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Flow driven through a segment of flexible tube, supported between rigid
pipes and enclosed in a pressurized chamber, is susceptible to a variety of
self-excited oscillations. This paper provides a brief review of recent mod-
elling efforts aimed at understanding some of the underlying mechanisms of
instability in this system. In particular, it is shown how a family of spa-
tially one-, two- and three-dimensional models have been used to investigate
a global instability arising at high frequencies, whereby axial sloshing mo-
tions driven by transverse wall oscillations are able to sustain themselves by
extracting kinetic energy from the underlying mean flow.

1 Introduction

Fluids are distributed around the human body via networks of flexible tubes,
and accordingly flow-structure interaction plays an important role in a num-
ber of biomedical transport phenomena. Flow limitation, for example, is well
known to clinicians: collapse of veins above the heart (because of reduced
hydrostatic pressure in an upright individual) limits return of blood to the
heart — a particular concern for giraffes [1] — and flow-induced collapse of
asthmatic airways inhibits expiration from the lung. Collapse of an elastic
tube such as a vein or airway is likely to involve a buckling instability. Under
positive transmural (interior minus exterior) pressure, the tube is circular in
cross section and strongly resists area change; however under negative trans-
mural pressure, the tube buckles (for example to an elliptical cross section)
and becomes much more compliant. In the buckled state, there is potential for
significant interaction between internal fluid flows and the elastic wall, and
instabilities are commonplace. In the body, these are manifested for example
as Korotkoff sounds (oscillations of the collapsed brachial artery underneath
a blood-pressure cuff inflated around the upper arm) and wheezing during
forced expiration [2, 3].
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Fig. 1 The Starling Resistor. A flux Q is driven from left to right by a pressure
drop between inlet and outlet (at pressures pu and pd respectively). The collapsi-
ble segment of tube is subject to external pressure pe and may buckle to a non-
axisymmetric cross-section when collapsed, as indicated.

The Starling Resistor [4] is a bench-top device that has been used to illus-
trate these phenomena to medical students for many years, and which has
inspired and challenged researchers in biofluid-mechanics since the 1960s. A
segment of elastic tube is mounted between two rigid tubes (Fig. 1). Flow is
driven through the system either under a fixed pressure drop pu−pd, or with
fixed volume flux Q. A chamber enclosing the flexible segment is raised to
pressure pe, causing collapse of the tube. When carrying a flow, the viscous
pressure drop along the flexible segment causes the tube to collapse first to-
wards its downstream end as pe is increased. The pressures at the upstream
and downstream ends of the flexible segment (p1, p2) are typically recorded
experimentally. The steady flow properties of the system are strongly nonlin-
ear: sucking on the downstream end of the tube (increasing p1 − p2 for fixed
p1 − pe) leads to flow limitation, i.e. a maximum possible flux Q; blowing
on the upstream end of the tube (increasing Q while holding p2 − pe fixed)
leads to saturation of the pressure drop p1−p2. Self-excited oscillations arise
during these manoeuvres in many regions of parameter space, even at mod-
est Reynolds numbers (e.g. 300-500) if the tube wall is sufficiently thin. The
oscillations fall into distinct frequency bands, exhibit a variety of character-
istic nonlinear waveforms and depend strongly on the properties of the rigid
parts of system (such as the lengths of the upstream and downstream rigid
segments). The dynamics of the system have been carefully characterised
experimentally by Bertram and co-workers [5, 6].

The present paper provides a review of some recent theoretical develop-
ments aimed at understanding the possible mechanisms of self-excited oscil-
lation. The discussion is confined to a specific parameter regime in which
the internal flow is below Reynolds numbers at which there is transition to
turbulence, and for which fluid inertia dominates wall inertia (high-frequency
flutter modes associated with wall inertia are not considered). The primary
mechanical ingredients in all models discussed below are wall elasticity, fluid
inertia (throughout the entire system) and viscous dissipation. The problem
illustrates the value — and limitations — of relatively elementary models
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in informing more sophisticated approaches. Accordingly, the discussion pro-
gresses from spatially one-dimensional (1D) models, which are useful in ex-
ploring the relationship between local and global instabilities and in providing
an overview of parameter space (§3), through 2D models, in which oscillation
thresholds can be predicted using high Reynolds-number asymptotics (§4),
through to recent developments in 3D (§5). Comprehensive reviews of earlier
studies and a more general account of relevant biomedical applications are
provided in [2, 3, 7].

