
Addressing the Out-of-date Problem
for Efficient Load Balancing Algorithm
in P2P Systems

Khaled Ragab and Moawia Elfaki Yahia

Abstract Load-balancing is of major significance for large-scale decentralized
networks such as Peer-to-Peer (P2P networks in terms of enhanced scalability and
performance. P2P networks are considered to be the most important development
for content distribution and sharing infrastructures. Load balancing among peers in
P2P networks is critical and a key challenge. This paper addresses the out-of-date
problem as a result of node’s state changes during loads movement among nodes.
Consequently, this work proposes a load balancing algorithm that is based on
extensive stochastic analysis and virtual server concept in P2P System. Finally,
this work is complemented with extensive simulations and experiments.

Keywords Out-of-date problem � Peer-to-peer networks � Virtual servers � Load
balancing

1 Introduction

Recently Peer-to-Peer (P2P) paradigm is an increasingly popular approach for
developing various decentralized systems especially the internet applications. P2P
is a class of applications that takes advantage of resources e.g. storage, cycles,
content, human presence, available at the edges of the Internet [1]. P2P systems

K. Ragab (&)
Computer Science Division, Mathematics Department, College
of Science, Ain Shams University, Cairo, Egypt
e-mail: kabdultawab@kfu.edu.sa

M. E. Yahia
Computer Science Department, College of Computer Science
and Information Technology, Hofuf, Saudi Arabia

K. J. Kim and K.-Y. Chung (eds.), IT Convergence and Security 2012,
Lecture Notes in Electrical Engineering 215, DOI: 10.1007/978-94-007-5860-5_56,
� Springer Science+Business Media Dordrecht 2013

459

offer an alternative to such traditional client–server systems for several application
domains. They have emerged as an interesting solution for sharing and locating
resources over the Internet. Moreover, P2P systems do not have a single point of
failure and can easily scale by adding further computing resources. They are seen
as economical as well as practical solutions in distributed computing. In P2P
systems, every node (peer) of the system acts as both client and server (servant)
and provides part of the overall resources/information available from the system.
Each node often has different resource capabilities (e.g. processor, storage, and
bandwidth) [2]. Thus, it is required that each node has a load proportional to its
resources capabilities. On account of the dynamism natures of the P2P systems, it
is difficult to ensure that the load is uniformly distributed across the system. In
particular, this paper considers a P2P system of M nodes in which nodes join/leave,
and data entity inserted/deleted continuously. Similarly to [3–5] this paper
assumes node and data entity have been assigned identifiers that chosen randomly.
Thus, there is a H(log M) imbalance factor in the number of data entities stored at
a node. Additionally, the imbalance factor becomes more worse if the P2P
applications associate semantics with data entity IDs since IDs will not be uni-
formly distributed.

Consequently, it is important to design mechanisms that balance the system
load. There are two distinct strategies to distribute the system workload [6]. First,
load balancing algorithms that strive to equalize the workload among nodes.
Second, load sharing algorithms which simply attempt to assure that no node is
idle while jobs at other nodes are waiting for service. Load balancing techniques in
P2P systems should be scalable and cope with its large size. They should place or
re-place shared data entities optimally among nodes while maintaining an efficient
overlay routing tables to redirect queries to the right node.

The communication delays among peers significantly alter the expected per-
formance of the load balancing schemes. Due to such delay, the information that a
particular peer has about other peers at any time is dated and may not accurately
represent the current state of the other peers. For the same reason, a load sent to a
recipient peer arrives at a delayed instant. In the mean time, however, the load
state of the recipient peer may have considerably changed from what was known to
the transmitting peer at the time of load transfer. This paper proposes a stochastic
dynamic load balancing algorithm that tackles the out-of-date problem.

The remainder of this paper is organized as follows. Section 2 introduces a
survey for the load balancing algorithms. Section 3 exposes the proposed sto-
chastic load balancing model and algorithm. Evaluation of the proposed has been
discussed in Sect. 4. Section 5 draws a conclusion of this paper.

2 Load Balancing Survey

Load balancing is the problem of mapping and remapping workload in the dis-
tributed system.

460 K. Ragab and M. E. Yahia

2.1 Load Balancing Design

Load balancing design determines how nodes communicate and migrate loads for
the purpose of load balancing. It moves workload from heavily loaded nodes
(senders) to lightly loaded nodes (receivers) to improve the system overall per-
formance [15]. Load balancing design includes four components that can be
classified as follows [16, 17].

• Transfer policy: It decides whether a node is in a suitable state to participate in a
load transfer; either receiver or sender.

• Location policy: Once the transfer policy decides that a node is a receiver or
sender. The location policy takes the responsibility to find a suitable sender or
receiver.

• Selection policy: Once the transfer policy decides that a node is a sender, the
selection policy specifies which load should be transferred. It should take into
account several factors such as load transfer cost, and life time of the process
that should be larger than load transfer time.

• Information policy: It decides when and how to collect system state information.

