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Abstract

As the main catalytic and structural molecules within living systems,
proteins are the most likely biomolecules to be affected by radiation ex-
posure. Proteomics, the comprehensive characterization of proteins within
complex biological samples, is therefore a research approach ideally
suited to assess the effects of radiation exposure on cells and tissues.
For comprehensive characterization of proteomes, an analytical platform
capable of quantifying protein abundance, identifying post-translation
modifications and revealing members of protein complexes on a system-
wide level is necessary. Mass spectrometry (MS), coupled with technolo-
gies for sample fractionation and automated data analysis, provides such
a versatile and powerful platform. In this chapter we offer a view on
the current state of MS-proteomics, and focus on emerging technologies
within three areas: (1) New instrumental methods; (2) New computational
methods for peptide identification; and (3) Label-free quantification. These
emerging technologies should be valuable for researchers seeking to better
understand biological effects of radiation on living systems.
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Abbreviations

2DGE Two-dimensional gel electrophoresis
APEX Absolute protein expression
AUC Area-under-curve
CAD Collision activated dissociation
CID Collision induced dissociation
ECD Electron capture dissociation
ESI Electrospray ionization
ETD Electron transfer dissociation
FAIMS Field-assymetry ion mobility

spectrometry
FDR False discovery rate
HCD High-energy collision dissociation
HUPO Human proteome organization
ICAT Isotope coded affinity tags
IMS Ion mobility spectrometry
IRMPD Infrared multiphoton dissociation
iTRAQ Isotope tagging for relative and

absolute quantification
LC Liquid chromatography
m/z Mass-to-charge
MALDI Matrix-assisted laser desorption/

ionization
MRM Multiple reaction monitoring
MS Mass spectrometry
MS2 Tandem mass spectrometry
NIST National institute of standards and

testing
NSAF Normalized spectral abundance factor
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PAI Protein abundance index
PQD Pulsed Q dissociation
PTM Post-translational modification
SILAC Stable isotope labeling of amino acids

in cell culture
SRM Selected reaction monitoring
TMT Tandem mass tags
Xcorr Correlation score

1.1 Introduction

Genome sequencing efforts initiated in the
1980s fostered a new paradigm in biological
research: the system-wide characterization of
biomolecules. Within this new paradigm, the
field of proteomics, which seeks to characterize
proteins on a system-wide level, emerged.
Proteins, the major catalytic and structural
components within all living systems, are
arguably the most informative biomolecules for
understanding cellular function and response
to systematic perturbations, such as radiation
exposure. Unfortunately, proteins are also
the most challenging of all biomolecules to
study on a system-wide level. In addition to
cataloging and quantifying proteins within a
complex biological sample, information on their
post-translational modification (PTM) state,
subcellular localization and interactions with
other biomolecules is necessary for full proteome
characterization. Adding to the challenge,
proteins are dynamic, changing their abundance,
PTM state, localization and interactions in
response to stimuli. Gene sequences or even
mRNA expression levels cannot reveal or predict
this protein-level information [1, 2]. Therefore
technologies for direct analysis of proteins are
necessary for proteome characterization.

Although no single technology can fully
characterize all aspects of proteomes, mass
spectrometry (MS) is the most powerful and
flexible for proteomic analysis. The revolutionary
discoveries in the late 1980s of Matrix-Assisted
Laser Desorption/Ionization (MALDI) [3] and
Electrospray Ionization (ESI) [4] made possible
analysis of intact polypeptides and proteins by
MS. Along with these ionization methods, three
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technologies combined to provide an analytical
platform underpinning the field of MS-based
proteomics and enabling system-wide protein
analysis. First, nanoscale reversed-phase liquid
chromatography (nanoLC) coupled online with
MS instruments came about for separating
peptide digests from complex protein mixtures
[5]. Second, tandem mass spectrometry,
commonly referred to as MS/MS, arose for
predictably fragmenting peptides, necessary
for determining their amino acid sequence [6].
Tandem mass spectrometry initially scans all
mass-to-charge (m/z) values of peptide ions as
they elute from the nanoLC column, and records
their signal intensities in an MS1 spectrum.
Detected peptide ions are then isolated, and
fragmented, with the instrument undertaking
another scan of all m/z values of fragment ions,
recording their signal intensities in an MS2

spectrum. Third, automated sequence database
searching, led by the program SEQUEST [7]
and followed by Mascot [8], was developed to
match large amounts of MS2 spectra to peptide
sequences contained in databases, and in turn
infer protein identities present within complex
mixtures.

This basic platform for what has been termed
“shotgun” or “bottom-up” proteomics, offered
researchers a new way forward for identifying
proteins within complex mixtures. However, two
problems, the extreme chemical heterogeneity
and large dynamic range of protein abundance
within protein mixtures derived from cells,
tissues or bodily fluids, required new methods for
more sensitive identification of proteins. Multidi-
mensional liquid chromatography-based methods
for fractionating peptide digests upstream of
MS analysis, helped to, at least in part, address
these problems, by simplifying complex mixtures
and minimizing signal suppression within the
MS instrument [9–11]. These fractionation
methods also overcame the limitations [12]
of traditionally used two-dimensional gel
electrophoresis (2DGE) for separating complex
protein mixtures. Methods for enriching PTMs
prior to MS analysis improved identification of
proteins carrying important modifications, such

as phosphorylation [13–15] or glycosylation [16],
on a large-scale. Stable isotope labeling and
dilution, traditionally used in mass spectrometry
analysis of small molecules, was adapted for
quantitative measurements of proteins analyzed
by MS [17].

Collectively, these components of the MS-
based proteomics “toolbox” fostered a new and
powerful means to study proteins on a system-
wide level. This enhanced platform can now
routinely identify and quantify thousands of
proteins, including those carrying PTMs in
complex protein mixtures. Because proteins are
the ubiquitous molecular “effectors” within any
organism, MS-based proteomics applies to all
fields of biological research, including the effects
of radiation on the cellular environment.

MS-based proteomics has always been and
remains a collection of dynamic technologies,
with new ones constantly emerging across all
facets of the platform. Continuous improvements
in technologies have moved the proteomics field
closer to its ambitious goal to fully characterize
proteins within complex biological samples with
high throughput. Examples of such technologies
include: improvements in MS instrument
sensitivity increases identification of low-
abundance proteins; more sophisticated software
programs for peptide identification from MS2

data enables detecting a higher proportion of the
hundreds of known PTMs [18] of proteins; higher
throughput and more quantitatively accurate
methods makes possible quantification of protein
targets of interest in a large number of individual
samples, which is especially important for
biomarker studies. However, despite continued
technological improvements, the sheer com-
plexity of biological systems greatly challenges
the current platform in meeting the goal of full
proteome characterization. To illustrate using a
rough estimation, the human genome contains
about �25,000 genes that are processed by
a variety of regulated steps (mRNA splicing,
proteolysis, etc.) to produce �250,000 distinct
proteins. These are in turn covalently modified
via phosphorylation, acetylation, ubiquitination,
oxidation, sumoylation, etc., to generate a
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Fig. 1.1 Overview of the three, interconnected technologies reviewed in this chapter

proteome with millions of distinct protein-based
molecules. The current proteomics technologies
can still only reliably detect a fraction of these
molecules. Thus there is continued need for new
and improved technologies.

Here, we provide our view on three emerging
technologies in MS-based proteomics that are
pushing the field in new directions: (1) New
instrumental methods; (2) New computational
methods for peptide identification; and (3)
Label-free quantification. Figure 1.1 provides an
overview of the interconnectivity of these tech-
nologies. The data produced using new instru-
mental methods, in particular high resolution and
mass accuracy data, enables improved de novo
peptide identification, which seeks to overcome
the inherent limitations of the currently practiced
sequence database searching. Label-free quantifi-
cation provides a flexible and simple way when
comparing samples to determine differentially
abundant peptides and inferred proteins. We re-
view recent advances in these three technologies.

1.2 New Instrumental Methods

From the outset, MS instrumentation has been the
core technology driving proteomic advances. For-
tunately, impressive improvements to the tech-
nology have continuously emerged over the last
two decades. Most instrument vendors introduce
a new model of any given MS instrument every
2–3 years, and those manufactured �10 years
prior to the latest model can scarcely be con-
sidered suitable for research. Some of the most
fundamental and sought-after metrics for mass
spectrometers are resolution, scanning speed, and
sensitivity. These are strongly related: in mass
spectrometers sensitivity comes at the cost of
scanning speed which, in turn, comes at the cost
of resolution. Here we review some emerging MS
instruments that are redefining what is possible
in MS-based proteomic studies. We also discuss
emerging methods that are closely linked to im-
proving the performance of the MS instrumenta-
tion used for proteomic studies.
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1.2.1 Higher Mass Accuracy
and Faster Scanning
Instruments

Bottom-up proteomics uses nanoLC for peptide
separation coupled directly with the MS. Peptides
eluting from the nanoLC column are ionized via
ESI, and introduced into the mass spectrome-
ter. For complex mixtures (e.g., cell or tissue
lysates), the number of peptides vastly exceeds
the peak capacity of the separations typically
used. Michalski et al. have determined that during
a typical 90-min gradient LC run of a com-
plex proteomic mixture, a state-of-the-art mass
spectrometer can detect over 100,000 peptide
species [19]. Consequently, there are many pep-
tide ions being introduced to the mass spec-
trometer simultaneously and high resolution is
required to differentiate these molecules by their
m/z values. Resolution is defined as the ratio
of the m/z value to the width of the peak at
half its maximum. Therefore a large ratio, for
example 50,000/1, is desirable. While not directly
related, high mass accuracy usually accompanies
high resolution. Mass accuracy is calculated via
the following equation: [(actual m/z–observed
m/z)/actual m/z]. Because this ratio is usually
very small, it is multiplied by 106, and reported
in units of parts-per-million (ppm). Values of
5 ppm or less are desirable for mass accuracy.
Ideally, a mass spectrometer provides sufficient
mass accuracy to assign a unique elemental com-
position, and thus an estimation of amino acid
composition, to all peptide peaks in the scanned
range. Such a high level of mass accuracy greatly
constrains the number of possible amino acid
sequences responsible for an observed signal and
reduces the incidence of false discoveries when
assigning amino acid composition [20]. With
1 ppm measured mass accuracy, the amino acid
composition of relatively small peptides with
molecular weights in the range of 700–800 Da
can be determined [21]. With the help of internal
calibration techniques, achieving this level of
accuracy now is almost routine [22, 23].

