
Adding Secure Communication
Mechanism to Existing Distributed
Applications by means of AOP

Ozgur Koray Sahingoz

Abstract The object-oriented programming paradigm is a process of imple-
menting a program by means of ‘Objects’ into which separate concerns are
grouped. However, it does not map some types of concerns such as security,
logging and exception handling, which should be implemented in each object
separately. As most of the security goals, reliable communication is a non-func-
tional requirement in a distributed system development process, and it typically
crosscuts many objects in the distributed architecture. Program codes to realize
this secure communication goal is generally spread in different code places
throughout the application. Aspect-oriented programming (AOP) is a new pro-
gramming paradigm that improves program modularity by enabling the separation
of concerns from the main logic of the application. For example, in the context of
security, developers should not need to encode security logic in the main program;
instead, it can be grouped into a separate and independent unit, called as aspects.
This paper presents a case study to illustrate how aspect oriented approach can be
used to resolve the scattered and tangled concerns, like secure communication, in a
previously developed distributed system in which objects communicate with each
other via Java RMI. As a java-based aspect oriented tool, AspectJ is used to
encapsulate the security related crosscutting concerns like communication. Per-
formance evaluations are tested for adding security aspect to a distributed appli-
cation. As a result, usage of aspects is a good choice for enhancing system to
achieve high cohesion and low coupling, which are one of the main the software
engineering requirements. It also enhances the readability of the system and makes
system easier to maintain.

O. K. Sahingoz (&)
Turkish Air Force Academy, Computer Engineering Department, 34149 Istanbul, Turkey
e-mail: sahingoz@hho.edu.tr

Y.-H. Han et al. (eds.), Ubiquitous Information Technologies and Applications,
Lecture Notes in Electrical Engineering 214, DOI: 10.1007/978-94-007-5857-5_1,
� Springer Science+Business Media Dordrecht 2013

1

1 Introduction

Software maintenance is a widely known problem in the software industry, and it
consumes a large part of the overall software lifecycle. Some studies indicate that
50–90 % of lifecycle costs are spent on software maintenance. The object-oriented
programming paradigm is one of the most used strategies of software development
for organizing functional and distributed applications. However, it does not map
some types of concerns such as security, logging, and exception handling, which
are scattered into different objects in the distributed application separately.

As other concerns, security is a critical issue for distributed and large-scale
software systems, especially which are connected to the Internet. Most of these
type systems suffer from various malicious attacks, and therefore, security is a
specific and important topic, and its logic should be implemented by security
engineers.

Secure communication is the main solution for protecting system from this type
of attacks. In distributed systems, objects generally communicate with each other
by message passing. For message passing, distributed systems generally use
remote procedure call mechanisms that are procedural invocation from an object
on one machine to an object on another machine. Many of these systems com-
municate via Java RMI that is a lightweight networking technology proposed by
Sun Microsystems.

Especially, most of the previously developed distributed systems do not take
care of secure messaging. For adding necessary security mechanisms, developers
should analyze the whole application codes line-by-line and should find each
relevant remote procedure call methods. Same problem is also valid for Java RMI,
and one limitation of this mechanism is that it not only sends simple variable types
like integer, float, char, etc. but also user defined serializable objects. To encrypt
these parameters, programmers should change the types of parameters.
For example, an ‘‘int’’ parameter cannot be send as ‘‘encrypted int’’, or a ‘‘char’’
parameter cannot be send as ‘‘encrypted char’’ with the same encryption algorithm
in a modular way. Therefore, there is a need of a new approach to this problem and
update security descriptions of the system in a modular way.

Security descriptions are crosscutting in a distributed system, and the devel-
opers have to write security related codes mixed with main application code [1].
However, it is also a scattering concern and most security related codes are
scattered between different objects. It is a challenging issue to make a better
modularized system by grouping these concerns into a unit. If it can be modu-
larized in a well-defined way, undoubtedly, development, maintenance, and evo-
lution of the system will be easier.

Aspect-Oriented Programming (AOP) approach is an emerging software
development paradigm that is a suitable solution in software engineering paradigm
and it enables improved separation of concerns by modularizing crosscutting
concerns in a unit, called as aspect. By this approach, AOP not only improves the
system’s modularity but also decreases the system’s complexity.

