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  Abstract   Non-alcoholic fatty liver disease (NAFLD) and its progression to steato-
hepatitis (NASH) and cirrhosis is a growing problem in most developed countries. 
Increased hepatic expression of CYP2E1, which carries out omega hydroxylation of 
fatty acids, was  fi rst shown in a mouse model of NASH and this was later also 
reported for human NASH, though not all studies agree with this  fi nding and further 
larger studies are still needed. In view of its role in fatty acid metabolism which 
leads to increased levels of toxic lipid peroxides and its possible increased expres-
sion in NASH, CYP2E1 is an attractive candidate for a role as a genetic risk factor 
for both NAFLD generally including progression to NASH. Two studies have 
focused on the variant allele  CYP2E1*5 , which may be associated with increased 
CYP2E1 expression. Both reported increased frequencies of this allele in NASH 
patients, though statistical signi fi cance was not achieved because of small sample 
sizes. Some more indirect data also suggests a relationship between high CYP2E1 
activity and progression to NASH. However, three recent genome-wide association 
studies on NAFLD have failed to  fi nd any evidence that single nucleotide polymor-
phisms in or adjacent to the  CYP2E1  gene contribute to susceptibility. Further studies 
are needed to investigate a possible role in disease progression in addition to suscep-
tibility and the possibility that statistical power in the existing studies was insuf fi cient 
to detect a relatively small contribution to disease susceptibility.  
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    5.1   Introduction 

 As reviewed in other chapters, the relevance of CYP2E1 to ethanol metabolism and 
to alcoholic liver disease is well established and has been studied for the last 40 years 
approximately (Lieber and DeCarli  1970  ) . In addition to induction of CYP2E1 by 
ethanol, it has been known for some time that CYP2E1 is induced in diabetic and 
obese humans and rodents (Hong et al.  1987 ; Song et al.  1986,   1987  ) . The increased 
expression of CYP2E1 in type II diabetes and obesity raised the possibility that 
CYP2E1 expression might be relevant to the pathogenesis of nonalcoholic fatty 
liver disease (NAFLD). NAFLD covers a disease spectrum ranging from hepatic 
steatosis alone though non-alcoholic steatohepatitis (NASH) to cirrhosis and is an 
increasingly common cause of liver dysfunction in developed countries (for review 
see Anstee et al.  (  2011a,   b  ) ; de Alwis and Day  (  2008  ) ). NAFLD is strongly associ-
ated with obesity, insulin resistance, type 2 diabetes and dyslipidaemia. Though 
most patients with these conditions develop steatosis alone, a minority progress to 
more advanced liver disease characterized by in fl ammation,  fi brosis, cirrhosis and, 
in some cases, hepatocellular carcinoma. 

 Increased expression of CYP2E1 was  fi rst described in hepatocytes from rats fed 
a methionine-choline diet, which is an established model for human steatohepatitis 
(Weltman et al.  1996  ) , followed by a study demonstrating a similar effect by immu-
nohistochemical analysis of liver biopsies from steatohepatitis patients (Weltman 
et al.  1998  ) . Both the general role of CYP2E1 in the NAFLD disease process and 
the possibility that either interindividual variability in levels of CYP2E1 or in ability 
to induce expression of this enzyme could affect susceptibility to and severity of this 
disease is of considerable interest. In particular, whether CYP2E1 could be a target 
for novel treatments and whether  CYP2E1  genotype contributes to individual risk 
for disease development are both questions that are of importance to understanding 
the pathogenesis of NAFLD.  

