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  Abstract   Cell-extrinsic signals and intrinsic cell cycle regulators strictly control 
proliferation. Cancers develop from a cell that escapes these tight controls and pro-
liferates unrestrictedly. The primary cilium critically controls proliferation by medi-
ating cell-extrinsic signals and regulating cell cycle entry. Accordingly, recent 
studies showed that defective cilia can either promote or suppress cancers, depend-
ing on the cancer-initiating mutation, and that presence or absence of primary cilia 
is associated with speci fi c cancer types. These novel  fi ndings suggest that primary 
cilia play central but distinct roles in different cancer types, opening up a com-
pletely new avenue of research to understand the biology and treatment of cancers.  
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  Outline 

 In this chapter, we review evidence showing that primary cilia play important roles 
in cell cycle entry and multiple signaling pathways, and we discuss how these roles 
of primary cilia could contribute or inhibit brain cancer formation. First, we review 
the dual and opposing roles of primary cilia in medulloblastoma development, then 
discuss possible roles of primary cilia in other brain cancers focusing on diffuse 
intrinsic pontine glioma, glioblastoma multiforme, and cancer stem cell. Lastly, we 
discuss the potential of primary cilia in diagnosis and treatment for brain cancers.  

    8.1   Introduction 

 The primary cilium is at the crossroads of cell cycle progression and cellular signal-
ing pathways. Cell cycle progression regulates assembly and disassembly of pri-
mary cilia, and primary cilia in turn regulate cell cycle entry (Rieder et al.  1979 ; 
Tucker et al.  1979 ; Kim et al.  2011b ; Li et al.  2011  ) . Primary cilia participate in 
multiple signaling pathways that control cell proliferation, differentiation, migra-
tion, polarity, and metabolism, deregulation of which are closely linked to oncogen-
esis (Huangfu et al.  2003 ; Schneider et al.  2005 ; Simons et al.  2005 ; Zhu et al.  2009 ; 
Boehlke et al.  2010 ; Berbari et al.  2011 ; Ezratty et al.  2011  ) . Thus, it is reasonable 
to suspect that normal or abnormal functions of primary cilia may contribute to 
oncogenesis. Indeed, recent studies showed that primary cilia play fundamental 
roles in the development of basal cell carcinoma, the most common cancer in 
Caucasians, and medulloblastoma, the most common brain cancer in children (Han 
et al.  2009 ; Wong et al.  2009  ) . Surprisingly, primary cilia are either required or sup-
pressive for oncogenesis in mice, depending on the cancer-initiating mutation. 
Furthermore, the presence or absence of primary cilia is associated with speci fi c 
cancer types in humans (Wheatley  1995 ; Han et al.  2009 ; Schraml et al.  2009 ; 
Seeley et al.  2009 ; Wong et al.  2009 ; Yuan et al.  2010 ; Kim et al.  2011a  ) , suggesting 
that primary cilia can either promote or suppress human cancers as well. Therefore, 
understanding the mechanisms by which this intriguing organelle functions in nor-
mal and cancerous cells will reveal oncogenic mechanisms that were not apparent 
previously and will unmask new therapeutic approaches.  

    8.2   Primary Cilia and Cell Cycle Progression 

 The primary cilium contains a unique microtubule cytoskeleton called the axoneme, 
a ring of nine microtubule doublets (9 + 0) that runs longitudinally through the 
organelle. The axoneme grows from the basal body docked with the cell membrane. 
During cell division, the basal body detaches from membrane and transforms into 
the mother centriole to form the centrosome that organizes the mitotic spindle. 
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Thus, ciliogenesis is tightly regulated throughout the cell cycle; proliferating cells 
disassemble cilia before mitosis to release the basal body and reassemble them after 
mitosis (Rieder et al.  1979 ; Tucker et al.  1979  ) . Some cells also resorb cilia upon 
entry into the S phase (Tucker et al.  1979  ) . Consistent with this regulation, Aurora 
kinase A, a centrosomal kinase that regulates mitotic entry, becomes activated at the 
basal body as cells enter the S phase and mitosis and triggers ciliary disassembly 
(Pugacheva et al.  2007  ) . As a cell exits mitosis, CP110, a distal centriolar protein 
that inhibits ciliogenesis, disappears from the mother centriole, allowing ciliogen-
esis to occur (Spektor et al.  2007  ) . Cyclin-dependent kinase inhibitors also in fl uence 
ciliogenesis in cultured cells; knockdown of  p16   INK4a   positively in fl uences ciliogen-
esis, and knockdown of  p15   INK4b   negatively regulates it (Bishop et al.  2010 ; Kim 
et al.  2010a  ) . However, mutant mice defective for  p16   INK4a   and/or  p15   INK4b  do not 
display developmental defects associated with defective cilia. Remarkably, recent 
studies showed that this cell-cycle-dependent organelle is not passively linked with 
the cell cycle but actively regulates cell cycle progression (Bielas et al.  2009 ; Jacoby 
et al.  2009 ; Kim et al.  2011b ; Li et al.  2011  ) . 