2 Models of Flow in the Starling Resistor

It is helpful to put the discussion to follow into context by taking a brief
overview of the different modelling approaches that have been used to address
flow in the Starling Resistor.

Initial zero-dimensional (lumped-parameter) models described the system
using a small set of time-dependent variables, incorporating approximate
statements of mass and momentum conservation and a simple ‘tube law’
to model wall elasticity. By incorporating the basic mechanical ingredients
mentioned above, Bertram & Pedley [8] for example were able to reproduce
self-excited oscillations, and later models were shown to exhibit nontrivial dy-
namics [9]. However the inability to capture wave propagation is a fundamen-
tal limitation of this approach, and motivated the development of 1D models.
These involve two coupled PDEs in the tube area α(x, t), cross-sectionally
averaged axial velocity u(x, t) and internal pressure p(x, t) [10, 11]. However
in this framework there is (inevitably) an ad hoc representation of viscous
dissipation (either distributed along the tube [12] or associated with a sepa-
rated internal jet [11]) and of the tube elasticity, for which a modified tube
law of the form p − pe = P (α) − Tαxx is commonly used, where T repre-
sents axial tension and P is a nonlinear function capturing the dependence of
compliance on the degree of tube collapse. 1D models predict multiple steady
tube configurations in the presence of axial flow [13] and distinct oscillatory
modes (numbered 2, 3, 4, . . . according to the number of area extrema) aris-
ing in overlapping regions of parameter space, appearing in distinct frequency
bands [14].

Given the inherent complexity of the Starling Resistor, involving as it does
non-axisymmetric tube buckling coupled to unsteady separating 3D internal
flow, much attention has focussed on a simpler 2D problem, first addressed
by Pedley [15]. This involves a finite-length channel, one wall of which con-
tains a segment of flexible membrane (see Fig. 2 below). While the device
has yet to be realised in any physical experiment, because of the difficulty
of constructing genuinely 2D flow conditions, it has nevertheless been inves-
tigated fruitfully by both asymptotic and numerical modelling approaches.
Guneratne & Pedley [16] explored steady flow at high Reynolds numbers, using
interactive boundary-layer theory, which captures weak flow reversal beyond
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Fig. 2 The 2D analogue of the Starling Resistor. Flow is driven by a fixed pres-
sure drop pu through a finite-length channel, one wall of which contains a flexible
membrane under external pressure pe(x). Distances x and y along and across the
channel are scaled on the length of the flexible segment and the channel width.

constrictions. They demonstrated multiple static solutions in modes 1, 2, etc.,
bifurcating from the uniform state via transcritical bifurcations or through
saddle-node bifurcations when the symmetry of the base state was perturbed
by non-zero external pressure. The model revealed regions of parameter space
in which no steady state could exist. Unsteady flows in the 2D analogue of the
Starling Resistor have been captured in a series of papers using finite-element
methods by Luo, Pedley and co-workers [17, 18]. Here oscillatory modes 2, 3,
4 have again been identified in overlapping regions (‘tongues’) of parameter
space, arising in distinct frequency bands, associatedwith which are transverse
wavelike displacements of the internal core flow downstream of the oscillat-
ing membrane; these are low frequency, long wavelength Tollmien–Schlichting
(TS) waves, often referred to in this context as vorticity waves. While distinct
oscillatory modes were captured also in 1D [14], it is clearly not possible to de-
scribe TS waves in a 1D framework and their role in the underlying instability
mechanism remains to be fully understood.

