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Cilia and Nervous System Development 
and Function

   Introduction    

 Investigation of the cellular organelle called the cilium has an august history dating 
back to no less a personage than Antonie Philips van Leeuwenhoek at the end of the 
seventeenth century. Using his handmade, palm-sized microscope, Leeuwenhoek 
observed protozoa propelled through water by the coordinated beating of sheets of 
motile cilia. Ever since, biologists have been fascinated by this tiny organelle. Cilia 
are 1–3  m m long, 250 nm wide, microtubule-based organelles projecting from the 
plasma membrane of unicellular organisms and of many cell types in the animal, 
protist, and to a very limited extent, plant and fungi kingdoms. The term “cilium” is 
Latin for eyelid, and by association an eyelash, thus referring not only to the hair-
like structures visible at high magni fi cation, but also calling up images of the wave-
like movement made by the lashes in the blink of an eye. The Danish naturalist Otto 
Friedrich Müller coined the term in his book  Animalcula Infusoria; Fluvia Tilia et 
Marina  (1786) to describe certain members of the protozoan phylum Ciliophora. 
Despite their fascinating rhythmic beating patterns, clarifying the ultrastructural 
basis of ciliary motility took another 250 years and was only made possible thanks 
to advances in electron microscopy and biochemistry. 

 The second half of the nineteenth century brought the discovery of a variant 
form of cilia, which is now called the primary cilium, although who  fi rst recorded 
its existence is somewhat controversial. Some authors refer to a two-page 
description of the sea lamprey inner ear epithelia published by Alexander Ecker 
(“Flimmerbewegung im Gehörorgan von  Petromyzon marinus .”  Archiv fur Anatomie, 
Physiologie und Wissenschaftliche Medicin , 1844, pp. 520–521). Though Ecker did 
see an epithelium, in which the individual cells bore a single cilium, his article very 
clearly identi fi es the cilia as  motile . The  fi rst true description of primary cilia prob-
ably comes from an analysis of lancelet development, in which the epithelium of the 
surface ectoderm could be shown to bear individual cilia (Aleksandr Kovalevskij, 
“Entwicklungsgeschichte des  Amphioxus lanceolatus .” Mémoires de l’Académie 
impériale des sciences de St. Pétersbourg VII Série Tome XI, 1867, pp. 1–17). 
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  Fig. 1    First published image of primary cilia in human tissue, epithelial cells of the seminal 
vesicle. The primary cilium can be seen protruding from the apical edge of the cells, described in the 
original  fi gure legend as a “Central-Flagellum in the super fi cial cells.” K. W. Zimmermann, 
“Beiträge zur Kenntniss einiger Drüsen und Epithelien.”  Archiv für Mikroskopische Anatomie und 
Entwicklungsgeschichte  (1898) V. 52(3), pp. 552–706       

Several reports followed sporadically over the next three decades, but they did not 
arouse much interest, until the German anatomist Karl Wilhelm Zimmermann 
became the  fi rst person to describe primary cilia in mammals (Fig.  1 , “Beiträge zur 
Kenntniss einiger Drüsen und Epithelien.”  Archiv für Mikroskopische Anatomie und 
Entwicklungsgeschichte  (1898) V. 52(3), pp. 552–706).  

 Describing a histological preparation of the seminal vesicle of an executed criminal 
(Fig.  1 ), he wrote:

   Wenn auch nicht in allen Fällen, so doch in vielen, sah ich auch über das ober fl ächliche 
Körperchen hinaus den Verbindungsfaden sich fortsetzen und frei in das Lumen hineinra-
gen. Wir haben also in den genannten Fällen Einrichtungen (“Centralgeissel”), wie wir sie 
in gewissen Abschnitten der Niere durchaus als Regel kennen gelernt haben. Ob in den 
anderen Fällen der überaus feine “Aussenfaden” prinzipiell fehlte, ob er abgerissen war, 
oder ob sein Fehlen nur vorübergehend, also periodisch ist, oder schliesslich ob er zwar 
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vorhanden, aber an die Zellober fl äche angelegt und mit ihr künstlich verklebt war, so dass 
ich ihn nicht sehen konnte, das sind Fragen, in welche weitere Untersuchungen Licht 
bringen müssen, sowie in die Bedeutung der Einrichtung überhaupt.  

 Though not in every case, but indeed in most, I saw this “connecting thread” continuing 
above the super fi cially-located [basal] body and extending freely into the lumen. We have 
then, in the cases mentioned here, structures (“Central-Flagellum”) similar to those that we 
regularly observed in certain segments of the kidney. 1  Whether, in those other cases [in 
which cilia were not found], this extremely  fi ne “outer thread” was missing altogether; 
whether it was torn off; or whether it was missing temporarily, appearing only periodically 
in the tissue; or whether it was actually present but lying close to the cell surface and 
arti fi cially glued to it so that I could not distinguish it, these are questions which further 
investigations must illuminate, including the signi fi cance of the whole structure itself. 2    

 Zimmermann was able to distinguish primary from motile cilia, to catalog their 
presence in a number of organs in both rabbit (Fig.  2 ) and man (Fig.  1 ), and to 
hypothesize a sensory function for them; perhaps for these reasons he is consis-
tently credited in the literature with the discovery of this organelle.  

 In contrast to motile cilia, only one copy of the so-called “primary” cilium is found 
in each cell, and over half a century after Zimmermann’s discovery, ultrastructural 
analysis revealed that the central microtubule doublet was missing from these 

  1   Earlier in the article, Zimmermann describes primary cilia jutting into the lumen from the epithelia 
of various tubules of the rabbit kidney (Fig.  2 ). 
 2   Translation courtesy of C. Lulu Bradford. 

  Fig. 2    First published image of primary cilia in mammalian tissue, epithelial cells of the distal 
convoluted tubule of the rabbit kidney. The primary cilium can be seen protruding from the apical edge 
of the cells, described in the original  fi gure legend as a “Central-Flagellum”. K. W. Zimmermann, 
“Beiträge zur Kenntniss einiger Drüsen und Epithelien.”  Archiv für Mikroskopische Anatomie und 
Entwicklungsgeschichte  (1898) V. 52(3), pp. 552–706       
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protrusions. Without this doublet the cilium should not be able to move, at least in 
the standard metachronal fashion that had been described in the  fi rst half of the 
twentieth century, and so for these two reasons the primary cilium was consigned to 
the status of a vestigial organelle, reminiscent of the decades-long dismissal of the 
appendix and the thymus as “vestigial” organs. 

 Electron microscopic studies  fi rst described primary cilia in the nervous system. 
Neurons throughout the body bear individual primary, but not motile, cilia, whereas 
the ependymal cells of the vertebrate ventricular system possess motile cilia projecting 
into the ventricular space. Such cilia rhythmically beat the cerebrospinal  fl uid (CSF) 
from its source, the plexus choroideus within the lateral, third, and fourth ventricles, 
onwards to the lateral and median apertures, where the CSF  fi nds its way to the 
subarachnoidal space surrounding the entire brain and to  fi ll the central canal of the 
spinal cord. Although the motile cilia of the ependyma were viewed as clinically 
relevant almost immediately for the ventricular swelling seen in hydrocephalus, 
the primary cilia displayed by neurons and the stem cells giving rise to them were 
misunderstood; though they were properly documented at the time, they were also 
written off as vestigial and promptly forgotten. 

 In the past 10 years, this long-neglected organelle has emerged to take its rightful 
place in the spotlight, as a torrent of research points to a crucial role for primary cilia 
in the development and function of the central nervous system. A common theme of 
these studies is the critical dependency upon cilia of signal transduction of the Sonic 
hedgehog and (more recently) the Wnt signaling pathways to regulate fate decisions 
and morphogenesis. It is also becoming increasingly clear that both primary and 
motile cilia are important in the activity of the nervous system, including postnatal 
neurogenesis, the primary processing of sensory information, the control of body 
mass, and higher faculties, such as behavior and cognition, where they serve as 
“antennae” for neurons to sense and process their environment. In this book we 
describe the structure and behavior of cilia and the various tissues throughout 
the brain and spinal cord that depend on cilia for their proper development and 
operation. In doing so, we explore the many responsibilities of cilia in neurogenesis 
and neural activity. 

 The book is divided into chapters that cover the following topics. We start 
with a detailed ultrastructural and molecular description of primary and motile cilia 
(Chap.   1    : Primary and Motile Cilia: Their Ultrastructure and Ciliogenesis). The 
manifold roles that cilia play in the development of the nervous system are explained 
in the next two chapters (Chap.   2    : Primary Cilia, Sonic Hedgehog Signaling, and 
Spinal Cord Development; Chap.   3    : Primary Cilia and Brain Development). This is 
followed by several chapters focusing on the regulatory control primary cilia exert 
in neuronal activity in the postnatal mammalian body, which is just coming to light 
(Chap.   4    : Primary Cilia in Cerebral Cortex: Growth and Functions on Neuronal 
and Non-Neuronal Cells; Chap.   5    : Primary Cilia and Inner Ear Sensory Epithelia; 
Chap.   6    : Neuronal Cilia and Obesity). There follows a chapter examining the motile 
cilia found in the ventricles of the brain (Chap.   7    : Motile Cilia and Brain Function: 
Ependymal Motile Cilia Development, Organization, Function, and Their Associated 
Pathologies). Finally, in the last two chapters we discuss the pathological consequences 

http://dx.doi.org/10.1007/978-94-007-5808-7_1
http://dx.doi.org/10.1007/978-94-007-5808-7_2
http://dx.doi.org/10.1007/978-94-007-5808-7_3
http://dx.doi.org/10.1007/978-94-007-5808-7_4
http://dx.doi.org/10.1007/978-94-007-5808-7_5
http://dx.doi.org/10.1007/978-94-007-5808-7_6
http://dx.doi.org/10.1007/978-94-007-5808-7_7
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that arise when cilia disappear or do not work properly (Chap.   8    : Primary Cilia 
and Brain Cancer; Chap.   9    : Abnormalities of the Central Nervous System Across 
the Ciliopathy Spectrum). In this book we can of course only graze the surface 
of the deep pool of knowledge gathered about cilia and their control of virtually 
every aspect of organogenesis, and increasingly, their more recently discovered 
involvement in function/dysfunction in many organs of the mammalian body. By 
restricting our attention to the nervous system, we hope to provide both a generous 
introduction for the interested layperson, as well as a detailed exposition for those 
curious neuroscientists who may wish to delve more deeply into the  fi eld. 

 Kerry L. Tucker and Tamara Caspary  

http://dx.doi.org/10.1007/978-94-007-5808-7_8
http://dx.doi.org/10.1007/978-94-007-5808-7_9
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  Abstract   Cilia are microtubule-based organelles surrounded by a specialized 
ciliary membrane. They emerge from basal bodies situated underneath the cell 
membrane. Basal bodies not only anchor cilia inside the cytoplasm but also they 
are essential for ciliary assembly. The basal body either originates from the oldest 
centriole of a pair of centrioles found at the centrosome, the main microtubule 
organizing center of the cell, to give rise to one primary cilium, or is generated in 
large numbers prior to the formation of multiple cilia. Large numbers of motile 
cilia are generally present on the cell surface of epithelia specialized for  fl uid 
movement. Motile cilia have a 9+2 axonemal structure with nine outer microtubule 
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doublets surrounding two centrally-located singlet microtubules, and additional 
accessory structures. By contrast, primary cilia are found as single entities on 
most cells of the body. Their axoneme is of a 9+0 organization i.e. the centrally 
located singlet microtubules as well as the accessory structures are missing. 
Primary cilia are generally immotile. However, they are essential for sensing and 
transducing environmental signals. Primary cilia are therefore critical for embry-
onic and postnatal development, as well as for tissue homeostasis in adulthood. 
Impaired ciliary function causes a tremendous number of severe and diverse 
human diseases. Thus, unravelling the molecular mechanisms of cilium genera-
tion and maintenance is of crucial importance not only for medical research. In the 
past decade, pioneering studies have provided important insights into the underly-
ing molecular mechanisms and the different players involved. This chapter 
addresses the differences and similarities in structure and function of motile and 
primary cilia as well as their assembly. Electron microscope data of ciliary struc-
ture and assembly are combined with molecular data to present an overview of the 
mechanisms involved in centriole and basal body generation, cilium formation 
and maintenance, cilium disassembly, and the diverse functions that are ascribed 
to cilia.  

  Keywords   Acentriolar pathway  •  Alar sheets  •  Axoneme  •  Basal body  •  Basal foot  
•  Cartwheel  •  Centriole disengagement  •  Centriolar pathway  •  Centriole  •  Centriole 
duplication  •  Centrosome  •  Centrosome splitting  •  Centrosome cycle  •  Ciliary 
membrane  •  Ciliary pocket  •  Ciliary pore  •  Ciliogenesis  •  Ciliopathies  •  Cilium 
disassembly  •  Daughter centriole  •  Distal appendages  •  Intra fl agellar transport  •  Mother 
centriole  •  Motile cilia  •  MTOC  •  Necklace  •  PCM  •  Procentriole  •  Primary cilia  
•  Rootlet  •  Subdistal appendages  •  Transition  fi bers  •  Transition zone      

    1.1   Introduction 

 Cilia are membrane-bound, microtubule based organelles that in most cases project 
from the cell surface into the cellular environment. Each cilium is anchored at the 
cell membrane by its basal body. Based on their ultrastructural organization cilia 
can be classi fi ed into a few subtypes. However, they observe a wide variety in 
overall appearance and execute a lot of diverse functions. Additionally, besides 
common cilia highly modi fi ed cilia exist that do not project from the cell surface. 
Instead, these modi fi ed cilia are found in the cytoplasm mostly of sensory cells and 
contribute to sensation (e.g. the connecting cilium of the rod cells of the mamma-
lian retina; De Robertis  1956  ) . Cilia are evolutionary conserved organelles present 
throughout the animal kingdom. In invertebrates, however, they are restricted to 
sensory neurons. Higher plants and fungi do not possess cilia. In mammals, cilia 
are present on almost all cells of the body. According to their ubiquitous occur-
rence cilia are essential organelles, and it is becoming more and more obvious that 
ciliary malfunction causes a large number of severe diseases.  
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    1.2   Overview of Ciliary Structure and Function 

 The core structure of all eukaryotic cilia and  fl agella is the axoneme bounded by 
the ciliary membrane. Although continuous with the plasma membrane, the cili-
ary membrane is a specialized compartment to which molecules gain restricted 
access. The axoneme consists of a cylindrical array of nine microtubule (MT) 
doublets. Each MT doublet is composed of one complete MT consisting of 13 
proto fi laments, the A tubule, to which an incomplete B tubule consisting of 10 
proto fi laments only is attached. Proto fi laments itself are assembled by the polym-
erization of  a  b -tubulin dimers. Motile cilia, generally, in addition harbour two 
centrally-located singlet microtubules and accessory structures. Motile cilia are 
therefore mostly of a 9+2 type (Fig.  1.1a ). Commonly, they concentrate in large 
numbers on the surface of speci fi c mammalian cells. Their orchestrated beating is 
essential for  fl uid and cell movement. The long  fl agellum of the sperm can be 
viewed as a single motile cilium and shares its underlying 9+2 structure. However, 
most cells in mammals bear one single immotile cilium on their surface called the 
primary cilium or monocilium (Wheatley et al.  1996  ) . Primary cilia are mostly of 
a 9+0 organization i.e. they lack the central singlet microtubules (Fig.  1.1b ). 
Additionally, accessory structures are also absent. Primary cilia are often adapted 
to serve specialized sensory functions. Moreover, there are also examples of 9+2 
immotile cilia (e.g. olfactory receptor cilia, Fig.  1.1c ; Moran et al.  1982  )  and 9+0 
motile cilia (e.g. cilia of node cells; Fig.  1.1d ; Sulik et al.  1994  ) .  

 Motile cilia are found on the surface of specialized epithelia usually in large num-
bers. Their coordinated beating propels  fl uid and cells over the epithelial surface. 
Multiciliated epithelia are found in mammals in the respiratory tract, the paranasal 
sinuses, the oviduct, and the ventricular system of the brain (Fawcett and Porter 
 1954 ; Sorokin  1968  ) . In the human airway, motile cilia are important to propel 
inhaled material out of the lung. Moreover, it has been found that these motile cilia 

  Fig. 1.1    Transmission electron micrographs of ciliary cross-sections. ( a ) A motile cilium from rat 
brain ependymal cells with typical 9+2 organization. ×67,000 (With permission from Brightman 
and Palay  1963  ) . ( b ) Cross-section through a primary cilium of 3T6  fi broblasts with typical 9+0 
organization. Y-shaped bridges are seen that tether    the MT doublets to the membrane ( arrowhead ). 
×77,000 (With kind permission from Wheatley  1972  )  ( c ) Cross-section through an olfactory recep-
tor cilium of man with 9+2 structure but missing dynein arms. × 83,100 (With permission from 
Moran et al.  1982  ) . ( d ) Cross section through a nodal cilium of mice (With permission from 
Nonaka et al.  1998  )        
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express bitter taste receptors. Binding of bitter compounds increased the intracellular 
Ca 2+  concentration and stimulated ciliary beat frequency. Therefore, motile cilia, at 
least in the lung airway, are also sensory organelles (Shah et al.  2009  ) . 

 The ventricles of the brain and the central canal of the spinal cord are lined by 
a continuous epithelium, the ependyma. The ependyma of lateral ventricles in 
mammals and birds and of the spinal cord is a ciliated epithelium with cilia extend-
ing into the ventricular lumen  ( Sotelo and Trujillo-Cenoz  1958 ; Tennyson and 
Pappas  1962 ; Klinkerfuss  1964  ) . Usually 40–60 cilia protrude from the surface of 
a single ependymal cell (Brightman and Palay  1963 ; Chamberlain  1973 ; Nakayama 
and Kohno  1974  ) . These kinocilia have a 9+2 organization and are far longer than 
primary cilia. In the ependymal cells of the golden hamster ( Mesocricetus auratus ) 
kinocilia have a length of ~10  m m and are of 150–175 nm in diameter (Blinzinger 
 1962  ) . Cilia grow out from basal bodies situated directly beneath the apical surface 
of ependymal cells ( fi rst observed by Purkinje  1836  ) . The basal bodies of ciliated 
ependymal cells from the lateral ventricle and the third ventricle emanate cross-
striated rootlets and one basal foot (Fig.  1.2 ; Brightman and Palay  1963 ; Klinkerfuss 
 1964  ) . Rootlets are  fi lamentous appendages that emerge from the lateral wall and 
the proximal tip of the basal body to extend into the cytoplasm. They are approxi-
mately 0.4  m m in length with frayed ends. The basal foot is a conical structure laterally 
associated with the basal body. Kinocilia of brain ependyma are important for cir-
culation of the cerebrospinal  fl uid.  

  Fig. 1.2    TEM showing two 
cilia ( arrows ) protruding 
from the surface of an 
ependymal cell of the lateral 
ventricle of the cat. Ciliary 
rootlets emanate from the 
basal bodies ( arrowheads ). 
×28,000 (With permission 
from Klinkerfuss  1964  )        
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 Based on the morphology of the ependymal surface of the third ventricle, three 
regions can be identi fi ed. The upper two-thirds (in rabbit, mouse, rat and man) are lined 
by ependymal cells that protrude clusters of cilia from their surface. But in the lower 
one-third of the third ventricular wall ciliary bundles on the luminal ependymal surface 
become less frequent and eventually ependymal cells occasionally carry only single 
cilia (Bruni et al.  1972  )  (Fig.  1.3 ). Tufts of cilia on ependymal cells of the rat brain 
are chronologically generated during embryonic and fetal development. First, ependy-
mal cells emerge only one single cilium but consecutively grow further cilia to possess 
later on tufts of them (Chamberlain  1973  ) . Along the immature neural tube ciliated 
ependymal cells are not present. Gradual covering of the central canal and ventricles by 
ciliated ependyma takes place concordantly with regression of the ventricular zone and 
radial glial cells (in: Del Bigio  2010  ) . However, radial glial cells themselves bear pri-
mary cilia (Cohen et al.  1988 ; Willaredt et al.  2008 ; Arellano et al.  2012  ) . In adulthood, 
ependymal cells in the central canal of rats regularly protrude two cilia whereas those 
in the rabbit have single as well as multiple cilia. Cilia observe a polarity towards the 
caudal direction along the central canal suggesting that ciliary activity moves the cere-
brospinal  fl uid caudalwards (Nakayama and Kohno  1974  ) .  

 As in the brain ependyma, the close vicinity of cells bearing multiple motile cilia 
with those projecting only one cilium was also found in the oviduct epithelium 
(Chamberlain  1973 ; Odor and Blandau  1985 ; Hagiwara et al.  2002  ) . But cells either 
possess 9+2 cilia or a solitary cilium. Ciliated cells with 9+2 cilia never seem to 
possess primary cilia (Wheatley et al.  1996  ) . 

 Solitary primary cilia have been identi fi ed in the central nervous system, not only 
on ependymal cells but also on granular neurons and on astroglial cells of the fascia 
dentata of the hippocampal region in the rat (Dahl  1963  ) . Moreover, using antibodies 

  Fig. 1.3    Scanning electron micrographs of the ependymal surface of the third ventricle of the 
rabbit. Ciliary tufts protruding into the ventricular lumen in the upper two-third of the ven-
tricle ( a ; ×2,800). In the lower one-third of the third ventricle ciliated cells occur less fre-
quently ( b ; ×2,800) and eventually single cilia are occasionally seen rather than ciliary bundles 
( c ; ×7,000) (With permission from Bruni et al.  1972  )        
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that selectively detect neuronal cilia, such as antibodies against somatostatin receptor 
subtype 3 (Sstr3) or type III adenylyl cyclase, the presence of a primary cilium 
could be demonstrated on most neurons in the mammalian brain (Handel et al.  1999 ; 
Fuchs and Schwark  2004 ; Bishop et al.  2007 ; Arellano et al.  2012  ) . The neuronal 
cilium is of 9+0 structure and has a two-centriole basal organization. However, pri-
mary cilia are found on most cells of the body (a complete list of cells and tissues 
harbouring a primary cilium can be found at:   http://www.bowserlab.org/primary-
cilia/cilialist.html    ). 

 By the observation of ciliated secretory cells in the pars distalis of the mouse 
hypophysis and the structural similarity of these cilia to sensory cilia, Barnes sug-
gested a sensory function of monocilia. Moreover, she noticed that motile cilia are 
of 9+2 structure and are associated with a single centriole or basal body whereas 
cilia that lack the central microtubules (and are therefore of 9+0 structure) are 
mostly associated with two centrioles (Barnes  1961  ) . 

 Primary cilia are thought to function as mechanosensors and/or chemosen-
sors. A mechanosensory function, possibly in addition to a chemosensory func-
tion, has been postulated for primary cilia of bone and cartilage cells and 
odontoblasts (Magloire et al.  2004 ; Malone et al.  2007 ; Anderson et al.  2008 ; 
   Whit fi eld  2008  ) . The presence of primary cilia in chondrocytes of mouse embryos 
has  fi rst been observed by Scherft and Daems in  1967 . A role in the perception of 
extrinsic stimuli e.g. mechanical loading from the extracellular matrix and the 
transduction to the cell body has been ascribed to primary cilia in cartilage 
 chondrocytes (Poole et al.  1985  ) . The close association of the primary cilium with 
the Golgi apparatus suggested a functional feedback mechanism to facilitate 
directed secretion of extracellular matrix components in response to biomechani-
cal load (Poole et al.  1997,   2001  ) . The recent identi fi cation of extracellular matrix 
receptors on chondrocyte primary cilia strengthens the view that primary cilia act 
as mechanosensors (McGlashan et al.  2006  ) . More convincingly, their function as 
mechanotransducers in chondrocytes has been demonstrated by studying chon-
drocytes that lack primary cilia. However, this study also showed that primary 
cilia sense mechanical loading via perception of ATP release in compressed 
 cartilage (Wann et al.  2012  ) . 

 Primary cilia, additionally, act as mechanosensors in a variety of other cell 
types, including cholangiocytes, smooth muscle cells, embryonic node cells, renal 
epithelial cells, and endothelial cells (Praetorius and Spring  2001,   2002 ; McGrath 
et al.  2003 ; Masyuk et al.  2006 ; Lu et al.  2008 ; Nauli et al.  2008  ) . Endothelial pri-
mary cilia might be involved in blood pressure control (reviewed in: Nauli et al. 
 2011  ) . In endothelial and renal epithelial cells the primary cilium senses  fl uid shear 
and transmits the signal via polycystin-1/polycystin-2 and increase of Ca 2+  to affect 
gene expression (Praetorius and Spring  2001,   2002 ; Hierck et al.  2008 ; Nauli et al. 
 2008 ; AbouAlaiwi et al.  2009  ) . Polycystin-1 (PC1) and polycystin-2 (PC2) are 
integral membrane proteins encoded by  PKD1  and  PKD2 , respectively. Mutations 
in  PKD1  or  PKD2  cause autosomal dominant polycystic kidney disease (ADPKD), 
a lethal disorder characterized by progressive development and enlargement of 
 fl uid- fi lled cysts in the kidney and eventually renal failure. PC1 activates a G-protein 

http://www.bowserlab.org/primarycilia/cilialist.html
http://www.bowserlab.org/primarycilia/cilialist.html
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signaling pathway, whereas PC2 functions as a Ca 2+ -permeable cation channel. 
A subfraction of both proteins heterodimerizes and colocalizes to the primary 
cilium in renal epithelial cells and some other cells. Bending of the primary cilium 
in renal epithelial cells results in PC1/PC2 mediated Ca 2+  increase (Nauli et al. 
 2003 ; reviewed in: Chapin and Caplan  2010  ) . Moreover, primary cilia are essential 
for proper regulation of Ca 2+ -signaling (Siroky et al.  2006  ) . Renal cilia, in addition, 
seem to be chemosensory since the type 2 vasopressin receptor (V2R) has been 
localized to them (Raychowdhury et al.  2009  ) . The discovery that ADPKD is 
caused by mutations in genes encoding cilia-associated proteins in turn created a 
new class of genetic disorders, the “ciliopathies”. 

 Primary cilia of the corneal endothelial cells that protrude into the anterior cham-
ber seem to have an osmoregulatory and/or chemosensory function (Svedbergh and 
Bill  1972 ; Gallagher  1980 ; Collin and Collin  2004  ) . In the olfactory receptor cells 
cilia have been suggested to be involved in the detection of olfactory stimuli by bind-
ing of odorant molecules and sense transduction (Moran et al.  1982  ) . This view was 
con fi rmed later by the identi fi cation of odorant receptors in cilia of olfactory receptor 
cells (Menco et al.  1997 ; reviewed in: Jenkins et al.  2009  ) . The olfactory receptor cell 
bears 10–30 cilia at its apical side projecting into the nasal cavity. Olfactory cilia 
emerge from basal bodies underneath the cell membrane and are of the 9+2 structure 
but lack dynein arms (Fig.  1.1c ). 

 Furthermore, primary cilia are implicated in key signaling pathways like plate-
let-derived growth factor (PDGF), Wnt, and Hedgehog signaling (reviewed in: 
Christensen et al.  2007  ) . The platelet-derived growth factor receptor alpha 
(PDGFR  a  ) localizes to the primary cilium in quiescent  fi broblasts. Ligand bind-
ing activates PDGFR  a   followed by activation of Akt and the Mek1/2-Erk1/2 
pathways but signaling depends on the presence of the primary cilium (Schneider 
et al.  2005  ) . PDGFR  a   signaling via the primary cilium monitors directional 
migration during wound healing (Schneider et al.  2010  ) . Intriguingly, already in 
1977 Albrecht-Buehler observed that primary cilia on migrating  fi broblasts orient 
in the direction of cell migration. A role of primary cilia in Wnt signaling has 
been suggested by the  fi nding that the ciliary protein Inversin (also named neph-
rocystin-2 or NPHP2) acts as a molecular switch between canonical versus non-
canonical Wnt pathways. Inversin interacts with Dishevelled (Dvl) and targets 
cytoplasmic Dvl for ubiquitin-dependent degradation (Simons et al.  2005 ; reviewed 
in: Lienkamp et al.  2012  ) . Degradation is controlled by the anaphase-promoting 
complex/cyclosome (APC/C) (Ganner et al.  2009 ; Miyamoto et al.  2011  ) . Even 
though the involvement of primary cilia in Wnt signaling during development is 
under debate (Huang and Schier  2009 ; Ocbina et al.  2009  ) , evidence for a direct 
role of the primary cilium in restraining the canonical Wnt/ b -catenin pathway has 
recently been presented. Jouberin (Jbn), the protein product of a gene mutated in 
the ciliopathy Joubert syndrome, is sequestered in cilia. Activation of the canoni-
cal Wnt pathway releases Jbn from cilia, which in turn interacts with  b -catenin to 
facilitate translocation to the nucleus and transcription of  b -catenin-dependent 
target genes (Lancaster et al.  2011  ) . In contrast, the essential role of primary cilia 
in Hedgehog (Hh) signaling is very well established (Huangfu and Anderson 
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 2005  ) . Hh signaling is mediated by the Hh receptor patched (Ptc) and the trans-
membrane protein smoothened (Smo). Ptc localizes to primary cilia in the absence 
of Hh stimulation, thus preventing accumulation of Smo in the cilium. Upon Hh 
activation, Ptc leaves the cilium that in turn allows Smo accumulation (Corbit 
et al.  2005 ; Rohatgi et al.  2007  ) . Smo then activates Hh signaling at the ciliary tip 
by promoting the formation of Gli2 activator and inhibition of the formation of 
the Gli3 repressor isoform, a proteolytic product of the full length Gli3 protein 
(Haycraft et al.  2005 ; Tasouri and Tucker  2011  ) . Notably, formation of Gli repres-
sors in the absence of Hh signaling also requires primary cilia (Liu et al.  2005 ; 
May et al.  2005  ) . Furthermore, in epidermal cells Notch-receptors and Notch-
processing enzymes colocalize to primary cilia, and Notch signaling is transduced 
via primary cilia (Ezratty et al.  2011  ) . Finally, the essential requirement of pri-
mary cilia in skin and hair follicles for hair morphogenesis is well documented 
(Lehman et al.  2009 ; Croyle et al.  2011  ) . 

 The  fi rst described defect in ciliary motility leading to primary cilia dyskine-
sia (PCD) was observed by Afzelius  1976 . This immotile cilia syndrome was 
caused by the absence of dynein arms of the axoneme and resulted in altered 
left-right axis patterning (situs inversus) and chronic bronchitis/sinusitis. That 
severe diseases are also caused by impaired function of non-motile primary cilia 
was  fi rst observed by Cole and co-workers in 2000 (Pazour et al.  2000  ) , and led 
to a boost in ciliary research interest. Now it is widely accepted that primary 
cilia sense, transduce and coordinate signaling pathways and are therefore criti-
cal in embryonic and postnatal development, as well as in tissue homeostasis in 
adulthood. Primary cilia are important organelles for human health and devel-
opment and their malfunction has been implicated in a wide range of human 
diseases including kidney diseases, vision and hearing loss, anosmia, obesity, 
polydactyly, neural tube defects, and left-right asymmetry collectively referred 
as ciliopathies (reviewed in: Badano et al.  2006 ; Fliegauf et al.  2007 ; Gerdes 
et al.  2009 ; Goetz and Anderson  2010 ; Pazour and Rosenbaum  2002 ; Veland 
et al.  2009  ) .  

    1.3   Of Centrosomes, Centrioles and Basal Bodies 

 Each cilium is anchored inside the cell by its basal body that is located apically 
beneath the cell membrane. Formation of primary cilia starts from the distal end of 
the mature or mother centriole that has been transformed into the basal body. 
Centrioles and basal bodies share the same basic structure. Both are barrel-shaped 
organelles consisting of a symmetrical array of microtubules (MT) arranged in 
mammals in a ninefold triplet con fi guration (Fig.  1.4 ). Centrioles are usually found 
in a pairwise con fi guration at the cell center adjacent to the nucleus, and, together 
with their associated pericentriolar material (PCM), constitute the centrosome 
(Fig.  1.5 ). Basal bodies, on the other hand, function in cilia formation and are often 
located at the cell surface. Basal bodies and centrioles, although exerting different 
functions, can be transformed into each other (Sorokin  1962,   1968 ; reviewed in: 
   Dawe et al.  2007a   ; Hoyer-Fender  2010  ) .   
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    1.3.1   Ultrastructure of Centrioles and Basal Bodies 

 The centrosome is the main microtubule organizing center (MTOC) in animal cells. 
It consists of a pair of centrally-positioned centrioles surrounded by a somewhat 
amorphous zone of pericentriolar material (PCM). A main protein component of the 
PCM is  g -tubulin, present in multi-protein complexes constituting  g -tubulin ring 
complexes ( g -TuRCs). The  g -TuRC anchors microtubule minus ends to the cen-
trosome (Moritz et al.  1995  ) . Hence, the centrosome is viewed as the organizing 
center of the cytoskeleton in interphase cells. In mitotic cells, the centrosome forms 
the poles of the mitotic spindle to allow for correct chromosome segregation 
(reviewed in: Kellogg et al.  1994 ; Doxsey  2001 ; Bornens  2002  ) . However, centrioles 

  Fig. 1.4    Symmetrical array 
of nine triplet microtubules 
in centrioles of mouse L929 
cells. ×72,500 (With 
permission from Rattner 
and Phillips  1973  )        

  Fig. 1.5    A pair of centrioles (a diplosome) at the beginning of G1 phase. ×60,000 (With permis-
sion from Vorobjev and Chentsov  1982  )        
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seem not to be essential for all somatic cell divisions. Early cleavage stage embryos 
of the mouse are devoid of centrioles. Electron microscopy has not identi fi ed centri-
oles in the cells of embryos/morulae before the 16-cell stage. Then, from the 16-cell 
stage on, centrioles are clearly present (Szöllösi et al.  1972 ; Gueth-Hallonet et al. 
 1993 ; reviewed in: Hoyer-Fender  2011  ) . Since all eukaryotic organisms that form 
cilia or  fl agella at any time during their life cycle possess centrioles their main func-
tion therefore might be to provide the basal body to extend a cilium or  fl agellum 
(Pickett-Heaps  1971 ; reviewed in: Carvalho-Santos et al.  2011  ) . 

 Centrioles are tiny organelles of about 0.5  m m in length and 0.2  m m in diameter. Nine 
microtubule triplets are arranged to form a cylindrical structure (Vorobjev and Chentsov 
 1980  ) . Each triplet is composed of three different microtubules, a complete A (inner) 
tubule, and two incomplete tubules, termed the B (middle) and C (outer) tubules. Triplet 
microtubules are interlinked throughout the length of the centriole, and run in parallel, 
slightly twisted bundles. The C microtubule, however, is often shorter, giving rise to 
centrioles with one narrower end that is the distal end. Centrioles have therefore a de fi ned 
proximo-distal orientation. At the proximal end, inner (A) and outer (C) microtubules of 
neighbouring triplets are connected by links, whereas in the middle and distal regions 
the links form a dense ring-like structure in the lumen of the centriole (Alvey  1986  ) . 
When transformed into a basal body a cilium grows out from the distal end. At the tran-
sition zone the basal body then passes into the axoneme of the cilium that basically 
consists of nine microtubule doublets that are extensions of A and B MT. 

 Centrioles are generally present pairwise in an approximately orthogonal orientation 
and are interlinked by  fi brous structures (Paintrand et al.  1992  ) . In actively dividing 
cells, duplication of centrioles, therefore, has to be synchronized with the cell cycle 
(Robbins et al.  1968 ; Vorobjev and Chentsov  1982 ; Alvey  1985  )  (Fig.  1.6 ). In S phase, 
a procentriole forms at the proximal end of each centriole that elongates to full-length 
daughter centrioles throughout S to G2 phases (Fig.  1.7 ). At the beginning of mitosis 
each cell therefore possesses two pairs of centrioles with their associated PCM constitut-
ing two centrosomes that generate the spindle poles. During cell division, each cen-
trosome is then transmitted to one daughter cell. This templated pathway of centriole 
duplication, together with their semi-conservative segregation eventually give rise to 
centrosomes harbouring a pair of centrioles that are both of different age. Whereas the 
younger centriole (or daughter centriole) was generated in the last cell cycle, the older or 
mother centriole originated at least two cell divisions before. Moreover, both centrioles 
not only differ in age but they are structurally and functionally not equivalent. Speci fi cally, 
it is the mother centriole only that initiates assembly of the primary cilium.   

 Maturation of the centriole takes 1.5 cell cycles and is accomplished by the 
formation of appendages and the capacity to generate a cilium. During the second 
half of mitosis, distal appendages are generated at the former daughter centriole and 
are thus found on one centriole of a centriole pair at each mitotic spindle pole. In the 
G1 phase of the next cell cycle subdistal appendages, which have disappeared in 
mitosis at the mother centriole, are generated anew on the oldest centriole in every 
cell. As a result, a pair of centrioles is present in each cell comprising one daughter 
centriole generated in the last cell cycle and one older centriole now matured to a 
mother centriole (Vorobjev and Chentsov  1982  ) . The mother or mature centriole is 
characterized by the presence of subdistal and distal appendages (Figs.  1.8  and  1.9 ). 



  Fig. 1.6    Conservative centriole duplication and semi-conservative segregation during the cell 
cycle. The mature centriole ( dark grey cylinder ) is characterized by subdistal ( arrow heads ) and 
distal ( black lines ) appendages. Each centriole pair is surrounded by its associated PCM ( grey 
sphere ) to constitute the centrosome. Procentriole ( light grey cylinders ) formation starts in S phase 
at the proximal ends of both mother and daughter ( white cylinder ) centrioles. Procentrioles elon-
gate to full length from S to G2 phase. In mitosis centrosomes generate the spindle poles       

  Fig. 1.7    Elongation of the daughter centriole during cell cycle progression. Daughter centriole in 
longitudinal sections, mother centriole in cross-sections ( a ) ×72,500, ( b – d ) ×73,000 (With permis-
sion from Rattner and Phillips  1973  )        
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  Fig. 1.8    ( A ) Isolated centrosomes of human lymphoblasts consisting of a pair of centrioles. 
Longitudinal section of the mother centriole ( mc ) showing distal appendages ( da ,  open arrow ) and 
subdistal appendages ( sa ,   fi lled arrow ). Cross-section of the daughter centriole ( dc ) (With permis-
sion from Paintrand et al.  1992 . Modi fi ed). ( B ) Cross-section through the distal region of a mother 
centriole ( a ). Four wedge shaped striated subdistal appendages extend from the centriolar wall. 
×92,250. ( b ) Longitudinal section through a mother centriole comprising one wedge shaped stri-
ated subdistal appendage. Microtubules impinge on the head of the appendage ( arrow ). ×91,250 
(With permission from Rattner and Phillips  1973  )          
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  Fig. 1.9    A pair of centrioles consisting of a mother (mature,  M ) centriole and a daughter centriole 
( D ) in longitudinal section. The mature centriole harbours subdistal and distal appendages. Cross-
sections of the mature centriole shown on the left site from proximal ( 1 ) to distal ( 4 ). The approxi-
mate positions of cross-sections are marked in the longitudinal section. The centriolar cylinder 
consists of nine sets of microtubule triplets at its proximal end, and nine sets of microtubule dou-
blets at its distal end. Tubules A and C of adjacent triplets at the proximal end seem to be con-
nected. Subdistal appendages are conical structures that insert approximately at that region of the 
centriolar cylinder where the C MT get lost. Subdistal appendages are sites of MT anchoring. They 
are variable in number, location and thickness and usually less than nine are present. Distal append-
ages however feature a strict ninefold symmetry. They seem to be associated with the edge of each 
B tubule and protrude as blades of a turbine (Electron micrographs with permission from Paintrand 
et al.  1992  )        

Distal appendages correspond to transition  fi bers or alar sheets of basal bodies that 
participate in the association of the basal body to the plasma membrane. It is not 
known whether distal appendages and transition  fi bers differ in protein composi-
tion. Subdistal appendages most likely correspond to basal feet of basal bodies 
(and the pericentriolar satellites described by Vorobjev and Chentsov  1982  ) . Both 
function by anchoring microtubules at their tips (Fig.  1.8B ) (Piel et al.  2000  ) . 
Subdistal appendages consist of a conical striated stem and a small round head and 
therefore resemble basal feet in this regard, too. The stem is attached to two adjacent 
MT triplets of the centriole/basal body wall. Subdistal appendages vary signi fi cantly 
in number, thickness and distribution along the proximo-distal axis of the mother 
centriole. At least two or three, but usually less than nine subdistal appendages are 
found at the distal part of the mother centriole (Fig.  1.8B ). In contrast, distal appendages 
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pursue the ninefold symmetry of the triplet microtubules. They protrude from the 
microtubule sets like the blades of a turbine, and are oriented toward the distal end 
(Fig.  1.16 ). As is obvious in electron micrographs, the lumen of the centriole appears 
empty at its proximal end on one-third of the total length whereas an amorphous 
substance  fi lls the centriolar lumen at the distal end (Fig.  1.8A ).   

 During centriole duplication, procentrioles are formed near the proximal ends of 
the mother as well as the daughter centriole. At the earliest stage they look like a 
short cylinder with uneven stubs. Electron microscope studies revealed that the pro-
centriole wall is made up of amorphous material in which nine single or double MT 
are immersed. These microtubules are not symmetrically arranged at this stage. 
Inside the procentriole, at its proximal end, is an axis with spokes, the so-called 
cartwheel. The microtubules of the procentriole are attached to the end of the nine 
spokes (Fig.  1.10 ). After the centriole reaches normal length, it loses the axis with 
spokes (Vorobjev and Chentsov  1980,   1982 ; Paintrand et al.  1992 ; Chretien et al. 
 1997 ; Kenney et al.  1997 ; Ibrahim et al.  2009  ) . A careful review of the literature 
revealed, that the cartwheel is a feature of procentrioles but is no longer present in 
adult centrioles (Alvey  1986  ) . Recently, cryo-electron tomography of puri fi ed 
centrosomes of human cells proved the presence of the cartwheel in procentrioles 
but its absence in the G1 phase of the cell cycle (Guichard et al.  2010  ) . Thus, the 
cartwheel is a non-permanent structure restricted to procentrioles.  

 Centriole duplication during the cell cycle takes place not only in cells comprising 
a centrosome with two adjacent centrioles but also in cells harbouring a primary cilium 
as observed in epithelial cells (Vorobjev and Chentsov  1982  ) . In this case, the mature 

  Fig. 1.10    Procentriole in S phase. ( a ) EM cross-section of the  cartwheel , ×160,000 (With permis-
sion from Vorobjev and Chentsov  1982  ) . ( b ) Schematic drawing.  A , axis,  sp , spokes of a cartwheel. 
 Arrowheads : single and double MT attached to the ends of the spokes       
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centriole, now transformed into a basal body and its associated primary cilium grows a 
procentriole from its proximal region (Fig.  1.11 ). Thus freeing centrioles by disassem-
bly of the primary cilium seems not to be necessary for centriole duplication.   

    1.3.2   Molecular Mechanisms of Centriole Duplication 

 The centrosome comprises a huge number of proteins. Along with intrinsic cen-
trosomal proteins that build up centrioles and the PCM, several proteins associate 
only temporarily with the centrosome to regulate cell cycle progression. During the 
past decade, great progress has been made unravelling the molecular composition of 
the centrosome and elucidating the function of centrosomal proteins (Andersen et al. 
 2003 ; Jakobsen et al.  2011  ) . This work has provided insight into the molecular mech-
anisms underlying the assembly of centrioles. Centriole duplication at an evolution-
ary scale has been outlined in several excellent comprehensive reviews (Loncarek 
and Khodjakov  2009 ; Azimzadeh and Marshall  2010 ; Sluder and Khodjakov  2010 ; 
Nigg and Stearns  2011  ) . The following summary will therefore focus on centriole 
formation in vertebrate cells and the relevant proteins (Figs.  1.12  and  1.13 ).   

 The major proteins constituting centrioles/basal bodies are  a  b -tubulin dimers, 
tektins, and Sp77 and Sp83 (Steffen et al.  1994 ; Hinchcliffe and Linck  1998 ; Stephens 
and Lernieux  1998  ) . Post-translational modi fi cation of tubulin strongly in fl uences 
microtubule stability. Centrioles and basal bodies both contain highly modi fi ed tubu-
lin, especially detyrosinated, acetylated, and polyglutamylated tubulin as well as  D 2-
tubulin (Piperno et al.  1987 ; Bobinnec et al.  1998 ; for review see: Ikegami and Setou 
 2010 ; Janke and Bulinski  2012  ) . Detyrosination is the removal of the C-terminal 
tyrosine of  a -tubulin. Detyrosinated tubulin can then be further subjected to removal 
of the C-terminal glutamate producing  D 2-tubulin. Polyglutamylation is the progres-
sive addition of Glu residues onto the  g -carboxyl group of Glu residues in the 
C-terminal region of polymerized tubulin. Polyglutamylation of  a / b -tubulin seems 

  Fig. 1.11    Replicating 
centriole in  S  phase.  P  
procentriole,  s  subdistal 
appendages,  C  cilium.  Bar , 
0.2  m m. ×80,000 (With 
permission from Vorobjev 
and Chentsov  1982  )        
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  Fig. 1.13    Overview of the protein interaction network that controls centriole duplication. For clar-
ity, cartwheel formation and centriole duplication is shown only for one centriole of a pair. See text 
for explanation       

  Fig. 1.12    Localization of centrosomal proteins       

to be an early event in centriole/basal body assembly (Million et al.  1999  ) . Tubulin 
detyrosination as well as polyglutamylation seem to stabilize MT.  g -tubulin is a major 
protein of the pericentriolar matrix but additionally is tightly bound to the microtu-
bules of the centriolar cylinder and localizes to the proximal center of centrioles 
(Fuller et al.  1995  ) . 

 The main feature of intrinsic centrosomal proteins is their coiled-coil structure that 
promotes protein-protein interactions to generate the electron dense pericentriolar 
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matrix (PCM). The PCM not only harbours  g -TuRCs to nucleate MTs but contributes 
to centriole duplication (Dammermann et al.  2004 ; Loncarek et al.  2008  ) . PCM 
recruitment around the centrioles might be mediated by Cep192 (centrosomal protein 
of 192 kDa) (Gomez-Ferreria et al.  2007 ; Zhu et al.  2008  ) . Centrosomal attachment of 
the  g -TuRC is additionally mediated by CDK5RAP2 (Fong et al.  2008  ) . However, the 
key regulator of centriole duplication is the Polo-like kinase 4 (Plk4). Inhibition of 
Plk4 prevents centriole duplication whereas overexpression can trigger centriole 
ampli fi cation (Habedanck et al.  2005  ) . Plk4 activity depends on autophosphorylation 
and is regulated by the proteasome (Cunha-Ferreira et al.  2009 ; Rogers et al.  2009 ; 
Guderian et al.  2010 ; Holland et al.  2010 ; Silibourne et al.  2010  ) . Recruitment of Plk4 
to the centrosome is mediated by the PCM protein Cep152. Depletion of Cep152 not 
only affects Plk4 recruitment but results in failure of CPAP (centrosomal P4.1-
associated protein; also named SAS-4 or CENPJ, centromere protein J) and SAS-6 
localization to the centriole (Cizmecioglu et al.  2010 ; Dzhindzhev et al.  2010 ; Hatch 
et al.  2010  ) . As described above, the assembly of the procentriole starts with the for-
mation of the cartwheel composed of a central hub to which nine spokes are attached 
(Fig.  1.10 ). For the initial steps of centriole assembly, SAS-6 is essential and might be 
required to build the central hub (reviewed in: Gönczy  2012  ) . Consistently, HsSAS-6 
(human SAS-6) is the earliest protein localized to the emerging procentriole in human 
cells (Strnad et al.  2007  ) . However, in rat tracheal multiciliated cells SAS-6 could also 
be found at the proximal end of basal bodies and at the proximal region of ciliary 
axonemes (Kleylein-Sohn et al.  2007 ; Strnad et al.  2007 ; Vladar and Stearns  2007 ; 
Strnad and Gönczy  2008  ) . In human cells, SAS-6 (HsSAS-6) recruits the tubulin-
binding protein centrobin to allow for centriole elongation (Gudi et al.  2011  ) . Human 
SAS-6 (HsSAS-6) is a substrate of the SCF-FBXW5 ubiquitin ligase complex that 
targets HsSAS-6 for degradation. Phosphorylation of FBXW5 by Plk2 and Plk4 sup-
presses its activity to allow centriole duplication (Puklowski et al.  2011 ; Cizmecioglu 
et al.  2012  ) . The central hub seems to be critical in establishing the ninefold symmetry 
whereas the radial spokes seem to be important to specify the centriole diameter (see: 
Strnad and Gönczy  2008  ) . A putative protein of the radial spokes is Cep135 which is 
essential for centriole assembly (Kleylein-Sohn et al.  2007 ; Vladar and Stearns  2007  ) . 
As was evident from EM data, the A microtubule attaches  fi rst to the spokes of the 
cartwheel followed by assembly of B and C microtubules. Moreover, it was suggested 
that the A microtubule is nucleated by  g -TuRC allowing growth from the proximal to 
the distal end of the centriole, whereas B and C microtubules are never capped and are 
therefore assembled at variable positions along the existing microtubule to grow in 
both directions (Guichard et al.  2010  ) . This would explain why  g -tubulin is essential 
for centriole duplication. Recruitment of  g -tubulin to the centrosome is NEDD1 
dependent and depletion of NEDD1 like  g -tubulin depletion inhibits centriole duplica-
tion (Haren et al.  2006  ) . Moreover,  g -tubulin mediated centriole duplication is acti-
vated by Ser/Thr kinase activity of SADB to phosphorylate Ser 131 of  g -tubulin 
(Alvarado-Kristensson et al.  2009  ) .  g -tubulin interacts with CPAP and both proteins 
are located within the proximal lumen of the centrioles. CPAP might be responsible 
for the attachment of the A MT to the spokes of the cartwheel (Hung et al.  2000 ; 
Kohlmaier et al.  2009  ) . The activity of CPAP in centriole elongation depends on its 
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phosphorylation by Polo-like kinase 2 (Plk2) (Chang et al.  2010  ) . Recruitment of 
CPAP to the base of the nascent procentriole depends on HsSAS-6 and recruitment of 
both proteins is mediated by STIL (SCL/TAL1 interrupting locus), a protein mutated 
in primary microcephaly (Kohlmaier et al.  2009 ; Tang et al.  2011 ; Arquint et al.  2012 ; 
Vulprecht et al.  2012  ) . CP110, Cep97, hPOC5, and Ofd1 (Oral-facial-digital type I 
protein) are important for centriole length control and the formation of primary cilia, 
most likely by inhibiting microtubule growth (Chen et al.  2002 ; Ferrante et al.  2006 ; 
Spektor et al.  2007 ; Azimzadeh et al.  2009 ; Schmidt et al.  2009 ; Tang et al.  2009 ; 
Singla et al.  2010  ) . CP110 interacts with the centriolar kinesin Kif24 that possesses 
microtubule depolymerization activity (Kobayashi et al.  2011  ) . Finally, maturation of 
procentrioles is controlled by activated Polo-like kinase 1 (Plk1) phosphorylated at 
T210 (Loncarek and Khodjakov  2010  ) . 

 To the distal lumen of centrioles/basal bodies localizes another conserved pro-
tein, centrin, which is a calcium binding phosphoprotein of the EF-hand superfam-
ily. Centrin seems to be involved in the early events of pro-centriole formation 
(Paoletti et al.  1996 ; Laoukili et al.  2000  ) . Two proteins speci fi cally enriched at the 
daughter centriole, centrobin and Cep120, have also been implicated in centriole 
duplication since centriole duplication is inhibited by depletion of either Cep120 or 
centrobin (Zou et al.  2005 ; Mahjoub et al.  2010 ; Gudi et al.  2011  ) . Additionally, 
depletion of the coiled-coil protein SPICE (spindle and centriole-associated pro-
tein), or Cep63 and its interacting protein Cep152 affected centriole duplication 
(Archinti et al.  2010 ; Hatch et al.  2010  ) . 

 MT are nucleated by  g -TuRCs and anchored at the subdistal appendages of the 
mother centriole. Anchoring is mediated by ninein, a protein of the subdistal append-
ages which itself is recruited by Odf2/Cenexin (Lange and Gull  1995 ; Mogensen 
et al.  2000 ; Nakagawa et al.  2001  ) . Both ninein and Odf2 localization to subdistal 
appendages depends on the multifunctional structural protein 4.1R as observed by 
4.1R knock down. Additionally, MT anchoring and organization in interphase is 
reduced by 4.1R depletion, thus supporting the MT anchoring function of subdistal 
appendages as observed by electron microscopy (Krauss et al.  2008  ) . Recruitment 
of ninein by Odf2 seems to be mediated by Trichoplein, a keratin  fi lament-binding 
protein (Ibi et al.  2011  ) . Further proteins of the subdistal appendages are  e -tubulin 
(Chang et al.  2003  ) , centriolin/Cep110 (Ou et al.  2002 ; Gromley et al.  2003  ) , and 
the Polo-like kinase 1 (Plk1) interacting protein Cep170 (Guarguaglini et al.  2005  )  
(Fig.  1.12 ). Cep170 and the splice variant hCenexin1 of Odf2 recruit Plk1 at the 
centrosome, whose activity is then important for proper recruitment of the major 
PCM proteins pericentrin and  g -tubulin and the formation of bipolar spindles in 
mitosis (Soung et al.  2009 ; Zhang et al.  2009  ) . 