Load balancing designs are categorized into static and dynamic. With a static
load balancing scheme, loads are scattered from sender to receiver through
deterministic splits. Static schemes are simple to implement and easy to achieve
with slight overhead [13]. They perform perfectly in homogenous systems, where
all nodes are almost the same, and all loads are same as well. On the other hand,
the dynamic load balancing schemes make decisions based on the current status
information [15]. Accordingly, the transfer policy at certain node decides to be a
sender or receiver, the selection policy selects the load to be transferred. The
dynamic load balancing schemes perform efficiently when its nodes have heter-
ogeneous loads, and resources. The typical architectures of dynamic load bal-
ancing schemes can be classified into centralized, distributed, and topological. In a
centralized scheme, a central server ‘‘coordinator’’ receives load report from the
other nodes, while overloaded nodes request the coordinator to find underloaded
nodes [17]. In distributed architecture, each node has a global or partial view of the
system status. Consequently, the transfer policy at each node can locally decide to
transfer a load either out from it (sender-initiated) or into it (receiver-initiated)
[18]. Then, the location policy at each node probes a limited number of nodes to
find a suitable receiver or sender. Kruger [19], proposed symmetrically-initiated
adaptive location policy that uses information gathered during its previous sear-
ches in order to keep track of the recent state of each node in the system. It finds a
suitable receiver when a heavily-loaded node wishes to send a load out, and finds a
suitable sender when a lightly-loaded node wishes to receive a load. Finally, in a
system with large number of nodes, a topological scheme should be used [20]. It
partitions nodes into groups. The load balance is performed in each group first,
then, a global load balance among groups will be performed. However nodes in the

Efficient Load Balancing Algorithm in P2P Systems 461

hierarchical architecture [21] are organized into a tree. Inner nodes gather the
status information of its sub-trees. Then, load balancing is performed the leaves to
the roots of the tree.

2.2 P2P Load Balancing

Load balancing is a critical issue for the efficient operation of the P2P systems.
Recently, it attracted much attention in the research community especially in the
distributed hashed table (DHT) based P2P systems. Namespace balancing is
struggling to balance the load across nodes by ensuring that each node is
responsible for a balanced namespace. This is valid only under the assumption of
uniform workload and uniform node capacity. Otherwise, there is a H(log M)
imbalance factor in the number of objects stored at a node. To mitigate this
imbalance two categories, node placement and object-placement load balancing
techniques were proposed. In the node placement technique, nodes can be placed
or replaced in locations with heavy loads. For example, a node in the Mercury load
balancing mechanisms [7] is able to detect a lightly loaded range, and move there
if it is overloaded. In object placement technique, objects are placed at lightly
loaded nodes either when they are inserted into the system [11] or through
dynamic load balancing schemes based on the virtual servers (VSs) concept [8],
whose explicit definition and use for load balance was proposed by Godfrey
et. al. [9] and Rao et. al. [11]. In [8], a virtual server represents a peer in the DHT;
that is the storage of data items. In addition, routing takes place at the virtual server
level rather than at the physical node level. In this paper, we assume virtual server
as a virtual machine that is able to process a set of jobs like physical machine.
Each physical node creates a pool of VSs as seen in Fig. 1. Load balancing could
be achieved by migrating VSs from heavily loaded physical node to lightly loaded
physical node. One main advantage of using VSs for balancing the load is that
approach does not require any changes to the underlying network. In fact, the

Fig. 1 Node’s load
specification

462 K. Ragab and M. E. Yahia

transfer of a virtual server can be implemented simply as a peer leaving and peer
joining the system. In [11], Rao et. al. proposed three simple and static load
balancing schemes: ‘‘one-to-one’’, ‘‘one-to-many’’ and ‘‘many-to-many’’. Godfrey
et. al. combines both ‘‘one-to-many’’ and ‘‘many-to-many’’ schemes and uses them
in different scenarios [9]. Clustered VSs scheme is presented in [12] that optimized
the basic VS framework to reduce the overhead involved in the VS framework.
However, VSs cannot be moved, and therefore, the scheme cannot respond to
dynamic changes in network conditions.

This paper focuses on the design and analysis of P2P load balancing algorithm
based on stochastic analysis [23, 24] and based on the VSs concept [8].

2.3 Challenges: P2P Load Balancing

Load balancing techniques in P2P systems are facing challenges coming from the
characteristics of these systems. First, the size of the P2P system is large that
means a scalable load balancing technique is required. Second, dissimilar to the
traditional systems, nodes of a P2P system are not replicas and requests cannot be
executed in any node. If nodes have dated, inaccurate information about the state
of other nodes, due to random communication delays between nodes, then this
could result in unnecessary periodic exchange of loads among them. For example,
an overloaded node removes some of its virtual servers. However, such simple
deletion will cause the problem of ‘‘load thrashing1’’, for the removed virtual
servers may make other nodes overloaded. Consequently, this paper proposes a
stochastic P2P load balancing algorithm that approximately determines the mini-
mum amount of time to change the node’s state from overloaded to underloaded
and vice versa. Comparing that time with the required time to migrate virtual
servers enable us to come to a careful decision. Accordingly, the proposed algo-
rithm undoubtedly avoids the load thrashing. To the best of the author’s knowl-
edge, there is no any load balancing algorithm for the P2P system based upon the
following stochastic analysis.

3 Load Sharing Algorithm

3.1 Model

This paper considers a P2P system consisting of M physical nodes (peers), denoted
by Pi, 1� i�M. Each peer can be modeled as a queuing system, such as M/M/1,

1 Load thrashing is a condition when the load balancing algorithm is engaged in moving virtual
servers back and forth between nodes. .

Efficient Load Balancing Algorithm in P2P Systems 463

M/D/1, etc. Each physical node Pi has a capacity Ci that corresponds to the
maximum amount of load that it can process per unit of time. Nodes create virtual
servers (VSs), which join the P2P network. Therefore, it can own multiple non-
contiguous portions of the DHT’s identifier space. Each virtual server participates
in the DHT as a single entry (e.g. routing table). Moreover, each virtual server
stores data items whose IDs fall into its responsible region of the DHT’s identifier
space. As seen in Fig. 1, a node Pi might have n VSs v1, v2, …, vn; where
n = VSset.size. Each vj has load lj; (for j = 1, ..n). The load of peer Pi in a unit of
time is Li = l1 ? l2 ? … ? ln. The utilization of a node’s Pi is Li/Ci. From the
perspective of load balancing, a virtual server represents certain amount of load
(e.g. the load generated by serving the requests of the data items whose IDs fall
into its responsible region) [25]. To avoid fluctuations in workload nodes should
operate below their capacity. If a node finds itself receiving more load Li than the
upper target load U (i.e. (Li/Ci) [U), it considers itself overloaded. A node Pi also
has load Li less than L is considered to be underloaded. An overloaded node is not
able to store objects given to it route packets, or carry out computation, depending
on the application.