 One of the  fi rst pieces of evidence supporting the role of primary cilia in cell 
cycle progression came from studies on the  inositol polyphosphate-5-phosphatase 
E  ( INPP5E ) gene mutated in two cilia-associated diseases, Joubert and MORM 
syndromes (Bielas et al.  2009 ; Jacoby et al.  2009  ) . INPP5E, which hydrolyzes the 
5-phosphate of phosphatidylinositol 3,4,5-triphosphate and phosphatidylinositol 
4,5-bisphosphate, localized exclusively at primary cilia; thus, mutation in  INPP5E  
caused the ciliary membrane to accumulate these lipids, which play important roles 
in signaling pathways and membrane traf fi cking. Notably,  INPP5E  mutation did not 
affect assembly of cilia but accelerated both ciliary disassembly and S-phase entry 
after serum stimulation. Previous work showed that overexpression of  INPP5E  
caused cell cycle arrest (Kisseleva et al.  2002  ) . These studies suggest that ciliary 
disassembly can affect S-phase entry. More direct evidence supporting this notion 
came from the following two studies. 

 In one study, Sung and colleagues (Li et al.  2011  )  found that Tctex-1, a light chain 
subunit of cytoplasmic dynein, plays critical roles in ciliary disassembly and cell 
cycle progression. Knockdown of Tctex-1 inhibited both ciliary disassembly and 
S-phase entry that occur after serum addition to serum-starved NIH3T3 and RPE 
cells. Importantly, Tctex-1 knockdown did not affect S-phase entry in cells lacking 
primary cilia, indicating that failure to disassemble cilia underlies the blockage of 
S-phase entry. This inhibition was independent of the function of Tctex-1 as a cyto-
plasmic dynein component. Serum stimulation induced phosphorylation of Tctex-1 
at threonine 94 (T94), leading to its dissociation from the dynein complex and accu-
mulation at the transition zone between the basal body and the ciliary axoneme. The 
knockdown effect was rescued by wild-type and phosphorylation-mimicking Tctex-1 
(Tctex-1 T94E ), but to a lesser extent by non-phosphorylatable Tctex-1 T94A , which binds 
dynein. Furthermore, Tctex-1 T94E  accelerated ciliary disassembly and S-phase entry 
even in the absence of serum stimulation.  In vivo , Tctex-1 is selectively enriched in 
proliferating neural progenitors. Remarkably, knockdown of Tctex-1 in radial glia, 
the neural progenitors in the embryonic brain, caused them to exit from the cell cycle 
and differentiate into neurons prematurely, whereas overexpression of Tctex-1 T94E  
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shortened the G1 phase, accelerated S-phase re-entry, and increased the proliferating 
progenitor cell population. These data indicate that the primary cilium blocks S-phase 
entry and cells use Tctex-1 to overcome this blockage. 

 In the other study, Tsiokas and colleagues (Kim et al.  2011b  )  found that Nde-1, 
a centrosomal protein, critically regulates cilia length and S-phase entry. Knockdown 
of Nde-1 in NIH3T3 and RPE cells lengthened cilia and delayed S-phase entry after 
serum stimulation. Importantly, similar to Tctex-1, the delay in S-phase entry upon 
Nde-1 knockdown was dependent on the presence of primary cilia; there was no 
delay in S-phase entry in the absence of primary cilia. Furthermore, expression of 
constitutively active form of Rab8a, which lengthens primary cilia independently of 
Nde-1, also inhibited S-phase entry, con fi rming that lengthened cilia delay S-phase 
entry.  In vivo , knockdown of  Nde-1  in zebra fi sh caused lengthening of primary cilia 
and defective proliferation in Kuffer’s vesicle. Interestingly, mutations in  Nde-1  
cause microcephaly in both humans and mice (Feng and Walsh  2004 ; Alkuraya 
et al.  2011 ; Bakircioglu et al.  2011  ) , which may be partly due to premature cell 
cycle exit and differentiation of neural progenitors that have abnormally long cilia. 
Taken together, these studies revealed that primary cilia regulate cell division as a 
barrier blocking S-phase entry raising the possibility that primary cilia negatively 
regulate oncogenesis.  

    8.3   Primary Cilia and Signaling Pathways 

 Studies over the past decade have established primary cilia as a signaling hub for 
multiple signaling pathways, including Hedgehog (Goetz and Anderson  2010  ) , Wnt 
(Wallingford and Mitchell  2011  ) , receptor tyrosine kinases (RTKs) (Christensen 
et al.  2012  ) , and Notch signaling (Ezratty et al.  2011  ) . These signaling pathways 
control a myriad of cellular processes, including proliferation, differentiation, 
migration, polarity, and metabolism, all of which play critical roles in development, 
homeostasis, and oncogenesis. Here we brie fl y discuss the role of primary cilia in 
these signaling pathways. 