Improvements in computational power in the last decade, plus the devel-
opment of algorithms in which fluid and solid mechanics problems are solved
in a fully coupled (monolithic) manner [19], have recently allowed 3D simula-
tions of the Starling Resistor to become feasible. Finite-element simulations
coupling geometrically nonlinear shell theory to a steady Navier–Stokes solver
were reported by Hazel & Heil [20]; there has also been success in simulating
steady flow solutions using a commercial package [21]. Something of a mile-
stone in the history of this problem was passed at the XXII ICTAM with
the first report of fully unsteady 3D simulations of self-excited oscillations in
the Starling Resistor [22], which involve transitions between distinct buckled
states (illustrated schematically in Fig. 5(b) below).

A parallel strand of research has addressed instabilities of flows in homo-
geneous flexible channels. Here, wave-like solutions of the linearized Navier–
Stokes equations are sought, satisfying boundary conditions capturing
properties of a deformable wall (bending stiffness, tension, springs, damp-
ing, inertia, etc.). Multiple modes of local instability have been identified,
and it is useful to consider how they may be related to the global instabilities
arising in the Starling Resistor. Briefly, the local modes are classified into four
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major groups [23, 24, 25]: static divergence (SD); TS waves; travelling-wave
flutter (TWF); and interactive modes. A global SD instability is responsible
for the multiple static modes seen in 1D [13] and 2D [16] analyses of finite-
length collapsible tube or channel flows: SD can arise through both viscous
and inertial mechanisms. TS waves (evident in 2D simulations [17]) arise of
course in rigid-walled channels but in the presence of a flexible wall they
can be destabilized by wall damping. In contrast, TWF is stabilized by wall
damping (requiring energy to be transferred from the flow to the wall).

Connections between local and global modes of instability in the context
of a 1D model are now explored further, and energy methods are used to
distinguish between distinct mechanisms of global instability in the Starling
Resistor.

3 A One-Dimensional Model

A recent study [26] of a 1D model of flow in a 2D collapsible channel (Fig. 2)
has revealed a number of significant features of self-excited oscillations, which
we review briefly here. Consider the flow driven by a prescribed pressure
drop through the 2D analogue of the Starling Resistor (Fig. 2). An external
pressure distribution is prescribed that exactly matches the linear pressure
drop that would arise if the channel were uniform. This enables the system
to support the uniform flow state as a steady solution. The membrane is
held under longitudinal tension. The 2D Navier–Stokes equations describing
the flow through the channel are reduced to the boundary-layer equations by
making a long-wavelength approximation. A further reduction to a 1D system
is achieved by making a von Kármán–Pohlhausen approximation, whereby a
prescribed parabolic velocity profile is assumed, enabling the mass and mo-
mentum equations to be integrated across the channel. The resulting model
equations expressing mass and momentum conservation are, in dimensionless
form [26],

ht + qx = 0, (1a)

qt +
6

5

(
q2

h

)
x

= Thhxxx +
12

R

(
h− q

h2

)
(1b)

along the length of the flexible segement of channel in 0 < x < 1. Here h(x, t)
is the channel width and q(x, t) the axial volume flux. The rigid segment of
channel upstream has relative length L1 and that downstream L2. Attention
is focused on the case L1 < L2, for reasons explained below. Additional di-
mensionless parameters are a Reynolds number R and a membrane tension
parameter T ; the term 12h/R arises from the choice of external pressure
distribution. The model is expected to be reliable for R � 1, when viscous ef-
fects are dominant, but potentially unreliable for R � 1 or for high frequency
motion. Equations (1a,b) are solved subject to boundary conditions
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h = 1, Thxx = L1

[
12

R
(q − 1) + qt

]
(x = 0), (1c)

h = 1, Thxx = −L2

[
12

R
(q − 1) + qt

]
(x = 1), (1d)

which account for the pressure drop associated with viscous dissipation and
unsteady inertia in the upstream and downstream rigid channel segments.
Eqs (1a-d) admit the uniform steady solution h = 1, q = 1, enabling straight-
forward linear stability analysis of this state.