    5.2   CYP2E1 and NAFLD 

 Though ethanol is the best established inducer of CYP2E1 (Lieber and DeCarli 
 1970 ; Song et al.  1986  ) , it has been known since the 1980s that CYP2E1 induction 
can also occur in diabetic rats (Song et al.  1987  )  and during starvation (Hong et al. 
 1987  ) . It was subsequently demonstrated that CYP2E1 catalyzes omega hydroxyla-
tion of fatty acids (Laethem et al.  1993  ) . The demonstration that hepatic CYP2E1 
levels are elevated in a rat model of NASH (Weltman et al.  1996  )  and in patients 
with NASH (Weltman et al.  1998  )  suggests that fatty acids are also CYP2E1 induc-
ers. Whether CYP2E1 induction is of direct relevance to disease pathogenesis in 
terms of either human NAFLD generally or NASH development remains unclear. 
Studies in animal models suggest it could be a factor but studies in humans have 
generally involved small numbers and given contradictory results. 
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 Several different mouse models exist for both NAFLD and NASH though none 
of these is a true model for progression of NAFLD to NASH (for review see De 
Minicis and Svegliati-Baroni  (  2011  ) ; Hebbard and George  (  2011  ) ). The most widely 
used models are the high fat diet (HFD) where mice given a high fat diet show 
steatosis, weight gain and insulin resistance and the methionine and choline-de fi cient 
(MCA) diet model where mice show some characteristics of NASH. Using the 
MCA diet model, a large increase in lipid peroxide formation in the liver was 
detected in parallel with CYP2E1 induction (Leclercq et al.  2000  )  but importantly, 
in mice lacking the CYP2E1 gene, lipid peroxides were still formed via CYP4A, 
which was also upregulated by the MCA diet. Lipid peroxide formation is likely to 
be an important contributor to NASH pathophysiology since it may result in serious 
toxicity within cells but CYP2E1 may have additional effects that could also 
contribute to NAFLD more generally. In particular, CYP2E1 overexpression in a 
hepatocyte cell line was demonstrated to impair insulin signalling with decreased 
insulin receptor substrate (IRS)-1 and IRS-2 phosphorylation and other effects 
including decreased glycogen synthase kinase 3 activity and glucose secretion 
detected in response to insulin (Schattenberg et al.  2005  ) . Insulin resistance is an 
important feature of NAFLD and a possible contribution from CYP2E1 to this resis-
tance is an interesting  fi nding. In a more recent study using transgenic mice with 
CYP2E1 overexpressed speci fi cally in hepatocytes and fed the HFD, higher fasting 
insulin levels and decreased insulin signalling was seen, which is consistent with the 
 in vitro   fi ndings (Kathirvel et al.  2009  ) . The converse was also demonstrated in a 
separate study involving CYP2E1 knockout mice fed the HFD (Zong et al.  2012  ) . 
In this case, the mice did not gain weight and show insulin resistance. A further 
study involving the transgenic CYP2E1 overexpressing mice showed increased 
levels of both lipid peroxidation and protein carbonylation together with decreased 
activity for certain enzymes that protect against oxidative stress, possibly due to 
their inactivation by nitrosylation (Kathirvel et al.  2010  ) . 

 Since the original observations showing increased CYP2E1 levels in NASH in 
human liver by immunohistochemistry (Weltman et al.  1998  ) , the number of inves-
tigations in humans has been limited. One follow-up study compared CYP2E1 
expression and activity in liver biopsies from patients with either steatosis alone or 
NASH (Chtioui et al.  2007  )  but found no difference between the two patient groups 
for either parameter. However, CYP2E1 activity correlated positively with both 
body mass index and steatosis score. Evidence for increased CYP2E1 protein levels 
in both steatosis and NASH was seen in a study on liver biopsies which also measured 
CYP2E1 enzyme activity  in vivo  using chlorzoxazone phenotyping. The phenotyping 
analysis showed signi fi cantly higher activity in NASH cases compared with both 
steatosis and controls (Varela et al.  2008  ) . A study on adult explanted livers involv-
ing immunohistochemistry and measurement of protein and mRNA levels found 
that CYP2E1 levels appeared to fall with progression to NASH (Fisher et al.  2009  ) . 
In a recent study on children with NAFLD where CYP2E1 protein levels in liver 
biopsies were determined, no increase in protein levels for either NASH cases only 
or NAFLD as a whole compared with samples showing normal histology was 
observed (Bell et al.  2011  ) . In addition, levels of lipid peroxidation did not differ 
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between biopsies with and without NASH, though body mass index did correlate 
with levels of lipid peroxidation. It therefore appears that there is considerable 
inconsistency between studies on human CYP2E1 expression in NAFLD. This possibly 
re fl ects the fact that all the studies discussed above involved relatively small num-
bers of samples and larger studies are clearly needed.  

