion of eligible 

subjects for the fi rst contact  
•   The recruitment strategy fails to convince contacted subjects to agree with 

eligibility screening  
•   The recruitment strategy fails to initiate informed consent among a proportion 

of subjects screened eligible  
•   The informed consent process fails to convince potential participants  
•   Some people agree to participate but then disappear or are found not to be 

eligible after all (‘early exclusions’)    
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     17.2.1.1 Main Motivations for Refusal by Subjects 
 Reasons for refusal may vary from study to study and from individual to individual. 
Reported reasons may be diffi cult to interpret when they are obtained by interviewing 
(especially standardized interviewing) as subjects may not wish to reveal their true 
motivation or the complexity of it. A focus group discussion in the preparatory phase 
of a study may give insight in prevailing perceptions and likely frequency of refusals. 

 Among reported reasons for refusal, one often fi nds one or several of the following:
•    Fear for physical side effects, especially if reported by persons already enrolled  
•   Time and money concerns  
•   Planned out-migration  
•   Fear of stigma; fear of being asked sensitive questions  
•   Fear of legal consequences  
•   Fear of disapproval by friends or family members  
•   Negative rumors about the study  
•   Unfavorable opinions expressed by opinion leaders or local authorities; lack of 

desired community consent  
•   Lack of perceived potential benefi t  
•   Dislike of personality of enroller or dislike of investigator or research institution  
•   Being unhappy with clarifi cations given by enroller    

 We mentioned in Chap.   9     that cover letters, information sheets, informed consent 
forms, personal introductions by enrollers, and other recruitment strategies need to 
be culturally adapted and must show respect, politeness, and goodwill. They must also 
give reassurance about participants’ concerns (where possible to do so) and show 
professional seriousness. If they do not, enrollment rates are bound to be lower. 

 Motivations and associated refusal rates may differ among important study sub- 
groups. It is well known that in case–control studies, cases tend to be more moti-
vated to participate than controls (White et al.  2008 ). In studies of the effect of a 
potentially harmful exposure, refusal rates tend to be lower among those who are 
aware of their own suspicious exposure level. Studies in Anglo-Saxon high-income 
countries have revealed that, in such settings, many other personal characteristics 
can infl uence response rates and be a source of selection bias (White et al.  2008 ). 

 It is useful to make a distinction between  soft and hard refusals . One may assume 
that many candidate participants are unclear about where their own balance of pros 
and cons actually is. Many are hesitant to make a decision and they will try to defer 
it when they can. Thus, non-response to a mailed questionnaire or to a reminder 
does not always imply hard refusal to participate. When forced to decide quickly, a 
‘soft’ but explicit refusal is what will usually follow, which could be seen as a fail-
ure of the informed consent process.   

17.2.2     Strategies to Improve Enrollment Rates 

 After locating the enrollment bottlenecks (Panel  17.2 ) and assessing main reasons for 
refusal (previous section), the following response strategies can be weighed and 
considered according to scientifi c, ethical, cultural, and effi ciency criteria (Panel  17.3 ). 
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 Whatever the strategy used to boost enrollment rates, time is of the essence. 
Deployment of the new strategy needs to be well considered and well planned but 
fast. Lovato et al. ( 1997 ) pointed out that the inability to alter existing plans rapidly 
and to implement other strategies is a common reason for enrollment rate and study 
size problems. They also suggested that clear lines of authority and clarity of 
responsibilities might help to avoid such delays. Finally, one must realize that the 
implementation of these new strategies involves obtaining ethics approval for a 
protocol amendment and approval of the various stakeholders as relevant to the 
particular study. These approvals can also be time-consuming. 

 Caldwell    et al. ( 2010 ) reviewed studies that compared strategies for increasing 
recruitment into trials. Formal comparisons of survey methods also exist (e.g., 
Edwards    et al.  2009 ) but most of those are studies of middle-class U.S., hardly 
relevant to other populations.   

   Panel 17.3 Possible Strategies to Deal with Low Enrollment Rates 

•     Prolong the offi cial recruitment and enrollment period  
•   Decrease sample size; settle for less precise estimates or less statistical power  
•   Relax eligibility criteria (this is only valid if done after the slow enrollment 

rate was discovered during a pilot study)  
•   Increase stakeholder support and improve image; advertise and inform 

more frequently; solicit support from opinion leaders and community 
leaders; combat misunderstandings and unfounded negative rumors about 
the study  

•   Increase the study recruitment area; go multi-center; go international  
•   Increase recruitment capacity by increasing the number of recruiters and 

enrollers; increase budget for recruitment; provide better training for 
recruiters and enrollers; reduce number of relatively unsuccessful enrollers  

•   Make recruitment and enrollment procedurally more effi cient, better cul-
turally adapted, more respectful and polite, more informative on sensitive 
issues  

•   Improve the quality of the informed consent process; give undecided 
candidates more time; approach them again later  

•   Make study procedures less burdensome if the perceived burden seems a 
major reason for refusal  

•   Offer re-imbursement of travel and time costs; provide for meals and 
drinks while waiting; provide small tokens of goodwill  

•   Provisionally recruit people who are not yet eligible but are expected to 
become eligible before the end of the recruitment and enrollment period  

•   Repeat contact with more experienced recruiter some time after a soft 
refusal to a less experienced recruiter    
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17.2.3       Faster than Expected Enrollment Rates 

 Enrollment rates may turn out to be faster than expected. This may seem advanta-
geous in terms of time investment, cost reduction, avoidance of stakeholder rela-
tionship problems, or avoidance of newly emerging confounders or study fatigue. 
And often it is. There are some caveats, however. First, increased work volumes per 
unit of time can saturate a system and ultimately decrease its quality. This point is 
relevant to all study types, but it is especially critical for follow-up studies because 
a shorter enrollment period implies that individual follow-ups will also be concen-
trated in a shorter total calendar period. Consequently, high work volumes and 
potential decreases in quality can be recapitulated at each follow-up. Moreover, 
contractual obligations to staff and for some equipment usually cannot be amended 
simply because the study enrolled its subjects faster than expected. Finally, faster 
than expected enrollment rates can be problematic if the study aims for equal rates 
of enrollment over a year to avoid seasonality effects.  

17.2.4     Access to Secondary Data 

 In studies that use secondary data there may or may not be a need to ask each indi-
vidual for consent to use the data. For example, the ethics committee may decide that 
there is no need for new consent to use historical hospital data and patient fi les. When 
there is a need, then some of the recruitment and enrollment strategies described above 
may be useful. These strategies may be greatly supported if the persons or  institutions 
previously involved in the primary data collection have a role in the current recruitment 
effort. In any case a proposed useful sample size or a foreseen rate of extraction of data 
may turn out to be unachievable. Occasionally extra data collection is then envisaged.   

17.3     Monitoring and Optimizing Retention Rates 

 Poor retention can be a source of bias and imprecision of study fi ndings ( See:  Chap.   1    ). 
Good retention is an important challenge in all studies with new data collection, not 
only in prospective follow-up studies. In cross-sectional studies, for example, par-
ticipants may decide to discontinue an ongoing measurement session. Monitoring 
rates of loss to follow-up (i.e., lack of retention) in an ongoing study is not always a 
straightforward exercise. For example, when multiple study contacts are scheduled, 
a participant may not attend on several successive occasions and seem to have been 
lost to follow-up, only to unexpectedly reappear at a later scheduled contact. A simi-
lar situation arises when out-migrations are followed by a return to the study area. 

17.3.1     Reasons for Poor Retention 

 Potential factors contributing to retention are listed in Table  17.1 . When investigating 
reasons for poor retention it is often helpful to keep in mind that participants 
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frequently express their concerns. In Panel   9.3     we listed frequent concerns that 
people have about participation in a research study and ways of dealing with these 
concerns from the earliest recruitment phase of a study. These are the same questions 
that participants will continue to seek answers for during measurement sessions and 
during their individual follow-up period (and beyond). The reason is that these 
questions are rooted in permanent fundamental concerns about personal safety, 
personal gain, social acceptability, and personal competing interests. Translated into 
the follow-up situation, these recurrent questions become those listed in Panel  17.4 .   

17.3.2       Strategies to Improve Retention 

 When considering methods of improving retention it is helpful to take the above-
mentioned list of concerns into account. Some of the questions may have straight-
forward answers, but most do not. Providing participants with more updates on 
study progress, study safety aspects, and on what is known about the topic in  general 
are obvious choices to improve retention, as is keeping the study in the news. Some 
other methods of maximizing retention in prospective longitudinal studies have 
been reviewed by Hunt and White ( 1998 ) and discussed in White et al. ( 2008 ). 
In such studies the aim should be to create a group sense of identifi cation with the 
study. Bonding strategies should be employed and may consist of:
•    Frequent contact, preferably with the same person if there is a good relationship, 

but not so frequent as to annoy people  

   Panel 17.4 Questions Study Participants Continuously Ask Themselves 
During a Study 

•     Are these researchers still as trustworthy and competent as I thought they 
would be?  

•   Is the issue that they are doing research about and the research itself still 
relevant to me and my community?  

•   Are the research staff members still communicating with me in a respectful 
manner?  

•   Does what I am getting out of this study correspond to promises made or 
established expectations? Is it as exciting as I thought it would be?  

•   Can I deal with the burdens of participating? Is it still easy enough for me 
to continue participation?  

•   Is it still safe to participate? Is it as safe as I was told?  
•   Do other people still think this project is okay?  
•   How many people have already participated? Are others also continuing 

their participation?    
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•   Empathy, enthusiasm, and commitment from study personnel  
•   Respect for personal needs and preferences of participants  
•   Newsletters  
•   Social gatherings of participants  
•   Small gifts and/or cards    

 In prospective longitudinal studies, one should be alert to signs of study fatigue 
and respond to misunderstandings. Telling signs frequently precede loss-to-follow-
 up. Bad rumors about the study can circulate among participants or in the wider 
community and this may announce imminent retention problems. Urgent action is 
then required. A re-activation of the informed consent process may help, but one 
should always keep in mind that participants are free to discontinue participation at 
any time. Sometimes a loss can be prevented by switching to another data collection 
mode, one that is better perceived by the participant. Sometimes a loss can be pre-
vented by linking a new data collector to the subject or by a chat with a study super-
visor, coordinator, or investigator. 

 Contact details should be available on all participants and one close contact per-
son if that second person agrees. These contact details should be updated regularly, 
and if this fails one should trace losses to follow-up using a variety of inventive 
strategies within legal boundaries. In the course of a longitudinal study, the data 
collector gets to know the participants better and may even acquire a picture of their 
social network, e.g., memberships or other participants who have become friends. 
This may help to trace some of those lost to follow-up. 

  Hint 
 Out-migration from the study area does not always need to be a reason for 
dropout. It may be possible to maintain follow-up of some variables (e.g., vital status) 
over a distance via mailings, phone calls, and the Internet. Some resourceful 
studies have even resorted to long-distance traveling in order to do follow-up 
measurements on emigrated subjects.    

17.4     Monitoring and Optimizing Participants’ 
Adherence Levels 

 The measurement and monitoring of individual participants’ adherence to interven-
tions has been discussed in Chap.   10     (The Measurement Plan). In trials it is useful 
to monitor the distribution and trends of levels of adherence in the study sample and 
its relevant subgroups. Such monitoring may be a requirement of the DMC/DSMB 
of a trial. Similar to what we discussed for accrual and retention rates, here too, a 
worsening trend in adherence levels may trigger the need to assess reasons and 
implement remedial strategies. 
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17.4.1     Reasons for Poor Adherence by Participants 

 In every study all possible sources of lack of adherence need to be foreseen and 
prevented as much as possible. Failure to do so can on and by itself be a cause of 
suboptimal adherence levels in the study. There are many reasons for poor adher-
ence, including the following:
•    The informed consent process was inadequate  
•   Bad study management  
•   Poor forecasting of the time and volume of new orders of products  
•   Poor communication with pharmacists and suppliers  
•   The intervention regimen is complicated and contains several substances  
•   Adherence to the intervention regimen is very strict, e.g., in some HIV drug trials, 

the drug regimen does not allow omissions.  
•   Calamities  
•   The study intervention has undesirable side-effects; for pediatric trials, this also 

includes poor palatability  
•   The participants may forget details of the instructions given to them  
•   The participants forgot appointments made far in advance, which can lead to 

interruption of the intervention  
•   The participant intentionally manipulates the intervention to make sure they (or 

their children) receive the test intervention, e.g., a mother might mix the tablets 
received for their children in order to make sure that every child got at least part of 
the test drug (this was documented for an early AZT antiretroviral treatment trial)  

•   The participant lacks a high level of discipline  
•   The participant lacks adequate social support  
•   A participant has not disclosed the study intervention to people with whom (s)he 

is living  
•   The participant is travelling away from home     

17.4.2     Strategies to Improve Participants’ Adherence Levels 

 Remedial strategies may be individually tailored to the particular situation of each 
participant, or they can have a more general approach. The latter is needed when 
structural and logistical problems are found to be a reason for generally suboptimal 
adherence rates. Reminders shortly before an appointment can help to avoid missed 
contacts for handing over new drug supplies and discussing and treating side effects. 
It is important that, at each contact, adherence is discussed seriously and that the 
participant is well aware that her or his adherence levels are monitored. 

 A common strategy in HIV treatment trials is that the participant identifi es a 
‘buddy,’ a friend or a family member who encourages the participant. The buddy 
may also receive some information and training from the study team in order to 
carry out the support function properly. Discussing in advance the situations that 
may be extra challenging and have the participants think through such situations can 
improve adherence rates. 
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  In this chapter we discussed dynamics of study participation and ways in 
which the investigator can monitor and manage study participation issues. 
The success of this aspect of study implementation is crucial for obtaining 
high quality data. Another crucial aspect in this regard is the way in which 
questionnaires are designed and administered. That is the topic of the next 
chapter.       
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    Abstract 
   A questionnaire is a measurement tool consisting of a list of questions 
accompanied with instructions, response options, and answering spaces. It guides 
the respondent and sometimes also an interviewer in fi nding and recording 
measurement information. As such, the questionnaire is a source document: it is 
very close to the source of data, the respondent. Errors at this point tend to 
considerably and sometimes irreversibly affect the validity of the evidence 
generated in the study. This chapter fi rst deals with the response process, as a 
good understanding of the psychological stages of the response process can help 
questionnaire designers and interviewers to avoid recall error and misreporting. 
Second, this chapter provides practical recommendations for questionnaire 
design and administration. Study objectives, types of measurements planned, 
error- avoidance concerns (including prevention of errors in later data processing 
and analysis), and ethical concerns guide questionnaire design. Panel  18.1  
introduces terminology used in this chapter.  
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18.1        The Response Process 

 There are several psychological stages of the response process during questionnaire 
administration (Tourangeau et al.  2000 ). A common view distinguishes fi ve stages 
(Schwarz and Oyserman  2001 ; Streiner and Norman  2008 ), as shown in Fig.  18.1 .

   Knowledge of these stages is helpful in evaluating the usefulness of potential 
questions and in minimizing recall errors and misreporting. We discuss each 
stage in some detail and highlight sources of bias constituted by defi ciencies at 
each stage. 

18.1.1     Response Process, Stage-1: Understanding the Question 

 The process starts with the respondent reading or hearing the question and attempt-
ing to understand what information is being requested. Culture, language, and indi-
vidual interpretations infl uence this understanding. Understanding of the question 
may also be infl uenced by ‘context effects,’ i.e., by information that appears on the 
questionnaire (e.g. previous questions) or by any suggestion that the researcher or 
the research is interested in particular types of behaviors or other characteristics. 
The way the question is formulated is crucial, but, in addition to the question itself, 
it is often the list of response options that clarifi es to a respondent what the question 
actually means or leads them to assume a certain meaning of it (Schwarz and 
Oyserman  2001 ). Errors arising at this stage are called ‘comprehension errors,’ 
meaning that the respondent does not understand the question or understands it in a 
way unintended by the researcher. An example is an item on a questionnaire that 
was designed outside Africa and used in an African country. That item aimed to 
capture the occurrence of severe respiratory and circulatory compromise in the 
newborn period by asking the mother, “What was the color of the baby at birth?” 
The response options were ‘normal,’ ‘blue,’ or ‘white.’ The item had been imported 
into an African setting in which approximately 90 % of deliveries occur at a health 
facility were newborns are rushed off for urgent attention, without a mother observing 
the baby’s condition. Moreover, the only time a respondent would see a ‘white’ 

Understanding the question

Retrieval of information

Inference and estimation

Formatting the response

Final editing and communication
  Fig. 18.1    Psychological 
stages of responding 
to questions       
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baby is if the parents had white skin. Understandably, the question was mostly ill 
understood and created a lot of confusion. 

 The result at the end of the response process may be that the respondent does not 
answer the question or that an inaccurate answer is given, and a lack of comprehen-
sion may or may not become clear to the interviewer. Not all respondents will ask 
for clarifi cation when they are aware of their lack of comprehension. When it  is  
clear to the interviewer, clarifi cation of the question may not always succeed, as 
there may be cultural and language barriers. Moreover, people’s personal interpreta-
tion frameworks are not always easy to change. The implications for questionnaire 
design and administration, discussed later in the chapter, are multiple and include 
the need to phrase questions in culturally appropriate terms and in the language of 
the respondent. Comprehension errors may be related to personal characteristics 
such as education level, alertness, socioeconomic status, etc. Any comprehension 
errors can be sources of considerable information bias, missing data, and hence 
imprecision. If questions are used to assess eligibility criteria, comprehension errors 
can result in selection bias.   

   Panel 18.1 Selected Terms and Concepts Related to Questionnaire Design 
and Administration 

     Conversational interviewing     Style of interviewing in which interviewers 
interact freely with respondents after the question is read   

   Interview     Method of data collection based on asking questions orally 
(face-to-face or over some communication medium) to persons and recording 
the elicited responses or their inferred meaning   

   Interviewee     The person invited to answer the questions during an interview   
   Interviewer     The person who asks the questions during an interview   
   Interviewers’ guide/manual     Document containing detailed step-by-step 

descriptions of prescribed procedures for preparing and carrying out an 
interview   

   Leading question     A question that, by its phrasing, by the tone in which it 
is asked, by its positioning among other questions or by the ordering of its 
possible response categories suggests that a certain answer is or is not 
expected or socially acceptable   

   Options list     A list of possible solutions to a problem statement   
   Question     Written or spoken sentence, addressed to a research participant, 

aimed at eliciting a response or action that will assist with the measurement 
of an attribute/experience of the participant   

   Questionnaire     Measurement tool composed of written questions, clarifi cations, 
answering spaces, and instructions on how to answer and how to proceed 
to other questions   

(continued)
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18.1.2       Response Process, Stage-2: Retrieval of Information 

 Given the respondent’s understanding of the question, (s)he will now try to retrieve 
the information considered necessary. Information retrieval refers to facts retrieved 
from memory or from external sources, such as family members’ memories, co- 
workers’ memories, databases, diaries, or household fi les. For an event or experi-
ence to be remembered or retrieved, a record of it must be available, either under the 
form of physical data or a stored memory. Respondents cannot be expected to 
retrieve facts that have never been or are no longer encoded in memory or saved as 
an accessible physical or electronic record. Errors arising from a defi ciency at this 
stage of the measurement process are termed ‘encoding errors’ in psychology. 
When the defi ciency is one in retrieving from memory, they are called ‘recall errors.’ 
These may again take the form, at the end of the response process, of non-response 
or of misreporting. They can be related to participant attributes and lead to biased 
estimates and decreased precision. 

 Forgetting is the major process leading to recall errors and hence to recall bias 
( See:  Chap.   2    ). In general, experiences must be very stressful or otherwise highly 
impactful and infrequent to be remembered for a long time (say more than a year). 
Questionnaire designers must keep in mind that asking respondents to count and 
report a frequency of a  common behavior  in some defi ned calendar period in the 
past is among the most diffi cult tasks one can ask of a respondent. For example, the 
question “How often have you eaten chicken in the last 12 months?” is a cognitively 
extremely demanding question (Jobe et al.  1990 ). One diffi culty with it is that peo-
ple’s memories tend to relate to typical episodes in their personal history (‘the time 
I lived in village  x ,’ ‘the time I worked for employer  y ), rather than to the defi ned 
calendar time episodes the researcher would like to know about (Schwarz and 
Oyserman  2001 ). This inherent memory structuring helps to explain why the con-
struction of personal history calendars as an initial part of an interview process 
can often enhance recall accuracy of behavioral information, especially the 
accuracy of event dates. 

   Respondent     The person who answers a question or questions   
   Satisfi cing     Tendency for questionnaire respondents to settle for an approximate 

but less than optimal accuracy in their response   
   Self-administered questionnaire     Mode of questionnaire administration 

whereby the respondent reads the questions and instructions (or hears a 
recorded version) and records answers   

   Standardized interviewing     Mode of administering a questionnaire based 
on detailed instructions on how exactly the interviewer is to ask the questions 
and interact with the respondent     

Panel 18.1 (continued)
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 Another problem with event dating is  telescoping . Forward telescoping may be 
the most common problem and often concerns stressful events that are remembered 
as more recent than they actually were. Backward telescoping happens when recent 
events are remembered as more distant than they actually were. 

 As to short- and medium-term memory, recall accuracy is commonly an object 
of methods-oriented epidemiological investigation, and designers of questionnaires 
should thus verify the available evidence in the literature about what is a reasonable 
recall period for the specifi c type of event of interest. For example, a period of 
2 weeks is generally considered the maximum recall period for questions to mothers 
about diarrhea in their children (Martorell et al.  1976 ). Schwarz and Oyserman 
( 2001 ) suggested that, for events that are highly memorable, recall accuracy tends 
to increase by decomposing the recall period in sub-periods about which separate 
questions are asked. In taking this approach, one should work back from more 
recent periods to earlier periods rather than the other way around. Recall accuracy 
also tends to increase when the participant is given more time to think. The accuracy 
of retrieved information depends on how much effort the respondent is able and 
willing to make to remember and/or lookup information. ‘Satisfi cing’ can occur at 
this stage, meaning that the respondent settles for making little mental effort in trac-
ing the information. Researchers should be aware that recalling relevant behaviors 
from memory can be time-consuming and that satisfi cing may be induced by any 
form of pressure to speed up the response process.  

18.1.3     Response Process, Stage-3: Inference and Estimation 

 Additional mental effort is often required to further use the remembered events for 
counting or estimating total numbers of events; estimating average (‘usual’) fre-
quencies or intensities; comparing various events to decide about the most intense 
or the least intense; and calculating durations (e.g., elapsed times) or other abstrac-
tions. For these tasks, too, the respondent decides what amount of motivation and 
time (s)he will spend and what level of accuracy (s)he will aim for. Satisfi cing 
occurs when the task seems too daunting ( hint:  terminal digit preference in the 
reporting of numerical values can be a manifestation of satisfi cing). 

 When questions are asked about prolonged periods, such as ‘in the last year,’ one 
naturally remembers best the last few weeks or months. Respondents may therefore 
be tempted to extrapolate a current or recent pattern to a longer time span. 

 When questions are asked about average intensity or usual intensity of a fl uctuat-
ing or recurrent subjective experience (pain, anxiety, etc.), the answer may be posi-
tively biased because respondents’ memories tend to be heavily infl uenced by the 
worst episode or the peak in experience as well as by the most recent episode 
(Streiner and Norman  2008 ). 

 Context effects may also infl uence reported past behavior. For example, in the 
evaluation of behavioral interventions, reported pre-intervention behavior tends to 
be worse when it is asked about after the intervention than when it is asked about 
before the intervention (Ross and Conway  1986 ). Another example of a context 
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effect on inference and estimation is that respondents tend to report higher frequen-
cies and severities of common mental-behavioral characteristics when the response 
options list contains mostly higher frequency/intensity options than when the list 
contains mostly lower frequency/intensity options (Schwarz and Oyserman  2001 ).  

18.1.4     Response Process, Stage-4: Formatting the Response 

 The next mental process for the respondent is to prepare a response to the question 
in the format expected by the researcher. The major types of formats are open 
answer versus lists of response categories. As a concrete example of the latter, the 
respondent may have estimated a usual frequency of nine alcoholic drinks per day 
but may need to choose from a list of response options (e.g., ‘0–3’, ‘4–6’ and ‘7 or 
more’). Preceding options lists, there may be instructions about:
•    How to choose (e.g., ‘tick on option’ or ‘tick all applicable options’)  
•   The measurement units to use (e.g., the form asks for stature in centimeters)  
•   The measurement scale to use (e.g., the form asks for the number of alcohol servings 

rather than the number of drinks, as ‘drink’ could be interpreted to mean ‘glass,’ 
each of which might contain more or less than one serving of alcohol)    
 Satisfi cing can also occur at this stage, especially if the list of response options 

is long or diffi cult to read. The length of the response options is therefore impor-
tant. Five to seven options are often seen as a maximum. Options in the beginning 
of the list tend to be chosen more often in self-administered questionnaires whereas 
options at the end of the list tend to be chosen more often during telephone or face- 
to-face interviews (Schwarz and Oyserman  2001 ). This implies that, except for 
short options lists, response options should rather be presented as separate 
questions.  

18.1.5     Response Process, Stage-5: Final Editing 
and Communication 

 In the fi nal stage of the response process, the prepared response (chosen category, 
value, or reply) is briefl y refl ected upon and then communicated to the interviewer 
or written (ticked, circled, etc.) on the questionnaire. The respondent may, however, 
decide to edit the answer before communicating it, bringing in considerations 
other than accuracy. These considerations may concern social desirability or fear of 
disclosure. For example, the respondent may think that ticking the box ‘7 or more’ 
alcoholic drinks per day will be seen by the researcher as abnormal and decide at the 
last moment, for the sake of her/his own reputation, to tick the box ‘4–6’ instead. 

  Social desirability  motives may be pursued consciously or unconsciously. They 
can show as a tendency to present oneself as healthier, more adherent to treatment, 
more ‘normal,’ and wiser than one actually is. Reported fi nancial income is also 
prone to these effects, and within a single survey, different groups of participants may 
edit their responses for differing reasons: lower income groups may under- report 
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income because of anticipated fi nancial assistance or over-report to avoid stigma, 
whereas wealthier participants may under-report income to avoid social or tax 
repercussions. Sometimes a phenomenon opposite to social desirability occurs, if a 
direct benefi t of ‘faking bad/unhealthy/deviant’ is expected. When social desirabil-
ity motives affect the measurement of an attribute, the possible consequences in 
epidemiological studies include social desirability bias through: (1) under- estimation 
of the frequency and/or magnitude of socially undesirable attributes; (2) over- 
estimation of the frequency and/or magnitude of socially desirable attributes; and 
(3) biased estimates of the strength of association with other attributes. 

 The so-called  hello-goodbye effect  (Streiner and Norman  2008 ) means that 
before an intervention some people have a tendency to exaggerate their condition in 
the hope of getting the best possible care, whereas after an intervention, they may 
tend to present themselves as healthier than they are as a form of gratitude to the 
health workers. The consequence for interview-based research is obviously the dan-
ger of a falsely strong observed effect of the intervention on self-perceived health or 
on outcomes that rely on questions about symptoms.  

18.1.6     Personal Characteristics of Respondents Affecting 
Responses 

    18.1.6.1 Personal Reference Points for Judgments 
 Another important lesson that epidemiologists have learned from cognitive psy-
chology and from methods-oriented research about health surveys concerns the way 
people rate their preferences and intensities of experiences. When asked for such 
information, persons may take various reference points as a basis for making their 
judgment (Fienberg et al.  1985 ). The importance of this phenomenon for research 
was well illustrated by Groves ( 1991 ). He asked two questions about general health 
[reformulated]:
    1.    Would you say that your own health in general is excellent, good, fair, or poor?   
   2.    When you answered question-1 about your health, what were you thinking about?

•    Others of the same age?  
•   Myself at a younger age?  
•   Myself now as compared to 1 year ago?  
•   Other       
  The frequencies of the answers to the second question were highly revealing about 

the general and important issue of personal points of reference for judgments. 
 This implies that the researcher designing a question must try to know about (or 

at least anticipate) possible variations in such reference points and, if necessary, to 
learn about them in a pilot exercise. When the variation in reference points is impor-
tant, one should provide the respondent with one clear reference point, or, split the 
question into several questions each with a specifi c reference point. For example, 
when asking a question about self-perceived general health, as above, one could ask 
“When you compare your health now with your health 1 year ago, would you say that 
your health now is good, fair, or poor?” Yet this approach would still be less than 
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ideal because many people do not have an accurate recall of their health status 1 year 
ago. Indeed, personal reference points for judgments may shift considerably over time. 
This has important consequences for the validity of assessing changes in subjective 
attributes, which as a rule should be viewed with considerable skepticism, especially 
when effi cacy of an intervention on a subjective attribute is evaluated.  

    18.1.6.2 Personal Characteristics Affecting Response Accuracy 
 Inclination to satisfi cing or optimizing may vary individually, and so may the sus-
ceptibility to be infl uenced by social desirability motives or fears of disclosure. 
‘Yeah-saying’ and ‘nay-saying’ mean a preference for ‘yes’ and ‘true’ answers or 
‘no’ and ‘false’ answers, respectively. Many people do have a slight tendency, and 
some have a strong tendency for one of them. A way to minimize the effects of this 
is to make sure that questions are formulated such that, for the average respondent, 
one expects that about half of the answers will be ‘yes’/’true’ and half of the answers 
will be ‘no’/’false’ (Streiner and Norman  2008 ). ‘End aversion’ is a reluctance of 
many people to use the extreme options in an options list of answers. The conse-
quence is an under-estimation of frequencies of extreme categories. A possible 
solution, if one wants to minimize the effects of this phenomenon is to broaden the 
extreme categories (Streiner and Norman  2008 ). For example one could use ‘always 
or nearly always’ instead of ‘always’ and ‘almost never or never’ instead of ‘never’. 
Alternatively one may conceal the true extreme categories by adding extremes of a 
nearly impossible magnitude that nobody is expected to choose. Finally, epidemi-
ologists should remember that age, illness, sickness, and treatments can affect all 
stages of the response process.    

18.2     Questionnaire Design 

18.2.1     Standard Components of a Questionnaire 

 The main building blocks of a questionnaire are ‘items,’ which are units composed of 
a question with instructions, response options, and answering spaces. Items about a 
common theme are arranged in clearly delineated sections and linked through alpha-
numerical sequencing, combined with skip instructions when appropriate. In addition 
to the items, there may be spaces on the questionnaire that serve administrative or 
quality control purposes. Most questionnaires will have several onscreen or printed 
pages. Printed questionnaires may have one or several write-through pages attached to 
each numbered page (e.g., one for data entry and one for archiving). Studies may use 
several questionnaires administered in the same session or over multiple sessions. 

 Figure  18.2  shows the classical components of a questionnaire. Each single page 
of a questionnaire has a header section that identifi es, as a minimum, the study, the 
questionnaire within the study (if several exist), the page number, the participant 
identifi cation number, and the date of completion. Participant numbers and dates of 
completion may be pre-printed. Note that all instructions are traditionally given in 
 italics . A small footer indicates the version of the questionnaire and the printing date.
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18.2.2        General Approach to Questionnaire Development 

 The fi rst element in the general strategy to developing a questionnaire is to avoid 
anything that could confuse, bore, embarrass, or otherwise burden either the interviewer 
or respondent. This element encompasses (1) making the questionnaire as clear, 

  Fig. 18.2    Excerpt of a questionnaire form with the classical components of header section, items 
organized into sections, questions, answering spaces, options lists, and instructions       
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short, simple, friendly, and attractive as possible, and (2) making all possible efforts 
to keep motivation high. 

 The second element is to account for what is known about psychological response 
stages and infl uences of personal characteristics as discussed above. 

 The third element is to draw from what is known already about the validity of 
specifi c questions. It is unwise to produce a questionnaire item de novo if a suitable 
version of the item is known to exist, has been used in other studies, and has pro-
duced reliable and accurate information, except when there are reasons to believe 
that a translation, update, or cultural adaptation is necessary. Questionnaire devel-
opers’ websites or organizational repositories may provide access to adapted and/or 
translated versions that are suited to a particular research site. For example, the 
developers of the ‘Strengths and Diffi culties’ questionnaire hosts a website that 
provides details about the questionnaire and a repository of versions translated into 
various languages (  http://www.sdqinfo.com/    ). Another example is the World Health 
Organization research tools for substance abuse (  http://www.who.int/substance_
abuse/research_tools/en/    ). More examples are given in Table   10.4    . That being said, 
one should not assume that an item is acceptable for use and has been validated 
merely because it has been used in other studies. 

 The fourth element is to make maximal use of possibilities to promote data 
integrity after questionnaire fi lling (details discussed below).  

18.2.3     Practical Recommendations for Questionnaire Design 

 Panels  18.2 ,  18.3  and  18.4  are checklists for the content and format of questionnaire 
items and for the formatting of the entire questionnaire.   

    Panel 18.2 Checklist for the Content of a Questionnaire 

•     Do not collect personal identifying information unless necessary  
•   Avoid culturally sensitive questions or ask them sensitive questions only 

after an extensive and appropriate introduction with an explanation; 
place sensitive questions them towards the end of the questionnaire or 
relevant section  

•   Avoid leading questions or leading sets of response options. The phrasing 
of the question and the wording and sequence of the response options can 
be suggestive of a socially desirable or a typical ‘normal’ answer  

•   Avoid confusing and unclear questions or response options  
•   Avoid the use of specialized terms and medical jargon and the use of 

abbreviations and acronyms  
•   Avoid vague references to the past, e.g., “Compared to baseline…” or “Since 

last visit…” Respondents may not understand what exactly is meant by that  

(continued)

J. Van den Broeck et al.

http://www.sdqinfo.com/
http://www.who.int/substance_abuse/research_tools/en/
http://www.who.int/substance_abuse/research_tools/en/
http://dx.doi.org/10.1007/978-94-007-5989-3_10


367

•   Provide a common point of reference when asking about a current situation  
•   Avoid questions that refer to periods too far in the past or that would otherwise 

be challenging to answer based a high likelihood of forgetting  
•   Try to minimize the telescoping (i.e., the event is remembered but the date 

is inaccurate). Most emotional events tend to be remembered as more 
recent than they really were  

•   Choose an appropriate recall period  
•   Avoid open-ended questions as much as possible. If open-ended questions 

are necessary, provide suffi cient space. Give instructions on desirable 
elements and degree of specifi cation of the answers to be recorded in the 
open-answer fi eld  

•   Design items only for data that will be analyzed  
•   Avoid duplication of items. Validity of responses can be checked by asking 

several questions related to the same topic to see if responses are consistent, 
but these questions should be phrased in different ways    

     Panel 18.3 Checklist for the Format of Questionnaire Items 

•     Plan and sketch the design of the items before committing to paper  
•   Formulate the items in the language of the respondent  
•   Make options lists that are non-overlapping and as exhaustive as possible  
•   Add an option for ‘other’ or ‘don’t know’ whenever relevant  
•   Avoid complete non-response by adding options such as ‘Prefer not to 

respond’ or ‘Unsure of how to respond’  
•   Clearly indicate whether only one option should be chosen (using  circles  

as tick boxes) or whether multiple options can be chosen (using  squares  
as tick boxes)  

•   If more than one response option can be selected, it is usually preferable to 
list all with yes/no/don’t know options for each rather than providing an 
overarching instruction to ‘select one or more’ from the list.  

•   Use answering spaces of appropriate length  
•   Clearly indicate the unit of measurement, e.g., cm, kg (SI Units)  
•   Use consistent units of measurement for similar items in the questionnaire  
•   Adapt questions to mode of administration. In telephone-administered 

interviews options lists cannot be as long as in self-administered 
questionnaires    

Panel 18.2 (continued)
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18.2.4             Questionnaire Design Decisions to Facilitate 
Data Entry and Analysis 

 To facilitate data entry, one can consider the following options when developing a 
questionnaire:
•    Design the electronic data entry form to resemble the paper form as much as possible  
•   Provide code lists on the form as much as possible (perhaps in italics and with a 

smaller font size)  

   Panel 18.4 Checklist for Questionnaire Formatting 

•     Include all main components of a questionnaire (Illustrated in Fig.  18.1 )  
•   Format all items according to Panel  18.3   
•   Format the printed questionnaire pages so that they resemble the electronic 

version used for data entry  
•   When producing another language version, check translation accuracy by 

comparing an independent back-translation with the original. Guidelines 
are available at:   http://www.who.int/substance_abuse/research_tools/
translation/en/      

•   Provide detailed instructions on questionnaire administration in a user’s 
manual; make sure each interviewer is trained accordingly and has the 
instructions available during each interview  

•   In self-administered questionnaires, visual attractiveness of the forms and 
large enough font sizes are of extra importance  

•   Surround sets of related items with a box  
•   Avoid crowding the questions on a page; separate questions clearly  
•   Use no more than two columns per page  
•   Separate columns with clearly visible lines  
•   Use consistent page designs  
•   Avoid splitting an item across pages; especially avoid having the response 

options cross pages  
•   Be consistent with codes and options list throughout the questionnaire, 

e.g., not: ‘yes, no, don’t know’ on one page and ‘no, yes, don’t know’ on 
another page  

•   Make sparse use of skip and stop instructions; limit skips by optimal place-
ment of answers; tell where to go next, not what to skip  

•   For printed versions, use thick paper that can withstand repeated handling; 
if fi nances allow use transparent plastic folders for each form  

•   Use consistent date formats throughout the questionnaire; the least confus-
ing date format is DD-MMM-YYYY (e.g., 08-FEB-2012)  

•   Avoid questionnaires that are very long  
•   Finalize the questionnaire after several practice runs  
•   Avoid loss of printed pages by properly attaching all the pages    
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•   Be consistent with codes and options lists throughout the questionnaire. Try not 
to use separate, different code lists for data entry: data entry persons should 
ideally be able to type directly what they see  

•   For closed answers, use boxes with a space for each character. Mind the appropriate 
number of characters and the number of decimal places  

•   Design the questionnaire in such a way that a data entry screen can be easily 
made with a similar design  

•   Ask feedback from data entry persons before fi nalizing a questionnaire  
•   Mimic interview skip patterns in data entry forms    

 For making the questionnaire analysis-oriented consider the following options:
•    Envisage the analysis when designing questionnaire items  
•   Only collect data that will be used in planned analyses of the primary and 

secondary outcomes  
•   If the analysis uses derived variables (computed from raw data) make sure all 

necessary elements for the computation are collected on the forms, e.g., data 
elements for socio-economic status, dates for length of follow-up, etc.      

18.3     Types of Items in Questionnaires 

18.3.1     Structured, Semi-structured, and Open-Ended Items 

 All types of items include a worded question but they differ in the way responses are 
recorded. A  fully structured item  provides a clear measurement scale on which one 
or more specifi c values can be placed. For instance, it may provide a list of response 
options from which one or more need to be chosen. Another example is an item that 
depicts a visual analog scale (Fig.  18.3 ), on which a single value needs to be indi-
cated. Yet another example is an item with clearly indicated spaces to record mea-
sured height.

   A  semi-structured item  equally represents a clear range of options, but one or 
more of the options trigger a sub-question, the response to which is to be recorded 
as free text. The item is thus only structured to a certain level. This type of item is 
useful when an explanation or specifi cation is desired of a chosen option. For 
example “If ‘other,’ please specify: __________” or “If yes, please explain reasons: 
_____________.” 

 A  fully open-ended item  simply provides a dedicated open space where the 
respondent or interviewer can freely write a textual answer to the question. Though 

No Pain Most severe pain in my life

Mark the line to indicate how bad your pain is today.

  Fig. 18.3    A visual analog scale – VAS       

 

18 Questionnaires



370

this text is free in principle, the open-ended item can include instructions (e.g., algo-
rithms) to help focus the respondent on particular aspects of content or instructions 
to request certain restrictions in the format (e.g., length) of the response. 

 Questionnaires that are mostly composed of structured and semi-structured items 
are called  structured questionnaires , and those mostly containing open-ended items 
are called  open-ended questionnaires .  

18.3.2     Items for Counts and Continuous Attributes 

 For the redaction of items for continuous attributes, most of the guidelines in Panel 
 18.2  are relevant. Here we will discuss some particular issues and some typical 
forms of items. 

 As to the precision and units of measurement, it would be unfair to ask respon-
dents to report a quantity in units they are unfamiliar with, or to ask to report it with 
a precision that is unlikely to be remembered or traced. Thus, the item needs adapta-
tion to locally used units of measurement and locally used precision. Several options 
may need to be offered if there is heterogeneity in this local tradition. 

    18.3.2.1 Respondent-Reported Measurement Values 
 The concept of  respondent-reported  includes both ‘self-reported’ and ‘reported for a 
child or other person.’ It is usually understood that this relates to information retrieved 
from memory. For example, self-reported weight and height are commonly under-
stood to be the most recent weight and height measurement values the respondent 
remembers. Obviously some measurements must have been done at some point in 
the past, but when exactly this measurement was done, how accurate the measure-
ment value was, and how well it is remembered and reported are unknown and highly 
variable. In addition, remembered values may be outdated, e.g., the respondent may 
have gained or lost a lot of weight since the measurement (s)he remembers. 

 Numerous studies have indeed shown the lack of reliability of self-reported 
weight and height values. In general, respondent-reported numerical values based 
uniquely on memory need to be avoided as much as possible. In mailed survey 
questionnaires or in other situations where direct measurement by an observer is 
impossible, it can be useful to request that respondents use additional sources other 
than memory. For example, the item in the mailed questionnaire could include an 
instruction for the respondent to trace or verify the numerical value, time or date, 
with the help of a diary or by looking up other written information. It may also 
contain a request to perform the measurement again before answering, e.g., using an 
available scale to measure one’s weight. Whenever different sources are possible it 
becomes important to include a sub-question to record the sources used (e.g., mem-
ory, documentation, new measurement, or combinations).  

    18.3.2.2 The Item for Age Determination 
 Age is frequently used as an eligibility criterion and also as a study variable. Errors 
in age determination can thus potentially lead to selection bias, information bias, 
and confounding. Age is a continuous attribute commonly defi ned as ‘time elapsed 
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since birth.’ Age is often measured by calculating the time interval between two 
dates: the date of birth and the date of fi lling the questionnaire. Both these dates 
are normally recorded in epidemiological studies and can often be accurately pro-
vided by respondents themselves. Alternatively, but somewhat less reliably, one 
can ask the respondent directly for an age or an age at last birthday. This alterna-
tive approach is based on the assumption that respondents know their birthday, 
remember their age at their last birthday, and sometimes that they can calculate 
months elapsed since their last birthday. Some participants may have diffi culty 
remembering or counting months. Also, not everybody is familiar with the months 
of the Gregorian calendar: in some societies, one rather calculates in moon cycles 
than in months. 

 Consequently, the birth date-based method is generally preferable over asking 
for age. It makes sense to include into the item an instruction asking respondents to 
verify any document that may contain the birth date, preferably the birth certifi cate 
or an identifi cation card. The same is true if the questionnaire is to be interviewer- 
administered, as the interviewer can then verify the documents. In areas where such 
documents are not systematically available, asking for a document-endorsed birth 
date or an age may be helpful for some but not for all. The measurement of age in 
such areas should then, for some of the participants, involve an interview during 
which approximate birth dates are derived with the help of a local events calendar 
or via reference to people of the same age (e.g., former class mates) who  do  know 
their birth date or age exactly. A sub-question is then useful to distinguish partici-
pants for whom this method was applied.  

    18.3.2.3 Visual Analog Scales: VAS 
 A VAS consists of a line and two described endpoints representing the least possible 
and the most possible amount of an attribute (Fig.  18.3 ). There are strengths and 
weaknesses of this method (Streiner and Norman  2008 ). A VAS is generally appealing 
although some respondents may not fi nd it easy to understand. The optimal wording 
to describe the endpoints can be a problem and a source of variation. For example, 
an endpoint described as ‘the worst possible anger’ may mean totally different 
things to different respondents depending on their experiences and imagination.  

    18.3.2.4 Ordinalized Scales 
 Sometimes the measured attribute is continuous but the scale for measurement is 
ordinalized (presented as a sequence of ordinal levels). The optimal number of levels 
is usually in the range of 5–7. Ordinalized scales include the following types:
•    Horizontal options lists with circles (Fig.  18.4 )
•      Likert scales (Fig.  18.5 ): These are often used to measure subjective levels of 

agreement, acceptance, or perceived likelihood. They are characterized by the 
fact that there are levels of opinion in either direction away from a neutral opin-
ion. The neutral opinion itself may or may not be mentioned as a separate level, 
but it usually is

•      Juster scales (Fig.  18.6 ) are used mostly for subjectively estimating the probabil-
ity of an event. The ordinal levels are described by a numerical probability 
 combined with a worded interpretation of that same probability
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Select the most appropriate response from the list provided

Question 1: Compared to most other newborn babies in your community, how much did
your child weigh at birth?

O I am not sure O Much less compared to other newborns O About the same O Much
more O A whole lot more 

  Fig. 18.4    A horizontal options list with circles showing incremental values       

Select from the options listed below the most appropriate response:

Question 1:  The food in this canteen is not fit for consumption. Do you…
1.  Strongly disagree
2.  Disagree
3.  Neither agree nor disagree
4.  Agree
5.  Strongly disagree

Mark your response here _____

  Fig. 18.5    A Likert scale       

Instructions: The answers to the following questions and statements will be on a scale, 
from 0 to 10, where 0 stands for no chance and 10 for certainty. See: explanation for 
each point below: 

Score Percent of certainty Verbal explanation
0 1% No chance, almost no chance

Certain, practically certain

1 10%
2 20%
3 30%
4 40%
5 50%
6 60%
7 70%
8 80%
9 90%
10 99%

Question 1: How likely are you to buy cigarettes in the week?
No chance 0 --- 1 --- 2 --- 3 --- 4 --- 5 --- 6 --- 7 --- 8 --- 9 --- 10 Certain

  Fig. 18.6    A Juster scale       
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•      Face scales (Fig.  18.7 ): The ordinal levels are represented by faces expressing a 
range of moods or of pain (Stinson et al.  2006 ). This makes it more feasible for 
children and for those with reading diffi culties. Face scales can be seen as a special 
form of Likert scale

18.3.3            Items for Non-continuous Attributes 

 For the redaction of items for non-continuous attributes, most of the guidelines of 
Panel  18.3  are relevant. We briefl y discuss some particular types of items of interest. 

    18.3.3.1 The Item for Sex Determination 
  S ex is one of most frequently used variables in health research. There exist distinc-
tions between chromosomal/biological sex, genital sex, other phenotypic sexual 
characteristics, sexual orientation, gender, and gender-related behavior patterns. 
Based on this, a small rate of mismatch is expected between respondent-reported 
sex and interviewer-reported sex. Respondent-reported sex and gender are expected 
to be more strongly correlated with each other, whereas interviewer-reported 
sex may be more infl uenced by phenotypic sexual characteristics and dress code 
followed. In practice, however, unless the research directly concerns issues around 
biological sex or gender, the mismatch will be negligible. Thus, a simple question 
with two response options (male/female or boy/girl) will usually be appropriate in 
all types of questionnaires and for all modes of administration. 

  Hint 
 Biological sex and gender are often used interchangeably, but they are in fact 
very different concepts. Biological sex refers principally to chromosomal 
patterning, where males are defi ned by the presence of a Y chromosome (i.e., 
XY, though XXY and XXYY are rare variants) and females are defi ned by the 
absence of a Y chromosome (i.e., XX, though XO and XXX are rare variants). 
Gender, on the other hand, is a social construct defi ned by behavior, actions, 
roles in society, and sexual orientation. Gender identifi cation refers to a self-
selected gender.   

Instructions: Ask the child to show you on the face scale how much the foot hurts today

Question 1: Foot pain level indicated by the child

  Fig. 18.7    A face scale       
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    18.3.3.2 Items for Measuring Dichotomous Phenomena 
 The following types of phenomena are commonly measured:
•    Whether or not a past event, experience, or activity has occurred, e.g., by the 

question ‘Have you ever taken oral contraceptive pills?’  
•   Whether or not a state is present or absent, e.g., by the question ‘Are you cur-

rently married?’ Note that attributes can be nested and hierarchical and that, for 
this reason, a particular level of one attribute may be seen as a dichotomous 
attribute on its own. For example, age is a continuous attribute but being an adult 
can be considered to be an attribute on its own  

•   Opinions about whether a particular statement is true or false    
 The items for these types of attributes often contain short questions with ‘Yes-

No-Don’t Know’ or ‘True-False’ response options. Multiple dichotomous charac-
teristics can be measured in a single item starting with a general question such as 
‘Have you ever taken any of the following medicines?’ or ‘Have you ever had one 
of the following illnesses?’ or ‘Are the following statements true or false?’ Such 
items assessing several dichotomous attributes may do so with the aim of measur-
ing a higher-level latent attribute. For instance, a list of questions about the use of 
particular medications may aim at measuring whether treatment for a particular 
illness was given. Or, an item containing a list of statements with ‘True-False’ 
options may aim at measuring a level of knowledge or a psychological-behavioral 
characteristic. These examples are illustrations of the fact that attributes can be 
multi-dimensional and nested.    

18.4     Questionnaire Administration 

 For questionnaire administration it is important to keep in mind that anything that 
can confuse, distract, bore, embarrass, or otherwise burden the respondent or the 
interviewer will tend to adversely affect accuracy and completeness of the recorded 
responses. In this section we will discuss administration styles, specifi c training, 
user’s manuals and ethical issues of questionnaire administration with a special 
concern for maximizing accuracy and completeness. As a reminder, in Chap.   10     we 
discussed  modes  of administration in the context of designing a measurement plan. 
The important choices to make included:
•    Self-administered vs. interviewer-administered  
•   Face-to-face vs. internet vs. telephone vs. mixed administration  
•   Administration at home vs. clinical care settings vs. other  
•   Proxy-respondents vs. interviewing enrolled study subjects    

 One should make sure to always record the type of respondent used, for example 
self-about-self, mother-about-child, other-caregiver-about-child, etc. When an adult 
is reporting about a child, especially in environments with extended care-giving 
practices, it may be necessary to defi ne the relationship of the adult to ensure validity 
of responses. Generally speaking, proxy-respondents must be avoided as much as 
possible if the enrolled subject is capable of providing accurate answers. 
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18.4.1     Styles of Interviewing 

 The style of interviewing tends to have an infl uence on the accuracy of the responses. 
Panel  18.5  lists the main styles and the expected effects on responses.   

18.4.2       Training of Questionnaire Administration 

 Panel  18.6  shows a checklist of selected training topics around questionnaire 
administration.   

   Panel 18.5 Main Styles of Interviewing 

     Standardized interviewing  
•  All interactions with respondent are prescribed and written in the inter-

viewer’s guide as a step-by-step process. This style rules out most inter-
viewer infl uences on responses.  

   Conversational interviewing  
•  This mode allows interviewers to interact freely with respondents, which 

minimizes errors due to poor understanding of the question by the respon-
dent but also introduces some interviewer variance. The interviewer’s 
guide in this case may contain information on common misunderstandings 
and (perhaps several) possible ways of responding to them.  

   Conversationally fl exible interviewing  
•  This mode of administration combines both previous styles: a standardized 

part and a free part to each question. Alternatively, there can be a standardized 
approach for one question and a conversational one for another question 
(Biemer and Lyberg  2003 ). Conversationally fl exible interviewing leads to 
the same accuracy as standardized interviewing when the question is easy to 
answer, and it has been found to allow for better accuracy than standardized 
interviewing when the question is diffi cult.    

   Panel 18.6 Checklist for Training on Questionnaire Administration 

•     Provide detailed instructions in a user’s manual; make sure each interviewer 
is trained accordingly and has the manual available during each interview; 
this includes moving through the questionnaire at an appropriate pace, 
writing legibly, using permanent ink, etc.  

(continued)
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     18.4.2.1 Source Document Standards 
 ICH Good Clinical Practice guidelines state that ‘Source data is all information 
in original records and certified copies of original records of clinical findings, 
observations, or other activities in a clinical trial necessary for the reconstruc-
tion, evaluation and validation of the trial. Minimum standards as to the quality 
of source data are currently prescribed for clinical trials only. However, many of 
the specific guidelines are potentially useful for other types of studies as part 
of a strategy of maximizing data quality. Selected examples of this are listed 
below.
•    No changes to original data can be made without signed justifi cation  
•   No personal identifi ers on questionnaires except with special permission  
•   All questionnaires and any copies must be signed, credentialed, and dated. 

Copies must be certifi ed to be an exact refl ection of the original  
•   Any questionnaire as well as any written communication about the participant 

(e.g., lab report) must mention subject study number  
•   A master-list must be kept linking study number to personal information, only 

accessible by the investigator (not data management personnel)  
•   Every protocol deviation (e.g., missed visit) should be documented with reasons 

for the deviation stated  
•   Never obliterate entries that require correction (no barring, no use of 

white-out)  
•   Never destroy original documents if they require error correction  
•   Follow-up questionnaires must be kept in chronological order  
•   Enrollment forms must document compliance with each single eligibility 

criterion  
•   All source documents must be kept either in a same place or in a way that a moni-

tor can easily access them during a monitoring visit      

•   Suffi cient training and supervision during the preparatory phase should ensure 
that the interviewer establishes rapport with the participant during face-to-face 
interviews even when the user’s manual is constantly referred to  

•   Special training on the use of code lists  
•   Special training on skip patterns  
•   Special training on uniform date recording  
•   Special training on items that require complex probing, e.g., age or date 

assessments based on a calendar of local events  
•   Special training on the specifi city of terminology, length of text, etc. for 

items involving free-text  
•   If optical scanning and recognition is used for data entry, organize special 

training to avoid common types of computer-misreads    

Panel 18.6 (continued)

J. Van den Broeck et al.



377

18.4.3     The Questionnaire User’s Manual 

 Also known as the Interviewer’s Guide or Instruction Sheet, the questionnaire User 
Manual contains detailed instructions on the use of the questionnaire form. User’s 
manuals usually have a section with general guidelines as well as question-specifi c 
sections. The content is infl uenced largely by the chosen style of interviewing. One 
can also consider providing a library of pre-coded answer sets in the user’s manual, 
e.g., occupational categories. One should make sure that each interviewer is trained 
extensively on how and when to use the instruction sheets. It should be a formal 
obligation for the interviewers to have the instruction sheets available for consulta-
tion during each interview. It is habitual to prepare a Standard Operating Procedure 
based on the User Manual and fi eld logistics; this will prevent deviation from the 
study protocol.  

18.4.4     Ethical Considerations Around Questionnaire Administration 

 It is good to ensure privacy during questionnaire administration and to avoid non- 
intended disclosures. These measures optimize accuracy and limit item non- response 
rates. When the subject matter is anticipated to reveal emotionally sensitive issues, 
such as partner violence or mental distress, protocols should include details on 
emergency counseling and professional services. Periodic counseling of interviewers 
is also advised in such research, though data collectors should not do this counsel-
ing. Finally, adherence to source document standards, as described above, is another 
ethical imperative. 

  This chapter discussed questionnaire design and administration. Every time a 
direct measurement value or response is recorded or a biological sample is 
taken, a further challenge lays ahead, namely to preserve the integrity of these 
data and samples while they are processed. The maintenance of data and 
sample integrity is therefore the topic of the next chapter.       
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    Abstract 
   Data have integrity when they are free of data abnormalities and data manipulations. 
Maintaining data integrity is a responsibility of all those involved in research, 
not only data managers. The costs of data integrity problems and of responding 
to them when they are discovered can be high; therefore, prevention of data 
integrity problems is far better than correcting them after they have been made. 
However, even when good strategies are employed to prevent data integrity 
problems (a topic discussed previously), it is inevitable that some data integrity 
problems will occur. The specifi c foci of this chapter are thus on (1) operational 
problems occurring in spite of detailed quality assurance and data management 
plans and (2) adaptive responses. Some data integrity challenges and possible 
solutions in resource-limited settings are also highlighted.  
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19.1        Concepts of Data Integrity 

 As we have discussed in previous chapters, data management is a complex and labo-
rious process. It begins during the study planning stage, far in advance of recording the 
fi rst data points. Along the way, the investigative team aims to limit the number of data 
errors and manipulations. Failure to do so adequately results in data  without  integrity 
and, consequently, study fi ndings that are biased. Such unfortunate developments also 
result in substantial losses of time, effort, and resources and waste human subject data. 
On the other hand, data  with  integrity are free of errors and manipulations. Thus, 
maintaining data integrity is a key ethical responsibility of all epidemiologists and 
their investigative teams. Panel  19.1  highlights some of the key terms and concepts 
relevant to data integrity. These terms will recur repeatedly here and in Chap.   20    .   

19.2       Threats to Data Integrity After Initial Recording 
or Sampling 

 Threats to data integrity fall into three categories: (1) organizational weaknesses 
affecting individual performance levels during activities relevant to maintaining 
data integrity; (2) failures of equipment and infrastructure needed for maintaining 

   Panel 19.1 Terminology Related to Data Integrity 

     Analysis dataset     Selection of fi elds and records extracted from a database, 
used for a particular statistical analysis   

   Data     Recorded information   
   Data abnormality     Data which are defi cient, excessive, outlying or incon-

sistent in comparison with prior expectations   
   Data cleaning     Process of detecting, diagnosing, and editing data abnormalities   
   Data fl ow     Passage of recorded information through successive information 

carriers   
   Data integrity     Freedom of data abnormalities and data manipulations   
   Data management     The organization of data processing   
   Data manipulations     Changes deliberately made to data values for reasons 

other than data cleaning   
   Data processing     Recording, storing and extracting data, and cleaning and 

preparing data for analysis ( q.v.  data handling)   
   Database     Organized set of data kept as a source for extracting analysis datasets   
   Erroneous data     Missing or inaccurate (biased) data   
   Quality control of data     Data management activity aiming at checking data 

integrity   
   Quality assurance of data     Activities aiming at optimizing and maintaining 

data integrity     
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data integrity, and (3) deliberate human action. Many players in research studies 
have some capacity to support or undercut data integrity. Table  19.1  shows the main 
players involved in data-related study operations, lists their functional roles, and 
outlines types of threats to those roles.

      Table 19.1    Types of threats to data integrity   

 Players 

 Role in 
maintaining 
data integrity 

 Examples of threats to data integrity 

 Organizational 
weaknesses 

 Equipment and 
infrastructure 
problems 

 Deliberate human 
action 

 Communities 
and authorities 

 Support 
operations 
related to 
maintaining 
data integrity 

 No timely 
approvals for 
sample shipments 

 Irregular 
electricity 
supply for cold 
storage 

 Politically 
motivated or 
misperception- based 
boycotts 

 Sponsors  Provide 
resources for 
maintaining 
data integrity 

 Lack of interest in 
interim data 
reports or lack of 
capacity to issue 
queries 

 Insuffi cient 
budgets for 
QA/QC-related 
equipment 

 Retaliation against 
individuals who 
report data problems 

 External 
monitoring of 
data operations 

 Institutions  Provide 
resources for 
maintaining 
data integrity 

 Delayed hiring of 
QA/QC and data 
handling personnel 

 Providing 
insuffi cient 
space for QA/
QC, data 
handling, 
sample storage, 
archiving 

 Misuse of research 
funds designated for 
data management 

 Ethical 
oversight of 
data problems 

 Scientifi c team  Supervise 
integrity of data 
processing 

 Not organizing 
restrictions on 
database access, 
no audit trails or 
performance 
metrics 

 Not insisting 
with sponsor 
and institution 
on more 
resources when 
needed 

 Hiding data 
problems; 
falsifi cation or 
fabrication of data, 
analysis errors 

 Study personnel  Supervise data 
handling and 
chain of custody 
in data and 
sample fl ow 

 Loss of completed 
questionnaires due 
to weather or 
extreme 
circumstances; 
excess data entry 
errors 

 Use of 
equipment for 
purposes not 
described in 
protocol 

 Deliberate 
destruction of part 
of the data; 
neglecting back-up 
and archiving 
procedures  Maintain 

database 
(backups and 
archiving) 
 Extract analysis 
datasets 

 Study 
participants 

 Provide source 
data/samples 

 Not motivated to 
communicate well 
with study 
personnel 

 Incorrectly 
follow 
instructions on 
handling forms 
and samples 

 Deliberately 
reporting erroneous 
data 
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   In a rare case study of data integrity Crucitti et al. ( 2010 ) have shown that in 
well-designed and large studies with extensive quality assurance serious unexpected 
problems can occur. This case study (Textbox  19.1 ) illustrates well that most data 
integrity problems with samples and laboratory analyses arise from either defi cient 
standard operating procedures or practical deviation from them related to human errors. 

