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ON ALGORITHM AND ROBUSTNESS

IN A NON-STANDARD SENSE

ABSTRACT

In this paper, we investigate the invariance properties, i.e. robustness, of phenom-
ena related to the notions of algorithm, finite procedure and explicit construction.
First of all, we provide two examples of objects for which small changes com-
pletely change their (non)computational behavior. We then isolate robust phenom-
ena in two disciplines related to computability.

1. INTRODUCTION

The object -or better concept- of study in Computer Science is unsurprisingly com-
putation. The notions of algorithm, finite procedure and explicit computation are
central. The present paper investigates the robustness of these notions, i.e. we are
interested in phenomena regarding computation which are reasonably stable un-
der variations of parameters. Let us first consider two illuminating examples of
non-robust phenomena in Computer Science.

Example 1. Recently1 the following remarkable mathematical object was devel-
oped: a pair of computable2 random variables (X,Y ) for which the conditional
distribution P [Y ∣X] is non-computable??, as it codes the Halting Problem??. Let
CAM be the statement that such (X,Y ) exists. Before trotting out all sorts of
indispensability claims based on CAM, one should bear in mind that the condi-
tional distribution P [Y ∣X] becomes computable again3, after the addition to Y of
some kind of generic noise E. Let CAME be the statement that P [Y + E,X]
is computable, for computable (X,Y ) and generic noise E. Evidently, we may
see CAME as a variation of CAM involving an error parameter. However, the
(non)computational content of CAM is completely different from that of CAME .
Indeed, the addition of the noise E dramatically changes the non-computability of
P [Y,X], and hence the computational content of CAME , compared to CAM. In
short, the computational behavior of P [Y ∣X] is sensitive to minor perturbations
and CAM is non-robust with regard to the addition of error parameters.

1 See (Freer et al. 2011).
2 The words in italics have precise technical definitions to be found in e.g. (Soare 1987).
3 This explains why, in any real-world scenario invariably involving noise, the non-

computability of P [Y ∣X] never manifests itself.
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Example 2. In Constructive Analysis4, the notion of finite procedure is central.
An object only exists after it has been constructed (in finitely many steps). The
following is a well-known negative result of the constructive school: Given a uni-
formly continuous function on [0,1] such that f (1) < 0 and f (0) > 0, we cannot
in general construct x0 ∈ [0,1] such that f (x0) = 0. In other words, the interme-
diate value theorem, INT for short, cannot be proved in Constructive Analysis. By
contrast, we have the following positive result, called INTE: Given ε ∈ R and given
a uniformly continuous function on [0,1] such that f (1) < 0 and f (0) > 0, we
can construct x0 such that ∣f (x0)∣ < ε. Again, we may see INTE as a variation of
INT involving an error parameter. Analogous to the previous example, the compu-
tational behavior of the intermediate value is sensitive to minor perturbations: the
addition of an error term makes the former computable (in the sense of Construc-
tive Analysis). In other words, INT also exhibits computational non-robustness
with regard to the addition of error parameters.

The previous examples provide phenomena regarding computation that are
destroyed by a minor variation. In this paper, we intend to identify phenomena
regarding computation that are not affected by certain variations (like perturbation
of parameters). In other words, we are looking for robust behavior in topics related
to Computer Science. The importance of robustness cannot be overestimated, as
our scientific models of reality are only approximations and tend to incorporate
imprecise assumptions, often for valid reasons such as workability, elegance or
simplicity. Thus, if a phenomenonX occurs in a robust model, we are reasonably
certain that X cannot be ascribed to an artifact of the model, but corresponds to a
real-world phenomenonX′.

A similar point has been made in the past by Ian Hacking and Wesley Salmon.
In particular, the numerous independent ways of deriving Avogadro’s constant
(with negligible errors) are taken by Hacking and Salmon to be sufficient evi-
dence for the real-world existence of molecules and atoms.5 Another example from
Hacking is concerned with the photo-electric effect.

The simple inference argument says it would be an absolute miracle if for example the
photoelectric effect went on working while there were no photons. The explanation of the
persistence of this phenomenon [. . . ] is that photons do exist. As J. J. C. Smart expresses
the idea: ‘One would have to suppose that there were innumerable lucky accidents about the
behavior mentioned in the observational vocabulary, so that they behaved miraculously as if
they were brought about by the non-existent things ostensibly talked about in the theoretical
vocabulary.’ The realist then infers that photons are real [. . . ] (Hacking 1983, pp. 54-55).

