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  Abstract   Maintaining correct cellular function is a fundamental biological process 
for all forms of life. A critical aspect of this process is the maintenance of protein 
homeostasis (proteostasis) in the cell, which is largely performed by a group of 
proteins, referred to as the protein quality control (PQC) network. This network of 
proteins, comprised of chaperones and proteases, is critical for maintaining proteo-
stasis not only during favourable growth conditions, but also in response to stress. 
Indeed proteases play a crucial role in the clearance of unwanted proteins that accu-
mulate during stress, but more importantly, in the activation of various different 
stress response pathways. In bacteria, the cells response to stress is usually orches-
trated by a speci fi c transcription factor (sigma factor). In  Escherichia coli  there are 
seven different sigma factors, each of which responds to a particular stress, resulting 
in the rapid expression of a speci fi c set of genes. The cellular concentration of each 
transcription factor is tightly controlled, at the level of transcription, translation and 
protein stability. Here we will focus on the proteolytic regulation of two sigma fac-
tors ( s  32  and  s  S ), which control the heat and general stress response pathways, 
respectively. This review will also brie fl y discuss the role proteolytic systems play 
in the clearance of unwanted proteins that accumulate during stress.      

   Introduction 

 Like many living organisms, bacteria are constantly challenged with changing envi-
ronmental conditions. In order to survive these changes, bacteria have developed a 
number of different cellular strategies. In cases where the stress is short-lived (e.g. 
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heat-shock) they have developed sophisticated networks or programs to combat the 
effects of the stress, while in cases where the stress may be prolonged (e.g. when 
nutrients are depleted) they can enter a “hibernation”-like state, waiting for the 
return of better conditions. In fact, bacteria have developed several distinct path-
ways, each of which is tailored to a particular type of stress. In most cases, the 
response is controlled by a master regulator (or sigma factor), which in turn acti-
vates the expression of a particular set of genes (or regulon) that restore cellular 
homeostasis. In  Escherichia coli , there are seven different sigma factors ( s  70 ,  s  54 , 
 s  38 ,  s  32 ,  s  28 ,  s  24  and  s  18 ), all of which compete for binding to the RNA polymerase 
(RNAP) core enzyme, for the transcription of a speci fi c set of genes. As such, the 
cellular levels of these master regulators (and their af fi nity to RNAP) are crucial for 
the activation and/or maintenance of these different stress responses. Given this, it 
is not surprising that the active cellular concentration of these regulatory proteins is 
tightly controlled, not only at the transcriptional and translational levels, but also at 
the post-translational level through protein degradation. Hence proteases play a key 
role in the regulation of stress response pathways. This review will focus primarily 
on the general stress response and the heat shock response in  E. coli . For a detailed 
description of the extracytoplasmic or extracellular stress response please refer to 
the accompanying review by Brachinger and Ades  [  1  ] .  

   General Stress Response 

 As the name suggests, the general stress response is a common cellular response 
that is activated by a range of different conditions, from nutrient starvation and 
moderate temperature downshifts  [  2  ]  to high osmolarity  [  3  ]  and pH downshifts. It is 
characterised by a number of distinct morphological and physiological changes  [  4  ] , 
which protects the cell from assault by these different stresses. As such, the general 
stress response acts as a pre-emptive measure to prevent subsequent cellular dam-
age. This response occurs through the activation of a common set of genes that are 
up regulated by an alternative sigma factor subunit of RNAP, commonly referred to 
as the stationary-phase sigma factor ( s  38 ), also known as  s  S   [  4–  6  ] . The following 
section will describe some of these pathways, focusing in particular on the role of 
proteases in controlling the general stress response in  E. coli . 

   The Master Regulator of the General Stress Response,  s  S  

 SigmaS ( s  S ) was  fi rst discovered as the master regulator of stationary-phase  [  4  ] . It 
is an inducible subunit of RNAP, which is related to the constitutively expressed 
vegetative or housekeeping sigma-factor,  s  70 , and as such competes for binding to 
the RNAP core enzyme  [  7  ]  (Fig.  5.1a ). Under normal cellular conditions (i.e. in 
rapidly growing cells) the levels of  s  S  are low  [  8  ] . However, during stationary phase 
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and in response to a number of different stresses, such as anaerobiosis  [  9  ] , oxidative 
stress  [  10  ] , and osmotic stress  [  5  ]  the cellular levels of  s  S  rise rapidly (Fig.  5.1a, b ). 
As a result of this increase in the cellular concentration of  s  S , RNA polymerase is 
directed to a speci fi c set of promoters resulting in the expression of downstream 
 s  S -dependent genes, which control the metabolic state of a cell (Fig.  5.1 )  [  11,   12  ] . 
Indeed,  s  S  has been implicated in the regulation (either directly or indirectly) of 
approximately 500 genes, which equates to approximately 10 % of the  E. coli  
genome  [  12–  14  ] . These genes are expressed not only during the transition into sta-
tionary-phase, but also in response to a number of different stresses  [  12  ] , i.e. under 
conditions of nutrient limitation, in which the cells switch from optimal growth to a 
“maintenance” state. Similarly,  s  S  also controls the expression of genes that mediate 
programmed cell death, in which the sacri fi ce of a small population of cells under 
extreme stress provides a supply of nutrients to other cells permitting their survival 
 [  15  ] . In addition to these survival mechanisms,  s  S  also controls virulence genes in 
pathogenic enteric bacteria [reviewed by  16  ] .  
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  Fig. 5.1     In  E. coli , the levels of SigmaS are controlled not only at the transcriptional and 
translational level, but also through protein degradation . ( a ) During exponential phase transcrip-
tion is largely restricted to housekeeping genes. This is due, partly to the greater abundance of  s  70 , but 
also to its higher af fi nity for RNAP core enzyme, in comparison to most alternative sigma factors 
including  s  S . During stationary phase, despite its weak af fi nity for RNAP (relative to  s  70 ), the rapid 
increase in the level of  s  S , permits competitive binding to RNAP and hence, transcription switches to 
general stress genes. ( b ) Different environmental stresses modulate the cellular levels of  s  S , by tar-
geting different processes; (i) reduced growth rate stimulates transcription, (ii) high cell density or low 
temperature stimulate  rpoS  translation, (iii) carbon starvation or high temperature inhibits  s  S  degra-
dation and (iv) high osmolarity or pH, both stimulate  rpoS  translation and inhibit  s  S  degradation       