 Cep164 (centrosomal protein of 164 kDa) speci fi cally localizes to the distal 
appendages, persists throughout mitosis, and is indispensable for primary cilia for-
mation (Graser et al.  2007  ) . Likewise, Ofd1 depletion impairs formation of distal 
appendages and ciliogenesis (Singla et al.  2010  ) . 

 Despite duplication of the centriole pair during S phase the two resulting centriole 
doublets function as a single microtubule-organizing center until the onset of mitosis. 
Physical linkage of both oldest centrioles seems to be achieved by interaction of 
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distantly related proteins C-Nap1 and rootletin (Fig.  1.14 ). At the onset of mitosis, 
NIMA-related kinase 2 (Nek2) phosphorylates C-Nap1 and rootletin leading to their 
displacement and in turn the separation of the duplicated centrosomes for bipolar 
spindle formation (Bahe et al.  2005  ) . Additionally, C-Nap1 recruits conductin/axin2 
to the centrosome to control Nek2- and GSK3 b -mediated phosphorylation of 
 b -catenin. Inhibition of  b -catenin phosphorylation or degradation causes centrosome 
splitting (Bahmanyar et al.  2008 ; Hadjihannas et al.  2010  ) . Finally, centriole duplica-
tion demands previous loosening of the tightly engaged centrioles by the end of 
mitosis to G1 phase (Tsou and Stearns  2006a  ) . Centriole disengagement is mediated 
by Polo-like kinase 1 (Plk1) at G2 or early M phase and by the protease separase at 
anaphase eventually cleaving cohesion ring complexes that keep the centrioles 
together (Tsou and Stearns  2006b ; Tsou et al.  2009 ; Nakamura et al.  2009 ; Schöckel 
et al.  2011  ) .    

    1.4   Primary Cilia 

    1.4.1   Structure of Primary Cilia 

 Generally, primary cilia are very small entities with a length of about 1–4  m m only. For 
a long time, it was therefore dif fi cult to prove the presence of a single cilium on each 
cell. These dif fi culties have been overcome by application of antibody probes that 
speci fi cally highlight the cilium. In 1987 Wehland and Weber found that primary cilia 
contain detyrosinated  a -tubulin (Wehland and Weber  1987  ) . This led to the genera-
tion of antibodies directed against modi fi ed tubulin especially detyrosinated and 
acetylated  a -tubulin, which is a marker of stable MTs (Westermann and Weber  2003  ) , 

  Fig. 1.14    Overview of the protein network that controls centrosome splitting at the onset of mito-
sis to generate the bipolar mitotic spindle, and centriole disengagement that is a prerequisite for 
centriole duplication in interphase.  D  daughter centriole       
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that are now common tools for the detection of primary cilia (Wheatley et al.  1996  ) . 
Primary cilia are found on most cells regardless of the analysed material (cultured 
cells, organ cultures or tissue sections). Thus, all tissues contain cells bearing a pri-
mary cilium but not necessarily every cell is ciliated (discussed in: Seeley and Nachury 
 2010  ) . Examples of cell types that are not ciliated in situ include adipocytes and hepa-
tocytes and blood cells, i.e. monocytes and macrophages, lymphocytes, red blood 
cells, and neutrophils, (Scherft and Daems  1967 ; Wheatley  1969,   1982,   1995 ; Alieva 
and Vorobjev  2004 ; see the complete list of cells and tissues bearing primary cilia at 
  http://www.bowserlab.org/primarycilia/cilialist.html    ). 

 Most primary cilia are of 9+0 structure, i.e. they lack the central pair of microtubules, 
and they lack dynein on their A microtubules (Fig.  1.15a ). Primary cilia, additionally, 
project from the distal end of the basal body, the former mother centriole. Often, the 
basal body and its associated daughter centriole are deeply invaginated in the cell 
giving rise to a specialized membraneous structure, the ciliary pocket (Fig.  1.15b ) 
(Molla-Herman et al.  2010 ; reviewed in: Rohatgi and Snell  2010 ; Ghossoub et al. 
 2011  ) . When adopting an apical position, primary cilia project from the cell surface 
into the environment and they do so with a de fi nite polarity. The ciliary polarity is 
seen in human diploid  fi broblasts and 3T3 cell lines in which cilia are found under-
neath the cells projecting towards the substratum. In contrast, cilia of canine kidney 
epithelial cells, PtK1 cells, or human renal proximal tube cells are extending into 
the medium (Wheatley et al.  1996 ; Jensen et al  1979  ) . Primary cilia are generally 
immotile. The idea, therefore, that primary cilia are sensory structures has been 
proposed already very early (Munger  1958 ; Barnes  1961 ; Sorokin  1962 ; Albrecht-
Buehler  1977 ; Albrecht-Buehler and Bushnell  1979  ) .  

 Cultured 3T3 cells often harbour primary cilia arti fi cially enclosed by the cyto-
plasm that is in contrast to most tissue cells in which the primary cilium emerges to 
the outside of the cell (Albrecht-Buehler and Bushnell  1980  ) . However, they feature 
the usual structural organization of primary cilia. Additionally, the primary cilium 
was usually found near a nuclear indentation with a nearly constant distance between 
the basal body and the nuclear membrane of 1.2  m m. Although not yet con fi rmed by 
electron microscopy, a linkage between nucleus and basal body has therefore been 
suggested (Albrecht-Buehler and Bushnell  1980  ) . Although both centrioles of a pair 
are associated even during cilium formation, the daughter centriole apparently 
changes its position, suggesting a somehow loose association (Sorokin  1962 ; 
Vorobjev and Chentsov  1982  ) . Variability in angle and distance between both cen-
trioles of a pair was also observed in human heart tissue (Myklebust et al.  1977  ) . 

 When cilium formation starts the mature centriole has been transformed into the 
basal body. Therefore, appendages that have formerly ascribed to the mother centriole 
are also found on the basal body. Subdistal appendages extend from some point along 
the side of the mother centriole/basal body into the centrosomal matrix (see e.g. 
Figs.  1.11 ,  1.15b , and  1.19 ). These appendages have been named basal feet when refer-
ring to the basal body. The subdistal appendages of the mother centriole occur in varying 
numbers, but often two or three are seen in the same cross-sectional plane. Each subdis-
tal appendage makes contact at its base with two adjacent microtubule triplets of the 
centriole. Likewise, the basal body of primary cilia usually possesses more than one 
basal foot alongside its centriolar wall (Hagiwara et al.  2002 ; Odor and Blandau  1985  ) . 

http://www.bowserlab.org/primarycilia/cilialist.html


  Fig. 1.15    ( a ) Transverse section through the basal region of a primary cilium shaft of 3T6 
 fi broblasts showing typical 9+0 organization. Due to dislocations of one peripheral doublet devia-
tions from the typical 9+0 arrangement are frequently seen in more distal parts of the primary cil-
ium. ×77,000 (With kind permission from Wheatley  1972  ) . ( b ) Primary cilium in the human heart. 
Subdistal appendages and distal appendages ( arrow ) making contact to the cell membrane emerge 
from the basal body. A ciliary pocket ( arrowhead ) is formed due to the deep invagination of the 
cilium in the cell. ×45,000 (With permission from Myklebust et al.  1977  )        
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In contrast, only one basal foot was usually observed at the basal body of motile cilia 
(Odor and Blandau  1985  ) . Basal feet and subdistal appendages are of conical shape and 
show a distinctive cross-banding (Sorokin  1962 ; Rattner and Phillips  1973  ) . Moreover, 
basal feet and subdistal appendages are the focal point of microtubles. Thus, basal feet 
and subdistal appendages are more or less synonymous items that are used in the par-
ticular context of the basal body and the mother centriole, respectively. 

 At the distal end of both mother centriole and basal body appendages are found 
that have been named context-dependent distal appendages or transition  fi bers, 
respectively. The distal appendages/transition  fi bers locate strictly symmetrically, 
adopting the ninefold structure of the underlying microtubule organization 
(Fig.  1.16 ). The transition  fi bers of the basal body are actually sheet-like projections 
and have therefore also been named alar sheets. These appendages not only contact 
the cell membrane but anchor the basal body to the plasma membrane (Anderson 
 1972  ) . Moreover, the transition  fi bers/alar sheets might function as a “ciliary pore” 
to restrict vesicle and macromolecule exchange between the cytoplasm and the 
 ciliary lumen (Deane et al.  2001  ) . Ultrastructurally, the cilium displays several 
 subregions (reviewed in: Fisch and Dupuis-Williams  2011  ) . These are the transition 
zone linking the cilium to the basal body, followed by the doublet zone and  fi nally 
by the singlet zone including the tip structure. Whereas the doublet zone harbours 
MT doublets, the singlet zone is characterized by the termination of the incomplete 
B tubule towards the tip of the cilium leaving the singlet A tubule and, in motile 
cilia, the central pair. At the ciliary tip growth and resorption of the axoneme takes 
place. The ciliary tip therefore is the place where intra fl agellar transport (IFT) is 
regulated and remodelled (see Sect.  1.4.3 ). Accordingly, the ciliary tip features a 
complex ultrastructural organization. Most remarkable, the concentration of elec-
tron dense material at the tip of primary cilia has been observed more than 30 years 
ago (Albrecht-Buehler and Bushnell  1980  ) .  

  Fig. 1.16    Distal part of the 
mother centriole producing 
cilia in the G0 phase. 
Symmetrical arrangement 
of distal appendages ( ap ). 
×140,000 (With permission 
from Vorobjev and Chentsov 
 1982  )        
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 The transition zone de fi nes the region where the basal body passes into the axoneme 
of the cilium. In this region, transition  fi bers anchor the basal body to the membrane. 
The region of the ciliary membrane adjacent to the junction with the cell membrane is 
the ciliary necklace. In electron micrographs a distinct pattern with an electron dense 
appearance at the base of the ciliary shaft and a periodic striation extending up the cili-
ary shaft characterizes the ciliary necklace (Fig.  1.17 ). This ordered array of electron 
dense structures re fl ects intramembrane particles that are part of a protein complex that 
links axonemal microtubules to the membrane. Tethering of the MT doublets of the 
axoneme to the ciliary membrane at the transition zone is also visible by the presence of 
Y-shaped bridges in TEM cross-sections (e.g. Fig.  1.1b  arrowhead; Wheatley  1972  ) . 
The ciliopathy protein Cep290 is localized to this region and seems to be involved in 
the tethering of MT to the membrane (Craige et al.  2010  ) . Freeze-fracture electron 
microscopy revealed the presence of the ciliary necklace in motile as well as in primary 
cilia but not in sperm  fl agella (Gilula and Satir  1972 ; Fig.  1.17 ). It has been postulated 
that the necklace functions as a selective barrier for ciliary entrance (Hu et al.  2010  ) . The 
ciliary membrane forms a compartment that is separated from the cytoplasm and the cell 
membrane and is specialized to harbour receptors for e.g. Sonic Hedgehog, platelet-
derived growth factor (PDGF), serotonin, or somatostatin (reviewed in: Satir and 
Christensen  2007 ; Anderson et al.  2008  ) . Therefore traf fi cking to primary cilia, selective 

  Fig. 1.17    Freeze-etching reveals the ciliary necklace ( arrowheads ) in cilia from rat tracheal epi-
thelium. Six particle strands are found in the necklace region. ×80,000 (With permission from 
Gilula and Satir  1972  )        
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access and retention of ciliary proteins are critical for ciliary function (reviewed in: 
Garcia-Gonzalo and Reiter  2012  ) . Recently, a protein complex at the necklace includ-
ing Septin 2 (Sept2) has been identi fi ed, which is essential for cilia formation and the 
location of signaling receptors in the ciliary membrane. Disruption of this “ciliopathy” 
complex impairs the diffusion barrier of the necklace (Chih et al.  2012  ) . Furthermore, 
as observed in the model organism  C. elegans,  MKS (Meckel-Gruber syndrome) and 
NPHP (nephronophthisis) protein complexes that cause the ciliopathies Meckel-Gruber 
syndrome (MKS) and nephronophthisis (NPHP) when mutated are essential for the 
early stage of ciliogenesis, i.e. the docking of the basal body to the ciliary membrane, 
and the establishment of the ciliary gate (Williams et al.  2011  ) . The idea, that the transi-
tion zone with the distal appendages/transition  fi bers bound to the cell membrane, and 
the necklace region function as a “ciliary pore”, as suggested by Deane et al. in  2001 , 
has been substantiated further by the discovery that IFT kinesin-2 KIF17 interacts with 
the nuclear import protein importin-ß2 and is inhibited by RanGTP (Dishinger et al. 
 2010  ) . Furthermore, in analogy to nuclear import mechanisms, nucleoporins have been 
located at the ciliary base (Kee et al.  2012  ) .  

 At the proximal end of the basal body in NIH3T3 cells striated  fi bers arise that are 
reminiscent of the striated rootlets observed on basal bodies of motile and primary 
cilia (Fig.  1.18 ). Rootlets might anchor the basal body/cilium complex in the cell 

  Fig. 1.18    A striated “rootlets” connected to basal centrioles in 3T3 cells.  Bar , 0.5  m m (With 
permission from Albrecht-Buehler and Bushnell  1980  )        
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  Fig. 1.19     A  striated connector ( arrow ) interlinks the basal body ( B ) of a solitary cilium in a secre-
tory cell of the human oviduct epithelium with its associated centriole ( C ). A striated rootlet ( arrow 
head ) is also associated with the proximal end of the basal body.  Scale bar  = 1.0  m m (From: 
Hagiwara et al.  2002  )        

(Odor and Blandau  1985 ; Harrison  1989 ; Hagiwara et al.  2008  ) . One major protein 
of the rootlets of ciliated cells is Rootletin, a coiled-coil protein of 220-kDa (Yang 
et al.  2002  ) . Moreover, the basal body and its associated centriole are interlinked by 
 fi brous structures similar to those observed between the pair of centrioles in inter-
phase cells (Paintrand et al.  1992 ; Hagiwara et al.  2002  ) . As noticed in solitary cilia 
of the secretory cells of the human oviduct epithelium these  fi bers show a cross-
banding pattern and are hence termed the striated connector (Hagiwara et al.  2002 ; 
reviewed in Hagiwara et al.  2008  )  (Fig.  1.19 ). The striated connector shares a protein 
component with the striated rootlets that emerge from the base of the basal body 
(Hagiwara et al.  2000,   2002  ) . A scheme of a cilium is shown in Fig.  1.20 .    

 Even though the vertebrate primary cilium is described as 9+0, serial section-
ing revealed that this organization lasts only for the proximal part of the primary 
cilium shaft. Further distally (as the axoneme tapers down), dislocation of 
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  Fig. 1.20    Scheme of the cilium. A clear ciliary pocket is not present in every cilium and is there-
fore illustrated on one side only.  D  daughter centriole. See text for explanation       

microtubule doublets leads to disturbance of 9+0 structure and eventually to a 
reduction of MT doublets at the most distal region (Fig.  1.21 ). Displacement of 
MT doublets occurs more or less randomly (Gluenz et al.  2010  ) . Variations of 
9+0 organization have been observed in primary cilia of different tissues and are 
not con fi ned to the kidney primary cilia (e.g. sensory cilia in olfactory receptors 
of man; Moran et al.  1982 ; and primary cilia of the central nervous system, Dahl 
 1963 ; Webber and Lee  1975  ) .   
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    1.4.2   Ultrastructural Observations on Primary Cilia Generation 

 Formation of primary cilia always starts from the mature centriole. The daughter 
centriole, albeit associated with the mature centriole, never sprouts a primary cil-
ium. Moreover, in cultured mammalian cells primary cilia grow asynchronously in 
sister cells. The cell that received the oldest mother centriole generated more than 
two cell cycles before usually grows a cilium  fi rst. Concomitantly, in the two mother 
centrioles of a pair of sister cells asymmetric localization of Odf2/Cenexin is 
observed. The oldest centriole always harbours a higher amount of Odf2, suggesting 
that a suf fi cient amount is necessary for initiation of ciliogenesis (Anderson and 
Stearns  2009  ) . 

 Electron microscope studies on the formation of primary cilia in  fi broblasts and 
smooth muscle cells of mammalian and chicken origin revealed great similarities. 
Based on these observations Sorokin provided a model for cilium formation which 
is subdivided into three phases (Sorokin  1962  )  (Figs.  1.22  and  1.23 ). Cilium for-
mation starts with the appearance of a solitary vesicle (the so called primary ciliary 
vesicle) at the distal end of the mature centriole (phase I). Growth of the distal end 
of the mature centriole against the membrane of the primary vesicle results in the 
formation of a ciliary bud, and invagination and  fl attening of the primary vesicle. 
As a result, two layers of membrane from the primary vesicle surround the bud, 

  Fig. 1.21    TEM serial sectioning through a primary cilium of kidney IMCD3 cells starting from 
the proximal part of the basal body ( 1 ; longitudinal sectioning of its associated daughter centriole 
is visible) to the tip of the primary cilium ( 27 ). Subdistal appendages (in  3 ) and distal appendages 
(in  4 ) are visible. A strict 9+0 organization of the primary cilium is found only at the proximal end 
but became disturbed by displacement of microtubule doublets.  Scale bars  = 200 nm (With permis-
sion from Gluenz et al.  2010  )        
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  Fig. 1.22    Formation of primary cilia starts with the appearance of a primary ciliary vesicle at the 
distal end of the mature centriole ( C2 ;  S , subdistal appendage;  a ). The ciliary bud forms at the 
distal end of the mature centriole leading to distortion of the primary ciliary vesicle ( b ). Further 
elongation of the ciliary bud ( c ,  d ). A developing cilium with elongated shaft and sheath about to 
emerge from the cell ( e ). The mature centriole ( C2 ) harbours subdistal appendages ( S ). The associ-
ated daughter centriole ( C1 ) does not form a primary cilium. Formation of primary cilia starts 
inside the cytoplasm next to the nucleus ( c ; np, nuclear pore) (With permission from Sorokin 
 1962  )        

  Fig. 1.23    Overview of primary cilium formation. See text for explanation.  M  mother centriole 
with distal and subdistal appendages,  D  daughter centriole. ( a ) Cilium formation starts deep in 
the cytoplasma and the basal body/cilium complex migrates towards the cell membrane. Fusion 
of the ciliary membrane with the cell membrane exposes the cilium to the extracellular space. 
( b ) The mother centriole  fi rst migrates to and anchors at the cell membrane followed by ciliary 
growth       
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thus forming the ciliary sheath. By elongation of the ciliary bud and concurrent 
lengthening of the sheath the cilium grows towards the cell surface (phase II). The 
sheath develops by repeated formation of secondary ciliary vesicles distal to the 
primary vesicle and subsequent fusion. When the sheath reaches the cell surface, 
its outer membrane fuses with the cell membrane whereas the inner membrane still 
covers the cilium. Membrane fusion thus results in exposition of the cilium to the 
extracellular environment (phase III). However, the primary cilium is often deeply 
invaginated and encircled by two membrane layers that form the ciliary pocket 
(Molla-Herman et al.  2010 ; reviewed in: Rohatgi and Snell  2010 ; Ghossoub et al. 
 2011  ) . Since formation of a primary cilium can start at the mother centriole located 
in the cytoplasm next to the nucleus, migration of the mature centriole to the cell 
surface is not necessary for sprouting a cilium. However, alternatively, the mother 
centriole  fi rst migrates and anchors at the cell membrane followed by sprouting a 
cilium into the extracellular space.   

 Cells express cilia throughout interphase but never in mitosis. Formation of cilia 
already starts in G1 phase, and they are resorbed very late in the cell cycle when 
cells enter prophase (Rieder et al.  1979 ; Wheatley et al.  1996 ; Alieva and Vorobjev 
 2004  ) . Even though an inverse relationship between the frequency of ciliated cells 
and the proliferative activity of a cell culture has been observed as well as a coinci-
dence of deciliation with the initiation of DNA synthesis in Balb/c and Swiss3T3 
cells, cilia may also be present in S phase (Fonte et al.  1971 ; Wheatley  1971 ; Tucker 
et al.  1979 ; Vorobjev and Chentsov  1982 ; Alieva and Vorobjev  2004  ) . Primary cilia 
were found in epithelial cells in S phase even though only at low frequency (see 
Fig.  1.11 ). Furthermore, these primary cilia were entirely intracytoplasmatic and 
never reached the cell surface as primary cilia formed in G0 arrested cells (Fig.  1.24 ) 
(Vorobjev and Chentsov  1982  ) . In cultured cells ciliogenesis seems to be largely 
dependent on cell-cell and cell-substratum contacts. Therefore, cells grown as 
adherent cell layers are able to generate a primary cilium, whereas growth of cells 
in liquid suspension is not compatible with cilium expression (Wheatley et al.  1996  ) . 
However, cells arrested in G0 phase have a higher incidence of primary cilia than 
cycling cells (Mori et al.  1979  ) .  

 Resorption of cilia not only might free the basal body to function as cen-
trosome in cell cycle progression but otherwise might be causative for re-entering 
the cell cycle. Ciliary disassembly by recruitment of phosphorylated Tctex-1 to 
the transition zone before S-phase entry is essential for cell cycle progression. 
It was therefore suggested that cilia prevent cell cycle progression by acting as a 
brake (Li et al.  2011  ) . In support of this model it has also been shown that the 
induction of abnormally long cilia coincides with a delay in G1 to S transition. 
Lack of the mother centriole protein Nde1 (nuclear distribution gene E homo-
logue 1), which otherwise suppresses cilia formation, increased ciliary length 
and resulted in a delay in cell cycle re-entry (Kim et al.  2011  ) . Since Nde1 by 
binding to the dynein light chain LC8, and Tctex-1 both interact with cytoplas-
mic dynein these  fi ndings suggest that cytoplasmic dynein might affect prolifera-
tion possibly via ciliary length control.  
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    1.4.3   Molecular Mechanisms of Ciliogenesis 

 Formation of cilia depends on several proteins that have formerly been found to be 
present on centrioles/basal bodies (an overview of ciliary assembly and disassembly 
is given in Fig.  1.25 ). Depletion of the distal appendage protein Cep164 prevents 
cilium assembly but the mechanism of its action is not clear (Graser et al.  2007  ) . 
Cep97, CP110, and CPAP have opposed functions in centriole duplication and cil-
iogenesis. CP110 is recruited by Cep97 to the distal end of the growing centriole to 

  Fig. 1.24    Centrioles and primary cilium in G0 phase.  M  mother centriole,  D  daughter centriole,  S  
subdistal appendages,  C  cilium (With permission from Vorobjev and Chentsov  1982  )        

 



311 Primary and Motile Cilia: Their Ultrastructure and Ciliogenesis

inhibit MT growth thus limiting centriolar length. Both proteins therefore act 
coordinately to suppress the assembly of the ciliary axoneme (Spektor et al.  2007  ) . 
Depletion of CP110 or Cep97 caused overly long centrioles but did not promote the 
formation of a primary cilium ensheathed by a membrane (Spektor et al.  2007 ; 
Kohlmaier et al.  2009 ; Schmidt et al.  2009 ; Tang et al.  2009  ) . CP110 and Cep97 
associate with Kif24, a member of the kinesin-13 subfamily. Depletion of Kif24 
supported the formation of primary cilia but did not affect the length of centrioles, 
as opposed to CP110 or Cep97 depletion. Kif24 may affect ciliogenesis by control-
ling microtubule dynamics (Kobayashi et al.  2011  ) . Suppression of ciliogenesis by 
CP110 strictly depends on its interaction with Cep290 (also named NPHP6, nephro-
nophthisis protein 6) although ablation of Cep290 prevents ciliogenesis. Cep290/
NPHP6 is one of currently 11 members of proteins that all localize to cilia or cen-
trosomes and when mutated cause nephronophthisis, a recessive cystic kidney dis-
ease. Cep290 and CP110 interact with Rab8a, a small GTPase required for cilia 
assembly by promoting the docking and fusion of membranous vesicles. The avail-
able data suggest that Cep290 together with Rab8a promote ciliogenesis whereas 
binding to CP110 abrogates its function (Tsang et al.  2008  ) . Additionally, Cep290 
interacts with the centriolar satellite protein PCM-1 to promote ciliogenesis (Kim 
et al.  2008  ) . Studies in  Chlamydomonas reinhardtii  revealed that Cep290 tethers 
MT to the  fl agellar membrane at the transition zone. It was therefore suggested that 
Cep290 is involved in the function of the ciliary pore to regulate entry of proteins 
into the ciliary compartment (Craige et al.  2010  ) . Two other Rab GTPases in addi-
tion to Rab8a, Rab-17 and Rab-23, and their cognate GTPase-activating proteins 

  Fig. 1.25    Overview of proteins involved in promoting cilium formation and in its disassembly. 
See text for explanation       
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(GAPs), XM_037557, TBC1D7, and EVI5like, are involved in primary cilium 
formation (Yoshimura et al.  2007  ) . Moreover, Rab8a speci fi cally interacts with 
Odf2/cenexin, which in turn is essential for cilium formation (Ishikawa et al.  2005 ; 
Yoshimura et al.  2007  ) . Additionally, Rab8 cooperates with BBS proteins (encoded 
by a group of genes that are mutated in the ciliopathy Bardet-Biedl-syndrome, 
reviewed in: Beales  2005  )  in ciliary membrane formation (Nachury et al.  2007  ) . 
CPAP on the other hand promotes MT assembly, leading to overly long centrioles 
when overexpressed (Kohlmaier et al.  2009 ; Schmidt et al.  2009 ; Tang et al.  2009  ) . 
CPAP (SAS-4) recruits HYLS-1 to the outer centriole wall to enable anchoring of 
centrioles at the plasma membrane and ciliogenesis (Dammermann et al.  2009  ) .  

 In polarized cells the cilium grows out at the apical site. Apicobasal polarization 
is therefore a prerequisite for correct docking of the basal body to the plasma mem-
brane and ciliogenesis (Pan et al.  2007  ) . Disorganization of the apical actin and MT 
networks as observed by knock down of planar cell polarity components might be 
causative for abrogated ciliogenesis (Oishi et al.  2006 ; Park et al.  2006,   2008  ) . 
Protein complexes involved in basal body docking seem to encompass proteins 
affected in Meckel-Gruber syndrome (MKS1, meckelin, Cep290, and RPGRIP1L) 
and proteins affected in nephronophthisis (NPHP4 and Nephrocystin/NPHP1) 
(Mollet et al.  2005 ; Roepman et al.  2005 ; Dawe et al.  2007  b  ) . A link between the 
apical actin cytoskeleton and the basal body is provided by meckelin (also named 
MKS3) that interacts with the actin-binding protein  fi lamin A, and loss of  fi lamin 
A causes defects in basal body positioning and ciliogenesis (Adams et al.  2012  ) . As 
a modulator of ciliary length control, the light chain subunit of cytoplasmic dynein 
Tctex-1 (or DYNLT1) was identi fi ed. Depletion of Tctex-1 as well as suppression 
of dynein heavy chain-2 (DHC2) resulted in longer cilia (Palmer et al.  2011  ) . 
However, Tctex-1 additionally executes dynein-independent functions in actin 
remodelling (Chuang et al.  2005  ) . When phosphorylated at Thr-94 Tctex-1 is 
recruited to the ciliary transition zone before S-phase entry. Phospho(T94)Tctex-1 
in turn affects actin cytoskeleton rearrangement and ciliary resorption (Li et al. 
 2011  ) . Another protein that associates with cytoplasmic dynein, nuclear distribution 
gene E homologue 1 (Nde1), localizes to the mother centriole and suppresses cilia 
formation (Kim et al.  2011  ) . The inhibitory role of the actin network in ciliogenesis 
and cilium length control was substantiated by a large functional genomic screen to 
identify modulators of ciliogenesis (Kim et al.  2010  ) . 

 Elongation of the growing microtubule axoneme and ciliary maintenance is 
achieved by bidirectional intra fl agellar transport (IFT) in all types of cilia (Rosenbaum 
and Witman  2002 ; Pedersen and Rosenbaum  2008  ) . Multiprotein complexes, the IFT 
particles, transport ciliary components from the cell body to the tip of the cilium 
(anterograde transport) and turn-over products back to the cell body (retrograde) 
(Qin et al.  2004  ) . Anterograde transport is powered by kinesin-2 motor complexes 
(reviewed in: Scholey  2008  ) . In human and mouse the two motor subunits of the 
heterotrimeric kinesin-II complex are Kif3A and Kif3B (Scholey  1996  ) . Kinesin-II 
is essential for assembly of primary cilia. Deletion of either Kif3A or Kif3B causes 
embryonic lethality in mice and conditional deletion of Kif3A in the kidney results 
in impaired assembly of primary cilia (Nonaka et al.  1998 ; Marszalek et al.  1999 ; 
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Takeda et al.  1999 ; Lin et al.  2003  ) . Retrograde transport towards the basal body is 
mediated by cytoplasmic dynein 2, and its impaired function resulted in stumpy cilia 
(May et al.  2005  ) . Kinesin and dynein mediate bidirectional transport in association 
with IFT particles. IFT particles are subdivided into IFT-B, comprising 14 known 
proteins (IFT20, IFT22, IFT25, IFT27, IFT46, IFT52, IFT54, IFT57, IFT70, IFT74/
IFT72, IFT80, IFT81, IFT88 (also known as Tg737 or polaris) and IFT172), and 
IFT-A, a complex of six additional IFTs (IFT144/WDR19, IFT140, IFT139/Ttc21b, 
IFT122, IFT121/WDR35, and IFT43). Both complexes play distinct parts in ciliary 
transport. Whereas IFT complex B contributes to anterograde transport, IFT-A is 
required for retrograde transport. Therefore, IFT-B is essential for ciliary assembly 
and maintenance whereas the roles of IFT-A complexes in ciliogenesis appear to be 
more complex. All IFT components are highly conserved among ciliated eukaryotes 
and are essential for the assembly of almost all eukaryotic cilia and  fl agella (Avidor-
Reiss et al.  2004 ; Li et al.  2004 ; reviewed in: Pedersen et al.  2008 ; Ishikawa and 
Marshall  2011  ) . Disruption of either kinesin-2 or individual IFTs in vertebrates elim-
inates the primary cilium, resulting in diverse developmental and cell signaling 
defects, known as ciliopathies (reviewed in: Nigg and Raff  2009  ) . IFT therefore con-
tributes to cilia formation and stability not only in primary cilia but also in motile 
cilia. IFT proteins form a complex with pericentrin at the base of primary and 
motile cilia and this location is dependent on both components at the same time 
because depletion of anyone of these components mislocalizes the other and inhibits 
primary cilia assembly (Jurczyk et al.  2004  ) . 

 Ciliary length is under control of Cep57, Cep131, Cep152, and ALMS1 (a gene 
mutated in Alström syndrome, a rare pleiotropic condition) since depletion of any 
of these proteins resulted in stunted cilia (Graser et al.  2007  ) . Additionally, pharma-
cological agents and environmental changes can modify ciliary length. For example, 
lithium treatment as well as a reduction in intracellular Ca 2+  concentration cause 
primary cilia to extend in length (reviewed in: Miyoshi et al.  2011 ; Besschetnova 
et al.  2010  ) . Ciliary MTs are highly enriched in post-translational modi fi cation of 
 a / b -tubulin, namely acetylation (especially K40 of  a -tubulin), polyglutamylation 
and polyglycylation (Piperno and Fuller  1985 ; Bré et al.  1996 ; Ikegami et al.  2010  ) . 
Additionally, detyrosinated tubulin and  D 2-tubulin are presumably found on the 
B-tubule of the axoneme. Studies of post-translational modi fi cations of tubulin in 
several model organisms revealed that glycylation is involved in axonemal stability 
whereas glutamylation most likely affects the beating behaviour of motile cilia. 
Glutamylation and glycylation of tubulin may regulate each other. However, glu-
tamylation defects of the ciliary axoneme caused by mutations in the centrosomal 
protein Cep41 are involved in Joubert syndrome. Cep41 regulates ciliary entry of 
the polyglutamylase enzyme TTLL6 (Lee et al.  2012  ) . Although axonemal tubulin 
is highly acetylated, its effect on MT assembly and stability is not clear (reviewed 
in: Janke and Bulinski  2012  ) . 

 Early work already provided a link between cell cycle exit and the formation of 
primary cilia. Thus serum-starvation is widely used to promote ciliogenesis in cul-
tured cells (Tucker et al.  1979  ) . The reduced amount of growth factors might trig-
ger cell cycle exit thus increasing the proportion of cells in G0 that form a primary 



34 S. Hoyer-Fender

cilium. Alternatively, in serum-starved medium the amount of factors that inhibit 
ciliogenesis might be reduced, resulting in promotion of ciliogenesis. Inhibition of 
ciliogenesis seems to be mediated by an intact PI(3)K signaling pathway and may 
be counteracted by the von-Hippel-Lindau tumor suppressor (Thoma et al.  2007 ; 
Lolkema et al.  2008  ) . The von-Hippel-Lindau protein (VHL) is a component of an 
E3 ubiquitin ligase complex. It targets hypoxia-inducible factor (HIF) for destruc-
tion in the presence of oxygen. VHL seems to promote ciliogenesis at least in some 
cells since the VHL syndrome is characterized by the lack of primary cilia in renal 
cysts (Esteban et al.  2006  ) . PI(3)K signaling inactivates GSK3 b  via phosphoryla-
tion, and loss of pVHL together with inhibition of GSK3 b  abrogates ciliogenesis. 
GSK3 b  and pVHL thus might both function in promoting ciliogenesis (Thoma 
et al.  2007  ) . Their in fl uence on the formation of cilia might be explained by the fact 
that both pVHL and GSK3 b  affect microtubule orientation and stability (discussed 
in: Santos and Reiter  2008  ) . 

 Disassembly of the primary cilium is mediated by Aurora A kinase and its acti-
vator HEF1 (enhancer of  fi lamentation 1). Aurora A phosphorylates and activates 
histone deacetylase 6 (HDAC6) that in turn deacetylates axonemal tubulin leading 
to regression of the primary cilium (Matsuyama et al.  2002 ; Pugacheva et al.  2007  ) . 
However, since deletion of the  Hdac6  gene in mice causes only mild effects but no 
gross abnormalities as expected when cilia are affected, the in fl uence of HDAC6 on 
cilia formation is debated (Zhang et al.  2008  ) . Aurora A is also activated by the 
basal body and ciliary necklace protein Pitchfork (Pifo) as well as by Trichoplein 
resulting in ciliary disassembly (Kinzel et al.  2010 ; Inoko et al.  2012  ) . Ciliary disas-
sembly is additionally controlled by ubiquitination, and by the lipid 5-phosphatase 
lnpp5e (Huang et al.  2009 ; Jacoby et al.  2009  ) .   

    1.5   Motile Cilia 

    1.5.1   Ultrastructure of Motile Cilia 

 Motile cilia are generally found on specialized epithelia lining the airways, parana-
sal sinuses, the oviduct, and the ventricular system of the brain. They are usually 
present in large numbers and feature a coordinated beating. Motile cilia are gener-
ally of a 9+2 structure with nine peripheral MT doublets and two centrally located 
singlets (Figs.  1.26  and  1.27 ). MT doublets consist of a complete A tubule (assem-
bled from 13 proto fi laments) and an incomplete B tubule (assembled from 10 
proto fi laments). Peripheral doublet microtubules are interlinked by nexin bridges 
that are involved in the bending motions (in Hagiwara et al.  2008  ) .   

 Two singlet microtubules are found in the center of the axoneme encircled by 
the central sheath. Radial spokes connect the doublet MT with the central appara-
tus. Outer and inner dynein arm complexes are present at the complete A tubule. 
Dynein arms are large multiprotein complexes consisting of polypeptides of different 
sizes: heavy (HC; 400–500 kDa), intermediate (IC; 45–110 kDa) and light chains 
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  Fig. 1.26    Cross-sections of 
the shafts of ependymal cilia 
of the rat brain showing 
typical 9+2 structure. 
×67,000 (With permission 
from Brightman and Palay 
 1963  )        

  Fig. 1.27    Structure of a 9+2 axoneme       
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(LC; 8–55 kDa). The ATPase activity resides in the HC and provides the energy for 
ciliary motion. Dynein arms are attached to the MT by specialized docking com-
plexes (Takada et al.  2002  ) . The central apparatus and the radial spokes contain 
kinases and phosphatases and execute a regulatory function on dynein arms (Porter 
and Sale  2000 ; Smith  2002 ; reviewed in: Ibanez-Tallon et al.  2003  ) . Moreover, the 
mouse serin-threonine kinase Stk36 (also known as  fused , Fu), which is involved 
in Hedgehog signal transduction, is essential for construction of the central pair 
apparatus (Wilson et al.  2009  ) . 

 However, motile cilia with a 9+0 structural organization of primary cilia are 
found on the node cells, as well as on prechordal and notochordal plate cells. These 
cilia protrude as single entities on the ventral surface into the yolk sac cavity. Nodal 
monocilia are motile and are important for establishment of left-right asymmetry by 
generation of leftward  fl ow of the extraembryonic  fl uid. That they are involved in 
left-right axis determination has been suggested very early and could be substanti-
ated by the generation of mice with a deletion in the kinesin motor protein KIF3B 
missing nodal cilia but not basal bodies (Sulik et al.  1994 ; Nonaka et al.  1998  ) . 
Motion of the nodal cilia is quite distinct from the whip-like back-and-forth motion 
of typical 9+2 cilia, as they perform a vortical motion by moving of the distal end of 
the cilium in a circle around the axis of rotation. This special motion might explain 
why nodal cilia are of 9+0 structure. However, the existence of two kinds of mono-
cilia on nodal cells serving different functions has also been postulated (McGrath 
et al.  2003 ; reviewed in: Lee and Anderson  2008  ) .  

    1.5.2   Basal Body Formation During Multiciliogenesis 

 One difference between the basal apparatus of primary cilia and motile 9+2 cilia is 
the presence of the daughter centriole. Motile 9+2 cilia are associated with a single 
centriole or basal body whereas primary cilia are mostly associated with two centri-
oles, as originally reported by Barnes in 1961 (Barnes  1961  ) . The single centriole of 
motile 9+2 cilia suggested a different mode of basal body generation. In epithelia 
that harbour a high number of cilia on every cell, centrioles must  fi rst divide repeat-
edly to form many basal bodies, which subsequently elaborate the motile cilia. 
Before the onset of ciliogenesis, the cell harbours only one pair of centrioles but has 
to generate 200–300 basal body precursor structures that then transform into basal 
bodies. Thus, in multiciliated epithelial cells, e.g. of the vertebrate respiratory tracts 
and oviduct, ciliogenesis is preceded by the formation of multiple centrioles from 
precursor structures (Dirksen  1991  ) . 

 Generation of centrioles generally follows two different pathways that have both 
been described in the Rhesus monkey oviduct as well as in tracheal epithelia of the 
rat (Sorokin  1968 ; Anderson and Brenner  1971  ) . In the centriolar pathway, which is 
a minor pathway, multiple procentrioles are generated at right angles to the centriole 
along its axis. These procentrioles rapidly develop into mature basal bodies by elon-
gation and expansion and eventually detach from the centriole (Fig.  1.28 ).  
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 The major pathway in multiplication of basal bodies is the acentriolar pathway 
(Fig.  1.29 ). In this pathway precursor structures are formed independently of the 
presence of mature centrioles. In the acentriolar pathway  fi brous granules are tempo-
rarily formed that later aggregate and generate procentrioles. First, amorphous clouds 
of  fi lamentous material appear that enclose electron-dense particles of varying size. 
These precursor structures are called  fi brogranular masses or deuterosomes, amongst 
others. All multiciliated cells investigated so far form deuterosomes of fundamental 
morphological similarity. Deuterosomes have been identi fi ed during ciliogenesis in 
multiciliated epithelial cells of different tissues and in diverse vertebrate species 
(reviewed in: Dirksen  1991  ) . However, immature centrioles are never found associated. 
These amorphous  fi brogranular masses or deuterosomes then aggregate to form large 
electron dense masses of ~75 to over 400 nm in size to which immature centrioles or 
procentrioles  fi nally associate. As with centriole elongation and maturation these 

  Fig. 1.28    Centriolar pathway of centriole/basal body formation in the rhesus monkey oviduct. 
( a ) Formation of procentrioles ( pc ) from the basal body and its associated centriole. ×28,000. 
( b ) Centriole generating four procentrioles. ×61,000. ( c ) Procentrioles have been grown in 
length. ×64,000 (From Anderson and Brenner  1971  )        

  Fig. 1.29    Acentriolar pathway of centriole/basal body formation in the rhesus monkey oviduct. 
( a ) Aggregation of  fi brous granules with occasional procentrioles ( pc ). ×28,000. ( b ) Procentrioles 
within aggregate of  fi brous granules. ×28,000. ( c ) Formation of four procentrioles. ×28,000. 
( d ) Maturation to basal bodies by the acquisition of basal feet ( arrows ) on their walls. ×35,000. 
( e ) Random arrangement of basal bodies in the apical region. ×17,000. ( f ) Basal bodies forming 
cilia. ×17,000 (From Anderson and Brenner  1971  )        
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dense masses then drop off. Initially as many as nine immature procentrioles are 
associated with these condensation forms, but the number of centrioles subsequently 
decreases concomitant with their elongation and maturation. At the end, mature centri-
oles are associated with only a small amount of dense material. Finally, mature centri-
oles migrate towards the cell apex freeing the dense material. The formation of 
centrioles from deuterosomes suggests that deuterosomes are centriolar precursors 
consisting mainly of deposited centriolar material. Because basal body formation and 
ciliogenesis are asynchronous processes, a cell may contain basal bodies and cilia at all 
stages from fully developed basal bodies at the apical surface of the cell with outgrow-
ing cilia, to dense aggregates with or without immature centrioles deeper in the cell.  

 Procentriole formation traverses through a cartwheel stage as already described 
for centriole duplication in cycling cells (Fig.  1.30 , compare Fig.  1.10 ). The cart-
wheel is no longer present in the basal body undergoing cilium formation. Centrioles/
basal bodies show the same conserved structure of nine triplet MT as known from 
centrioles/basal bodies of cycling cells. The formation of the ninefold symmetry 
traverses through intermediate structures containing singlets and doublets and there-
fore resembles the formation of daughter centrioles. When the triplet con fi guration 
is established centrioles start to grow in width and length. Eventually, transforma-
tion of the centriole to the basal body is accomplished by the addition of accessory 
structures. Usually one, sometimes two basal feet form in the mid-region of the 
basal body at right angles to the wall. Transition  fi bers extend from the C tubules at 
the apical region. However, they assume their  fi nal arrangement until the basal 
body-cilium relationship is established (Anderson and Brenner  1971  ) .  

 Ciliogenesis starts when basal bodies have migrated to the cell surface. Cilia then 
grow out from the distal regions of basal bodies. Ciliary budding thus happens at the 

  Fig. 1.30    Cartwheel 
structure in a procentriole of 
the acentriolar pathway. The 
A tubule is formed  fi rst 
followed by progressive 
formation of B and C tubules. 
×112,000 (From Anderson 
and Brenner  1971  )        
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apical cell membrane, not inside the cytoplasm as observed in  fi broblasts undergoing 
ciliogenesis (Sorokin  1962  ) . Sprouting of cilia from the apical membrane into the 
epithelium-lined cavity has also been observed in epithelial cells in which basal bod-
ies normally reside in the apical cytoplasm (Fig.  1.31 ; Sorokin  1968  ) .  

 Motile cilia of the oviduct epithelium of man and rabbit are different from single 
cilia on secretory cells of the oviduct epithelium. Motile cilia are longer than single 
cilia. Additionally, they have only one basal foot emerging from the basal body and 
apparently lack rootlets (Odor and Blandau  1985 ; Hagiwara et al.  2002  ) . The single 
basal foot projects laterally from the basal body and points into the direction of cili-
ary beating stroke (Boisvieux-Ulrich and Sandoz  1991  ) . Since motile cilia function 
to propel cells and  fl uids over the epithelial surface their orchestrating beating is 
essential for ef fi cient  fl ow direction. In the brain ependyma it has been shown that 
basal bodies  fi rst dock apically with random orientation and then reorient in a com-
mon direction. Reorientation depends on hydrodynamic forces and the planar cell 
polarity (PCP) protein Vangl2 (Guirao et al.  2010 ; reviewed in: Marshall and Kintner 
 2008 ; Kishimoto and Sawamoto  2012  ) . Apical docking of basal bodies to the plasma 
membrane in multiciliated cells requires planar cell polarity components Dishevelled 
(Dvl) and Inturned (Park et al.  2008  ) . 

 Key regulators of centriole duplication in cycling cells seem to be involved in cen-
triole assembly pathway in multiciliated cells as well. Basal bodies of multiciliated 
cells contain SAS-6 and depletion of SAS-6 prevents centriole assembly (Vladar and 
Stearns  2007  ) . Simultaneous overexpression of key proteins for centriole duplication, 
Plk4/SAS6/SAS4 in CHO cells results in the formation of  fi brogranular aggregates as 
already observed by Dirksen ( 1991 ). Eventually, multiple centrioles are assembled 
around a parent centriole reminiscent of the formation of multiple centrioles in normal 
ciliated trachea/oviduct cells by the centriolar pathway (Sorokin  1968 ; Dirksen   1991 ). 

  Fig. 1.31    A ciliary bud in the 
bronchus of a 21-day foetal 
rat lung. ×58,000 
(With permission from 
Sorokin  1968  )        
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It seems therefore that centriole duplication in cycling cells as well as centriole 
generation in multiciliated cells by the centriolar pathway rely on a common mecha-
nism (Kuriyama  2009  ) . Recently, microRNAs have been identi fi ed as key regulators 
of multiciliogenesis in vertebrates. The microRNA miR449 strongly accumulates in 
multiciliated cells and promotes centriole multiplication by repression of the Delta/
Notch pathway (Marcet et al.  2011  ) . Additionally, repression of microRNA proces-
sors prevents the formation and elongation of primary cilia (Moser et al.  2011  ) .   

    1.6   Summary 

 Generally speaking, cilia are hair-like projections extending from the cell surface 
into the cellular environment. All cilia are anchored in the cell by their basal bodies. 
Motile cilia are mostly of 9+2 structure and are found in large numbers on the sur-
face of specialized epithelia. Their orchestrated beating is essential for movement of 
cells and  fl uids. Each motile cilium is associated with one basal body only without 
an associated centriole. Generation of basal bodies in multiciliated cells occurs 
mostly by the acentriolar pathway. In contrast, most cells of the vertebrate body 
harbour one single cilium called the primary cilium. Primary cilia are mostly of 9+0 
structure and are immotile. However, primary cilia are important mechanosensors 
and/or chemosensors, and are essential for development and tissue homeostasis in 
adulthood. Primary cilia are generated from the distal end of the former mother 
centriole that has been transformed into the basal body. The basal body of the pri-
mary cilium is associated with its daughter centriole. Duplication of centrioles 
occurs synchronously with the cell cycle and uses the existing centrioles as tem-
plates. Furthermore, motile cilia of 9+0 structure and immotile cilia of 9+2 structure 
are also existent. Formation of cilia strictly depends on the presence of the basal 
bodies but their exclusive presence is not suf fi cient. Cilia are sophisticated struc-
tures and may require more than 1,000 different proteins for their generation and 
function including those of the basal body. Thus, lots of proteins in addition to those 
highly enriched at the basal body affect ciliogenesis and have been implicated in 
cilia-related diseases when mutated.      

  Acknowledgement   I gratefully acknowledge proof reading by Niko Prpic-Schäper.  
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  Abstract   Embryonic spinal cord development requires Sonic hedgehog (Shh) 
signaling to de fi ne ventral motor neuron and interneuron progenitor domains during 
neural patterning. Shh signaling is inextricably linked to primary cilia, and muta-
tions that disrupt cilia structure and/or function lead to abnormal Shh signaling. 
The embryonic spinal cord is highly sensitive to perturbations in Shh activity and 
displays abnormal patterning phenotypes when Shh signaling is up- or downregulated. 
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Mutations in a variety of different cilia genes lead to neural tube patterning 
phenotypes that provide useful information about the role of different proteins in 
transducing Shh signals. Here we discuss Shh-dependent spinal cord development 
and describe what is currently known about the molecular mechanisms regulating 
Shh signaling in the neural tube.  

  Keywords   Primary cilia  •  Sonic hedgehog  •  Patched  •  Smoothened  •  Gli  •  Sufu  
•  Kif7  •  PKA  •  Neural tube patterning  •  Mouse genetics  •  Forward genetic screens  
•  Intra fl agellar transport  •  Protein traf fi cking      

    2.1   Introduction 

 Primary cilia are linked to a variety of biochemical pathways, with the Sonic 
hedgehog (Shh) signaling pathway especially notable for its integral connection 
to cilia structure and function (reviewed in: Berbari et al.  2009 ; Eggenschwiler 
and Anderson  2007 ; Wong and Reiter  2008  ) . Without primary cilia, Shh signaling 
cannot occur (Huangfu et al.  2003 ; Huangfu and Anderson  2005  ) , and genetic 
mutations that disrupt ciliogenesis or other important cilia functions typically 
cause defects in Shh signaling, as well. Many such mutations are incompatible 
with life, because Shh is so important for embryonic development, but in animal 
models they have revealed much about the complex interaction between cilia and 
developmental signaling. 

 Shh plays many roles in the developing nervous system (reviewed in: Sánchez-
Camacho and Bovolenta  2009 ; Hatten and Roussel  2011  ) , where it was  fi rst shown 
to possess an essential function in patterning the embryonic spinal cord, also known 
as the neural tube (Echelard et al.  1993  ) . During development, there is a gradient of 
Shh activity in the neural tube that confers different cell fates upon neural progeni-
tors at distinct positions along the dorsoventral axis. The resulting progenitor 
domains are highly consistent among embryos and also highly sensitive to changes 
in Shh activity (reviewed in: Jessell  2000 ; Briscoe and Ericson  2001 ; Lupo et al. 
 2006 ; Dessaud et al.  2008  ) , making the pattern of the ventral neural tube an infor-
mative readout of any perturbations to the Shh signaling pathway. Indeed, such 
perturbations are what provided the initial link between cilia and Shh signaling 
(Huangfu et al.  2003  ) . 

 In recent years, descriptive in vivo studies on the relationship between cilia and 
Shh activity in the neural tube were complemented by cellular and molecular experi-
ments that give a more mechanistic explanation of the role of cilia in Shh signaling. 
We now know that Shh signals are transduced via a series of proteins that dynamically 
enter and exit the primary cilium in a ligand-dependent manner (Corbit et al.  2005 ; 
Haycraft et al.  2005 ; Rohatgi et al.  2007  ) , ultimately resulting in either the activation 
or repression of Shh target genes. If the primary cilium is absent or abnormal, Shh 
signaling is adversely affected (Huangfu et al.  2003 ; Huangfu and Anderson  2005 ; 
Liu et al.  2005  ) . Furthermore, an entire suite of specialized molecules regulates the 
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traf fi cking and transport of Shh pathway components and other ciliary proteins into 
and within cilia (Haycraft et al.  2005 ; Kovacs et al.  2008 ; Liu et al.  2005 ; May et al. 
 2005 ; Seo et al.  2011  ) . Disruption of any aspect of this molecular system can lead to 
Shh signaling defects and abnormal neural development. 

 In the  fi rst part of this chapter, we explore how Shh signaling patterns the neural 
tube under normal conditions, as well as how this system allows for particularly 
elegant investigation of Shh signaling in vivo. We focus our discussion primarily on 
mammalian models, since much of the work on cilia and developmental signaling 
has been conducted using genetic techniques in the mouse. We also describe in 
more detail how Shh signaling occurs at the level of individual cells and how pri-
mary cilia are essential for the proper regulation of the proteins that constitute the 
Shh pathway. Finally, we survey the effects of mutations that affect ciliogenesis, 
ciliary protein transport, and other important processes in primary cilia function to 
summarize what is currently known and what remains to be explored in terms of the 
complex interactions between cilia and the Shh pathway.  

