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Abstract. The Earth shows different modes of deformation in response to
thermal or gravitational driving forces. The bulk mantle convects like a vis-
cous fluid on the global scale, while the lithosphere is broken into several
plates. They show little internal deformation, but change their shapes and
relative positions. Oceanic plate material is generated at divergent margins
and recycled into the mantle at subduction zones, on a regional scale. The
buoyant continental crust resists subduction and develops meter-scale shear
bands during deformation.

In this article we review Eulerian finite element (FE) schemes and a particle-
in-cell (PIC) FE scheme [15]. Focussing initially on models of crustal deforma-
tion at a scale of a few tens of km, we choose a Mohr-Coulomb yield crite-
rion based upon the idea that frictional slip occurs on whichever one of many
randomly oriented planes happens to be favourably oriented with respect to
the stress field. As coupled crust/mantle models become more sophisticated
it is important to be able to use whichever failure model is appropriate to a
given part of the system. We have therefore developed a way to representMohr-
Coulomb failure within a mantle-convection fluid dynamics code.

With the modelling of lithosphere deformation we use an orthotropic vis-
cous rheology (a different viscosity for pure shear to that for simple shear)
to define a preferred plane for slip to occur given the local stress field. The
simple-shear viscosity and the deformation can then be iterated to ensure
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that the yield criterion is always satisfied. We again assume the Boussinesq
approximation - neglecting any effect of dilatancy on the stress field.

Subduction is modelled as a Rayleigh-Taylor instability with dense oceanic
lithosphere sinking into less dense sublithospheric mantle. We use a linear
viscous rheology for the mantle in this case. Parts of the lithosphere are
viscous, others brittle. The values of the dynamic viscosity are different for
lithosphere and mantle. The brittle behaviour of parts of the lithosphere can
be modelled in the continuum limit by using a viscoplastic rheology.

Turning to the largest planetary scale, we present an outline of the mechan-
ics of unified models plate-mantle models and then show how computational
solutions can be obtained for such models using Escript. The consequent re-
sults for different types of convection are presented and the stability of the
observed flow patterns with respect to different initial conditions and com-
putational resolutions is discussed.

1 Introduction

Heat loss from the Earth’s deep interior occurs through a process of thermal
convection in the solid mantle. The pattern of deep convection is not directly
observable as it is strongly modified by the very non-linear response of the
near-surface rocks in the cool thermal boundary layer (the lithosphere).

The ocean floor is made up of a dozen or so near-rigid “plates” which con-
stitute the upper thermal boundary layer of this convection system. Conse-
quently, the entire ocean floor is recycled with a characteristic time of 100-200
million years.

Tectonic plates on Earth are characterized by little internal deformation ,
but changing relative positions and shapes due to subduction, deformation in
back-arc basins or collisional zones, and generation of oceanic lithosphere, all
at different plate rim segments. This mode of convection is the primary means
of cooling the mantle, mainly driven by the negative buoyancy of subducting
slabs.

The entire ocean floor is recycled with a characteristic time of 100-200 mil-
lion years. Continents do not participate in the active overturn of the mantle,
largely because they contain a high percentage of granitic rock which is light
relative to the olivine composition of the mantle. The continents have been
able to resist being recycled completely for at least 4 billion years. In some
areas ("cratons") have remained largely undeformed for this time, while other
areas have undergone enormous deformation to form (and reform) mountain
belts. The strong correlation between seismicity and plate boundaries (e.g.
Barazangi and Dorman) makes it seem likely that plate motions are associ-
ated with localization of deformation occurring when stresses reach the yield
strength of the lithosphere. In addition, close to the surface where temper-
atures are less than approximately 600◦ C it becomes necessary to consider
the role of elasticity.
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From a modelling point of view, it is necessary to consider the fluid convec-
tion of the mantle and the history-dependent viscoelastic/brittle behaviour
of the continental crust as a single coupled system. The requirements for a
geological simulation code are therefore an ability to track boundaries and
interfaces through extremely large deformation, including fluid convection,
of non-linear history dependent materials. The wide range of physical and
temporal scales, and the many coupled physical processes also impose a need
for computational efficiency. The code should also be very flexible in the
rheological laws which it can treat.

In this paper we describe two flow models which accurately treat these dif-
ficulties at overlapping scales. In the first we describe an orthotropic plasticity
model formulated from a fluid dynamics viewpoint which can model coupled
mantle convection and crustal deformation. This model can also be used to
model localized faulting in the crust. In the second example, we examine the
role of the temperature-dependent viscosity and elasticity in planetary scale
convection models with a yield criterion applied to the lithosphere.

1.1 Continuum Deformation and Fault Formation

The surface deformation of the Earth is dominated by the presence of faults on
which a very large fraction of strain is accommodated in the long term (Dolan,
pers. comm.). In the modeling of large scale deformation of the Earth in both
the ocean basins and in the continents, there has been a strong philosophical
divide between those who consider that these faults are dominant, fundamen-
tally distinct, component of the system at every scale [28, 30, 29, 31, 32, 2],
and those who believe that, on a lithospheric scale, the deformation on faults
can be averaged within a continuum description more in tune with the un-
derlying driving forces [7, 8].