It is useful first to consider the dispersion relation for small-amplitude
wavelike disturbances of wavenumber k and frequency ω arising in the flexible
segment of the channel, satisfying the linearised form of Eqs (1a,b). This is

ω2 +
6

5

(
k2 − 2ωk

)− Tk4 − 12i

R
(3k − ω) = 0. (2)

Analysis of Eq. (2) in the complex k and ω planes using the Briggs–Bers
condition reveals that any unstable disturbances are convectively, but not
absolutely unstable, with the large-time response to point forcing arising
through an interaction of an evanescent upstream SD mode and an unstable
downstream TWF mode [26]. Thus any instabilities that arise in the finite-
length system cannot involve absolute instability of these modes.

In order to account for boundary conditions, a global linear stability anal-
ysis is necessary. Looking for small disturbances to the uniform state with
time dependence eσt, a fourth-order eigenvalue problem must be solved. This
reveals multiple modes of static and dynamic instability. Neutral curves in
the (R, T )-plane are identified across which static modes arise through trans-
critical bifurcations (where σ = 0) and oscillatory modes arise through Hopf
bifurcations (where Re(σ) = 0). Following the convention mentioned previ-
ously, modes are labelled by the number of extrema in h. The uniform state
is linearly stable for high tension and low Reynolds number. If T is reduced
for fixed low R, the uniform state becomes unstable to static mode 1 and
mode 2 instabilities, through a global viscous SD instability. Alternatively,
if R is increased for fixed T � 1, the uniform state becomes unstable to an
oscillatory mode 1 instability, which has high frequency because of the large
membrane tension.

Although this 1D model is not expected to be quantitatively reliable for
high-frequency motion, the oscillatory mode 1 instability arising for T � 1
turns out to be worthy of analysis. An asymptotic approximation can be
constructed by expanding variables in powers of T−1/2. At leading order, the
flux perturbation Q0(x) satisfies a fourth-order self-adjoint eigenvalue prob-
lem parameterized only by L1 and L2, involving a balance between unsteady
inertia and membrane tension. This reveals a normal mode of the system, in
which transverse oscillations of the wall drive an axial oscillatory sloshing mo-
tion of the fluid within the entire channel. This is independent of the imposed
mean flow to this order. Because L1 < L2, the amplitude of sloshing is larger
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in the upstream rigid segment than downstream (i.e. |Q0(0)| > |Q0(1)|). At
the following order in T−1/2, the mean flow, convective inertia and viscous
effects enter the problem. A solvability condition enables a critical Reynolds
number to be identified

R1 =
10

[
L1Q

2
0(0) + L2Q

2
0(1) +

∫ 1

0 Q2
0 dx

]
Q2

0(0)−Q2
0(1)

. (3)

This can be interpreted as a ratio of viscous dissipation to kinetic energy
flux. Critically, the asymmetry of the system (L1 < L2) induces asymmetry
in the eigenmode; more vigorous sloshing at the upstream end of the channel
allows the instability to extract more energy from the mean flow entering
the flexible segment of channel than is swept out of its downstream end. The
system can therefore be destabilized by increasing the ratio L2/L1, which
might be achieved by prescribing the downstream flux (setting L2 → ∞) or
minimising upstream inertance. In systems for which the upstream flux is
prescribed (L1 → ∞), instability of the uniform state is not expected to arise
through this mechanism. The asymptotic estimate Eq. (3) for T � 1 agrees
well with predictions of the full stability calculation [26].

Further analysis [26] shows that the mode 1 instability contains four inde-
pendent components (two TWF modes and two SD modes, with one of each
type propagating upstream and downstream), and that global instability can
arise when all four component modes are convectively stable. Analysis of the
history of a disturbance as it propagates upstream, reflects from the rigid
segment at x = 0, propagates downstream and reflects from x = 1 (following
[27]) confirms that growth arises from reflections at the boundaries of the
flexible segment of channel.

A further notable feature of the mode-1 instability is that, as its amplitude
grows, the unsteady sloshing induces a steady pressure gradient along the
flexible segment of channel through the action of Reynolds stresses (via the
nonlinear q2/h term in Eq. (1b)). As the pressure drop across the channel is
assumed fixed, the effect is to induce an adjustment to the mean flux of the
form [26]

q = 1 +
7RA2

240(1 + L1 + L2)

[
Q2

0(0)−Q2
0(1)

]
, (4)

where A is the amplitude of the oscillation. Thus the mode 1 oscillation acts
as a pump, increasing the mean flux. As a consequence, mode 1 can arise
through a subcritical Hopf bifurcation.