In general, numerous independent derivations of the same phenomenon make
it implausible that the latter is an artifact of a particular framework or modeling

4 See (Bishop 1967) and (Bridges and Vı̂ţă 2006).
5 See (Hacking1983, pp. 54-55), (Salmon 1984, pp. 214-220) and (Salmon 1998, pp.

87-88).
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assumption, i.e. the phenomenon in question is about something real6. Hence,
by seeking out the robust phenomena involving computation, we may get a better
understanding of the real core of computation, while at the same time develop a
better theory of what exactly constitutes robustness.

We begin our search in two disciplines related to computability, Reverse Math-
ematics and Constructive Analysis, both introduced below. First, in Section 2, we
study the invariance properties present in Reverse Mathematics, a discipline inti-
mately connected to computability. Secondly, we do the same for Errett Bishop’s
constructive notion of algorithm from Constructive Analysis in Section 3.

2. REVERSE MATHEMATICS

In this section, we identify certain invariance properties in Reverse Mathemat-
ics. The latter is closely related to Recursion Theory, a classical framework for
studying (non)computability. A central object in Recursion Theory is the Turing
machine7, introduced next.

2.1. Alan Turing’s machine and Recursion Theory

In 1928, the famous mathematician David Hilbert posed the Entscheidungsprob-
lem. In modern language, the Entscheidungsproblem (or ‘decision problem’) asks
for no less than the construction of an algorithm that decides the truth or falsity
of a mathematical statement. In other words, such an algorithm takes as input a
mathematical statement (in a suitable formal language) and outputs ‘true’ or ‘false’
after a finite period of time.

Before the Entscheidungsproblem could be solved, a formal definition of al-
gorithm was necessary. Both Alonzo Church and Alan Turing provided such a
formalism,7 being the λ-calculus and the Turing machine, respectively. Church
showed that, if the notion algorithm is formalized using the λ-calculus, then the
construction required to solve the Entscheidungsproblem is impossible. Indepen-
dently, Turing showed that the Entscheidungsproblem can be reduced to the Halt-
ing Problem, which is known to have no algorithmic solution, assuming ‘algo-
rithm’ is identified with ‘computation on a Turing Machine’. In time, it was shown
that both formalisms, though quite different in nature, enable the computation of
the same class of functions, now called the recursive functions. The latter class
was intended to formalize the notion of recursion, later giving rise to Recursion
Theory.

6 In light of Examples 1 and 2, we may rest assured that intermediate values and con-
ditional probabilities will always be computable in practice, as actual computational
practice suggests.

7 See (Church 1936) and (Turing 1937). Intuitively, a Turing machine is an idealized
computer with no limits on storage and meomory.
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Because of the correspondence between these three formalisms, it is generally
accepted that we should identify the (informal and vague) class of algorithmically
computable functions with the class of function computable by a Turing machine.
This identification hypothesis is called the Church-Turing thesis. However, as sug-
gested by Example 1, not all computability phenomena are robust. In the next
section, we identify a phenomenon in Reverse Mathematics which is.

2.2. Reverse Mathematics and robustness

Reverse Mathematics is a program in the Foundations of Mathematics founded8 in
the Seventies by Harvey Friedman. Stephen Simpson’s famous monograph Sub-
systems of Second-order Arithmetic is the standard reference.9 The goal of Reverse
Mathematics is to determine the minimal axiom system necessary to prove a partic-
ular theorem of ordinary mathematics. Classifying theorems according to logical
strength reveals the following striking phenomenon.9

It turns out that, in many particular cases, if a mathematical theorem is proved from ap-
propriately weak set existence axioms, then the axioms will be logically equivalent to the
theorem.