The reason that such a debate is possible after many years of discussion
is almost certainly due to the fact that each of these approaches captures
something important, but different, about the way the Earth works. In mod-
els of actively deforming continents, a thin skin continuum representation
of the mantle lithosphere and crust captures the large-scale deformation in
a reliable, reproducible way [6, 7] but not capture important detail in the
surface strain field associated with the largest faults. Thin skin models of
the brittle layer in which known faults are explicitly included capture this
fine detail [2, 14] but the fidelity of the model deformation is very reliant on
accurate prior knowledge of the faults’ distribution and their dips.

A “thick-skin” model of the continental lithosphere which also includes the
major faults in the brittle regime is the appropriate way to bridge these two
thin-skin approaches, but is significantly more challenging computationally.
We describe an algorithm which can model both the frictional behaviour of
localized faults, the non-linear rheology applicable to the broad scale where
the faults are too small to resolve individually, and the fluid behaviour of
active thermal convection in the mantle.
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We use a linear viscous rheology for the mantle. Parts of the lithosphere are
viscous, others brittle. The values of the dynamic viscosity are different for
lithosphere and mantle. In regional subduction models, the brittle behaviour
of parts of the lithosphere can be modelled in the continuum limit by using
the viscoplastic rheology. Elastoviscoplastic deformation is a more suitable
description for the small scale behaviour of the crust.

2 Constitutive Models

In geodynamics we commonly treat the Earth on a large scale as an in-
compressible, viscous fluid with infinite Prandtl number in which motions
are driven by internal temperature variations. Elastic deformation is impor-
tant only in the low-temperature part of the system and is therefore usually
assumed to have a minor effect on the system at the largest (planetary)
scale [26, 27]. The force term is a gravitational body force due to density
changes. We assume that these arise, for any given material, through tem-
perature effects so that:

σij,j − p,i = gρ0(1− αTT )zi (1)

where g is the acceleration due to gravity, ρ0 is material density at a reference
temperature, αT is the coefficient of thermal expansivity, and T is tempera-
ture. zi is a unit vector in the vertical direction. We have also assumed that
the variation in density only needs to be considered in the driving term (the
Boussinesq approximation: Boussinesq, 1903).

Substituting a general viscous constitutive law

σij = 2ηijklDkl, Dij = (vi,j + vj,i)/2 (2)

gives the equation of motion:

(ηijklDkl),j − p,i = gρ0(1− αTT )zi (3)

Motion is driven by the heat escaping from the interior. The energy equation
governs the evolution of the temperature in response to advective transport
of heat by the fluid and diffusion of heat through the fluid. For a given fluid
element,

Ṫ =
DT

Dt
= −(κT,i),i +Q(t) (4)

where κ is the thermal diffusivity of the material, and Q(t) is a source term
attributed to decay of radioactive materials within the Earth.

2.1 Viscosity of Mantle Materials on Geological
Timescales

The viscosity of the mantle at long timescale is known to be a strong function
of temperature, pressure, stress, grain-size, composition (particularly water
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content). Karato & Wu [12], give the following expression for the deformation
of upper mantle material:

η =
1

2A

(μ
τ

)n−1
(

h

b∗

)m

e

E∗+PV ∗
RT (5)

where A is a constant, μ is shear modulus, b∗ is the Burgers vector, T is
temperature, τ is the second invariant of the deviatoric stress tensor (i.e
τ =

√
σijσij/2 where σij is the stress tensor and σ′

ij its deviator), E∗ is
an activation energy, V ∗ and activation volume, R is the gas constant, h is
the grain size, n is a stress exponent, and m a grain-size exponent. Despite
this complexity, the dominant effect on the viscosity from the point of view
of the large-scale dynamics of the system is the effect of temperature (e.g.
Solomatov [22]). Some anisotropy of material properties is observed in mantle
materials due to crystallographic realignment during strain but the effect is
not well characterized and may be more important in diagnosing strain than
in influencing the deformation itself [20].

Fault Model Failure Criterion

An idealized picture of a geological fault is of a two dimensional discontinuity
surface arbitrarily embedded in the unfractured rock. In all but the very near
surface regions, it is appropriate to assume that the overburden pressure
is sufficient to prevent the fault surfaces separating, and that deformation
occurs by frictional sliding in the plane of the fault [1]. If we consider a
small planar element of the fault with a normal, n, and mutually orthogonal
vectors, s and m, lying in the fault plane. The traction resolved in each of
these directions is given by:

σnn = ninjσij (6)

σsn = sinjσij (7)

σnm = nimjσij (8)

If we assume that s was chosen parallel to the direction of maximum traction
in the fault-plane, then the yield criterion for the fault segment is given by
f = 0 in

f = |σsn|+ tanϕσnn − c ≤ 0 (9)

Where ϕ the friction angle and c is cohesion. It is possible to express the
magnitude of the maximum shear traction in the fault plane as

τs = |σsn| =
√
σikσilnknl − σ2

nn (10)

without explicitly calculating s. We note that τS is invariant with respect to
changes of the pressure p so that τS(σij) = τS(σ

′
ij), where σ′

ij is the deviatoric
stress tensor.
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Continuum Failure Criterion