    8.3.1   Hedgehog Signaling 

 Forward genetic studies in mice have shown that Hedgehog signaling requires the 
primary cilium for both activation and repression of the pathway (Huangfu et al. 
 2003 ; Haycraft et al.  2005 ; Huangfu and Anderson  2005 ; Liu et al.  2005 ; May et al. 
 2005  )  (detailed in Chap.   2    ). Ciliary mutant mice have phenotypes similar to those 
of mutant mice defective in Hedgehog signaling. Epistasis studies placed primary 
cilia downstream of Hedgehog receptor Patched1 (Ptch1) and Smoothened (Smo), 
but upstream of the GLI-Kruppel family transcription factors (Gli1-3) and their 
binding protein Suppressor of Fused (Sufu) (Huangfu et al.  2003 ; Haycraft et al. 
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 2005 ; Huangfu and Anderson  2005 ; Liu et al.  2005 ; May et al.  2005 ; Han et al. 
 2008 ; Chen et al.  2009 ; Jia et al.  2009  ) . In the absence of Hedgehog, Ptch1 localizes 
to primary cilia and inhibits Hedgehog signaling by preventing Smo from entering 
primary cilia (Rohatgi et al.  2007  ) . Upon binding of Hedgehog, Ptch1 moves out of 
the cilia, leading to accumulation and activation of Smo in the primary cilium 
(Corbit et al.  2005 ; Rohatgi et al.  2007  ) . Activated Smo induces Sufu-Gli complex 
accumulation in primary cilia and dissociation of the complex, leading to formation 
of Gli transcriptional activators (Humke et al.  2010 ; Tukachinsky et al.  2010 ; Zeng 
et al.  2010  ) . Without activated Smo in primary cilia, Gli2 and Gli3 are truncated by 
the proteasome to become transcriptional repressors and repress Hedgehog target 
gene expression. In the absence of primary cilia, the processing of Gli3 (and prob-
ably Gli2 also) repressor is greatly reduced, resulting in derepression of Hedgehog 
target genes (Haycraft et al.  2005 ; Huangfu and Anderson  2005 ; Liu et al.  2005 ; 
May et al.  2005  ) . 

 In contrast to complete loss of primary cilia, which results in complete irrespon-
siveness to Hedgehog and inef fi cient processing of Gli repressors, distinctive struc-
tural abnormalities in primary cilia cause a range of Hedgehog signaling defects. 
Mutations in components of intra fl agellar transport (IFT) complex A, which func-
tions in retrograde transport of ciliary components from cilia to the cell body, cause 
abnormally short and swollen cilia and constitutive activation of Hedgehog signal-
ing (Tran et al.  2008 ; Cortellino et al.  2009  ) . Loss of Arl13b, a ciliary small GTPase, 
causes opening of axonemal microtubules and constitutive activation of Gli activa-
tors at low levels without affecting Gli3 repressor activity (Caspary et al.  2007  ) . 
Mutations in Broad-minded, a Rab-GAP–like protein, cause detachment of ciliary 
membrane from the axoneme and selective loss of responsiveness to high Hedgehog 
levels (Ko et al.  2010  ) . Thus, primary cilia play complex and active roles in 
Hedgehog signaling rather than merely concentrating signaling molecules to facili-
tate their interactions.  

    8.3.2   Wnt Signaling 

 Secreted protein Wnt binds to Frizzled receptors to trigger the signaling activity of 
cytoplasmic protein Dishevelled (Dvl), where the signaling diverges into canonical 
and non-canonical Wnt signaling pathways (Logan and Nusse  2004  ) . In the canoni-
cal pathway, activated Dvl leads to accumulation and nuclear localization of  b -catenin 
and subsequent activation of Wnt target genes. The non-canonical pathway is inde-
pendent of  b -catenin and primarily controls cytoskeletons involved in planar cell 
polarity (PCP) and cell migration. One of the  fi rst pieces of evidence linking primary 
cilia to Wnt signaling came from a study on Inversin, a ciliary protein whose muta-
tion causes cystic kidney diseases and  situs inversus  (Simons et al.  2005  ) . The study 
showed that, in  fi sh and frogs, Inversin functions as a switch from the canonical to 
the non-canonical Wnt signaling pathway by targeting Dvl for destruction. Moreover, 
mutant mice defective in genes mutated in Bardet-Biedl syndrome, a disease linked 
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to ciliary dysfunction, have phenotypes associated with PCP mutants (Ross et al. 
 2005  ) . Other studies from kidney, pancreas, cochlea,  fi sh embryos, and cultured cells 
also showed that defective primary cilia increase canonical Wnt signaling activity 
and disrupt non-canonical Wnt signaling (Lin et al.  2003 ; Cano et al.  2004 ; Gerdes 
et al.  2007 ; Corbit et al.  2008 ; Jonassen et al.  2008 ; Jones et al.  2008  ) . Notably, how-
ever, mutant mice defective for primary cilia do not have obvious developmental 
phenotypes associated with defective Wnt signaling. Furthermore, two recent studies 
showed that defective primary cilia do not affect Wnt signaling in  fi sh, mice, and 
cultured cells and suggested that Wnt signaling requires the basal body rather than 
primary cilia  per se  (Huang and Schier  2009 ; Ocbina et al.  2009  ) . Thus, the primary 
cilium and the basal body appear to have a subtle and cell type–speci fi c roles in Wnt 
signaling (Wallingford and Mitchell  2011  ) .  