    2.2   Shh Signaling in the Developing Spinal Cord 

    2.2.1   Patterning the Neural Tube 

 In vertebrates, the nervous system arises through a process known as neurulation, 
during which the undifferentiated neuroepithelium of the ectoderm thickens into the 
neural plate and folds in upon itself to form the neural tube (reviewed in: Colas and 
Schoenwolf  2001 ; Copp et al.  2003  ) . The most rostral portion of the neural tube 
develops into the brain; the more caudal portion gives rise to the spinal cord. As the 
cells of the neural tube begin to differentiate, the tissue is patterned by opposing 
gradients of biochemical signaling activity across the dorsoventral axis. Dorsal pat-
terning is primarily governed by BMP and Wnt cues secreted from the roof plate 
(reviewed in: Lee and Jessell  1999 ; Caspary and Anderson  2003 ; Chizhikov and 
Millen  2005 ; Liu and Niswander  2005  ) , whereas ventral patterning is regulated by 
Shh secreted from the notochord and  fl oor plate. Shh is one member of the Hedgehog 
family of proteins. In mammals, this family also includes Indian hedgehog, which 
is essential for skeletal development (reviewed in: Mackie et al.  2011 ; Whit fi eld 
 2008  )  and Desert hedgehog, which is essential for development and maintenance of 
the male germ line (Bitgood et al.  1996  ) . Although the vertebrate Hedgehog ligands 
play distinct roles in development, they use similar mechanisms: Indian hedgehog 
has been shown to act via primary cilia and signals through many of the same down-
stream molecules as Shh (Whit fi eld  2008  ) . 

 Shh signaling is necessary for the formation of six distinct domains in the ven-
tral neural tube ( fl oor plate, p3, pMN, p2, p1, p0) (Fig.  2.1 ). The  fl oor plate is the 
most ventral part of the neural tube and serves as a developmental signaling center, 
providing a secondary source of Shh ligand during neural patterning, as well as 
cues that mediate axon guidance later in development, along with Slit and Netrin. 
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The progenitor cells in the pMN domain give rise to motor neurons (MNs) and 
subsequently oligodendrocytes. Cells in the other ventral progenitor domains 
differentiate into different classes of spinal interneurons.  

 During neural development, Shh is  fi rst produced by the notochord, a rod-shaped 
structure derived from mesoderm that runs the length of the ventral face of the neural 
tube. Diffusion of Shh ligand from the notochord to the ventral midline of the neural 
tube induces the formation of the  fl oor plate, which also begins to produce Shh 
(Martí et al.  1995 ; Roelink et al.  1995  ) . In both the notochord and the  fl oor plate, Shh 
protein must be activated through catalytic cleavage, N-terminal palmitoylation, and 
C-terminal cholesterol modi fi cation (Bumcrot et al.  1995 ; Chen et al.  2004 ; Pepinsky 
et al.  1998 ; Porter et al.  1996  ) , before it is released into the extracellular space through 
a process that depends on the transmembrane protein Dispatched1 (Caspary et al. 
 2002 ; Kawakami et al.  2002 ; Ma et al.  2002 ; Tian et al.  2005  ) . 

  Fig. 2.1     Speci fi cation of ventral neural progenitor domains by Shh . Shh produced in the 
notochord ( nc ) and  fl oor plate ( FP ) leads to the repression of Class I transcription factors and the 
expression of Class II transcription factors in well-de fi ned dorsoventral domains across the neural 
tube ( rectangles ). Combinatorial expression of these factors de fi nes the six distinct progenitor 
domains of the ventral neural tube: FP, p3, pMN, p2, p1, and p0. Nkx6.1 is expressed across mul-
tiple ventral progenitor domains; other Class II factors (Nkx6.2, Olig2, Nkx2.2, FoxA2) are 
restricted to individual domains and can thus be used as molecular markers for speci fi c progenitor 
cell types ( circles )       
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 In the simplest terms, Shh can be conceived of as a classic morphogen, meaning the 
ligand confers spatial information onto differentiating cells via a concentration gradi-
ent: cells in the most ventral part of the neural tube are close to the source of Shh, and 
are therefore exposed to higher concentrations of ligand than more dorsal cells. Proper 
patterning of the ventral neural tube depends on the variable level of Shh signaling 
activity along the dorsoventral axis, corresponding to the graded concentration of Shh 
ligand (Ericson et al.  1997  ) . Ventral cell types ( fl oor plate, p3) require a high level of 
Shh signaling to induce their differentiation, mediolateral cell types (pMN, p2, p1, p0) 
require less Shh activity, and dorsal cell fates are repressed by Shh activity.  

    2.2.2   Shh Signaling Pathway Components 

 Differentiating neural progenitors respond to Shh through a multi-step molecular 
signaling cascade that results in the expression of distinct target genes in different 
classes of Shh-responsive cells. Ultimately, Shh signaling regulates target gene 
expression via the Gli family of transcription factors, which can act either as tran-
scriptional activators or repressors (Bai et al.  2004 ; Ding et al.  1998 ; Lei et al. 
 2004 ; Litingtung and Chiang  2000 ; Matise et al.  1998  ) . Other critical regulators 
of Gli transcriptional activity include the Shh receptor, Patched1 (Ptch1) (Denef 
et al.  2000 ; Marigo et al.  1996 ; Taipale et al.  2002  ) ; the major effector of Shh 
activity, Smoothened (Smo) (Alcedo et al.  1996 ; Stone et al.  1996 ; van den Heuvel 
and Ingham  1996  ) ; the Gli inhibitor, Suppressor of Fused (Sufu) (Ding et al.  1999 ; 
Kogerman et al.  1999 ; Svärd et al.  2006  ) ; an atypical kinesin, Kif7 (Cheung et al. 
 2009 ; Endoh-Yamagami et al.  2009 ; Liem et al.  2009  ) ; and protein kinase A 
(PKA) (Epstein et al.  1996 ; Hammerschmidt et al.  1996 ; Pan et al.  2009 ; Tuson 
et al.  2011  )  (Fig.  2.2 ). As the Shh signal is transduced, all of the aforementioned 
proteins localize to primary cilia in a highly regulated manner.  

  Fig. 2.2     Genetic interactions between core Shh signaling pathway components . Genetic 
experiments ablating individual components of the Shh pathway have shown whether these pro-
teins primarily activate or inhibit downstream Shh signaling. Shh ligand serves to inhibit the 
activity of its ligand Ptch1, which in turn inhibits the major Shh effector Smo. Activated Smo 
leads to the production of GliA, which in turn transcribes Shh target genes. In the absence of Shh, 
Smo is inhibited and GliR is formed. Other major inhibitors of GliA include Sufu and Kif7. PKA 
is required for formation of both GliA and GliR, but its most prominent function in Shh signaling 
is to inhibit Gli activity in the absence of ligand       
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 In the absence of Shh, Ptch1 inhibits Smo, thereby acting as a brake on Shh 
signaling (Denef et al.  2000 ; Taipale et al.  2002  ) . When Shh binds to Ptch1, the 
inhibition of Smo is relieved, triggering activation of Gli proteins and transcrip-
tion of Shh target genes. The opposing functions of Ptch1 and Smo in Shh signal-
ing become clear when these proteins are ablated in mice.  Ptch1   −/−   embryos 
exhibit a ventralized neural tube in which cells throughout the tissue express 
markers of the  fl oor plate, indicating a maximal level of Shh signaling in the 
absence of the inhibitory receptor (Goodrich et al.  1997  ) .  Smo   −/−   embryos, on the 
other hand, are insensitive to Shh ligand and fail to develop any Shh-dependent 
cell types in the neural tube (Wijgerde et al.  2002  ) . Similar experiments in mouse 
genetics have used neural tube patterning phenotypes to examine the role of many 
other proteins in the Shh pathway. 

 Under normal conditions, Shh-dependent neural patterning arises from differing 
levels of Gli activator and repressor activity along the dorsoventral axis of the neural 
tube (Lei et al.  2004 ; Motoyama et al.  2003 ; Sasaki et al.  1999  ) . In vertebrates, the 
Gli family of transcription factors consists of three members: Gli1 functions solely 
as a transcriptional activator, while Gli2 and Gli3 contain both activator and repres-
sor domains (Bai et al.  2002 ; Ding et al.  1998 ; Park et al.  2000 ; Persson et al.  2002  ) . 
Gli2 serves as the primary activator and cleaved Gli3 the primary repressor of Shh 
target genes in the mammalian neural tube (Sasaki et al.  1999  ) . The regulation of 
Gli2 and Gli3 is critical for the proper transduction of Shh signaling. In the absence 
of Shh activity, Gli3 is proteolytically cleaved into its repressor form (GliR) through 
a PKA-dependent mechanism (Wang et al.  2000  ) , and Gli2 is targeted for degrada-
tion. Sufu binds to Glis in the absence of Shh signaling, serving both to stabilize the 
Gli proteins and inhibit their activation (Chen et al.  2009 ; Tukachinsky et al.  2010 ; 
Wang et al.  2010  ) . When Shh is present, the ensuing Shh signaling cascade blocks 
the cleavage of Gli3 into GliR and stabilizes full-length Gli2, which can then be 
converted into its activator form (GliA) through an as-yet-unknown mechanism. 
The atypical kinesin Kif7 was recently revealed to be necessary for the formation of 
both GliA and GliR via a cilia-dependent process (Cheung et al.  2009 ; Endoh-
Yamagami et al.  2009 ; Liem et al.  2009  ) . In addition, PKA regulates not just the 
processing of Gli3 into GliR, but also the activation of Gli2 (Tuson et al.  2011  ) . 
Ultimately, since Shh pathway activity mirrors the gradient of Shh ligand across the 
dorsoventral axis, the end result of this tightly regulated signaling cascade is that 
GliA levels are high in the ventral neural tube, whereas GliR predominates in the 
dorsal neural tube. These opposing gradients of activator and repressor establish the 
progenitor domains in the ventral neural tube. 

 The functions of individual Gli proteins in neural tube patterning have also 
been studied through genetic ablation experiments.  Gli1   −/−   mice are phenotypi-
cally normal, indicating that Gli1 is dispensable for Shh signaling in mammals. 
In fact,  Gli1  is itself a Shh target gene, and it has been shown that all Gli1 expres-
sion requires Shh signaling (Bai et al.  2002  ) . In the absence of Gli1, it is likely 
that the other Gli proteins (primarily Gli2) compensate for its function.  Gli2   −/−   
mouse embryos, in contrast, display reduced Shh activity: they fail to form a  fl oor 
plate and show a reduction in the number of v3 progenitors, indicating that the 
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highest levels of Shh activity cannot be achieved without Gli2. This indicates 
Gli2’s role as the primary activator of Shh target gene transcription in the neural tube 
(Ding et al.  1998 ; Matise et al.  1998 ; Park et al.  2000  ) . Finally,  extra toes (Xt   J   )  
mouse mutants, which lack Gli3 function due to a genomic deletion in the  Gli3  
locus, exhibit mediolateral progenitors in more dorsal regions of the neural tube. 
These embryos show an expansion of the Shh-responsive domain in the absence 
of the primary repressor (Persson et al.  2002  ) . Epistasis experiments indicate that 
Gli3 does have some role as an activator; however,  Gli2   −/−   ;Gli3   Xt/Xt   double mutant 
embryos completely lack v3 cells, suggesting the v3 progenitors that are present 
in  Gli2   −/−   embryos are induced by GliA derived from Gli3 (Motoyama  2003  ) . The 
neural tube’s sensitivity to such slight changes in the balance of GliA and GliR 
makes this an excellent system for testing hypotheses about Shh signaling through 
genetic manipulations.  

    2.2.3   Maintaining Neural Patterning 

 Progenitor domains in the developing spinal cord are de fi ned by the expression of 
two classes of Shh-responsive transcription factors (Briscoe  2000  ) . Class I factors, 
such as Pax7, Pax6, Dbx1, Dbx2, and Irx3, are constitutively expressed by neural 
progenitors, but are repressed by Shh signaling. Class II factors, such as FoxA2, 
Nkx6.1, Nkx6.2, Nkx2.2, and Olig2, require Shh signaling for their expression 
(Briscoe and Ericson  2001  ) . The proteins in each class differ in their sensitivity to 
Shh activity, such that unique combinations of these factors are expressed in each 
progenitor domain depending on the ratio of GliA and GliR to which cells are 
exposed. For example, Nkx6.1, Pax6, and Olig2 are all expressed in the pMN domain, 
but in the more dorsal p2 domain, Olig2 expression does not occur, while Irx3 expres-
sion is permitted. Cross-repressive interactions between pairs of class I and class II 
proteins establish the boundaries between progenitor domains (for example, Irx3 and 
Olig2 repress each other’s expression). As development proceeds, these unique tran-
scription factor expression pro fi les regulate the expression of cell type-speci fi c genes 
that promote differentiation into distinct classes of spinal cord neurons. In this way, 
class I and class II transcription factors form a gene regulatory network that solidi fi es 
the pattern within the neural tube. 

 Recent work provides further evidence for a model in which graded Shh activity 
initiates patterning, but other mechanisms re fi ne and maintain the ventral progeni-
tor domains. Studies using a GFP reporter of Gli activity show that the level of 
signaling in individual progenitor domains changes during the course of develop-
ment, while their transcriptional pro fi le remains constant. This indicates that proper 
patterning depends on more than the absolute level of Shh signaling in a cell. 
Indeed, a model describing the cross-repressive gene regulatory network between 
the Shh-responsive transcription factors Nkx2.2, Olig2, and Pax6 can explain how 
these factors remain con fi ned to particular dorsoventral domains, even in the face 
of variable levels of Shh ligand and GliA/GliR activity during development. At any 
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given time, neural progenitor cells are in fl uenced both by their current level of Shh 
signaling and their current transcriptional pro fi le. For instance, due to its status as 
the strongest repressor in the gene regulatory network, once Nkx2.2 is expressed, 
it is able to prevent the expression of other Shh-responsive genes (e.g., Olig2), 
despite  fl uctuations in levels of Shh signaling. Conversely, cells that might have 
initially expressed Olig2 at lower levels of Shh activity are able to alter their tran-
scriptional pro fi les to express Nkx2.2 in response to increased Shh signaling 
(Balaskas et al.  2012  ) . 

 Although a classic morphogen model would suggest that cell fates in the ven-
tral neural tube are de fi ned solely by the amount of Shh in the extracellular envi-
ronment (which in turn determines the levels of GliA and GliR), recent studies 
reveal that Shh-dependent neural patterning is more complex. This is not so sur-
prising, however, when one considers the inherent complexity of the developing 
spinal cord. Throughout development, the tissue of the neural tube grows and 
expands, meaning progenitor cells are constantly shifting their position relative 
to the source of Shh in the notochord and  fl oor plate. Furthermore, the Shh gradi-
ent does not remain constant: the overall amount of ligand increases over time 
(Chamberlain et al.  2008  ) , such that Shh levels that would be suf fi cient to induce 
ventral progenitors earlier in development can be found at more dorsal positions 
later in development, without inducing a change in dorsal cell fate. Thus, other 
mechanisms beyond the interpretation of the Shh ligand gradient seem necessary 
to ensure that proper patterning is established and maintained in the ventral 
neural tube. 

 One such mechanism is temporal adaptation. Shh-responsive cells create 
negative feedback by upregulating Ptch1, the major inhibitor of Shh activity, so 
cells exposed to a constant concentration of Shh reduce their GliA response 
over time. Higher concentrations of Shh induce higher initial GliA activity, 
meaning the duration of GliA-dependent signaling is longer in cells exposed to 
the highest levels of Shh. Importantly, the duration of Shh signaling is critical 
for proper speci fi cation of progenitor domains. In vivo, the p3 domain has been 
shown to transiently express Olig2, a marker of the more dorsal pMN domain, 
before expressing Nkx2.2. This result is also seen in vitro, where neural tube 
explants exposed to Shh express Olig2 and Nkx2.2 sequentially, and the normal 
duration-dependent response to Shh is found to require Ptch1 upregulation 
(Dessaud et al.  2007  ) . 

 In summary, the mammalian neural tube makes a remarkable system for 
studying the regulation of Shh signaling in vivo. Since neural progenitor cells 
along the dorsoventral axis express molecular markers in a highly stereotyped 
fashion, and we have a solid understanding of the connections between levels of 
Shh ligand, signal transduction through the primary components of the pathway, 
and the ultimate patterns of gene expression that de fi ne neural progenitor 
domains, the assessment of neural patterning in mutant embryos gives us many 
informative clues as to how a given gene regulates Shh signaling, especially 
when combined with epistasis experiments to show whether the gene of interest 
acts upstream or downstream of known Shh signaling components. In recent 
years, genetic experiments like these have shown that primary cilia are essential 
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for the proper function of the Shh pathway and that the perturbation of cilia leads 
to a variety of Shh signaling defects that can be assessed via their effects on neural 
tube patterning.   

    2.3   Molecular Mechanisms of Shh Signaling in Cilia 

    2.3.1   Requirement of Cilia for Sonic Hedgehog Signaling 

 Primary cilia are seen on virtually every type of vertebrate cell and are required for 
Shh signaling. The connection between primary cilia and Shh signaling is unique to 
vertebrates (reviewed in: Huangfu and Anderson  2006 ; Ingham et al.  2011  )  and was 
 fi rst revealed through in vivo analysis of mouse mutants with defects in cilia genes. 
More recently, however, new experiments have told us much about the molecular 
biology of cilia-dependent Shh signaling within individual cells. All major compo-
nents of the Shh signaling pathway are known to localize in or near primary cilia, 
and Shh pathway proteins are traf fi cked in and out of cilia depending on the activa-
tion state of the pathway (Fig.  2.3 ). In general, disrupting ciliogenesis or ciliary 
protein transport also leads to disruption of Shh signaling.  

 Cell biology experiments point to an extremely complex mechanism through which 
a large number of effectors regulate Shh signaling in cilia. These molecules can be dis-
rupted independently of one another, leading to abnormal Shh signaling activity through 
similar overlapping but ultimately distinct mechanisms. In such cases, the neural tube 
makes an appealing system for analyzing the roles of individual molecules in the regula-
tion of the Shh pathway, since we can observe shifts in the patterning of ventral neural 
progenitor domains when a gene is manipulated in mouse embryos and use the pattern-
ing phenotype to make inferences about the effects of the mutation on Shh signaling. 

 Shh signaling activity depends on the proper localization of the pathway’s com-
ponent proteins to primary cilia: Ptch1, Smo, Gli2, Gli3, Sufu, and Kif7 are all 
known to move into and out of the cilium during Shh signaling (Corbit et al.  2005 ; 
Haycraft et al.  2005 ; Liem et al.  2009 ; Rohatgi et al.  2007 ; Tukachinsky et al.  2010  ) . 
Indeed, without primary cilia, no Shh signaling can occur. Cilia are required for the 
formation of both GliA and GliR (Haycraft et al.  2005 ; Huangfu and Anderson 
 2005 ; Liu et al.  2005 ; May et al.  2005  ) ; cells without cilia receive no transcriptional 
signals from the Shh pathway. Despite this, mediolateral progenitors requiring only 
low levels of Shh signaling are still observed in some mutants with no cilia (Huangfu 
and Anderson  2005  ) . The progenitors form due to the loss of GliR-dependent 
repression of mediolateral cell fates. This situation is distinct from  Shh   −/−   embryos, 
for example, in which ventral neural progenitors do not develop because GliA is 
never induced by Shh signaling, but GliR is still produced (Chiang et al.  1996  ) . 
Epistasis experiments show that  Shh   −/−   ;Gli3   −/−   double mutants are still capable of 
producing some ventral progenitors; the loss of GliR derepresses the Shh pathway 
under these conditions (Persson et al.  2002  ) . In contrast, mutants that lack cilia are 
much less sensitive to  Gli3  ablation (Huangfu et al.  2003  )  (Fig.  2.4 ).   
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    2.3.2   Cilia-Dependent Sonic Hedgehog Effectors 

 Under baseline conditions, cilia-dependent mechanisms are required to properly 
regulate the Shh pathway. In the absence of Shh, Ptch1 is enriched in the membrane 
of the primary cilium (Rohatgi et al.  2007  ) . The presence of Ptch1 serves to inhibit 
the accumulation of Smo in ciliary membrane, although a small amount of Smo 

  Fig. 2.3     Localization of major Shh pathway proteins within cilia . In the absence of Shh ligand 
( left panel ), the Shh receptor Ptch1 is localized to the ciliary membrane, which inhibits the ciliary 
entry of Smo. Studies have reported that Smo is localized either to the plasma membrane or to 
intracellular vesicles (or, perhaps, both) in the absence of Shh signaling ( a ). Without Shh stimula-
tion, Gli transcription factors, particularly Gli3, are converted to their repressor form. Gli3 is bound 
to Sufu, which is regulated via phosphorylation ( purple circles ) by PKA to promote its ciliary 
localization ( b ). The Sufu/Gli3 complex must be traf fi cked to the tip of the cilium in order for Gli3 
to dissociate from Sufu and promote the formation of GliR ( c ), although it is not known whether 
this dissociation occurs within the cilium or after the complex exits the cilium. Gli3 itself is also 
phosphorylated by PKA ( purple circles ) at the base of the cilium to promote its cleavage by the 
proteasome into GliR ( d ). Processed GliR then translocates to the nucleus, where it represses the 
transcription of Shh target genes ( e ). At the same time, PKA and Kif7 together inhibit the ciliary 
localization and activation of Gli2 ( f ). In the presence of Shh ( right panel ), Ptch1 binds to the 
ligand and is internalized ( g ). The removal of Ptch1 from the ciliary membrane allows Smo to enter 
the cilium via lateral transport, targeted vesicle fusion, or both ( h ). Activated ciliary Smo promotes 
the enrichment of Gli proteins at the tip of the cilium, where they are activated to form GliA 
through a currently unknown mechanism ( i ). GliA then translocates to the nucleus where it initi-
ates transcription of Shh target genes ( j )       
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constantly shuttles through the cilium, even in the presence of Ptch1 (Kim et al. 
 2009 ; Ocbina and Anderson  2008  ) . Gli2 and Gli3 are also found in cilia in the 
absence of Shh ligand, and Gli proteins must travel into and out of primary cilia to 
be properly converted into GliR (Haycraft et al.  2005  ) . 

 When Shh binds Ptch1, an unknown process causes Ptch1 to exit the cilium and 
leads to Smo becoming enriched there (Corbit et al.  2005 ; Rohatgi et al.  2007  ) . The 
exact mechanism of Smo’s movement into cilia remains a matter of debate, although 

  Fig. 2.4     Neural tube patterning requires cilia and Shh . Progenitor domains in the neural tube 
reveal changes in the balance between GliA and GliR in different mutant embryos. Wild-type 
embryos ( a ) exhibit six ventral progenitor domains based on graded Shh signaling along the dors-
oventral axis. In  Shh   −/−   embryos ( b ), no GliA is produced, but GliR still forms, inhibiting all six 
classes of ventral progenitors and dorsalizing the neural tube. Embryos that lack cilia ( c ) due to 
mutations in a variety of genes are de fi cient in both GliA and GliR; the result is that the highest 
levels of activation and repression cannot be achieved, and the neural tube displays mediolateral 
progenitor cells throughout the ventral region. These cells are ligand-insensitive; the notochord 
(nc) continues to produce Shh in cilia mutants even though the  fl oor plate (FP) is not established. 
Mutations in  Gli3  help reveal more about the mechanism of Shh signaling in various mutants. 
 Gli3  −/−  single mutants ( d ) show a mild phenotype in which mediolateral progenitor domains are 
slightly expanded and overlapping. Loss of  Gli3  in a  Shh   −/n   embryo ( e ) derepresses Shh signaling, 
allowing mediolateral progenitors to form even in the absence of ligand. In a cilia mutant embryo, 
however, loss of Gli3 has little effect ( f ) because GliR formation requires cilia       
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there is some evidence that Smo moves from the plasma membrane into the cilium 
via lateral transport (Milenkovic et al.  2009  ) , and other studies point to a mecha-
nism by which intracellular Smo is targeted to the cilium (Wang et al.  2009  ) . Another 
possibility is that Smo uses several mechanisms for its transport into cilia. A recent 
study supporting the multiple-mechanisms model identi fi ed a novel protein, 
LZTFL1, as a negative regulator of ciliary traf fi cking of Smo (Seo et al.  2011  ) . 
LZTFL1 mediates the interaction between Smo and a protein coat complex known 
as the BBSome. The BBSome is responsible for targeting a variety of membrane-
associated receptors to the ciliary membrane (for more about the BBSome, see 
Chap   .   6     by Berbari, Pasek, and Yoder and Chap.   9     by Baker and Beales). When 
LZTFL1 is knocked down, the ciliary localization of BBSome proteins and of Smo 
increases, irrespective of Shh signaling activity. However, further ciliary enrichment 
of Smo can still be seen under LZTFL1-depleted conditions upon treatment with a 
Shh pathway agonist. This implies that, while some Smo traf fi cking is mediated by 
the BBSome and repressed by LZTFL1 in the absence of Shh, Smo is also targeted 
to the cilia membrane through LZTFL- and BBSome-independent mechanisms. 
Other experiments have also revealed that the ciliary enrichment of Smo upon Shh 
stimulation depends on kinesin-based transport (speci fi cally, Kif3a) and  b -arrestins 
(Kovacs et al.  2008  ) . Further study will determine whether these data can be recon-
ciled into a single model of Smo transport. 

 Pharmacological evidence shows that, although Smo moves into the cilium as a 
consequence of Shh pathway activation, the mere presence of Smo in the cilium is 
not suf fi cient to transduce the Shh signal and trigger the formation of GliA: Smo 
must also be activated (Wang et al.  2009  ) . The two-step process of Smo-dependent 
Shh signaling (translocation and activation) has yet to be fully explained. Smo 
shares many characteristics with G protein-coupled receptors (Ayers and Thérond 
 2010  )  and is known to respond to several small molecules in pharmacological 
screens. Therefore, one appealing model posits that a yet-unknown endogenous 
molecule – possibly a cholesterol-derived oxysterol (Nachtergaele et al.  2012  )  – 
regulates Smo activation, and that Ptch1 inhibits Smo by blocking its access to this 
molecule, as well as blocking its accumulation in cilia. 

 The presence of activated Smo in the cilium causes enrichment of Gli proteins 
at the tip of the cilium, inhibits GliR formation, and triggers the formation of GliA 
(Chen et al.  2009 ; Wen et al.  2010  ) . Studies have shown that the processing of Gli 
proteins into GliA and GliR requires transport of Gli proteins into and out of the 
primary cilium. It is not known how traf fi cking through the primary cilium regu-
lates the conversion of full-length Gli proteins into activator or repressor, but 
experiments thus far have indicated that the process involves the core Shh pathway 
proteins Sufu, Kif7, and PKA (Chen et al.  2009,   2011 ; Tukachinsky et al.  2010  ) . 
Because the balance of GliA and GliR ultimately determines the output of the Shh 
signaling pathway, proper regulation of Gli proteins is key, and the disruption of 
Gli processing and/or activation leads to signaling defects that cause abnormal 
neural patterning in vivo. 

 Sufu, Kif7, and PKA act at the primary cilium to regulate Gli processing and 
activation. Sufu binding to Gli proteins inhibits their transcriptional functions. 

http://dx.doi.org/10.1007/978-94-007-5808-7_6
http://dx.doi.org/10.1007/978-94-007-5808-7_9
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Sufu can act in a cilia-independent manner to inhibit Gli proteins by sequestering 
them from the nucleus, but it also moves into and out of cilia with the Glis, becom-
ing enriched in cilia upon Shh stimulation. For GliR or GliA to form, Gli proteins 
must  fi rst dissociate from Sufu. This dissociation requires kinesin-dependent 
traf fi cking of the Sufu/Gli complex to primary cilia (Humke et al.  2010 ; Tukachinsky 
et al.  2010  ) . In addition to inhibiting the formation of GliR and GliA, Sufu serves 
to stabilize Gli proteins: genetic ablation of Sufu leads to degradation of Gli2 and 
Gli3 via the ubiquitin E3 ligase adaptor Spop. Gli3 is more affected by loss of Sufu 
than Gli2;  Sufu  null embryos exhibit a ventralized neural tube phenotype due to the 
alteration in the balance of GliA and GliR that results from Gli3 degradation (Wang 
et al.  2010  ) . 

 Kif7, an atypical kinesin, normally localizes to the base of the cilium, where it 
is ideally positioned to regulate the access of Shh pathway proteins to the ciliary 
compartment. Kif7 serves as a negative regulator of Shh signaling downstream of 
Smo. Upon activation of the Shh pathway, Kif7 moves to the tip of the cilium con-
comitantly with Gli proteins, indicating that it may regulate the transport and acti-
vation of Gli2, as well as the processing of Gli3 into GliR (Endoh-Yamagami et al. 
 2009 ; Liem et al.  2009  ) . One model suggests that, as a motor protein, Kif7 may 
inhibit Gli activation by moving Gli proteins away from the cilium in the absence 
of signals from Shh (Liem et al.  2009  ) . Further experiments are needed to test this 
model. Notably, the role of Kif7 in Shh signaling was initially disputed, as cell-
based assays of Kif7 knockdown did not show a signi fi cant effect on Shh pathway 
output (Varjosalo et al.  2006  ) . Thus, in vivo analysis of neural tube patterning 
proves to be a more sensitive method for examining subtle effects of perturbations 
to the Shh pathway. 

 The stepwise nature of the Shh signaling cascade allows for regulation of the 
pathway by the same effectors at multiple discrete steps. For example, PKA is 
known to phosphorylate Sufu, thereby promoting Sufu’s ciliary localization 
(Chen et al.  2011  ) . However, analysis of mouse mutants de fi cient in PKA reveals a 
more severe neural tube patterning phenotype than  Sufu   −/−   mutants, indicating that 
PKA is affecting Gli activity and Shh signaling through Sufu-independent mecha-
nisms, in addition to regulating Sufu. Speci fi cally, PKA acts as a negative regulator 
of the Shh signaling cascade (Epstein et al.  1996 ; Hammerschmidt et al.  1996 ; 
Concordet et al.  1996  ) . PKA is localized at the base of the primary cilium, where it 
regulates the ciliary entry of Gli proteins, the production of GliR from Gli3, and the 
activation of Gli2 (Tuson et al.  2011  ) . Although PKA regulates a wide variety of 
processes in adult vertebrate cells, its most notable function during development 
seems to be regulation of the Shh pathway in the neural tube as well as in other Shh-
responsive tissues (Huang et al.  2002  ) . When a Shh signaling component plays multiple 
roles in regulating the pathway, as PKA does, it complicates the interpretation of 
experiments in which this molecule is perturbed. Yet it is not surprising for a single 
effector to interact with multiple steps of a signaling cascade, especially when all 
the major signaling components localize to a small organelle like the cilium. 

 The dynamic regulation of Shh pathway proteins in primary cilia points to the 
central nature of cilia and ciliary protein traf fi cking in Shh signaling. In addition to 
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the core Shh pathway proteins described above, a variety of other effectors contribute 
to the proper function of Shh signaling in cilia and can lead to in vivo neural pattern-
ing defects when disrupted.   

    2.4   Cilia Proteins Essential for Shh Signaling: 
Lessons from Mutants 

    2.4.1   Intra fl agellar Transport 

 The link between cilia and Shh signaling was  fi rst discovered in a forward genetic 
screen that identi fi ed several mouse mutants with defects in intra fl agellar transport 
(IFT) (Huangfu et al.  2003 ; Huangfu and Anderson  2005  ) . IFT relies on a highly con-
served family of proteins to move cargoes along the microtubules that form the ciliary 
axoneme. Anterograde IFT relies on the kinesin-2 motor as well as the 11 proteins that 
constitute the IFTB complex. Retrograde IFT uses the six proteins in the IFTA complex 
and the cytoplasmic dynein motor (reviewed in: Pedersen and Rosenbaum  2008 ; 
Rosenbaum and Witman  2002  )  (Fig.  2.5 ). When anterograde IFT is disrupted, cilio-
genesis does not occur. (For a more detailed discussion of IFT and ciliogenesis, see 
Chap.   1    , Sect. 4.3). When retrograde IFT is disrupted, IFT cargoes accumulate at the 
distal end of the cilium and interfere with the normal  fl ow of ciliary protein traf fi c.  

 As mentioned before, mutant mouse embryos that lack cilia due to anterograde 
IFT defects have no Shh signaling; they fail to produce either GliA or GliR (Huangfu 
et al.  2003 ; Huangfu and Anderson  2005  ) . In contrast, defects in retrograde IFT can 
lead to either elevated Shh signaling activity or loss of the Shh response, depending 
on the causative mutation. Analysis of mouse mutants has revealed the distinct roles 
of the dynein retrograde motor and the IFTA complex in Shh signaling, as well as 
several regulatory steps in between them. 

 Loss of the dynein component Dync2h1 (also called Dnchc2) leads to a reduc-
tion in ventral cell types in the neural tube (Huangfu and Anderson  2005 ; May et al. 
 2005  ) . These dynein mutant embryos completely lack retrograde IFT and have 
extreme defects in cilia structure, with very short, almost spherical cilia. Neural 
tube patterning in  Dync2h1  mutants resembles IFTB mutants, which fail to generate 
cilia altogether, and loss of dynein also causes reduced levels of cleaved Gli3 com-
pared to wild-type. These phenotypes indicate that the cilia-dependent processes 
required to generate GliA and GliR are likely to be lost in dynein mutants. Past stud-
ies have also proposed that the lack of Shh signaling in  Dync2h1  mutants is due to 
a failure of Smo to localize to their abnormal cilia (May et al.  2005  ) ; however, these 
interpretations were based on the analysis of motile cilia in the embryonic node, 
where the role of Shh signaling has not been characterized in as much detail. Later 
experiments in Shh-responsive cell types have con fi rmed that Smo does traf fi c into 
dynein-de fi cient primary cilia (Kim et al.  2009 ; Ocbina and Anderson  2008  ) , so this 
cannot explain the Shh signaling defects in these mutants. 

http://dx.doi.org/10.1007/978-94-007-5808-7_1
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 The neurodevelopmental effects of IFTA complex mutations have been studied 
using several mouse lines generated in forward genetic screens. In contrast to dynein 
mutations, the genetic ablation of the IFTA proteins IFT139 (also called THM1 or 
Ttc21b) or IFT122 results in elevated Shh activity in the neural tube (Qin et al. 

  Fig. 2.5     Intra fl agellar transport  ( IFT )  proteins and other proteins that regulate Shh signaling 
through ciliogenesis or ciliary protein traf fi cking . A variety of mutations affecting ciliary 
proteins have been shown to disrupt Shh signaling. These include proteins associated with 
intra fl agellar transport (the kinesin-II and dynein motors and the IFTA and IFTB complexes) as 
well as others with functions that are not as well understood. Some of these proteins are found in 
cilia: TULP3 requires the IFTA complex to enter the cilium and localizes to ciliary tips in the 
absence of Shh signaling; it is not known whether it associates with the axoneme or the membrane. 
Rab23 is found in cilia in its GTP-bound state, but not its GDP-bound state. Arl13b is primarily 
associated with the ciliary membrane but is seen at the base and the tip of the cilium even after the 
membrane is removed with detergent. Other mutations affecting ciliogenesis and Shh signaling 
disrupt proteins associated with the basal body: Ofd1, MKS1, Ftm, and talpid are among these. 
The Rfx transcription factors are not found in cilia, but regulate the transcription of a variety of cili-
ary genes, thus regulating ciliogenesis and Shh signaling       
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 2011 ; Tran et al.  2008  ) . Unlike dynein mutants, IFTA mutants still exhibit some 
retrograde IFT, albeit with reduced ef fi ciency. Their cilia are typically longer than 
dynein mutants’, with bulges due to accumulated proteins at the distal ends. In  alien 
(aln)  mutant embryos, ventral cell types, including  fl oor plate and p3 progenitors, 
expand dorsally beyond their normal domains due to a null mutation in  IFT139 . 
Epistasis experiments show that IFT139 acts upstream of Gli2 to regulate Shh 
signaling, and thus neural patterning. Although loss of IFT139 activates the Shh 
pathway, it does not completely suppress the phenotype of a  Shh−/−  or  Smo−/−  
embryo. Furthermore,  IFT139   aln   embryos that are also heterozygous for a null allele 
of  Shh  show a partial rescue of their abnormal neurodevelopmental phenotype 
(Stottmann et al.  2009  ) . These genetic data indicate that the ventralized neural tube 
of  IFT139   aln   mutant embryos is caused by overactivation of Gli2 and that IFT139-
dependent retrograde IFT regulates Gli2 activation in a manner that is partially, but 
not completely, dependent upon Shh signaling through Smo. Previous experiments 
have con fi rmed that Smo can localize to nodal cilia in  IFT139   aln   mutants and that 
overexpressed Gli1 protein can localize to cilia in mutant mouse embryonic 
 fi broblasts (Tran et al.  2008  ) ; the Shh dependence of Smo and Gli enrichment in 
 IFT139   aln   primary cilia has yet to be shown, however. Because the IFTA complex 
mediates protein transport out of the cilium, it is plausible that the overactivation of 
Gli2 in  IFT139   aln   mutant embryos arises at least in part from Gli proteins’ constitu-
tive localization to primary cilia in the  IFT139   aln   mutant. 

 As in  IFT139   aln   embryos, loss of IFT122 causes an expansion of ventral progeni-
tors in the neural tube. In fact,  sister of open brain (sopb)  mutant embryos with a 
null mutation in  IFT122  exhibit a more severe ventralization phenotype than 
 IFT139   aln   mutants. In  IFT122   sopb   embryos, cells expressing markers of the  fl oor plate 
are found within the mediolateral regions of the neural tube, and pMN progenitors 
extend into even the most dorsal part of the neural tube. Analysis of  IFT122   sopb   ;Shh   −/−   
double mutants reveals neural patterning almost identical to that of  IFT122   sopb   single 
mutants, indicating most of the ventralization phenotype caused by loss of IFT122 
is ligand-independent.  IFT122   sopb   ;Gli2   −/−   mutants show that, as in  IFT139   aln   mutants, 
the ventralization of the  IFT122   sopb   neural tube is dependent upon GliA derived 
primarily from Gli2. Cell biology experiments in  IFT122   sopb   mouse embryonic 
 fi broblasts show that Gli2 and Gli3 are both enriched at the tips of mutant cilia in a 
ligand-independent manner, but the ligand-dependent ciliary localization of Smo 
and Sufu are largely unaffected by loss of IFT122 (Qin et al.  2011  ) . It is clear that 
transport of Gli proteins to the tip of the cilium is required for their activation, and 
that Glis must dissociate from Sufu to become activated (Haycraft et al.  2005 ; Liu 
et al.  2005 ; Tukachinsky et al.  2010  ) . Perhaps differential regulation of the ciliary 
traf fi cking of Sufu and Glis by the IFTA complex contributes to the overactivation 
of the Shh pathway in these mutants. 

 Several recent studies examined the interplay between retrograde and antero-
grade IFT components in ciliogenesis and Shh signaling (Ocbina et al.  2011 ; Liem 
et al.  2012  ) . The results suggest that mutations in  IFT172 , which codes for a 
member of the IFTB complex, are able to rescue defects in  Dync2h1  mutants. 
Cilia structure and neural tube patterning in  Dync2h   lln/lln  ; IFT172   avc /+  double mutants 
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were similar to wild-type. The ability of a mutation in an anterograde traf fi cking 
protein to rescue structural defects caused by abnormal retrograde traf fi cking 
implies that a balance between anterograde and retrograde IFT regulates cilia for-
mation, and that the Shh signaling defects in  Dync2h1  mutants arise primarily 
from abnormal cilia structure. Intriguingly, the same study also found that 
 IFT122   sopb   can partially rescue neural patterning, cilia structure, and Shh pathway 
protein traf fi cking defects in  Dync2h1  mutants and that this rescue is ligand-
dependent. This result was interpreted to mean that IFT122 has a role in antero-
grade IFT as well as retrograde IFT, such that loss of IFT122 can restore the 
balance between the two that is required for proper ciliogenesis. It also implies 
that the ligand-independent gain of Shh signaling activity in  IFT122   sopb   mutants 
arises from an undescribed IFT-independent function of IFT122, and perhaps the 
IFTA complex in general, in regulating the Shh pathway (Ocbina et al.  2011  ) . 
It would be interesting to test whether loss of IFT139 is also able to rescue neural 
patterning defects in dynein mutants, or whether this additional Shh regulatory 
function is speci fi c to IFT122. 

 A subsequent study showed that a severe mutation in the IFTA gene  IFT144 
(IFT144   dmhd   )  can prevent ciliogenesis, further indicating that proteins traditionally 
associated with retrograde IFT can play a role in anterograde IFT. The hypomor-
phic allele  IFT144   twt   did not signi fi cantly affect cilia structure, however. Because 
cilia structure and Shh signaling are so tightly linked, it is perhaps not surprising 
that the two  IFT144  alleles show distinct neural patterning phenotypes. The severe 
structural defects in  IFT144   dmhd   cilia lead to a loss of Shh signaling, while  IFT144   twt   
mutants show ectopic activation of the Shh pathway similar to other IFTA mutants. 
Furthermore, compound mutants with  IFT144   twt   and  IFT122   sopb   alleles showed 
ciliogenesis and patterning defects as severe as  IFT144   dmhd  , indicating that the 
IFTA components IFT144 and IFT122 work together to build cilia. The study also 
showed that many ciliary membrane proteins, including Smoothened, were mislo-
calized in IFTA mutant cilia, but that soluble proteins, including Gli2, Sufu, and 
Kif7, were unaffected by IFTA mutations (Liem et al.  2012  ) . The authors there-
fore propose that IFTA-dependent traf fi cking of membrane proteins into cilia 
may explain the ectopic Shh activation and neural patterning phenotypes in IFTA 
mutants. 

 Although both IFTA and IFTB proteins have been linked to ciliogenesis as 
well as the regulation of Shh signaling, new research on mutant mice indicates 
that IFT25 (and perhaps IFT27) regulate Shh signaling independently of cilia 
structure. Mice with a protein null allele of  IFT25  also fail to produce IFT27 
and show defects in Shh signaling. Speci fi cally, the mutants show an expansion 
of mediolateral progenitors at the expense of the most ventral ( fl oor plate) cell 
types. They also have defects in Ptch1 and Smo localization, Gli processing, 
and ligand-stimulated enrichment of Gli proteins at the tips of cilia. Despite 
these defects, their cilia are structurally intact (Keady et al.  2012  ) . These results 
show that the IFTB complex components IFT25 and IFT27 are required for 
regulating Shh signaling but are dispensible for ciliogenesis. The exact func-
tions of IFT25 and IFT27 are not known, but they are known to form a complex 
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(Bhogaraju et al.  2011  ) . As a Rab-like small GTPase, IFT27 may act as a switch 
to regulate traf fi cking of Shh pathway components to cilia in a ligand-dependent 
manner (Qin et al.  2007  ) . 

 Because IFT complexes and the molecular motors that power IFT are so critical 
for ciliogenesis and Shh signaling, it is not surprising to learn that factors regulat-
ing the expression of IFT genes can affect Shh signaling, as well. The Rfx family 
of transcription factors is evolutionarily conserved from invertebrates to verte-
brates (Dubruille  2002 ; Swoboda et al.  2000  )  and is found to regulate the expression 
of cilia-speci fi c genes, including the dynein component  D2lic  (Bonnafe et al. 
 2004  )  and  IFT172  (Ashique et al.  2009  ) . Although genetic manipulations of some 
Rfx family members, such as  Rfx2  and  Rfx4 , affect both ciliogenesis and Shh 
signaling (Ashique et al.  2009 ; Chung et al.  2012  ) ,  Rfx3  mutants display no obvi-
ous Shh signaling defects, despite having abnormal cilia in the embryonic node 
and on ependymal cells in the brain (Bonnafe et al.  2004 ; El Zein et al.  2009  ) . 
Because Rfx family members are differentially expressed across various tissues, 
it may be that Rfx3 is not normally expressed in the neural tube, or is expressed 
redundantly with other Rfx proteins, and is thus dispensable for cilia-dependent 
neural patterning. Still, it serves as an illustrative example of how factors affect-
ing ciliogenesis and neurodevelopmental Shh signaling may be separable through 
genetic analysis. 

 Finally, in addition to the IFT proteins and their motors, a variety of proteins 
localized to the basal body have been shown to regulate ciliogenesis, such that muta-
tions affecting these proteins leads to phenotypes that resemble anterograde IFT 
mutants.  Ftm  was discovered as one of six genes deleted in the  fused toes  ( Ft ) mouse 
mutant, which has defects indicative of reduced Shh signaling activity (Götz et al. 
 2005 ; Peters et al.  2002  ) . Targeted knockouts of the individual genes in the  Ft  muta-
tion revealed that  Ftm  is responsible for the majority of defects seen in mutant 
embryos, including loss of ventral progenitors in the neural tube (Vierkotten et al. 
 2007  ) . The  Ftm   −/−   phenotype shares many characteristics with anterograde IFT 
mutants, and indeed,  Ftm   −/−   embryos show reduced numbers of cilia in some tissues 
such as the node. However, unlike IFTB and kinesin-II mutants,  Ftm   −/−   mutants pos-
sess normal motile cilia in some tissues such as the trachea, and  Ftm   −/ −  primary 
 fi broblasts can grow cilia in vitro. Thus, Ftm seems to speci fi cally regulate Shh sig-
naling – in particular, the formation of GliA and the processing of GliR – in addition 
to regulating ciliogenesis and cilia structure in tissues like the node. Ftm is localized 
to the basal body, placing it in an ideal position from which to regulate the entry of 
Shh pathway proteins to the cilium. Future experiments are needed to characterize 
the effects of Ftm ablation on the ligand-dependent ciliary localization of Shh signal-
ing effectors. Other basal body proteins, including Ofd1 (Ferrante et al.  2006 ; Singla 
et al.  2010  )  and talpid (Bangs et al.  2011  ) , affect ciliogenesis and Shh signaling in 
much the same way as Ftm. Loss of Mks1, another basal body protein, abolishes cilia 
in most tissues, including the neural tube, but spares some motile cilia. Furthermore, 
 Mks1   −/−   embryos survive longer than most ciliogenesis mutants and seem to retain a 
small amount of GliA, suggesting that Mks1 may have functions in Shh signaling 
outside of ciliogenesis (Weatherbee et al.  2009  ) .  



732 Primary Cilia, Sonic Hedgehog Signaling…

    2.4.2   Other Regulators of Shh Signaling in Cilia 

 Although IFT plays a crucial role in ciliogenesis and Shh signaling, this is not the 
only mechanism that controls the ciliary localization of Shh pathway proteins or 
the proper regulation of GliA and GliR transcriptional activity. In recent years, still 
more effectors of Shh signaling have been identi fi ed through genetic manipula-
tions that affect neural tube patterning. Such experiments have revealed positive 
and negative regulators of Shh signaling that act at multiple distinct steps in the 
pathway. These Shh signaling effectors come from a variety of different protein 
families, including some that remain almost completely uncharacterized. In addi-
tion, some of these proteins are unique to vertebrates, implying that they may be 
speci fi c regulators of ciliary Shh signaling (which occurs only in vertebrates, 
reviewed in: Huangfu and Anderson  2006 ; Ingham et al.  2011 ; Varjosalo et al. 
 2006  ) . This places them in contrast to the IFT complexes, which are more general 
mediators of ciliogenesis and ciliary maintenance found in organisms ranging from 
the  fl agellate alga  Chlamydomonas reinhardtii  to mammals. 

 While it may be easy to understand why the complete ablation of cilia due to 
anterograde IFT mutations leads to Shh signaling defects, it is more dif fi cult to 
conceptualize the complex and sometimes contradictory phenotypes caused by per-
turbations to retrograde IFT. Recent studies have identi fi ed effectors of IFTA that 
also play a role in regulating Shh signaling (as well as other cilia-dependent signal-
ing pathways; see Chap.   6     by Berbari, Pasek, and Yoder for more details). These 
proteins are still being characterized, but their further study may shed new light on 
some of the unsolved mysteries of Shh signaling, including how Smo regulates the 
formation of GliA. 

 TULP3, a member of the tubby family of proteins, is one such novel regulator 
of Shh signaling. Tubby family proteins are conserved across eukaryotes and 
interact with membrane phosphoinositides to regulate a variety of signaling 
pathways (reviewed in: Mukhopadhyay and Jackson  2011  ) . Both a targeted null 
mutation of  TULP3  and the hypomorphic  hitchhiker  mutation result in ventralized 
neural patterning similar to that seen in IFTA mutants (Norman et al.  2009 ; 
Patterson et al.  2009  ) . Epistasis experiments show that TULP3 acts downstream 
of Shh and Smo, but upstream of Gli2. Loss of TULP3 has no effect on Gli3 
processing or Shh-dependent localization of Gli3 to the tips of cilia (Mukhopadhyay 
et al.  2010 ; Norman et al.  2009  ) . It is not yet clear, however, how the Shh-dependent 
ciliary enrichment of Gli2 is affected by mutations in  TULP3 . 

 TULP3 localizes to cilia and binds to the IFTA complex. The association between 
TULP3 and IFTA requires some IFTA proteins, including IFT122, but other IFTA 
proteins in the complex are not required for TULP3 binding (Mukhopadhyay et al. 
 2010  ) . In  IFT122   sopb   mutants, TULP3 is not present in cilia, suggesting that the 
association between TULP3 and the IFTA complex is required for its ciliary local-
ization. As  IFT122   sopb   mutants exhibit more severe neural tube ventralization than 
 IFT139   aln   mutants, it is possible that some of the Shh pathway overactivation in 
 IFT122   sopb   results from mislocalization of TULP3. It seems clear from the current 
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data that TULP3 serves as a negative regulator of Gli2 activation in cilia, but the 
exact mechanism of its action remains to be elucidated. Because TULP3 is known 
to be required for the proper ciliary traf fi cking of several G protein-coupled recep-
tors, one model posits that it may regulate a novel receptor involved in Shh signal 
transduction (Mukhopadhyay et al.  2010  ) . 

 The small GTPase Rab23 was identi fi ed as a regulator of Shh signaling when the 
 open brain  ( opb ) mouse line was discovered in a forward genetic screen (Eggenschwiler 
et al.  2001 ; Eggenschwiler and Anderson  2000  ) .  Rab23   opb   embryos exhibit a ventral-
ized neural tube with expansion of the  fl oor plate, v3, and pMN domains. Double 
mutant analysis indicates that Rab23 acts as a negative regulator of the Shh pathway 
downstream of Smo but upstream of Gli2; however, slight differences in patterning 
between  Rab23   opb  ; Smo   −/−   double mutants and  Rab23   opb   single mutants (speci fi cally: 
double mutants do not show expansion of the  fl oor plate) indicate that Rab23 may 
also have some Smo-dependent functions (Eggenschwiler et al.  2006  ) . 

 Cell biology studies of Rab23 present a more complex view of how this GTPase 
may regulate Shh signaling. Rab family GTPases are involved in vesicle transport to 
various subcellular compartments (reviewed in Grosshans et al.  2006  ) . Thus, Rab23 
was hypothesized to regulate the traf fi cking of Shh pathway proteins to primary cilia. 
Recent work indicates that wild-type Rab23 (but not the mutant protein Rab23-S23N, 
which is a constitutively GDP-bound dominant negative) is localized to cilia and that 
it regulates ciliary traf fi cking of Smo (Boehlke et al.  2010  ) . Speci fi cally, Rab23 is 
thought to act by promoting recycling of Smo that is already localized to the cilium, 
while inhibiting the ability of other Smo molecules to enter the ciliary compartment. 
How this proposed mechanism would allow Rab23 to inhibit Gli2 activation is not 
yet clear. Another recent study showed that Rab23 binds directly to Sufu, promoting 
Sufu-dependent inhibition of Gli1 transcriptional activity (Chi et al.  2012  )  by seques-
tering Gli1 in the cytoplasm. These results provide a more compelling explanation 
for Rab23’s role as a negative regulator of Shh signaling, but the experiments were 
conducted in cell types that lack primary cilia. It is unclear whether the interaction 
between Rab23 and Sufu can occur in ciliated cells, or whether ciliary Rab23 has 
some other function that remains to be described. 

 Another small GTPase, Arl13b, plays a unique role in the regulation of Shh 
signaling. The  hennin  ( hnn ) mutant mouse has a protein null mutation in  Arl13b  
that leads to loss of the most ventral cell types in the neural tube ( fl oor plate) and 
an expansion of more mediolateral cell types (pMN). Epistasis experiments show 
that the  Arl13b   hnn   phenotype is caused by abnormal regulation of Gli2 (Caspary 
et al.  2007  ) . Speci fi cally, the highest levels of GliA in the  fl oor plate are never 
reached, while a moderate level of GliA drives the expression of Shh target genes 
throughout most of the neural tube. Gli3, meanwhile, appears to be relatively unaf-
fected by loss of Arl13b. An intact gradient of Gli3-derived GliR regulates the 
residual patterning in the  Arl13b   hnn   neural tube, but  Arl13b   hnn   ;Gli3   −/−   double 
mutants have essentially no dorsoventral patterning (all cells in the double mutants 
assume either a v3 or pMN fate). 