The previous model applies to a fault which is already established indepen-
dently of the prevailing stress field and has a length scale which is large with
respect to the system as a whole. This description is only appropriate for
the largest few faults in any system. We also assume that there are very
many faults at smaller scales which can be represented by a continuum ap-
proximation. The continuum approximation rests upon the assumption that,
at the small scale, all orientations of incipient faults are present. For any
given stress field, we can then assume that there is at least one incipient
fault within every element of the material which is oriented in such a way
that it fails earlier than any other fault and begins to grow. For a point in
the material we consider the plane which contains the minimum (here most
compressive) and maximum principal stresses (σI and σIII). Resolving the
stress onto a fault oriented at an angle θ measured positive counterclockwise
to the σIII direction yields

σnn =
1

2
(σI + σIII) +

1

2
(σI − σIII) cos(2θ) (11)

σsn =
1

2
(σI − σIII) sin(2θ) (12)

Substituting into the yield criterion (9) gives:

σI − σIII =
tanϕσI+σIII

2 + c

sin(2θ)− tanϕ cos(2θ)
(13)

In the early theories of shear failure and shear banding it was assumed that
failure takes place on spontaneously forming rupture planes or shear bands
which are oriented such that the stress difference on the left hand side of (13)
is a minimum (see Brady and Brown [3] for a derivation close to the spirit of
Coulomb’s (1776) derivation). It is then simple to compute d(σI − σIII)/dθ
to find the value of θB which minimizes the differential stress required for
failure to be

θB = ± arctan(tan−1 ϕ) = ∓(
π

4
+

ϕ

2
) (14)

Replacing θ by θB in (13) gives

σI − σIII

2
= − sinϕ

σI + σIII

2
+ c cosϕ (15)

In a pristine material we expect faults to form at an angle between 22.5◦

and 45◦ to the most compressive principal stress direction. In the Earth
(tanϕ ≤ 1) this means that we expect steep faults to form in extensional en-
vironments (s close to the direction of gravity) and shallow faults to form in
compressive environments (s close to orthogonal to the direction of gravity).
The orientations (14) can be used to define a curve-linear system of coordi-
nates within the plastic zone of a boundary value problem. The coordinate
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lines are the so called static characteristics (see Hill [10] for an outline of
the method of characteristics). The static characteristics do not necessarily
coincide the orientation of macroscopic shear bands (see the pioneering paper
by Rudnicki and Rice [21] and Vardoulakis and Sulem [25] for an outline in
the context of geomechanics including experiments).

Flow Rule for Plasticity Model

The yield criterion provides a limit on the acceptable stress states in the ma-
terial. A corresponding flow rule is needed to determine the manner in which
the material deforms when the yield stress is reached. The incompressible
fluid assumption which we made in formulating the mantle convection prob-
lem is a severe constraint on the possible flow rules. In the theory of plasticity
one assumes flow rules of the form

Dp = γ̇p ∂g

∂σ
(16)

Where γ̇p is the equivalent plastic strain rate and g is the so called plastic
potential and Dp is the plastic part of the stretching; here we assume that
the total stretching can be decomposed into a viscous and a plastic part.
Elastic strains are assumed as insignificant for the problems considered here.
The incompressibility constrain is satisfied if g depends on the deviatoric
stress only. Apart from that, g depends on the stress invariants according to
the symmetry of the material and possibly on other state variables such as
temperature. The standard choice for g in connection with a yield criterion of
type (9) or (15) with θ = ±θB is g = τS(θ = ±π/4) =

√
(σ11 − σ22)2/4 + σ2

12.
Closer to the implicitly made assumption that upon yielding, plastic de-

formation consists in frictional sliding on two, possibly simultaneously active
sets of thin parallel bands [5] is the following choice of the flow rule:

Dp = γ̇p
a

∂τaS
∂σ

+ γ̇p
b

∂τbS
∂σ

(17)

where τaS = τS(θ = π/4 + ϕ/2) and τbS = τS(θ = −π/4 − ϕ/2) and γ̇p
a ≥

0, γ̇p
b ≥ 0.

We shall concentrate on shear banding processes on a scale involving the
lithosphere as well as parts of the underlying asthenosphere. Shear banding
may be triggered by the structural non-symmetry of the constitutive equa-
tions due to the simultaneous pressure sensitivity of the yield criterion and
the assumed incompressibility and/or due to some form of strain softening.
In the application we will consider softening of the friction angle and the
cohesion. In these applications we adopt a simplified form of the constitutive
model where we assume that only one of the two glide mechanisms is active.
In this case upon continuing yielding the material deforms like a transversely
anisotropic medium of the type proposed by Mühlhaus et al [19, 18].
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To account for the anisotropic nature of the material, locally transverse-
isotropic viscous material is characterised by two effective viscosities, η and
ηS , where η is the conventional viscosity and ηS is introduced as a shear
viscosity applicable for flow along a layer. The isotropic part of the stretching
is then corrected by the Λijkl tensor:

σij = 2ηDij + 2 (ηS − η)ΛijklDkl − pδij (18)

where

Λijkl = 1/2 (ninkδlj + njnkδil + ninlδkj + njnlδik)− 2ninjnknl

and n is a normal surface vector defining the orientation of the material
layering known as the director. The inverse form of the constitutive model
(18) reads [18]:

Dij =
1

2η
σ′
ij + (

1

2ηS
− 1

2η
)Λijkl σ

′
kl (19)