    8.3.3   RTK Signaling 

 RTKs are activated by growth factors and initiate a series of signaling cascades, 
including mitogen-activated protein kinase pathways, phosphatidylinositol 3-kinase 
pathways, and phospholipase C pathways. The  fi rst connection between RTKs and 
primary cilia came from evidence that platelet-derived growth factor receptor  a  
(PDGFR a ) signaling requires primary cilia in NIH3T3 cells and mouse embryonic 
 fi broblasts (MEFs) (Schneider et al.  2005  ) . Serum starvation of con fl uent cells 
induced PDGFR a  expression and its localization to primary cilia. Subsequent stim-
ulation of cells with PDGF-AA ligand induced phosphorylation of PDGFR a  and 
downstream dual speci fi city mitogen-activated protein kinase kinase 1/2 (MEK1/2) 
inside primary cilia, leading to phosphorylation of retinoblastoma-associated (RB) 
protein, which marks S-phase entry. The activation of PDGFR a  in primary cilia was 
also required for directional migration mediated by Na+/H + exchanger NHE1 
(Schneider et al.  2009  ) . Importantly, PDGF-AA failed to activate PDGFR a  to 
induce S-phase entry and directional migration in MEFs isolated from hypomorphic 
 IFT88  mutant mice ( IFT88   Tg737Rpw  ) defective for ciliogenesis. These observations 
suggest that PDGF-AA and PDGFR a  require primary cilia to transmit signals. 
Some of the observed defects, however, may be partly due to the low level of 
PDGFR a  in  IFT88   Tg737Rpw   MEFs after serum starvation, which dramatically induced 
a higher PDGFR a  level in wild-type but not in  IFT88   Tg737Rpw   MEFs (Schneider et al. 
 2005  ) . Thus, it will be important to determine whether PDGF-AA can activate sig-
naling in cells that lack primary cilia but have PDGFR a  at a similar level as wild-
type cells. It still remains to be determined whether primary cilia are required for 
PDGFR a  signaling  in vivo . 

 Another RTK, insulin-like growth factor 1 receptor (IGF1R) appears to function 
preferentially in primary cilia in MEF-adipose-like 3T3-L1 cells (Zhu et al.  2009  ) , 
which can be differentiated into adipocyte after growth arrest at con fl uence. IGF1R 
activation by insulin is essential to induce differentiation. Interestingly, in 3T3-L1 
cells, insulin activated IGF1R in primary cilia faster than IGF1R outside primary 
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cilia and induced accumulation of activated downstream signaling molecules, 
phosphorylated insulin receptor substrate 1 (IRS1) and protein kinase B (Akt), at 
the basal body. Remarkably, knockdown of  IFT88  or  Kif3a  encoding a subunit of 
essential ciliogenic Kinesin-II motor disrupted IGF1R signaling and blocked dif-
ferentiation of 3T3-L1, suggesting that IGF1R requires primary cilia to signal to 
induce differentiation. Like PDGFR a  signaling, it is unknown whether primary 
cilia are required for IGF1R signaling  in vivo . 

 In addition to PDGFR a  and IGF1R, epidermal growth factor receptor (EGFR) 
and the angiopoietin receptors Tie-1 and Tie-2 localize to primary cilia (Ma et al. 
 2005 ; Teilmann and Christensen  2005 ; Danilov et al.  2009 ; Wu et al.  2009  ) . 
Furthermore, recent studies showed that primary cilia negatively regulate the activ-
ity of mammalian target of rapamycin (mTOR) both  in vitro  and  in vivo  (DiBella 
et al.  2009 ; Boehlke et al.  2010 ; Berbari et al.  2011  ) , whereas mTOR positively 
regulates the length of primary cilia (Yuan et al.  2012  ) . mTOR is a key signaling 
molecule that integrates RTK signaling with cellular metabolism, a change in which 
is one of the hallmarks of cancers. Thus, primary cilia appear to participate in mul-
tiple RTK signaling pathways, providing them with a platform to crosstalk and inte-
grate. Future work should investigate whether primary cilia participate in RTK 
signaling  in vivo  and in the crosstalk of multiple RTK signaling pathways.  