 



108 D. Micevski and D.A. Dougan

 Given such an important role in the cell, the levels of  s  S  are tightly controlled, 
not only at the transcriptional level, but also at the level of translation and protein 
activity. In  E. coli , the gene encoding  s  S  ( rpoS ) is located downstream of  nlpD , a 
gene of unknown function. Although some transcription of  rpoS  occurs via the  nlpD  
promoter, most transcription occurs from a promoter located in  nlpD , 567 nucle-
otides upstream of the AUG of  rpoS . This long 5 ¢  untranslated region (UTR) plays 
a crucial role in the regulation of  s  S  translation (see below). Consistently, deletion 
of this region results in a 20-fold reduction of  s  S  expression, during both exponen-
tial and stationary-phase  [  17  ] . Although the regulation of  s  S  largely occurs at the 
translational and post-translational levels (see below), the transcription of  rpoS  is 
also controlled by various regulators. For example, cyclic adenosine monophos-
phate (cAMP) and catabolite response protein (CRP) negatively regulate  rpoS  tran-
scription  [  4  ] , while in contrast the two-component system (BarA/UvrY) is a positive 
regulator of  rpoS  transcription. Similarly, (p)ppGpp is also reported to increase the 
cellular levels of  rpoS  mRNA, however currently it remains unclear if this effect is 
due to an increase in stability or elongation of the mRNA  [  17  ] . 

   Translational Control of  s  S  

 At the translational level, the expression of  s  S  is stimulated by a variety of different 
conditions, including hyperosmotic shift  [  3,   18  ] , low temperature  [  2  ] , and acid pH 
 [  19  ] . This activation, of  rpoS  translation, is regulated by the structural rearrange-
ment of the  rpoS  mRNA  [  19  ] , which is mediated by the RNA-chaperone, Hfq  [  20  ]  
and several regulatory small RNAs  [  21–  24  ] . Speci fi cally, the long 5 ¢  UTR of  rpoS  
mRNA, is proposed to form an intra-molecular stem loop structure, which under 
normal conditions occludes the ribosome-binding site (RBS) and hence limits  s  S  
translation  [  18  ] . The translation of  s  S , can however be stimulated by various non-
coding small RNAs (sRNAs), such as DsrA and RprA, in the presence of the RNA 
chaperone, Hfq  [  25–  28  ] . Hfq is a small RNA-binding protein that not only stabilises 
the sRNAs, but also enhances RNA-RNA interactions  [  29–  32  ] .  E. coli  strains bear-
ing mutations in  hfq  are sensitive to multiple stresses and hence exhibit a similar 
phenotype to  rpoS  mutant strains  [  31  ] . Consistently, Hfq plays a role in the transla-
tion of  rpoS   [  20  ] , however the mode of action by which Hfq functions is currently 
unclear. Despite this, a number of models have currently been proposed. The  fi rst, 
suggests that Hfq acts on  rpoS  mRNA directly by stabilising the secondary structure 
of the  rpoS  mRNA  [  20,   33–  36  ] . Binding of Hfq is thought to shift the equilibrium 
of the  rpoS  mRNA secondary structure, from a less active form, where translation is 
inef fi cient, to an active form that permits easy access to the ribosome. An alternate 
model suggests that Hfq does not affect the secondary structure of  rpoS  mRNA. 
This model describes Hfq as a ‘platform’ for binding of other regulatory molecules, 
which are involved in the translational control of  rpoS . Consistent with this model, 
Hfq interacts directly with several small regulatory RNAs (DsrA, RprA, ArcZ and 
OxyS), which have been shown to regulate  rpoS  translation  [  2,   36  ] . Moreover, Hfq 
is able to stimulate base pairing, between the sRNA and the target mRNA to promote 
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a speci fi c response, which either inhibits or enhances translational initiation  [  37  ] . 
To date, a total of four sRNAs have been identi fi ed, which function to regulate 
 s  S  translation. Three of which (DsrA, RprA, and ArcZ) positively regulate  rpoS  
translation  [  38–  40  ] , while a single sRNA, OxyS, has a negative effect on  rpoS  trans-
lation  [  36,   41  ] . Each of these sRNAs is expressed in response to different stress 
conditions  [  24,   33,   42  ] . 

 Although four different sRNAs have been shown to effect  rpoS  translation, a 
common model can be drawn from a single example and hence this section will 
focus on the most extensively studied – DsrA. DsrA ( d own s tream from  R cs A ) was 
originally discovered in a study that examined capsule regulation in  E. coli   [  43  ]  and 
later shown to be required for translation of  rpoS  at low temperature  [  42,   44  ] . 
Biochemical analysis of DsrA has revealed that the mechanism that DsrA employs 
to promote translation of  rpoS  mRNA is via an interaction with the  rpoS  mRNA, 
which is facilitated by Hfq  [  45  ] . It is an 87 nucleotide RNA which folds into a stem 
loop structure and contains a small single-stranded region that is complementary to 
an element within the 5 ¢  UTR of  rpoS  mRNA (Fig.  5.2 ).  In vivo  studies have shown 
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that DsrA hybridises to the predicted  rpoS  mRNA duplex segment (self inhibitory 
stem) at a position that lies upstream of the start codon  [  39,   40,   46,   47  ] . This hybridi-
sation induces a structural change in  rpoS  mRNA that permits accessibility to the 
RBS present on the other strand  [  45  ] . The binding of the sRNA is facilitated by 
formation of a ternary complex with Hfq, which results in the activation of translation. 
In order for sRNAs, such as DsrA to activate  rpoS  translation, Hfq requires a (AAN) 