We also note the relationship:

τS =
√
1/2Λijklσijσkl (20)

Since we consider only one slip system we do not need subscripts anymore
and designate the equivalent strain rate of the active glide system as γ̇p. Com-
paring (17) and (19) we find the following expression for the shear viscosity
ηS :

2ηS = 2(
1

η
+

γ̇p

τS
)−1 =

2η(γ̇ − F/η)

γ̇
, γ̇ =

∂τS
∂σij

Dij (21)

where

F =
( ∂τS
∂σij

+ tanϕ
∂σnn

∂σij

)
σvis
ij − c, σvis

ij = 2ηDij − δijp (22)

Thus:
2ηS =

− tanϕ(2ηnknlDkl − p) + c

γ̇
(23)

The denominator of (23) is the total shear strain rate on the active glide
system.

Failure History, Strain Softening and Healing

We now consider a possible history dependency of the mechanical parame-
ters of the glide planes and the effect of deformation on the orientation of
the failure planes; we also wish to consider the possibility of simple healing
(annealing) of the glide planes or shear bands once de-activated.

Before addressing the above items we note that although our models bares
some superficial similarities with the micromechanics based crystallographic
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slip theories for metals [4], the present model is very different. We neglect
elastic deformations, vacancies and interstitials, the main carriers of the vis-
cous part of the deformation are assumed to diffuse freely through the lattice
without affecting the plastic part of the deformation. An intermediate config-
uration as assumed in elasto-plasticity does not exist in the present case. The
glide planes are considered either as shear fractures or in the plasticity case as
macroscopic strain localizations usually encompassing multiple grains. Plas-
ticity becomes relevant at greater depth below the top 30 kilometres at large
pressures and high temperatures. In this case, the pressure sensitivity (angle
of friction) usually disappears. If not, the formal description is analogous to
that of fractures. The question then arises as to how the glide planes are af-
fected by deformation and stress rotation. One possibility is to treat the glide
planes as embedded in the plastic deformation as described by the history
of the inelastic velocity gradient Lp. However, experience with fixed smeared
crack models demonstrates that these models tend to cause stress locking, i.e.
an artificial build-up of shear stresses along the crack. In the smeared crack
model the stress locking was overcome by co-rotating the cracks with the
principal stress axes. This is very simple indeed and an analogous approach
is adopted here. The glide planes are always oriented relative to the principal
stress axes as defined by the mobilized angle of friction ϕ in relationship (14).
In metal plasticity the orientation of the slip planes are constant with respect
to the intermediate configuration.

We assume that strain hardening/softening and healing can be described
by means of the following relative strain measure:

γp
rel =

∫
(γ̇p − θ

τS
η
) dt , γp

rel ≥ 0 (24)

In (24) 0 < θ < 1 is a dimensionless temperature-dependent healing param-
eter. Given that the most likely micro-structural features that give rise to
shear bands are dislocations, the healing or annealing processes usually in-
volve movement of vacancies (maybe interstitials) to these dislocations which
will rearrange themselves into lower energy configurations such as sub-grain
structures. The extent of this rearranging process depends on the density of
dislocations and the temperature at which the “healing” occurs. The healing
is usually considered at a two stage process involving (a) recovery and (b)
re-crystallization. Since both processes may occur during deformation itself,
the term dynamic can be applied to both processes. Details on the physics
of recrystallisation and annealing can be found in Humphreys and Hatherly
[11]. Another healing mechanism is associated with fluid flow along channels
in grain boundaries and flow in microcracks; this mechanism is several or-
ders of magnitude faster than having vacancies diffuse along such crystalline
defect structures as dislocations, dislocation substructures and intact grain
boundaries.

The relationship (24) is assumed to hold even if the shear band is not ac-
tive, i.e. γ̇p = 0. The parameter γp

rel is not a state parameter but a measure
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to quantify the relative effect of creation and annihilation of inelastic struc-
tures (e.g. shear bands) caused by plastic deformations chosen for heuristic
reasons.

During the actual calculation, we iterate to determine the distribution of
particles which are currently yielding, we consider first whether each particle
has failed in a previous time step and test to see if it will fail given the
updated stress distribution. In 3D, the slip direction is assumed to lie in
the failure plane in the direction of maximum resolved shear stress. The
friction coefficient and/or the cohesion for the material points which have
failed weaken as relative slip (24) accumulates during yielding. If a material
point has failed in the past but changes in the ambient stress field mean
that it is no longer yielding, then the history parameter (24) decreases until
γp
rel = 0.
The cohesion and/or friction coefficient are softened according to

c(α) = αc(0) + (1− α)c(1) and (25)

tan(φ(β)) = β tan(φ(0) + (1− β) tan(φ(1)) (26)

where α = min(1, γp
rel/γ

c
0) and β = min(1, γp

rel/γ
φ
0 ).

