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         Introduction 

 In response to falling high school    graduation rates and concerns about college readi-
ness and workforce development over the past decade, 20 states have increased high 
school graduation requirements. While these requirements vary across states, most 
mandate that students complete 4 years of math and English coursework in order to 
graduate (Achieve,  2011  ) . 

 Michigan is one example of a state implementing curricular changes in favor of 
more demanding coursework for high school students. In 2006, legislators imple-
mented a statewide college preparatory high school curriculum—the Michigan 
Merit Curriculum (MMC), one of the most comprehensive sets of high school 
graduation requirements in the nation. The new courses required in order to gradu-
ate are intensive and speci fi c: Algebra II, Geometry, Biology, and Chemistry or 
Physics and at least 2 years of a foreign language (Michigan Department of 
Education,  2006  ) . 

 The curriculum’s focus on math and science is based on historically low enroll-
ments in the state in advanced courses in these areas. Prior to the implementation of 
the MMC, only one-third of Michigan’s school districts required students to take 4 
years of math. As such, only 1 out of 8 students took Algebra II, instead favoring 
less intensive math courses, or no math courses at all (Michigan Department of 
Education,  2006  ) . 

 There is an ample body of research that supports states’ decisions to make these 
curricular changes and to support an emphasis on math coursework to meet goals 
related to college and workforce readiness. Research demonstrates that students 
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who take and succeed in intensive math courses have an increased likelihood of 
attending college and have improved long-term labor market outcomes (Adelman, 
 1999 ; Goodman,  2008 ; Levine & Zimmerman,  1995 ; Rose & Betts,  2004 ; Sadler & 
Tai,  2007 ; Sells,  1973 ; Simpkins, Davis-Kean, & Eccles,  2006  ) . 

 One of the most powerful levers driving these changes to high school curricula in 
Michigan and throughout the nation is  Answers in the Toolbox  and  The Toolbox 
Revisited , publications of the United States Department of Education that assert that 
students who take more intensive math courses, particularly those who take Algebra II 
or higher, are more likely than their peers who take less intensive math courses to attend 
a college or university and to attain a degree. The discussion surrounding these publica-
tions served as an inspiration for a number of states to begin adopting more intensive 
graduation requirements, particularly related to math preparation (Adelman,  2006  ) . 

 It is important to note that the majority of the literature on which the curricular 
reforms in Michigan and around the nation were based is correlational in nature. 
The relationship between intensive math courses (e.g., Algebra II) and postsecond-
ary access and completion maybe in fl uenced by many other factors that are not 
accounted for in the studies touting the merits of students completing challenging 
math courses. We will provide an example of the in fl uence of other factors in the 
case of Grace and Adam below. 

 Consider Grace and Adam, two high school students in Michigan. Prior to the 
implementation of the MMC, Grace chose to take Algebra II, whereas Adam did 
not. Grace, a straight A student, was recommended for the course by her guidance 
counselor, whereas Adam’s teachers suggested that he may be better suited for a 
lower-level math course. Grace and Adam have different abilities and motivations, 
and, as such, the highest level math course they choose to take differs. 

 The methodological issue in the case of Grace and Adam, as well as with some 
of the studies mentioned above, is one of self-selection. Students like Grace, who 
chose to take a more intensive math course, are quite likely different than students 
like Adam, who chose to take a less demanding course. Students like Grace may 
possess greater academic abilities or may be more motivated to take challenging 
courses than their peers like Adam. As such, studies that do not account for these 
differences in student characteristics are making comparisons between groups of 
students that are not comparable. It is problematic, therefore, when the  fi ndings of 
studies that do not consider these differences in student characteristics are used to 
drive education policymaking. 

 The highest level of math that students like Grace and Adam choose to take 
(Algebra II for the former, something less intensive, like Consumer Math, for the 
latter) may be related to whether or not they complete college following their gradu-
ation from high school. Or, stated differently, the factors that drive them to take a 
challenging or less challenging math course may also in fl uence college outcomes. 
However, it is dif fi cult to state, given the differences in Grace’s and Adam’s aca-
demic characteristics and motivation, that the highest math course they took  caused  
them to complete college or not. To better determine if a causal relationship exists 
between a student’s highest math course in high school and college completion, 
education researchers can employ a number of statistical methods to investigate the 
variation in an outcome (college completion) that is  caused  by a particular program 
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or policy—in this case, taking an intensive math course in high school. To be clear, 
we are interested in determining a causal effect (rather than a simple association) so 
that policies related to the outcome of interest are made appropriately and ef fi ciently, 
such that resources are not wasted on a program or intervention that may not have 
the intended results. 

 To investigate the causal impacts of educational interventions and policies on 
student outcomes, many educational researchers have recently begun to employ 
experimental and quasi-experimental methodologies (Abdulkadiroglu, Angrist, 
Dynarski, Kane, & Pathak,  2011 ; Attewell & Domina,  2008 ; Bettinger & Baker, 
 2011 ; Dynarski, Hyman, & Schanzenbach,  2011  ) . In the study presented in this 
chapter, we follow this lead by employing methods that can help us establish whether 
a causal relationship exists between taking Algebra II or higher in high school and 
college completion. 

 Experimental research is considered the “gold standard” of causal analysis 
 (  United States Department of Education, 2008  ) . Performing a random experiment 
would, in theory, be the most effective way to determine the causal effect of taking 
Algebra II on academic outcomes (e.g., high school completion, postsecondary 
attendance and completion, life-course events). For example, students could be 
randomly assigned to take Algebra II or a less intense math course, and their post-
secondary enrollment and completion patterns following graduation could be 
examined to determine the causal impact of Algebra II. Assuming that the random-
ization was done properly, the two groups would be, on average, identical on all 
observable and unobservable outcomes. If so, one could simply compare the rates 
of degree attainment between the treatment (Algebra II) and control (lower-level 
math) groups in order to determine the causal effect of high school course taking 
(   McCall & Bielby,  2012  ) . 

 Experimental research is, however, often dif fi cult or impossible to do in educa-
tional settings because of logistical, cost, and ethical constraints. For example, 
often times educators cannot in good conscience randomly assign students to 
courses that will disadvantage some students. If an administrator suspects, for 
example, that enrolling a student in a small class with an outstanding teacher will 
dramatically improve his learning, how can this administrator support an experi-
ment that will withhold this “treatment” from some students? Randomized trials 
can also be very costly to conduct or dif fi cult to implement in educational settings. 
Given these dif fi culties, researchers have begun to rely on quasi-experimental 
methods, to be explored in greater depth below, to determine the impact of various 
education interventions, including those related to intensive math course taking in 
high school. 

 The objective of this chapter is to provide the reader with an introduction to the 
application of one such technique, instrumental variable (IV) estimation, designed 
to remedy the inferential problem discussed above. We provide the reader with a 
description of relevant literature and conceptual issues, the terminology used when 
discussing IV analyses, and how this method can be applied to educational issues. 
To inform the latter, throughout the chapter, we provide an example of the application 
of IV methods to study whether taking Algebra II in high school has a causal effect 
on college completion.  
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   Conceptual Background 

 Education stakeholders have been concerned about student course taking at the 
secondary level and its potential impact on educational and labor market outcomes 
for decades. In  A Nation at Risk  (National Commission on Excellence in Education, 
 1983  ) , the American high school was famously characterized as providing a “smor-
gasbord” of curricular options that were detrimental to the majority of students, as 
many oversampled the “desserts” (e.g., physical education courses) and left the 
“main course” (e.g., college prep courses) untouched. Since the 1980s, a widespread 
increase in the state- and district-mandated minimum number of core academic 
courses students must complete to graduate has increased the number of units they 
complete in math, science, English, and other nonvocational subjects (Planty, 
Provasnik, & Daniel,  2007  ) . However, the intensity of the coursework that students 
complete within these domains varies considerably. 1  

 Researchers have documented disparities in the highest level of math coursework 
taken between racial/ethnic groups and social classes. Analysis of course taking 
trends in national data indicates that although Black and White students earn the 
same number of math credits in high school, White students are signi fi cantly more 
likely than Black students to have earned these credits in advanced courses such as 
Precalculus or Calculus (Dalton, Ingels, Downing, & Bozick, R,  2007  ) . There are 
also disparities between students from low- and high-socioeconomic (SES) back-
grounds in both the number and type of math credits earned. These statistics suggest 
that access to coursework is distributed through mechanisms that differentially 
impact students from various backgrounds. 

 Two mechanisms may determine student access to high school coursework: 
structural forces and individual choices (Lee, Chow-Hoy, Burkam, Geverdt, & 
Smerdon,  1998  ) . Structural forces are factors outside the student’s control that serve 
to constrain his or her options. These include placement into curricular tracks by 
school personnel or the availability of coursework within their particular school. 
When schools have fewer structural constraints on course options, students are able 
to exercise greater individual choice by choosing their coursework from a menu of 
options that provide credits toward the high school diploma. The following sections 
discuss how structural and individual factors in fl uence the coursework that high 
school students take. 

   1   We use the term  course taking intensity  throughout the chapter to refer to the orientation of the 
courses students take. We use this term to be inclusive of the course taking literature, as researchers 
operationalize course taking in multiple ways. Examples include the highest level of coursework 
or number of Carnegie units taken in a particular subject (e.g., Rose & Betts,  2001  ) ; participating 
in curricular “tracks” (e.g., Fletcher & Zirkle,  2009  ) ; the number of college preparatory courses 
taken such as honors, AP, or IB (e.g., Geiser & Santelices,  2004  ) ; and indices of course taking that 
combine several of the aforementioned measures (e.g., Attewell & Domina,  2008  ) .  



2676 Instrumental Variables: Conceptual Issues…

   Structural Forces 

 Student course taking patterns are strongly in fl uenced by the options available to 
them. Schools may vary in their willingness and ability to offer a range of courses 
that are viewed as solid preparation for college. For instance, analysis of national 
transcript data indicates that Midwestern, small, rural, and predominately White 
high schools are the least likely to offer advanced placement (AP) coursework 
(Planty et al.,  2007  ) . The practice of “tracking” in K-12 education, or the grouping 
of students into curricular pathways based on their perceived academic ability, can 
also serve to constrain student course taking options (Gamoran,  1987  ) . Research on 
how tracking decisions are made by high school staff indicates that placement deci-
sions are largely a function of a student’s position in the distribution of standardized 
test scores, their perceived level of motivation, recommendations from middle 
school teachers, and the availability of school resources (Hallinan,  1994 ; Oakes & 
Guiton,  1995  ) . Also, parent wishes may be accommodated when making track 
placements, although middle- and upper-class parents are likely to have an advan-
tage in advocating for their preferences, as they more often possess the social capital 
needed to navigate bureaucratic educational environments (Useem,  1992  ) . 

 Although formal tracking policies have been abolished in many schools, students 
may continue to experience barriers to unrestricted enrollment in coursework. This 
is often due to disparities in information about course options and uneven enforce-
ment of course prerequisites across racial/ethnic, social class, and ability groups 
(Yonezawa, Wells, & Serna,  2002  ) . Course prerequisites play a signi fi cant role in 
restricting access to math coursework because the courses are typically hierarchi-
cally arranged in a speci fi c sequence (e.g., Algebra I is followed by Algebra II) 
beginning in middle school or even earlier (Schneider, Swanson, & Riegle-Crumb, 
 1998 ; Useem,  1992  ) . Therefore, it should come as no surprise that middle school 
math achievement is one of the most signi fi cant predictors of taking advanced math 
courses in high school (Attewell & Domina,  2008  ) . 

 Disparities in course placement practices and the availability of information 
about course options within schools may partially explain the  fi nding that disad-
vantaged students who attend integrated schools take less intensive coursework 
than their peers who attend segregated schools (Crosnoe,  2009 ; Kelly,  2009  ) . For 
instance, Crosnoe  fi nds that low-income students who attend predominantly middle- 
or high-income schools take lower levels of coursework than low-income students 
who attend predominantly low-income schools. Similarly, Kelly  fi nds that the 
greater the proportion of White students in a school, the lower the representation of 
Black students in the two highest math courses. These results demonstrate that in 
addition to the allocation of access to intensive courses  across  schools, the distribu-
tion of access  within  a school plays a key role in structuring student course taking 
patterns.  
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   Individual Choices 

 Despite formal or de facto tracking, most students have the ability to choose some 
of their high school coursework. Schools are more likely to condone downward 
“track mobility” than upward, allowing students to choose lower-level course-
work than originally assigned (Oakes & Guiton,  1995  ) . Additionally, once mini-
mum graduation requirements are met in each subject, students have the option to 
continue taking advanced coursework if they have demonstrated competency in 
previous courses. Researchers often examine the progress of students through the 
sequence of math courses (the mathematics “pipeline”) to determine the highest 
level of mathematics coursework students are able to take (Burkam & Lee,  2003 ; 
Lee et al.,  1998  ) . National data indicate that a large proportion of students—
44%—choose to drop out of the pipeline at either Algebra I or Algebra II (Dalton 
et al.,  2007  ) . 

 Educational aspirations also play a key role in determining the coursework that 
students pursue. High school freshman and sophomores who report having college 
aspirations are more likely to take advanced math coursework during subsequent 
years than their peers with lower educational aspirations (Bozick & Ingels,  2008 ; 
Frank et al.,  2008  ) . Parent aspirations for their children are important as well. After 
controlling for confounding factors, parent educational expectations signi fi cantly 
predict whether students take advanced mathematics in the senior year of high 
school—a year when many students choose to stop taking advanced mathematics 
(Ma,  2001  ) . Additionally, peers can in fl uence course selection. Frank et al.  fi nd that 
females progress farther in the math pipeline when other females in their “local posi-
tion” (a cluster of students who tend to take the same sets of courses) also advance in 
their math coursework. (Note: Peer effects on course taking may have implications 
for our empirical strategy. We will return to this point later in the chapter) 

 Factors that are beyond the control of students, parents, and educators may also 
in fl uence the intensity of coursework that students choose to take. For instance, 
variations in labor market conditions may modify student postsecondary enrollment 
plans. Students could infer from a strong labor market that ample employment for 
the noncollege educated exists, which may tend to decrease their interest in courses 
that lead to college enrollment. The availability of plentiful and well-paying local 
jobs for young people may also encourage students to take less intensive courses 
that allow more time for working while in high school, thus ensuring higher imme-
diate earnings. Economic research on the impact of increasing the minimum wage 
on high school enrollments indicates that a student’s education decision-making is 
indeed responsive to labor market conditions. For example, the commitment of 
lower-ability and lower-income students to completing a high school diploma 
declines in response to increases in the minimum wage (Ehrenberg & Marcus,  1982 ; 
Neumark & Wascher,  1995  ) . Therefore, it is possible that college preparatory course 
taking and the strength of the local labor market are negatively related. 

 As the prior literature demonstrates, students’ course taking is conditional on 
many factors, including their educational aspirations, parental expectations, school 
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resources, and local labor market conditions. In the next section, we present frameworks 
that offer competing explanations for how student course taking is related to their 
subsequent educational outcomes. We also examine research on the relationship 
between high school course taking and educational attainment and consider 
how research has attempted to isolate the effect of courses from related factors 
(e.g., student characteristics, school context) that may also in fl uence postsecondary 
outcomes. The theoretical frameworks and course taking effects in the literature 
provide justi fi cation for our quasi-experimental approach when examining the 
impact of high school course taking on postsecondary success.  