    8.3.4   Notch Signaling 

 A recent study showed that Notch signaling requires primary cilia during skin devel-
opment (Ezratty et al.  2011  ) . Notch is a transmembrane receptor protein that under-
goes intramembrane proteolytic cleavage upon binding to its ligands, which are mainly 
transmembrane proteins as well (Kopan and Ilagan  2009  ) . After cleavage, the Notch 
intracellular domain (NICD) enters the nucleus and activates transcription of target 
genes. Removing primary cilia in mouse embryonic skin cells by knockdown of  IFT74  
or conditional ablation of either  IFT88  or  Kif3a  resulted in defective epidermal dif-
ferentiation, a process dependent on Notch signaling. Consistently, expression of 
Notch responsive genes was disrupted in cells lacking primary cilia. Expression of 
NCID partially rescued expression of a Notch reporter gene and differentiation defects. 
The study also showed that Notch3 is selectively localized to primary cilia, and 
Presenilin-2, the catalytic subunit of  g -secretase that cleaves Notch receptor to gener-
ate NICD, is localized at the base of primary cilia in addition to intercellular mem-
brane borders. These localizations were speci fi c to suprabasal cells in the embryonic 
skin, where Notch signaling is active. Remarkably, nuclear NCID3, the processed 
Notch3, was observed only in ciliated suprabasal cells and not in  Kif3a  mutant cells. 
These  fi ndings raise interesting questions: Does Notch3 require primary cilia to signal 
in other tissues and animals? Does any other Notch require primary cilia to signal? 
Are membrane-bound ligands for Notch3 also exclusively localized to a speci fi c 
domain of the signaling cell to be juxtaposed to the primary cilium of responding cells 
in developing skin? If so, what is the underlying mechanism? 
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 Why do vertebrate cells require primary cilia for multiple signaling pathways? 
Simplistically, the concentration of signaling molecules in primary cilia whose large 
surface area relative to the small volume would provide high sensitivity for detec-
tion of low levels of extracellular signals. Subtle structural defects in primary cilia, 
however, cause unique Hh signaling defects, suggesting that the function of primary 
cilia are more than concentrating and sensitizing signaling molecules for extracel-
lular signals. The primary cilium, although continuous from cytoplasm, is a distinct 
subcellular compartment, in which traf fi cking is restricted by IFT and the transition 
zone, a barrier at the base of cilia. This restriction may allow the coordinated spread 
or movement of second messengers or effecter molecules. In addition, the juxtapo-
sition of the basal body and the Golgi complex at the base of cilia may facilitate 
rapid traf fi cking of molecules like Smo into the cilia upon receiving extracellular 
signals and could help coordinate the cell cycle.   

    8.4   Primary Cilia and Medulloblastoma 

 One of the  fi rst bits of direct evidence showing that primary cilia play salient roles 
in cancer came from a study on medulloblastoma (Han et al.  2009  ) . Medulloblastoma 
is the most common malignant brain tumor in children, accounting for ~20% of 
childhood brain tumors. Medulloblastomas mostly arise in the cerebellum, but a 
recent study showed that a subgroup of medulloblastoma arises in the dorsal brain 
stem (Gibson et al.  2010  ) . Several transcriptional pro fi ling studies revealed that 
medulloblastoma comprises four principal subgroups, which have distinct demo-
graphic, clinical, transcriptional, and mutational characteristics (Thompson et al. 
 2006 ; Kool et al.  2008 ; Cho et al.  2011 ; Northcott et al.  2011 ; Taylor    et al.  2012  ) . 
These subgroups include Sonic Hedgehog (SHH, one of three mammalian Hedgehog 
proteins), WNT, subgroup 3, and subgroup 4. The SHH and WNT subgroups are 
named after the signaling pathways thought to drive tumorigenesis of that subgroup. 
Subgroup 3 often shows ampli fi cation of MYC. Molecular mechanisms that drive 
subgroup 4 have not been identi fi ed. 

 SHH subgroup medulloblastoma is characterized by aberrant activation of SHH 
signaling and constitutes about 25% of medulloblastoma cases. The SHH subgroup 
arises from granule neuron precursors (GNPs) in the cerebellum (Schuller et al. 
 2008 ; Yang et al.  2008  ) . GNPs are produced from radial glia in the anterior roof of 
the fourth ventricle, known as the upper rhombic lip, and migrate rostrally to form 
the external granular layer (EGL) on the surface of the developing cerebellum 
(Altman and Bayer  1997  ) . In the EGL, GNPs proliferate extensively to produce 
cerebellar granule neurons, the most abundant neurons that constitute more than 
half of the neurons in the central nervous system. Immature granule neurons pro-
duced from the EGL migrate inward, passing Purkinje neurons and forming the 
internal granule neuron layer. SHH secreted from Purkinje neurons is an essential 
mitogen for GNPs in the EGL (Dahmane and Ruiz i Altaba  1999 ; Wallace  1999 ; 
Wechsler-Reya and Scott  1999  ) . Consistent with the critical role of primary cilia in 
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Hedgehog signaling, GNPs lacking primary cilia failed to proliferate, resulting in 
severe hypoplasia and underdevelopment of the cerebellum (Chizhikov et al.  2007 ; 
Spassky et al.  2008  ) . 