4
  

repeat element located at the 5 ¢  UTR of  rpoS   [  26,   48  ] . Interestingly, both  rpoS  
mRNA and DsrA appear to bind to the same binding site within the proximal RNA-
binding domain of Hfq  [  49  ] . As such, the current model suggests that Hfq enhances 
the interaction of DsrA and the  rpoS  mRNA by (a) increasing the local concentra-
tion of both RNAs and (b) unwinding the inhibitory stem of the  rpoS  mRNA  [  49, 
  50  ] . Recently however, the role of DsrA and its involvement in stimulating  rpoS  
translation has also expanded to include stabilisation of  rpoS  mRNA by base pairing 
to these sRNAs, potentially preventing the RNase E-dependent degradation of the 
target mRNA  [  51  ] .  

 Consistent with the  fi ndings for DsrA; RprA and ArcZ also regulate translation of 
 s  S  by base pairing to the 5 ¢  UTR of  rpoS   [  40,   47  ] . All three of these sRNAs are 
expressed in response to different stress conditions  [  24,   33,   42  ] . RprA ( Rp oS  r egula-
tor), a 105 nucleotide RNA, was identi fi ed during a screening of a multi-copy sup-
pressor library that increased the translation of  rpoS -lacZ (translational fusion) in the 
absence of  dsrA   [  33  ] . RprA in contrast to DsrA has been found to stimulate  s  S  syn-
thesis in response to cell envelope stress, and a modest effect has been observed in 
response to osmotic stress  [  33,   40  ] . ArcZ functions to positively regulate  s  S  transla-
tion  [  21,   24  ] . Processing of ArcZ from a 121 nucleotide RNA to a stable 56 nucle-
otide species is required for the formation of a strong Hfq-dependent ternary complex 
with the 5 ¢  UTR of  rpoS  mRNA  [  21,   47,   52  ] . Although the sequences of these regula-
tory RNAs differ, the mechanistic details appear to be conserved  [  47,   53  ] . Common 
to all of the sRNAs, they each interact with Hfq and activate translation by opening 
the stem-loop structure of the  rpoS  5 ¢  UTR, allowing access to the RBS  [  39,   40,   53  ] . 
Apart from binding to  rpoS  mRNA to promote translation, it’s also postulated that 
hybridisation of sRNAs to target mRNA promotes stabilisation of the target mRNA, 
in turn protecting it from degradation  [  51  ] . In contrast to the other sRNAs, OxyS is a 
negative regulator of  rpoS  translation. Encoded by the  oxyS  gene, this regulatory 
sRNA is induced upon exposure to hydrogen peroxide (oxidative stress)  [  36,   41  ] . 
Consistent with the positively regulating sRNAs, OxyS also associates with Hfq 
 [  36  ] , however the mechanism of action of OxyS, is currently poorly understood. 
Nonetheless, based on secondary structure predictions, OxyS seems to share struc-
tural similarities with DsrA  [  19  ] . However, in contrast to DsrA, a linker region in 
OxyS seems to align with the RBS of the  rpoS  mRNA, suggesting that repression of 
 s  S  translation may occur through the occlusion of the RBS by OxyS base pairing 
 [  32  ] . However, evidence for a direct interaction with  rpoS  mRNA is currently lack-
ing. On the other hand, co-immunoprecipitation experiments, which con fi rm an 
interaction with Hfq, suggest an alternative model for the regulation of  rpoS  transla-
tion by OxyS  [  36  ] . This model proposes that the negative regulation of  rpoS , by 
OxyS, is achieved through competitive binding to the Hfq-sRNAs binding site. For 
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instance, competitive binding to Hfq may hinder the binding of positive regulatory 
sRNAs, which in turn inhibits  rpoS  translation  [  36  ] .   

   Regulated Degradation of  s  S  

 Although the transcriptional and translational regulation of  s  S  is rather extensive, 
this only accounts for a fraction of the overall regulation. The turnover of  s  S  plays a 
major role in controlling the cellular levels of  s  S  during the various growth phases. 
As mentioned previously, the relative amounts of  s  S  present during exponential 
growth are extremely low, which is largely a result of degradation by the energy-
dependent AAA+ protease, ClpXP  [  54  ] , and is dependent on the two-component 
response regulator RssB  [  55–  58  ]  (see Fig.  5.3 ). In the absence of RssB, the ClpXP 
protease is unable to recognise  s  S , and hence RssB is required for the successful 
removal of  s  S  from the cell. Importantly, RssB itself is not degraded in the process 
of substrate delivery and therefore is able to perform numerous cycles of substrate 
binding and delivery  [  58  ] . As a consequence, the limiting factor for  s  S  degradation 
is RssB, which is present within the cell at very low levels (approximately 1 mole-
cule of RssB for every 25 molecules of  s  S )  [  59  ] . Independent of the levels of RssB, 
the interaction with  s  S  is modulated by phosphorylation  [  55,   58,   60,   61  ] . Although 
the phosphate donor (acetyl phosphate, AcP) and the two-component system ArcA/B 
have been shown to trigger RssB phosphorylation  [  61  ] , a dedicated phosphatase or 
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  Fig. 5.3     Degradation of  s  S  by ClpXP requires the adaptor protein, RssB . The adaptor protein, 
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histidine kinase has yet to be identi fi ed. Regardless of how RssB is phosphorylated, 
the mechanistic effect of phosphorylation on RssB and the relevance it plays with 
respect to the regulation of  s  S  remains unclear and currently several models exist to 
describe the contribution of phosphorylation.  

