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Abstract 3D trajectory data have progressively become common since more
devices which are possible to acquire motion data were produced. These tech-
nology advancements promote studies of motion analysis based on the 3D tra-
jectory data. Even though similarity measurement of trajectories is one of the most
important tasks in 3D motion analysis, existing methods are still limited. Recent
researches focus on the full length 3D trajectory data set. However, it is not true
that every point on the trajectory plays the same role and has the same meaning. In
this situation, we developed a new cost effective method that uses the feature
‘signature’ which is a flexible descriptor computed only from the region of ‘elbow
points’. Therefore, our proposed method runs faster than other methods which use
the full length trajectory information. The similarity of trajectories is measured
based on the signature using an alignment method such as dynamic time warping
(DTW), continuous dynamic time warping (CDTW) or longest common subse-
quence (LCSS) method. In the experimental studies, we compared our method
with two other methods using Australian sign word dataset to demonstrate the
effectiveness of our algorithm.
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1 Introduction

Over recent years, thanks to the development of sensor technology and mobile
computing, trajectory-based object motion analysis has gained significant interest
from researchers. It is now possible to accurately collect location data of moving
objects with less expensive devices. Thus, applications for sign language and
gesture recognition, global position system (GPS), car navigation system (CNS),
animal mobility experiments, sports video trajectory analysis and automatic video
surveillance have been implemented with new devices and algorithms. The major
interest of trajectory-based object motion analysis is the motion trajectory rec-
ognition. The motion trajectory recognition is generally achieved by a matching
algorithm that compares new input trajectory with pre-determined motion trajec-
tories in a database.

The first generation of matching algorithms only used raw data to calculate the
distance between two trajectories, which is ineffective. Raw data of similar
motions will appear differently because of various varying factors such as scale
and rotation. To overcome this problem, local features of trajectory, called sig-
nature, were defined for motion recognition [1-3]. This signature performs better
in flexibility than other shape descriptors, such as B-spline, NURBS, wavelet
transformation, and Fourier descriptor. Trajectories represented by the signature
and the descriptors are invariant in spatial transformation. However, computing the
distances between trajectories using this signature is not enough for accurate
recognition of 3D motion. To improve the performance, some matching approa-
ches were used to ignore similar local shapes of different motion trajectories or to
ignore outliers and noise.

‘Matching’ is an important process in motion recognition and classification,
which have been studied for years and widely used in many fields. It is achieved by
alignment algorithm, and the famous and efficient ones in motion recognition are
dynamic time warping (DTW), continuous dynamic time warping (CDTW), and
longest common sub-sequence (LCSS) [4-6].

Recent researches use the full length of trajectory data for motion recognition
[1-3]. However, many points of the trajectory have similar signatures because they
lie on a straight line, thus computing task for signatures can be useless. To
eliminate this drawback, we developed a new method that computes the signatures
only from the region of ‘elbow points’ to gain advantage of computing speed.
Besides, we also present a set of descriptors and normalization process for
invariant motion recognition.

2 Preprocessing Method

Due to the system noise, measurement noise or both, trajectory data may not be
accurate. ‘Smoothing’ process is an important task because it enhances the sig-
nature’s computational stability by reducing the noise and vibration of motion.
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However, trajectory shape may be affected by the smoothing process. To cope with
the effect of noise, the derivatives of a smooth version of data using a smoothing

kernel ¢ are considered, i.e. xV)(¢) = (x(¢) * (/b(t))(j). By the derivative theorem of
convolution, we can have x%)(¢) = x(t) * ¢' (1). For this paper, a B-spline B(r) is
taken to be the smoothing kernel ¢(¢). An odd degree central B-spline of degree
2h — 1 with the integer knots —h, —h+ 1, ..,0, h — 1, h is given by

h—1

BO) = e 2 0 () -0

I=—h

where the notation f (s) mean f(s) if f(s) >0 and O otherwise. For a quantic B-
spline, h = 3 [7].

Next, we normalize the location and the scale of a 3D trajectory so that all
trajectories are transformed to a common domain. Trajectory normalization makes
scale, rotation and translation invariant, which can produce better performance for
the following processes. We applied the continuous principal component analysis
(PCA) [8] to the trajectory points, where we assume that three distinct nonzero
eigenvectors can be computed from the 3D trajectory coordinates. The continuous
PCA ensures the invariance of the translation, the rotation, the reflection, and the
scale.

3 Signature as a Trajectory Descriptor

For trajectory matching, we need a descriptor that can well describe the shape of
the trajectory. In our study, we use the signature for the descriptor. For a point ¢,
the signature S(7) is defined by five values: k(z), t(¢), h(t), e(t) and c(z). x(¢) is the
‘curvature’ that is a measurement for the turning amount of the contour, and 7(z) is
the ‘torsion’ that presents its twist amount out of the tangent-normal plane. Other
three values h(z), e(t) and c(¢) are the Euclidian distances from the point # to the
start-point, the end-point, and the center-point of the trajectory, respectively. Note
that the center-point is computed by the continuous PCA which is performed at the
normalization process. Thus, for a motion trajectory in 3D space with
N pointsI" = {x(1), y(¢),z(¢t)|t € [1,N]}, the signature set D* for the entire trajec-
tory is defined in the following form