This phenomenon is dubbed the ‘Main theme’ of Reverse Mathematics. A
good instance of the latter may be found in the Reverse Mathematics of WKL0

10.
An example of the Main Theme is that the logical principle WKL is equivalent
to Peano’s existence theorems for ordinary differential equations y′ = f (x, y),
the equivalence being provable in RCA0. Some explanation might be in order:
the system RCA0 may be viewed as the logical formalization of the notion Turing
machine, which in turn formalizes the notion of algorithm.11 The principle WKL
(or Weak König’s Lemma) states the existence of certain non-computable objects.12

We now consider the system13 ERNA which has no a priori connection to
RCA0, or Reverse Mathematics, or computability14. We will show that a version
of the Main Theme of Reverse Mathematics is also valid in ERNA, but with the
predicate ‘=’ replaced by ‘≈’, i.e. equality up to infinitesimals from Nonstandard

8 See (Friedman 1975; 1976).
9 See (Simpson 2009) for an introduction to Reverse Mathematics and p. xiv for the

quote.
10 See (Simpson 2009, Theorem I.10.3).
11 Thus, Reverse Mathematics is intimately tied to Recursion Theory and computability.
12 In particular, Weak König’s Lemma states the existence of an infinite path through an

infinite binary tree. Even for computable infinite binary trees, the infinite path need not
be computable. In other words, WKL is false for the recursive/computable sets. See
(Simpson 2009).

13 See (Sanders 2011) for an introduction to ERNA and a proof of Theorem 3.
14 In particular, ERNA was introduced around 1995 by Sommer and Suppes to formalize

mathematics in physics. See (Sommer and Suppes 1996; 1997).
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Analysis.15 Indeed, the following theorem contains several statements, translated
from (Simpson 2009, IV) into ERNA’s language, while preserving equivalence.

Theorem 3 (Reverse Mathematics for ERNA +�1-TRANS). The theory ERNA
proves the equivalence between �1-TRANS and each of the following theorems
concerning near-standard functions:

1. Every S-continuous function on [0,1] is bounded.

2. Every S-continuous function on [0,1] is continuous there.

3. Every S-continuous function on [0,1] is Riemann integrable16.

4. Weierstrass’ theorem: every S-continuous function on [0,1] has, or attains
a supremum, up to infinitesimals.

5. The strong Brouwer fixed point theorem: every S-continuous function φ ∶
[0,1] → [0,1] has a fixed point up to infinitesimals of arbitrary depth.

6. The first fundamental theorem of calculus: ( ∫
x

0 f (t)dt)
′

≈ f (x).

7. The Peano existence theorem for differential equations y′ ≈ f (x, y).

8. The Cauchy completeness, up to infinitesimals, of ERNA’s field.

9. Every S-continuous function on [0,1] has a modulus of uniform continuity.

10. The Weierstrass approximation theorem.

A common feature of the items in the previous theorem is that strict equality
has been replaced with ≈, i.e. equality up to infinitesimals. This seems the price to
be paid for ‘pushing down’ into ERNA the theorems equivalent to Weak König’s
lemma. For instance, item (7) from Theorem 3 guarantees the existence of a func-
tion φ(x) such that φ′(x) ≈ f (x,φ(x)), i.e. a solution, up to infinitesimals, of the
differential equation y′ = f (x, y). However, in general, there is no function ψ(x)
such that ψ ′(x) = f (x,ψ(x)) in ERNA +�1-TRANS. In this way, we say that
the Reverse Mathematics of ERNA +�1-TRANS is a copy up to infinitesimals of
the Reverse Mathematics of WKL0, suggesting the following general principle17.

Principle 4. Let T (=) be a theorem of ordinary mathematics, involving equality.
If RCA0 proves T (=) ⇔WKL, then ERNA proves T (≈) ⇔�1-TRANS.

Furthermore, there are more results of this nature. In a forthcoming paper, we
show examples of the following general principle18.

15 For an introduction to Nonstandard Analysis, we refer to (Kanovei and Reeken 2004).
16 In ERNA, the Riemann integral is only defined up to infinitesimals.
17 A similar (and equally valid) principle is If RCA0 ⊢ T (=), then ERNA ⊢ T (≈).
18 A similar principle is If RCA0 ⊢ T (=), then ERNA +�2-TRANS ⊢ T (≋).
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Principle 5. Let T (=) be a theorem of ordinary mathematics, involving equal-
ity. If RCA0 proves T (=) ⇔ WKL, then ERNA +�2-TRANS proves T (≋) ⇔
�3-TRANS.

Here, the predicate ‘≋’ is best described as ‘equality up to arbitrarily small
infinitesimals’. At least two more variations19 are possible and in each instance,
we obtain a similar principle concerning equivalences.