 Moreover, it has been recently shown that the stability of  s  S  is also controlled by 
another group of proteins termed Ira ( I nhibitor of  R ssB  a ctivity). Currently, three Ira 
proteins have been identi fi ed: IraP, IraD and IraM, which stabilise  s  s  in response to 
phosphate starvation, DNA damage and magnesium starvation, respectively  [  62,   63  ] . 
However, to date little is known about the mechanism by which these anti-adaptors 
inhibit the RssB-mediated delivery of  s  S  to ClpXP. The following section will focus on 
our current understanding of the components involved in the regulated turnover of  s  S . 

   The Protease – ClpXP 

 In the cytosol of  E. coli  there are  fi ve ATP-dependent proteases (ClpXP, ClpAP, 
HslUV, Lon and FtsH). Each protease is composed of two components; a peptidase 
component and an AAA+ ( A TPase  a ssociated with a variety of cellular  a ctivities) 
unfoldase component and as such they are commonly referred to as AAA+ pro-
teases  [  64  ] . A unifying feature of the AAA+ protein superfamily is the presence of 
an AAA+ domain spanning 200–250 amino acids. This domain is composed of two 
subdomains – the small and large subdomain. The nucleotide is bound, in a cleft 
created by the large and small subdomains of a single subunit and the large subdo-
main of the adjacent subunit  [  65,   66  ] . Each domain contains several highly con-
served sequence motifs required for the binding and hydrolysis of ATP (e.g. 
Walker-A and Walker-B), the binding and translocation of substrates (e.g. pore-1 
and pore-2) and the binding of the peptidase, ClpP (e.g. IGF loop)  [  67–  70  ] . For a 
detailed description of the different AAA+ proteases in  E. coli , refer to  [  71  ] . 

 In  E. coli , a single protease (ClpXP) is responsible for the turnover of  s  S . Like 
other AAA+ proteases, ClpXP is composed of two components. The peptidase com-
ponent (ClpP) is composed of two heptameric rings that stack back-to-back to form 
a barrel-shaped oligomer. The catalytic residues of ClpP are sequestered away from 
cytosolic proteins, within an aqueous chamber. Access to this chamber is limited by 
a narrow axial portal (~10 Å in diameter), which only allows entry of short peptides 
and unfolded proteins  [  72,   73  ] . As a consequence of this narrow entry portal, the 
degradation of folded proteins requires an additional component – the unfoldase 
(ClpX), which is responsible, not only for the recognition of the substrate but also 
for its unfolding and translocation into ClpP. Complexes of ClpXP, as illustrated by 
electron micrographs, can be either single- or double-headed  [  74–  76  ] . Single-
headed ClpXP complexes contain a single hexamer of ClpX stacked onto one end 
of the ClpP dodecamer, while double-headed complexes of ClpXP contain a ClpX 
hexamer bound to both ends of ClpP  [  76  ] . The interaction between ClpX and ClpP 
is mediated by two structural elements. The primary interaction occurs between the 
IGF loop (located on ClpX) and a hydrophobic pocket (composed of Tyr60 and 
Tyr62 from one subunit and Phe82 from the adjacent subunit) located on the apical 
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surface of ClpP  [  68,   73  ] . Interestingly, these loops are disordered in the crystal 
structure of ClpX, hence they are likely to exhibit a high degree of  fl exibility required 
to facilitate the asymmetric connection between the ClpX hexamer and the heptam-
eric ring of ClpP  [  65,   66,   68  ] . Consistent with the role of these loops in docking to 
ClpP, mutation of speci fi c residues within the IGF motif, inhibits ClpP binding 
without affecting the ClpP-independent activity of ClpX  [  68,   77  ] . Indeed binding of 
the IGF loop to the hydrophobic pocket on ClpP is believed to open the axial chan-
nel of the protease  [  78  ] . Likewise, several recently identi fi ed antibiotics (acyldepsi-
peptides (ADEPs) and  a ctivators of self- c ompartmentalising  p roteases (ACPs)) that 
activate ClpP for unregulated degradation, have also been shown to open the axial 
pore of ClpP through binding to the hydrophobic pocket  [  79–  83  ] . The second inter-
action site, between ClpX and ClpP, is mediated by the N-terminal  b -hairpin loop 
(~20 residues) of ClpP  [  84,   85  ]  and the pore-2 loop of ClpX. This interaction is 
dynamic and sensitive to the nucleotide-bound state of ClpX  [  78  ]  and mutation of 
either region results in the destabilisation of the ClpXP complex  [  84,   86–  88  ] . 