Tandem mass spectrometry is the underlying
instrumental analysis method for MS-based
proteomics. In its traditional implementation,

detected peptide ions eluting from the nanoLC
column are isolated and fragmented, with the
m/z values of the fragments being recorded in
an MS2 spectrum. There are numerous ways in
which isolated peptides can be fragmented, as
will be discussed in Sect. 1.4. The most-used
method, collision-induced dissociation (CID),
leaks or “bleeds” a small quantity of an inert
gas (He, N2, Ar) into the chamber where the
isolated peptide ions reside. The peptide ions
collide with the gas and internalize the energy
from the collision. Being in the gas phase, the
peptide ions cannot re-distribute the energy
to solvent molecules. Instead, the energy is
eventually transferred to a vibrational mode
which cannot sustain the energy available and
results in bond cleavage. This primarily results
in cleavage along the peptide bond of the peptide
backbone, although one also frequently sees the
loss of water, ammonia, carbon monoxide or
labile post-translational modifications [24]. The
predominant fragments are named accordingly:
b-ions are fragments derived from the N-terminus
of the peptide, while y-ions are fragments derived
from the C-terminus (see Fig. 1.3 in Sect. 1.2).
Certain high-energy fragmentation techniques
fragment or completely lose the amino acid side
chains, and such ions are named d, v, and w- ions.

Ideally, one would acquire a high-quality MS2

spectrum for each peptide within a complex mix-
ture. Unfortunately this is not the reality, due
to two main factors. First, the speed at which
an instrument can gather a sufficient population
of peptide ions and generate an MS2 spectrum
will determine its effectiveness at sequencing all
the detected peptide ions in a sample. Since the
peptide signal from the LC column is transient,
the more time spent scanning m/z fragments
from any peptide ion selected for fragmenta-
tion, the more signals from other peptides will
be missed. Thus instruments that quickly scan
and record MS2 spectra are desirable. A sec-
ond factor is the dynamic range of abundance
of the peptides present. The electrospray pro-
cess can generate only a finite amount of ions
per unit time, and when an extremely abundant
peptide elutes from the column, less abundant
peptides will undergo so-called ion suppression.
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Instruments with a greater dynamic range or
efficiency at selecting low-abundance ions can
mitigate these effects; however peptides from
the lowest-abundance proteins in a sample re-
main undetectable unless enrichment or targeted
strategies are employed. Thus, instruments with
increased sensitivity to low-abundance peptides
are desirable. Increased sensitivity is also linked
to scan speed, as increased sensitivity means the
instrument must spend less time accumulating
fragment ions, and can record MS2 spectra more
rapidly.

Some recently released instruments, combin-
ing the desirable qualities of high resolution and
mass accuracy and rapid scanning speed, are the
Thermo Orbitrap series and the AB Sciex Triple
TOF 5600. The Orbitrap mass analyzer allows
ions to orbit a central electrode while simulta-
neously oscillating axially. This axial motion is
mass (�to charge) dependent. The Orbitrap ana-
lyzer collects an image current of all ions present,
each with a characteristic axial frequency. Fourier
transform of this image current yields the or-
bital frequencies present and thus, the m/z values
present. In this type of mass analyzer, resolution
increases with longer scans [25, 26]. The first
commercial Orbitrap instruments, coupled with
a linear trapping quadrupole, delivered resolv-
ing powers of >100,000 with measured mass
accuracy of 2–5 ppm and recording of up to
three low-resolution MS2 scans per second [27].
Recent introduction of the Orbitrap Velos, led
to 10 low-resolution MS2 spectra recorded per
second [28]. The latest installment of the Orbitrap
series, Orbitrap Elite, employs a more powerful
Orbitrap mass analyzer, [29] providing 2–3 fold
higher resolution of up to 240,000, and an im-
proved Fourier transform algorithm, delivering a
further 2.3-fold greater resolution. No publica-
tions using this instrument exist at the time of
writing, however a recent publication describes
a related instrument. The Q Exactive, employing
the same Orbitrap as the Elite but with a de-
tectorless trapping quadrupole, requires that all
MS1 and MS2 scans be performed in the Orbitrap,
thus giving high mass accuracy in all mass spec-
tra and allowing stricter filtering criteria when
performing database searches for assignment of

peptides to MS2 spectra. This instrument also
records 10 high mass accuracy MS2 spectra in a
�1 s cycle that includes an initial MS1 scan [30].
When coupled to an ultrahigh pressure LC system
delivering a 4-h gradient, the Q Exactive achieves
92% coverage of the yeast proteome.

The AB Sciex Triple TOF 5600 is in fact a
quadruple time-of-flight (Q-TOF) configuration.
Relative to other Q-TOF instruments however,
the 5600 has improved ion sampling, rapid puls-
ing of ions towards the TOF and high TOF
acceleration voltages, all of which allow up to
100 MS2 recorded per second [31]. One of the
first publications using this instrument in a pro-
teomics setting determined that 20 MS2 scans per
1.3 s cycle gave the most peptide assignments to
acquired MS2 spectra. This instrument delivers a
resolution of 40,000, and, with internal calibra-
tion, also produced a measured mass accuracy
of 2 ppm. The extremely fast scanning of this
instrument is credited for the threefold increase
in peptide identifications over an early-model
Orbitrap instrument.

1.2.2 Improved Electrospray Ion
Transfer Efficiency

Maximized capture in the mass spectrometer of
peptide ions generated via ESI increases the in-
strument’s sensitivity. The ESI process gener-
ates a divergent ion beam which is collected by
a conductance-limited aperture, typically in the
form of a skimmer. This configuration captures
only a fraction of the ions generated by ESI.
The efficiency of ion transfer from an ESI source
to the detector has been estimated at <0.1%.
To address this bottleneck, Smith and colleagues
have produced many refinements to the long-
known stacked ring ion guide [32] or ion fun-
nel (Fig. 1.2), yielding successively improved
ion transmission while minimizing the m/z de-
pendency of ion transmission [33–36]. The ion
funnel consists of a series of evenly or progres-
sively further-spaced ring electrodes with suc-
cessively decreasing inner diameters to help fo-
cus the divergent ion beam. Radio frequency
[32] or static [37] electric fields are used to
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Fig. 1.2 Ion funnel schematic (Adapted with permission [39], Copyright 2008 American Chemical Society)

drive ions through the device sometimes with
a DC field superimposed [36]. The ion funnel
has achieved collection efficiencies of 50–60%
across a typical proteomics m/z range of 200–
2,000. However this interface is still not effi-
ciently coupled to a mass spectrometer due to
an increased concentration of charged droplets
whose repulsion causes losses during transmis-
sion [38].

Ion funnels have become widely adopted in
commercial mass spectrometers, however the is-
sue of ion transmission remains a barrier to effi-
cient use of all ions generated by ESI. Another
factor limiting ion transmission is the pressure
gradient between the ESI source and the mass
spectrometer. ESI is usually operated at ambient
pressure, while the mass spectrometer is oper-
ated under high vacuum. This pressure gradient
makes efficient ion capture difficult. Operating
the electrospray within the low-vacuum region of
MS has been used to mitigate this problem and
improves ion signal by approximately an order
of magnitude [40, 41], giving an estimated 50%
ion transmission efficiency [42]. This technology
has been termed subambient pressure ionization
with nanoelectrospray, or SPIN. Potential, albeit
minor hurdles to the widespread adoption of this
technique are its compatibility with typical nano-
LC flow rates [41] and the robustness of an inter-
face where users are required to introduce a nano-
LC-ESI column into the first vacuum stage of a
mass spectrometer. However, more efficient use
of ions produced by ESI clearly pays dividends in
improving instrument sensitivity and will likely
continue to see innovations until a majority of
ions can be routinely captured in commercial-
grade mass spectrometers.

1.2.3 New Fragmentation Methods

Tandem mass spectrometry for amino acid se-
quence elucidation relies, in part, on the abil-
ity to efficiently fragment peptide ions1. CID is
by far the most used fragmentation method due
to its simplicity, ease of implementation, and
ability to fragment all peptides at least moder-
ately well, in spite of the wide chemical diver-
sity of a typical proteomic sample. As CID is
well-suited to other classes of molecules beside
peptides, it is present in virtually all commer-
cially available tandem mass spectrometers [43].
CID is sometimes referred to as collisionally-
activated dissociation (CAD), particularly when
applied to the beam-type version of this frag-
mentation. This distinction causes one to view
CID as a method limited to resonant excitation
in an ion trap. Adding to the confusion, one
instrument vendor refers to their CAD cell as
Higher energy Collisional Dissociation (HCD)
[44]. These distinctions are not merely semantic,
however. Aside from the differences in hardware
required to perform them, resonant excitation
CID is slower (�30 ms vs. <1 ms), produces
different fragment ion intensities than beam-type
CAD, and CID suffers from the so-called “one-
third rule”. Under the necessary ion activation
conditions for sufficient fragmentation in an ion
trap, the resulting fragment ions with m/z � 0.3
times that of the precursor ion are lost during the
activation [45]. This loss of low-mass b/y ions as
well as helpful immonium ions hinders the inter-
pretation of the resulting tandem mass spectrum.