 The case study of Van den Broeck et al. ( 2007 ) gives an account of biological 
sampling problems arising in an ongoing micronutrient trial. Proper quality control 
of samples started too late in the trial, mainly because the analyses of the samples 
only concerned a secondary outcome in the trial and the focus of quality assurance 
efforts had gone mostly to the primary outcome. This points to another commonly 
observed pattern of data integrity problems in general, namely that they tend to arise 
more commonly and/or tend to be more severe for data about secondary outcomes 
than for primary outcomes. In this trial, too, forgetfulness and simple human mistakes 
were found to be common causes of data integrity problems. Another interesting 
cause was programming errors in software for barcode printing that had remained 
undetected during piloting and validation. 

 Not all data integrity problems, however, arise from biological sampling, laboratory 
processes, or equipment. In fact, any process involving samples or information 
provided by subjects is liable to data integrity problems. For example, in our experi-
ence, there are quite commonly problems with questionnaire-based data collection, 
although their discovery always comes as an unfortunate surprise. These problems 
tend to relate to the following:
•    Loss of, disappearance of, or damage to questionnaires  
•   Decreasing focus on supervision and quality control of fi lled-out questionnaires  

    Textbox 19.1 A Case Scenario Illustrating Data Integrity Problems with 
Samples and Laboratory-Based Assessments 

  Crucitti et al. (  2010  )  reported issues of laboratory data validity that arose 
during a large international multi-center microbicide trial. The trial involved 
laboratory capacity building in peripheral trial sites, under the guidance of a 
central reference laboratory. In spite of careful logistical preparations, training, 
and intensive quality assurance and control, some serious problems arose in 
the course of the study. These included several false positive HIV test results 
from a peripheral lab site, DNA contamination of amplifi cation-based tests, 
instances of sample mislabeling, and clerical errors in sample shipment lists. 
Interestingly, the false positive HIV tests were mostly due to fading skills 
gained during training. The DNA contamination was due to decreased atten-
tion to protocols for cleaning the laboratory and performing the necessary 
sample preparations. Upon discovery of these problems, corrective actions 
were taken, but there is no way to reverse the unnecessary anxieties caused by 
false-positive HIV test results or to recoup the costs associated with investi-
gating sample contaminations. 
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•   Discovery of cases of questionnaires that are inconsistent internally, inconsistent 
with data from previous questionnaires, or illegibly fi lled out by interviewers  

•   Temporary or permanent delays in data entry and data cleaning    
 In studies with high data quality expectations, such as clinical trials, the threshold 

for calling something a data integrity problem may be very low. What would be con-
sidered a minor problem in another type of study might be seen as a major problem 
by trial monitors. Trials and other longitudinal studies are more likely to face study 
fatigue among study personnel and among participants and to endure challenges 
associated with changing views of sponsors and local authorities. Indeed, these 
stakeholders and others (e.g., communities) are important in facilitating  studies, but 
they can also cause unexpected dysfunctions or changes in study procedures. Such 
changes can be major threats to data integrity.   

19.3       Adaptive Responses 

 A fast response is needed when serious data integrity problems surface spontaneously 
or when they are revealed by performance metrics, but not without a thorough 
examination of the nature of the problem. This examination must initially focus on 
people, not structures. The fi rst matters are identifying the players involved, the quality 
of their interactions, their understanding of their own and others’  responsibilities, 
and other possible reasons underlying poor behavior or performance. During this 
process structural weaknesses and possibilities for operational adaptations tend to 
emerge. After the sources of data integrity problems are identifi ed, they should not 
be left to linger. A fast solution is critical. Fortunately, most problems have simple, 
easy-to-implement solutions. All that may be needed is a good conversation, an 
effi cient meeting, or a simple change in timetable. In other instances, however, 
the solution may require complex and cumbersome procedures, and sometimes the 
problem and solution are clear enough but the resources needed to implement the 
change are insuffi cient. When complex problems and solutions are discovered, 
study investigators, coordinators, or data managers must not accept the fatalistic 
attitude of ‘things are never perfect’ and move on without an adequate solution. This 
attitude is analogous to satisfi cing, but the consequences of satisfi cing in dealing 
with data integrity problems are far more serious than those caused by a subject’s 
satisfi cing while answering questions. 

 Data integrity problems and solutions tend to be particular in nature (i.e. they are 
specifi c to the study and problem at hand), but the following general questions 
deserve some attention in responding to any data integrity problem:
•    Have the right people been contacted? Have the individuals been contacted who 

have the responsibility and power to do something about the problem?  
•   How can the decision mechanisms for facilitating the response be improved?  
•   Are there certain types of decisions that can be automated by a feedback link to 

some objective metric?  
•   What are the costs of various responses?  
•   What is the cost of not responding?    
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19.3.1     Structural Improvements of the Flow of Data and Samples 

 Quality control activities and data cleaning ( See:  Chap.   20    ) often allow the researchers 
to gain insight into the nature and severity of error-generating processes that depend 
on structural problems. Perhaps the most common structural problems encountered 
regarding data integrity relate to programming of data collection, data entry, post-
entry data cleaning, data transformations, and data extractions. If these problems are 
identifi ed early enough, solutions may be easier to develop and deploy. In this case, 
the researcher can often simply give feedback to operational staff to improve study 
validity and precision of outcomes. But late-discovered errors may be more diffi cult 
to address and may temporarily overburden data entry and QA/QC personnel. 

  Hint 
 When serious data integrity problems arise it may be necessary to amend the study 
protocol regarding design, timing, observer training, data collection, quality control 
procedures, and/or analysis strategy. In rare instances, it may even be necessary to 
restart the study. In these instances, it may be necessary to proceed with the advice 
and guidance of an ethics board.   

19.3.2     Adjustments of Laboratory Practices in an Ongoing Study 

 When a laboratory testing problem surfaces, testing is usually put on hold and one must 
organize some fact-fi nding investigation to identify causes. Intensive communica-
tion is the rule. One must give immediate feedback, provide guidance, and retrain 
laboratory staff (for an example,  See:  Textbox  19.1 ). Guidance and re- training will 
normally consist of an on-site re-enforcement of Good Clinical Laboratory Practice 
guidelines (Ezzelle et al.  2008 ). This may involve bolstering QA/QC procedures by 
making them more intensive or detailed, and it might involve initiating new proce-
dures previously considered unimportant, unaffordable, and/or cost-ineffective for the 
specifi c study context. Re-enforcements may concern the specifi c study only or relate 
to a sustainable upgrade of the accreditation level of the entire laboratory (e.g., ISO 
accreditation). Such quality upgrades, in turn, may be supported by and may fi t in the 
context of strengthening wider networks, such as (inter)national laboratory systems 
(Wertheim et al.  2010 ; Nkengasong et al.  2009 ,  2010 ; Olmsted et al.  2010 ).  

19.3.3     Budget Extensions and Supplements 

 Various problems may bring up a need to expand or supplement a study budget. 
The problem may be that the enrollment period needs to be extended, that costs 
were underestimated, that costs changed unexpectedly, or that received money was 
devalued. When dealing with these issues, it is good to keep in mind that:
•    Funders often dislike budget extensions beyond what was initially granted  
•   It may be acceptable to the funder to transfer money from one line item to another 

so that any savings on one front can benefi t the problematic budget items  
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•   Any savings should not have more than a minimal impact on data quality  
•   The extra funds may have to come from another funder, perhaps from the research 

institution itself, or, in the extreme case, from the investigator  
•   Many funders do not object to other funders being involved  
•   Obtaining extra funds is very time consuming and painstaking     

19.3.4     Monitoring the Success of Adaptive Responses 

 The chosen adaptive response needs to be monitored. In support of this monitoring, 
refi ned or intensifi ed performance metrics may be needed to strengthen the QA/QC 
system. Overall, the success of maintaining data integrity can be assessed quanti-
tatively by a database-to-source document comparison of values of key variables 
(Van den Broeck et al.  2007 ). For questionnaire-based data, an error rate of less than 
1 % is sometimes set as a criterion for successful data handling in population-based 
epidemiological studies. The rate can be compared between a period before and 
after the adaptive response. For laboratory-based results, possible recurrence of 
false test results or other metrics of test performance will need to be monitored 
intensively.   

19.4     Maintaining Data Integrity in Resource-Limited Settings 

 Obtaining and maintaining data integrity in rural areas and developing countries is 
feasible and can result in acceptable data quality. 

19.4.1     Challenges to Maintaining Data Integrity 
in Resource- Limited Settings 

 There are some major challenges to maintaining data integrity in resource- 
limited settings. For example, there may be local unavailability of experienced 
programmers, data managers, IT personnel, laboratory technicians, or other 
important study personnel involved in maintaining data integrity (Van den Broeck 
et al.  2007 ). One is often forced to engage with less experienced and less skilled 
personnel who need more training. Once appropriate personnel is found and 
trained, the actual setting up of a local IT and data system may prove to be more 
time consuming and expensive than anticipated. However, when there is scarcity 
of experienced personnel or high turnover of personnel, sometimes one has no 
other option than to assign certain tasks to relatively inexperienced persons who 
need on-the-job training to gain experience. The lack of experience might reduce 
the quality of the work or even inspire lack of confidence and trust with research 
participants, which can contribute to enrollment bias and various other types 
of bias. 

 Moreover, in remote rural areas, it may be very diffi cult to conduct fi eldwork 
supervision, fi eld staff re-training, and query handling, and these processes may 
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depend on streamlined transport over large distances. For example, study staff may 
occasionally forget or loose questionnaire forms or hand in forms with considerable 
delays. When these situations occur in remote areas with poor transport and 
communication infrastructure, it is more diffi cult to redo the examinations and 
interviews. Large distances and diffi cult travel and working conditions tend to mean 
fl uctuating but generally reduced effi ciency of supervision, individual fi eld staff 
re-training, and query handling. 

 Directly linked to the practical problems of doing fi eldwork in poor or rural areas 
are potential space constraints. Space for data collection and pressure for sharing 
scarce equipment resources may prove to be an unexpectedly big problem in rural 
clinics of developing countries. Facilities may become over-crowded and over- 
burdened during epidemics. Available spaces can experience interruptions of elec-
tricity, Internet connectivity, water supply, and other essential utilities to make 
working conditions diffi cult. 

 One might also need to address unexpected cultural differences between partici-
pants and bio-medically trained staff as well as any other tensions arising between 
communities and research team. For example, in some cultures, the mothers’ time 
allocation is crucial for the survival of the household. Spending a lot of time with a 
mother every week is only sustainable if interviewers show real empathy and respect 
the mother’s time schedule, which usually means visiting very early in the morning 
before the mother leaves the homestead. Field staff may eventually have serious 
diffi culties with the long and odd working hours, traveling, and other burdens of 
working in diffi cult circumstances, and this can contribute to increased staff turn-
over and sometimes budget supplements and structural re-adjustments during the 
implementation phase. 

    19.4.1.1  Challenges to Maintaining Laboratory Capacity 
in Resource-Limited Settings 

 For a variety of reasons, high turnover of personnel is a typical problem likely to 
affect data integrity in ongoing studies in rural areas. In addition, laboratories in 
resource-constrained settings also tend to lack logistic and technical support from 
manufacturers and providers of laboratory equipment (Crucitti et al.  2010 ). For 
example, there is often less easy access to maintenance contracts, less easy 
communication about technical problems, and more diffi cult access to training 
symposia. Thus, laboratory activities may need longer interruptions when problems 
are detected. 

 An additional problem may arise when small peripheral laboratories are routinely 
involved in testing for clinical care purposes in addition to being involved in the 
research study. Such a setup may well be considered the most cost-effi cient, espe-
cially when laboratory analyses only concern secondary outcomes in a study. This 
may mean that study-related activities are only part of the activities of the laboratory 
personnel. The problem is that due focus on the special SOPs for the research study 
may dissipate more easily with this setup, especially in periods of high workload for 
clinical care.   
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19.4.2     Potential Solutions to Maintaining Data Integrity 
in Resource-Limited Settings 

 The challenges described above should not be taken to imply that data integrity cannot 
be maintained in resource-constrained settings. There are examples of excellent 
research successfully completed in such circumstances, but there are also examples 
of failures (Doumbo  2005 ). It is crucial to identify general and contextual factors 
that threaten data integrity in resource-constrained circumstances and to take steps 
towards developing practice standards specifi cally tailored for these circumstances. 
Potential solutions are obviously a matter of national and international health policy 
related to building research capacity in general. However, insight into the described 
challenges should allow individual sponsors and investigators to take a number of 
special measures aimed at preserving data integrity in particular studies in remote, 
rural, or poor settings. Panel  19.2  lists some special precautions that can be taken to 
protect data integrity in remote settings. 

   Panel 19.2 Special Precautions to Protect Data Integrity in Remote or Poor 
Settings 

•     A pool of external reserve personnel should be trained and maintained 
(with regular retraining as required) as a security against high turnover of 
personnel  

•   Internal personnel should be trained for tasks they will not routinely per-
form but for which they will serve as a reservist  

•   Issues of fl exible and odd working hours should be carefully discussed 
with local personnel, and salaries should be adapted accordingly  

•   Transport and communication infrastructures should be adapted to the 
local circumstances and resistant to potential extreme situations  

•   For some problems, such as space constraints, structural solutions may prove 
diffi cult to implement, and fl exibility may be required to fi nd solutions on 
a case-by-case basis. In general, however, sponsors should be aware of the 
possible need to assist with infrastructural problems  

•   Equipment maintenance contracts should be carefully negotiated with 
manufacturers and providers  

•   Standard operating procedures should include guidelines for how to deal 
with problems related to unexpected resource limitations  

•   There should be fl exibility in making sudden budget adjustments, but these 
adjustments need to be well documented  

•   Good international and national networking can aid with (re-)training, suppor-
ting research capacity, and implementing elements of a study. In international 
multi-center research, this can take the form of one high-quality research center 
serving as the coordinating center that guides and monitors other centers  

(continued)
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  In this chapter we discussed how to maintain the integrity of the collected 
data. In spite of efforts to achieve high quality data, errors do occur. Sometimes 
they can be corrected when discovered. The detection, evaluation, and editing 
of data errors is a task known as ‘data cleaning,’ and this is the topic of the 
next chapter.    

•   External monitoring plays an important role in ensuring data integrity and 
validity. It can provide for expertise that is not available locally to look 
critically at all aspects of data collection and handling  

•   Intensive community liaison activities and a local Community Advisory 
Board can be very helpful to introduce the study to local communities and 
authorities and to boost local acceptability of the study throughout its 
implementation phase  

•   Effi cient management is especially important in resource-constrained 
settings, as the number and severity of crisis situations tends to be high. 
Fast reactions to new problems are often needed    

Panel 19.2 (continued)
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    Abstract 
   This chapter offers practical advice for investigators on how to deal with errors 
in collected data. In epidemiological research, as in all research, errors do occur 
in spite of careful study design, well-conducted groundwork, and error prevention 
strategies. Data cleaning is a process in which one identifi es and corrects these 
errors, or at least minimizes their effects on study results. The present chapter 
describes a conceptual framework for how to set up and carry out data cleaning 
efforts. The framework is built on the notions that waves of data cleaning should 
occur at various stages of data fl ow (from data entry to dataset construction) and 
that each wave involves a screening step, a diagnostic step, and a data editing 
step. We then discuss study-specifi c aspects of data cleaning and provide advice 
on how to document and report on data cleaning.  

20.1        Data Cleaning as a Three-Step Process 

 Good error prevention strategies can reduce many data problems. However, data 
errors can rarely be eliminated. All studies, no matter how well designed and imple-
mented, have to deal with errors of various sources and their effects on study 
results. This applies to experimental research as much as it does to observational 
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research (Ki et al.  1995 ; Horn et al.  2001 ). Data cleaning is the process one takes to 
deal with data problems that arise. 

 Little guidance is currently available in the peer-reviewed literature on how to set 
up and carry out data cleaning efforts. In many epidemiology circles, study validity 
has been discussed predominantly as an issue of study design and measurement 
standardization. Aspects of data handling, such as data cleaning, have received 
much less attention but have an equal potential to affect the quality of study results. 
Only certain aspects of data cleaning, such as detection of statistical outliers, have 
received adequate attention ( See:  Snedecor and Cochran  1980 ; Hoaglin et al.  1981 ). 
The  data cleaning process , with all its conceptual and practical aspects, has not 
been described comprehensively. In this chapter we briefl y summarize the scattered 
literature on this subject and integrate what is known into a conceptual framework 
aimed at assisting investigators with planning and implementing data cleaning 
(Panel  20.1 ;  See also : Van den Broeck et al.  2005 ). This framework is built on the 
notions that waves of data cleaning should occur at various stages of data fl ow (from 
data entry to dataset construction) and that each wave consists of three steps: a 
screening step, a diagnostic step, and a data editing step.   

20.1.1      The Three Steps of Data Cleaning 

 We propose a process of data cleaning involving three steps (Van den Broeck et al. 
 2005 ):
    1.    Screening of the data   
   2.    Diagnosing likely errors   
   3.    Editing data abnormalities     

 Many data errors are detected incidentally during study activities other than data 
cleaning. Yet, it is more effi cient to detect errors by actively searching for them in a 
planned way. This also saves time in the analysis and writing phase, as re-analysis 
after correction of every data error takes substantial amounts of time. 

   Panel 20.1 Selected Terms and Concepts Relevant to Data Cleaning 

     Data abnormality     Data which are defi cient, excessive, outlying or incon-
sistent in comparison with prior expectations   

   Data cleaning     Process of detecting, diagnosing, and editing data abnormalities   
   Data editing     Changing the value of data shown to be incorrect or missing   
   Data fl ow     Passage of recorded information through successive information 

carriers   
   Data manipulations     Changes deliberately made to data values for reasons 

other than data editing   
   Inliers     Data points falling within the expected range   
   Outliers     Data points falling outside the expected range     
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 It is not always immediately clear whether a data point is erroneous. In many 
cases there are no clear-cut differences between errors and true values. Usually, 
what is detected is a suspected data point or pattern that needs careful examination 
and must be assessed for the likelihood of being a true value. Similarly, missing 
values require further examination. They may be due to interruptions of the data 
fl ow or to the unavailability of the information. Pre-defi ned rules for dealing with 
errors and ‘true’ missing and extreme values are part of good practice. For these 
reasons, one should consider data cleaning as a systematic process of screening, 
diagnosing, and treating/editing data abnormalities. Figure  20.1  shows these steps, 
which can be initiated at three different stages of a study.

20.1.2        Sources of Errors Throughout the Data Flow 

 The concept of  data fl ow  encompasses all data management activities after a 
measurement is made. It begins with recording data on source forms and entry of 
that data into a database, and it ends at the time a cleaned dataset is analyzed. 
Hence, data fl ow involves repeated steps of data entry, transfers, extractions, selecting, 
editing, transformations, summarizations, and even presentations. It is important to 
realize that errors can and do occur at any stage of the data fl ow, including during 
data cleaning itself. Indeed, most of these problems are due to human error. One 
can screen for suspect features in questionnaires (Table  20.1 ), computer databases 
(Table  20.2 ), or analysis datasets (Table  20.3 ).

Design and planning

Data collection and
entry

Data transformation,
extraction, and

transfer

Explore and analyze
data

Study process:

Step 1:  Screen
• Lack / excess of data
• Outliers and inconsistencies
• Strange patterns
• Suspect analysis results

Step 2:  Diagnose
• Errors and missing data
• True extreme values
• True normal values
• No diagnosis but still suspect

Step 3:  Treat
• Correct
• Delete
• Leave unchanged

System feedback

Data cleaning:

  Fig. 20.1    A three-step data cleaning framework       
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     Not all errors are of interest to data cleaning. Inaccuracy of a single measurement 
and data point might be entirely acceptable, depending on how much the degree of 
bias relates to the inherent technical error of the measurement instrument and com-
pares to the range and distribution of values in the study population. Data cleaning 
focuses on errors that are beyond small technical variations and that constitute a 
major shift within or beyond the population distribution. This, in turn, points to the 
necessity for data cleaning to be based on some knowledge of technical errors and 
expected ranges of values. 

 In most epidemiological studies, errors that need to be cleaned at all costs include 
errors in outcome variables, sex, birth dates, and examination dates as well as dupli-
cations or merging of records and biological impossibilities. Sex and date errors are 
particularly important because they ‘contaminate’ derived variables. Prioritization 
can be of huge importance if the study is under time pressures or if resources for 
data cleaning are limited.   

   Table 20.1    Sources of data abnormalities in questionnaires   

 Lack or excess of data  Outliers and inconsistencies 
 Form missing  Correct value fi lled out in wrong box 
 Form collected repeatedly  Not readable 
 Answering box or options left blank  Writing error 
 More than one option selected when not allowed  Answer given is out of expected range 
 Errors in skip rules  Misunderstanding of question 

   Table 20.2    Sources of data abnormalities in the database   

 Lack or excess of data  Outliers and inconsistencies 
 Lack or excess of data from questionnaire  Outliers and inconsistencies from the questionnaire 
 Form or fi eld not entered  Value incorrectly entered 
 Data erroneously entered twice or more  Value incorrectly changed during previous data 

cleaning 
 Value in wrong fi eld  Transformation error 
 Inadvertent deletion or duplication during 
database handling 

 Use of wrong and not updated database fi le 

   Table 20.3    Sources of data abnormalities in the analysis dataset   

 Lack or excess of data  Outliers and inconsistencies 
 Lack or excess of data from database  Outliers and inconsistencies from the database 
 Data extraction or transfer error  Data extraction or transfer error 
 Deletions or duplications by analyst  Sorting errors (spreadsheets) 
 Use of wrong data format  Data cleaning errors 
 Inclusion of variable with extensive missing 
information in regression analysis 
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20.2     The Screening Phase of Data Cleaning 

20.2.1     Types of Data Abnormalities 

 When screening data it is convenient to distinguish some basic types of abnormalities 
that one may encounter (some of which may or may not turn out to be due to errors 
after further examination):
•    Lack or excess of data  
•   Outliers  
•   Inconsistencies  
•   Impossibilities  
•   Strange patterns  
•   Unexpected data formats  
•   Unexpected analysis results  
•   Other odd-looking types of inferences and abstractions    

 The screening method need not only be statistical. In reality, many outliers are 
detected by perceived non-conformity with prior expectations based on the investi-
gator’s experience, pilot studies, evidence in the literature, or just common sense. 
This may even happen during article review or after publication. 

 What can be done to make this screening objective and systematic? To allow 
the researcher to understand the data better, the data should fi rst be examined 
with simple descriptive tools. Standard statistical packages or even spreadsheets 
make this easy to do. For identifying suspect data, one fi rst pre-defi nes expectations 
about normal ranges, distribution shapes, and strengths of relationships (Bauer and 
Johnson  2000 ). Second, one applies these  pre-defi ned criteria  during or shortly after 
data collection, during data entry, and regularly thereafter. Third, one compares the 
data and screening criteria to  fl ag  dubious data, patterns, or results. 

 A special problem is that of  erroneous inliers , i.e., data points generated by error 
but falling within the expected range. They will often escape detection. Major errors 
may result into values that are still within the expected data range. For example, if 
the true value is −1.5 Z-score (for example for growth data) and the error resulted in 
a value of +1.5 Z-score then the error was of the considerable magnitude of 3 
Z-scores. Yet, the erroneous value is still within normal range and undetectable by 
a simple range check. Sometimes, inliers are discovered to be suspect if viewed in 
relation to other variables using scatter-plots, regression analyses, or consistency 
checks (Winkler  1998 ). One can also identify some erroneous inliers by examining 
the history of each data point or by re-measurement, but the latter option will rarely 
be feasible. Instead, one can examine and/or re-measure a sample of inliers to esti-
mate an error rate (West and Winkler  1991 ). 

 In studies with follow-up data, it may be possible to use a more sophisticated 
approach than the one mentioned above. For example, one can determine changes 
in parameters among visits and compare those changes against a  pre-defi ned 
 maximum plausible change  during that interval. If the change between the two visits 
exceeds the plausible change, this usually indicates that at least one of the values is 
erroneous. If possible, it is useful to assess both values with the ones preceding and 
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following, to fi nd out which of the two is most likely to be incorrect. This approach 
can often be programmed into a syntax fi le.  

20.2.2     Useful Screening Methods 

 Useful screening methods include:
•    Checking questionnaires using fi xed algorithms  
•   Validated data entry and double data entry  
•   Browsing data tables after sorting  
•   Printouts of variables not passing range checks and of records not passing con-

sistency checks  
•   Graphical explorations of distributions (e.g., box plots, histograms, scatter plots)  
•   Plots of repeated measurements on the same individual (e.g., growth curves)  
•   Frequency distributions and cross-tabulations  
•   Summary statistics  
•   Statistical outlier detection    

 The screening should be done after data are recorded, e.g., during supervisor 
checks of questionnaires, at data entry, during post-entry data cleaning, and during 
exploratory analyses.   

20.3     The Diagnostic Phase of Data Cleaning 

 In this data cleaning step, the purpose is to clarify the true nature of the suspicious 
or implausible data points, patterns, and statistics and to identify more accurate data 
values whenever possible. Possible diagnoses for each suspicious data point are:
•    Erroneous  
•   True extreme  
•   True normal, i.e., the prior expectation about the normal range was incorrect  
•   Undetermined, i.e., no explanation found but still suspect    

 Some data points are clearly logically or biologically impossible. Hence, one may 
pre-defi ne not only screening cut-offs, as described above ( soft cut-offs ), but also 
cut-offs for immediate diagnosis of error ( hard cut-offs ) (Altman  1991 ). Figure  20.2  
illustrates this method. Sometimes suspected errors will fall between soft and hard 
cut-offs, and diagnosis will be less straightforward. In these cases, it is necessary to 
apply a combination of diagnostic procedures.

   One procedure is to check with the original data sources (previous stages of the 
data fl ow) to see whether a value is consistently the same. This requires accessibility 
of well-archived and documented data with justifi cations for any changes made at 
any stage (usually found in the data audit trail). 

 A second procedure is to look for information that could confi rm the ‘true 
extreme’ status of an outlying data point. For example, a very low score for 
weight- for-age (e.g., –6 Z-scores) might be due to errors in the measurement of age 
or weight (which would be considered an erroneous value), or the subject may be 
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extremely malnourished, in which case other nutritional status variables should also 
have extreme values (supporting the notion that the extreme value is true). Individual 
patients’ reports and aggregated information on related issues are helpful for this 
purpose. This type of procedure requires insight into the coherence of variables in a 
biological or statistical sense. 

 A third procedure is to collect  additional information  that supports making a 
decision about the diagnosis of a putative data error. One should be prepared to discuss 
with the interviewer/measurer what may have happened and, if possible, to repeat the 
measurement. This is a strong argument in favor of starting data cleaning as early as 
possible after data collection. Sometimes, re-measuring is only valuable very shortly 
after the initial measurement. In longitudinal studies, variables are often measured 
at specifi c ages or follow-up times. With such designs, the possibility of re-measuring 
or obtaining measurement values for missing data will often be limited to predefi ned 
allowable intervals around the target times. Such intervals can be set wider if the 
analysis foresees using age or follow-up time as a continuous variable. 

 Finding an acceptable value does not always depend on re-measurements, 
though. For some input errors, the correct value is immediately obvious. Examples 
include:
•    Missing values in the database could be due to a data entry omission and the 

correct value would then be readily available on the source document  

Impossible

Suspicious

Within
expected

range

Suspicious

Impossible

Missing

Upper hard
cut-off

Upper soft
cut-off

Lower soft
cut-off

Lower hard
cut-off

Data range: Diagnostic steps:

Error is obvious

Examine all data including other
variables to identify erroneous values

Examine a sample to identify rate of
erroneous inliers

Error is obvious

Examine all data including other
variables to identify erroneous values

Check for interruption of data flow

  Fig. 20.2    Areas within the range of a continuous variable defi ned by hard- and soft cut-offs for 
error screening and –diagnosis, with recommended diagnostic steps for data points falling in 
each area       
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•   Swapped values (e.g.,‘infant length’ was mistakenly noted under ‘infant weight’ 
and vice versa). In this case, a correction can only be made if the investigator’s 
knowledge of the subject matter is adequate; therefore, this type of data error is 
usually only caught by highly trained members of the research team.    
 During the diagnostic phase, one may have to reconsider prior expectations and/

or review QA/QC procedures. This phase is labor intensive and the budgetary, logis-
tical, and personnel requirements are typically underestimated or even neglected at 
the study planning stage. How much effort must be spent? There is no good answer 
to this question yet, and the fi eld is in desperate need of cost-effectiveness studies to 
answer this question. Experience tells us, however, that costs are likely to be lower 
if the data cleaning process is planned and starts early in data collection. Supporting 
tools during the diagnostic phase – including automated query generation and auto-
mated comparisons of successive datasets – can also help to reduce costs of data 
cleaning.  

20.4     Data Point Editing and System Feedback 

 After identifying errors, missing values, and true (extreme or normal) values, the 
researcher must decide what to do with problematic data. Editing options are 
limited to:
•    Correction of the data  
•   Deletion of the data (setting the value to ‘missing’)  
•   Leaving the data unchanged    

 There are some general rules in selecting which editing option is most appropriate:
    1.    Impossible values are never left unchanged. They should be corrected if a correct 

value can be found; else they should be deleted (usually set to missing).   
   2.    For biological continuous variables, some within-subject variation and small 

measurement error affects every measurement. If a re-measurement is done very 
rapidly after the initial one and the two values are close enough to be explained 
by these small variations alone, accuracy may be enhanced by taking the average 
of both as the fi nal value.   

   3.    What to do with true extreme values, and with values that are still suspect after 
the diagnostic phase? The investigator may wish to further examine the infl uence 
of such data points individually and as a group on analysis results before deciding 
whether or not to leave the data unchanged. Statistical methods exist to help 
evaluate the infl uence of such data points on regression parameters. If extreme 
values are left unchanged, one can consider applying ‘robust estimation’ (e.g., 
robust regression) procedures in the statistical analysis, in order to minimize the 
effect of the remaining outliers on study fi ndings   

   4.    Some authors have recommended that true extreme values should never be 
deleted (Gardner and Altman  1994 ). In practice, exceptions are frequently made 
to that rule. The investigator may not want to consider the effect of true extreme 
values if they result from an unanticipated extraneous process. This becomes an 
 a posteriori  exclusion criterion and the data points should then be reported as 
‘excluded from the analysis.’   
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   5.    For values that need to remain missing or need to be set to ‘missing,’ there may 
be an option of imputation during analysis that allows for correction.     
 Data cleaning often leads to insight into the nature and severity of error- 

generating processes. The researcher can then give methodological feedback to 
improve study validity and precision of outcomes ( See:  Chap.   19    ). It may be neces-
sary to amend the study protocol regarding design, tim ing, observer training, data 
collection, and quality control procedures. In extreme cases, it may be necessary to 
restart the study, including planning and data collection. Programming of data cap-
ture, data transformations, and data extractions may need to be revised and the anal-
ysis strategy adapted to include robust estimation or separate analyses with or 
without remaining outliers or imputation.  

20.5     Study-Specific Aspects of Data Cleaning 

 The study objectives co-determine the required precision of the outcome measures, the 
error rate that is acceptable, and therefore the necessary investment in data cleaning. The 
sensitivity of the chosen statistical analysis method to outlying and missing values can 
also have consequences in terms of the amount of effort the investigator wants to invest 
in data cleaning. As an example, a study using median values when reporting their out-
comes are less prone to extreme values than a similar study where the mean is used. 

 In clinical trials, there may be concerns about investigator bias resulting from the close 
data inspections that occur during data cleaning. In these studies, examination by an 
independent expert may be preferable. In intervention studies with interim evaluations 
of safety and/or effi cacy, it is of particular importance to have reliable data available 
before the evaluations take place. This is another strong argument for the need to initiate 
and maintain an effective data cleaning process from the early start of a study. 

 Longitudinal studies differ in that checking the temporal consistency of data is 
essential. Plots of serial individual data such as growth data or repeated measurements 
of categorical variables often show a recognizable pattern from which a discordant 
data point clearly stands out. 

 In small studies, a single outlier will have a greater distorting effect on the results. 
Some screening methods such as eyeballing of data tables will be more effective, 
whereas others, such as statistical outlier detection, may become less valid with 
smaller samples. The volume of data will be smaller, hence the diagnostic phase can 
be cheaper and the whole procedure more complete. Smaller studies usually involve 
less people and the steps in the data fl ow may be fewer and more straightforward, 
allowing fewer opportunities for errors. These considerations should help in choosing 
the appropriate data cleaning tools listed above.  

20.6     Documentation and Reporting of Data Cleaning 

 Statistical societies recommend that data cleaning be reported in the statistical methods 
as a standard in research articles (American Statistical Association  1999 ). What 
exactly to report under the various circumstances has remains mostly unanswered. 
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It is still rare to fi nd any statements about data cleaning methods or error rates in 
study protocols or medical publications. 

 We recommend including a data-cleaning plan in study protocols. This should 
include budget and personnel requirements, prior expectations used to screen for 
suspect data, screening tools, diagnostic procedures used to discern errors from true 
values, and the decision rules to apply in the editing phase. Proper documentation 
should exist for each data point (e.g., a syntax fi le), including differential fl agging 
of types of suspected features, ‘diagnostic’ information, and information on type of 
editing, dates, and personnel involved. 

 In large studies, data monitoring and safety committees should receive detailed 
reports on data cleaning, and procedural feedbacks on study design and conduct 
should be submitted to study steering and ethics committees. We recommend that 
medical scientifi c reports include a description of the data cleaning in the methods 
section. This should include error types and rates at least for the primary outcome 
variables, with the associated deletion and correction rates, justifi cation for imputa-
tions when done, and differences in outcome with and without remaining outliers. 

  So far in Part III we have looked at all major phases and aspects of gathering 
and processing empirical data, from study preparations to data cleaning. The 
outlook has been to maximize the quality of data available for analysis and to 
ensure that the rights and safety of participants are preserved. For clinical 
trials, formal guidelines and regulations exist that aim exactly for the same 
goals of data quality and ethical research conduct. These guidelines are 
called ‘Good Clinical Practice’ guidelines and they are briefl y introduced in 
the next chapter.      
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    Abstract 
   Good Clinical Practice (GCP) is a set of guidelines for trial research, not for 
the practice of clinical care, as the name might suggest. This chapter aims to 
introduce the large topic of GCP, to orient those researchers who are unfamiliar 
with trial research to the essence and scope of GCP guidelines, and to discuss 
some practical GCP-related tasks. First, the concept of GCP as a standard 
rooted in general ethical principles and as a new paradigm in experimental 
research involving human subjects is explained. Next we review the wide scope 
of GCP-related responsibilities of investigators and discuss the resources 
required to establish minimum GCP capacity. This leads us to the topic of the 
relevance of GCP for observational research and implementation diffi culties in 
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resource-poor areas. Finally, we introduce in some more detail three selected 
GCP-related activities that are of particular practical importance during execution 
of a trial: the maintenance of a regulatory fi le, adverse events reporting, and 
site monitoring visits. Basic terminology is listed in Panel  21.1   

21.1        GCP as an Ethical Standard and a New Paradigm 
in Research 

 Good Clinical Practice (GCP) guidelines defi ne responsibilities of trial investiga-
tors in the preparation of a trial protocol, a document that is to be reviewed and 
approved by the regulatory authorities before the commencement of the trial. The 
guidelines also prescribe minimum standards for procedures used by the investi-
gator during the implementation of the trial and procedures after trial completion. 
Thus, the principal investigator is responsible for the design and conduct of a 
clinical trial and for the reporting of the fi ndings. This wide scope of responsibili-
ties is described in more detail in the next section. International GCP guidelines 
exist, but some countries, sponsors, and institutions use their own adaptations. 
Currently, the most commonly followed international GCP guidelines are the 
ICH-6 Guidelines (International Conference on Harmonization 6,   www.ich.org    ) 
and the World Health Organization GCP Guidelines. In fact, GCP compliance is 
legally regulated in many countries. The European GCP guidelines can be found 
at the webpage of the European Medicines Agency (EMA,   www.ema.europe.eu    , 
Directive 2005 /28/EC).   

   Panel 21.1 Selected Terms and Concepts Relating to Compliance 
with Good Clinical Practice Guidelines 

     Adverse event     Untoward health-related event in a trial participant (which 
does not necessarily have a causal relationship with the test product or 
intervention)   

   Adverse events report     Investigator report on adverse events and serious 
adverse events given to sponsor, ethics committee and/or regulatory 
authorities   

   Clinical monitor     Person designated by the trial sponsor to check if the 
actual trial procedures conform with study protocol, standard operating 
procedures and GCP guidelines   

   Clinical report form (CRF)     A document designed to record all of the 
protocol required information to be reported to the sponsor on each trial 
participant   

   Clinical trial     An intervention study of the pharmacological effects or dynamics 
and/or the effi cacy and/or the safety of a test product or treatment   

(continued)
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21.1.1      GCP as an Ethical Standard 

 GCP guidelines are rooted in ethical principles. For example, 13 ICH-6 GCP prin-
ciples have been formulated. The fi rst asserts that ‘Clinical trials should be con-
ducted in accordance with the ethical principles that have their origin in the 
Declaration of Helsinki (World Medical Association), and that are consistent with 
GCP and the applicable regulatory requirement(s).’ This refers to the four  prima 
facie  principles of biomedical ethics, which are respect for autonomy, justice, benef-
icence, and non-malefi cence and also underlie the principles of epidemiology pro-
posed in Chap.   1    . More information on these four basic ethical principles can be 
found in Beauchamps and Childress ( 2001 ). In ICH-6 the remaining twelve GCP 
principles are also derived from these  prima facie  principles. Three examples of 
how these ethical principles serve as the basis of ICH-6 GCP principles are illus-
trated in Table   21.1 .

21.1.2        GCP as a Paradigm Shift in Experimental Research 

 The advent of GCP guidelines and compliance requirements has been the result 
of an important shift in thinking about study validity and other ethical aspects of 
clinical trial research. This shift is illustrated in Table  21.2 . Essentially, the shift is 

   Compliance     Implementation according to protocol or guideline   
   Good Clinical Practice guidelines     A standard for all stages of conduct of 

clinical trials aimed at (1) optimizing validity and credibility of data and 
results, and (2) ensuring that the rights, integrity, and confi dentiality of 
data of trial subjects are protected   

   Monitoring     The act of overseeing the progress of a clinical trial, and of 
ensuring that it is conducted, recorded and reported in accordance with the 
protocol, SOPs, GCP guidelines and regulatory requirements.   

   Participant     Individual who has offi cially consented to participate in a study 
and has not withdrawn from participation   

   Safety monitoring     System or practice of detecting, characterizing follow-
ing-up foreseen and unforeseen problems with participant safety during a 
research study   

   Serious adverse event     Adverse event that leads to death, (prolongation of) 
hospitalization, disability or birth defect, or any condition that is immediately 
life-threatening   

   Sponsor     An individual, company, institution, or organization that takes 
responsibility for the initiation, management, and/or fi nancing of a study   

   Standard Operating Procedures  ( SOP )    Detailed written instructions to 
achieve uniformity of the performance of a specifi c function     

Panel 21.1 (continued)
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to be seen as a necessary step in the greater involvement of the scientifi c community 
and of society at large as stakeholders in research. This shift fi ts into the wider shift 
in thinking that has occurred after World War II and that has led to the universal 
requirement for ethical oversight and informed consent: It is a partial move away 
from a ‘blind’ trust in individual researchers’ abilities to design and carry out high 
quality research towards greater oversight from other stakeholders. This greater 
oversight has also led to regulations and laws about GCP compliance. GCP compli-
ance has become a major responsibility of sponsors as well.

   During trials, site visits are made by the sponsor to assess study status and verify 
compliance with the protocol and GCP guidelines. Sponsors often delegate these 
visits to institutions specialized in clinical research monitoring. One or more 
 (clinical) monitors, also known as Clinical Research Associates, visit the site(s). 
Monitors review the regulatory fi le and sometimes also the infrastructure and logis-
tics with the assistance of the study coordinator and investigator(s).   

21.2     The Scope of GCP-Related Responsibilities 
of Investigators 

 GCP guidelines concern any study-related activity during which accuracy of evidence 
or respect for participants could be compromised. The guidelines therefore defi ne 
responsibilities concerning:
•    Study design  
•   Practical implementation  

      Table 21.1    Illustration of the ethical basis of selected ICH-6 GCP principles   

 Ethical principle  ICH-6 GCP principle 
  Respect 
for autonomy  

 ‘Freely given informed consent should be obtained from every participant 
prior to clinical trial participation’ 

  Benefi cence   ‘Before a trial is initiated, foreseeable risk and inconveniences should be 
weighed against the anticipated benefi t for the individual trial participant 
and society. A trial should be initiated and continued if the anticipated 
benefi ts justify the risk’ 

  Non-malefi cence   ‘The rights, safety and well being of the trial participants are the most 
important considerations and should prevail over interest of science and society’ 

   Table 21.2    Good clinical practice as a paradigm shift   

 Old paradigm  New paradigm 
 Validity and ethical value of clinical trial research 
mainly depend on: 

 Validity and ethical value of clinical trial 
research mainly depend on: 

 1. Study design/protocol  1. Study design/protocol 
 2.  An honest and dedicated investigator  implementing 

the protocol   to her/his best abilities  
 2.  Honest and dedicated investigator and 

sponsor  complying with GCP guidelines  
 3. Peer review  3. Peer review 
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•   Measurement of actual practice  
•   Reporting of actual practice    

 The very wide scope of GCP-related responsibilities, as viewed from this angle, 
is illustrated in Table  21.3 .

21.2.1       Scope of Training Needs and Regulatory Requirements 

 Compliance with GCP guidelines requires the necessary resources and training of 
study personnel. From the side of investigators and study managers, it requires a good 
knowledge of the specifi c GCP guidance document(s) and regulatory framework 
that will be adhered to in the trial. As indicated earlier, this chapter merely provides 

   Table 21.3    Scope of GCP-related responsibilities of investigators   

 Prescribed 
practice  Reinforcement 

 Measurement of 
actual practice 

 Reporting of 
actual practice 

  Securing 
resources  

 Suffi cient budget  Budget 
justifi cation, grant 
approval 

 Accountability  Budget status 
reports 

  Establishing 
framework  

 Legal 
requirements, 
acceptability by 
stakeholders 

 Legal authority’s 
and stakeholders’ 
approval 

 Check new legal 
requirements, 
check acceptability 
repeatedly 

 Feedback to 
stakeholders 

  Study design 
and enrolment  

 Study protocol 
incl. Informed 
consent form 
and -procedures 

 Ethics committee 
approvals study 
steering committee 

 Track violations, 
keep enrolment 
and follow-up 
statistics, protocol 
amendments 

 Protocol history 
& violation 
reports, cohort 
status reports 

  Data collection   Fieldwork SOPa  (Re-)training, 
supervision, 
operations 
management 

 Quality control 
forms, audits 

 Quality control 
reports 

  Data handling   Data handling 
protocol and 
SOPs 

 Data management, 
IT management and 
data cleaning 

 Audit trails, 
database backups 

 Data 
management 
reports 

  Intervention 
delivery  

 Investigator 
brochure, 
Intervention 
delivery SOP  , 
drug management 
plan 

 User info and 
demos, pharmacist 
or drug manager 

 Drug 
accountability; 
pharmacy 
temperature 
monitoring 

 Drug 
accountability 
reports 

  Intervention 
monitoring  

 Ethics plan, data 
monitoring plan 

 DSMB, ethics 
committee, (S)AE a  
monitoring 

 Interim analyses, 
SAE forms, AE 
forms 

 DSMB a  reports, 
(S)AE reports 

  Analysis   Analysis plan, 
publication 
policy 

 Analysis/writing 
committee 

 Analysis syntax, 
analysis datasets 

 Scientifi c 
articles 

    a  SOP  standard operating procedures,  (S)AE  (serious) adverse events,  DSMB  data and safety 
monitoring board  
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a brief orientation and some discussion on selected aspects. It is the GCP guidelines 
themselves that provide the most important resource for learning. A disclaimer is in 
place here to state that none of the content discussed in the chapter should be taken 
to represent the actual regulatory requirements relevant to any particular trial. 

 The sponsor of the trial will normally have an important say about which specifi c 
documents need to be followed. A research sponsor is an individual, company, insti-
tution, or organization taking responsibility for the initiation, management and/or 
fi nancing of a research study. Situations can arise where several GCP guidelines 
need to be followed. For example, a clinical trial in South Africa, if sponsored by 
the United States National Institutes of Health (NIH), would need to comply with 
the South African GCP guidelines (Guidelines for Good Practice in the Conduct of 
Clinical Trials with Human Participants in South Africa, Department of Health 
 2006 ) as well as with those prescribed by NIH.  

21.2.2     Relevance of GCP for Non-trials 

 By defi nition (EMA, 2002;  See:  opening quote of this chapter), GCP provides practice 
standards aiming to assure that reported results are credible and accurate, and that the 
rights, integrity, and confi dentiality of trial subjects are protected. These concerns about 
validity and ethical value are universal concerns about all research with humans, not 
only clinical trials. They relate to all intervention research as well as to observational 
research. Whereas the concerns are universal, part of the GCP standards are clearly only 
relevant to trials, such as those parts that relate to test products, treatments, and their side 
effects. Many other guidelines, however, are directly applicable to all types of studies. 
The impetus to employ strict GCP-level oversight is commonly felt to be less strong in 
the case of observational studies because these studies often carry less risk for serious 
negative outcomes. Yet, GCP- level oversight is increasing in observational studies 
mainly because of a felt need to maximize the validity of observational research so that 
evidence from this type of studies gains greater credibility. In practice, observational 
research investigators do actually implement some of the GCP guidelines. Many are 
using GCP guidelines as a resource to improve study design and quality assurance 
strategy. Viewed from another angle, the wide scope of GCP guidelines for trials impor-
tantly overlaps with the practical guidelines in this book ( See:  Chap.   1    ) and with the 
guidelines for epidemiological studies from the Council for International Organizations 
of Medical Sciences (CIOMS  2009 ). The general principles of epidemiology presented 
here are rooted, like the GCP principles for trials, in  prima facie  ethical principles.   

21.3     GCP Capacity 

21.3.1     Developing Local GCP Capacity 

 Researchers and institutions embarking on trial research are faced with the challenge 
of developing GCP capacity. To develop this capacity, it is advisable that all 
researchers and managers who will be involved in the trials are trained and certifi ed 
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in human subject protection. Accredited online GCP training courses are available, 
such as the free online course provided by the National Institutes of Health in 2012 
(NIH  2012 ). Some academic institutions also run GCP training programs. For 
example, the South African Tuberculosis Vaccine Initiative of the University of 
Cape Town offered introductory and refresher GCP training courses in 2012 (SATVI 
 2012 ). Training should cover adverse events, informed consent procedures, and 
source document standards for all fi eld staff, including study physicians. Capacity 
building must, however, also involve trial coordinators, laboratory technicians, data 
managers, statisticians, and monitors. 

   21.3.1.1  Difficulties with GCP Compliance 
in Resource-Poor Settings 

 GCP capacity development is mainly an institutional responsibility and is diffi cult 
but feasible in resource-poor settings .  GCP-related study activities need to be 
properly budgeted by the investigator and sponsor, carefully considering the special 
requirements in resource-poor settings (Acosta et al.  2007 ; Osrin et al.  2009 ). 
Diffi culties to overcome may include:
•    Poor accessibility of study participants for obtaining information on serious 

adverse events  
•   Lack of detailed medical information on adverse events; poor or absent hospital 

records  
•   Sub-optimal infrastructure and logistics for providing medical care; divergent 

opinions of various oversight committees on what exactly the level of care should 
be for the participants during and/or after the trial  

•   Validity of traditional serious adverse event parameters (hospitalization, death) 
may be reduced by problems of health care accessibility  

•   Diffi culty fi nding experienced personnel with or without GCP training; increased 
training needs  

•   Diffi culty building oversight committees using local resources; need for under-
standing the local situation when hiring people located far from the study site  

•   Communication problems with oversight committees may occur in case of pro-
longed loss of Internet connectivity  

•   Language barriers      

21.3.2     GCP Compliance Budgeting 

 Costs related to GCP compliance are often underestimated at the design and budget-
ing stage of a clinical trial. Costs are higher if infrastructure is lacking or if special-
ized manpower is diffi cult to recruit or train, which is more often the case in 
resource-poor settings. Budget items should cover at minimum the following:
•    Costs of ethical review  
•   Costs of data and safety monitoring board functioning  
•   Costs of data handling protocol implementation  
•   Costs of standard operating procedures development and training  
•   Costs of quality assurance and control procedures  
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•   Costs of adverse events training and reporting  
•   Costs of site-monitoring/auditing  
•   Costs of infrastructure and manpower      

21.4     The Regulatory File 

 Essential documents of a trial need to be compiled in a so-called regulatory fi le. 
According to ICH-6, Section 8, “Essential documents are those documents that 
individually and collectively permit evaluation of the conduct of a trial and the qual-
ity of the data produced”. The regulatory fi le must be established at the beginning 
of each study and updated throughout the life of the study. It must be made available 
for inspection during site monitoring visits. After the study it must still be kept for 
some time. For example, in the United States of America, the regulatory fi le for 
drug approval trials needs to be kept for at least 2 years after Food and Drug 
Administration (FDA) approval or 2 years after the stop of drug development. 
Panel  21.2  contains a minimum list of essential documents based on the second edi-
tion South African Good Clinical Practice guidelines (Department of Health  2006 ). 
The list is divided into three sections in accordance with the stage in which the 
documents are usually generated in the trial. This list aims to illustrate that the 
regulatory fi le is comprehensive and detailed. This, in turn, should again illustrate 
the wide scope of GCP-related responsibilities of investigators and draw attention 
to the considerable resource requirements (including time investment) of GCP 
compliance.   

   Panel 21.2 Minimum Content of a Regulatory File; Example Based 
on the South African GCP Guidelines, with Minor Adaptations 
(Abbreviations Explained in Footnote) 

  Section A : 
 Documents generated before the formal commencement of the clinical trial:
    1.    Investigators’ brochure   
   2.    Signed protocol and amendments (if any) and sample CRF   
   3.    Information given to participant (including ICF in all relevant 

languages)   
   4.    Documents detailing fi nancial aspects of trial   
   5.    Insurance statement (if applicable)   
   6.    Signed statement between parties involved in trial   
   7.    Documented approval by IRB/IEC of the following: protocol and amend-

ments, CRF (if applicable), ICFs, any written information given to participant 
(e.g. information sheets) and participant compensation (if applicable)   

(continued)
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   8.    Outline of IRB/IEC composition   
   9.    Regulatory authority’s approval of protocol (if required)   
   10.    Documents with investigator and sub-investigator qualifi cations (including 

Curriculum Vitae)   
   11.    Document with normal values and/or ranges for technical-medical procedures   
   12.    Medical technical procedure certifi cation or accreditation or QA/QC 

assessment methods   
   13.    Sample of labeling on test product   
   14.    Handling instructions for test product and other trial materials (if omitted 

in protocol or investigators brochure)   
   15.    Shipping records for test product and other trial materials   
   16.    Certifi cate(s) of analysis for shipped test products   
   17.    Decoding procedures for blinded trials   
   18.    Master randomization list   
   19.    Pre-trial monitoring report   
   20.    Trial initialization monitoring report     

  Section B : 
 Documents to be added to the regulatory fi le during the trial:
    1.    Updates on investigator’s brochure   
   2.    Any revisions to protocol/amendment(s), CRF, ICF or any other information 

that is provided to participants   
   3.    Documented IRB/IEC approval of protocol amendment(s) and revision(s) of 

the following: ICFs, approved documents and any other written information 
given to participants. If applicable, regulatory authority approvals for 
protocol amendment(s) and other documents   

   4.    Investigator and/or sub-investigator qualifi cations   
   5.    Updates to normal values and/or ranges for technical procedures   
   6.    Updates to technical procedures certifi cation or accreditation or QA/QC 

assessment methods   
   7.    Documentation of trial article and shipment of trial-related materials   
   8.    Certifi cate(s) of analysis for new batches of trial article   
   9.    Site visit monitoring reports   
   10.    Records of communication other than site visits (e.g., meeting minutes, 

emails)   
   11.    Signed ICFs   
   12.    Source documents   
   13.    Signed, dated and completed CRFs   
   14.    Documentation of CRF amendments   
   15.    Investigator serious adverse event notifi cations (and related reports) to 

sponsor   

Panel 21.2 (continued)

(continued)
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21.5       Adverse Events Reporting 

 GCP guidelines around participant safety comprise, among others, the requirement 
for a qualifi ed physician (or dentist, as appropriate) to give medical care to partici-
pants, and, as a main responsibility of this study physician, the timely detection, 
assessment, and reporting of adverse events in trial participants. Typically, adverse 
event reports are to be sent to the sponsor, ethics committee(s), and data and safety 
monitoring board within 24 h of awareness of the event. The purposes of adverse 
events reporting are:
•    To maximize individual participation safety  
•   To allow methodical evaluation of clinical safety data for study participants both 

individually and as a group  
•   To help in developing accurate drug toxicity profi les    

   16.    Sponsor and/or investigator unexpected serious adverse drug reaction 
notifi cations to regulatory authorities and IRB/IEC   

   17.    Safety information provided to the investigator by sponsor   
   18.    Interim or annual reports provided to IRB/IEC or regulatory authorities   
   19.    Participant screening log   
   20.    Participant identifi cation code list   
   21.    Participant enrolment log   
   22.    Investigational products accountability at study site   
   23.    Signature sheet   
   24.    Record of retained body fl uid or tissue samples (if applicable)     

  Section C : 
 Documents to be added to the regulatory fi le after completion or termination 
of the trial:
    1.    Test product(s) accountability at site   
   2.    Documentation of test product disposition   
   3.    Completed participant identifi cation code list   
   4.    Audit certifi cate (if applicable)   
   5.    Final trial close-out monitoring report   
   6.    Treatment allocation and decoding documentation   
   7.    Final report by investigator to IRB/IEC, where applicable, to regulatory 

authorities   
   8.    Clinical study report     

  Abbreviations : CRF = Case Record Form; ICF = Informed Consent Form; IRB/
IEC = Institutional Review Board/Independent Ethics Committee; QA/QC = Quality 
Assurance/Quality Control 

Panel 21.2 (continued)
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21.5.1     Adverse Events and Serious Adverse Events 

 Currently used adverse events reporting systems typically make a distinction 
between adverse events and  serious  adverse events. Defi nitions vary slightly 
according to sponsor or oversight body, but a typical distinction could be as 
described in Panel  21.3 .   

21.5.2       Content of an Adverse Events Report 

 Administratively, the following could be a list of offi cially required content of an 
adverse event report in a clinical trial:
    1.    Name of the event. 
  An adverse event can be named as a medical diagnosis, or, if a diagnosis is not 

available, as signs and symptoms. The name of a procedure such as a surgical 
operation is not eligible as a name of an adverse event.   

   2.    Start date/stop date/time.   
   3.    Treatment given.   

   Panel 21.3 Adverse Events and Serious Adverse Events: An Example 
of How the Distinction Can Be Made. Exact Distinctions to Be Made 
During a Trial Depend on Sponsor or Oversight Body 

  Any adverse event –  An adverse event is any untoward medical occurrence 
in a study participant who has received a test article or intervention that may 
or may not have a causal relationship with this test-treatment. It can be any 
unfavorable or unintended sign, including:
•    Abnormal laboratory fi ndings  
•   Symptoms or diseases  
•   Worsening of a baseline condition  
•   Protocol-defi ned events    

  Serious adverse event –  This is any adverse event occurring at any interven-
tion level that results in any of the following outcomes:
•    Death  
•   Immediately life threatening event  
•   Persistent or signifi cant disability or incapacity  
•   Hospitalization or prolongation of hospitalization  
•   Congenital anomaly or birth defect  
•   Conditions considered so serious that they required medical or surgical 

intervention to prevent one of the above outcomes    
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   4.    Intensity. 
   Sponsors and oversight bodies can provide scales for grading adverse events. 

For example:
   Grade 1 = Mild  
  Grade 2 = Moderate  
  Grade 3 = Severe  
  Grade 4 = Life threatening  
  Grade 5 = Death      

   5.    Relationship to a study drug and action taken with a study drug. 
   Categories describing the likelihood of a relationship with a study drug are 

assigned by the study physician in agreement with the sponsor and ethics committee. 
An example of an offi cially required categorization is:
   Impossible  
  Unlikely  
  Possible  
  Certain      

   6.    Outcome, resolution. 
   All serious adverse events should be followed intensively. At the time of reporting 

the following categories might be considered applicable and in need of inclusion 
in the report:
   Event has stabilized  
  Condition returned to normal  
  Condition resolved  
  Condition no longer meets serious adverse event criteria      

   7.    Was the event expected?       

21.6     Site Monitoring Visits 

 The monitoring process is defi ned as oversight of the progress of a clinical trial, and 
of ensuring that it is conducted, recorded, and reported in accordance with the pro-
tocol, SOPs, GCP, and applicable regulatory requirements. In this respect, it is one 
of the fundamental aspects of GCP adherence. Monitoring takes place before a trial 
starts, during the trial period, and after the trial. It is essential that monitors have the 
appropriate training and knowledge that is needed to monitor the trial and be famil-
iar with the protocol and other procedures of the trial, but not be directly involved in 
the study. 

  Before  the trial, the monitor has to verify that:
•    Relevant authorizations and documents (e.g., written informed consent) are 

present  
•   The study site has the capacity to include the anticipated number of participants 

in the study  
•   The study is able to fulfi ll planned procedures  
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•   The investigational products are available and appropriately stored    
  During  the trial, site monitoring visits will ensure that:
•    The study is being performed according to the protocol  
•   The study is in compliance with GCP and other applicable regulatory requirements  
•   Every patient signed the written informed consent form and received the planned 

procedures  
•   Subject enrollment rates are adequate  
•   Data are correctly and completely recorded into the clinical report forms (CRFs) 

and verifi able from the source documents  
•   Adverse events are handled correctly    

  After  the trial, the monitor ensures that:
•    Investigational products are accounted for  
•   Trial documents are stored properly  
•   The trial database is properly maintained and secured    

  Monitoring is an integral part of the quality control of a clinical trial and is 
designed to verify the quality of the trial. It can also detect gross deviation from the 
protocol at single sites of large multi-center trials by the use of central monitoring 
and statistical procedures. These include e.g., check for invalid data, comparison 
of repeated measurements, calendar check, control of digit preferences or compari-
son with external sources. These methods can reveal deviations that can simply be 
due to misunderstandings, but also due to falsifi cation of data. In addition to 
 central monitoring, usually, on-site monitoring before, during, and after the trial is 
necessary.    

21.7     Advantages and Disadvantages of the 
Implementation of GCP as a Standard 

 ICH-6 GCP is now the de facto global standard by which clinical trials are run and 
has been legally implemented in many places, including the European Union, USA, 
and Japan. Following GCP guidelines increases the need for standardization, train-
ing, reporting, and training; therefore, these guidelines are sometimes diffi cult to 
implement. In addition, GCP guidelines increase costs and bureaucracy, and they 
can even make a trial impossible, especially in resource-limited settings. The need 
for capacity building at all levels (trial coordinators, technicians, data managers, 
statisticians, monitors, research nurses, and investigators) has already been mentioned. 
Indeed, many (European) universities now have clinical trial offi ces that support 
their academics in conducting clinical trials. In addition, it has been criticized that 
GCP guidelines have mainly been developed for clinical trials that test new drugs or 
drug treatments. However, there is a substantial need for trials that investigate disease 
management, or other investigations that are not new product trials (e.g., exercise 
intervention trials). The applicability of GCP guidelines is less straightforward in 
these types of trials. Furthermore, it has to be stated that some core issues of clinical 
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trial design are not appropriately covered by GCP guidelines, e.g., randomization. 
Since this is a critical issue for the quality of clinical trials, a further development of 
GCP guidelines seems to be necessary. 