 Protein degradation by ClpXP can be divided into four fundamental steps, (substrate 
recognition, unfolding and translocation), which are performed by the unfoldase ClpX, 
and hydrolysis of the protein into short peptide fragments which is performed by the 
associated peptidase. In general, the  fi rst step (substrate recognition) requires nucle-
otide binding by the unfoldase, but not its hydrolysis. In this state, ClpX is able to rec-
ognise a wide variety of different protein substrate, largely through short sequence 
motifs (commonly referred to as tags or degrons). These tags are often located at the 
N- or C-terminus of the substrate protein  [  89  ] . While, the majority of these motifs are 
intrinsic to the protein, some proteins require processing or modi fi cation (e.g. attach-
ment of a tag such as the SsrA tag) for ClpX recognition to occur. For a more detailed 
description of the SsrA tagging system, refer to  [  71  ] . Following recognition, the sub-
strate is unfolded by ClpX and translocated into ClpP, in an ATP-dependent fashion. 
Finally, the translocated polypeptide is degraded into small peptides, by ClpP  [  76, 
  90–  92  ] . In the case of ClpX, many of the molecular details of substrate recognition and 
translocation have been de fi ned. In general, substrates are recognised by a conserved 
aromatic-hydrophobic motif (GYVG) located on the pore-1 loop  [  87  ] . These loops 
protrude from each subunit into the central cavity of the hexamer  [  93–  96  ] . Mutations 
in the highly conserved aromatic residue of the pore-1 loop have been shown to impair 
substrate binding and processing, with little to no effect on oligomerisation or ATPase 
activity of the AAA+ protein  [  93,   94,   96,   97  ] . Cycles of ATP binding and hydrolysis, 
drive rigid-body movements in ClpX, which translate to a pulling force on the sub-
strate, resulting in unfolding and translocation of the substrate  [  87,   88,   94  ] . For a 
detailed analysis of the mechanism of action of AAA+ proteases refer to  [  71  ] .  

   The Adaptor Protein–RssB 

 Although the vast majority of substrates are recognised directly by the unfoldase, 
some substrates require the assistance of an adaptor protein for their recognition and 
hence their degradation by the protease. In the case of ClpXP, three adaptor proteins 
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have been identi fi ed – SspB, UmuD and RssB. SspB is the best characterised of these 
adaptor proteins and is required for the enhanced delivery and degradation of SsrA-
tagged proteins as well as the delivery of a fragment of the anti-sigma factor (RseA). 
In contrast to SspB, both UmuD and RssB are essential for the delivery of their respec-
tive substrates  [  58,   98  ] . UmuD is essential for the  in trans  delivery of UmuD ¢   [  98  ] , 
while RssB (also referred to as SprE) is essential for the recognition and delivery of 
 s  S   [  54,   56,   57  ] . Interestingly, despite little overall homology between the three adaptor 
proteins, all appear to contain a short sequence motif in common. This motif is located 
at the C-terminus of SspB and RssB, and near the N-terminus of UmuD. In SspB, this 
motif was termed the ClpX binding region (XBR) as it was shown to be critical for 
binding to ClpX and hence delivery of its cargo to the protease  [  99–  101  ] . Speci fi cally, 
the XBR of SspB docks onto the N-terminal domain of ClpX, placing the adaptor 
protein SspB in an ideal position to deliver its bound substrate  [  99,   101  ] . The increased 
local concentration of the substrate (tethered to ClpX, by the adaptor protein) enhances 
its recognition by the pore residues of ClpX, where it is unfolded and translocated into 
ClpP. Although RssB was identi fi ed over 15 years ago, the mechanism by which it 
binds to and delivers its substrate ( s  S ) to ClpXP for degradation still remains elusive. 
However, based on the sequence similarity of the XBR region of SspB and RssB, a 
model for the RssB-mediated delivery of  s  S  has been proposed (Fig.  5.3 ). 

 Although RssB shares little-to-no sequence similarity with other adaptor pro-
teins, it does share considerable homology with a family of proteins known as two-
component response regulators (RRs). These proteins are generally composed of 
two domains, an N-terminal receiver domain and a C-terminal output (or effector) 
domain. In contrast to the majority of RRs (which contain a C-terminal DNA-
binding domain and serve as transcriptional regulators) the C-terminal effector 
domain of RssB is a PP2C-type Ser/Thr phosphatase  [  102  ] . Interestingly, this region 
in RssB lacks the critical residues required for phosphatase activity and hence the 
precise role of this domain remains unclear  [  102  ] . The receiver domain on the other 
hand, is highly conserved amongst all RRs, both in sequence and structure. In the 
case of RssB, this domain is phosphorylated at a highly conserved aspartic acid resi-
due (Asp58), which is proposed to trigger a conformational change in RssB result-
ing in an improved interaction with  s  S   [  55,   58,   59,   61  ] . Consistent with this idea, 
mutation of Asp58 prevents RssB phosphorylation and reduces the rate of  s  S  turn-
over  in vivo   [  55,   59,   103  ] . However, the role of RssB phosphorylation remains con-
troversial, as  s  S  is still degraded in an  E. coli  strain containing a non-phosphorylatable 
mutant of RssB  [  103  ] . Similarly, given that phosphorylation of Asp is transient, any 
structural changes that occur to RssB remain unde fi ned. Nevertheless, the effect of 
phosphorylation has been examined at the molecular level for some RRs  [  104,   105  ] . 
Indeed in these cases, phosphorylation has been shown to trigger both local changes 
to the N-terminal receiver domain, as well as long-range changes to the RR  [  106–
  110  ] . From these data several models have been proposed. One possibility is that the 
receiver domain exists in an equilibrium, between two-states (an active and an inactive 
state) that is in fl uenced by phosphorylation. In most cases, phosphorylation of the 
RR is linked to activation of the protein, while in a handful of cases phosphorylation 
appears to inhibit the activity of the RR. 
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 Regardless of the role of RssB phosphorylation, the molecular details of substrate 
interaction and delivery to ClpXP are also poorly de fi ned. Currently, two different 
models of substrate delivery have been proposed. The  fi rst model implies a direct 
interaction between the adaptor and ClpX, for delivery of the substrate, while the 
second model suggests that RssB is only required to “activate” the substrate for 
binding to ClpX and does not, itself, dock to ClpX. Both models nevertheless, con-
verge to suggest that binding of RssB to  s  S , triggers a conformational change in  s  S  
that exposes a concealed “low af fi nity” ClpX binding site on the substrate. Exposure 
of this site then permits the downstream recognition of  s  S  by ClpX, when presented 
by RssB (Fig.  5.3 ). Consistent with this idea, the N-terminus of  s  S  does not contrib-
ute to RssB binding, but is predicted to contain a ClpX binding motif  [  89,   111  ] . In 
addition to the predicted ClpX binding site, located on the N-terminus of  s  S , a 
“turnover element” in  s  S , located downstream of the promoter recognising region 
2.4, is also required for its degradation  [  60  ] . Mutations introduced into the “turnover 
element” of  s  S , in particular Lys173, have been shown to inhibit the turnover of  s  S  
in growing cells  [  60  ] . Consistently, mutation of Lys173 also inhibited the binding of 
 s  S   in vitro   [  60  ] . Collectively these data suggest that the “turnover element” in  s  S  is 
an important region for interaction with RssB. Hence, in the absence of RssB, the 
N-terminal region of  s  S  is occluded, possibly by the C-terminal region of  s  S  which 
upon binding of RssB becomes exposed for recognition by ClpX  [  111  ] .  