1The terms “fragmentation” and “dissociation” are used
interchangeably in the field.
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In isotope-tagging experiments for relative quan-
tification between samples, the low-mass region
of the MS2 spectra contain the reporter fragment
ions, crucial to obtaining quantitative information
[46, 47]. While a modified version of resonant
excitation in an ion trap, called PQD, can be
implemented to preserve the low-mass ions, [48]
the low fragmentation efficiency of PQD has
invited comparison between PQD and HCD [49].
Instrumental improvements in the HCD cell [50]
now make HCD a very attractive method for the
analysis of low-mass reporter ions in quantitative
mass spectrometry.

The use of HCD fragmentation has also been
examined for studies of phosphopeptides. While
its use resulted in more phosphopeptide and phos-
phosite identifications than when using CID, [51]
it seems that this improvement can be attributed
largely to the high mass accuracy scans which
are mandated following HCD, as opposed to low-
resolution and low mass accuracy scans typi-
cally used following CID, rather than any inher-
ent improvement in fragmentation pattern or ion
collection.

Electron capture dissociation (ECD) [52, 53]
and electron transfer dissociation (ETD) [54–
56] are two related fragmentation methods,
used in Ion Cyclotron Resonance (ICR) and
ion trap mass spectrometers, respectively. Both
methods involve an ion/ion interaction between
a multiply protonated peptide cation and either
a low-energy electron in ECD or an electron-
donating anion radical molecule in ETD. The
charge-reduced peptide cation dissociates before
any energy randomization can occur. This is
especially important for peptides carrying PTMs
such as phosphorylation or glycosylation [57]. In
CID or CAD the labile covalent bonds between
these modifications and the peptide are usually
preferentially fragmented, limiting fragmentation
across the peptide backbone and resulting in less
informative MS2 spectra for peptide sequence
assignment. ECD or ETD meanwhile provide
richer MS2 spectra from many PTM carrying
peptides since much of the fragmentation still
occurs along the peptide backbone. This leaves
intact the modified amino acid residues and
also provides a relatively full complement of
sequence-rich fragments, enabling more effective

sequence assignment and increased confidence
in the site of modification. This property has
made ECD/ETD especially useful in studies of
phosphoproteins and glycoproteins [58–61].

Photodissociation methods can also be used to
obtain peptide sequence information. Two spec-
tral regimes are commonly being used for this
purpose: infrared and (vacuum) ultraviolet. In-
frared multiphoton dissociation (IRMPD) typi-
cally uses a CO2 laser emitting tens of watts at
a wavelength of 10.6 �m. This wavelength is
efficiently absorbed by phosphopeptides and thus
IRMPD has been investigated for its utility in
analyzing this important post-translational mod-
ification [62, 63]. MS2 spectra following IRMPD
do not suffer from the one-third rule, [64] how-
ever the fragmentation typically takes twice as
long as resonant excitation CID. IRMPD pro-
duces b/y ions, but also yields more internal
fragment ions than CID [65].

UV photodissociation typically uses excimer
lasers emitting at 157 or 193 nm as the light
source [66]. As air absorbs these wavelengths
efficiently, the 157 nm light source especially
must be placed in the vacuum region of the
mass spectrometer, complicating the instrumen-
tal requirements. Single-photon UV absorption
is sufficient to induce dissociation and in con-
trast to IRMPD, irradiation times on the order
of �s or ns are sufficient. While both 157 and
193 nm light target the peptide backbone, UV
photodissociation produces a range of fragments
in addition to b/y ions such as a, d, x, v and
w ions. The presence of d, v and w fragment
ions is evidence of a high-energy fragmentation
method; not surprising given that the energy of a
single UV photon is approximately double that
of a peptide bond [67]. While these fragments
can be useful, for instance, in differentiating be-
tween leucine and isoleucine, most commercially
available peptide identification programs are not
optimized for, or capable of, analyzing these ions.

While there currently exists an impressive, if
not overwhelming, array of dissociation methods,
none can meet all the requirements of every con-
ceivable experiment. Until such a method exists,
there remains room for improvement to those
currently used, and the development of entirely
novel ones.
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1.2.4 Data-Independent
MS2 Analysis

Most tandem MS experiments are performed in
a data-dependent manner: the collection of pep-
tide ions entering the mass spectrometer are first
recorded in the MS1 spectrum, and these ions
(also called precursor ions) are serially selected
for fragmentation and MS2 spectra acquisition
[68]. It is well-established however, that this
method does not provide complete selection of
all peptides in complex samples. An alternative
method is to perform fragmentation at all peptide
ion m/z values, regardless of which ions can
be detected in an MS1 spectrum. This method
is embodied by two different approaches: with
and without isolation of precursor ions within a
defined m/z window.

In data-dependent MS2 spectra acquisition,
all ions within a defined, relatively narrow m/z
window bracketing a precursor of interest are
isolated for fragmentation. It however is possi-
ble to omit precursor m/z isolation and effec-
tively fragment simultaneously all ions present
across the entire m/z range scanned when ac-
quiring MS1 spectra. When precursor isolation
is omitted, a single LC-MS run could in the-
ory detect the entire proteome. In practice, the
usual list of mass spectrometer capabilities is
desired: high mass accuracy is tremendously ben-
eficial in assigning fragment ions to precursor
ions [69, 70]. High scan speed and MS2 spectra
acquisition is beneficial in assigning fragment
ions to a precursor, based on chromatographic
retention time [71, 72]. Dynamic range of the
mass spectrometer is also important in achieving
deep sequencing, due to the occurrence of co-
eluting peaks [73]. One advantage of this ap-
proach is that it can be performed on relatively
simple instrumentation: only a collision cell (or
other means of achieving dissociation [63]) and
a single-stage mass analyzer are required. One
major challenge in this type of experiment is the
data analysis. Knowledge of which precursor ion
masses give rise to the observed fragments is
necessary for assigning peptide sequence to MS2

spectra using sequence database searching soft-
ware. When simultaneously fragmenting multiple
peptide ions across a large m/z range, knowledge
of which precursor ion belongs to which frag-
ments is lost. While the precursor mass belonging
to sets of fragments can be inferred by relating
its retention time in an MS1 scan to that of the
fragments ions in an MS2 scan, [71] this is not
a trivial process [72]. As such, data-independent
MS2 in the absence of precursor isolation still
struggles with very complex samples, but this
approach seems to be re-evaluated each time a
breakthrough in hardware performance is made.

Recently, another data-independent acquisi-
tion approach was investigated by rapid isola-
tion and fragmentation of peptide ions within
narrow (2.5 m/z) precursor isolation windows,
spanning the entire m/z range covered by peptide
ions (�400–1,400). These narrow m/z “bins”
mitigated the need for MS1 scans, while still
providing a tight mass range of potential precur-
sor m/z that could be connected to each MS2

spectra for sequence assignment. For thorough
analysis of a typical, complex protein digest, this
approach required over 4 days of mass spectrom-
etry instrument time, but required no sample pre-
fractionation [74]. Wider isolation widths have
been tested, but the resulting tandem mass spectra
are likely to contain more than a single pep-
tide species, resulting in complicated database
searches [75]. The use of narrow isolation widths
demonstrated the ability for a highly automated
method to achieve greater proteome coverage and
a wider dynamic range than a data-dependent
method. As with experiments that do not use
precursor isolation, such studies using narrow
isolation widths benefit from instrumental im-
provements such as high mass accuracy and res-
olution [76]. It is somewhat surprising how few
publications exist on this topic, as it seems well-
suited to those experimenters not well versed
in multidimensional peptide fractionations who
might be attracted to a highly automated method.
At this time it is difficult to predict whether
the data-independent approach will flourish or
flounder, in spite of its demonstrated potential.
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1.2.5 Gas-Phase Fractionation
and Ion Mobility Separations

Since the complexity of a typical proteomics
sample can easily exceed the capacity of a
LC-MS system to resolve and detect all peptides
present, most fractionation schemes [9–11] occur
upstream of the mass spectrometer, and are
designed to simplify the mixtures introduced
into the mass spectrometer to achieve better
sensitivity. However, peptide fractionations
usually require considerable manual labor and
sample handling.

In contrast to upstream fractionation, a
fractionation method has been devised wherein
repeated injections of the same unfractionated
sample are introduced to the LC-MS, but for
each injection a different “fraction” of the
standard m/z range is analyzed (e.g. 400–575,
560–740, 730–910 and 900–1,795). This allows
the instrument to focus on a smaller m/z range
to achieve the most comprehensive detection and
fragmentation of peptide ions in this range as
possible [77–79]. Since the instrument analyzes
or ignores certain portions of the ionized m/z
range, this method has been termed “gas-phase
fractionation”. For a yeast cell lysate, the analysis
of three gas-phase fractions was compared to
triplicate analyses of the entire mass range, and
found to increase the number of identifications
by 30% [80]. A further refinement of this
method used in silico calculations to determine
the optimal m/z bins which would yield equal
numbers of theoretical tryptic fragments across
the number of bins selected [81]. The authors
studied three different organisms of differing
complexity, and found that regardless of the
biological source, roughly half the tryptic
peptides reside below m/z 685 with decreasing
ion density as m/z increased. Thus gas-phase
fractionation certainly has the power to increase
proteomic coverage, but at the cost of performing
multiple LC-MS runs. Unlike upstream peptide
fractionation methods, gas-phase fractionation
does this in an entirely automated fashion,
reducing labor and sample handling. However,
this method might not be suitable to the analysis
of very small samples with low protein amounts
where multiple LC-MS analyses are not possible.