   Potential Explanations for High School Course Taking Effects 

 Research demonstrates that students who take a more intensive secondary curricu-
lum are more likely to persist through college and earn a degree than students who 
take a less intensive curriculum (Adelman,  1999,   2006 ; Choy,  2001 ; Horn & Kojaku, 
 2001  ) . There are at least two potential explanations for this relationship. The  fi rst 
explanation is that high school courses develop a student’s human capital, providing 
him or her with skills and knowledge to be parlayed into future success (Rose & 
Betts,  2004  ) . For instance, Algebra II may provide students with content knowledge 
that improves their performance in college-level quantitative coursework (Long, 
Iatarola, & Conger,  2009  ) —particularly general education math coursework that is 
required to earn a degree (Rech & Harrington,  2000  ) . In turn, improved academic 
performance could lead students to integrate into college and commit to degree 
attainment (Bean,  1980 ; Tinto,  1975  ) . Human capital development is related to the 
differential coursework hypothesis put forth by Karl Alexander and colleagues, 
which served as the basis for Adelman’s  Toolbox  studies  (  1999,   2006  ) . Alexander 
and colleagues propose that a student’s academic preparation in high school is the 
most salient factor in his or her future educational attainment—much more salient 
than background characteristics such as race, class, and gender (Alexander, Riordan, 
Fennessey, & Pallas,  1982 ; Pallas & Alexander,  1983  ) . When policymakers propose 
increased course taking requirements, they implicitly assume that higher-level 
courses lead to improved educational and labor market outcomes for students of all 
backgrounds by developing their human capital. 

 Another potential explanation for the relationship between curricular intensity 
and degree attainment is student self-selection. As we demonstrated in our discus-
sion above, random assignment is not the typical mechanism determining student 
course placements or course choice. Students elect to take particular courses or are 
placed into courses according to a number of factors, including their prior achieve-
ment, scores on placement examinations, work ethic, parental involvement in the 
educational process, and the racial and social class composition of their schools. 
If these factors are also correlated with degree attainment, self-selection into courses 
during high school may positively bias our estimates of the causal effect of course 
taking on attainment (i.e., the results are upwardly biased). 
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 It is important for researchers to determine if student self-selection or human 
capital development is largely responsible for any (hypothesized) positive relationship 
between curricular intensity and degree attainment because effective policymaking 
often requires a sound understanding of which practices improve educational out-
comes. In studies that use observational data and analytical methods that do not 
strongly support causal inference, the greater the role of selection, the more the 
estimates of curricular intensity’s effects on degree attainment may be biased. If 
positive selection bias is present, the individuals who are the most likely to experi-
ence the outcome of interest (e.g., graduate from college) are the individuals who 
are also the most likely to receive the treatment (e.g., select into taking Algebra II). 
Practices such as K-12 tracking increase the likelihood that only the most able and 
motivated students take intensive courses. If, prior to enrolling in Algebra II, these 
students are more dedicated to earning a bachelor’s degree than their peers who take 
less intensive coursework, the observed positive association between course taking 
and educational attainment is attributable to the qualities of students who take inten-
sive courses and not the courses per se. If positive selection bias is largely respon-
sible for any observed relationship between curricular intensity and educational 
attainment, then state policies such as the Michigan Merit Curriculum that mandate 
a college preparatory curriculum for all students are unlikely to have the expected 
impact on college access and success. 

 However, positive selection is not the only potential reason for bias in studies of 
course taking effects. Negative selection occurs when the individuals who are the 
most likely to experience the outcome of interest (e.g., graduate from college) are 
the individuals who are the  least  likely to receive the treatment (e.g., select into tak-
ing Algebra II). For example, in states that offer merit-based  fi nancial aid programs 
that are distributed according to secondary (and postsecondary) GPAs, high school 
students who aspire to attend college and earn a degree may avoid challenging 
courses in high school to gain eligibility for  fi nancial aid. While we are unaware of 
a rigorous study that examines merit aid programs’ impact on high school students’ 
course taking behavior, Cornwell, Lee, and Mustard  fi nd evidence that the Georgia 
HOPE Scholarship causes some college students to take fewer general education 
courses in math and science  (  2006  )  and to reduce their course load and increase 
their rate of course withdrawals  (  2005  ) . If negative selection biases the estimates in 
studies of course taking effects, policies like the Michigan Merit Curriculum may 
actually have a larger impact on college access and success than research that does 
not adjust for such selection would indicate.  

   High School Coursework and Postsecondary 
Educational Attainment 

 Many researchers have attempted to account for confounding factors in order to 
determine the causal impact of intensive coursework on the likelihood of complet-
ing a bachelor’s degree. Arguably the most well-known and in fl uential studies that 
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address this topic are Adelman’s  Answers in the Toolbox   (  1999  )  and  The Toolbox 
Revisited   (  2006  ) . In these studies, Adelman uses High School and Beyond (HSB) 
and National Education Longitudinal Study (NELS:88) data to examine the effect 
of student effort and high school course taking on their likelihood of college com-
pletion. As part of his analyses, he examines the impact of the highest level of math 
coursework taken by a student on his or her odds of degree attainment, controlling 
only for socioeconomic status. The results from the 1999 study using HSB data 
suggest that taking Algebra II or higher has a positive impact on degree completion. 
However, when analyzing NELS:88 data in 2006, Adelman suggests that taking 
Trigonometry or above has a positive effect on degree attainment, while taking 
Algebra II or lower has a negative effect. In summarizing his two studies, Adelman 
concludes that “the academic intensity of a student’s high school curriculum still 
counts more than anything else in pre-collegiate history in providing momentum 
toward completing a bachelor’s degree” (Adelman,  2006 , p. xviii). This is a strong 
claim, given that the studies’ regressions of highest level of math coursework do not 
account for precollegiate factors beyond socioeconomic status that are hypothesized 
to impact degree attainment, such as student educational aspirations or their high 
school contexts. 

 Like Adelman  (  1999,   2006  ) , other researchers  fi nd that students who take higher-
level courses in high school have more successful postsecondary outcomes than 
their counterparts who take lower-level courses (Bishop & Mane,  2005 ; Choy,  2001 ; 
Fletcher & Zirkle,  2009 ; Horn & Kojaku,  2001 ; Rose & Betts,  2001  ) . The majority 
of these studies employ standard logistic/probit or multinomial regression tech-
niques and control for several (possibly) confounding factors. 2  Like Adelman 
 (  1999  ) , Rose and Betts  (  2001  )  employ High School and Beyond (HSB) survey data 
and  fi nd that math course taking in fl uences students’ bachelor’s degree attainment, 
even after they control for observable factors such as student background, high 
school characteristics (including student-teacher ratio, high school size, and average 
per-pupil spending), and prior math course and standardized test performance. Their 
results suggest that an average student whose highest level of math is Algebra II is 
12% more likely to earn a bachelor’s degree than a similar student who only 
completes Algebra and Geometry. 

 However, other studies  fi nd that accounting for an array of background, aca-
demic, and/or state characteristics negates the relationship between taking intensive 
courses in high school and postsecondary persistence (Bishop & Mane,  2004 ; Geiser 
& Santelices,  2004  ) . Using University of California (UC) and College Board data, 
Geiser and Santelices examine if taking advanced placement (AP) and honors 
courses in high school affects second-year persistence in college. They  fi nd that 
when high school GPA, socioeconomic indicators, and standardized test scores are 
included in their models, honors and AP courses are not signi fi cantly related to 

   2   We use the term  standard regression  in the literature review to refer to nonexperimental studies 
that employ OLS or nonlinear regression without controls for student self-selection into course-
work. Following the introduction of terminology related to causal inference, subsequent sections 
will employ the term  naïve  in reference to such studies.  
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whether UC students remain enrolled into their sophomore year. Similarly, after 
accounting for high school- and college-level factors—including the non-AP course-
work taken by students—Klopfenstein and  Thomas  (  2009  )   fi nd a null effect of 
advanced placement coursework, including AP Calculus, on postsecondary persistence 
using Texas student unit record data. 

 Bishop and Mane  (  2004  )  examine the impact of high school curriculum policies 
on postsecondary outcomes using the same NELS:88 dataset that Adelman used in 
his 2006 study. They control for factors unaccounted for in other non-quasi-experi-
mental studies, including Adelman’s, such as student locus of control and state 
unemployment rates. They  fi nd that, controlling for student- and state-level variables, 
increases in the number of academic courses required to graduate from high school 
is not associated with college degree attainment. This result suggests that requiring 
all secondary students to take additional years of academic coursework will not 
increase college graduation rates, a result congruent with the explanation that 
selection is largely responsible for the positive association between course intensity 
and educational attainment. 

 As the aforementioned studies indicate, research provides con fl icting evidence 
about whether high school courses have a causal impact on postsecondary comple-
tion. This con fl icting evidence may arise for several reasons. First, the researchers 
use different datasets to investigate course taking effects. The datasets range from 
nationally representative to state speci fi c and the points in time in which the surveys 
were administered span decades. Additionally, among researchers that use the same 
dataset, their effective samples often differ. For example, Adelman  (  2006  )  restricts 
his analysis of NELS:88 to students who attended high school through the 12th 
grade. This restriction excludes many dropouts, early graduates, and GED com-
pleters who may experience different effects of math coursework than traditional 
high school graduates. Conversely, Bishop and Mane  (  2004  )  include all students 
who were in the 8th grade in 1988 in their analysis of NELS data. Therefore, 
Adelman’s and Bishop and Mane’s estimates are based on very different samples. 

 Second, there is no clearly de fi ned and universally agreed-upon theoretical model 
of high school course taking and educational attainment. As a result, each researcher 
proposes a different analytical model with a different set of controls for confound-
ing variables, which means that each study likely contains a different degree of 
omitted variable bias. 3  It is almost certain that these nonexperimental studies suffer 
from omitted variable bias because it is improbable that researchers are able to con-
trol for every covariate that is correlated with both high school course taking and 
degree attainment. However, some researchers may have been more effective than 
others in accounting for confounding factors in their models and therefore may 
provide less biased estimates of the causal effect of course taking on degree attain-
ment. For instance, our review of the literature demonstrates that students who 
attend rural schools have less access to college preparatory courses than students 

   3   Cellini  (  2008  )  provides an excellent overview of omitted variable bias in education research. She 
also points to Angrist and Krueger  (  2001  )  for further elaboration on this topic.  
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who attend nonrural schools (Planty et al.,  2007  ) . Data indicate that rural residents 
also have lower levels of degree completion than nonrural residents  (  United States 
Department of Agriculture, 2004  ) . Therefore, the urbanicity of students’ communities 
could be a confounding factor in studies of the effect of course taking on degree 
attainment. Yet only two of the studies reviewed above control for the impact of 
hailing from a rural community. 4  

 Although it is important to attend to the potential of omitted variable bias by 
inserting controls, such as urbanicity, we would like to caution readers against 
including controls that would not be theoretically expected to confound the effects 
of the treatment variable. The inclusion of such variables would have the potential 
to negatively impact the model in two ways. First, adding control variables to a 
regression that are correlated with other omitted predictors could introduce addi-
tional bias. If so, the coef fi cients of the newly added variables will not be accurate 
because they suffer from omitted variable bias also, due to their relation to other still 
excluded variables. Additionally, the inclusion of additional variables that are not 
signi fi cant predictors is likely to result in a loss of statistical ef fi ciency and in fl ate 
standard errors. This will reduce the accuracy of all estimates in the model. 
Therefore, it is important to select control variables that are founded in the theoretical 
underpinnings of the model at hand. Absent knowledge of the true structural model 
of course taking and degree attainment in the population, it is impossible to know 
which of the course taking effects studies we reviewed provides the most accurate 
representation of the factors that predict college completion. 

 An additional issue with the aforementioned studies is that none employ strate-
gies to eliminate the in fl uence of unobservable factors on course taking and 
attainment. Some student characteristics may be dif fi cult or impossible to obtain 
information about in observational datasets, but this does not change the fact that 
they are confounding factors (Cellini,  2008  ) . Examples of potential unobservable 
factors in course taking effects research include a student’s enjoyment of the learning 
process and a student’s desire to undertake and persevere through challenges. It is 
likely that these unobservable factors contribute to student selection into high school 
courses and a student’s subsequent choice to attain a bachelor’s degree. However, 
none of the studies we examined that employ a standard regression approach 
accounted for a student’s intrinsic love of learning or ability to endure through 
dif fi culties; the failure to account for these unobserved factors may bias the esti-
mates that result from these studies. 

 To minimize omitted variable and selection bias to make stronger causal claims, 
researchers have recently employed quasi-experimental methods to examine the link 
between high school course taking and educational attainment. Attewell and Domina 
 (  2008  )  use propensity score matching (PSM) to study the impact of high school curricu-
lum on student outcomes (for an example of the use of PSM in education research, 
see Reynolds and DesJardins  (  2009  ) ). PSM may be an improvement over standard 

   4   Studies that controlled for urbanicity: Bishop and Mane  (  2004  )  and Rose and Betts  (  2001  ) . In 
 Toolbox Revisited , Adelman  (  2006  )  controls for whether students attended urban high schools in 
several regressions that were not discussed in this literature review.  
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regression techniques because it allows researchers to compare outcomes only 
among students who had similar characteristics before receiving a “treatment”—for 
example, a high school course or a series of courses—thereby potentially reducing the 
confounding effects of other observable factors. Attewell and Domina  fi nd that PSM 
estimates of course taking effects are generally smaller than those produced by previous 
studies, including Adelman’s, that are produced with standard regression. This suggests 
that a portion of the positive relationship observed between college preparatory courses 
and educational attainment in correlational studies may be due to the qualities of 
students who elect to take an intensive curriculum. However, as with all PSM studies, 
Attewell and Domina are unlikely to completely eliminate selection bias, as their 
propensity scores were based on a set of observable student background characteristics 
that may not adequately control for unobservable differences across students. 

 Altonji  (  1995  )  applied an instrumental variables approach in his study of high 
school curriculum effects on years of postsecondary education. Using data from the 
National Longitudinal Survey (NLS:72), he  fi rst estimates a standard OLS regression 
model, controlling for confounding student- and school-level factors. His results indi-
cate that each additional year of high school math increases enrollment in postsecond-
ary education by approximately one-quarter of a year. However, when he employs IV 
techniques using the average number of courses taken in a student’s high school as an 
instrument, his point estimates change: The effects of additional years of math course-
work on degree attainment become minimal to nonexistent. Altonji’s results suggest 
that studies that fail to control for selection are upwardly biased. However, as Altonji 
notes, his IV is not optimal. The course taking behavior of students in speci fi c high 
schools is likely related to unobserved characteristics of their communities, such as 
neighborhood or school district resources that in turn may in fl uence the future educa-
tional outcomes of these students. Therefore, his IV estimates of course taking on 
years of postsecondary schooling may still be contaminated by selection bias. 
Including controls for community-level factors could help to mitigate this problem. 