   Anti-adaptors (Inhibitors of RssB Activity, Ira) 

 Interestingly, in the last 5 years another level of  s  S  regulation was discovered (see 
below). In this case, a group of unrelated proteins were shown to inhibit the ClpXP-
mediated turnover of  s  S . These proteins were termed anti-adaptors, and as the name 
suggests they inhibit or antagonise the activity of the adaptor protein, RssB. The  fi rst 
anti-adaptor to be characterised was identi fi ed as a regulator of competence develop-
ment in  B. subtilis   [  112–  114  ] . In non-competent cells, the adaptor protein MecA, 
recognises the competence transcription factor ComK, and delivers it to the ClpCP 
protease for degradation  [  115,   116  ] . When competence development is initiated, by 
a quorum sensing mechanism, the levels of ComS increase  [  112,   117  ] . ComS then 
acts as a “suicide” anti-adaptor binding to MecA and thereby preventing the turnover 
of ComK  [  114,   116,   117  ] . More recently however, similar proteins were also 
identi fi ed in  E. coli . Consistent with the regulatory role of ComS in the development 
of competence, these novel  E. coli  anti-adaptor proteins function to regulate the sta-
tionary-phase stress response. As such, the following section will describe recent 
insights into these small, yet interesting proteins that work to stabilise  s  S . 

 Using an  E. coli  genomic DNA library, Gottesman and colleagues identi fi ed 
three different genes of unknown function that speci fi cally affected the activity of 
an  rpoS-lacZ  translational fusion  [  62,   63  ] . Through a series of elegant genetic and 
biochemical experiments, the proteins encoded by these genes were shown to act 
as speci fi c inhibitors of RssB activity and hence were collectively termed anti-
adaptors. Interestingly, deletion of each gene did not affect the stability of  s  S  under all 
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starvation conditions; rather stabilisation of  s  S  was limited to a speci fi c condition. 
The  fi rst identi fi ed anti-adaptor, YiaB renamed IraP ( I nhibitor of  R ssB  a ctivity dur-
ing  p hosphate starvation) is a small 86 amino acid protein, which is transcribed in 
response to phosphate starvation, and mediated by ppGpp  [  63,   118  ] . A multi-copy 
plasmid carrying the  iraP  gene demonstrated that expression of IraP, driven from 
the plasmid, resulted in an approximately three-fold increase in  s  S  stability in the 
exponential-phase in comparison to a seven-fold increase in the stationary phase 
 [  63  ] . These results, in conjunction with  in vitro  ‘pull-down’ experiments con fi rmed 
IraP as a  bona  fi de  regulator of  s  S , which prevents  s  S  turnover through direct inter-
action with RssB  [  63  ] . 

 Following the identi fi cation of the  fi rst anti-adaptor (i.e. IraP), two additional 
genes ( yjiD  and  ycgW ) were also shown to stabilise  s  S . These gene products were 
renamed IraD and IraM respectively, because of their ability to stabilise  s  S  in 
response to DNA damage (IraD) and during magnesium starvation (IraM)  [  62  ] . 
Consistently, both IraD and IraM were able to inhibit the RssB-mediated degrada-
tion of  s  S   in vitro   [  62  ] . Although all three anti-adaptors seem to perform the same 
role, their interaction with RssB and/or  s  S  seems to vary  [  62  ] . Current data suggests 
that IraP functions by binding directly to RssB (forming an RssB-IraP complex) 
which sequesters RssB from  s  S , thereby preventing its turnover  [  63  ] .  In vitro  ‘pull-
down’ experiments using IraD and IraM suggest that IraD, like IraP, interacts 
directly with RssB, whilst the mode of action of IraM remains unclear  [  62  ]  (Fig.  5.3 ). 
Interestingly, the transcriptional regulator AppY, was also able to stabilise  s  S  in a 
mutant strain lacking all three anti-adaptors, which suggests a putative role for 
AppY in activating the transcription of a yet to be identi fi ed anti-adaptor  [  62  ] . This 
has physiological importance when considering the action of multiple stresses on 
the cell. Based on our current understanding of IraP, the presence of multiple stresses 
may induce the expression of multiple anti-adaptors. Given that each anti-adaptor 
may exhibit a different mechanistic approach to inhibit  s  S  degradation, this may 
cause an avidity effect, which could culminate in rapid stabilisation of  s  S . As such, 
this provides an ef fi cient way of coupling external stress stimuli to a rapid survival 
response.    