Ion mobility spectrometry (IMS) is a gas-
phase separation method for electrophoretically
separating ions in the presence of a buffer gas.
Ions are separated by their mass, charge and
mobility; the latter being inversely related to their
collisional cross section [82]. IMS devices are
frequently coupled to a mass spectrometer (using
ion funnels), creating a hyphenated method, IMS-
MS. For the purposes of this section it will be
assumed that all IMS separations are coupled a
mass spectrometer. The time frame of a typical
IMS separation is ideally suited to its incorpora-
tion in a multidimensional fractionation scheme
in proteomics: the peak widths for LC, IMS and
TOF-MS are on the order of seconds, ms and �s,
respectively. This allows each subsequent method
to acquire tens of measurements of the preceding
separation—the minimum required for adequate
profiling of a peak [83].

Three versions of IMS are used: linear
drift tubes, traveling wave ion guides, and
field-asymmetry IMS (FAIMS) [69]. Linear
drift tubes and traveling wave ion guides both
resemble a stacked ring ion guide (see Sect. 1.3),
though differ in the way electric fields are
applied in order to propel ions through the
device. These differences affect the separation
mechanism. The resolution of linear drift tubes
and traveling wave ion guides [84] is typically
the greatest at 100–150, however similar values
have recently been reported with FAIMS [85,
86]. Also, FAIMS typically separates isomers
and isobars better than linear drift tubes and
hence has been the most widely implemented
in proteomics experiments [85–87]. To date,
the most successful configuration for FAIMS is
the use of parallel plates separated by �2 mm
[88]. Under high electric fields, the absolute
mobility of an ion deviates from its value at low
fields. This difference is exploited in FAIMS
by applying an asymmetric radio frequency
potential between the two plates. As this potential
ejects all ions radially from the device, a DC
compensation voltage is required to transmit
any ions. This compensation voltage is the
discriminating variable in a FAIMS separation
[87]. Both Thermo Scientific and AB Sciex
have commercially-available FAIMS devices
which can be added to their mass spectrometers,
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boasting claims of improved selectivity and
signal-to-noise ratios. Shvartsburg, Smith and
co-workers have made great improvements in
the instrumental design of FAIMS devices,
improving resolving power [87, 88] and resolving
phosphopeptide isomers which differ only in the
site of phosphorylation [89]. Waters Corporation
has investigated and commercialized a traveling
wave ion guide with its mass spectrometers. As
the name implies, a DC voltage is passed along
the successive ion guide rings, propelling the ions
through the device while an rf-field is generated
to maintain ions’ radial position. By selecting the
amplitude and velocity of the DC wave, ions can
be separated by mobility or simply transmitted
through the device [90, 91].

Ion mobility separations have the ability to add
a second dimension of online fractionation to an
LC-MS analysis which should greatly simplify
the mixture of ions arriving at the mass spectrom-
eter with no increase in analysis time. The resolv-
ing power is sufficient to separate different com-
ponents in a mixture, however a single peptide
sequence may have multiple conformations each
with different IMS mobility, which de-focuses the
ion packed generated by LC-MS. Also, it is not
clear whether current computational methods can
analyze IMS separations quickly enough to make
on-the-fly decisions, as is currently performed
in data-dependent LC-MS experiments. Nonethe-
less, it seems probable that these hurdles can be
overcome and that IMS separations will greatly
increase the power of proteomics experiments.

1.2.6 Targeted MS

As the collection of known, MS-observable,
proteolytically-derived peptides becomes
saturated, some researchers are turning away
from data-dependent MS analyses. For a known
sample type (e.g. identity of the organism,
biological state, sample preparation parameters),
the observable peptides emanating from its
proteome can be predicted and have likely
already been observed in other experiments.
Thus, generating a comprehensive list of such
so-called “proteotypic” peptides should provide a

basis for performing targeted MS experiments in
a hypothesis-driven manner [92]. Such methods
can then be used, for example, to validate
potential biomarkers generated from an initial
screening experiment [93] or to follow the
proteins in a metabolic pathway following some
perturbation [94]. This approach has been greatly
advanced by the groups of Aebersold and Carr,
who have developed software to predict the
most detectable peptides in a mixture, [95,
96] catalogued all experimentally observed
peptides [97], demonstrated single copy per
cell sensitivity, [94] and are in the process of
synthesizing a complete proteotypic peptide
library of human serum [98].

A powerful MS method for quantifying sev-
eral peptides simultaneously is termed selected
reaction monitoring (SRM), or sometimes mul-
tiple reaction monitoring (MRM). This type of
experiment is performed with a triple-quadrupole
instrument, and is notoriously selective and sen-
sitive. As ions are electrosprayed into the MS, the
first quadrupole transmits a peptide ion at a user-
specified m/z value. This ion is then fragmented
in the second quadrupole which is not mass-
selective, but merely a fragmentation cell. The
third quadrupole is then set to transmit the m/z of
an expected fragment ion from the precursor pep-
tide ion. This process is repeated, usually for at
least three fragments per peptide ion and two pro-
teotypic peptides per protein of interest. Modern
mass spectrometers can achieve reliable quantifi-
cation by dwelling on such a peptide/fragment
m/z pair (the “reaction” in SRM, also called
a transition) for 10 ms or less. The duty cy-
cle, and thus the sensitivity is inversely related
to the number of transitions being monitored,
however when the retention time of a peptide
is known, the instrument can be scheduled to
monitor distinct peptide ions and their transitions
at different times. In this way, Kiyonami et al.
have quantified 6,000 transitions, relating to 757
peptides in a single LC-MS analysis [99]. They
note that this can be extended to 10,000 tran-
sitions, targeting 1,000 peptides. Addona et al.
[100] have shown that, when using isotopically-
labeled standards, this method is very repro-
ducible within and across eight laboratories using
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two instrument platforms. Many groups believe
that SRM-based targeted proteomics will be the
basis for future biomarker validation [101–104].

An important aspect of such large-scale
hypothesis-driven efforts is the software. The
identification of proteotypic peptides and their
SRM transitions can be very time-consuming
if performed manually. A variety of software
products exist from the instrument manufacturers
and from academic groups to assist in the
design of SRM experiments [105–107]. The
most powerful and popular tool has come from
the MacCoss laboratory. Their open-source
platform, Skyline, can guide SRM experiments
by optimizing collision energy and fragment ion
selection, performing quantification, predicting
peptide retention time and a host of other
functions, for data acquired from the major
instrument manufacturers [108–110]. Continued
refinements to such software packages will
greatly automate and thus expedite the process of
developing and optimizing SRM assays capable
of quantifying hundreds to thousands of peptides
in a single MS analysis. These advancements
are transforming MS-based proteomics from just
a large-scale discovery technology to a high-
throughput assay for monitoring proteins of
interest in hypothesis-driven studies.

1.3 New Peptide Identification
Methods

1.3.1 Principles of MS2

Fragmentation

Tandem mass spectrometry-based proteomics
experiments rely on the same principle as Edman
degradation, a long standing chemical technique
for peptide sequencing [111]. In Edman degra-
dation stepwise degradation from the peptide’s
n-terminus followed by chromatographic analysis
of the released derivatives determines the amino
acid sequence. The fragmentation that occurs
during the MS2 stage mimics Edman degradation
because MS2 dissociation randomly breaks along
the backbones between amino acid residues.
This results in two, rarely more, fragment ions,

one each containing the n-terminus and the c-
terminus. The m/z values of fragment ions are
recorded in the MS2 spectra for every selected
precursor peptide ion. However, individual
fragmentation peaks are not valuable; as in
Edman degradation, it is their m/z differences
that are informative. As shown in Fig. 1.3, the
m/z differences between these peaks determine
both the amino acid residue identities and their
positions, thus identifying a peptide.

These two fragment ions have predictable
structures because as shown in Fig. 1.4,
fragmentation can only occur in three places
along an ion’s backbone. Therefore, the fragment
ion will resemble one of six ion structures. The
standard nomenclature for these fragment ions
identifies both the point of fractionation as well
as which terminus retains the charge. Ions a, b
and c are n-terminus fragments and x, y and z are
c-terminus ions.

Although the exact point of fragmentation
depends on many factors, the primary factor is
the type of dissociation applied. CID and HCD
produce primarily b and y ions, with a few a ions
sprinkled in, while ETD produces primarily c
and z ions. Their resulting fragmentation patterns
differ enough to impact the programs interpreting
mass spectra.

1.3.2 Interpretation of MS2 Spectra

With just one experiment generating hundreds of
thousands of MS1 and MS2 spectra with high
resolution, today’s mass spectrometers now of-
fer unparalleled mass accuracy and efficiency.
Coupled with the increasing use of new disso-
ciation techniques and chromatography methods,
mass spectrometers now generate an overwhelm-
ing amount of spectral data with different frag-
mentation patterns and retention time profiles.
Unfortunately, widely used software packages for
interpretation of mass spectra, that is, for peptide
identification, protein inference and validation,
were not designed to process this vast amount of
data, and they were tuned to process CID-derived
data. Because these tools for interpreting mass
spectra have failed to keep pace with advances
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Fig. 1.3 Example peptide MS2 spectrum

Fig. 1.4 Peptide fragmentation locations and the resulting ions
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Table 1.1 Partial list of database search tools

Program Reference Website
SEQUEST [7] www.thermoscientific.com
Mascot [8] www.matrixscience.com/
X!Tandem [117] www.thegpm.org/TANDEM/
OMSSA [118] www.pubchem.ncbi.nlm.nih.gov/omssa/
Andromeda (MaxQuant) [119] www.maxquant.org/
SpectrumMill www.chem.agilent.com
MyriMatch [120] http://fenchurch.mc.vanderbilt.edu/software.php
ProteinProspector [121] http://prospector.ucsf.edu/prospector/mshome.htm
PHENYX [122] www.genebio.com/products/phenyx

in instrument technology, they yield suboptimal
proteome characterization.