 At the cellular level, Arl13b regulates multiple components of the Shh signal-
ing pathway in cilia. First,  Arl13b   hnn   cells have short cilia with defects in the 
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microtubule ultrastructure of the ciliary axoneme (Caspary et al.  2007  ) . Although 
these defects are not as severe as those seen in IFTB mutants, the abnormal struc-
ture of primary cilia could contribute to the misregulation of the Shh pathway in 
cells lacking Arl13b. Furthermore, many of the proteins that make up the Shh 
signaling pathway show abnormal localization patterns in  Arl13b   hnn   cells (Larkins 
et al.  2011  ) . Speci fi cally, Ptch1 is found in the cilium even after cells are treated 
with Shh ligand, and Smo is enriched in cilia even in the absence of Shh. 
Meanwhile, Sufu, Gli2, and Gli3 fail to become enriched at the tip of the cilium 
upon Shh treatment in cells lacking Arl13b. Because Gli2 activation requires its 
transport to the tip of the cilium, the abnormal ligand-dependent traf fi cking of 
Shh pathway proteins may explain why GliA function is impaired in  Arl13b   hnn   
mutants. It is not yet clear whether the abnormal transport of Shh pathway pro-
teins in  Arl13b   hnn   cells arises from the structural defects in mutant cilia, or 
whether Arl13b has a speci fi c function in regulating protein traf fi cking. 

 Genetic ablation of Tectonic1, a member of a novel protein family awaiting fur-
ther characterization, reduces the levels of both GliA and GliR, although the effect 
seems greater on GliA. Without Tectonic1, the  fl oor plate and v3 progenitors are not 
speci fi ed, indicating a reduction in GliA. Yet, in  Tectonic1   −/−   ;Shh   −/−   double mutants, 
there are more ventral progenitors than in  Shh   −/−   single mutants, implying that less 
GliR is present to inhibit the speci fi cation of these cell types in the double mutant 
embryos (Reiter and Skarnes  2006  ) . We do not know whether Tectonic regulates 
Shh signaling from within the cilium, although the related  Tectonic2  gene has been 
linked to the human ciliopathy Meckel-Gruber syndrome and appears in the cilia 
proteome database (Shaheen et al.  2011;    ciliaproteome.org)   . (For more on human 
ciliopathies, see Chap.   6     by Berbari, Pasek, and Yoder and Chap.   9     by Baker and 
Beales.).  

    2.4.3   Spatiotemporal Regulation of Shh Signaling 

 Beyond identifying new effectors of Shh signaling, the analysis of various mouse 
mutants has revealed unexpected aspects of the mechanism by which Shh signaling 
patterns the developing neural tube. In particular, many of the mutations described 
above ( IFT139   aln  ,  TULP3  −/− ,  Rab23   opb  ,  Arl13b   hnn  ) exhibit patterning defects in the 
caudal neural tube alone, while the rostral neural tube appears normal despite 
defects in Shh signal transduction (Caspary et al.  2007 ; Eggenschwiler et al.  2001 ; 
Norman et al.  2009 ; Tran et al.  2008  ) . Other mutants, like  IFT122   sopb   and various 
alleles of  Dync2h1   −/−  , show defects throughout the neural tube, but with variable 
phenotypes along the rostrocaudal axis. One explanation for this puzzling trend 
may be that the contributions of Gli2 and Gli3 to neural patterning seem to differ 
along the rostrocaudal axis. Speci fi cally, in the rostral neural tube, ventral cell 
types still occur in  Gli2   −/−   mutants in which Shh signaling has been activated by a 
 Ptch1  knockout (Motoyama et al.  2003  ) . This indicates that Gli3 can compensate 
for the loss of Gli2-derived GliA in the rostral neural tube. In the caudal neural 
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tube, however, loss of Gli2 abolishes ventral cell types even when the Shh pathway 
is maximally activated by the  Ptch1  mutation. Therefore, mutations in Shh effec-
tors that differentially regulate Gli2 versus Gli3 may result in a variable phenotype 
along the rostrocaudal axis. 

 Furthermore, the caudal neural tube develops slightly earlier than the rostral neural 
tube (Papalopulu and Kintner  1996  ) . It is known that the timing of Shh signaling is 
just as important as the dose of Gli activity received by different spatial domains of the 
developing tissue (as described earlier in this chapter under Sect.  2.2.1  “Patterning the 
neural tube”). Therefore, perturbations of the balance between GliA and GliR may 
have different effects on neural patterning depending on the duration of the Shh-
sensitive window of development at different points along the rostrocaudal axis.   

    2.5   Conclusions and Perspectives 

 In summary, the regulation of spinal cord development by Shh is completely depen-
dent upon mechanisms that operate within primary cilia. While many aspects of the 
molecular mechanisms behind this pathway still remain a mystery, over the past 
10 years, genetic experiments in mouse models have taught us much about the role 
of cilia in regulating Shh signaling. Because the mammalian neural tube is so sensi-
tive to subtle shifts in Shh signaling via genetic manipulation, studies using this 
system have revealed new levels of complexity in the Shh pathway and discovered 
many unsuspected effectors. The novel, vertebrate-speci fi c regulators of Shh signal-
ing identi fi ed most recently (such as TULP3 and Tectonic1) have opened up new 
avenues of research that will help us solve some of the mysteries in the  fi eld, and 
there are sure to be still more Shh effectors awaiting our discovery in future unbi-
ased genetic screens.      
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  Abstract   The primary cilium is a small microtubule-based organelle projecting 
from the plasma membrane of practically all cells in the mammalian body. In the 
past 8 years a  fl urry of papers has indicated a crucial role of this long-neglected 
structure in the development of a wide variety of organs. We summarize here the 
function that primary cilia have in the development of the brain, with especial atten-
tion paid to the morphogenesis of the embryonic cerebral cortex and cerebellum. 
Cilia-dependent signaling of Sonic hedgehog to the transcription factor Gli3 is 
analyzed, and potential roles of Wnt signaling are discussed.  

    E.   Tasouri   •     M.  A.   Willaredt   •     K.  L.   Tucker (*)  
     Interdisciplinary Center for Neurosciences, Institute of Anatomy and Cell Biology , 
 University of Heidelberg ,   69120   Heidelberg ,  Germany    
e-mail:  Kerry.Tucker@urz.uni-heidelberg.de   

    Chapter 3   
 Primary Cilia and Brain Development       

         Evangelia   Tasouri   ,    Marc   August   Willaredt   , and    Kerry   L.   Tucker         

Contents

3.1  Introduction .....................................................................................................................  84
3.2  Primary Cilia and Prosencephalon Development ...........................................................  85

3.2.1  Primary Cilia and Cerebral Cortex Development ...............................................  85
3.2.2  Primary Cilia and Hippocampus Development ...................................................  95
3.2.3  Primary Cilia and Olfactory Bulb Development .................................................  95
3.2.4  Primary Cilia and Diencephalon Development ...................................................  95

3.3  Primary Cilia and Mesencephalon Development ............................................................  96
3.4  Primary Cilia and Rhombencephalon Development .......................................................  96
3.5  Conclusions and Outlook ................................................................................................  100
References  ................................................................................................................................  101



84 E. Tasouri et al.

  Keywords   Primary cilia  •  Cerebral cortex  •  Forebrain  •  Cerebellum  •  Diencephalon  
•  Sonic hedgehog  •  Gli3  •  Telencephalon  •  Thombenecephalon  •  Wnt  •  Joubert 
syndrome      

    3.1   Introduction 

 In the third week of human embryonic development, the central nervous system 
arises from a uniform sheet of neuroectodermal tissue. Through the action of 
proteins that move the cells together in a coordinated vertical fashion, the central 
portion of the neural plate folds downwards to form a neural groove, while the 
lateral edges fold upwards to ultimately meet and fuse at the dorsal aspect. 
Thereby the neural tube is formed, starting in the center of the cranial-caudal 
body axis and proceeding in both directions simultaneously. A special population 
of cells found directly lateral to the neural plate gives rise to the migratory neural 
crest, which in turn generates the peripheral nervous system, including sympa-
thetic and parasympathetic ganglia, dorsal root ganglia, Schwann cells, and the 
adrenal medulla (Le Douarin and Kalcheim  1999  ) . The neural tube initially 
 consists of a single uniform layer of pseudo-strati fi ed neural epithelium that 
 surrounds the ventricular space formed by the fusion of the neural groove edges. 
The former will give rise in turn to a marvelously complex arrangement of cen-
tral nervous system organs, whereas the latter will give rise to the  fl uid- fi lled 
ventricular system deep within the adult brain. The caudal portions of the neural 
tube will give rise to the spinal cord, while the cranial portions will give rise to 
the brain including its largest components the cerebral cortex and the cerebel-
lum, in terms of volume and cell number, respectively. 

 Between the 4th and 5th weeks of human gestation, the cranial end of the 
neural tube expands greatly in size, and initially three compartments can be rec-
ognized, with the prosencephalon at the cranial end followed by the mesencepha-
lon and the rhombencephalon. By the 7th gestational week, the prosencephalon 
goes on to divide into two further subsegments: the telencephalon generates the 
cerebral cortex and some of the basal ganglia, while the diencephalon will gener-
ate the thalamus, epithalamus, subthalamus, and hypothalamus. The rhomben-
cephalon is in its turn also subdivided into two elements, the metencephalon 
generating the pons and the cerebellum, while the myencephalon generates the 
medulla oblongata. The purpose of this chapter is to illustrate how the tiny organ-
elle the primary cilium has been demonstrated in just a few years to be essential 
for the development of many of the structures mentioned above, with a special 
focus on the development of the cerebral cortex and the cerebellum. Other chap-
ters will detail the role of primary cilia in the development of the spinal cord 
(Chap.   2     by Tamara Caspary) and the ventricular system (Chap.   8     by Nathalie 
Spassky). For a detailed description of the ultrastructure of primary cilia, please 
refer to Chap.   1    .  
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    3.2   Primary Cilia and Prosencephalon Development 

    3.2.1   Primary Cilia and Cerebral Cortex Development 

    3.2.1.1   Primary Cilia and Shh Signaling in Embryonic Cerebral Cortex 

 Intra fl agellar transport (IFT) is the system in which protein cargo is transported 
along the axoneme of cilia and is very important not just for the genesis and the 
maintenance of the organelle but also for signal transduction cascades such as 
vertebrate Hh (Scholey and Anderson  2006  ) . Anterograde transport is accom-
plished by the 11 IFT members of the IFTB complex, which form a scaffold to 
interact between cargo and the transport motor kinesin-II. Retrograde transport is 
accomplished by the 6 IFT proteins of the IFTA complex in association with 
dynein. One of the best-studied developmental pathways that are implicated in 
primary cilia involves the IFT of Hh signaling components. The three vertebrate 
ligands for Hh signalling, Sonic (Shh), Indian, and Desert, all bind to the speci fi c 
receptor for Hh-family ligands Patched (Ptch1). In the absence of any ligand, 
Ptch1 prevents Smoothened (Smo), a G-coupled transmembrane protein, to asso-
ciate with the membrane, thus repressing signal transduction. In the presence of a 
ligand, Ptch1 moves out of the cilium, thereby relieving the inhibition of Smo 
activity (Corbit et al.  2005 ; Rohatgi et al.  2007  ) . Smo moves into the primary 
cilium (Corbit et al.  2005  )  and transduces the Hh signal through its effects upon 
the transcription factors Gli2 and Gli3, which also localize to primary cilia 
(Haycraft et al.  2005  ) . Both transcription factors are activated upon association 
with cilia, while Gli3 is proteolytically converted from a full-length form to a 
shorter repressor form (Gli3R) in a cilia-dependent fashion. 

 Through the use of forward and reverse mouse genetics, several mutants in IFT 
genes have been discovered and engineered, respectively. These mutants have been 
one of the primary reagents for investigating the role of primary cilia in brain devel-
opment. The  fi rst report to examine in detail the effects that cilia have upon fore-
brain morphogenesis employed a hypomorphic allele of the IFT complex B  Ift88  
gene called  cobblestone  ( cbs ), which had been generated by  N -ethyl- N -nitrosourea 
mutagenesis followed by positional cloning (Willaredt et al.  2008  ) . In this mutant, 
the open reading frame of the  Ift88  cDNA remains normal but Ift88 mRNA and 
protein levels decrease by 70–80%. As seen in many other ciliary mutants (e.g. 
Gorivodsky et al.  2009  ) , this leads to exencephaly in the homozygous state in a high 
fraction of embryos (Fig.  3.1 ), which of course hinders analysis of cranial develop-
mental processes. However, in the  cbs  mutant, exencephaly proved to be speci fi c to 
the genetic background, and so preservation of the strain on a C57BL/6 background 
reduced levels of exencephaly to 10% and thus allowed for analysis of forebrain 
defects, illustrating one of the most common themes to run through phenotypes in 
ciliary mutants in many different organs, namely both a highly variable penetrance 
and expressivity in the phenotypes.  
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 Nonexencephalic  cbs  mutants displayed severe malformations of medial dorsal 
structures in the telencephalon, including the hippocampus, choroid plexus and cor-
tical hem, in addition to subpial ectopic rosettes of proliferating precursors sur-
rounded by a shell of newborn neurons which resembled small neural tubes in cross 
section, giving rise to the mutant’s name (Fig.  3.2 ). The dismorphology was even 
more pronounced upon performance of a complementation analysis, crossing the 
 cbs  mutant to a mouse line in which exons 4–6 of the  Ift88  gene have been ablated 
through genetic recombination (Haycraft et al.  2007  ) . In the double heterozygotes, 
invagination of the dorsal midline barely occurred, leading to a single rostral vesicle, 
a situation similar to that seen in holoprosencephaly (Fig.  3.2 ). The pallial-subpallial 

  Fig. 3.1    Loss of  Ift88  expression leads to exencephaly. Hematoxylin stain of parasagittal sections 
of E10.5 embryos from wildtype (+/+) and compound heterozygotes ( Ift88   ko  / cbs ) for the  cbs  allele 
and a full deletion of the  Ift88  gene. Arrowhead indicates exencephaly in the caudal forebrain and 
midbrain of the  Ift88  mutant. * Cerebral cortex. Dorsal is to the  left , cranial to the  top of each 
panel .  Scale bar : 0.3 mm       

  Fig. 3.2    Loss of  Ift88  expression results in a profound disarray in the morphogenesis of the dorsal 
telencephalon. Hematoxylin-stained coronal sections of a E11.5  Ift88   ko  /+ embryo, a  cbs / cbs  
embryo, and a  Ift88   ko  / cbs  compound heterozygote littermate. Inset ( lower left ) indicates the plane 
of section.  Arrow  indicates heterotopias. Dorsal is to the  top in each panel .  Scale bar : 0.3 mm 
(Figure adapted from a publication by Willaredt et al .   2008  )        
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boundary did not form properly in  cbs  mutants, and examination of the dorsal 
border between the telencephalon and the caudally-situated diencephalon revealed 
similar boundary identity problems, in that the caudal telencephalon displayed 
patches of tissue expressing markers of both telencephalic as well as thalamic tissue 
(Willaredt et al.  2008  ) .  

 Most of the above-mentioned phenotypes are comparable to the ones observed in 
the spontaneous  Gli3  deletion mutant  extra toes-Jackson  ( Xt   J  ) (Fotaki et al.  2006 ; 
Theil et al.  1999 ; Tole et al.  2000    )    , and given the importance of IFT for Shh signal-
ing it proved fruitful to compare the two mutants and examine Shh signaling in the 
 cbs  mutant. In the spinal cord, the hallmark of defective Shh signaling is a disrup-
tion in the dorsal-ventral patterning scheme, such that neurons normally speci fi ed in 
the ventral region, where Shh concentrations are at their highest, are lost at the 
expense of more dorsally-located subtypes (see Chap.   2     for a thorough discussion), 
and this ventralization phenotype can be seen in the forebrain, where Shh is also 
secreted from ventrally-localized structures. Surprisingly, examination of the cbs 
mutant revealed no strong differences in dorsal-ventral patterning, in that markers 
of the cerebral cortex and the ventrally-located striatum were clearly expressed 
where they should be (Willaredt et al.  2008  ) . This stands in contrast to the situation 
seen in other ciliary mutants, where quite strong shifts in pallial-subpallial domains 
have been observed (Besse et al.  2011 ; Stottmann et al.  2009 , see below). Examination 
of  Shh  expression revealed no major changes in the  cbs  mutant (Fig.  3.3 ), which 
must partially account for the lack of ventralization in the telencephalon, in contrast 
to the situation in the spinal cord, where ventralization can clearly be observed 
accompanying the loss of  Shh  expression from the  fl oorplate. In situ and quantita-
tive RT-PCR analysis of Shh signalling targets, such as  Ptch1  and  Gli1 , showed in 
fact a surprising increase in their expression in the  cbs  mutants (Willaredt et al. 
 2008  ) . As the effects of Shh on its downstream transcriptional targets are known to 
work through the Gli family of transcription factors, expression of Gli3 was exam-
ined and found at the mRNA level to be normal (Fig.  3.4a , Willaredt et al.  2008  ) , as 
were the expression of two downstream targets of Gli3 signaling  Emx1  (Fig.  3.4b ) 
and  Emx2  (Fig.  3.4c ), whose expression is eliminated and downregulated, respec-
tively, in the  Xt   J   mutant (Theil et al.  1999 ; Tole et al.  2000    ) . However, Western blot 
analysis indicated an increase in the relative levels of the full-length Gli3 isoform. 
The shift of Gli3 proteolytic processing is taken as a re fl ection of a breakdown of 
normal ciliary function, and it is speculated that the recorded phenotypes re fl ect 
either a loss of Gli3 repressor isoform function or a dominant negative effect of the 
increased levels of the full-length Gli3 isoform. Most surprising, when compared to 
other ciliary mutants, both transmission and scanning electron microscopy showed 
that primary cilia were still present and morphologically and ultrastructurally nor-
mal (Willaredt et al.  2008  ) . Finally, examination of changes in Wnt signaling also 
revealed an upregulation of canonical Wnt signaling, as re fl ected in the increased 
and ectopic expression of  Wnt7b  (Fig.  3.5a ),  Wnt8b  (Fig.  3.5b ), and  Axin2  (Willaredt 
et al.  2008  ) , but whether this re fl ects a direct effect of primary cilia upon Wnt 
signaling or a secondary disturbance attendant with abnormal Shh signaling remains 
untested.    

http://dx.doi.org/10.1007/978-94-007-5808-7_2
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 A study from Gorivodsky et al.  (  2009  )  examined loss of another gene encoding 
a ciliary protein,  Ift172 , which resulted in severe cranio-facial malformations, failure 
to close the cranial neural tube, and holoprosencephaly. Their work showed that in 
these  Ift172  mutants the expression of  nodal  is practically abolished by embryonic 

  Fig. 3.3    The expression domains of  Shh  in the forebrain of  Ift88  mutants remain essentially intact. 
In situ hybridization on coronal sections of E11.5 embryos from wildtype (+/+) and compound 
heterozygotes ( Ift88   ko  / cbs ) for the  cbs  allele and a full deletion of the  Ift88  gene.  a ,  b ,  Shh .  a , 
Rostral sections indicating  Shh  expression in the ventral subpallium ( arrowheads ).  b , Caudal 
sections indicating  Shh  expression in the zona limitans intrathalamica (ZLI,  arrowheads ).  Inset  
( lower left ) indicates the plane of section. Dorsal is to the  top in each panel .  Scale bar : 0.3 mm       

 



  Fig. 3.4     Ift88  mutants show no defects in the expression of  Gli3  or its downstream targets  Emx1  
and  Emx2 . In situ hybridization on coronal sections of E11.5 embryos from wildtype (+/+) and 
compound heterozygotes ( Ift88   ko  / cbs ) for the  cbs  allele and a full deletion of the  Ift88  gene.  Inset  
( lower left ) indicates the plane of section.  Arrowheads  indicate cerebral cortex.  a ,  Gli3 .  b ,  Emx1 . 
 c ,  Emx2 . Dorsal is to the  top in each panel .  Scale bar : 0.3 mm       
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day (E) 7.5 (Gorivodsky et al.  2009  ) . This could partially explain the forebrain 
phenotypes seen in other ciliary mutants, as nodal is fundamental for the induction 
of the anterior mesendoderm that later expresses  Shh ,  Foxa2 , and  Gsc  (Vincent et al. 
 2003  ) . Both the  Ift88  and  Ift172  mutations occurred in genes encoding IFTB com-
plex proteins that are associated with anterograde IFT, and the simplest interpretation 

  Fig. 3.5     Ift88  mutants show defects in the expression of Wnt ligands. In situ hybridization on 
coronal sections of E11.5 embryos from wildtype (+/+) and compound heterozygotes ( Ift88   ko  / cbs ) 
for the  cbs  allele and a full deletion of the  Ift88  gene.  Inset  ( lower left ) indicates the plane of 
section.  Arrowheads  indicate cerebral cortex.  a ,  Wnt7b .  b ,  Wnt8b . Dorsal is to the  top in each 
panel .  Scale bar : 0.3 mm       
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of their phenotypes is to conclude that in these mutants both the full-length and 
short isoforms of Gli3 are not being produced and activated in a normal fashion, 
thereby leading to a decrease in Shh signaling. 

 Stottmann et al. examined mice mutant for a ciliary gene, tetratricopeptide repeat 
domain 21B ( Ttc21b ), which encodes the ciliary protein IFT139 involved in retro-
grade IFT (Stottmann et al.  2009 ; Tran et al.  2008  ) . Its absence led to a defect in 
retrograde IFT, resulting in the accumulation of IFT proteins (Tran et al.  2008  ) . In 
contrast to ciliary mutants in other studies where Shh signalling is decreased (Besse 
et al.  2011 ; Gorivodsky et al.  2009 ; Wilson et al.  2011  ) ,  Ttcb21  mutants showed an 
elevation of Shh signalling since the anterograde transport is intact and components 
of the pathway, like Smo, can enter the cilium. In the  Ttcb21  mutants, elevated Shh 
signalling was also responsible for the dramatic ventralization observed, and natu-
rally downstream targets such as  Ptch1  and  Foxa2  also showed increased expression 
(Stottmann et al.  2009  ) . Strong evidence for an increase in Shh signaling in this 
mutant comes from the observation that when Shh expression was genetically 
reduced, the  Ttcb21  phenotype was altered, suggesting that Ttcb21 is responsible 
for inhibiting Shh expression in the dorsal mesendoderm and midbrain, ensuring 
appropriate patterning of midbrain and forebrain (Stottmann et al.  2009  ) . Analysis 
of Wnt signalling in the  Ttcb21  mutants revealed a downregulation of a Wnt-
sensitive lacZ transgene in the forebrain although no major changes in levels of 
beta-catenin were detected. 

 Besse et al.  (  2011  )  examined a mouse mutant with a targeted deletion of the  Ftm  
gene, whose human ortholog RPGRIP1L has been found mutated in a subset of 
patients with the ciliopathies Meckel or Joubert syndrome (Arts et al.  2007 ; Delous 
et al.  2007  ) . In  Ftm  mutants the protein was not localized to the base of primary 
cilia at the apical side of E12.5 telencephalic neuroepithelia, as is the case in the 
wildtype. As might be expected, the protein was instead absent in the mutants. At 
the ventricular surface,  Ftm  mutant forebrain exhibited short, small, button-shaped 
cilium-like structures with basal bodies of normal appearance. Interestingly, ven-
tricular tight junctions seemed unaffected, which speaks for a normal apical-basal 
polarity of the neuroepithelial cells. Examination of patterning markers in the tel-
encephalon of these mutants revealed that the dorsal expression of  Ngn2  and  Pax6  
was severely decreased in the anterior telencephalon, whereas the expression of 
 Dlx2  and  Gsx 2  was enlarged dorsally. Interestingly, the dorsal expansion of ven-
tral structures was limited to the most anterior part of the telencephalon. As seen in 
many other ciliary mutants, the ratio of full-length Gli3 to the processed isoform 
Gli3R was increased in the  Ftm  mutant. This last result was in accordance with a 
decrease in Gli3 activity, because the extent of the dorsomedial structures were 
diminished and deformed, and matches that seen in the forebrain of the  cobble-
stone  mutant (Willaredt et al.  2008  )  and in many other ciliary mutants in other 
developing organs (Haycraft et al.  2005 ; Huangfu and Anderson  2005 ; Liu et al. 
 2005 ; May et al.  2005 ; Tran et al.  2008  ) . Interestingly, the phenotype did not seem 
to be explained by increased Shh signalling. The expression pattern of the three 
target genes  Shh ,  Gli1  and  Nkx2.1  of the Hh signalling pathway were more or less 
unaffected in the ventral telencephalon of E9.5 to E12.5  Ftm  mutants. Strikingly, 
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the authors were able to rescue the ventralization of the telencephalon by crossing 
the  Ftm  mutants to mice expressing an engineered mutant allele of  Gli3  that 
speci fi cally produces a truncated form of Gli3 that should act as a constitutive 
Gli3R isoform (Böse et al.  2002  ) . Even more impressively, the double mutants did 
not display primary cilia at the ventricle, demonstrating that the  Ftm  phenotype 
was caused by defective Gli3R activity in the cortex and that ciliary defects can 
be rescued by expression of the appropriate downstream signaling components 
(Besse et al.  2011  ) . 

 To summarize these  fi ndings, all of these initial studies clearly showed a need 
for primary cilia in the Shh-determined dorsal-ventral identity of embryonic tel-
encephalic structures, but interestingly the identity of the ciliary gene that was 
mutated affected the nature of the dorsal-ventral change observed in the mutation. 
In mutations in IFTB complex proteins, the observed effects could be explained 
by a lack of both full-length and the short isoform of Gli3 (Gorivodsky et al.  2009 ; 
Willaredt et al.  2008  ) . In the mutation in  Ttc21b , a component of the IFTA com-
plex, Shh signaling was found to be increased and thus a ventralization of the 
forebrain was observed (Stottmann et al.  2009  ) . Finally, in a mutation in the gene 
encoding the basal body protein Ftm, the effects could be explained by a loss of 
Gli3R activity.  

    3.2.1.2   Primary Cilia and the Control of Proliferation 
in the Cerebral Cortex 

 All of the aforementioned mouse mutants suffer from the fact that they are constitu-
tive, and thus the relative contribution that primary cilia may make to earlier and 
later stages of telencephalic development cannot be discerned. The only study to 
address this potential problem utilized an inducible mutation of the  Kif3a  gene 
(Marszalek et al.  1999  ) , a kinesin protein responsible for anterograde IFT in cilia. 
The authors employed a nestin::Cre line that is expressed in the central nervous 
system from E10.5 (Petersen et al.  2002  )  to speci fi cally eliminate  Kif3a  from devel-
oping telencephalon at the beginning of cortical neurogenesis. Already at E12.5, 
primary cilia were reported to be lost from the ventricular zone of the cortex 
(Wilson et al.  2011  ) . Mutant mice survived until birth and displayed markedly larger 
cerebral cortices and ectopic rosettes similar to those seen in  Gli3  (Fotaki et al. 
 2006 ; Theil et al.  1999  )  and  cobblestone  (Willaredt et al.  2008  )  mutants. The mor-
phology, apical-basal polarity, and junctional contacts of neuroepithelial cells were 
unaffected in  Kif3a  mutants. The increase of cortical volume in the mutants could 
not be explained by a decrease in cell death, which was analyzed by TUNEL stain-
ing on E13.5 tissue.  Kif3a  mutants actually exhibited nearly twice the number of 
apoptotic cells as heterozygous littermates. In addition, the rate of neurogenesis was 
actually shown to increase in  Kif3a  mutants, which would also argue against a larger 
cortical volume. Careful analysis of the cell cycle indicated that precursors were 
speeding up in the G1 phase, resulting in a shorter cell cycle that could lead to the 
overproduction of cortical cells seen at birth. 



933 Primary Cilia and Brain Development

 To explain these changes the authors examined several pathways known to 
in fl uence proliferation in the cortex and discovered that Gli3 processing is 
speci fi cally altered to favor production of the full-length Gli3 isoform, as have 
countless other studies (e.g. Haycraft et al.  2005 ; Huangfu and Anderson  2005 ; 
Liu et al.  2005 ; May et al.  2005 ; Tran et al.  2008 ; Willaredt et al.  2008  ) . Several 
downstream targets of Shh signaling, including  Ptch1 ,  Fgf15 , and  cyclinD1 , 
were also shown to be upregulated. By examination of a  Gli3  mutant (Wang et al. 
 2007  )  lacking a 68-amino acid domain containing the proteolytic processing 
site to convert Gli3 to Gli3R, the authors could observe changes in cell cycle 
dynamics similar to that seen in the  Kif3a  mutants. The results suggest that the 
ratio of Gli3 to Gli3R, which decreases with time during development (Wilson 
et al.  2011  ) , could explain the changes in proliferation rates seen in the  Kif3a  
mutants. However, the  Gli3  mutants analyzed did not display such a dramatic 
overproliferation phenotype as the  Kif3a  mutant, suggesting possible alternative 
roles for Kif3a in this respect. Also in contrast to  Gli3  mutants and all other 
reported ciliary mutants discussed so far, the  Kif3a  mutants retained their nor-
mal dorsal-ventral cortical identities and boundaries, as shown by an unaffected 
expression pattern of  Pax6 ,  Emx1  and  Emx2 , whereas  Mash1 ,  Nkx2.2  and  Dlx2  
were normally expressed in the ventral forebrain. Finally, to identify a down-
stream target of altered Gli3:Gli3R isoform ratios, the authors looked at  Fgf15 . 
Fgf15 was overexpressed by in utero electoporation in the cortices of wildtype 
embryos at E12.0 and analyzed 2 days later with BrdU labeling. Areas of the 
cortex electroporated with an  Fgf15  expression construct did show a shortened 
cell cycle, demonstrating that this is suf fi cient to change cell cycle dynamics 
like that seen in the  Kif3a  and  Gli3  mutants. 

 Neuroepithelial cells that constitute the initial progenitor population of the devel-
oping cerebral cortex bear a primary cilium at their apical surface that juts out into 
the ventricle (Cohen and Meininger  1987  )  and which is dysfunctional or missing in 
ciliary mutants (Besse et al.  2011 ; Stottmann et al.  2009 ; Willaredt et al.  2008 ; 
Wilson et al.  2011  ) . A recent study carefully examined the location of primary cilia 
on newly-generated precursors that are in the process of delamination and sub-
sequent migration away from the ventricular surface to become so-called “basal 
progenitors” (Wilsch-Brauninger et al.  2012  ) . Cells destined to become basal pro-
genitors, as identi fi ed by expression of the gene  Tbr2 , were found to establish pri-
mary cilia facing away from the ventricle and localized at the basolateral plasma 
membrane, despite the retention of adherens junctions with neighboring cells. The 
number of cells bearing such cilia increased with embryonic age, correlating with 
the increase in cortical neurogenesis seen from midgestation. Interestingly, the 
number of cells demonstrating basolaterally-oriented cilia increased upon overex-
pression of the transcription factor insulinoma-associated 1, which promotes the 
production of basal progenitors from their apical progenitor mothers (Farkas et al. 
 2008  ) . This  fi nding has major implications for the control of the differentiation of 
basal progenitors, as their primary cilia are no longer exposed to the ventricular 
milieu with its particular mixture of growth factors, but are exposed instead to the 
extracellular matrix of the developing cortex. 



94 E. Tasouri et al.

 In the majority of cilia-bearing cells, primary cilia are present during the G0/G1 
phase of the cell cycle, and they are resorbed when the cells prepare to reenter the cell 
cycle (Tucker et al.  1979a,   b  ) . Evidence has surfaced showing that cilia place a brake 
upon cell-cycle reentry, in that their forced resorption can push cells into S-phase. 
One group (Li et al.  2011  )  focused upon the dynein light chain subunit Tctex-1, 
which dissociates from the dynein complex upon phosphorylation of residue Thr94 
(Chuang et al.  2005  ) . The authors  fi rst performed in vitro experiments with the retinal 
pigmented epithelial (RPE-1) cell line, in which ciliogenesis occurs after serum with-
drawal. shRNA-based knockdown of  Tctex-1  resulted in cell cycle block upstream of 
S-phase entry. This block could be rescued by a phosphomimetic mutant of the protein, 
demonstrating the importance of Tctex-1 phosphorylation for the G1 to S transition. 
The phosphorylated form of Tctex-1 was found to localize to the transition zone, a 
specialized structure between the basal body and the base of the ciliary axoneme. 
Using mutant versions of Tctex-1, the authors could show that ciliary resorption is 
dependent upon the relocalization of phosphorylated Tctex-1 to the transition zone, 
and thus entry into S-phase. Tctex-1 is enriched in radial glia of the developing cere-
bral cortex, and so the authors switched to in utero electroporation to perform in vivo 
experimentation. Examination of murine cerebral cortex from E11-E17 with an anti-
Tctex-1 antibody revealed that the protein localizes to the transition zone between the 
basal body and the primary cilium at the apical pole of radial glia. The authors then 
performed complementary loss- and gain-of-function studies to demonstrate a similar 
role for Tctex-1 in control of radial glial proliferation.  Tctex-1  knockdown resulted in 
excessive neuronal differentiation and a depletion of radial glial cells. In contrast, 
overexpression of a phosphomimetic mutant of Tctex-1 increased the mitotic index 
and shortened the length of G1 phase of the cell cycle. Unfortunately, neither of these 
experiments examined a direct effect of  Tctex-1  knockdown/overexpression upon the 
number and identity of cells bearing cilia, but the authors argue that the conclusions 
derived from the cell culture experiments are directly applicable to the in vivo 
situation. These data are nicely complementary to the results seen in the  Kif3a  con-
ditional mutant, in which G1 phase shortening was observed upon loss of primary 
cilia (Wilson et al.  2011  ) . Similar results were found by manipulation of the centrosomal 
protein Nde1 in RPE-1 cells and in Zebra fi sh embryos (Kim et al.  2011  ) . 

 To summarize, the most recent publications examining the control of cortical 
development by primary cilia have focused upon the action at the ventricular zone 
and the control of proliferation of the radial glia that give rise, either directly or 
indirectly through the generation of basal neuronal progenitors, to most of the neurons 
in the cerebral cortex. Primary cilia borne at the apical edge of neuroepithelia 
respond in a Gli3-dependent fashion to Shh signals and contribute to a lengthening of 
the G1 phase of the cell cycle and thereby constrain proliferation at the ventricular 
zone. The net effect of this activity is not only a morphological one in the sense that 
cilia thereby sculpt the shape of the developing cortex. Ultimately cilia thereby 
maintain a normal equilibrium between neural precursor and neuronal populations. 
The  fi nding that basally-located precursors orient their cilia away from the ventricle 
is another provocative  fi nding that will surely affect our understanding of how this 
tiny organelle affects the construction of one of the most complicated organs in 
the body.   
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    3.2.2   Primary Cilia and Hippocampus Development 

 Shh is not necessary for the embryonic speci fi cation of the hippocampus (Machold 
et al.  2003  ) , but in the  Gli3  mutant  Xt   J  , the formation of the hippocampus is abrogated 
in that the dorsal telencephalic midline does not invaginate (Theil et al.  1999  )  and hip-
pocampal markers such as  Ephb1  and KA1 are not expressed in the remaining dorsal 
tissue (Tole et al.  2000    ) . In keeping with these  fi ndings, primary cilia are necessary for 
the proper morphological development of the hippocampus, but they do not seem to 
be necessary for the determination of this structure. In a hypomorphic allele of the 
 Ift88  gene, the embryonic hippocampus shows a disorganized morphology and 
reduced levels of both  EphB1  and  Lhx2  expression, the latter of which is important for 
normal hippocampal development (Willaredt et al.  2008  ) . In the postnatal mammal, 
and throughout life, granule neuron precursors of the dentate gyrus in the hippocam-
pus are speci fi ed and migrate into the dentate gyrus, where they proliferate and  fi nally 
reside in the subgranular zone, thereby generating new neurons throughout adult life. 
Shh signalling is crucial for both proliferation and maintenance of postnatal neural 
stem cells (Lai et al.  2003 ; Machold et al.  2003  ) . Several recent studies have demon-
strated a role for primary cilia in adult neurogenesis (Breunig et al.  2008 ; Han et al. 
 2008 ; Town et al.  2008  ) , and these reports are dissected in Chap.   4    .  

    3.2.3   Primary Cilia and Olfactory Bulb Development 

 Although the  Shh  mutant (Chiang et al.  1996  )  and the  Gli3  deletion mutant  Xt   J   
(Johnson  1967  )  both lack olfactory bulbs, olfactory epithelia does develop in the  Xt   J   
mutant (Sullivan et al.  1995  )  and also in the medial proboscis of the  Shh  mutant 
(Balmer and LaMantia  2004  ) . Thus it would be of interest to see if cilia have any-
thing to do with the development of this structure, as was discussed in a publication 
by Besse et al.  (  2011  ) . A previous study by Delous et al. showed that  Ftm  mouse 
mutants exhibit apparent olfactory bulb agenesis (Delous et al.  2007  ) . Tbx21, a 
marker for mitral cells of the olfactory bulb, was used to identify an ectopically-
located primordial olfactory bulb in the pallium of  Ftm  mutants. Even though this 
mislocalized olfactory bulb-like structure is properly speci fi ed at E13.5, it is local-
ized dorsolaterally. Additionally, it exhibited failure to contact olfactory neurons 
followed by an inability to laminate normally. The authors demonstrated that nor-
mal olfactory bulb development can be achieved by crossing  Ftm  mutants to the 
 Gli3  mutant (Böse et al.  2002  )  described above, in which a truncated form of Gli3 
that should act as a constitutive Gli3R isoform is expressed at the Gli3 locus.  

    3.2.4   Primary Cilia and Diencephalon Development 

 One publication has investigated the role of primary cilia in the development of dien-
cephalic structures such as the thalamus, hypothalamus, subthalamus and epithalamus. 

http://dx.doi.org/10.1007/978-94-007-5808-7_4
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Willaredt et al. showed that  cbs  mutants, described above as bearing a hypomorphic 
allele of  Ift88 , exhibit a breakdown in the boundary between the telencephalon and 
diencephalon along with high numbers of rosettes containing newborn neurons 
(Willaredt et al.  2008  ) . Another report demonstrated similar observations in the  Gli3  
deletion mutants  Xt   J   (Fotaki et al.  2006  ) . Even though in ciliary mutants nothing 
has been shown regarding the determination of diencephalic substructures, there is a 
legitimate hypothesis that tissues such as the hypothalamic and thalamic nuclei will 
be affected, as their differentiation has been shown to be dependent upon Shh and 
Gli3 (Alvarez-Bolado et al.  2012 ; Haddad-Tovolli et al.  2012  ) . In addition, numerous 
reports where ciliary mutants exhibit vaguely-described eye defects (Caspary et al. 
 2007 ; Cortellino et al.  2009 ; Gorivodsky et al.  2009 ; Qin et al.  2011 ; Tran et al.  2008 ; 
Vierkotten et al.  2007  ) , including ocular coloboma in hypomorphic  Ift88  mutants 
(Willaredt et al.  2008  ) , and a subset of patients with Joubert (Satran et al.  1999  )  or 
Meckel Syndrome (Thompson and Baraitser  1986  )  displaying coloboma, have shown 
that there is a link between cilia and eye development; however no study has been 
published yet investigating this matter.   

    3.3   Primary Cilia and Mesencephalon Development 

 A study in 2009 investigating a mutation on one of the IFT proteins involved in the IFTA 
complex,  Ift172 , showed that loss of Ift172 results in severe craniofacial malformations 
in addition to failure in cranial neural tube closure and holoprosencephaly (Gorivodsky 
et al.  2009  ) . Along with these phenotypes, Ift172 mutants demonstrate defective mid-
brain-hindbrain patterning. While rhombomeres 2–7 seem to develop normally, rhom-
bomere 1 does not, failing to express the marker  Gbx2 . Furthermore, even though 
midbrain-hindbrain markers were properly expressed at the beginning, they soon crossed 
over their respective boundaries. The authors have showed that the isthmic organizer 
was still positioned in the correct manner (Gorivodsky et al.  2009  ) , despite the loss of 
 Gbx2  expression in rhombomere 1, which is thought to establish the midbrain/hindbrain 
boundary in cooperation with  Otx2  (Liu and Joyner  2001  ) . The establishment of roughly 
normal boundaries but with substantial mixing of marker populations is reminiscent of 
the breakdown of pallial-subpallial and  telencephalic-diencephalic boundaries in the  cbs  
and  Xt   J   mutants. Whether this re fl ects a misspeci fi cation or a subsequent mixing of 
determined populations remains unclear. Somewhat surprisingly, no other publications 
have addressed the development of known Shh-dependent structures in the midbrain 
such as the substantia nigra or serotonergic neuronal populations, but such studies are 
certain to be published soon.  

    3.4   Primary Cilia and Rhombencephalon Development 

 All of the reports so far linking primary cilia to rhombencephalon development have 
dissected the important role that primary cilia play in the morphogenesis of the 
cerebellum. Genes involved in ciliogenesis, cilia function or maintenance have been 
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linked with malformations of the cerebellum in humans. The best known disorder 
characterized by cerebellar malformations is Joubert syndrome (Joubert et al.  1969  ) , 
in which cerebellar vermal hypoplasia is revealed by a distinct “molar tooth” sign 
upon MRI imaging (Quisling et al.  1999  ) . Mutations in 14 different genes encoding 
proteins that localize to primary cilia have been found in Joubert syndrome patients 
(Sattar and Gleeson  2011  ) , including  AHI1  (Dixon-Salazar et al.  2004 ; Ferland 
et al.  2004  ) ,  NPHP1  (Nephronophthisis 1) (Parisi et al.  2004  ) , and  CEP290  
(Centrosomal protein 290 Da) (Valente et al.  2006  ) . Cerebellar hypoplasia is a phe-
notype found also in numerous other cilia-related disorders, such as Meckel-Gruber 
syndrome (MKS1 and MKS3) (Cincinnati et al.  2000  ) . In the syndromes mentioned 
above, the molecular and the developmental basis of cerebellar hypoplasia are 
poorly understood. Chizhikov et al.  (  2007  )  investigated the central nervous system-
speci fi c inactivation of two ciliary genes,  Ift88  and  Kif3a , in order to decipher the 
role of cilia in developmental disorders (Chizhikov et al.  2007  ) . Previous  fi ndings, 
along with data showing that  Ift88  is broadly expressed in the cerebellum, have led 
to the clari fi cation that both Purkinje cell and granule cell progenitors bear primary 
cilia. Chizhikov and his colleagues showed that lack of either  Ift88  or  Kif3a  gene 
expression in the central nervous system led to severe cerebellar hypoplasia but also 
in abnormalities in foliation. These manifestations due to loss of either of these two 
ciliary genes were attributed to the inability of the neonatal granule cell progenitor 
population to expand. However, the determination of cerebellar granule neurons 
(CGN) was not affected, in full agreement with previous data generated from phar-
macological blockade of Shh (Dahmane and Ruiz i Altaba  1999 ; Wallace  1999 ; 
Wechsler-Reya and Scott  1999  )  and also from conditional ablation of genes in the 
Hedgehog signalling,  Shh ,  Smo ,  Gli1 , and  Gli2  (Corrales et al.  2004,   2006 ; Lewis 
et al.  2004  ) . Taking into account that Ift88 is a critical player in Shh transduction in 
multiple cell layers, Chizhikov’s et al.  fi ndings suggest that loss of responsiveness 
to Shh signalling is the cause of the loss of granule cell progenitor proliferation. 
Their data demonstrate the signi fi cance that both  Ift88  and  Kif3a  genes have in 
ciliary function, since in both mutants the cerebellar malformations were pheno-
typically similar. 

 In the study by Chizhikov et al.  (  2007  )  Purkinje cells were morphologically 
disorganized in the stratum purkinjense and showed abnormal dendritic aborization. 
A potential explanation for this phenotype could be the lower numbers of mature 
granule cells since Purkinje cells do not express the hGFAP::Cre transgene used to 
delete  Ift88 . In order to further investigate the direct result of cilia on the determina-
tion of Purkinje cells the authors studied a conditional ablation of  Ift88  promoted by 
the nestin::CRE transgene, which is known to be expressed in the majority of cere-
bellar progenitors. The authors reported that in these  Ift88  mutants Purkinje neurons 
are present. Spassky et al.  (  2008  )  supported and extended these  fi ndings with simi-
lar results using a conditional deletion of  Kif3a . In this study, direct evidence that 
Shh signaling is involved was provided by examination of a conditional mutant  Smo  
allele under control of the hGFAP::CRE deleter strain, the same one used in the 
Chizhikov study (Chizhikov et al.  2007  ) . The  Smo  mutant mice also displayed a 
hypoplastic cerebellum and a more drastic foliation defect than the  Kif3a  conditional 
mutant. More importantly, analysis of a  Kif3a ;  Smo  double mutant indicated a 
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milder phenotype, more comparable to the  Kif3a  single knockout. Thus,  Kif3a  was 
found to be epistatic to (i.e. downstream of)  Smo , and thus provides direct genetic 
evidence that Shh signaling is acting through primary cilia. Finally, Moyer et al. 
 (  1994  )  reported extensive CGN heterotopias in  orpk , a hypomorphic  Ift88  allele, 
and CGN heterotopias have also been observed in a mouse model in which a 
constitutively-active form of Gli2 is speci fi cally expressed in CGN precursors 
(Han et al.  2009  ) . 

 The involvement of primary cilia in Wnt signaling has proven to be one of the 
most controversial aspects in the  fi eld. Although in vitro analysis indicated that 
primary cilia constrain canonical Wnt signaling (Corbit et al.  2008  ) , the evidence 
from in vivo studies is contradictory. Analysis in the mouse and in the zebra fi sh 
 Danio rerio  of Wnt-dependent developmental processes revealed no role for pri-
mary cilia (Huang and Schier  2009 ; Ocbina et al.  2009  ) , but perturbations in Wnt 
signaling have been recorded in the later development of many organ systems, 
including the forebrain, cerebellum, kidney, pancreas, mammary gland, and long 
bones (reviewed in Tasouri and Tucker  2011  ) . These studies have not clari fi ed 
whether perturbations in Wnt signaling are a primary or secondary effect of distur-
bances in ciliary function. 

 To more directly address the issue of Wnt signaling in primary cilia-dependent 
development, Lancaster et al.  (  2011  )  used a mouse model where the gene  Ahi1 , the 
 fi rst gene linked to Joubert syndrome, was deleted (Louie et al.  2010  ) . The authors 
demonstrated that generally the brain morphology of the  Ahi1  mutants was normal 
apart from a hypoplastic vermis showing a slightly defective foliation pattern and 
a cerebellum whose size was decreased by nearly 40% and reduced in total folia 
number. Examination of cerebellar anatomy during embryogenesis revealed a mid-
line fusion defect at the cerebellar vermis primordium, and as early as E12.5 the 
mutants showed a lengthened and widened rhombic roof plate.  Ahi1  mutants com-
pared to control brains also showed a fusion at the site of the cerebellar hemi-
spheres. Similar phenotypes were observed upon examination of a mouse line with 
a targeted deletion of  Cep290 , another ciliary gene shown to be defective in patients 
with Joubert syndrome (Valente et al.  2006  ) . The authors used MRI to examine 
human fetuses later diagnosed with Joubert syndrome, and amazingly were able to 
record fusion defects between gestational weeks 21 and 25, at which time point 
fusion has already occurred in normal fetuses. 

 Immunohisto fl uorescent staining of Jbn in CGNs revealed localization of the 
protein to the basal body. The authors employed tagged constructs expressing jou-
berin (Jbn), the protein encoded by the  Ahi1  locus that is known to localize to pri-
mary cilia, and containing three distinct mutations seen in Joubert syndrome 
patients. All three mutant Jbn proteins failed to localize at the primary cilium. In the 
 Ahi1  mutant mice there was no difference in the number or morphology of cilia in 
the CGN precursor population, suggesting that Jbn is not necessary for ciliogenesis 
but rather important for ciliary-mediated signalling.  b -Catenin colocalisation exper-
iment showed that  b -catenin is found with Jbn at the base of the cilium, pointing 
towards a potential role for the primary cilium in the modulatory role that Jbn has 
for Wnt signalling. To examine the role of Jbn in Wnt signaling, luciferase assays 
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were used to assess whether these mutant proteins were defective in modulating 
Wnt signalling. Overexpression of wild type Jbn in cells treated with Wnt3a showed 
a very modest increase in Wnt report activity compared to the vector control, but 
overexpression of the mutant constructs did not show any increase in Wnt activity. 
In addition,  Ahi1  mutant mice were tested for defective Wnt signalling by crossing 
them to Wnt reporter BATgal transgenic mice. Whole-mount staining at E13.5, 
when midline fusion begins, showed a downregulation of Wnt signalling at the cer-
ebellar midline in  Ahi1  mutants. BrdU labelling to assess proliferation of precursors 
surrounding the site of midline fusion revealed signi fi cantly lower numbers of 
labelled cells in the fusion site in mutant  Ahi1  embryos. To establish a mechanistic 
explanation, the Wnt-signaling agonist lithium was injected intraperitoneally into 
pregnant dams at E12.5 and E13.5. Most excitingly,  Ahi1  mutant embryos from 
lithium-injected females were rescued, in that they showed expanded cerebellar 
hemisphere tissue with a reduced interhemispheric separation, showing no signi fi cant 
difference between mutants and control littermates. The proliferation marker Ki67 
showed a signi fi cant reduction of proliferating cells at the site of fusion in untreated 
 Ahi1  mutant embryos, whereas lithium had rescued this phenotype in the  Ahi1  
mutants. In conclusion, Lancaster et al.  (  2011  )  suggest that Joubert syndrome seems 
to be associated more with a speci fi c defect in cilia function or signalling rather than 
a more general defect in ciliogenesis, as the  Ahi1  and  Cep290  mutants show milder 
phenotypes in the cerebellum compared to the  Ift88  and  Kif3a  knockouts, in which 
ciliogenesis is abrogated (Chizhikov et al.  2007 ; Spassky et al.  2008  ) . 

 Surprisingly, the  Ahi1  mutants had distinct differences from the symptoms seen 
in patients with Joubert syndrome. They showed neither the molar tooth sign nor did 
they display fragmentation of deep cerebellar nuclei, anatomical abnormalities of 
the descending trigeminal tract, brainstem nuclei, and pyramidal tract decussation. 
Despite the cerebellar defects, the cellular organization, neuronal morphology, and 
layering of the cerebellar cortex was not affected. BrdU labeling from E16.5 and 
until postnatal day 5 revealed a reduced proliferation in the vermis at prenatal but 
not at postnatal timepoints. Since the Shh signalling pathway that has a key role in 
CGN proliferation is mostly active after birth (Corrales et al.  2004  ) , these results 
suggested that it is not implicated in the prenatal proliferation defects. To show this, 
the authors investigated Shh signaling using the downstream Shh target N-myc and 
showed no difference in  Ahi1  mutant mice when compared to their littermate con-
trols in the protein abundance of the N-myc in whole cerebellar extracts. Nor were 
any differences seen in  Ptch1  or  Gli1  expression patterns or levels. Therefore the 
authors concluded that postnatal Shh signalling is not affected in  Ahi1 -mutant 
cerebella. 

 To summarize the studies of primary cilia in the development of the cerebel-
lum, it is quite clear that both Wnt and Shh signaling are responsible for the con-
trol of proliferation in cerebellar precursor populations in both embryonic and 
postnatal stages, respectively. Primary cilia are however not responsible for deter-
mination of the two most important neuronal types in the cerebellar cortex, the 
CGNs and the Purkinje neurons. Prenatal defects in proliferation of the roof plate 
was accounted for by defects in Wnt signaling, contributing to a midline fusion 
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defect of the vermis (Lancaster et al.  2011  ) . Postnatally, the proliferation of CGN 
precursors in the foliae of the cerebral hemispheres was reduced in IFTB complex 
mutants, re fl ecting defects in Shh signal transduction caused by a loss of cilia 
(Chizhikov et al.  2007 ; Spassky et al.  2008  ) . It still remains to be resolved what is 
causing the classic “molar tooth” abnormality in the vermis of Joubert patients, as 
well as several other anatomical abnormalities detected in these patients, but other 
mouse models in the dozen other genes implicated in Joubert syndrome may shed 
light on this matter.  