   The Heat-Shock Response 

 In contrast to the general stress response, the heat shock response (HSR) is a speci fi c 
cellular response to a rapid, sub-lethal, increase in temperature. This response was 
 fi rst observed in the salivary glands of  Drosophila melanogaster , where the synthe-
sis of a small group of proteins (termed heat-shock proteins (HSPs)) increased in 
response to a temperature upshift  [  119  ]  and was later shown to be a universal 
response. In  E. coli , the HSR is controlled by a single transcription factor,  s  32  (also 
known as  s  H ) and results in the expression of HSPs (i.e. molecular chaperones and 
proteases). The molecular chaperones (e.g. DnaK/J, GroEL/S and the small 
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HSPs – IbpA and IbpB) and the ATP-dependent proteases (e.g. Lon and FtsH), help 
to maintain a productive protein-folding environment in the cell by refolding or remov-
ing the misfolded proteins, thereby returning the cell to its pre-stressed state. The 
response is controlled not only by  s  32  translation, but also through its turnover, and 
can be divided into three distinct phases; induction, adaptation and a  fi nal steady 
state phase. 

   Regulated Turnover of  s  32  

 Similar to  s  S , the steady-state levels of  s  32  are low under non-stressed conditions. In 
the absence of stress (i.e. at 30 °C), low levels of  s  32  (~50 molecules/cell) are main-
tained by (a) inef fi cient initiation of translation due to base pairing within the  rpoH  
mRNA which occludes the Shine-Dalgarno sequence and (b) rapid degradation of 
 s  32  primarily by FtsH (half-life of ~1 min.), which is mediated by both the DnaK 
and GroE chaperone systems  [  120,   121  ] . Upon temperature upshift, the inhibitory 
structure of the  rpoH  mRNA is opened and translation of  s  32  increases. 
Simultaneously, the accumulation of unfolded proteins in the cell sequesters chap-
erones and proteases, albeit transiently (~5–10 min.) thereby stabilising  s  32   [  122  ]  
(see Fig.  5.4 ). As a result, there is a rapid increase in the levels of  s  32  and hence 
HSPs during the induction phase of this response. During the next phase – adapta-
tion – the synthesis of HSPs is blocked, as the activity of  s  32  becomes inhibited 
through (a) the presence of high levels of chaperones and proteases and (b) the 
accelerated turnover of  s  32  at higher temperatures, resulting in a new steady-state 
level of  s  32  (and HSPs) during the  fi nal “steady-state” phase. As such, the cellular 
levels of both chaperones and proteases, not only control induction of the HSR, but 
also the shutdown of this response.  

 Although several cytoplasmic proteases including HslUV (also known as ClpYQ) 
contribute to the turnover of  s  32 , the metabolic stability of  s  32   in vivo  is primarily 
controlled by the membrane bound protease FtsH  [  123–  125  ] . Both proteases 
(HslUV and FtsH) belong to the AAA+ protein superfamily  [  69  ] . Each protease is 
composed of two components (an unfoldase and a peptidase). In the case of HslUV, 
the two components are located on separate polypeptides, while in the case of FtsH 
both components are located on a single polypeptide. While both machines exhibit 
a six fold symmetry, the HslUV complex is formed by one or two ring-shaped unfol-
dase components (composed of six subunits of HslU), that stack onto either or both 
ends of the peptidase component (i.e. HslV), which is composed of two hexameric 
rings stacked back-to-back  [  126  ] . By contrast, FtsH forms a homohexameric ring-
shaped complex that is embedded in the periplasmic membrane with its active sites 
exposed to the cytoplasm. For a detailed description of FtsH structure and function 
refer to the accompanying review by Okuno and Ogura  [  127  ] . 

 Interestingly, the FtsH-mediated degradation of  s  32  is accelerated, not only by 
increased temperature  [  128  ] , but also by the presence of molecular chaperones such 
as the GroEL-GroES (ELS) chaperone system and the DnaK-DnaJ-GrpE (KJE) 
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chaperone system  [  125  ] . Although the exact role of these chaperone systems in 
promoting the FtsH-mediated degradation of  s  32  is yet to be determined, hydrogen-
deuterium exchange (HDX) experiments have shown that both DnaK and DnaJ are 
able to promote unfolding of  s  32   [  129  ] . Binding of DnaJ to region 2.1 triggers a 
conformational change in  s  32 , which facilitates DnaK binding to region 3.2 (Fig.  5.5 ) 
and further unfolding of  s  32 , which is believed to mediate delivery to, and degrada-
tion by, FtsH. Interestingly, in contrast to most other bacterial proteases (e.g. ClpXP 
or ClpAP) in which substrate recognition involves a single N- or C-terminal motif 
(see  [  71  ]  for further details), the FtsH-mediated degradation of  s  32  appears to require 
two distinct regions; region 2.1 (Leu47, Ala50 and Ile54) and region C (Ala131 and 
Lys134)  [  130,   131  ] , both of which are located internally (Fig.  5.5 ). Given that 
(a) these “turnover elements” are located within the middle of the polypeptide, and 
(b) that FtsH lacks a robust unfoldase activity  [  132  ] , it is likely that molecular 
chaperones facilitate the FtsH-mediated degradation of  s  32 , by either triggering a 
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  Fig. 5.4   The heat-shock response is controlled by the transcription factor, Sigma32 ( s  32 )   . 
( a ) Under non-stressed conditions the RBS of  rpoH  is occluded and hence translation of  s  32  is low. 
In the absence of unfolded proteins chaperones and proteases are free to binding to  s  32  mediating 
its rapid degradation and inhibiting its binding to RNAP. ( b ) Under heat shock conditions, the 
secondary structure of  rpoH  is melted and transcription increases. The accumulation of unfolded 
proteins, sequesters the chaperones and proteases from  s  32 , which results in an increase in the 
half-life of  s  32 . The increased cellular concentration of  s  32  allows binding to RNAP and hence 
transcription of the h.s. genes       
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local conformational change in the substrate or by “unfolding” it. Consistently, the 
binding sites for both DnaJ and DnaK are located on, or adjacent to, the FtsH turn-
over elements on the substrate. Interestingly, although still somewhat speculative, 
molecular modelling of  s  32  using known sigma factor structures has revealed that the 
residues implicated in the two turnover elements may form a single discontinuous 
“motif” for recognition by FtsH  [  133,   134  ] .   