Interpretation of mass spectra is a multistep
process. The data must first be preprocessed to
remove noise and identify valid peaks and fea-
tures, subjects not reviewed here, but several
good reviews exist in the literature [112–115].
After preprocessing the sample data, a series of
phases culminates in a list of peptides and/or pro-
teins that are confidently deemed present in the
sample. These phases are: peptide identification,
protein inference, and validation. In the following
sections we highlight their main challenges and
solutions, and posit an outlook of their future.

1.3.2.1 Peptide Identification
The first phase, peptide identification assigns an
amino acid sequence to a spectrum. This is called
a peptide spectrum match or PSM. Peptide iden-
tification programs have evolved over time, but
strategies for assigning PSMs fall into one of
four categories: database search, spectral library
search, de novo sequencing, and hybrids thereof.

Database Search
During the early days of proteomics experiments,
peptide identification was completed via manual
de novo sequencing, a tedious process carried out
by researchers without the aid of a computer or a
database [116]. However, soon proteomics exper-
iments became high throughput and the amount
of data generated by them outpaced researcher’s
ability to manually inspect each spectrum. This
drove the invention of alternate means of identi-
fying peptides, mainly database search programs.

Today, researchers avail themselves to the
numerous software packages that implement

database search programs, see Table 1.1.
Researchers still commonly utilize the first
widely used database search programs from
the 1990s, SEQUEST [7] and Mascot [8].
Although specific implementations of database
search programs differ, they share a common
underlying principle introduced by SEQUEST:
they compare the observed MS2 spectra to that
of theoretical spectra derived from in-silico
enzymatic digestion of a FASTA database. They
also share common challenges. One challenge
is how to efficiently search the large amount of
data available in FASTA databases. Searching
all possible peptides from a FASTA database
and all of their potential PTMs is prohibitively
time-consuming. Even with the use of multiple
processors, sequence assignment, including
possible PTMs, to hundreds of thousands of MS2

spectra produced by modern instruments can
take days or even weeks. Unfortunately, limiting
the peptides only to those with expected enzyme
cleavage sites (e.g., lysine and arginine for trypsin
cleavage), and limiting the number of PTMs
considered, does not adequately narrow the
search space. To address this issue, most database
search software packages can restrict the search
space even further by searching against only
those peptides that have a mass within a narrow
tolerance window around the observed m/z of its
precursor peptide ion. A completely different
challenge stems from the fact that different
dissociation methods produce very different
fragmentation patterns. This was not a problem
until recently, because prior to the introduction of
ETD, the predominant workhorse of proteomics
experiments was CID. But with the introduction
of ETD and its increasing adoption comes the

www.thermoscientific.com
www.matrixscience.com/
www.thegpm.org/TANDEM/
www.pubchem.ncbi.nlm.nih.gov/omssa/
www.maxquant.org/
www.chem.agilent.com
http://fenchurch.mc.vanderbilt.edu/software.php
http://prospector.ucsf.edu/prospector/mshome.htm
www.genebio.com/products/phenyx
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requirement for database search programs to
allow multiple fragmentation patterns for the
same peptide. Because each type of experiment
has its own optimal settings for precursor ion
mass tolerance window setting, number of PTMs
considered and dissociation methods used, the
researcher sets these parameters.

An inconvenient consequence of parameter
driven database search is that each different set of
parameters produces different results. Therefore,
researchers must exercise caution when compar-
ing results between experiments, both within and
between laboratories.

Although database search strategies are the
predominant choice for peptide identification
in shotgun proteomics [123], they do have
limitations. First, database search relies on the
sequencing data for organism being studied.
Thus, if an organism is not yet been sequenced,
database searching can only be used to find
homologous peptides in different organisms.
Second, unexpected, yet important, PTMs, and
sequence anomalies will be missed because
variants do not exist in the database. Even though
some databases take into consideration splice
variants, no production quality database search
engines make the effort to take advantage the
annotation available in databases such as Swiss-
Prot or UniProtKB. Therefore, many unexpected,
but annotated, PTMs and polymorphisms are
missed, which leads to incorrect or missed
peptide identifications [124]. Third, false positive
identifications occur often because database
search programs assign a peptide sequence to
each and every spectrum, regardless of quality.
Fourth, validation assigns high confidence
(>95%) to only 10–30% of the spectra [125].
Finally, each database search engine identifies a
partially overlapping but different set of peptides.
For instance, SEQUEST may identify a set of
100 peptides and Mascot may identify a set of
100 peptides from the same spectra, but perhaps
only 60 of them are common to both SEQUEST
and Mascot.

A relatively recent development in shotgun
proteomics research combines the results from
several different database search engines to iden-
tify more peptides with increased confidence.

The idea of combining results from multiple
sources is not new. Resing et al. described con-
sensus scoring for multiple peptide identifications
from different search engines in 2004 [126] and
Alves et al. proposed combining and calibrating
confidence scores from multiple search engines
into a meta-analytic value for each confidence
score [127]. However, software automating in-
tegration of separate database search results de-
veloped more recently. For instance, a popular
tool allowing researchers to combine results from
multiple search engines is Scaffold, developed
by Searle et al. [125, 128]. By probabilistically
combining results from multiple search engines,
including SEQUEST, X!Tandem, OMSSA, In-
sPecT and Mascot, Scaffold increases sensitivity
a minimum of 20% with each search engine
added [129]. As evidenced by the latest publi-
cation of a tool combining results from multiple
search engines [130], the idea is garnering more
attention and we can we can expect this trend
of new tools for incorporating multiple search
engines to continue into the foreseeable future.

Spectral Library Search
Spectral library search strategies are similar to
database search strategies, except the observed
MS2 spectra are compared to collections of ex-
perimentally generated spectra rather than hy-
pothetical spectra [131]. These strategies out-
perform database search strategies in terms of
error rates, speed and sensitivity. Using spectral
libraries reduces the time spent repeatedly iden-
tify the same identifiable peptides by database
searching, [132] but can only identify a peptide
if it has been previously analyzed by tandem
mass spectrometry and its sequence positively
identified. A partial list of spectral library search
tools is located in Table 1.2.

Libraries of experimental spectra are available
from many sources and provide a rich source
of spectral data. Spectral libraries for many or-
ganisms are stored at the National Institute of
Standards and Technology (NIST). Although, the
NIST libraries do not target specific PTMs, spe-
cialized libraries for specific modifications are
available elsewhere, e.g., PhosphoPep [138] for
phosphorylation sites in model organisms and
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Table 1.2 Partial list of
spectral library search tools

Program Reference Website
SpectraST [132, 133] www.peptideatlas.org/spectrast/
NIST MSPepSearch N/A http://peptide.nist.gov/
BiblioSpec [134] http://proteome.gs.washington.edu/software/

bibliospec/v1.0/documentation/index.html
X!Hunter [135] http://www.thegpm.org/hunter/index.html
ProMEX [136] http://www.promexdb.org/home.shtml
HMMatch [137] Not available

the open source Ub/Ubl spectral library [139]
for ubiquitin and ubiqutin-like modifications. In
addition, a wealth of spectral data can be down-
loaded from one of several proteomic data shar-
ing repositories, e.g., PeptideAtlas [140], Pride
[141], Peptidome [142], and Tranche (https://
trancheproject.org/).

As the amount of publicly available spectral
data grows, the hope is that one day spectra
for all peptides detectable by MS (at least for
well-studied organisms) will be contained and
annotated in publicly available spectral reference
libraries. However, until these reference libraries
are sufficiently complete, spectral library search
strategies will continue to be underutilized [143].
In the meantime, data in spectral reference li-
braries are a rich source of data that could be
used for purposes other than identifying pep-
tides. For instance, spectral data could be mined
to provide important insight into fragmentation
patterns, which could in turn lead to improved
database search or de novo sequencing [144] as
well as the development of SRM methods to
target specific peptides [97].

De Novo Sequencing
The limited ability of database search and
spectral search strategies to identify the unex-
pected, for example, PTMs, polymorphisms and
sequence anomalies drives the need for peptide
identification programs that can efficiently handle
the enormous amounts of data without sacrificing
confidence in their results. While conceptually
unchanged, researchers are again turning to de
novo sequencing as an alternative to database
search to accurately and confidently identify
peptides. De novo sequencing programs can
identify PTMs, polymorphisms and sequence
anomalies because they compute directly on

spectra to determine the peptide amino acid
sequence, process which does not require
searching against FASTA databases [145].