 Many other researchers (mostly economists) have also employed instrumental 
variables to answer questions about postsecondary enrollment and attainment 
(Angrist and Krueger  1991 ; Card,  1995 ; Kane & Rouse,  1993 ; Lemieux & Card, 
 1998 ; Staiger and Stock  1997  ) . To investigate the relationship between postsecond-
ary attainment and earnings, for example, Card  (  1995  )  considers the distance from 
a student’s home to the nearest 2- or 4-year institution as an instrument for his or her 
likelihood of attending college. While his OLS estimates assert that those who 
attend college earn 7% more over a lifetime than those who do not, his IV model 
yields estimates closer to 13%—a difference of almost 50%.  

   Overview of the Empirical Example 

 Given the inconclusive results of prior studies, an important policy question remains 
unanswered:  What is the causal effect of high school courses on college completion?  
To address this question, we focus our analysis on the effect of taking Algebra II 
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on a student’s likelihood of earning a bachelor’s degree. We selected the Algebra II 
course taking margin because, in the hopes of better preparing students for college 
and career success, almost half of the states in the United States currently mandate 
that students complete Algebra II in order to earn a high school diploma (Achieve, 
 2011  ) . Consequently, a large portion of the nation’s high school students stop taking 
math courses after taking Algebra II (Bozick and Ingels  2008 ; Dalton et al.,  2007 ; 
Planty et al.  2007  ) . Given the prominent role that Algebra II plays in educational 
policy, it is important to determine if this commonly mandated course improves 
student educational attainment. Previous research on the effects of speci fi c math 
courses on degree attainment has been inconclusive, with earlier studies  fi nding that 
taking Algebra II as the highest math course taken improves a student’s odds of 
degree attainment (Adelman,  1999 ; Rose & Betts,  2001  )  and a later study  fi nding 
that it does not (Adelman,  2006  ) . These inconclusive results may re fl ect changing 
standards for math preparation over time if courses higher than Algebra II have 
become necessary for college-level success (Adelman). Additionally, the inconclusive 
results could be caused by differences in the samples used and the degree of omitted 
variable and selection bias present in their estimates. 

 To determine the causal effect of taking Algebra II on degree attainment over 
time, we employ data from two nationally representative surveys conducted a decade 
apart by the National Center for Education Statistics (NCES): the National Education 
Longitudinal Study of 1988 (NELS:88) and the Education Longitudinal Study of 
2002 (ELS:02). Both surveys contain detailed high school transcript information for 
survey respondents. NELS follows a cohort of students who were in the eighth grade 
in 1988 through their sophomore year in 1990, their senior year in high school in 
1992, and into college and the labor market in 2000. This allows us to observe which 
students complete a bachelor’s degree in a reasonable time frame. ELS follows a 
cohort of students who were in the tenth grade in 2002. This cohort was issued fol-
low-up surveys in their senior year of high school in 2004 and 2 years following high 
school graduation in 2006. Although ELS provides the most recent national data on 
high school student course taking, it does not contain information on bachelor’s 
degree attainment because NCES has not yet released the third follow-up survey 
data. 5  Therefore, we use persistence to the second year of college as a proxy for 
degree completion in the ELS data. 

 To address omitted variable and selection bias, we will conduct our analysis 
using an instrumental variables approach, to be discussed at length below. We will 
exploit the in fl uence of local labor market conditions and youth labor laws early in 
a student’s high school career to account (instrument) for his or her willingness to 
attempt math courses at the Algebra II level. These local labor market conditions are 
unlikely to remain  fi xed as students persist through high school and college and are 
thus unlikely to impact a student’s ultimate educational attainment. In subsequent 
sections, we demonstrate how causal inferences can be made about course taking 

   5   The ELS:02 third follow-up survey is scheduled to occur during Summer 2012.  
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effects using an instrumental variables approach and local labor market conditions 
and youth labor laws as IVs. As a  fi rst step, we present a general introduction to 
concepts and terminology related to instrumental variable estimation approaches.   

   Instrumental Variables: Concepts and Terminology 

 Our goal is to determine whether taking Algebra II (or higher) has a causal effect on 
student postsecondary completion. However, a more utilitarian goal is to provide 
some guidance on the proper use of methods that will allow education researchers 
to make strong inferential statements about the effects of such “treatments” on 
student outcomes. If successful, we will provide higher education researchers with 
additional tools for their analytic “toolbox” so that their empirical work will be of 
the highest quality and able to inform policymakers about the likely effects of prac-
tices, interventions, and policies (e.g., high school curriculum standards) on student 
academic and labor market outcomes. The “wrench” we will add to the toolbox is 
known as instrumental variable estimation. 

 As noted earlier in the chapter, students take different levels of math courses 
while in high school and do so for a variety of reasons including differences in 
ability, motivation, and encouragement from others. The nonrandom assignment of 
students into courses presents the researcher with a challenge when attempting to 
determine the causal effect of a treatment (e.g., whether the student took Algebra II 
or higher or not) on an outcome (e.g., college completion) because observable 
(e.g., grades) and unobservable (e.g., motivation) factors may confound the typical 
multivariate analysis of the relationship between the outcome and the treatment. 
By employing an instrumental variable estimation strategy, we hope to mitigate this 
inferential problem. 

 Before diving into our investigation of the causal effect of taking Algebra II or 
higher on college completion, we will  fi rst discuss some important concepts and 
terminology related to making causal assertions using an instrumental variables 
approach. We will attempt to explain each of the concepts and terms using narrative, 
equations, and  fi gures. 

   The Concept of a Counterfactual 

 Perhaps one of the most challenging issues in conducting causal research is deter-
mining the correct counterfactual—the group against which the outcomes of the 
treatment group (e.g., those who take Algebra II) are compared. Using a counterfac-
tual allows researchers to think about the outcomes of those receiving treatment, 
had the treatment never occurred. In our case, the counterfactual helps researchers 
to explore the question, “what would the postsecondary outcomes of students who 
took Algebra II be had they not taken Algebra II?” 
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 The concept of the counterfactual relies on the idea of  potential outcomes . 
A potential outcome is de fi ned as each of the possible outcomes of the dependent 
variable (e.g., whether or not a student completes college) in different states of the 
world—provided, of course, that observing different states of the world were pos-
sible. In our context, the “different states of the world” are whether or not the stu-
dent takes Algebra II or higher or not. 6  

 Consider again the example of Grace and Adam. Grace, as you recall, takes 
Algebra II in high school, whereas Adam does not. The best counterfactual for these 
two students would be themselves: Grace takes Algebra II in high school, and her 
eventual college completion is measured. Assuming the invention of a time machine, 
the researcher turns back the clock to high school and Grace takes a lower-level math 
course instead of Algebra II, and the researcher measures whether she completes 
college or not. The same strategy could be used for Adam: He takes Consumer Math, 
the clock is turned back to high school, he takes Algebra II instead, and we measure 
whether he completes college or not. We would then be able to compare Grace’s and 
Adam’s outcomes (college completion) under  both  conditions: taking Algebra II and 
not taking Algebra II. Absent time travel, this scenario is impossible. 

 We can also discuss the concept of the counterfactual formally. Let the outcome 
for Grace be     1

iY   if the she is exposed to the treatment (e.g., Algebra II) and be     0
iY   if 

she is not (e.g., does not take Algebra II). Let  T  
 i 
  be a dichotomous variable that 

equals 1 if Grace takes    Algebra II:
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or

     
( )0 1 0

i i i i iY Y T Y Y= + -
   (6.2)   

 The value     1 0( )i iY Y-   is the causal effect of taking Algebra II. However, the 
fundamental problem of causal inference, as mentioned above, is that we cannot 
observe both of these values of Y (takes Algebra II and does not take Algebra 
II) for Grace or Adam (Angrist & Pischke,  2009 ; Holland,  1986 ; McCall & 
Bielby,  2012 ; Rubin,  1974  ) . A student either takes Algebra II, allowing us to 
observe     1

iY   (which we would call the “factual”) but not     0
iY   (which we would call 

the “counterfactual”), or, if they do not take Algebra II, we are able to observe 
    0

iY   but not     1
iY   . 

 Absent an experiment, a “naïve” solution to this problem is to compare the 
average value of Y for all of the students who take Algebra II to the average value 
of Y for those who do not:

     ( )| 1 ( | 0)i i i iE Y T E Y T= - =
   (6.3)   

   6   See Holland  (  1986  )  for a much more complete discussion of Rubin causal model and the concept 
of the counterfactual.  
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 However, it is demonstrable that
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(6.4)

   

 Each of the elements is de fi ned as above. The  fi rst term in brackets on the right-
hand side of Eq.  6.4  is the average causal effect of Algebra II on those who took 
Algebra II. The second bracketed term is the difference in what the average value of 
Y would have been had the treated remained untreated (e.g., those who took Algebra 
II had not taken it) and the average value of Y for the untreated. In other words, the 
second bracketed term shows the difference in outcomes between the treated and the 
untreated that is due to students’ background characteristics and other variables and 
not the treatment (Algebra II) itself. This second bracketed term represents  selection 
bias , which will be discussed at greater length below (see McCall & Bielby,  2012 , 
for additional details). 

 We can also think about the counterfactual as a missing data problem. That is, we 
have information about the effect of Algebra II on those who took it but are missing 
this information for those who did not. Conversely, we have information about the 
control condition for those who did not take Algebra II but are missing this informa-
tion for those who did. This is depicted in Fig.  6.1 .   

   Endogeneity (“The Selection Problem”) and Exogeneity 

 As noted above, high school students self-select into speci fi c courses for a variety 
of reasons. Because the characteristics that lead to speci fi c course selection are 
internal to the student, their selection into treatment (Algebra II) is  endogenous . By 
this, we mean that a student’s choosing to take Algebra II is the result of his or her 
own action (or possibly the action of his or her teachers or parents) who exist within 
the system (in this case, the education system) being investigated (Murnane & 
Willett,  2011  ) . Endogeneity (which, for our purposes, is a synonym for  selection ) 

…the value of the outcome in
the treated group is:

…the value of the outcome in
the control group is:

For members of treated group
(Algebra II)… Known Missing

For members of control group
(not Algebra II)… Missing Known

(owing to Murnane & Willett, 2011)

  Fig. 6.1    The concept of the counterfactual as a missing data problem (Owing to Murnane & 
Willett,  2011  )        
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hinders our ability to make causal assertions about the impact of a program or policy 
on a given outcome because it is unclear whether it is a student characteristic 
(observable or otherwise) that in fl uences his or her outcome (college completion) or 
the treatment itself (Algebra II). 

 Consider our example in equation form:

     0 1 1 2 iy x t eb b b= + + +    (6.5)  

where:

    y  = postsecondary completion (the outcome of interest)  
   x  

1
  = an exogenous control variable (e.g., parents’ education)  

   t  
 i 
   = whether a student takes Algebra II or not (the treatment)  

   e  = error term    

 The betas     ( 0b   ,     1b   , and     )2b    are parameters to be estimated—    
0b   represents the Y 

intercept,     1b   is a coef fi cient for the relationship between our exogenous predictor 
and postsecondary completion, and     2b   is a coef fi cient on whether a student takes 
Algebra II. In the absence of random assignment to math classes, it is likely that 
many student characteristics that are excluded from this regression (ability, motiva-
tion, encouragement from parents—which can be assumed to be included in the 
error term) are related to a student’s decision to take Algebra II. Therefore, t 

i
  is an 

endogenous variable, and its coef fi cient     ( )2b    cannot be used to make causal claims 
about the relationship between Algebra II and college completion. Herein, we dub 
this the “naïve” statistical model because it does not account for the endogenous 
relationship between  t  

 i 
  and  y . 

 Endogeneity in the regressor of interest (whether a student takes Algebra II) can 
potentially bias the magnitude of its estimate (    2b   ). In Eq. 6.5 above, it is likely that 
    2b   is too high—that the relationship between taking Algebra II and college completion 
is upwardly biased. Upward bias means that the relationship between Algebra II and 
college completion appears to be too strong. There are likely many factors other 
than taking Algebra II (ability, motivation, and encouragement) that may in fl uence 
whether or not a student completes college. On the other hand, the estimate (    2b   ) will 
be biased downward if it underestimates the relationship that exists between taking 
Algebra II and college completion. 

 Exogeneity exists when assignment to treatment (taking Algebra II) happens 
through a mechanism that is outside the system being investigated: when a lottery, 
for example, or an otherwise random draw assigns students to a particular math 
class. Under this condition, assignment is unrelated to student characteristics, the 
opinions and/or encouragement of teachers and parents, and the characteristics of 
the math classes themselves. Exogenous variation, to continue with our example, 
would mean that students are assigned to take Algebra II or a lower-level math 
class in a way that has nothing to do with their ability, motivation, or how much 
encouragement they receive from their parents. 

 Consider Eq. ( 6.5 ) above, now assuming that students are assigned to treatment 
exogenously. Because students are randomly assigned to Algebra II or a lower-level 
math course, all of their observed and unobserved characteristics should, on average, 
be statistically identical. This means that we should have treatment and control 
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groups that are identical on average. If so, any bias in the estimates of the effect of 
Algebra II on college completion will be eliminated—a stark difference from when 
assignment to treatment is endogenous—and should yield estimates of the relation-
ship between the treatment (Algebra II) and the outcome (college completion) that 
are much more accurate.  

   Instrument 

 To address issues of endogeneity (selection) when attempting to make causal assertions 
about the relationship between taking Algebra II in high school and completing college, 
it may be useful to employ an instrumental variable (an “instrument” or an “IV”). An 
instrument is de fi ned as a variable that is unrelated to the error term and related to the 
outcome only through the treatment variable. Again, consider Equation  6.5  above. An 
appropriate instrument must be unrelated to  e  (the error term) and related to  y  (postsec-
ondary completion) only through t 

i
  (whether a student takes Algebra II). An instrument 

allows a researcher to minimize bias due to endogeneity by identifying a source of exog-
enous variation and uses this exogenous variation to determine the impact of a treatment, 
policy, or program (e.g., Algebra II) on an outcome (e.g., postsecondary completion). 

 Using our example, we consider both labor market conditions and youth labor laws 
during the student’s 10th grade year as instruments for their probability of taking Algebra 
II. While students are enrolled in high school, local labor market conditions may affect 
their college preparation decisions, and these decisions may subsequently alter their 
chances for college access/completion. For example, a strong local labor market when a 
student is in 10th grade may entice students to avoid a college preparatory curriculum, 
reasoning that many job opportunities will exist without a college education. On the 
other hand, an identical student facing a weaker labor market in 10th grade may be more 
likely to enroll in a college preparatory curriculum, as employment prospects will likely 
dim without a college education. Additionally, youth labor laws when a student is in 
high school may in fl uence the amount of time he or she is able to work outside of school. 
These opportunities for work (or lack thereof) may also in fl uence student decisions 
about taking (or not) college preparatory coursework, as they may choose to spend time 
working as opposed to focusing on more challenging coursework. 

 It is important to note that although the IV approach is an econometric method 
used by many researchers, there is considerable debate about the application of this 
methodology. We will discuss this debate below, as well as alternative approaches 
for making causal claims about the relationship between treatments and outcomes. 

 Historically, methodologists and researchers considered an instrument to be valid 
if it met the following two conditions:

    1.    The exogeneity condition: The instrument must be correlated with Y 
i
  only 

through t 
i
  and must be uncorrelated with any omitted variables. The key assump-

tion when using an IV is that the only way the instrument affects the outcome is 
through the treatment (Newhouse & McClellan,  1998  ) .  