2 O. K. Sahingoz

Many works have already been done on solving security issues with AOP.
Stevenson et al. [2] tried to convert the proxy object of RMI to smart proxies by
using dynamic distributed aspect-oriented programming with the Java Aspect
Components system; Bostrom [3] developed a real-life healthcare application by
applying database encryption with AOP methodologies; Kotrappa and Kulkarni [4]
presented an aspect-oriented approach for enabling multilevel security system in
which it is aimed to provide users to share information in a classification based on
a system of hierarchical security levels; finally Yang et al. [5] have proposed
AspectKE*, which is an AOP language based on a distributed tuple space system
under Java environment, and it uses two staged implementation strategy for
gathering static analysis of the system.

In the previous work of this research [6], an aspect oriented communication
mechanism is constructed in a distributed system, which makes connections and
communications over Java RMI with only limited parameter types. In this paper, it
is aimed to extend the secure communication mechanism to transfer all type of
objects. Usage of AOP allows separation of security mechanisms from the sys-
tem’s main functional components and enables programmers to focus on imple-
mentation of the main application. At the same time, security experts can
implement the security properties separately. This approach enables system update
by only developing necessary aspect definitions, and distributed system not only is
modularized well but also there is no need to change the original system codes. By
using aspects, it was always possible to add new functionality to the previously
developed distributed system without modifying the original codes. This approach
adds modularity to systems behaviors and enhances the extendibility of the system.

This paper is structured as follows: In the following section, necessary back-
ground information is detailed. Section 3 depicts frameworks and design issues of
the aspect oriented secure communication system. Performance evaluation results
are depicted in Sect. 4, and finally, conclusion and future works are explained in
Sect. 5.

2 Background

2.1 Aspect Oriented Programming

Aspect-Oriented Programming [7], is a relatively new complementary model to
software design, and it enables the separation of crosscutting concerns by
addressing it in a modular unit, called as aspect. In AOP, the system is divided into
two parts: the core system, which contains the main functionalities and it is tra-
ditionally implemented using OOP methodology and the aspect system, which
consists of the crosscutting functionalities, and it is implemented with helps of
AOP methodology.

Adding Secure Communication Mechanism 3

At the programming level, an aspect is a software entity in which it modularizes
the crosscutting concerns that are typically scattered across classes in the object-
oriented system. An aspect definition contains two main elements: pointcuts and
advices. An advice is a method that adds a behavior to an existing main system
codes A pointcut is a description that specifies when, where and how to invoke the
advice. A pointcut is conceptually defined predicate that is used to identify join-
points in the system. A join point is a well-defined point in the execution of the
program where additional behavior can be added. Finally, weaving is a composing
process of transforming the system by linking core and crosscutting concerns
together, thereby constructing an evaluated final system (as shown in Fig. 1).

2.2 Java RMI

A Java remote method invocation (RMI) takes the RPC concept towards distrib-
uted object communications in which client object locates the server object
(possibly on a different machine) and remotely invoke its methods through the
server’s stub and skeleton functions. In traditional networking, it can be accom-
plished by writing an IP socket code to enable two objects on different machines
send messages to each other. On the other hand, Java RMI lets us communicate
these remote objects as if they are on the same machine.

The main Java RMI component consists of three elements: Client, Server and
Registry. The client invokes a method on the remote object, the server object owns
the remote object and processes the request, and registry works (in stub and
skeleton) as a name server that enables objects to use unique names (Fig. 2).

Core System

Aspect 1 Aspect 2

Aspect N

Class A

Class E

Class B

Class A

Class C

Class D

Class E

Class B

Aspect System

Aspect Weaver Aspect Weaved System
* * * *

Class D

Class C

Fig. 1 Aspect oriented system design

4 O. K. Sahingoz

3 System Design

Most of the previously developed distributed systems did not address the secure
communication issue that is a nonfunctional requirement in software engineering
process. For continuing to use these types of unsecure systems in the real world,
they should be enhanced by adding necessary reliable communication features.
However, this is a challenging task to upgrade the application without corrupting
the main business logic of the system. The aim of the secure communication is to
protect messages from accidental or malicious modifications while they are in
transit between two objects. This mechanism can be established by using an
encrypted communication channel between these communicating objects.

As in information systems, encryption is an important method for implementing
confidentiality in distributed systems. Unfortunately, applying effective encryption
affects the functionality and performance of the system as a whole. Because
security is migrated from the system security approach to the internal structure of
the applications separately. As a result, encryption codes, as well as other security
concerns, scatter in the main logic of each application, and it is a complicated task
to implement this especially in large-scale systems. This crosscutting approach
makes AOP be a potentially ideal candidate for implementation in distributed
systems.