3 Numerical Strategies

3.1 Moving Integration Points

The constitutive model described above has been implemented into a La-
grangian integration point finite element code [15]. The method uses a stan-
dard mesh to discretize the domain into elements. The shape functions in-
terpolate node points in the mesh in the usual fashion and are used to com-
pute derivatives of nodal variables. Material property variations, and history
variables such as failure plane orientation and failure history are stored on
integration points which are also material points of the fluid. The problem is
formulated through the usual FEM weak form to give an integral equation
which can then be decomposed to a series of element integrals and through
the usual Galerkin discretization procedure, give element stiffness matrices,
KE :

KE =

∫

ΩE

BT (x)C(x)B(x) dΩ (27)

We replace the continuous integral by a summation

KE =
∑
p

wpB
T
p (xp)Cp(xp)Bp(xp) (28)

Here the matrix B consists of the appropriate gradients of interpolation
functions which transform nodal point velocity components to strain-rate
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pseudo-vectors at any points in the element domain. C, the constitutive op-
erator corresponding to (18), is composed of two parts C = Ciso + Caniso.
In standard finite elements, the positions of the sample points, xp, and the
weighting, wp are optimized in advance. In our scheme, the xp’s correspond
precisely to the Lagrangian points embedded in the fluid, and wp must be
recalculated at the end of a timestep for the new configuration of particles.

3.2 Scripting of Boundary Value Problems

The toolkit Escript [9] has been applied to obtain the results relating to
planetary scale mantle convection. Escript provides a scripting interface in
which specific differential problems are stated to parallelised computational
kernels, shielding the user from low-level parallel development. Of particular
interest, the “Finley” FEM computational kernel has been used within Escript
to solve the constitutive equations of section 2. A brief overview of Finley and
its FEM implementation is presented in this section.

To use Finley, the Data module is used to transform an initial boundary
value problem (IBVP) into a sequence of linear BVPs to be solved at each
time step. The linear BVP can then be provided to Finley to assemble a
stiffness matrix associated with a given unstructured domain using a dis-
cretisation based on the standard variational formulation appropriate for the
supplied mesh and selected element type. The linear BVP is then provided
to Finley to assemble a stiffness matrix associated with a given unstructured
mesh using a discretisation based on the standard variational formulation.

For an unknown vector function u, the PDEs of a BVP are provided to
Finley through the specification of the coefficients of the following templated
form in tensorial notation:

− (Aijkluk,l),j − (Bijkuk),j + Cikluk,l +Dikuk = −Xij,j + Yi (29)

The tensorial coefficients A, B, C, D, X and Y are functions of their location
in the physical domain. For example, to solve equation (3) for velocity, the
identification of like terms with (29) reveals it is necessary to provide Finley
with A, X , and Y only.

In a similar manner, Finley provides a system of implicit (natural) bound-
ary conditions and explicit Dirichlet boundary conditions as given by the
respective systems:

nj(Aijkluk,l +Bijkuk) + dikuk = njXij + yi onΓN (30)

ui = ri onΓD (31)

where n denotes the outer boundary normal, and A, B and X are as previ-
ously defined. Here, d and y are coefficients defined on the natural boundary
ΓN while r is a function defined on the Dirichlet boundary ΓD. The linear
BVP defined by equations (29)–(31) is referred to as the Finley Boundary
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Value Template (FBVT). Finally, a general form of the FBVT for the case
of a steady BVP with a single differential equation in a scalar unknown also
exists.

4 The Level Set Method

We use the level set method to track the moving and deforming interface
between lithosphere and mantle in subduction models. It is a part of Es-
cript/Finley. This method is based upon an implicit representation of the in-
terface by a smooth function . The function usually has the form of a signed
distance to the interface, whereby the zero level curve or surface represents
the actual interface between the fluids. The field equations are solved on an
Eulerian mesh. The parameters are stored as tables, their value depending
upon which side of the interface they are located. The distance function is
updated during the simulation by solving the equation of motion using the
velocity field calculated previously. The level set method is particularly well
suited for two or three dimensional problems with strong topological changes
such as breaking or merging as well as the formation of corners and cusps.
The level set algorithm works as follows: A scalar function, φ is initialised on
an Eulerian grid as a signed-distance function with respect to the interface.
The values of the parameters are then calculated, depending upon the sign of
φ. The governing equations can be solved using these parameters, resulting in
a velocity field. At each time step, the function φ must be updated, according
to the velocity field. This is done by solving the “advection equation”:

∂φ

∂t
+ v · ∇φ = 0 (32)

where v is the velocity field. Special care must be taken when solving the
advection equation and a two step method based on the Taylor-Galerkin
procedure is used. For a detailed presentation of this method, we refer the
reader to a previous publication by Bourgouin et al. (2006)

5 Examples

5.1 Shear Banding

We now consider the extension and compression of a brittle layer which lies
above a viscous layer for a range of non-dimensionalised material properties
and strain-softening parameters. In each case the deformation is driven by a
boundary condition which uniformly stretches or compacts the background
mesh (initial size 2.0× 1.0) in the horizontal direction only with a velocity of
1.0. The evolving interface geometry and material history is recorded on the
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Fig. 1 Shear band formation in compression (stars) and extension (crosses) of a
layer of length 2.0, thickness 0.35 with a small notch removed, viscosity η = 10.0,
cohesion 4 (compression) and 15 (extension). The compression/extension velocity is
1.0; the lower layer viscosity is 1.0, the upper layer viscosity is 0.1 and this material
is compressible. The ideal orientation of shear bands assuming the principle stress
orientations are horizontal/vertical is indicated by the broad white lines on each
image.

swarm of particles. A layer of low-viscosity, compressible material is always
included in the calculation above the layers of interest to allow the volume
change of the domain to be accommodated. In geological models the effect
of gravity is always important so we have included this effect. The strength
of gravitational acceleration is 10.0 and the density of the layers is 1.0. The
shading in the figures represents the second invariant of the stress tensor
plotted between 0 and 10 in the top layer and 0 and 1 in the lower layer.