We conclude that the equivalences proved in Reverse Mathematics display a
certain degree of robust behavior: First of all, we observe similar series of equiv-
alences in different frameworks. In other words, the equivalences observed in
classical Reverse Mathematics are not an artifact of the framework, as they oc-
cur elsewhere in similar forms. Secondly, the equivalences in classical Reverse
Mathematics remain valid when we consider different error predicates, i.e. replace
equality by ‘≈’ or ‘≋’. Thus, small perturbations in the form of error predicates do
not destroy the observed equivalences.

3. REUNITING THE ANTIPODES

In this section20, we show that the notion of algorithm in Constructive Analysis is
endowed with a degree of robustness. This is achieved indirectly by defining a new
notion called ‘�-invariance’ inside Nonstandard Analysis, and showing that it is
close to the constructive notion of algorithm, as it gives rise to the same kind of Re-
verse Mathematics results. In other words, there are two different notions of finite
procedure, i.e. the constructive notion of algorithm and �-invariance, which both
give rise to the same kind of equivalences in (Constructive) Reverse Mathematics.
Again, we observe that the latter are not affected by some change of framework.

3.1. The notion of finite procedure in Nonstandard Analysis

Here, we define �-invariance, a central notion, inside (classical) Nonstandard
Analysis. We show that �-invariance is quite close to the notion of finite pro-
cedure.

With regard to notation, we take N = {0,1,2, . . .} to denote the set of natural
numbers, which is extended to ∗N = {0,1,2, . . . ,ω,ω + 1, . . . }, the set of hyper-
natural numbers, with ω /∈ N. The set � = ∗N∖N consists of the infinite numbers,
whereas the natural numbers are finite. Finally, a formula is bounded or ‘	0’, if all
the quantifiers are bounded by terms and no infinite numbers occur.

19 The first one is the removing of parameters in �1-TRANS and the second one is the
assumption of a greatest relevant infinite element.

20 The title of this section is explained in Remark 16 below. The italicized concepts are
introduced in Section 3.2.
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Definition 6 (�-invariance). Let ψ(n,m) be 	0 and fix ω ∈ �.
The formula ψ(n,ω) is �-invariant if

(∀n ∈ N)(∀ω′ ∈ �)(ψ(n,ω) ↔ ψ(n,ω′)). (1)

For f ∶ N ×N→ N, the function f (n,ω) is called �-invariant, if

(∀n ∈ N)(∀ω′ ∈ �)(f (n,ω) = f (n,ω′)). (2)

Now, any object ϕ(ω) defined using an infinite number ω is potentially non-
computable, as infinite numbers can code (non-recursive) sets of natural numbers.21

Hence, it is not clear how an �-invariant object might be computable or construc-
tive in any sense. However, although an �-invariant object clearly involves an
infinite number, the object does not depend on the choice of the infinite number,
by definition. Furthermore, by the following theorem, the truth value of ψ(n,ω)
and the value of f (n,ω) is already determined at some finite number.

Theorem 7 (Modulus lemma). For every �-invariant formula ψ(n,ω),

(∀n ∈ N)(∃m0 ∈ N)(∀m,m
′ ∈ ∗N)[m,m′ ≥ m0 → ψ(n,m) ↔ ψ(n,m′)].

For every �-invariant function f (n,ω), we have

(∀n ∈ N)(∃m0 ∈ N)(∀m,m
′ ∈ ∗N)[m,m′ ≥ m0 → f (n,m) = f (n,m

′)].

In each case, the numberm0 is computed by an �-invariant function.

Proof. Although the proof of this lemma is outside of the scope of this paper, it is
worth mentioning that it makes essential use of the fact that an �-invariant object
does not depend on the choice of infinite number.

The previous theorem is called ‘modulus lemma’ as it bears a resemblance
to the modulus lemma from Recursion Theory.22 Intuitively, our modulus lemma
states that the properties of an �-invariant object are already determined at some
finite number. This observation suggests that the notion of �-invariance models
the notion of finite procedure quite well.

Another way of interpreting�-invariance is as follows: central to any version
of constructivism is that there are basic objects (e.g. the natural numbers) and there
are certain basic operations on these objects (e.g. recursive functions or construc-
tive algorithms). All other objects are non-basic (aka ‘non-constructive’ or ‘ideal’),
and are to be avoided, as they fall outside the constructive world. It goes without
saying that infinite numbers in ∗N are ideals objects par excellence. Nonetheless,
our modulus lemma suggests that if an object does not depend on the choice of
ideal element in its definition, it is not ideal, but actually basic. This is the idea
behind �-invariance: ideal objects can be basic if their definition does not really

21 See (Kreisler 2006).
22 See (Soare 1987, Lemma 3.2.)
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depend on the choice of any particular ideal element. In this way,�-invariance ap-
proaches the notion of finite procedure from above, while the usual methods work
from the ground up by defining a set of basic constructive operations and a method
for combining/iterating these.