    5.3   Genetics of NAFLD Including Possible 
Role of CYP2E1 Polymorphisms 

    5.3.1   Background 

 There is evidence for a role for genetic factors in NAFLD from both family and 
inter-ethnic variation studies. In a recent study on families which included over-
weight children with NAFLD (Schwimmer et al.  2009  ) , fatty liver was signi fi cantly 
more common in the siblings and parents of the children with NAFLD. Another 
study on monozygotic and dizygotic twins showed that serum alanine aminotrans-
ferase (ALT) and fasting serum insulin intrapair correlations were signi fi cantly 
higher in the monozygotic compared to the dizygotic twins (Makkonen et al.  2009  ) . 
In a study on the offspring of participants in the Framingham Heart Study, early-onset 
paternal obesity was associated with elevated ALT levels in offspring, suggesting a 
genetic predisposition to developing elevated ALT levels and possibly NAFLD 
(Loomba et al.  2008  ) . For NAFLD in adults, Struben et al.  (  2000  )  described the 
co-existence of NASH and/or cryptogenic cirrhosis in 7 out of 8 kindreds studied 
and another study (Willner et al.  2001  )  found that 18% of 90 patients with NASH 
had an affected  fi rst-degree relative. This clustering could simply be due to herita-
bility of obesity and insulin resistance, the main risk factors for NAFLD. However, 
other studies examining ethnic differences in the prevalence of NAFLD suggest that 
susceptibility may have a speci fi c genetic component (Browning et al.  2004a,   b  ) . 
It appears that African-Americans, though as prone to obesity as Americans of 
European or Hispanic origin, show a lower incidence of both steatosis and crypto-
genic cirrhosis. This may be due to different patterns of fat accumulation and a 
lower incidence of insulin resistance among obese African-Americans (Guerrero 
et al.  2009  ) . US Hispanics also appear more susceptible to NAFLD than US indi-
viduals of European ethnic origin (Browning et al.  2004a ; Williams et al.  2010  ) .  

    5.3.2   Candidate Gene Studies on NAFLD 

 A large number of candidate gene association studies together with three genome-wide 
association studies (GWAS) on susceptibility to NAFLD have now been reported 
(Anstee et al.  2011a ; Daly et al.  2011  ) . The candidate gene studies have focussed 
particularly on genes relevant to lipid metabolism and oxidative stress and have 
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reported a limited number of positive associations (Daly et al.  2011  ) . The most 
consistent positive message from both candidate gene and genome-wide association 
studies is that genotype for  PNPLA3 , which codes for the enzyme patatin-like 
phospholipase domain-containing 3, also known as adiponutrin, modulates risk of 
developing NAFLD. This enzyme is a serine protease whose function is still somewhat 
unclear but appears to contribute to triacylglycerol hydrolysis (Huang et al.  2011  ) . 
Evidence from a large number of studies including two separate GWAS suggests 
that for development of steatosis, there is an increased risk in those carrying one or 
two copies of a  PNPLA3  variant allele associated with a nonsynonymous mutation 
(Romeo et al.  2008 ; Sookoian and Pirola  2011 ; Speliotes et al.  2011  ) . Further studies 
using candidate gene approaches indicated that  PNPLA3  genotype also predicts 
 fi brosis severity in NAFLD (Sookoian and Pirola  2011 ; Valenti et al.  2010  ) . The odds 
ratio for developing severe steatosis or  fi brosis associated with the possession of 
the  PNPLA3  variant allele has been found to be approximately two in most studies. 
The  PNPLA3  association with NAFLD susceptibility and severity has been observed 
in several different ethnic groups (Li et al.  2012 ; Sookoian and Pirola  2011  ) . 