 While SHH signaling is essential for the proliferation of GNPs, abnormal activa-
tion of SHH signaling leads to uncontrolled expansion of GNPs, resulting in 
medulloblastoma (Hatten and Roussel  2011  ) . A recent study revealed surprising 
dual roles of primary cilia in medulloblastoma development driven by abnormal 
activation of SHH signaling (Han et al.  2009  ) . Mice expressing a constitutively 
active form of Smo (SmoM2), which was identi fi ed in medulloblastoma and basal 
cell carcinoma (Lam et al.  1999  ) , in GNPs develop medulloblastoma (Hallahan 
et al.  2004 ; Mao et al.  2006 ; Schuller et al.  2008 ; Han et al.  2009  ) . In these mice, 
SmoM2 concentrated in the primary cilia of tumor cells and required this organelle 
to induce tumors; concomitant removal of primary cilia in SmoM2-expressing cells 
completely blocked medulloblastoma development (Han et al.  2009  ) . Unlike 
SmoM2, GNPs expressing a constitutively active form of GLI2, a downstream tran-
scription factor, that lacks an N-terminal repressor domain (GLI2 D N) did not form 
medulloblastoma (Roessler et al.  2005 ; Pasca di Magliano et al.  2006 ; Han et al. 
 2009  ) . Surprisingly, however, concomitant removal of primary cilia in GNPs 
expressing GLI2 D N resulted in 100% medulloblastoma development, suggesting 
that primary cilia suppress medulloblastoma development when the oncogenic 
mutation is in the GLI2 transcription factor. Thus, the primary cilium plays oppos-
ing dual roles in medulloblastoma: it is required for SmoM2 but suppressive for 
GLI2 D N to induce medulloblastoma (Fig.  8.1 ). The molecular mechanism by which 
primary cilia suppress GLI2 D N-driven medulloblastoma development remains to 
be determined. In the presence of primary cilia, Gli3 repressors may counteract 
GLI2 D N and inhibit medulloblastoma development, whereas in the absence of pri-
mary cilia, Gli3 repressors do not form (Haycraft et al.  2005 ; Huangfu and Anderson 
 2005 ; Liu et al.  2005 ; May et al.  2005  ) , which may allow GLI2 D N to induce 
medulloblastoma. Alternatively, primary cilia may be required for another signaling 
pathway to suppress tumorigenesis. Primary cilia may also function as a general 
barrier for cell cycle entry, as discussed above. Similar opposing dual functions of 
primary cilia were observed in basal cell carcinoma driven by SmoM2 and GLI2 D N 
(Wong et al.  2009  ) . Taken together, these suggest that, to induce cancer, some onco-
genic mutations may require intact primary cilia but others may require losing them. 
Notably, in support of this hypothesis, the presence or absence of primary cilia is 
tightly associated with speci fi c subgroups of medulloblastoma (Fig.  8.2 ). In humans, 
primary cilia are almost exclusively present in the SHH and WNT subgroups of 
medulloblastoma but absent in subgroups 3 and 4 (Han et al.  2009  ) . Thus, primary 
cilia may be required for the SHH and WNT subgroups but suppressive for sub-
groups 3 and 4. The presence of primary cilia in the WNT subgroup is somewhat 
contradictory to several studies showing that primary cilia constrain canonical WNT 
signaling; however, as discussed above, the role of primary cilia in WNT signaling 
is still controversial and speci fi c to cell type. Recently developed mouse models 
each representing WNT-subgroup medulloblastoma (Gibson et al.  2010  )  and sub-
group 3 (Kawauchi et al.  2012 ; Pei et al.  2012  )  will provide an excellent opportunity 
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to investigate the role of primary cilia in these tumors. These investigations will also 
provide clues to whether the dual roles of primary cilia are generally applicable to 
cancers in addition to those driven by Hedgehog signaling.   

 Currently, SMO inhibitors are under clinical trials to treat SHH subgroup 
medulloblastoma and basal cell carcinoma. Although these clinical trials show 
promise for SMO inhibitors for treating medulloblastoma, resistance to a SMO 
inhibitor was observed in a patient who initially showed a dramatic response (Yauch 

  Fig. 8.1    Dual and opposing roles of primary cilia in medulloblastoma formation. ( a ) SmoM2 is 
insensitive to inhibition by Ptch1 and constitutively localizes to primary cilia, where it inhibits 
production of repressor forms of Gli2 and Gli3 and induces production of activator forms. 
Uncontrolled activation of the signaling leads to medulloblastoma formation in  hGFAP::Cre; 
SmoM2    fl /+   mice. ( b ) Without primary cilia, SmoM2 cannot activate downstream signaling, thus 
loss of primary cilia in  hGFAP::Cre; SmoM2    fl /+  ;  Kif3a    fl / fl    mice completely blocks medulloblastoma 
formation. ( c ,  d ) Constitutively active form of Gli2 (Gli2 D N) is not suf fi cient to induce medullo-
blastoma in  hGFAP::Cre; CLEG2    fl /+   mice. Loss of primary cilia in  hGFAP::Cre; CLEG2    fl /+  ;  Kif3a    fl / fl    
mice allows Gli2 D N to induce medulloblastoma. Repressor forms of Gli2 and/or Gli3, whose 
formation requires primary cilia, may inhibits the tumorigenic activity of Gli2 D N. Alternatively, 
unknown mechanism through primary cilia may inhibit the tumorigenic activity of Gli2 D N       
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et al.  2009  ) . Subsequently, a point mutation in SMO conferring resistance to the 
SMO inhibitor was found in the medulloblastoma of this patient. Furthermore, 
 in vivo  and  in vitro  studies using the same SMO inhibitor revealed frequent appear-
ance of resistance (Dijkgraaf et al.  2011  ) . Currently, SMO is the only molecular 
target under clinical trials to treat medulloblastoma. Thus, it is necessary to develop 
strategies to overcome the resistance. Since Smo requires primary cilia to function 
and ciliogenesis requires a number of cellular processes involving a large number of 
proteins, primary cilia may provide multiple novel targets that can overcome resis-
tance to SMO inhibitors.  

    8.5   Primary Cilia and Other Brain Cancers 

 Given that primary cilia play important roles in cell cycle progression and signaling 
pathways frequently involved in oncogenesis, they are also likely to play important 
roles in other brain cancers in addition to medulloblastoma. Here we will discuss 
two types of brain cancers, the deadliest brain cancers of children and adults, in 
which primary cilia may have important roles. 