We now consider two examples of �-invariant objects.

Remark 8. First of all, assume we have (∃n ∈ N)ϕ(n), with ϕ ∈ 	0. Then the
function23 (μn ≤ ω)ϕ(n) is �-invariant. Hence, there is an �-invariant function
providing a witness n0 for ϕ(n0) (Compare item (5) in Definition 10).

Secondly, we show that a 	1-formula is �-invariant. To this end, assume
ψ ∈ 	1, i.e. for some ϕ1, ϕ2 ∈ 	0, we have that

ψ(m) ↔ (∃n1 ∈ N)ϕ1(n1,m) ↔ (∀n2 ∈ N)ϕ2(n2,m), (3)

for all m ∈ N. Now fix some ω′ ∈ �. Let pψ(m) be the least n1 ≤ ω
′ such that

ϕ1(n1,m), if such exists and ω′ otherwise. Let qψ(m) be the least n2 ≤ ω
′ such

that ¬ϕ2(n2,m) if such exists and ω′ otherwise. For m ∈ N, if ψ(m) holds, then
pψ(m) is finite and qψ(m) is infinite. In particular, we have pψ(m) < qψ(m).
Now suppose there is some m0 ∈ N such that pψ(m0) < qψ(m0) and ¬ψ(m0).
By (3), we have (∀n1 ∈ N)¬ϕ1(n1,m0) and, by definition, the number pψ(m)
must be infinite. Similarly, the number qψ(m0) must be finite. However, this
implies pψ(m0) ≥ qψ(m0), which yields a contradiction. Thus, we have ψ(m) ↔
pψ(m) < qψ(m), for all m ∈ N. It is clear that we obtain the same result for a
different choice of ω′ ∈ �, implying that ψ is �-invariant.

Care should be taken to choose the right axiom system to formalize the above
informal derivation. Indeed, in certain axiom systems, not all 	1-formulas are
�-invariant.

Finally, we consider the transfer principle from Nonstandard Analysis.

Principle 9. For all ϕ in 	0, we have

(∀n ∈ N)ϕ(n) → (∀n ∈ ∗N)ϕ(n). (4)

The previous principle is called ‘�1-TRANS’ or ‘�1-transfer’. Note that�1-
transfer expresses that N and ∗N have the same properties. In other words, the
properties of N are transferred to ∗N. In what follows, we do not assume that this
principle is given.

3.2. Constructive Analysis and Constructive Reverse Mathematics

In this section, we sketch an overview of the discipline Constructive Reverse Math-
ematics (CRM). In order to describe CRM, we first need to briefly consider Errett
Bishop’s Constructive Analysis.

23 The function (μk ≤ m)ψ(k) computes the least k ≤ m such that ψ(k), for ψ in 	0. It
is available in most logical systems.
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Inspired by L. E. J. Brouwer’s famous foundational program of intuitionism,24

Bishop initiated the redevelopment of classical mathematics with an emphasis on
algorithmic and computational results. In his famous monograph24 Foundations
of Constructive Analysis, he lays the groundwork for this enterprise. In honour
of Bishop, the informal system of Constructive Analysis is now called ‘BISH’. In
time, it became clear to the practitioners of Constructive Analysis that intuitionistic
logic provides a suitable formalization25 for BISH.

Definition 10 (Connectives in BISH).

1. The disjunction P ∨Q: we have an algorithm that outputs either P or Q,
together with a proof of the chosen disjunct.

2. The conjunction P ∧Q: we have a proof of P and of Q.

3. The implicationP →Q: by means of an algorithm we can convert any proof
of P into a proof of Q.

4. The negation¬P : assumingP , we can derive a contradiction (such as 0 = 1);
equivalently, we can prove P → (0 = 1).

5. The formula (∃x)P (x): we have (i) an algorithm that computes a certain
object x, and (ii) an algorithm that, using the information supplied by the
application of algorithm (i), demonstrates that P (x) holds.