 However, it is clear that the introduction of common guidelines has increased the 
standards and quality of clinical trials substantially, along with increased respect for 
patients’ integrity. Further training, experience, and critical thinking will enhance 
the quality, comparability, and standards of clinical trials in a sustainable way. 

  This chapter was the last of a series of chapters on study planning and imple-
mentation (Part III). The main theme across the series was how to validly, 
ethically, and effi ciently obtain data for analysis. Logically, this brings us to 
Part IV: Study analysis.      
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Abstract
This first chapter on study analysis covers statistical estimation methods that are 
frequently made use of in epidemiological research. It does so at an introductory 
level only. In the first section we explain important concepts related to statistical 
estimation: we distinguish estimators from estimates, and we contrast (1) point vs. 
interval estimates and (2) crude vs. adjusted estimates. In the ensuing sections, 
we discuss the estimation of outcome frequency in a single group and descriptive 
comparisons of outcome frequencies in multiple groups. Standardization of 
estimates falls within that context but is dealt with in a separate section. 
Finally, estimation of outcome parameters in analytical studies is covered, with 
special attention to strategies for controlling confounding during analysis.
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22.1	 �Concepts of Statistical Estimation

22.1.1	 �Estimators and Estimates

Estimators are a type of statistic designed to capture a frequency or a contrast of 
frequencies (a causal or acausal statistical relation; Panel 22.1). Among estimators, 
epidemiologists classically distinguish three classes:
• Measures of frequency, e.g., odds, prevalence, incidence risk, or incidence rate
• Measures of association, e.g., odds ratio, prevalence rate ratio, relative risk, or 

incidence rate ratio
• Measures of causal effect, e.g., adjusted odds ratio, adjusted prevalence rate 

ratio, adjusted relative risk or adjusted incidence rate ratio (the adjustments made 
for the purpose of control of confounding); a general term for all these examples 
is causal rate ratios
Important is also that the last two classes (measures of association and measures of 

causal effect) are often jointly referred to as measures of effect or effect measures.
Estimates are particular values calculated for an estimator based on the study 

data. They are called estimates only because their purpose is to estimate the true 
value of the estimator in the target population, not to measure it with absolute 
accuracy. The need to make such estimates is due to the inability to examine an 
entire target population. Instead, one normally resorts to examining a statistical or 
non-statistical sample and uses values derived from the sample only to estimate 
what the true underlying values might be for the entire target population.

Panel 22.1  Selected Terms and Concepts Relating to Statistical Estimation

Adjusted estimate  An estimate that is adjusted to correct for confounding, 
bias and/or to make it independent of the modifying influence of other 
variables

Crude estimate  An estimate that is unadjusted for confounding, bias or 
modification by other variables

Confidence interval  A range of values that is likely to include the true 
value for the population parameter of interest

Estimate  See: outcome parameter estimate
Estimator  A statistic which is a measure of frequency, association or causal 

effect
Imprecision  Lack of total precision (Miettinen 1985) (See: precision)
Interval estimate  See: confidence interval
Measure of association  A statistic expressing a degree of association
Measure of causal effect  A statistic expressing the size of a causal 

(confounding-free) effect

(continued)
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22.1.2	 �Point and Interval Estimation

Estimates obtained from a single sample are subject to uncertainty because of 
sampling variation. Thus, a single sample can only provide a point estimate, ‘a best 
guess’ of the underlying target population’s value. For example, a sample mean 
is a point estimate of the underlying target population mean. A point estimate is 
thus always surrounded by a margin of error, also known as an interval of uncer-
tainty. This uncertainty can itself be estimated from the sample data and expressed 
as an interval estimate, such as a 95 % confidence interval (CI). The possibility of
estimating a margin of uncertainty is based on the facts that:
	1.	 The estimate obtained from a single sample will be more precise (the confidence 

interval narrower) with increasing sample size. If the entire target population 
could be sampled, there would be no sampling-related uncertainty anymore.

	2.	 If the spread of values in the population is narrower (smaller true variance), then 
the spread of estimates found in repeated samples (the standard error) and thus 
the confidence interval will also be narrower.
As mentioned in Chap.13, three main methods exist to obtain confidence intervals: 

the standard error-, bootstrapping-, and likelihood-based methods. In this chapter we 

Measure of frequency  A statistic expressing the frequency of occurrence 
of an event

Outcome parameter (in statistical estimation)  Estimator
Outcome parameter estimate  Particular value for an estimator calculated 

on the basis of the study data
Point estimate  A ‘best guess’ estimate of the population value of an estimator, 

inferred from the sample
Percentage  Proportion times 100
Precision (- of an estimate)  Degree of sampling and random measurement 

error that influenced the estimate
Proportion  number with the characteristic/event of interest, divided by the 

number examined who could have had the characteristic/event of interest
Sampling variation  Variation in the distribution of a statistic in a hypo-

thetical very large series of equally sized statistical samples from the same 
population

Sample size  (1) Number of observation units sampled (statistically or 
non-statistically) to be approached for possible inclusion as participants; 
(2) Number of observation units with data available for analysis

Target population  The type of people about which evidence will be created 
in the research

Unbiasedness (- of an estimate)  closeness to the true value in the target 
population

Panel 22.1  (continued)
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will only discuss the standard error-based method (For bootstrapping, See: Chap. 13). 
With this method, once a population distribution is estimated and characterized, one 
can use this distribution to determine the probability of finding certain values or the 
probability of finding a value within a certain range.

22.1.3	 �Crude and Adjusted Estimates

In Chap. 13 we listed a variety of possible reasons why initial crude estimates may 
need some adjustment. Most important of all is adjustment for confounding, as such 
adjustments are essential – definitional even – to analytical research in epidemiology. 
Since this topic is so important, it will be covered in a separate section below.

22.2	 �Estimation of Outcome Frequency

The estimators described in this section are frequently used in case-series studies, 
surveys, and epidemic pattern studies. These estimators include the prevalence rate, 
cumulative incidence, incidence rate, and pseudo-rate. Some of these were mentioned 
in Chap. 2 in our discussion of basic concepts in epidemiology. Here, we expand
that earlier discussion to include the calculation of relevant standard error-based 
confidence intervals, potential validity issues, and frequently required types of 
adjustment. Formulas are given only for quick and practical reference.

22.2.1	 �Prevalence (Syn. Prevalence Rate)

The point estimate of a prevalence rate is calculated by dividing the number of 
participants (or other observation units) with the characteristic of interest by the 
number who could have had the characteristic of interest, and then multiplying the 
quotient by 100. We can calculate the 95 % confidence interval as follows:

95 % Confidence Interval of a Prevalence Rate
Step 1:
Calculate the standard error (SE) of the proportion

	 SE
p p

nproportion =
-( )1

	 (22.1)

Where:
p = proportion with the characteristic of interest
n = number examined for the characteristic of interest
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Step 2:
Calculate the upper and lower limits of the 95 % confidence interval of the
proportion and multiply the values by 100:

Lower limit p SE= -1 96. *

Upper limit p SE= +1 96. *

In surveys, adjustments of prevalence rates may need to be done to take the sampling 
scheme into account. As a simple illustration of adjusting for a sampling scheme, 
consider a survey (n = 300) concerning the prevalence of type 2 diabetes. The survey 
used quota sampling (See: Chap. 9), in which 100 persons were sampled from 
each of three ethnic groups in the target population: A, B, and C. These ethnic
groups represented 80 %, 10 %, and 10 % of the target population, respectively. 
Table 22.1 shows the findings and the weighting that was necessary to arrive at 
an overall prevalence estimate. For adjustments applicable to various sampling 
schemes and for finite population adjustments, we refer to statistical and survey 
handbooks.

The major possible validity issues with prevalence estimation are lack of sensitivity 
and/or specificity of assessing the outcome. Low sensitivity leads to underestima-
tion and low specificity to over-estimation of the prevalence rate. When information 
is available on the relative extent of these problems, it may be possible to adjust the 
estimate.

22.2.1.1 �Problems with Dichotomizations
Prevalence estimates may concern the presence of a characteristic that was assessed 
via categorization of a continuous variable. For example obesity is commonly 
assessed by categorizing the continuous body mass index variable. Other examples 
are anemia based on low blood hemoglobin levels, and stunting or wasting in 
children. In those instances one needs to consider the possible influences of mea-
surement error in the continuous variable on the prevalence estimate. Prevalence 
tends to be over-estimated in the common scenario of measurement imprecision 

Table 22.1  Weighted prevalence estimation of type 2 diabetes in a survey with quota sampling

Target population  
(Size 10,000)

Sample 
size

Type-2 
diabetes (%)

Unadjusted point 
estimate of the 
overall prevalence

Adjusted point  
estimate of the  
overall prevalence

Ethnic group A  
(n = 8,000)

100 10 % (10/100) 5 % (15/300) 8.5 % (850/10,000) (850 
composed of: 10 % of 8,000, 
2 % of 1,000, and 3 %  
of 1,000)

Ethnic group B  
(n = 1,000)

100 2 % (2/100)

Ethnic group C  
(n = 1,000)

100 3 % (3/100)
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(non-differential). Indeed, random measurement error will inflate the variance of the 
variable and increase the proportion falling below a cut-off in the lower tail of the 
frequency distribution.

Moreover, when terminal digit preference (See: Chap. 29) affects the measurement 
values of the continuous variable, the frequency distribution will show some peaks 
surrounded by dips. When the cut-off for categorizing and defining the outcome 
(e.g., body mass index greater than or equal to 30 for obesity) falls on a peak or a 
dip caused by digit preference, some borderline values will be misclassified. The 
prevalence will consequently be over- or underestimated. In such instances, it may 
be better to first smooth the frequency distribution before the cut-off is applied and 
the prevalence calculated.

22.2.1.2 �Period Prevalence
A ‘period prevalence’ is the proportion of observation units that ever exhibited  
the state of interest, including those units that already exhibited the state at the start of 
the period. The derivation of a period prevalence and its interval estimate is, in prin-
ciple, identical to the process used to derive a point prevalence and interval 
estimate.

22.2.2	 �Cumulative Incidence (Syn. Incidence Risk)

Cumulative incidence is mostly used in descriptive cohort studies to estimate the risk
of new occurrences of an all-or-nothing state in the cohort or a subgroup thereof. A 
point estimate of incidence risk is calculated as the number of subjects who develop 
the outcome of interest divided by the number of at-risk subjects being followed, 
times 100. This applies to a pre-specified period, e.g., cumulative incidence over 
2 years, over 5 years, over x years. An interval estimate can be calculated as:

95 % Confidence Interval of a Cumulative Incidence
Step 1:
Calculate the standard error (SE) of the proportion, as in Eq. 22.1.

Where:
p = proportion developing the outcome of interest in the specified observation 

period
n = number of subjects at risk of getting the outcome followed during the 

observation period

Step 2:
Calculate the upper and lower limits of the 95 % confidence interval of the
cumulative incidence, as described in association with Eq. 22.1.
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Validity issues of frequent concern include informative censoring. This can 
occur when not all individuals have data for the entire specified time period. The 
cumulative incidence estimate is biased if loss to follow-up or loss by a competing 
risk-event (e.g., death) is related to the risk for the outcome of interest. Another pos-
sible problem is a lack of sensitivity or specificity of assessing the outcome. When 
information is available on the extent of these problems it may be possible to adjust 
the estimate. When there is considerable loss to follow-up, it is usually preferable to 
use the incidence rate instead of cumulative incidence as the outcome parameter 
(next subsection).

22.2.3	 �Incidence Rate (Syn. Incidence Density)

Incidence rates are used to estimate the rate of new occurrences of an all-or-nothing 
state in a cohort or dynamic population. For the calculation of point and interval 
estimates of the incidence rate, one can use the following approach:

Point Estimate of an Incidence Rate

	 Incidence rate =
A

B
	 (22.2)

Where:
A = number of first events among subjects at risk and followed
B = total person time contributed by all at-risk subjects followed; each 
subject’s contribution censored at, whichever comes first:
• End of planned follow-up
• Or, loss to follow-up
• Or, death
• Or, first occurrence of event

Confidence Interval of an Incidence Rate
Step 1:
Calculate the SE of the natural logarithm of the incidence rate:

SE =
1

A

Where:
A = number of first events among subjects at risk and followed
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Step 2:
Calculate the upper and lower limits of the 95 % confidence interval for the
incidence rate:

Lower limit e=
-

A

B
SE1 96. *

Upper limit e=
+

A

B
SE1 96. *

Where:
e = the natural number (~2.71)
A

B
 = the point estimate of the incidence rate

Validity issues of frequent concern include the problems of informative censor-
ing and low sensitivity or specificity of outcome detection mentioned above, as well 
as a number of dubious and controversial variants of the incidence rate encountered in 
the literature (which relate to ways the numerator and/or denominator are 
calculated):
• Counting several events per subject, e.g., fractures, disease episodes, recurrences

(For a discussion of problems with this, See: Windeler and Lange 1995)
• Individual person-time censored differently, e.g., only at death, loss to follow-up 

and end of follow-up

22.2.4	 �Pseudo-rates

The concept of a pseudo-rate was introduced in Chap. 6. The following are several 
commonly used pseudo-rates:
• Crude birth rate – Crude birth rate is a pseudo-rate measure of population fertility

and is calculated as the ratio of (1) 1,000 times the number of live births to resi-
dents in the area in a calendar year, and (2) the estimated mid-year population in 
the same area in the same year

• Crude death rate – This is a pseudo-rate measure of mortality burden in a popu-
lation and is calculated as the ratio of (1) 1,000 times the number of deaths in the 
area in a calendar year, and (2) the estimated mid-year population in the same 
area in the same year

• Stillbirth rate – This is the number of fetal deaths in a year divided by the sum of 
all live births and fetal deaths in the same population in the same year

• Infant mortality rate – This is a pseudo-rate measure of mortality in infants in a 
given area and is calculated as the ratio of (1) 1,000 times the number of death 
infants younger than 1 year in a given year and (2) the number of live births in 
the same area in the same year

J. Van den Broeck et al.
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• Child mortality rate – This is a pseudo-rate measure of mortality in children under 
5-years-old for a specified area and a specified calendar year and is calculated as 
the ratio of (1) the number of children under 5-years-old who died in a given year 
and (2) the number of live births that year

• Maternal mortality ratio – This pseudo-rate is a population indicator of the burden 
of maternal mortality and is calculated as the ratio of (1) the number of women 
in the area who die during pregnancy or childbirth in a chosen period and (2) the 
number of live births in the same area in the same period, ‘extrapolated’ to the 
number of women who would have died in a period with 100,000 live births
To evaluate validity problems and possibly needed adjustments, one should bear in 

mind that the numerator and denominator information of the ratios tends to come from 
multiple sources, e.g., different study design types or studies with different timelines 
of data collection. For example, data from surveillance systems and registries may be 
combined with data from surveys. Each of these source studies may have their own 
problems of selection bias and information bias. Extrapolations are sometimes made 
from counts in parts of years to estimated counts for entire years, or from smaller areas 
to wider areas. Justifications for this need to be checked carefully.

In this section, we discussed single frequency estimates and their validity problems. 
The next section discusses estimation strategies when there is an interest in how 
outcome frequencies compare among categories of interest, still in the context of 
descriptive studies.

22.3	 �Estimation in Comparative Descriptive Studies

In descriptive studies, comparisons of frequencies can be made in several ways that 
may involve either measures of frequency or measures of association.

Formal methods of comparison include:
• Estimating measures of association: the estimator itself captures the frequency 

contrast between subcategories or is a parameter of an age/time trend or other 
relationship examined with regression modeling. Examples are the difference in 
prevalence, prevalence ratio, incidence rate ratio, and beta-coefficient

• Statistical testing: the test statistic is calculated to explore hypotheses about 
the possible existence of effects (e.g., differences, statistical relations, etc.). The 
topic of statistical testing is discussed in Chap. 23 (Statistical Testing).
Informal and semi-formal comparison methods include:

• Checking for non-overlap of interval estimates obtained for different categories
• Visual smoothing of trends in the estimates obtained for multiple categories 

(See: Chap. 24)
• Standardization of estimates obtained for different groups or the same group at 

different times (See: next section)
In this section we will only further discuss the estimation of measures of associa-

tion. Some of these (odds ratio, relative risk) have been mentioned briefly in Chap. 2 
as basic concepts of epidemiology. We expand here on point and interval estimation 
and briefly mention some validity concerns. Formulas are given for quick reference, 
but their derivations are not discussed.

22  Statistical Estimation

http://dx.doi.org/10.1007/978-94-007-5989-3_23
http://dx.doi.org/10.1007/978-94-007-5989-3_24
http://dx.doi.org/10.1007/978-94-007-5989-3_2


426

Point Estimate of a Difference in Prevalence Rate

	 Difference in prevalence = -( )p p2 1 100* 	 (22.3)

Where:
p

2
 = proportion with the characteristic of interest in group 2

p
1
 = proportion with the characteristic of interest in group 1

95 % Confidence Interval of a Difference in Prevalence Rate
Step 1:
Calculate the SE of the difference in proportion using the following equation:

SE
p p

n

p p

n
=

-
+

-2 2

2

1 1

1

1 1( ) ( )

Where:
n

2
 = size of group 2

n
1
 = size of group 1

Step 2:
Calculate the upper and lower limits of the 95 % confidence interval of the
difference in proportion and multiply the values by 100:

lower limit SE= -( ) -p p2 1 1 96. *

upper limit SE= -( ) +p p2 1 1 96. *

22.3.1	 �Difference in Prevalence Rate

The difference in prevalence rates is a measure of association often used in surveys 
to contrast cross-sectional frequencies among subgroups. Point and interval estimates 
can be calculated using the following equations:

As to possible sources of bias, one first considers possible misclassifications of the 
outcome. If the bias differs for the two groups (e.g., the true prevalence is under-
estimated by 2 % in one group and over-estimated by 2 % in the other), then the 
difference in the prevalence rate will be biased. But if the two groups have the same 
absolute bias (e.g., the true prevalence is under-estimated by 2 % in both groups), 
then the estimate of the difference in prevalence will be unbiased.

Next, one considers misclassification of the determinant (in this case the charac-
teristic that defines whether one belongs to group 1 or 2). For example, the prevalence 
of an illness may be compared between groups with higher and lower socioeconomic 
status (SES). Misclassification of SES will bias the estimate of the difference in 
prevalence towards the zero value if this misclassification is unrelated to the illness. 
If the misclassification of the determinant is related to the illness (e.g., only high 
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SES people with the illness are misclassified as low SES), then the effect can be to 
over- or under-estimate the difference in prevalence.

22.3.2	 �Prevalence Rate Ratio

Like the difference in prevalence rates, the prevalence rate ratio is another measure of 
association often used in surveys to contrast cross-sectional frequencies among sub-
groups. Point and interval estimates can be calculated using the following equations:

Point Estimate of a Prevalence Rate Ratio

	 Prevalence rate ratio =
p

p
2

1

	 (22.4)

Where:
p

2
 = proportion with the characteristic of interest in group 2

p
1
 = proportion with the characteristic of interest in group 1

95 % Confidence Interval of a Prevalence Rate Ratio
Step 1:
Calculate the standard error (SE) of the natural logarithm of the prevalence
rate ratio using the following equation:

SE = -
æ

è
ç

ö

ø
÷ + -

æ

è
ç

ö

ø
÷

1 1 1 1

2 2 1 1A n A n

Where:
A

2
 = number with the characteristic of interest in group 2

A
1
 = number with the characteristic of interest in group 1

n
2
 = size of group 2

n
1
 = size of group 1

Step 2:
Calculate the upper and lower limits of the 95 % confidence interval of a
prevalence rate ratio:

Lower limit
SE

=

p

p

e

2

1
1 96. *

Upper limit
SE

= +

p

p

e

2

1
1 96.

Where:
e = the natural number (~2.71)
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When considering validity problems for the prevalence rate ratio the concern is how 
outcome misclassifications affect the numerator and/or denominator of the ratio. 
Other validity problems for the prevalence rate ratio are analogous to those dis-
cussed for differences in prevalence.

22.3.3	 �Relative Risk

The concepts of risk and relative risk were introduced in Chap. 2. This measure of 
association can be used in descriptive longitudinal studies to contrast the cumulative 
incidence (See: Sect. 22.2.2) in two groups. Point and interval estimates can be 
calculated using Eq. 22.4 and associated formulae, where p

2
 and p

1
 represent the 

proportion with the event of interest in groups 2 and 1, respectively, and A
2
 and A

1
 

represent the numbers of individuals who developed the outcome of interest in 
groups 2 and 1, respectively.

As to misclassification in outcome assessments, when the errors in the two 
cumulative incidence estimates are proportionally the same (e.g., when the cumula-
tive incidence is underestimated by half in the two groups), the ratio estimate 
remains unbiased.

Misclassification of the determinant – if unrelated to prognosis – tends to have an 
attenuating effect on the relative risk estimate (closer to the value 1).

22.3.4	 �Incidence Rate Ratio

This measure of association is often used in descriptive longitudinal studies, when 
individual follow-up times are quite variable. It captures a contrast between the 
incidence rates of two groups (exposed and unexposed). Point and interval estimates 
can be calculated using the following equations:

Point Estimate of an Incidence Rate Ratio

	 Incidence rate ratio IRR= =

A

B
A

B

2

2

1

1

	 (22.5)

Where:
A

2
 = number who developed the outcome of interest in group 2 (exposed)

A
1
 = number who developed the outcome of interest in group 1 (unexposed)

B
2
 = �total person time in group 2 (For calculation of total person time, See: 

Sect. 22.2.3)
B

1
 = total person time in group 1
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95 % Confidence Interval of an Incidence Rate Ratio
The following formula is easy to use for obtaining a good approximation of 
the upper and lower limits of the 95 % confidence intervals for the IRR:

Lower limit IRR=
+

/
. *

e A A
1 96

1 1

2 1

Upper limit IRR=
+

*
. *

e A A
1 96

1 1

2 1

Where:
e = the natural number (~2.71)

Validity concerns for the IRR are analogous to those for relative risk. Also of 
concern are possible dubious variants of the incidence rates, as mentioned in 
Sect. 22.2.3.

22.4	 �Standardization of Estimates

Standardization is a way to enhance descriptive comparisons of rate estimates across 
multiple groups or within the same group at different time periods. It is used to 
compare groups that may differ in characteristics that influence the outcome rate. In 
such circumstances, failure to execute standardization may lead to observed differ-
ences that are, to some extent, attributable to the different compositions of the 
groups. In other words, standardization may help to rid the influence of these back-
ground factors. Theoretically, it is possible to adjust for any background factor, but 
standardization is mostly done for age and sex.

There are two methods of standardization: direct and indirect standardization. 
We first discuss direct standardization below and thereafter only briefly mention 
indirect standardization.

22.4.1	 �Direct Standardization

This method applies rate estimates in two or more samples to a single underlying 
distribution of determinants, such as an age- or sex-distribution. For example, if the 
rates are age-dependent, the crude rates will be transformed into standardized rates 
that likely would have been attained were the age structures in the samples the same. 
Let’s look at a simple example in Table 22.2, in which investigators are attempting 
to compare mortality rates in two areas. In areas A and B the mortality rates are 
calculated to be 427 deaths per 100,000 inhabitants and 507 deaths per 100,000 
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inhabitants, respectively. By employing direct age standardization, one can calculate 
what the mortality rates would have been if the two areas had the same age structure. 
The procedure follows the steps listed in Panel 22.2.

22.4.1.1 �Step-1: Stratify the Two Study Groups  
into the Same Age Strata

The example illustrated in Table 22.2 is based on imaginary data with only three age 
strata (to simplify matters). In general, the size and number of the strata have to be 
concordant with the available data of the chosen standard (See: Step-3).

22.4.1.2 �Step-2: Calculate the Age-Specific Mortality Rates  
for Each Stratum in Each Group

For this calculation the numbers of individuals in the population and of the occurred 
deaths in each of the age strata are needed. In the example in Table 22.2, each of 
the age-specific mortality rates in Area A is higher than in Area B, but the overall 
death rate is higher in Area B. Looking at the size of the populations in the strata, it 
becomes clear the age structure in Area A is weighted towards younger people and 
that of Area B is weighted towards older people (an age stratum that has a much 
higher mortality rate).

22.4.1.3 �Step-3: Choose a Standard Population
The next step is to choose a standard population whose age distribution will  
be used as a common hypothetical age distribution for all study populations. 

Panel 22.2  Direct Age Standardization in Six Steps

	1.	 Stratify the two study groups into the same age strata
2. Calculate the age-specific rates for each stratum in each group
3. Choose a standard population
4. Calculate the expected number of outcome events for each stratum in each

group
5. Calculate the total number of expected outcome events in each group
	6.	 For each group, divide this total expected number of outcome events by the 

total size of the standard population

Table 22.2  Age-specific mortality rates in two areas

Age 
category

Area A Area B

Number of 
individuals

Number 
of deaths

Mortality rate 
per 100,000

Population 
size

Number 
of deaths

Mortality rate 
per 100,000

20–44 400,000 1,120 280 250,000 675 270
44–64 500,000 2,365 473 450,000 2,115 470
65+ 100,000 785 785 300,000 2,280 760
All ages 1,000,000 4,270 427 1,000,000 5,070 507
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When identifying a standard population, one of the following possibilities is 
commonly selected:
• One of the study populations
• The entity of the study population groups combined
• An “external” population, i.e., the population from a local area or country
• A hypothetical population

The choice is somewhat arbitrary, and there is no correct or incorrect standard. 
But it should be kept in mind that the choice has an effect on the standardized rates, 
i.e., a relatively young standard population gives more weight to rates in younger 
age groups while a relatively old standard population gives more weight to the rates 
in older age groups. Therefore the standard should preferably be representative of 
the study populations being compared.

22.4.1.4 �Step-4: Calculate the Expected Number of Deaths  
for Each Stratum in Each Study Population

For each study population and each age stratum, one calculates the expected 
age-specific death rates by applying the crude death rate (from step-2, See: Table 22.2) 
to the chosen standard population. This calculation can be executed using the 
following formula below. The results of this step in our example are shown in 
Table 22.3.

	
Size of standard population age specific mortality rate´

100 000, 	

22.4.1.5 �Step-5: Calculate the Total Number of Expected  
Deaths in Each Study Population

This is done by simply summing the calculated number of expected deaths in each 
stratum calculated in step-4 (See: “Total” in Table 22.3).

22.4.1.6 �Step-6: For Each Study Population, Divide the Total Expected 
Number of Deaths by the Total Size of the Standard Population

This step allows one to obtain the age-standardized mortality rates

Adjusted mortality rate area A :
,

, ,
,

841 380

195 850 000
100 000 429´ = deeaths per 100 000,

Table 22.3 Calculation of expected numbers of deaths in a chosen standard population

Age-group

Standard 
population  
sizea

Area A Area B

Mortality rate 
per 100,000

Expected number 
of deaths

Mortality rate 
per 100,000

Expected number 
of deaths

20–44 100,149,000 280 280,418 270 270,403
45–64 60,991,000 473 288,488 470 286,658
65+ 34,710,000 785 272,474 760 263,796
Total 195,850,000 841,380 820,857

aU.S. population from the year 2000 is used. Available at www.cdc.gov
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Adjusted mortality rate area B :
,

, ,
,

820 857

195 850 000
100 000 419´ = deeaths per 100 000,

Thus, it is evident that area B had a higher crude mortality rate than area A 
(Table 22.2), but area B’s age-adjusted mortality rate was lower than area A’s. So it 
can be stated that the difference in the crude rates were to some extent attributable 
to the differences in age structure.

22.4.2	 �Indirect Standardization

For the indirect method, specific rates from the standard population are applied to 
the populations being compared. For example, the age-specific mortality rates of 
the standard population might be applied to the corresponding age-strata in 
areas A and B. In other words, indirect standardization is the inverse of direct 
standardization. This method is often used when insufficient strata-specific data for 
the study populations are available (either they are unavailable or too susceptible to 
random variability).

22.5	 �Estimation in Analytical Studies

Estimation in analytical studies first involves a crude analysis, in which control for 
confounding is not yet a concern. In cohort studies and trials this step uses methods 
that are analogous to the methods described in Sect. 22.3, and will typically yield a 
crude relative risk or incidence rate ratio estimate. In Sect. 22.5.1 we will discuss 
crude analysis in case control studies, which typically leads to an estimate of a crude 
exposure odds ratio. We will show that it can also, with proper sampling of the 
‘controls,’ lead to a direct estimate of a crude incidence rate ratio. There are several 
utilities to crude analyses, including:
• Checking for confounding (by comparing crude versus adjusted estimates)
• Checking for effect modification by that third factor (by comparing crude estimates

across strata of the third factor)
• Controlling for confounding (by calculated crude estimates separately in strata

of a suspected confounder)
After crude analysis follows an analysis that controls for confounding and leads 

to the estimation of the causal rate ratio (See: Sect. 22.5.2 and Chap. 24). From this 
latter statistic, one can derive secondary outcome parameters, e.g., number needed 
to treat, vaccine efficacy, etc. (See: Sect. 22.5.3).

22.5.1	 �Crude Analyses in Case-Control Studies

The concepts of odds and the odds ratio were introduced in Chap.2. In crude analysis 
of unmatched case-control studies, the point estimate of the crude exposure odds 
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ratio is the odds of exposure in cases divided by the odds of exposure in the controls 
(data from a simple 2 × 2 table). An interval estimate can be calculated using the 
following equations:

95 % Confidence Interval of a Crude Exposure Odds Ratio
Step-1:
Calculate the SE of the natural logarithm of the odds ratio using this
equation:

SE = + + +
1 1 1 1

2 1 2 1A A B B

Where:
A

2
 = number of exposed cases

A
1
 = number of unexposed cases

B
2
 = number of exposed controls

B
1
 = number of unexposed controls

Step 2:
Calculate the upper and lower limits of the 95% confidence interval of the odds
ratio:

Lower limit e
SE

=
¸

æ

è
çç

ö

ø
÷÷-ln . *

A

A

B

B
2

1

2

1

1 96

Upper limit e
SE

=
¸

æ

è
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ö

ø
÷÷+ln . *

A

A
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B
2

1

2

1
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Where:
ln = natural logarithm
e = the natural number (~2.71)

Point and interval estimates of the crude exposure odds ratio can also be obtained 
from single-predictor logistic regression analysis. This method is explained in 
Chap. 24 (Statistical Modeling). As a form of quality control, results of 2 × 2 table 
analyses and coefficients from single predictor models should always be compared 
to check if they lead to identical parameter estimates (Vandenbroucke 1987).

When the controls are a representative sample of the source population of the 
cases (See: Chap. 6 for explanation of this concept), the crude analysis can directly 
estimate an incidence rate ratio (IRR) or relative risk (Miettinen 1976). This is to be 
seen as an advantage because IRR and relative risks have a more intuitive interpreta-
tion than do odds ratios. Indeed, the source population can be seen as an underlying 
cohort. The group of cases that ended up in the case-control study can be seen as a 
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representative sample of cases developing in this underlying cohort, and they should 
have an exposure distribution (number of cases exposed/number of cases unexposed; 
i.e., A

2
/A

1
) identical to the exposure distribution of all cases developing in the 

underlying cohort. Similarly, since the controls included in the case-control study 
are a representative sample of the same underlying cohort, the population time 
distribution (unexposed person time/exposed person time; i.e., B

1
/B

2
) observed in 

the controls should be the same as the population time distribution in the entire 
underlying cohort. Finally, since the cases and controls provide us with A

2
/A

1
 and 

B
1
/B

2
 estimates for the underlying cohort/source population, we can calculate the 

incidence rate ratio in the source population as:

	 IRR =
A

A

B

B
2

1

1

2

* 	

Note that this formula is a simple transformation of the familiar IRR formula 
(Eq. 22.5):

	 Incidence rate ratio IRR= =

A

B
A

B

2

2

1

1

	 (22.5)

B
1
 and B

2
 represent person-time information for the controls, not simply numbers 

of exposed and unexposed individuals. This is to account for the possibility that for 
some controls complete exposure information is unavailable, i.e., it might be available 
only for part of the etiologically relevant period. In simpler, more frequent instances, 
however, complete exposure information about the entire etiologic period is available 
for all controls. This will often be the case when the exposure is merely an ‘ever/
never’ characteristic (e.g., ever traveled to Africa, yes or no) or a dichotomous 
characteristic in a defined interval in etiognostic time (e.g., traveled to Africa in the 
period 5–10  years ago, yes or no). The balance of population time (B

1
/B

2
) then 

reduces to the simple ratio involving numbers ‘unexposed’ and numbers ‘exposed,’ 
from the familiar 2 × 2 table.

22.5.2	 �Methods of Adjusting for Confounding During Analysis

In epidemiology, adjustment (control) for confounding during analysis traditionally 
uses one or more of the following approaches:
• Exclusion from analysis of subjects with rare confounding characteristics
• Regression analysis
• Stratified analysis, with or without calculation of a pooled estimate

All of these methods can be applied in case-control studies, cohort studies and 
trials. No single method of control during analysis can be considered optimal in 
every situation; each has strengths and limitations. In most situations, a combination 
of strategies will provide better insight and control.
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22.5.2.1 �Exclusions from Analysis
This strategy is the equivalent to restriction at the design stage. If the few subjects with 
the rare confounding characteristic are excluded from the analysis, the confounder 
can no longer exert its influence.

22.5.2.2 �Regression Analysis
The most popular method of controlling for confounding is to perform regression 
analyses. Most frequently used are:
• Multiple linear regression
• Multiple logistic regression
• Cox proportional hazards regression
• Poisson regression

These analyses will be discussed in Chap.24. Briefly, all these methods allow for 
effective control of confounding by introducing the potential confounders as inde-
pendent variables (as ‘covariates’ in addition to the exposure variable) in the model. 
In multiple regression analyses, the slope coefficients (beta-coefficients) of the 
independent variables and their precision are estimated. When all confounders 
are introduced in the model, the beta-coefficients for the exposure variable give an 
un-confounded measure of the effect of the exposure on the outcome.

22.5.2.3 �Stratified Analysis
This approach involves calculating the outcome parameter estimate separately for 
each stratum of the potential confounder. For example, if one anticipates that age is 
a potential confounder, one calculates the odds ratio separately for each age category 
to control for that possibility. The separate odds ratios (one for each age category) 
are by definition free of confounding by age. Reporting these separate odds ratios 
could be sufficient if an overall pooled estimate of the effect measure (for all age 
categories combined) is not strictly required or wanted. Controlling for confounding
by stratified analyses has some advantages and disadvantages (Panel 22.3).

22.5.2.4 �Pooled Estimation
This method can be helpful in studies where only one (or at most two) confounders 
need to be adjusted for. Pooled estimates are based on the fact that, in a stratified 

Panel 22.3  Advantages and Disadvantages of Stratified Analysis

Advantages of stratified analysis
• Easy to calculate by hand
• Allows evaluation of confounding and effect modification
• Confounding is effectively controlled for

Disadvantages of stratified analysis
• Only a very small number of confounders can be accounted for
• Large sample sizes are needed to have enough numbers in each stratum
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analysis, each stratum-specific estimate (e.g., each odds ratio) is an un-confounded 
estimate of the overall un-confounded parameter, but the precision of each of those 
separate estimates depends on the size of the stratum. The principle of pooled 
estimation is therefore to obtain a weighted average of all the stratum-specific esti-
mates (more weight given to strata with larger sizes). We only give the formula for 
calculating the pooled odds ratio point estimate using the Mantel-Haenszel method
in an unmatched case-control study. For interval estimates and other scenarios, we 
refer to Kirkwood and Sterne (2003) and other statistical literature.

Point Estimate of the Mantel-Haenszel Odds Ratio

	 ORMH

a b
T

c d
T
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å

*

*
	 (22.6)

Where:
∑ = sum over all strata
T = size of stratum = a + b + c + d
a = number of exposed cases in the stratum
b = number of unexposed controls in the stratum
c = number of unexposed cases in the stratum
d = number of exposed controls in the stratum

The Mantel-Haenszel method assumes that the stratum-specific estimates only
vary because of sampling variation, not because of effect modification by the con-
founder. To check this assumption, one can do a chi-squared test for heterogeneity. 
Simple inspection for non-overlap of the confidence intervals in the different strata 
can also be suggestive of effect modification. Comparison of the Mantel-Haenszel
odds ratio with the exposure odds ratio obtained from the crude analysis is informative 
about confounding: if the Mantel-Haenszel odds ratio is identical to the crude odds
ratio, then no confounding is present.

22.5.3	 �Calculation of Secondary Outcome Parameters

After one calculates the effect measure, it is sometimes useful to derive secondary 
outcome parameters. These estimates are often helpful in making arguments about 
the importance of an observed effect measure. Such secondary outcome parameters 
often include: attributable fraction (AF), number needed to treat (NNT), and vaccine 
efficacy.
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22.5.3.1 �Attributable Fraction
All health outcomes are multifactorial, and some factors matter more than others. 
To estimate the degree to which an exposure contributes to an outcome, one may 
calculate the attributable fraction (AF). Usually determined in cohort studies, AF is 
calculated as the difference in the rates of an outcome between the exposed and 
unexposed (also known as the risk difference or RD), that quantity divided by the 
rate of the outcome in the exposed.

	 AF
I I

I

RD

I
e o

e e

=
-

= 	

Where,
I

e
 = incidence of the outcome in the exposed

I
o
 = incidence of the outcome in the unexposed

RD = risk difference = I
e
 − I

o

Alternatively, the attributable fraction can be calculated as:

	
AF

CRR

CRR
=

-1

	

Where,
CRR=Causal rate ratio

The value for AF is often interpreted as the expected degree of change in the rate 
of an outcome had no one been exposed. In the context of assessing etiognostic 
probabilities (See: Chap. 24, Sect. 24.4.3) AF is interpreted as the probability that a 
particular exposure causally acted in an individual.

22.5.3.2 �Number Needed to Treat
This outcome parameter (See: Cook and Sackett 1995) is a measure of effect used 
in intervention-prognostic research, and is interpreted as the average number of 
individuals that need to be treated to prevent one additional outcome event. For 
example, if NNT for death is 19, then this estimate is interpreted to mean that, on 
average, 19 individuals need to be treated to save one life. NNT is calculated as the 
reciprocal of the absolute value of the risk difference (RD). The NNT is always 
calculated for a defined risk period in comparison with the control intervention or 
non-intervention.

	

NNT
RD

=
1

	

Where:
RD = risk difference = rate in the exposed minus the rate in unexposed

Sometimes a similar estimate, the number needed to harm, is calculated if the 
exposure is associated with an increased risk of an undesirable outcome event 
(e.g., an adverse event).
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22.5.3.3 �Vaccine Efficacy
Vaccine efficacy is the difference between the illness rates of the immunized and the 
non-immunized, expressed as a proportion (or percentage) of the illness rate among 
non-immunized.

This chapter provided an introduction to frequently employed methods of sta-
tistical estimations and their selection. The estimates produced are mostly 
evidence about frequencies, associations, or causal effects. In the next chap-
ter, we will discuss how evidence about the existence of associations and 
effects can be obtained using statistical tests.
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Abstract
Statistical testing is used for exploring hypotheses about the possible existence 
of effects (differences, statistical relations). One chooses a statistical test mainly 
on the basis of which type of variable or which distributional characteristic of a 
variable is to be compared and related. Each statistical test has its own type of 
test statistic that captures the amount of effect/difference observed in the sample 
data. The problem with observed effects in samples is that they are influenced by 
sampling variation (chance) and may not accurately represent real population 
effects. P-values are therefore attached to the observed values of a test statistic in 
an attempt to acquire better insight into whether an observed effect is real. 
P-values are the probability of finding the observed value of the test statistic, or 
a value more extreme than it, when the null hypothesis (that there is absence of 
an effect or difference) is in fact true. As such, P-values are sometimes but not 
always a good basis for accepting or rejecting a null hypothesis. After discussing 
the uses of statistical testing in epidemiology and different types of hypotheses to 
test, we discuss the interpretations of P-values and conclude with a brief overview 
of commonly used statistical tests.
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23.1	 �The Use of Statistical Testing in Epidemiology

Statistical tests are employed to obtain evidence about the possible existence of 
effects. Each statistical test produces a test statistic that captures the amount of 
an effect/difference observed in the study. Given the information conveyed by test 
statistics, it is not surprising that statistical testing is common practice in epidemio-
logical research, although some have argued that there is no place for it (e.g. Rothman 
2010). The arguments against statistical testing are often based on the fact that mis-
interpretations of P-values are commonplace and that statistical estimation is more 
informative about effect sizes than statistical testing. Misinterpretations are indeed 
common (Abelson 1995; Sterne and Davey Smith 2001). However, we argue that 
statistical testing still deserves a place in epidemiology because evidence about the 
mere existence of an effect may be needed. The existence of an effect is especially 
important to establish before estimating effect sizes and studying effect modification, 
both of which require relatively large sample sizes. For example, large-size trials 
with low prior probability of detecting a clinically important effect would be deemed 
unethical and would tend to get little practical or financial support without some prior 
evidence about the existence of an effect. Statistical testing can be part of a valid 
approach to generate this prior evidence in a smaller-sized study. Indeed, for any 
research questions about existence of effects/differences, testing can be a helpful tool 
provided that the interpretation of test results avoids some common pitfalls.

Panel 23.1  Selected Concepts and Terms Relevant to Statistical Testing

Alternative hypothesis  A statistical hypothesis stating that two or more 
variables are expected to be statistically related (sometimes also specifying 
their expected degree of relatedness)

Heteroscedascity  Lack of constancy of variance of the outcome over levels 
of the determinants

Hypothesis  A scientific idea (Adapted from Miettinen 1985)
Nonparametric test  Test involving no assumptions about the shape of the 

distribution of the variables concerned
Null hypothesis  A statistical hypothesis stating that two or more variables 

are expected to be statistically unrelated, or, that a variable’s distribution is 
not different from a theoretical distribution

Null case  The case where the null hypothesis is actually true
Paired samples
1.	� Two series of data, the second representing re-measurements of the same 

attribute/experience of the same observation units
2.	 Matched samples
Parametric test  Test involving assumptions about the shape of the distribution 

of the variables concerned

(continued)
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P-value (of a null hypothesis)  Probability of finding a value for a test statistic 
at least as extreme as the value obtained in the study, in the null case

Sampling distribution  Distribution of a statistic in a hypothetical very 
large series of equally sized samples from the same population

Sampling variation  Variation in the distribution of a statistic in a hypothetical 
very large series of equally sized statistical samples from the same population

Significance level (of a test)  A particular a priori P-value α used to label 
obtained P-values as ‘significant’ if the obtained P-value is smaller than α 
or ‘non-significant’ if the obtained P-value is greater or equal to α

Significant (Statistically -)  Characteristic of a P-value that is lower than the 
chosen significance level

Statistical distribution  The expected frequency of values of a statistic
Statistical testing  Computation of a P-value (Miettinen 1985)

Panel 23.1  (continued)

Statistical testing is a study activity that almost always requires the use of statistical 
packages, pieces of software that facilitate data analysis and statistical testing. 
Table 23.1 is a shortlist of statistical packages that are particularly popular among 
health researchers. The user of the package can be an investigator, or someone del-
egated by an investigator to perform the testing, such as a student, professional 
analyst, statistician or, person working for a contract research organization. Whoever 
is involved, the key scientific concern is that the operator should not only know 
‘which buttons to push’ but also have a good understanding of the validity issues at 
stake, which include the needs for:
• A cleaned dataset (See: Chap. 20)
• The appropriate choice of a test and options within a test (See: Table 23.2)

Table 23.1  Shortlist of statistical packages often used for statistical testing in epidemiological 
studies

Statistical package Commonly perceived advantages and disadvantages
R and R commander Free use

Rapidly increasing range of statistical methods available
Easy use of R commander for simple statistical operations
Relatively difficult to use compared to SPSS, Epi-Info, and EpiData

STATA Very wide range of statistical methods available
Need to learn syntax language
Expensive

SPSS Easy use of the menu system
Medium size range of statistical methods available
Expensive

Epi-Info and EpiData Free and easy use
Limited range of statistical methods
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Table 23.2  Selection of statistical tests frequently applied in diagnostic epidemiological studies

Measurement scale  
of the outcome variable

Determinant levels 
compared Applicable statistical tests

Categorical One groupa Chi-squared Goodness-of-fit test
Two independent 
groups

Chi-squared test for contingency tables; 
Fisher’s Exact test

Two related groups McNemar test
k independent groups Chi-squared test for contingency tables; 

Chi-squared test for trend; Fisher’s Exact test
Numerical with 
Normal distribution

One groupa One-sample t test; Kolmogorov-Smirnov 
one-sample test

Two independent 
groups

Student’s t test (for difference in means); 
F-test (for heteroscedascity)

Two related groups Paired t-test
k independent groups F tests done in the context of ANOVA
k related groups F tests done in the context of repeated 

measurements ANOVA
Numerical with 
non-Normal 
distribution

One groupa Kolmogorov-Smirnov one-sample test
Two independent 
groups

Mann-Whitney test; Median test;  
Kruskal-Wallis test

Two related groups Paired Wilcoxon test
k independent groups Kruskal-Wallis test

aThe observed frequency distribution is to be compared with a theoretical frequency distribution

• Verification of the assumptions underlying the chosen test; knowledge of actions 
that can be taken when assumptions are violated (See: Chap. 13 and below)

• Appropriate handling of missing values (See: Chaps. 12, 13, and 20)
• Correct interpretation of outputs produced by the package

This chapter takes the use of a statistical package as a given. A wide range of 
excellent statistical handbooks is available to the increasingly rare investigator who 
does not have access to computers or statistical packages and to those who wish to 
deepen their knowledge of how test statistics are calculated.

23.2	 �Null Hypotheses and Alternative Hypotheses

There are two types of hypotheses that one can generate: a null hypothesis and an 
alternative hypothesis. In study design, one usually only specifies an alternative 
hypothesis, which is formulated as a simple one-sentence expression of an expected 
relation (e.g., one hypothesizes that oral broad-spectrum antibiotic use before the 
age of 5 years increases the risk of developing allergies in children aged 5–10 years). 
In statistical testing one usually formulates and examines a null hypothesis stating 
that there exists ‘no effect’. Sometimes, however, statistical testing can address 
specific alternative hypothesis stating that there exists an effect of a particular size. 
Below we expand on how null hypotheses and alternative hypotheses are addressed 
in statistical testing.
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23.2.1	 �The Nature of Null Hypothesis Testing

Null hypotheses are statistical hypotheses that there is ‘no effect’ of a determinant 
on an outcome or ‘no difference’ in compared distributions. They relate the idea that 
two or more variables are statistically unrelated or that there is no difference between 
a single variable’s distribution and a theoretical distribution. Null hypothesis tests 
examine to what extent the empirical data support or detract from the null hypothesis. 
The output of that examination is usually a P-value associated with a test statistic. 
The P-value expresses an amount of evidence for or against the null hypothesis 
(Miettinen 2009a, b). Nowadays, the wider goal has become to decide whether one 
sees the P-value as a reason to accept or reject the null hypothesis. This is often 
done simply by checking whether the P-value is lower than an arbitrary pre-set 
threshold (called the significance level of the test, which is usually set by convention 
at P = 0.05). This practice was unintended by Fisher, the inventor of the P-value 
(Goodman and Berlin 1994; Miettinen 2009a), but has become pervasive in epide-
miology and other scientific disciplines.

23.2.1.1 � Test Statistics
A test statistic expresses the amount of effect/difference observed when groups are 
compared or when comparison is made between an observed and a theoretical sum-
mary value or distribution. Statistical tests differ in what exactly is being compared 
and in the type of test statistic capturing the amount of difference. For example, in 
a Student’s t test, the mean of a continuous variable is compared between two 
groups. The test statistic is the t statistic, which expresses the degree of inequality 
between the two observed means as their difference (mean 1 − mean 2) divided by 
the standard error of this difference. Another example is the One-sample t test. This 
test compares the mean of a continuous variable with a theoretical value y. The test 
statistic in this test expresses the degree of inequality between the observed mean 
and y as the difference (mean − y) divided by the standard error of this difference.

A further characteristic of a test statistic is that each empirically determined 
value of it should have a known probability of being observed in instances in which 
the observed inequality is due to sampling variation only (i.e., there is no real 
inequality). In other words, assuming that the null hypothesis is true, the test statis-
tic must have a known frequency distribution of values found in a hypothetical, very 
large number of repeat samples from the same target population. This distribution is 
the model that underlies the statistical test, and on the basis of it, a P-value can be 
calculated for any empirical test statistic obtained.

23.2.1.2 � P-Values
A P-value for a null hypothesis is the probability of finding a value for the test statistic at 
least as extreme as the value empirically found, in a scenario where the null hypothesis 
is true. A one-sided P-value (obtained in a one-tailed test) is the probability of 
obtaining a test statistic at least as extreme in one direction away from the null value. 
A two-sided P-value (obtained by a two-tailed test) is the probability of obtaining a 
result at least as extreme in the same or opposite direction away from the null value.
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Whether or not the null hypothesis is actually true is always unknown. All we 
know is that empirical test statistics that occupy extreme positions within the 
sampling distribution model (with very small P-values) would be very rarely seen if 
the null hypothesis were true and the sampling distribution model valid. On the 
other hand, values of empirical test statistics that are located relatively close to the 
null value (with high P-values) would be nothing unusual if the null-hypothesis 
were true and the sampling distribution model valid. In a simplistic approach, these 
considerations are sometimes taken as an adequate-enough basis for making a 
judgment about the need to accept or reject the null hypothesis. What is commonly 
used is a threshold value for the P-value (a ‘significance level’) to which one attaches 
the expression of belief in question. We expand on the interpretation of P-values 
in Sect. 23.3.

23.2.2	 �Choice of Null-Hypothesis Test and Degrees of Freedom

The choice of an appropriate null hypothesis test concerns which test statistic to use 
and the sampling distribution of that test statistic in the null case. Tests tend to differ 
according to:
• The measurement level of the compared variable
• The number of groups to be compared
• The independence of groups to be compared
• The underlying distributions of the data to be compared (if the variable is con-

tinuous and, if so, if it is Normally distributed)
Selecting the appropriate type of test is important, and for diagnostic studies 

Table 23.2 can assist in making that choice on the basis of the features listed above. 
After selecting the type of test one may have to specify the Degrees of Freedom 
(DF). DF is an integer number that specifies the specific null distribution that will 
be most applicable for the chosen test. It is calculated as a function of the sample 
size and/or the number of statistical parameters involved in the calculation of the 
test statistic. In practice, when measurement levels and numbers and independence 
of comparison groups are correctly specified, the statistical package will automati-
cally identify the degrees of freedom based on the number of selected records with 
information for the variable or model parameters.

23.2.3	 �Statistical Testing of Alternative Hypotheses

Current practice in medical research is that alternative hypotheses are rarely tested. 
Alternative hypotheses are hypotheses that the statistical association is non-null, that 
there is non-equality among compared groups of a hypothesized amount. This is rarely 
practiced in spite of the fact that researchers commonly use a hypothesized effect size 
as a basis for ‘sample size and power calculation.’ This state of affairs has been often 
criticized but has never changed. With non-null hypothesis testing, the sampling 
distribution of the test statistic is of the same shape as with null-hypothesis testing but 
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is shifted in comparison with a null hypothesis test. A framework for using alternative 
hypothesis testing together with null hypothesis testing has been promoted by 
Miettinen (1985), who suggested providing a P-value function in research reports, 
i.e., a function showing the P-values for the null hypothesis as well as for a range of 
hypothesized effect sizes. We suggest the possibility of reporting at least two P-values: 
one for the null hypothesis and one for any reasonable alternative hypothesis, perhaps 
the one used in the study proposal as a basis for sample size calculations.

23.3	 �Interpretation of P-Values

23.3.1	 �The Significance Level of a Null-Hypothesis Test

The significance level of a test is an a priori P-value, α, used to label P-values 
obtained in study analysis as ‘significant’ if the test-obtained P-value is smaller 
than α or ‘non-significant’ if the obtained P-value is greater than or equal to α. 
This threshold α is called the ‘significance level’ of the test. It is usually set at 
P = 0.05 or P = 0.01. When multiple tests are carried out an adaptation to lower 
P-value thresholds (a ‘Bonferroni correction’) is commonly proposed. Whatever the 
chosen significance level, ‘significant’ is seen as ‘highly detractive from the null-
hypothesis’ and ‘non-significant’ is seen as ‘highly supportive’ of it. Hence, 
researchers adhering to the contemporary ‘culture of significance’ have used this 
dichotomy to ‘accept’ or ‘reject’ null hypotheses as the conclusion of the testing. 
Let us take a critical look at this approach.

23.3.1.1�  Problems Associated with the Use of Significance Levels  
for Interpretation

A problem with the conclusion-oriented approach is that the amount of evidence 
produced for or against a null hypothesis depends on other factors than the P-value 
alone. P-values should be interpreted in light of and together with the amount of 
information in the data (which is heavily determined by sample size). A non-
significant P-value, for example, when based on a very small sample, provides no 
evidence at all (neither for nor against the null hypothesis). Perhaps the most fre-
quent misinterpretation is the idea that a non-significant P-value implies ‘no effect’ 
(Altman and Bland 1995; Evans et al. 2009). Panel 23.2 contains hints that may help 
in avoiding grave misinterpretations of P-values.

P-values should also be interpreted in light of and together with the prior credi-
bility of the (null-) hypothesis (Miettinen 2009a; See also: Sect. 23.3.3). Indeed, 
whenever the prior probability of a hypothesis is very low, a ‘significant’ P-value 
does not weigh heavily as evidence and should be regarded as a possible case of 
bad/good luck. Evidence and its understanding are inextricably linked to prior cred-
ibility, hence the opening quote of this chapter “Nisi crediteritis, non intelligitis” 
(“If you don’t believe it, you won’t understand it”), or, to cite Richard Bach, “There 
is nothing we know until intuition agrees” and this applies to scientific knowledge 
as much as to any form of knowledge.
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Finally, there is no reason why one should restrict the evidence from testing to 
P-values from null hypotheses alone. As shown by Miettinen (1985), additional use-
ful evidence can be obtained from P-values of ‘alternative’ hypotheses as well and 
can be conveniently presented as a P-value function. P-value functions model the 
P-values for a range of hypothesized effect sizes (including a zero effect).

23.3.2	 �Adaptations Towards Lower P-Value Thresholds

P-value adaptations for ‘multiple testing’ are often advocated when multiple com-
parisons are made in the same study. A strong tradition exists to make Bonferroni-
type adjustments of the P-values in those instances. We join the several authors who 
have counter-argued that there is rarely if ever a need for such adjustments 
(Miettinen 1985; Rothman 1990; Perneger 1998; Nagakawa 2004). In every research 
study the experience of members of a study base is documented by measuring a 
selected number of attributes among those members. This selection of attributes for 
measurement is decided before the start of the data collection. It is important to see 
that, except maybe in the case of a Hawthorne effect, the experience lived by the 
study base members remains unchanged, whether it was one or multiple occurrence 

Panel 23.2  Avoiding Pitfalls in Interpretation of P-Values from Null Hypothesis 
Tests When a Significance Level of 0.05 Was Chosen

When the P-value is < 0.05, consider that:
• A P-value of <0.05 will falsely appear in 5 % of instances where there is 

actually no true effect/difference; the smaller the P-value, the stronger is 
the evidence against the null hypothesis, but this does not warrant com-
plete ‘rejection’ of it

• An existing true effect may be very small and can have little or no clinical 
relevance; clinical relevance can be seen as the potential of an effect to 
bring about a change in clinical or public health practice

• In very large studies, even a P-value of 0.001 can be found for differences 
of a magnitude that is either true but irrelevant, or untrue and caused by a 
small bias

When the P-value is >0.05, consider that:
• This does not mean that there is no true effect, especially in small studies. 

The higher the P-value the more the null hypothesis becomes viable, but 
this does not warrant blind ‘acceptance’ of it

• For an appreciation of the range of possible true effect sizes, one can look 
at the confidence interval around the point estimate of the effect size

• The bigger the sample size, the more evidence there is in favor of the null 
hypothesis

J. Van den Broeck and J.R. Brestoff



447

relations that were put forward as being of interest before, during, or after the data 
collection. Any change in opinion about which relations should be examined, even 
if data-driven, leaves the documented experience unaffected. In other words, the 
outcome parameter estimates (causal rate ratios, etc.) and P-values remain 
unchanged by the investigators’ multiplicity of interests or change in those interests. 
For example, any new additional hypothesis tested after data collection, if it had 
been the only hypothesis proposed before data collection, would have led to exactly 
the same P-value. Thus, adding multiple and/or post-hoc comparisons does not alter 
the chance of finding a significant P-value for any of them.

23.3.3	 �Interpretation of P-Values Using the Bayes Factor

Enhanced inference from statistical testing requires taking into account the prior 
credibility of the null hypothesis. According to Miettinen (2009a), the latter can best be 
done by translation of P-values into Bayes factors. Briefly, one first determines the 
Z score corresponding to the P-value using standard statistical tables. For example, if 
the two-sided P-value produced by the statistical package is exactly 0.05, then Z = 1.96. 
With Z determined, the Bayes factor is then calculated as follows (Miettinen 2009a):

	 Bayes factor = = -( )éë ùûBF Exp 0 5 12. Z 	 (23.1)

This Bayes factor can now be used for a better interpretation of the test results, 
an interpretation that takes into account the prior probability (P0) of the hypothesis 
(Miettinen 2009a). The P0 is the probability that the null hypothesis is true, as appre-
ciated (partly subjectively) before evidence from the study is obtained. A P0 of 0.5 
would correspond to equipoise. The Bayes factor now allows estimating how much 
the evidence in the data changes the prior probability. This is done by calculating 
the posterior probability (P1) according to Bayes’ rule as follows:

	 Posterior probability = =
+

-
P

P
P BF

1
0

0

1

1
1

*

	 (23.2)

An informal comparison between P1 and P0 now allows subjective yet evidence-
based interpretation of the test findings. The bigger the increase in probability, the 
stronger is the evidence in favor of the null hypothesis. As suggested by Miettinen 
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(2009a), a good way to present the evidence of statistical tests is thus to provide a 
table that lists selected prior probabilities and the corresponding posterior probabilities. 
Perhaps the selected prior probabilities for this table could represent a fair sample 
of expert opinions on the issue, gathered before start of data collection as part of the 
development of the study protocol.

23.4	 �Verification of Basic Assumptions of Tests

Recall that Chap. 13 has dealt with the statistical analysis plan at the design stage of 
the study. The plan may foresee statistical tests based on certain assumptions about 
the distribution of the prospective data. Once the data have been collected these 
assumptions need a good fact check, and revision of the initial plan may be needed. 
Assumptions worth checking depend on the type of test, and we refer to statistical 
handbooks for a complete treatment. Yet, there are some types of assumptions that 
are of frequent interest. We mention them briefly:
• All tests are based on an assumption of stochasticity; testing a null hypothesis 

when a null effect is impossible may not make sense
• The measurement level of the variables involved (See: Chap. 5) should be appro-

priate for the test
• Many tests have distributional assumptions. For example, Normality of the dis-

tribution of a continuous variable may need verification before doing a t-test; 
Some sub-types of t-tests require absence of heteroscedascity (i.e., the variances 
must be equal)
We will only expand here on the verification of distributional assumptions. 