    3.5   Conclusions and Outlook 

 Although the number of studies dealing with primary cilia and the brain is dwarfed 
by those examining primary cilia and spinal cord development, a mechanistic pic-
ture is slowly becoming clear, at least with respect to the role of Shh in the fore-
brain. Primary cilia at the apical pole of neuroepithelial progenitor cells respond to 
Shh signal by lengthening the G1 phase of the cell cycle in a Gli3-dependent fash-
ion. Loss of ciliary function, through impaired IFT or a loss of the cilia themselves, 
leads to an overproliferation of progenitors that results in overgrowth within the 
cortex. However, many issues remain unclear. What do cilia have to do with rosette 
formation in both the cortex and the cerebellum? Even within the category of 
mutants in IFTB components (e.g. the hypomorphic  Ift88  allele  cbs  (Willaredt et al. 
 2008  )  and the targeted disruption of  Kif3a  (Wilson et al.  2011  ) ), discrepancies need 
to be resolved in the control of boundary formation between the pallium and the 
subpallium in the embryonal cortex. What are the different roles that primary cilia 
are playing in basal progenitors, with their cilia projecting basolaterally instead of 
into the ventricle? What other signaling pathways beside Shh and Wnt are utilizing 
primary cilia in the context of neural development? Are cilia controlling the migra-
tion of the neurons away from the ventricular zone? These questions are of current 
research interest. Topics that will be addressed in the future include a thorough 
analysis of cilia-dependent diencephalic development, mechanistic experiments to 
de fi nitively determine a role for Wnt signaling in forebrain development (or not), 
medium throughput analysis of other signaling cascades that are developmentally 
relevant and may be cilia dependent, and, crucially, a closer investigation of patients 
with ciliopathies for defects in forebrain development and a subsequent modeling of 
these defects with appropriate model organisms. For example, in certain patients 
with Joubert or Oral-Facial-Digital Type I syndromes, periventricular heterotopias, 
polymicrogyria, and cerebral cysts have been observed (outlined in great detail in 
Chap.   9    ), which could re fl ect the postnatal outcome of the embryonic rosettes 
observed in the cortex of some ciliary mouse mutants (Willaredt et al.  2008 ; Wilson 
et al.  2011  ) . Although the prospect for healing neurodevelopmental aspects of cil-
iopathies may seem at  fi rst glance like an impossible task, the groundbreaking work 
of Lancaster et al.  (  2011  )  shows that in fact, at least in animal models, it is conceivable 
that prenatal exposure to drugs that mimic events downstream of ciliary function 
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may offer hope for certain situations, at least in those families in which genetic 
analysis has already indicated a predisposition to a ciliopathy.      
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  Abstract   The prevailing view until very recently was that primary neuronal cilia, 
which were  fi rst described in electron microscopic studies of the central nervous 
system (CNS) approximately 50 years ago, were likely vestigial. This was due in 
large part to their lost motility during the course of evolution. For decades, further 
investigation into these structures was hampered by the lack of methods to 
speci fi cally label cilia and the paucity of information about their growth and func-
tion in the CNS. In this chapter, we review the unexpected roles that primary cilia 
have in shaping the CNS and in particular the generation and maturation of cells in 
the postnatal cerebral cortex. We discuss newly available research tools for detect-
ing cilia and manipulating ciliogenesis. Focusing on the mammalian cerebral 
cortex, this chapter reviews the patterns of growth of neuronal cilia, signaling 
pro fi les and putative functions of neuronal and non-neuronal cilia, and potential 
consequences of abnormal ciliogenesis in these cell types.  

  Keywords   Cerebral cortex  •  Hippocampus  •  Primary cilium  •  Axoneme  •  Basal 
body  •  Ciliogenesis  •  Excitatory  •  Inhibitory  •  Glia  •  G protein-coupled receptor  
•  Sonic hedgehog      

    4.1   Introduction 

 Showcased in virtually every neuroscience textbook are the exquisite drawings of 
Golgi-stained neurons and glial cells by Santiago Ramón y Cajal, arguably one of 
history’s most famous neuroanatomists. His meticulous studies of the brain laid 
foundation to textbook views of cell morphology, circuitry and communication 
between neurons (Swanson and Swanson  1995  ) . His drawings illustrate in precise 
detail the enormous ‘square-footage’ of cortical pyramidal neurons manifested by 
elaborate dendrites and long distance axonal projections. But as pointed out by 
 others (Fuchs and Schwark  2004  ) , he did not portray a cellular process common to 
virtually every neuron: the primary cilium, a hair-like structure that extends a few 
microns off the cell body. Though the  fi rst description of primary cilia in neurons is 
about 50 years old (Dahl  1963  ) , they had been essentially dismissed for many 
decades because they were viewed as vestigial cellular appendages, in part because 
it seemed they lost their ability to be motile during the course of evolution (Fuchs 
and Schwark  2004 ; Louvi and Grove  2011 ; Whit fi eld  2004  )  and because it was not 
clear that they were present in all neurons. So why we are only now focusing on 
these clearly sophisticated organelles? 

 The importance of neural primary cilia in the brain is an emerging  fi eld of 
neuroscience, lagging signi fi cantly behind our knowledge of cilia biology in 
both other mammalian organ systems (e.g. kidney, retina) and model organisms 
(e.g.  C. elegans  or  Chlamydomynas ) (Vincensini et al.  2011  ) . Assisting in the 
rise of primary cilia to prominence in the  fi eld is the identi fi cation of genes both 
necessary for cilia formation and whose mutation disrupts CNS development 
both in rodent and human (Bennouna-Greene et al.  2011 ; Breunig et al.  2008 ; 
Cantagrel et al.  2008 ; Davenport et al.  2007 ; Davenport and Yoder  2005 ; 
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Rooryck et al.  2007 ; Willaredt et al.  2008  ) . In addition, the availability of cilia 
markers allowing detection of neural cilia (Berbari et al.  2007 ; Bishop et al. 
 2007 ; Brailov et al.  2000 ; Domire et al.  2011 ; Domire and Mykytyn  2009 ; 
Handel et al.  1999  )  allows studying their distribution, molecular composition 
and addressing basic questions about the signi fi cance of cilia throughout the 
brain. For example, what is the potential role of cilia during neurogenesis? 
When do cilia emerge from different neural cell types? Are the molecular con-
stituents that enable cilia formation and function preserved from region to 
region, cell type to cell type? What do neural cilia sense and how do those signals 
get translated in the cell? Do neuronal cilia serve similar functions as glial cilia? 
Why are there so many different neurological manifestations associated with 
ciliopathies? In this chapter, we will discuss recent work that begins to address 
some of these questions. Even though cilia are found throughout the brain 
(Bishop et al.  2007  ) , we will focus on the cerebral cortex. Our goal is to review 
the developmental pro fi les of both neuronal and non-neuronal cilia in cerebral 
cortex, and discuss some of the consequences of aberrant cilia development on 
cortical cell types.  

    4.2   Identi fi cation of Cilia: Speci fi c Markers 
and Distribution in the Brain 

 Over the past decade there have been several excellent review articles describing the 
historical and regional descriptions of neuronal cilia throughout the CNS (Fuchs and 
Schwark  2004 ; Green and Mykytyn  2010 ; Louvi and Grove  2011 ; Whit fi eld  2004  ) . 
Brie fl y, the earliest reports of cilia on neurons in the brain date back roughly 50 years 
ago (Dahl  1963  ) . These observations were made using electron microscopy (EM) 
that was the only way to identify cilia at the time, and still is the gold standard for 
identifying and describing cilia architecture. Those  fi rst cilia were noted on granular 
neurons of the dentate gyrus in the hippocampus of adult rats (Dahl  1963  ) , and were 
followed by other reports recognizing primary cilia in other brain regions including 
Purkinje cells of the rat cerebellum (Del Cerro and Snider  1969  )  and pyramidal neu-
rons of human neocortex (Mandl and Megele  1989  ) . The electron microscopy data 
suggested that both neurons and glial cells had a single primary cilium (Dahl  1963 ; 
Del Cerro and Snider  1969 ; Karlsson  1966  ) . However the limited number of cells 
analyzed precluded drawing de fi nitive conclusions. More recently, the study of neu-
ral cilia has gone through a renaissance, owing to the characterization of a host of 
antibodies that detect protein enrichment in the cilium. More speci fi cally, cilia are 
specialized organelles isolated from the cell cytoplasm and they exhibit differential 
composition compared to the rest of the cell. Antibodies to proteins enriched in cilia 
have allowed for a more quantitative perspective on CNS ciliogenesis—notably 
highlighting their ubiquity—and, in addition, have greatly increased our understand-
ing of the differential localization of signaling pathways therein. In the following 
section we will summarize the cytoskeletal and signaling markers that are enriched 
in the cilium (also reviewed by Domire and Mykytyn  2009  ) . 
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    4.2.1   Cytoskeletal Markers 

 In most cell types, cilia axonemes are enriched in acetylated-alpha tubulin, a 
cytoskeletal protein that is also present in the mitotic spindle and mid-body tubules 
of cells in mitosis, but also more generally in cytoplasmic microtubules (Piperno 
and Fuller  1985 ; also see Wheatley et al.  1996  ) . Tufts of acetylated alpha tubulin 
positive cilia are found in the motile ependymal cells lining the lateral ventricles; 
however most cortical neuronal cilia appear to have generally lost or evolved a dif-
ferent posttranslationally modi fi ed form of tubulin (Berbari et al.  2007 ; Stanic et al. 
 2009 ; Wheatley et al.  1996 ; MRS unpublished observation). The signi fi cance or 
mechanisms underlying this change are unclear, but could be due to evolved changes 
in tubulin acetyltransferase expression (Leroux  2010 ; Shida et al.  2010  ) . The basal 
bodies of cilia are typically enriched in either gamma-tubulin or pericentrin 
(Fig.  4.1a ) (Anastas et al.  2011 ; Arellano et al.  2012 ; Miyoshi et al.  2006,   2009b  ) .   

    4.2.2   Signaling Markers 

 The cilia membrane is enriched with several receptors largely involved in neuro-
modulation. Interestingly, known receptors enriched in the cilia membrane are 
mostly subtypes of G-protein coupled receptors (GPCRs) including somatostatin 
receptor 3 (SSTR3) (Fig.  4.1b–d ) (Handel et al.  1999 ; Stanic et al.  2009  ) , sero-
tonin receptor 6 (5HT6 (Fig.  4.1e, f ) Brailov et al.  2000  ) , melanin concentrating 
hormone receptor 1 (MCH1R; Berbari et al.  2008a,   b  ) , and dopamine receptor 1 
(D1, and possibly D2 and 5; Domire et al.  2011 ; Marley and von Zastrow  2010  ) . 
Also, neurotrophin receptor p75 NTR  has been described in cilia (Chakravarthy 
et al.  2010  ) . In addition, other molecules particularly enriched in neural cilia 
include Arl13b, a member of a family of ADP-ribosylation factor (Arf) proteins 
which have regulatory roles in membrane traf fi cking and cytoskeletal dynamics 
(Cantagrel et al.  2008 ; D‘Souza-Schorey and Chavrier  2006 ; Zhou et al.  2006  ) ; 
G a 11, a G-protein that bridges neurotransmitter receptors and second messenger 
signaling (Fuchs and Schwark  2004  )  and adenylyl cyclase 3 (ACIII) (Fig.  4.1a ), a 
mediator of G-protein and cAMP signaling that labels many cilia in the brain 
(Anastas et al.  2011 ; Arellano et al.  2012 ; Bishop et al.  2007  ) . 

 Neuronal cilia GPCRs such as SSTR3 are extensively distributed on cilia in 
numerous brain regions, with apparent differences in the levels of expression 
(Fig.  4.1b, d ). Cilia staining was demonstrated at the EM level (Fig.  4.1c ), and was 
particularly strong in the dentate gyrus, piriform and retrosplenial cortex, the inter-
nal plexiform and granular layers of the olfactory bulb and in the transition cortex-
amygdala, and was absent in some regions including the striatum or the cerebellar 
cortex (Handel et al.  1999  ) . Antibodies against 5HT6 showed labeling on cilia in 
restricted brain regions including the nucleus accumbens, the caudate-putamen, the 
olfactory tubercles and the islands of Calleja (Hamon et al.  1999  ) , and subsequently 
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  Fig. 4.1     Cilia markers . ( a ) ACIII is speci fi cally enriched in cilia of pyramidal cells stained with 
NeuN and DAPI in the adult mouse neocortex, while pericentrin (Peric) is a speci fi c marker of 
basal bodies. ( b ) SSTR3 is also enriched in neuronal cilia in the neocortex of adult mice. ( c ) 
Electron microscope image showing immuno detection of SSTR3 in neuronal cilia. ( d ) SSTR3 is 
enriched in neuronal cilia in the granular and polymorphic layers of the dentate gyrus (GrDG and 
PoDG respectively) and hippocampal CA3  fi elds. Note that SSTR3 is only expressed in neuronal 
layers, indicating lack of this marker in cilia from non-neuronal cells. ( e, f ) Electron microscope 
images showing 5HT6 receptor immunostaining mostly in the cilium membrane ( arrowhead ). The 
staining does not seem associated with axonemal microtubules ( arrows ). ( g ) GABAergic cells in 
culture expressing glutamic acid decarboxylase (GAD) exhibit Sstr3 positive cilia ( arrow ). ( h–j ), 
ACIII positive cilia ( arrows ) are present in neocortical GABAergic cells expressing parvalbumin 
(PV) ( h ), calbindin (CB) ( i ) and calretinin (CR) ( j ) in vivo. Panels  a ,  h–j  are from (Arellano et al. 
 2012  ) . Panels  b–f  were reproduced with permission by ELSEVIER BV (Handel et al.  1999 ; Stanic 
et al.  2009 ; Brailov et al.  2000  ) . Panel  g  was reproduced with permission by JOHN/WILEY & 
SONS, INC (Berbari et al.  2007  )        
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it was shown that they localize primarily in the cilia membrane, as expected for a 
functional receptor (Fig.  4.1e, f ) (Brailov et al.  2000  ) . Similarly, Mchr1 was reported 
to be present in cilia only in certain brain regions: the hippocampus, nucleus accum-
bens, olfactory bulb, and hypothalamus (Berbari et al.  2008a  ) . D1 receptor distribu-
tion in the brain has not been yet reported, and available data only shows cilia 
localization in cultured cells from the amygdala (Domire et al.  2011  )  and striatum 
(Marley and von Zastrow  2010  ) . Bishop and colleagues used ACIII antibodies to 
report that this marker was expressed by cilia in most regions of the adult mouse 
brain, although differences in expression could be found: ACIII was strongly 
expressed in sensory and limbic areas, while there was paucity of expression in 
motor areas or in the thalamus or globus pallidus (Bishop et al.  2007  ) . Studies 
focused in the neocortex have shown that virtually every neocortical neuron exhibit 
an ACIII positive cilium (Fig.  4.1a, h–j ) (Anastas et al.  2011 ; Arellano et al.  2012  ) .  

    4.2.3   Cilia Are Found on Both Excitatory 
and Inhibitory Neurons 

 Cilia appear to grow from all neuronal subtypes. In addition to the large evidence point-
ing to presence of cilia in excitatory neurons, analysis of hippocampal neurons in cul-
ture revealed that cells expressing glutamic acid decarboxylase (GAD) had cilia 
immunostained by ACIII or Sstr3 (Fig.  4.1g ) (Berbari et al.  2007  ) , and studies in vivo 
in the dentate gyrus and olfactory bulb showed that cells positive for GAD67 exhibited 
Sstr3 positive cilia (Stanic et al.  2009  ) . In the neocortex, Arellano et al.  (  2012  )  showed 
that in all layers GABAergic interneurons, as de fi ned by expression of parvalbumin, 
calbindin and calretinin, showed typically an ACIII positive cilium, similar in length to 
pyramidal neurons (Fig.  4.1h–j ). Unlike pyramidal neurons whereby the cilium extends 
consistently near the base of the apical dendrite (Anastas et al.  2011 ; Arellano et al. 
 2012 ; Dahl  1963 ; Fuchs and Schwark  2004  ) , interneurons do not appear to have a clear 
polarity to their cilium growth. It is often found elongating from the middle of the cell 
body without any obvious pattern of orientation (Fig.  4.1a, h–j ) (Arellano et al.  2012  ) . 
Thus, we now know that both excitatory and inhibitory neurons have a primary cilium 
(although olfactory epithelial neurons can grow ~ 11/neuron (Fuchs and Schwark 
 2004  ) ). Whether the mechanisms of growth or signaling properties of interneurons are 
similar to those of excitatory neurons awaits further studies.   

    4.3   Overview of Neuronal Cilia Development: 
Focus on Cerebral Cortex 

 As discussed in Chap.   3    , many studies have reported that progenitors in the ven-
tricular zone typically exhibit a single primary cilium facing the ventricle (Caspary 
et al.  2007 ; Li et al.  2011 ; Willaredt et al.  2008 ; Wilson et al.  2012  ) . We also know 
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that most if not all neurons in adult animals exhibit cilia. However the process of 
neuronal ciliogenesis is not well known, and has only recently been addressed in 
neocortical neurons (Arellano et al.  2012  )  and in postnatally generated granule cells 
in the dentate gyrus (Kumamoto et al.  2012  ) . Here we discuss the developmental 
appearance of neuronal cilia, factors regulating receptor localization to them and 
consequences of neuronal cilia structure/function .  

    4.3.1   Protracted Process of Neuronal Ciliogenesis 

 In the mouse neocortex, ciliogenesis was studied using ACIII antibodies and ultra-
structural serial section analysis at different time points from late embryonic to post-
natal animals (Arellano et al.  2012  ) . ACIII immunoblotting showed very little 
expression early embryonically that increased at E18.5 leading to prominent postna-
tal expression, suggesting that ciliogenesis occurs mostly postnatally (Fig.  4.2a ). 
However, ACIII immunostaining of the cortical plate at P0 and P4 revealed mostly a 
punctate pattern, suggesting that neuronal cilia are not elongated yet (Fig.  4.2c, d ). 
Analysis at P8 and P14 revealed increasingly longer ACIII positive cilia, with slightly 
different rate of elongation depending on laminar position. Interestingly, ACIII posi-
tive neuronal cilia will not reach maximum length (4–6  m m on average) until P60-
P90, showing a slow elongation process in all neocortical layers (Fig.  4.2d ). Analysis 
in animals 6 months and 1 year old revealed shorter ACIII positive cilia, raising the 
possibility that cilia length homeostasis may change with age (Arellano et al.  2012  ) .  

 The ultrastructural analysis of the developing cilia con fi rmed the  fi ndings 
obtained with ACIII, and analysis at embryonic day 16.5 revealed that neurons with 
migratory morphology did not have a cilium and the centrioles were observed free 
in the cytoplasm (Fig.  4.3a, f ). The mother centriole frequently exhibited an attached 
vesicle, but no cilia were detected (Arellano et al.  2012  ) . In neurons with non-
migratory morphology that likely had reached their  fi nal position in the cortical 
plate, the mother centriole was typically attached to the cell membrane con fi guring 
the basal body (Fig.  4.3b, f ). Furthermore, the basal body sometimes exhibited a 
membranous expansion resembling a short cilium (0.2–0.5  m m) typically  fi lled with 
vesicles, tubular structures and diffuse content, but lacking clear axonemal organi-
zation. Thus, the authors named this structure a procilium (Fig.  4.3c, f ). Procilia 
were reported as typically surrounded by vesicles and with the Golgi apparatus in 
close proximity, supporting the possibility of intense molecular traf fi cking between 
the cytoplasm and the cilium. Those procilia resembled the developing cilia 
described in diverse avian and mammalian tissues by Sorokin  (  1962,   1968a,   b  )  and 
in the chick developing neural tube by Sotelo and Trujillo-Cenoz  (  1958  ) . Also, they 
resemble the cilia buds frequently observed in neurons with compromised 
intra fl agellar transport (Han et al.  2008  ) . Electron microscopy analysis at P0 and P4 
revealed that most neurons in the neocortex still exhibited a slightly longer procil-
ium (0.5–2  m m) (Fig.  4.3c, f ) without a developed axoneme except in rare cells in 
the subplate (P0) and in deep layers (P4) which showed some organized microtubular 
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  Fig. 4.2     Development of neuronal cilia . ( a ) Western blot analysis of ACIII expression in mouse 
cortical lysates from embryonic day 11.5 (E11.5) to young adult (~P60) showing a band close to 
the predicted molecular weight of unglycosylated ACIII (~125 kDa). Although detectable at very 
low levels from E13.5, expression increases notably after E18.5, and especially postnatally between 
P0 and P21. At P60, there is a decrease in the intensity of the ACIII signal.  b -Actin ( lower blot ) 
was a loading control. ( b ) Developmental distribution of SSTR3 positive cilia in the mouse hip-
pocampus. Note the heterogeneity in the onset of SSTR3 expression between  fi elds, and the 
decrease of expression in pyramidal  fi elds in adult animals. ( c ) Examples of ACIII positive cilia 
( green arrowhead ) at different developmental stages in mouse neocortical neurons illustrating 
the relative delay in elongation of cilia that only occurs postnatally. Pericentrin is used to label 
the basal body ( red arrowhead ). ( d ) Graph illustrating layer differences in elongation of ACIII 
positive cilia. Elongation is a slow process, with cilia reaching maximum length at P60-P90. Note 
the apparent shortening in animals 6 months and 1 year old compared to P60-P90 animals. ( e ) 
Analysis of the appearance of cilia in postnatally generated neurons in the dentate gyrus. The rela-
tive position of retrovirally labeled granule cells ( black dots ) and the percentage of ciliated neurons 
( white dots ) was recorded at different time points after infection. The graph shows that cilia appear 
between 2 and 3 weeks after cells are generated ( shaded area ), when migration is terminating, 
suggesting that cilia start growing when migration is completed. Panels  a ,  c ,  d  are from (Arellano 
et al.  2012  ) ; Panel  b  was reproduced with permission of ELSEVIER BV (Stanic et al.  2009  ) . Panel 
 e  was from (Kumamoto et al.  2012  )  (Panel  e )       
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  Fig. 4.3     Model of ciliogenesis in mouse neocortical neurons according to  Arellano et al.  2012 . 
Migrating neurons have their mother centriole (Mc) and daughter centriole (Dc) free in the cyto-
plasm. Once cells terminate migration and reach their appropriate lamina, the mother centriole 
attaches a vesicle ( a, f ), likely from the Golgi apparatus, buds a very short procilium and docks to 
the plasma membrane (alternatively the mother centriole docks directly to the plasma membrane 
without vesicle attachment as indicated by the  discontinuous arrow ). Docking to the membrane 
involves developing speci fi c structures such as transition  fi laments and the mother centriole will 
become a basal body (Bb), frequently surrounded by vesicles ( asterisk ) ( b, f ). The basal body 
grows a procilium: a membranous expansion about 0.5–2  m m in length, lacking a proper axoneme 
and typically containing vesicles, short and disorganized tubular structures and electrondense dif-
fuse content ( c ). This procilium does not display typical axonemal characteristics until ~P8 ( d ) 
although axonemal growth seem to start ~P0 in some subplate cells and could start ~P4 in some 
populations of neurons that showed early elongation of cilia (e.g. some layer  fi ve neurons). Overall, 
cilia will take weeks to fully elongate towards a peak ~P60-P90 ( e ), with some differences between 
layers. Arrows indicate procilia/cilia; arrowheads indicate basal bodies except in inset in D, which 
indicate microtubules (All panels from Arellano et al.  2012  )        
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content. Analysis at P8 revealed elongated cilia with axonemal organization in 
neurons (Fig.  4.3d, f ), suggesting that axoneme elongation could exhibit different 
onset in different cortical layers between P4 and P8, in agreement with the ACIII 
immunostaining data (Arellano et al.  2012  ) .  

 The conclusions of this analysis in developing rodent neocortex are fourfold: 
 fi rst, that centrosome docking and basal body formation in immature neurons occurs 
after migration is completed and neurons reach their  fi nal position in the cortex 
(Fig.  4.3f ). Second, ciliogenesis starts with the formation of a procilium that may 
last several days, suggesting that newly formed cilia undergo a fairly extensive orga-
nizational period, potentially packing the procilium with materials required for cilia 
growth and function. The molecular constituents contained within the procilium in 
different neuron subtypes await further characterization. Third, axoneme growth 
starts between P4-P8 in the neocortex and seems to drive cilia elongation. Fourth, 
cilia elongation is a protracted process that lasts about 2–3 months postnatally, and 
both the rate of growth and the maximal length are layer dependent (Fig.  4.2d ) 
(Arellano et al.  2012 ; Fuchs and Schwark  2004  ) . 

 The postmigratory development of cilia in neurons has been con fi rmed in post-
natally generated granule cells in the dentate gyrus. Kumamoto et al. used a retrovi-
rus encoding tdTomato and enhanced green  fl uorescent protein (EGFP) tagged 
Centrin-2 to visualize cilia speci fi cally in newly generated neurons (Kumamoto 
et al.  2012  ) . Five days after the retroviral injection they did not observe cilia, but 
2 weeks after the injection, when cells reach their  fi nal destination in the granular 
layer, a few cilia were detected (about 10% of tagged cells) and 3 weeks after the 
injection elongated cilia (about 3  m m long) could be detected in 99% of infected 
cells (Fig.  4.2e ). Thus, like the neocortex, cilia in adult-born neurons in hippocam-
pus undergo a protracted growth period. 

 This slow ciliogenesis in cortical neurons is in sharp contrast with reports on 
cultured  fi broblasts that can grow cilia in a matter of hours (Tucker et al.  1979a,   b  ) . 
Similarly, cultured neurons derived from fetal/perinatal tissues from a variety of 
brain regions including hippocampus, striatum, amygdala, cerebellum, and spinal 
cord can grow cilia in days (Barzi et al.  2010 ; Belgacem and Borodinsky  2011 ; 
Berbari et al.  2007 ; Domire et al.  2011 ; Miyoshi et al.  2009a  ) . These differences in 
the timing of ciliogenesis could be partially explained by the migration process that 
neurons need to complete in vivo. However the protracted procilia stage in settled 
neurons in the neocortex does not seem to occur in cultured neurons or this process 
is accelerated. In addition, different brain regions exhibit marked differences in cil-
iogenesis. For example, cilia immunostaining and EM analysis reveals that limbic 
regions such as the hippocampus and piriform cortex exhibit elongated cilia even at 
PO (Han et al.  2008 ; Stanic et al.  2009 ; JIA unpublished observation), suggesting 
that procilia stage could be shorter and/or axoneme growth could be faster in those 
regions. The factors that control the rate of cilia elongation are not clear, but are 
likely attributable to numerous extracellular and intracellular factors (e.g., levels of 
soluble tubulin and polymerized actin (Sharma et al.  2011  ) ). Similarly, Ou and col-
leagues showed that inhibition of ACIII produced signi fi cant elongation of cilia in a 
variety of cultured cells including human astrocytes, and proposed that cilia elongation 
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could be regulated by the ACIII-cAMP pathway (Ou et al.  2009  ) . They also showed 
that lithium has even larger effect on cilia elongation in culture, an effect also dem-
onstrated in vitro and in vivo in mice by Miyoshi et al.  (  2009a  ) . They reported that 
chronic ingestion of lithium (Li 

2
 CO 

3
 ) in mice produced signi fi cant elongation of 

cilia in the dorsal striatum and nucleus accumbens. However the mechanism of 
action of lithium is not clear. Considering microtubule turnover in cilia is constantly 
being added and broken down (Marshall and Rosenbaum  2001  ) , it is feasible that a 
 fi nal cilia length for neurons is not  fi xed, but rather may  fl uctuate with age.  

    4.3.2   Appearance and Targeting of Speci fi c GPCRs 
to Neuronal Cilia 

 The developmental appearance of neuronal cilia GPCRs has not been extensively 
characterized. However we know that at least in hippocampus and neocortex, Sstr3 
is detectable in cilia around birth (Anastas et al.  2011 ; Miyoshi et al.  2006 ; Stanic 
et al.  2009  ) . Stanic et al. analyzed SSTR3 immunostaining in the developing hip-
pocampus from embryonic stages to adult animals. This study revealed that Sstr3 is 
 fi rst detectable postnatally in cilia in the hippocampal  fi elds and dentate gyrus (DG). 
However Sstr3 may not be a consistent marker of cilia as revealed by the low den-
sity of cilia immunostained in 5 months old animals in several hippocampal  fi elds 
(Fig.  4.2b ), and the lack of immunostaining in granular cells from the dentate gyrus 
at P0, when EM analysis has revealed the presence of elongated cilia with a well-
developed axoneme (Han et al.  2008 ; Stanic et al.  2009  ) . This suggests that there is 
not a correlation between the expression of signal transduction molecules and mem-
brane receptors (e.g. ACIII, Sstr3) and the presence of a mature axoneme. 

 Why and how do these very speci fi c receptor subtypes localize to the plasma mem-
brane of neuronal cilia? One mechanism appears to be the conserved ciliary localiza-
tion domains encoded within the protein amino acid sequence (Berbari et al.  2008a ; 
Domire et al.  2011  ) . For example, in 5HT6, SSTR3 and Mchr1 receptors, a sequence 
is found in the 3rd intracellular loop of the protein partially or largely responsible for 
the localization to cilia (Berbari et al.  2008a  ) . Tagging these sequences onto other 
non-cilia localizing receptors can cause aberrant GPCR traf fi cking into cilia (Fig.  4.4 ). 
The entry of Sstr3 and Mchr1 into neuronal cilia is also coordinated by Tubby-like 
protein 3 (TULP3), a protein bridges IFT-A proteins and membrane phosphoinosides 
to allow GPCRs (e.g. Sstr3) to enter into cilia (Mukhopadhyay et al.  2010  ) . Although 
not yet demonstrated for neurons, most GPCRs likely go through a conserved pericen-
trosomal preciliary complex, a recently identi fi ed vesiculotubular structure that stores 
and recycles ciliary GPCRs in an endosome manner (Kim et al.  2010  ) . Moreover, very 
recent  fi ndings suggest that a transition zone complex is essential for cilia formation 
and acts as a two-way diffusion barrier, effectively preventing non-ciliary membrane 
proteins entering the cilium while retaining speci fi c ciliary proteins inside the cilium 
(Chih et al.  2012  ) . This complex includes the transmembrane component TMEM231, 
and the intracellular proteins Sept2, CC2D2A, and B9D1. These components likely 
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form a small part of a larger ciliopathy-associated complex, including the other B9-C2 
domain containing proteins and a host of others given the similar phenotypes seen 
upon loss of these proteins (Dowdle et al.  2011 ; Garcia-Gonzalo et al.  2011 ; Town 
et al.  2008 ; Weatherbee et al.  2009  ) .  

 Other factors that direct GPCRs to neuronal cilia are Bardet Biedl Syndrome 
(BBS) proteins which form a large complex of proteins (called BBSome complex) 
(Berbari et al.  2008b ; Jin et al.  2010 ; Ou et al.  2005  ) . In the absence of BBS2 and 
BBS4, there is a loss of Sstr3 and Mchr1 localization in hippocampal neuronal cilia 
(Berbari et al.  2008b  ) . This group found that by adding back BBS2 protein into BBS2 
knockout neurons, Mchr1 localization into cilia is restored. In other areas of the brain 
(e.g., striatum, olfactory tubercle and amygdyla), loss of BBS4 can result in an abnor-
mal in fl ux of the D1 receptor into amygdyla neurons (Domire et al.  2011  ) . Considering 
at least 14  BBS  genes have been identi fi ed (Billingsley et al.  2010 ; Domire et al. 
 2011  ) , the control of neuronal cilia GPCR targeting is likely highly regulated and 
dependent on various combinations of BBSome proteins. The roles for BBS proteins 
have expanded beyond the cilium as recent  fi ndings suggest they may also regulate 
gene transcription (Gascue et al.  2012  ) . Thus it is tempting to speculate BBS proteins 
could act as a signaling bridge between the cilia and the nucleus.  

    4.3.3   Consequences of Mutations that Disrupt Neuronal Cilia 
Structure/Signaling: Role in Learning and Memory? 

 A host of ciliopathies in human (e.g. Bardet-Biedl Syndrome and Joubert Syndrome 
discussed further in Chap.   9    ) are associated with developmental delay, intellectual 
disability, cognitive dysfunction, autism spectrum and mood disorders (Bachmann-
Gagescu et al.  2012 ; Bennouna-Greene et al.  2011 ; Green et al.  1989 ; for review 
see: Lee and Gleeson  2011 ; Louvi and Grove  2011  ) . This begs the question: what is 
the consequence of ablating cilia/cilia function in the brain? In 2007, Davenport and 
colleagues analyzed IFT88  Tg737  mice hypomorphic for the IFT-B complex protein 
and Kif3a conditional mice de fi cient for an anterograde motor required for ciliogen-
esis (Davenport et al.  2007  ) . Surprisingly there was no catastrophic consequence on 
brain development or premature neurodegeneration (Davenport et al.  2007 ; Louvi 
and Grove  2011  ) . However, these authors found that loss of cilia function associated 

  Fig. 4.4     The third intracellular (i3) loop of SSTR3 is suf fi cient to localize SSTR5 to cilia.  
( a ) Schematic of chimeric receptors containing portions of SSTR3 ( black lines ) and SSTR5 ( white 
lines ) fused to EGFP. Transmembrane domains are depicted as  boxes . ( b–d ) Images of IMCD cells 
expressing the indicated chimeric receptors.  Left , EGFP ( green );  middle , acetylated  a -tubulin 
( red );  right , merged images. Chimeric receptors SSTR5[TM4-6SSTR3] ( b ) and SSTR5[TM5-
6SSTR3] ( d ) localize to cilia, whereas chimeric receptor Sstr5[TM4-5Sstr3] ( c ) does not localize 
to cilia, suggesting that the i3 loop of SSTR3 contains ciliary localization sequences. Nuclei are 
 blue  (Figure and modi fi ed legend reproduced with permission by JOHN/WILEY & SONS, Inc. 
Berbari et al.  2008a  )        
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with the hypothalamic area of the brain led to an obese phenotype. This phenotype 
is observed by other cilia mutations which would presumably affect hypothalamus 
(e.g. ACIII Wang et al.  2009  ) . The mechanisms and functions of cilia in these 
regions are discussed in greater detail in later chapters of this book. 

 The lack of a catastrophic brain phenotype in mice lacking functional cilia does 
not completely suggest the absence of signi fi cant functional/network disruptions. In 
2010, Einstein and colleagues found that mice lacking SSTR3 (or wildtype mice 
injected with an SSTR3 antagonist) displayed de fi cits in discriminating novel 
objects and recalling familiar objects (Einstein et al.  2010  ) . These mice also exhibit 
de fi cits in adenylyl cyclase/cAMP-induced long-term potentiation in the hippocam-
pus. Similarly, learning and memory defects are observed in mice de fi cient for 
MchR1 and ACIII (Adamantidis et al.  2005 ; Wang et al.  2011  ) . If true, how could a 
loss of signaling from cilia lead to a change neural network function? Potentially 
shedding light on this is very recent work revealing that the loss of cilia on adult 
born hippocampal neurons can result in a slow change in dendritic morphology 
concurrently altering synaptic integration. In hippocampus, newborn neurons that 
are deprived from forming a cilium fail to extend normal dendritic arbors and receive 
weaker input from the entorhinal cortex (primary afferent input to DG) (Fig.  4.5a–f ). 
These authors proposed that failed ciliogenesis may lead to abnormally high Wnt 
and ß catenin levels which has been observed in other types of cilia mutations 
(Corbit et al.  2008 ; Kumamoto et al.  2012  ) . Interestingly, in contrast to blunt neu-
ronal cilia, abnormally long cilia are also linked to ectopic dendrite outgrowth 
(Massinen et al.  2011  ) . Collectively, the loss of signaling from cilia during cortical 
neuronal maturation may set the stage for network maturity and may contribute to 
the etiology of neurodevelopmental manifestations associated with ciliopathies.    

    4.4   Identi fi cation and Functions of Cilia 
on Non-neuronal Cells 

 As mentioned earlier, some cilia markers, like SSTR3 or 5HT6, have so far only be 
detected in neurons, and in general there is little information regarding the distribu-
tion of cilia in non-neuronal cells. However, it has been reported about 50% of 
GFAP positive cells in culture exhibited ACIII positive cilia (Berbari et al.  2007  ) . 
Interestingly, Bishop et al.  (  2007  )  reported only rare ACIII positive cilia in cells 
immunostained for GFAP in tissue sections. These differences could be due to 
methodological issues or age difference in both studies: cultured P7 hippocampal 
cells in one case (Berbari et al.  2007  )  and tissue from adult mouse in the other (15), 
but could also indicate that cilia might have different features in vitro and in vivo. 
Moreover, neural progenitors in the brain exhibit astroglial features such as GFAP 
and nestin expression, and they contain speci fi c receptors that are not present in 
neuronal cilia. We will discuss them in the next section. 

 Regarding other types of glia, Bishop and colleagues indicated that ACIII was not 
detected in oligodendrocytes or microglia (Bishop et al.  2007  ) . However, the lack of 
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ACIII does not necessarily imply the lack of cilium, and studies in the peripheral 
nervous system indicate that pre-myelinating oligodendrocytes may have cilia that are 
lost during myelination (Yoshimura and Takeda  2012  ) . It will be interesting to ascer-
tain whether this is the case in the CNS though it will be a complex identi fi cation 
process as in CNS the oligodendrocyte lineage is convoluted. While many cells in this 
lineage become mature oligodendrocytes, others remain as polydendrocytes (NG2+ 
macroglia) and are the most proliferative cell type in the adult brain (Nishiyama et al. 
 2009  ) . We are not aware of reports examining cilia expression in these cell types. 

 It is also unknown whether cortical microglia have primary cilia. However micro-
glia are among the most dynamic and motile cell types in the brain (Nimmerjahn 
et al.  2005  ) , and microtubule dynamics due to migration and/or changes in morphology 

  Fig. 4.5     Primary cilia depletion in adult born neurons is associated with impaired gluta-
matergic synapse formation.  ( a )  Top , inducible retroviral vector used to ectopically express 
dominant-negative Kif3a (dnKif3a) in adult-born dentate granule cells (DGCs) to deplete primary 
cilia.  Bottom , typical adult-born DGCs labeled with ACIII, centrioles and adult-born DGCs ( red , 
dTomato). Note the ACIII positive axoneme ( arrow ) is absent in dnKif3a expressing DGCs.  Right , 
cilia are blunt in dnKif3a-positive adult-born DGCs compared to control. ( b ) Electrophysiological 
recordings of newborn DGC  fi lled with biocytin. The stimulating electrode was placed in the outer 
molecular layer (ML) to principally excite the entorhinal cortical projections. ( c–f ) Glutamatergic 
synaptic transmission recorded from control and dnKif3a-positive adult-born DGCs at 21 days 
post infection (dpi). Sample traces of glutamatergic synaptic transmission in the presence of 5  m M 
bicuculline are shown ( c ). DGCs lacking cilia on average showed lower amplitude of evoked excit-
atory postsynaptic currents (eEPSCs)( e ) and lower frequency of spontaneous EPSCs (sEPSCs) ( f ) 
compared to control (Figure and modi fi ed legend from Kumamoto et al.  2012  )        
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may preclude centriole docking and the extension of an axoneme. Furthermore, it is 
unknown whether pericytes and endothelial cells in the brain have a primary cilium. 
We suspect if these cells do bear cilia, future studies will not only characterize their 
molecular pro fi les but also conditionally perturb their growth and functions to better 
understand their contributions to cortical, and more generally to brain development. 

    4.4.1   Primary Cilia as Signaling Organelles in Postnatal 
Progenitors: Roles in Adult Neurogenesis 

 It is well known that in postnatal hippocampus, a brain structure critical for learning 
and memory, there is ongoing proliferation of neuronal precursors throughout 
lifespan. These proliferating cells are situated in the subgranular layer of the DG 
(Ming and Song  2005  ) . The chief precursors (also called Type 1 cells (Kempermann 
et al.  2004  ) ) are positive for astrocyte/glial and progenitor cell markers, including 
glial  fi brillary acid protein (GFAP), Nestin and Notch1 (Breunig et al.  2007 ; 
Kempermann et al.  2004 ; Lugert et al.  2010  ) . Similar GFAP + neural stem cells 
reside along the lateral ventricles in the subventricular zone (SVZ), another area of 
continuing neurogenesis. However, the presence of this neuroneogenic SVZ-
RMS-OB stream appears to diminish rapidly in humans and is likely absent in adults 
(Sanai et al.  2011 ; reviewed in Breunig et al.  2011  ) . Here we discuss the results of 
studies that suggest these cells are responsive to Shh via their cilium that mediates 
the genesis of new neurons in these brain regions. 

 The cilia of Type 1 cells or astrocyte-like neural precursors (ALNPs) in mouse 
hippocampus lies within an invagination of the cell soma and close to the nucleus 
(Fig.  4.6 ), a characteristic feature of cilia also reported in both rat and human astro-
cytes (Moser et al.  2009 ; Yoshimura et al.  2011  ) . Like neurons, the cilia of these 
GFAP-positive cells also enrich ACIII along the length of their cilia, but they are 
typically short (~1–2  m m) compared to neighboring neuronal cilia and are recessed 
substantially within the ciliary pocket. Unlike neighboring neuronal cilia, these cells 
appear to concentrate molecules important for Shh signaling. These cells can traf fi c 
Smo and Gli1 to their cilium, indicative of active Shh signaling in the cilium (Breunig 

  Fig. 4.6     Primary cilia are found on Type 1 neural precursor cells in the dentate gyrus.  ( a ) 
Inset: Inducible Gfap-CreER T2 -mediated EGFP labeling of SGZ neural precursor cells. Mice were 
pulsed with tamoxifen for 3 days and sacri fi ced on the  fi fth day to label early precursor cells. ( b ) 
EGFP positive radial precursor ( green ) in the SGZ of the dentate gyrus. Note the ACIII positive cilia 
in the granule cell layer and SGZ. ( b ’) Enlarged view of outlined cell in  b , demonstrating the small 
primary cilium (ACIII positive axoneme [ red ] extending from basal body [ blue ; gamma tubulin]) of 
this cell. ( c–c ’) 3D reconstruction from confocal z-stacks of cell in  b . Note that this cilium is likely 
recessed in the membrane but this is hard to discriminate do to the limits of confocal microscopy. 
( d–e  

 3 
 ) Double immunoEM demonstrating localization of an ACIII positive cilium within a GFAP 

positive SGZ precursor cell body. ( f ) 3D reconstruction of cilium in d–e 
3
  showing that this cilium is 

recessed within the membrane of this cell (Figure and modi fi ed legend from Breunig et al.  2008  )        
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et al.  2008 ; Han et al.  2008  ) . Cultures of rodent astrocytes show the same ability to 
traf fi c Shh signaling components (Yoshimura et al.  2011  ) . Interestingly, SVZ neural 
stem cells contact the lumen of the lateral ventricles, forming a pinwheel structure 
with surrounding ependymal cells (Mirzadeh et al.  2008  ) . At their apical domain, 
these GFAP + neural stem cells project a cilium into the ventricle. These cells are 
known to be Shh-responsive (Balordi and Fishell  2007 ; Palma et al.  2005  )  but whether 
Shh machinery localizes to the cilium in these cells is unknown. Furthermore, it is 
currently unknown whether transit-amplifying neuronal subtypes born from GFAP 
positive precursors in the DG and SVZ harbor cilia. It may be that their proliferative 
nature precludes this. In any event, the cilium in ALNPs is poised to respond to Shh 
to contribute to the continued production of neurons in the postnatal brain.  

 Multiple mouse mutants that disrupt ALNP proliferation show dramatic 
defects in cell proliferation and Shh signaling in hippocampus. For example, loss 
or dysfunction of  Kif3a ,  Ift88 ,  Ift20  and  Stumpy  result in failed or aberrant gen-
esis of cilia in hippocampus, and subsequent reduction in newborn neurons 
(Fig.  4.7a, b ) (Amador-Arjona et al.  2011 ; Breunig et al.  2008 ; Han et al.  2008  ) . 
Further, conditional expression of dominant-negative Smo in ANLP cilia also 
leads to reduced cell proliferation (Fig.  4.7c ) (Han et al.  2008  ) . Not only is there 
severe dysregulation of the Shh signaling pathway, the burst in cell proliferation 
that normally would accompany Shh exposure is lost in slices containing abnor-
mal cilia (Breunig et al.  2008  ) . This  fi nding re fl ects what happens in slices of 
developing cerebellar external granular layer. In control slices, application of 
Shh induces a burst of proliferation, but not in slices where there is loss of cilia 
due to Kif3a absence (Spassky et al.  2008  ) . Taken together, astrocyte-like cells 
extend cilia which may respond to secreted factors such as Shh to promote the 
proliferation of new cells.   

    4.4.2   Signaling via Glial Cilia: Roles in Cell Survival 

 Hedgehog-mediated signaling thru glial cell cilia may also in fl uence a cell’s abil-
ity to survive under stress. Studies in cultured rat astrocytes have shown that cell 
death (induced by serum starvation) could be mitigated if cells are maintained in 
the presence of hedgehog pathway activator and Smo-agonist (SAG) (Yoshimura 
et al.  2011  ) . Further when glial cilia are deformed using shRNA against Ift20, 
these authors found cells were less able to survive a serum starvation. Thus, sig-
naling via the glial cell cilia may not only be important for stimulating cell pro-
liferation, but activating survival pathways when the cell is presented harsh 
extracellular conditions. The mechanisms downstream of this pathway need to be 
elucidated, but could involve survival factors such as Akt which can be recruited 
to primary cilia (Michaud and Yoder  2006  )  and mediate hedgehog signaling 
(Riobo et al.  2006  ) .   
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  Fig. 4.7     Dentate gyrus defects observed in ciliary and Shh mutants.  ( A ) Comparison of 
control and  Stumpy  conditional mutant mouse immunolabeled with NeuN ( red ; mature neurons) 
and Sox2 ( green ; astroglia and precursor cells), displaying the lack of SGZ Sox2 positive precur-
sors and ectopic neurons above the granule cell layer ( arrowheads ). ( B ) TEM ( a – b ) demonstrating 
the presence and defective formation of cilia in the  WT  and  Kif3a  mutant mouse, respectively. 
( c – d ) Hematoxylin staining of the dentate gyrus of control and  Kif3a  mutants. Note the hypoplasia 
of the Kif3a granule cell layer. ( C ) The hypoplasia of the Kif3a GCL is phenocopied in mice lack-
ing  Smo , the Shh pathway effector which localizes to precursor cilia. Panels A and modi fi ed legend 
from Breunig et al.  (  2008  ) . Panels B and C and modi fi ed legend from Han et al.  (  2008  )        
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    4.5   Summary 

 Given these studies, neuronal cilia have shed their status as vestigial structures. It is 
clear that not all cilia are built equally in neurons and glia. Based on cell type, cilia 
differentially enrich various types of neuromodulatory receptors. Similarly, ALNP 
cilia appear to be capable of controlling continued genesis of neurons in the hip-
pocampus and other types of non-neuronal cilia potentially regulate myelination, 
using hedgehog signaling machinery that seems absent on postmitotic neuronal cilia 
in the cortex. Intriguingly, a recent report showed that Shh expression persists in 
layer 5 pyramidal neurons in the adult brain (Harwell et al.  2012  ) , and it is tempting 
to speculate that Shh release from these neurons could act on a variety of nearby 
cilia. The potential importance of neural cilia is underscored by the various types of 
learning and memory de fi cits seen in both mutant mice and human ciliopathies, 
which may in part be attributable to a function for cilia in coordinating dendritic and 
synaptic development (Tissir and Gof fi net  2012  ) . Unraveling the contributions of 
neuronal and glial cilia biology will help understand the etiology of these disorders. 

 A number of questions remain regarding the roles of primary cilia in cortex and 
rest of the brain. How many molecules are cilia capable of sensing? Where do these 
molecules come from? Are cilia sensitive to concentration gradients, mechanical 
stimulation or both? What downstream signaling changes or transcription factors do 
cilia control? Is the process of neuronal/glial ciliogenesis identical between groups 
of cells? How is brain plasticity affected in the absence of cilia? Could these struc-
tures contribute to neurodegenerative diseases of the brain as implications arise (e.g. 
Amyotrophic Lateral Sclerosis, Alzheimer’s, Huntington Disease (Chakravarthy 
et al.  2011 ; Keryer et al.  2011 ; Ma et al.  2012  ) )? Answers to these questions will 
most certainly become an intense area of research over the next decade and add 
another level of complexity to our views of neural cell communication in the brain.      
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  Abstract   Our sense of hearing and balance depends on the proper form of the 
mechanosensory organs in the inner ear. Mechanic signals of sound and balance are 
translated to the movement of  fl uid or biomineral membranes overlaying the sen-
sory organs of the inner ear. In response, mechanotransduction is activated by the 
de fl ection of polar hair bundles on the apical surface of sensory hair cells. In addi-
tion to being a transit or permanent component of the hair bundles, a cellular organ-
elle, the primary cilia, has emerged as a central  fi gure in the formation of various 
inner ear structure features critical for mechanotransduction. The entire inner ear is 
developed from the otic placode, which is orchestrated by a network of signaling 
pathways to ensure the development of a proper form for its functions. Primary cilia 
are essential in sculpturing the hearing organ and the polar hair bundles via the pla-
nar cell polarity (PCP) signaling pathway and in controlling biomineralization in 
the inner ear. Furthermore, recent studies have also implicated potential roles for 
primary cilia in other signaling pathways required for inner ear development, includ-
ing sonic hedgehog (Shh), canonical Wnt, and Notch signaling.  

  Keywords   Inner ear  •  Planar cell polarity  •  Hair cells  •  Usher genes  •  Development  
•  Mouse      

    5.1   Introduction 

 The mammalian inner ear is a highly complex structure responsible for hearing and 
balance. In the adult, it is arranged as an intricate structure, termed the membranous 
labyrinth, which is housed within bony channels in the temporal bone of the skull. 
The membranous labyrinth is divided into dorsal vestibular and ventral auditory 
regions. The vestibular portion of the inner ear is composed of three orthogonally-
positioned semicircular canals (anterior, posterior, and lateral) and two otolith 
organs (the utricle and saccule) whereas the auditory portion of the mammalian 
ear contains the snail-shaped cochlea. Each inner ear sensory organ consists of a 
precisely patterned cellular mosaic of alternating sensory hair cells and non-sensory 
supporting cells. Each hair cell contains an asymmetrically-positioned primary cilium, 
the kinocilium, either permanently or transiently during development, depending on 
the species and the speci fi c type of sensory organs. Kinocilia of all of the hair cells 
in each of the inner ear sensory organs are polarized in a coordinated manner. 
The mechanotransduction function of the inner ear sensory organs relies on the 
structure and polarity of their sensory hair cells in both the cochlea and vestibule, 
and the media that overlay the sensory hair cells, the  fl uid or the crystal biomineral 
membrane, or otolith. 

 The entire inner ear develops from a patch of ectoderm cells near the hind-
brain. The formation of the complex structure involves many signaling pathways, 
including sonic hedgehog (Shh),  b -catenin mediated canonical Wnt, bone mor-
phogenetic protein (BMP), retinols,  fi broblast growth factor (FGF), and Notch 
signaling. In addition, the coordinated polarization of the hair cells in each inner 
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ear sensory organ and the extension of the cochlea are regulated by the planar cell 
polarity (PCP) pathway. In this chapter, we will describe the structure of the inner 
ear sensory epithelia and sensory cells to show that the primary cilium is an inte-
gral structural component of inner ear sensory cells. We will speculate about the 
potential roles of primary cilia in mechanotransduction, summarize the involve-
ment of primary cilia in otolith morphogenesis, and focus on the role of primary 
cilia in PCP regulation in the inner ear. Since primary cilia have also been impli-
cated in Shh, canonical Wnt, and Notch signaling, we will review brie fl y the 
dynamic roles of these signaling pathways in inner ear induction, regional 
speci fi cation, cellular proliferation, differentiation, and patterning. The potential 
role of primary cilia in these signaling pathways in inner ear development will 
also be discussed.  

    5.2   The Primary Cilium as an Essential Structure Component 
of the Inner Ear: Sensory Epithelia and Sensory Cells 

    5.2.1   The Sensory Epithelia 

 The mechanosensory function of the  fi ve vestibular organs and one hearing organ 
is provided by the hair cells, which reside in sensory epithelia within each of 
these six structures (Fig.  5.1 ). The hair cells in each sensory epithelium are sensi-
tive to a particular modality and orientation of stimulation. The auditory sensory 
epithelium (organ of Corti) is a narrow band of cells on the  fl oor of the cochlear 
duct that runs along the length of the cochlea spiral and detects sound (Fig.  5.1a ). 
The saccule and utricle sensory epithelia are termed maculae. These are oval or 
 fl at sheets that together detect gravity and linear acceleration. These organs are 
therefore responsible for our control of posture. Finally, at the base of each of the 
three semicircular canals are cristae, which are sensory patches that detect angu-
lar acceleration or rotation of the head (one for each plane of motion of the head). 
Despite their functional differences, the hair cells that serve as sensory receptors 
in these epithelia share signi fi cant similarities in their morphology, organization 
and function.  

 All inner ear sensory epithelia are composed of both sensory hair cells and non-
sensory supporting cells. These cells are arranged in a mosaic pattern such that each 
hair cell is surrounded by and separated from its neighbors by supporting cells 
(Fig.  5.1b ). The supporting cells provide structural support to the epithelium and are 
also thought to regulate the  fl uid ionic composition surrounding the hair cells 
(Fig.  5.1c ). The cell bodies of the supporting cells are positioned underneath the 
hair cells and rest on the extracellular matrix underneath the sensory epithelium. 
They project  fi nger-like phalangeal processes up between the hair cells to the lumi-
nal surface of the epithelium, at which point they  fi ll in the gaps between the hair 
cells to form a tight, ion impermeable epithelium. Although hair cells have received 
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most of the research focus, supporting cells develop simultaneously and adjacent to 
the hair cells and are required for hair cell formation and survival. 