    2.    The relevance condition: The instrument must be correlated with t 
i
 , the treatment 

(Algebra II).     
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 These relationships are depicted in the  fi gure below (Fig.  6.2 ).  
 The relevance condition can be veri fi ed empirically by determining whether and, 

if so, how strongly the instrument is correlated with the policy variable of interest 
(in our case, whether students take Algebra II.) If a strong correlation exists, the 
relevance condition is met. The exogeneity condition, however, cannot be tested 
empirically because it is stated in terms of the relationship between the instrument 
and the  population  parameters. Population parameters cannot be observed, as 
researchers have access only to  sample  data. As such, it is impossible to investigate 
correlational relationships between the instrument and unobservable parameters. 
Therefore, this condition requires that researchers think about the potential relation-
ships between the IV, the omitted variables, the treatment, and the outcome. In our 
running example, some questions to be asked might be the following: How do local 
labor markets impact college going among high school graduates? How do they 
impact the quality of the neighborhoods in which students live, a variable that may 
be omitted from the model? If a logical case can be made and defended, the exoge-
neity condition is considered to have been met as well. Absent random assignment, 
this assumption is more challenging to justify than the relevance assumption, and IV 
exogeneity is often contested among communities of scholars.  

   Methods to Employ the IV Framework 

 One can employ an instrumental variables approach using a variety of regression-
based techniques, some of which will be discussed at length below. One very common 
method that researchers use is two-stage least squares (2SLS) regression. 2SLS is 
performed in two steps that happen sequentially: In the  fi rst stage, the main variable 

  Fig. 6.2    Two conditions for a valid instrument       
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of interest (Algebra II) is regressed on the instrumental variable and any other 
variables that we think might help explain why students take Algebra II. The results 
of this regression yield a probability of taking Algebra II for  all  students in the 
sample. These predicted values are then used in place of the (in our case) dichoto-
mous treatment variable (Algebra II) in a second stage. This and other methods for 
using IV will be discussed in much greater detail below, in light of the methods 
employed to explore our causal question of interest: What is the causal relationship 
between high school course taking and college going? 7   

   Data 

 Before entering into a discussion of the procedures for estimating IV models, we 
will brie fl y describe the data and computational methods we employed to apply and 
test different modeling approaches to IV analysis. The running example will employ 
data from two National Center for Education Statistics (NCES) datasets: the National 
Educational Longitudinal Survey of 1988 (NELS:88) and the Educational 
Longitudinal Survey of 2002 (ELS:02). These datasets provide nationally represen-
tative samples of students who are longitudinally tracked beginning in their eighth 
grade year. NELS:88 tracks students through high school and postsecondary educa-
tion and into the workplace. ELS:02, the most currently available of the NCES 
longitudinal datasets, has collected and distributed its most recent survey 1.5 years 
after students were expected to complete high school. The data provides detailed 
information on students’ high school-level course taking in addition to a number of 
other academic preparation variables, demographic variables, and a range of post-
secondary outcomes of interest. We leverage this detailed longitudinal data to con-
struct a number of models testing the in fl uence of high school-level course taking, 
speci fi cally Algebra II, on student probabilities of obtaining a bachelor’s degree. 

 In our analyses, we focus on two particular outcomes. Our primary outcome of 
interest is bachelor’s degree attainment; however, this outcome is only available in 
the NELS:88 data because the most recently available wave of the ELS:02 data only 
interviewed students 1.5 years after their expected high school graduation date. 
Therefore, using the ELS:02 data, we use as a proxy for degree completion a 
variable indicating whether a student persisted from the  fi rst to second year of 
postsecondary education. We will reestimate this model when college completion 
data is available. 

 Our variable for bachelor’s degree attainment was constructed from the NELS 
Postsecondary Education Transcript Study (PETS) data  fi le. The variable was coded 
as a dummy variable, “1” if a student attained a bachelor’s degree within 8 years of 
their expected high school graduation and “0” otherwise. 

   7   Murnane and Willett  (  2011  )  provide an excellent description and visual representation of a 2SLS 
framework in Chapter 10 of their  Methods Matter  text.  
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 The  fi rst- to second-year persistence variable for ELS:02 was developed in two 
stages. First, a variable was created to indicate the  fi rst month, in 2004 or 2005, that 
a student was enrolled in a postsecondary institution. Then, a dummy variable was 
created to indicate if that student was enrolled in a postsecondary institution 12 
months after their initial month of enrollment, coded “1” if the student was still 
enrolled 12 months later and “0” otherwise. 

 One concern with each of these dependent variables, as is a concern with any 
regression-based modeling technique, is that they are both dichotomous and therefore 
might not be appropriately estimated using techniques based on ordinary least squares 
(OLS; or “linear”) regression. While strong arguments have been made in favor of 
using OLS with dichotomous dependent variables (see Angrist & Pischke,  2009 , 
p. 103) and we do so in this study, we also estimate some IV models using methods 
that deal with the nonlinearity when estimating dichotomous dependent variables. 

   The Endogenous Independent Variable 

 The independent variable of interest in our analysis is high school-level mathematics 
course taking, speci fi cally whether or not a student took an Algebra II course 
(or higher) or not in high school. It is operationalized as a dummy variable, coded 
“1” if a student took more than 0.5 Carnegie units, equivalent to high school credits, 
in Algebra II while in high school and “0” otherwise. 

 As was discussed above, this variable is expected to be endogenously related to 
postsecondary persistence and degree attainment because students self-select into 
high school courses. In an attempt to account for this endogeneity, we employ 
instrumental variables in order to more accurately estimate the causal relationship 
between course taking and degree attainment. The selection of the instrumental 
variables employed is discussed in detail below.  

   Exogenous Independent Variables 

 A set of exogenous controls were incorporated in each model estimated. The inclu-
sion of controls that are expected to signi fi cantly predict the outcome variable is an 
important aspect of reinforcing the exogeneity of the other variables in the model. If 
factors that are truly related to the dependent variable were excluded, the risk of 
omitted variable bias in the model estimates would be increased. Therefore, controls 
included in our models were selected based on their expected relationship with both 
the dependent variable of interest and the treatment variable. These controls include 
mathematical ability, measured as a student’s quartile ranking on the NCES-
standardized high school mathematics exam (8th grade for NELS and 10th grade for 
ELS), race/ethnicity, mother’s level of education, and socioeconomic status quartile. 
State and birth year  fi xed effects were also included to account for impacts of policies 
that may differentially in fl uence students’ decisions and/or outcomes based on age 
and/or state of residence. Each of these controls is included as a predictor in both the 
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 fi rst and second stage equations, as will be discussed below. See Table  6.1  for 
descriptive statistics for variables included in our models.    

   Software and Syntax 

 To conduct this analysis, we chose to use the statistical program Stata. Stata is one 
of many statistical programs capable of performing the analyses conducted herein 
(e.g., SPSS, SAS, or R). However, Stata provides a number of preprogrammed 
instrumental variable modules that are readily accessible and accompanied by 
clearly written help  fi les and interactive examples that provide a better gateway to 
IV modeling than might be available in other programs. Additionally, advanced 
programming options and Stata’s use of open source user-created routines allow for 
a great deal of  fl exibility in the number of approaches that can be applied. 

 Along with each of our analyses, we provide a set of annotated Stata syntax (see 
Appendix A) that provides step-by-step examples of the code that is necessary to 
estimate the IV models discussed below.  

   Assumptions of IV models 

 As is discussed above, the general objective of applying IV methods is to account 
for potential bias in traditional regression estimates that are due to the presence of 
endogeneity. Below, we provide a detailed discussion of a number of assumptions 
that IV models and instruments are required to meet in order to account for endoge-
neity and provide more accurate estimates. We begin by discussing tests for the 
presence of endogeneity in the model. We then move on to discuss the traditional 
two-assumption approach to IV modeling that dominated IV literature in economet-
rics for much of the twentieth century. Next, we introduce a relatively new  fi ve-
assumption approach that acknowledges potential issues with relying only on the 
two-assumption approach and expands our thinking about the role of assumptions 
when estimating treatment effects. We then evaluate our empirical example using 
the  fi ve-assumption approach, thereby providing conceptual and empirical support 
(or not) about our ability to estimate the causal effect of Algebra II course taking on 
 fi rst- to second-year persistence and bachelor’s degree attainment. 

   Testing for Endogeneity 

 The application of IV modeling techniques is driven by the assumption that at least 
one of the independent variables in a model, here Algebra 2 course taking, is 
endogenous. When there is endogeneity present, naïve regression-based techniques 
(see Eq. ( 6.5 )) produce inconsistent estimates of all coef fi cients (Wooldridge, 
 2002  ) . However, employing IV techniques also results in a loss of statistical 
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   Table 6.1    Descriptive statistics   

 NELS  ELS 

 Mean/%  S.D.  Mean/%  S.D. 

  Dependent variables  
 Obtained bachelor’s degree 

(within 8 years) 
 32.66% 

 Persisted to second year  58.16% 

  Endogenous independent variable  
 Algebra 2  48.14%  49.54% 

  Instrumental variables  
 County unemployment rate: 

1989 (2001) 
 5.77%  2.39%  4.96%  1.68% 

 16 years of age in 10th grade  15.41%  22.75% 
 Unemployment rate X 16 y.o.a.  0.91  2.36  3.83  2.56 

  Exogenous independent variables  
 Math test quartile 1 (lowest) 

(excluded group) 
 17.63%  16.98% 

 Math test quartile 2  24.06%  35.14% 
 Math test quartile 3  27.61%  38.05% 
 Math test quartile 4 (highest)  30.70%  9.83% 
 Male  47.17%  49.66% 
 Black/African American  7.82%  12.72% 
 Asian/Paci fi c Islander  8.07%  9.63% 
 Hispanic  10.84%  14.36% 
 Native American  1.25%  0.84%   a  
 Mixed or other race  4.81% 
 White (excluded group)  72.02%  57.65% 
 SES quartile 1 (lowest) 

(excluded group) 
 24.06%  22.14% 

 SES quartile 2  27.25%  22.35% 
 SES quartile 3  26.29%  23.07% 
 SES quartile 4 (highest)  22.40%  26.93% 
 Mother’s education 

 Did not complete high school 
(excluded group) 

 25.09% 

 High school diploma  35.14%  25.76% 
 Attended 2-year institution  11.53% 
 Associates degree  12.05%  10.16% 
 Attended 4-year institution  7.95%  9.77% 
 Bachelor’s degree  12.57%  17.54% 
 Master’s degree  5.54%  6.50% 
 Terminal degree  1.66%  1.94% 

 County unemployment rate: 
1992 (2004) 

 7.51%  2.82%  5.73%  1.67% 

   a Excluded from multivariate analyses due to small sample size  
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ef fi ciency (i.e., in fl ation of standard errors) when compared to linear regression, so 
it is important to be certain that the variables that are thought to be endogenous are 
in fact so. If we knew the true population parameters were not endogenous, then 
the application of IV approaches would reduce ef fi ciency without accounting for 
bias; thus, one would be better off to apply a simple (naïve) OLS regression. 

 There are a number of tests that can be applied to assess the endogeneity of 
explanatory variables. Many are made available through Stata’s estat endogenous 
postestimation command (see StataCorp,  2009 , p. 757). Additionally, the estimation 
strategy of some IV approaches, namely, control function approaches (discussed in 
detail below), directly tests the endogeneity of the independent variable of interest 
(e.g., Algebra II). Conducting these tests is an essential step when applying the IV 
approach. If we  fi nd that Algebra II is in fact exogenous (in the population), then the 
use of an IV estimator would be inef fi cient, in fl ating our standard errors, without 
accounting for any potential bias from the more ef fi cient OLS estimator. However, 
these endogeneity tests are sensitive to the strength of our instruments. If the instru-
mental variables are only weakly related to the treatment, there is a high potential 
to falsely reject the endogeneity assumption and assume that the treatment variable 
is exogenous. Therefore, it is always of primary importance to consider not only 
statistical tests but conceptual evidence when evaluating the endogeneity of a vari-
able. While the statistical tests might not fully support the presence of endogeneity, 
this may be largely due to a lack of statistical power in the test, not a truly exogenous 
treatment variable.  

   The Two-Assumption Approach 

 Traditional conceptions of IV models (e.g., Cameron & Trivedi,  2005 ; Greene, 
 2011 ; Wooldridge,  2002  )  required that instrumental variables meet two assumptions 
in order to be considered valid. Assume the following simple linear regression:

     0 1 1 2y x t eb b b= + + +    (6.6)   

 If the researcher believes that  t  is endogenous, then the estimates of     0b   ,     1b   , and 
    2b   will be biased if standard OLS regression methods are employed. One way to 
remove this bias is to apply an IV method. To do so, we must  fi nd an instrument,  z , 
that meets the following assumptions: 

   A1. Exclusion Restriction 

 This assumption requires that the instrumental variable is appropriately excluded 
from the estimation of the dependent variable of interest. When this assumption is 
satis fi ed, it guarantees that the instrument,  z , only affects the dependent variable,  y , 
through its effect on  t . 
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 More formally, there must be no correlation between  z  and  e  in Eq. ( 6.7 ):

     ( , ) 0Cov z e =    (6.7)   

 This assumption is the basic requirement that all exogenous variables in Eq. ( 6.7 ) 
are required to meet. Additionally, the exclusion of  z  from Eq. ( 6.7 ) provides that  z  
has zero effect on the dependent variable,  y , when controlling for the effect of all 
other independent variables. Combining the lack of correlation between  z  and  e  and 
the exclusion of  z  from ( 6.7 ), assumption A1 guarantees that the only effect of  z  on 
 y  is through its effect on  t .  

   A2. Nonzero Partial Correlation with Endogenous Variable 

 The second assumption requires that the instrument (z) has a measurable effect on 
the endogenous variable ( t ). To examine this relationship, the endogenous variable 
( t ) is regressed on the instrument ( z ) and the other predictor variables ( x  

1
 ) from 

Eq. ( 6.7 ) in what is referred to as the reduced form equation, below:

     0 1 1 1 1t x zd d q r= + + +    (6.8)   

 This assumption requires that   q   
1
�  0. At the most basic level, this means that the 

instrument must be correlated with the endogenous variable, that is, that the 
coef fi cient on the IV (  q   

1
 ) in Equation ( 6.8 ) must be nonzero after controlling for all 

other exogenous variables ( x  
1
 ) in the model. Meeting assumptions A1 and A2 is 

argued to ensure that the IV model is appropriately identi fi ed (see Wooldridge, 
 2002 , p. 85) and the instrument is valid. 

 Although assumptions A1 and A2 have been used to judge whether an instrument is 
valid, advances in econometrics have driven an interest in applying IV models to esti-
mate causal effects of endogenous variables ( t ) on dependent variables of interest ( y ). 
In order to accomplish this, the traditional IV model must be situated within a broader 
causal framework based on counterfactuals discussed above. This requires that IV 
models meet a set of  fi ve assumptions in order to estimate causal relationships.   