Statistical tests exist to verify distributional assumptions underlying other statistical 
tests. For this purpose, the following tests are commonly used:
• The Kolmogorov-Smirnov one-sample test is a test of the goodness-of-fit of a 

cumulative distribution of measurement values with some specified theoretical 
distribution (e.g. a Normal distribution). The test statistic was designed on the 
basis that the largest difference between theoretically expected and observed 
values of cumulative distributions has a known sampling distribution in the 
null case

• The Shapiro-Wilk test is a general test of Normality and is based on comparing 
the ordered observed values with those expected if the distribution was Normal

• The F-test is a test for the null hypothesis that there is no difference in variance 
(no heteroscedascity) of a Normally distributed variable observed in two groups 
or attributable to two sources

23.5	 �An Overview of Commonly Used Tests

In this section we briefly mention some commonly used tests in epidemiology. For 
more information we refer to statistical handbooks.
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23.5.1	 �Tests Commonly Used in Diagnostic Studies

Table 23.2 describes the commonly used families of tests in diagnostic research 
(for a discussion of what diagnostic research is, see: Chaps. 4 and 6). In diagnostic 
studies the choice of a test often starts by determining:
• The number of groups being compared (1 group  –  for comparison with a 

theoretical expected frequency distribution-, 2 groups, or k groups)
• Whether observations in the groups are independent (unpaired) or not
• The underlying measurement scale of the outcome being compared (categorical 

vs. numerical)
• The distributional characteristics of numerical outcomes being compared 

(Normal vs. non-Normal distribution)
For example, when two groups are to be compared for a continuous outcome 

variable then the choice can be for a (parametric) Student’s t-test if the unpaired data 
have a Normal distribution and perhaps for a (non-parametric) Mann-Whitney U 
test if they don’t have a Normal distribution. If the data are paired, it would be a 
(parametric) paired t-test or a (non-parametric) paired Wilcoxon test. When two 
groups need to be compared for a categorical variable, a chi-square test could be 
chosen in case of unpaired data, a McNemar test for paired data.

23.5.2	 �Commonly Used Tests in Etiologic  
and Prognostic Studies

�23.5.2.1 Wald Test
The Wald test is perhaps the most frequently performed test in modern epidemio-
logical research. It is a test for the hypothesis that the true causal beta-coefficient of 
an independent variable in a logistic regression model is zero. The test is based on 
the expectation that if beta is zero, the observed beta-coefficient in the model fitted 
divided by the standard error of this beta-coefficient has a Student’s t sampling dis-
tribution with degrees of freedom equal to sample size minus 1 (DF = n−1). Most 
statistical packages automatically perform and report Wald test results when statisti-
cal modeling is done.

23.5.2.2�  Chi-Square Tests for Goodness of Fit
These are Chi-square tests for checking if an observed frequency distribution of a 
categorical variable fits with an expected frequency distribution for that variable 
(‘expected’ being based on some theory/model). This type of test is therefore also 
used in descriptive prognostic studies. With a perfect fit, the number of observation 
units observed (O) and the number expected (E) in each category should be the 
same. The greater the O−E differences, the poorer the fit. The chi-square test statis-
tic is the sum, over all categories k, of (O−E)2/E. These values, under the null case, 
follow a chi-square distribution with DF = k−1.
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23.5.2.3�  Hosmer-Lemeshow Goodness-of-Fit Test
The Hosmer-Lemeshow goodness-of-fit test is commonly used in logistic regres-
sion analyses. This test is a Chi-square test for the goodness-of-fit of a fitted logistic 
regression model, comparing observed and expected numbers in deciles of risk pre-
dicted by the risk function derived from the fitted logistic regression model.

23.5.2.4 � Log Rank Test
The log rank test assumes that if a hazard ratio is truly constant and equal to 1 
throughout follow-up time, then the Mantel-Cox estimate of the hazard ratio has a 
known Chi-square sampling distribution with one degree of freedom.

In Part IV we have thus far discussed statistical estimation and statistical 
testing. In the next chapter, we discuss how both of these activities require 
assumptions on the applicability of specific statistical models.
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Abstract
This chapter starts with a brief essay that reminds us of the nature of statistical 
modeling and its inherent limitations. Statistical modeling encompasses a wide 
range of techniques with different levels of complexity. We limit this chapter 
mostly to an introductory-level treatment of some techniques that have gained 
prominence in epidemiology. For more in-depth coverage and for other topics we 
refer to other didactical sources. Every health researcher is likely, at some point 
in her career, to make use of statistical smoothing techniques, logistic regression, 
modeling of probability functions, or time-to event analysis. These topics 
are introduced in this chapter (using Panel 24.1 terminology), and so is the 
increasingly important topic of cost-effectiveness analysis.

24.1	 The Nature of Statistical Modeling

Some teachings of the ancient Greek philosopher Plato can be interpreted nowadays 
as meaning that the essence of learning is modeling. Ideas and concepts are 
ways and tools of thinking about the complex realities we all try to make sense of. 
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This is true whether the complex information comes to us in the form of a storm of 
impressions and sensations, or carefully collected data in a research study. In each of 
those cases there is a vital need to model i.e. to reduce, recognize a pattern, summarize 
that pattern and classify it, so as to be able subsequently to communicate rapidly, compare, 
predict, react and…learn to survive. To stretch the point, the ‘professional survival’ 
of the epidemiologist or biostatistician depends on the ability to model data. At the most 
basic level, each measurement value is a model of the observation. At a further level, 
still very basic, a median or a mean are nothing but models that describe a set of data.

Panel 24.1  Selected Key Concepts and Terminology in Statistical Modeling

Beta coefficient  In a linear regression equation, the slope coefficient of an 
independent variable, expressing the estimated change in the value of the 
dependent variable for a unit increase of the independent variable in question; 
In case the independent variable is categorical, the beta coefficient can 
be seen as the mean difference of the dependent variable between each 
category of the independent variable.

Covariates  Variables entered in the regression model as independent variables
Dependent variable  Outcome variable in a regression model
Explanatory variable  A determinant as represented in a statistical model
Extraneous factors  Factors that need to be controlled for in the study of a 

determinant  –  outcome relation by introducing them as covariates in a 
model of that relation

Independent variable  In a regression analysis, a variable that independently 
determines (‘predicts’) the dependent variable i.e. independently from the 
effect of other independent variables in the model

Indicator variable  A categorical variable with two categories
Interaction term  A product term of two independent variables included in 

a linear regression model for the study of effect modification
Intercept  Value of a dependent variable when all independent variables 

take the value zero (Syn: alpha coefficient)
Least squares regression methods  Regression analysis methods that base 

the estimation of the regression parameters on minimization of the sum of 
the squared residuals around the regression line

Linear regression  Regression analysis using methods that are based on the 
assumption of a linear relationship between the dependent variable and the 
independent variables; ‘Linear relationship’ (syn. Linear trend) meaning
that each unit increase in each independent variable corresponds to a fixed 
increase in the continuous dependent variable

Logistic regression Linear regression of the natural logarithm of the odds
for the outcome on independent variables

(continued)
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Multicollinearity  The presence of highly correlated independent variables 
in a multiple regression resulting in difficulty in estimating the independent 
effect of these variables

Multiple linear/logistic regression  A linear/logistic regression involving a 
model with several independent (explanatory) variables (See: linear/logistic 
regression analysis)

Parsimonious regression model  A regression model that only includes 
independent variables that contribute substantially to the explanation of the 
outcome variable

Poisson regression Linear regression of the natural logarithm of the incidence
rate on independent variables

Prevalence modeling  Development and validation of a regression model in 
which the dependent variable is a prevalence (as empirically observed in a 
series of groups)

Product term  See: Interaction term
Regression coefficients  Intercept and beta coefficients
Residuals  Differences between observed values of the dependent variable 

and those predicted by the regression model
Simple linear regression  Regression analysis using methods that are based 

on the assumption of a linear relationship between the dependent variable 
and one independent variable

Stepwise multiple regression  A multiple regression in which candidate 
independent variables are entered (forward) or removed (backward) one at 
a time based on chosen criteria for their contribution to explaining overall 
variance of the dependent variable

Trend  Modeled shape of relation

Panel 24.1  (continued)

When reflecting on these very basic forms of modeling one can already understand 
one of its fundamental characteristics: statistical models are by nature simplifying 
summaries, ‘reductions’, and there can be various degrees of simplification or 
‘smoothing’, with more smoothing implying less well fitting models. At a slightly 
higher level of modeling we find, for example, the Gaussian distribution (Normal 
distribution) function, which models the frequency behavior of many phenomena 
under the form of a simple mathematical function of a mean and a standard deviation. 
The importance is not that Gauss recognized and described this shape of distribution 
in the data he was working with. The importance lies in the fact that this general 
form, this theoretical model, seems to fit reasonably well with frequency data of 
various sources. It is recognized as being a general shape applicable to many 
situations, with variable ad-hoc means and standard deviations.

Statistical modeling is done both in statistical estimation and statistical testing. 
When the same general shape of frequency distribution is thought to fit two different 
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groups of ad hoc data, say data from a group of males and from a group of females, 
one basis is present for parametric statistical testing. Even in non-parametric 
(‘distributional assumption-free’) statistical testing modeling is done, since for each 
non-parametric test it is assumed that there is ‘a statistic’ that is able to capture 
(model) the degree of discrepancy between two frequency distributions. Thus, sta-
tistical estimation and statistical testing, the topics of the two previous chapters, can 
both be seen as based on statistical modeling.

One level up from simple distributions and their comparisons, linear and logistic 
regression models, frequently used in epidemiology, try to give a useful summary 
description of the relationship between a dependent and one or more independent 
variables. And there are higher levels of statistical modeling. At each level the challenge 
is to find a balance between model parsimony (smoothing) and model fit, a balance 
to be chosen, among others, upon considerations of usefulness, be it usefulness for 
summarizing in an understandable way, for testing, or for predicting. This balance 
may depend on the particular case and purpose. To clarify this point: a single median 
may be sufficient as a very rough but simple (unsmoothed but parsimonious) model 
of the distribution of a set of data. In another instance, a more complex, very well 
fitting, mathematical function may be needed to describe the same data’s distribution. 
Particular paradigms for statistical modeling in epidemiology tend to differ according 
to the main types of studies.

24.2	 Describing and Comparing Trends

In epidemiology one frequently obtains repeated estimates (e.g. repeated prevalence 
estimates, means and standard deviations) for the same target population over time. 
Or, one obtains these estimates across levels of another variable such as across suc-
cessive age categories. For the description of these findings the following questions 
are commonly asked: Is there a trend and what is the shape of the trend? Is it a linear 
or a non-linear trend? Is the trend increasing or decreasing? Is the non-linear trend 
asymptotically flattening off towards a plateau value?

24.2.1	 Linear Trends

Simple linear regression is often used to examine and depict a linear trend between 
two numerical variables. This is illustrated in Fig. 24.1.

24.2.2	 Non-linear Trends

Non-linear modeling is typical in pharmacokinetic studies, for example studies 
looking at plasma levels, clearance rates, and adherence studies of accumulated 
substance concentrations levels in hair or nails. Non-linear modeling is also com-
mon in ecological studies and in case series studies.

J. Van den Broeck et al.
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A range of smoothing methods is available to depict non-linear trends. With all 
these methods it is possible to choose a degree of smoothness. Some are now easily 
accessible even in standard spreadsheet applications such as Excel. Commonly used 
statistical smoothing methods include:
• Moving average methods – This is a family of smoothing techniques characterized 

by the fact that each observed value is replaced with the weighted mean of a set 
of values that includes a specified number of successive values preceding and 
following the original value as well as the original value itself

• Fitting of polynomials – This method preserves continuous covariates as con-
tinuous (without categorizing) and transforms them to the nth order of power or 
degree while fixing the current functional forms of all other covariates. All com-
binations of powers are fitted and the ‘best’ fitted model is obtained

• Cubic spline fitting – Cubic splines are curves consisting of a series of third-order 
polynomials smoothly attached together
When different smoothing methods are applied to the same data, they can produce 

rather different looking trend lines, especially when the number of repeat estimates 
is low. We illustrate this using an example from a hypothetical ecological study 
that obtained repeated estimates of tuberculosis incidence in a number of calendar 
years (Fig. 24.2).

The examples in Fig. 24.2 illustrate two important points about smoothing methods 
and trend lines. First, it is clear that when the raw data are sparse and looking at the 
pattern (‘visual smoothing’) does not suggest a smooth underlying pattern (only 
8 time points and a hectic visual pattern in the example) great differences in trend 
lines can be obtained with different smoothing methods. Secondly, when there are 
missing data points in between estimates, the trend lines shown can be very biased. 
Also note that the shape of the curve is particularly under the influence of the 
extreme points on the time scale (‘edge effect’) and that the flatness of the curve 

0

3

6

9

12

15

18

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

In
ci

d
en

ce
 o

f 
T

B
(p

er
 1

00
0 

p
er

 y
ea

r)

Year

Smoothed by simple linear regression

Fig. 24.1  An example of a linear trend line estimated by simple linear regression
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Fig. 24.2  Hypothetical data from a biased ecological time trend study. In Panel A and Panel B 
two different smoothing methods are used to describe a time trend in incidence of tuberculosis. 
Each diamond represents incidence in a single year period. Incidence rates in in-between years are 
unknown but an assumption was made that the pattern seen in the sampled years would be adequate 
enough to approximately describe the true underlying trend. In Panel C, the same 4th degree polynomial 
fitting method is used as in Panel B but after addition of two extra data points
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depends not only on the chosen degree of smoothing but also on how far the Y axis 
is stretched. An additional problem with the ecological study data of Fig. 24.2 is that 
precision of the estimates in the different years is not shown. In some of the years 
precision may be much higher than in other years. The use of weighting during 
smoothing can allow for the fact that precision may be different for different estimates 
at different age/time points. Finally, when interpreting trend lines from ecological 
time trend studies one should always consider the possibility of bias resulting from 
changing measurement methods over calendar time.

24.2.2.1 Growth Diagrams
So far we have mentioned and illustrated situations where a single trend line (e.g. a 
line representing successive means, prevalence estimates or incidence rates or 
ratios) is assumed to adequately capture the central tendency of the age or time 
changes. However, non-linear trends in entire distributions can also be of interest, 
for example for the construction of age-sex dependent reference values of labora-
tory or anthropometrical data (See also: Panel 24.2). In such studies the challenge is 
indeed to obtain accurate and precise estimates for the extremes of the distribution, 
not only the central tendency. Describing age trends in continuous variables can also 
be of interest merely for the description of sample characteristics.

Two categories of methods exist to describe trends in entire distributions of 
continuous variables: those that are based on distributional assumptions and 
those that are not. We will not expand on the latter. Among the former, Box-Cox 
power-exponential modeling has become one of the major methods and was applied, 
for example, in the WHO-MGRS study (Borghi et al. 2006). In situations where 

Panel 24.2  Terminology Related to Growth Modeling

Growth diagram  A graph of the age or time trend in the distribution of a 
continuous variable representing a constitutional characteristic, displaying 
lines that represent selected centiles or Z scores

Growth modeling  Construction of a model for the distribution of a variable 
as a function of a time variable

Growth reference  A graphical and/or tabulated and/or statistical model based 
representation of the (usually smoothed) age/time dependent distribution of 
a continuous variable representing a constitutional characteristic, considered 
useful as a reference to score and classify individual measurement values 
as to their position within the distribution

Growth standard  A growth reference considered to be normative i.e.  
representing the limits of what is considered normal or healthy (for example, 
in anthropometry a growth standard is considered to represent the distribution 
of growth unconstrained by illness or malnutrition)
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kurtosis is of no concern, which is very often the case in growth studies, the LMS
method is simpler to apply than Box-Cox power-exponential modeling (Cole and 
Green 1992). We recommend using the Growth Analyzer package for easy and 
widespread implementation of this method (Growth Analyzer 2009), for example 
for the description of sample characteristics. As an example, Fig. 24.3 shows a body 
mass index by age diagram constructed using this application.

24.2.3	 Comparing Trends

In ecologic time-trend studies one often compares trend lines of exposure levels and 
outcome frequency by plotting them on the same graph. The construction of this type 
of graphs requires taking into account the latent period between first exposure and 
illness detection. The exposure curve needs to be lagged by the average latent period. 
Figure 24.4 illustrates this. This lagging is also needed before analyzing correlation.
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Fig. 24.3 A body mass index-for-age distribution constructed with the LMS method and cubic
spline smoothing using the Growth Analyzer package (Reproduced from Francis et al. 2009)
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24.3	 Logistic Regression Analysis

In epidemiology logistic regression is used frequently in the analysis of several types 
of studies, including and most commonly in cross-sectional studies, case–control 
studies and other etiologic studies. In this section we first introduce the basic statistical 
aspects of the commonly used binary logistic regression models (omitting the more 
rarely used ordinal and polytomous logistic regression). Next we give practical 
advice on how a typical and simple logistic regression analysis is performed in an 
etiologic epidemiological study.

24.3.1	 Binary Logistic Regression Models

The use of logistic regression requires that the outcome is a categorical phenomenon, 
and the technique is therefore classified under categorical data analysis tech-
niques (e.g., Thinkhamrop 2001). Indeed, in epidemiology the outcomes are often 
categorical, more specifically binary (e.g. presence of disease or disease outcome: 
yes/no). The use of binary logistic regression analysis assumes that exposure 
variable and covariates are linearly related to the ln-odds of the binary outcome. 
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Fig. 24.4  Unsmoothed trend plot with lagged exposure time scale from a hypothetical cancer study 
in which the induction period between time of exposure and outcome is estimated to be 10 years
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That assumption is usually a fair one. The basic model is thus of a general linear form. 
It is called a simple logistic regression model:

Simple Logistic Regression Model

	 ln odds a bx( ) = + 	 (24.1)

Where:
ln = natural logarithm
odds = odds of outcome = p/(1 − p)
x = exposure variable
a = intercept (also called alpha coefficient)
b = slope coefficient (also called beta coefficient)

Note that in the basic model the dependent variable is a transformation of 
the outcome variable. That transformation is also called a ‘logit-transformation’: 
ln (p/(1 − p)).

In the basic model “a” and “b” are coefficients whose values are to be estimated 
from the data. Such estimation amounts to “fitting the model” to the data. The “b” 
coefficient, further called the beta coefficient, represents the size of the effect of the 
x variable (the exposure variable). It represents the change in logarithm of the odds 
associated with a one-unit change in x. The coefficient “a” is a fitted constant, also 
estimated from the data, representing the logarithm of the odds for a person with 
x = 0 (unexposed).

The main reason for the success of logistic regression in epidemiology is that the 
estimated beta coefficient can be transformed into an odds ratio by simple 
exponentiation i.e. by raising the natural number e (~2.71) to the power of the beta 
coefficient: odds ratio = eb. The reason for this is explained in Textbox 24.1.

Textbox 24.1  The Exponent of the Beta-Coefficient Is a Point Estimate  
of the Odds Ratio

Basic model: ln odds a bx( ) = +

For the exposed (x = 1): ln odds a bexp( ) = +

For the unexposed (x = 0): ln odds aunexp( ) =

Thus: b a b a odds odds= +( ) - = ( ) -ln ln ( )exp unexp

Thus: b
odds

odds
= ln ( )exp

unexp

Thus: b odds ratio= ln ( )
Thus: odds ratio eb=
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This odds ratio can be roughly interpreted as a relative risk of the disease 
outcome for a one-unit change in x (when the disease outcome is not common). 
This interpretation is more correct the rarer the outcome is. For example, in a case–
control study of the effect of previous smoking (yes/no) on lung cancer an odds ratio 
of 9 could be roughly interpreted as meaning that the risk of lung cancer in smokers 
is 9 times the risk in non-smokers. When the outcome is common, however, the 
odds ratio always overestimates the relative risk. In such case, the interpretation of 
odds ratio as relative risk should be cautious (Zhang and Yu 1998).

When additional independent variables are introduced in the logistic model (these 
additional variables are called ‘covariates’; they represent other exposures and/or 
confounders), the assumption is still that each of these covariates is linearly related 
to the logit of the outcome. And, again, this assumption can be considered fair in 
most circumstances. The model is then called a multiple logistic regression model:

Multiple Logistic Regression Model

	 ln odds a( ) = + + +¼+b x b x b xk k1 1 2 2 	 (24.2)

Where:
odds = odds of outcome = p/(1 − p)
p = probability of the outcome
x

1
 = exposure variable of main interest

x
2
 to x

k
 = covariates, representing additional exposures and confounders

a = intercept (also called alpha coefficient)
b

1
 to b

k
 = slope coefficients (also called beta coefficients) representing the 

independent effects of the corresponding x

Importantly, each beta coefficient represents the size of the independent effect of 
the corresponding x variable. When fitting the model to the data, each estimated eb 
will now be an odds ratio that can be roughly interpreted as a relative increase in 
risk of disease associated with a one-unit change in the corresponding variable x, 
independently of confounders or other exposures in the model. Therefore any odds 
ratios obtained from this multiple logistic regression analysis can be called ‘adjusted 
odds ratios.’ Indeed, multiple logistic regression analysis is an approach to adjust 
for confounding effects of other variables (See: Chap. 22).

Confidence intervals can be obtained for the (adjusted) odds ratios, based on the 
standard errors for the corresponding beta coefficients, which the model-fitting 
method yields automatically. In multiple logistic regression analysis one can test the 
statistical significance of each variable’s contribution to the overall model fit, by 
testing whether the corresponding beta coefficient is statistically significantly different 
from zero. A Wald type test is used for this purpose (See: Chap. 23). One can also test 
for modification of the effect of x

1
 by x

2
. This is done by: (1) creating a new variable, 
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x
3
, as the product of x

1
 and x

2
; (2) fitting a model which contains the independent 

variables x
1
, x

2
, and the product term x

3
; (3) determining the size and statistical 

significance of the coefficient b
3
, which reflects the magnitude of effect modification. 

In the situation where the main aim is not assessing the relative outcome risk but 
prediction, confounding and testing of effect modification are not usually of interest. 
Thus, the investigator should be clear about the main objective before fitting the 
model, whether there is a risk factor assessment goal (with or without an interest in 
effect modification), a prediction goal (Kleinbaum and Klein 2002), or both.

24.3.2	 How to Do a Logistic Regression Analysis

This sub-section looks at logistic regression analysis from a process point of 
view so as to guide the novice analyst through a simple and typical analysis in a 
step-by-step fashion.

Panel 24.3 lists the commonly needed steps, which are elaborated on below.

Step 1: Dataset creation and initial exploration
The analysis starts with taking a look at the analysis plan as foreseen in the study 
protocol (See: Chap. 13) and carrying out the preparatory steps of data extraction, 
computation of derived variables, exploration of univariate distributions, final data 
cleaning (See: Chap. 20), and arranging access to a functional statistical analysis 
package. One reminds oneself of the basic statistical choices that were made e.g. 
about what type of interval estimates will be obtained; typically, this will be 95 % 
confidence intervals obtained from the standard error of the estimated beta coefficient. 
The measurement level of each foreseen study variable should be clearly identified 
(See: Chap. 5). Of uttermost importance is checking if the outcome variable is 
truly binary.

Panel 24.3  Logistic Regression Analysis in Ten Steps

• Step 1: Dataset creation and initial exploration
• Step 2: Crude analysis
• Step 3: Deciding which confounders to adjust for
• Step 4: Examining effect modification
• Step 5: Avoiding model over-fitting and addressing multicollinearity
• Step 6: Further model reductions
• Step 7: Assessing model adequacy
• Step 8: Obtaining the final point and interval estimates
• Step 9: Summarizing the findings
• Step 10: Interpreting the findings
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Step 2: Crude analysis
The analysis plan foresaw one or several exposures of interest and these may have 
different measurement levels. Continuous exposure variables can be used in logistic 
regression but using them as such only makes sense if the variable is more or less 
linearly related to the outcome. This needs checking at this point, perhaps by cate-
gorizing the variable and plotting the probability of outcome for each category. If it 
appears that the relation has a clear U-shape, J-shape or another non-linear shape, 
then the inclusion in the model as a continuous variable becomes problematic 
because the effect estimate of the exposure will tend to be diluted. There are two 
main options to solve the problem. First, some power transformation may be applied 
to the exposure variable (See: Chap. 13) and this new variable can be used as such 
or added as an additional exposure variable. Second option is to categorize the con-
tinuous variable into a number of categories carrying contrasting outcome frequen-
cies. One category will then be chosen as the reference category and all other 
categories as index categories of the exposure.

With the exposure variables appropriately defined as above, one proceeds to the 
stage of crude (i.e. unadjusted) analyses of the relation between exposures and out-
come. This step is also called ‘bivariate analysis’ as each time only one exposure 
variable is related to the one outcome variable and thus only two variates are 
involved. Crude analysis may use:
• Exposure odds ratios obtained from simple 2 × 2 tables, interpretable, when the 

disease is rare, as an approximation of crude relative risk of disease (For the 
calculation see: Chaps. 2 and 22)

• Odds ratios obtained from single-predictor logistic regression analysis. With this 
method the point estimate of the odds ratio is the exponent of the estimated beta 
coefficient and confidence intervals are calculated as in the box below

• With case–control designs that use a suitable sampling scheme for the controls 
and with the single etiologic study it is possible to obtain direct estimates of 
crude relative risk or crude incidence rate ratio (See: Chap. 22)

• Chi-square test are sometimes used for crude analysis of binary exposures in 
genetic studies

Confidence Interval for the Odds Ratio Obtained by Logistic Regression

95 1 96% . *CI e SE= ±b

Where, produced by the statistical package:
b = estimate of the beta coefficient
e = the natural number (~2.71)
SE = standard error of the estimated beta coefficient
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Step 3: Which confounders to adjust for?
The crude odds ratios or incidence rate ratios obtained in step 2 may in fact represent 
some mixing of effects with extraneous factors (also called third factors or con-
founders) i.e. they may be distorted by confounding. The analysis plan foresaw a 
number of confounders to be measured and used for adjustment during analysis. 
Now it comes to making a final decision as to exactly what variables should be 
adjusted for in the multiple logistic regression analysis. This task can be approached 
by considering the following four questions:
Question-1: – Was the factor considered a potential confounder in the study protocol?
• Some factors are already known to be confounders of the relationship under 

study, and must therefore be further considered
• Some factors are known to be intermediates in the causal chain (mediators) and 

not confounders, and must not therefore be further considered as confounders
Question-2: – Were any potential confounders forgotten in the study protocol?
• New literature on risk factors may have become available since the time the 

study protocol was written; This is a frequent issue in studies with a prospective 
study base

• When trying to identify confounders one should look extra carefully for potential 
confounders that belong to the same ‘type of exposure’ as the exposure under 
study. For example: other nutritional factors, other risk behaviors, other environ-
mental contaminants, et cetera…(Miettinen 1985)

• If any ‘new’ potential confounders are identified, where they measured in the 
study? If not, is there a proxy available?

Question-3: – Was the suspected confounder not already controlled for by design?
• The general rule is that one should not control for characteristics for which 

restriction or matching was successfully applied
Question-4: – Did the factor actually act as a confounder?
• There is no need to adjust for factors that did not act as confounders
• Some of the factors that were considered initially may unexpectedly turn out to 

be very rare. Perhaps only one or a few participants exhibited the potentially 
confounding characteristic. In this case the confounding effect is likely to be 
small and it can be an option to assess the effect of excluding these participants’ 
data from the analysis and discuss this in the presentation of the data

• There are two ways of checking whether a variable actually had a confounding 
effect. The first is to check if the factor complied with the well-known confounding 
criteria (See: Chap. 2). The second way is called ‘the distortive impact approach’. 
Both approaches are described successively below
To check confounding criteria the first question is whether the third factor inde-

pendently predicts the outcome. To answer this, one can examine the relationship 
between third factor and outcome in an analysis among the unexposed that adjusts 
for other confounders. This analysis should be done in the unexposed only, to avoid 
confounding or mediation by the exposure. If a relationship is found then the first 
criterion for confounding is satisfied. Secondly, to have acted as a confounder, the third 
factor must be associated with the exposure. If the distribution of the third factor is 
different across levels of the exposure then the second criterion for confounding is 
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fulfilled. Note that a strong confounder does not need much imbalance to exert its 
confounding effect and therefore statistical testing is not useful in this situation. If 
in doubt, one should control in the analysis. The third criterion is that the third factor 
should not be an intermediate of the effect of the exposure on the outcome. Although 
methods of mediation analysis exist, the assessment of this third criterion can often 
be done using common sense judgment considering the prevailing conceptual 
framework around the topic.

The distortive impact approach checks the extent to which, for example x
2
, con-

founds the association between x
1
 and disease outcome, comparing the outcome 

parameter estimate (the value found for the odds ratio, relative risk or incidence rate 
ratio) for x

1
 in two models: one which includes x

2
, and one which omits x

2
. If these 

estimates are similar, then x
2
 is not an important confounder. Usually when there is 

confounding, the effect estimate will become closer to the null effect (closer to 1) 
after adjustment in analysis. This means there was positive confounding. If the out-
come parameter estimate completely returns to the null effect after control, then the 
crude effect was entirely due to confounding by the third factor. When the outcome 
parameter estimate shifts further away from the null effect after adjustment in anal-
ysis, this means there was negative confounding.

In this section we take it for granted that, after selecting the variables to control 
for confounding, multiple logistic regression analysis is the chosen method to do so. 
However, remember that, to control for confounding, an alternative to multiple 
logistic regression analysis is stratified analysis with pooled estimation (See: Chap. 22). 
That method is now rarely used in practice because of frequent problems of lack of 
sample size in individual strata. Knowledge of illnesses has progressed so much 
that more and more risk factors are known for each illness or illness outcome. 
Consequently, a large number of confounders often have to be adjusted for in etiologic 
studies and this can make the use of stratified analysis inefficient or impossible; the 
number of (sub-) sub-strata becomes too large. Consequently, multiple logistic 
regression analysis has become one of the major statistical methods in etiologic 
research. Yet, if stratified analysis is feasible it can be good to use it alongside 
multiple regression analysis and check the consistency of the findings.

Step 4: Examining effect modification
After deciding which confounding factors to adjust for, it can be good to examine 
effect modification (See: Chap. 2: Basic concepts in epidemiology) by some of 
the covariates. This means examining how the strength of the exposure-outcome 
relation (the value of the odds ratio) depends on the levels of the covariates. We can 
examine this by including ‘product terms’, a.k.a. ‘interaction terms’ into the model 
and examining the beta-coefficients of these product terms. A product term is a 
multiplicative form of two or more variables. For example, the model can include 
the following independent variables: x (exposure variable), z (covariate), and x*z 
(product term). When doing this, the variables that form the interaction/product term 
are also included in the model as single terms. Interaction terms usually only concern 
two variables (the exposure and one covariate). Product terms incorporating 
more than two covariates lead to odds ratios that are very complicated to interpret. 
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In addition, the more interaction terms are included in the model, the more likely 
there will be problems of multicollinearity (next paragraph), hence, instability of 
the model. Thus it is recommended that the number of interaction terms should 
be kept to a minimum. Examination of effect modification can be considered 
if there is a rationale that a particular covariate might modify the strength of the 
exposure-outcome relation and if there is an interest in showing this.

Step 5: Avoiding model over-fitting and addressing multicollinearity
Up to this step, we have defined a full model that contains all covariates that could 
possibly affect the outcome and may remain in the final model. These covariates 
include all potential confounders identified in Step 3 and perhaps one or two interaction 
terms identified in Step 4. It is possible to include too many variables. Two common 
situations indicate a need to reconsider the number of covariates in the model.

The first is a situation in which the full model contains too many covariates relative 
to the amount of information (sample size and number of outcome events) in the 
sample. This is a cause of model over-fitting, also called over-parameterization. 
This is characterized by the fact that relatively high values of the dependent variable 
are over-estimated and relatively low values of it are underestimated. Thus, in studies 
where regression models are used to derive probability functions (See: Sect. 24.4), the 
predicted values will be biased when there is model overfitting. To recognize whether 
overfitting is present one can use the following rule of thumb (Miettinen 2011a):

Model Over-Fitting

Models are considered to be over-fitted if:

0 05
1

.
*

<
-( )

P

N p p
s

Where:
P

s
 = number of parameters in the model

N = sample size
p = proportion of individuals with the outcome

The approach to handling model overfitting may be a reduction of the number of 
covariates (for example by a decision to forego examination of effect modification; 
also see below for model reduction strategies to address multicollinearity). 
Alternatively, one can apply ‘shrinkage techniques’ to the model (in Step-8), 
for example by using the leave-out-one method (not further discussed). A third 
approach could be to aim for pooled analysis with data from similar studies in a 
meta-analysis.

A second problem can arise when there is multicollinearity i.e. strong correlation 
among covariates. This is a cause of model instability: the beta coefficient can change 
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dramatically in response to small changes in the model or in the data. The more 
multicollinearity there is the greater will be the standard errors of the beta-coefficients. 
Multicollinearity misleadingly inflates the standard errors. The confidence interval 
of the beta coefficients will tend to be too wide and the P-value of Wald tests falsely 
large. In practice the existence of multicollinearity is often examined by checking if 
any two covariates have a correlation that exceeds a correlation coefficient of 0.8. 
However, that is only a rough method. Textbox 24.2 describes a more detailed 
examination method.

The following are approaches to handle multicollinearity:
• Carefully select covariates to enter into the model; avoid redundancy
• It may be possible to derive a new variable based on two or more related vari-

ables then use this variable for modeling. For example, in the model we may 
want to use only body mass index which is derived from height and weight

• Use factor analysis or some other methods such as propensity scoring to create 
one scale from many covariates. Then use this variable for modeling

• In the process of model fitting, add multicollinearity-potential covariates into the 
model, then consider dropping the one that is less important in terms of the stan-
dardized beta-coefficient. If all covariates are important to the model, it is better 
still to keep it in the model but one needs to realize that multicollinearity is pres-
ent and be aware of its consequences

• If an interaction term was added into the model ‘centering methods’ can reduce 
multicollinearity. By centering, we transform the original continuous variable to 
be the difference between its mean and the original value

Textbox 24.2  Methods for Recognizing Multicollinearity

The following can be signs of multicollinearity:
• Two or more covariates measuring conceptually the same thing are 

included in the model, a.k.a. covariates redundancy
• Large variance inflation factor (VIF = 1/(1 − R2), where R2 is the coefficient 

of determination of a beta coefficient of a covariate on all other covariates; 
A VIF of 10 or above indicates a multicollinearity. This is equivalent to a 
Tolerance, defined as 1/VIF, of 0.1)

• Drastic changes of the beta coefficients when a covariate is entered or 
removed or when a subset of data is used

• A large condition number (an index of the global instability of the beta 
coefficients). A condition number of 30 or more is an indication of model 
instability

• A high correlation coefficient as indicated in a pair-wise correlation matrix 
among all covariates; A coefficient of 0.8 and higher requires further inves-
tigation for multicollinearity

• Significant results of an overall Chi-square test whereas none of the indi-
vidual Wald test were significant

24  Statistical Modeling



468

Step 6: Further model reductions
So we have defined a full model that should be free from overfitting and less likely to 
have multicollinearity issues. Before assessing model adequacy and deriving the final 
estimates there can be another preparatory step. There may be a need to reduce the 
number of covariates so that a more ‘parsimonious’ model is achieved. That is, a model 
that only contains the covariates that provide important information about the outcome.

In most circumstances, the full model is the final model. All covariates are essential 
for the model and no further reduction is required. This is common in etiologic studies 
and in randomized controlled trials where there is a factor of main interest: the 
exposure or the treatment, and a well-defined set of factors to adjust for. However, 
such studies may have an additional interest in developing ‘prediction models’ (See: 
next section). In such analyses there is no factor of main interest, and the full model, 
when it contains many covariates, may benefit from further model reduction. The 
same applies to prognostic studies primarily set up with the specific aim of develop-
ing a prediction model or forecasting model (See: Chap. 6, Sects. 6.6.1 and 6.6.2).

The procedure of model reduction involves a strategy for comparing relevant 
models, based either on testing significance of the covariates, or on a comparison 
of estimates of the error variances, or on a comparison of the changes of the beta 
coefficient between the model with and without the covariates under assessment. 
There is no single method that is overall satisfactory; hence, a combination of these 
methods is recommended.

With ‘backward elimination’ variables are sequentially removed from the full model. 
At each step, the variable showing the smallest contribution to the model is removed 
or eliminated. To illustrate this, a backward elimination is described in Textbox 24.3.

Step 7: Assessing model adequacy
It is essential to assess model adequacy to assure that valid inferences can be made 
from the estimated beta coefficients. To do this, regression diagnostics need to be 
obtained first. This includes examination of residuals, leverage, and influence statis-
tics, which we will not discuss further. Note that regression diagnostic plots can be 
useful for identifying observations that cause a problem to the model fitting. After 
examining these diagnostic statistics, one should assess the model goodness-of-fit. 
This examines how well the model describes the observed data and can inform 
about how sensitive the model is to certain individual observations. The most com-
mon method is the Hosmer-Lemeshow goodness-of-fit test (See: Chap. 23).

Step 8: Obtaining the final point and interval estimates
Once the final model is achieved, one can obtain the estimated values of the odds 
ratios. This can be obtained directly from the output of the statistical package. In a 
situation where there is an interaction effect, the odds ratio needs to be calculated 
separately according to subgroup of the effect modifier.

Step 9: Summarizing the findings
One should report the results of bivariate analyses to inform readers regarding 
evidence about potential confounders, multicollinearity, departure from linear 
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trend, and number of observations for each category of the covariates. Results of 
multivariable analysis are then presented. Usually these are presented as tables. 
Presentation as a forest plot is also possible.

Step 10: Interpreting the findings
For common pitfalls of interpretation we refer to Chap. 27. Also note that many 
interpret the odds ratio as if it is a risk ratio without taking into account that the 
odds ratio tends to overestimate the risk ratio when the outcome is common or 
when there is a strong association between the covariates and the outcome. When 
internal validity is high it can be relevant to interpret the magnitude of the odds 
ratio by comparing it with a meaningful level of association. As the rule of thumb, 
an odds ratio of 3 indicates a strong association (Tugwell et  al. 2012). In the 
situation where there is an interaction effect, we report that the association between 
the variable of main interest on the outcome depends on the third variable – the 
effect modifier. Then we interpret the odds ratio separately for each subgroup of 
the effect modifier.

Textbox 24.3  A Backward Elimination Method

	1.	 Fit the full model and obtain the log-likelihood of the current model, to be 
used as the reference for comparison with a subsequent reduced model.

	2.	 Examine the Wald statistics of all interaction terms, if any, and select the 
term with the highest P-value for removal.

	3.	 Fit the reduced model (without the term having the highest Wald test 
P-value), then calculate the Likelihood Ratio test. A rule of thumb is that if
the term is significant with a P-value of less than 0.05 then it cannot be 
deleted, otherwise, the reduced model without that term is the one to be 
used for the next step. Repeat the process until no more interaction term is 
eligible for removal. If any interaction term is to be retained, all variables 
forming such term are not eligible for removal.

	4.	 Examine the Wald statistics for all individual terms that are not a component 
of an interaction term retained in the previous step, if any, and then select 
the variable that is the least contributing to the model, i.e., the one with the 
largest Wald test P-value, to be the candidate for removal.

	5.	 Fit the reduced model without the selected variable and calculate the like-
lihood ratio test. Follow the process of variable elimination described 
under 3. Repeat the processes until no more variable is eligible for removal.

Note: For the Likelihood Ratio test, one needs to examine the sample size being used to
estimate the coefficients in each model while performing model reduction. If the sample 
size of each model being compared differs by a large amount of observation due to missing 
values, then the Likelihood Ratio test is not valid.
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24.4	 Probability Functions

24.4.1	 Types and Uses of Probability Functions in Medicine

Probability functions are constructed frequently in support of clinical prognostication 
and for forecasting of population burdens. These are the main and best known current 
uses of probability functions in medicine (See: Chaps. 4 and 6). This alone would 
be a sufficient reason to devote a section on probability functions in the present 
chapter. However, the role of probability functions extends well beyond its main 
current use. They also have some role in diagnostic, etiologic and intervention-
prognostic studies, both in the realm of clinical medicine and community medicine 
(See: Chap. 6). In support of clinical practice, for example, Miettinen (2011b) pro-
poses the construction and use of three types of ‘Gnostic Probability Functions’ 
(Miettinen 2011b: Up from Clinical Epidemiology and EBM). The three types of 
functions address the probability of an untoward event happening in the course of 
an illness, of an illness being present, or of a risk factor having played a causal role, 
as a function of prognostic, diagnostic or etiognostic indicators, respectively. They 
are therefore called:
• Diagnostic Probability Functions (DPF)
• Etiognostic Probability Functions (EPF)
• Prognostic Probability Functions (PPF)

In simple terms, the main tasks of a doctor are to tell the patient about the diagnosis, 
how the illness likely came about and what the prognosis is, with or without treatment. 
Appropriately fitting probability functions can be helpful for each of these tasks, 
not the least because probability functions constitute a quantitative approach that 
allows taking the specific individual patient profile into account when estimating 
the probabilities. Therefore, the modeling of DPF, EPF and PPF deserves some 
further introduction.

24.4.2	 Diagnostic Probability Functions

Diagnostic probability functions model the probability of a particular illness 
being present in a presenting patient as a function of diagnostic indicators, which 
include components of the risk profile (e.g., socio-demographic factors) and of 
the manifestation profile (e.g., symptoms, signs, and test results). DPF can be 
incorporated into software that allows users to estimate diagnostic probabilities for 
presenting patients (Miettinen 2011b). Such functions also provide for the evaluation 
of new diagnostic tests. This can be done, among others, by comparing the predictive 
abilities of functions with and without the test result added as a predictor variable 
(Miettinen 2011a, b).

A DPF must be constructed with the purpose to apply to a specified type of 
presenting patients. In other words, there must be a restriction to a particular target 
population. For example, a DPF may help with the diagnosis of pneumonia in 
children presenting with cough and fever. The modeling uses multiple logistic 
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regression, after which the fitted logistic regression model is transformed into a 
‘risk function’:

Construction of a Diagnostic Probability Function

Step-1:
Using multiple logistic regression we model:

	 ln odds a( ) = + + +¼+b x b x b xk k1 1 2 2 	 (24.2)

Where:
odds = odds of the illness being present = P/(1 − P)
x

1
 to x

k
 = indicators of the risk profile and the manifestation profile

a = intercept and b
1
 to b

k
 = beta coefficients of the corresponding x

Step-2:
We transform the fit model into a probability function:

Probability of the patient having the illness = P

	 P =
+ - + + +¼+( )

1

1 1 1 2 2e a b x b x b xk k
	 (24.3)

Where:
e = the natural number (~2.71)

Two types of practical approaches are available for the fitting of DPF. A first 
option is to study a large sample of presenting patients whose profile fits with the 
definition of the target population (e.g. children presenting with cough and fever), 
gather information about risk profile and manifestation profile of each patient, and 
also about the later rule-in diagnosis made with gold standard methods. Another, 
often more efficient, type of approach, is to use a method similar to the method of 
Miettinen et al. (2008), further developed in Miettinen (2011b), which is based on 
giving expert diagnosticians a variety of hypothetical patient profiles and asking 
them to attach a probability of the illness to each of these fictitious scenarios.

24.4.3	 Etiognostic Probability Functions

In clinical medicine, etiognostic probability functions express the probability of a 
particular exposure having played a role, given the patient’s etiognostic profile. 
The etiognostic profile of the patient includes (1) other known risk factors than the 
exposure of main interest, and can also include (2) non-causal factors acting as 
effect modifiers and (3) specifics about the subtype of illness (Miettinen 2011b).
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These functions can be constructed using data from observational etiologic studies. 
In essence, etiologic studies produce causal rate ratios (e.g. adjusted incidence rate 
ratio, adjusted odds ratio, adjusted relative risk or adjusted prevalence rate ratio). 
However, effect modification can alter these causal rate ratios. To make statements 
about what the probability was that a particular exposure causally acted in a particular 
patient, knowledge is needed about how the causal rate ratio depends on factors in 
the etiognostic profile. Once the applicable causal rate ratio for the particular patient 
is identified, the etiognostic probability for an individual patient is calculated as an 
attributable fraction (Miettinen 2011b): 

Probability of the exposure having played a causal role in the particular 
patient = P

c

	 Pc

CRR

CRR
=

-1
	 (24.4)

Where:
CRR = Causal rate ratio (value applicable to the particular patient to be estimated 
using the model described below)

The modeling of the causal rate ratio itself is also described in Miettinen (2011b). 
Briefly, in studies where an incidence risk or prevalence rate is compared between 
exposed and unexposed the modeling involves the following:

 Step-1:
Using multiple logistic regression we model:

ln odds a( ) = + + +¼+
Exposed k kb x b x b x1 1 2 2

Where:
odds = odds of the outcome being present among the exposed
x

1
 to x

k
 = indicators of the etiognostic profile

a = intercept and b
1
 to b

k
 = beta coefficients of the corresponding x

Step-2:
Using multiple logistic regression we model:

ln odds a( ) = + + +¼+
Unexposed k kb x b x b x1 1 2 2

Where:
odds = odds of the outcome being present among the unexposed
x

1
 to x

k
 = indicators of the etiognostic profile

a = intercept and b
1
 to b

k
 = beta coefficients of the corresponding x
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Step-3:
From steps 1 and 2 we define a function for the causal rate ratio (CRR) as:

CRR =
+

+

- ( )

- ( )
1

1

e

e

Odds exp

Odds unexp

ln

ln

Where:
e = the natural number (~2.71)

In studies where the outcome is an incidence density the modeling involves:

 Step-1
Using Poisson regression we model:

	 ln rate a( ) = + + +¼+
Exposed k kb x b x b x1 1 2 2 	 (24.5a)

Where:
Rate = numerical value of the incidence density among the exposed
x

1
 to x

k
 = indicators of the etiognostic profile

a = intercept and b
1
 to b

k
 = beta coefficients of the corresponding x

Step-2
Using Poisson regression we model:

	 ln rate a( ) = + + +¼+
Unexposed k kb x b x b x1 1 2 2 	 (24.5b)

Where:
Rate = numerical value of the incidence density among the unexposed
x

1
 to x

k
 = indicators of the etiognostic profile

a = intercept and b
1
 to b

k
 = beta coefficients of the corresponding x

Step-3
From steps 1 and 2 one we define a function for the causal rate ratio (CRR) as:

CRR e= ( ) - ( )ln lnrate exp rate unexp

Where:
e = the natural number (~2.71)

24.4.4	 Prognostic Probability Functions

Prognostic probability functions model the occurrence of a defined outcome event as 
a function of prognostic profile indicators. In clinical medicine the outcome event can 
be the occurrence of an illness or a particular outcome of an illness. The prognostic 
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profile includes client/patient characteristics present at the time the prognosis is made, 
and aspects of personal history up till that moment. The occurrence probability 
of the outcome is studied:
• Either for a single defined period of time, or, for multiple points in prognostic 

time (smooth or segmented)
• Conditional on surviving

When the aim is to know about the event ‘ever happening’ in a defined time span, 
the modeling can use multiple logistic regression analysis, after which the fitted 
model is transformed into a prognostic probability function (a ‘prediction model’):

Construction of a Prognostic Probability Function

Step-1:
Using multiple logistic regression we model:

ln( )odds a= + + +¼+b x b x b xk k1 1 2 2

Where:
odds = odds of the event happening during the defined period = P/(1 − P)
x

1
 to x

k
 = indicators of the prognostic profile

a = intercept and b
1
 to b

k
 = beta coefficients of the corresponding x

Step-2:
We transform the fitted model into a probability function:

Probability of the event ever happening during the defined period = P
E

PE = - + + +¼+

1
1 1 2 2e a b x b x b xk k( )

Where:
e = the natural number (~2.71)

When the aim is to know about the event’s cumulative occurrence at a multitude 
of time points, two main options are open for the modeling. Either one bases the 
prognostic models on survival analysis/Cox regression, for which we refer to the 
next section, or, one aims for the construction of smooth-in-time risk prediction 
functions, for which we refer to Hanley and Miettinen (2009).

24.4.5	 Validation of Probability Functions

Distinction can be made between internal and external methods of validation 
(See also: Sect. 6.6.3 of Chap. 6).
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24.4.5.1 Internal and External Validation Methods
Internal validation methods commonly made use of in prognostic studies include:
• Split-sample validation
• Cross-validation
• Bootstrap validation

In split-sample validation the sample is randomly divided in two groups, usually 
50 % / 50 %. One group will be used to create the model, the other group to verify 
model performance. This classical approach has many drawbacks:
• Not all data are used for development/performance assessment
• Perceived ‘unlucky splits’ may lead to a temptation to do repetitions until a 

‘lucky split’ arrives
In the cross-validation method the sample is randomly divided into equal size 

small groups e.g. 10 times 10 %. Successively, each of the small groups serves to 
validate a model developed with all other groups together. This is repeated about 50 
times until stable results are obtained. It is a more cumbersome procedure, but has 
fewer drawbacks than the split-sample method.

In bootstrap validation one estimates the standard error and confidence 
interval of the outcome parameter estimates, in this case of the coefficients in the 
risk prediction model, obtained in a large number of random samples with replace-
ment (of size N) drawn from the original sample (of size N). The samples are 
different because, each time, some of the original sample items are selected more 
than once and others are not selected. A risk prediction model, usually about 
150–200 in total, is derived for each sample and its performance evaluated 
both on that bootstrap sample and on the original sample. This method allows 
(1) assessing whether the performance of the original model was overly optimistic, 
(2) correction for optimism. Many of the commonly used statistical packages can 
do bootstrapping.

External validation methods are based on the application of the risk model 
on subjects whose data were not used for model construction, for example more 
recent patients, patients from another site e.g. from another country, from 
another study.

24.4.5.2 �Prediction Model Performance Parameters  
and Model Updates

Quantifying the performance of a prediction model may involve:
• Estimating the variance explained by the model and the size of the standard 

errors of the coefficients
• Accuracy of prediction can be assessed by comparing goodness of fit of predicted 

and observed risks, which can be done separately in – for example, quartile-
defined – categories of predicted risk

• When the predicted risks can be meaningfully dichotomized into high e.g. requiring 
some form of action, or low, the area under the ROC curve is frequently taken as a 
parameter
Competing models are compared in respect of the above parameters. In such 

comparisons, however, the performance parameters need to be ultimately judged in 
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the light of the relative parsimony of the competing models: when two models have 
about the same performance, the one with the least number of predictor variables 
tends to be preferred.

Prediction models, once applicable to a population, may require updating after some 
time. Making a model applicable to another population also requires re-calibration, 
mainly because the intercept tends to differ between populations. An extensive 
overview of issues and practical methods of developing validated clinical prediction 
models can be found in Steyerberg (2009).

24.5	 Time-to-Event Analysis

24.5.1	 Time-to-Event Analysis (or Survival Analysis)

Time-to-event analysis (or survival analysis) is an analytical strategy originally 
designed to assess time to death and can be used in e.g. prognostic studies. 
However, the analysis has much broader applications than to assess time to events 
such as diseases, time to vaccination etc., and is an essential statistical tool when 
the follow-up time of the participants are different and when the time of an event is 
of importance. Time-event-event analysis takes the time each person (or case) con-
tributes into the denominator to assess the risk of an event (which could be death 
in a traditional survival analysis) at each time point. In time-to-event analyses (See: 
Panel 24.4), each person will at end of follow-up either have had a predefined event 
(e.g. death or studied disease) or be censored (not having had the predefined event 
yet). It is important to keep in mind that censored cases might experience the event 
at any time after the observation time is completed. This is however unknown to 
the analysis.

Panel 24.4  Terminology Related to Time-to-Event Analyses

Censoring  Term used in time-to-event analysis to indicate that a participant did 
not experience the studied event (e.g., disease or death) at end of follow-up 
or when the participant was lost to follow-up

Cox regression  A regression method using time-to-event analysis with the 
assumption of proportional hazard (see text)

Hazard ratio  The parallel term to risk ratio in time-to-event analyses/
hazard regression

Kaplan-Meier table  A table presentation of survival data
Survival function  A fitted model for the probability of not having the outcome 

of interest (e.g., death) as a function of individual follow-up time and 
sometimes other variables as well

Time-to-event analysis (or survival analysis)  An analytical strategy originally 
designed to assess time to death and can be used in e.g. prognostic studies
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24.5.2	 Life Tables and Kaplan-Meier Plots

Time-to-event analysis could be presented in e.g. a life table or with a Kaplan-Meier 
plot.

A life table is a table presentation of survival data where the time variable is 
first divided into smaller pieces, and the risk of event at each time is calculated by 
the number of events during the time period and dividing it by the number of cases 
at the start of the period. The Kaplan-Meier estimator is a commonly used time-
to-event analysis, similar to a life table but using exact survival times among the 
cases to make time stratification, and can be used to make Kaplan-Meier plots. 
This will generally give slightly more precise estimates than the conventional life 
tables. See Fig. 24.5 for an example in how data can be presented with a Kaplan-
Meier plot.

24.5.3	 Time-to-Event Analysis for Retrospective Information 
Collected Cross-Sectionally

It is also possible and sometimes beneficial to utilize time-to-event methods for 
cross-sectionally collected data with retrospective information. As an example, 
when collecting data on breastfeeding duration during a vaccination visit e.g. at 
15 months, not taking censoring into account will give sub-optimal estimates of the 
duration. Let us make an example to illustrate this with a group of 30 children. Ten
of these children breastfed for 6 months, 10 children breastfed for 12 months and 
ten children breastfed for 18 months. If all these children were assessed at the age 
of 15 months (e.g. nested to a vaccination program), an analysis excluding children 
not having experienced the event would result in an estimate of median and mean 
breastfeeding duration of 9 months (95 % confidence interval of the mean is 7.6–
10.4) due to the exclusion of the third with the longest duration. Thus, the duration 
estimates would have been biased to a shorter duration.

The true median and mean duration is 12 months. When using Kaplan-Meier 
survival analysis, the estimate for mean breastfeeding duration will be 11 months 
(95  % confidence interval 9.7–12.3) and 12 months for median breastfeeding 
duration. We can see that the 95 % confidence interval of the mean with restricted 
analysis without using survival analysis does not include the true value while survival 
analysis gives a good estimate. For such a study, the reliability and validity of the 
reported information is essential as recalled information might be a source of 
information bias.

24.5.4	 Assumptions on Timing of the Events and Censoring

Even in a prospective study, it is often necessary to make some assumptions regard-
ing time of the events. We might know that in a given study visit e.g. at 12 months 
of age, the studied event has not happened. Further, we might know that in the next 
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study visit e.g. at 16 months of age, the studied event has happened, but not exactly 
when it happened. In other words, it could be at any time between 12 and 16 months. 
This is often referred to as interval censoring (but will be indicated as an event and not as 
censored in the analysis). We have different choices for which time point the analysis 
should assume that the event happened on. One option is to use the mid-point assumption 
and assume that events in average have occurred in the mid of unknown time ranges, 
in other words at 14 months. Another option is to make a right-point assumption, 
assuming it took place at end of the range, in other words at 16 months in the example 
above. Both of these will often be regarded as imputation techniques, and might cause 
biased estimates. A third option is to estimate the timing based on a model taking 
information at the visits into account (e.g. linear trends). The larger the range of uncer-
tainty is (which is often related to the frequency of visits for data collection), the larger 
will the importance of the choice how it should be handled be.

24.5.5	 Time-to Event Regression Models

It is also possible to use regression analysis to assess determinants/predictors which 
are associated with the time-to-event. The most commonly used analysis methods 
are based on a proportional hazard model such as the Cox regression. One of the key 
assumptions is that the risk of event (hazard) is proportional at each time point for 
each value label of the assessed co-factors. E.g. when assessing the hazard (risk) for 
a cardiac event and comparing this between women and men, the hazard ratio 
(which is parallel to risk ratio in time-to-event data) between women and men at e.g. 
50 years of age should be relatively similar to the risk-ratio between women and 
men at 70 years. If this assumption is severely violated, the Cox regression model 
might not be preferred, and other strategies such as log rank test could be consid-
ered. A log rank test is a chi square based test which takes the order of the events in 
the different strata into account, but not the exact timing. In the example above 
comparing gender and cardiac events, the rank of the age in each gender would be 
calculated for all cases in both men and women (the youngest age at the first cardiac 
event would be ranked 1; the second youngest age would be ranked 2 etc.). If the 
average ranks in each gender are significantly different from what is expected by 
chance, the time to cardiac event would be regarded as significantly associated with 
gender. In a Cox model, the time variable should also be on a continuous scale and 
censoring should occur randomly (which can be assessed with e.g. Martingale 
residual plots). Cox regression utilizes a gamma distribution. In addition, general 
assumptions for regression analyses are applicable also for time-to-event models.

24.5.6	 Alternative Models for Time-to Event Regression

In some cases, time-to-event follow a more predictable pattern that can be modeled 
more exactly than the techniques described above. This could be when the time-to-event 
can be modeled with e.g. Weibull (e.g. gradually decreasing hazard), Exponential 
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(constant hazard), Gompertz or Log-logistic distributions. These techniques will not
be covered here. It is also possible to use time-to-event analysis to take several 
events into account in the same analysis. This book will not cover that.

For further introductory reading about time-to-event analyses, we refer to 
Breslow (1975), Lee and Go (1997), and Leung et al. (1997).

24.6	 Cost-Effectiveness Analysis

A wide range of methods for economic evaluation are used, and the common feature 
is that they simultaneously consider both intervention costs and associated health 
outcomes. These concepts were introduced separately in Chap. 10, but in this chap-
ter we consider them jointly and introduce techniques for addressing whether health 
care interventions can be considered to be cost-effective (See also: Panel 24.5).

24.6.1	 Taxonomy of Methods for Economic Evaluation  
of Health Interventions

Assessment of cost-effectiveness of an intervention must always be made with ref-
erence to a specified comparator intervention. In other words, an intervention can 
only be cost-effective, or not, compared to something else. The comparator is 
typically the current standard of care, but best alternative practice or no treatment 
alternatives are also commonly used as comparators.

Panel 24.5  Selected Terms Relevant to Cost-Effectiveness Analysis

Average Cost Effectiveness Ratio (ACER)  The ratio of costs and effectiveness 
of an intervention compared to an implicit alternative intervention (often 
“no treatment”).

Comparator  The intervention being included for comparison in an economic 
evaluation (e.g., current standard of care, best alternative practice, no 
intervention)

Cost Benefit Analysis (CBA)  Economic evaluation in which both costs and 
outcomes are expressed in monetary terms

Cost Effectiveness Analysis (CEA)  Economic evaluation involving the use 
of simple natural units as outcome measures

Cost Minimization Analysis (CMA)  Economic evaluation where outcomes 
are assumed to be identical for the compared interventions

Cost Utility Analysis (CUA)  Economic evaluation involving the use of 
an outcome measure combining mortality and morbidity, usually quality 
adjusted life years (QALYs) or disability adjusted life years (DALYs)

(continued)
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Cost effectiveness acceptability curve (CEAC)  Output from PSA, indicating 
the probability that an intervention is cost-effective relative to its comparator

Deterministic cost effectiveness analysis  A CEA that use point estimates 
for parameter values, while uncertainty can be explored using sensitivity 
analyses (one-way, two-way or multi-way)

Explicit budget  A situation where the available amount of funds for a priority 
decision is known

Extended dominance  A situation where an intervention has a higher ICER 
than the next more effective alternative, implying that the intervention is 
strongly dominated by a combination of two alternatives

Implicit budget  A situation where the exact amount of funds available for 
a priority decision is undefined, in which case priority setting can be based 
on willingness to pay for health assessment

Incremental costs  The cost difference between two mutually exclusive 
intervention alternatives

Incremental Cost Effectiveness Ratio (ICER)  The ratio of incremental 
costs and incremental effectiveness between two intervention alternatives 
that are mutually exclusive

Incremental effectiveness  The difference in effectiveness between two 
mutually exclusive intervention alternatives

Monte Carlo simulation  A process where a model is evaluated by making 
a large number of random draws from a set of distributions, and where 
expected values are calculated for each simulation

Mutual exclusiveness  Situation where costs and effectiveness of an 
intervention is influenced by the other intervention alternatives being 
compared. An implication is that only one of the interventions should 
be given to the patient at the same time (i.e. one treatment regime against 
a disease)

Mutual independence  Situation where the costs and effectiveness of an 
intervention are independent of the other intervention alternatives being 
compared. Several interventions can be given at the same time without 
influencing each other

Probabilistic sensitivity analysis (PSA)  An analytical approach to consider 
potential impact of parameter uncertainty, involving defining distributions 
for uncertain parameters, combining them in a model using Monte Carlo 
simulation, and presenting the results using e.g. CEACs

Strong dominance  A situation where an intervention is more costly while 
at the same time being less effective than its comparator

Willingness to pay (WTP) for health  The maximum amount of money 
decision makers are willing to pay for an additional unit of health

Panel 24.5  (continued)
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While the identification and estimation of various types of costs are simsilar 
across economic evaluations, the nature and measurement of health outcomes may 
differ considerably (Drummond et al. 2005). It is the choice of outcome measure 
that classifies studies into different types of economic evaluations.