It is important for the application developers to decouple the security related
modules from the primary system codes as much as possible. The use of aspects
requires fewer changes, almost none, to this primary code and exhibits improved
modularity over object-oriented implementation.

To develop secure communication systems preferred additional codes are based
on common Java security packages and AspectJ [8] programming environment.
It can be used as general-purpose AOP extension to Java and it enables modular
implementation of components and crosscutting concerns on a single Java plat-
form efficiently [9].

ServerClient

Application Server Object

Interface

Java RMI

INTERNET

Stub Skeleton

Remote Method Call

Remote Method

Remote Method Call

Fig. 2 Java RMI communication model

Adding Secure Communication Mechanism 5

To securely communicate a distributed system, which communicates with Java
RMI as shown in Fig. 2, a security mechanism by using aspects and necessary
proxy interfaces and methods is designed as shown in Fig. 3.

For enabling secure communication, message should be sent as encrypted to the
server side and returned data from the method should also be encrypted. To
achieve this, nine code changes are required to use Java RMI securely:

1. Remote server object must implement a proxy interface (Object_Int), which
extends the Remote interface, and all its methods must throw a Remote-
Exception.

public interface Object_Int extends Remote {

public byte[] sendObj(byte[] e_data) throws RemoteException;

}

2. This proxy interface should have a proxy method that gets ‘‘byte[]’’ as a
parameter and it should return byte[] as return type of the method. Because
encrypted messages are transferred as byte[].

3. Necessary encryption and decryption algorithm methods (encrypt() and
decrypt()), which uses symmetric key, and a key storage mechanism should
be implemented both in server side aspects and client side aspects.

public byte[] encrypt(byte[] data) {/*Encryption algorithms*/}

public byte[] decrypt(byte[] encrypteddata) {/*Decryption algo-

rithms*/}

public byte[] toByteArray (Object obj){/*Object to byte[] conver-

sion*/}

public Object toObject (byte[] bytes) {/*byte[] to Object conver-

sion*/}

ServerClient

Application

Server Object

Interface

Java RMI

INTERNET (encrypted data)

Stub Skeleton

Local Method Call

Remote Method

Remote
Method Call

Client Security

Aspect

Remote Proxy
Method Call

Server Security
Aspect

Proxy Method

Fig. 3 Aspect oriented secure Java RMI communication model

6 O. K. Sahingoz

4. For transferring all types of messages (containing simple parameters and each
types of objects, which implemented Serializable interface), necessary byte[] to
Object(toObject()) and Object to byte[] (toByteArray()) methods
should be implemented both in server and client side.

5. Client objects remote method invocation command should be handled by an
aspect (Encrypt aspect whose algorithm shown below) and converted to an
encrypted bytes and after that by calling new proxy method this data should be
sent to server side.

6. Server object cannot use this encrypted message. This message should be
decrypted by the proxy method. Therefore, firstly, this incoming encrypted
message is caught by the Decrypt aspect, and then, the decrypted message
should forward to the remote server object.

7. After server object finished its run, the result message should be transferred in
encrypted mode also. This also compensated by the Decrypt aspect. The
decrypted data is taken from the server object, then it is encrypted according to
the security mechanism, and finally this encrypted data is returned to the Client
Object.

8. The incoming encrypted data is decrypted in the Encrypt aspect (in client side)
according to the security mechanism. Obtained data is returned to Client
Object.

9. Remote method calls must include a try {…} catch statement to deal with
RemoteExceptions.

4 Performance Evaluation

An experiment platform is tested for a small scale Distributed Computing Plat-
form, which runs on a local area network. Instead of a solution model like adding
each encryption and decryption operations to these code places one-by-one, by
using AOP approach, developing two necessary security aspects is sufficient and
will be more secure/robust than the first solution approach. Test platform is
developed on PCs, which are configured as in Table 1.

Table 1 Test platform
properties

Properties Values

CPU Intel (R) Core(TM) i7-2630QM
CPU @2.00 GHz.

Operating system 64 bit Windows 7 Ultimate edition
RAM 6.00 Gbyte
Message size Min: 9 bytes- Max: 1008 bytes
Independent runs 5,000 times
LAN connection 1000 MByte ethernet
AspectJ version 1.6.12

Adding Secure Communication Mechanism 7

Table 2 shows the composing a message and sending it to a Remote Object via
Java RMI with and without AOP. Undoubtedly, adding these aspects slightly
decreases the performance of the system with comparison to adding manually.
Because, while developing these aspects, all exceptional situations are considered
in the aspect codes, which cannot be executed in most of the joinpoints.