   The Five-Assumption Approach 

 An underlying assumption of the two-assumption model is that the effect of a treat-
ment is the same for all individuals in the sample. No matter who the individual is 
that receives the treatment, the average in fl uence of the treatment on their outcome 
of interest is expected to be the same. If this assumption holds, then we are able to 
estimate the average treatment effect (ATE) for all individuals in the sample. 
However, Angrist, Imbens and Rubin  (  1996  )  argue that treatment effects are likely 
to be heterogeneous, such that treatments will have differential effects on four 
different groups of individuals: always-takers, never-takers, de fi ers, and compliers. 
Always-takers and never-takers are unaffected by the instrument, such that they 
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will always behave in the same way given a particular treatment. In our example, 
and using only the county-level employment (not the labor market laws IV) as an 
example of our instrument, always-taker students will always take Algebra II, 
whereas never-takers will never take Algebra II, regardless of local labor market 
conditions. De fi ers behave in a manner that is opposite to expectations. De fi ers 
would not take Algebra II when county-level unemployment rates were high but 
would take Algebra II when unemployment rates were low. Compliers behave 
according to expectations. When unemployment rates are high, they are more 
likely to take Algebra II, and when unemployment rates are low, they are less likely 
to take Algebra II, because they will be entering the labor market after high school 
instead of attending college. 

 Among these treatment groups, a causal IV model is only able to estimate the 
effect of the treatment on compliers, and this estimate is referred to as the local 
average treatment effect (LATE) (Angrist et al.,  1996 ; Angrist & Pischke,  2009  ) . 
To estimate the LATE, Angrist et al. argue that the traditional IV model must be 
embedded within a broader causal structural model referred to as the Rubin causal 
model (Holland,  1986  ) . Our discussion earlier of causal effects and counterfactuals 
is a simpli fi ed version of the Rubin causal model. This model expands on the tra-
ditional two-assumption approach and employs a set of  fi ve assumptions that, when 
met, allow for the estimation of a causal LATE using an IV method. The  fi ve 
assumptions are: 

   A1b. Stable Unit Treatment Value Assumption (SUTVA) 

 This assumption requires that the in fl uence of the treatment be the same for all 
individuals and that the treatment of one individual is not in fl uenced by other 
individuals being treated. There are two primary concerns when evaluating 
SUTVA. First, Angrist et al.  (  1996  )  and Porter  (  2012  )  cite circumstances where 
groups of individuals are treated as a unit, as opposed to treatment to each indi-
vidual independently, as possible violations of this assumption. For example, if 
we randomized students into treatment and control groups by classroom within a 
school, then we would expect that there might be interactions among teachers 
instructing the control and treatment group classes. These effects, which are often 
referred to as “spillovers,” alter the impact of the treatment and controls if the 
treatment or control teachers alter their administration of the treatment based on 
their contact with the other teachers. 

 The second concern deals with how the treatment itself is administered. The 
SUTVA requires that the implementation of the treatment must be consistent 
across all treatment groups. Using a clinical example, if the treatment is a drug 
administered in pill form, then each of the pills given to the treatment group 
must be exactly the same. If some pills had differing levels of chemicals than 
other pills, SUTVA would be violated. Therefore, we must consider how the 
administration of treatments may differ in order to evaluate our model with 
respect to A1b.  
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   A2b. Random Assignment 

 This assumption requires that the distribution of the instrumental variable across 
individuals be comparable to what would be the case given random assignment. In 
the case of a dichotomous treatment, this can be described as each individual having 
an equal probability of being treated or untreated. More formally,

     Pr( 1) Pr( 0)t t= = =    (6.9)  

where  Pr ( t  = 1) is the probability of being treated and  Pr ( t  = 0) is the probability of 
not being treated. Any situation in which an individual would have an in fl uence on 
their level of the instrument would violate this assumption. For example, a student’s 
college major (Pike, Hansen, & Lin,  2011  )  would not satisfy this assumption because 
the student plays a role in selecting the instrument.  

   A3b. Exclusion Restriction 

 This assumption parallels assumption A1 in the two-assumption approach from the 
previous section in that the instrument ( z ) needs to be uncorrelated with the error 
term ( e ) in the second stage equation ( 6.7 ). More plainly, assumption A3b requires 
that the instrument (z) is appropriately excluded from the second stage equation 
( 6.7 ). As discussed above, this assumption ensures that the only effect that the 
instrument,  z , has on the dependent variable,  y , is through its effect on the endoge-
nous independent variable,  t , in the reduced form Eq. ( 6.8 ).  

   A4b. Nonzero Average Causal Effect of the Instrument on the Treatment 

 Also drawing from the two-assumption approach (the “relevance” condition), this 
assumption requires that there be a nonzero relationship, and preferably a strong 
relationship, between the instrumental variable and the endogenous independent 
(or treatment) variable, such that   q   

1
  = 0 in Eq. ( 6.8 ).  

   A5b. Monotonicity 

 Monotonicity assumes that the instrument,  z , has a unidirectional effect on the 
endogenous variable,  t . This requires that the relationship between the instrument, 
 z , and the endogenous variable,  t , meet one of the following criteria:

     2 0q    (6.10)  

or

     2 0q     (6.11)   
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 What is required for this to be the case is that the relationship between  t  and  z , as 
represented by   q   

2
 , must have only one sign, either positive or negative, for  all  

individuals in the sample. 
 This assumption stems from our discussion of heterogeneous treatment effects 

from above. Angrist et al.  (  1996  )  describe four groups: always-takers, never-takers, 
compliers, and de fi ers. Always-takers and never-takers have predetermined patterns 
of behavior that are unin fl uenced by the instrument. In our running example, always-
takers will always take Algebra 2 and never-takers will never take it, and the instru-
ment (local labor market conditions and/or labor laws) will have no in fl uence on 
these students’ decision. Compliers’ and de fi ers’ behavior is, however, in fl uenced 
by the instrument. Compliers will alter their behavior in the direction we would 
expect from the underlying theory. Using our running example, we would expect 
compliers’ probability of taking Algebra 2 to rise (fall) as the local unemployment 
rate increases (decreases). De fi ers behave, however, in ways that do not conform to 
a priori expectations. Using our example, if de fi ers existed (and we do not believe 
they do in our case, to be explained in more detail below), we would expect that as 
the local unemployment rate increased (decreased), their probability of taking 
Algebra 2 would fall (rise). In order for the assumption of monotonicity to hold, 
de fi ers cannot exist because the in fl uence of the instrument on the treatment would 
not be unidirectional. 

 In many cases, the assumption of no de fi ers is a reasonable one, because their 
behavior would be in contradiction to their own interests. Considering our empirical 
example, the behavior of a de fi er would decrease their expected wages and employ-
ment prospects.    Students with more promising job prospects while in high school 
would not take advantage of them but instead invest more time in school, whereas 
students with worse employment prospects in high school would reduce their invest-
ment in schooling to increase work time at low-wage jobs or time looking for non-
existent jobs. In both cases, de fi ers reduce the potential utility they could obtain 
from the way they allocate their time. 

 While assumption A5b is required in order to clearly discern the causal relation-
ship between the endogenous independent variable and the dependent variable of 
interest, the presence of de fi ers does not necessarily result in biased estimates. The 
presence of de fi ers acts to attenuate the estimated relationship between the instru-
ment and the endogenous independent variable, ultimately resulting in underesti-
mated causal relationships as long as the proportion of de fi ers does not exceed the 
proportion of compliers in the sample (Angrist & Pischke,  2009  ) . Therefore, when 
considering the validity of an instrument in relation to A5b, a researcher must evalu-
ate if there is a realistic expectation that the instrument will have a unidirectional 
impact or if the presence of heterogeneous treatment effects allows for de fi ers which 
will alter the estimates. 

 Moving on toward the estimation of our IV models, below we apply a number of 
tests of endogeneity to our empirical example to ensure that our Algebra II course 
taking variable is endogenously related to bachelor’s degree attainment and  fi rst- to 
second-year persistence. Then, we examine whether there is conceptual and/or 
empirical evidence in support of the  fi ve assumptions discussed above.    
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   Tests of Endogeneity 

 Table  6.2  presents the results of a number of test statistics evaluating the endogeneity 
of our Algebra II variable in models of both bachelor’s degree attainment and  fi rst- to 
second-year persistence. The null hypothesis for each test is that the Algebra II vari-
able is exogenous which would mean we need not be concerned about bias due to 
endogeneity and it would be unnecessary to employ IV methods. The robust   c   2  test, 
robust  F  tests, and GMM  C  statistic are products of Stata’s  estat endogenous  postes-
timation commands available following the estimation of 2SLS and GMM IV 
models (to be discussed in greater detail below). Each of these tests of endogeneity 
approaches or exceeds conventional levels of statistical signi fi cance, suggesting that 
Algebra II course taking is endogenously related to persistence and degree attain-
ment. The lower half of Table  6.2  presents coef fi cients and signi fi cance values esti-
mated in two control function IV models estimated. In a control function approach, 
the residuals from the  fi rst stage model are inserted into the second stage model to 
“control” for the endogeneity between Algebra II course taking and the dependent 
variable. Whereas the control function approaches will be discussed more fully 
below, here it is important to note that the coef fi cients associated with the residuals 
in the second stage equation provide another test of the endogeneity assumption. 
If the coef fi cient on the residuals in the outcome equation is signi fi cantly related to 
the dependent variable, there is evidence that the Algebra II variable is endogenous. 
In all cases, these estimates approach or exceed conventional levels of statistical 
signi fi cance, providing evidence that the Algebra II variable is endogenously related 
to degree attainment and persistence.  

 Given the evidence that Algebra II is endogenous, especially when estimating 
persistence, it is likely that traditional correlational techniques, such as OLS regres-
sion, will produce biased estimates. Therefore, we apply IV models as one potential 

   Table 6.2    Tests of the endogeneity of Algebra II course taking   

  N   Robust   c   2    p   Robust  F    p   GMM  C    p  

 Persistence 
(ELS:2002) 

 12221  8.363  0.004  8.325  0.004  5.36  0.021 

 Degree 
attainment 
(NELS:88) 

 5491  3.276  0.071  3.245  0.071  8.607  0.003 

 Control function 
residual (LPM 
second stage)   p  

 Control function 
residual (logit 
second stage)   p  

 Persistence 
(ELS:2002) 

 12221  −0.396  0.005  −2.012  0.009 

 Degree 
attainment 
(NELS:88) 

 5491  −0.359  0.072  −4.383  0.009 
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means for reducing the bias in our estimates. However, we must  fi rst evaluate both 
our selection of instrumental variables and the speci fi cation of our model with 
respect to the  fi ve-assumption approach discussed above.  

   Selection of Instruments 

 Instrument selection is the key to and generally the largest obstacle when applying 
IV techniques. Many higher education studies use secondary datasets and the 
variables provided therein. Thus, our options for  fi nding legitimate instruments 
are often limited due to at least two frequently occurring phenomena. First, the 
secondary data we often have access to is collected to study education issues. As such, 
many of the variables included in these datasets are highly correlated with each 
other, thereby mitigating the possibility of using any of these variables as instruments. 
Second, researchers may not have access to extant data, such as the unemployment 
data used in our study, that provide variables with suf fi cient exogenous variation 
that is needed for a valid instrument. 

 To determine whether an instrument is valid, both conceptual and empirical 
evidence should be provided in support of its application. Below, we discuss the 
conceptual foundations provided in defense of our instruments. Then, we consider 
how our empirical example holds up to the  fi ve assumptions when employing the 
counterfactual IV approach. 

   Conceptual Justi fi cation 

 From a conceptual point of view, our selection of instruments is based on a simpli fi ed 
two-period model of time allocation. We assume that students allocate their time between 
school, work, and leisure while enrolled in school (period one) and between work and 
leisure once they  fi nish schooling (period two). We also assume that students who 
allocate more time to schooling while in high school take more dif fi cult courses. 

 In our model,     t
sh   denotes how much time a student devotes to school in a period, 

    t
wh   denotes how much time is allocated to work in period  t ,  l   t   denotes how much time 

is devoted to leisure activities in period  t , and  t  can equal 1 or 2, depending on 
whether we are referencing time period one or time period two. 8  

 To simplify, we assume that school, work, and leisure comprise all of a student’s 
time in period one and work and leisure take up all of their time in period two. 
Formally, we have

     
1 1 1 1
s wh h l T+ + =    (6.12)  

   8   Schooling is only permitted in period 1 within our model; therefore,     t
wh   only ever takes on the 

form of     1
wh   .  
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and

     
2 2 2
wh l T+ =    (6.13)  

where  T  denotes the total amount of time available to a student in that period. 
 We also assume that a student’s overall utility ( U ) is a function of consumption, 

 c , and leisure. Consumption is de fi ned as a combination of wages,  w , and hours 
worked, formally represented by

     *
t t t
wh w c    (6.14)   

 Additionally, we assume that wages in period 2 increase with the amount of time 
allocated to schooling in period 1     ( )( )1

sf h   . So a student will attempt to maximize 
their utility,  U , according to

     
( ) ( )( )1 1 2

1 1 1 1 1 1 2 2 2
* * *max , ,

w s w
w w s s w wh h h

U w h T h h U f h h T hb= - - + -
   (6.15)   

 Here,   b   represents a discount function that depreciates the value of future utilities 
with respect to current utilities. Therefore, individuals attempt to obtain the highest 
overall combined utility in period one and discounted utility in period two. However, 
the utility obtained in period two is a factor of both the discount rate and the amount 
of time allocated to schooling in period one. 

 While the above model can be understood to be driven strictly by student choice, 
where students allocate their time according to intrapersonal preferences and dis-
count rates, there are also exogenous factors that drive time allocation, particularly 
with regard to work in period one. One of these is the availability of work. If students 
are unable to obtain employment in period one, then they will allocate less time to 
work and more time to school in period one, and they are likely to increase the 
quantity and/or dif fi culty of the courses that they take in high school. We operation-
alize the exogenous in fl uence of availability of work in this model by using the 
unemployment rate (%) in the county where a student resides in the 10th grade. 

 Second, state policies often place limitations on the amount of time that students 
can allocate to work based on their age. For example, the state of California limits 
students who are under the age of 16 to working only 3 h per day and a total of 18 h 
per week, whereas 16- and 17-year-olds can work up to 4 h per day and 28 h per 
week. Similar laws exist in most other states and are expected to impact students’ 
allocation of time to both schooling and work. However, the degree to which the 
laws impact students’ allocation of time is expected to vary by state. We statistically 
control for this variation by including state-level  fi xed effects, which account for 
differences in policy impacts at the state level. This allows us to exploit the exoge-
nous in fl uence on the allocation of time to work by including an instrument that 
indicates whether a student is 16 years of age at the beginning of the 10th grade. We 
also provide an additional IV by including the interaction between the county-level 
unemployment IV and the 16 years of age instrument. This interaction term allows 
the in fl uence of the county-level unemployment rate on Algebra 2 course taking to 
differ for students who are 16 years of age at the beginning of the 10th grade and 
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those that are not. We hypothesize that changes in the unemployment rate will result 
in greater changes in Algebra 2 course taking among 16-year-olds who can allocate 
more time to work than their counterparts under the age of 16.  

   Evaluating Our Example with the Five-Assumption Approach 

 Below, we use our empirical example to discuss in detail how to evaluate a causal 
IV modeling approach with respect to the  fi ve assumptions from Angrist et al. 
 (  1996  ) . We employ both empirical and conceptual evidence to assess whether our 
instruments and modeling approach meet each assumption. Then, once the assump-
tions are evaluated, we discuss a number of estimation approaches employing IV 
and compare results across the different approaches. 