   Removal of Misfolded and/or Aggregated Proteins – Degradation 
by AAA+ Proteases as a Last Resort 

 As mentioned above, heat shock results in the accumulation of unfolded proteins, 
which may be detrimental to the viability of the cell. As such, the primary aim of the 
heat-shock response is to maintain cell viability by restoring the protein-folding 
environment of the cell. This is achieved, through the expression of chaperones and 
proteases, which either refold or remove the misfolded proteins. Interestingly, in 
contrast to oxidative stress, which results in the irreversible damage to proteins, heat 
stress largely results in a “reversible” damage to proteins. Moreover, given that it is 
generally more energetically favourable to refold a protein than to degrade and 
resynthesize it, the primary strategy of the heat-shock response is to refold the mis-
folded proteins. As such, it is important for the cell to discriminate between unfolded 
proteins that can be refolded by chaperones, and terminally damaged proteins that 
must be removed from the cell by proteases. One possibility is that the  fi nal fate of 
a misfolded (or aggregated) protein is controlled by the kinetics of chaperone and 
protease binding  [  135,   136  ] . Consistent with this view, chaperones such as DnaK 
and DnaJ recognize largely hydrophobic residues, which are commonly exposed in 
unfolded proteins, while the proteases such as Lon, bind primarily to sequences rich 
in aromatic residues, which are less common in unfolded proteins  [  137  ] . Importantly, 
chaperones such as DnaK and DnaJ are signi fi cantly more abundant than proteases, 
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  Fig. 5.5     Domain organisation of  s  32  . Sigma factors are divided into  fi ve functional regions 
(region 1, 2, 3, 4 and H/region C). These regions can be further divided into subregions (e.g. 2.1, 
2.2, 2.3 and 2.4). The RNAP core enzyme binds to regions 2.2 and H/region C. This partially 
overlaps with the FtsH turnover element, which has be mapped to region 2.1 and H/region C. DnaJ 
and DnaK bind to regions 2.1 and 3.2, respectively       
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especially under heat-shock conditions  [  138–  140  ]  and hence refolding is generally 
favoured over degradation. Therefore not surprisingly, following heat-shock most 
unfolded proteins are refolded directly by “folder” chaperones (i.e. KJE or ELS) 
before they can be captured by proteases for degradation. Interestingly, and some-
what contrary to this view, the degradation of some protein substrates is promoted 
by chaperones, possibly by altering the con fi rmation of the substrate, exposing a 
protease binding site  [  129  ] . However in most cases, chaperones and proteases 
appear to compete for binding to the misfolded substrate to deliver their speci fi c 
activities (refolding versus degradation, respectively). 

 Interestingly, even during conditions of prolonged stress when protein folding 
chaperones are sequestered, the refolding arm of protein quality control network is 
favoured. Under these conditions, the accumulation of misfolded proteins results in 
their aggregation. However these aggregated proteins can be refolded by a special-
ised bi-chaperone system, which combines the “disaggregation-power” of the 
AAA+ unfoldase ClpB, with the refolding activity of the KJE chaperone system 
 [  140,   141  ] . Interestingly, despite the fact that some proteases can degrade aggre-
gated proteins  in vitro   [  138,   142,   143  ]  and that several  B. subtilis  Clp components 
(ClpC, ClpE and ClpP) have been implicated in protein disaggregation  [  144,   145  ] , 
there is currently little evidence in  E. coli  to suggest that aggregated proteins are 
degraded  in vivo.  This is, partly due to binding of “folder” chaperones (i.e. DnaK) 
to protein aggregates, which restricts the binding of proteases  [  138,   146  ] , and partly 
due to the action of “holder” chaperones (i.e. inclusion body proteins A and B, IbpA 
and IbpB, respectively), which trap the substrates in a “folding” competent state. 
Indeed, the “holder” chaperones that bind to misfolded and aggregated proteins, 
appear to facilitate their subsequent reactivation and refolding by the ClpB/KJE bi-
chaperone system  [  147,   148  ] . It is likely that the competitive edge, of chaperones 
over proteases, in the recognition of most misfolded and/or aggregated proteins is 
energetically advantageous to bacteria. 

 Interestingly, both “holder” chaperones (IbpA and IbpB) are degraded by Lon, 
 [  149  ] , and despite the high overall sequence similarity of both proteins, IbpB is degraded 
signi fi cantly faster by Lon, than IbpA is  [  149  ] . Surprisingly however, the rate of IbpA 
degradation, by Lon, was substantially increased under heat-shock conditions suggest-
ing an intriguing link between protein aggregation and degradation. Therefore from 
these data, Baker and colleagues have proposed several interesting models whereby (a) 
free inclusion bodies are degraded (b) both the aggregated proteins and the Ibp’s are 
degraded or alternatively (c) only the Ibp’s are degraded by Lon (Fig.  5.6 ).    

   Conclusion 

 It has been long known, that proteases play a crucial role in the removal of unwanted 
proteins from the cell under a variety of different cellular conditions. However, 
recent  fi ndings have highlighted that these cellular machines also play an important 
role in controlling several different stress response pathways. These studies have 
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illustrated that the proteases responsible for the degradation of these transcription 
factors, are not only highly regulated, but also exhibit an exquisite speci fi city. 
Despite these advances many questions remain unanswered, currently little is known 
regarding the regulation or removal of the adaptor or anti-adaptor proteins that regu-
late the turnover of these transcription factors. Similarly at a structural level, our 
current understanding of how each component interacts with one another, remains 
limited. As such many important challenges, for current and future researchers, still 
remain in this  fi eld.      
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