6. The formula (∀x ∈ A)P (x): we have an algorithm that, applied to an object
x and a proof that x ∈ A, demonstrates that P (x) holds.

Having sketched Bishop’s Constructive Analysis, we now introduce Construc-
tive Reverse Mathematics. In effect, Constructive Reverse Mathematics (CRM) is
a spin-off from the Reverse Mathematics program introduced in Section 3.2. In
CRM, the base theory is (inspired by) BISH and the aim is to find the minimal
axioms that prove a certain non-constructive theorem. As in Friedman-Simpson
style Reverse Mathematics, we also observe many equivalences between theorems
and the associated minimal axioms.

We now provide two important CRM results.26 First of all, we consider the
limited principle of omniscience (LPO).

Theorem 11. In BISH, the following are equivalent.

1. LPO: P ∨ ¬P (P ∈ �1).

2. LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0)).

3. MCT: (The monotone convergence theorem) Every monotone bounded se-
quence of real numbers converges to a limit.

24 See (van Heijenoort 1967) and (Bishop 1967).
25 See (Bridges 1999, p. 96) and (Richman 1990).
26 These results are taken from (Ishihara 2006).
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4. CIT: (The Cantor intersection theorem).

For MCT (resp. CIT), an algorithm computes the limit (resp. real in the inter-
section). Next, we list some equivalences of LLPO, the lesser limited principle of
omniscience. Note that LLPO is an instance of De Morgan’s law.

Theorem 12. In BISH, the following are equivalent.

1. LLPO: ¬(P ∧Q) → ¬P ∨ ¬Q (P,Q ∈ �1).

2. LLPR: (∀x ∈ R)[¬(x > 0) ∨ ¬(x < 0)].

3. NIL: (∀x, y ∈ R)(xy = 0→ x = 0 ∨ y = 0).

4. CLO: For all x, y ∈ R with ¬(x < y), {x, y} is a closed set.

5. IVT: a version of the intermediate value theorem.

6. WEI: a version of the Weierstraß extremum theorem.

For IVT (resp. WEI), an algorithm computes the interm. value (resp. max.).
It should be noted that any result proved in BISH is compatible27 with classi-

cal, intuitionistic and recursive mathematics.

3.3. Reverse-engineering Reverse Mathematics

In this section, we sketch a translation28 of results from Constructive Reverse
Mathematics to Nonstandard Analysis. We translate28 Bishop’s primitive notion
of algorithm and finite procedure as the notion of �-invariance in Nonstandard
Analysis. Following Definition 10, the intuitionistic disjunction translates28 to the
following in Nonstandard Analysis.

Definition 13. [Hyperdisjunction] For formulas ϕ1 and ϕ2, the formula ϕ1(n)

Vϕ2(n) is the statement: There is an �-invariant formula ψ such that

(∀n ∈ N)(ψ(n,ω) → ϕ1(n) ∧ ¬ψ(n,ω) → ϕ2(n). (5)

Note that ϕ1(n)Vϕ2(n) indeed implies ϕ1(n) ∨ ϕ2(n). Furthermore,
given the formula ϕ1(n)Vϕ2(n), there is an �-invariant procedure (provided by
ψ(n,ω)) to determine which disjunct of ϕ1(n)∨ϕ2(n)makes it true. Thus, we ob-
serve that the meaning of the hyperdisjunction ‘V’ is quite close to its intuitionistic
counterpart ‘∨’ from Definition 10.

The other intuitionistic connectives may be translated analogously. The trans-
lation of→ (resp. ¬) will be denoted⇛ (resp. ∼). As for disjunction, the meaning

27 See (Bishop 1967) or (Ishihara 2006).
28 Note that we use the word ‘translation’ informally: The definition of V is inspired by

the intuitionistic disjunction, but that is the only connection.
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of the intuitionistic connectives is quite close to that of the hyperconnectives. Fur-
thermore, as suggested by the following theorems, the equivalences from CRM
remain valid after the translation. In particular, we have the following theorems, to
be compared to Theorems 11 and 12.

Theorem 14. In Nonstandard Analysis, the following are equivalent.

1. �1-TRANS.