   A1b. SUTVA 

 To satisfy assumption A1b, we must ensure that the effect of our treatment is con-
sistent across all individuals in the sample. The treatment in our example is Algebra 
II course taking. So we must consider if the impact of Algebra II course taking on 
bachelor’s degree completion and  fi rst- to second-year persistence should be 
expected to be consistent across all students in our sample. 

 As was discussed above, the threat of spillover effects when treatments are 
administered in group settings has the potential to violate this assumption. In such 
cases, individuals within treatment and nontreatment groups may interact with each 
other (e.g., sharing information pertinent to the treatment), which might contami-
nate the treatment effect. 

 In our empirical example, the treatment is students taking an Algebra II course. 
The possibility of spillover would be unlikely in this case. In order for the Algebra 
II curriculum to spill over into other, non-Algebra II courses, contact between 
Algebra II instructors and non-Algebra II instructors would have to result in Algebra 
II concepts being taught in lower-level mathematics courses. 

 The other concern related to SUTVA is that the administration of the treatment is 
consistent across all treated groups. We expect the administration of the Algebra II 
curriculum to be consistent at the district level, though it may vary to some degree 
between districts. To account for this, we include state-level  fi xed effects in each of 
our models to control for such extraneous variation. Differences in administration 
between teachers within districts can be understood as a form of measurement error. 
Using national-level surveys, such as NELS and ELS, the values that we are actu-
ally able to measure (Algebra II course taking) and the actual treatment, what 
Algebra II curriculum students were exposed to, are going to be subject to some 
random variation. However, as long as this variation is approximately random, 
average treatment effects can still be estimated consistently. Given the structure of 
the administration and our included statistical controls, we believe the SUTVA 
assumption is satis fi ed.  
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   A2b. Random Assignment 

 Next, we consider whether our instruments approximate random assignment, such 
that any individual in the sample has an equal probability of having any level of the 
instruments. More speci fi cally, in our example, we need to determine whether 
county-level unemployment rates and/or whether a student is 16 years old at the 
beginning of 10th grade is determined in such a manner that they are randomly 
distributed across students. 

 First, we consider the county-level unemployment rate. The random nature of 
this variable is tied to the fact that it is driven by residence. It is unlikely that 10th 
grade students will travel across county lines for employment. Similarly, it is 
unlikely that parents will choose to move their students when they are in 10th grade 
to improve the quality of their educational environment, as residential mobility 
decreases as children get older, especially between counties (Long,  1972  ) . Therefore, 
each student’s level of local unemployment is determined by their residence. Prior 
research has used the exogenous variation of a student’s residence as an instrument 
for a number of outcomes (Card,  1995  ) . As local labor conditions, and other factors 
related to residence, change independently of both students’ course taking choices, 
their persistence in college, and eventual bachelor’s degree completion, we believe 
assumption A2b is satis fi ed. 

 Second, we need to examine whether a student’s age at the beginning of 10th 
grade is determined in such a manner that it is (basically) randomly distributed 
across the sample. We feel it is likely that a student’s birth month and year are deter-
mined by factors that approximate random assignment. Given the conceptual ratio-
nale provided above, we see no cause for serious concern about violations of 
assumption A2b.  

   A3b. Exclusion Restriction 

 Now we consider whether our instrumental variables’ only impact on the dependent 
variable is through their relationship with the endogenous independent variable of 
interest. Using our example, we must discern if the only impact that our instruments, 
county-level unemployment rates and being 16 years of age when a student enters 
10th grade, have on our outcomes of interest (persistence and bachelor’s degree 
attainment) is through their in fl uence on Algebra II course taking. Statistically, this 
can be stated as evaluating whether the instruments are correlated with the error 
term in the second stage equation (see Eq. 6.2 above). Empirically, this assumption 
can, in fact, never be tested (Angrist & Pischke,  2009 ; Porter,  2012  )  because the 
error in the second stage equation is a population parameter that we do not know the 
value of; thus, we can only make assumptions about its distribution. However, there 
are statistical tests (discussed below) that can provide evidence to support our 
conceptual argument for the validity of these instruments. 

 In order to discern if these instruments are (theoretically) correlated with the 
error term in the outcome equation, we must consider what the error term actually 
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represents. While referred to as an error, this term in fact consists of any number of 
independent variables that in fl uence our dependent variable of interest (persistence 
or bachelor’s degree attainment) but are either immeasurable or not included our 
model. Often such variables are referred to as “omitted” variables. A classic example 
of an omitted variable in many education research studies such as ours is student 
motivation. Observational data often include any number of demographic and aca-
demic characteristics about students, but measures of student motivation to succeed 
are often not available. Thus, measures of motivation are typically omitted from 
statistical models even though they are likely to be highly related to many of the 
educational outcomes we study. In order to conceptually evaluate whether the 
instruments we employ are correlated with the error term, we consider whether they 
are likely to be correlated with any variables that have been excluded from our 
model but are likely to have an impact on the outcomes of interest (persistence and 
bachelor’s degree attainment). 

 First, we consider county-level unemployment rates when students are in 10th 
grade. We expect that unemployment when a student is in 10th grade is likely to be 
correlated with unemployment when a student is in 12th grade, or even later, when 
they will be making decisions about college enrollment and persistence, which 
would ultimately in fl uence degree attainment. However, we are actually able to 
include county-level unemployment rates when students are in 12th grade, which 
removes that variable from the error term and therefore removes the potential 
correlation. In doing so, we provide conceptual and some statistical support that 
our unemployment instrument meets assumption A3b. 

 Next, we consider whether students being age 16 at the beginning of 10th grade 
is correlated with the second stage error term. Research demonstrates that the age of 
a student when they begin school is often predictive of their subsequent academic 
performance (Angrist & Krueger,  1991  ) . And one’s academic performance in high 
school affects one’s probability of achieving a bachelor’s degree (Astin & Oseguera, 
 2005 ; Camara & Echternacht,  2000  ) . Therefore, if measures of academic perfor-
mance are omitted from the model and subsumed into the error term, we might 
expect that age when beginning 10th grade will also be correlated with the error 
term. However, we include controls in our models for academic performance, using 
students’ scores on the NCES-standardized mathematics examination, therefore 
removing performance from the error term and decreasing the chances that age in 
10th grade is endogenous. 9  Including a control for academic performance provides 
us more con fi dence that this instrument meets assumption A3b. 

 If we are able to  fi nd at least two instruments for each endogenous regressor, 
then there are statistical tests available to examine whether this assumption is 

   9   Whereas mathematics test scores are not the only potential measure of academic performance, 
they have been shown to be a strong predictor of postsecondary outcomes (Deke & Haimson, 
 2006  )  and are likely to have the highest correlation with our treatment variable. Therefore, the 
inclusion of this variable is likely to have the greatest impact on omitted variable bias related to 
academic performance.  
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tenable. The most common of these tests is the overidenti fi cation (over-ID) test. 
An IV model is considered to be “just identi fi ed” if it includes one instrumental 
variable for each endogenous variable in the model. When the number of instru-
ments exceeds the number of endogenous variables, the model is referred to as 
“overidenti fi ed.” If the number of endogenous variables exceeds the number of 
instruments, the model is “underidenti fi ed” and IV methods cannot be applied. 
When a model is overidenti fi ed, a Sargan-Hansen test of the overidentifying 
restrictions can be applied. In this test, the residuals from the second stage equa-
tion ( 6.6 ),  y − ŷ , are regressed on the exogenous control variables from the model, 
 x  

1
 . The test statistic is calculated by multiplying the number of observations in 

the model by the R-squared statistic. The over-ID statistic is distributed asymp-
totically as   c   2  with degrees of freedom equal to the number of instruments minus 
the number of endogenous variables. The null hypothesis for this test is that the 
instruments are correctly excluded from the estimation of the dependent vari-
able. However, this test does have its limitations as it still requires that we 
assume one instrumental variable is properly excluded from the second stage 
equation and then evaluates each additional IV with respect to the  fi rst. If the 
 fi rst IV does not in fact meet assumption A3b, then the over-ID test does not 
provide useful information. Stata provides a number of other similar over-ID 
tests for different IV models (see StataCorp,  2009 , p. 757), the results of which 
we will discuss below. 

 Overidenti fi cation statistics for a number of the regressions we estimated are 
displayed in Table  6.3 . Across the different IV models we estimated (to be discussed 
in detail below), none of the over-ID test statistics met conventional levels of 
signi fi cance. Again, we have to assume that the  fi rst IV, county-level unemployment 
in 10th grade, is properly excluded from second stage equation. Therefore, the over-
ID tests provide statistical evidence that the additional IVs are properly excluded 
from the second stage equation. Given the empirical evidence and our conceptual 
evaluation of the instruments, we assert that assumption A3b is satis fi ed.  

   Table 6.3    Overidenti fi cation tests of instrumental variables   

 2SLS  LIML  GMM 

 Sargan-Hansen   p   Anderson-Rubin   p   Hansen’s J   p  

 Persistence 
(ELS:2002) 

 2.265  0.322  2.234  0.327  2.265  0.322 

 Basmann 
 1.110  0.330 

 Degree 
attainment 
(NELS:88) 

 Sargan-Hansen  Anderson-Rubin  Hansen’s J 

 3.933  0.140  3.15  0.207  0.057  0.972 
 Basmann 
 1.55  0.212 
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 However, it is also important to note that signi fi cant overidenti fi cation statistics 
should not be the basis for fully rejecting the use of an instrument. The basis of 
the over-ID test is that the inclusion of a second instrument does not alter the 
estimates of an original model with only one instrument. However, it could be that 
two valid instruments could have differential impacts on individuals’ probability 
of treatment, and those differences could be even greater when considering the 
combined impact of the two instruments. While such differences would likely 
result in signi fi cant over-ID statistics, they would not justify the removal of either 
instrument from the IV model.  

   A4b. Nonzero Average Causal Effect of the Instrument on the Treatment 

 This assumption requires our instrument(s) to have a nonzero causal relationship 
with our endogenous treatment variable. In our example, the combined effect of our 
instruments on Algebra II course taking must be statistically signi fi cant. Tests for 
this assumption rely on the two-stage nature of many IV models. By evaluating the  fi t 
statistics of the  fi rst stage model, we are able to evaluate the correlation of the 
instrumental variables with the endogenous treatment variable. Using OLS in 
the  fi rst stage, the  R  2  statistic calculates the percentage of the variation in the endog-
enous treatment variable that is explained by all exogenous variables included in the 
 fi rst stage. The  R  2  statistic represents the strength of the relationship of  all  of the 
exogenous variables with the endogenous treatment variable; the primary concern 
of assumption A4b is the relationship of the  instruments  to the treatment variable. 
Partial- R   2   statistics provide a measure of the proportion of the variance of the endog-
enous treatment variable that is explained by the instruments used as regressors in 
the  fi rst stage equation. Higher partial- R   2   statistics represent a stronger relationship 
between the instruments and the endogenous treatment variable (i.e., Algebra II). 
Additionally, we can evaluate the F statistic, which provides a joint signi fi cance test 
of the relationship of the instruments to the endogenous treatment. This statistic 
should achieve and, researchers suggest, exceed conventional levels of statistical 
signi fi cance to demonstrate that instruments are properly speci fi ed (Hall, Rudebusch, 
& Wilcox,  1996  ) . Each of these statistics can be obtained in Stata using the 
 estat fi rststage  command following an IV modeling routine. Additionally, Wald tests 
of the joint signi fi cance of instruments can be computed for models where the  fi rst 
stage and second stage are estimated independently. 

 Test statistics evaluating the strength or relevance of our instrumental variables 
across the different models we estimated are displayed in Table  6.4 . The  R   2   and 
adjusted  R   2   statistics for both samples indicate that our  fi rst stage models are 
accounting for between 23 and 25% of the variation in Algebra II course taking 
when all exogenous variables are included. The partial- R   2   statistics suggest that 
our instruments are accounting for about 0.4–0.3% of the total variation in the 
models. This raises some concern about the strength of our instruments, but we 
can use a number of other test statistics to resolve those concerns. Stock, Wright 
and Yogo  (  2002  )  suggest that the  F  statistics should be larger than 10 to ensure 
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against any bias induced because of weak instruments. The instruments in the 
 fi rst- to second-year persistence model, using the ELS:02 data, exceed this value, 
and therefore we accept that the instruments in that model satisfy assumption 
A4b. However, the  F  statistic for the bachelor’s degree completion model is only 
about six, suggesting that the relationship between our instruments and endoge-
nous independent variable may be weaker than desired and could result in biased 
estimates (see Angrist & Pischke,  2009 , p. 208). 10  Although this is concerning, we 
are able to test for the potential for weak instrument bias in two ways suggested 
by Angrist and Pischke (also see Murray,  2006 , for additional details of dealing 
with weak instrument problems). First, we estimate a two-stage least squares 
(2SLS) model (to be discussed in detail below) using only one instrument (the 
16-year-old IV), because the 2SLS approach is nearly unbiased in the presence of 
weak instruments when the model is just identi fi ed (i.e., when the number of IVs 
equals the number of endogenous regressors). We then compare the coef fi cient 
estimates of the treatment effect (i.e., the coef fi cient on the Algebra II variable) 
from this model to the estimates produced by the 2SLS model that includes all of 
the instruments. When we include being 16 at the beginning of 10th grade as our 
instrument, we  fi nd that the just-identi fi ed model estimates an effect of 0.61 com-
pared to the overidenti fi ed model estimates and effect of 0.55. We will discuss the 
substantive meaning of these results in the results section, but both models produce 
comparable estimates of the effects; therefore, we have some evidence that our 
treatment effect estimate from the bachelor’s degree attainment model is not 
severely biased due to a weak instrument problem.  

 Angrist and Pischke  (  2009  )  also suggest that models estimated using limited 
information maximum likelihood (LIML) are less likely to be biased due to weak 
instruments than 2SLS models. Examining the estimates from each of these models 
in Table  6.6 , the LIML model estimates an effect of 0.64 of Algebra II on bachelor’s 
degree attainment, which is very close to the estimate produced by both the just-
identi fi ed and overidenti fi ed 2SLS models. Therefore, we are con fi dent that there is 
a signi fi cant relationship between our instruments and our endogenous treatment 
variable and that A4b is satis fi ed.  

   10   Stock and Yogo  (  2005  )  provide another method for evaluating the strength of instruments through 
the use of  fi rst stage estimates. However, those test statistics are not available in Stata when robust 
standard errors are used to account for survey design (as in our analysis). See StataCorp  (  2009 , p. 765) 
for aid in interpreting these statistics.  