 A number of other genes have also been reported to be associated with suscepti-
bility to NAFLD and severity of several phenotypic features but with the exception 
of an association of a polymorphism in the manganese-dependent superoxide dismutase 
gene ( SOD2 ) with development of severe  fi brosis and NASH (Al-Serri et al.  2012 ; 
Namikawa et al.  2004  ) , generally these associations are generally inconsistent with 
some studies showing associations but others failing to con fi rm them (see Daly et al. 
 (  2011  )  for detailed review).  

    5.3.3   Candidate Gene Studies on CYP2E1 
as a Genetic Risk Factor in NAFLD 

 Genetic polymorphism in CYP2E1 is generally a well studied area. There is evidence 
of approx. 20 fold interindividual variation in expression of CYP2E1 in human 
livers though phenotyping studies using the muscle relaxant chlorzoxazone as probe 
in European populations have demonstrated only two to threefold variation in levels 
of activity (Kim    and O’Shea  1995  ) . A number of genetic polymorphisms in  CYP2E1  
have been reported with the majority occurring in either upstream sequences or 
introns and mostly appearing to lack functional signi fi cance. Polymorphisms affect-
ing coding sequences are rare. One of these, R76H encoded by  CYP2E1*2 , is asso-
ciated with decreased catalytic activity and occurs at a low frequency in a Chinese 
population but has not been detected in other ethnic groups (Hu et al.  1997  ) . It has 
been suggested that a polymorphism in the 5 ¢ - fl anking region within a putative 
HNF-1 binding site may be of functional signi fi cance with  in vitro  studies suggest-
ing that this allele shows approximately tenfold higher transcriptional activity than 
the wild-type (Hayashi et al.  1991  ) . This variant allele ( CYP2E1*5 ) occurs at a fre-
quency of 0.27 in Japanese but only 0.02 in Europeans (Kato et al.  1992  ) . Our overall 
understanding of the molecular basis of interindividual variation in CYP2E1 
expression is still unclear. There is also a possibility that there is interindividual 
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variability in ability to induce this enzyme, as reported in a study on ethanol induction 
of CYP2E1 (Dupont et al.  1998  ) , but again this is not well understood. 

 The possibility that CYP2E1 genotype could be a risk factor for development of 
NAFLD or determine disease progression has been investigated in only two small 
studies to date. The  fi rst of these concerned NAFLD only and found that the 
 CYP2E1*5  allele was more common in a group of 28 Chinese patients with “obese 
or diabetic” fatty liver compared with 40 controls (Piao et al.  2003  ) . The second 
study concerned female steatosis (n = 18) and NASH (n = 17) patients without diabetes 
(Varela et al.  2008  )  and found that there was an apparent increase in the frequency of 
 CYP2E1*5  in the NASH cases compared with both healthy controls and steatosis 
cases but the genotype frequency differences were not statistically signi fi cant. 
However, when CYP2E1 protein levels in liver biopsies and enzyme activity levels 
 in vivo  were compared, CYP2E1 protein levels were higher in both NASH and 
steatosis liver biopsies and NASH patients showed higher levels of activity  in vivo  
compared with steasosis cases and controls. Carriage of the  CYP2E1*5  also corre-
lated signi fi cantly with higher  in vivo  CYP2E1activity, which is in general agreement 
with previous  in vitro  data suggesting that this allele shows approximately tenfold 
higher transcriptional activity than the wild-type (Hayashi et al.  1991  ) . Together the 
two studies on CYP2E1 genotypes in NAFLD provide a suggestion that carriage of 
at least one  CYP2E1*5  allele might be a risk factor in NAFLD but their small size 
and failure to see statistical signi fi cance for actual genotypes due to small numbers is 
a serious limitation. As well as performing larger studies, investigating a wider range 
of polymorphisms and areas such as interindividual variation in ability to induce 
CYP2E1 in NAFLD cases would be worthwhile.  CYP2E1*5  has also been found to 
be a risk factor for development of alcoholic liver disease which has common 
features to NAFLD (Grove et al.  1998 ; Pirmohamed et al.  1995  ) , though more recent 
studies on associations of this allele with the disease are less positive (for review see 
Anstee et al.  (  2011b  ) ). However, the possible association with susceptibility to 
alcoholic liver disease is likely to relate more to the role for CYP2E1 in ethanol 
metabolism than fatty acid metabolism as in NAFLD. A recent report suggesting that 
the  CYP2E1  gene contributes to interindividual variability in alcohol response (Webb 
et al.  2011  )  is an added complication to seeking parallels with NAFLD.  