The simplest economic evaluation technique is cost minimization analysis 
(CMA). A prerequisite for cost minimization is that the health outcomes of the 
alternative programs are identical. If the health outcomes, or health effects, 
are identical for all the alternatives, the cheapest alternative should naturally be 
preferred from an economic standpoint. In cost effectiveness analysis (CEA) 
both costs and outcomes may differ between intervention alternatives. 
Typically, a currently used intervention is compared with an alternative with 
better health outcomes, but which is also more costly. But comparison with less 
costly and/or less effective alternatives can also be done. The outcome measure 
in CEA is a single measure, such as cases averted, life years saved, or deaths 
averted. CEA is foremost useful to compare interventions targeting the same 
condition.

A simple measure, like deaths averted, is insufficient as the outcome measure 
when other factors matter, such as patients’ health-related quality of life. Cost utility 
analyses (CUA) utilize measures of health that combine mortality with morbidity. 
The quality adjusted life year (QALY) and disability adjusted life year (DALY)
methods combines ill health with mortality into a single numerical expression. 
This makes it possible to compare interventions targeting different types of health 
conditions.

Although CUA has a wider applicability range than CEA, the former method can 
still only be used to compare projects with health-related outcomes. This is unsatis-
factory for projects with outcomes across different sectors. For example, water and 
sanitation projects typically improve population health through improved water 
quality and a more hygienic disposal of waste. At the same time, such projects typi-
cally make living easier for people and save a lot of time that can be used for 
income-generating activities. Thus, sometimes employing only health measures 
underestimates the true benefits of the project. It is therefore sometimes convenient 
to compare all program benefits in monetary terms, the approach that is taken in cost 
benefit analysis (CBA).

Despite the fact that CBAs are easy to interpret, and despite their usefulness in 
cross-sector comparisons, the technique is not common in economic evaluation of 
health programs mainly because the valuation of human life and disability in monetary 
terms is quite challenging (many also find it unethical to place a value on human life). 
CMA on the other hand, is rarely applicable due to the requirement of identical outcomes. 
CEA and CUA have therefore become the most influential techniques for economic 
evaluation in health care.

We have discussed different effect measures in economic evaluations, and observed 
that the choice actually determines whether we are dealing with CMA, CEA/CUA, 
or CBA.

J. Van den Broeck et al.
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24.6.2	 Decision Analytical Modeling

Economic evaluation can, by principle, be designed around clinical trials. 
Information such as efficacy, treatment compliance, long term treatment benefits, 
health state preferences, and various costs may be collected simultaneously for both 
the study intervention and its comparators. With this technique, cost-effectiveness 
estimates can be calculated directly using standard mathematical and statistical 
approaches. However, coherent and comprehensive information on all of these fac-
tors are rarely available; therefore, economic evaluations usually combine different 
types of evidence from several sources to develop decision analytical models.

Modeling provides great flexibility regarding the availability of evidence, adapt-
ability to different settings and situations, and opportunities to explicitly model and 
express uncertainties in input variables and in the overall findings. In so-called 
deterministic evaluations, the parameter values are modeled as point estimates, and 
in ex post calculations they are allowed to vary in sensitivity analyses. In probabilis-
tic analyses, on the other hand, the parameter values are treated as distributions, 
meaning that inferences from trials and other data sources are more directly incor-
porated into the models. These two approaches will be briefly introduced below.

24.6.3	 Deterministic Cost-Effectiveness Analysis

Average cost-effectiveness analysis (ACEA) is a type of deterministic cost-
effectiveness analysis based on a very simple mathematical formula, namely the 
cost-effectiveness ratio (CER).

	 CER
Costs C

Effects E
=

( )

( )
	 (24.6)

The CER estimates how much it costs to obtain a unit of health outcome using 
some specified intervention (e.g., the amount of dollars it costs to avert a malaria 
case by providing bed-nets to the population). This measure, also called the average 
CER, can be used to choose the optimal mix of interventions in a particular optimi-
zation problem (Weinstein 1995). This optimization problem contains a set of rather 
restrictive assumptions, including that the interventions (i = 1, 2, …., N) are not 
repeatable, that their costs and benefits reflect full implementation, and that costs 
and effectiveness of any program are independent of which other programs are 
adopted (‘mutual independence’). The optimal resource allocation, or the allocation 
that gives the highest attainable aggregate health effect within the budget, is obtained 

24  Statistical Modeling



484

by rank ordering the programs according to increasing CER (C
i
/E

i
) and adding 

interventions from the top of the list until the budget is exhausted.
The above decision rule is simple to work out and to communicate to decision 

makers and to medical professionals. However, one of the assumptions of the basic 
model is violated in the most typical application of CEA, namely the assumption of 
mutual independence. CEA is typically used to compare competing alternatives to 
target the same condition, e.g., alternative drugs to treat malaria. In these cases the 
alternative interventions are not mutually independent, since the use of one malaria 
drug will affect the effectiveness of other malaria drugs. In these cases, average 
CERs cannot be used to maximize the health for a given amount of resources 
(Karlsson and Johannesson 1996). Mutual exclusiveness requires modifications of 
the decision rules of the basic CEA model, and can be dealt with by calculating 
incremental cost-effectiveness ratios (ICERs).

24.6.3.1 Incremental Cost-Effectiveness Analysis
When we are dealing with a menu of interventions that are mutually exclusive, the 
decision of which alternative should be given priority depends on the outcome of 
two processes. The first of these processes is to rule out interventions that are domi-
nated, either by strong dominance or by extended dominance. The second process is 
to consider which of the remaining programs maximizes our health objective within 
the limits of the budget. Before we return to these processes, it is useful to make 
some modifications to the basic cost-effectiveness model.

The question typically being investigated in incremental CEA (ICEA) is whether 
or not it is worthwhile to switch from some current standard treatment to an alterna-
tive treatment that is more effective but typically also more costly. In other words, 
we are interested in comparing the additional, or incremental, costs and health 
effects by switching from the old regimen to the new one. The ICER of moving 
from program 1 to program 2 can be expressed as:

	 ICER
C C

E E

C

E1 2
2 1

2 1
- =

-
-

=
D
D

	 (24.7)

We will use a cost-effectiveness plane (Fig. 24.6A–C) to illustrate the steps of 
ICEA, with intervention effectiveness on the x-axes, and costs on the y-axes. Let’s
assume a situation in which we are considering to replace current standard of prac-
tice (intervention 0) with one out of four treatment alternatives (interventions 1–4). 
The alternatives are mutually exclusive.

First, consider alternative 1 compared to 0 (current practice). Figure 24.6A illus-
trates that 1 is less effective than 0 and more costly. This can be denoted as C

1
 − C

0
 > 0; 

E
1
 − E

0
 < 0. Alternative 1 is therefore undesirable as replacement for 0, and the 

correct terminology is that 1 is dominated by 0 by strong dominance. In other words, 
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Fig. 24.6  Graph A 
illustrates how intervention 1 
is strongly dominated by 0, 
while 1′ strongly dominates 
0. Graph B illustrates the 
concept of extended 
dominance, while graph C 
illustrates how willingness  
to pay for health affects the 
choice between two mutually 
exclusive alternatives 3 and 4
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1 should be rejected. Alternatively, let’s imagine that alternative 1 is cheaper and 
more effective (denoted 1′) compared to current practice; or C

1
 − C

0
 < 0; E

1
 − E

0
 > 0. 

In this case the new alternative is preferable, and we say that 1′ dominates 0 by 
strong dominance.

Extended dominance exists when an option has a higher ICER than that of the 
next more effective alternative (Karlsson and Johannesson 1996). In this situation, 
the option is less effective and more costly than a linear combination of two other 
strategies (McGuire 2001). This is the case for intervention 2 in Fig. 24.6A, where 
the ICER for 0–2 is higher (steeper), than the ICER for 2–3.

Rather than giving the same intervention to all patients, it is possible to give 
intervention 3 to some patients, and to continue with current practice to the rest (alt 0). 
By considering Fig. 24.6B, it becomes clear that a combination of interventions 
0 and 3 (0–3) can produce better outcomes at identical cost to intervention 2 (arrow “a”), 
or the same effectiveness at lower cost (arrow “b”). Intervention 2 is therefore 
extendedly dominated by 0–3.

After having ruled out interventions that are either strongly or extendedly domi-
nated, we are left with two alternatives to current practice (3 and 4) that have 
increasing ICERs when they are sorted according to effectiveness. When all domi-
nated alternatives have been ruled out, we are ready to select which of the remaining 
interventions should be funded given the available budget. If we have an explicit 
budget, where the amount of available funds is defined, it is common to list the 
remaining interventions in a league table sorted according to increasing ICERs. 
Since the interventions are mutually exclusive, we start on the top of the list and 
replace interventions till the resources are exhausted (as opposed to ACEA explained 
above, where mutually independent interventions were added).

Often the exact amount of money available for a new intervention is undefined, 
in which case assessment must be made based on assessment of an implicit 
budget. Examples are government agencies like the National Institute of Clinical 
Excellence (UK), which consider economic evidence before (dis)approving 
funding for new drugs.

Implicit budgets involve defining a maximum acceptable value for ICERs, 
sometimes called the willingness to pay (WTP), and sometimes value of ceiling 
ratio or cost-effectiveness threshold. WTP can be illustrated as straight lines in the 
CE-plane (Fig. 24.6C). The decision rule is to fund the best possible intervention 
with an ICER lower than the slope of the WTP curve. In our example this is inter-
vention 3, since the ICER of moving from 3 to 4 is steeper than the WTP curve. One 
could also say that intervention 3 is cost-effective compared to the WTP threshold, 
whereas intervention 4 is not.

24.6.3.2 Sensitivity Analyses
Above we have assumed that costs as well as health effects are certain and can be 
described by point estimates. This is hardly ever the case. In fact, the presence of 
uncertainty is sometimes mentioned as a reason for why economic evaluations are 
important in the first place (Drummond et al. 2005). CEA can be used to quantify 
different sources of uncertainty and analyze whether or not they are likely to influ-
ence decisions to implement health interventions. If the findings and conclusions 
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are sensitive to changes in parameter values of key variables, then the analysis is not 
robust, and the firmness of the conclusions must be modified accordingly.

The simplest and most commonly performed sensitivity analyses are so-called 
one-way analyses, in which one parameter value is varied at a time, while all the 
others are being kept constant. For example, in an economic evaluation of preven-
tion of mother to child transmission in Tanzania, one-way analysis demonstrated 
that the interventions were more cost-effective in areas with high maternal HIV 
prevalence than in low prevalence areas (Robberstad and Evjen-Olsen 2010).

One-way analyses are simple to perform and provide output that is easy to inter-
pret, but the information is insufficient because usually there is uncertainty in many 
variables. It is therefore more realistic to undertake multi-way analyses, where two 
or more variables are varied at a time (Drummond et al. 2005). In two-way analyses 
the output can be illustrated and interpreted in figures or tables, but as more param-
eters are included multi-way analyses soon become difficult to illustrate and even 
more difficult to interpret. Scenario analyses, like best-case, base-case, and worst-
case analyses, illustrate potential consequences of combining the most optimistic, 
realistic, and pessimistic estimates, respectively.

24.6.4	 Probabilistic Sensitivity Analysis

The classical sensitivity analyses described above are important to explore param-
eter uncertainties, but they are not well suited to model interactions between sources 
of uncertainty and to illustrate overall model uncertainty. In probabilistic sensitivity 
analysis (PSA) probability distributions replace point estimates as input into the 
decision analytical model (Briggs 2001). A range of alternative distributions can be 
used, and the choice should reflect the nature of the data. Gamma distributions are, 
for example, common choices for cost parameters, because they, like costs, are con-
strained on the interval 0 to positive infinity. Beta distributions, on the other hand, 
better reflect the binomial nature of probabilities (Briggs et al. 2006).

The decision analytical model combines values and calculate outcomes based on 
random draws from the distributions in a process called Monte Carlo simulation. 
The simulation generates a large number of cost/effect pairs that can be plotted in a 
cost-effectiveness plane (Fig. 24.7A). Mean ICERs, standard deviations and confi-
dence intervals can be calculated using standard statistical methods. Such “clouds” 
of cost-effectiveness observations are well suited to illustrated overall model uncer-
tainty, but interpretation and selection of interventions becomes challenging because 
the clouds often overlap both with each other and across the axes in the diagram.

Cost effectiveness acceptability curves (CEACs) provide a solution to the chal-
lenges of interpreting scatterplots from Monte Carlo simulation, and have become a 
standard method to report results in cost effectiveness and cost utility analyses 
(Fig. 24.7B). In Fig. 24.6C above intervention 3 was cost-effective compared to the 
WTP, while intervention 4 was not. The CEAC simply illustrates how many of the 
ICER pairs from a Monte Carlo simulation that falls below the WTP threshold, or 
in other words, the probability that an intervention is cost-effective (Briggs 2001). 
Figures 24.7A, B illustrate the relationship between the cost-effectiveness plane and 
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the CEAC, and how the probability of an intervention may change with different 
levels of WTP. Probabilistic sensitivity analyses with CEACs produce output that 
are directly applicable to decision makers, while at the same time being explicit 
about the level of uncertainty surrounding the advice. The method provides decision 
makers with direct advice about which interventions to finance, based on the deci-
sion makers’ own perception of the societal willingness to pay for health. Since the 
readers actively have to assess the willingness to pay in order to interpret the find-
ings, the danger of the analyst imposing personal values on the decision maker is 
smaller. This makes acceptability curves less value-laden compared to classical 
incremental CEA, where the definitions of cost-effectiveness are more implicit.

In this chapter we discussed a selection of frequently employed methods of 
statistical modeling. A special topic in modeling is the meta-analysis, in which 
data from multiple studies (i.e., meta-data) are analyzed. A meta-analysis 
is almost always preceded by a systematic literature review to identify all 
relevant studies containing meta-data. We discuss both systematic reviews 
and meta-analyses in the next chapter.

Fig. 24.7  Graph A provides the output from a Monte Carlo simulation in which a pneumococcal 
vaccine is compared to no vaccination in Norway (Robberstad et  al. 2011). The 1,000 cost-
effectiveness pairs from the simulation appear as a “cloud”. Graph B shows how the probability of 
the vaccine being cost-effective increases with increasing willingness to pay
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Abstract
Many clinical decisions, risk assessments, and public health policy decisions 
depend on the results of epidemiologic studies. Very rarely, however, do all studies 
on a particular subject reach the same conclusion. Consequently, there is a need 
in epidemiology to synthesize differing study findings objectively. Two related 
approaches to synthesizing findings from multiple studies are the systematic 
literature review and the meta-analysis. The purposes of this chapter are to 
introduce each of these useful approaches, to highlight their assumptions and 
limitations, and to illuminate practical aspects of conducting your own systematic 
literature reviews and meta-analyses.

J.R. Brestoff, MPH (*) 
Perelman School of Medicine, University of Pennsylvania,  
Philadelphia, PA, USA
e-mail: brestoff@mail.med.upenn.edu 

J. Van den Broeck, M.D., Ph.D. 
Centre for International Health, Faculty of Medicine and Dentistry,  
University of Bergen, Bergen, Norway
e-mail: Jan.Broeck@cih.uib.no

25Systematic Literature Review 
and Meta-analysis

Jonathan R. Brestoff and Jan Van den Broeck

The search for truth is in one way hard and in another way 
easy, for it is evident that no one can master it fully or miss it 
wholly. But each adds a little to our knowledge of nature, and 
from all the facts assembled there arises a certain grandeur.

Aristotle
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25.1	 �Systematic Literature Reviews

Literature reviews are important elements of intellectual discourse in epidemiology. 
They are one of the most efficient ways to orient oneself to a new topic or emerging 
theme, and they serve as a platform on which knowledge is found or consolidated. 
Generally speaking, there are two types of review articles: narrative and systematic 
reviews. A narrative review often discusses the broader context of a phenomenon 
and includes selected research papers on a topic (their selection being somewhat 
subjective). Systematic reviews, on the other hand, tend to focus on more narrowly 
defined topics and employ a pre-specified (a priori), objective method to identify all 
research papers on a topic. For selected terms and concepts relevant to systematic 
literature reviews and meta-analyses, See Panel 25.1.

Panel 25.1  Selected Terms and Concepts Relevant to Systematic Literature 
Review and Meta-analysis

Fixed effect meta-analysis  A meta-analysis in which the estimation of a sum-
mary estimate for the population parameter is based on a model that assumes 
that the effect measured in individual studies is fixed and thus that the varia
tion in estimates among individual studies is due to sampling variation only

Forest plot  Graph representing the point and interval estimates of the effect 
measures of studies included in a meta-analysis (sometimes including 
representation of the overall summary estimate or summary estimates for 
relevant subgroups of studies)

Merging  Combining datasets, either on the basis of them having common 
variables (‘appending records’), or, on the basis of them having common 
observation units (‘match-merging’)

Meta-analysis  A quantitative approach to contrasting and combining the 
findings of previous studies on a research topic in order to arrive at summary 
conclusions about the body of research done on the topic

Meta-regression  A regression of study findings on study characteristics in 
a meta-analysis done to explore heterogeneity and to estimate differences 
between findings in subgroups of studies

Pooled analysis  Analysis of a dataset that combines data from several 
individual studies or several sources§

Publication bias  Bias in the overall pool of evidence around a research 
question due to selective publication based on the magnitude or direction 
of the study findings

Random effects meta-analysis  A meta-analysis in which the estimation of 
a summary estimate for the population parameter is based on a model that 
assumes that the effect measured in individual studies is not fixed but that 
there is an underlying variation in effects among individual studies that has 
a Gaussian distribution

§Definition contributed by Dr. M. Chhagan
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Consequently, in a systematic review article, there is always a Methods section 
that describes:
	1.	 The primary search used to identify all potentially relevant articles on the topic
	2.	 The preliminary inclusion screen used to narrow down the often very long list of 

primary search results into a short list of a manageable number of research studies 
to consider more carefully for inclusion

	3.	 The a priori inclusion criteria used to formally include studies, and
	4.	 The way in which the quality of included studies will be rated, e.g., by a grading 

scheme
	5.	 The way in which the evidence from included studies will be summarized and 

presented
This typical organization is used to structure this section of the chapter.

25.1.1	 �The Primary Search

The primary search is employed to identify all potentially relevant articles that meet 
pre-specified criteria. Therefore, before beginning the primary search, one must first 
define a very focused question that the systematic literature review aims to address 
(Table 25.1, Task 1). It is wise to begin with a very simple question and then to add 
qualifiers that limit the scope of that question. For example, initially one might ask 
“What is the risk of developing colon cancer in patients with a history of ulcerative 
colitis?” In Table 25.1, we have added one qualifier – specifically, to base the answer to 
our question on longitudinal studies only – in order to limit the number of relevant 
studies and make the systematic review more feasible. Limiting the systematic review 
to only one general study design has practical implications when a meta-analysis is 
planned as part of the systematic review, as it can be very difficult or impossible to 
derive comparable or appropriate statistical estimates from different study design 
types. Further specifications in the question help to narrow the domain of the review 
even further and may include factors such as age or biological sex.

Table 25.1  An ordered approach to performing systematic literature searches

Order Task Examples
1 Define a focused question Based on longitudinal studies only, what is the risk of 

developing colon cancer in patients with a history of 
ulcerative colitis?

2 Identify core search terms Colon cancer, ulcerative colitis, longitudinal study
3 Create a list of all synonyms 

of core search terms
Colon cancer, colorectal cancer, colon 
adenocarcinoma, …

4 Select bibliographic 
databases to be searched

MEDLINE, EMBASE, …

5 Create search query text (“colon cancer” OR synonyms) AND (“ulcerative 
colitis” OR synonyms) AND (“longitudinal study” OR 
synonyms)

6 Document the search and 
store results

Export and save a list of all search results from each 
database

25  Systematic Literature Review and Meta-analysis
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After clearly defining and documenting the question to be addressed in the 
systematic review, one must complete at least four other tasks to prepare for the 
primary search (Table 25.1, Tasks 2–5). First, one must use the stated question to 
identify the core search terms (Task 2). In our example, there are three core 
search terms: colon cancer, ulcerative colitis, and longitudinal study. Each of 
these terms, however, has a number of synonyms that also need to be included in 
the search. The term colon cancer, for example, is also commonly referred to  
as colorectal cancer and colon adenocarcinoma. The next task is therefore to 
identify all synonyms of the core search terms (Task 3). As you are developing a 
list of synonyms, you may encounter bibliographic databases that contain infor-
mation on original journal articles. Keeping notes on these databases may be 
useful for the next task, to identify the databases that you plan to search (Task 4). 
Popular databases are MEDLINE and EMBASE. Relevant specialty databases 
may also exist, such as PsychINFO for psychology-related topics. For searching 
databases, one may make use of ‘search engines’ or systems, such as PubMed 
and Scopus.

The information generated in Tasks 2 and 3 is used to generate query text (Task 5), 
or the text that you will enter in the database’s search field. Search queries rely on 
Boolean logic, in which one uses a set of hierarchical true-false relationships to 
define a search. In Boolean logic-based searches, each word is a search term, 
although multiple words can be designated as a single term using quotation marks 
(e.g., colon cancer becomes “colon cancer”). If one is attempting to enter multiple 
synonyms as a single search term, they are joined using parentheses and the word 
OR [e.g., (“colon cancer” OR “colon adenocarcinoma” OR “colorectal cancer”)]. 
Using the fully constructed query text, search the databases and store records of 
all search results (Task 6). Most databases have an advanced function to display 
and/or export search results with both the citations and their full abstracts. This is 
the most useful search result output, as the preliminary inclusion screen involves 
manually screening titles and abstracts for articles with the potential to meet the 
pre-determined inclusion criteria.

25.1.2	 �The Preliminary Inclusion Screen

The primary search often yields a very long list on the order of several thousands of 
articles. In order to narrow this list down to a manageable number of articles that 
warrant more careful consideration, one employs a preliminary inclusion screen. 
This process involves reviewing all of the titles and abstracts for articles that appear 
to meet or have even the slightest potential to meet a set of pre-determined inclusion 
criteria (to be applied later). Often, there are no formal preliminary inclusion criteria 
for the manual screen, as all studies that pass the screen will enter a careful review 
process with strict pre-determined inclusion criteria. However, there are often 
exclusion criteria at this stage to remove narrative review articles, commentaries, 
editorials, book reviews, etc.
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While performing the preliminary inclusion screen, there is a danger of introducing 
subjectivity and bias, though two commonly employed practices are aimed at com-
bating these issues. The first is to have a very low bar for passing the screen. Any 
primary search results without enough evidence in the title and abstract to clearly 
exclude the reference should be retained for careful review. The second is to have 
two or more persons manually screen the primary search results independently. 
The screen results from all individuals are merged and advanced to the next round 
of review.

Hint
During the preliminary inclusion screen of a systematic literature review, keep 
records about the numbers of studies excluded and included at each step. Standard 
practice is to report the reasons a study has been excluded, or at least to report the 
number of studies that were excluded for a given reason.

25.1.3	 �Applying a Priori Inclusion Criteria

The preliminary screen should reduce the number of reports by 70–90 %, though the 
exact number will depend on your particular study and search. The full-text versions 
of all the studies that pass the screen must be obtained (electronic or paper media 
are acceptable) and shared among at least two independent reviewers. Separately, 
each reviewer should read every paper that passes the screen and determine which 
meet the pre-determined inclusion criteria, which will be discussed briefly in the next 
paragraph. The reviewers compile their own lists of included studies, and any 
discrepancies among these lists are reviewed again to reach a consensus decision 
regarding whether the study successfully meets the pre-determined inclusion criteria.

The inclusion criteria are ideally established before the primary search has been 
conducted. At minimum, these criteria must describe studies that provide information 
on the parameters of interest as well as any statistical estimates and/or test results that 
may later be necessary for meta-analyses (if meta-analysis is planned for). If such 
information is not available, one may contact the authors to request the needed 
information before excluding the article. The inclusion criteria must identify studies 
that are helpful in addressing the question at issue. Based on the example in Table 25.1, 
a study on colon cancer risk in adult patients with a history of inflammatory bowel 
disease would be excluded from the analysis because there are two forms of inflam-
matory bowel disease: Crohn’s disease and ulcerative colitis. Such a study would not 
allow us to infer an association between colon cancer and ulcerative colitis. If, however, 
the results section contains analyses that specifically evaluate the risk of colon cancer 
in adult patients with a history of ulcerative colitis or Crohn’s disease (where both 
associations are reported separately), then the study would be included as long as it 
was longitudinal in design, as this type of study was specified in the question found 
in Table 25.1. For much more comprehensive advice on building inclusion criteria, 
please see Cochrane Handbook for Systematic Reviews of Interventions (2011).
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25.1.4	 �Assessing the Quality of Included Studies

After selecting studies that meet pre-determined inclusion criteria, one is faced with 
a challenge: how does one compare the studies’ strengths and weaknesses in a 
meaningful way? Lower quality studies are less informative than higher quality 
studies and the evidence they provide should not weigh as much in the overall 
synthesis of evidence on the topic. Out of the need to address this question, apprais-
ing the quality of research studies has become an important practice. Though various 
quality appraisal approaches have been employed, only the two most common will 
be discussed briefly here.

The first approach, and by far the most useful, is to construct a table that allows side-
by-side comparison of specific study characteristics. These tables can be difficult to 
make because so many factors contribute to a study’s overall quality. An example of a 
well-constructed summary table is shown in Table 25.2 (modified from Larsson and 
Wolk 2007). These tables typically include the relevant sample size, key study-base 
characteristics (age, sex, catchment area), and major strengths and limitations beyond 
those typical of the study design type. If multiple study design types are included in 
the review, then this feature should also be included in the summary table.

The first approach is often taken in conjunction with a second one, to employ a 
grading scheme in an attempt to assess the overall quality of included studies. Various 
grading tools have been proposed, such as GRADE (GRADE Working Group 2004). 
These schemes rely on select study characteristics to assign a letter or number score 
that is intended to reflect a study’s overall quality. However, we caution against the 
use of grading tools because many factors beyond those included in the grading 
scheme can contribute to a study’s overall quality. Moreover, there is a temptation to 
directly infer from a study’s quality score its strength of evidence, an association that 
can be false.

Table 25.2  A representative table showing characteristics of studies in a meta-analysis

References

Country, 
study  
name Participants

No. of case 
subjects

Years of 
follow-up

Assessment of 
anthropometric 
measures Adjustments

Lee and 
Paffenbarger 
(1992)

USA, 
Harvard 
Alumni 
Health 
Study

17,595 men 290 (colon 
cancer)

1962–1988 
(ave 5.6)

Self-reported Age, family 
history of 
cancer, 
physical 
activity

Bostick  
et al. (1994)

USA,  
Iowa 
Women’s 
Health 
Study

32,215 
women 
aged 55–69 
years

212 (colon 
cancer)

1986–1990 
(ave 4.8)

Self-reported Age, height, 
parity, 
vitamin A 
supplement 
use, intakes 
of energy 
and total 
vitamin E

Table contents extracted from Larsson and Wolk (2007) in accordance with Am J Clin Nutr use 
policies. Only the first two studies were extracted. USA United States of America, No. number, 
Ave average
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25.1.5	 �Presenting and Synthesizing Study Findings

The next step is to present an overview of the findings of each included study. 
This can be done in a separate table. In this overview table of study findings, the 
main information consists of details about parameter estimates, standard errors, 
P-values, and (for etiognostic studies) confounders. In some cases, systematic litera-
ture reviews are performed without further statistical analyses of the findings from 
the included studies. Such reviews amount to an overview of the evidence on a topic 
accompanied with qualitative synthetic inferences that subjectively give more 
weight to evidence from large or good-quality studies. However, much more com-
monly, systematic reviews are accompanied by statistical meta-analyses, a term that 
literally means “analysis of analyses.”

25.2	 �Meta-analysis: Objectives and Limitations

25.2.1	 �Objectives of Meta-analysis

Meta-analyses involve combining the results of previous studies on a research topic 
using statistical methods. The two objectives of a meta-analysis are nearly always:
	1.	 To explore heterogeneity and reasons for the differences between studies
	2.	 To provide summary estimates of outcome parameters, taking study precision 

into account
Both of these purposes are quite nicely illustrated in the forest plot shown in 

Fig. 25.1. This forest plot shows results from a meta-analysis of the relative risk 

Studies by sex
Men RR (95% CI)

Women

Relative Risk
Tests for heterogeneity:

0.8 0 1.2 1.5

Lee and Paffenbarger, 1992 (ref 18)
Chyou et al., 1994 (ref 20)
22 other studies (omitted here)
All studies

Bostick et al., 1994 (ref 19)
Thune and Lund, 1996 (ref 21)
19 other studies (omitted here)
All studies

Men:  Q = 30.73, P = 0.13, I2= 25.2%
Women:      Q = 49.19, P < 0.001, I2= 59.3%

1.47 (1.19, 1.81)
1.19 (0.95, 1.49)
Omitted
1.30 (1.25, 1.35)

1.25 (1.07, 1.46)
0.96 (0.75, 1.23)
Omitted
1.12 (1.07, 1.18)

Fig. 25.1  Example of a meta-analysis forest plot. See the text body for descriptions of the elements 
shown in this figure. (Adapted from Larsson and Wolk (2007) in accordance with Am J Clin Nutr 
use policies.) This figure is an approximation only. Reference numbers in figure correspond to the 
reference list in Larsson and Wolk (2007). Ref reference, RR relative risk, CI confidence interval
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(RR) of colon cancer for each 5 kg/m2 increase in body mass index (BMI) relative 
to normal BMI. The square boxes indicate the RR estimate for each study listed on 
the left, and the box’s sizes reflect the weight that a study has in the calculation of 
an overall RR estimate. The horizontal lines represent the 95 % confidence intervals 
(CI) of those RR estimates. On the right-hand side, the actual numerical values of 
the RR and 95 % CI are shown. The dashed vertical line marks the overall RR 
estimate for the studies being meta-analyzed and terminates on the center of an 
open diamond, the width of which represents the overall 95 % CI for the overall RR 
estimate. In this meta-analysis, there were significant increases in the overall RR for 
both men and women; however, the strength of the association was greater in men 
than women. Thus, this meta-analysis provides summary estimates of an effect 
measure and provides insight into the heterogeneity among studies.

25.2.2	 �Limitations of Meta-analyses

Although meta-analyses are potentially very useful and informative, there are some 
major limitations to this type of study. We focus here on the three most paramount 
limitations seen today.

First, the summary statistic can give the false impression of consistency among 
studies, a point that is well illustrated in the forest plot in Fig. 25.1. At face value, the 
overall RR and overall 95 % CI make it appear as though all of the included studies 
were similar to each other. However, not shown in this figure are the substantial 
methodological differences and differences in quality-aspects across the included 
studies. Three common methodological aspects that almost always vary from one 
study to another are the study base, the sampling procedure, and the methods by 
which study variables are measured. Consequently, it is critical to view forest plots 
in the context of summary tables that characterize the included studies.

Second, there may be publication bias, a phenomenon in which studies that show 
a significant association are more likely to be published than studies that show a 
non-statistically significant association. Publication bias arises in various ways, as 
will be discussed in-depth in Chap. 31. Briefly, investigators sometimes perceive 
that their work will be viewed as unimportant if a hypothesized association is not 
observed, leading to lower submission rates for studies with non-significant findings. 
In addition, some journals, editors, and peer-reviewers tend to be more likely to 
accept studies that show a significant association between two factors. These forces 
and others combine to produce a publication landscape that is artificially skewed in 
one direction or another. Unfortunately, although methods to detect publication 
bias exist (See: below), they tend to be useful only under conditions that are not 
commonly met.

Third, the statistical models that are commonly used to generate the summary effect 
measures make assumptions that are not always met or that cannot be tested. These 
models – the fixed effect and random effects models – are therefore considered to be 
dubious, and findings resulting from their use need to be interpreted carefully.
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25.3	 �Steps of a Meta-analytical Project

Here, we discuss the approach to meta-analysis after identifying and assessing the 
quality of relevant studies, as was discussed in the previous sections on systematic 
literature reviews. A controversial point is whether one should exclude studies with 
poor quality. This needs to be decided on a case by case basis

A meta-analysis using pooled datasets (with a similar structure - see Chap. 12) 
proceeds as follows:
• Collect datasets from each study
• Add a study identification variable to each dataset
• Ensure common naming and coding of variables in each dataset
• Merge the datasets
• Perform pooled analysis, using the study identification variable as a potential 

effect-modifier
More commonly, however, a meta-analysis will not use pooled datasets but 

proceeds through the following steps, each of which is discussed further below:
• Extracting data from published articles for meta-analysis
• Optimizing comparability of extracted effect estimates
• Exploring heterogeneity among study findings
• Calculating summary estimates
• Assessing possible publication bias

25.3.1	 �Extracting Data for a Meta-analysis

Based on the research question developed in preparation for the systematic literature 
review, one should be able to foresee the types of findings that will be encountered 
in the included studies and that will need to be synthesized in the meta-analysis. 
Two critical pieces of information that always need to be obtained are (1) the point 
estimate of the outcome parameter and (2) the standard error (which represents the 
margin of uncertainty surrounding the point estimate). Both of these data can be 
provided in a number of formats. For instance, point estimates of effect measures are 
often reported as an odds ratio, relative risk, incidence rate ratio, of beta-coefficient. 
The standard errors of these estimates are sometimes directly reported but more 
commonly than not need to be derived from other information that is almost always 
present: from a confidence interval or a P-value (note: only P-values with two or 
more significant digits are useful for deriving standard errors). The extracted point 
estimate and its standard error are sufficient to perform a meta-analysis, but some-
times adjustments are necessary (next subsection) to enhance their comparability. 
For this purpose, additional data should be extracted from each article about which 
confounders were adjusted for and how exactly they were measured. Also, one 
should extract both crude and confounding-adjusted effect estimates. We recommend 
developing a data extraction form that can be used to record and store data that will 
be used for the meta-analysis later.
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25.3.2	 �Optimizing Comparability of Extracted Effect Estimates

After extracting the effect estimates and their standard errors some thought needs to 
go to issues of comparability. A first problem can be that a particular study used a 
different definition for a confounding variable or that the study adjusted for a set of 
confounders that was slightly different from other studies. In that case, one should 
try to make an adjustment of the estimate produced by that study. External adjustment 
for no or incomplete accounting for confounding can be based on a correction factor 
estimated from an external study that gave crude as well as adjusted estimates.  
A correction factor can also be estimated from internal information on (1) the joint 
distribution of the confounder and exposure, and (2) external info on the confounder-
outcome relation (Rothman and Greenland 1998).

A second problem of comparability can occur when a particular study is suspected 
or known to suffer from selection bias. For studies with (suspected) selection bias, 
one tries correcting the estimates using info on over- or under-sampling of determi-
nant variable levels. If such information is not available, sensitivity analysis can be 
performed. Similarly, if there is suspected misclassification bias, one may attempt 
to correct the estimates using information on the over- or under-classification of 
variable levels, or one may consider performing sensitivity analyses of various 
potential misclassification scenarios (Rothman and Greenland 1998).

25.3.3	 �Exploring Heterogeneity Among Study Findings

When the estimates and standard errors of all studies have been obtained and 
optimized, one can proceed to addressing the two explicit objectives of meta-analysis, 
starting with the exploration of heterogeneity. In Fig. 25.1, a forest plot was shown, and 
in it effect estimates were grouped according to the suspected source of heterogeneity, 
biological sex. Inspection of this forest plot strongly suggested that estimates tended 
to differ according to sex, but the figure also mentions a Chi-square test for hetero-
geneity that supports the credibility of this hypothesis, given the data. Yet another way 
to explore heterogeneity is meta-regression, which is a regression of study findings 
(effect measures) on study characteristics. Both these methods are further discussed in 
Sect. 25.4.1. Note that in tests for heterogeneity and in meta-regression, it is possible 
to down-weight the contribution of studies with poorer quality.

25.3.4	 �Calculating Summary Estimates

Contrary to common perception, the calculation of summary estimates is not strictly 
necessary in a meta-analysis. Both heterogeneity exploration and estimation of an 
overall summary estimate are nearly always performed, but it is possible to limit the 
meta-analysis to the former only.

To make a summary estimate, two approaches are used frequently. Fixed effect 
meta-analysis assumes that the effects measured in individual studies are fixed, thus 
implying that any differences in estimated effects are due to sampling variation only. 
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Random effects meta-analysis assumes that effects measured in individual studies 
are not fixed but have an underlying Gaussian distribution. As mentioned above, 
these assumptions cannot be tested empirically. Theoretically, however, we consider 
the random effects model to be a generally more credible assumption. Our main 
argument for this stance is described in Textbox 25.1.

In practice both fixed and random effects meta-analysis are often done in the 
same meta-analytical project. The basic calculations are mentioned in Sect. 25.4. 
Other statistical methods exist for the calculation of summary estimates. For example, 
Empirical-Bayesian methods have been used (Stijnen and van Houwelingen 1990), 
but they fall outside the scope of this text.

25.3.5	 �Assessing the Likelihood of Publication Bias

A funnel plot is a plot of a study precision parameter (usually 1/SE) against a para
meter of effect size (usually an odds ratio, a relative risk, or an incidence rate 
ratio). When there is no publication bias, a funnel plot should show a symmetrical 
inverted funnel shape around a vertical line that indicates the overall effect estimate. 
Asymmetry around that line may indicate publication bias. A limitation is that many 

Textbox 25.1  A Theoretical Argument in Favor of Random Effects Meta-analysis

When pondering whether fixed effect or random effects meta-analysis is the 
more justifiable approach, consider that the magnitude of measured effects 
often depends on underlying study population characteristics that can not 
always be measured and taken into account completely. For example, study 
populations can differ in the distribution of individual susceptibility factors in 
their members and in the distribution of environmental effect modifiers. Even 
if these ‘background factors’ or ‘underlying risks’ were perfectly balanced 
among comparison groups (as may be the case in some randomized trials) 
observed effects will be different among studies.

To illustrate this point with a purely hypothetical example, consider a drug 
x which only works well in blue-eyed persons and this individual susceptibility 
factor is not taken into account in the analysis of a number of trials in different 
populations in which the effect of x is studied. A trial in a population with a 
large majority of blue-eyed persons (randomized successfully among treatment 
arms) will estimate a large effect of x. In contrast, a trial done in a population 
with very few blue-eyed persons (even though this characteristic is well-
randomized) will find only a small or no effect.

Measuring a true scientific effect would require taking all these types of effect-
modifying background factors into account. This is generally unfeasible, which 
has to be taken as a given, and thus underlying variation in effects as assumed in 
random effects meta-analysis can also be taken as a given. Future meta-analysis 
may increasingly use meta-regressions on background factors which can possibly 
be assessed by additional data collection on ecological variables.
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studies are needed to distinguish real from imagined patterns, so funnel plots are 
not always helpful. Statistical tests have been developed to test for funnel plot 
asymmetry, such as the rank correlation test of Begg and Mazumdar (1994). Possible 
causes of funnel plot asymmetry include:
• Publication bias
• The smaller studies may have used a prognostically different sub-population, 

such as high-risk patients

25.4	 �Statistical Aspects of Meta-analysis

25.4.1	 �Statistical Aspects of Exploring Heterogeneity

�25.4.1.1 Meta-regression
Also known as ‘effect size modeling,’ meta-regression is used to study sources of 
heterogeneity in a meta-analysis. The estimates obtained in different studies form the 
dependent variable (e.g., odds ratios), and the study characteristics form independent 
variables (e.g., study size, study design type, study population characteristics, etc.). 
Because the number of studies in a meta-analysis is limited, the number of study 
characteristics that can be entered into a meta-regression is also limited.

In meta-regression the results of one study or a group of studies can be compared 
directly with the remainder of studies by adding an indicator variable that identifies 
study or group membership. The beta-coefficient of this indicator variable repre-
sents the difference between the effect measured by the study or group and the effect 
measured by the remainder of studies. Several such indicator variables can be added 
(Rothman and Greenland 1998).

�25.4.1.2 Chi-Square Test for Heterogeneity
This type of test is suitable for exploring sources of differences between study 
findings in connection with fixed effect meta-analysis. The test involves the calcula-
tion of a Chi-square value (also called a Q-value). To the obtained Q value, one can 
attach a P-value considering that the degrees of freedom (DF) are equal to the number 
of studies minus 1. Q can be calculated using the following equation: 

Calculation of the test statistic Q of a Chi-square test for heterogeneity

	 Q w= ( ) -éë ùûå i i Fln RR RRln( )
2

	 (25.1)

Where:
RR

F
 = Fixed effect summary estimate (See: Sect. 25.4.2)

RRi = Effect estimates of the individual studies
ln = natural logarithm
w

i
 = �weights, calculated for each study as in fixed effects meta-analysis  

(See: Sect. 25.4.2)
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25.4.2	 �Calculating Fixed Effect Summary Estimates

In fixed effect meta-analysis, the assumption is that all studies estimate the same 
effect RR

F
. Observed differences among i studies (among RR

i
) are assumed to be 

due to sampling variation only. The summary estimate RR can be calculated as: 

The summary estimate in fixed effect meta-analysis
Point estimate of fixed effect summary estimate RR

F
:

Step-1:

	 ln *ln( )
RR

w RR

w
i i

i

F( ) =
å

å
	 (25.2)

Where:
ln(RR

i
) = the natural logarithm of the effect estimates

w
i
 = weights, calculated for each study as:

1 1 1 1 1/ / / / /a b c di i i i+ + +( )

Where:
a

i
 = number exposed and with the outcome

b
i
 = number unexposed and with the outcome

c
i
 = number exposed and without the outcome

d
i
 = number unexposed and without the outcome

Step-2: Point estimate of RR
F
 = eln(RRF)

Where:
 e = the natural number (~ 2.71)

Confidence interval around RR
F
:

Step-1: Calculate the SE of RR
F
 using the following formula:

ln RR
w

F

i

( ) =
å

1

Step-2: Calculate the upper and lower limits of the 95 % confidence interval 
around RR

Lower limit e SE= ( )-ln . *RRF 1 96

Upper limit e SE= ( )+ln . *RRF 1 96
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25.4.3	 �Calculating Random Effects Summary Estimates

In contrast to fixed-effect model, the random effects model does not assume that 
studies measure the same effect. The assumption is that effects measured by studies 
arise from an underlying Normal distribution with variance S

b
. This S

b
 is the 

between-study variance, which can be estimated from the data and is then added 
to each within-study variance S

i
 to calculate adjusted weights w

i
. The rest of the 

calculation of the summary estimate is the same as for fixed effect meta-analysis; 
therefore, below we only show how to calculate the adjusted weights for use in a 
random effects meta-analysis: 

Adjusted weights w
i
 to be used in random effects meta-analysis

	 w
S Si

i b

=
+
1

	 (25.3)

Where:
S

i
 = within-study variance, calculated as:

S
a b c di i i i

i = + + +
1 1 1 1

Where:
a

i
 = number exposed and with the outcome

b
i
 = number unexposed and with the outcome

c
i
 = number exposed and without the outcome

d
i
 = number unexposed and without the outcome

S
b
 = between-study variance, calculated as:

S
Q K

Wb =
- -( )æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

max ,0
1

Where:
Q = Chi-square for heterogeneity (See: Sect. 25.4.1)
K = number of studies
W = �∑w

i
 – ∑w2

i
)/∑w

i
 where w

i
 are the unadjusted weights, as calculated 

for fixed effect meta-analysis (Sect. 25.4.2)

Notable features of random effects meta-analysis, in comparison with fixed 
effects meta-analysis, are that:
• It has a wider confidence interval than the fixed-effect summary estimate
• It gives relatively greater weight to smaller studies and is therefore more prone 

to publication bias
Values obtained by the two approaches tend to be quite similar.
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In random effects meta-analysis, the assumption that the true underlying effects are 
heterogeneous implies that one should be particularly careful with interpretation of 
the summary estimate. Specifically, the interpretation should maintain the assumption 
of underlying heterogeneity, as follows: The larger the summary effect and the farther 
its confidence interval is located away from the null effect, the more justification 
one has to interpret this as evidence for the existence of an effect ‘in most circum-
stances/populations’. On the other hand, when the confidence interval estimated 
with random effects meta-analysis overlaps with the null value, this does not imply 
that there are no circumstances or populations where the determinant or treatment 
has an effect. Finally, the finding of a wide confidence interval in a random effects 
meta-analysis can generally be interpreted as indicating the need for more research 
into effect modification.

In this penultimate chapter of Part IV: Study Analysis, we described methods 
of synthesizing evidence from different sources in a meta-analysis. In fact, 
every epidemiological study will eventually arrive at a stage where the quanti-
tative evidence produced needs to be compared with other existing evidence 
on the same topic. In these comparisons the final quality and credibility of 
one’s own studies and those of others are important. In the next chapter 
(Chap. 26: The Ethics of Study Analysis) we argue that the ethical conduct 
and quality of statistical analyses is one of the important pre-conditions for 
achieving appropriate final quality and credibility.
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    Abstract 
   From the medical literature one might gain the impression that data analysis is 
not much more than a matter of choosing the right estimators and making the 
appropriate adjustments for confounders. Yet the process of data analysis has 
important ethical and practical dimensions that are less apparent from reading 
research papers. In analyzing data, there are interactions among multiple persons, 
and critical decisions must be made for the calculation and selection of outputs 
for reporting. Even if the analysis plan is very well designed, each step in the 
analysis process is liable to becoming a source of bias, irreproducibility, 
ineffi ciency, poor documentation, disrespect for confi dentiality, and even fraud. 
This chapter explores the causes of analytical deviances and strategies to prevent 
them. These topics are contextualized with discussions of the importance of 
ethical data analysis and the responsibilities of analysts involved in a research 
study.  

        J.   Van den   Broeck ,  M.D., Ph.D.      (*) 
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 If you think it’s expensive to hire a professional to do the job, 
wait until you hire an amateur. 
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26.1        The Importance of the Ethics of Study Analysis 

 Most critical to epidemiology is the validity of the fi ndings it produces. Without 
appropriate data analysis conforming to ethical principles, the validity of epidemio-
logical studies stands on shaky ground. Poor data analysis practices undermine the 
discipline of epidemiology and may lead to decisions, based on biased or erroneous 
fi ndings, which harm patients or the public. Unfortunately, poor analysis practices 
are more commonplace in epidemiology than one might surmise (Altman  1980 ; 
Swazey et al.  1993 ; García-Berthou and Alcaraz  2004 ; Jeng  2006 ; Martinson et al. 
 2010 ; Horner and Minifi e  2010 ). 

 The medical research community still needs to come to grips with a serious 
problem of dubious data integrity, a commonly denied problem that has 
been lingering for decades. Many players are involved in maintaining the integrity 
of data analyses, not just the investigative team. Other players include edu-
cators, journal editors, research institutions, mentors, peer reviewers, ethics 
com mittees, DSMB’s, sponsors, regulatory bodies. The major players and their 
typical relationships in terms of maintaining ethical data analyses are depicted 
in Fig.  26.1 , and terms and concepts relevant to the ethics of study analysis are 
listed in Panel  26.1 .

  Panel 26.1 Selected Terms and Concepts Relating to the Ethics 
of Study Analysis 

     Data analyst     Person performing data transformations and statistical 
analyses   

   DSMB     Data and Safety Monitoring Board. Independent oversight committee 
installed by a research sponsor in support of a particular ongoing study, 
charged with the regular review of data quality and participant safety, and 
advising investigators and sponsor on these   

   Fraud  (− in analysis)    ̀Fabrication of analysis fi ndings   
   Misbehavior  (− in analysis)    Neglect, carelessness, or subtle choices to 

tweak procedures slightly in the hope of obtaining a more favorable 
result   

   Misconduct  (− in research)    Data fabrication, data falsifi cation, plagiarism or 
other activities that seriously deviate from accepted practice by the scientifi c 
community for conducting and reporting research   

   Parsimony     Avoidance of using unnecessary elaborate concepts (hypotheses, 
models)   

   Statistician     Professional skilled in sampling from sampling frames, quantita-
tively summarizing and presenting data, estimation of population parameters 
and hypothesis testing     
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Sponsors of research
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  Fig. 26.1    Schematic representation of the major participants involved in ensuring ethical study 
analysis. Principle investigators approach sponsors, research institutes, regulatory bodies, and 
perhaps other stakeholders for funding and support. These entities review proposals and their 
associated analysis plans. The ability to assess the integrity of these plans depends on the level of 
thought and detail provided by the principle investigators. The study (circle) is administered by 
investigators, study coordinators, and technicians/support staff, and all of these persons work 
with data managers, analysts, and statisticians to analyze recorded data. The DSMB and ethics 
committees are critical elements of the study’s approval and review, and members of the study 
team must interact with the DSMB and ethics committee to support ethical data analysis. The 
integrity of data analyses should be checked by peer reviewers and journal editors before dissemi-
nation of study fi ndings to the community-at-large and other stakeholders, and educators should 
champion examples of successful data analysis so that the future epidemiologists are well prepared 
to avoid analysis errors and to perform high quality analyses       

26.2           Errors and Unethical Behavior During Data Analysis 

 Mistakes, misbehavior, and misconduct can occur at any stage of research and tend 
to result in erroneous data and biased statistical evidence. Studies have been done 
on the frequency of occurrence and the determinants of mistakes, misbehavior, and 
misconduct in research, but the focus of those studies has rarely been on deviances 
occurring specifi cally during statistical analysis. An exception is the often-discussed 
topic of misguided choice of statistical procedures (Altman  1980 ), a decision that 
can occur when designing an analysis plan or during actual study analysis. However, 
many other types of bad choices can be made when preparing data for analysis 
or during the analysis itself. Table  26.1  contains some procedural aspects of data 
analysis amenable to intentional or unintentional error.

   Tiered distinctions can be made among misconduct, misbehavior, and mistakes 
(Martinson et al.  2010 ). The most serious tier is misconduct. Examples include data 
fabrication, data falsifi cation, and plagiarism. Misbehavior (the next most serious tier) 
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involves neglect, carelessness, or subtle choices to tweak procedures slightly in the 
hope of obtaining a more favorable result. These misbehaviors can also be viewed 
as mild forms of misconduct. Less serious than misconduct and misbehavior, 
mistakes are unintentional mishaps but are expected to be made more frequently by 
those who are careless, unskilled, inexperienced, acutely ill, tired, distracted, or 
under time pressure. 

26.2.1     Procedural Errors During Study Analysis 

 That procedural errors are commonplace in statistical practice was suggested by 
García-Berthou and Alcaraz ( 2004 ), who showed that a considerable proportion of 
articles in two major medical journals contained P-values that were inconsistent 
with the corresponding test statistics. It has also been shown that assumptions 
needed to use particular tests are commonly not met (Altman  1980 ; Jeng  2006 ; 
Horner and Minifi e  2010 ). Both of these potential problems can be mitigated by 
making concerted efforts to know in detail the study protocol before carrying out an 
analysis, to take enough time to execute the analysis, to double-check results, and to 
discuss provisional results with collaborators. These efforts of the investigative 
team must be supported by institutions that foster a culture of intense collaboration, 
mutual support, and quality in research. 

    26.2.1.1 Small Studies and Student Research Projects 
 Data analysis is a learned skill that increases with experience. Universities and 
Departments differ substantially in the quality of education in data handling and 
statistical analysis, and not all students are well versed in these skills when they get 
involved in research projects. In addition, students may not have clear insight into 

      Table 26.1    Sources of intentional and unintentional error during data analysis   

 Aspect of analysis  Potential sources of error 
 Preparation of data 
for analysis 

 Inexact defi nitions of analysis variables 
 Choices of (adjustment) variables not described or incompletely described 
in the analysis plan 
 Extraction of analysis datasets 
 Exclusions from analysis 
 Handling of suspect data values discovered in analysis datasets 
 Calculation of derived variables for analysis 
 Data transformations to meet statistical assumptions 

 Statistical operations  Choice of statistical package or method of calculation 
 Syntax writing 
 Options for scoring, rounding, interval estimation 
 Options for iterations, model inclusion criteria, imputations, output content 
and format 
 Selection of outputs to report on 
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the limits of their own analysis skills and therefore may not always ask for statistical 
support or supervision when doing so would be advisable. The ready availability of 
analysis support is important and should be a main organizational concern for 
educational and research programs involving students. If support is lacking or 
delayed, the result can be low quality student research projects with especially poor 
statistical analyses. This, in turn, can contribute to a failure of research education 
and to the perpetuation of a culture of poor statistical knowledge and practice among 
investigators in health research.   

26.2.2     Misbehavior and Misconduct During Data Analysis 

 Although there are no data available on the frequencies of most forms of misbehav-
ior and misconduct during data analyses, mild-to-moderate forms of both are prob-
ably not uncommon. Examples include rounding P-value, replacing one case 
defi nition with a very similar one, and changing covariates in a model to achieve a 
desired result. Martinson et al. ( 2010 ) surveyed faculty of 50 major universities in 
the United States and found that more than a quarter reported not always taking 
proper care of data integrity and confi dentiality. About 60 % admitted to forms of 
neglect and carelessness during research conduct, and 8 % reported their own plain 
misconduct (fabrication, falsifi cation, or plagiarism). It was not clear how much of 
this happened specifi cally during data analysis, but it is reasonable to assume that if 
one is neglectful or carelessness at one stage of the research process that they are 
more likely to exhibit those same behaviors during analysis procedures. 

 Martinson et al. ( 2010 ) also found that misbehavior and misconduct were more 
frequently reported by those who felt they were treated unfairly in their immediate 
work environment and by those who felt they were ‘over-committed’ to their work. 
Davis et al. ( 2007 ) reviewed 92 cases of serious misconduct in the United States 
using qualitative research methods and identifi ed several factors contributing to 
misconduct, including:
•    Pressure from the publish-or-perish culture in academia  
•   Personal stressful situations  
•   Absence of a work climate fostering research integrity  
•   Job insecurity  
•   Character weaknesses    

 The available evidence suggests that misbehavior and misconduct occur not only 
because of personal factors or fallout from competition in academia but also from 
systems-level factors. Systematic factors are more amenable to intervention and 
modifi cation. In fact, systems-level sources of error have been treated with quality 
assurance checklists in other operational situations, such as surgical procedures. 
Many hospitals now employ checklists before and after surgical procedures to 
reduce the frequency of surgical objects (especially sterile sponges) left inside 
patients. Similarly, quality assurance checklists in data analysis may prove to reduce 
the frequency of error in the data analysis process. 
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  Hint 
 We do not wish to suggest that initial analysis plans should never be changed. In 
earlier chapters we mentioned that the assumptions underlying chosen statistical 
parameters may prove invalid after data exploration and that this may lead to 
necessary and legitimate revisions to the statistical analysis plan. At stake here is 
whether there are any ethical concerns regarding any changes made to the initial 
analysis plan. Using new tests, exclusions, adjustments, or imputations should 
never be done if they are inspired by a desire to achieve statistical signifi cance or 
a certain result.    

26.3      Quality Assurance in Data Analysis 

 Baerlocher et al. ( 2010 ) surveyed data integrity safeguards used by investigators 
who published their research fi ndings in four major medical journals. More than 
10 % admitted to never applying any measures to safeguard data integrity in any 
study phase. About 35 % used independent verifi cation of the analysis for their last 
published paper, but only about 7 % opined that this practice should become a 
general requirement. The most common suggestion was that a simple declaration 
from the main author that ‘data integrity had been ensured’ should be the only 
requirement; a practice that we believe is an insuffi cient safeguard. 

 Investigators can avoid most analytical errors and fraud at the analysis stage by 
employing some simple quality assurance measures. Panel  26.2  provides a list of 
quality assurance recommendations, all of which are based on the expectations that 
errors and fraud occur less when the analysis involves interactions among multiple 
persons, good planning, proper support, and proper documentation of procedures. 
In clinical trials the Data Safety Monitoring Board (DSMB) also plays a role in 
quality assurance of data analysis by carefully checking statistical results in interim 
reports. 

 Seeking competent statistical support is important in all studies, not just in clini-
cal trials; however, professional support is not a guarantee against poor analyses. 
For example, DeMets ( 1997 ) reported that, in some trials, statistical centers did not 
perform adequately and needed to be replaced. Competent statistical support in the 
form of analysis supervision, analysis duplication, or analysis conduct can often be 
found among data analysts, epidemiologists, or any competent colleagues. A pro-
fessional statistician is not always necessary for this purpose. 

 Adjustments of the initial statistical analysis plan should preferably receive sci-
entifi c and ethical oversight or guidance of some sort. In clinical trials a DSMB may 
oversee amendments to the statistical analysis plan (DAMOCLES Study Group 
 2005 ). Unfortunately, such committees nowadays tend to dissolve once all data are 
collected, which is the stage when the need for protocol changes relevant to analysis 
often becomes apparent. For other types of studies it is less clear how the oversight 
should be organized. Ideally, the initial analysis plan should describe what exactly 
will be done if certain assumptions fail or diffi culties arise, but obviously not every 
scenario can be foreseen.   
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26.4       Interactions Between Data Analysts 
and Investigators 

 A study may involve many data analysts working in one or more teams, and members 
of any given team may be located in different parts of the world. One team might be 
working on the main analysis or separately focusing on different occurrence relations. 
Consequently, an integral part of any data analyst’s job is to interact with and report 
to investigators and other analysts/statisticians on a regular basis. 

 Before analyses are initiated, the analyst or team(s) should work with the inves-
tigators to defi ne how, exactly, proposals to modify the existing database should be 
processed. Each analyst or team may detect errors in the database or have useful 
proposals for deletions, corrections, or additions of derived variables to the database. 

    Panel 26.2 Checklist of Simple Measures to Prevent Analytical Errors 
and Data Fraud 

•     Inform data analysts/statisticians about study procedures and subject mat-
ter but try not to inform them about the investigator’s or sponsor’s expecta-
tions about direction or size of effect  

•   Establish and maintain frequent and good quality communication between 
investigators and analysts/statisticians  

•   Always involve more than one person in data analysis, even in small studies 
by single investigators; consider duplicating analyses  

•   Discuss provisional results with colleagues  
•   Seek assistance from experienced statisticians and statistical units; organize 

proper supervision of junior or relatively inexperienced data analysts  
•   Emphasize that all persons involved should recognize the limits of their 

own knowledge and skills and ask for advice when appropriate  
•   Reserve enough time for analysis; do not put excessive time pressure on 

analysts/statisticians  
•   Consider analyzing only after a fi rm and explicit decision to publish has 

been taken within the group and an internal agreement has been reached 
that this decision should not be altered by the results of the analysis, especially 
not by the signifi cance of results or sizes of effects  

•   Make it a policy to save all analysis syntaxes and outputs, including those 
that relate to checking assumptions underlying statistical procedures  

•   Require fi rm justifi cation for any data editing at the analysis stage  
•   Report results with and without deleted outliers or imputations  
•   Do not let any choices in procedures be inspired by a hunger for desired results  
•   Explicitly plan for data sharing after study completion    
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These changes may benefi t other analyses, and failure to deal with proposed 
changes in a timely manner can delay analyses unnecessarily (and consequently 
waste time and resources). An example is the discovery of an outlier with high 
infl uence on a study variable that is also used in parallel by another analyst or 
team. Unless the entire research group reaches consensus on how to handle the 
change, both analysis teams may be precluded from proceeding. Thus, in any 
study, all analysts and investigators need to be promptly alerted to proposals for 
database edits. 

  Hint 
 One should be careful not to mistake analysis datasets for database fi les and should 
always make this distinction clear in the fi le name and in correspondence.  

 Not all analysts/statisticians are involved in study planning; some are employed 
as statistical consultants at a later stage. All analysts/statisticians, especially those 
who are not involved in study planning, have the duty to verify independently the 
soundness of analytical plans or suggestions, to discuss any misguided choices, 
and to propose better ones even if the analysis plan was previously supported by 
the investigators, ethics committee, steering committee, or sponsor. In some small 
studies, there may be no formal analysis plan in place, and the investigator may 
leave the correct choice of tests or outcome parameters to the statistician. And in 
some cases, analysis plans approved by ethics committees may be inappropriate. 
If no plan exists or if changes to a pre-existing plan are necessary, it is advisable to 
consult with the investigators and, if necessary, to work with investigators to 
submit necessary amendments or notifi cations to the ethics committee, steering 
committee, or sponsor. 