Definition 1 A node Pi is in one of the following state as follows

Si ¼
Underloaded if Qi\L

Normal if L�Qi�U

Overloaded if U\Qi

8
><

>:

Clearly the state space Qi consists of non-negative integers sub-divided into
three disjoint regions [0, L), [L,U], and (U, 1) corresponding to underloaded,
normal, and overloaded state respectively.

A P2P system is defined to be balanced if the sum of the load Li of a physical
node Pi is smaller than or equal to the target load of the node for every node Pi,
1� i�M in the system. When the system is imbalanced, the goal of a load
balancing algorithm is to move VSs from overloaded node to underloaded one with
minimum load transfer overheads.

The amount of overload to be transferred from the overloaded node Pi;
1� i�M is a random variable denoted by A is given by

AðpiÞ ¼ maxð0;Qi � Ug ¼
Qi � U if Qi [U

0 Otherwise

(

Similarly, the amount of underload that can be accepted at the underloaded peer
Pi; 1� i�M is a random variable denoted by B is given by

BðpiÞ ¼ maxð0; L� Qig ¼
L� Qi if Qi\L

0 Otherwise

(

464 K. Ragab and M. E. Yahia

Definition 2 Let {Q(t); t C 0} be a stationary2 stochastic process with state space
consisting of non-negative integers. Let Si and Sj be two distinct non-negative
numbers. The First Passage Time (FPT) between states Si and Sj is denoted by
FPT(Si,Sj), is given by

FPTðSi; SjÞ ¼
inf ft; QðtÞ ¼ Sj;Qð0Þ ¼ SiÞg if Si 6¼ Sj

0 if Si ¼ S

(

It is a random variable which measures the minimum amount of time needed to
reach state Sj from state Si. We note that because the same stochastic process Q(t)
is stationary, translating the above events by a fixed amount of time has no effect
upon the probability distribution of FPT(Si,Sj). In fact, a first passage time from
state Si to state Sj can be divided into two parts, namely the first transition out of
state Si (say Sk) followed by the first passage from Sk to Sj.

Assume that, i \ j; since changes of state have unit magnitude in a birth and
death of load, then

FPTij ¼ FPTik þ FPTkj i\k\j; k ¼ iþ 1; iþ 2; . . .; j� 1 thus

FPTij ¼
Xj�1

k¼i

FPTk;kþ1 i\j ð1Þ

Similarly, if i [j

FPTij ¼
Xi�1

k¼j

FPTkþ1;k i [j ð2Þ

Let Hij(t) = P{FPTij B t} and considering that the summands in both Eqs. (1)

and (2) are independent. Thus, if we apply Laplace transformer ~Hij ¼
Qj�1

k¼i
H
�

k;kþ1
ðsÞ

for Hij(t), then we can show that:

~HijðsÞ ¼
Yj�1

k¼i

~Hðs; k; k þ 1Þ ; i\j ðUpwardÞ ð3Þ

~HijðsÞ ¼
Yi�1

k¼j

~Hðs; k þ 1; kÞ ; i [j ðDownwardÞ ð4Þ

2 A stationary stochastic process has the property that the joint distribution don not depend on
the time origin. The stochastic process {Q(t); t[=} is called stationary if ti[= and ti ? s [=,
i = 1, 2, …, k (k is any positive integer), then {Q(t1), …, Q(tk)} and {Q(t1 ? s), …, Q(tk ? s)}
have the same joint distribution [22].

Efficient Load Balancing Algorithm in P2P Systems 465

Clearly the distribution of the first passage time of unit downward is inde-
pendent of starting state while the distribution of the first passage time of unit
upward depends upon starting state.

3.2 Load Sharing Edge

The aim of this section is to study the FPT of the transition from normal state to
overloaded, overloaded to normal, underloaded to normal, etc. For each transfer
pair, FPT will be computed to predicate the future behavior of the transfer pair
before the load transfer (i.e. virtual server migration) decision is taken.

Definition 3 Let [Q(t), R(t)] be a transfer pair with Q(t) = X and R(t) = Y, where
X [U and Y \ L. The Load Sharing Edge (LSE) between Q and R is a random
variable E(X,Y) which is defined as follows:

E X; Yð Þ ¼ minfFPT X;U;FPTð Þ Y; Lð Þg

Where, FPT(X,U) is the first passage time to move from state X to state U and
FPT(Y,L) is the first passage time to move from state Y to state L.

LSE is the period of time within which the overloaded node must complete
transferring load to the underloaded node before the overloaded node identifies
that is unnecessary to transfer load or the underloaded node becomes ineligible to
receive a transferred load. Assume the load transfer time is denoted by D. It is the
time needed to package and send the load (i.e. the least loaded virtual server that
will release overload) to sink R. Thus, the load transfer must be initiated only if
LSE [D. Since LSE is a random variable we need to formulate the transfer
criterion in terms of probabilities. Assume the probability that LSE exceeds D is
P{E(X,Y) [D}. Therefore, the load transfer must be initiated if P{E(X,Y) [D} is
large. These considerations led to the formulation of a class of rules so called
Quantile rules. The quantile of a probability distribution function is defined as
follows:

Definition 4 Let F(t), t C 0 be the probability distribution function of a non-
negative random variable X. Let 0 \ b\ 1. The b-quantile of F is a non-negative
real number qb satisfying

1� FðqbÞ ¼ b; PfX� qbg ¼ b:

From Definition 4, the b-quantile rule for load transfer was introduced.