   Table 6.4    Tests of instrument relationships with Algebra II course taking   

 R 2   Adjusted R 2   Partial R 2   F   p    Wald    p  

 Persistence (ELS:2002)  0.242  0.2372  0.004  16.370  0.000  18.050  0.000 
 Degree attainment 

(NELS:88) 
 0.277  0.267  0.003  5.855  0.000  5.850  0.000 
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   A5b. Monotonicity 

 Next, we examine whether our instruments have a monotonic in fl uence on high school 
mathematics course taking, such that increases in unemployment never result in 
decreases in mathematics course taking and that students who are 16 years of age in 10th 
grade are always less likely to take Algebra II. Our instrument is unlikely to satisfy this 
assumption fully, as there are assuredly students who decrease course taking levels in the 
face of increasing unemployment and 16-year-olds who are more likely to take Algebra 
II than younger students. However, we believe this set of students is likely to represent a 
very small portion of our sample; in which case, the presence of de fi ers simply places an 
upward bound on our estimate of the treatment effect (Angrist & Pischke,  2009 ; Porter, 
 2012  ) . As de fi ers act in contradiction to the expected in fl uence of the instrument, the 
estimated relationship between the instrument and the endogenous variable would be 
expected to be in the opposite direction to that of compliers (i.e., negative in fl uence of 
unemployment on Algebra II and negative in fl uence of being 16 on Algebra II). 
Mathematically, if we were to combine the estimated effects for each individual, the 
opposing signs would simply push the average effects of the instruments toward zero. 
As long as compliers outnumber de fi ers in our sample, we will be able to obtain at least 
a lower-bound estimate of the causal effect of mathematics course taking on postsecond-
ary enrollment. Therefore, expecting that de fi ers are likely to account for only a very 
small portion of our sample, we believe that our instruments satisfy A5b. 

 We have evaluated the appropriateness of our IV approach for our empirical 
example, next we discuss a number of IV estimation strategies that can be employed 
to estimate causal treatment effects, and then we discuss the results using each of 
these estimation procedures.    

   Approaches to Modeling Causal Effects 

 Our empirical strategy is to estimate a number of different models testing the in fl uence 
of high school-level mathematics course taking on  fi rst- to second-year persistence 
and bachelor’s degree attainment. Our estimation strategy is to begin by estimating a 
“naïve” statistical model using ordinary least squares (OLS) regression which does 
not account for the potential endogeneity of the regressor of interest (Algebra II). 
Next, two-stage least squares (2SLS) is employed, the  fi rst stage of which generates 
predicted probabilities of the Algebra II course taking using exogenous variation 
from the instruments and other controls. These predicted probabilities are then 
included as a regressor in the second stage equation. We then estimate a set of models 
that simultaneously estimate the IV model (limited information maximum likelihood 
(liml) and generalized method of moments (GMM)) and account for potential limita-
tions of the basic 2SLS approach. We then employ a control function IV approach in 
which the residuals from the  fi rst stage regression are saved and then used as a regres-
sor in the second stage. Doing so helps to “control” for the endogeneity of the instru-
mented variable (the Algebra II variable). Finally, we estimate another control 
function model which employs logistic regression in the second stage to account for 
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the nonlinear relationship between the dichotomous dependent variable (i.e., persistence 
and degree attainment) and the included regressors. We employ these different meth-
ods to check the sensitivity of the results to the choice of method and pay particular 
attention to the estimates for the Algebra II variable for any differences that may 
emerge across the different model speci fi cations. 

   Naïve Model: Using OLS Regression 

 The dependent variables of interest, persistence or degree attainment, are binary, 
and in such cases when OLS regression is applied, the model is referred to as a 
linear probability model (LPM). The LPM is formally represented by

     Y X Ta b d e= + + +    (6.16)  

where  Y , the dependent variable, is estimated as a function of a set of explanatory 
variables,  X , and a treatment variable,  T , that equals 1 when an observation (student) 
receives the treatment (takes Algebra II) and 0 when it does not. The traditional 
LPM regression framework does not account for any potential endogeneity that 
might exist between the treatment and the outcome variable (more accurately, 
between the treatment and the error). However, we might expect that there are 
excluded factors that directly relate to both the level of  T  and the level of  Y . These 
excluded variables are absorbed into the error term,   e  , which may be correlated with 
 T . As was discussed above, an explanatory variable that is correlated with the error 
term is endogenous, and failure to adequately correct for this will result in a biased 
estimate of the coef fi cients for all explanatory variables included in the model. 

 We use the LPM model as a baseline model to evaluate the degree of bias in the 
point estimates that results from our failure to account for any endogeneity. As the 
LPM model assumes no endogeneity, the presence of endogeneity will result in 
biased estimates. When we apply other estimation procedures that account for endo-
geneity and reduce this source of bias, we expect that the estimates will differ from 
those produced by the LPM model. Using the LPM as a baseline, we will be able to 
clearly evaluate those differences by comparing the point estimate from the LPM to 
those obtained by employing the IV techniques. 

 The following set of statistical approaches employ a variety of instrumental variable 
techniques in order to account for endogeneity and in so doing provide less biased esti-
mates of the “causal” relationship between the treatment and the outcomes of interest.  

   Two-Stage Least Squares 

 Two-stage least squares (2SLS) estimation, estimated using Stata’s  ivregress 2sls  
command, is performed exactly according to its name. The estimation process 
occurs in two steps. The  fi rst stage is formally described below:

     T̂ X Zg b q w= + + +    (6.17)   
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 The endogenous variable, Algebra II ( T ), is regressed on all of the exogenous 
variables,  X , and a set of instruments, county-level unemployment, whether the student 
was 16 at the beginning of 10th grade, and the interaction of unemployment and age 
16(Z), using a linear probability model (LPM). From this equation, estimates of  T , 
denoted  T , are produced. The initial values of  T  are understood to be composed of 
both endogenous and exogenous variations. When we use instruments to generate 
estimates of  T , we decompose that variation into the exogenous portion, which is 
contained in the predicted values,     T̂   , and the endogenous portion, which is absorbed 
into the residuals,     ˆT T-   . We then use the exogenous predicted values of  T  in the 
second stage model, formally displayed below:

     
ˆY X Ta b d e= + + +    (6.18)   

 In this stage, the dependent variable of interest,  Y  (e.g., persistence or graduation), 
is regressed on the same set of exogenous variables,  X , used in stage one, plus the 
predicted values of  T  produced by the  fi rst stage regression. Because the endogeneity 
in  T  has been reduced by replacing it with  T , we expect that the estimate of  δ  will 
more closely approximate the causal in fl uence of  T  on  Y  than when employing the 
naïve statistical model.  

   Simultaneous IV Models 

 Here, we discuss two simultaneous IV estimation procedures which build upon the 
2SLS model: limited information maximum likelihood (LIML) and generalized 
method of moments (GMM). The LIML estimator is easy to estimate using the 
 ivregressliml  command in Stata; the results produced are robust to weak instrument 
problems (Rothenberg,  1983  ) , and Monte Carlo simulations suggest the method is 
“less prone to bias and has more reliable standard errors” (Sovey & Green,  2011 , p. 7). 
The GMM approach can be invoked in Stata with the  ivregressgmm  command. 
GMM provides a useful alternative to 2SLS when the independence assumption is 
violated (Baum, Schaffer, & Stillman,  2003  ) . Given the possibility of an indepen-
dence assumption violation due to the clustering of students within schools, this 
estimator is employed. Each of these commands is very simple to invoke by requir-
ing the user to provide only the dependent variable and three sets of regressors: 
exogenous controls, endogenous independent variables, and the instruments.  

   Control Function Models 

 Another type of IV approach that produces equivalent estimates to the 2SLS 
approach is the control function technique (Card,  2001  ) . However, the control func-
tion approach provides a greater degree of  fl exibility in the modeling of both the 
 fi rst and second stages, as will be discussed below. Here again, we estimate an OLS 
 fi rst stage model described formally as
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     T̂ X Zg b q w= + + +    (6.19)   

 We retain the estimated  residuals  from this regression,     ˆT T-   , rather than the 
predicted values,     T̂   , that were used in the 2SLS approach. These residuals are then 
inserted as a “control” in the second stage regression:

     
ˆ( )Y X T T Ta b d e= + + + - +g    (6.20)   

 The inclusion of the residuals from the  fi rst stage controls for the endogenous 
variation in  T , allowing  δ  to be interpreted as an estimate of the causal relationship 
between the treatment and the outcome variable of interest. In addition, the  γ  
coef fi cient also provides a statistical test for the endogeneity of  T . That is, if  γ  is 
statistically signi fi cant, then we are able to reject the null hypothesis that  T  is exog-
enously related to  Y . 

 The control function approach suffers from improper standard errors due to the 
failure to account t for uncertainty introduced because of estimating the  fi rst stage 
regression. However, employing Stata’s bootstrapping procedure allows us to 
produce appropriate standard errors. By drawing a predetermined number of equally 
sized random samples from our data, with replacement, and then taking the average 
values of both point estimates and standard errors, bootstrapping provides a compu-
tationally intensive alternative to improve estimation. 

 Additionally, the control function approach allows for us to account for the non-
linearity of our dichotomous dependent variables. While each of the other proce-
dures has relied on an OLS regression in the second stage, here we use a logistic 
regression which accounts for the dichotomous nature of both bachelor’s degree 
completion and  fi rst- to second-year persistence. While it has been argued that the 
linear probability model is suitable for dichotomous dependent variables, logit 
models may provide different estimates under some circumstances (Angrist & 
Pischke,  2009  ) . Therefore, we include control function models employing both an 
LPM and logit regression in the second stage to evaluate any differences in point 
estimates due to the choice of regression method used. 

 Below, we provide a detailed discussion of the application of the IV approaches 
discussed above. We focus speci fi cally on interpretation of the point estimates and 
marginal effects and when relevant discuss any important differences among these 
results.   

   Results 

 We discuss a number of descriptive statistics from each of our datasets to allow an 
introduction to the data and variables included in the multivariate models. Then, we 
move into a discussion of the estimates produced by the multivariate models. We 
 fi rst present the  fi ndings of our analysis modeling persistence from the  fi rst to second 
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year of postsecondary education using the ELS:02 data. These models of student 
persistence serve as a proxy for our primary outcome of interest, bachelor’s degree 
attainment. This is due to a data limitation—students have not yet been followed 
long enough to determine whether they have completed a degree. We will then 
discuss the results of our degree attainment analysis using the NELS:88 data.  

   Descriptive Statistics 

 Table  6.1  presents descriptive statistics for the variables included in our models 
across the two samples: NELS, conducted from 1988 to 2000, and ELS, conducted 
from 2002 to 2006. The distribution of the dependent variables illustrates why 
policymakers are concerned about the consistently low educational attainment of 
students in the United States. Approximately one-third of students in the NELS 
sample attained a bachelor’s degree by the year 2000, 8 years after their expected 
high school graduation, and less than two-thirds of students in the ELS sample 
persisted to their second year of college by 2006. The distributions of other key 
variables are fairly similar between the two samples. For instance, despite educa-
tional stakeholders’ growing emphasis on providing a college preparatory curriculum 
for all students during the 1980s and 1990s, the sample statistics suggest that the 
percentage of students who take Algebra II remained at about 48–50% between 
the two surveys. 

 The mean unemployment in a student’s county of residence was lower for both 
NELS and ELS participants during their 10th grade years than in their 12th grade 
years. Speci fi cally, the mean local unemployment rate was 5.77% when NELS 
participants were in the 10th grade (Fall 1989) and 7.51% when NELS participants 
were in the 12th grade (Spring 1992). ELS participants generally experienced more 
favorable economic conditions than NELS participants: The mean unemployment 
in a student’s county of residence was 4.96% in the 10th grade (2001) and 5.73% in 
the 12th grade (2004). Tenth grade unemployment rates had standard deviations of 
2.39% and 1.68% in NELS and ELS, respectively, suggesting a relatively high level 
of variation in county-level unemployment in both samples. Our conceptual model 
suggests that the low local unemployment rates for students who were in the 10th 
grade in 1992 and 2001 may have induced students to enter the labor market and 
avoid intensive math coursework. 

 Additionally, there was a large shift in the proportion of students who were 16 
years old in the 10th grade between the two surveys. In 1990, when NELS partici-
pants were in the 10th grade, 15.41% of sophomores were 16 years old. However, 
in 2002 when ELS students were in the 10th grade, 22.75% of sophomores were 16 
years old. This means that fewer sophomores in the ELS sample than the NELS 
sample were impacted by policies that limit employment hours for youths aged 15 
and under. Other explanatory variable sample statistics indicate that college students 
in the United States became increasingly racially diverse, but less socioeconomically 
diverse, in the decade between the two surveys.  
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   Multivariate Models 

 A full table of results from both the NELS and ELS surveys is displayed in 
Tables  6.5  and  6.6 . To allow comparisons across the models, all results are pre-
sented as marginal effects and may be interpreted as the percentage change in the 
probability of obtaining a bachelor’s degree (NELS) or persisting to the second 
year (ELS), given a one-unit change in the explanatory variable (ceteris paribus). 
For example, the coef fi cient for the male variable (−0.082) in the OLS column in 
Table  6.5  (the ELS results table) indicates that men have about an 8% lower prob-
ability of persisting from the  fi rst to second year than women. To foreshadow the 
results, across all of the models estimated, taking Algebra II increases the probabil-
ity that students will earn a bachelor’s degree or persist to their second year of 
postsecondary education.   

   First- to Second-Year Persistence Results 

 Examining the results of the naïve OLS model, we  fi nd that students who take 
Algebra II have probabilities of persisting from the  fi rst to second year that are 
approximately 20% age points higher than students who did not take Algebra II. 
However, because this model does not account for the likelihood of selection bias, 
this estimate is likely biased. Therefore, we estimate a number of IV models that 
account for any endogeneity that may be present. 

 The naïve model of  fi rst- to second-year persistence presented in Table  6.5  
underestimates the effect of the treatment, Algebra II course taking, on persistence. 
In fact, each of the instrumental variable models indicates that the treatment effect 
is nearly three times that of the OLS model. In the 2SLS, LIML, GMM, and control 
function (LPM) models, students who take Algebra II are estimated to have between 
a 59 and 60 percent higher probability of persisting to the second year than students 
who did not take Algebra II. The control function model using a logit approach in 
the second stage, accounting for the nonlinearity in our dependent variable, esti-
mates a 52% increase in the probability of persisting when students take Algebra II 
as opposed to when they do not. 

 A number of other variables have consistent impacts on the probability of per-
sisting from the  fi rst to the second year. Higher performance on the NCES-
standardized mathematics exam is positively related to persistence: Those students 
in the 3 rd  and 4th quartiles are, on average, about 12% and 22% (respectively) more 
likely to persist than students scoring in the lowest (1st) quartile. The effects of 
mathematics performance on persistence appear to decrease substantially between 
the OLS and the IV models, decreasing in magnitude in all cases. This suggests that 
the endogeneity in the OLS model is causing bias in the estimates not only of the 
Algebra II coef fi cients but also of many other regressors of interest. 

 Men are consistently less likely than women to persist to the second year, by 
about 6.5%. Students who identify as Asian or Paci fi c Islander are about 10% more 
likely to persist than Whites. Socioeconomic status has a consistent impact on 
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persistence, such that individuals in higher SES quartiles are 15–20% more likely to 
persist than those in the lowest quartile. Finally, students whose mothers obtained 
either a bachelor’s or master’s degree are 4–6% more likely to persist than those 
whose mothers did not obtain a high school diploma.  