  Hint 
 If an investigator expresses a desire for a particular outcome of the analysis, such 
as a signifi cant P-value, the approached analyst/statistician should, in accordance 
with the ethical guidelines from the American Statistical Association ( 1999 ), 
advise the investigator to recognize that valid statistical results cannot be guaranteed 
to conform to expectations (Horner and Minifi e  2010 ).   

26.5     Ethical Responsibilities of Data Analysts 

 Outlined in this section are some responsibilities pertinent to any persons involved 
in statistical analyses of epidemiological studies, with special attention to roles in 
the data analysis process. As mentioned in Textbox  26.1 , general ethics guidelines 
from statistical professional associations are available, and in this section some of 
the advice in those guidelines is extracted and translated into operational responsi-
bilities of data analysts. Concrete responsibilities are best understood in the context 
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of the general principles of epidemiology outlined in Chap.   1     ( See:  Panel   1.1    ), so 
the advice in this section is organized accordingly:
•     Minimize risk of avoidable, unacceptable harm 

 –    If information in the analysis dataset suggests that this principle may have 
been taken too lightly in the case of a particular participant, seek clarifi cation 
from the investigator for each suspected incident on a case-by-case basis     

•    Respect for autonomy of participants 
 –    Before beginning analyses, one should check with the investigator whether 

informed voluntary consent was obtained from all participants; if documentation is 
unavailable for a participant, that individual should not be included in analyses  

 –   In one’s analyses, take care not to include data on subjects who have requested 
that they be excluded from the analysis (the right to withdraw at any stage of 
the research includes the right to request not to be analyzed after data are 
collected)     

•    Respect the privacy of participants and confi dentiality of their data 
 –    Avoid analyzing data from studies that violate this principle  
 –   Return to the sender datasets that contain personal identifying information (and, 

of course, do not analyze these datasets until identifying information is removed)     
•    Minimize burden, preserve safety, and maximize benefi t for participants 

 –    Do not analyze data from a study that, by design, has intentionally infl icted 
avoidable harm, such as starvation research or experimental research on the 
health effects of weapons or potential weapons  

 –   Avoid using studies in meta-analyses that have violated this principle  
 –   Remember that people could be harmed if incorrect analyses produce results 

that lead to wrong decisions about diagnosis, treatment, prognostication, or 
policy development     

•    Maximize societal relevance 
 –    Avoid presenting statistical fi ndings in cryptic or overly sophisticated ways so 

that they are unlikely to be understood     
•    Contribute minimally biased evidence to the overall pool of evidence on an issue 

 –    Take measures to prevent analytical errors, as listed in Panel  26.2   
 –   Refrain from tampering with data or fabricating data  
 –   Gain the necessary competence before commencing an analysis  
 –   Ask for advice when appropriate  
 –   Discuss with the investigators any concerns about the study design, especially 

when developing the analysis plan  
 –   Decisions made during the analysis process should not be inspired by hunger 

for statistical signifi cance or career advancement. Therefore one should be 
mindful not to exclude records, trim data distributions, or exclude outliers 
from the analysis if that decision is partly or fully inspired by the expectation 
of more favorable results (DeMets  1997 ; Eliades et al.  2005 )  

 –   Data cleaning involves the examination of analysis datasets ( See:  Chap.   19    ); 
before running the analysis, analysts should screen the analysis dataset for 
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remaining suspect values and suspect patterns; strange patterns may be caused 
by fraud (Buyse et al.  1999 ; Eliades et al.  2005 ), and such a discovery needs 
to be dealt with responsibly  

 –   If there is a need for editing of data values, it is good to do so only after 
discussion with the investigator and with appropriate annotation of the database     

•    Maximize completeness of data for analysis and archiving 
 –    Make back-up copies of analysis datasets after extraction from the database; 

this helps to restore inadvertent deletions or mishandling of data     
•    Guarantee verifi ability of study procedures 

 –    Make available the analysis syntaxes (‘macros’) used in connection with the 
statistical package; this includes saving, naming, dating, describing, and 
backing up macros  

 –   Properly document in an audit trail any data value edits deemed necessary 
during analysis     

•    Pursue parsimony 
 –    Avoid making statistical models more complex than necessary          

   Textbox 26.1 Ethical Guidelines on Statistical Analysis 

 Valuable ethical guidance documents for statisticians are available from 
professional organizations, such as the International Statistical Institute ( 2010 ) 
and the American Statistical Association ( 1999 ). 

 These documents deal with the involvement of statisticians from design to 
publication and are a useful resource about general responsibilities, not only 
for professional statisticians in and beyond health sciences but also for data 
analysts, investigators, and students taking on a role in data analysis. Important 
principles contained in these documents are extracted and synthesized in this 
chapter; however, a more detailed set of guidelines is found in these primary 
sources. 

 This chapter marks the end of Part IV: Study Analysis. The result of study 
analysis is a set of outputs from statistical packages, perhaps further processed 
into an analysis report. Next, one is faced with the challenge of making these 
fi ndings known to scientifi c and other stakeholders. Doing so will hopefully 
contribute to the achievement of new knowledge, upon which actions can 
be based. This activity is called study reporting (Part V) and is covered in the 
remainder of the book. 
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    Abstract 
   Every study is designed and carried out with the expectation that it will have 
value. The expectation at the early stages of the study is that scientifi cally valid 
and ethically collected evidence about the research questions will contribute to 
increased knowledge, and that the study fi ndings will be important for decision 
making about further research, public health policy, or patient care. Near the end 
of the study, the time has come for all stakeholders to check if these early expec-
tations have been met. It is time to interpret the obtained statistical evidence in 
the light of the achieved internal validity, and to refl ect on the generalizability of 
the fi ndings and on possible lines of action supported by them. In this chapter, we 
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argue that this evaluation is mainly the task of peer reviewers and other critical 
readers or listeners. Investigators should provide the necessary objective and 
unambiguous information to make the task possible. That information should 
consist of correctly described statistical results and a complete account of issues 
relevant to study validity.  

27.1        The Role of Investigators in Study Interpretation 

27.1.1     Interpreting One’s Own Study Results 

 The main role of authors in reporting study fi ndings is to provide readers with all 
the information needed to make their own interpretations. This can be done by 
providing a correct description of statistical results and an objective summary 
of issues pertinent to internal and external validity (discussed below;  See also  
Panel  27.1 ). These pieces of information will help readers to appraise the evidence 
provided, to place it in a wider context, and to consider possible lines of action. 
In reality, however, interpreting one’s  own  study results is commonly allowed, 
expected or even required in scientifi c papers. This is inevitably a partly subjective 
activity, especially when the researcher tries to come to an evaluation of the 
 importance  of her/his own study. 

 Subjectivity can also come in when the researcher makes decisions on the 
presentation of fi ndings to achieve ‘maximal impact.’ An enthusiastic and ambi-

  Panel 27.1 Selected Terms and Concepts Around Interpretation 
of Study Findings 

     Association     A statistically signifi cant relationship   
   Causal association     A statistically signifi cant and confounding- adjusted 

relation between an exposure and an outcome.  Syn.  Causal effect   
   Causal criteria     List of conditions that must be satisfi ed before inferring 

that an association is causal   
   Clinical relevance     Potential to bring about a change in clinical practice   
   Difference     (1) Inequality (2) Result of subtraction   
   Evidence  (provided by a study)    Outcome parameter estimates together with 

information on internal validity of the study   
   Internal validity     Freedom from biases resulting from defi ciencies in study 

design or implementation   
   Signifi cance     (1) (Statistical -) Size of P-value relative to the chosen signifi -

cance level of the test (usually expressed with the labels ‘signifi cant’ or 
‘non-signifi cant’) (2) Importance   

   Trend     Modeled shape of relationship     
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tious researcher cannot easily avoid thinking about how important the results 
would  appear to others  conditional on a suggested interpretation and a chosen 
wording and presentation. Indeed, researchers are under pressure to promote 
their work, emphasize its impact by publishing in high-impact journals, and 
disseminate their results through various activities ( See:  Chap.   30    : Dissemination 
to Stakeholders). 

 Additionally there is an obligation to quickly and objectively inform stakeholders 
of new evidence, preferably in such a way that they will become attentive and 
motivated about it. Stakeholders must be enabled to use the work for adapting 
health care policies and practices, but this inevitably induces their ‘subjective’ 
appreciation of the importance of the new evidence and what it adds to knowledge. 
For many intellectuals these tasks are perceived as dilemmas and constitute a very 
challenging aspect of being a researcher. Part of a solution could be to involve 
external experts in contributing to the discussion sections of scientifi c articles, or, 
more generally, to involve independent auditors and external experts in study 
reporting.   

27.1.2       Helping Stakeholders to Make Their Own 
Interpretations 

 In epidemiology new evidence comes, in its purest form, as estimates and P-values. 
In scientifi c papers and presentations this statistical evidence is reported in the 
results section. A reader cannot interpret these statistics without also assessing 
internal validity of the study. Therefore results sections must also contain an 
account of study implementation diffi culties as possible sources of bias. Results 
sections should also be clear, if relevant, about reasons why certain fi ndings are 
reported in detail and others are not shown or shown in less detail. The reader 
should critically weigh all this information together with her/his critical assessment 
of the study design. In current publication practice, investigator-authors are allowed 
to make their own subjective interpretations, but these are supposed to be mentioned 
only in the discussion section of the paper ( See:  Chap.   28    ). The authors’ description 
of the statistical evidence in the results section should be free of interpretation so 
that readers can make their own assessments and are not led only to a particular 
interpretation. 

 The next sections of this chapter highlight issues in the presentation and inter-
pretation of statistical evidence and of information on internal validity.   

27.2     Direct Interpretation of Statistical Evidence 

 This section highlights two selected pitfalls in the direct interpretation of statistics, 
assuming that they have arisen from an internally valid study and express unbiased 
evidence.  
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27.2.1     Observed Versus Estimated Values 

 To enable interpretation, descriptions of statistical fi ndings should be unambiguous. 
Confusion is often created by poor choice of terms and expressions, for example, by 
failing to make a distinction between observed data and estimates of underlying 
population values. For instance, ‘We observed an increase’ and ‘We estimated 
there was an increase’ can mean totally different things. Indeed, it is quite possi-
ble to observe an increased value in a study sample whereas this observed 
change, as a point estimate of a population value change, may be surrounded by 
such a wide confi dence interval that it encompasses a null change. In the latter 
case it would be inappropriate to state, ‘We estimated there was an increase.’ 
In order to avoid this type of confusion, it is better to forego descriptions using 
‘We observed’ in results sections of papers, though this phrase is not strictly 
‘off-limits.’ 

 Another example of ambiguity occurs in statements of the form: ‘the frequency 
was greater in group  x  than in group  y .’ This may falsely suggest that there was 
a statistically signifi cant association when that is not the case. For this reason, 
point estimates must be presented with accompanying interval estimates (confi dence 
intervals).  

27.2.2     Association Versus Causal Effect 

 Another common source of confusion for readers (and for authors themselves) 
results from failing to make a clear distinction between descriptive and analytical 
(causal-oriented) research questions. Terminology used to describe statistical 
associations may suggest that there is evidence of a causal link when this is not the 
case. The following expressions are commonly used in descriptive as well as in 
analytical research.
•    ‘was infl uenced by’  
•   ‘was determined by’  
•   ‘depended on’  
•   ‘had an effect on’  
•   ‘was associated with’    

 Effects and associations can be either causal or non-causal, but confusion may 
arise unless there is absolute clarity about the descriptive versus causally-oriented 
nature of the research question and study design. The readers should be appro-
priately reminded of this in the results section, and the reminders can be repeated 
through appropriate use of adjectives and adverbs such as ‘descriptive,’ ‘causal,’ 
‘descriptively,’ and ‘causally.’ This type of confusion can be aggravated by the 
equally common ‘not signifi cant = no effect’ fallacy ( See:  Chap.   23    ):
•    ‘was not infl uenced by’  
•   ‘was not determined by’  
•   ‘had no effect on’      
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27.3     Internal Validity Assessment 

 New evidence is rarely indisputably true (within the prevailing paradigm). There are 
levels of uncertainty around most new evidence, and this uncertainty level can be 
diffi cult to evaluate objectively because of unmeasured confounders or other sus-
pected biases of unknowable size. This makes evaluation of internal validity partly 
subjective, even if investigators provide extensive and correct information relevant 
to validity. According to the offi cial defi nition, internal validity is the degree to 
which a study is free from bias and depends on the soundness of study design, con-
duct, and analysis (Porta et al.  2008 ). The present section will only draw attention 
to selected pitfalls in assessing internal validity. 

27.3.1     Errors in Outcome Variables 

 Errors in assessing outcome variables can greatly affect a study’s internal validity 
by generating bias ( See:  Chaps.   22     and   29    ). However, when the outcome parameter 
is a ratio or a beta-coeffi cient, its estimate can be unbiased even if the outcome esti-
mates for the separate exposure categories were all seriously biased. For example, 
consider a scenario in which the true  relative risk  of case fatality for male versus 
female hospitalized patients is 2 (males had twice the case fatality rate of females), 
where the true case fatality rate is 12 % in males and 6 % in females. In a study it 
may happen that for the males a seriously biased estimate of 6 % was made and an 
equally seriously biased estimated of 3 % in females. Yet, in spite of the enormous 
biases in the separate estimates, a correct ratio estimate of 2 was made in the study. 
Generally, if bias was present in an incidence risk/rate estimate but authors can 
argue that the extent of this bias is  proportionally  the same across levels of expo-
sure, then an argument is made in favor of an unbiased incidence rate ratio/relative 
risk estimate. However, if it is clear that outcome rate estimation bias was propor-
tionally greater in one exposure group than in another, the only way to salvage 
internal validity is to assess the magnitudes of bias in the separate groups followed 
by an adjustment in the calculation of the ratio. Thus, the degree of bias in common 
outcome parameter estimates in epidemiologic research (e.g., odds ratios, rate 
ratios, and rate differences) cannot be judged simply based on evidence of error in 
outcome detection.  

27.3.2     Random Errors in Determinant Variables 

 Imprecision, or random error, in determinant variables tends to attenuate (make 
closer to the null value) estimates of odds ratios, rate ratios, and regression slopes. 
When the extent of imprecision in the determinant variable is unknown but sus-
pected to be considerable, the outcome parameter estimate can often be interpreted 
as being an underestimate (i.e., biased towards the null value).  Effect size attenuation  
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applies to imprecise continuous determinants as well as to randomly misclassifi ed 
categorical determinants. The reason for this attenuation phenomenon, also known 
as ‘regression  dilution ,’ is illustrated in Fig.  27.1 , in which an association is being 
drawn between body mass index (BMI) and dietary intake. The dashed line shows 
the regression line in a scenario with no errors in the study variables, meaning that 
all measured values will fall within the true range of outcome (y-axis) and exposure 
(x-axis) measurements and that the regression line between this exposure and out-
come represents a true regression line. The ovals denote imprecision in the measure-
ments of dietary intake, the consequence of which is that some measurement values 
will fall outside the true range of exposure. Such imprecision tends to expand the 
variance of exposure, the effect of which is to decrease the slope of the regression 
line (shown by a solid line). Thus, imprecision in the determinant/exposure tends to 
lead to an underestimated effect size.

   In Table  27.1 , an equivalent scenario is used with a categorical determinant, 
where relative risk is the outcome parameter. Here, attenuation of the crude relative 
risk estimate is shown to be the result of random error in determinant measurement. 
In this example, 1,000 individuals are classifi ed as exposed and 1,000 as unexposed. 
In each case, 10 % of the individuals were misclassifi ed (e.g., of the 1,000  individuals 
classifi ed as exposed, 100 were truly unexposed, and of the 1,000 individuals clas-
sifi ed as unexposed, 100 were truly exposed). The true risk of the outcome is 10 % 
in those who are truly exposed and 1 % in those who are truly unexposed. Therefore, 

Range of 
true BMI

Range of true
exposure

Expanded range of exposure values

Dietary intake

B
M

I

  Fig. 27.1    Illustration of  regression dilution . The  dotted line  depicts the true regression line 
and true ranges of outcomes values and exposure values. Erroneous measurement values for the 
exposure ( blue clouds ) expand the range ( arrows ) of observed exposure values (they increase 
the variance of the exposure). The result is a regression line ( full line ) with a decreased slope, and 
thus an underestimation (attenuation) of the effect of the exposure       
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the true relative risk is 10.00. But because of the misclassifi cations, the estimated 
risks for the exposed and unexposed groups were 9.1 % and 1.9 %, respectively. 
The corresponding estimated relative risk is 9.1 divided by 1.9, which equals 4.79. 
This excise suggests that if one out of ten participants have their exposure status 
misclassifi ed, a true relative risk of can get attenuated by more than 50 % (e.g., from 
10.00 to 4.79).

27.3.3        Systematic Error in Determinant Variables 

 Both Fig.  27.1  and Table  27.1  use – for didactical purposes – simplifi ed scenarios 
where there is only random error in the measurement of the determinants.  Systematic 
error  can counteract or even reverse attenuation. For example, in Fig.  27.2 , it is 
illustrated how underreporting low dietary intake and over-reporting of high dietary 
intake tends to result in an overestimation of the strength of association with the 
outcome.

   Taking the messages of Figs.  27.1  and  27.2  together, the net result of random 
measurement imprecision combined with some systematic misreporting of true 
extreme values (towards the mean) may be a correctly estimated regression slope, 
but it may also lead to a biased slope estimate in either direction. As an exercise, one 
may wish to consider a scenario in which there is systematic error in values around 
the mean (i.e., under-estimated or over-estimated) but correct values at the extreme 
exposure levels. Whether a systematic error in the determinant will lead to an over- 
estimate or under-estimate of the determinant-exposure association depends on the 
particular pattern of systematic error. 

 In Table  27.2  a similar scenario is described that, again, shows that systematic error 
can lead to overestimation of the strength of association. In this example, individuals 

    Table 27.1    Illus   tration of attenuation of a crude relative risk estimate by random misclassifi cation 
of the exposure   

 Classifi ed exposure 
status  (number 
of participants)  

 True exposure 
status  (number 
of participants)  

 True 
risk (%) 

 True 
relative risk 

 Estimated 
risk (%) 

 Estimated 
relative risk 

 Classifi ed 
as exposed 
  (N=1,000)  

 Truly exposed 
  (N=900)  

 10   10.00  
  (10 % of 1,000 
truly exposed 
divided by 1 % 
of 1,000 truly 
unexposed)  

 9.1 
  (90 + 1 out of 
1,000 
classifi ed as 
exposed)  

  4.79  

 Truly unexposed 
but misclassifi ed 
as exposed 
  (N=100)  

 1 

 Classifi ed as 
unexposed 
  (N=1,000)  

 Truly unexposed 
  (N=900)  

 1  1.9 
  (9 + 10 out of 
1,000 
classifi ed as 
unexposed)  

 Truly exposed 
but misclassifi ed 
as unexposed 
  (N=100)  

 10 
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are categorized into three levels of exposure: 1, 2, and 3. All of the individuals in 
Levels 1 and 3 are correctly classifi ed, but 20 of the 120 individuals in Level 2 were 
misclassifi ed as such and truly should have been classifi ed as Level 1. The true risks 
for Levels 1, 2, and 3 are listed as 20 %, 10 %, and 5 %, respectively. Since Level 3 
is listed as the reference group, this means that the true relative risk for Level 1 is 
4.00 and for Level 2 is 2.00. However, the misclassifi cation in Level 2 produced an 

Range of 
true BMI

Measured values
shifted to middle

Range of true exposure values

Dietary intake

B
M

I

  Fig. 27.2    Illustration of a case of overestimated strength of association by systematic errors in 
measurement of a continuous determinant. The  dotted line  represents the true regression line. 
 Arrows  indicate the shift of outcome values ( blue clouds ) to the middle by a systematic trend for 
underestimation of high values and overestimation of low values. The result is a regression line 
( full line ) with an increased slope and thus an overestimation of the strength of the relation       

   Table 27.2    Illustration of overestimation of a crude relative risk by a systematic error in measurement 
of a multi-level categorical determinant   

 Classifi ed determinant 
level  (number 
of participants)  

 True determinant 
level  (number 
of participants)  

 True 
risk (%) 

 Estimated 
risk (%) 

 True relative 
risk for level 

 Estimated 
relative risk 
for level 

 Level 1 
  (N=80)  

 Truly level 1 
  (N=80)  

 20  20  4.00  4.00 

 Level 2 
  (N=120)  

 Truly level 2 
  (N=100)  

 10  11.7 
 ( 14/120*100 ) 

  2.00    2.34  

 Truly level 1, 
mis-classifi ed 
as level 2 
  (N=20)  

 20 

 Level 3: 
 = reference 
level  (N=100)  

 Truly level 3 
  (N=100)  

 5  5  1.00  1.00 
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estimated risk of 11.7 % (rather than the true 10 %). The effect of this error is to 
exaggerate the estimated relative risk in Level 2 as 2.34. The distorting effect of 
systematic errors depends on the levels of the determinant at which the errors occur 
and in what directions they exert their effects. For example, if the error consisted 
only of a proportion of Level 3 subjects misclassifi ed as Level 2, the result would 
have been an underestimation of the relative risk for Level 2, rather than an overes-
timation, as in the tabulated scenario.  

 When the exposure has only two levels, as is often the case in epidemiologic 
studies, systematic error can consist of one of the two levels being more frequently 
misclassifi ed than the other. In those common scenarios, importantly, the net result 
is systematic error superimposed on random error. This situation tends to further 
attenuate the ratio estimate compared to random error alone. Exceptions sometimes 
occur in scenarios where the systematic error in determinant assessment is prognosis- 
related (in cohort studies) or case status-related (in case–control studies). This point 
is illustrated in Table  27.3  using some hypothetical cohort study scenarios. Scenario 
C in this table shows that over-estimation can occur.

    Table 27.3    Illustration of the effect of systematic misclassifi cation of exposure on the crude 
relative risk estimate in cohort studies   

 Level of 
determinant, as 
classifi ed  (number)  

 Good or bad 
prognosis a  
 (number)  

 True 
risk a  (%) 

 New cases 
developing 

 Total cases 
developing 

 Observed 
cumulative 
incidence (%) 

 Scenario A: No errors in study variables: 
 Level 1 
  (N=100)  

 G 
1
   (N=20)   5  1  9  9 

 B 
1
   (N=80)   10  8 

 Reference level 
 (N=100)  

 G 
0
   (N=80)   5  4  6  6 

 B 
0
   (N=20)   10  2 

  True crude relative risk = 1.50  
  Scenario B:  Systematic error: 20 level-1 subjects are misclassifi ed, non-differentially as to 
prognosis: 
 Level 1 
  (N=80)  

 G 
1
   (N=16)   5  0.8  7.2  9 

 B 
1
   (N=64)   10  6.4  (7.2/80) 

 Reference level 
 (N=120)  

 G 
0
   (N=80)   5  4  7.8  6.5 

 B 
0
   (N=20)   10  2  (7.8/120) 

 G 
1
   (N=4)   5  1.6 

 B 
1
   (N=16)   10  0.2 

  Estimated crude relative risk = 1.38  
  (under-estimation)  

  Scenario C:  Systematic error: 20 level-1 subjects are misclassifi ed, differentially as to 
prognosis: only subjects with good prognosis are misclassifi ed: 
 Level 1 
  (N=80)  

 G 
1
   (N=0)   5  0  8  10 

 B 
1
   (N=80)   10  8  (8/80) 

 Reference level 
 (N=120)  

 G 
0
   (N=80)   5  4  7  5.83 

 B 
0
   (N=20)   10  2  (7/120) 

 G 
1
   (N=20)   5  1 

  Estimated crude relative risk = 1.72  
  (over-estimation)  

(continued)
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   When the determinant is positively associated with the outcome (a causative 
exposure), as in all scenarios in the Table  27.3 :
•    A systematic trend for misclassifi cation of subjects in the index level of the 

determinant (‘missed exposures’) always leads to further attenuation, except 
when those missed exposures are preferentially subjects with good prognosis  

•   A systematic trend for misclassifi cation of subjects in the reference level of the 
determinant (‘false exposures,’ not shown in table) also always leads to further 
attenuation, except when those false exposures are preferentially subjects with 
bad prognosis.    
 Conversely, when the determinant is negatively associated with the outcome 

(a protective exposure):
•    A systematic trend for misclassifi cation of subjects in the index level of the 

determinant (‘missed exposures’) always leads to further attenuation, except 
when those missed exposures are preferentially subjects with bad prognosis.  

•   A systematic trend for misclassifi cation of subjects in the reference level of the 
determinant (‘false exposures’) also leads to further attenuation, except when 
those false exposures are preferentially subjects with good prognosis.     

27.3.4     Making Judgments About Biasing Effects 
of Measurement Error 

 Sometimes one can be confi dent about the existence and direction of bias by taking 
into account the mechanisms discussed in the previous paragraphs (Textbox  27.1 ). 

 Ideally, the investigators reporting on the study would provide the necessary 
information on error rates, imprecision of observers, factors associated with systematic 

  Scenario D:  Systematic error: 20 level-1 subjects are misclassifi ed, differentially as to 
prognosis: only subjects with bad prognosis are misclassifi ed: 
 Level 1 
  (N=80)  

 G 
1
   (N=20)   5  1  7  8.75 

 B 
1
   (N=60)   10  6  (7/80) 

 Reference level 
 (N=120)  

 G 
0
   (N=80)   5  4  8  6.7 

 B 
0
   (N=20)   10  2  (8/120) 

 B 
1
   (N=20)   10  2 

  Estimated crude relative risk = 1.31  
  (under-estimation)  

    a Among subjects with the reference level of the determinant (‘unexposed’) there is variation in 
susceptibility for the outcome, arbitrarily taken to be such that 20 % of subjects (Bad prognosis 
‘B’-subjects) have, together, a risk that is twice (10 % risk) the average risk for the less susceptible 
remaining ones (5 % risk for Good prognosis ‘G’-subjects); The effect of causal exposure 
(determinant level 1) is taken to be an increase in the proportion of subjects, arbitrarily up to 80 %, 
with higher susceptibility  

Table 27.3 (continued)

Level of 
determinant, as 
classifi ed (number)

Good or bad 
prognosisa 
(number)

True 
riska (%)

New cases 
developing

Total cases 
developing

Observed 
cumulative 
incidence (%)

J. Van den Broeck et al.



531

errors, etc., to allow such intuitive judgments as in Textbox  27.1  to be supported 
with some data. In general, any fair judgment of possible over- or under-estimation 
of outcome parameters needs to be based on:
•    Information provided by investigators about measurement errors, possibly 

including results of attempts to adjust for bias or attenuation in the analysis. 
Frost and Thompson ( 2000 ) discuss methods of correcting for regression 
dilution.  

•   Knowledge about how random and systematic measurement errors tend to oper-
ate for the particular determinant or outcome at issue, and for the type of mea-
surement setting and study scenario.    
 In practice, such detailed information is often unavailable, in which case inter-

pretation cannot go beyond a careful expression of suspicion and a call to consider 
the statistics dubious. 

 When the determinant-outcome relation is studied with adjustment for other fac-
tors, measurement error in these covariates becomes an additional concern. In such 
scenarios, systematic errors in the covariates can have complex effects on the rela-
tive risk estimates that are more diffi cult to predict than in the bivariate scenarios 
discussed above. 

 This sub-section has dealt mainly with the effect of measurement error on outcome 
parameter estimates in descriptive studies, but most of it is also relevant to analytical 
studies (next sub-section).    

    Textbox 27.1 Case Scenario Illustrating How a Biased Relative Risk Estimate 
Resulted from Errors in Exposure Measurement 

 A descriptive study included newly hospitalized adult patients with hip fracture. 
The study aimed to estimate the relative risk of dying in the hospital, compar-
ing patients presenting with and without additional fractures. The outcome 
assessment can be assumed to be without error. However, there have probably 
been some errors in the assessment of the binary determinant (additional 
fractures, yes/no). First, some random imprecision from the part of the radio-
logists and from others involved in assigning exposure levels, will attenuate 
the relative risk estimate. Secondly, there may have been a systematic trend to 
misclassify patients  with  additional fractures more so than the other way 
around, in which case the relative risk estimate would be further attenuated, 
unless these missed additional fractures mainly concerned patients with good 
prognosis. In the example, it could well be the opposite, where the missed 
additional fractures were more likely to be patients with bad prognoses, which 
would even more attenuate the relative risk estimate. Thus, overall, it seems 
highly likely that in this study the relative risk estimate was attenuated; therefore, 
associations coming from this study are likely to be under- estimates of the 
true association. 
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27.3.5       Special Considerations of Internal Validity 
in Analytical Studies 

 In analytical studies, including trials, the considerations discussed above regarding 
errors in study variables apply; however, adjustments for multiple covariates are 
more often done in analytical studies because (potential) confounders need to be 
entered in the models as covariates. For the adjusted estimates to be valid and 
interpretable, the covariates need to be measured with excellent precision and 
accuracy. After data analysis, the researcher of an analytical study may be faced 
with several types of situations with respect to internal validity. Some of the com-
mon situations are:
    1.    Situation-1: The result of the study may be that, in full accordance with the study 

protocol, an ‘internally valid’ estimate has been produced and/or a null hypoth-
esis endorsed to some extent. The likelihood of the results being due to an 
unmeasured confounder or another design fl aw is considered negligible. The 
decision that bias is negligible may be partly based on whether, apart from expo-
sure of main interest, all other major determinants of the disease outcome are 
known with reasonable certainty, measured reliably, and accounted for. In many 
instances, however, that one cannot think of any major neglected confounder 
does not mean that there is none.   

   2.    Situation-2: The result of the study may be that an estimate has been produced 
with an anticipated precision and/or a hypothesis endorsed to some extent but 
some time during the study the investigators have come to the realization that 
 study design could have been substantially better  by, for example, inclusion of a 
neglected confounder or a more precise measurement method for an important 
variable. This realization may have come through maturation of thought, through 
recent availability of novel scientifi c knowledge on the topic or by external advice. 
The problem may, in the ideal case, have led to additional sensitivity analyses 
with some estimate of the possible size of the internal bias. In practice, however, 
sensitivity analyses are seldom performed and tend to be based on assumptions 
that are themselves surrounded with unquantifi ed uncertainty. Sometimes the for-
gotten or unmeasured potential confounder can be shown to be unassociated with 
the determinants. Finally, in research aimed at the detection of the existence of a 
causal link, it can sometimes be argued that the covariate, albeit not taken into 
account, would have only increased the observed effect.   

   3.    Situation-3: The result of the study may be that study design was appropriate 
and an estimate has been produced and/or a hypothesis endorsed to some 
extent, but increased uncertainty has arisen as to the level of internal validity 
because of  problems during study implementation . Many different problems 
may exist simultaneously. For example, one of the confounders has a large 
number of missing values (of which the randomness is questionable), poor 
performance of study personnel at some stage, and losses to follow up for 
unknown reasons. These problems may, in the ideal case, have led to additional 
sensitivity analyses with some estimate of the possible size of the internal bias 
and adjustments.       
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27.4     Causal Interpretation Criteria 

 In analytical studies internal validity is the main key to causal interpretation of a 
statistical association. Some researchers and critical readers find it useful to 
re- evaluate an analytical study at the interpretation stage using checklists of causal 
criteria. Historically, the most used are the Henle-Koch postulates and the Hill 
criteria. Though these criteria have major limitations in the applicability in modern 
epidemiology, they have been important facilitators of causal interpretation of 
research fi ndings. 

27.4.1      Henle-Koch Postulates 

 These criteria, known as the Henle-Koch postulates, are listed in Panel  27.2 . They 
were created to demonstrate, via a series of related studies, the effect of a single 
infectious agent on a disease. The contemporary usefulness of these criteria is lim-
ited and depends on whether, in the study at hand, the phenotypic case defi nition is 
detailed enough to specifi cally match the sub-typing of the infectious agent, pro-
vided that such a one-to-one relationship between sub-type and disease phenotype 
actually exists.   

27.4.2       Hill Criteria 

 These criteria were proposed by Austin Bradford Hill as an aid for causal interpretation 
in observational analytical studies (Hill  1965 ). An adapted version of these criteria 
(based on Glynn  1993 ) is listed in Table  27.4 , together with some caveats about 
their usage and relationship with confounding. The relevance of these criteria tends 
to increase with decreasing internal validity. If internal validity is excellent, most 
criteria lose their relevance. For example, when a study is (1) near-perfectly 
designed, (2) near-perfectly conducted, and (3) completely free from confounding, 
there is no reason why a strong association would be more likely to be causal than 
a weaker association.

   Panel 27.2 The Henle-Koch Postulates  [Rephrased]  to Demonstrate, Via a 
Series of Studies, the Causal Effect of a Pathogen on a Disease 

•     The pathogen must be shown to be present in every individual with the 
disease  

•   The pathogen must not be found in cases of other diseases  
•   The pathogen should reproduce disease in experimental animals  
•   The pathogen should be recovered from the diseased experimental animals    
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   In contrast, if considerable doubt exists regarding internal validity, there may 
be some value in looking at the strength of association. For example, imagine that 
one is convinced that all unaccounted confounders are very weak, then those 
confounders likely cannot explain a strong association, and the strong association 
will therefore more likely have a causal component. Similarly, if one is convinced 
that none of the ‘forgotten’ confounders can have a dose–response relationship 
with the outcome, then an observed dose–response relationship between study 
factor and outcome will more likely represent a causal effect. The applicability 
of most Hill criteria thus reduces to questions like: how sure are we that the 
‘forgotten’ confounders are only weak and cannot have a dose–response effect? 
Indeed, most Hill criteria have disputable and highly conditional applicability.  

27.4.3     Causal Interpretation in Ecological Studies 

 Drawing false conclusions from ecologic studies about effects of individual-level 
factors is called the ecological fallacy, also called ecological bias. Causal inference 
is possible in ecological studies, but the inference is, in principle, about group-level 

   Table 27.4    Caveats    regarding the use of ‘Hill criteria’ [ rephrased ] for causal interpretation   

 Hill criterion  Caveats 
  Strength of association  – A strong 
association is more likely to be causal than 
a weak association 

 A strong confounder can cause a strong 
association. Thus this criterion has value only in 
situations where one is sure that any forgotten 
confounders are weak 

  Dose-response relationship  – A dose–
response relationship is more likely to be 
causal than another relationship 

 A confounder with a graded effect can cause an 
apparent dose–response relationship 

  Temporality  – Cause must precede 
outcome; otherwise there cannot be a 
causal relationship 

 This is always true, but reverse causality 
( See:  Chap.   2    ) does not preclude causality. Both 
can exist simultaneously. Temporality of the 
confounders must also be taken into account 

  Consistency  – If the results are consistent 
with other fi ndings, a causal interpretation 
is more often justifi able 

 A consistent confounder can cause a consistent 
error. A fl awed study can be consistent with other 
fl awed studies 

  Specifi city  – When the association is found 
to be specifi c to one illness or one defi ned 
set of illnesses and not other illnesses, a 
causal link is more likely 

 Less relevant to chronic non-communicable 
diseases, which tend to have multiple causes, 
each of which becomes a confounder when the 
effect of one factor needs to be singled out 

  Plausibility  – If one can point to a 
plausible underlying mechanism, the 
association is more likely to be causal 

 Something plausible can be very wrong. Many 
plausible causal associations were later proven to 
be due to confounding 

  Reversibility  – Removal of the study factor 
leads to a decrease in the outcome 
occurrence 

 For those affected, reversibility depends on how 
irreversible effects are. For those not yet affected, 
reversibility depends on how important the cause 
is relative to that of other causes 
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phenomena, not about processes in individuals. Ecologic data can warrant further 
etiologic research on individual-level factors but can rarely demonstrate causality 
at that level. Only in very rare circumstances is such individual-level inference 
convincingly justifi able (Greenland  1992 ; Morgenstern  1998 ). 

   27.4.3.1  Ecological Fallacy 
 The ecological fallacy is encountered frequently in ecological studies. Perhaps the 
most frequent misinterpretation is of the type: ‘since there were better average health 
outcomes in communities where a health intervention was introduced, the intervention 
was effective in the individuals who accepted and underwent the intervention’. 
A hypothetical example of ecological fallacy is described in Textbox  27.2 . 

 The textbox shows that better average health outcome in communities where a 
health intervention was conducted may still mean that individuals who used the new 
services were worse off. Even if the outcome is more frequent or intensive in groups 
with more frequent exposure, the outcome may still be less frequent in individuals 
with the exposure.   

27.5         External Validity and Study Implications 

 With the statistics evaluated in the light of internal validity, the critical appraiser 
can proceed to further interpretation. The additional interpretations may be percep-
tions about the severity of the health problem studied or the unexpectedness and 

   Textbox 27.2 An Example of Ecological Fallacy 

 As an illustration of  ecological fallacy , consider two areas, area A with a low 
coverage of the health intervention and a high post-intervention morbidity 
rate, and a similarly sized area B with high coverage and a much lower morbidity 
rate. This might wrongly suggest that, on average, the health intervention 
benefi ted individuals who underwent it. 

 In reality, the intervention might have been benefi cial, or it might have had 
no effect at all or an adverse effect. Consider this scenario:

    Area A  (10,000 inhabitants):
•    30 % took up the intervention, n = 3,000; morbidity rate, 1,300/3,000 (43 %)  
•   70 % refused intervention, n = 7,000; morbidity rate, 700/7,000 (10 %)  
•   Total morbidity rate for area A = (1,300 + 700)/(3,000 + 7,000):  20 %      

   Area B  (10,000 inhabitants):
•    70 % took up the intervention, n = 7,000; morbidity rate, 700/7,000 (10 %)  
•   30 % refused intervention, n = 3,000; morbidity rate, 300/3,000 (10 %)  
•   Total morbidity rate for area B = (700 + 300)/(7,000 + 3,000):  10 %        

(continued)
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originality of the fi ndings. They may concern appreciations of external validity, 
namely opinions about contributions made to the overall evidence on the topic and 
to general knowledge. Finally, ideas may be formulated about how the study evi-
dence or the updated overall evidence supports certain actions to be pursued by 
investigators, the community, caregivers, or health authorities. 

27.5.1     Perceptions About Severity, Unexpectedness, 
and Originality 

 Of course, every investigator is allowed to have her/his own individual perceptions 
and emotions around study fi ndings, but these are in principle of limited interest. 
Some interest may be gained when the feelings are based on the fi ndings’ 
 discrepancy or conformity with reasonable prior expectations: there needs to be a 
reasonable point of reference as a justifi cation. For example, expressions such as 
‘ strikingly  prevalent,’ ‘ substantially  higher/lower in group A,’ or ‘ remarkably  
higher/lower in group B’ are interpretations that would better be based on some 
fact-based prior expectation. It is appropriate to explain what these expectations were 
and what they were based on. For prevalence and incidence rates, standardization 
may provide a reference base for expressions such as ‘there was  excess morbidity ’ 
or ‘ excess mortality ’. If researchers wish to interpret their own fi ndings then the 
anticipated burdens and effects should perhaps be stated in the protocol. Typically, 
contrasting results with those of similar studies (‘ originality  of fi ndings’) and, 
oppositely, comparing results convergent with those of similar studies (‘ consolida-
tion ’) are both reasons for celebrating the study’s importance in the mind of the 
investigators.  

 Textbox 27.2 (continued)

In this scenario, the total observed morbidity rate (areas pooled) is actually 
twice as high in individuals who underwent the intervention than in those who 
refused it! Indeed, the morbidity rate among individuals who took up the 
intervention was 20 % [2,000 illness cases (1,300 from area A, plus 700 from 
area B) out of a total of 10,000 who took up the intervention (3,000 from area 
A, plus 7,000 from area B)]. Among individuals who refused the intervention 
the morbidity rate was only half of that, 10 % [1,000 illness cases (700 from area 
A, plus 300 from area B) out of a total of 10,000 who refused the intervention 
(7,000 from area A, plus 3,000 of area B)]. 

 Thus, although area B had higher uptake and lower total morbidity than 
area A, a conclusion that this is evidence for effectiveness of the intervention 
would be a serious case of ecological fallacy in this scenario. 
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27.5.2     External Validity 

 According to the offi cial defi nition, external validity concerns the degree to which 
results of a study may apply, be relevant, or be generalized to populations or 
groups that did not participate in the study (Porta et al.  2008 ). This means that 
external validity is the strength of the basis for inference beyond the space and 
time constraints of the study base experience, e.g., about future circumstances and 
other geographical areas. 

 Internal validity is a fi rst condition for external validity. Informativeness is a 
second. Sample size problems may have led to an interval estimate so much wider 
than anticipated that one considers the results inconclusive or un-interpretable. The 
same judgment can sometimes be made on the basis of design fl aws and serious 
unadjusted biases. A third condition is that the overall evidence on the issue should 
be trustworthy. For a discussion of this issue, please see the publication bias section 
in Chap.   31    . Finally, the set of underlying effect modifi ers that operated in the study 
needs to be considered. To the extent that this set is quite unique, generalizing 
beyond the study population tends to become less justifi able. 

   27.5.2.1  The Erratic Path from Evidence to Knowledge 
 The way in which it became known that smoking causes lung cancer is illustrative 
of the fact that subjectivity plays an important role in the assessment of external 
validity (Vandenbroucke  1989 ). Paradigm shifts can resemble wars of thought 
rather than discoveries, and indeed there were many heated debates about the role 
of smoking in lung cancer. Thus, no researcher can expect the results of her/his 
study to provoke a scientifi c paradigm shift. There are always some colleagues who 
are more skeptical and critical than others, and some may be hard to convince even 
in the face of rather hard evidence and near-consensus. Yet, there are elements that 
make it more likely that a study will have a large impact. In addition to high internal 
validity, precision, and projected impact on care and research, numerous other factors 
tend to determine whether study results, if published, will be considered  credible , 
 interesting,  or  ground-breaking , including:
•    High prior credibility of the hypothesis  
•   Unexpectedness of the size of a point estimate (strength of association)  
•   Novelty of a causal association with very strong supporting evidence  
•   Large sample size  
•   Number of zeros in a P-value  
•   Good reputation of investigators and research institutes      

27.5.3     Support for Particular Lines of Action 

 The usefulness of an estimate tends to heavily depend on the width of the interval 
estimate. When confi dence intervals are narrow,  broad calls  for public health action 
can be justifi able given the importance of the research question. It is problematic to 
make conclusions about a strong causative effect of a risk factor (high ‘attributable 
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fraction’) in a single observational study as a justifi cation for recommending some 
 specifi c action  to combat the risk factor. Causative effects must not be considered as 
quantitatively identical to effects of removal of the cause, and protective effects 
demonstrated in observational studies should not be taken to imply guaranteed 
success of some new intervention policy. The most interesting results from 
observational studies are often good justifi cations for calls for further monitoring 
of the problem and for further research, especially intervention research. Findings 
of effi cacy trials may be a good basis for planning cost-effectiveness studies. 

  A major theme in the present chapter has been how peer reviewers and other 
readers critically appraise and interpret one’s scientifi c writings. In the next 
chapter (Chap.     28      : Scientifi c Writing) we shift the focus to the actual writing 
about one’s study and the evidence it provides.       
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    Abstract 
   The core focus of scientifi c research surrounds the achievement of new knowledge, 
a consensus line of thinking that rests on a collective body of evidence. Research-
based evidence is considered hidden or incomplete until it is made accessible to 
the relevant audience. The process of effectively communicating is an art which, 
when practiced and honed, should increase awareness of and insight into the 
scientifi c knowledge-base of public health. Chapter   30     will describe princi-
ples and guidelines for communication to a variety of stakeholders. However, 
communication to scientists specifi cally has evolved as a separate art with its 
own principles and practical conventions. The present chapter aims to provide 
an introduction to the art of scientifi c writing, the primary form of dissemination 
to other members of the research community, with practical advice for selected 
types of it.  
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28.1         Types and Purposes of Scientific Documents 
and Presentations 

 Scientifi c writing can take many forms (Table   28. 1 ). The ultimate aim of all types of 
scientifi c writing is to contribute to better health and wellbeing through the dissemi-
nation of health-relevant evidence and/or the development of theory. The scientifi c 
writing process can also contribute to a broadening of the writers’ own expertise. 
Indeed, there is an ethical responsibility incumbent upon researchers to publish 
their results, thereby enhancing their research capacity and sharing their fi ndings 
with others (Bhopal  2002 ). Indeed, many researchers have an intrinsic desire to 
further their own body of published work as a matter of career advancement and 
personal fulfi llment. Additionally, the presentation of research regularly necessitates 
travelling and networking with fellow professionals, a practice which can benefi t 
the individual and wider research community.

   Some important terms and concepts relating to scientifi c writing are listed in 
Panel  28.1 .   

       Table 28.1    Common types of scientifi c documents   

 Type 
 Essence and purpose as a method of scientifi c 
communication 

  Research proposal or 
protocol  

 Description of study rationale and design. Proposals are 
submitted for amendment or approval to collaborators, 
ethics committee and/or stakeholders. Protocols are offi cial 
version of a study proposal approved by sponsor and ethics 
committee 

  Abstract   Provides a succinct overview of object, methods and 
fi ndings of a research project or develops a fl ow of expert 
thoughts on any science-related topic, thereby enticing the 
reader to read the entire scientifi c manuscript 

  Poster   Printed document about a scientifi c topic, exhibited at a 
venue where it is meant to catch the attention and be read by 
ambulant persons with a potential interest in the topic. Often 
used by young researchers and students as an opportunity 
for discussion of their research work at scientifi c meetings 

  Oral presentation   A scientifi c presentation that orally addresses the audience 
with or without the use of supporting audiovisual material, 
often followed by a discussion with the audience 

  Original research paper   A scientifi c document that describes the evidence from a 
study i.e. the study protocol together with the fi ndings 

  Review paper   Provides a summary description and evaluation of a specifi c 
scientifi c topic, drawing upon the author’s specialized 
knowledge in the area and/or presenting methods and 
fi ndings of a meta-analysis 

  Book   A series of bound printed or assembled electronic papers on 
the broader topic refl ected in the book title 

  Dissertation or thesis   A presentation and/or document in which a series of 
arguments are developed and discussed around a scientifi c 
topic, in partial fulfi llment of the requirements of a university 
degree 
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28.2       General Principles of Scientific Writing 

 A fi rst fundamental requirement of scientifi c writing is the use of clear and accurate 
concepts and terms. Dictionaries and glossaries may be of help. For example, 
Dorland’s Illustrated Medical Dictionary ( 2011 ) is widely trusted in the clinical 
medical community. For epidemiological concepts and terms, there is a dictionary 
endorsed by the International Epidemiological Association (Porta et al.  2008 ), 
which is useful for acquainting oneself with mainstream defi nitions of concepts. 
However, like scientifi c evidence, defi nitions of concepts are topics for discussion 
in the scientifi c community and are amenable to improvement. One epidemiologist 
who has devoted an important part of his life to thinking about epidemiological 
concepts and terms is O.S. Miettinen, whose decades of work has led to his recent 
book,  Epidemiological Research: Terms and Concepts  (Miettinen  2011a ). This 
book is a useful source for any researcher concerned with concepts and the use of 
terms. We also refer to the terms and concepts of this textbook for further proposi-
tions. Note that the sources mentioned are, to date, largely non-overlapping in their 
entries, meaning that an individual may need to use multiple sources to locate the 
proper terms and concepts. Indeed, as one consults various sources of terms and 
concepts, one should carefully weigh the appropriateness of what is proposed and 
make careful decisions about what is to be propagated in one’s own writings. 

 A second requirement of scientifi c writing is that any scientifi c evidence should 
be presented according to principles of science and epidemiology. This requirement 

   Panel 28.1 Selected Terms and Concepts Relevant to Scientific Writing 

     Abstract  (An -)    Written summary of a scientifi c manuscript or publication   
   Acknowledgments  section    Section of a scientifi c publication for acknow-

ledging contributions made to the research by non-authors   
   Bibliography     List of document identifi ers, provided to endorse statements 

in a scientifi c manuscript or publication and/or as a source for further reading 
about the topic at issue   

   References list     List of document identifi ers, provided to endorse statements 
in a scientifi c manuscript or publication   

   Journal     Newspaper for scientists and/or practitioners   
   Literature     Pool of published scientifi c documents   
   Scientifi c writing     Providing a written account of methods used and evidence 

produced by specifi c research projects, or, developing written arguments 
around theoretical epidemiological issues   

   Structured abstract     An abstract whose main structure of content is visualized 
by section headers   

   Writer’s block     Psychological inhibition, often experienced by researchers, 
to write up and publish the fi ndings of a research study     
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imposes another, to present in one’s scientifi c writing details of the object design, 
method, and implementation that are relevant to the study’s validity. Results are 
important, but ‘the science is in the methods’ in the sense that scientifi c knowledge 
can emanate only from valid studies. In an attempt to guide writers of scientifi c papers 
in this respect, guidelines have been developed for the submission of scientifi c 
papers (ICMJE  2011 ). Mostly as a reaction to common deficiencies in pub-
lished papers, editors and scientifi c writing expert groups have issued guidelines 
and ‘statements’ that constitute a checklist of necessary or recommended content and 
style for use by writers of papers on specifi c types of studies. Sometimes, these 
recommendations and checklists are also formally used by journals as strict require-
ments for submitted papers. Examples of such ‘statements’ are the CONSORT 
(Consolidated Standards of Reporting Trials) statement, the QUOROM statement 
for reporting of meta-analyses of clinical trials (Moher et al.  1999 ), and the STROBE 
statement ( 2009 ) for observational studies. 

 Scientifi c writing remains an art. The style of language in scientifi c writing should 
be fl uid and easily understood. Indeed, it is essential to remember that the objective 
is to impart information to the reader. The skills include the capacity for using:
•    Clear concepts referred to by unambiguous terms  
•   Familiar lexicon when possible  
•   Logical sentence structure  
•   Clarity of expression (keep it short and to-the-point)  
•   Logical fl ow of thoughts    

  A note about tenses  
 Reference books are available (e.g.    Strunk et al.  1999 ) that describe the correct use 
of grammar and tenses. Some major points:
•    The present tense should be used to state scientifi c facts and refer to the present study; 

it is also suitable when referring to tables and fi gures (e.g., Table   28. 1  indicates that 
obesity is a major public health concern in countries in all stages of development)  

•   When referring to fi ndings from previous studies or indeed to those which are 
still continuing, the present perfect tense (e.g., a previous study has shown…) or 
past tense (e.g., a previous study showed…) are preferred  

•   When writing the Methods and Results sections, the past tense should be used. 
This tense is also used to describe both unpublished fi ndings and those that 
cannot be generalized  

•   When referring to observations that occurred before those that you mention in your 
manuscript, the past perfect tense is suitable (e.g., previous studies had shown that…)     

28.3     Preparing to Write a Paper 

28.3.1      Organizing a Writing Team 

 Most manuscripts are multi-author and evolve from collaborations among multiple 
scientists - sometimes from various disciplines. In this case, it is prudent to negotiate 
the authorship issues at the project’s outset. A key issue for review at the initial 
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stage of the process involves a clear structure regarding the functioning of the writing 
team, the aim being that potential clashes of team dynamics can be minimized. 
Commonly, the fi rst author will produce the fi rst draft of the paper, but every 
co- author should be able and willing to contribute to the manuscript’s text. Indeed, 
each contributor ought to be in a position to defend the paper publicly and answer 
any questions about it. Given the collaborative effort that may be involved, some 
members of the writing team are likely to be working on a number of projects 
concurrently, and frequently in different parts of the world. The practical conside-
rations involved in advancing with manuscript amendments should be discussed 
collectively. One should avoid engaging in guest authorship, an ethical topic of 
authorship discussed in Chap.   29    .  

28.3.2     Selecting a Journal 

 In the case of multiple authors, a unifi ed decision should be sought about this. When 
selecting a journal, the fi rst question concerns the target audience: who will be most 
interested in reading about the research (Neill  2007 )? The next questions are often 
about the following:
•     The impact of the journal  – a high impact journal is commonly preferred when the 

research question and results surpass a specifi c, non-general academic interest  
•    The scope of the journal  – new research fi ndings with potentially important 

public health or clinical implications may be best submitted to a general interest 
journal  

•    Level of access provided by the journal  – open access to the paper is increasingly 
popular, as it tends to offer more readers the chance to access your work  

•    Turn-around time of the journal’s review process  – particular journals are 
traditionally regarded as ‘slow’ or ‘fast’ in this regard  

•    Potential costs charged by the journal  – many journals charge page fees, color 
printing fees (if applicable), or optional ‘open access’ fees  

•    Journals’ directives on prior presentation of the fi ndings  – some journals preclude 
publication of work that has been previously presented in a format other than a 
conference poster.     

28.3.3     Documents Supporting Scientific Writing 

 Many journals have developed their own specifi c instructions for authors and guide-
lines for manuscript submission. It is recommended to keep at hand any instructions 
before beginning to write. Moreover, it may be of benefi t to select a number of 
recently published articles from the journal for further orientation. It is also impor-
tant to note any instructions on the word count of the manuscript, as exceeding this 
may jeopardize initial approval at the editorial stage of submission. While writing 
the manuscript, it is useful to keep a number of research-related documents close at 
hand for reference (Day and Gastel  2008 ; Toft and Jaeger  1998 ). Examples include 
the study protocol or research proposal, questionnaire, data management report, 
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analysis dataset, data dictionary, reports on fi ndings, (preliminary) analysis results, 
copies of key articles on the subject, summaries of literature review, and epidemio-
logic dictionaries or glossaries.  

28.3.4     When to Start Writing 

 When considering at what stage to begin working on the manuscript, it may be wise 
to start the fi rst draft before all the data are collected. Although a literature review 
should have been completed at the protocol design stage, it may need to be updated 
regularly. Indeed, the literature review will often provide material for the introduc-
tion section and the discussion section of the manuscript. Similarly, the study protocol 
will include details about the objects and methods and can thus be developed into 
the methods section of the paper. Finally, the protocol should include the analysis 
plan which can be helpful to structure the results section. This can also be used to 
create empty tables and fi gure axes/legends for the results section.  

28.3.5     Suggestions for Dealing with Writer’s Block 

 The phenomenon of writer’s block is widespread; particularly amongst young 
researchers whose mastery of scientifi c writing may need honing. Scientifi c writing 
is a skill that must be learned. Indeed, in an effort to contribute to the scientifi c 
knowledge-base, most will seek to develop it. There is also an impetus towards 
improving writing skills from an ethical perspective, i.e. it is imperative to respect 
the study participants by seeking to report the results based on the information 
obtained from them. Thus, combating writers block is an important aspect of epide-
miological research practice. The task ahead may appear daunting. Indeed, many 
experienced writers continuously ‘conquer the blank page.’ The perceived or actual 
importance of the writing should not lead to paralysis. There are a number of practical 
approaches to overcoming writer’s block, as further discussed in this sub-section 
(See also: Textbox  28.1 ). 

  Textbox 28.1 The Bullet Point Method of Overcoming Writer’s Block 

 A popular approach to writing that often proves successful is writing bullet 
points which will later be expanded into the full text. Thus, paper writing may 
usefully start with preparing a traditional slide presentation. This initial fl ow 
of ideas should help to create some structure. To begin, consider starting with 
the section that most appeals, and once a writing fl ow has been established, do 
not let issues of spelling and syntax accuracy slow you down. Matters of 
spelling and syntax can be addressed later in an editing phase. 
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    28.3.5.1 Writing Is a Stepped Process 
 It is advisable for any writer to create a clear program of priorities, to establish a 
vision of how to proceed, and to remain steadfast with this vision. Crucial is the 
setting of a time frame for reaching milestones in the writing. The aim is a stepped 
approach to progress. However, time scales shouldn’t equate to pressured deadlines. 
They are there only to create gently focused reminders. For fi rst drafts, it can be said 
that ‘the perfect is the enemy of the good.’ In other words, seeking perfection can 
thwart or even halt progress. The aim of the writing is to inform in the clearest, most 
accurate, and most straightforward manner, but this aim may be achieved only step- 
by-step. The process of writing may not always fl ow well once started. It usually 
entails much editing and re-writing and discussions with other members of the writing 
group. These steps represent a necessary maturation of thought that adds value and 
confi dence to the developing writer. It is pertinent to remember that 10–20 drafts 
may be required. Trying to make some progress everyday often proves useful in 
maintaining a focus and developing a momentum for progress.   

      28.3.5.2 Optimizing Writing Conditions in Conditions 
of Writer’s Block 

 Despite these trusted strategies to overcome writer’s block, there are times in many 
writers’ careers when getting started continues to be a challenge. In this situation, 
there are other options. One option is to reconsider the chosen writing environment. 
It is crucial to work in a space that is conducive to refl ection and writing. Creating 
a work area that is comfortable and quiet is essential. These elements may contribute 
to times of concentration and productivity. The time dedicated to writing ought to 
be solely for that purpose, with as few distractions or unnecessary excursions as 
possible. If writing inertia does set in, it may be wise to take a short break. Allowing 
oneself time to get away from work at certain points can provide much needed 
sustenance and relaxation, which in turn will support increased productivity and 
effi ciency later. Writing is a process that lends itself well to the stepped approach of 
small-goal accomplishment. Given the solitary nature of the work, it is important to 
create personal incentives when targets are met. Consider promising yourself a 
reward once certain milestones have been achieved. 

 Finally, it may be worthwhile to remember the wider community of scientifi c 
writers who will, no doubt, have experienced similar set-backs and challenges in 
their work. It is possible that valuable input offered from a fellow writer may instill 
a renewed energy for progress. Reaching out and making contact before paralysis 
ensues is essential.    

28.4     The Content, Format, and Style of a Research Paper 

 Conventionally, a research paper is composed of a number of sections (Hall  2008 ). 
This ordered approach has its origins in the publication of the fi rst journals less than 
350 years ago (Day and Gastel  2008 ). It has led to the development in the last 
century of the IMRAD structure (Introduction, Methods, Results and Discussion) of 
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original research papers (Hall  2008 ; Day and Gastel  2008 ). We discuss each section 
of the paper in terms of commonly stated guidelines for the content, format and 
style. But preceding the IMRAD sections, there is always a title and abstract section. 
Below we discuss these in the order in which they appear in a manuscript. 

28.4.1     Title Section 

 When choosing the title of the manuscript a number of points are worth bearing in mind.
•    The title must characterize the object and methods of the study in very broad 

terms and not announce any interpretation of the evidence produced (Miettinen 
 2011b : Up from Clinical Epidemiology & EBM, p.104)  

•   If the study was abstract scientifi c instead of particularistic ( See:  Chap.   1    ), it is 
preferable to avoid references to place and time in the title  

•   The general principle of scientifi c writing with regards to concepts and terminology 
applies to titles and the clearest and shortest way to convey the content is, in 
principle, the best  

•   The concepts and terms in the title should conform to the major concepts and 
terms in the body of the text  

•   Writers are often required to follow a traditional title style of the journal they 
submit to (Hall  2008 )    
 Most writers produce the main body of the manuscript fi rst and return to the title 

section as the last task (Toft and Jaeger  1998 ; Gregg  2008 ). A title page may need 
to comply with journal-specifi c demands for information about authors, affi liations, 
among others.  

28.4.2     Abstract Section 

 This section is meant to be a stand-alone summary of the entire manuscript, provided 
to readers for quick orientation about the evidence of the study. As per instructions 
of the journal editors it is usually required to have 200–300 words at most. This is 
sometimes the only part of the paper that is freely accessible via electronic search 
engines, so attention to informativeness is imperative (Hall  2008 ). It should be con-
sidered an independent document that can be understood separately from the main 
manuscript. A clear and concise structure is advised. References and abbreviations 
are to be avoided in the abstract section (Neill  2007 ) (Table  28.2 ).