In Figure 1, a brittle layer of thickness 0.35, viscosity 10.0, and cohesion
4 (compression), 15 (extension) lies above a purely viscous layer of viscosity
1.0. The strain softening parameter, γ was 0.1 for all six models shown, and
the minimum value of the cohesion was 1.0 at this reference strain. A narrow
notch of material in the brittle layer was removed (replaced by material of
the lower layer) to provide an initial stress concentration which encourages
shear band formation.

In this experiment, the layers were only deformed until the pair of shear
bands had developed across the entire layer – total strain of between 2% and
5%. The orientation of these shear bands was then compared with the ideal
orientation of the slip planes (assuming that the orientation of the principal
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stress directions is not strongly influenced by the shear band formation) which
is indicated in the diagram by the light coloured line. In compression the fit
between the macroscopic shear band orientation and the microscopic material
point slip orientation is very close. In extension the shear bands form at
shallow angles for low values of the cohesion, steeper angles for higher values,
but the agreement between the microscopic slip orientation and the shear
bands is not as good. We attribute this to the fact that at shallow depths
in the layer the gravitational loading is insufficient to keep the fault surfaces
in contact during extension, so that our assumption that all failure occurs
through pure frictional sliding is not valid. Our model does not allow the
possibility of failure in tension and clips the second viscosity to slightly above
zero whenever it would be zero or negative.

5.2 Large Deformation Model

Figure 2 shows the evolution of the deformation when the extension is com-
paratively large. In this model we account for gravitational loading of the
crust. The dimensionless gravitational acceleration is 100, the cohesion is
1.0, and tan(φ) is 0.5. The grid resolution was 300 × 150 elements and the
total extension was 70%. We plotted the upper layer deformation using ini-
tially horizontal stripes of passive markers to indicate the total deformation.
The instantaneous plastic deformation rate was plotted in bright white su-
perimposed on the stripes in the background.

An initially large number of active shear bands in the upper part of the
brittle layer reduced during the first 1-2% of extension as strain softening

active
 "fault"

(A)

(B)

(C)

Fig. 2 A model crust with initial random orientations of damage was extended
by 20% (A), 28% (B) and 70% (C). The horizontal stripes in the upper layer are
passive strain markers. Current plastic strain rate is indicated by the intensity of
the white colouring in the shear bands.
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within the shear bands allowed them to compete. Throughout the deforma-
tion experiment, due to stress transfer from the lower, viscous layer, there
are approximately five active shear bands which accumulate significant slip
(from a visual inspection of the strain markers).

At the end of the experiment it is possible to see how resilient shear bands
have rotated during extension. These are the shear bands which have ac-
cumulated significant slip and, consequently, are significantly weaker than
surrounding material. This population of shear bands coexists with a second
generation which have formed at steep angles in the less deformed blocks,
and some old scars of shear bands which were active early in the experiment.

5.3 Subduction

Because of the required higher resolution and numerically more demanding
rheology, it has not been possible to include subduction directly into global
models. Some subgrid parameterization – like for the phase boundaries in the
mantle – would be desirable for subduction. However, despite its importance
for the thermal and tectonic evolution of the Earth, recent studies still deal
with the fundamental controls of subduction. The current modelling strategy
is to isolate specific aspects of subduction zone behaviour in models that
are as simple as possible. The following example focuses on the effects of
the tear resistance at the subduction zone edges (Hale et al., 2009). It is
a geometrical consequence of finite subduction zone length and subduction
hinge migration that some edges of subduction zones propagate through the
subducting plate (Govers & Wortel, 2005). Continued subduction requires
ongoing tearing of the lithosphere. Once established, tear faults are able to
propagate as long as subduction continues and the lithospheric strength is
less than the slab strength. Otherwise subduction may stall or the slab may
break off. Tear propagation is dominated by shear stresses, acting parallel to
the fault plane and parallel to the crack front. Such a tearing configuration
is also known as Mode 3 Crack in fracture mechanics. The tear fault is most
likely to propagate parallel to the direction of rollback, but might also follow
pre-existing weak zones. Tearing of the lithosphere is a shallow process. Hence
compressibility can be neglected. The density variations driving subduction
are mainly due to cooling of the lithosphere. We impose an unstable density
stratification as initial condition, rather than calculating it from the energy
equation. Although thermal diffusion is present in real subduction, it acts on
a longer timescale than advection. We use a simplified model setup (Fig. 3)
to gain first-order understanding of resistance to tear propagation on the
dynamics and morphology of subduction zones.