Finally, it is instructive to examine the energy budget of the mode 1 in-
stability. Integrating the energy transport equation over the domain, and
averaging over a period of a neutrally stable oscillation, yields an equation
of the form

F + P = D (5)

where F is the net kinetic energy flux, P = 6
5puq is the net work-rate by the

upstream pressure, and D is the net viscous dissipation rate. The choice of
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Fig. 3 Sloshing in a 2D channel: the membrane length L∗ exceeds the channel
width a; transverse wall motions of amplitude h′ drive axial flows of magnitude
u′; at high frequencies, Stokes layers of width Δ are thin compared to the channel
width

wall model implies that zero net work is done on the flexible wall over an
oscillation. The denominator in Eq. (3) is proportional to F , which must be
positive in order to sustain the mode 1 instability. Significantly, numerical
simulations of Eqs (1) for an oscillatory mode 2 instability (a secondary in-
stability of a static mode 2 state, arising at lower T ) exhibit F < 0, indicating
that work done by the upstream pressure P provides the source of energy in
this case. This mechanism is a likely candidate for the instabilities observed
in 2D simulations with prescribed upstream flux [17, 18].

In summary, the 1D model shows that high-frequency mode 1 oscillations
arise through wave reflections, not local instability. Asymmetric boundary
conditions (L1 < L2) allow energy to be extracted from the mean flow via
kinetic energy fluxes. However, this mechanism is not universal, and other
modes may, for example, rely on work done by the upstream pressure as the
source of energy.

4 A Two-Dimensional Model

The 1D approach is attractive as analysis is relatively straightforward. How-
ever the model described above is predicated on an assumption about the
velocity profile that is not uniformly valid across parameter space. In partic-
ular, at high frequencies, oscillatory viscous boundary layers (Stokes layers)
can be expected to form on the walls of the channel, which were not resolved
within the 1D approach. It is therefore desirable to revisit the 2D problem
illustrated in Fig. 2 within a fully 2D framework, avoiding any ad hoc as-
sumptions. This approach was adopted by Jensen & Heil [28], in a study
combining high Reynolds number asymptotics and full simulation of the 2D
system, assuming uniform external pressure.

The mode 1 oscillatory instability in a 2D channel is described asymp-
totically by assuming disturbances are of long wavelength compared to the
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channel width, and of sufficiently high frequency for viscous effects to be con-
fined to Stokes layers. The leading-order inviscid ‘sloshing’ behaviour identi-
fied in the 1D model carries over directly to 2D. It is helpful to revisit the
scaling argument that captures the primary physical balances, using the di-
mensional variables illustrated in Fig. 3. Neutrally stable unsteady sloshing
at frequency ω involves a balance between unsteady inertia and an axial pres-
sure gradient (i.e. ρut ∼ px, where ‘∼’ denotes ‘scales like’ and ρ is density)
giving a balance ρωu′ ∼ p′/L∗; the pressure is proportional to the curvature
of the membrane (p ∼ T ∗hxx) but the high tension ensures deflections are
small (p′ ∼ T ∗h′/L∗2); because the channel is slender, axial flows are larger
than transverse ones (ux ∼ vy implies v′ ∼ au′/L∗); transverse fluid veloci-
ties balance wall motion (v ∼ ht implies v′ ∼ ωh′). Combining these relations
yields the frequency estimate ω2 ∼ T ∗a/ρL∗4. An energy balance (following
Eq. 5) determines the conditions necessary for neutral stability. Viscous dis-
sipation takes place in Stokes layers, of thickness Δ ∼ (μ/ρω)1/2 � a. For
L2 > L1, the rate of dissipation must balance the net kinetic energy flux
into the flexible segment (ρU0u

′2a ∼ μ(u′2/Δ2)ΔL∗), which yields a critical
Reynolds number

Re =
ρU0a

μ
∼

(
ρT ∗a
μ2

)1/4

. (6)

This scaling differs from the predictions of the 1D model, because the 1D
model used an inconsistent description of viscous dissipation. Detailed anal-
ysis is required to determine the coefficient in Eq. (6), which must also be
validated against direct numerical simulation [28].