2. LPO: P V∼P (P ∈ �1).

3. LPR: (∀x ∈ R)(x > 0V∼(x > 0)).

4. MCT: (The monotone convergence theorem) Every monotone bounded se-
quence of real numbers converges to a limit.

5. CIT: (The Cantor intersection theorem).

Analogous to the context of CRM, in MCT (resp. CIT), the limit (resp. real
in the intersection) is computed by an �-invariant function.

Theorem 15. In NSA, the following are equivalent.

1. LLPO: ∼(P ∧Q) ⇛ ∼P V∼Q (P,Q ∈ �1).

2. LLPR: (∀x ∈ R)[∼(x > 0)V∼(x < 0)].

3. NIL: (∀x, y ∈ R)(xy = 0⇛ x = 0Vy = 0).

4. CLO: For all x, y ∈ R with ∼(x < y), {x, y} is a closed set.

5. IVT: a version of the intermediate value theorem.

6. WEI: a version of the Weierstraß extremum theorem.

Analogous to the context of CRM, in IVT (resp. WEI), the intermediate value
(resp. maximum) is computed by an �-invariant function.

The previous theorems only constitute an example of a general theme. In
particular, it is possible to translate most29 theorems (and corresponding equiva-
lences) from CRM to Nonstandard Analysis in the same way as above. Comparing
Theorems 11 and 12 to Theorems 14 and 15, we conclude that the equivalences
observed in CRM remain intact after changing the underlying framework (based
on algorithm and intuitionistic logic, by Definition 10) to Nonstandard Analysis
(based on �-invariance and the hyperconnectives, by Definition 13). Hence, we
observe the robustness phenomenon described at the beginning of this section.

In conclusion, we discuss just how far the analogy between Constructive Anal-
ysis and Nonstandard Analysis takes us. For instance, on the level of intuition, the

29 See (Sanders 2012) for a list of thirty translated theorems.
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formula ¬(x ≤ 0) does not imply x > 0, as the former expresses that it is impossi-
ble that x ∈ R is below zero (but might still be very close to zero), while the latter
expresses that x is bounded away from zero by some rational q we may construct.
In Nonstandard Analysis, ∼(x ≤ 0) only states that for some (possible infinite)
k ∈ ∗N, we have 0 < 1

k
< x. Hence, ∼(x ≤ 0) is consistent with x ≈ 0, while

x > 0 has the same interpretation as in BISH. Thus, we observe a correspondence
between the latter and Nonstandard Analysis, even on the level of intuitions. A
similar conclusion follows from comparing the meaning of IVT and IVT, as is
done after Theorem 15.

Secondly, another interesting correspondence is provided by the equivalence
between items (1) and (2) in Theorem 12. Indeed, to prove this equivalence, one re-
quires the axiom ¬(x > 0∧x < 0) of the constructive continuum.30 As it turns out,
to establish the equivalence between items (1) and (2) in Theorem 15, the formula
∼(x > 0 ∧ x < 0) is needed in Nonstandard Analysis. Hence, the correspondence
between BISH and the latter goes deeper than merely superficial resemblance.

Thirdly, we discuss the above result in the light of the so-called Brouwer-
Heyting-Kolmogorov (BHK) interpretation, given by Definition 10. While the
equivalences in Theorems 14 and 15 are proved in classical logic, they carry a
lot more information. For instance, to show that LPR implies LPO, a formula
ψ(x⃗, n,ω) is defined29 such that ψ(x⃗, ⌜ψ1⌝,ω) is an �-invariant formula which
decides between P and ∼P (P ∈ �1), for every �-invariant formula ψ1(x⃗,ω)
which decides between x > 0 and ∼(x > 0). Hence, we do not only have LPR →
LPO, but also an implication akin to the BHK interpretation, i.e. that an �-
invariant decision procedure is converted, by an �-invariant procedure, to another
�-invariant decision procedure.

We finish this section with the following remark.

Remark 16 (Reuniting the antipodes). The title of this section refers to a con-
ference with the same name held in 1999 in Venice. Following Bishop’s strong
criticism31 of Nonstandard Analysis, this conference was part of a reconcilia-
tory attempts between the communities of Nonstandard Analysis and Constructive
Analysis. Little work32 has indeed taken place in the intersection of these disci-
plines, but Theorems 14 and 15 can be interpreted as an attempt at reuniting the
antipodes that are Nonstandard and Constructive Analysis. Nonetheless, it has
been noted in the past33 that Nonstandard Analysis has a constructive dimension.
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