Definition 5 Given a transfer pair [Q(t), R(t)] and a load transfer time is D. Also,
for 0 \ b\ 1, let qb be the b-quantile of the probability distribution of the LSE
between Q(t) and R(t). Then the load transfer is initiated only if qb[D.

466 K. Ragab and M. E. Yahia

The proposed algorithm in this paper uses a b-quantile rule before transferring
load and ensures that 1 C P{E(X,Y) C D} C b. In general b can be taken 0.90 or
large.

The probability distribution of the random value LSE is given as follows

Peðt; X; YÞ ¼ PfEðX; YÞ� tg for t� 0:

Thus, the probability distribution function of the load sharing edge LSE
between pair Q(t) and R(t) is given by

Peðt; X; YÞ ¼ 1� ½1� Fðt; X;UÞ� � ½1� Gðt; Y ; LÞ�:

Where F(t; X,U) and G(t; Y,L) are the probability distribution of the first
passage time from X to U and from Y to L in the queues {Q(t)}, {R(t)},
respectively. Each node is modeled as M/M/1 queue, in which processes arrive
according to a Poisson process with mean arrival rate k, then processed with
exponential service time [23, 24] and with mean service rate l.

Lemma 1 Assume constant birth rates k = k0 = k1 = … and death rates
l = l0 = l1 = …, then the probability distribution function is

Hkþ1;kð:Þ ¼ H1;0ð:Þ k ¼ 0; 1; . . .

Proof
FPTk+1,k is the time that elapses before the cumulative number of deaths first

exceeds the cumulative number of births when X(0) = k ? 1. Also, the value of
Hk+1,k(.) do not depend on X(0), [23, 24]. h

Lemma 2 The Laplace–Stieljes transform of the probability distribution function
of the first passage time from state k to state 0 in an M/M/1 queue is

~Hk;0ðsÞ ¼
sþ kþ l�

ffi

sþ kþ lð Þ2�4kl
q

2k

2

4

3

5

k

ð5Þ

Proof
Assume that, the first passage time FPTij can be expressed as

FPTij ¼ S1 þ
FPTiþ1;j if Xðs1Þ ¼ iþ 1

FPTi�1;j if Xðs1Þ ¼ i� 1

(

Where S1 is the time of the first transition. Assume that Hij(t) = P{FPTij B t}, as
well FPTij can be upward or downward after the first transition S1. Using Theorem
4–7, [23, 24], Hij(t) can be expressed as follows

Efficient Load Balancing Algorithm in P2P Systems 467

HijðtÞ ¼ ki

Z t

0
Hiþ1;jðt � xÞe�ðkiþliÞxdxþli

Z t

0
Hi�1;jðt � xÞe�ðkiþliÞxdx ðiÞ

Taking Laplace–Stieljes transform on both side of Eq. (i) and use the convo-
lution property, then the following equation can be obtained:

~Hi;jðsÞ ¼
ki ~Hiþ1;jðsÞ þ li

~Hi�1;jðsÞ
sþ kj þ lj

ðiiÞ

Thus,
Set i = 1, and j = 0

~H1;0ðsÞ ¼
k0 ~H2;0ðsÞ þ l0

~H0;0ðsÞ
sþ k0 þ l0

ðiiiÞ

From lemma 1, k = k0, l = l0 and from Eq. (4)

~Hi;jðsÞ ¼
Qi�1

k¼j

~Hkþ1;kðsÞ ; i [j. Thus, ~H2;0ðsÞ ¼ ~H1;0ðsÞ � ~H2;1ðsÞ ¼ ~H1;0ðsÞ
� �2

from Eq. (iii), we obtain the following quadratic equation

k ~H1;0ðsÞ
� � 2�ðsþ kþ lÞ~H1;0ðsÞ þ l ¼ 0 ðivÞ

Equation (iv) has two solutions, we consider the solution which satisfies that
~H1;0ðsÞ� 1

~Hk;0ðsÞ ¼
sþ kþ l�

ffi

sþ kþ lð Þ2�4kl
q

2k

2

4

3

5; ~H1;0ðsÞ� 1; for real:

Hence,

~Hk;0ðsÞ ¼ ~H1;0ðsÞ
� �K¼

sþ kþ l�
ffi

sþ kþ lð Þ2�4kl
q

2k

2

4

3

5

k

: h

Corollary 1 The density function of the first passage time from state k to state 0 in
an M/M/1 queue is

hk;oðtÞ ¼ ke�ðkþlÞtIk 2t
ffiffiffiffiffiffi
kl

p� � l=kð Þk=2

t
ð6Þ

For t [0 m; where Ik is the Modified Bessel function of order k.

468 K. Ragab and M. E. Yahia

Proof
If Eq. (5) is bona fide Laplace transform, it is the Laplace transform of h(t),

[23, and 24]. From Laplace transform,

}fe�ctf ðtÞg ¼ f ðsþ cÞ; set ðc ¼ kþ lÞ and w ¼ ðsþ kþ lÞ

So we can write Eq. (5) as

~H1;0ðwÞ ¼
w�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 4kl

p

2k

" #

h

While the Laplace transformation }fI1ðatÞ=tg ¼ sþ
ffiffiffiffiffiffiffiffiffi
s2þa2
p

a , [23] then we can say

that the numerator is the Laplace transform of 2 klð Þ1=2I1ð2t klð Þ1=2Þ=t; thus,
H1;0 ¼ ðsÞ is the Laplace transform of Eq. (5). So we have

h1;oðtÞ ¼ ke�ðkþlÞtI1 2t
ffiffiffiffiffiffi
kl

p� � ffiffiffiffiffiffiffiffiffiffiffiffi
l=kð Þ

p

t
: h

Hence,

hk;oðtÞ ¼ ke�ðkþlÞtIk 2t
ffiffiffiffiffiffi
kl

p� � l=kð Þk=2

t
; t [0

Lemma 3 (Downward) The probability distribution of the first passage time form
state k to state 0 in an M/M/1 queue is:

Hðx; k; 0Þ ¼ 1:0� klk
X1

n¼0

klð Þn

kþ lð Þ2nþk Cð2nþ k; xÞ ð7Þ

Where Cð Þis the incomplete Gama function.
Proof
Assume that the modified Bessel function of order k is

IkðxÞ ¼
x

2

� �kX1

n¼0

x2=4ð Þn

n!ðnþ kÞ! ; x� 0

Set x ¼ 2t
ffiffiffiffiffiffi
kl
p

. Thus,

Ikð2t
ffiffiffiffiffiffi
kl
p
Þ ¼ 2t

ffiffiffiffi
kl
p
2

	
kP1

n¼0

t2klð Þn
n!ðnþkÞ! ; x� 0 By substitute into Eq. (6), we can

compute the density function hk;oðtÞ as follows:

hk;oðtÞ ¼ kle�ðkþlÞt
X1

n¼0

klð Þntkþ2n�1

n!ðnþ kÞ! ; t� 0

Efficient Load Balancing Algorithm in P2P Systems 469

From the definition of the probability distribution function, we have Hk;0ðxÞ ¼

Rx

0
hk;0ðtÞ dt and Hk;0ðxÞ ¼ 1�

R1

x
hk;0ðtÞ dt.

Thus, Hk;0ðxÞ ¼ 1�
R1

x
klke�ðkþlÞt P

1

n¼0

klð Þntkþ2n�1

n!ðnþkÞ! dt.

If we exchange the infinite sum and the integral we get

Hk;0ðxÞ ¼ 1�
X1

n¼0

klð Þn

n!ðnþ kÞ!

Z1

x

e�ðkþlÞt tkþ2n�1 dt ; Cði; xÞ ¼
Z1

x

e�tti�1dt:

Hence,

Hðx; k; 0Þ ¼ 1:0� klk
X1

n¼0

klð Þn

kþ lð Þ2nþk Cð2nþ k; xÞ: h

Lemma 4 The probability density function of the first passage time of the M/M/1
queue from state 0 to state 1 is h0;1ðtÞ ¼ ke�kt.

Proof

Let ~hi;jðsÞ ¼ ki
~hiþ1;jðsÞþli

~hi�1;jðsÞ
sþkjþlj

set i = 0, j = 1 (i.e. there is no service

l0 ¼ 0) and ~h01ðsÞ ¼ k0
~h1;1;jðsÞ
sþk0

. For simplicity set k0 ¼ k. Hence
~h0;1ðsÞ ¼ k

sþk ; ~h1;1 ¼ 1 since FPT11 = 0. By computing the inverse of the
Laplace transformation we get:

h0;1ðtÞ ¼ ke�kt: h

Lemma 5 (Upward) The probability distribution function of the first passage time
of the M/M/1 queue from state i to state j; i \ j is

Hi;jðtÞ ¼ 1þ kj�i
Xj

k¼1

Cke �rktð Þ ð8Þ

where rk; 1� k� j, are j distinct roots of the polynomial of degree j defined
recursively as:

Dðs� 1Þ ¼ 0; Dðs; 0Þ ¼ 1; Dðs; 1Þ ¼ sþ k

Dðs; jÞ ¼ ðsþ kþ lÞDðs; j� 1Þ � klDðs; j� 2Þ; j� 2
also, for

1� k� j; Ck ¼ sþ rkð ÞDðs;iÞ
sDðs;iÞ

�
�
�
s¼�rk

470 K. Ragab and M. E. Yahia

Proof

In lemma 4, we have prove ~h0;1ðsÞ ¼ k
sþk that is the Laplace transformation of

the probability distribution of the first passage time of FPT01. Assume that
~hi;jðsÞ ¼ ki

~hiþ1;jðsÞþli
~hi�1;jðsÞ

sþkjþlj
. Set

i ¼ k; j ¼ k þ 1; kk ¼ kkþ1 ¼ k; lk ¼ lkþ1 ¼ l

~hk;kþ1ðsÞ ¼
k ~hkþ1;kþ1ðsÞ þ l ~hk�1;kþ1ðsÞ

sþ kþ l
ðiÞ

But, ~hkþ1;kþ1ðsÞ ¼ 1 since FPTkþ1;kþ1¼ 0,

~hk�1;kþ1ðsÞ ¼ ~hk�1;kðsÞ ~hk;kþ1ðsÞ :

Hence,

~hk;kþ1ðsÞ ¼
k þ l ~hk�1;kðsÞ ~hk;kþ1ðsÞ

sþ kþ l

~hk;kþ1ðsÞ ¼
k

sþ kþ l 1� ~hk�1;k sð Þ
� �� � ðiiÞ

Using mathematical induction, we can prove that Eq. (ii) is satisfied for all
k� 0. It can be rewritten as the ratio of two functions Nðs; kÞ and Dðs; kÞ. These
functions can be defined as follows:

Lð1Þ ¼ �k; LðkÞ ¼ � kþ lð Þ; k� 2

MðkÞ ¼ kl k� 1

Thus,
Nðs; kÞ ¼ kDðs; k � 1Þ; k [1; Dðs; 0Þ ¼ 1

Dðs; kÞ ¼ s� LðkÞ½ � � Dðs; k � 1Þ �MðkÞ � Dðs; k � 2Þ; k� 1
Where Dðs; kÞ

is a polynomial of degree k; k� j.
Thus, Eq. (ii) can be rewritten as follows:

~hk�1;kðsÞ ¼
Nðs; kÞ
Dðs; kÞ ¼

kDðs; k � 1Þ
sþ kþ lDðs; k � 1Þ � klDðs; k � 2Þ ; k� 2

But for general transitions from state i to state j: 0� i� j, is

~hi;jðsÞ ¼
kDðs; iÞ

Dðs; iþ 1Þ �
kDðs; iþ 1Þ
Dðs; iþ 2Þ � . . .� kDðs; j� 2Þ

Dðs; j� 1Þ �
kDðs; j� 1Þ

Dðs; jÞ

Thus, we can obtain the Laplace transform of the density of the upward tran-

sition from state i to state j, ~hi;jðsÞ ¼ kj�iDðs;iÞ
sDðs;jÞ by canceling the common terms from

the denominator and the numerator from the above equation.

Efficient Load Balancing Algorithm in P2P Systems 471

From the definition LT
Rx

0
hðtÞdt

�

ðsÞ ¼ LT ½h�ðsÞ
s ; thus

~Hi;jðsÞ ¼
kj�iDðs; iÞ

sDðs; jÞ

It is a relation function in which the numerator polynomial has degree I while
the denominator polynomial has degree (j ? 1) and (i \ j). Thus, we can expand
~Hi;jðsÞ into a finite sum of partial fractions as follows: If Dð0; jÞ ¼ k jfor all j� 1
andk[0 then zero cannot be a root of Dðs; jÞ; j� 1 and it can be written in the
following form:

Dðs; jÞ ¼ ðsþ r1Þðsþ r2Þ. . .ðsþ rjÞ where rk for all k = 1 to j are roots of

Dðs; jÞ:~Hi;jðsÞ ¼ kj�i C0
s þ

Pj

k¼1

Ck
ðsþrkÞ

	

Hence, it can be written as follows:

where Ck ¼ ðsþ rkÞDðs;i�1Þ
sDðs;jÞ

�
�
�
s¼�rk

; 1� j� k and

C0 ¼
Dð0; iÞ
Dð0; jÞ ¼

ki

k j ¼ ki�j

~Hi;jðsÞ ¼
1
s
þ kj�i

Xj

k¼1

Ck

ðsþ rkÞ

Accordingly, we can invert the Laplace Transform of the above equation. But,
each term in the right hand side is in the form a

ðsþbÞ a; b Where a; b are con-

stants. Each term has inverse Laplace transformation aebt. Hence,

Hi;jðtÞ ¼ 1þ kj�i
Xj

k¼1

Cke �rktð Þ

Theorem Let [Q(t), R(t)] be a transfer pair that consists of M/M/1 queues. Let m
be the amount of overload and n the amount of underload. Then the probability
distribution function of the Load Sharing Edge (LSE)is

Peðt; m; nÞ ¼ 1� mknlm
PL

k¼1
Cke�rkt

�

�
P1

k¼0

klð Þk

kþlð Þ2kþm C 2nþ m; xð Þ
�

where,

rk; 1� k� L; are the roots of the polynomial defined recursively as

Dðs;�1Þ ¼ 0; Dðs; 0Þ ¼ 1; Dðs; 1Þ ¼ sþ k

Dðs; LÞ ¼ ðsþ kþ lÞDðs; L� 1Þ � klDðs; L� 2Þ; L� 2; 1� k� L

Also, for

1� k� L Ck ¼ sþ rkð ÞDðs; L� nÞ
sDðs;LÞ

�
�
�
�
s¼�rk

472 K. Ragab and M. E. Yahia

Proof
The transfer pair has the probability distribution function Peðt; i; jÞ of the LSE;

i [U; j\L which is defined by
Peðt; i; jÞ ¼ 1� 1� Fðt; i;UÞ�½ � 	 1� Gðt; j; LÞ½ � where m is the amount of

overload (m = i-U), and n is the amount of underload (n = L-j) then
Peðt; m; nÞ ¼ 1� 1� Fðt; m; 0Þ�½ � 	 1� Gðt; L� n; LÞ½ �for an M/M/1 queue

case F(t,m,0) and G(t, L-n, L) have been derived from 3 and 5 respectively. Hence,

Peðt; m; nÞ ¼ 1� mknlm
XL

k¼1

Cke�rkt

" #

�
X1

k¼0

klð Þk

kþ lð Þ2kþm C 2nþ m; xð Þ
" #

:h

Due to the infinite number of terms in the probability distribution Peðt; m; nÞof
the LSE in M/M/1, the following lemma will drive a formula for LSE as finite
number of terms as follows.

Lemma 6 For a transfer pair [Q(t), R(t)] with an amount of overload m and an
amount of underload n, the Mean Load Sharing Edge MLSE(m, n) is