 Diffuse intrinsic pontine gliomas (DIPGs) are diffusely in fi ltrative high-grade 
gliomas in the ventral pons. DIPGs affect mostly children, peaking at age 6–7 years, 
constituting 10–15% of pediatric brain cancer (Hawkins et al.  2011  ) . DIPGs are 
extremely aggressive cancers that are almost universally fatal in less than a year. Yet, 
little is known about the biology of this tumor for which no effective therapy exists. 
The age- and region-speci fi c natures of DIPGs suggest that these tumors arise from 
deregulation of a speci fi c postnatal development process occurring in the ventral 

  Fig. 8.2    Primary cilia are present in human medulloblastomas showing oncogenic activation of 
SHH or WNT signaling ( a ), but mostly absent in other molecular subgroups of medulloblastomas 
( b ).  Arrows  indicate basal bodies stained with an antibody against pericentrin and  arrowheads  
indicate primary cilia stained with an antibody against acetylated tubulin       
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pons in children. Indeed, a recent study identi fi ed a putative neural precursor cell 
population positive for neural precursor markers, Nestin, Vimentin, and Olig2 in the 
ventral pons of both humans and mice, whose spatiotemporal distribution matches 
very closely to that of DIPGs (Monje et al.  2011  ) . Interestingly, the Hedgehog signal-
ing pathway was active in this precursor population in mice. Expression of SmoM2 
increased proliferation of these cells in mice, leading to hypertrophy of the ventral 
pons. Furthermore, blocking Hedgehog signaling reduced self-renewal of neuro-
spheres generated form human DIPGs, whereas addition of SHH increased self-
renewal. Thus, aberrant activation of Hedgehog signaling may contribute to DIPG 
formation by driving proliferation of these precursor cells. Unlike medulloblastoma, 
however, expression of SmoM2 was not suf fi cient to induce DIPGs, suggesting that 
another hit is necessary for DIPGs to form. This is consistent with the fact that people 
having germline mutations of PTCH1 are predisposed to medulloblastoma but not 
DIPG (Johnson et al.  1996  ) . Notably, recent genome-wide analyses identi fi ed fre-
quent ampli fi cation or overexpression of  PDGFR a , PDGF-A,  and  IGF1R , all of 
which encode proteins that may signal through primary cilia (Zarghooni et al.  2010 ; 
Paugh et al.  2011  ) . Cancer cells that have ampli fi cation or overexpression of these 
oncogenes may rely on normal signaling mechanisms through primary cilia. Thus, 
primary cilia may play important roles in the development of this devastating dis-
ease. It would be interesting to  fi nd whether DIPGs are ciliated and co-activation of 
SHH and PDGFR a  can cause DIPGs in mouse models, as well as to test the role of 
primary cilia in such mouse models. If primary cilia play a signi fi cant role, targeting 
ciliogenesis would be a valid treatment option. 

 Glioma is the most frequent brain tumor in adults, and malignant glioma (glio-
blastoma multiforme, GBM) comprises 80% of malignant tumors in the central 
nervous system (Chen et al.  2012  ) . Currently, GBM patients’ 5 year survival rate is 
less than 5%, and median survival is about 1 year. Two recent genome-wide studies 
including gene expression pro fi ling, DNA copy number variation, protein-encoding 
gene sequencing, and DNA methylation status revealed three core pathways that 
commonly mutated in GBM: the p53 pathway, the RB pathway, and the RTK path-
way (Parsons et al.  2008 ; TCGA  2008  ) . The majority (74%) of GBMs had altera-
tions in all three pathways, which enables cancer cells to proliferate unrestrictedly, 
escaping from cell-cycle checkpoints, senescence, and apoptosis. On the other hand, 
alterations affecting components in the same core pathway were mutually exclusive. 
Among RTKs, frequent aberrations were found in EGFR, ERBB2, PDGFR a , and 
MET. Similar to what was seen in medulloblastoma, several gene expression 
pro fi ling studies identi fi ed distinct molecular subtypes in GBM (Vitucci et al.  2011  ) . 
A recent study grouped GBM into four subtypes: proneural, neural, classical, and 
mesenchymal (Verhaak et al.  2010  ) . By integrating gene expression pro fi les with 
the previous genome-wide analysis of GBM, this study showed that aberrant status 
of  EGFR ,  NF1 , and  PDGFR a /Isocitrate dehydrogenase 1  de fi ne the classic, mesen-
chymal, and proneural subtypes, respectively. Notably, the classic subtype expressed 
high levels of Hedgehog (SMO, GLI2, and GAS1) and NOTCH (NOTCH3, JAG1, 
and LFNG) signaling components. Given the important role of primary cilia in 
Hedgehog, Notch, and PDGFR a  signaling pathways, the classic and proneural 
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subtypes may require primary cilia for their growth. Thus, it would be interesting to 
determine whether the presence or absence of primary cilia is associated with 
speci fi c GBM subtypes. Such associations may indicate distinct roles of primary 
cilia in different GBM subtypes. Primary cilia are absent in several GBM cell lines 
(Moser et al.  2009  ) ; however, the molecular subtypes to which the cell lines belong 
are unknown. If the presence or absence of primary cilia is associated with speci fi c 
GBM subgroups and such an association is important for oncogenesis, primary cilia 
will be an important diagnostic tool and a treatment target for GBM. 