 At the luminal surface of the epithelium, the supporting cell processes are 
tightly coupled to the adjacent hair cell membrane by cell-cell junctions charac-
teristic of both tight and adherens junctions (Nunes et al.  2006  ) . These junctions 
are important for withstanding the mechanical stresses imposed on the epithelial 
and also for separating  fl uid in the lumen of the membranous labyrinth (endo-
lymph) from the  fl uid in the bony channels (perilymph). These two  fl uids differ 
greatly in their ionic composition. Endolymph has a high potassium ion (K + ) 
concentration (~140 mM) and a low sodium ion (Na + ) concentration, which is 
unusual for an extracellular  fl uid. Perilymph, however, is closer to normal extra-
cellular  fl uid and has a high Na + /K +  composition. This unusual endolymph com-
position is maintained by active ion transports in the stria vascularis of the 
cochlea and the dark cell regions of the vestibular system and is critical for nor-
mal mechanotransduction by the hair cells.  

  Fig. 5.1    Inner ear sensory epithelia and the hair bundle. ( a ) A tracing of an embryonic day 18 old 
mouse inner ear shows the  fi ve sensory organs in the vestibule and one sensory organ in the spi-
raled cochlea. The animal expresses green  fl uorescent protein (GFP) in the sensory hair cells, 
marking all six sensory organs of the inner ear. The white tracing outlines the  fl uid- fi lled labyrinth 
of the inner ear.  AC  anterior crista,  LC  lateral crista,  PC  posterior crista,  SA  saccule,  UT  utricle, CO 
cochlea. ( b, c ) While each of the inner ear sensory epithelia has a unique morphology, they all 
consist of alternating sensory hair cells and supporting cells, exempli fi ed with a diagram of the 
sensory epithelium in the cochlea, known as the organ of Corti. The sensory cells are colored in 
green, and the various types of morphologically distinct non-sensory supporting cells are in other 
colors. The surface ( b ) and cross section views ( c ) of the epithelium illustrate the general cellular 
organization and the distinct arrangement of polar hair cells. The cross section diagram illustrates 
the  IHC  inner hair cell, O1–O3 the  fi rst to the third rows of outer hair cells,  IPh  inner phalangeal 
cells,  IP  inner pillar cells,  OP  outer pillar cells, D1-D3 the  fi rst to the third rows of Dieters’ cells, 
 BM  basilar membrane. ( d ) The diagram highlights the structure and major cellular components of 
the hair bundle and associated hair cell apical domain. A prominent feature of the hair bundle is the 
polar positioning of the primary cilium, the kinocilium, the staircase arrangement of the stereo-
cilia, and the extensive links between the kinocilium and the tallest stereocilia and the links among 
stereocilia. In addition, the stereocilia bundle is anchored in the actin-rich cuticular plate while the 
kinocilium is based on the basal body, which also organizes the cytoplasmic microtubule arrays 
(Panel  a  was adopted from a review by Jones    and Chen  2008 )       
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    5.2.2   Cilia and the Mechanotransduction 
Apparatus – The Hair Bundle 

 The specialized hair cell organelle responsible for mechanotransduction is the hair or 
stereociliary bundle (Fig.  5.1d ). De fl ection of this hair bundle, resulting from either 
sound waves or a change in head position, leads to an increase in the rate of opening 
of relatively nonspeci fi c cationic channels in the tip of the hair bundle and the  fl ow 
of primarily K +  ions from the endolymph into the hair cell, leading to depolarization 
and an afferent nerve signal that is transmitted to the brain. This bundle resembles 
 fi ne hairs under a microscope, thus giving hair cells their name. The hair bundle is 
located on the apical surface of the hair cell and is composed of a single true cilium, 
the kinocilium, and between 50 and 200 actin-based stereocilia (Frolenkov et al. 
 2004 ; Hudspeth  1989  ) . The kinocilium is composed of a 9+2 microtubule arrange-
ment, similar to motile cilia. However, kinocilia lack the inner arms of the motor 
protein dynein required for motility are believed to be non-motile (Kikuchi et al. 
 1989  ) . The stereocilia in the bundle are organized in a very precise pattern, forming 
graded rows arranged in a staircase-like pattern, with the kinocilium centered next to 
the tallest row of stereocilia (Fig.  5.1d ). This bundle arrangement is not unique to 
mammals and is also seen in chickens, frogs and  fi sh, indicating that its precise orga-
nization is important for mechanotransduction. Indeed, the asymmetric structure of 
the hair bundle renders it directionally sensitive to de fl ection. De fl ections of the bun-
dle towards the kinocilium and tallest stereocilia cause an opening of K +  ion channels 
and depolarization whereas those in the opposite direction, towards the shortest ste-
reocilia increase the probability of K +  ion channel closure, resulting in hyperpolar-
ization (Hudspeth  1989 ; Hudspeth and Corey  1977 ; Hudspeth and Jacobs  1979  ) . The 
bundle is insensitive to perpendicular stimuli. Mutations in genes that disrupt this 
bundle morphology or orientation cause hearing impairment and vestibular malfunc-
tion (El-Amraoui and Petit  2005 ; Petit  2006 ; Yoshida and Liberman  1999  ) . 

 Despite their misleading name, stereocilia are, in fact, specialized derivatives of 
actin-based microvilli (Fig.  5.1d ). They are composed of a high density of hexago-
nally packed parallel actin  fi laments extensively crosslinked by actin-bundling pro-
teins such as  fi mbrin and epsin proteins (Flock et al.  1982 ; Sekerkova et al.  2006 ; 
Tilney et al.  1980  ) . The high density of actin  fi laments and extensive crosslinking 
renders rigidity to the shaft of the stereocilium. Each stereocilium also narrows or 
tapers immediately above its basal insertion, such that only a few central core actin 
 fi bers, termed rootlets, insert into the body of the cell (Tilney et al.  1980  ) . When 
subjected to mechanical force, the stereocilium is predisposed to bend in a rod-like 
fashion at its tapered end rather than bending at a higher position or breaking. The 
stereociliary rootlets are anchored in the apical cytoplasm of the hair cell into a 
specialized structure called the cuticular plate, which is a large gel-like meshwork 
of crosslinked actin  fi laments and associated cytoskeletal proteins. The basal body 
of the kinocilium is also located directly adjacent to the cuticular plate. Together 
with its associated pericentriolar material, the basal body organizes the cytoplasmic 
microtubules that radiate along the periphery of the cell cortex and lateral hair cell 
membrane and anchors their minus ends (Moser et al.  2010  ) . 
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 There are several types of extracellular  fi laments between the stereocilia that 
help maintain the uniform integrity of the hair bundle (Fig.  5.1d ). These links 
include top-links, side-links and ankle links, although the presence and or roles of 
these links vary depending upon developmental stage and hair cell type (Lefevre 
et al.  2008 ; Nayak et al.  2007 ; Petit  2006 ; Petit and Richardson  2009  ) . In addition, 
a tip-link also joins the tip of a shorter stereocilium with the shaft of an adjacent 
longer stereocilium (Furness and Hackney  1985 ; Pickles et al.  1984  ) . These tip-
links are composed of homodimers of Cadherin 23 and Protocadherin 15, interact-
ing in trans (Kazmierczak et al.  2007  ) . They are directly connected to the 
mechanoelectrical transduction channels, and therefore function as gating elements 
that control the opening of the channels upon bundle de fl ection (Assad et al.  1991 ; 
Fettiplace  2006  ) . As the bundle moves in the excitatory direction, tension of the tip-
link opens the channel, allowing an in fl ux of cations and depolarization of the hair 
cell. However, when the bundle moves in the opposite direction, tension is relieved 
and the channel closes. 

 In addition, there are also kinocilial links that connect the kinocilium to the adja-
cent stereocilia of the tallest row (Ernstson and Smith  1986 ; Goodyear and 
Richardson  2003 ; Hillman  1969  ) . Although the molecular identities of these vari-
ous links are not entirely clear yet, many of the links appear early in development, 
suggesting that they might be important for bundle formation. The prominent posi-
tioning of the kinocilium, the links between the kinocilium and stereocilia, and the 
organization of the microtubules by the basal body and associated pericentriole 
material all point to a central role for the kinocilium in hair bundle morphogenesis 
and integrity.  

    5.2.3   Cilia and the Planar Cell Polarity of Hair Cells 

 The gradation in height of the stereocilia and the off-center position of the kinocil-
ium de fi ne an intrinsic polarity or orientation of the hair cell. As noted above, this 
intrinsic polarity of the hair cell is critical, as the hair cell response to bundle 
de fl ection is directionally sensitive. However, in addition to the intrinsic polarity of 
individual hair cells, hair cells are also uniformly aligned in one direction across the 
sensory epithelia (Fig.  5.2 ). In the organ of Corti, hair cells are oriented with their 
kinocilia closer to the lateral, or outer border of the cochlea duct (Fig.  5.2a, b ). In 
the cristae, the hair cells are invariably oriented towards only one side of the epithe-
lium (Fig.  5.2c, d ). In the maculae, the hair cells are oriented along the mediolateral 
axis of the epithelium, with cells on either side of a line of polarity reversal oriented 
in opposite directions (Fig.  5.2e, f ). This coordinated cellular orientation is a strik-
ing example of planar cell polarity (PCP), a term that refers to the polarity of cel-
lular structures within the plane of an epithelium, perpendicular to the apical-basal 
axis of polarity. Although other examples exist in mammals, such as the orientation 
of hair follicles in the skin, the uniform orientation of hair cells in the ear, mani-
fested with the coordinated polar positioning of the kinocilia and graded arrangement 
of the stereocilia relative to the kinocilium, is most often used as a model for the 
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  Fig. 5.2    Planar cell polarity of the inner ear sensory epithelia. ( a–f ) Schematic diagrams ( a ,  c , and 
 e ) and confocal images ( b ,  d , and  f ) of the sensory organs in the cochlea ( a ,  b ), crista ( c ,  d ), and the 
utricle macula ( e ,  f ). In the organ of Corti ( a ,  b ), the inner (IHCs) and outer hair cells (OHCs) are 
interdigitated with several distinct types of nonsensory supporting cells: the inner phalangeal cells 
(IPHs), inner pillar cells (IPCs), outer pillar cells (OPCs) and three rows of Deiters’ cells (DC1-DC3). 
The kinocilium (b,  green ) is positioned near the tip of the “V”-shaped structure formed by actin-rich 
stereocilia with graded height. Note that all the “V”s are uniformly aligned (indicated by white 
arrows), showing a distinctive PCP. In the crista (c, d), actin-binding protein Spectrin ( red ) accumu-
lates in the cuticular plates of the hair cells but is conspicuously excluded from the fonticulus within 
which the basal body resides and projects the kinocilium ( blue ). Stereocilia bundles were stained 
with actin dye phalloidin ( green ). Note that the kinocilium is positioned at the same asymmetric 
location on the apical surface of all the hair cells (indicated by  white arrows ). ( e ,  f ) In utricle macula, 
spectrin staining ( red ) permits easy visualization of the intrinsic polarity of each hair cell ( white 
arrows ). The hair cells on two sides of the line of polarity reversal ( pink line ) are oriented towards 
each other in the utricle macula (This  fi gure is adopted from Padmashree and Chen  2009 )       

 



138 C.M. Grimsley-Myers and P. Chen

study of mammalian PCP. The kinocilium has long been thought to be a central 
player for the formation of the polar hair bundle. It is only recently that this role has 
been demonstrated (Jones et al.  2008  ) .    

    5.3   Cochlear Structure and Function 

    5.3.1   Organ of Corti 

 There are two types of mechanosensory hair cells in the organ of Corti: inner hair 
cells (IHC) and outer hair cells (OHC). These hair cells are organized into four 
parallel rows, with one row of IHC on the inner (medial) side of the spiral and three 
rows of OHC on the outer (lateral) side (Fig.  5.1b, c ). These rows run along the 
entire length of the snail-shaped cochlea. Surrounding the hair cells and coupling 
them to the underlying extracellular matrix (the basilar membrane) are the nonsen-
sory supporting cells, which include the Deiters cells, the inner and outer pillar cells 
and the inner phalangeal cells (Fig.  5.1b ). Also, overlying the organ of Corti is an 
acellular, structured sheet of extracellular matrix (the tectorial membrane) to which 
the tips of the longest of the longest OHC stereocilia are attached. This contact 
between the hair bundle and the tectorial membrane ultimately leads to bundle 
de fl ection in response to sound vibrations.  

    5.3.2   Unique Characteristics of the Auditory Hair Bundles 
and Their Planar Cell Polarity for Sound Detection 

 When a sound wave enters the external ear, it induces frequency-dependent vibra-
tions in the eardrum that are transmitted to the bones of the middle ear (ossicles), 
resulting in the vibration of the stapes bone upon the oval window of the  fl uid- fi lled 
cochlea. These vibrations produce  fl uid pressure waves that travel down the cochlear 
duct, inducing vibrations of the basilar membrane. Movements of the basilar mem-
brane then result in shearing displacements of the apical surface of the organ of 
Corti relative to the overlying tectorial membrane, which produces de fl ection of the 
stereocilia. This de fl ection opens mechanotranduction channels, leading to an in fl ux 
of cations and depolarization of the hair cell (Hudspeth  1989  ) . 

 Because of gradual changes in the features of the organ of Corti such as stereocilia 
height and the width and stiffness of the basilar membrane, hair cells at different 
locations along the cochlear spiral are selectively tuned to different stimulus frequen-
cies. These characteristic frequencies are mapped smoothly and monotonically along 
the long axis of the sensory epithelium, similar to the graded wooden bars of a xylo-
phone. Hair cells at the cochlear base response to high frequencies whereas those at 
the apex to low frequencies. This is how the ear discriminates differences in tone. 
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 In the mammalian cochlea, the stereocilia in the OHC are organized into V- or 
crescent-shaped rows, with the kinocilium centered at the point of the V. In mature 
hair cells, these con fi gurations are stabilized by the stereocilia rootlets that project into 
the cuticular plate at the apex of the hair cells. However, the initial patterning of the 
hair bundle occurs before cuticular plate formation, indicating that other factors out-
side of the cuticular plate guide the initial formation of this bundle pattern. Importantly, 
each stereociliary bundle points toward the outer (lateral) border of the cochlear duct 
throughout the length of the cochlea spiral (Fig.  5.2a, b ). This arrangement is essential 
for the correct perception of sound, as disruption of this uniform bundle orientation, 
on even a few hair cells, has been shown to result in a signi fi cant decrease in hearing 
sensitivity (Yoshida and Liberman  1999  ) . Furthermore, frequency discrimination by 
the cochlea requires synchronized response of the hair cells at the same location in the 
cochlea and the uniform orientation of the hair bundle. 

 It is peculiar that the kinocilium is only present during development in the organ 
of Corti, disappearing shortly after birth (around P10 in the mouse). In the adult, 
only the basal body remains in the apical cytoplasm at one side of the stereociliary 
bundle. This regression of the kinocilium shortly after bundle formation indicates 
that the kinocilium is not required for maintenance of hair bundle structure and 
function. However, its presence throughout the lifespan of other types of hair cells 
with the capacity to regenerate, such as mammalian vestibular hair cells and hair 
cells in chicken and frogs, suggests that it might be important to render the regen-
eration capacity.   

    5.4   Vestibular Structure and Function 

    5.4.1   Vestibular Sensory Hair Cells 

 Similar to the organ of Corti, the vestibular sensory organs display an alternating 
arrangement of sensory hair cells and nonsensory supporting cells, with each hair 
cell surrounded by a rosette of supporting cells. There are two types of hair cells in 
the vestibular organs, which differ in their innervation characteristics, cell shapes, 
hair bundle geometry and K +  conductances (Moravec and Peterson  2004 ; Rusch and 
Eatock  1996a,   b  ) . Type II cells, which are present in all vertebrates, are cylindri-
cally-shaped and are innervated by bouton afferent nerve terminals (Lysakowski 
 1996 ; Wersall  1956  ) . These bouton endings make synaptic contact with only a small 
portion of the basolateral membrane. Type I cells, which are found in mammals, 
birds and reptiles, are amphora shaped and are innervated by a large cup-shaped 
afferent terminal called a calyx. This calyx ending frequently envelops the basolat-
eral surface of one or more type I hair cells. Individual afferent  fi bers often inner-
vate both cell types, and therefore have both bouton and calyx nerve endings. 

 The vestibular hair bundle is very similar to the auditory hair bundle. It consists 
of between 40 and 70 stereocilia and a kinocilium that lies in the middle of the ste-
reocilia. The staircase arrangement of height-ranked stereocilia and the kinocilium 
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placement in relation to the stereocilia is also preserved, as is the basic transduction 
mechanism. Mechanical bending of the stereocilia leads to the opening of ion chan-
nels and an in fl ux of K +  into the hair cell. In contrast to the V-shaped cochlear hair 
bundles, though, the vestibular hair bundles are circular in shape, with the tallest 
stereocilia next to the kinocilium on one side of the circle (Fig.  5.2c–f ). The lengths 
of stereocilia and kinocilium are also much longer and the kinocilium persists 
throughout life. The supporting cells in the vestibular organs also have a primary 
cilium, but it is much shorter than the hair cell kinocilium.  

    5.4.2   Crista Physiology 

 There are three semicircular canals within the inner ear oriented at 90° angles to 
each other. Near the base of one arm of each semicircular canal is a dilation of the 
canal, called the ampulla. Within the ampulla and running perpendicular to the canal 
is the sensory epithelium, the crista ampullaris, which contains hair cells uniformly 
polarized in one direction. In contrast to the maculae (see below), there is no line of 
polarity reversal within an individual crista and all hair cells remain oriented in one 
direction across the epithelium. Analogous to the tectorial membrane of the audi-
tory sensory epithelium, an accessory gelatinous structure called the cupula hangs 
from the roof of the ampulla above the hair cells and  fi lls the lumen of the semicir-
cular duct. The hair cell stereocilia are embedded in this gelatinous cupula. Rotation 
of the head causes the  fl uid in the semicircular canal to push against the cupula, 
which leads to the bending of the stereocilia. 

 The cristae of the semicircular canals work in pairs to detect angular rotations of 
the head. When the head moves, the  fl uid in one canal moves in one direction while 
the  fl uid in the corresponding canal on the opposite side of the head moves in the 
opposite direction. This leads to the opposite bending of the stereocilia on opposite 
sides. Thus, a turn of the head depolarizes hair cells in one crista and hyperpolarizes 
those on the other side. The uniform orientation of hair bundles in each of the cristae 
(Fig.  5.2c, d ) is essential for a concerted readout of movement in three dimensions. 
The role of the kinocilium in hair bundle function, however, was uncertain as 
de fl ection of the kinocilium separately from the bundle was shown to have no effect 
on intracellular potential and transduction also persisted after its microsurgical abla-
tion using a bullfrog model (Hudspeth and Jacobs  1979  ) .  

    5.4.3   Macula Physiology 

 The utricle and saccule are located in the center of membranous labyrinth, between 
the membranous labyrinth and the semicircular ducts. The sensory epithelia of these 
organs are the utricular macula and the saccular macula, respectively. Within each 
macula, the hair cells are overlaid by the otolithic membrane, a thick gelatinous layer 
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of glycoprotein covered by thousands of minute crystals of calcium carbonate, termed 
otoconia. The tips of the stereocilia and kinocilium are embedded in this otolithic 
membrane. The hair cells are oriented along a line of polarity reversal (Fig.  5.2e, f ) 
such that the hair cells on either side of the line have opposite orientations. 

 The maculae speci fi cally detect gravity and linear acceleration by sensing the 
inertial displacement of the otoconia. When the head is tilted, gravity pulls on the 
otoconia and the otolitic membrane, causing the stereocilia to bend. The saccule 
and utricle are positioned at right angles to each other within the ear. Thus, with 
any head position, gravity will bend the stereocilia of one patch of hair cells, 
leading to hair cell depolarization and an afferent nerve signal. The utricular 
macula is oriented horizontally when the head is upright and is most sensitive to 
tilt when the head is horizontal. The saccular macula is oriented vertically and is 
most sensitive to tilt when the head is horizontal. The saccule is also responsible 
for detecting linear accelerations of the head in the vertical direction (for exam-
ple, when moving on an elevator). Similar to the organ of Corti, the hair bundles 
within the maculae are uniformly oriented along the mediolateral axis of the 
epithelium. However, hair cells on either side of a middle line called the striola 
have opposite orientations. The kinocilia are oriented toward the striola in the 
utricle and away from it in the saccule. As a result of this line of polarity reversal, 
tilting of the head in any direction will depolarize some hair cells and hyperpo-
larize others within the organ.  

    5.4.4   Primary Cilia in Controlling Biomineralization 
in the Vestibule 

 In the zebra fi sh, the saccule and utricle are also overlaid with biominerals known as 
otoliths. Otoliths in the zebra fi sh similarly consist of crystals of minerals, proteins 
and Ca 2+ . The microvilli-derived stereocilia and microtubule-based kinocilium form 
a staircase pattern similar to mammal vestibular hair cells and extend from the sur-
face of hair cells to attach to otoliths. The number, size and placement of the otoliths 
are precise for proper functions. Several recent studies reveal an essential role for 
primary cilia in controlling the morphogenesis of the otoliths (Colantonio et al. 
 2009 ; Wu et al.  2011 ; Yu et al.  2011  ) . 

 The  fi rst link of cilia to otolith formation is revealed by a study of dynein mutants in 
zebra fi sh. Dynein regulatory complex (DRC) regulates the motility of motile cilia. 
Mutations in one of the regulatory subunits, Gas8, do not result in defects in ciliogen-
esis or placement of the cilia, but in the motility of motile cilia (Colantonio et al.  2009  ) . 
In Gas8 mutants, otolith number, morphology and size are drastically changed. It was 
also demonstrated that cilia-driven  fl uid  fl ow is essential to control otolith biomineral-
ization. Two subsequent studies further showed that hydrodynamics in fl uences otolith 
morphogenesis (Wu et al.  2011  )  and that otoliths can be generated in mutants devoid of 
cilia, but their morphology and positions are disrupted in cilia mutants (Yu et al.  2011  ) . 
The role of cilia motility or hydrodynamics has not yet been reported.   
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    5.5   Primary Cilia in Planar Cell Polarity Signaling 
in the Inner Ear 

 It is becoming increasingly clear that the kinocilium and/or basal body play a critical 
role in hair bundle development, both in determining the intrinsic structural polarity 
of hair cells as well as in coordinating uniform hair cell orientation throughout the 
epithelium. Initially, the kinocilium’s importance was suggested by detailed descrip-
tions of the temporal appearance and polarization of the kinocilium during bundle 
formation, as the kinocilium’s position leads to and predicts the  fi nal polarity of the 
bundle (Fig.  5.3 ). Although the initial descriptions of hair bundle development were 
performed in the chicken auditory organ, the basilar papilla (Tilney et al.  1980  ) , stud-
ies in the mouse suggest that the basic steps of bundle development have been evolu-
tionarily conserved (Denman-Johnson and Forge  1999 ; Forge et al.  1997 ; Mbiene 
and Sans  1986 ; Zine and Romand  1996  ) . More recently, analyses of mutant mouse 
strains for ciliary genes have revealed a requirement for the ciliary genes in hair 
bundle formation, and have also revealed a genetic link between ciliary genes and an 
evolutionarily conserved PCP signaling module in coordinating hair cell planar 
polarity during development. These studies are described in more detail below.  

    5.5.1   The Development of the Hair Bundle 

 In the mouse, formation of cochlear sensory hair cells begins around embryonic day 
(E) 12-E14, when precursors for the organ of Corti exit the cell cycle and commit to 
either a hair cell or supporting cell fate (Chen et al.  2002 ; Ruben  1967  ) . Hair cell 

  Fig. 5.3    Polarization of the kinocilium leads establishment of planar cell polarity in the cochlea. ( a, 
b ) Diagrams ( a ) and confocal images ( b ) illustrate the development of the hair bundle and its polarity. 
In mice, the inner hair cells (IHC) toward the center, or medial side, of the cochlear spiral, become 
visible  fi rst in the cochlea at embryonic day 14.5 (E14.5). At this stage, actin accumulation ( red ) in 
the inner hair cells is visible, and the kinocilia ( green ) are apparently randomly positioned at the api-
cal surface of hair cells. As the cochlea develops, hair cell differentiation extends to the outer hair 
cells (O1–O3) from the medial-to-lateral direction. Stereocilia bundles become more distinct ( red ) 
and the kinocilia ( green ) are positioned to the  fi nal location at the apical surface of hair cells       
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differentiation then initiates in the basal region of the cochlea between E13.5 and 
E14.5 and over the next 3 days, hair cell differentiation proceeds in a basal to apical 
gradient along the entire length of the sensory epithelium, until one row of inner and 
three rows of outer hair cells are formed (McKenzie et al.  2004  ) . In addition, a sec-
ond gradient of differentiation moves across the medial to lateral axis of the epithe-
lium, such that the inner hair cells appear  fi rst followed by each row of outer hair 
cells (Chen et al.  2002 ; McKenzie et al.  2004  ) . In the vestibular organs, hair cell 
differentiation begins slightly earlier, at around E12. 

 During the early stages of hair cell differentiation, development of the hair bun-
dle occurs (Fig.  5.3 ). At the start of bundle development, the hair cell apical surface 
is covered by very short microvilli of uniform height and a single kinocilium rests 
at its center. Then by around E13.5 in the vestibular organs and E15.5 in the cochlea, 
a few, very short precursor microvilli that will eventually give rise to stereocilia 
grow up around the kinocilium. Next, by around E15.5 in the vestibular organs and 
E16.5 in the cochlea, the kinocilium moves from the center of the luminal surface 
of the hair cell to the peripheral edge (Cotanche and Corwin  1991 ; Dabdoub and 
Kelley  2005  ) . Simultaneously, the precursor microvilli immediately surrounding 
the developing kinocilium begin to elongate to form stereocilia, followed by the 
elongation of those stereocilia in rows further away from the kinocilium, initiating 
the staircase pattern of height ranked rows. Thus, development of the kinocilium 
appears to precede that of the stereocilia, and it is easy to speculate from its posi-
tioning in the bundle that it somehow helps to direct the pattern of stereocilia elon-
gation (and the formation of the V-shaped bundle structure in the cochlea). 
Furthermore, the polarization of the kinocilium also precedes that of the stereocilia 
and parallels the PCP axis of the epithelium, suggesting that the kinocilium is a 
major determinant of hair cell planar orientation. 

 Interestingly, although the initial movement of the kinocilium to the peripheral 
edge of the hair cell has a signi fi cant bias in the direction of  fi nal orientation of the 
bundle (towards the lateral edge), the resulting position often deviates from its  fi nal 
position. Therefore, the kinocilium (and adjacent stereocilia) often undergo a period 
of reorientation in order to become fully aligned with their neighbors (Cotanche and 
Corwin  1991 ; Dabdoub and Kelley  2005  ) . Following this reorientation period, the 
newly formed stereocilia continue to grow in width and also form rootlets that will 
anchor them into the cuticular plate. By the end of embryogenesis, most nascent 
hair bundles in the cochlea exhibit their characteristic ‘V’ shapes and have become 
uniformly oriented toward the outer or lateral edge of the cochlear duct. Hair bun-
dles in the utricle and saccule have also acquired their mechanotransduction capa-
bility and appear mature in form and polarity, with the kinocilium elongated well 
above the longest stereocilia (Geleoc and Holt  2003  ) . However, during the  fi rst post-
natal week the hair bundles continue to undergo further row-speci fi c differential 
outgrowth, enhancing the staircase pattern of height-ranked stereocilia (Denman-
Johnson and Forge  1999 ; Forge et al.  1997 ; Mbiene and Sans  1986 ; Zine and 
Romand  1996  ) . Development of mechanotransduction also occurs postnatally 
within the organ of Corti, in a basal to apical gradient from around P0-P6 (Lelli 
et al.  2009  ) . Finally, the kinocilium retracts by around P10. 



144 C.M. Grimsley-Myers and P. Chen

 Concomitant with hair cell formation in the cochlea, elongation of the cochlea 
occurs by unidirectional extension of a postmitotic primordium driven by integrated 
radial and mediolateral intercalations (Jones and Chen  2007 ; McKenzie et al.  2004 ; 
Wang et al.  2005  ) . This extension occurs in a basal-to-apical direction and from 
E14.5 to E18.5 the length of the cochlea increases approximately twofold. Although 
the molecular mechanisms that mediate this bundle development and cochlear mor-
phogenesis are still incompletely understood, genetic studies suggest that ciliary 
genes function downstream of an evolutionarily conserved planar cell polarity 
(PCP) signaling module to regulate both polarized extension and the establishment 
of PCP in the organ of Corti during hair cell differentiation.  

    5.5.2   The Planar Cell Polarity (PCP) Signaling 
Pathway in the Inner Ear 

 Planar cell polarity (PCP) is a term that refers to the polarity of cellular structures 
within the plane of an epithelium, perpendicular to the apical-basal axis of polarity. 
A genetic pathway for PCP was  fi rst identi fi ed in  Drosophila , where all adult cutic-
ular tissues display PCP features (Adler  2002 ; Axelrod and McNeill  2002 ; Klein 
and Mlodzik  2005 ; Simons and Mlodzik  2008 ; Strutt  2008  ) . For example, each cell 
in the adult wing produces a single distally pointing hair, while sensory bristles on 
the thorax all point in a posterior direction. In the eye, multicellular ommatidia point 
away from the dorsoventral midline (equator) and toward the dorsal and ventral 
edges (poles) of the eye. Remarkably, in all of these tissues, a common set of “core” 
PCP genes has been shown to be responsible for the generation of planar polarity 
(Adler  2002 ; Klein and Mlodzik  2005  ) . This core group includes the seven-pass 
transmembrane receptor  frizzled  ( fz ), the atypical cadherin   fl amingo  or  starry night  
( fmi  or  stan ), the four-pass transmembrane protein  van gogh  or  strabismus  ( vang  or 
 stbm ), as well as the intracellular proteins  disheveled  ( dsh ),  prickle  ( pk ) and  diego  
( dgo ). Activation of the core PCP genes leads to the activation of JNK (c-Jun 
N-terminal kinase) and Rac/Rho GTPases and involves relocalization of  Dsh  to the 
plasma membrane. 

 Recent work has since revealed that the function of at least the upstream core 
PCP genes has been highly evolutionarily conserved. Severe defects in planar orga-
nization and cochlear development are observed in mice with mutations in homologs 
of these genes. These mutants include:  Loop-tail (Lp,  mutation in  Vangl2 / Stbm ) , 
spin cycle  and  crash  (independent mutations in  Celsr1 / fmi ) , Dishevelled–1  −/−  ; 
Dishevelled-2  −/−  double mutants and  Frizzled3  −/−  ; Frizzled6  −/−  double mutants. In 
addition to misoriented hair bundles, these mutants also display a shorter and wider 
cochlea sensory epithelium and extra, disorganized rows of hair cells in the apical 
region of the cochlea (Chacon-Heszele and Chen  2009 ; Curtin et al.  2003 ; Hamblet 
et al.  2002 ; Montcouquiol et al.  2003 ; Wang et al.  2005,   2006a,   b  ) . This is consistent 
with defects in polarized extension. Interestingly, all of these mutants also display 
craniorachischisis, a severe defect in neural tube closure in which the entire neural 
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tube from mid-brain to tail fails to close. This phenotype, which results in perinatal 
lethality, is also thought to result from failure of convergent extension during neu-
rulation (Curtin et al.  2003 ; Hamblet et al.  2002 ; Kibar et al.  2001 ; Murdoch et al. 
 2001,   2003 ; Wang et al.  2006a,   b  ) . Homologs of these genes also regulate conver-
gent extension in the frog  Xenopus laevis  and the zebra fi sh  Danio rerio  (Keller 
 2002 ; Mlodzik  2002 ; Wallingford et al.  2002  ) , indicating that this signaling cassette 
has been highly conserved throughout evolution and likely plays a very fundamen-
tal role in oriented cellular movements during development. 

 Intriguingly,  Scrb1  ( Scribble ) and protein tyrosine kinase 7 ( PTK7 ) are also both 
required for morphogenesis and planar cell polarity in the organ of Corti as well as 
neural tube closure in mice (Lu et al.  2004 ; Montcouquiol et al.  2003 ; Murdoch 
et al.  2003  ) . However, orthologs of these genes do not appear to play an important 
role during PCP establishment in  Drosophila . Thus, although there has been an 
overall conservation of the molecular mechanisms that regulate directional exten-
sion movements and epithelial organization across a variety of species and polar-
ized cell types, differences also exist. Other novel PCP signaling mechanisms are 
also expected to occur in mammals. 

 A hallmark feature of the core PCP proteins is their asymmetric localization. In 
the organ of Corti, for example, Vangl2, Frizzled-3 (Fz3) and Frizzled-6 (Fz6) 
appear to be enriched on the medial side of the hair cell membrane, whereas 
Dishevelled-2 (Dvl2) is located on the lateral side (Etheridge et al.  2008 ; 
Montcouquiol et al.  2006 ; Wang et al.  2005,   2006a,   b  ) . Interestingly, the loss of 
polarized membrane localization of any of the core PCP proteins results in the loss 
of localization of the others, suggesting that these proteins function as a complex 
(Deans et al.  2007 ; Wang et al.  2005,   2006a,   b  ) . However, how this complex detects 
the potential signal(s) and orients the hair bundle is still incompletely understood. 
Their distinct asymmetric localizations suggest that PCP protein localization may 
be important for establishing the PCP axis within the sensory epithelium. Indeed, 
the asymmetric localization of PCP proteins has been shown to precede morpho-
logical polarization of hair cells in both the organ of Corti and the utricle (Deans 
et al.  2007 ; Jones et al.  2008  ) . However, it is not yet clear whether the asymmetric 
localization of the core PCP proteins is actually required for hair cell planar polar-
ization. One study in the mouse utricle suggests that while the localization of the 
core PCP proteins may correlate with the axis for PCP, their localizations may not 
actually dictate bundle orientation. In this study, a homolog of the Drosophila core 
PCP protein Pk, Pk2, was shown to preferentially localize on the medial side of hair 
cells across the entire epithelium and importantly, did not switch sides at the line of 
polarity reversal (where bundle polarity reverses) (Deans et al.  2007  ) . Similarly, Fz6 
was localized on the lateral side across the entire epithelium. The failure of these 
PCP proteins to switch sides supports the notion the core PCP proteins function to 
coordinate cell orientation at the tissue level rather than to determine the direction 
of cell polarity  per se . 

 It is also important to note that mutations in the core PCP genes do not affect the 
intrinsic structural polarity of the hair bundle. In PCP mutants, the cochlear hair 
bundle still maintains its characteristic ‘V’ shape with the kinocilium at the vertex 
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of the V. It is only the coordinated orientation of the bundles that are affected. While 
a role for PCP proteins in the development of the structural polarity of the hair 
bundles cannot be ruled out, due to possible gene redundancies, most likely the 
primary role of the core PCP genes is to establish uniform polarity between neigh-
boring cells rather than to guide the intrinsic hair cell structural polarity.  

    5.5.3   The Discovery of the Link Between Cilia and PCP 
Signaling in the Inner Ear 

 The temporal appearance and polarization of the kinocilium during bundle develop-
ment suggests that it has dual roles in directing both the hair cell intrinsic polarity 
machinery and the coordination of hair cell polarity at the tissue level. However, 
more direct evidence for these roles came from mice mutant for genes associated 
with Bardet-Biedl syndrome (BBS) (Ross et al.  2005  ) . BBS is a pleiotropic disorder 
in humans characterized by retinal degeneration, obesity, polydactyly, renal and 
gonadal malformations and cognitive impairment (Beales  2005 ; Tobin and Beales 
 2007  ) . At least 14 BBS genes ( Bbs1 - Bbs14 ) have been identi fi ed, most of whose 
gene products localize to the cilia and/or basal bodies. Similar to PCP mutants, null 
mutations in  Bbs1 ,  Bbs4 , or  Bbs6  lead to stereociliary bundle orientation defects 
(Ross et al.  2005  ) . These mice also displayed exencephaly, a neural tube closure 
defect. Moreover, both  Bbs1  and  Bbs6  were shown to genetically interact with 
 Vangl2  (Ross et al.  2005  ) .  Vangl2  +/Lp ;  Bbs1  +/− and  Vangl2  +/Lp ;  Bbs6  +/−  double heterozy-
gous mice had cochlear abnormalities similar to those observed in the  Bbs  −/−  
homozygous mutants, whereas no abnormalities were observed in  Bbs6  +/− ,  Bbs1  +/− , 
or  Vangl2   +/Lp   heterozygous mutants. Furthermore, in zebra fi sh  trilobite  mutants ( tri , 
an ortholog of  vangl2 ), suppression of  Bbs4  or  Bbs6  using morpholinos led to 
enhanced convergent extension defects compared to  tri  mutants alone (Ross et al. 
 2005  ) . Together, these data indicate a genetic link between ciliary/basal body pro-
teins and the PCP signaling pathway, perhaps as downstream effectors of the ‘direc-
tion sensing’ core PCP module. These  fi nding were then further supported by a 
separate study in which suppression of  Bbs1 ,  Bbs4 , or  Bbs6  in zebra fi sh led to mild 
convergent extension defects that were further impaired with morpholinos against 
 Wnt 11  or  Wnt5  (non-canonical Wnt ligands) but were partially rescued by a mem-
brane bound form of  Dishevelled  selectively involved in PCP signaling (Axelrod 
et al.  1998 ; Gerdes et al.  2007  ) . 

 A more direct role for the kinocilium in hair cell PCP was then demonstrated by 
genetic ablation of the kinocilium within the early developing mouse inner ear 
(Jones et al.  2008 ; Sipe and Lu  2011  ) . The intra fl agellar transport protein Ift88, or 
Polaris, is required for the assembly and maintenance of the primary cilia in multi-
ple tissues. In the cochlea, Ift88 is expressed in the kinocilium axoneme and at the 
base of the kinocilium at E14.5 (during early hair bundle development) (Jones et al. 
 2008  ) . Conditional deletion of  Ift88  in the cochlea led to the loss or underdevelop-
ment of the kinociliary axoneme (although the basal body was still present) and 
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PCP phenotypes including misoriented hair bundles and a shorter and wider cochlear 
duct (Jones et al.  2008  ) .  Ift88  was also shown to interact genetically with  Vangl2 , 
strongly suggesting that the kinocilium is a critical component of the PCP machin-
ery in the inner ear (Jones et al.  2008  ) . As further support for this, conditional dele-
tion of  Kif3a , which is a member of the kinesin-II microtubule motor complex 
required for anterograde IFT and ciliogenesis, was also shown to produce PCP-like 
phenotypes in the organ of Corti (Jones et al.  2008 ; Sipe and Lu  2011  ) . 

 Interestingly, in both the  Ift88  and  Kif3a  mutant bundles, the core PCP proteins 
including Dvl2, Fz3, and Vangl2 were correctly (asymmetrically) localized with 
respect to the mediolateral axis of the epithelium, even in cells with misoriented 
bundles. Thus, PCP protein localization did not accurately re fl ect bundle polarity. 
This indicates that the  Ift88 / Kif3a  mutants suffer from a failure to properly respond 
to the polarization signal coming from the core PCP proteins, and that the kinocil-
ium probably functions downstream of the core PCP proteins. The molecular 
machinery that links the PCP pathway to the kinocilium is still unknown, but may 
involve the known PCP effector proteins Inturned and Fuzzy, which were shown to 
regulate apical actin assembly and the orientation of ciliary microtubules during 
ciliogenesis in  Xenopus laevis  (Park et al.  2006  ) .  

    5.5.4   Determination of Intrinsic Cell Polarity by Ciliary Genes 

 In addition to PCP defects, many ciliary mutants also display defects in the intrinsic 
polarity of the sensory hair cells. For instance, mild defects in the orientation and 
V-shape of the hair bundle were recently observed in mice with mutations in the 
basal body protein, ALMS1 (Jagger et al.  2011  ) . In addition, many of the stereocili-
ary bundles in the Bbs mutant mice had an abnormally  fl attened shape (Ross et al. 
 2005  ) . In these hair cells, the kinocilium (which was present and appeared grossly 
normal) was displaced and no longer closely associated with the stereocilia. These 
defects suggest an additional role for BBS proteins in formation of the hair bundle 
structure, perhaps to regulate the movement or anchoring of the kinocilium or to 
facilitate the release of a ‘guiding’ signal to the stereocilia. The BBS proteins are 
generally believed to mediate the traf fi cking of proteins and vesicles to the base of 
the cilium and basal body and to facilitate IFT and ciliary membrane biogenesis 
(Nachury et al.  2007  ) . Therefore, they may be required for the presence of an 
unknown directional signal or anchoring component within the basal body. However, 
this role is likely independent of core PCP protein function, as no defects in bundle 
structure are observed in PCP mutants. Also, no bundle structural phenotype was 
noted in the  Lp ;  Bbs  double heterozygous mutants. However, this does not rule out a 
role for other downstream effectors of the core PCP proteins, such as Inturned and 
Fuzzy, in structural development of the hair bundle and/or ciliogenesis (see below). 

 The importance of the basal body in hair bundle structure is also seen in the  Ift88  
mutants. In the  Ift88  mutants, most hair cells had normal bundle morphology, with orga-
nized, height-ranked rows of stereocilia (Jones et al.  2008  ) . Very few hair cells contained 
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bundle structural defects, i.e.,  fl attened or ‘unpatterned’ bundles. However, a few 
bundles were circularized, with the stereocilia rows arranged in concentric rings. Others 
were polarized but misoriented. In both of these types of mutant bundles, the position of 
the basal body directly correlated with the bundle orientation. When the basal body 
remained in the center of the cell, the hair bundle was circularized. When the basal body 
migrated to the periphery, the hair bundle was polarized (but misoriented with respect to 
the PCP axis). This suggests that IFT88/kinocilium function is important for basal body 
positioning, and that the basal body, as opposed to or in the absence of the kinocilium, 
may play a primary role in establishing the intrinsic polarized structure of the hair bun-
dle. This idea is reinforced by the hair bundle and basal body phenotypes in  Kif3a  
mutants. In  Kif3a  mutants, the basal body was mispositioned along both the apicobasal 
and planar cell polarity axes. The basal body position was also uncoupled from hair 
bundle orientation and numerous hair bundle structural defects, including  fl attened or 
occasionally fragmented bundles were present (Sipe and Lu  2011  ) .  

    5.5.5   Crosstalk Between Cilia and PCP Genes 

 The studies of PCP genes and ciliary genes in the inner ear reveal the distinctive 
roles for the core PCP gene and ciliary genes (Fig.  5.4 ). Essentially, core PCP genes 
coordinate the polarity of neighboring cells, and ciliary genes are required for the 
intrinsic polarity of individual cells through basal body and associated components. 
How the basal body communicates with the core PCP complex and the actin 
cytoskeleton and microtubule network in order to drive its position from the center 
of the cell to the periphery, and how the basal body in turn regulates the intrinsic 
polarity of cells, are not entirely clear. It is apparent that PCP genes can regulate 
polarity of cilia and ciliogenesis, and that cell-speci fi c machinery for building the 
polar structure interacts with ciliary genes.  

 In Xenopus multiciliated cells, basal body planar polarization can be regulated 
by core PCP genes  Dvl2  and  Vangl2  (Mitchell et al.  2009  ) . It is further expected that 
PCP effecters, such as small GTPases and motor proteins, probably play an impor-
tant role downstream of core PCP genes. In accordance with this, p21-activated 
kinases (PAKs), cytoskeletal effectors downstream of Rac/Cdc42 small GTPases, 
have been shown to become asymmetrically localized to the lateral hair cell mem-
brane in a developmental gradient that coincides with kinocilium/basal body migra-
tion (Grimsley-Myers et al.  2009  ) . There is also an apparent feedback regulation 
among the players. Sipe et al. also show that  Kif3a  is required for the localized acti-
vation of PAK on the hair cell cortex, which in turn is required for basal body posi-
tioning and hair bundle morphogenesis (Sipe and Lu  2011  ) . 

 In addition, several studies suggest that the PCP effector proteins Inturned and 
Fuzzy are required for ciliogenesis in vertebrates and thus could potentially play a 
role in hair bundle development in mammals.  Inturned  and  Fuzzy  are referred to as 
PCP effector genes because they were shown to speci fi cally regulate wing hair and 
bristle orientation downstream of the core PCP genes in  Drosophila  (Adler et al. 
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 1994 ; Collier and Gubb  1997 ; Park et al.  1996  ) . In  Xenopus ,  Inturned  and  Fuzzy  are 
required for convergent extension movements and for the formation of cilia in 
 fl oorplate and multiciliated mucociliary epidermal cells (Park et al.  2006  ) . More 
speci fi cally,  Inturned  and  Fuzzy  were shown to mediate the assembly of an apical 
actin network required for the normal orientation of ciliary microtubules (Park et al. 
 2006  ) . A later study also demonstrated that  Inturned  is required together with  Dvl  
and the small GTPAse  RhoA  for the docking of basal bodies to the apical cell 
surface of epidermal cells (Park et al.  2008  ) . In mice, targeted disruption of either 
 Inturned  ( Intu ) or  Fuzzy  (Fuz) leads to multiple defects, including shorter and fewer 
cilia, neural tube closure defects and abnormal Hh signaling (Gray et al.  2009 ; 
Heydeck et al.  2009 ; Zeng et al.  2010  ) . However, neither  Inturned  nor  Fuzzy  displayed 
a genetic interaction with the core PCP protein Vangl2 in convergent extension, 
suggesting that  Inturned  and  Fuzzy  function independently of the core PCP genes in 

  Fig. 5.4    Ciliary genes regulate the intrinsic polarity of sensory hair cells in PCP signaling PCP 
signaling in wild-type cells both instructs the intrinsic polarity of individual hair cells and coordi-
nates the cellular polarity among neighboring cells. In wild-type cells, core PCP proteins receive 
and respond to unknown directional cues. Subsequently, core PCP proteins form membrane com-
plexes and become asymmetrically localized in hair cells. Interactions of core PCP protein com-
plexes across the cellular junctions formed by neighboring cells establish polar distribution of core 
PCP proteins across the entire organ of Corti along the planar cell polarity axis. The polar distribu-
tion of PCP protein complexes, however, is necessary but not suf fi cient to direct the correct posi-
tioning of the kinocilium and its basal body. In core PCP mutants, core PCP protein complexes are 
disrupted and the kinocilium is randomly positioned. In cilia mutants, core PCP protein complexes 
form and remain their asymmetric distribution. The basal body, however, is randomly positioned 
and appears to direct the orientation of the stereocilia bundle, or the orientation of sensory hair 
cells (This  fi gure is adopted from Jones et al.  2008  )        
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some cellular processes (Heydeck and Liu  2011  ) . Although together these studies 
indicate a potential role for  Inturned  and  Fuzzy  in basal body docking and ciliogen-
esis in hair cells, the role of  Inturned  and  Fuzzy  in hair bundle formation remains to 
be determined since constitutive knockout mice for these genes die in mid-gestation 
(Heydeck et al.  2009 ; Zeng et al.  2010  ) . Thus, a conditional knockout approach of 
 Inturned  and  Fuzzy  speci fi cally in the ear should prove interesting in the future. 

 Furthermore, the machinery that builds the polar hair bundle, which consists of 
the Usher (USH) Syndrome proteins, interacts with ciliary genes. USH Syndrome is 
the leading cause of hereditary deaf-blindness in humans. There are three clinical 
subtypes, USH1-3, distinguished primarily on the basis of the severity and progres-
sion of the clinical symptoms (Leibovici et al.  2008 ; Saihan et al.  2009 ; Yan and Liu 
 2010  ) . USH1 is most severe and is characterized by severe to profound congenital 
deafness, vestibular dysfunction, and prepubertal onset retinitis pigmentosa. Five 
USH1 genes have been identi fi ed, including the unconventional myosin Myosin VIIa 
(USH1B), the ankyrin repeat protein Sans (USH1G), the PDZ-domain containing 
scaffold protein Harmonin (USH1C), Cadherin 23 (USH1D) and Protocadherin 15 
(USH1F), of which the latter two form the interstereociliary tip links. Several  in vitro  
interactions between USH1 proteins have been reported (Adato et al.  2005b ; Senften 
et al.  2006  ) . In particular, Harmonin can bind to all four of the other USH1 proteins, 
and is thought to act as a scaffold in these protein complexes (Adato et al.  2005b ; 
Bahloul et al.  2010 ; Boeda et al.  2002 ; Reiners et al.  2005 ; Siemens et al.  2002  ) . 

 In mice, mutations in any of the USH1 genes results in abnormal hair bundle archi-
tecture as early as E17.5 to E18.5 (Di Palma et al.  2001 ; Kikkawa et al.  2008 ; Lefevre 
et al.  2008 ; Pawlowski et al.  2006 ; Senften et al.  2006  ) . The mutant bundles are frag-
mented, with the stereocilia assembled into multiple clumps. Often these stereociliary 
clumps are misoriented with the kinocilium dissociated from the stereocilia. The kinocil-
ium/basal body is also frequently mispositioned within the hair cell apical surface, 
although it is usually found near the periphery and in the lateral half of the cell surface 
(Chacon-Heszele et al.  2012 ; Kikkawa et al.  2008 ; Lefevre et al.  2008 ; Pawlowski et al. 
 2006 ; Self et al.  1998  )  This suggests that USH1 proteins are also important for kinocil-
ium/basal body positioning and hair bundle formation, similar to ciliary proteins. 

 Although the localization patterns of USH1 proteins vary over the course of bun-
dle development, they are generally enriched within the stereocilia, often at the tips 
of growing stereocilia (Ahmed et al.  2003,   2006 ; Bahloul et al.  2010 ; Boeda et al. 
 2002 ; Caberlotto et al.  2011 ; Lefevre et al.  2008 ; Michel et al.  2005 ; Rzadzinska 
et al.  2005  ) . However, USH1 proteins have also been observed within the interste-
reociliary and kinociliary links and basal body during early bundle formation 
(Lagziel et al.  2005 ; Michel et al.  2005  ) . Kikkawa et al. have also observed altered 
microtubule organization around the basal body in Protocadherin 15 mutant mice 
(Kikkawa et al.  2008  ) . Together, these data indicate that USH1 proteins probably 
play multiple roles in the ear during bundle development, including stereocilia and/
or kinocilium anchoring, stereociliary cohesion, traf fi cking of and/or anchoring of 
molecules within the stereocilia, signaling from the basal body, and organization of 
the microtubule and actin networks within the developing cuticular plate. With so 
many possible roles, it has been dif fi cult to decipher the primary defect(s) in USH1 
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mutants and to discern the contribution of USH1 proteins to basal body/kinocilium 
positioning/functioning versus other functions during bundle formation. 

 A more direct link between USH syndrome proteins and cilia has been described 
in vertebrate photoreceptor cells. Similar to hair cells, photoreceptor cells are highly 
specialized, ciliated sensory neurons that are capable of phototransduction. These 
cells contain a non-motile connecting cilium that links a metabolically active inner 
segment to a light-sensitive outer segment. The phototransductive membranes in the 
outer segment are synthesized by organelles in the inner segment and then trans-
ported through the connecting cilium to the outer segment. As USH syndrome 
affects vision as well as hearing, the role of USH syndrome proteins in photorecep-
tor cell function has begun to gain scrutiny. 

 Intriguingly, all  fi ve of the known USH1 proteins as well several USH2 proteins 
have been observed at the periciliary region of mammalian photoreceptor cells (Liu 
et al.  2007 ; Maerker et al.  2008 ; Williams  2008 ; Wolfrum and Schmitt  2000  ) . The 
scaffolds SANS and whirlin (USH2D) localize to the pericilliary collar of the apical 
inner segment and the adjacent connecting cilium and basal body complex, where 
they interact with the cytoplasmic domain of Usherin (USH2A) and VLGR1b 
(USH2C) (Liu et al.  2007 ; Maerker et al.  2008  ) . The long ectodomains of Usherin 
and VLGR1b are thought to form  fi brous links connecting the membranes of the 
connecting cilium and the inner segment, which are analogous in function and 
molecular composition to the ankle links between neighboring stereocilia in hair 
cells (Adato et al.  2005a ; Liu et al.  2007 ; Maerker et al.  2008 ; McGee et al.  2006 ; 
Michalski et al.  2007  ) . MyosinVIIa also localizes to the ciliary membrane and has 
been shown to be important for the ciliary traf fi cking of membrane components, 
including rhodopsin (Liu et al.  1997,   1999 ; Wolfrum and Schmitt  2000  ) . Harmonin 
also localizes to the apical inner segment (Maerker et al.  2008  ) . Together these stud-
ies support a direct role for USH proteins in cilium function and give credence to the 
idea that the USH proteins might also mediate primary cilium functions in other 
tissues, including hair cells in the ear. This notion is supported by a case study of 
two siblings with USH syndrome, who were found to display bronchiectasis and 
reduced nasal mucociliary clearance associated with immotile cilia (Bonneau et al. 
 1993  ) . In addition, sperm tail structure and motility have been shown to be abnor-
mal in Usher syndrome patients (Hunter et al.  1986  ) . Thus, evidence is mounting 
that USH Syndrome may be a cilium disorder. It is therefore highly likely that the 
USH proteins perform critical functions at the kinocilium/basal body for normal 
hair bundle structure, although this remains to be formally demonstrated.   