MLSEðm; nÞ ¼ �kn
XL

k¼1

Ck
1
rk
� ~Fðrk;m; 0Þ

	

where r1; r2; . . .; rk;Ck are constants defined in the previous theorem. Also,

~Fm;0ðsÞ ¼
sþ kþ l�

ffi

sþ kþ lð Þ2�4kl
q

2k

2

4

3

5

m

Proof
Since Peðt; m; nÞ ¼ 1� 1� Fðt; m; 0Þ½ � � 1� Gðt; L� n; LÞ½ � we obtain,

MLSEðm; nÞ ¼
Z1

0

Peðt; m; nÞ dt ¼
Z1

0

1� Fðt; m; 0Þ½ � � 1� Gðt; L� n; LÞ½ � dt

From lemma 5, we get

MLSEðm; nÞ ¼ �
Z1

0

kn
XL

k¼1

Cke�rkt

" #

� 1� Fðt; m; 0Þ½ � dt

But the Laplace transform LT ½q�ðsÞjS¼0¼
R1

0
qðtÞ dt and LT ½e�atq�ðsÞjs¼0¼ LT ½q�

ðsþ aÞ. Set a ¼ rk; then

MLSEðm; nÞ ¼ �kn P
L

k¼1
Ck

1
rk
� ~Fðrk;m; 0Þ

� �

Efficient Load Balancing Algorithm in P2P Systems 473

Consequently, it has been observed that for queuing models in which job arrival
and processing rates are independent of queue size, such as M/M/1 queues. The
distribution of LSE depends only on the amounts of underload and overload. The
following algorithm will use the numeric value of the given mean load sharing edge
formula that is based upon the following parameters m; n; ki; li; kj; lj; L; qb

� �
.

3.3 Algorithm

This section introduces the proposed load balancing algorithm based upon the
above analysis. Periodically every T seconds, each overloaded peer transfers the
exceeds load to the underlaoded peers (i.e. sender-initiated algorithm). This
algorithm imposes a b-quantile rule for transferring load. For each pair (k, l) a
corresponding b-quantile should be determined while b must be taken 0.90 or
large. The algorithm is shown in the following scenario:

1. The overloaded node Si creates a suitable domain (group) Di from neighbor
nodes to the peer Si. Each node blongs to Di satisfies Di = {Sj; P(FPTi [-

tij) C 0.90 and i = j}. Where tij is the required communication delay to send a
message form node Si to Sj plus the required time to reply with load transfer of
certain virtual server from Si to Sj. Also, FPTi is the first passage time of node Si

to tranfer from overloaded state to normal or underloaded state. Di is an ordered
set with respect to the communication tij. It is implemented as an order linked
list.

2. Thus, Si sends a broadcast messages to all nodes belonging to the doamin Di.
Node Si must receive a reply from all nodes belonging to Di within the FPTi

time.
3. Node Si selects an underlaoded node Sj[Di where the mean load sharing edge

MLSE between Si and Sj. if qb[D then transfers load (virtual server) from Si to
Sj. Where pair k and l are given, D is the time needed to transfer load less than
or equal to A(Sj), b is 0.90 or large.

4. Repeate step 3 for each underloaded node Sj belonging to Di whenever FPTi

period doesn’t run out yet.

474 K. Ragab and M. E. Yahia

Load_balance(Si, T)
{// Every period T seconds Si checks its load
 // jumps above upper load U.
// It should do the following.
Create(Di,Si); // create domain of neighbors
While (βq >0) do

 {// repeat the following within a period βq

 Select Sj∈Di ; // select from order set Di

 Di = Di \ {Sj}
 If (βq > Δ) then transfer_load(Si, Sj); }

 }

transfer_load (Si, Sj)
{ If !(Overloaded) then return; //Sender-initiated
 If (Si VSset.size >1) then
 Choose v∈Si VSset such that:

a. Transfer v to Sj will not overlaod Sj

b. v is the least loaded virtual server that will release
overload.

Failing that, let v be the most loaded VS.
Return the virtual servers reassignment.
}

4 Evaluation

This paper implements an event-based simulation to evaluate the proposed load
balancing algorithm. It uses several parameters as follows: default number of
virtual servers per node (12), number of nodes (4096), system utilization (0.8),
Object arrival rate (Poisson with mean arrival time 0.01 s), average number of
objects (1 million), and periodic load balancing period (T = 60 s). This simulation
evaluates the following metric. Load Movement Ratio (LMR), defined as the total
movement cost incurred due to load balancing divided by the total cost of moving
all objects in the system at once. In case the value of the LMR is 0.1, it infers that
the balancer consumes about 10 % of its bandwidth to insert objects. The node
arrival rate is modeled by a Poisson process, and the lifetime of a node is drawn
from an exponential distribution. This simulation ran with two inter-arrival times
10 and 60 s, it fixes the steady-state number of nodes in the system to 4096 nodes.

Figure 2 plots the LMR metric as a function of system utilization, to study the
load moved by the proposed load balancing algorithm as a fraction of the load
moved by the underlying DHT due to node arrivals and departures. Figure 2
demonstrates that the load moved by the proposed load balancing algorithm is
significantly smaller than the load moved by the underlying DHT especially for
small system utilization. In addition, Fig. 2 shows that the LMR with node inter-
arrival time 10 s is larger than with node inter-arrival time 60 s. Figure 3 verifies

Efficient Load Balancing Algorithm in P2P Systems 475

Fig. 2 LMR versus system
utilization with two node
arrival times

Fig. 3 LMR versus number
of virtual servers with two
node arrival

Fig. 4 Bandwidth lost versus
system utilization with
different number of virtual
servers per node

476 K. Ragab and M. E. Yahia

the perception that increasing the number of virtual servers decreases considerably
the fraction of load moved by the underlying DHT. Figure 4 demonstrates that
increasing number of virtual servers per node assists load balance at high system
utilizations and grants efficient load movements due to low bandwidth lost. Fig-
ure 5 plots the 90-quantile of the load sharing edge (LSE) with system utilization
when overload is 5 at source node and underload is 2 at the destination node. It
demonstrates that the 90-quantile of the LSE tends to be smaller as system utili-
zation increases. As seen from Fig. 5, the 90-quantile of the LSE is 9.94 ms thus
load can be transferred only if D\ 9.94 ms. In addition, increasing the number of
virtual servers reduces significantly the 90-quantile that helps in avoiding load
thrashing.