 Although the cancer stem cell (CSC) theory is controversial, it suggests that 
primary cilia may have important roles in GBM and possibly in other brain cancers. 
CSCs are a subpopulation of cells in a cancer that can self-renew and give rise to 
highly heterogeneous cancer cells that make up the bulk of cancer. GBM CSCs were 
one of the  fi rst CSCs isolated from solid cancers (Singh et al.  2004  ) . Resistance to 
radiation and chemotherapies is thought to be partly due to CSCs, which have pref-
erentially active DNA repair pathways (Bao et al.  2006  )  and high levels of ATP-
binding cassette transporters to export chemotherapy agents (Bleau et al.  2009  ) ; 
thus, CSCs have important implications for cancer targeting strategy. CSCs are 
thought to have properties similar to those of somatic stem cells. A number of stud-
ies have shown that signaling pathways that critically regulate the behavior of nor-
mal somatic stem cells also regulate that of GBM CSCs (Clark et al.  2007 ; Takebe 
et al.  2011  ) . These pathways include Hedgehog, Wnt, and Notch signaling path-
ways, for which primary cilia play important roles. Consistently, recent studies 
showed that expression of Gli1 and  b -catenin are associated with recurrence after 
therapy and poor prognosis in GBM patients (Rossi et al.  2011 ; Kim et al.  2012  ) . 
Therefore, targeting these pathways is a vital therapeutic approach to increase the 
ef fi cacy of radiation and chemotherapies. Understanding the mechanism by which 
primary cilia function in these signaling pathways in normal stem cells and CSCs 
will be important for developing such a therapeutic intervention.  

    8.6   Conclusion 

 Brain cancer is a complex and heterogeneous disease. Its treatments, however, are 
largely similar, including surgical resection, radiation, and chemotherapy, thus 
resulting in individually different outcomes. Recent advances in genome-wide stud-
ies on large cohorts of brain cancer patients elucidated that cancers that otherwise 
appear identical are highly heterogeneous at the molecular level, with distinctive 
oncogenic mutations and gene expression pro fi les. These recent advances call for 
new treatment paradigms building on better understandings of the molecular and 
cellular processes involved in initiation and progression of particular brain cancer 
types. We envision that investigating the function of primary cilia together with 
oncogenic mutations speci fi c to distinct cancer types will reveal oncogenic mecha-
nisms that were not appreciated previously. We also envision that primary cilia hold 
a great therapeutic potential for treatment for brain cancer patients. Some cancers 
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have primary cilia, but others do not (Wheatley  1995 ; Han et al.  2009 ; Schraml et al. 
 2009 ; Seeley et al.  2009 ; Wong et al.  2009 ; Yuan et al.  2010 ; Kim et al.  2011a  ) . 
Most cells in our body have the primary cilium; thus, some cancers may have it as a 
default. Building and maintaining primary cilia requires complex processes involv-
ing a wide variety of proteins that function in cell cycle progression (Pugacheva 
et al.  2007 ; Spektor et al.  2007 ; Kim et al.  2011b ; Li et al.  2011  ) , cytoskeletal 
dynamics (Kim et al.  2010a  ) , apicobasal polarity (Fan et al.  2004  ) , planar cell polar-
ity (Kim et al.  2010b ; Wallingford  2010  ) , intra fl agellar transport (Rosenbaum and 
Witman  2002  ) , vesicle traf fi cking (Nachury et al.  2007 ; Zuo et al.  2009 ; Knodler 
et al.  2010  ) , and transcriptional regulation (Thomas et al.  2010  ) . Thus, some cancers 
may have lost primary cilia secondarily as they progress and accumulate mutations. 
In cancers driven by Hedgehog signaling, however, the presence or absence of pri-
mary cilia directly controls oncogenesis (Han et al.  2009 ; Wong et al.  2009  ) . 
Furthermore, the presence or absence of primary cilia is associated with speci fi c 
cancer types. Thus, the status of primary cilia in a particular cancer may re fl ect the 
role of primary cilia in that cancer; some cancers may keep primary cilia and others 
may eliminate them for growth and progression. Primary cilia will be important 
targets for such cancers. Since many proteins are involved in ciliogenesis, inhibiting 
ciliogenesis or ciliary function may be a plausible strategy to treat cancers that 
require primary cilia for their growth. Indeed, a high-throughput screening for 
inhibitors of Hedgehog signaling discovered a small molecule that inhibits cyto-
plasmic dynein and ciliogenesis (Firestone et al.  2012  ) . It will be challenging to 
restore primary cilia in cancers that have eliminated them for growth. Yet, recent 
studies showed that small molecules targeting signaling molecules or fatty acid syn-
thesis can restore primary cilia even in cancer cells (Wang et al.  2009 ; Willemarck 
et al.  2010  ) . Therefore, research in primary cilia will open up a completely new 
avenue of research to understand the biology and treatment of cancers.      
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