The analysis is pursued in a distinguished limit involving a single small
parameter δ � 1, whereby the channel length scales like δ−1/2, Reynolds
number like δ−3/2 and membrane tension like δ−3. The Navier–Stokes and
membrane equations (with uniform pe) then reduce with error O(δ3) to

ux + vy = 0

ut + δ(u · ∇)u = −px + δ2r−2uyy

λδ[vt + δ(u · ∇)v] = −py

u = 0, v = ht, p = pe − hxx (y = 1 + δh)

u = v = 0 (y = 0)

p = 12δ2r−2(1 + L1 + L2) (x = −L1)

p = 0 (x = 1 + L2)

with λ, r, L1 and L2 treated as O(1) parameters as δ → 0. An expansion is
constructed, setting u = u0 + δu1 + δ2u2 + . . . , with

u0 =u00 + u01e
iβt + ū01e

−iβt

u1 =u10 + u11e
iβt + ū11e

−iβt + u12e
2iβt + ū12e

−2iβt

u2 =u20 + . . .
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Fig. 4 The asymptotic structure of sloshing flows in a 2D channel. Stokes layers
have dimensionless thickness δ � 1; membrane displacements are O(δ); steady
streaming boundary layers have thickness δ1/3.

for some O(1) frequency β to be determined, with bars denoting complex
conjugates and coefficients depending on slow timescales t1 = δt, t2 = δ2t,
etc.

The physical structure of the asymptotic problem is illustrated in Fig. 4. In
problem 00, the membrane is deflected slightly by the mean pressure (h00 =
− 1

2pex(1−x)) and the mean flux is uniform Poiseuille flow (u00 = 6q00y(1−y),
v00 = 0, p00 = 0), but with the flux q00 undetermined to this order. Stokes
layers of thickness O(δ) appear in problems 01, 11; a Prandtl transformation
is used to wrap the upper Stokes layer onto the membrane (Fig. 4). Steady-
streaming boundary layers of thickness O(δ1/3) appear in problems 10 and
20. The inviscid sloshing mode appears in problem 01. The leading-order
eigenmode h01 = A(t1)φ01(x), where A is a slowly varying amplitude, is
determined exactly as in the 1D model (Sec. 3). Interaction between the mean
flow and the sloshing motion arises in problem 11, where again a solvability
condition is imposed to determine a condition for neutral stability in terms
of the rescaled Reynolds number

r =
(2β)

1
2

q00

∫ 1

0
φ2
01x dx

φ2
01x(1)− φ2

01x(0)
, (7)

which is positive for L2 > L1. This expression provides the coefficient in (6).
However the mean flux q00 remains undetermined to this order. To determine
q00, it is necessary to consider the time-averaged Reynolds stresses (u0 · ∇)u0,
which create a steady pressure gradient in the core to which q00 must adjust
(the analogue of Eq. (4)). Further contributions to the mean flow come from
steady streaming driven by Stokes layers and by deflection due to indentation
of the membrane by pe.

The energy budget for the neutral oscillation is again given by Eq. (5),
where the dissipation rate can be partitioned into a contribution from the
Stokes layers DS plus that in the core DP . Accounting for mean flow adjust-
ment, this partition turns out to be in a precise 2:1 ratio, with DS = 2

3F > 0,

DP = P + 1
3F .

The asymptotic prediction Eq. (7) with q00 = 1 was tested against simu-
lations conducted using a finite-element method in which the Navier–Stokes
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and membrane equations were fully coupled [28]. The initial-value problem
was solved following a jump in pe. For δ = 0.3 — not a particularly small
value — the predicted transitional Reynolds number (around 400) differed
from that determined by simulation by less than 10%; predicted frequen-
cies and growth rates were more accurately predicted for smaller δ. Thus
the mechanism of mode 1 oscillation identified (albeit qualitatively) in the
1D model therefore carries through to 2D, where it can be described using
rational validated asymptotics.