De novo sequencing for proteomics has a
long and rich history. Spectra were originally se-
quenced manually, a process which does not scale
well. Therefore, as the amount of data from shot-
gun proteomics grew, researchers turned to com-
puter science for automated de novo sequenc-
ing. In the 1980s, several computational algo-
rithms were introduced that helped [146–150] but
proved to be terribly slow because they tended
to brute force consider all possible amino acid
sequences. In 1990, computational algorithms
became more efficient when Bartels represented
a spectrum as a graph [151]. Although this type
of graph is called a spectrum graph by the pro-
teomics community, it should not be confused
with spectral graph theory where a graph’s spec-
trum is defined as the set of eigenvalues of a
graph’s adjacency matrix, nor with a general
graph of nodes and edges, where a node does not
have a position and an edge can connect any two
nodes. In this novel proteomics spectrum graph
representation, the vertices represent the spec-
trum m/z values and two vertices are linked by
edges if their mass difference is equivalent to the
mass of an amino acid. Figure 1.5 shows a theo-
retical spectrum graph of the spectrum in Fig. 1.2.
Formally, Bartels defined the problem as:

Given amino acid masses M D fm1; : : : ; m20g,
spectrum S D fs1; : : : ; scg, transform it
into a spectrum graph G .V; E/ such that
V D fv1; : : : ; vcg and G D fg1; : : : ; gt g
such that v represents a single integer m/z and
two vertices vn; vq; q¤n and are connected by
directed edge e if

ˇ
ˇvq � vn j� mt

Although Bartel’s approach is now the de
facto basis for most de novo peptide sequencing
programs, several unresolved issues limited

www.peptideatlas.org/spectrast/
http://peptide.nist.gov/
http://proteome.gs.washington.edu/software/bibliospec/v1.0/documentation/index.html
http://proteome.gs.washington.edu/software/bibliospec/v1.0/documentation/index.html
http://www.thegpm.org/hunter/index.html
http://www.promexdb.org/home.shtml
https://trancheproject.org/
https://trancheproject.org/
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Fig. 1.5 MS2 spectrum graph

Table 1.3 Partial list of
de novo sequencing tools

Program Reference Website
PepNovo [155] http://proteomics.ucsd.edu/
DirecTag [157] http://fenchurch.mc.vanderbilt.edu/software.php
PEAKS [158] www.bioinfor.com/
pNovo [159] http://proteomics.ucsd.edu/
Lutefisk [152] http://www.hairyfatguy.com/lutefisk/
NovoHMM [156] http://people.inf.ethz.ch/befische/proteomics/
DeNovoX N/A www.thermo.com

spectrum graph’s, and, therefore, de novo
sequencing’s, adoption. First, spectrum graph
models were instrument specific which required
training a new model for each new mass
spectrometer. It took until 1997 to implement
this strategy when Taylor and Johnson introduced
Lutefisk [152]. Second, the predominantly used
CID has a propensity for incomplete fragmenta-
tion and results in multiple disconnected graphs,
graph gaps, limiting the effectiveness of spectrum
graph algorithms. Finally, lack of standardized
scoring models for spectrum graphs hindered
researchers’ ability to compare experimental
results. SHERENGA, introduced by Dancik et al.
in a landmark publication 1999 [153], addressed
each of these limitations using a spectral graph-
based algorithm. Several research groups have
since made additional enhancements to these
algorithms, most notably dynamic programming
[154] and probabilistic models using networks
learned over annotated spectra (e.g., PepNovo
[155] and NovoHMM [156]).

Although several de novo sequencing
software packages, as shown in Table 1.3, are
now available that implement spectrum graph
algorithms, de novo sequencing’s adoption as a
viable option for shotgun proteomics experiments
has been slow. A primary contributor to its slow
adoption was that affordable mass spectrometry
instrumentation lacked the ability to produce
high resolution spectra with minimal noise,

completely fragment selected ions and retain
potentially important PTMs. Until recently,
these issues could only be overcome by using
complementary spectra, MS2 and MS3 [160],
ECD and CID [161], or differentially modified
pairs [162] on a FTICR mass spectrometer. The
FTICR spectrometer can generate spectra with
high resolution (>100,000), thus differentiating
valid ions from noise much easier. Furthermore,
ECD is complementary to CID, and a more
complete fragmentation pattern emerges their
spectra are combined into a single artificial
spectrum. Finally, ECD inherently uses lower
energy than CID allowing for retention and
subsequent identification of more PTMs. FTICR
mass spectrometers’ main drawbacks are that
they are extremely expensive and inefficient
compared to ion trap mass spectrometers,
the main workhorse instruments in MS-based
proteomics. Even though FTICR instruments
offer 100 times better resolution than an ion trap,
each spectrum takes 10 times longer to acquire
than on an ion trap instrument.

Recently, via the introduction of the Orbitrap
instrument series, the more affordable ion trap
mass spectrometers became capable of high reso-
lution (>100,000) and offered ETD, which gives
similar spectra to ECD. Taking advantage of
these improvements, Datta and Bern expanded on
previous pioneering work fusing ECD and CID
spectra [163]. In 2009, they introduced Spectrum

http://proteomics.ucsd.edu/
http://fenchurch.mc.vanderbilt.edu/software.php
www.bioinfor.com/
http://proteomics.ucsd.edu/
http://www.hairyfatguy.com/lutefisk/
http://people.inf.ethz.ch/befische/proteomics/
www.thermo.com
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Table 1.4 Partial list of
hybrid search tools

Program Reference Website
InSpecT [166] http://proteomics.ucsd.edu/Software/Inspect.html
GutenTag [165] http://fields.scripps.edu/
DirecTag [157] http://fenchurch.mc.vanderbilt.edu/software.php
TagRecon [167] http://fenchurch.mc.vanderbilt.edu/software.php
PeaksDB [158] www.bioinfor.com
Paragon (ProteinPilot) [168] www.absciex.com

Fusion which uses a global graph partitioning
approach to both separate b and y ions and to
fuse CID and ETD. The heart of Spectrum Fusion
is a supervised machine learning algorithm (tree
augmented naı̈ve Bayes network) trained on con-
fidently identified spectra from a prior database
search. The result is a synthetic spectrum with
only b ions which can then be sequenced by a
slightly modified spectrum graph de novo algo-
rithm.

Hybrid Strategies: De Novo &
Database/Spectral Library Search
Despite advances in both mass spectrometry in-
strumentation and software programs, incomplete
fragmentation remains an open issue for de novo
sequencing strategies. However, when dissociat-
ing thousands of ions, they often break along
the backbone in enough places so that de novo
programs can sequence and identify short peptide
sequences which are typically 3–5 short amino
acids in length. Again, these ideas are not new.
In fact, Mann and Wilm introduced the notion
of using short peptides sequences, which they
called sequence tags, in 1994 [164], the same
year as SEQUEST. However, strategies based
on sequence tags did not appear until Tabb et
al. published GutenTag program in 2003 [165].
The innovation of GutenTag is that it constructs
a model spectrum of the peaks expected from
a given sequence tag, compares the observed
spectrum and the model spectrum, and generates
a correlation score. Tabb et al. went on to provide
an enhanced database search tool MyriMatch
[120], which is tuned to use these short peptide
sequences to infer candidate proteins. Hybrid
peptide identification strategies using sequence
tags are gaining popularity and several hybrid
tools are now available (Table 1.4).

1.3.2.2 Protein Inference
While peptide identification is a necessary phase
in proteome profiling, it is not the last one. Pro-
teins must be inferred from the list of peptides
identified. However, the task of assembling pep-
tide identifications to infer proteins present in a
sample, known as the protein inference problem,
is far from trivial [169]. First, the connection
between peptides and proteins is lost during en-
zymatic digestion. This is so because of multiple
proteins sharing peptides. The sources of these
shared peptides, also known as degenerate pep-
tides, include both natural and artificial phenom-
ena. Degenerate peptides arise often in nature,
especially in eukaryotic organisms due to the
presence of homologous sequences or splice vari-
ants. To make matters worse, errors and redun-
dancies in the database being searched add even
more, albeit artificial, degenerate peptides [170].
Regardless of their source, degenerate peptides
limit the ability to differentiate between proteins
resulting in an unsatisfactory level of ambiguity.
This drives the need for validation of results.

1.3.2.3 Validation
MS-based proteomics results are inherently prone
to inaccuracies. Without careful filtering, its re-
sults are riddled with false positive identifications
at both the peptide identification and protein
inference levels. To reduce the number of false
positives, several scoring models have been pro-
posed and developed to impart a confidence level
on identified peptides and inferred proteins. To
date, because no single scoring model dominates,
different software packages employ their own
scoring models. SEQUEST, X!Tandem, Mascot
and OMSSA employ variations of a cross cor-
relation (XCorr) score which measures the sim-
ilarity at different offsets between pre-processed

http://proteomics.ucsd.edu/Software/Inspect.html
http://fields.scripps.edu/
http://fenchurch.mc.vanderbilt.edu/software.php
http://fenchurch.mc.vanderbilt.edu/software.php
www.bioinfor.com
www.absciex.com
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observed spectra and hypothetical spectra gener-
ated by in-silico digestion. Mascot differs slightly
from other XCorr based scoring models in that
it assesses the probability of a peptide spectrum
match being a random event. Other software
packages use scoring models based on empiri-
cally observed rules, SpectrumMill, or incorpo-
rate statistically derived fragmentation frequen-
cies, PHENYX [122].

Each of the thousands of single peptide identi-
fications or protein inferences can be assigned an
individual score. However, single case scores do
not take into consideration the fact that multiple
hypotheses are being tested. Therefore, in addi-
tion to using a single statistic, p-value, its close
relative for multiple testing, E-value, is often
used. p-value, assuming the null hypothesis is
true, represents the probability of obtaining a test
statistic at least as extreme as the one observed.
E-value, assuming the null hypothesis is null, is
the expected number of times in multiple testing
to obtain a test statistic as extreme as the one that
was actually observed. Put more simply, E-values
are derived by taking the number of tests multi-
plied by the p-value. To account for multiple hy-
potheses testing, many controlling measures have
been proposed. Bonferroni correction is used to
control Family Wise Error Rate, FWER, which is
the probability of finding at least one false posi-
tive. However, the Bonferroni correction has been
shown to be too conservative given the thousands
of hypothesis tests in a single experiment [171].

Less conservative than the Bonferroni cor-
rection is the False Discovery Rate (FDR) con-
trolling procedure, introduced by Benjamini and
Hochberg [172]. They define FDR as the “ex-
pected fraction of mistakes among the rejected
hypothesis and suggested to control FDR in mul-
tiple testing”. A well-established mechanism to
implement FDR for database search results is
to search against a decoy FASTA database of
invalid peptide sequences, most often concate-
nated to the end of the target FASTA database
with valid peptide sequences [173]. The premise
for this approach is that a spectrum will match
valid and random (invalid) sequences with equal
probability and target and decoy sequences do not
overlap. Although decoy databases are intended

to be random, in practice they are most often con-
structed by reversing, shuffling or randomizing
the target FASTA database [174].