AOP is typically used in large scale and complex software development pro-
cesses for meeting the some nonfunctional software requirements like modular-
ization and quality of services. By using AOP, a large-scale distributed system
could easily be converted to a secure communication in a modular way.

5 Conclusion

This paper presents how AOP approach can be used to resolve the tangled secure
communication concern in a distributed system, which is developed with Java-
based communication middleware (Java RMI). AspectJ is used as aspect oriented
platform in a distributed system case study.

The communication related codes in distributed systems are spread across and
are tangled into different classes or methods in the implementation phase.
Therefore, it is difficult to modularize this concern in a separate functional module
with Object Oriented Programming paradigm. Besides this, adding security con-
cept to this tangled code structure is a challenging task. This type of spread codes
and crosscutting concerns can be encapsulated into a modular unit, called as
aspects, by using AOP. After that, secure communication can be enabled by
modifying these aspects.

Secure communication aspects are weaved with java byte code without
changing the original main application code. Advice codes of encryption and
decryption mechanisms are applied in execution flow of the main program at join
points when a match occurred with specified signature of aspects’ pointcuts.

The main advantage of updating a distributed system with AOP approach is that
there is no need to change the codes in the software. By this way, system security
mechanism is modularly grouped in units/aspects also. If system developers want
to change the security mechanism of this upgraded system, the only thing they
need to do, is updating the necessary codes in these aspects.

Table 2 Performance
comparison

Remote message
sending time

Without aspects
(ms)

With aspects
(ms)a

Minimum 0.681 1.329
Maximum 1.269 24.491
Average 0.882 1.974

a Encryption time should be added to this time. It differs
according to using encryption algorithm

8 O. K. Sahingoz

At the same time, this paper shows separation of security concerns in a dis-
tributed application, which is one of the main non-functional requirements of a
good software engineering approach. By this approach, some software quality
factors like understandability, readability and modularity are also increased.

References

1. Yang, F., Aotani, T., Masuhara, H., Nielson, F., Nielson, H.R.: Combining static analysis and
runtime checking in security aspects for distributed tuple spaces. In: Proceedings of the 13th
_International Conference on Coordination Models and Languages (COORDINATION’11),
Reykjavik, Iceland, pp. 202–218 (2011)

2. Stevenson, A., MacDonald, S.: Smart proxies in Java RMI with dynamic aspect-oriented
programming. In: IEEE International Symposium on Parallel and Distributed Processing-
IPDPS 2008, pp. 1–6 (2008)

3. Bostrom, G.: Database Encryption as an Aspect. In: Proceedings of the Workshop on AOSD
Technology for Application-level Security, UK (2004)

4. Kotrappa, S., Kulkarni, P.J.: Multilevel security using Aspect oriented programming AspectJ.
In: International Conference on Advances in Recent Technologies in Communication and
Computing (ARTCom), pp. 369–373 (2010)

5. Yang, F., Masuharab, H., Aotanib, T., Nielsona, F., Nielsona, H.R.: AspectKE*: Security
Aspects with Program Analysis for Distributed Systems. In: Demonstration Track of the 9th
International Conference on Aspect-Oriented Software Development (AOSD’10), Rennes and
Saint Malo, France (2010)

6. Sahingoz, O.K.: Secure communication with aspect Oriented approach in distributed system
programming. In: Academic IT Conference 2012—Usak, Turkey. 1–3 Feb 2012 (in Turkish)

7. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.:
Aspect-oriented programming. In: Proceedings of the 11th European Conference on Object-
Oriented Programming, pp 220—242 (1997)

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview of
AspectJ, in ECOOP 2001—Object-Oriented Programming 15th European Conference,
pp. 327–353. Budapest Hungary, Springer (2001)

9. Toledo, R., Nunez, A., Tanter, E., Noye, J.: Aspectizing Java access control. IEEE Trans.
Softw. Eng. 38(1), 101–117 (2012)

Adding Secure Communication Mechanism 9

	1 Adding Secure Communication Mechanism to Existing Distributed Applications by means of AOP
	Abstract
	1…Introduction
	2…Background
	2.1 Aspect Oriented Programming
	2.2 Java RMI

	3…System Design
	4…Performance Evaluation
	5…Conclusion
	References