5 Towards a Three-Dimensional Model

Having identified a mechanism of instability in a flexible channel using an
approximate 1D approach (Sec. 3), and produced a refined asymptotic de-
scription of its operation in 2D (Sec. 4), the next obvious step is to ask how
this mechanism might operate in a more realistic 3D tube.

Heil & Waters [29] addressed this problem theoretically by considering ax-
ial sloshing flows generated in a circular tube. They prescribed periodic wall
motions with azimuthal mode number 2 (resembling elliptical post-buckled
configurations) of small (O(ε)) amplitude, high frequency and long wave-
length. Because the base state they examined was axisymmetric, the area
change during an oscillation was small and the induced sloshing was of mag-
nitude O(ε2), with transverse oscillations being decoupled from the axial flow.
While such weak sloshing inhibits energy transfer from the mean flow via ki-
netic energy fluxes, the decoupling made it feasible to study the transverse
flow-structure interaction, with wall bending balancing unsteady fluid iner-
tia, and viscous dissipation (in Stokes layers and the core) determining the
decay rate of oscillatory modes. The imposed symmetry of the computations
accommodated buckled states symmetric about orthogonal axes, with the
primary buckling being either horizontal or vertical (cross-sections are illus-
trated schematically in Fig. 5(a)). Large-amplitude oscillations decayed first
by switching between these two states during each period (motion denoted as
‘Type I’ in [29]), before jumping to one of the two states (becoming a ‘Type II’
oscillation) and then decaying towards the corresponding equilibrium buck-
led configuration. The dynamics is reminiscent of a Duffing oscillator, and is
illustrated in a schematic phase plane in Fig. 5(a). The switch from Type I
to Type II can then be interpreted as the passage of a trajectory in phase
space past a saddle point corresponding to the unbuckled equilibrium state.
It is notable that recently reported 3D simulations of self-excited oscillations
[19, 22] exhibit sustained Type-I oscillations, illustrated schematically by the
limit cycle in Fig. 5(b). This in turns suggests the likelihood of homoclinic bi-
furcations arising from the collision of limit cycles with fixed points, reported
in this context in [9].

To ensure that transverse wall motion would generate a strong axial slosh-
ing flow, Heil & Waters [30] then computed the unsteady 3D flow through
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(a)

(b)

Fig. 5 (a) A phase portrait of a Duffing oscillator, which captures the dominant
dynamics of decaying oscillations in an elastic ring, reported in [29]. Initial large-
amplitude Type-I oscillations that flip between vertically and horizontally buckled
states ultimately decay to smaller-amplitude Type-II oscillations in one of the two
states. Cross-sections at fixed points are illustrated. (b) A stabe limit cycle of
Type I.

a non-axisymmetric tube, a segment of which underwent prescribed small-
amplitude wall motion of frequency ω. This motion was formulated as a
set of Fourier modes in axial and azimuthal coordinates for which the tube
perimeter was preserved. The non-axisymmetric base state, combined with
area-changing perturbations of O(ε) amplitude, ensured O(ε) sloshing. The
flux at the downstream end of the tube was prescribed, a condition expected
to promote kinetic energy transfer from the mean flow (as explained follow-
ing Eq. 3). Simulations showed how energy could indeed be transferred to
the wall, provided α/St exceeded a threshold (where α = a(ρω/μ)1/2 is the
Womersley number, St = aω/U the Strouhal number, a an effective tube
radius and U a measure of the imposed axial flow), again reflecting a balance
of kinetic energy flux with dissipation in Stokes layers.