   As to format, abstracts can be structured or unstructured, the difference being the 
addition of sub-headings in the structured format. The former is fast becoming the 
more common type (Hall  2008 ). Regardless of the format, certain information is 
nearly always expected by the journal editors: background information on the study 
rationale; the main aims and objectives; a concise description of the subjects 
enrolled and methods employed; outcome parameter estimates; and conclusion of 
the study (Baguma et al.  2010 ). The conclusions, if required, should ideally be 
restricted to a very brief repeat of the main evidence. Any interpretation of evidence 
cannot be considered essential anywhere in an original research paper (Miettinen 
 2011b    ) but is conventionally accepted and in some journals even required.  
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28.4.3     Introduction Section 

 One main purpose of this section is to outline the reasons for undertaking the study; 
i.e. to describe what new evidence was needed and why (Baguma et al.  2010 ; Hall 
 2008 ; Gregg  2008 ). This outline may start with a brief orientation about the general 
domain of interest (e.g., treatment of children with asthma) followed by some infor-
mation about the state of knowledge (including gaps) in this domain, but relevant 
to the objective of the study (e.g., the effi cacy and safety of a certain class of 
medications is well known but the relative effi cacy of a newly marketed medication 
within this class remains to be investigated). Provide a thorough, succinct descrip-
tion of the background information available and the research currently accessible 
(Woolever  1980 ). Clearly show the dearth of epidemiological research (i.e., the 
knowledge gap) that provoked your study (Neill  2007 ). Also, provide the reader 
with a clear picture of what the rest of the paper will contain (Gregg  2008 ). Most 
journals require the introduction section to have a concise format, ideally not 
exceeding two double-spaced pages in length. No study results or discussion of 
results ought to be included. 

 The second main purpose of the introduction section is to formally describe the 
general objectives and the specifi c aims of the study ( See:  Chaps.   4     and   5    ).  

28.4.4     Methods Section 

 Conventionally the methods section is required by journal editors to be approxi-
mately 3.5 double-spaced pages long and to have a clear, logical fl ow. The study 
protocol forms the basis for the methodology section of the paper, including any 
protocol amendments implemented during study implementation. The methods 
 section provides a thorough breakdown of the study design and is conventionally 
required to contain information as listed in Table  28.3 . Ideally, it should provide a 
template for a similar study to be reproduced in another setting (Neill  2007 ). The 
inherent benefi ts of writing this section before undertaking the study are apparent. 
However, it should also assure the reader that the study was conducted in a manner 
that satisfi es all principles of ethics and validity.

   Table 28.2    Conventional editorial key-content requirements for an abstract section   

  Background   Domain of the study 
 What is known about the research topic 

  Aims and objectives   The key research questions 
 The target population 
 Study area 

  Methodology   General study design 
 Sampling and enrollment scheme 
 Measurements and variables used 
 Outcome parameters 

  Results   Synopsis of the main outcome parameter statistics 
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   Table 28.3    Conventional key-content requirements of a methods section   

  Research setting   Study setting; environmental and geographical references 
and descriptions, where appropriate 

  General study design   Type of study design, e.g. randomized control trial, 
observational follow-up study, case report, survey, case 
control study etc. 

  Inclusion and exclusion 
criteria  

 Target population description 
 Planned inclusion and exclusion criteria and reasons behind 
them 

  Recruitment, sampling 
and enrolment  

 The approach to sampling, e.g. statistical versus 
non-statistical 
 Who carried out both procedures; how and where they were 
undertaken 
 Details relating to the enrolment period 

  Interventions   Types, intensity, duration of any planned interventions and 
how they differ among intervention groups 

  Measurements 
and variables  

 Measurements, measurement scales, measurement instruments, 
measurement sessions, timing in individual follow-up 
 Who conducted the measurement procedures; training and 
supervision methods 
 Outcome variables, determinants, modifi ers, confounders 
 For follow-up studies, mention the possible end-points of 
individual follow-up 

  Quality assurance 
including quality 
control  

 Methods to maximize validity and integrity of the data 
 For trials: good clinical practice guidelines, standard 
operating procedures; adherence optimization and 
measurement plan 
 Performance statistics planned; data quality expectations; 
data quality statistics planned 

  Data handling   Database and data entry system 
 Database management procedures, including the data 
cleaning process 
 Variables in the database 

  Sample size and/or power 
calculation  

 Motivation for chosen target size 
 Anticipated refusal and dropout rates and missing value rates 
 Anticipation of level of precision of estimates 

  Analysis plan   Statistical software package used 
 The general analysis approach undertaken, i.e. estimation 
and/or testing, intention-to-treat 
 The choice of statistical measures (e.g. causal rate ratios, 
prevalence ratios and confi dence intervals) and summary 
statistics (e.g. chi-square and p-value) 
 In the case of analytical studies state the methods used to 
control for confounding during analysis 

  Ethical aspects   Institutions and committees that provided ethical approval, 
oversight and support 
 Relationships with important stakeholders 
 Details about the informed consent process 
 Dispositions for ensuring participant confi dentiality and 
privacy 
 Guidelines in place to ensure participant safety and the 
provision of medical care during the study 
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28.4.5        Results Section 

 Most contemporary medical journals expect the results section of a submitted manu-
script to be 1.5–2.5 double-spaced pages in length. The primary aim of this part of 
the manuscript is to succinctly and objectively describe study sample characteristics, 
protocol adherence information, and statistical evidence of the study (Neill  2007 ; 
Hall  2008 ). Generally, the format involves the use of tables, fi gures, and text con-
taining statistical outcomes. It is important to maintain a logical sequence that 
directly addresses the aims and objectives posed in the introduction section. Much 
thought should be given to the presentation of the data, particularly if it is intricate 
and detailed. A moot point also pertains to the difference between data and results. 
The data refers to information, including statistics, based on the measurements under-
taken. The results are the interpretation of this information (Hall  2008 ). This subtle 
difference becomes an important detail when writing this section. A common 
approach involves outlining the descriptive statistics of the study, thereby providing 
the reader with a basis from which to understand the analytical results presented 
later (Gregg  2008 ). 

 Consider the use of tables and fi gures for displaying the main fi ndings (Table  28.4 ). 
These can then be interpreted in the text. Ordinarily, fi gures show trends in the data 
or diffe rences in the distributions.

28.4.6        Discussion Section 

 This section of the manuscript should emphasise the most pertinent fi ndings of the 
study by outlining the most important evidence clearly for the reader (Gregg  2008 ). 
Most journals expect a maximum of 2.5 double-spaced pages in the submitted 
manuscript and the following content. 

   Table 28.4    Conventional practice guidelines for presenting data in tables and fi gures in journal 
articles   

  Tables and fi gures   The maximum number of tables and fi gures is usually 5 
 Ensure that numbers and percentages add up correctly 
 Table titles should be placed above the table 
 Figure titles are placed below the fi gure 
 Table rows represent categories, columns statistical results for those 
categories 

  Numerical data 
notation  

 Use a zero before a decimal point e.g. 0.5 not .5 
 Present P-values correctly and with preferably two non-zero digits 
after the initial zeros e.g. P = 0.0036 
 Avoid unnecessary precision, e.g. use one decimal place for 
percentages e.g. 66.7 %, not 66.66 % 
 Place a space between a number and its unit of measurement 
 Spell out a number at the beginning of a sentence 
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 One of the fi rst paragraphs of the discussion should outline the primary results of 
the study, stating clearly and unambiguously what the direct interpretations of the 
main statistical results are. The next paragraph could refer to the main strengths and 
weaknesses of the study. An honest and objective approach here is most suitable and 
will lend merit and value to the overall impression of the study and the investigators 
(Lilleyman  1995 ; Gregg  2008 ). If any noteworthy challenges were encountered at 
any stage of the study it is important to draw attention to them again. The most 
favorable outcome would entail an honest outline of the limitations without placing 
too much emphasis on them. The same is true of the strengths of the study; it is 
important to mention strengths yet not focus on them excessively. It is wise to 
remain succinct and modest in one’s interpretations. Reference can be made to the 
possible wider implications of the study results within the scientifi c community. 
It may be possible to foresee how the fi ndings will augment the current 
knowledge- base on the topic. Furthermore, potential improvements that might add 
value to a future study can be mentioned. Writers should defer to the individual 
journal’s instructions with regard to the inclusion of a paragraph dedicated to 
summarizing conclusions, as it is sometimes included and sometimes not (Baguma 
et al.  2010 ) (Table  28.5 ).

28.4.7        Acknowledgements 

 The journal instructions should be consulted for guidance about this section of the 
manuscript though it is customary to mention the source of funding for the project 
and any confl ict of interests for the writing team (Hall  2008 ). It is also good practice 
to recognize the efforts of those who assisted with the project.  See:  Chap.   31     for a 
discussion of ethical aspects of this section.  

   Table 28.5    Discussion section content commonly required by journal editors   

  Principle result   Highlight the most signifi cant result from the study 
  Appraisal of the study   Mention the strengths and weaknesses of the study 

 Detail potential sources of bias, confounding and random 
error 

  Major challenges encountered   Outline any problems encountered during the 
implementations of the study 

  Interpretation of results   Evaluate the results of the study, allowing for clear 
interpretation by the reader 

  Recommendations   Describe the potential public health implications of the 
study results 
 Explain any suggestions for improvements to potential 
future study 

  Conclusion   Summarize the main scientifi c results of the study 
 Outline again the main recommendation(s) 
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28.4.8     References List 

 The references section of a manuscript requires strict adherence to the journal’s 
specifi cations (Woolever  1980 ). It is convenient to have established the chosen 
format at the beginning of the writing process. The references are an on-going 
element of the work that should be rigorously managed throughout the writing 
process (Hall  2008 ). In essence, they serve as a scientifi c basis for the undertaking. 
Many writers fi le hard copies of their referenced papers while also taking advantage 
of reference management software, some of the most popular ones being EndNote 
(Reuters  2011 ) and Reference Manager ( 2012 ).   

28.5     The Oral Scientific Presentation 

 Part of the remit of adding to the existing scientifi c knowledge-base involves oral 
presentations of the results to the target audience. While the skills necessary to 
successfully deliver the results of a study orally are quite different to those of writing 
the manuscript, the objective is the same: to impart new information to the audience 
in a clear, concise, and informative manner. In this section we offer some suggestions 
for young researchers who are unfamiliar with oral scientifi c presentations (e.g., at 
medical conferences). 

28.5.1     Preparations for Oral Presentations 

 One of the fi rst considerations involves knowing your audience (Gregg  2008 ). This 
will have a signifi cant effect on the preparation and style of the presentation. 
Communicating the results to a lay audience will involve a very different approach 
and technique compared to delivering it to an audience of one’s peers in the scientifi c 
conference format. In the case of delivery to a professional audience, it is wise to be 
aware of the research backgrounds and domains of the majority of those attending. 
Regardless of the composition of the audience, a large degree of fl exibility may be 
required to adapt to the needs of those present. 

 Another similarity between the preparation of the presentation and writing the 
manuscript concerns the preparatory phase. It is likely that each will take signifi -
cantly more time and re-drafting than is fi rst anticipated. For this reason, it is wise 
to allow suffi cient time to prepare the content, including time to rehearse the delivery 
(Thompson et al.  1987 ; Alley  1996 ). It is possible that older presentations could be 
altered and updated to merge with the new results being presented. However, if this 
is the case, it is vital to invigorate the presentation with a new and relevant approach; 
it is never worth tarnishing one’s reputation in a misguided effort to save time. This 
is especially relevant in the case of collaboration. Co-authors should have the oppor-
tunity to review the presentation and provide feedback (Gregg  2008 ). Take note of 
possible questions that colleagues ask. Preparing carefully at this point may help to 
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create a more confi dent and poised approach during the presentation and particularly 
at question time. At this point, it is worthwhile preparing for expected questions. 
It appears that certain questions are commonly asked. For example, audience 
members are often interested to discover if you have conducted a broad, inclusive 
analysis. They may also enquire if you have examined the data in terms of sub-
group analysis or if you have considered other outcomes or exposures. As a result, 
it may be wise to prepare a response in advance. 

 When choosing to use slides for your presentation (Textbox  28.2 ), it is important 
to be discerning about the number to include. This will be determined by the time 
assigned to present. As a rough rule, one slide will take approximately 1 min to 
deliver. Time should also be allocated for questions from the audience. 

 When designing the slides, most presenters will adhere to the format of the 
scientifi c paper, i.e., Title, Background, Objectives, Methodology, Results, and 
Conclusions. It is wise to maintain a consistent typesetting style, i.e., retain the 
same bullets and numbering and sub-level fonts throughout. Another common 
approach followed in the design of the presentation involves the ‘Rule of 7.’ This 
refers to limiting the number of lines on each slide to 7 (excluding the title), with the 
aim of maintaining an orderly and easily understood presentation. When preparing 
the slides it is best to avoid the use of red or pale-colored fonts, as these may be 
diffi cult to read. 

 The process of being selected to present your work begins with producing an 
impressive and comprehensive abstract. It should follow a structured format that 
includes a clear hypothesis and new and complete results. Statistical estimation data 
should be presented using confi dence intervals.   

28.5.2       Avoiding Presentation Pitfalls 

 During the actual delivery of the presentation there are a number of pointers to be 
aware of in order to perform to your best standard. Clearly, a degree of uncertainty 

  Textbox 28.2 Potential Advantages of Using Slides During an Oral Presentation 

 The vast majority of scientifi c presentations today include the use of 
PowerPoint  slides  or the equivalent from another presentation software 
program. This method of delivery has become the norm today with many 
obvious advantages. The inclusion of relevant charts, tables, or graphs can 
enliven the talk and keep the audience engaged and interested (Gregg  2008 ). 
Indeed, the use of slides may even be necessary if the presentation relies heavily 
on data and statistics. After all, the purpose of the talk is to impart the fi ndings 
to the audience in a clear and interesting way. Furthermore, the use of slides 
can provide a focal point and guide for both the presenter and the audience. 
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exists but it will pay dividends to be well prepared. In terms of the presentation 
software, ensure that you take the most up-to-date version to the venue. Being 
organized in this regard is essential. It is also worthwhile doing the following:
•    To download the fi le containing your presentation  
•   To arrive at the venue ahead of schedule to become familiar with the room 

allocated for the presentation  
•   To introduce yourself to the chairperson of your session, as this may be an oppor-

tunity to develop a rapport with him or her, and it may offer a moment to 
discretely suggest an interesting question after your presentation  

•   To become familiar with the stage and podium, and to locate the microphone, 
pointer, USB plug, and screen  

•   To practice using the microphone if one is available  
•   To ensure that a glass of water will be available during the lecture, should you 

need it  
•   When possible, to have a practice session at this time and become comfortable 

on stage, taking note of the correct distance to maintain from the microphone in 
order to project your voice most successfully throughout the room    
 For the actual presentation, it is important to take time at the beginning to intro-

duce yourself and the lecture. It is essential not to rush over the slides but to clearly 
explain the material presented. This can be a challenge for those inexperienced in 
presenting and will be greatly improved by performing many practice sessions of 
the lecture in advance. Be mindful of the time assigned to your presentation and be 
careful to adhere to this schedule during the practice sessions. Also remember that 
written material (handouts) can be used as an aid for delivery. Allow yourself to 
breathe and try to maintain as calm an approach as possible. After all, the focus of 
the presentation ought to be on the material being presented. It may allay nerves to 
imagine oneself merely as the conductor of the information to the audience. A steady 
and centered style should help to achieve this. It is worthwhile incorporating a joke 
occasionally if this is an approach that works for you. However, try to maintain a 
presence that is natural to you. Remember to smile. This will create an appearance 
that you are comfortable. On this point, remember to dress comfortably for the 
presentation; remain true to your own sense of style while dressing appropriately for 
the occasion (Gregg  2008 ; Alley  1996 ). 

 Throughout the lecture, remember to address the audience regularly, paying 
attention to the whole room (Gregg  2008 ). It may help to use a pointer to concentrate 
attention on specifi c detailed information. If you intend to include any controversial 
statements it is important to be in a strong position to defend them should you be 
challenged by the audience. On this point, it will be of benefi t to attempt to sense the 
reactions of the audience during the talk and adjust the style and speed of delivery 
accordingly. It is invaluable to develop an affi nity for your audience and try to 
remain aware of the atmosphere in the room. Once you have concluded the lecture, 
take time to thank your audience for their attention (Gregg  2008 ). Take a moment to 
compose yourself with a drink of water if necessary. Remain poised and centered 
for the questions that will follow. Before alighting from the podium, remember to 
take off the microphone.  
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28.5.3     Dealing with Questions 

 If you are a novice presenter and very uncomfortable with the idea of having to 
answer questions, consider extending the lecture by 1 or 2 min beyond the time limit 
in order to restrict the available time for questions. At this point, the preparation 
undertaken earlier will hopefully benefi t you now. You should largely be in a 
position of composure, safe in the knowledge that you are totally familiar with 
the content of your lecture and may have already examined potential questions. 
If, however, you don’t quite understand a question or don’t know the answer at all, 
fi rstly ask for the question to be repeated. This allows you a moment to gather your 
thoughts. If you are still unclear about the answer, it is best to admit this and thank 
the audience member for their question (Gregg  2008 ). It is also important to commit 
to investigating the answer at a later date. Should it happen that the person persists 
in engaging in further discussion, suggest that you meet with them individually later 
and discuss the issue in more detail. If this fails to quell their enthusiasm, consider 
referring them to another member of your team. 

  In this chapter we discussed aspects of content and style of delivery in scientifi c 
papers and presentations. An aspect of content that we wish to expand upon 
further is reporting of data quality because it is crucial for the demonstration 
of internal validity. This topic is the subject of the next chapter.       
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Abstract
This chapter offers practical advice for investigators on how to report the quality 
of their own data in scientific papers. The proposed guidelines are based on an 
analysis of the concept of aggregate data quality. We first clarify the multidimen-
sional concept of aggregate data quality and then proceed by deriving principles 
and practical recommendations for reporting data quality. When describing data 
quality, one may need to consider study-specific and variable-specific factors that 
influence data quality requirements. In this chapter we argue that reporting on data 
quality should be more comprehensive than currently accepted practices. Among 
the array of useful data quality parameters, we selected digit preference and intra- 
and inter-observer reliability statistics for more in depth discussion. Finally, we 
discuss the quality of laboratory data, an issue that deserves separate reporting.
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It is the mark of an instructed mind to rest assured with that 
degree of precision that the nature of the subject admits.

Aristotle
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29.1	 �Aggregate Data Quality

‘Data quality’ is commonly understood to be a characteristic of a single data point, 
variable, or dataset used for analysis. It is a multidimensional concept. The multiple 
quality aspects include the data’s accuracy, completeness, and ethics of collection, 
confidentiality, and assignment to particular measurements of particular observation 
units.

Data quality can also be considered at a further level of aggregation of the data. Data 
points and variables undergo processing, including summarization into a final statisti-
cal estimate or P value. These statistics are the most condensed and aggregated forms 
of the data. With ‘aggregate data quality’ (Panel 29.1) we mean the quality of these 
final statistical estimates and P values. Aggregate data quality is also a multidimen-
sional concept. At this level, the main quality aspects are unbiasedness, ethicality, and 
verifiability of all underlying data collection, handling and analysis, and precision.

Serious flaws in design or violations of ethical principles before, during, or after 
data collection tend to reduce aggregate data quality towards zero. Minor design 
weaknesses or occasional sub-optimal behavior may or may not affect data quality. 
For example, if the informed consent process was carried out a bit hastily with one 
or two out of a hundred subjects, one may consider this to be a regrettable violation 
of ethical principles but not necessarily a serious enough infraction to completely 
devalue the study’s data quality. Indeed, data quality can never be perfect (DeMets 
1997). All aspects of aggregate data must reach a level of quality that is acceptable 
for the particular study. Aggregate data quality cannot be better than the worst-
scoring dimension in a given study or analysis.

The most efficient and often the only way to ascertain aggregate data quality is to 
assess protocol compliance and the quality of all the data-related processes that have 
led up to the final aggregate data. Appropriate study design is a pre-condition.

The aggregate quality of a study’s data is deeply connected to the methods used 
to collect the data; a complex network of interactions among investigators, techni-
cians, and subjects; and the numerous data management activities that lead to study 
analysis. Thus, the assessment and reporting of aggregate data quality heavily rests 
on assessments of data integrity and performance indicators during data collection, 
management, and analysis. At every step, the study is susceptible to factors that 
could potentially reduce the quality of the data, and it is therefore critical to monitor 
for indicators of poor data quality.

Panel 29.1  Selected Terms and Concepts Relevant to Reporting of Data Quality

Data quality  A characteristic of (the set of) data points used for analysis 
that takes account of the data points’ accuracy, completeness, ethicality of 
collection, confidentiality, and their assignment to particular measurements 
of particular observation units

(continued)
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29.2	 �Principles of Reporting Data Quality

29.2.1	 �Specification of Data Quality Expectations

A first important principle is that one needs to report on the extent to which data 
quality expectations and requirements were met. These expectations are study-
specific and variable-specific to an important extent but there are also some general 
requirements for quality of data on study variables, which will be discussed sepa-
rately for outcome variables and for determinant variables and covariates.

For any given study, it is useful to specify in the study proposal and protocol 
one’s expectations regarding data quality and the methods that will be used to assess 
it. These expectations may have been formulated as quantitative thresholds, e.g., 
“an error rate in variable x, as assessed by database-to-source document comparison, 
of less than 1 % will be deemed acceptable.” Alternatively, prior expectations may 
be described qualitatively, e.g., “Technical Errors of Measurement and Kappa 
statistics of observers should approach those of their trainers and supervisors.” 

Aggregate data quality  A characteristic of statistical estimates and P values 
that takes account of their unbiasedness, ethicality of underlying data 
collection/handling, verifiability and precision

Data quality report  Written account of which quality assurance and quality 
control activities were carried out as well as of values for data quality 
statistics

Data quality statistics  Measures summarizing quantifiable aspects of data 
quality

Digit preference  Tendency to record numerical values containing specific 
digits at an unexpectedly high frequency

Efficiency  The reciprocal of the resources spent to achieve a defined goal
Inter-observer reliability statistics  Data quality statistics expressing the 

degree to which the observers in a study, when replicating each other’s 
measurements with an accurate instrument, tend to obtain values that are 
close to each other

Intra-observer reliability statistics  Data quality statistics expressing the 
degree to which the observers in a study, when replicating their own 
measurements with an accurate instrument, tend to obtain values that are 
close to each other

Unbiasedness  Characteristic of an empirical estimate of an outcome statistic, 
namely its closeness to the true population value

Panel 29.1  (continued)
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Other expectations may concern the number and gravity of protocol violations and 
estimations of the effects of misclassification and other sources of bias. Typically, 
prior expectations need to be adapted to the general study design and the type of 
study variables being considered.

�29.2.1.1 Quality Requirements of Data on Outcomes
When a study aims to estimate the size of an exposure effect on a binary outcome 
event (rather than just the existence of an effect), specificity and sensitivity of out-
come detection are important considerations. Perfect specificity of outcome detec-
tion is desired (no false positive cases) (Miettinen 1985) because any decreases in 
specificity will tend to invalidate effect estimates. Moreover, the sensitivity of out-
come detection must be similar across levels of exposure and modifiers of interest 
because unequal sensitivity across these levels may lead to bias. If the sensitivity of 
detection across levels are equal, then the relative risk estimate will be unbiased. 
However, if the purpose of the study is not only to estimate a rate ratio or rate 
difference but also to estimate absolute rates of the outcome, then both specificity 
and sensitivity of outcome detection must be very high. In other words, there must 
be very few false positives and very few false negatives.

When the outcome is not a binary event but a continuous characteristic such as 
systolic blood pressure, the average bias in its measurement must be the same over 
levels of the exposure of interest in order to obtain valid mean differences. For 
example, the estimated mean difference in systolic blood pressure between exposed 
and unexposed remains unbiased if systolic blood pressure was measured with an 
average bias of −5 mmHg in both groups.

When the study aims only to detect the existence of an exposure effect (but not 
the size of it), the requirement is that any misclassification of a binary outcome or, 
alternatively, any average bias in a continuous outcome measurement must be similar 
over levels of the exposure and the modifiers. Improved measurement precision 
of a continuous outcome measurement increases the efficiency of detecting the 
exposure effect, but perfect measurement precision is not needed.

�29.2.1.2 Quality Requirements of Determinants and Covariates
When a case–control approach is used, exposure histories need to be assessed with 
similar quality and in the same way among cases and controls. To ensure valid infer-
ence, confounders should be measured without error. Imprecision in continuous 
exposure measurements attenuates rate ratio estimates (regression dilution, See: 
Chap. 27). For corrections, the degree of imprecision should be documented.

The exact way of reporting quality of study variables depends on which of the 
above scenarios and requirements are applicable, but often there will be a need to:
• Provide evidence on misclassification or average bias of the outcome measurement 

overall and by levels of the determinant and modifiers
• Calculate reproducibility statistics for the exposure of interest (this is done sepa-

rately for cases and controls in a case–control approach)
• Document high accuracy and precision of measurements of all variables included 

in the statistical model (including confounders)
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29.2.2	 �Reporting of Data Quality in Research Papers

When reporting on data quality in a research paper, it is good to consider:
• Reporting the a priori quality expectations of key variables
• Describing minor design flaws (and adjustments made to counteract said flaw) 

and minor violations of ethical principles before data collection
• Describing the frequency and severity of deviances in the execution of data-

related study processes (at all stages and regarding all quality assessments)
• Reporting oddities in the end results of data-related processes (at all stages)
• Reporting whether encountered problems were successfully amended
• Providing arguments about whether any remaining problems are compatible 

with what was considered to be an acceptable level of quality (defined a priori)
Unfortunately, in many scientific publications there is insufficient information 

regarding protocol compliance and data-related processes. This precludes readers 
from interpreting the quality of the data being reported in scientific papers. 
Moreover, the widespread practice of scarce reporting on data quality precludes any 
judgment as to whether the non-reporting was in any way influenced by a desire to 
hide the poor quality of data. A practice of comprehensive and honest reporting 
allows one to avoid violating ethical principles and safeguards against accusations 
of misconduct. Reputations have been ruined over data quality concerns. If none of 
these or other issues arose during the study (a rare scenario), then the authors should 
include a statement to that effect. It is worth noting that the most impressive research 
papers do not shy away from reporting data quality metrics and one may earn the 
reputation as an astute epidemiologist should data quality issues be flagged appro-
priately. Online publications nowadays may allow for the attachment of appendices 
that report data quality in greater detail.

29.3	 �Practical Advice for Describing Total Data Quality

When there are serious ethical or scientific flaws, the study will not usually come to 
the publication stage, unless in instances when investigators and reviewers/editors 
are unaware of the problem. Serious lack of data quality is thus never reported in 
research papers by the investigators themselves. Concerning early stages of a study 
(before data is collected), investigators must report what they see as minor quality 
problems, such as minor design flaws, slight validity problems of chosen measures, 
or indications of selection bias. The challenges in reporting are (1) to be exhaustive 
about those weaknesses and (2) to provide fair arguments in support of the (implied) 
view that their effect on overall data quality is indeed minor. The latter may involve 
arguments that appropriate and effective measures were taken to turn an expected 
medium-to-large negative effect on quality into a minor one, for example by adjust-
ments during analysis.

Concerning data-related study stages, the challenge in reporting is to depict process 
quality at all stages, paying equal attention to ethical and scientific dimensions of 
quality. Maximal use can be made of performance statistics produced during quality 
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control and data cleaning (See: Chaps. 11, 19, 20 and 21). Table  29. 1 is a checklist 
of reportable process features and metadata, not all of which will be available in all 
studies.

Data quality reports should focus as much as possible on the processes that con-
cern important study variables. When the study has a long data collection period 
attention should be paid to temporal comparability of data and data quality (Cull 
et al. 1997).

Data quality can be monitored and assessed during or after data collection using 
internal and external validation studies (See: Textbox 29.1). Internal validation 
studies may focus on the completeness of data collection, the presence of data 
errors, the precision of laboratory tests, or other factors. External validation studies 
usually include the determination of sensitivity and specificity in comparison to a 
gold-standard or the comparison of descriptive statistics against a known reference 
population. When planning a study, it is recommended to incorporate validation 
tools where possible and perhaps even to include sub-studies aimed at addressing 
potential concerns about validity.

Investigators reporting on the quality of their own data should be mindful of the fact 
that objectivity may be endangered and that one may consciously or subconsciously 

Table 29.1  Describing data quality of a well-designed study

Category Data quality parameters
Execution of data-related 
processes

Omissions in quality assurance and quality control
Attention paid to data quality by clinical monitors, data and 
safety monitoring board, and other oversight bodies
Intra- and inter-observer reliability statistics (See: text)
Percentages of re-measuring using the method of maximum 
allowable differences between independent replicate 
measurement values
Qualitative evaluations of the execution of procedures 
(outcomes of supervision activities; instances of deviances)
Query rates (frequency with which data managers come across 
errors or matters that need clarification)
Minor instances of data manipulation or falsification that were 
corrected
Changes made to initial data plans (with reasons)
Number of a posteriori exclusions from analysis (with reasons)
Results of validation studies
Existence of data dictionary and audit trail

Oddities in the end results  
of data-related processes

Item non-response rates and estimations of their biasing 
potential
Rates and types of unresolved or true outliers (See: Chap. 20)
Terminal digit preference statistics (See: text)
Preferences for questionnaire answers located at the top or 
bottom of the list
Error rates in database-to-source document comparisons
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Textbox 29.1  Confidence Codes

When accessing a database, one should identify whether confidence codes 
exist for the values being studied. Some questionnaires or structured inter-
views permit the subject or interviewer to indicate their level of confidence in 
a value. If designing a new study, including confidence codes can greatly 
facilitate improving the overall data quality. There is no universally accepted 
confidence code system; however, the following system proposed by Bhagwat 
et al. (2009) is reasonable for most purposes. One might, for example, exclude 
from analysis any measurements with a confidence code of C or D.

Confidence code Meaning
A or 4 The user can have considerable confidence in this value
B or 3 The user can have confidence in this value; however, some 

problems exist regarding the data on which the value is based
C or 2 The user can have less confidence in this value due to limited 

quantity and/or quality of data
D or 1 There are significant problems with this value related to limited 

quantity and/or quality of data
This table is a modified and reproduced, with permission of the authors, from Bhagwat 
et al., 2009

attempt to distort information on data quality in service of obtaining a perceived 
higher impact article (Cope and Allison 2010). One might also have other personal 
motivations, perhaps enhanced by external forces that interfere with objectivity 
and good data quality reporting practices. The opposite may be bias created by a 
drive to take on a crusader role. Maintaining an acceptable degree of objectivity 
during a research career occasionally requires examination of one’s own motiva-
tions and their potential impact on objectivity. It is most useful to do this right 
before starting to self-report data quality.

29.4	 �Digit Preference and its Reporting

Digit preference – a common phenomenon in epidemiological research – is the ten-
dency to record numerical values containing specific digits at an unexpectedly high 
frequency. Most commonly involved are terminal digits (also called ‘last digits’ or 
‘end-digits’), especially 0, 5, and even numbers (Altman 1991). Less commonly, 
there is an excess of terminal digits adjacent to 0 or 5 or to a combination of two or 
more numbers. Particular combinations of pre-terminal and terminal digits may also 
be preferentially reported, as is the case with reported birth weight (Edouard and 
Senthilselvan 1997).
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29.4.1	 �Processes Leading to Digit Preference

There are at least four common processes leading to digit preference (Table 29.2):
	1.	 Approximation: Approximate reading of instrument scales

The characteristics of the scale, especially its graduations and readability, may influ-
ence digit preference. The measurer may round to the nearest big graduation mark or 
use a similar strategy to approximate a measurement value rather than obtaining a 
careful measurement. This issue is more likely to be problematic if the measurement 
workload is so high that staff must rush in order to meet specified deadlines. Digital 
measurement scales tend to produce less digit preference than analog scales and may 
be a useful element employed to increase the chances that collected data will be of 
high quality (See: Panel 29.2 for additional strategies to reduce digit preference).

	2.	 Range preference: Conscious or unconscious preferences for or against certain 
ranges of measurement values on a numerical scale
This may lead to measurement bias in the immediate zone of a threshold value 
(e.g., whether or not the subject has hypertensive blood pressure) and tends to do 
so in a specific direction. The effect is to avoid or promote measurement values 
that reach the threshold level.

	3.	 Value preference: Conscious or unconscious preferences for or against certain 
specific values on a numerical scale
When the conscious or unconscious concern is not an undesired range/zone on 
the numerical scale but specific values only, this may translate into a simple trend 
to avoid specific values and to select preferentially an adjacent value. Conversely, 
specific values may seem preferable, leading to the avoidance of adjacent values. 
Ironically, measurers may deliberately choose to avoid zero end-digits out of a 
concern to avoid digit preference.

	4.	 Retrieval error: Approximation of a numerical value when the exact value cannot 
be remembered or would be cumbersome to retrieve
In this scenario, the measurer tends to select a value at the mid-point between 
major scale marks.

Table  29.2  The four major processes leading to digit preference and examples of common 
measurements susceptible to these processes

Process Common measurements susceptible to digit preference
Approximation Height

Circumferences (arm, head, waist, etc.)
Skin-fold thickness
Blood pressure
Pulse
Tuberculin skin test

Range preference Diagnostic cut-offs (includes any measurement that the measurer  
could use to infer the diagnostic category for the subject)

Value preference Any direct numerical measurement
Retrieval error Dates

Times
Biological measurements
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Panel 29.2  What Can Be Done to Prevent or Amend Digit Preference?

• Selection of attentive and motivated observers
• Choice of measurement instruments with digital display
• Intensive training of observers
• Measurement standardization (See: Chap. 10)
• Intensive quality control (See: Chap. 11)
• If digit preference is detected in a study, then adjustments may be possible 

to partially correct the problem during data analysis (Eilers and Borgdorff 
2004)

29.4.2	 �Digit Preference and Data Quality

Digit preference can cause bias and imprecision, both of which adversely affect data 
quality. Digit preference has led to erroneous estimations of prevalence, determinants 
of disease, and outcomes, as was shown by Eilers and Borgdorff (2004); Burnier 
and Gasser (2008); and Hessel (1986). Due to the relatedness of digit preference 
and observer reliability, digit preference is sometimes reported in descriptions of 
data quality. Some researchers have suggested using digit preference as a measure 
of quality control (Li and Wang 2005) or a marker of observer reliability.

�29.4.2.1 �The Relationship Between Digit Preference  
and Observer Reliability

Digit preference often involves settling for a less than optimal accuracy (Tourangeau 
et al. 2000), a problem that tends to occur when the accuracy of recorded measure-
ment values requires mental effort by the observer (e.g., reading from an analog 
scale) or by the measured subject (e.g., answering a difficult question). The mental 
effort required to perform a measurement sometimes depends on the subject’s will-
ingness to collaborate during the measurement process. With ‘difficult subjects,’ 
such as an infant who is fearful of the measurer, more effort is needed to get an 
accurate reading, and digit preference may become more likely. An experienced 
observer should be able to minimize the impact of difficult subjects on the measure-
ment quality; however, even the most experienced, disciplined observers are liable 
to digit preference if fatigued, over-worked, and pressured for time, inattentive, or 
distracted. These factors are known to contribute to observer reliability in general. 
Digit preference tends to be more common in secondary than in primary data.

29.4.3	 �Analysis of Digit Preference

Digit preference can be analyzed using a Chi-square goodness of fit test (Snedecor 
and Cochran 1980). In its simplest form, a Chi-square test has one Degree of 
Freedom (See: Table 29.3), but if a researcher is testing for terminal digit preference 
for each integer from 0 to 9, there will of course be nine Degrees of Freedom.  
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The level of significance is typically set at 5 %, although one should always anticipate 
whether multiple testing calls for lowering the level of significance. Care should be 
taken in determining the expected terminal digit frequencies (Crawford et al. 2002).

A significant Chi-square test would raise suspicion of imprecise measurements 
and poor observer reproducibility, but concluding one way or the other requires 
confirmation from other performance statistics, such as Technical Errors of 
Measurement of the observers involved. Although a non-significant Chi-square test 
supports a conclusion that there is an apparent absence of digit preference, it is 
uninformative about observer reproducibility (See: Sect.  29.5, Intra- and Inter-
observer Reliability Statistics).

29.4.4	 �Reporting Digit Preference

A study protocol may explicitly state a priori that observers measuring on a numerical 
scale will be trained to a level such that no digit preference is apparent. Another 
explicit expectation may be that implementing quality control protocols will minimize 
digit preference during data collection. These expectations should and digit prefer-
ence analyses should be reported along with an interpretation about the successes of 
these strategies for individual observers (e.g., digit preference was not apparent in 8 of 
9 observers) and for the entire database, with all observers pooled. In reporting the 
analyses of digit preference, one should report the observed and expected frequencies, 
the P-value, and the Chi-square statistic. The latter can serve as a rough measure of the 
degree of digit preference. One should further report about possible biases resulting 
from apparent digit preference and how this issue was dealt with during data analysis 
(Edouard and Senthilselvan 1997; Eilers and Borgdorff 2004).

29.5	 �Intra- and Inter-observer Reliability Statistics as Measures 
of Data Quality

In reporting on data quality, frequent use is made of intra- and inter-observer 
reliability statistics. Intra-observer reliability is high when an individual observer is 
able to reproduce measurement values of the same object over time (e.g., an observer’s 
three independent measurements of a subject’s waist circumference are nearly 
identical). Inter-observer reliability is high when there is agreement among 
multiple observers at any given time (e.g., five observers independently measure the 
waist circumference of one subject and obtain similar results). For both intra- and 

Table 29.3  Example of a cross-tabulation for a simple analysis 
of terminal digit preference (degrees of freedom = 1)

Terminal digit: Expected (%) Observed (%)
0 or 5 20 __
Other digits 80 __
(1, 2, 3, 4, 6, 7, 8 0r 9)
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inter-observer reliability, it is assumed that the same measurement technique is used 
for each independent measurement and by each observer.

Two of the simplest and most commonly used statistical estimates of intra- and 
inter-observer reliability are:
• The kappa statistic (κ) for categorical variables, such as whether or not a subject 

is hypertensive; and
• The intra- or inter-class correlation coefficient (ICC) for continuous variables, 

such as weight or height.
Many alternatives to κ and ICC exist; however, space constraints preclude their 
inclusion here.

29.5.1	 �The Kappa Coefficient (κ)

For comparing the reliability of two observers or two measurements performed by 
one observer, the kappa coefficient is calculated using the simple equation described 
in Chap. 11. If the categorical variable is not binary but ordered, then partial κ can 
be calculated using the method developed by Cohen (1968). If there are more than 
two observers or more than two measurements by one observer, then the Fleiss κ 
can be used instead of the equation found in Chap. 11 (Fleiss 1971).

As discussed in Chap. 11, perfect agreement or no agreement (beyond what is 
expected purely by chance) is indicated if κ = 1 or κ ≤ 0, respectively. Although there 
is no universally accepted rule, Landis and Koch (1977) suggested the following 
interpretation (Table 29.4):

Many statistical packages will report P-values for κ; however, in the context of 
testing for observer reliability, these P-values should be ignored because the null 
hypothesis of ‘no agreement’ is nonsensical (Kirkwood and Sterne 2003). If a valid 
measurement technique is used in a study, then the possibility of ‘no agreement’ within 
or among observers is, by definition, illogical; there must be some level of agreement.

Although κ may provide a useful indication of intra- and inter-observer reliability, 
this statistic must be evaluated carefully. It is possible to achieve very desirable 
values for κ but have systematic misclassification that may lead to substantial bias 
in a study. Even if a study achieves a value for κ of 0.9, it is best practice to produce 
contingency tables to verify that the proportion of disagreement is within an accept-
able range, to determine whether disagreement is driven by a particular observer, 
and to evaluate whether cases of disagreement disproportionately represent one or 
more comparison groups (a sign of bias).

Table 29.4  Kappa statistics 
and the strength of 
agreement, as proposed by 
Landis and Koch (1977)

Kappa statistic Strength of agreement
< 0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Very strong
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29.5.2	 �Intra-class Correlation Coefficient (ICC)

To estimate the intra- or inter-observer reliability of a continuous variable, one may 
calculate an ICC using the following equation:

	
ICC Actual

Actual Error

=
+

s
s s

2

2 2

	

where σ2
Actual

 is the variance of the true (underlying) values as estimated from the 
sample and where σ2

Error
 is the variance of the measurement error. The ICC can be 

any number from 0 to 1. If ICC = 1, then the variance of measurement error is zero, 
implying that the measurement is perfectly precise. This scenario is often referred 
to as complete reliability, although it is important to note that perfect precision pro-
vides no information about accuracy. If ICC = 0, then the variance of the true value is 
zero (i.e., the most unlikely scenario in which all subjects have exactly the same 
value) and the observed variance is due purely to measurement error. Since the 
value of an ICC depends on the actual or true variance, ICC is a relative indicator of 
intra- and inter-observer reliability only when the assumption of equal true variance 
is met. The ICC can be calculated using the above equation or derived from analysis 
of variance (ANOVA) or random effects models.

Alternatives to the ICC are the concordance correlation coefficient (CCC) 
described by Lin (1989) and Cronbach’s α (described in Bland and Altman 1997).

29.6	 �Reporting on the Quality of Laboratory Data

Data collected by laboratory tests can be very expensive, and there are multiple 
opportunities during the analysis procedure that can lead to uncertainty in the data 
and reduced data quality. To ensure the high quality of laboratory data, the first step 
one should take is to calibrate the equipment being used. The calibration protocol 
and standards should be identical for all laboratory sites for a given study. It may be 
necessary to obtain technical support from the manufacturer, although usually this 
step can be avoided if the calibration curves from each machine are strongly corre-
lated (Pearson r ≥ 0.98) and if the calibration curves at different sites are themselves 
very similar. The second step involves the optimization of the laboratory protocol 
(if not already done as part of an internal validation study) and perhaps the estab-
lishment of a quality control checklist for optimized protocols.

29.6.1	 �Standard Curves

In many cases, laboratory techniques are amenable to the inclusion of standard 
curves that describe a laboratory value across a broad range of known concentrations 
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of the factor being analyzed. For example, if serum insulin levels are being analyzed 
by an enzyme-linked immunosorbent assay (ELISA), known concentrations of 
insulin (i.e., the standards) are run alongside the specimens (i.e., the unknowns). 
The known concentrations are plotted against their respective ELISA values to 
generate a function that describes the insulin concentration for a given ELISA value. 
Using this function, the insulin concentrations of the unknowns can be determined. 
Standard curves are usually plotted on a linear scale and should ideally have a 
correlation coefficient of r ≥ 0.98, although the degree of reliability required in a 
study may cause one to adjust the acceptable level of correlation. Since unknown 
values are based on the standard curve, it is best practice to build the standard curve 
on measurements made at least in triplicate and to repeat routinely the standard 
curve (and calibration curve) to ensure its consistency over time. In addition, each 
independent analysis usually must have its own standard curve to control for pos-
sible variations between one analysis and another and to improve comparability of 
analyses.

Standard curves are useful not only for determining unknown values in a given 
sample but also for identifying suspicious values that should be flagged for repeat 
analysis in an independent analysis. When planning a study, it is recommended to 
build into one’s budget room for repeat testing of a reasonable number of samples. 
The number of samples that require unplanned repeat testing should be reported.  
If planned repeat testing is performed on a random selection of the collected speci-
mens, then one should report the coefficient of variation for repeat measurements 
(see below) and, if possible, intra- and inter-observer statistics. If multiple laboratories 
are performing measurements for a study, then the different labs should compare 
their results for the same specimens.

29.6.2	 �Coefficient of Variation (CV)

In many laboratory measurements, the variation of a measurement is related to the 
mean value obtained. For example, if a non-diabetic subject’s blood glucose levels 
are measured while being fasted (usually for 12–16 h) and again 60 min after con-
suming a 75 g bolus of glucose, that subject will have a low value for the fasted 
measurement and a high value for the second measurement. If blood glucose con-
centrations are measured in triplicate for both sampling times, one can calculate the 
mean and standard deviation for each. The standard deviation of the fasted measure-
ment will likely be lower than the standard deviation of the fed measurement. The 
coefficient of variation (CV) is calculated by expressing the standard deviation as a 
percentage of the mean. Although the means and standard deviations differ in the 
example above, the CV should be similar for the two sampling times. Similarity of 
the CV across a range of measurement values signifies that the laboratory measure-
ment technique is reliable. A high CV for some or all measurements on a scale may 
signify bias and raise suspicion of data quality issues that require further attention.
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In this chapter we discussed scientific reporting on data quality and argued that 
it should be more comprehensive than in currently accepted practice. In the next 
chapter (Chap. 30: Dissemination to Stakeholders), we move the emphasis from 
scientific reporting to the challenging task of dissemination of research findings 
to other stakeholders, such as funding bodies and the public.
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    Abstract 
   Dissemination of scientifi c work to others is an essential component of the 
research process. The most common form of dissemination is to publish articles 
in academic journals ( See:  Chaps.   28     and   31    ); however, a researcher may wish to 
disseminate work directly to the public, policymakers, or other non-academic 
stakeholders to achieve desirablwe effects on public health and to enhance the 
profi le of the research team. A general discussion around engaging with stake-
holders is found in Chap.   8    . The current chapter extends our discussion of engaging 
with stakeholders from the perspective of disseminating scientifi c work in 
forms other than academic journal articles. First, we will introduce principles of 
dissemination and diffusion of information. We will then provide practical advice 
on developing dissemination strategies and on communicating with selected 
types of stakeholders, such as news media reporters. Finally, we discuss some 
ethical aspects of infl uencing public health policy and summarize practical 
advice in this respect.  
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 Too often, the products of research are not disseminated or 
translated into community settings where the information is 
likely to have positive effects.  
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30.1        Theories and Principles of the Dissemination 
and Diffusion 

 Information is transmitted within any given population through two general pheno-
mena:  dissemination  and  diffusion.  The former refers to any purposeful action in 
which new information is introduced to members of that population, whereas the 
latter refers to the non-deliberate process by which members of a population accept 
or reject disseminated information (Buller  2006 ). In this section, diffusion is 
described fi rst as a foundation for understanding dissemination, and in this context 
the social marketing approach is borrowed and modifi ed as a suggested strategy for 
maximally effi cient dissemination of scientifi c work (Dearing et al.  2006 ). Following 
this discussion, we describe practical approaches to enhance the likelihood of 
successful dissemination. 

30.1.1     Diffusion of Innovations Theory 
and the Social Marketing Approach 

 Perhaps the most important advance in the understanding of human behavior change 
on a societal level – as opposed to behavioral change in an individual – occurred in 
1962 when Everett Rogers published his groundbreaking book  Diffusion of 
Innovations . This theory of social change is presented only in a brief summary format 
here, but those interested in this topic are referred to Rogers’ book (Rogers  2003 ) 
and to Malcolm Gladwell’s  The Tipping Point  for formal and popularized discussions, 
respectively. Terms and concepts relevant to this chapter are defi ned in Panel  30.1 . 

  Panel 30.1 Selected Terms and Concepts Relevant to Dissemination 
to Stakeholders 

     Diffusion     the non-deliberate process by which members of a population 
accept or reject information   

   Dissemination     any purposeful action in which new information is introduced 
to members of that population   

   Innovation     any novel development, such as information, ideas, behaviors, 
or rules   

   Social marketing     a dissemination practice in which opinion leaders in a 
society are identifi ed and leveraged as the points of dissemination   

   Social network     a social structure defi ned by members and the dyadic ties 
between those members (a dyad is a two-person relationship, the smallest 
possible social group)   

   SOCO  (Single Overriding Communication Objective)    the single most important 
message to deliver about an innovation     
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 Fundamental to the Diffusion of Innovations theory is the idea that society has 
inherent albeit dynamic channels of communication through which a message is 
transmitted from one entity in society to another. When an individual, group, or 
organization adopts an innovation – which may take the form of a new idea, behavior, 
practice, or object – others in society are directly or indirectly exposed to that 
innovation via one or more communication channels. These individuals may or may 
not be persuaded to adopt the innovation. The decision of whether to adopt an inno-
vation can be optional, like trying the latest diet; collective, such as a professional 
association’s approval of clinical guidelines by consensus; or authority-driven, such 
as laws that ban dumping waste in public water supplies. Early adopters interface 
with those who have remained undecided about whether to adopt the innovation 
themselves, and some will perpetuate this cycle of adoption in what’s known as the 
multiplier or snowball effect (Fig.  30.1 ). After a party decides to adopt an innovation, 
the individual makes further decisions about whether to continue or discontinue use 
of the innovation and how. Ultimately, the steps in diffusion depend on social, ecologic, 
and systematic factors in society; therefore, dissemination strategies will differ at 
the individual, organizational, and network levels (Estabrooks and Glasgow  2006 ; 
 See:  RE-AIM Framework section).

   Insight into diffusion dynamics allows for an understanding of how new information, 
once introduced to society, succeeds or fails to spread amongst its  constituents. Social 
marketing is the practice in which opinion leaders – who may be socially infl uential 
people, peer-educators, celebrities, authoritative organizations, etc. – are identifi ed 
and made the point of dissemination. These opinion leaders then leverage the diffusion 
process by infl uencing many individuals, some of whom will be parti cularly socially 
infl uential among peers, to adopt an innovation (Fig.  30.1 ). Dearing et al. ( 2006 ) 
suggests that social marketing principles can be employed for the implementation of 
campaigns to increase physical activity, the implication of which is that epidemiolo-
gists in general can use a social  marketing-like approach to disseminate research 
fi ndings. In this context, the epidemiologist’s innovation is typically new information 
about the benefi ts or harms of a particular health-related behavior or phenomenon.   

30.2        Practical Considerations for Dissemination Strategies 

 It is important to consider the dissemination strategy in detail because the entity that 
or person who disseminates the innovation may infl uence the success of diffusion. 
The dissemination of the Behavioral Risk Factor Surveillance System (BRFSS), 
a low-cost health survey system originally developed in the United States in the 
1980’s, is an example of a well-designed, well-controlled dissemination process 
(Bauman et al.  2006 ). The BRFSS was launched in 15 states in 1984 and, over the 
course of a decade, was adopted by the other 35 states and the District of Colombia; 
by 1998, some US territories in the Caribbean also adopted the BRFSS (Nelson 
et al.  1998 ). After successful implementation in the United States, other coun-
tries – including Mexico, China, and Russia – made culturally appropriate revisions 
before deploying the system themselves (McQueen and Puska  2003 ). However, one 
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should be aware that dissemination and diffusion are highly variable processes and 
may or may not go according to plan. 

 The experience of the International Physical Activity Questionnaires (IPAQ), 
perhaps the most widely used survey tools for the surveillance of physical activity, 
shows us that dissemination processes are not always so structured, even when 
dissemination is successful. The IPAQ investigators had planned further research 
and development of IPAQ before promoting widespread use of the tool; however, 

?

?

?

?

?
?

1. Removal of uncertainty
within opinion leader

2. Opinion
leader Interfaces

with others

3. Imitation/adoption of opinion
leader’s view or behavior

4. Multiplier
effect

5. Snowballing imitation/adoption

Dissemination

  Fig. 30.1     Dissemination and diffusion of information.  Dissemination refers to any purposeful 
action intended to introduce new information to society. The dissemination process may be highly 
variable and is represented by the  blue square  ( Step 1 ). All individuals in society are inherently 
uncertain regarding whether to adopt never-before encountered information, a state of mind repre-
sented by a  blue cloud  with a question mark. Exposure to new information prompts a decision of 
whether or not to adopt that information (represented by the conversion of a  blue  with a question 
mark to a  green cloud  with a check mark), a process that depends on the removal of uncertainty 
(e.g., by logic or incentive). Among the early adopters are “opinion leaders,” who have the capability 
of interfacing with ( Step 2 ) and infl uencing others in society to imitate the opinion leader or adopt 
the information ( Step 3 ). Some of these individuals will be opinion leaders themselves and propa-
gate the pattern just described, a scenario known as the  multiplier effect  ( Step 4 ). A consequence 
of the multiplier effect is snowballing imitation and adoption ( Step 5 ), a phase of diffusion that 
represents the greatest change in the number of imitators and adopters. Note that, although this 
fi gure depicts the opinion leader and others as people, this representation is not intended to be 
exclusive of other entities in society, such as organizations       
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the need for the instrument was so strong that research groups throughout the world 
adopted IPAQ rapidly and early (a more detailed history is found in Bauman et al. 
 2006 ). The IPAQ story suggests that some innovations are so needed or desired 
that the simplest form of dissemination (e.g., publication of a single journal article) 
is suffi cient to trigger widespread diffusion, but such instances are rare and cannot 
be expected. 

30.2.1     Six-Step Model to Enhance Dissemination of Information 

 Although there is not just one approach to planning a dissemination strategy, 
Bauman et al. ( 2006 ) proposed a six-step model to enhance dissemination. This 
model, shown in italics below, is annotated here with questions that may be useful 
to consider when planning a dissemination strategy. Some of these questions are 
derived from the RE-AIM Planning Tool (discussed below), whereas others are 
suggested by the authors. Table   30.1  also provides a framework for thinking about 
possible dissemination strategies. Collectively, the six-step model, RE-AIM 
Framework, and Table   30.1  should be helpful in selecting the processes that bal-
ance ideality, practicality, and cultural appropriateness.

       Table 30.1    Examples of dissemination-based intervention strategies reported 
for fi ve cancer- related topics between 1980 and 2004 a    

 Level of intervention  Strategy 
 Healthcare provider  Physician/nurse training 

 Offi ce systems (e.g., prompts and reminders) 
 Audit and feedback 

 Individual  Reminders and invitations/postal delivery 
 Telephone counselling 
 Healthcare advice 
 Self-help or patient education 
 Financial incentives and competitions 
 Counselling 
 Role modelling 
 Peer educators 

 Enhanced access  Removal of fi nancial barriers 
 Removal of access barriers 
 Media-based education campaigns 
 Policy-level interventions 

 Multi-component  One each from provider- and individual-level 
 Treatment algorithms/clinical guidelines 

 Groups/organizations  Recruitment of professional organizations 
 Workshops/conferences 
 Peer educators 
 Infl uencing a social network 
 Radio broadcasts 

    a This table is derived and modifi ed from Ellis et al. ( 2005 ) in accordance with 
American Psychological Association  Permission Policies   
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      30.2.1.1  Step-1: Describe the Innovation and its Rationale, 
Evidence Base, and International Contexts 

•     In full detail and also in just 1–2 sentences, what is the innovation?  
•   Why is the innovation important?  
•   What evidence suggests that this innovation will succeed?  
•   Under what sociodemographic contexts were effi cacy and effectiveness studied, 

and how do these compare to those of target audiences?       

 For dissemination, having information about both  effi cacy and effectiveness 
of the dissemination strategy  is ideal, indeed sometimes necessary, but 
information on effectiveness is usually unavailable. Lack of effectiveness data 
is especially common when attempting to disseminate innovations to interna-
tional or underserved populations; useful advice for these situations is available 
in Cuijpers et al.  2005  and Yancey et al.  2006 , respectively.   

    30.2.1.2 Step-2: Characterize the Dissemination Strategy 
•     Identify the target audience for dissemination and its size.

 –    Who should adopt the innovation and why?  
 –   Who/what are the relevant opinion leaders?  
 –   Do you hope to reach all members of the target population?  
 –   What is the sociodemographic breakdown of the target population?     

•   Anticipate and describe the sequence, timing, and format of the dissemination 
strategy. (This may require simultaneous or prior consideration of Step 3.)
 –    How might characteristics of relevant opinion leaders infl uence dissemination?  
 –   How might characteristics of the target population infl uence the dissemination 

strategy?        

    30.2.1.3  Step-3: Define the Current Communication Channels 
Through Which Diffusion Might Take Place 

 These channels may occur within or across multiple levels of society:
•    Who do the relevant opinion leaders interact or affi liate with?  
•   How does the target audience perceive the identifi ed opinion leaders?  
•   Are any relevant changes in the communication channels foreseen?     

    30.2.1.4  Step-4: Determine the Role of Decision-Makers 
and Partners that will be Necessary for Dissemination 
at Various Levels of Society (e.g., Local, National, International, 
etc.) 

•     Which societal sectors, industries, organizations, or government bodies are 
particularly important for the planned dissemination strategy?  

•   What are the political structures in the relevant areas?  
•   Who in your social network has direct or indirect connections with identifi ed 

decision-makers and partners?     
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    30.2.1.5  Step-5: Identify Factors that Might Impair 
or Facilitate the Dissemination Strategy 

•     Which cross-cultural or political factors might infl uence the route of dissemination 
in different locations and how?  

•   What barriers might limit your reach to the target population, and how do you 
plan to overcome them?     

    30.2.1.6  Step-6: Create an  a priori  Plan for Evaluating 
the Dissemination Process (May Not Be Necessary 
Depending on the Goals of Dissemination) 

•     How will dissemination and subsequent diffusion be assessed?  
•   What resources will be required to conduct evaluations?  
•   Are the stakeholders in agreement with the evaluation plan?      

30.2.2     The RE-AIM Dissemination Framework 

 The RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) 
framework was proposed by Glasgow et al. ( 1999 ) as a practical tool to enhance 
dissemination. Although championed by the National Cancer Institute (NCI) of the 
U.S. National Institute’s of Health (NIH), RE-AIM can be used to plan dissemination 
strategies targeting a range of health issues, not just cancer. Various helpful RE-AIM 
resources can be downloaded from the NCI’s Cancer Control website ( See:  
Sect.  30.6 ). Perhaps most notable are the RE-AIM Planning Tool and the RE-AIM 
Checklist for Study or Intervention Planning, both of which we recommend. To 
exemplify the utility of the RE-AIM framework, complex dissemination strategies 
are presented in a generalized form at three levels of society – an individual, an 
organization/specifi c location, and a network/population – in Table  30.2 .

30.3         Communicating with the Public and News Media 

 In order to get the attention of a target constituency – those whom the researcher 
intends to infl uence, such as the public, policymakers, or other stakeholders – one 
must inform the members of that constituency about the innovation. Various routes 
are available, of which we explore two especially prominent ones: conventional 
media interviews and the emerging venues provided by online social networks. 
Reaching out to journalists, media broadcasters (e.g., radio and television), and 
media relations specialists is uniquely challenging and requires summarizing fi ndings 
in ways that refl ect the current state of the science, not just an isolated conclusion. 
Advice on interacting with journalists and preparing for interviews is therefore 
provided below. Much of this information is readily translatable to communicating 
with the public via social networks, a venue that has enabled companies to interact 
with and learn about their customers and that should, by extension, be useful for 
epidemiologists as well. 
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30.3.1      Routes of Communication and Getting a Message Across 

 Communicating scientifi c health information to the public is especially diffi cult, as 
most members will not be well-versed in the subject at hand. When communicating 
with the public, a researcher can select one or several routes, the best of which will 
depend on the researcher’s goals of dissemination and characteristics of the target 
audience. Usually, there is at least one intermediary (e.g., a journalist) but direct 
communication is increasingly possible with technological innovation (e.g., through 
blogs and social networking websites). Panel  30.2  lists several common routes 
of communication, but this list should not be considered all-inclusive, nor should 
discussion of selected routes be interpreted as an indication of their importance. 

 How one delivers a message can infl uence whether or not the public adopts that 
message (most often through changes in understanding and behavior). Since that 
message is often relayed through an intermediary, the importance of proper delivery 
is heightened. Central tenets of effective communication are elucidated below 
through a discussion of preparing for an interview with a reporter, one of the 
most common intermediaries that epidemiologists encounter. These tenets may be 
extrapolated to other scenarios in which a researcher might need to deliver a 
message to a lay audience.   

30.3.2        Preparing for an Interview with a Journalist 

 Perhaps the most critical exercise in preparing for an interview with the press is to 
iden tify the Single Overriding Communication Objective (SOCO), i.e., the single most 
important message to deliver about a study or health issue (Dan  2008 ;  See also 
 Panel  30.3 ). Typically, a research project will produce several interesting fi ndings, and 
although discussing them all is tempting, doing so is almost always counterproductive. 

   Panel 30.2 Routes of Communication with the Wider Community 

•     Participate in press conferences and submit press releases  
•   Publish a newspaper or magazine article or assist a journalist to do so  
•   Contribute to a television or radio program  
•   Produce and distribute a DVD or information brochure  
•   Engage the study’s Community Advisory Board into dissemination  
•   Engage patient advocacy groups or health care professionals (e.g., com-

munity health workers, peer-educators, counselors) in dissemination  
•   Give information on and promote a study website or webpage  
•   Contribute to other web sources for health information (e.g., blogs)  
•   Organize public dissemination meetings  
•   Broadcast information via the radio or other media outlets    
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For example, if the researcher provides two main fi ndings, then constraints of space 
and time may force the reporter to select one of the two and thereby miss the main 
thrust of the work. Simplicity is not often a hallmark of research fi ndings, but it is 
an imperative for successful communication of one’s fi ndings and interpretations to 
the public. Consequently, the SOCO must also be rid of jargon wherever possible. 
Should jargon be necessary, it is useful to be aware of the jargon in advance of an 
interview and to be prepared to defi ne terms clearly. These two diffi cult tasks – to 
fi nd simplicity within complexity and to translate scientifi c terms into commonly 
understood language, all without introducing inaccuracies – are critical and there-
fore deserve pause and consideration before beginning an interview. 