    5.6   Primary Cilia and Shh, Wnt, and Notch Signaling 
in Inner Ear Development 

 The entire inner ear develops from a patch of ectodermal cells near the hindbrain, 
known as the otic placode. The formation of the inner ear from the otic placode is 
in fl uenced by the nearby hindbrain and periotic mesenchyme tissues. In particular, 
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diffusible morphogens, such as  fi broblast growth factors (FGFs), retinoids, bone 
morphogenetic proteins (BMPs), Wnt, and sonic hedgehog (Shh) have been shown 
to play essential roles in various aspects of inner ear development, including otic 
induction, patterning, and cell speci fi cation. In addition, cellular interactions medi-
ated by Notch signaling are essential for regional speci fi cation and sensory organ 
patterning. Among these signaling pathways, primary cilia are required for Shh 
signaling and implicated for  b -catenin-mediated canonical Wnt and Notch signal-
ing. The role of primary cilia in these signaling pathways during inner ear develop-
ment, however, has yet to be determined. 

    5.6.1   Primary Cilia and Shh Signaling in the Inner Ear 

 Shh is a secreted morphogen that binds to the twelve-pass transmembrane receptor 
Patched (Ptc) receptor to release the inhibition of Patched to its associated protein, 
Smoothened (Smo). The derepression of Smo by Ptc results in the activation of the 
Ci/GLI family of transcription factors from their repressor forms, through complex 
interactions of Costal2 (Cos2), Fused (Fu) and Suppressor of fused [Su(fu)]. The 
implication for cilia in Shh signaling became apparent when a plethora of Shh 
defects were observed in cilia mutants. The similarities of human diseases shared by 
Shh or cilia mutations further supported the link between Shh signaling and cilia. 
Indeed, Shh signaling is defective in cilia mutants, and components of the Shh sig-
naling pathway are localized to the cilia (Tasouri and Tucker  2011  ) . 

 During ear inner ear development, Shh is one of the major signals from the ventral 
hindbrain to specify for the ventral inner ear fate, the cochlear fate (Riccomagno et al. 
 2002  ) . It is expressed in the notochord and the  fl oor plate during otic induction and 
otocyst development. In Shh -/-  animals, the ventral cochlea is lost (Riccomagno et al. 
 2002  ) , indicating a requirement for Shh in speci fi cation of the cochlea fate in the oto-
cyst during early inner ear development. An additional role for Shh signaling in inner 
ear development was further revealed by examination of a mouse model in which only 
the repressor form of Gli3 is produced (Driver et al.  2008  ) . The prosensory domain in 
the cochlea, the precursor population that gives rise to the sensory and supporting cells 
of the organ of Corti, is increased and ectopic sensory domains are present in this 
mouse model of decreased Shh signaling. Inhibition of Shh signaling results in similar 
consequences, further supporting a role for Shh signaling in prosensory speci fi cation. 

 The requirement for cilia in Shh signaling, which plays essential roles in inner 
ear development, predicts that Shh signaling in the inner ears from cilia mutants is 
likely to be defective. However, both the early and late requirement for Shh in inner 
ear development appears to be met in  Ift88   CKO/CKO   and  Kif3a   CKO/CKO   ciliary mutants 
(Jones et al.  2008  ) . The cochlea is present albeit shortened and widened in cilia 
mutants (Jones et al.  2008  ) . It is possible that the conditional knockout (CKO) of 
ciliary genes in the mice was too late to render an early cilia defect. Consequently, 
Shh signaling in these mutants is suf fi cient for cochlea speci fi cation during early 
inner ear development. In contrast, ciliogenesis is nearly abolished in cilia mutants 
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during terminal differentiation of the cochlea and PCP processes are defective. It is 
surprising, therefore, that the late Shh phenotype, or the generation of ectopic sen-
sory domains in the cochlea, is not observed in inducible cilia mutants. It is possible 
that the residual Shh signaling activity in cilia mutants is suf fi cient or that Shh sig-
naling acts early for prosensory domain formation.  

    5.6.2   Primary Cilia and Canonical Wnt Signaling 
in the Inner Ear 

 While mutations in ciliary genes lead to PCP phenotypes, exactly how ciliary pro-
teins promote PCP in the ear is unclear. Several studies have suggested that ciliary 
proteins may regulate a switch between PCP and canonical Wnt/ b -catenin signal-
ing. In the canonical Wnt pathway, Wnt ligand binding to the Frizzled (Fz)/low 
density lipoprotein receptor-related protein (LRP) complex leads to the activation of 
cytoplasmic Dishevelled (Dvl) and the stabilization of cytoplasmic  b -catenin, which 
enters the nucleus and activates transcription of downstream target genes via the 
lymphoid enhancer-binding factor (Lef) or T cell speci fi c transcription factor (TCF) 
family of proteins (Logan and Nusse  2004  ) . Thus, the canonical Wnt pathway shares 
molecular components with the PCP pathway, including Fz and Dvl proteins, but 
produces a very different functional output. Canonical Wnt signaling is pleiotropic, 
with effects on multiple cellular processes including fate speci fi cation, differentia-
tion, migration, proliferation and survival, and its precise regulation is critical for 
multiple developmental events during embryogenesis (Logan and Nusse  2004  ) . 

 One of the  fi rst connections between cilia and decreased canonical Wnt signaling 
came from studies on the ankyrin-repeat protein Inversin. Inversin localizes to cilia and 
basal bodies, and mutations in Inversin in humans lead to Nephronophthisis type II, an 
infantile form of polycystic kidney disease (Morgan et al.  2002 ; Otto et al.  2003  ) . In 
mice, recessive mutations in Inversin lead to the inversion of left-right asymmetry and 
kidney abnormalities, phenotypes typically associated with cilia defects (Mochizuki 
et al.  2002 ; Morgan et al.  1998  ) . Inversin is similar to Diversin, a mammalian homo-
logue of the  Drosophila  PCP protein Diego. Like Diego, Inversin can interact with the 
core PCP proteins Prickled and Strabismus (Das et al.  2004 ; Simons et al.  2005  ) . 

 At the molecular level, Inversin inhibits canonical Wnt signaling by speci fi cally 
binding and targeting cytoplasmic Dishevelled for degradation by the anaphase pro-
moting complex. However, Inversin does not target the membrane associated form 
of Dishevelled involved in PCP signaling (Axelrod et al.  1998 ; Simons et al.  2005  ) . 
This suggests that inversin may function to block canonical Wnt signaling and pro-
mote PCP signaling. Further supporting this hypothesis, overexpression of Inversin 
can inhibit the activation of a canonical Wnt reporter while knockdown of Inversin 
results in defective convergent extension movements during Xenopus gastrulation 
(Bergmann et al.  2008 ; Simons et al.  2005  ) . 

 In addition to Inversin, genes required for ciliogenesis and PCP have also been 
linked to canonical Wnt pathway inhibition. For instance, Kif3a -/-  mice display increased 
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canonical Wnt reporter activity, and disruption of ciliogenesis in mice with mutations 
in  Kif3a ,  Ift88  or  Ofd1  leads to increased canonical pathway activation following stim-
ulation with Wnt3a, a typical canonical Wnt ligand (Corbit et al.  2008  ) . Loss of pri-
mary cilia in the developing mammary glands of  Ift88  mice also results in increased 
canonical Wnt along with branching morphogenesis defects (McDermott et al.  2010  ) . 
In addition, suppression of  Bbs1 ,  Bbs4  or  Bbs6  transcripts leads to an upregulation of 
the Wnt/ b -catenin pathway in both zebra fi sh embryos and in mammalian cultured cells 
(Gerdes et al.  2007  ) . This upregulation is thought to be due, at least in part, to perturbed 
proteasomal targeting of cytoplasmic  b -catenin. Finally, Diversin, which is structurally 
related to vertebrate Inversin and  Drosophila  Diego, is required for gastrulation move-
ments and cardiogenesis in zebra fi sh. Diversin was shown to mediate noncanonical 
Wnt signaling upstream of Rho family small GTPases and JNK through an interaction 
with Dvl (Moeller et al.  2006  ) . Diversin was also shown to inhibit canonical Wnt/ b -
catenin signaling by promoting  b -catenin phosphorylation and degradation by glyco-
gen synthase kinase 3 b  (GSK3 b ) (Schwarz-Romond et al.  2002  ) . Intriguingly, Diversin 
localizes to the centrosome/basal body and is required for basal body polarization and 
ciliogenesis in  Xenopus  (Itoh et al.  2009 ; Yasunaga et al.  2011  ) . 

 Despite all of these  fi ndings, the role of ciliary genes in canonical Wnt signaling 
is still somewhat controversial (Wallingford and Mitchell  2011  ) . For example, one 
group showed that expression of the Wnt target gene Axin2 and a quantitative Wnt 
reporter were completely normal in mouse embryos lacking  Kif3a ,  Ift172 , or  Ift88 . 
They also found no change in Wnt activity in response to Wnt3a ligand in  Ift172 , 
 Ift88  or  Dync2h1  mutant MEFs (Ocbina et al.  2009  ) . Likewise, maternal-zygotic 
zebra fi sh oval ( ovl ,  Ift88 ) mutants that lack all cilia display normal canonical and 
non-canonical Wnt signaling but show defects in Hh signaling (Huang and Schier 
 2009 ). In addition, no change in canonical Wnt signaling was seen in the kidneys of 
Inversin mutant mice at E16.5, P0 or P5 (Sugiyama et al.  2011  ) , although this does 
not preclude a role for Inversin in canonical Wnt signaling prior to E16.5. Mice with 
mutations in core ciliary genes, i.e.  Ift88 , also do not generally display discernable 
phenotypes typical of increased canonical Wnt signaling (Chazaud and Rossant 
 2006 ; Mukhopadhyay et al.  2001 ; Zeng et al.  1997  ) . 

 The  b -catenin mediated canonical Wnt signaling pathway plays multiple roles 
prior to terminal differentiation of hair cells and establishment of PCP during inner 
ear development. Canonical Wnt signaling acts to direct an otic placodal fate against 
an epidermal fate during speci fi cation of the otic placode (Ohyama et al.  2006  ) . 
Subsequently, Wnt signaling promotes dorsal cell identities within the otocyst (the 
precursor to the membranous labyrinth) (Riccomagno et al.  2005  ) . Wnt1 and Wnt3a 
are expressed from the dorsal neural tube (Riccomagno et al.  2005  ) . Wnt-responsive 
cells are detected in the dorsal region of the otocyst, and activate canonical Wnt 
signaling that antagonizes the ventral Shh signaling to specify dorsal vestibular ver-
sus ventral cochlea fate (Riccomagno et al.  2005  ) . In addition, canonical Wnt sig-
naling has a central role in vascular development in the ear involving Norrin and 
Fz4 (Xu et al.  2004  ) . However, the role of cilia in regulating canonical Wnt signal-
ing during inner ear development has not been carefully examined. Nor has a role 
for canonical Wnt signaling in PCP regulation in the inner ear been demonstrated. 
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In contrast to the loss of the vestibule in Wnt mutants (Riccomagno et al.  2005  ) , the 
vestibule is present in  Ift88   CKO/CKO   and  Kif3a   CKO/CKO   mice (Jones et al.  2008  ) . 
Conditional deletion of  b -catenin in the otocyst or conditional expression of a non-
phosphorylatable, constitutively active mutant of  b -catenin in the otocyst both lead 
to embryonic lethality before hair bundle formation occurs (Freyer and Morrow 
 2010 ; Ohyama et al.  2006  ) . Thus, the exact role of ciliary genes in canonical Wnt/ b -
catenin inhibition during hair cell orientation remains uncertain.  

    5.6.3   Primary Cilia and Notch Signaling in Inner Ear 
Development 

 Notch signaling is the new addition to the signaling pathways in which cilia have been 
implicated. The binding of membranous ligands to Notch receptors results in the 
cleavage of Notch intracellular domain (NICD) and its subsequent translocation to the 
nucleus and where NICD associates with RBP-j to activate downstream targets. Notch 
targets regulate cell proliferation, as well as cell differentiation through so-called lat-
eral inhibition, or inhibit the cells with activated NICD from adopting the same fate of 
the neighboring cells that express Notch ligand(s). A recent study (Ezratty et al.  2011  )  
reveals that the loss of ciliary genes compromises Notch signaling during epidermal 
differentiation. Furthermore, Notch3 is shown to localize to the cilia, and Presenillin2, 
a component of the  g -secretase that cleaves transmembrane Notch receptors to give 
rise to NICD and Notch signaling is enriched at the basal body. 

 During inner ear development, Notch signaling functions in multiple steps. It pro-
motes the competency and restricts the boundaries of the prosensory domains in the 
developing inner ear (Lewis et al.  1998  ) . It is also the major signaling pathway that pre-
vents all of the cells in the prosensory domain from assuming a hair cell fate and directs 
the formation of a sensory mosaic, alternating hair and supporting cells, through lateral 
inhibition. In mutants defective in Notch signaling, ectopic hair cells are generated at the 
expense of supporting cells, proliferation is stimulated, and hair bundles are not aligned 
in the cochlear sensory cells. While the disorganization of hair cell polarity across the 
sensory organ in the cochlea may implicate Notch signaling in PCP regulation, deregu-
lation of cell proliferation and cell fate conversion have not been observed in cilia 
mutants (Jones et al.  2008  ) . The cilia mutants studied to date are conditional knockout 
mutants. It is possible that the inactivation of ciliogenesis machinery in these mutants is 
not complete and/or early enough to exhibit Notch phenotypes in these cilia mutants. It 
has yet to be tested whether cilia play any role in Notch signaling in the ear.   

    5.7   Conclusions and Perspectives 

 Cilia are present ubiquitously in eukaryotic cells. Their functions vary in different 
types of cells and they have been implicated in several signaling pathways including 
Shh signaling, Wnt signaling, Notch signaling, and PCP signaling. The inner ear 



156 C.M. Grimsley-Myers and P. Chen

sensory organs consist of stereotyped cellular patterns with distinct polarity features, 
offering an excellent opportunity to examine and dissect the underlying molecular 
and cellular mechanisms of the action of cilia in these signaling pathways. Indeed, 
the studies in the inner ear provide unequivocal evidence to support the essential 
roles of ciliary genes in PCP signaling and delineate the molecular events during 
PCP signaling. Ciliary genes are required for PCP signaling and regulate coordi-
nated polarization of sensory hair cells and convergent extension of the cochlear 
duct. In particular, ciliary genes play a role in the determination of the intrinsic 
polarity of individual cells by directing the position of the basal body. In addition, 
the primary cilium of the hair cells, the kinocilium, likely has roles not only in shap-
ing the polar mechanotransduction apparatus, the hair bundle, but also in mechan-
otransduction in vestibular hair cells. 

 The role of cilia in other signaling pathways, including Shh, canonical Wnt, and 
Notch signaling during inner ear development, however, has yet to be extensively 
tested. To date, there is no data to support the involvement of cilia in these signaling 
pathways during inner ear development. The limitations of the conditional knockout 
cilia mutant mice may account for the lack of phenotypes in the cilia mutant that are 
associated with these signaling pathways. Alternatively, these pathways may signal 
via cilia-independent mechanisms for inner ear development. 

 While the role for cilia genes in PCP regulation of the inner ear development is 
demonstrated by several studies, many key issues remain. It is not known how the 
cilium, basal body, or cilia proteins interact with polarized membrane-associated 
PCP complexes to regulate the polarity of each cell; how the cilium, basal body, or 
cilia proteins interact with the building machinery for the polar hair bundle; whether 
cilia are required for maintenance of PCP, and whether ciliary genes have cilia-
independent roles in PCP signaling. Future studies addressing these issues and aim-
ing to test and dissect the action of cilia in Shh, canonical Wnt, and Notch signaling 
during inner ear development will provide insightful information regarding this 
important cellular organelle and signaling pathways important for diverse develop-
ment and disease processes.      
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  Abstract   Obesity is an emerging public health concern that has numerous second-
ary health consequences, including heart disease, high blood pressure, diabetes mel-
litus, osteoarthritis, and overall reduced quality of life. Historically, obesity has 
been viewed as increased body fat caused by overconsumption of food, combined 
with the sedentary lifestyle of modern society. Simply put, energy input exceeds 
energy output, creating an excess in fat mass. This viewpoint largely focuses on 
environmental and social factors in the obesity epidemic. However, it fails to take 
into account a growing body of evidence from several monogenetic human obesity 
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disorders and mutant mouse and rat obesity models that indicate a profound role for 
genetic factors. Although most of these monogenetic human conditions are rare, it 
is clear that the study of their molecular and cellular etiology will offer insights into 
the mechanisms that regulate appetite and satiety. The objectives of this review are 
to discuss how mutations in genes required for the formation or function of the cil-
ium result in obesity in human and mouse models and how the cilium may function 
to regulate appetite and satiation responses.  

  Keywords   Obesity  •  Ciliopathy  •  Bardet-Biedl syndrome  •  Alström syndrome  
•  Neuronal cilia  •  Leptin  •  Intra fl agellar transport  •  Mouse models  •  Hedgehog  
•  Melanin concentrating hormone  •  Hyperphagia  •  Food anticipatory behavior  

       6.1   Ciliopathies Associated with Obesity 

 The cilium is a small microtubule based cellular appendage found on most mamma-
lian cells where it plays a crucial role as a complex sensory and signaling center (for 
a review on cilia signaling see Berbari et al.  2009  ) . There is now an emerging class 
of genetic diseases coined ciliopathies that is associated with dysfunction of the cil-
ium. Interestingly, the clinical features of ciliopathies range from renal cysts in 
humans with polycystic kidney disease (PKD1, OMIM #601313) to the cystic kid-
neys, skeletal anomalies, neurodevelopmental defects, heart malformations and peri-
natal lethality associated with Meckel-Gruber Syndrome (MKS1, OMIM # 249000) 
(for an in-depth review on ciliopathies see Sharma et al.  2008  ) . This broad scope of 
clinical features has been attributed to both the ubiquitous nature of the cilium and 
the types of mutations affecting its function. PKD, for example, is associated with 
mutations in signaling proteins that appear to have crucial roles in renal homeostasis, 
while the mutations in MKS are often associated with proteins found at the base of 
the cilium, where they are thought to play more general roles in cilia structural integ-
rity and the regulation of cilia protein composition. Until relatively recently much of 
our knowledge of cilia has come from studies in model systems focusing on the pro-
cess of building and maintaining the cilium, known as Intra fl agellar Transport (IFT) 
(for a review on IFT machinery see Pedersen and Rosenbaum  2008  ) . While the list 
of ciliopathies continues to grow at an incredible pace, our current understanding of 
how dysfunction of the cilium leads to some of the clinically observed phenotypes 
remains elusive. One of the clinical features where this is most evident is the hyper-
phagia-associated obesity that occurs in two ciliopathies, Alström Syndrome (ALMS, 
OMIM  #203800 ) and Bardet-Biedl Syndrome (BBS, OMIM #209900). The proteins 
affected in both of these disorders are associated with the cilium and are required for 
normal cilia function or formation. 

 Bardet-Biedl Syndrome (BBS) is a group of rare genetically heterogeneous dis-
orders resulting in an array of seemingly unrelated symptoms and progressive 
degenerative defects. A triad of symptoms including obesity, retinitis pigmentosa/
retinal degeneration, and polydactyly remains the hallmark for diagnosing the disease, 
as was the case when it was independently classi fi ed by Georges Bardet and Arthur 



1676 Neuronal Cilia and Obesity

Biedl in the early twentieth century (Bardet  1920 ; Biedl  1922  ) . Subsequent analysis 
has revealed that hypogonadism, renal dysfunction, and mental retardation are also 
highly prevalent among BBS patients. Nearly half of BBS patients are completely 
or partially anosmic and have de fi cits in thermosensation (Kulaga et al.  2004 ; Tan 
et al.  2007  ) . Also of consequence are the secondary features of BBS, including dia-
betes mellitus, hypertension, and heart disease, which develop likely as a result of 
the obesity. Less commonly, BBS patients can have  situs inversus , a defect often 
caused by dysfunctional cilia on the embryonic gastrulation stage structure called 
the node (Lorda-Sanchez et al.  2000 ; Deffert et al.  2007  ) . Among North American 
and European populations, BBS is relatively uncommon with an estimated occur-
rence of 1 in 120,000 live births, while in Middle Eastern populations it has been 
reported to be as high as 1 in 13,500 (Klein and Ammann  1969 ; Croft et al.  1995 ; 
Beales et al.  1997  ) . Although it is possible to detect the condition during gestation, 
patients are typically diagnosed when both obesity and retinal degeneration are 
apparent and polydactyly or mental de fi cits have been observed. 

 Confusion in diagnosing BBS exists, as a similar condition, Laurence-Moon 
Syndrome, is also a genetically-inherited disease in which patients present with 
retinitis pigmentosa and mental disability. This observation subsequently caused 
Solis-Cohens and Weiss to conclude that both diseases are synonymous and thus 
both disorders have been referred to as Laurence-Moon-Bardet-Biedl Syndrome. 
However, there is debate about the synonymous classi fi cation as the patients reported 
by Laurence and Moon displayed paraplegia of the lower extremities that is not 
typically associated with BBS. Furthermore, polydactyly and obesity are not gener-
ally traits of Laurence-Moon syndrome, while they are clinical hallmarks of BBS. 
Given that polydactyly is not fully penetrant among BBS patients, and that the obe-
sity experienced by most BBS patients can be attenuated or eliminated with diet and 
exercise, the lack of these symptoms does not necessarily mean the two disorders 
are not allelic variations (Beales et al.  1999 ; Ghadami et al.  2000  ) . 

 BBS has extensive genetic heterogeneity with 16 known loci ( BBS1-BBS16,  
Table  6.1 ). Mutations in  BBS1-10  are responsible for approximately 70% of known 
BBS cases, and even the identi fi cation of  BBS11-16  only added fractional amounts to 
that number; thus it remains almost certain that other  BBS  genes have yet to be found 
(Chen et al.  2011 ; Stoetzel et al.  2006 ; Leitch et al.  2008 ; Chiang et al.  2006  ) . Conversely, 
the genetic basis of Laurence-Moon is currently unknown, so it remains to be seen if 
the symptoms of Laurence-Moon are caused by mutations in  BBS  genes.  

 The mode of  BBS  inheritance is also complicated. Although originally believed to 
be a typical recessive Mendelian disorder, analysis by Katsanis et al .  demonstrated 
this may not always be the case (Katsanis et al.  2001  ) . In their study, the authors 
reported families where both affected and unaffected individuals could carry homozy-
gous mutant alleles of  BBS2 . However, the affected individuals were also heterozy-
gous for a mutation in a second BBS gene,  BBS6 . This phenomenon, which the authors 
named ‘triallelic inheritance’, demonstrates that manifestations of BBS phenotypes 
sometimes rely on mutations at a second locus and thus BBS may result from the 
overall genetic mutational load in a patient. However, analysis of the triallelic inheri-
tance hypothesis in several other BBS cohorts did not reveal evidence of triallelism 
suggesting this may be an exception (Mykytyn et al.  2003 ; Abu-Sa fi eh et al.  2012 ; 
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Smaoui et al.  2006 ; Laurier et al.  2006  ) . Information from these cohorts suggests that 
BBS is an autosomal recessive inherited disease. But these data cannot rule out pos-
sible contributions from unidenti fi ed  BBS  alleles and it remains possible that BBS can 
manifest through both an autosomal recessive fashion and triallelic inheritance. 

 The great degree of variability in both inheritance and symptoms presented by 
BBS patients leads to the question of whether there exists any correlation between 
the genes and mutations involved and the way the disease manifests itself. For 
example, while obesity and renal abnormalities are frequent, the degree of mental 
retardation or learning disabilities varies greatly, with patients from some families 
showing little or no mental de fi cits (Riise et al.  1997  ) . Thus, the relationship between 
BBS mutations and the expressivity of traits has been of great interest, but largely 
remains inconclusive with limited genotype-phenotype correlation. 

 Birth weight in BBS patients is usually normal, with obesity developing during 
childhood continuing into adulthood (Beales et al.  1999  ) . This observation indicates 
that the obese phenotype may not be a direct consequence of defects in develop-
ment, but rather due to errors in energy metabolism or appetite regulation. Evidence 
for this hypothesis is found in the fact that when compared to BMI matched con-
trols, BBS patients did not possess signi fi cant differences in body fat or resting 
metabolic rate (RMR) (Grace et al.  2003  ) . Although this information indicates that 
body fat and RMR is the same, subsequent work demonstrated that circulating 

   Table 6.1    Bardet-Biedl syndrome genes   

 BBS  Gene  Human locus  Motifs/domains  References 

 BBS1  BBS1  11q13.2  Beta propeller a   Mykytyn et al.  (  2002  )  
 BBS2  BBS2  16q12.2  Beta propeller a   Nishimura et al.  (  2001  )  
 BBS3  ARL6  3q11.2  ADP ribosylation 

factor-like 6 
 Chiang et al.  (  2004  )  

 BBS4  BBS4  15q24.1  TPR repeats a   Mykytyn et al.  (  2001  )  
 BBS5  BBS5  2q31.1  Pleckstrin homology a   Kulaga et al.  (  2004  )  
 BBS6  MKKS  20p12.2  Chaperone-like b   Slavotinek et al.  (  2000  )  
 BBS7  BBS7  4q27  Beta propeller a   Badano et al.  (  2003  )  
 BBS8  TTC8  14q31.3  TPR repeats a   Ansley et al.  (  2003  )  
 BBS9  PTHB1  7p14.3  Beta propeller a   Nishimura et al.  (  2005  )  
 BBS10  BBS10  12q21.2  Chaperone-like b   Stoetzel et al.  (  2006  )  
 BBS11  TRIM32  9q33.1  E3 Ubiquitin Ligase  Chiang et al.  (  2006  )  
 BBS12  BBS12  4q27  Chaperone-like b   Stoetzel et al.  (  2007  )  
 BBS13  MKS1  17q22  B9/C2  Leitch et al.  (  2008  )  
 BBS14  CEP290  12q21.32  Coiled-coil  Leitch et al.  (  2008  )  
 BBS15  WDPCP  2p15  Coiled-coil, WD40  Kim et al.  (  2010  )  
 BBS16  SDCCAG8  1q43  Globular, coiled-coil  Schaefer et al.  (  2011  )  

  Known  BBS  genes are listed with their location in the human genome as well as their known pro-
tein motifs and domains. Members of the BBSome are indicated with an a  and BBS chaperone 
proteins are indicated with an b  
  a Indicates a member of the BBSome protein complex (Nachury et al.  2007  )  
  b Indicates a member of a BBS chaperone protein complex (Seo et al.  2010  )   
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leptin and triglyceride levels were signi fi cantly higher in BBS patients compared to 
other BMI matched obese individuals, despite the fact that glucose tolerance and 
insulin resistance was comparable between the two groups (Feuillan et al.  2011  ) . 
Leptin has a known role in suppressing appetite, and this  fi nding supports the pos-
sibility that BBS patients have a higher degree of leptin resistance. Recent work in 
animal models have strongly implicated primary cilia as being necessary for regu-
lating appetite, and that cilia regulated signaling can be disrupted in mouse models 
of BBS (Davenport et al.  2007 ; Weatherbee et al.  2009  ) . However, the molecular 
mechanism causing this disease in BBS patients remains uncertain. 

 The other human ciliopathy associated with obesity is Alström syndrome 
(ALMS), which was  fi rst classi fi ed in 1959 (for a review of ALMS see Girard and 
Petrovsky  2011  ) . Human ALMS patients manifest with several symptoms including 
obesity, retinitis pigmentosa, and hearing loss with a tendency towards shorter 
stature, and a disruption in the growth hormone/Insulin-like growth factor 1 signaling 
axis. They also exhibit phenotypes likely related to their obesity that include diabetes 
mellitus and elevated leptin levels when compared to unaffected individuals 
(Maffei et al.  2007  ) . ALMS is a rare autosomal recessive disorder with an occur-
rence at less than 1 in 100,000 and is caused by mutations in the gene  ALMS1  
(Collin et al.  2002 ; Hearn et al.  2002  ) . To date, 81 different disease causing muta-
tions in  ALMS1  have been reported (Joy et al.  2007 ; Marshall et al.  2007  ) . The 
exact function of ALMS1 remains unknown, but clues to its possible cellular 
function were uncovered when it was found that ALMS1 is widely expressed and 
localizes to the centrosome and the basal body of the primary cilium in cultured 
human function cells (Hearn et al.  2005 ; Knorz et al.  2010  ) . Interestingly, dermal 
 fi broblasts derived from an ALMS patient had normal basal body localization and 
primary cilia assembly suggesting that ALMS1 might be involved in ciliary related 
signaling pathways, but not in establishing cilia architecture itself (Hearn et al. 
 2005  ) . In contrast, knockdown of  Alms1  by siRNA in mouse inner medullary 
collecting duct (mIMCD3) cells caused a stunted cilia phenotype, and also impaired 
their mechanical stimuli sensing abilities. This discrepancy in phenotype could be 
due to the nature of the mutation, which may not have caused a complete lack of 
protein function. 

 Although BBS and ALMS are relatively rare diseases, understanding how these 
proteins normally regulate satiation responses will provide important insights into 
molecular pathways that could be manipulated to control satiation and obesity.  

    6.2   Ciliopathy Mouse Models of Obesity 

 To better understand the causes of human obesity, genetically manipulated mouse 
models are continuously being developed with the ultimate goal of elucidating the 
molecular mechanisms driving the phenotype. Surprisingly, over the past decade the 
primary cilium has emerged as a key factor regulating satiation responses. The  Bbs  
and  Alms1  mouse models along with mutations affecting the Intra fl agellar transport 
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88 ( Ift88 ) gene have established a strong link between defects in cilia mediated 
sensory or signaling activity and obesity (Table  6.2 ). In this section, we will review 
data derived from several of the obesity mouse models that have been associated 
with ciliary dysfunction and highlight the proposed function of the affected 
proteins.  

    6.2.1   Bbs Mutant Mouse Models 

 Seminal work in the BBS  fi eld by Nachury et al. has shown that BBS proteins 1, 2, 4, 
5, 7, 8, and 9 form a ~450 kDa complex called the BBSome (Nachury et al.  2007  ) . The 
BBSome is thought to function in transport of membrane along with speci fi c trans-
membrane proteins to the cilium (Jin et al.  2010  ) . Of these BBSome genes, mouse 
models of  Bbs1 ,  2 ,  4 , and  8  have been generated and characterized. The validity of 
utilizing mice to model human BBS was demonstrated when a knock-in allele of the 
 Bbs1  M390R mutation, one of the most common single human BBS disease alleles, 
was created and replicated many of the human symptoms of BBS, including retinal 
degeneration, male infertility, and obesity (Davis et al.  2007  ) . Strikingly, these hall-
mark features of BBS are shared phenotypes among other mouse models of BBS such 
as  Bbs2  and  Bbs4  mutants (Mykytyn et al.  2004 ; Nishimura et al.  2004  )  (Fig.  6.1a ). 
Neurological defects were also observed. For example, disruption of  Bbs1  or  Bbs4  
caused cilia loss on the olfactory epithelium, and the same report demonstrated partial 
or total anosmia in a cohort of human BBS patients. These same studies found a com-
mon social dominance defect among  Bbs2  and  Bbs4  mutant mice, in which the 
mutants were more submissive to control mice. Although the olfactory and behavior 
phenotypes may not directly be related to the obesity seen in these mice, it does re fl ect 
the importance of the BBSome genes in the regulation of behavior     .  

 As in BBS patients, obesity is not present in young  Bbs  mutant mice. In fact, 
most Bbs mutant mice are initially runted, and it has been proposed that this is pos-
sibly due to olfactory defects that make it dif fi cult for pups to accomplish nipple 
searching and suckling (Eichers et al.  2006  ) . However, mutants eventually devel-
oped hyperphagia and became obese. The obesity phenotype also correlated with 
hyperleptinemia in  Bbs1  M390R knock-in mice. More recently,  Bbs8 -null mice 
have been reported that also have defects in olfactory function, as has been shown in 
 Bbs1  and  4  mutant mice. When these  Bbs8  mutant mice were crossed to an olfactory 
receptor reporter line (M72 TL ), severe defects in the targeting of olfactory sensory 
neurons became apparent, and individual axonal  fi bers seemed to wander, instead of 
terminating at a single glomerulus as in the control mice (Tadenev et al.  2011  ) . 
The axonal targeting defects reported in the  Bbs8  mutant mice further con fi rm the 
importance of the BBSome in proper neuronal development and signaling. 

 Other genes involved in human BBS that do not encode direct BBSome compo-
nents have been identi fi ed. These proteins share homology to chaperones, and there 
are indications that these too are necessary for normal activity of satiation pathways. 
These genes include  BBS6 ,  10 , and  12 , and they encode proteins that may be 
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  Fig. 6.1    Obese cilia mutant mouse models. ( a ) An obese  Bbs4   −/−   mutant ( right ) next to his wild-
type littermate ( left ). ( b ) An obese conditional  Ift88  mutant that has lost cilia throughout the central 
nervous system as the result of synapsin1-cre expression ( right ) next to a wild-type littermate ( left )       

necessary to stabilize the BBSome (Seo et al.  2010  ) . Of these three, only a mouse 
mutant of  Bbs6  (previously referred to as Mkks for its involvement in McKusick-
Kaufman syndrome) has been reported. As seen in the other BBSome mutant mice, 
 Bbs6  mutants display age dependent retinal degeneration and exhibit hyperphagic 
behavior leading to obesity with elevated leptin levels (Fath et al.  2005  ) . Furthermore, 
male infertility was reported due to a failure in the formation of spermatozoa 
 fl agella, similar to the  fi ndings of  Bbs1, 2 , and  4  mutant mice. 

 Not all known  BBS  genes fall into the category of being a BBSome complex 
member or having chaperone-like properties. This includes the  BBS3  gene that 
encodes the small GTPase ARL6. Mouse  Bbs3  mutants exhibit both retinal degen-
eration and male infertility due to loss of sperm  fl agella (Zhang et al.  2011  ) . In 
addition, severe hydrocephalus accompanied by altered beating of ependymal cilia 
was found, but no loss or obvious defects in primary cilia morphology were evident. 
Most strikingly however, was the apparent lack of an overt obesity phenotype in the 
 Bbs3  mutants. Likewise, leptin levels in the mutants were not statistically different 
than controls (Zhang et al.  2011  ) . Although the  Bbs3  mutants do not have a 
signi fi cant increase in body weight, they do have an increase in the amount of 
gonadal and retroperitoneal fat. The reason that  Bbs3  mutant mice do not display an 
obesity phenotype is unknown. It was proposed this may be due to the early onset 
hydrocephalus; however, it should be noted that obesity along with hydrocephalus 
is seen in some of the other Bbs models. The lack of an obesity phenotype could 
also be related to different functions of the Bbs proteins and differential effects they 
have on protein traf fi cking. Melanin concentrating hormone receptor1 (Mchr1) is a 
ciliary localized G protein coupled receptor (GPCR) known to have orexigenic 
effects. Intriguingly, in obese models such as  Bbs2  and  Bbs4  mutants, Mchr1 is not 
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present in the cilium while it does localize to in the cilia of cultured neurons from 
 Bbs3  mutants (Zhang et al.  2011  ) . It is also important to note that Bbs3 is neither a 
BBSome complex member nor a BBS chaperone protein, raising the possibility that 
Bbs3 has functions independent of the other BBS proteins. 

 In some cases, previously identi fi ed genes are now being recognized as belong-
ing to the BBS family. For example, mutations in the E3 ubiquitin ligase TRIM32 
was identi fi ed in BBS patient (hence called  BBS11 ) through the use of homozygos-
ity mapping with SNP arrays (Chiang et al.  2006  ) .  Trim32 / Bbs11  mutant mice dis-
play muscular dystrophy and a decreased concentration of neuro fi laments, as well 
as a reduction in myelinated motoraxon diameters (Kudryashova et al.  2009,   2011  ) . 
A small increase in body weight was found in the  Bbs11  mice when compared to 
controls, but this was only a 10% difference at 8 weeks of age (Kudryashova et al. 
 2009  ) . Much like Bbs3, Bbs11 is neither a BBSome complex member nor a BBS 
chaperon protein, and thus may also have independent or unique functions from the 
rest of the BBSome. However, it remains possible that the muscular dystrophy and 
reduction in motor axon myelination are precluding the emergence of an obesity 
phenotype. In addition, mutations in BBS11 can cause two distinct clinical disor-
ders; BBS and limb-girdle muscular dystrophy type 2H (LGMD2H). BBS pheno-
types were associated with N-terminal mutations (P130S) while LGMD2H appears 
to be caused by mutations in the C-terminal region (R394H, D487N, D588del, or 
T520TfsX13) that do not disrupt its ability to function in ubiquitination. 

 Studies of more recently identi fi ed BBS genes include  MKS1/BBS13  and 
 CEP290/BBS14 . However, current reports utilize  Bbs13  and  Bbs14  mutant mice 
that are either embryonically lethal and/or not true genetic nulls, thus making the 
potential role of  Bbs13  and 14 in obesity and appetite regulation ambiguous (Tadenev 
et al.  2011 ; Weatherbee et al.  2009 ; Lancaster et al.  2011  ) . Regardless, the fact that 
not all  Bbs  mutant mice have the same phenotypes indicates complexity and diver-
sity in the functions of the different  BBS  genes along with differential effects of the 
speci fi c mutations on gene function.  

    6.2.2   Mouse Model of Alström Syndrome 

 The other ciliopathy with obesity as a symptom is Alstr ö m syndrome. In contrast to 
BBS, Alström syndrome appears to be caused by mutations in a single gene  ALMS1 . 
The ALMS1 protein localizes to the basal body of ciliated cells, but the function of 
the protein is not certain (Hearn et al.  2005 ; Collin et al.  2005  ) . Mouse models cor-
responding to Alstr ö m syndrome have also been reported and include a gene-trapped 
allele ( Alms1  −/− ) and a spontaneous mutant ( fat aussie, foz ) (Arsov et al.  2006 ; Collin 
et al.  2005  ) . Mice lacking functional Alms1 are born at a normal weight much like 
their human counterparts. However, hyperphagic behavior and obesity ensue that is 
accompanied by hyperinsulinemia and type II diabetes. The  Alms1   −/−   mutant mice 
also have enlarged livers with the accumulation of lipid deposits, and the pancreas 
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is hyperplastic. In addition to obesity, mice lacking Alms1 display male infertility, 
as well as retinal and cochlear defects, all of which are reminiscent of cilia associated 
defects in human patients.  

    6.2.3   Obesity in the Intra fl agellar Transport Mutants 

 Cilia formation and maintenance, and possibly its signaling activity, is dependent on 
the intra fl agellar transport (IFT) system to mediate bidirectional transport of pro-
teins between the base and tip of the cilium. Null alleles of the  Ift88  gene (originally 
referred to as  Tg737  in mouse) caused early embryonically lethality and even hypo-
morphic alleles caused death prior to adulthood with systemic effects (Moyer et al. 
 1994 ; Murcia et al.  2000 ; Lehman et al.  2008  ) . The necessity of cilia for normal 
mammalian development has made analyzing possible roles of the cilium in satia-
tion and obesity dif fi cult. This problem was circumvented with the creation of con-
ditional alleles of  Ift88  and the IFT motor  Kif3a  (Marszalek et al.  1999 ; Haycraft 
et al.  2007  ) . Using a tamoxifen-inducible cre recombinase expressed from the actin 
promoter (CAGG-creER TM ) (Davenport et al.  2007  ) , cilia loss could be induced sys-
temically in adult mice. This was found to cause hyperphagia within 3 weeks of 
inducing cilia loss and subsequently caused obesity. Furthermore, the obesity phe-
notype was prevented by maintaining adult conditional cilia mutant mice on a 
restricted diet, wherein they were provided the same daily amount of food as normal 
controls consumed. This observation indicates that the obesity phenotype is caused 
by the lack of a satiation response that leads to the overconsumption and not a gen-
eral alteration in metabolic or locomotor activity. 

 The change in feeding behavior observed in the  Ift88  and  Kif3a  conditional 
mutant mice led to the possibility that cilia on neurons may be responsible for the 
obesity phenotype. To test this hypothesis, conditional  Ift88  and  Kif3a  mutant mice 
were crossed to synapsin1-cre mice to cause loss of cilia exclusively in neurons 
(Zhu et al.  2001  ) . As with the systemically induced cilia mutants, neuronal speci fi c 
cilia mutant mice became morbidly obese and strongly implicated a previously 
unappreciated role for neuronal cilia in regulating appetite (Fig.  6.1b ).  

 The hypothalamus is a critically important signaling center of the brain known 
to regulate appetite. This action is done in large part by neurons that express either 
pro-opiomelanocortin (POMC) or agouti-related protein (AgRP) that release sig-
naling factors ultimately suppressing or enhancing appetite, respectively (for a 
review see Mountjoy  2010  ) . Importantly, hypothalamic neurons each possess a 
single primary cilium, although the function of the cilium on these neurons is 
largely unexplored. To address the role of neuronal cilia and appetite,  Ift88  and 
 Kif3a  conditional mutants were crossed to POMC-cre or AgRP-cre expressing 
mice, to conditionally ablate cilia on POMC or AgRP expressing neurons, respec-
tively (Xu et al.  2005b  ) . By 6 weeks of age, both male and female POMC cilia 
mutant mice weighed signi fi cantly more than control mice, and continued to 
become morbidly obese into adulthood. This was not evident in the mice lacking 
cilia on AgRP neurons (Berbari and Yoder, unpublished data). Another observation 



1756 Neuronal Cilia and Obesity

that was reported in the POMC cilia mutant mice was an increase in the levels of 
leptin, fasting serum glucose, and insulin (Davenport et al.  2007  ) . This was 
observed only in the obese state and not in mice kept lean by pair-feeding, indicat-
ing that these elevated levels were a secondary consequence of the obesity. This 
report was signi fi cant for providing some of the initial evidence indicating the 
importance of neuronal cilia in regulating obesity.  

    6.2.4   Other Obesity Mouse Models 
Associated with Ciliary Proteins 

 In addition to the  Bbs ,  Alms1 , and  Ift88  mouse models there are several other 
mutant mouse strains supporting a connection between cilia and obesity. One 
prime example is a mutation in the type III adenylyl cyclase (ACIII). ACIII local-
izes to the primary cilia throughout the adult rodent brain (Bishop et al.  2007  )  
and loss of ACIII causes anosmia and obesity by 3 months of age. Interestingly, 
even when ACIII mutants do not weigh signi fi cantly more than wildtype siblings, 
they have an increased level of serum leptin (Wang et al.  2009  ) . It is interesting 
to note that a recent Genome Wide Association Study revealed there is a SNP 
near ACIII that is associated with obesity in humans (Hebebrand et al.  2010 ; 
Nordman et al.  2008  ) . 

 Another example may be the  tubby  mouse that was  fi rst identi fi ed at the Jackson 
Laboratory as a spontaneous mutant causing a maturity-onset obesity phenotype 
(Coleman and Eicher  1990  )  and subsequently regenerated by gene targeting 
(Ashra fi  et al.  2003  ) . The  tubby  mutants have progressive loss of hearing and vision 
(Ohlemiller et al.  1995  ) , similarities that are also shared with the  Bbs  and  Alms1  
mutant mice. The spontaneous  tubby  mouse possesses a single base pair mutation 
within a splice site of the gene  Tub  (named after the mutant mouse) resulting in the 
expression of an aberrant transcript. The functions of the Tub protein remain 
ambiguous, but it is found to be highly expressed in portions in the brain, including 
the arcuate nucleus of the hypothalamus (Kleyn et al.  1996  ) . The Tub protein is 
dispensable in assembly of the cilia, and no defects in the cilia assembly process of 
intra fl agellar transport (IFT) have been reported. Intriguingly, despite the fact that 
Tub has yet to be reported in mammalian primary cilia, a physical association 
between Tub and the IFT complex has been reported in an immortalized human cell 
line (Mukhopadhyay et al.  2010  ) . Further evidence for a ciliary role of Tub can be 
found with the  C. elegans  homolog  tub-1  that undergoes transport along the ciliary 
axoneme (Mukhopadhyay et al.  2005  ) . Like the  tubby  mouse,  C. elegans  with a 
deletion of  tub-1  show an increase in fat content, suggesting an evolutionarily 
conserved role of the gene in regulating fat storage. Other proteins in the tubby 
family of proteins have also been implicated as having ciliary roles. For example, 
tubby-like protein 3 ( Tulp3 ) localizes to the primary cilia during mouse development, 
and is necessary for proper Shh signaling but its association with obesity has not yet 
been determined (Norman et al.  2009  ) .   
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    6.3   Potential Molecular Mechanisms 
of Ciliopathy Associated Obesity 

 The hyperphagia induced obesity is one of the more intriguing phenotypes of cil-
iopathies that remains to be fully explained. There are indeed several possibilities 
described in the literature as to how loss of the cilia could alter states of satiety and 
appetite. Here we review a few of the candidate molecular pathways that may play 
roles in obesity associated with cilia dysfunction. These possibilities include primary 
de fi cits in leptin signaling, altered G-protein coupled receptor (GPCR) signaling, and 
abnormal regulation of mTor and hedgehog signaling pathways (Table  6.3 ) .

    6.3.1   Cilia and the Leptin Signaling Axis 

 While the conditional allele of  Ift88  implicated a role for neuronal cilia in satiety 
and more speci fi cally a role for POMC neuronal cilia, this study did not specify a 
molecular framework for the underlying hyperphagia phenotype (Davenport et al. 
 2007  ) . More recent data has aimed to accomplish this by showing that Bbs1, a com-
ponent of the BBSome, directly binds to the leptin receptor and that BBS proteins 
may have a role in leptin receptor traf fi cking (Fig.  6.2a ) (Seo et al.  2009  ) . The initial 
identi fi cation of the leptin gene encoding a small protein hormone in the spontane-
ous obese mouse mutant  ob/ob  was the source of much excitement (Zhang et al. 
 1994  ) . Importantly, leptin suppresses feeding activity and it is secreted into serum 
at levels proportionate to the amount of adipose tissue, the hormone’s primary 
source (Considine et al.  1996  ) . Interestingly, these recent studies in  Bbs2 ,  Bbs4 , and 
 Bbs6  mutant mice also revealed that they are hyper-leptinemic and importantly, they 
fail to reduce food intake in response to IP or ICV injection of leptin (Rahmouni 
et al.  2008  ) . Thus, defects in leptin signaling were thought to contribute directly to 
the obesity phenotype in BBS.  

 The excitement surrounding leptin’s initial discovery was attenuated when it was 
determined that nearly all obese mice and humans have markedly elevated levels of 
circulating leptin, yet do not have normal leptin-mediated repression of appetite 
(Considine et al.  1996 ; Maffei et al.  1995  ) . This barrier phenomenon is known as 
 leptin resistance , the mechanism of which remains an active area of research. Thus, 
in obesity research, one challenge is determining whether leptin resistance is a pri-
mary cause or a consequence of the obesity. One approach used to overcome this 
situation is to decrease the amount of adipose tissue, and consequently the levels of 
circulating leptin, through caloric restriction. Interestingly, when this was performed 
on the BBS mutant mouse models to maintain body weight and leptin levels as seen 
in controls, they were still resistant to leptin, suggesting leptin signaling defects are 
a primary cause of the phenotype (Seo et al.  2009  ) . However, the study did not take 
into account a phenomenon called  food anticipatory behavior  wherein the mice 
alter their meal structure in response to the calorie restriction such that they consume 
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nearly all of their calories within the  fi rst few hours of food access    (for a review on 
anticipatory feeding behavior and methods see Mistlberger  2009  ) . Interestingly, 
during this entrained period the mice consume nearly the same amount of food as 
they were given during calorie restriction, even when they are given  ad libitum  
amounts of food. This entrained behavior persists for over a week and during this 
period the mice do not reduce food intake in response to leptin and thus appear 
leptin resistant (Berbari and Yoder unpublished). This feeding behavior resulting 
from the anticipation of food is in large part thought to be the result of a feeding 

  Fig. 6.2    Potential ciliary signaling pathways necessary for appetite regulation. ( a ) Depicts the 
leptin receptor interacting with Bbs1 of the BBSome near the base of the cilia where it has been 
proposed to be available for leptin activation and subsequent phospho-Stat3 induction and translo-
cation to the nucleus. ( b ) A depiction of cilia speci fi c GPCRs such as Mchr1, Sstr3, Drd1, and 
5HT6, and their potential effector ACIII and G proteins such as G 

s/q/i,o
 . ( c ) The Hedgehog signaling 

pathway, with patched repressing smoothened translocation into the cilium until ligand stimula-
tion, upon which Gli transcription factors are processed from the inhibitor to the activator forms 
followed by subsequent translocation to the nucleus       
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clock, somewhat analogous to but distinct from the circadian clock (Mistlberger 
 2009  ) . It remains to be seen whether either  Bbs  or  Ift  conditional mice would respond 
to leptin when both body weight and anticipatory feeding behavior are experimen-
tally controlled. This would require testing animals for leptin sensitivity after dete-
rioration of the food anticipatory behavior. 

 The BBS studies utilized congenital mutants and reported a loss of approxi-
mately 20% of the leptin responsive pro-opiomelanocortin (POMC) neurons in the 
arcuate nucleus of the hypothalamus (Seo et al.  2009  ) . Thus, the authors propose 
that improper leptin receptor traf fi cking in POMC neurons of the arcuate nucleus 
leads to their inability to sense leptin and thus mediate its anorectic effects. While 
several possibilities exist for the loss of 20% of POMC neurons in  Bbs  mice, it is of 
note that alteration in the Foxo1/Insulin signaling pathway have resulted in similar 
changes in adult POMC neuronal populations (Plum et al.  2012  ) . Loss of POMC 
neurons in  Bbs  models could be the result of neurodevelopmental changes or pos-
sibly maintenance of POMC neuron population through altered adult neurogenesis 
that lead to the hyperphagic phenotype. Similarly, the obesity phenotype observed 
in the hyperphagic  Ift88  conditional POMC-cre model could be a hypothalamic 
developmental phenotype. However, the rapid onset of obesity upon ubiquitous loss 
of cilia induced by the actin promoter driving cre line (CaGG-CreER) in adult mice 
suggests that cilia play a direct role in appetite and satiety. What is needed is an 
investigation using inducible cilia mutants in POMC neurons or other neuronal 
populations implicated in feeding behavior in order to elucidate the role of primary 
cilia signaling in appetite and satiety.  

    6.3.2   Cilia and Melanin-Concentrating Hormone Pathway 

 While both genetic models and biochemical approaches have informed our current 
understanding of BBS the precise mechanism behind BBS-associated obesity 
is unknown. Many of the BBS proteins form a protein complex (BBSome) that is 
involved in proper cilia membrane formation (Nachury et al.  2007  ) . Indeed there is evi-
dence that the BBSome may be a membrane vesicle coat complex that is critical for 
establishing and maintaining the cilia membrane’s signaling capabilities by directing 
speci fi c receptors to this compartment (Jin et al.  2010  ) . Furthermore,  Bbs  mutant 
mouse models appear to improperly localize several cilia-speci fi c GPCRs, and most 
relevant with regard to obesity is the melanin-concentrating hormone receptor 1 
(Mchr1) (Berbari et al.  2008  ) . Mchr1 couples through G a i to reduce cAMP and 
decreases the frequency of spontaneous action potentials in hypothalamus (Gao and 
van den Pol  2001,   2002  ) . Mch injections induce feeding behavior while Mchr1 mutant 
mice are resistant to diet induced obesity (Gomori et al.  2003 ; Chen et al.  2002  ) . 
Intriguingly, Mchr1 fails to localize normally in neuronal cilia of  Bbs2 ,  Bbs3 , and 
 Bbs4  mutant mice (Berbari et al.  2008 ; Zhang et al.  2011  ) . Thus in both  Ift88  and  Bbs  
obese mutants, Mchr1 fails to be properly localized creating a defect in Mchr1 
 signaling, possibly leading to the hyperphagic behavior in these models. Both 
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 pharmacological and genetic agonism of the Mchr1 pathway are associated with 
hyperphagia while antagonism is associated with anorectic behavior, as such 
 antagonism of this receptor has been of interest to the pharmaceutical industry 
(Qu et al.  1996 ; Borowsky et al.  2002 ; Ludwig et al.  2001 ; Shimada et al.  1998 ; Chen 
et al.  2002  ) . However, assuming that the obese phenotype behind both  Bbs  and  Ift  
models is driven by a similar molecular pathway, then one would have to propose that 
in the absence of the cilium or the ability to reach the cilium that the Mchr1 pathway 
is ectopically activated or not ef fi ciently desensitized after activation. 

 While there is circumstantial evidence for Mchr1 cilia mis-localization driving 
hyperphagia in cilia mutant mouse models, it is interesting to note that there is an 
emerging list of GPCRs that preferentially localize to neuronal cilia in different 
regions of the brain (Fig.  6.2b ). Some of these neuronal cilia speci fi c GPCRs include 
somatostatin receptor 3 (Sstr3), serotonin receptor 6 (5HT6), and dopamine receptor 
1(Drd1) (Handel et al.  1999 ; Schulz et al.  2000 ; Hamon et al.  1999 ; Brailov et al. 
 2000 ; Marley and von Zastrow  2010 ; Domire et al.  2011  ) . While the signi fi cance of 
localizing these receptors within the ciliary compartment remain unknown, it is enticing 
to speculate that perhaps they may play a role in appetite and satiety, especially when 
one considers that the somatostatin, serotonin, and dopaminergic systems have all 
been implicated in either reward or feeding behaviors directly (Vijayan and McCann 
 1977 ; Aponte et al.  1984 ; Pollock and Rowland  1981 ; Salamone et al.  1990  ) .  