This finding has been generalised in a recent study by Whittaker et al. [31]
in which the necessary asymptotic conditions for prescribed wall motion to
extract energy from the mean flow have been identified. Here flow through
a tube is considered in which the shape of the cross-section is arbitrary ex-
cept that it varies slowly in the axial direction and exhibits small-amplitude
temporal oscillations. The tube centreline is straight and lies on 0 < z < L.
Oscillations about the base state are prescribed, and a flow is driven through
the tube under fixed flux or under prescribed pressure drop. The tube kine-
matics can be characterized using just a handful of quantities: the perimeter
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P(z̆) and cross-sectional area A0(z̆) of the base state (as a function of axial
distance z̆ = z/L); the oscillatory area change in each cross-section A(z̆); and
the volume variation along the tube V(z̆) arising from the axially integrated
area changes. The flow is characterized by Strouhal and Womersley numbers
(St and α, as defined above), tube length � = L/a and oscillation amplitude
Λ. Once again, a distinguished limit is considered in which the kinetic energy
flux balances dissipation in Stokes layers, and wall motions are assumed to
be long wave and small amplitude, i.e.

1 � α ∼ �St ∼ �2 � 1

Λ
. (8)

The asymptotic approach to this problem follows that outlined in Secs 3 and
4, but inevitably is more involved. Variables are decomposed into steady,
period-1 and period 2 or greater, in the core and in Stokes layers, and
the Navier–Stokes equations are decomposed accordingly. The system is ex-
panded in powers of the small amplitude, with the core and boundary-layer
problems being treated separately. The leading-order inviscid sloshing prob-
lem is governed by a Poisson problem; associated Stokes layers eject flux into
the core. Sloshing generates Reynolds stresses, the steady component of which
adjusts the dimensionless mean flux Q (under prescribed pressure conditions)
or the net pressure drop (when the flux is prescribed). The energy budget
for small amplitude periodic oscillations, integrated over the flow domain, is
expressed as

E = F + P −D, (9)

where E is the work done on the wall by the fluid, F is the kinetic energy
flux, P is the work done by the upstream pressure and D the dissipation.
Decomposition of Eq. (9) into steady and oscillatory components allows the
former to be studied independently. As for the 2D problem (Sec. 4), there is
a remarkably precise partition of energy, with 2/3 of the kinetic energy flux
due to sloshing being available to do work on the walls and the remaining
1/3 being dissipated in the mean flow or doing work against pressure at the
tube ends. The condition that there is zero energy transfer to the wall over
a period (Eq. (5)) yields a simple condition on the inverse Strouhal number
(or equivalently a critical Reynolds number α2/Stc) that resembles Eqs (3)
and (7) in being the ratio of viscous dissipation to kinetic energy flux, this
ratio being expressed in the form [31]

α

�Stc
∼ C(Q;V, A0,P) (10)

where C is a functional of the kinematic variables. Eq. (10) has been validated
against 3D simulations in an elliptical tube with prescribed wall motion [31],
showing good agreement across a range of α and � for both prescribed flux
and prescribed pressure boundary conditions. Further work is required to test
this stability prediction when the prescribed wall displacement is replaced by
a normal mode of the tube, accounting for fully unsteady 3D flow-structure
interaction.
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6 Discussion

This brief review has hopefully demonstrated the usefulness of using a hi-
erarchy of models to understand instabilities of flows in the Starling Resis-
tor. In particular, low-dimensional approximations have provided valuable
signposts for more elaborate asymptotic and computational models. Stabil-
ity thresholds of increasing accuracy ((3), (7) and (10)) have been used to
characterise a potential mechanism of high-frequency self-excited oscillation.
Further steps are needed to establish a definitive connection between this
mechanism and what happens in the real experimental device: in particular,
unsteady simulations of the 3D problem must be analysed to establish the
nature of energy budgets, and the simulations must themselves be validated
against experiment. It is important to recognise also that the ‘sloshing’ mech-
anism described above is not generic: the 1D model shows how oscillations
with a quite distinct energy signature can arise [26] where the dominant en-
ergy source is work done by the upstream pressure, from which oscillations
may be able to sustain themselves by increasing the mean flux. Simulations
in 2D highlight a potential role for internal hydrodynamic modes [17, 18], and
recent 3D simulations demonstrate the dominant role of buckling instabilities
[20, 22].

The distinguished physiologist Ernest Starling [4] will not have appreci-
ated how much he contributed to the study of flow-structure interaction by
inventing his Resistor.
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