With the introduction of FDR as a control-
ling procedure, publications ensued discussing
the proper use of statistical values. Kall et al.,
argue that using a p-value threshold for FDR is in-
adequate because the statistical test is performed
so many times [175]. It also has the unfortunate
property that two different p-value scores can
result in the same FDR. To address this problem,
Storey and Tibshirani [176] propose a q-score,
which when applied to shotgun proteomics, is the
defined as the minimum FDR threshold at which
a given PSM will be accepted.

Historically, to implement the FDR control-
ling procedure with a decoy database, researchers
accepted all identifications above a certain thresh-
old [177]. This threshold was usually a combi-
nation of scores provide by the database search
engine. However, problems exist in this strategy,
including the need to have separate thresholds
for different types of instruments. To overcome
problems with the threshold scheme, early valida-
tion tools, e.g., QSCORE [178], were developed
that employed simple probability, but focused on
results from a single search engine.

Because threshold statistical models tend to
be instrument specific, researchers turned to
machine learning, notably mixture modeling,
to build a generic model that could process
results from multiple instrument types. Mixture
modeling uses models of two normal distribu-
tions, one for correct identifications and one
for incorrect distributions, to determine a score
threshold. Perhaps the most widely used example
of mixture modeling for peptide identification
validation is Keller et al.’s PeptideProphet [173].
It uses a discriminant score which is derived
by converting several scores from the database
search programs into a single score. To apply a
two-component mixture model, PeptideProphet
creates a histogram of discriminant scores
and uses curve fitting to draw the correct and
incorrect distributions. Using Bayesian statistics,
it computes the probability of an identification
being correct given its discriminant score. Similar
to PeptideProphet is ProteinProphet, which is
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used to validate protein inferences. It uses results
from PeptideProphet as input to accurately
compute the probability that an inferred protein is
present in the sample [179] and derives a mixture
model of correct and incorrect protein inferences,
using an expectation-maximization routine (EM).
Since PeptideProphet/ProteinProphet is open
source and freely available and integrated into the
Trans-Proteomic Pipeline, TPP, it is an attractive
option for interpreting mass spectra as evidenced
by its use in a number of prominent laboratories.

Although scoring based on mixture model-
ing can accurately model incorrect and correct
score distributions, they are inherently complex
and not easily extensible [180]. Therefore, other
score models have been proposed. For instance,
IDPicker is based on a simple non-parametric
Monte Carlo simulation method. IDPicker em-
ploys FDR identification aggregation instead of
individual identification probabilities, and it is
easily extended to accept scoring metrics from
multiple search engines, as long as the decoys are
provided in the searched database [180].

In a recent departure from the canonical tar-
get decoy approach, Kim et al., propose MS-
GF which uses generating functions and their
derivatives without a decoy database [181]. They
argue that by using a decoy database, the pro-
teomics community is de facto acknowledging
that it has been unable to solve the following
Spectrum Matching problem: “Given a spectrum
S and a score threshold T for a spectrum-peptide
scoring function, find the probability that a ran-
dom peptide matches the spectrum S with score
equal to or larger than T” [181]. This problem as-
sumes certain underlying distributions on which
probabilistic calculations can be applied. Ideally,
the underlying distributions would be purely the-
oretical in nature to allow the direct calculation of
probability and expectation values. However, the
sheer number possible parameters makes mod-
eling the theoretical underlying distribution im-
practical [182]. Instead, p-values and E-values
are calculated using heuristic algorithms working
on empirically derived distributions. In contrast
to the heuristic algorithms, MS-GF demonstrates

that it is possible to compute the precise number
of peptides identified in a huge database, solving
the Spectrum Matching problem.

1.3.3 Outlook

Although many difficulties exist in thoroughly
characterizing a proteome no consensus has been
reached by the proteomics community on which
the peptide identification, protein inference and
validation strategies should be used. This is
largely due to the fact that shotgun proteomics is
relatively immature and more complex compared
to other fields such as genomics. Whereas
the genomics community can readily compare
results from experiments conducted in different
laboratories, the proteomics community has
difficulty doing so because reporting of results is
not standardized. For instance, some shotgun
proteomics researchers will report proteins
inferred from a single peptide while others will
only report proteins inferred from two or more
distinct peptides. If a peptide is shared between
multiple proteins, some researchers randomly
assign the peptide to a protein, while others
apply Occam’s razor or other statistical models.
This is compounded by the availability of vastly
different FASTA databases for a single organism.
The differences mainly stem from their curation
processes, or lack thereof, and their sources of
deposited sequences.

Reporting standards for shotgun proteomics
experiments may be lacking consensus, but se-
rious effort has been made to rectify this prob-
lem. In 2002, the Human Proteome Organiza-
tion, HUPO, launched the Proteomics Standards
Initiative, PSI. Its goal was and is to “define
community standards for data representation in
proteomics to facilitate systematic data capture,
comparison, exchange and verification.” [183–
187]. Although HUPO sets standards for the
broader proteomics community, publishing cri-
teria was still lacking for shotgun proteomics
results. To address this, about 30 key people in the
proteomics community met in Paris to develop set
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of standards focused on publication of shotgun
proteomics results. These standards published in
2006 [188] as the Paris Guidelines, and updated
in 2009 are slowly being adopted by proteomics
journals.

1.4 Label-Free Quantification

The initial application of the MS-based
proteomics platform addressed the challenge
of cataloging proteins within complex samples.
However, biological researchers also need to
quantify proteins because proteomes are highly
dynamic systems, and their abundances change
due to regulation of their synthesis and degrada-
tion. Protein activities are dynamically regulated
via the addition or removal of PTMs. Therefore,
to make MS-proteomics a technology truly useful
to researchers who are trying to understand living
systems, it must be able to quantify abundance
and PTM differences between samples.

The initial technology for quantitative MS-
based proteomics involved differential labeling
methods with stable isotopes. Isotope labeling
methods for quantitative MS-based proteomics
have been reviewed in detail [189, 190]. These
methods label proteins and/or peptides with sta-
ble isotopes (15N, 13C, 18O) through a variety
of mechanisms. Stable isotope labeling in cell
culture (SILAC) labels proteins via metabolic
incorporation of stable-isotope containing amino
acids contained in cell culture media [191, 192].
Other methods introduce stable isotopes via re-
active chemical tags, such as the isotope affinity
tag (ICAT) [193] or isobaric peptide tagging
(e.g. iTRAQ, TMT) [194, 195] methods. La-
beling with O18 is accomplished via enzymatic
means at the c-terminus of peptides within com-
plex mixtures [196]. For all of these methods,
distinct protein mixtures are first differentially
labeled, one with isotopically normal amino acids
or chemical tags, and the other with isotopically
“heavy” amino acids or chemical tags. Although
most labeling methods compare protein abun-
dance between two distinct mixtures, some are

capable of multiplexed analysis, such as iTRAQ
labeling which can compare up to eight [197].
After labeling, the mixtures are combined and
peptide digests are fractionated and analyzed by
MS. Peptide sequences common to both sam-
ples, although differentially isotopically labeled,
retain the same chemical properties and behave
similarly during fractionation. Consequently, dif-
ferentially isotopically labeled peptides are de-
tected simultaneously and their m/z differences
resolved in the MS. Peptides are selected for MS2

and identified via subsequent sequence database
searching. For identified peptides, relative abun-
dance levels between samples are determined via
comparison of the mass spectral peak intensities
corresponding to the normal or heavy isotope
labels.

Although still used prominently, stable isotope
labeling has its limitations. One is cost. Stable
isotope labeled amino acids or chemical tags
are costly to synthesize, and purchase of these
can run from hundreds to thousands of dollars,
depending on the labeling method used. Another
is applicability to only certain biological sample
types. SILAC, arguably the most accurate stable
isotope labeling method, is only applicable to
experiments using cell culture models, although
extremely expensive studies of whole organism
labeling with stable isotopes in mice and worm
have been described [198]. For human and other
animal studies, chemical tagging methods, such
as iTRAQ or TMT, must be used for stable
isotope labeling. Unfortunately, the accuracy of
iTRAQ and TMT for measuring relative abun-
dances, which are based on MS2 fragmentation of
labeled peptides, is decreased due to simultane-
ous fragmentation of multiple peptides in shotgun
proteomics [199].

Responding to these limitations, label-
free technology has emerged which obviates
the need for stable isotope labeling for
quantitative proteomics. Two methods underpin
the label-free MS-based quantitative proteomics
technology: spectral counting and intensity-
based measurements. Figure 1.6 details these
two methods.
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Fig. 1.6 Label-free quantification methods

1.4.1 Spectral Counting
Quantification

Spectral counting is based on the core instru-
mental method used in MS-based shotgun pro-
teomics. Here, peptides separated via LC are
detected and selected for CID fragmentation us-
ing a data-dependent routine. The fragmentation
spectra are recorded as MS2 spectra. Peptides are
identified by assigning a sequence to each MS2

from databases of known protein sequences and
a variety of software programs, as described in
Sect. 1.2. Protein identities in the starting mixture
are inferred from the identification of peptides
that are a part of their amino acid sequence.
Quantification via spectral counting is based on
the observation that the number of peptides iden-
tified from MS2 spectra is proportional to the
abundance of the protein in the starting mixture:
more abundant proteins result in more identified
peptides while less abundant proteins result in

fewer identified peptides. Protein quantification
is achieved by simply counting the number of
MS2 spectra assigned to peptides within a given
protein, without taking into consideration the
peptide MS signal intensity. Because quantifica-
tion is based on peptides assigned to MS2 spectra,
spectral counting benefits from MS instruments
with higher mass accuracy and sensitivity, which
increase the number of high confidence peptide
identifications [20].