In this paper we compare our results with simple load balancing algorithms
such as Random/Round Robin (R3) load distribution algorithm [26]. The R3
algorithm pushes load from an overloaded virtual server to a randomly or in a
round robin fashion chosen neighbor that may absorb that load if it has the
capacity, or pushes the load further on to another virtual server chosen in the same
fashion. The advantages of the R3 algorithm in compare with the proposed
algorithm are as follows: simplicity and statelessness. However, the disadvantages
of the R3 algorithm are as follows: unpredictability and insufficient (random)

Fig. 5 90-quantile of the
LSE versus system utilization
with different number of
virtual server per node

Fig. 6 Compare proposed
algorithm with R3 algorithm

Efficient Load Balancing Algorithm in P2P Systems 477

convergence on the chance for load thrashing. Figure 6 shows that the proposed
algorithm is more efficient than the R3 algorithm due to load thrashing in R3 that
increases the bandwidth lost.

5 Conclusion

Load balancing among peers is critical and a key challenge in peer-to-peer sys-
tems. This paper demonstrates a stochastic analysis that avoids the load thrashing
and tackles the out-of-date problems due to peer’s state changes during load
movement (virtual servers migration). Then, it proposes a load balancing algo-
rithm based on the stochastic analysis. An efficient simulation has been carried out
that demonstrates the effectiveness of the proposed load balancing algorithm.
Further research is to design a P2P load-balancing algorithm based on fuzzy logic
control

References

1. Shirky C (2000) Modern P2P definition. http://wwwopenp2p.com/pub/a/p2p/2000/11/24/
shirky1-whatisp2p.html

2. Saroiu S et al (2002) A measurement study of peer-to-peer sharing systems. In: Proceedings
multimedia computing and networking conf (MMCN)

3. Sotica I et al (2001) Chord: a scalable peer-to-peer lookup service for internet applications.
In: ACM SIGCOMM’01 pp 149–160

4. Rowstron A, Druschel P (2001) Pastry: Scalable distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings middleware

5. Ratnasamy S et al (2001) A scalable content- addressable network. In Proceedings ACM
SIGCOMM’01, California

6. Derk I et al (1986) Adaptive load sharing in homogenous distributed systems. IEEE Trans on
Soft Eng 12(5)

7. Bharambe AR et al (2004) Mercury: supporting scalable multi-attribute range queries. In
Proceedings of the conference on applications, technologies, architectures, and protocols for
computer communication. ACM, New York

8. Dabek F et al (2001) Wide-area cooperative storage with CFS. In:Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP’01), pp 2020-2215

9. Godfrey et al (2004) Load balancing in dynamic structured P2P systems. In: Proceedings
IEEE INFOCOM

10. Byers J (2003) Simple load balancing for distributed hash table. In: Proceedings of the second
international workshop on peer-to-peer systems (IPTPS’03)

11. Rao A et al (2003) Load balancing in structured P2P systems. In Proceedings Of the second
international . Workshop on peer-to-peer systems (IPTPS’03)

12. Godfrey PB, Stoica I (2005) Heterogeneity and load balance in distributed hash table. In:
Proceedings IEEE INFOCOM

13. Li J, Kameda H (1994) A decomposition algorithm for optimal static load balancing in Tree
hierarchy network configurations. IEEE Trans on parallel and distributed systems, 5(5)

478 K. Ragab and M. E. Yahia

http://wwwopenp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html
http://wwwopenp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html

14. Casavant TL, Kuhl JG (1988) A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans Softw Eng 14(2):141–154

15. Shivaratri NG et al (1992) Load distributing for locally distributed systems. Computer
25(12):33–44

16. Goscinski A (1991) Distributed operating system: the logical design, Addison-Wesly
17. Zhou S (1988) A Trace-driven simulation study of dynamic load balancing. IEEE Trans

Softw Eng 14(9):1327–1341
18. Eager DL et al (1985) A comparison of receiver-initiated and sender-initiated adaptive load

sharing. SIGMETRICS Perform Eval Rev 13:2
19. Kruger P, Shivaratri NG (1994) Adaptive location policies for global schedule. IEEE Soft

Eng 20:432–443
20. Zhou S et al (1993) Utopia: a load sharing facility for large, heterogeneous distributed

computer systems. Softw Pract Experience 1305–1336
21. Dandamudi SP, Lo KC (1997) A hierarchical load sharing policy for distributed systems. In:

Proceedings of the 5th International. Workshop on modeling, analysis, and simulation of
computer and telecommunications systems, MASCOTS. IEEE CS, Washington, DC

22. Heyman DP (1982) Stochastic models in operation research, vol I. MxGraw-Hill Inc, New
York

23. Kobayshi H (1978) Modeling and analysis: an introduction to system performance evaluation
methodology. Addison-Wesley

24. Hisashi kobayshi et al (2009) System modeling and analysis: foundations of system
performance evaluation. Prentice Hall

25. Zhu Y Hu Y (2005) Efficient proximity-aware load balancing for DHT-based P2P systems.
IEEE Trans On Parallel Distributed Syst, 16(4) 349–361

26. Andrzejak A, Graupner S, Kotov V, Trinks H (2007) Algorithms for self-organization and
adaptive service placement in dynamic distributed systems. Internet systems and storage
laboratory

Efficient Load Balancing Algorithm in P2P Systems 479

	56 Addressing the Out-of-date Problem for Efficient Load Balancing Algorithm in P2P Systems
	Abstract
	1…Introduction
	2…Load Balancing Survey
	2.1 Load Balancing Design
	2.2 P2P Load Balancing
	2.3 Challenges: P2P Load Balancing

	3…Load Sharing Algorithm
	3.1 Model
	3.2 Load Sharing Edge
	3.3 Algorithm

	4…Evaluation
	5…Conclusion
	References