    5.3.4   Genome-Wide Association Studies on NAFLD 

 In the last 5 years, several genome-wide association studies (GWAS) on NAFLD 
have been performed (Chalasani et al.  2010 ; Romeo et al.  2008 ; Speliotes et al. 
 2011  ) . These studies involve genotyping cases and controls for single nucleotide 
polymorphisms (SNPs) throughout the genome. Performing a GWAS means that a 
large number of possible genetic associations for a disease are being examined, not 
simply those that are biologically obvious, and also enables the possibility that 
genetic polymorphism in  CYP2E1  contributes to NAFLD susceptibility to be inves-
tigated. Table  5.1  summarizes the main features of all three studies and their  fi ndings. 
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Though each of these studies suffers from a range of limitations and there is a need 
for further studies where the severity of NAFLD with respect to genotype in a larger 
group of cases with liver biopsy is analyzed, no evidence for any signal either within 
the  CYP2E1  gene or adjacent to it has so far emerged. It remains possible that there 
is insuf fi cient statistical power in the studies described so far to detect a signal from 
the  CYP2E1  gene or that a genetic regulator of CYP2E1 expression but not  CYP2E1  
itself affects susceptibility.    

    5.4   Concluding Remarks 

 The relevance of CYP2E1 to NAFLD and NASH is a slightly neglected area, 
particularly recently. Though data suggesting a role for CYP2E1 in both NAFLD 
and NASH from animal models has appeared generally promising, attempts to 
establish whether CYP2E1 expression changes in human disease during the pro-
gression of human liver to NAFLD and then further progression to NASH have been 
limited, probably because of the dif fi culties in obtaining suitable samples for analysis, 
especially in large numbers. Better animal and cellular models for both NAFLD and 
NASH would facilitate progress. In terms of CYP2E1 as a genetic risk factor for 
NAFLD, it is increasingly likely that as for other complex diseases with a genetic 
component, many different variants contribute with the overall contribution from 
each being quite small (Hirschhorn and Gajdos  2011  ) . For example, in the case of 
type II diabetes, one of the most extensively studied complex diseases, polymor-
phisms in more than 30 different genes have been demonstrated to contribute to 
susceptibility but odds ratios for some of these genes are as low as 1.1 (Voight et al. 
 2010  ) . Detecting such small effects requires in the order of 10,000 cases for statisti-
cal signi fi cance and, though NAFLD is now a very common disease worldwide, it is 
unlikely that DNA collections of this size are yet available. Building up such a large 
DNA collection from NAFLD cases is particularly challenging because of the 
importance of including only cases where histology has been de fi nitively estab-
lished by liver biopsy (Anstee et al.  2011c  ) . However, given the increasing frequency 
of NAFLD in developed countries and the current lack of any effective treatment, 
performing such large studies should be given a high priority since they may lead to 
development of new treatments and design of more effective strategies for preventing 
disease progression.      
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