Early on, spectral counting was done in a
rather simple manner, simply summing the num-
ber of peptide identifications corresponding to
each inferred protein. However, as this method
increased in popularity, more sophisticated quan-
tification approaches based on spectral counting
have emerged. Several extensive reviews have re-
cently appeared on spectral counting [200]. Here
we discuss the most commonly used approaches
to spectral counting quantification and some rep-
resentative studies which have used this method.
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Table 1.5 Summary of open-source software for label-free quantification

Program Reference Website
Spectral counting quantification
APEX [205] http://pfgrc.jcvi.org/index.php/bioinformatics/apex.html/
Census [210] http://fields.scripps.edu/census/
emPAI [202] http://empai.iab.keio.ac.jp/
PepC [211] http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans proteomic pipeline/src/

Quantitation/Pepc
SIN

a [212] N/A
Intensity-based quantification
IDEAL-Q [213] http://ms.iis.sinica.edu.tw/IDEAL-Q/
MaxQuant [214] http://maxquant.org/
MSInspect [215] http://proteomics.fhcrc.org/CPL/msinspect/index.html
MZMine [216] http://mzmine.sourceforge.net/download.shtml
PEPPeR [217] http://www.broadinstitute.org/cancer/software/genepattern/desc/proteomics#pepper
SuperHirn [218] http://prottools.ethz.ch/muellelu/web/SuperHirn.php
aApproach combines both spectral counting and intensity-based quantification

Spectral counting must take into account a
protein’s length because a longer protein, when
enzymatically digested, will produce more pep-
tides than a shorter protein for the MS to de-
tect. Without correction, protein quantification by
spectral counting would be biased towards longer
proteins. As a consequence, an approach taking
into account protein length was developed [201]
which provided a normalized spectral abundance
factor (NSAF) for each identified protein. The
abundance of any given protein within a mixture
can be estimated by dividing its NSAF value
against the sum of NSAF values for all identified
proteins.

An alternative approach to NSAF is the pro-
tein abundance index (PAI) [202], which was fur-
ther improved to the exponential modified PAI,
or emPAI [203]. This approach used the number
of peptides actually identified from a protein,
divided by the estimated total number of peptides
expected to be identified for that same protein.
The expected peptides were estimated based on
the proteins sequence and the sizes of peptides
derived from the protein after enzymatic diges-
tion. The relative molar amount of any given
protein within a sample can then be calculated by
dividing its emPAI value against the sum of all
emPAI values within the mixture. The emPAI ap-
proach was deployed in a freely available applica-
tion, emPAI Calc that accepts data from a variety
of sequence database searching programs [200].

Another approach, Absolute Protein Expres-
sion (APEX), tries to correct for physiochemical
variations between peptide sequences that may
affect their identification in the MS, and bias
spectral counting results. APEX uses a correction
factor that attempts to use properties such as
amino acid content and length of peptides [204]
to assess the probability of any given peptide for
MS detection and subsequent identification from
MS2 spectra. This correction is applied to the
spectral counts corresponding to each identified
protein, to provide a more accurate measurement
of its abundance. APEX has been released as an
open source application [205].

Spectral counting has been widely applied. Its
application is reviewed in detail elsewhere [200,
206]. Software plays a key role in the automating
spectral counting quantification. Table 1.5 shows
a summary of the most popular open-source soft-
ware available. One particularly powerful ap-
plication uses spectral counting and NSAF val-
ues to quantify relative abundance of proteins
within functional complexes. Estimation of rel-
ative stoichiometry of the different members of
protein complexes [207], as well as modeling
of protein-protein interaction networks [201] is
possible. An interesting application using the
emPAI approach identified and quantified relative
abundance levels of over 100 proteins in the
chicken egg white proteome [208]. APEX was re-
cently used to characterize proteome abundance

http://pfgrc.jcvi.org/index.php/bioinformatics/apex.html/
http://fields.scripps.edu/census/
http://empai.iab.keio.ac.jp/
http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/src/Quantitation/Pepc
http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/src/Quantitation/Pepc
http://ms.iis.sinica.edu.tw/IDEAL-Q/
http://maxquant.org/
http://proteomics.fhcrc.org/CPL/msinspect/index.html
http://mzmine.sourceforge.net/download.shtml
http://www.broadinstitute.org/cancer/software/genepattern/desc/proteomics#pepper
http://prottools.ethz.ch/muellelu/web/SuperHirn.php
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differences between mutant strains of the ther-
mophilic anaerobic bacterium Clostridium ther-
mocellum, an organism with promise for biofuel
production [209].

1.4.2 Intensity-Based
Quantification

An alternative to spectral counting is intensity-
based measurements of peptide abundance. Dur-
ing a nanoLC-MS analysis, the mass-to-charge
(m/z), retention time and signal intensity values
are continuously recorded for each detected pep-
tide. This information can be used to reconstruct
a chromatographic peak for each peptide. This
quantification method estimates the area under
the curve (AUC) of the chromatographic peak
(Fig. 1.5). The AUC correlates linearly with pep-
tide concentration across a range of low fem-
tomole amounts to tens of picomoles in most
contemporary MS instruments [219, 220]. Sim-
ilar to spectral counting, peptides are identified
via MS2 and sequence database searching, and
protein identities are inferred from these peptides.
For comparisons of peptide and inferred protein
abundance between different samples, each sam-
ple is analyzed by nanoLC-MS separately. AUC
values calculated for detected peptides in each
distinct sample are compared to determine rel-
ative abundance. Intensity-based measurements
are not used for quantification of different pep-
tides within the same sample, because each pep-
tide sequence ionizes with different efficiency,
making comparison based on signal intensity
inaccurate.

Although simple in concept, successful
implementation of intensity-based quantification
relies heavily on sophisticated software. Open-
source software choices have been reviewed
elsewhere [221]. Some of these choices are
summarized in Table 1.5. This software
automates critical data processing steps needed
to insure accurate results based on AUC values.
A recent review by Christin and colleagues [221]
thoroughly describes these steps. One key step
is proper alignment of peaks corresponding to
the same peptide across all separate nanoLC-

MS data sets. Proper alignment, based on peak
m/z values and retention time, assures that the
AUC values being measured in each sample
correspond to the same detected peptide. Use of
highly reproducible nanoLC systems with high
chromatographic resolving power can help for
alignment [222], although ultimately effective
alignment via software is critical. High accuracy
measurements of peptide m/z values using
newer MS instruments has greatly helped with
alignment across separate nanoLC-MS datasets.
One nice feature of peak alignment, aided by
high mass accuracy data, is that a peptide need
only be identified by MS2 in one sample [221].
Peaks in other samples aligning in retention
time and accurate m/z can then be confidently
assigned to that peptide without the need for their
identification from MS2 spectra.

Another key step is normalization of measured
AUC values. Normalization accounts for bias and
variability in measured AUC values introduced
during sample processing, loading of sample to
the nanoLC column, and in-run variability of MS
response. A number of normalization procedures
have been developed which are effective for
minimizing variability and improving accuracy
[223, 224].

As with spectral counting, applications of
intensity-based quantification are numerous.
These are reviewed in detail elsewhere [225,
226]. These different applications have used
a variety of publically available software
programs for accurate quantification, some of
which are summarized in Table 1.5. Here we
discuss several representative applications. One
interesting, radiation research-relevant example,
demonstrated the effectiveness of intensity-based
quantification to compare effects of ionizing
radiation on colon cancer cells compared to a
mock-treated control [227]. Disease biomarker
discovery has also been a popular application
of intensity-based quantification. Such studies
have been done in paraffin embedded archival
cancer tissues [228], as well as serum fluid from
schizophrenia patients [229].

Overall, label-free quantification addresses
many of the limitations of stable-isotope labeling-
based technology. Both spectral counting and
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intensity-based measurements are cheap and
simple, with no need for purchase of costly
labeling reagents or extra sample labeling and
processing steps. Spectral counting provides
the additional benefit of measuring relative
abundance of proteins within the same sample,
whereas stable isotope labeling only measures
relative abundance across separate samples.
Intensity-based measurements, when using
effective software for aligning peptide peaks
across samples, obviates the need for time-
and computation-intensive MS2 acquisition and
subsequent peptide identification via sequence
database searching. This method therefore is an
attractive choice for biomarker studies, where
comparison across many patient samples with
high throughput is desirable.

Despite numerous strengths, label-free
quantification is not without limitations. Unlike
some labeling methods, notably the iTRAQ or
TMT methods, multiplexed comparative analysis
within a single MS experiment is not possible.
Instead, each sample being compared must be
analyzed in a separate MS experiment, and
preferably with technical replicates to achieve
statistical significance [230]. Consequently,
large amounts of instrument time are required,
which may not be feasible, especially for
researchers relying on sample analysis via a
fee-for-service facility. Low-abundance proteins
also remain a challenge for both methods.
Because spectral counting relies on multiple
peptides to be identified from each inferred
protein to achieve statistical significance, low
abundance proteins identified by only a few
peptides cannot be accurately quantified. For
intensity-based measurements, peptide peaks
from low-abundance proteins also suffer from
low signal-to-noise ratios, challenging their
accurate quantification. Improved instrument
sensitivity should only help to increase the
ability to identify more peptides derived from
low abundance proteins, and improve the
effectives of both label-free methods. Recently,
a promising new method was described [212]
which combines spectral counting and intensity-
based measurements, thereby capitalizing on
the strengths of both methods and providing
improved results.

1.5 Conclusions

Consistent with history, technological advances
will continue to define and mature the field of
MS-based proteomics, catalyzing new milestones
of achievement. We anticipate these advances
to primarily fall in the areas described in this
review: new instrumentation and related methods,
and new computational methods and software for
identification and quantification of proteins from
complex datasets. Continued maturation of MS-
based proteomics should one day enable real-
ization of its ultimate goal: comprehensive pro-
teome characterization. Researchers seeking to
better understand the effects of radiation on liv-
ing systems will undoubtedly continue to ben-
efit from the continued advances of this vital
technology.
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