The results show the importance of tear resistance for the speed of trench
migration and for shaping the final geometry of subduction systems. Figure 4
shows that slab tearing along a weak layer can result in a relatively straight
slab hinge shape, while increasing the strength in the weak layer results in the
curvature of the hinge increasing substantially. The rollback velocity of the
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fixed boundaries

symmetric 

side boundary

3120 km

1300 km

560 km

600 km

100 km

Fig. 3 Our modelling domain is a box, containing a part of a lithospheric plate,
with a subducting slab (blue) and the underlying upper mantle. We prescribe a
visco-plastic weak zone (orange) and vary its rheological parameters, i.e. the tear
resistance.

simulated subduction zones is time-dependent. It reaches 2.5 cm/yr for the
fixed weak zone (figure c) and more than 14 cm/yr for the free-slip weak zone.
Those values are comparable to the observed range (Schellart et al., 2007).
Rollback velocity controls the induced mantle flow, which is also deforming
the sinking slabWe used the finite element code eScript/Finley and the level
set method to describe the lithosphere to solve this fluid dynamics problem.

5.4 Mantle Convection

Turning to the longest planetary scale we use the temperature-dependent rhe-
ology (5) to explore the mechanical conditions underlying the 3 basic types
of planetary convection modes, namely stagnant lid, episodic subduction and
continuous (Earth-like) convection modes. Viscous deformation is described
by a combined Newtonian and power law creep model. The power law vis-
cosity includes a contribution from dislocation glide, a typical power law
exponent (n = 3) and a contribution from von Mises plastic deformations
with temperature independent coefficients and a large exponent (n = 15).
The effective viscosity is given by:

1

ηeff
=

1

ηN
+

1

ηN

( τ

τ0

)1−n +
1

ηY

( τ

τY

)1−np
(33)
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(a)

(b)

(c)

Fig. 4 Snapshots showing the subducting lithosphere after the slab hinge has rolled-
back a distance of 500 km. All simulations have a yield strength of 100MPa for the
plate and a density difference between plate and mantle of = 69 kg m−3 (a) Free
slip in the weak zone (yield stress = 0 MPa);(b) Yield stress in the weak zone =
25 MPa (c) Fixed boundary in the weak zone.

where ηN is the temperature dependent Newtonian viscosity, ηY is a reference
viscosity for plastic deformation, τ is the second deviatoric stress invariant, τ0
is the reference transition stress, and τY is the reference yield stress invariant.
For ηN we assume the Arrhenius relationship:

ηN = ηN0e
ATM

T (34)

where ATM =E∗+PV ∗/R, TM is the pressure dependent melting temperature,
A is a positive constant (distinct from that used in (5)) and ηNO is the
viscosity as T → ∞.

In the convection study of section 5.4 we ignore the pressure dependence of
TM in the Arrhenius relation. The main emphasis in the study will be on the
role of elasticity, power law creep and plasticity on the emergence of different



182 H.-B. Mühlhaus et al.

styles of convection. In the dimensionless formulation we write the Arrhenius
relationship of (34) as follows [23]:

ηNOe
2Â
3 eÂ

(
1

1+T − 2
3

)
= ηrefe

Â
(

1
1+T − 2

3

)
(35)

Here, ηref is the reference viscosity used in the definition of the Rayleigh
number. This corresponds to a Newtonian viscosity contrast of about 105

across the convection cell. In the applications we assume that Â = 23. In
the absence of convection, the ratio of the Newtonian viscosity to ηref varies
slowly due to temperature change in the lower half of the cell, from 1 in the
middle to 0.022 on the bottom and rapidly in the upper half from 1 to 2087
on the top.

In the formulation of the constitutive model we make the standard assump-
tion that the symmetric part of the velocity gradient, the so called stretching,
is the sum of elastic, and a visco-plastic part, i.e.:

Dij = De
ij +D

vp
ij (36)

We assume incompressible flow so that Dii = vi,i = 0. According to (33) the
visco-plastic stretching is defined as:

D
vp
ij =

σ′
ij

2ηeff
(37)

and for the elastic part we assume:

De
ij =

σ̇J ′
ij

2μ
(38)

Fig. 5 Typical temperature and velocity distributions for episodic convection at a
maximum of the Nusselt number (refer to Figure 8)
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where μ is the elastic shear modulus and σ̇J
ij is the Jaumann stress rate (see

Kolymbas and Herle [13] and Mühlhaus and Regenauer-Lieb [17] for recent
discussions and objective stress rate comparisons). The Jaumann stress rate
is related to the material stress rate as:

σ̇J
ij = σij,t + vkσij,k −Wikσkj + σikWkj (39)

where Wij is the non-symmetric part of the velocity gradient.
The temperature dependence of the viscosity was given by (35), resulting in

a viscosity ratio from the cold to the hot boundary of 105 due to temperature
variation alone. More extreme viscosity contrasts can be easily considered in
the present formulation because the upper limit for the effective dimension-
less viscosity is set by the dimensionless elastic shear modulus and the time
increment μtDδt/η∗. We assume Ra = 104, τ0 = 0.866 × 105/2, τY = 3τ0,
ideal plasticity (τY =constant) and μtD/η∗ = 104 In the simulations we use
the power law plasticity model with nY = 15 and ηY = ηNO. The initial
temperature distribution was

T =
1

10
sin(x2π) cos(x1π) + (1 − x2) (40)

The basic modes of convection applicable to a cooling planet, such as stagnant
lid, episodic resurfacing and mobile lid convection have been reproduced with
the non-linear viscoelastic approach and are shown in figures 5, 6, and 7
respectively. The vertical spikes on top of the velocity streak-line plot in
each of the subfigures represent the relative magnitudes of the horizontal
cold boundary velocities: larger spikes represent lower velocities, and smaller
spikes represent higher velocities. A comparison between the Nusselt numbers
for the stagnant, episodic and mobile lid cases is shown in figure 8.