 One should realize that the job of the reporter is to interpret a story and then to 
convey it to a broader audience, not to be up-to-date on the scientifi c fi eld relevant 
to the interview topic. It is therefore necessary for the researcher to help the reporter 
understand the essential background information, the purpose of the research, the 
 one  main fi nding, and any major ambiguities. Some researchers insist that the 
reporter read the related scientifi c paper before the interview, although the utility of 
that strategy is dubious to us because it probably has low yield, blurs the line of who 
is the epidemiologist, and risks alienating the reporter (reading a research paper can 
be diffi cult and time consuming even for an epidemiologist!). Alternatively, we 
suggest providing the reporter with a copy of the paper without insistence and to 
offer to serve as a resource for them should they have any questions in preparation 
for the interview.   

  Panel 30.3 Suggested Activities in Preparation for an Interview with the Press 

•     Learn about who reads the outlet and tailor responses to that audience  
•   Identify the Single Overriding Communication Objective (SOCO) and 

practice saying it to people with different backgrounds and interests  
•   Prepare how to explain in everyday language the meanings of relevant 

jargon  
•   Prepare and practice saying a single phrase or sentence that conveys or 

supports the SOCO  
•   Write down the SOCO, sound bytes, and most important statistics; bring 

this “cheat sheet” to the interview  
•   Carefully plan how to answer the six questions included in most science 

interviews: Why did you do the study? What is the one main result of the 
study? What challenges did you encounter and/or overcome? What mecha-
nism explains the association? What is the public health message? Where 
should future research focus?  

•   Gather descriptive data on relevant determinants and outcomes  
•   Consult with public affairs personnel if that resource is available    
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30.3.3       During the Media Interview 

 During an interview – which may occur via e-mail, in online discussion forums, 
over the phone, or in person – the interviewee’s goal is to turn the interview into an 
opportunity to relay the SOCO (Dan  2008 ). An imperative is to communicate the 
SOCO early and repetitively. If the reporter attempts to discuss a point that deviates 
too far from the SOCO, one commonly employed approach is to transition back to 
the SOCO using phrases such as ‘the most important thing to say about that is…,’ 
‘the bottom line in those situations is…,’ or ‘the take-home message is….’ This 
technique is called  bridging . Importantly, the phrases used in bridging are also useful 
for fl agging the SOCO and thereby signaling to the interviewer the importance of 
what will be said next. 

 To help the reporter understand the context and importance of one’s fi ndings, the 
researcher will need to convey specifi c epidemiological terms and statistics that 
might have multiple or alternative defi nitions in common parlance or be diffi cult to 
understand. For example, the word  risk  to an epidemiologist signifi es a concrete 
concept defi ned by an objective numerical value, but to the public  risk  may be an 
abstract concept implying a subjective degree of danger or hazard (Loukissas  2011 ). 
Given the potential for the reporter or reader to misinterpret the specifi c meaning of 
a term or statistic, it is imperative for the researcher not only to select carefully 
which statistics to discuss but also to phrase the terms associated with those statistics 
in the clearest way possible. 

 Typically, an interview will contain the following six basic questions (Loukissas 
 2011 ):
    1.    Why did you do the study?   
   2.    What is the one main result of the study?   
   3.    What challenges did you encounter and/or overcome?   
   4.    What mechanism explains the association?   
   5.    What is the public health message?   
   6.    Where should future research focus?    

  If these questions are not asked directly, the researcher should attempt as 
naturally as possible to provide the answers during conversation, or give verbal 
clues that cause the reporter to ask these questions. It is acceptable for the 
researcher or reporter to politely redirect the interview to the most important 
content. Indeed, both parties control the content of the interview. Reporters do so 
mainly by asking questions, and interviewees do mainly by regulating how questions 
are answered and for how long. 

 Other common questions that the researcher should be prepared to answer are:
    7.    Did anything about the study surprise you?   
   8.    Is there anything you would like to add?   
   9.    Is there anything I did not ask you?     

 Other useful advice for participating in an interview can be found in summary 
format in Panel  30.4  (Dan  2008 ; Loukissas  2011 ). We refer readers to Dan ( 2008 ) 
for useful advice on how to deal specifi cally with press conferences and interviews 
over the radio/podcast or television. 
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  Hint 
 Either at the beginning or end of the interview, it is common for the interviewee 
to request the opportunity to check quotes or even read the media article before 
publication. Some reporters will be accommodating, but this practice should not 
be expected, nor is it always possible.    

30.3.4       Online Social Networks 

 Increasingly, social networks have become an outlet for disseminating health policy 
ideas and objectives. Social networks are a loosely defi ned group of websites 
through which users share and disseminate information. They include websites 
where users set up social profi les (e.g., Facebook), post public updates, follow other 
users’ updates (e.g., Twitter), review local businesses (Yelp), post their current loca-
tion and activity (e.g., Foursquare), rate content that they enjoy (e.g., Digg), or post 
videos and photos (e.g., Youtube and Flickr). Many of these websites overlap in 
functionality, and the available services are constantly evolving. 

 In 2006, Facebook began allowing organizations to create profi les. The creation 
of a profi le on a social networking site can achieve many goals. Some of the uses 
that social network profi les can achieve include:
•    Identifying and gathering contact information for people interested in the 

organization’s product or policy goals  
•   Providing information, including links to pertinent news articles and websites  
•   Publicizing upcoming events  
•   Recruiting volunteers  
•   Providing a forum for discussion and feedback  
•   Soliciting donations    

   Panel 30.4  Tenets of Communication During Interviews 

•     Be prepared  
•   Be concise  
•   Use plain language (avoid jargon); use the local language  
•   Avoid speaking too quickly; speak deliberately and carefully  
•   Employ a single overriding communication objective (SOCO)  
•   Lead with the SOCO and repeat it during the interview  
•   Avoid providing excessive levels of detail. Keep things simple  
•   Avoid giving seemingly different or contradictory information about the 

same study  
•   Avoid superfl uous information  
•   Avoid all speculation  
•   Be a resource  
•   Throughout the encounter, develop a relationship with the reporter    
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 A content analysis of 275 nonprofi t organizations’ Facebook profi les found that 
the profi les of nonprofi ts tend to provide transparent explanations of their purpose. 
But many of them failed to take advantage of the social aspect of Facebook, rarely 
offering users opportunities to get involved (Waters et. al.  2009 ). 

 Furthermore, social networking can afford an opportunity to identify topics of 
discussion and possible questions, concerns, or points of intervention for organiza-
tions that wish to disseminate particular information. Many for-profi t companies 
regularly monitor mentions of their products on Twitter in order to identify dissatis-
fi ed customers and address their concerns. This opportunity exists for more public 
service-oriented organizations as well. A recent study on the use of the word 
“antibiotics” on Twitter found hundreds of tweets that contained misinformation or 
discussed inappropriate uses of antibiotics (Scanfi eld et. al.  2010 ). These users 
could serve as intervention points for organizations searching to publicize a public 
health message, for instance.  

30.3.5     Making Change in the Real World 

 It is helpful for the researcher to realize that information, in the traditional sense, is 
not the only essential prerequisite for action. Health information is often diffi cult to 
understand without substantial background. Epidemiologists are trained to think 
about public health issues from a highly technical, methodological, and intellectual 
perspective. It is therefore most natural for many epidemiologists to communicate 
about their work in such terms. However, most people rely on emotions, feelings, 
instincts, and heuristics to guide their actions. We often form judgments by subcon-
sciously asking: “How do I feel about this?” (Oz  2010 ). When communicating with 
the press or public, one should keep this in mind and cater to the strengths of one’s 
target audience, not to those of one’s colleagues.   

30.4     Communicating with Study Participants 
and Their Healthcare Providers 

 The most important stakeholders of any study are its participants. Study fi ndings 
should be reported to them, perhaps employing the strategies discussed above 
regarding interviews with reporters. But sometimes the researcher must communicate 
with particular patients about new personal health information. This task requires a 
great deal of care and sensitivity. 

30.4.1     New Personal Health Information 

 Researchers often acquire information on participants’ personal health that was 
previously unknown to the participants and their health care providers. The new 
information may be of a diagnostic or prognostic nature. It is standard practice to 
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provide such information to the participant’s indicated primary health care provider, 
although participants should be given the option to bar this action (unless laws 
require otherwise). The new information can be quite sensitive, such as the risk of 
having, acquiring, or transmitting a strongly heritable illness or a potentially 
stigmatizing illness. Indeed, not all participants want to know if they have certain 
diseases or disorders. One option is to let the participants decide, as part of the 
informed consent process, whether they wish to be informed about new personal 
health information and in which way (White et al.  2008 ). However, there are rare 
instances in which laws mandate reporting of some diagnoses to individuals and/or 
agencies; therefore, it is necessary to identify and follow such laws and to explain 
these laws to participants during the informed consent process. 

 Moreover, new personal health information can also be of an acute nature that 
requires immediate intervention. Each study should have a system of referral and/or 
treatment of new health issues that may be discovered during the study. These 
 provisions relate mainly to anticipated problems such as known side-effects of 
treatments or measurements, or possible values of health measurements (e.g., a 
positive HIV test).  

30.4.2     Communicating Overall or Interim Study 
Results to Participants 

 To facilitate the communication of overall or interim study results to participants, 
one may use the strategies for communicating with the public described previously 
in this chapter. Common strategies for reporting study results are to send a newsletter 
or to host a special post-study gathering. In doing so, one should be careful to avoid 
creating anxieties that are out of proportion to the size of the risk (White et al.  2008 ), 
and to never reveal personal health information (a breach of confi dentiality).   

30.5     Striving for a Desirable Influence 
on Public Health Policy 

 Policymakers consist of administrators and elected offi cials who make decisions that 
affect laws, rules, and regulations. Ideally, they respond to health issues that have 
the greatest importance for public health, but in reality, politics often determine the 
salience of the issues at hand. Epidemiologists have the opportunity to interface 
with policymakers in order to increase the likelihood that they will effect change on 
the most important health issues and to intervene in a manner that is supported by 
empirical evidence. Indeed, epidemiologists can raise awareness of an issue and 
potentially change policymaker’s priorities. 

 This discussion raises an important question: to what extent are epidemiologists 
responsible for ensuring that their research results are ‘translated’ into policy? 
The answer to this question is not clear-cut and comes with many caveats. 
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One obvious element of the answer is that any such responsibility should be limited 
by the internal and external validity of the research. ‘Translation’ should ideally 
not be attempted unless research evidence has turned into scientifi c knowledge. 
Scientifi c knowledge is a majority consensus phenomenon, so health policy decisions 
need to be informed by expert consensus on scientifi c issues. In reality, however, the 
experts often disagree on whether a suffi cient basis for action has been reached, 
on what more evidence is needed, and minority views – whether they are right or 
wrong – can be infl uential. 

 Of course, scientists should be concerned about the consequences of their 
activities and fi ndings, and therefore communication with policy makers is unavoi-
dable. Viewed from the other side, health policy decisions need to be based on a 
rational system for prioritizing competing health intervention needs, and policy 
makers are heavily reliant on experts when it comes to understanding a body of 
research. Creating and maintaining active channels of communication between 
policy makers and the scientifi c community is therefore a dual responsibility of the 
involved  parties. Scientifi c experts should be involved in health policy decision-
making, but such involvement is contingent on relationships. Dissemination repre-
sents an important approach by which researchers can form and build relationships 
with policy makers. In creating communication channels, researchers should avoid 
the temptation to increase the impact of their work by becoming policy makers 
themselves, or by becoming activists who try to pressure public health authorities 
and politicians in a somewhat desperate way. 

 Effi cient structures of communication between policy makers and the scientifi c 
community are needed for giving policies an appropriate evidence base and to avoid 
that infl uencing policy becomes merely a matter of who shouts the loudest, talks the 
smoothest, or has the most political friends.  Bounded rationality –  a term coined by 
Herb Simon – is the idea that, in decision making, the rationality of individuals is 
limited by the information they have at hand, the cognitive limitations of their 
minds, and the fi nite amount of time they have to make decisions. Given the 
complexities of health policy, it could be said that a consulting epidemiologist’s role 
is to reduce bounded rationality by effi ciently communicating the most important 
information. 

30.5.1     The Right Messages at the Right Time 

 It is relatively uncommon for a single research study to have any direct positive 
impact on public health. Conclusions based on just one study are the most suscep-
tible to bias – although a conclusion based on no evidence at all is markedly less 
reliable unless that conclusion is agnostic – and should be promoted with caution. 
Without training in epidemiology, those who are exposed to a researcher’s SOCO 
are much less likely to understand the nuances of object design and statistics than a 
researcher’s fellow epidemiologists and are, therefore, usually unable to fully 
appraise a single study’s internal and external validity. 
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 This problem is especially apparent when multiple studies on a similar topic 
yield seemingly different conclusions. For instance, if Study A and Study B repre-
sent the total available evidence on whether exposure to a substance is associated 
with heart failure, where Study A shows a 20 % increase and Study B shows a 20 % 
decrease in the risk of developing heart failure, then a group of people might reason-
ably conclude that there is, on balance, no association between the substance and 
heart failure. Yet, the two studies would likely suffer from differing degrees of bias, 
confounding, and other fl aws that might make one study less valid than another. 
These complex features are usually omitted in media coverage of scientifi c research, 
thereby making the public vulnerable to misinterpretation of potentially useful 
health information. If Study A is more valid than Study B, then the public may not 
recognize the substance’s potential harm. 

 Even if the internal validity of the study is optimal, there are known instances 
of authors incorrectly placing and interpreting the evidence in the light of exter-
nal evidence on the same topic. The external evidence may only be partially 
mentioned and the author’s own interpretation of the importance of their study 
may be  exaggerated. Various stakeholders may then ‘jump on’ the most categor-
ical and striking statements in a discussion section or in the conclusions of a 
scientifi c paper. Take away messages (Single Overriding Communication 
Objectives) can be dangerous if they are distorting simplifi cations. The result 
may then well be another wave of unfounded health-related anxieties and 
another contribution to over-medicalization of society. It is our view that the 
dissemination of research fi ndings charges the researcher with the responsibility 
to attempt to protect the public from misinterpretation of potentially useful 
health information. This may occasionally imply restraining from dissemination 
of fi ndings of single studies. 

 The same logic just described also applies to the dissemination of intervention 
campaigns. In such a scenario, however, there is usually a body of evidence supporting 
the effi cacy or effectiveness of the intervention and sometimes even of the dissemi-
nation strategy. Selecting the best estimates to convey to the target audience is a 
challenging task, especially when multiple studies on a similar topic provide inter-
pretations as dissimilar as Studies A and B above. Meta-analyses may be useful for 
selecting a best estimate but must be interpreted very carefully and always in the 
context of possible publication bias ( See:  Chap.   25    ).  

30.5.2     Advice for Dissemination Aiming 
at Public Health Impact 

 Taking into account the above considerations, the appropriate combination of scien-
tifi c and ethical concerns translates into the advice list for dissemination of research 
results in Panel  30.5 .   
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30.6         Additional Dissemination Resources 

 This chapter provides several different frameworks to be used as tools for the deve-
lopment of dissemination strategies. Though the body of literature on dissemination 
strategies is relatively sparse and usually unavailable for or irrelevant to a specifi c 
dissemination project, some of that body of literature and a wealth of experience 
have been embedded in many helpful resources. We recommend the following 
resources for those who wish to extend and deepen their knowledge of dissemination 
strategies:
•    Cancer Control PLANET (Plan, Link, Act, Network with Evidence-based Tools): 

“Links to comprehensive cancer control resources for public health professionals.” 
  http://cancercontrolplanet.cancer.gov/index.html      

•   RE-AIM: A planning tool to facilitate translation of research into action.   http://
cancercontrol.cancer.gov/IS/reaim/whatisre-aim.html      

•   Research to Reality: “An online community…that links cancer control practi-
tioners and researchers and provides opportunities for discussion, learning, and 

   Panel 30.5 Advice for Optimizing Public Health Impact of Research 
Through Dissemination of Research Findings 

•     Prime stakeholders for the receipt of new information before and during 
the data collection period  

•   Only publish valid study fi ndings, in scientifi c journals, independently of 
size or direction of estimates, and with due attention to precision; publish 
in widely visible and easily accessible journals  

•   Discuss strengths and weaknesses, point out the need for more research if 
relevant, and avoid over-interpretations; fairly assess external validity  

•   Participate seriously with the peer review process in order to help other 
authors with refi ning the assessment of the internal and external validity of 
their work  

•   Only engage into advocacy when the overall evidence on the topic is 
convincing; work with other scientists towards a consensus  

•   Use appropriate intelligible language adapted to each stakeholder but do 
not simplify too much when communicating with stakeholders  

•   React appropriately to misinterpretations, undue simplifi cations and 
ill- founded advocacy from other scientists or other stakeholders  

•   Provide or contribute to complete information on a topic i.e., on burdens as 
well as on effi cacy, safety, cost and acceptability of alternative intervention 
strategies  

•   Be active within the existing systems of communication between public 
health authorities and researchers or lobby for setting up or improving such 
structures    
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enhanced collaboration on moving research into practice.”    https://researchtoreality.
cancer.gov/            

•   PRIMER: “A toolkit for health research in partnership with practices and 
communities.”  See:  the “Disseminating and Measuring Impact” page in the 
“Disseminating and Closing Research” section.   http://www.researchtoolkit.org        

  In this chapter we discussed theories about how information spreads among 
groups of people and society, and we leveraged those theories to advise on the 
development of a dissemination strategy. Dissemination to stakeholders 
(Chaps.     29       and 30) raises some ethical issues with study reporting. Some 
of these have already been mentioned, but several major issues around 
publication/authorship policy and publication bias remain to be discussed in 
the fi nal chapter.      
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    Abstract 
   The reporting of research evidence is vital for the achievement and distribution of 
knowledge and the advancement of science. This chapter discusses the ethical aspects 
of reporting, with a prime focus on ethical issues associated with publishing scientifi c 
reports. Misconduct in study reporting can occur in a number of forms. This includes 
misleading reporting, plagiarism, and misrepresenting authorship. These practices as 
well as publication bias undermine the general principles of epidemiology. 
Furthermore, authors need to respect the right to confi dentiality of research par-
ticipants in their publications and avoid causing stigma to participants, communities, 
and themselves. They are also responsible for disclosing all potential and real 
confl icts of interest, of which there are many types, such as intellectual property.  
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31.1        General Advice on Publication Policy and Data Sharing 

 Selected terms and concepts around the ethics of publication are defi ned in 
Panel  31.1 . 

 Each new publication should add additional evidence or insight to the already 
available pool of scientifi c information. Some important general responsibilities of 
authors seeking to have their study fi ndings published in scientifi c papers are listed 
in Panel  31.2 . The fi rst four points of the panel are discussed succinctly in this sec-
tion; each of the others is covered more extensively in other sections. 

 In epidemiological research multiple outcomes can be addressed during the same 
study. It is good to make a clear distinction between reports of the primary outcome 
and reports of secondary or tertiary outcomes. This is especially advisable for 

   Panel 31.1 Selected Terms and Concepts Around the Ethics of Publication 

     Author     Researcher taking the responsibility of writing and defending the 
content of a scientifi c publication   

   Authorship rules     List of minimum criteria regarding who should be invited 
to take up the responsibility of (co-)authorship   

   Co-author      See:  author   
   Copyright     Law-enforceable exclusive right to publish, copy, adapt and 

distribute   
   Peer review     Pre-publication check, by scientists knowledgeable of the type 

of content at issue, of the validity of the presented manuscript and its 
acceptability for publication in the journal or other publication medium   

   Publication bias     Bias in the overall pool of evidence around a research 
question due to selective publication based on the magnitude or direction 
of study fi ndings   

   Publishing     Making a document publically available     

    Panel 31.2 General Ethical Guidelines Regarding Publication Policy 

•     Avoid redundant or (partially) duplicate publication  
•   Choose peer-reviewed journals for publication  
•   Publish in a timely manner in a peer reviewed journal  
•   Consider making anonymised raw data publicly available  
•   Avoid any form of misleading reporting and plagiarism  
•   Fairly manage authorship  
•   Publish regardless of how non-spectacular the results are  
•   Avoid breaches of confi dentiality and stigma  
•   Avoid or declare potential and real confl icts of interest    
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large- scale multi-center trials that may have a number of specifi c endpoints. 
Secondary outcomes should not be presented as if they were primary. Likewise, 
reports of preliminary data and re-analyses should be clearly identifi ed as such and 
justifi ed. This will help clarify any issues of (partial) duplication or ‘salami slicing’ 
( See:  below) for editors and other researchers working in the same fi eld. 

  Redundant or (partially) duplicate publication  occurs when numerous papers 
with overlapping results are published using data from the same study. This form of 
publication may not always be apparent, especially if papers are (1) without cross- 
reference, (2) are without acknowledgement of the original study, or (3) list different 
authors with each new publication. This form of publishing can be very misleading 
as excessive weight can be given to observations that have been repeatedly reported. 
This is especially true when such papers are all included in systematic reviews or 
meta-analyses (Huston and Moher  1996 ). 

 The term ‘ salami slicing ’ refers to the practice of unnecessarily pursuing 
multiple publications from a single study. Large quantities of published literature 
can be produced using a limited amount of data, each bringing fragments of 
evidence, or each with only a slightly different angle or methodological adapta-
tion. Unless there is a convincing rationale, these publications are likely to be 
repetitive, misleading (particularly in terms of results produced subsequently by 
systematic reviews and meta-analyses), and wasteful of other researchers’ time 
(Huston and Moher  1996 ). 

 It is wise to give preference to  peer-reviewed journals  when choosing which 
journal to publish a research paper in. Prior to publication, the editor of a peer- 
reviewed journal will send the manuscript to other experts in the same fi eld of 
research. These ‘experts’ critically assess the manuscript in order to ensure that 
scientifi cally valid research methods were used. They also evaluate the external 
validity and make judgments about study implications. Publishing literature in 
peer- reviewed journals is often associated with greater levels of future citation. 
This should be viewed as an incentive to publish work in such journals. 

 Research fi ndings, especially those from trials, should always be made available 
and in a timely fashion, as failing to pursue publication is a form of misconduct, unless 
it is apparent that internal validity is severely compromised.  Timely publication  can 
have a positive impact on both clinical practice and community medicine. Results 
of trials are of little benefi t to patients, practitioners, policy makers, or the general  
population unless they are reported timely and clearly, without any spin or data 
framing (Kramer et al.  2006 ). Sometimes sponsors and scientifi c journals require 
authors of an article to be prepared to share their raw data with other researchers. 
There are many advantages to  data sharing  (Hrynaszkiewicz et al.  2010 ; Campbell 
and Blumenthal  2002 ). These include:
•    Increased transparency in research  
•   Better possibility to replicate research fi ndings  
•   Avoidance of unnecessary data collection  
•   Increased opportunities to carry out meta-analyses  
•   Generating and testing other hypotheses related to that topic  
•   Use of the data for teaching purposes    
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 The data should be made publicly available along with the relevant metadata, such 
as questionnaires, a data dictionary, and other data-related tools. It is essential, how-
ever, that data sharing occurs in a way that respects the rights of the participants.  
Confi dentiality and stigma issues are discussed later in this chapter. Any negative 
impact of an intervention needs to be discussed with the participants before the 
results are made widely available (Partridge and Winer  2002 ). 

 Data withholding is still common among researchers. One survey of geneticists 
found that 47 % of respondents had been denied a request for data in the past 3 years 
(Campbell et al.  2002 ). Of the respondents who had themselves denied data requests, 
80 % reported that fulfi lling the request took too much effort. Other reasons given 
included the cost of transmitting the data, and protecting the right to publish using 
the data fi rst before sharing it with others. Seventy-three percent of the respondents 
felt that data hoarding had been detrimental to the progress of science in their fi eld. 

 Many types of data sharing arrangements exist, and they vary in their origin and 
purpose. On a peer-to-peer level, investigators often respond personally to data 
requests by extracting and sending the datasets personally. More formally, so-called 
 data enclaves  have been created. These are controlled, secure environments in 
which eligible researchers can use data resources to perform analyses. Similarly, a 
“data archive” is a place where machine-readable data are acquired, manipulated, 
documented, and distributed. Mixed modes of data sharing have also been used, 
with more than one version of a dataset made available, each providing a different 
level of access. Despite these arrangements, much data are proprietary and unavail-
able to most researchers. Issues of restricted access to data are an ongoing discus-
sion in the research community. There is a need for a global electronic data archive 
of accessible research data and their metadata. But such a resource is not currently 
a reality. 

 In general, a  data request  should contain the following information:
•    Research team and institution  
•   General aims and specifi c research questions that will be addressed  
•   Specifi cation of variables and records  
•   A timeline and agreement on how long data access will last. If after a certain 

period of time no research has been produced, the data should be made available 
to other researchers with similar research questions    
 Once access to data is granted, a  data sharing agreement  should be put in place 

to make expectations and responsibilities explicit. These agreements should address:
•    What the data will be used for  
•   Agreements about sharing of data with third parties  
•   A confi dentiality statement that addresses any proprietary, patent, or privacy issues  
•   A description of the dataset and information on how the data were gathered  
•   An agreement about co-authorship, if appropriate  
•   A timeline on the length of data access    

 In addition to the data, proper documentation is needed to ensure that others can 
use the dataset and to prevent misuse, misinterpretation, or confusion. The dataset 
should be provided without personal identifi ers or any information that could 
violate confi dentiality for the research subjects. One open question is whether only 
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“raw” untransformed data should be provided, or if derived variables should be 
included. In general, this decision is left to the discretion of the provider of the dataset. 
An anonymized dataset needs to be accompanied with a maximum of metadata, 
including the questionnaires used to collect the data, the study protocol, data collec-
tion Standard Operating Procedures, value code lists of variables, etc. Providing this 
ancillary information is likely to maximize the understanding of the data and avoid 
misinterpretation and wasted time on the part of the recipient researcher. 

 Once the main fi ndings of a study have been published, data sharing should 
start as quickly as possible. Sometimes data from a large study can be publically 
released in waves, as publications using different aspects of the data are released. 
For example, large questionnaire surveys may have sections that more or less 
represent the different topics for publication. Once a topic is published, data can 
be released for sharing. 

 Many scientifi c publications require or request the publication of source data, 
citing the importance of transparency and reproducibility. Despite these requirements, 
there is not universal compliance, and the enforcement of these rules varies from 
journal to journal. Often, it is not clear who should enforce these good practices. 
Should it be the journal, the funding agency, or the academic institution? This 
question remains an important – and undecided – issue in the fi eld of data sharing.   

31.2          Types of Misconduct in Scientific Reporting 

 Research misconduct can occur during study reporting. Forms of ethical breaches 
that may occur can be categorized as follows:
•     Data fabrication : This involves presenting fi ctitious data.  
•    Misrepresenting evidence : This includes manipulating data, such as removing 

unexpected results with the intention of achieving desired results  
•    Plagiarism : This involves using the thoughts and words of others without proper 

recognition by referencing or quotation  
•    Misrepresentation of authorship : This includes ghost authorship and coerced 

authorship (these terms are explained in greater detail below)  
•    Delaying publication  for personal gain or to satisfy sponsor expectations: 

Personal gain for research investigators may include prestige or fi nancial gain. 
Sponsors can delay publication to obtain patents (though pursuing patents may 
be reasonable if there is therapeutic potential that is very unlikely to be realized 
without the protection conferred by a patent)  

•    Failure to publish  results: This creates publication bias. Failure to publish results 
is commonly associated with the direction or magnitude of the study results. 
Inconclusive or negative results are less likely to be published when compared to 
positive results, but this should not dissuade the pursuit of publication. However, 
failure to publish is not misconduct if the researchers determine that there is 
very poor internal validity (in which case the reasons for poor internal validity 
may serve as an alternative subject on which to publish so others can avoid 
preventable errors)    
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  Misleading reporting  is a broad term that encompasses many of the aforementioned 
ethical breaches in study reporting (e.g., data fabrication, misrepresenting evidence, 
and plagiarism), but there are other ways in which reports can be misleading. One 
example is reporting point estimates of measures of effect  without associated 
confi dence intervals . This practice can be very misleading because it may make 
inconclusive data appear to be signifi cant. Failing to show interval estimates around 
a point estimate should raise suspicion that the authors are hiding wide confi dence 
intervals to avoid having their results considered inconclusive or due to a major 
methodological weakness. Another unacceptable approach that others have taken is 
 manipulation of graphs , e.g., stretching or shrinking the abscissa and changing the 
ordinate. This may not be entirely evident when one is reading a manipulated graph. 
The reader can be misled into thinking that the results are more signifi cant than they 
are, that a relationship is stronger than it is, or that an outcome appears sooner than 
it does in reality. 

 Furthermore, lack of protocol adherence information in the results section and 
lack of discussion of limitations can disguise any problems with design, data collec-
tion, and analysis.  Hiding design weaknesses and implementation diffi culties , such 
as an unrepresentative survey sample, non-blinding in a randomized controlled trial, 
and important random and systematic errors of measurement can make the statistical 
results appear more unbiased than warranted ( See also:  Chaps.   11     and   27    ). One 
must therefore be forthcoming in design weaknesses and implementation diffi culties. 
In fact, shedding light on these issues tends to make the researchers appear honest, 
which can in turn be useful information when interpreting the results of the study 
(as honest investigators tend to be forthcoming). 

  Hint 
  Statements regarding the safety of an intervention  past the total follow-up time 
cannot be made. Investigators cannot be certain that an intervention will continue 
to be safe in the long-term. Therefore, claims regarding the long-term safety of 
an intervention should not be made. Even within the trial follow-up time, a trial 
may not be large enough to make usefully precise estimates about occurrence 
frequency of safety issues.  

 Research misconduct can have a number of negative consequences which 
include:
•    Fraudulent work can reduce the integrity of epidemiological research. In turn, 

the public’s confi dence in scientifi c research may be reduced as a result of 
research misconduct (Benos et al.  2005 ).  

•   Dishonesty of researchers can waste the time of other researchers. Unnecessary 
studies have been conducted as a result of unreliable data from fabricated results 
being published.  

•   Dishonest and invalid evidence (that is obscured to appear valid) may lead to 
ineffective or harmful interventions being put in place or, conversely, it can lead 
to effective interventions not being put in place     
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31.3     Ethical Issues of Authorship 

31.3.1     Writing Groups 

 Writing groups have a responsibility to ensure that study reporting and publication 
occurs ethically along the lines of Panel  31.2 . Writing groups should complete work 
fairly, honestly, and objectively (Benos et al.  2005 ), and working as part of a writing 
group should be considered a means of making it more diffi cult for any one individual 
to act fraudulently. In general, writing groups can be considered as a safeguard against 
misleading reporting. All members should be trained and supervised to ensure that 
they are completing their tasks both effectively and ethically (MRC  2005 ). 

 Differences in publication expectations between the sponsor and the investigators 
are an issue for the writing group. Any confl icts of interest arising for any member 
of the research team can negatively impact the quality of the results. For example, 
fraudulent study reporting can occur as a result of a fi nancial incentive offered by 
the sponsor to the investigators of a study. Company-sponsored trials are more 
likely to produce favorable results compared to trials sponsored by bodies with no 
vested fi nancial interest in the result of that study (Perlis et al.  2005 ).  

31.3.2     Authorship Rules 

 Authorship is both a responsibility and a privilege. Therefore, only those who are 
willing to accept responsibility for at least one crucial aspect of a study, such as 
the study design, and in addition are capable of publicly defending the content of the 
scientifi c paper can be authors (Benos et al.  2005 ). However, the number of 
individuals who are included as authors on scientifi c papers is increasing. This is 
making it more diffi cult to differentiate between major from minor contributors. 
There are three requirements that need to be fulfi lled for one to be considered a 
co-author, according to the International Committee of Medical Journal Editors 
(ICMJE     2008 ):
•    Signifi cant contribution to study design, conduct, data acquisition, or data analysis  
•   Signifi cant contribution to revising or drafting the paper  
•   Read and approve the fi nal draft before submission for publication    

 It has been argued that the criteria outlined by the ICMJE are too vague, which 
results in inconsistent enforcement (Lafl in et al.  2005 ). Authorship is often consi-
dered unwarranted if the person’s role and contribution solely concerns:
•    Interviewing  
•   Acquisition of study funding/fi nancial support  
•   Having been a member of the study personnel  
•   Scientifi c advising  
•   Technical support, e.g., laboratory technicians, IT specialists    

 Eligible authors should not be deliberately excluded from the authors list. The term 
‘ghost authorship’ is used to describe such an occurrence. Once authorship has 

31 The Ethics of Study Reporting



598

been established, those who accept the responsibility must sign an authorship 
statement. Other forms to be completed by authors include those signifying 
responsibility for the work and disclosure of interest forms (Flanagin et al.  2002 ). 
Some scientifi c journals require a description of each author’s contributions, in 
order to address authorship issues. The Journal of the American Medical Association 
is an example of such a journal (JAMA  2006 ). The contribution that each member 
of a writing group made is commonly placed in the footnote section (Flanagin 
et al.  2002 ). 

 An  acknowledgements section  is commonly included at the end of a paper. The 
acknowledgements section may include the names of those who contributed to a 
study in some way but who do not fulfi ll all the necessary authorship criteria (listed 
in the authorship rules section above) (Lafl in et al.  2005 ). Conventionally, the 
authors of an article are responsible for obtaining written permission from all 
persons to be acknowledged by name.  

31.3.3     Author Listing 

 With the number of people collaborating on a single paper increasing, it is becoming 
increasingly diffi cult to establish authorship order. Traditionally those whose names 
are placed fi rst and last on a paper are considered the most signifi cant authors. The 
author who produces the original draft of a paper is typically placed as the fi rst 
author (Benos et al.  2005 ). In turn, the last author tends to be the individual who 
is at the most senior level. Some scientifi c journals allow for several members of the 
writing group to share a joint fi rst authorship status. 

 Group authorship occurs when the name of the group (e.g., the name of a multi-
center randomized controlled trial group) is listed rather than listing each author’s 
name (Dickersin et al.  2002 ). This allows for equal credit to be allocated to each 
individual investigator. Modifi ed group authorship can occur when the name of each 
investigator is placed before or after the name of the group. Some universities and 
sponsors judge scientifi c output of professionals using a system that gives more 
credits for those listed as the fi rst and last author when compared to other positions 
on the paper. Thus, group authorship can be particularly useful for large-scale and 
multi-center studies where it can be diffi cult to give everybody fair credit. This in 
turn may avoid issues in authorship that can lead to disputes and slow down publica-
tion (Horner    and Minifi e  2011b ). 

 Other ethical issues associated with author listings include:
•     Honorary authorship:  This occurs when the name of a well-known person or 

expert in a certain area is placed on a paper. This individual may not have worked 
on the paper or may not meet the three necessary authorship criteria. Honorary 
authorship commonly occurs out of obligation (Lafl in et al.  2005 ) or in order to 
increase the possibility of publication (Feeser and Simon  2008 )  

•    Coerced authorship:  This arises when senior members of a study group use their 
status to get their names placed on the authorship list of a paper. These senior 
members of staff may not meet the authorship criteria  
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•    Ghost authorship:  This involves deliberately excluding a person’s name from 
the authorship list, though they meet the authorship criteria. This can occur 
intentionally. This has occurred in industry-sponsored trials in order to conceal 
connections between potential authors and industry (Feeser and Simon  2008 )      

31.4     Publication Bias 

 Publication bias is a phenomenon that receives a lot of attention, as it has a number 
of ethical and scientifi c consequences. Montori et al. ( 2000 ) published an introduction 
to this topic. 

31.4.1     What Is Publication Bias? 

 Publication bias is a bias in the overall pool of evidence surrounding a research 
question, and is the result of the selective publication of manuscripts based on the 
magnitude or direction of the study results (Montori et al.  2000 ). One study con-
cluded that positive studies are up to three times as likely to be published when 
compared to inconclusive studies (Egger and Smith  1998 ). Positive results are also 
more likely to get published in higher profi le journals (Easterbrook et al.  1991 ). 
Along with this, positive results also get published sooner and are cited more 
regularly when compared to negative or inconclusive studies (Dickersin and 
Rennie  2003 ). It can be argued that all these perceived benefi ts of creating positive 
results contribute to publication bias. 

 Publication bias tends to be greater for observational studies than for randomized 
trials. Small-scale studies are more likely to produce inconclusive results. Therefore, 
they are more likely to remain unpublished (Begg and Berlin  1989 ; Vickers 
et al.  1998 ).  

31.4.2     How Does Publication Bias Occur? 

 Publication bias is an important problem both from a scientifi c and an ethical 
perspective. Therefore, understanding the roots of this phenomenon and fi nding 
ways to prevent and amend it are important. In fact, there are several stages of the 
research process where there are forces that can act towards publication bias. They 
are listed in Panel  31.3 . 

 It is commonly misperceived that publication bias occurs predominantly because 
journals reject manuscripts with non-signifi cant results (Scholey and Harrison 
 2003 ). On the contrary, the primary explanation for publication bias is the failure of 
investigators to complete or submit negative or inconclusive results for publication 
(Easterbrook et al.  1991 ). Investigators may decide that their non-signifi cant or 
inconclusive fi ndings do not add anything to the pool of evidence already available, 
that they are undeserving of publication, or that publication would be harmful for 
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their reputation. They may also think that their fi ndings are unlikely to be published. 
However, non-publication can be viewed as disrespectful towards study participants 
and sponsors (Scholey and Harrison  2003 ). 

 In the context of evidence-based medicine, systematic reviews and meta- 
analyses are commonly conducted in order to assess existing evidence on the effec-
tiveness of a certain treatment or intervention. The reliability of such overall 
evidence depends on the completeness and quality of the available literature 
(Tumber and Dickersin  2004 ). Selective publication of positive results creates a 
biased estimate for the overall effects of a treatment or intervention. Non-reporting 
of negative or inconclusive results is an act of scientifi c misconduct as it contributes 
to building this biased pool of evidence for decision-making (Chalmers  1990 ), 
though deciding not to report a study that has poor internal validity is not a form 
of misconduct. The decision of an investigator not to submit for publication 
can result in redundant trials being conducted, which may unnecessarily expose 
study participants to a potentially harmful intervention. Harmful or ineffective 
interventions may also remain in practice due to non-publication (Tumber and 
Dickersin  2004 ). 

     31.4.2.1 Publication Bias by Interruption of Data Collection 
 Some investigators or sponsors may decide to stop data collection for reasons that 
are associated with an interim picture of signifi cance or magnitude of the effect size. 
Investigators may feel that the interim results are not spectacular enough to warrant 
publication. It may also be that the results are not in the originally predicted direc-
tion (positive or negative). Sponsors may have a view that the research is no longer 
a worthwhile investment and therefore ‘pull the plug’ on the funding.  

    31.4.2.2  Selective Decisions to Write an Article and Submit 
for Publication 

 Some investigators or sponsors may decide not to report study results during the 
analysis stage. This again may be associated with signifi cance or magnitude of 
effect. Another possible explanation regarding decisions not to publish results may 
relate to a publication veto from sponsors. This occurs when sponsors prohibit 
investigators from publishing results without their approval. Sponsors may put this 
publication veto in writing in the form of a contract to be signed by investigators 
prior to the study commencing.  

   Panel 31.3 Stages of the Research Process in Which Publication Bias Can Arise 

•     Completion of data collection  
•   Decision to write an article and submit for publication  
•   Initial evaluation by editors  
•   Results of peer review  
•   Decision to re-submit after initial rejection    
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    31.4.2.3  The Responsibility of Editors and Peer Reviewers 
in Publication Bias 

 Journal editors or conference organizers may refuse to consider a publication. Their 
reason for rejection may be infl uenced by the signifi cance/magnitude of the study 
results. Journal editors tend to have a preference for results that are positive and 
spectacular. The editor’s knowledge of how a study was funded can also infl uence their 
decision. For example, government agency funded studies are more likely to get 
published than those funded by pharmaceutical companies. Editors may perceive the 
results of studies produced by government agencies as more important or reliable than 
studies funded by other means (Easterbrook et al.  1991 ). This potential source of 
publication bias has probably received more attention than any other explanation. 

 It is possible that some peer reviewers are more critical of studies with less spec-
tacular results. The reviewer could also potentially decide that a study without any 
spectacular results does not add anything to the overall pool of evidence already 
available on that certain topic. Editors commonly ask reviewers to judge an article 
based on its ‘appropriateness’ for the journal. This can turn out to play a role in 
publication bias.  

    31.4.2.4 Decision to Re-submit After Initial Rejection 
 A number of factors may infl uence an author’s decision to re-submit for publication. 
These may include the amount of time a person is willing to spend on one paper or 
perhaps the benefi ts that a person expects as a result of publication. For example, the 
prospect of career advancement may be felt to be stronger when the study fi ndings 
are positive. Authors who view their results as ‘fascinating’ or of clinical signifi cance 
may be more likely to re-submit their paper for publication.   

31.4.3     How Can Publication Bias Be Detected? 

 There are two main approaches to study the existence of publication bias in a certain 
domain. The fi rst approach is to show that one or more of the selection processes 
described earlier have played out in the studies about the topic. A potential method 
to do this is to follow registered trials and studies submitted to ethics committees. 
Of the studies that remain unpublished, each could be assessed for explanations 
regarding failure to publish. 

 The second approach is to detect defi ciencies in the pool of published evidence on a 
particular topic. This approach involves assessing systematic reviews or meta- analyses. 
Assessing asymmetry in funnel plots can sometimes show the existence of publication 
bias. A funnel plot is a graph that depicts, for all studies included after the literature 
search, the sample size or the inverse of the standard error as a function of the outcome 
estimate’s magnitude ( See:  Chap.   25    ). When a large number of studies are included, a 
plot without publication bias will be symmetrical in shape and will resemble an inverted 
funnel. Asymmetry of the funnel can, under certain conditions, point to the existence 
of publication bias. Statistical methods to test for  asymmetry have been developed; 
however, the validity of these methods has been questioned (Sterne et al.  2001 ).  
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31.4.4     Publication Bias in the Literature: An Example 

 An example of publication bias and its consequences is described in Textbox  31.1 . 
This example highlights the possible serious consequences of failing to publish the 
results of a study. A number of ethical considerations are highlighted.    

31.4.5      What Can Be Done About the Problem of Publication Bias? 

 Solving the problem of publication bias will require a huge shift in the scientifi c 
tradition within medicine. Several strategies to tackle the problem have been proposed 

   Textbox 31.1 A Case of Publication Bias: The Effects of Antiarrhythmic Drugs 
on Mortality Rates in Patients with Myocardial Infarction 

 Antiarrhythmic drugs were administered to patients following an acute 
myocardial infarction, as there were biologically plausible reasons for admi-
nistering the drug. Furberg published a systematic review in 1983 which con-
sisted of 14 trials assessing the relationship between class 1 antiarrhythmic 
drugs and myocardial infarction. This meta-analysis did not detect a benefi cial 
effect on the primary outcomes. However, the results demonstrated an 
increase in sudden death occurring in patients with ventricular arrhythmias. 
Antiarrhythmic drugs continued to be used in practice, as the evidence from 
this review did not convince clinicians to change their behaviors with regard 
to this drug. Many additional trials were conducted assessing this relationship 
between antiarrhythmic drugs and myocardial infarction. In 1993, a study that 
was conducted in the 1980s was published. This study demonstrated the 
harmful effects of administering the drug. The use of class 1 antiarrhythmic 
drugs was then halted. If the results of this study were published in a timely 
manner, the use of this drug would have been stopped earlier and many lives 
would have been saved. Estimates suggest that in the US alone between 
20,000 and 75,000 people died each year during the 1980s as a result of the 
inappropriate administration of the drug (Dickersin and Rennie  2003 ). 

  Ethical issues arising from this example include: 
    1.    The importance of timely publication of research   
   2.    The effects that non-publication of results can have on meta-analyses   
   3.    The effects that non-publication and late publication can have on clinical 

practice along with serious consequences in terms of morbidity and mortality   
   4.    Redundant research being conducted as a result of non-publication and 

late publication. This redundant research wastes the time researchers, 
wastes resources, and can harm participants    

   Additional reading on this topic:  Teo, Yusuf and Furberg ( 1993 ) 
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or attempted (Panel  31.4  lists some). Some measures have been put in place, such as 
clinical trial registries, but overall the problem remains acute, especially for obser-
vational research. Debate about the best strategy is ongoing. 

 Websites containing study protocols that are published prior to study commence-
ment can make people aware of research that is currently being conducted. Such 
websites would also make it diffi cult for investigators to change research methods 
during the trial. 

 Other proposed strategies, such as journals focusing on the publication of nega-
tive results or incentives to promote publication of negative results, have not yet 
been met with any enthusiasm. Increasing the recognition of those who work on 
studies who produce negative results can also potentially improve the problem. 
Investigators, institutions, and those who fund such studies should be increasingly 
acknowledged for their work. Studies that produce negative results can be just 
as informative as those that produce spectacular results. They can, for example, 
demonstrate interventions and treatments that are not effective. Such studies can 
also demonstrate an investigator’s ability to do good quality research (Tumber and 
Dickersin  2004 ).    

31.5       Confidentiality and Stigma Issues 
in Publication and Data Sharing 

31.5.1     Confidentiality 

 Study participants have the right to confi dentiality. When preparing a manuscript 
for publication, it is essential that all participants of a study remain anonymous. Any 
written identifying information must be removed from tables, graphs, and associated 
text. For example, any initials, dates of birth, hospital record numbers, etc. must be 
removed from the study results prior to publication. The only exception is when a 
participant gives written consent to publish some potentially identifying information. 
For example, participants could be identifi ed by placing photographs or other 

   Panel 31.4 Possible Strategies to Combat Publication Bias 

•     Peer review and editorial decisions based on papers submitted without 
outcome parameter estimates and P-values  

•   Promotion of group authorship  
•   Clinical trials registries and observational research registries  
•   Websites for posting study protocols  
•   Journals focusing on publication of negative and inconclusive results  
•   Incentives to promote publication of negative results  
•   Incentives for publishing unpublished studies    

31 The Ethics of Study Reporting



604

identifying information in the paper. In such circumstances, participants should be 
made aware of this in the informed consent process and give explicit written permis-
sion to allow potentially identifying information to be published. Under this consent, 
they are allowed to view the manuscript prior to publication (ICMJE  2008 ). In any 
picture, the participant’s identity should not be immediately recognizable (e.g., by 
masking a person’s eyes), and potentially distinguishing bodily features (e.g., tattoos 
and other body art) should be covered. All of these measures must be outlined in the 
informed consent process. 

 Breaches of anonymity can occur in data sharing when the shared datasets 
contain direct personal identifi ers, extreme or very rare true values of variables 
(e.g. a woman who birthed a very large number of children in a small, tightly knit 
community), or responses to open-ended questions (e.g., unique phraseology). It is 
therefore necessary to trace all ‘dangerous’ data values and reduce the amount of 
information on the participants concerned in any publication or in any dataset that 
is to be publically archived.  

   Textbox 31.2 Stigma and Study Reporting: An Example for Discussion 

  Podoconiosis  (non-fi larial elephantiasis) is an endemic condition in many 
parts of Africa and is most prevalent in barefoot communities. It results in 
progressive swelling of the lower limbs due to long-term exposure to red 
clay soils of volcanic origin. Recent evidence has suggested that there is a 
genetic basis to the disease, implying that it is possible for entire families 
to face stigmatization as a result of an individual’s condition (Tekola et al. 
 2009 ). Those who suffer from podoconiosis are stigmatized in a number 
of ways. For instance, they have been excluded from schools and local 
events and banned from marrying those who are unaffected by the condition. 
In the study by Tekola et al., those already suffering from the condition 
were afraid that genetic research would only further increase stigma and 
social isolation experienced by families and communities suffering from 
the condition. 

  Discussion Points   Consider that you are preparing to conduct and publish a 
study assessing family and genetic factors associated with podoconiosis in an 
endemic region.
    1.    What ethical issues do you need to take into account?   
   2.    How would you ensure that participants in the study remain anonymous?   
   3.    What ethical issues must you consider while preparing a manuscript for 

publication?   
   4.    What forms of study reporting would you use to increase awareness and 

reduce stigmatization associated with the condition in endemic areas?      
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31.5.2     Stigma 

 Individuals with a certain disease or specifi c groups of people (such as those in 
a specifi c geographic location) can be stigmatized as a result of publication. 
Stigma is especially prone to occur if an illness has adverse outcomes, is 
acquired as a result of risky behavior, or results in an altered appearance. 
Textbox  31.2  outlines an example of a stigmatizing condition and provides 
some discussion points. 

 Authors can also be stigmatized and even  ostracized  as a result of the work that 
they publish. For example, their published fi ndings may indicate that a health 
service policy systematically under-serves a certain segment of the population. 
There should be no punishment for these so-called ‘whistle blowers.’ Such honesty 
is necessary to ensure that interventions and policies do not negatively impact 
individuals or populations and do not waste public resources.    

31.6       Conflicts of Interest 

 Confl icts of interest can occur at any stage of the research process (MRC  2005 ). 
Thompson ( 1993 ) described a confl ict of interest as “a set of conditions in which 
professional judgment concerning a primary interest (such as a patient’s welfare or 
the validity of research) tends to be unduly infl uenced by a secondary interest (such 
as fi nancial gain).” Financial gain is one of many factors that can result in such a 
confl ict. A fi nancial confl ict of interest can take many forms, such as fees for 
consulting or speaking, employment, or stock ownership (Perlis et al.  2005 ). Other 
factors that can generate confl ict of interest include personal beliefs, relationships, 
political factors, religious considerations, and academic competition (Benos et al. 
 2005 ; Campbell et al.  2007 ; Krimsky    and Rothenberg  1998 ). 

 The level of interaction occurring between for-profi t companies and medical 
researchers has increased signifi cantly over recent years (Morin et al.  2002 ). Many 
researchers are dependant on for-profi t companies in order to assist with funding 
of projects. These academic-industry collaborations are a common source of con-
fl icts of interest. Non-profi t organizations may also have special interests, so their 
involvement in any stage of a research project may also introduce concern over 
confl ict of interest. 

 The existence of a secondary interest does not necessarily imply a confl ict or any 
wrongdoing on the part of the researcher (Haines and Olver  2008 ; Krimsky and 
Rothenberg  1998 ). 

 However, confl icts of interest can result in poor decision-making, introduce bias 
into a study (e.g., modifying design to favor one result over another), or even lead 
to criminal offences (e.g., altering or falsifying results to achieve the sponsor’s 
desired outcome). Confl icts of interest can also lead to a perception that the researchers 
were ‘bribed’ for-profi t companies (Haines and Olver  2008 ). 
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31.6.1     Disclosure of Conflict of Interest 

 Fundamentally, it is not unethical for a researcher to have a confl ict of interest. But 
if a confl ict of interest exists, it must be recognized and dealt with in an appropriate 
manner. A typical solution is to fully disclose all secondary interests, especially if 
the investigator feels uncomfortable at the thought of others becoming aware of any 
secondary interests. Indeed, the credibility of the relevant research and of epide-
miologic research in general can be improved by disclosing potential confl icts of 
interest (MRC  2005 ). 

 When submitting a manuscript for publication, authors are fully responsible for 
disclosing all potential confl icts of interest. To prevent any uncertainty, the authors 
must state specifi cally where any secondary interests exist. Confl ict of interest notifi -
cation pages must be placed in manuscripts sent to journal editors for review. It is then 
the editor’s decision whether to publish the information provided by authors regarding 
any confl icts (Davidoff et al.  2001 ). Additionally, confl icts of interest may be disclosed 
in the acknowledgements section, an approach that may afford to the authors more 
control over disclosure. Current practice is to disclose only potential major confl icts of 
interest, such as holding more than $10,000 (USD) equity in the sponsoring company. 
Minor potential confl icts of interest (e.g., holding less than $10,000 in equity) are not 
typically disclosed but perhaps should be. Failing to disclose potential confl icts of 
interest, especially fi nancial ones, is unadvisable and highly risky. 

 If a manuscript was produced using data from industry-sponsored research, 
editors of journals may ask authors to sign statements to ensure full disclosure of 
any confl icts of interest. Editors can assess the role of the sponsor in data collection, 
analysis, and study reporting and may ask to review the study protocol and any 
contracts signed between the sponsor and the investigator (Davidoff et al.  2001 ). 
This is important because contracts developed by sponsors can:
•    Limit the amount and types of data that the author has available for publication. 

For instance, extreme values, outliers, or confounding variables may be excluded. 
This may disguise any adverse events associated with a particular drug or inter-
vention or produce misleading associations  

•   Reduce the amount of power that an author has to ethically and honestly report 
study results. Investigators may have to present results to the sponsor prior to 
publication. Sponsors can then decide what parts of the manuscript are suitable/
unsuitable for publication  

•   Potentially allow for publication bias. Unfavorable results may remain unpub-
lished if the sponsor has power over whether the study results are to be published 
(Davidoff et al.  2001 )    
 Possible reasons for non-disclosure of confl icts of interest include:

•    Payment that is indirectly related to work conducted by the investigator  
•   Disclosure requirements that are not fully understood by the investigator  
•   Lack of communication between co-authors when preparing a manuscript for 

publication  
•   Absence of the confl ict of interest at the time of publication    

 The current means of determining confl icts of interest are, to some extent, sub-
jective and open to interpretation. This is likely to have contributed to observed 
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discrepancies in reporting confl icts of interest (Okike et al.  2009 ). Reducing any 
uncertainty arising around confl icts of interest is crucial in order to reduce non- 
disclosure. Developing a deeper understanding of how researchers perceive confl icts 
and collaborations with industry can inform future efforts to establish a gold standard 
of ethical behavior (Ross et al.  2009 ). Such standards would, in turn, remove any 
uncertainty surrounding confl icts of interest.    

31.7       Intellectual Property 

 Intellectual property (IP) is newly achieved knowledge that has been given specifi c 
property rights. The Universal Declaration of Human Rights defi nes an intellectual 
property right (IPR) as “the right to the protection of the moral and material interests 
resulting from any scientifi c, literary or artistic production of which he is the author” 
(United Nations  1948 ; Barton et al.  2002 ). Put alternatively, IPR give ownership or 
temporary exclusivity of an idea or innovation in exchange for public disclosure of 
newly achieved knowledge. This section describes the various forms of IP, raises 
ethical issues created by IPR, and suggests approaches to dealing with those issues 
when publishing articles on related material. 

31.7.1     Forms of Intellectual Property 

 There are several forms of IP that differ in their respective rights, entitlements, and 
embodiments. These include copyrights, patents, database protection, trade secrets, 
and trademarks. The latter two have little relevance to epidemiology and are therefore 
not discussed here. 

  Textbox 31.3 An Ethical Dilemma and Research Sponsorship (Discussion Theme) 

 You are conducting a randomized controlled trial to assess the effectiveness of 
a new drug for the treatment of hypertension. The experimental group will 
receive the new drug while the intervention group will receive the current goal 
standard drug. The pharmaceutical company who developed the new drug is 
going to fund the research, and this sponsor presents you with a contract to sign. 
These contracts state that you must present all results to the company prior to 
publication. This contract also states that they may alter any results you fi nd. 

  Discussion Points 
     1.    What ethical issues does this contract present in terms of your own 

personal responsibilities as a scientifi c researcher?   
   2.    How would you deal with this situation?   
   3.    How could this contract affect your results?   
   4.    What are the possible adverse consequences of signing such a contract?      
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   31.7.1.1  Copyrights 
 A copyright is a form of legal protection that gives exclusive rights to the author(s) 
of an original piece of written work. The copyright holder therefore controls the 
reproduction and distribution of their work. Copyrights allow authors to further 
reproduce their own work, create further derivative work, and to transfer their work 
to others (Horner and Minifi e  2011a ). An article is the IP of the author(s) or the 
author(s) assignees (e.g., a journal that holds an article’s copyright) and not of those 
who sponsored the study, unless contractual obligations specify otherwise.  

    31.7.1.2 Patents 
 Patents are a commonly used form of IP and the centrepiece of much controversy. 
In some academic circles, patents are cast in a negative light and, from one perspec-
tive, are viewed as mechanisms that delay or preclude dissemination of important 
knowledge and that reduce access to healthcare innovations, especially in developing 
countries. From another perspective, patents are viewed as engines of innovation, 
the absence of which might interfere with the advancement of technology and the 
public dissemination of knowledge enabling that technology. Regardless of which 
perspective one might have, patents raise important ethical concerns. 

 Patents allow a technology’s inventors exclusive rights over the production and 
use of a described invention for a period of time. Patent laws and application 
processes vary considerably in different countries or international entities (e.g., the 
European Union), and patents issued in one country may not be enforceable in 
others. A general description of a patent application process is described below to 
delineate the point at which IP disclosure is necessary when publishing one’s work; 
this discussion should not be construed as legal advice. 

 If an investigator is contemplating pursuit of IP, it is advisable fi rst to inform and 
to consult with technology transfer offi cials at each of the institutions at which 
an invention was discovered, as each may have unique policies in place and 
can provide further guidance and support. This process is known as  disclosure . 
The inventors may then fi le a  provisional  patent application to secure provisional 
IP protection until the appropriate authorities render a decision on the fi nal application 
or, if a fi nal application is not fi led, until the deadline for submission of the fi nal 
application passes. Disclosure of an invention to an institution does not necessitate 
revealing that action in publications. However, having a provisional or fi nal patent 
application open with one or more regulatory authorities generally confers provi-
sional IP protection; in either scenario, at minimum all relevant inventors should be 
identifi ed, and the status of the invention should be described as  patent pending  to 
enable the reader to assess the author’s objectivity and confl ict of interest (e.g., due 
to potential fi nancial gain). Neither the patent application itself nor its reference 
number needs to be disclosed. Having an issued patent, if it is germane to the subject 
of a publication, requires disclosure of that fact at least through the life of the patent. 
Sometimes sponsors of an investigation hold IP on the topic of an original article 
(e.g., a pharmaceutical company that sponsors a clinical trial on its drug), a situation 
that is usually not reported but inferred by way of disclosing sponsors with a fi nancial 
confl ict of interest.  
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    31.7.1.3 Database Protections 
 In some countries databases are protected by copyright, but in others separate 
legislation provides special IPR to database owners. These IPRs are referred to as 
 database protection . Laws that establish database protections have been the subjects 
of controversy in part because they enable database owners from making scientifi c 
databases inaccessible to other researchers indefi nitely or for a specifi ed period of 
time. Temporary database restriction allows the original investigators the opportunity 
to produce the earliest publications, but some databases remain proprietary indefi -
nitely (i.e., closed-access), such as clinical trial databases produced by pharmaceutical 
companies. Completely closed-access databases have dubious ethics because they 
allow investigators to conceal any fl aws in their statistics or methodology, and they 
preclude maximal utilization of data. For these reasons, we strongly favor an open 
access system, wherein databases are made available for use by other epidemiologists 
for academic purposes.       
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The Editors have identified two errors that require correction, as described below: 

1.	 Chapter 7, Equation 7.6 description for term σ, page 150

Equation 7.6 is written correctly, however the term σ is incorrectly described as  
“σ = expected standard deviation of the mean difference.” 

The correct description for σ is as follows:

σ = expected standard deviation of the mean for population 1 (σ1) or population 
2 (σ2) 

2.	 Chapter 22, Equation 22.2 Step 2, page 424

The lower and upper limits of the 95 % confidence interval for the incidence rate 
are incorrectly shown as:

Lower limit = e
A

B
SE−1 96. *

Upper limit = e
A

B
SE+1 96. *

The correct formulas are:

Lower limit = e
ln . *

A

B
SE






−1 96

Upper limit = e
ln . *

A

B
SE






+1 96

The Editors apologize if these errors caused the reader any inconvenience.
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