   Bachelor’s Degree Attainment Results 

 We  fi nd results comparable to those above when estimating models of bachelor’s 
degree completion using the NELS:88 data (see Table  6.6 ). The naïve model esti-
mates about a 19% increase in the probability of completing a 4-year degree among 
students who have taken Algebra II, compared to their peers who have not. However, 
when accounting for the endogeneity of the Algebra II variable, our instrumental 
variable results suggest a much stronger relationship between Algebra II course 
taking and degree completion. Again, the 2SLS, LIML, GMM, and control function 
(LPM) models estimate an effect that is nearly three times larger than the estimate 
produced by the naïve OLS model, ranging from about a 55% increase in the prob-
ability of degree completion to a 67% increase. Further, our control function model 
that employs logistic regression in the second stage estimates a marginal effect of 
Algebra II course taking on bachelor’s degree attainment of .82—more than four 
times the size of that estimated produced by the OLS model. 

 Across all IV models, we  fi nd that male students are 5–7% less likely than female 
students to complete their bachelor’s degrees. Students who are of Asian or Paci fi c 
descent are 8–10% more likely than their White peers to complete a degree, whereas 
students of Native American descent are slightly less likely to graduate than Whites 
(holding all else equal). Higher-income students (SES quartiles 3 and 4) are between 
10 and 26% more likely to earn a bachelor’s degree, relative to their peers who are 
of lower income.   

   Future Research, Implications for Policy, and Conclusions 

 This analysis employed an instrumental variables approach to determine the causal 
effect of high school courses on college completion. Speci fi cally, we examined the 
impact of taking Algebra II or higher on a student’s probability of postsecondary attain-
ment. In congruence with several prior studies (Adelman,  1999,   2006 ; Klopfenstein & 
Thomas,  2009 ; Rose & Betts,  2001  ) , our “naïve” regression models indicate that 
students who take more intensive high school math courses have increased probabili-
ties of degree completion compared to students who take less intensive math courses. 
Speci fi cally, both the NELS and ELS naïve OLS analyses indicate that students who 
take Algebra II have a 19–20% higher probability of degree completion than stu-
dents who do not take Algebra II. However, when we use local labor market condi-
tions and student age in the 10th grade as instruments to account for the fact that 
student course taking is endogenous, we  fi nd that taking Algebra II has a much 
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greater impact on a student’s probability of degree completion than the naïve model 
results indicate. The NELS and ELS IV models indicate that taking Algebra II 
can increase a student’s probability of degree attainment by as much as 50–80%. 
In sum, using the most recent course taking data available and accounting for 
endogeneity, we  fi nd that taking Algebra II in high school has a positive effect on a 
student’s likelihood of degree attainment. That the estimated positive effect of 
Algebra II course taking was larger in the IV estimates than the OLS estimates 
suggests that negative bias (the naïve estimates are lower that the “true” causal 
estimates) may be present in course taking effects studies that do not account for 
selection and omitted variable bias. Our naïve estimates obscure the fact that the 
students who are least likely to take intensive math coursework (marginal students) 
appear to bene fi t greatly from taking Algebra II while in high school. 

 These  fi ndings have implications for policies that aim to increase college com-
pletion. As noted in the introduction to this chapter, several states and school dis-
tricts have implemented mandatory college preparatory requirements over the past 
several years. These requirements are an extension of state-mandated increases in 
the number of years of math coursework needed to earn a diploma that have occurred 
since the release of  A Nation at Risk , the implementation of  No Child Left Behind , 
and the publication of in fl uential research from the US Department of Education 
(Adelman,  1999,   2006  ) . Absent course taking effects research that strongly supports 
causal inference, policymakers who hope to improve student educational and labor 
market outcomes on a large scale have implemented these curriculum mandates on 
the basis of  fi ndings from correlational studies. Our study provides rigorous 
evidence that, at least for students who are at the margin of taking Algebra II or not, 
mandating them to take this course may indeed produce positive individual and 
maybe even societal bene fi ts. 

 It is important to note that high school courses may have a causal impact not only 
on degree completion but on other outcomes that are of interest to state and federal 
policymakers. For instance, intensive high school courses may improve students’ 
critical thinking skills, high school graduation rates, access to college, or perfor-
mance in college-level coursework. In a related study, Kim, Kim, DesJardins and 
McCall  (  2012 , April) use the same IVs employed in this study on Florida student 
unit record data and  fi nd that taking Algebra II has a positive impact on the odds 
of enrolling in a 2- or 4-year college, as opposed to not enrolling in college at all. 
They also  fi nd that their IV model provides larger estimates of math course taking’s 
effects than a naïve statistical model, which suggests that the students who are least 
likely to take challenging courses appear to bene fi t from them the most in gaining 
access to postsecondary education. 

 To help inform policymakers, researchers should continue to explore how high 
school courses causally affect student educational attainment. Future studies could 
examine whether intensive courses in subjects other than math—such as science, 
English, or foreign languages—contribute to increased degree attainment. 
Additionally, it is important to determine if dropping out of the math course taking 
pipeline at different stages has different effects for students who attend different 
types of institutions. For example, it is possible that taking Algebra II has a positive 
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effect on the degree attainment of students who attend 2-year and nonselective 
4-year institutions but no effect on the attainment of students who attend selective 
4-year colleges. It is possible that students who attend selective 4-year colleges may 
need to remain in the math pipeline through Trigonometry or Precalculus to improve 
their odds of degree attainment. Additionally, given the large disparities in course 
taking among disadvantaged and advantaged students, it is important that researchers 
determine whether the causal impact of coursework varies across student socio-
economic status and race/ethnicity (Dalton et al.,  2007  ) . If disadvantaged students 
bene fi t disproportionately from taking Algebra II and other intensive courses, elimi-
nating de facto tracking may be a key step in reducing disparities in educational 
attainment between low- and high-SES students and underrepresented minority and 
majority students. 

 Above, we employ a local average treatment effect (LATE) approach using an IV 
framework. As noted, these approaches are often an improvement over the naïve 
approach that does not account for nonrandom assignment (i.e., endogeneity) issues. 
Although the IV approach is popular, it is not without its critics, some of whom 
believe it is somewhat a theoretical relative to other approaches. For example, struc-
tural models (as de fi ned by economists at least) focus more on the description of a 
theoretical model of the process and mechanisms underlying the problem at hand 
and attempt to estimate the fundamental parameters of interest. As Heckman notes, 
“the problem that plagues the IV approach is that the questions it answers are usu-
ally de fi ned as probability limits of estimators and not by well formulated economic 
problems. Unspeci fi ed ‘effects’ replace clearly de fi ned economic parameters as the 
objects of empirical interest” (Heckman & Urzua,  2009 , p. 3). Heckman and associates 
(Heckman & Vytlacil,  2005 ; Carneiro, Heckman, & Vytlacil,  2011  )  have bridged 
the IV and structural model literature using a local version of IV (which they dub 
local instrumental variables or LIV) which can be used to derive the effects esti-
mable using standard IV methods (average treatment effects, average treatment on 
the treated, LATE) plus it allows for the estimation of a highly relevant policy effect 
which they call the marginal policy relevant treatment effect (MPRTE). This 
approach is designed to remedy some of the de fi ciencies of the standard IV approach, 
in particular problems when the instruments are not tightly linked to policy changes 
of interest, in which case IV estimates do “not answer well-posed policy questions” 
(Carneiro et al.,  2011 , p.2779). This approach seems to hold great promise in 
allowing researchers to identify and estimate the effects of policies on educational 
(and other) outcomes and in so doing allows us to inform policymakers so they can 
make better informed decisions. 

 Concerned scholars are becoming increasingly vocal about the need for higher 
education research to address selection bias and use statistical methods that allow 
for stronger causal inferences (Goldrick-Rab, Carter, & Wagner,  2007 ; Long,  2007 ; 
McCall & Bielby,  2012 ; Reynolds & DesJardins,  2009  ) . This study helps address 
their concerns by providing researchers with a tool—instrumental variables 
estimation—for examining how an endogenous explanatory variable causally affects 
an outcome. We hope this example illustrates how important it is to employ statistical 
methods that account for nonrandom assignment into “treatments” in observational 
data, whether these treatments take the form of a course, scholarship, tutoring program, 



3136 Instrumental Variables: Conceptual Issues…

or any other intervention that may  potentially  facilitate educational attainment. 
Frankly, in many circumstances, the traditional “naïve” approach to studying edu-
cational policies, processes, and programs that are characterized by nonrandom 
assignment is often not rigorous enough. Higher education and institutional 
researchers need to become adept in using the latest tools that will allow us to make 
causal statements about what works in education and what needs to be improved. 
Hopefully, this chapter will be a valuable addition to the expanding literature in 
this area.       

  Acknowledgements   The authors would like to thank Brian McCall and Stephen Porter for their 
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   Appendix: Stata syntax 

  /*This  fi le will run all analysis for the IV chapter on the 
ELS data. The  fi le for the NELS data is nearly identical, 
simply replacing the dependent variable in each model 
from persistence to bachelor’s degree attainment*/  

  /*First create global macros for the models. This allows 
us to insert a large number of variables into our models 
without having to repeatedly type the variable names.*/  

  /***Becausethe data used for this analysis are restricted, 
we will not include actual variable names,but instead 
will provide alternate names for the variables used***/  

  /*Exogenous independent variables*/  
  global exog1 “mathquart2 mathquart3 mathquart4 male black 
asian_amhisp_amnative_ammixedoth ses_q2 ses_q3 ses_q4 mom_
hs mom_att2yr mom_aa mom_att4yr mom_bamom_mamom_phd born_84 
born_85 born_86 born_87 unemploy_rate2004 i.hsstate”  

  /*Endogenous independent variable*/  
  global endo1 “algebra_2”  

  /*Instrumental variables*/  
  global inst1 “unemploy_rate2001 age_16_urate age_16”  

  /*BIVARIATE CORRELATIONS AMONG ALL VARIABLES. Here we 
examine the bivariate relationships between each of our 
variables*/  
  corpse_att algebra_2 unemploy_rate2001 age_16_urate 
age_16 mathquart2 mathquart3 mathquart4 male black asian_
amhisp_amnative_ammixedoth ses_q2 ses_q3 ses_q4 mom_hs 
mom_att2yr mom_aa mom_att4yr mom_bamom_mamom_phd 
unemploy_rate2004  
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  spearmanpse_att algebra_2 unemploy_rate2001 age_16_urate 
age_16 mathquart2 mathquart3 mathquart4 male black asian_
amhisp_amnative_ammixedoth ses_q2 ses_q3 ses_q4 mom_hs 
mom_att2yr mom_aa mom_att4yr mom_bamom_mamom_phd 
unemploy_rate2004  

  /*Multivariate models of  fi rst to second-year 
persistence*/  

  /***BASELINE OR NAIVE MODEL***/  
  /*Linear Probability Model (LPM)*/  
  reg persist $endo1 $exog1, robust  

  /*We use the ‘eststo’ command to save the estimates from 
each of our  fi nal modelswhich we use later to create a 
publication-ready table*/  
  eststo OLSpersist  

  /***INSTRUMENTAL VARIABLES ESTIMATORS***/  

  *Two Stage Least Squares (2SLS)  

  /*First we estimate the model, using the global macros 
from above*/  
  ivregress 2sls persist $exog1 ($endo1 = $inst1), 
vce(robust)  

  /*Here we examine the model  fi t statistics from the  fi rst 
stage model in the 2SLS approach. The ‘estat fi rststage’ 
command provides R-squared and Adjusted R-squared sta-
tistics along with partial R-squared statistics for and 
F tests with signi fi cance levels for each endogenous 
variable*/  
  estat  fi rststage  

  /*Here we examine the overidenti fi cation tests to evaluate 
the exclusion restriction for our instruments. To con fi rm 
our expectation that the variables are properly excluded 
from the second stage model. If that is the case these 
test statistics will not be statistically signi fi cant*/  
  estat overid  

  /*Next we examine tests of the endogeneity of our Algebra 
II variable. If our variable of interest is in facten-
dogenous, then these statistics will be statistically 
signi fi cant*/  
  estat endogenous  

  /*Here we store the estimates from the 2SLS model to be 
used to create a publication-ready table which will also 
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allow us to compare results across the estimated 
models.*/  
  eststo SLSpersist  

  *Limited Information Maximum Likelihood (LIML)  
  /*Estimating the model*/  
  ivregressliml persist $exog1 ($endo1 = $inst1), vce(robust)  

  /*Evaluatingthe  fi rst stage model statistics*/  
  estat fi rststage  
  /*Overidenti fi cation tests*/  
  estat overid  

  /*Storing estimates*/  
  eststo LIMLpersist  

  *Generalized Method of Moments (GMM)  
  /*Running the model*/  
  ivregressgmm persist $exog1 ($endo1 = $inst1), vce(robust)  

  /*Againexamine the  fi rst stage statistics*/  
  estat  fi rststage  

  /*Overidenti fi cation tests*/  
  estat overid  

  /*Tests for endogeneity*/  
  estat endogenous  

  /*Storing Estimates*/  
  eststo GMMpersist  

  /*Control function with LPM and Bootstrap*/  
  /*In order to bootstrap the standard errors for these 
estimates, we need to  fi rst write a program that will run 
the  fi rst stage regression, save the residuals, and then 
include those residuals as controls in the second stage 
regression */  
  capture program drop lpmcf  
  program lpmcf  
       quietly {  
          /*estimate the  fi rst stage LPM*/  
          reg algebra_2 $exog1 $inst1, robust  
           /*just in case we already saved these vari-

ables we drop them*/  
          capture drop alg2_resid_els  
           /*store the residuals from the  fi rst stage 

*/  
          predict alg2_resid_els, resid  
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          /*estimate the second stage LPM*/  
           reg persist $endo1 $exog1 alg2_resid_els, 

robust  
       }  
  end  

  /*Now we estimate a control function model with an LPM 
second stage on 250 bootstrapped samples and estimate 
our standard errors from that*/  
  bootstrap _b, seed(1) r(250): lpmcf  

  /*Store the estimates*/  
  eststo CFLPMpersist  

  *Control function with Logit and Bootstrap  
  /*This program estimates the  fi rst and second stages then 
we conduct a bootstrap to estimate the proper standard 
errors*/  
  capture program drop logitcf  
  program logitcf  
       quietly{  
          /*estimate the  fi rst stage*/  
          reg algebra_2 $exog1 $inst1, robust  
          capture drop alg2_resid_els_logit  
          /*store residuals from  fi rst stage*/  
          predict alg2_resid_els_logit, resid  
           /*estimate the second stage logit*/  
           logit persist $endo1 $exog1 alg2_resid_

els_logit, vce(robust)  
      }  
  end  

  /*Now we estimate a control function model with a logit 
second stage on 250 bootstrapped samples and produce 
standard errors from that process*/  
  bootstrap _b, seed(1) r(250): logitcf  

  /*Because the coef fi cients produced through Stata’s logit 
routine are not directly comparable to those from each 
of the other models that are linear probability models 
in the second stage, we use Stata’s ‘margins’ command to 
convertlogit coef fi cients into comparable marginal 
effects*/  
  margins, dydx(*)  

  /*Store the results*/  
  eststo CFLogitpersist  
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  /*Finally we employ the ‘esttab’ routine to create a 
publication-ready table of marginal effects (b) and 
signi fi cance measures (p)*/  
  esttabOLSpersistSLSpersistLIMLpersistGMMpersistC-
FLPMpersistCFLogitpersist, b(3) p(3) not wide plain    
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