D" = {x(t), ©(t), h(z), e(t), c(t)]t € [1,N]}
where
k() = [|T() < FO /[T

(1) = (F(1) x T'(0) - T0) /|| (0) % F )|
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An elbow point is a point on the trajectory which have the curvature value
Kk(t)larger than a threshold ¢. If we know the coordinates of the elbow points and
their sequential order, we can rebuild an approximated trajectory by connecting the
elbow points with the straight lines of points. Consequently, information about the
elbow points is good enough to align two trajectories for matching task. Therefore,
a new literal set of signature only with the elbow points can be described as

D' = {k(1), ©(2), h(t), e(t), c(t)|t € [1, N],z(t) > ¢}

This new set of the signature only with the elbow points has four or five times
less number of elements (signatures, points) than D*. As a result, computational
burden for matching two trajectories can be dramatically reduced by using D’
rather than D*. An illustration for the elbow points (block dots) and the three
distances are shown in the Fig. 1.

4 Signature Alignment

As mentioned in previous section, each trajectory is represented by a set of sig-
nature. Note that in our proposed method, we only compute the signatures at the
elbow points. For each elbow point, as mentioned above, five signature elements
are obtained: k(¢), ©(t), h(¢), e(t) and ¢(¢). In order to match two trajectories, two
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corresponding signatures should be correctly paired. Since there are many noisy
factors such as different number of signatures in two trajectories, a matching
approach should consider methods to handle the noisy factors. There are many
approaches to match two set of sequence data such as LCSS and DTW [4]. The
LCSS is more adaptive and appropriate distance measurement for trajectory data
than DTW [1]. We therefore choose LCSS for matching process in our study.

Given an integer ¢ and a real number 0 <¢< 1, we define the LCSS; (A, B) as
follows:

0 if A or B is empty
1 + LCSSs, (Head (A), Head(B)),
if |ax, — by m| <e
and|ay,, — by m| <t
and |a, , — by | <e
and|n —m| <0
max(LCSS; ,(Head(A),B), LCSS;.(A, Head(B))), otherwise

The constant ¢ controls how far in time we can go in order to match a given
point from one trajectory to a point in the other trajectory. The constant ¢ is the
matching threshold. The similarity function S between two trajectories A and B,
given 0 and ¢, is defined as follows:

LCSSs.(A,B
S((S,(O,’A,B) — _ a.?( bl )
min (n, m)

This LCSS model allows stretching and displacement in time, so we can detect

similarities in movements that happen at different speeds, or at different times.

5 Experimental Results

In order to implement and evaluate the proposed method for matching the 3D
motion trajectories, we have used trajectories information of the Australian Sign
Language (ASL) data set obtained from University of California at Irvine’s
Knowledge Discovery in Databases archive [9]. The ASL trajectory dataset con-
sists of 95 sign classes (words), and 27 samples were captured for each sign word.
The coordinates x, y and z are extracted from the sign’s feature sets to calculate the
trajectory signature. The length of the samples is not fixed. The details for the
experimental setup are exactly the same as that described in [10], where the data
set consists of sign words ‘Norway’, ‘alive’, and ‘crazy’. Each sign-word category
has 69 trajectories.

Haft trajectories from each category were used for training, and the remains
were used for testing. A test sample is classified by the nearest neighbor rule
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Table 1 Sign-word . Method Correction rate (%)
recognition results using - -
object motion-based Signature of elbow points 84.76
trajectory PCA-based GMM 85.29
Global GMM 69.61
Pose normalization 52.38

(k = 5). The experiment was repeated 40 times (each time with a randomly
selected training and test datasets). The average result of recognition was 84.76 %.
We also performed the experiment with pose normalization method [1]. Our
proposed method was compared with other methods included PCA-based Gaussian
mixture models (GMM) and global Gaussian mixture models [10], and the com-
parison result is reported in the Table 1.

Note that our proposed method used only a subset of trajectory data while other
methods used the full length trajectory data. Even though the recognition result of
our proposed method does not outperform the PCA-based GMM method, the
number of data points for recognition process is much smaller, which implies less
computational complexity. Therefore, our proposed method is more advantageous
than PCA-based GMM in term of recognition speed.

6 Conclusion

In this paper, we proposed a new method for matching the 3D motion trajectories,
and demonstrated experiments to show its effectiveness. It used only the features,
named in signature, obtained from ‘elbow points’ which are the points that have
the curvature value larger than a specific threshold.

In the first step, all trajectories are smoothed and then normalized by continuous
PCA. By using continuous PCA, all trajectories are invariant in translation, rota-
tion and scale. Once all the trajectories are normalized, a set of signature which
contained both local features and global features of trajectory is computed from
only the elbow points. LCSS matching algorithm was used to match the signatures
from the elbow points in two trajectories. Comparison of one trajectory and
another trajectory in a database, actually one set of signatures and another set of
signatures in a database, is quite complicated if the database size is big and the
length of the trajectory is long. Therefore, using only subset of full trajectory
points is simple and fast in trajectory matching process.

Even though our method uses less information of the trajectory for matching,
sign word recognition results showed that our proposed method can still maintains
the recognition rate compared to the existing methods. This implies that the fea-
tures from the elbow points are good enough to include the information for
matching two trajectories. However, further works should include investment for
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the sensitivity of the threshold value to recognition results, which affects the
number of elbow points. Also, practical application study should be performed
with large number of sigh-words.
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