Fig. 6 Typical temperature and velocity distributions for episodic convection at a
minimum of the Nusselt number (refer to Figure 8)
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Fig. 7 Typical temperature and velocity distributions at steady state for mobile lid
convection. For mobile lid convection, significant parts of the top layer move like
rigid bodies.
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Fig. 8 A comparison of Nusselt numbers for stagnant-lid (lowest with steady state)
episodic and mobile lid convection. Here the yield stress τy is respectively a factor
of 3, 6 and 9 times the transition stress τ0 = 0.866 × 1025 (i.e. the transition
from Newtonian-Power law creep). The dimensionless shear modulus is 104. An
Arrhenius relation describes the temperature dependence of creep with a viscosity
contrast across the layer of 105. The power law exponents are n = 3 and n = 15
(dislocation glide and plastic deformation respectively).
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A slight but noticeable shift in parameter values and validity fields for
cases including elasticity has been recorded. In addition, the buffering ac-
tion of elasticity permits solutions to extreme viscosity variations and intro-
duces long-range interactions. This results in an ordering and stabilization
of patterns of convection at high Rayleigh numbers, replacing smaller-scale
turbulence by larger planetary-scale re-mobilization.

6 Conclusions

The plasticity algorithm described in this paper addresses a prominent prob-
lem in geodynamics: how to model the brittle deformation of the uppermost
lithosphere which occurs when mantle convection deforms the continents at
the same time as modelling the underlying fluid convection which drives the
surface deformation. The formulation has been developed from a mathemati-
cal description of fluid flow which is inherently capable of modelling thermally
driven convection.

By locally satisfying the failure criterion for frictional sliding and adopt-
ing the assumption that deformation initially occurs along the static charac-
teristics, we have generated macroscopic shear bands aligned with the static
characteristics of the global stress field. A strain softening model based on the
accumulated slip at failed material points is required for localization to occur.

In a simple extension experiment, the shear bands interact to generate
geologically plausible patterns of deformation including rotated fault blocks
and multiple generations of faults.

We have also outlined a formulation for visco-elastic convection based on a
combined Newtonian and power law rheology; the effect of plastic yielding is
considered by an additional power law term with a high (n = 15) power law
coefficient (Equation (33)). The model is valid for studying the geodynam-
ics of mantle convection amongst other problems. The nonlinear equations
of motion are solved incrementally based on a consistent tangent formula-
tion producing second order accurate results so that iterations within each
time step are not necessary in most cases. In Moresi and Solomatov [16] and
Tackley [24], plastic yielding is considered by introducing an upper limit to
the viscosity given by the ratio of the yield stress and the equivalent viscous
strain rate. Since the strain rate strain rate at the current time is unknown,
an initial estimate has to be based on the strain rate from the last time step
producing first order accurate results; hence a time consuming, iterative ap-
proach is necessary. The iterative approach is usually more time consuming
than the present incremental approach with occasional iterative reduction of
residuals. In the iterative approach the constitutive operator is more sparse
than in the consistent incremental approach, which sometimes can be used
to advantage.

The convection problem with strongly temperature dependent viscosity
has some unique characteristics: the strains in much of the system are very
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large, necessitating a fluid-dynamics formulation, yet the relaxation time in
the cool thermal boundary layer is significant compared to the characteristic
time associated with fluid flow. In the bulk of the fluid the relaxation time
is small compared to the time taken for convective features to evolve due to
the much lower viscosity of the warm fluid.

Because elastic stresses in the strongly convecting part of the system relax
rapidly, the introduction of elasticity does not produce a qualitative change
to the stagnant lid convection regime (see Solomatov [22]). In episodic and
mobile lid regimes, there is a competition between the build-up of stresses
in the cool lid, and the stress-limiting effect of the yield criterion. The intro-
duction of elastic deformation does not quantitatively influence this balance
either, although we do expect a difference in the distribution of stresses in the
lid, which explains the variation in the onset of overturns and their increasing
frequency which we observed as the elastic shear modulus was reduced.

The presence of an elastic deformation mechanism also allows significant
deformation of the highly viscous lid with considerably lower viscous energy-
dissipation rates. This is reflected in the lower energy dissipation during
episodic overturns which we observed by integrating the system Nusselt num-
ber. In the Earth this effect may be important in subduction zones where
prediction of dissipation rates due to slab bending is un-physically large. We
observed a breakdown in the highly regular boundary layer overturn time
when moving from a perfectly harmonic initial condition to a non-harmonic
initial condition. This is similar to the results of Moresi and Solomatov [16],
who noted for the purely viscous case that the regularity of the episodic
regime was an artifact of the small convection domains. Once we break the
perfect symmetry of the convection pattern, the evolution also becomes sig-
nificantly more time-dependent.

We note, finally, keeping our goal of a unified planetary dynamics model in
mind, that the two formulations can be merged as the orthotropic constitutive
law can be inverted from the stress/strain-rate relationship of (18) to that of
(19) and substituted into (37).
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