    6.3.3   Cilia and the Mammalian Target 
of Rapamycin (mTOR) Pathway 

 Another pathway that may be involved in neuronal cilia regulation of satiation is the 
mammalian target of rapamycin (mTOR) pathway. mTOR signaling is complex and 
involves many factors (for an in depth review of mTOR and disease see Dazert and 
Hall  2011  ) . mTOR is a serine/threonine protein kinase which as its name implies 
can be inhibited by the antifungal rapamycin. It has been established as a regulator/
coordinator of cellular metabolic activity that responds to both the energy and stress 
levels experienced by the cell. It carries out these regulatory roles by participating 
in two protein complexes, the rapamycin-sensitive mTOR Complex 1 and the 
rapamycin-insensitive mTORC2. In general mTORC1 regulates translational con-
trol and mTORC2 is involved in cytoskeleton organization. While the functions of 
mTOR and its interactors have been determined in considerable detail at the genetic 
and cellular levels, the effects of mTOR signaling on the organismal level continue 
to emerge. Interestingly, there are several reports associating the cilium or its signal-
ing proteins with overactivation of mTOR activity or in changes in the cytoskeleton 
and cell size (Sharma et al.  2011 ; Bell et al.  2011 ; Boehlke et al.  2010  ) . In addition, 
rapamycin is able to partially rescue renal cystic disease in mouse models of PKD, 
further supporting a connection between cilia and mTOR (Shillingford et al.  2006, 
  2010  ) . While the  in vivo  relevance of cilia and mTOR signaling with regards to the 
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obesity phenotype in cilia mutants remains to be determined, it is of note that mTOR 
signaling within the hypothalamus has been associated with obesity in other animal 
models (Cota et al.  2006  ) . It will be interesting to determine if mTOR signaling 
activity within adult neurons is regulated through neuronal cilia and in fl uences feed-
ing behavior.  

    6.3.4   Hedgehog Signaling and the Cilium 

 The  fi nal pathway that we will discuss with regard to neuronal cilia and obesity is 
the hedgehog (Hh) pathway. Hh and its role in cilia and neuronal development is 
reviewed in Chap.   2     of this work by Mariani and Caspary. Several groups have 
demonstrated that canonical hedgehog signaling in mammalian cells utilizes the 
ciliary compartment. This is best demonstrated by the transient localization of sev-
eral of the pathway components to the cilium and altered pathway activity when the 
cilium has been disrupted (reviewed in detail by Goetz and Anderson  2010  ) . With 
regard to hedgehog signaling and neuronal cilia, there is a consensus emerging that 
primary cilia within the adult central nervous system sense hedgehog ligand and 
mediate the process of adult neurogenesis (Breunig et al.  2008 ; Han et al.  2008  ) . 
Furthermore when neuronal cilia-mediated hedgehog signaling is altered in a gain 
of function fashion it can result in medulloblastoma and when it is disrupted in a 
loss of function fashion in the developing brain it is associated with a range of neu-
rodevelopmental phenotypes (Chizhikov et al.  2007 ; Han et al.  2009  ) . 

 If altered hedgehog signaling and cilia mutations have such profound effects on 
the adult and developing nervous system, how may they account for the hyper-
phagia associated obesity in adults? In both  Ift  conditional and  Bbs  models the pos-
sibility that altered hedgehog signaling in the developing hypothalamus can lead to 
obesity in adulthood has yet to be thoroughly investigated. For example, POMC-cre 
 conditional  Ift88  mutant models appear normal other than the onset of hyperphagia 
and obesity, but the potential for a developmental phenotype remains. This becomes 
important when the expression pattern of POMC is taken into account. POMC is 
known to be expressed in places outside of the arcuate nucleus, of the hypothalamus 
such as the nucleus tract solitarius of the hindbrain, and the anterior and intermedi-
ate lobe of the pituitary in neonatal animals (Xu et al.  2005a  ) . This becomes particu-
larly important when the crucial role of hedgehog not only in the developing neural 
tube but also in the developing hypothalamus is taken into account (Szabo et al. 
 2009 ; Alvarez-Bolado et al.  2012  ) . To address these potentials both  Ift  and  Bbs  con-
ditional models need to be tested with inducible POMC-cre deletion. These experi-
ments would also be useful in assessing whether different molecular mechanisms 
may be involved in driving obesity in Bbs and Ift mouse models. 

 The possibility remains that hedgehog signaling, which is required for adult 
 neurogenesis is disrupted, thus contributing to hyperphagia. There are also reports 
of adult neurogenesis within the hypothalamus (Kokoeva et al.  2005 ; Xu et al. 

http://dx.doi.org/10.1007/978-94-007-5808-7_2
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 2005c ; Pierce and Xu  2010 ; Lee et al.  2012  ) . Perhaps this process is compromised 
in CAGG-creER; Ift88  conditional mutants. However, hyperphagic behavior is 
observed within 3 weeks of cilia loss in these mice and thus it may not have suf fi cient 
time to be a result of altered adult neurogenesis. 

 Finally a third potential for a non-canonical form of hedgehog signaling exists in 
the adult hypothalamus that requires neuronal cilia. The relevance of a non-canoni-
cal Hh pathway emerges when the expression pattern of certain pathway compo-
nents in the adult brain is analyzed. For example, the Hh receptor, Patched, is 
expressed in regions of the brain that do not co-express the Hh effector Smoothened 
(Traiffort et al.  1998,   1999  ) . This incongruence in pathway component expression 
pattern is especially true with regard to the hypothalamus (for a review of hedgehog 
in the adult brain see Traiffort et al.  2010  ) . Furthermore it has been shown that 
hedgehog can directly alter neuronal activity (Bezard et al.  2003 ; Pascual et al. 
 2005  ) . In developing spinal neurons, Hh stimulation causes a transient increase in 
Ca2+ activity that was dependent on Smo and G a i (Belgacem and Borodinsky  2011  ) . 
Since hedgehog pathway components such as Patched are expressed in the adult 
hypothalamus, it is feasible that cilia may alter satiation responses through regula-
tion of neuronal  fi ring activity (Traiffort et al.  1998,   1999  ) . Exploring whether loss 
of cilia alters this increase in Ca 2+  in response to Hh in POMC neurons could prove 
to be a very fruitful avenue of investigation to connect cilia dysfunction to abnormal 
satiation.   

    6.4   Non-Mammalian Ciliopathy Models of BBS 

 Although more distantly related to human beings than mice, non-mammalian mod-
els have proven to be invaluable to the study of the role of human cilia and their 
relation to disease. This is particularly evident in the study of the assembly and 
maintenance of the cilium through IFT, and how disruption of this event can lead to 
certain phenotypes. This process, referred to as intra fl agellar transport (IFT), was 
largely characterized biochemically using the small green algae,  Chlamydomonas , 
and genetically using  C. elegans  (for an in depth review see Pedersen and Rosenbaum 
 2008  ) . In this section we focus solely on the genes and proteins known to be associ-
ated with the obesity phenotype observed in ciliopathies, as such it will largely 
focus on the functional roles of the BBS genes in both  Chlamydomonas reinhardtii  
and  Caenorhabditis elegans , two of the most well studied non-mammalian organ-
isms in regards to cilia/ fl agella biology 

 While  Chlamydomonas  has served as good model for biochemical puri fi cation 
of  fl agellar and IFT components it has also proven useful for comparative genom-
ics studies in discovering new ciliopathy genes, such as  BBS5  (Kulaga et al.  2004  ) . 
Through the use of this simple model, elegant studies have begun to shed new 
light on how the BBS proteins may function as modulators of ciliary signaling and 
even serve as structural components of the transition zone (Lechtreck et al.  2009 ; 
Craige et al.  2010  ) . 



1836 Neuronal Cilia and Obesity

 Much of what we know about the molecular motors that mediate cilia formation 
and maintenance has come from studies visualizing IFT movement in the cilia of  C . 
 elegans . In  C. elegans  cilia of the sensory neurons it has been demonstrated that 
both BBS7 and BBS8 serve as adaptors to the IFT complexes and their cargoes 
(Blacque et al.  2004  ) , however, whether they play similar roles in mammalian sys-
tems has not been determined. Interestingly, it has been shown that  C. elegans  cili-
ary morphology can change dependent on cilia-mediated signaling and that the 
phenotypes of  bbs  mutant worms can be ameliorated by altering the downstream 
second messengers (Tan et al.  2007 ; Mukhopadhyay et al.  2008 ; Mok et al.  2011  ) . 
Recent work has also suggested that altered neuroendocrine signaling and exocyto-
sis of factors such as insulin drives many of the phenotypes observed in  bbs  mutant 
worms (Lee et al.  2011  ) . Interestingly, another study points to more general roles for 
bbs proteins in cilia membrane homeostasis (Kaplan et al.  2012  ) . Although the 
invertebrates lack many of the organ systems present in mammals, it is clear that 
both  C. elegans  and  Chlamydomonas  models offer advantages in both cost, time and 
in some instances genetic tractability. These models will continue to provide insights 
into the fundamental processes that are mediated by the ciliopathy proteins and the 
cilium and thus further serve to inform our understanding of complex phenotypes 
such as feeding behavior and the regulation of appetite and satiety.  

    6.5   Conclusion 

 In summary, remarkable progress has been made in the past 20 years demonstrat-
ing the clinic importance of the cilium in may tissues and developmental processes. 
Despite this progress, there remain several key questions that must be addressed 
before we can understand the molecular and cellular mechanisms responsible. 
Hopefully, as research on the rare ciliopathies advances we will gain an under-
standing of fundamental processes such as satiety and appetite that we can then 
apply to direct therapeutic strategies for an exceedingly common clinical feature 
such as obesity.      
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  Abstract   Unlike immotile cilia, which protrude from most cells in our body, motile 
cilia are restricted to sperm cells and epithelial cells lining the airways, the oviduct, the 
paranasal sinuses, and the brain ventricles. The best-known function of these cilia is that 
their coordinated beating generates extracellular  fl ow that clears mucus from the air-
ways, moves ova from the oviducts toward the uterus, and propels cerebrospinal  fl uid 
(CSF) through the cerebral ventricles. The vertebrate brain forms around a ventricular 
cavity in which the CSF, secreted by the choroid plexus in each ventricle,  fl ows continu-
ously. The CSF, which contains many growth factors and morphogens, is present from 
the  fi rst stages of brain development and plays crucial roles throughout life. Ependymal 

    N.   Spassky   (*)
     INSERM U1024, CNRS UMR 8197 ,  Institut de Biologie de l’Ecole 
Normale Supérieure ,   46 rue d’Ulm ,  75005   Paris ,  France    
e-mail:  nathalie.spassky@ens.fr   

    Chapter 7   
 Motile Cilia and Brain Function: Ependymal 
Motile Cilia Development, Organization, 
Function and Their Associated Pathologies       

         Nathalie   Spassky         



194 N. Spassky

cells are specialized glial cells that extend multiple motile cilia into the cerebral ventricles. 
These cells appear at early postnatal stages and line all cerebral ventricles in adult mam-
mals. In this chapter, we will review current knowledge on ependymal motile cilia devel-
opment, organization, functions, and their associated pathologies.  

  Keywords   Ependyma  •  Motile cilia  •  Cerebral ventricles  •  9 + 2  •  Cerebrospinal 
 fl uid  •  Multiciliated cells      

    7.1   Introduction 

 Motile cilia are microtubule-based structures protruding from the apical surface of 
epithelial cells in different organs such as the airways, the female reproductive tract 
and the brain. Each cilium is arranged in the classic 9 + 2 con fi guration (9 pairs of 
microtubules in the periphery and 2 pairs in the center) and coordinately beat to 
produce large-scale  fl uid  fl ows crucial for the development and physiology of these 
organs. Indeed, genetic diseases in which ciliary beating is affected often leads to 
loss of ciliary  fl ow linked to bronchiestasis and chronic sinusitis, ectopic pregnancies, 
hydrocephalus and defects in neurogenesis. In the brain, multiciliated ependymal 
cells line all ventricular walls in which CSF  fl ows continuously thanks to the coor-
dinated beating of their motile cilia. We discuss the main current knowledge on 
development and functions of brain motile cilia and ependyma cells.  

    7.2   The Brain Ventricular System 

    7.2.1   The Brain Ventricles 

 The vertebrate brain forms around a ventricular system composed of four intercon-
nected cavities  fi lled with cerebrospinal  fl uid (CSF): The two lateral ventricles 
located in the cerebrum are linked to the third ventricle located in the diencephalon 
via the interventricular foramen of Monro. The cerebral aqueduct links the third and 
fourth ventricle, which lies between the cerebellum and pons. The fourth ventricle 
joins the spinal cord canal and the subarachnoid space that envelops the brain via 
the left lateral aperture (foramen of Lushka) and the median aperture (foramen of 
Magendie and the spinal cord canal) (Fig.  7.1 )   

    7.2.2   The Cerebrospinal Fluid (CSF) 

 The CSF is constantly produced by the choroid plexus in each ventricle, by  fi ltering 
blood through choroidal capillaries and epithelial cells. The bulk CSF  fl ows unidi-
rectionally, from the lateral to the third and fourth ventricles and then out into the 
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subarachnoid space surrounding the brain where it is absorbed into the hematopoi-
etic circulatory and lymphatic systems. The driving force of the CSF bulk  fl ow is 
actively supported by arterial pulsations and pressure gradients produced by secre-
tion and absorption (Bering  1955 ; Wagshul et al.  2006  ) . Inside each ventricle and 
depending on their size and shape (i.e. in large mammals like humans or sheep com-
pared to rodents), the CSF may  fl ow locally against the bulk  fl ow, creating local tur-
bulence. Along the ventricular walls, the laminar  fl ow of CSF is mainly directed by 
the coordinated beating of ependymal cilia in the direction of the bulk  fl ow (Nguyen 
et al.  2001 ; Fig.  7.1 ). The total volume of the CSF in humans is around 140 ml and 
constitutes 18% of the volume of an adult human brain: about 30 ml is inside the 
ventricles, the remainder surrounds the brain (Segal  2000  ) . The CP produces around 
500 ml of CSF per day in a young adult, suggesting that human CSF is completely 
replaced about three times every 24 h. In the young adult rat, which has about 200  m l 
CSF, it takes about 2 h to replace the CSF (Veening and Barendregt  2010  ) . In a 
healthy normal individual, the CSF contains more than 2,600 different peptides and 
proteins (Schutzer et al.  2010  ) . The CSF is vital to the health of the brain; it protects 
it from physical damage, facilitates the removal of metabolites and provides nutrients 
(Segal  2001  ) . It also contributes to brain development, homeostasis, adult neurogen-
esis and repair by providing physical and chemical cues (Miyan et al.  2003  ) .  

  Fig. 7.1    Drawing of a sagittal view of mammalian cerebral ventricular system. CSF is secreted 
( blue arrows ) by the choroid plexuses ( red ) in each ventricle. The bulk CSF  fl ows unidirectionally 
( yellow arrows ) and into the suarachnoid space via the apertures ( green arrows )       
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    7.2.3   Cells in Contact with the Cerebral Ventricles 

    7.2.3.1   Cells Extending Motile Cilia 

    Multiciliated ependymal cells (E1 cells) are the most abundant epithelial cells lin- –
ing the lateral, third and fourth ventricles, and are CD24 + , S100 b  + , FoxJ1 + , Sox2 +  
and CD133 +  but nestin −  and GFAP − . These cells are cuboidal with a light cyto-
plasm and spherical uninvaginated nuclei containing dispersed chromatin. 
Abundant mitochondria are localized near the basal bodies (Doetsch et al.  1997 ; 
Mirzadeh et al.  2008  ) . The lateral processes of adjacent ependymal cells are heav-
ily interdigitated and contain apical adherens and tight junctional complexes and 
gap junctions. Ependymal cilia are motile and measure 8–15  m m in length (aver-
age size: 11.5  m m), protruding in the cerebral ventricles (Mirzadeh et al.  2008, 
  2010 ; Hirota et al.  2010 ; Fig.  7.2 ). The surface exposed to the ventricular cavity is 
variable in size (from 100 to 600  m m 2 , average size: 265  m m 2 ) and contains a patch 
of 32–73 (mean: 49) basal bodies separated by 250 nm. In contrast to other epi-
thelia containing motile cilia, in which basal bodies cover the entire apical sur-
face, the basal body patch occupies only 4–35% of the total apical surface of the 
ependymal cells and is positioned downstream with respect to the direction of cili-
ary beating. In the adult, multiciliated ependymal cells do not divide (Capela and 
Temple  2002 ; Spassky et al.  2005  )  and the best known function of ependymal 
cilia is to create a constant laminar  fl ow of CSF through the cerebral ventricles. 
For ef fi cient  fl uid  fl ow, the ependymal cilia must beat in the same direction and in 

  Fig. 7.2    Drawing of cells in contact with the lateral ventricles in the mouse adult brain (Modi fi ed 
from Mirzadeh et al.  (  2008  ) )       
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a coordinated fashion. This coordinated or “metachronic” beating of adjacent 
cilia, seen as waves propagating over the surface of ciliated cells, is possibly 
mediated by tight coupling of the cells through gap junctions (Scott et al.  1974 ; 
Fig.  7.3 ). The close spatial relationships among cilia and the hydrodynamic inter-
actions generated by their beating are believed, however, to be the most important 
factors for ciliary coordination on ependymal surfaces (Sanderson and Sleigh 
 1981 ; Salathe  2007 ; Guirao    and Joanny  2007 ; Guirao et al.  2010 ; Fig.  7.3 ). The 
beating of ependymal cilia is highly asymmetrical, similar to that of motile cilia 
in other organs, such as airway epithelia and the oviduct. The beat begins with the 
formation of a large curve at the base of the cilium that sweeps the cilium forward 
in an effective stroke. The cilium then returns to its initial position through the 
propagation of the curve during the recovery stroke (Lechtreck et al.  2008  ) . The 
waveform of the ependymal ciliary beat is nearly planar, creating a constant lami-
nar  fl ow of  fl uid: the effective stroke signi fi cantly displaces the  fl uid in the direc-
tion of the beat, whereas the recovery stroke has a minimal effect on  fl uid 
displacement. The frequency of ciliary beats is around 30 Hz under basal condi-
tions, but may be modulated by external signals; for example, it may increase to 
50 Hz after application of serotonin (5-HT, which causes a prolonged increase of 
intracellular Ca 2+  due to the opening of Ca 2+  release-activated Ca 2+  channels on the 
plasma membrane; Nguyen et al.  2001  )  or adenosine receptor agonists (due to A 

2B
  

receptor activation, Genzen et al.  2009  ) . It can be decreased by application of ATP 
through intracellular Ca 2+ -independent, purinergic receptors and an intracellular 
cAMP-mediated pathway (Nguyen et al.  2001  ) .    
  Bi-ciliated ependymal cells: are sparsely distributed throughout the lateral wall of  –
the lateral ventricles (5% of cells contacting the lateral ventricle; called E2 cells; 
Fig.  7.2 ) and are the most common cells observed in the adult mouse spinal cord 
(Ecc cells). At the ultrastructural level, E2 and Ecc have deeply interdigitated cell 
membranes with long lateral extensions, light cytoplasm, small dictyosomes 
(abundant cisternae of rough endoplasmic reticulum and polyribosomes) and 

  Fig. 7.3    Drawing of ependymal ciliary beating coordination leading to metachronal waves propa-
gating over the surface of the cells and ef fi cient  fl uid  fl ow in the cerebral ventricles       
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spherical uninvaginated nuclei containing dispersed chromatin. They have 
abundant mitochondria concentrated around the nucleus and two complex basal 
bodies anchored at the apical surface with 9 + 2 motile cilia. They are stained with 
antibodies against CD24, vimentin, Dlx2, S100 b  and GFAP (Doetsch et al.  1997 ; 
Danilov et al.  2009  ) . They form specialized intercellular tight and adherens junc-
tions with E1 cells. It has been proposed that E2 cells may serve as mechanical or 
chemical sensors of CSF  fl ow or composition (Bruni  1998 ; Mirzadeh et al.  2008  ) . 
It is not known whether these cells are mitotically active. In the mouse spinal 
cord, Ecc cells are Vimentin + , CD24 + , FoxJ1 + , Sox2 +  and CD133 +  but nestin −  and 
GFAP − . These cells resemble E2 cells in the lateral ventricles, but their basal bod-
ies are different: Each basal body is associated with complex pericentriolar elec-
tron-dense particles organized into multiple (up to six) radial spikes. Ecc cells are 
mitotically active, but the timing of their greatest proliferation together with the 
distribution of pairs of BrdU-labeled cells at different time points after injection 
suggest that proliferation of these cells contributes to the extension of the central 
canal during spinal cord growth (Alfaro-Cervello et al.  2012  ) .     

    7.2.3.2   Other Cells 

    Tanycytes are bipolar cells with microvilli and primary cilia (9 + 0 structure) that  –
mostly contact the third ventricle, although a few have been observed in the lat-
eral walls of the lateral ventricles (Doetsch et al.  1997  )  and in discrete locations 
around the central canal of the spinal cord. Tanycytes share some features with 
radial glia and astrocytes: they stain strongly with antibodies against GFAP, nes-
tin, Glast, vimentin Sox2, S100 b  and the functional receptors for the neurotrans-
mitters  g -aminobutyrate (GABA) and glutamate (Rodriguez et al.  2005 ; Hamilton 
et al.  2009  ) . In the third ventricle, tanycytes connects the CSF to the hypothala-
mus portal system and several studies provide molecular features suggesting that 
they link the CSF to neuroendocrine events (Rodriguez et al.  2005  ) .  
  Astrocytes are multipolar cells localized in the subventricular zone of the lateral  –
ventricles. These cells represent one-third of all lateral ventricle-contacting cells 
and were demonstrated to be the adult neural stem cells (Doetsch et al.  1999  ) . 
These cells were also observed along the central canal of the adult mouse spinal 
cord (Martens et al.  2002  ) , the most dorsal of which were identi fi ed as neural 
stem cells (Sabourin et al.  2009  ) . In the lateral ventricle, their apical process 
contains a primary cilium and form rosette-like clusters surrounded by multicili-
ated ependymal cells, although the functional signi fi cance of this architecture is 
still unknown (Mirzadeh et al.  2008 ; Fig.  7.2 ).  
  An extensive plexus of axons originating mainly from serotoninergic neurons  –
in the dorsal raphe nucleus in the reticular formation have been found on the 
ventricular surface of multiciliated ependymal cells, in direct contact with the 
cerebral ventricles. These neurons have been shown to use serotonin and glu-
tamate as co-transmitters. Interestingly, their axons often terminate in expansions 
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near the base of ependymal cilia and tufts of cilia are often encircled by these 
axons. It has been proposed that glutamate provided by supra-ependymal 
axons may supplement metabolic pathways in multiciliated ependymal cells 
to fuel the high energy demands of ciliary beating (Harandi et al.  1986 ; 
Robinson et al.  1996  ) . However, the roles of these supra-ependymal axons 
and their possible interactions with ependymal cells and CSF still need to be 
understood.       

    7.3   Development of Multiciliated Ependymal Cells 

    7.3.1   Description of the Main Stages of Ependymal Cells 
Development 

 During embryonic development, bipolar radial glial cells express the radial glial 
markers RC2 and GLAST and extend both a pial and ventricular process with a 
9 + 0 cilium that project into the ventricular lumen (Tramontin et al.  2003  ) . A 
subpopulation of radial glial cells is speci fi ed for the ependymal lineage around 
E15 in mice (Rakic and Sidman  1968  ; Spassky et al.  2005  ) . Around birth, the 
nuclei of ependymal progenitors invaginate, and electron-dense aggregates and 
multiple deuterosomes appear in the cytoplasm. Deuterosomes are spherical 
structures of unknown composition, which act as nucleation centers for ciliary 
basal bodies in multiciliated cells (Dirksen  1971  ) . These cells express both the 
radial glial cell marker GLAST and the ependymal cell markers S100 b  and 
CD24. Future basal bodies then detach from deuterosomes and migrate toward 
the apical surface where they dock to the cell membrane and start to extend 9 + 2 
cilia. Basal bodies are  fi rst broadly distributed in the apical membrane and grad-
ually become asymmetrically localized within the apical membrane, accumulat-
ing at the anterior region of each ependymal cell (Hirota et al.  2010  ) . This aspect 
of ependymal cells planar polarity is called “translational polarity” and is unique 
to multiciliated cells in the brain; cells with motile cilia in the trachea and ovi-
duct contain basal bodies covering their entire apical surface. Concomitant to the 
establishment of translational polarity, cilia increase in length and start beating, 
producing  fl uid  fl ow that orients the basal bodies in the same direction. This is 
referred to “rotational polarity”. The orientation of each basal body is deter-
mined by the positioning of its accessory structure called the basal foot, which 
points in the direction of the effective stroke (Mitchell et al.  2007  ) . The cilia  fi rst 
beat in independent directions and progressively orient in a common and  fi xed 
direction (Guirao et al.  2010  ) . At this mature stage, the features characteristic of 
immature cells (deuterosomes and aggregates) have disappeared and the planar 
polarized beating of the cilia directs the  fl ow of CSF through the cerebral ven-
tricles, which is crucial for brain development and function (Ibanez-Tallon et al. 
 2004 ; Sawamoto et al.  2006  ) .  
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    7.3.2   Transcription Factors Involved in Ependymal 
Cell Development 

 Some transcription factors required for ependymal cells development (Vax1, Sox2, 
Six3) have been identi fi ed, although the molecular mechanisms by which radial 
glial cells become ependymal cells still remain to be elucidated (Soria et al.  2004 ; 
Ferri et al.  2004 ; Lavado and Oliver  2011  ) , the transcription factors FoxJ1 (also 
known as hepatocyte nuclear factor-3 and forkhead homolog 4) and RFX (regula-
tory factor X homologs) appear to be implicated. In FoxJ1 mutant mice, axonemal 
dyneins and kinesins are downregulated, causing defective apical migration of basal 
bodies and defects in the genesis of motile cilia (Brody et al.  2000 ; Stubbs et al. 
 2008 ; Jacquet et al.  2009 ; Yu et al.  2008  ) . It was recently proposed that FoxJ1 con-
tributes to ependymal cell differentiation by controlling ankyrin G (Ank3) expres-
sion in ependymal cells. Ank3 is a large adaptor molecule that binds to E- and 
N-cadherin at cell membranes (Paez-Gonzalez et al.  2011  ) . RFX3 belongs to the 
regulatory factor X (RFX) family of transcription factors, which are involved in the 
assembly and function of cilia in nematodes, drosophila and mice (Swoboda et al. 
 2000 ; Dubruille et al.  2002 ; Bonnafe et al.  2004  ) . In mice, an RFX3 de fi ciency leads 
to hydrocephalus, partly due to defects in the differentiation of the subcommis-
sural organ and choroid plexuses (Baas et al.  2006  ) . Interestingly, RFX3 binds to 
FoxJ1 promoter and to the promoters of the genes encoding two axonemal dyneins 
involved in ciliary motility, suggesting that RFX3 regulates both ciliary assembly 
and motility (Zein El et al.  2009  ) .  

    7.3.3   Mechanisms Regulating Ependymal Cell Polarity 

      – Translational polarity : Although the functional signi fi cance of the ependymal 
translational polarity in the adult is still unknown, the mechanisms involved in its 
regulation are starting to be deciphered. Speci fi c ablation of radial glial cells 
primary cilia using mouse genetics leads to random distribution of the patch of 
basal bodies at the apical surface of ependymal cells, suggesting that the primary 
cilium provides important positional information for correct basal body accumu-
lation in ependymal cells (Mirzadeh et al.  2010  ) . It was also shown that during 
mouse brain development, non-muscle myosin II (NMII) is involved in the ros-
tral migration of basal bodies, independently of the planar cell polarity pathway 
(Hirota et al.  2010 ; Fig.  7.4 ).   
    – Rotational polarity : The oriented and coordinated ependymal ciliary beating is 
crucial for CSF  fl ow and adult neurogenesis, and depends on the rotational polar-
ity of each basal body in the cell. During development, ependymal cilia grow and 
start beating in random orientations and then progressively align in each cell and 
along the tissue axis. Using mutant mice, siRNA, or dominant-negative con-
structs, it was recently shown that the core planar cell polarity genes Dishevelled2, 
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Van Gogh-like2 (Vangl2), cadherin, EGF, laminin, seven-pass receptors2 and 3 
(Celsr2 and Celsr3) are required for alignment of ependymal basal feet during 
development (Guirao et al.  2010 ; Hirota et al.  2010 ; Tissir et al.  2010 ; Fig.  7.4 ). 
Most interestingly, it was shown that hydrodynamic forces among beating cilia 
help determine the direction of ependymal ciliary beating during maturation. 
Since Vangl2 is localized along cilia at these stages, it was hypothesized that 
Vangl2 may be part of a mechanosensor complex able to convert hydrodynamic 
forces into intracellular mechanisms for global basal foot alignment (Guirao 
et al.  2010  ) . How PCP proteins interact is unknown, but perturbation of the cel-
lular distribution of Vangl2 in cells in which Celsr2 and 3 are invalidated sug-
gests that these genes may cooperate in the regulation of rotational polarity 
(Tissir et al.  2010  ) . Most interestingly, it was recently shown that targeted elimi-
nation of exons 6 and 7 of Odf2, encoding a basal body and centrosome-associ-
ated protein Odf2/cenexin, leads to basal bodies lacking basal feet, disruption of 
the polarized organization of the apical microtubule lattice and uncoordinated 
beating of motile cilia in the trachea without affecting planar cell polarity. 

  Fig. 7.4    Development of ependymal cells in wild-type and mutant animals. Radial glial cells 
extending a primary cilium transform into multiciliated ependymal cells. Motile cilia orient their 
beating in the direction of the  fl ow: patch of basal bodies migrate to the anterior side of the cell and 
basal feet ( red ) point in the direction of the  fl ow. Pink indicate the microtubule lattices and orange 
indicate the localisation of Vangl proteins at the apical and posterior side of the cells. In PCP 
mutants or in cilia defective ependymal cells or in OFD2 mutant trachea cells, motile cilia beat in 
random directions and leads to rotational polarity defects. In cilia defective radial glial cells, patch 
of basal bodies are randomly distributed along the apical surface of ependymal cells and leads to 
translational polarity defects       
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Altogether, these results suggest a model in which maturing motile cilia may 
orient their beating in response to a coupling between hydrodynamic forces and 
planar cell polarity, thanks to a downstream planar cell polarity-based basal foot-
dependent organization of the apical microtubule lattice (Kunimoto et al.  2012  ) .      

    7.4   Roles of Ependymal Motile Cilia 

    7.4.1   Contribution to the CSF Flow 

 Multiciliated ependymal cells lining the cerebral ventricles extend around 50 long 
motile cilia beating in a coordinated fashion, indicating that cilia beat as part of a 
metachronal wave (wave generated by the synchronized beating along the longitu-
dinal ciliary rows). Although the bulk transport of CSF along the brain ventricles is 
mostly achieved by the changing blood pressures of the brain vessels during systole 
and diastole (Bradley et al.  1986  ) , coordinated beating of ependymal cilia may also 
contribute to CSF  fl ow along the ventricular walls (Sawamoto et al.  2006 ; Guirao 
et al.  2010  ) . Depending on the size and shape of each brain ventricle (especially in 
large mammals), and given that ependymal cilia are around 12  m m long, ependymal 
ciliary beating may contribute to CSF  fl ow at least in the narrowest regions of the 
ventricular system, i.e. the cerebral aqueduct. As proof of principle, it is noteworthy 
that in mutant mouse models in which cilia formation or cilia motility is affected 
(e.g. Hydin, stumpy protein, Tg737 orpk , Mdnah5 mutant mice), mice develop hydro-
cephalus in postnatal stages due to aqueduct closure and massive dilatation of the 
third and lateral ventricles (Ibanez-Tallon et al.  2004 ; Banizs et al.  2005 ; Lechtreck 
et al.  2008 ; Town et al.  2008  ) . It is thus clear that ependymal ciliary beating is cru-
cial for CSF laminar  fl ow along all brain ventricular walls, especially in the narrow-
est regions of the ventricular system (the cerebral aqueduct) where it prevents 
aqueduct stenosis and ventricle enlargement (Ibanez-Tallon et al.  2003,   2004  ) .  

    7.4.2   Contribution to CSF-Brain Exchanges 

 In human airway epithelia, motile cilia beat to propel harmful inhaled material out of 
the lung. It was recently demonstrated that motile cilia in the airway are able to sense 
noxious substances entering the airways and rapidly increase ciliary beat frequency 
(CBF) as a defense mechanism (Shah et al.  2009  ) . Similarly, an increase in ependy-
mal ciliary beating in brain ventricles might minimize the layer of unstirred CSF 
covering the ependyma and optimize the dispersion or spreading of neural messen-
gers in the CSF to other regions of the CNS or move debris in the direction of CSF 
bulk  fl ow. Conversely, reducing CBF may allow ciliated ependymal cells to retain or 
localize certain messengers in the CSF, generating short-range effects on the exchange 
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of neural messengers at the CSF-brain interface (Cathcart and Worthington  1964 ; 
Roth et al.  1985  ) . These possibilities suggest that motile cilia in the brain, as in the 
airways, might have sensory roles leading to their active participation in brain-CSF 
exchanges. It was observed, for example, that ependymal cells express morphogens 
and growth factors (Noggin, Fibroblast Growth Factor 2, Vascular Endothelial 
Growth Factor, Hepatocyte Growth Factor, Insulin Growth Factor Binding Protein, 
etc.…) (Lim et al.  2000 ; Hayamizu et al.  2001 ; Arai et al.  1998 ; Calvo et al.  2011  ) , 
suggesting that ependymal cells may contribute to autocrine or paracrine trophic sup-
port, perhaps through exocytosis from motile cilia. Interestingly, PDGF- a  and EGF 
receptors are localized along ependymal cilia although these cells are post-mitotic; 
their roles in ependymal cilia are still unknown (del Bigio  2010 ; Danilov et al.  2009  ) . 
It was recently shown that ependymal cells along the central canal of the spinal cord 
extend two motile cilia (Alfaro-Cervello et al.  2012  ) , although it is unknown whether 
ciliary beating in the spinal cord is coordinated and whether this might contribute to 
exchanges between CSF and neural cells.  

    7.4.3   Contribution to Neuronal Migration in the Adult 

 In the adult mammalian brain, new neurons are generated in the subventricular zone 
(SVZ) of the lateral ventricles (see Chap.   4     on adult neurogenesis). These progenitors 
migrate long distances toward the olfactory bulb where they differentiate into interneu-
rons. The choroid plexus is a source of chemorepulsive factors, including members of 
the Slit family, which in fl uence SVZ cell migration (Hu  1999 ; Nguyen-Ba-Charvet 
et al.  2004  ) . Infusion of a recombinant Slit2-alkaline phosphatase fusion protein into 
the adult lateral ventricles revealed that the alkaline phosphatase signal is mainly 
found on the surface of the ependymal layer and in a gradient along the dorsal SVZ, 
where neuroblasts form longitudinal arrays of chains and migrate predominantly in 
the rostral direction. Most importantly, this gradient does not form when Slit2-AP is 
injected in Tg737 orpk  adult mutant mice, in which cilia and CSF are abnormal, suggest-
ing that ependymal ciliary beating is crucial for CSF  fl ow in adult mouse brain and for 
the formation of the Slit2 gradient in the SVZ in vivo (Sawamoto et al.  2006  ) .   

    7.5   Associated Pathologies 

 In humans, the main pathology associated with defective ependymal cilia is hydro-
cephalus. Hydrocephalus is a progressive pathological condition characterized 
by the excessive accumulation of CSF, which can be caused by impaired CSF 
 fl ow, excess CSF production or a lack of CSF reabsorption (Bruni et al.  1985  ) . 
Current treatments involve surgical insertion of a ventricular shunt to facilitate 
drainage of excess CSF. Among ciliopathies, primary ciliary dyskinesia is the main 
pathology involving hydrocephalus. It arises from ultrastructural defects that perturb 
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the motility of all motile cilia and cause a variety of symptoms that include fertility 
problems (ectopic pregnancy, sperm immotility) sinusitis, otitis, bronchiectasis, 
hydrocephalus and situs inversus (Zariwala et al.  2007  ) . 

 In mice, all mutant in which cilia formation or motility is affected develop hydro-
cephalus (Ibanez-Tallon et al.  2004 ; Banizs et al.  2005 ; Lechtreck et al.  2008 ; Town 
et al.  2008  ) . The lack of ependymal  fl ow causes a secondary closure of the aqueduct 
and subsequent formation of triventricular hydrocephalus during early postnatal 
brain development. In humans, ependymal ciliary dysmotility is not suf fi cient to 
cause hydrocephalus but increases the risk of aqueduct closure; there is a 1:40 inci-
dence of hydrocephalus caused by aqueduct stenosis in primary ciliary dyskinesia 
patients compared to 3:10,000 in the general population (Ibanez-Tallon et al.  2003  ) . 
Defects in ependymal motile cilia are responsible for only some forms of hydro-
cephalus. For example, excess CSF production by the choroid plexus also leads to 
hydrocephalus but is primarily due to chemosensory defects of primary cilia in the 
choroid plexus cells (Banizs et al.  2005 ; Narita et al.  2010  ) .      
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  Abstract   Cell-extrinsic signals and intrinsic cell cycle regulators strictly control 
proliferation. Cancers develop from a cell that escapes these tight controls and pro-
liferates unrestrictedly. The primary cilium critically controls proliferation by medi-
ating cell-extrinsic signals and regulating cell cycle entry. Accordingly, recent 
studies showed that defective cilia can either promote or suppress cancers, depend-
ing on the cancer-initiating mutation, and that presence or absence of primary cilia 
is associated with speci fi c cancer types. These novel  fi ndings suggest that primary 
cilia play central but distinct roles in different cancer types, opening up a com-
pletely new avenue of research to understand the biology and treatment of cancers.  
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  Outline 

 In this chapter, we review evidence showing that primary cilia play important roles 
in cell cycle entry and multiple signaling pathways, and we discuss how these roles 
of primary cilia could contribute or inhibit brain cancer formation. First, we review 
the dual and opposing roles of primary cilia in medulloblastoma development, then 
discuss possible roles of primary cilia in other brain cancers focusing on diffuse 
intrinsic pontine glioma, glioblastoma multiforme, and cancer stem cell. Lastly, we 
discuss the potential of primary cilia in diagnosis and treatment for brain cancers.  

    8.1   Introduction 

 The primary cilium is at the crossroads of cell cycle progression and cellular signal-
ing pathways. Cell cycle progression regulates assembly and disassembly of pri-
mary cilia, and primary cilia in turn regulate cell cycle entry (Rieder et al.  1979 ; 
Tucker et al.  1979 ; Kim et al.  2011b ; Li et al.  2011  ) . Primary cilia participate in 
multiple signaling pathways that control cell proliferation, differentiation, migra-
tion, polarity, and metabolism, deregulation of which are closely linked to oncogen-
esis (Huangfu et al.  2003 ; Schneider et al.  2005 ; Simons et al.  2005 ; Zhu et al.  2009 ; 
Boehlke et al.  2010 ; Berbari et al.  2011 ; Ezratty et al.  2011  ) . Thus, it is reasonable 
to suspect that normal or abnormal functions of primary cilia may contribute to 
oncogenesis. Indeed, recent studies showed that primary cilia play fundamental 
roles in the development of basal cell carcinoma, the most common cancer in 
Caucasians, and medulloblastoma, the most common brain cancer in children (Han 
et al.  2009 ; Wong et al.  2009  ) . Surprisingly, primary cilia are either required or sup-
pressive for oncogenesis in mice, depending on the cancer-initiating mutation. 
Furthermore, the presence or absence of primary cilia is associated with speci fi c 
cancer types in humans (Wheatley  1995 ; Han et al.  2009 ; Schraml et al.  2009 ; 
Seeley et al.  2009 ; Wong et al.  2009 ; Yuan et al.  2010 ; Kim et al.  2011a  ) , suggesting 
that primary cilia can either promote or suppress human cancers as well. Therefore, 
understanding the mechanisms by which this intriguing organelle functions in nor-
mal and cancerous cells will reveal oncogenic mechanisms that were not apparent 
previously and will unmask new therapeutic approaches.  

    8.2   Primary Cilia and Cell Cycle Progression 

 The primary cilium contains a unique microtubule cytoskeleton called the axoneme, 
a ring of nine microtubule doublets (9 + 0) that runs longitudinally through the 
organelle. The axoneme grows from the basal body docked with the cell membrane. 
During cell division, the basal body detaches from membrane and transforms into 
the mother centriole to form the centrosome that organizes the mitotic spindle. 



2118 Primary Cilia and Brain Cancer

Thus, ciliogenesis is tightly regulated throughout the cell cycle; proliferating cells 
disassemble cilia before mitosis to release the basal body and reassemble them after 
mitosis (Rieder et al.  1979 ; Tucker et al.  1979  ) . Some cells also resorb cilia upon 
entry into the S phase (Tucker et al.  1979  ) . Consistent with this regulation, Aurora 
kinase A, a centrosomal kinase that regulates mitotic entry, becomes activated at the 
basal body as cells enter the S phase and mitosis and triggers ciliary disassembly 
(Pugacheva et al.  2007  ) . As a cell exits mitosis, CP110, a distal centriolar protein 
that inhibits ciliogenesis, disappears from the mother centriole, allowing ciliogen-
esis to occur (Spektor et al.  2007  ) . Cyclin-dependent kinase inhibitors also in fl uence 
ciliogenesis in cultured cells; knockdown of  p16   INK4a   positively in fl uences ciliogen-
esis, and knockdown of  p15   INK4b   negatively regulates it (Bishop et al.  2010 ; Kim 
et al.  2010a  ) . However, mutant mice defective for  p16   INK4a   and/or  p15   INK4b  do not 
display developmental defects associated with defective cilia. Remarkably, recent 
studies showed that this cell-cycle-dependent organelle is not passively linked with 
the cell cycle but actively regulates cell cycle progression (Bielas et al.  2009 ; Jacoby 
et al.  2009 ; Kim et al.  2011b ; Li et al.  2011  ) . 

 One of the  fi rst pieces of evidence supporting the role of primary cilia in cell 
cycle progression came from studies on the  inositol polyphosphate-5-phosphatase 
E  ( INPP5E ) gene mutated in two cilia-associated diseases, Joubert and MORM 
syndromes (Bielas et al.  2009 ; Jacoby et al.  2009  ) . INPP5E, which hydrolyzes the 
5-phosphate of phosphatidylinositol 3,4,5-triphosphate and phosphatidylinositol 
4,5-bisphosphate, localized exclusively at primary cilia; thus, mutation in  INPP5E  
caused the ciliary membrane to accumulate these lipids, which play important roles 
in signaling pathways and membrane traf fi cking. Notably,  INPP5E  mutation did not 
affect assembly of cilia but accelerated both ciliary disassembly and S-phase entry 
after serum stimulation. Previous work showed that overexpression of  INPP5E  
caused cell cycle arrest (Kisseleva et al.  2002  ) . These studies suggest that ciliary 
disassembly can affect S-phase entry. More direct evidence supporting this notion 
came from the following two studies. 

 In one study, Sung and colleagues (Li et al.  2011  )  found that Tctex-1, a light chain 
subunit of cytoplasmic dynein, plays critical roles in ciliary disassembly and cell 
cycle progression. Knockdown of Tctex-1 inhibited both ciliary disassembly and 
S-phase entry that occur after serum addition to serum-starved NIH3T3 and RPE 
cells. Importantly, Tctex-1 knockdown did not affect S-phase entry in cells lacking 
primary cilia, indicating that failure to disassemble cilia underlies the blockage of 
S-phase entry. This inhibition was independent of the function of Tctex-1 as a cyto-
plasmic dynein component. Serum stimulation induced phosphorylation of Tctex-1 
at threonine 94 (T94), leading to its dissociation from the dynein complex and accu-
mulation at the transition zone between the basal body and the ciliary axoneme. The 
knockdown effect was rescued by wild-type and phosphorylation-mimicking Tctex-1 
(Tctex-1 T94E ), but to a lesser extent by non-phosphorylatable Tctex-1 T94A , which binds 
dynein. Furthermore, Tctex-1 T94E  accelerated ciliary disassembly and S-phase entry 
even in the absence of serum stimulation.  In vivo , Tctex-1 is selectively enriched in 
proliferating neural progenitors. Remarkably, knockdown of Tctex-1 in radial glia, 
the neural progenitors in the embryonic brain, caused them to exit from the cell cycle 
and differentiate into neurons prematurely, whereas overexpression of Tctex-1 T94E  
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shortened the G1 phase, accelerated S-phase re-entry, and increased the proliferating 
progenitor cell population. These data indicate that the primary cilium blocks S-phase 
entry and cells use Tctex-1 to overcome this blockage. 

 In the other study, Tsiokas and colleagues (Kim et al.  2011b  )  found that Nde-1, 
a centrosomal protein, critically regulates cilia length and S-phase entry. Knockdown 
of Nde-1 in NIH3T3 and RPE cells lengthened cilia and delayed S-phase entry after 
serum stimulation. Importantly, similar to Tctex-1, the delay in S-phase entry upon 
Nde-1 knockdown was dependent on the presence of primary cilia; there was no 
delay in S-phase entry in the absence of primary cilia. Furthermore, expression of 
constitutively active form of Rab8a, which lengthens primary cilia independently of 
Nde-1, also inhibited S-phase entry, con fi rming that lengthened cilia delay S-phase 
entry.  In vivo , knockdown of  Nde-1  in zebra fi sh caused lengthening of primary cilia 
and defective proliferation in Kuffer’s vesicle. Interestingly, mutations in  Nde-1  
cause microcephaly in both humans and mice (Feng and Walsh  2004 ; Alkuraya 
et al.  2011 ; Bakircioglu et al.  2011  ) , which may be partly due to premature cell 
cycle exit and differentiation of neural progenitors that have abnormally long cilia. 
Taken together, these studies revealed that primary cilia regulate cell division as a 
barrier blocking S-phase entry raising the possibility that primary cilia negatively 
regulate oncogenesis.  

    8.3   Primary Cilia and Signaling Pathways 

 Studies over the past decade have established primary cilia as a signaling hub for 
multiple signaling pathways, including Hedgehog (Goetz and Anderson  2010  ) , Wnt 
(Wallingford and Mitchell  2011  ) , receptor tyrosine kinases (RTKs) (Christensen 
et al.  2012  ) , and Notch signaling (Ezratty et al.  2011  ) . These signaling pathways 
control a myriad of cellular processes, including proliferation, differentiation, 
migration, polarity, and metabolism, all of which play critical roles in development, 
homeostasis, and oncogenesis. Here we brie fl y discuss the role of primary cilia in 
these signaling pathways. 

    8.3.1   Hedgehog Signaling 

 Forward genetic studies in mice have shown that Hedgehog signaling requires the 
primary cilium for both activation and repression of the pathway (Huangfu et al. 
 2003 ; Haycraft et al.  2005 ; Huangfu and Anderson  2005 ; Liu et al.  2005 ; May et al. 
 2005  )  (detailed in Chap.   2    ). Ciliary mutant mice have phenotypes similar to those 
of mutant mice defective in Hedgehog signaling. Epistasis studies placed primary 
cilia downstream of Hedgehog receptor Patched1 (Ptch1) and Smoothened (Smo), 
but upstream of the GLI-Kruppel family transcription factors (Gli1-3) and their 
binding protein Suppressor of Fused (Sufu) (Huangfu et al.  2003 ; Haycraft et al. 
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 2005 ; Huangfu and Anderson  2005 ; Liu et al.  2005 ; May et al.  2005 ; Han et al. 
 2008 ; Chen et al.  2009 ; Jia et al.  2009  ) . In the absence of Hedgehog, Ptch1 localizes 
to primary cilia and inhibits Hedgehog signaling by preventing Smo from entering 
primary cilia (Rohatgi et al.  2007  ) . Upon binding of Hedgehog, Ptch1 moves out of 
the cilia, leading to accumulation and activation of Smo in the primary cilium 
(Corbit et al.  2005 ; Rohatgi et al.  2007  ) . Activated Smo induces Sufu-Gli complex 
accumulation in primary cilia and dissociation of the complex, leading to formation 
of Gli transcriptional activators (Humke et al.  2010 ; Tukachinsky et al.  2010 ; Zeng 
et al.  2010  ) . Without activated Smo in primary cilia, Gli2 and Gli3 are truncated by 
the proteasome to become transcriptional repressors and repress Hedgehog target 
gene expression. In the absence of primary cilia, the processing of Gli3 (and prob-
ably Gli2 also) repressor is greatly reduced, resulting in derepression of Hedgehog 
target genes (Haycraft et al.  2005 ; Huangfu and Anderson  2005 ; Liu et al.  2005 ; 
May et al.  2005  ) . 

 In contrast to complete loss of primary cilia, which results in complete irrespon-
siveness to Hedgehog and inef fi cient processing of Gli repressors, distinctive struc-
tural abnormalities in primary cilia cause a range of Hedgehog signaling defects. 
Mutations in components of intra fl agellar transport (IFT) complex A, which func-
tions in retrograde transport of ciliary components from cilia to the cell body, cause 
abnormally short and swollen cilia and constitutive activation of Hedgehog signal-
ing (Tran et al.  2008 ; Cortellino et al.  2009  ) . Loss of Arl13b, a ciliary small GTPase, 
causes opening of axonemal microtubules and constitutive activation of Gli activa-
tors at low levels without affecting Gli3 repressor activity (Caspary et al.  2007  ) . 
Mutations in Broad-minded, a Rab-GAP–like protein, cause detachment of ciliary 
membrane from the axoneme and selective loss of responsiveness to high Hedgehog 
levels (Ko et al.  2010  ) . Thus, primary cilia play complex and active roles in 
Hedgehog signaling rather than merely concentrating signaling molecules to facili-
tate their interactions.  

    8.3.2   Wnt Signaling 

 Secreted protein Wnt binds to Frizzled receptors to trigger the signaling activity of 
cytoplasmic protein Dishevelled (Dvl), where the signaling diverges into canonical 
and non-canonical Wnt signaling pathways (Logan and Nusse  2004  ) . In the canoni-
cal pathway, activated Dvl leads to accumulation and nuclear localization of  b -catenin 
and subsequent activation of Wnt target genes. The non-canonical pathway is inde-
pendent of  b -catenin and primarily controls cytoskeletons involved in planar cell 
polarity (PCP) and cell migration. One of the  fi rst pieces of evidence linking primary 
cilia to Wnt signaling came from a study on Inversin, a ciliary protein whose muta-
tion causes cystic kidney diseases and  situs inversus  (Simons et al.  2005  ) . The study 
showed that, in  fi sh and frogs, Inversin functions as a switch from the canonical to 
the non-canonical Wnt signaling pathway by targeting Dvl for destruction. Moreover, 
mutant mice defective in genes mutated in Bardet-Biedl syndrome, a disease linked 
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to ciliary dysfunction, have phenotypes associated with PCP mutants (Ross et al. 
 2005  ) . Other studies from kidney, pancreas, cochlea,  fi sh embryos, and cultured cells 
also showed that defective primary cilia increase canonical Wnt signaling activity 
and disrupt non-canonical Wnt signaling (Lin et al.  2003 ; Cano et al.  2004 ; Gerdes 
et al.  2007 ; Corbit et al.  2008 ; Jonassen et al.  2008 ; Jones et al.  2008  ) . Notably, how-
ever, mutant mice defective for primary cilia do not have obvious developmental 
phenotypes associated with defective Wnt signaling. Furthermore, two recent studies 
showed that defective primary cilia do not affect Wnt signaling in  fi sh, mice, and 
cultured cells and suggested that Wnt signaling requires the basal body rather than 
primary cilia  per se  (Huang and Schier  2009 ; Ocbina et al.  2009  ) . Thus, the primary 
cilium and the basal body appear to have a subtle and cell type–speci fi c roles in Wnt 
signaling (Wallingford and Mitchell  2011  ) .  

    8.3.3   RTK Signaling 

 RTKs are activated by growth factors and initiate a series of signaling cascades, 
including mitogen-activated protein kinase pathways, phosphatidylinositol 3-kinase 
pathways, and phospholipase C pathways. The  fi rst connection between RTKs and 
primary cilia came from evidence that platelet-derived growth factor receptor  a  
(PDGFR a ) signaling requires primary cilia in NIH3T3 cells and mouse embryonic 
 fi broblasts (MEFs) (Schneider et al.  2005  ) . Serum starvation of con fl uent cells 
induced PDGFR a  expression and its localization to primary cilia. Subsequent stim-
ulation of cells with PDGF-AA ligand induced phosphorylation of PDGFR a  and 
downstream dual speci fi city mitogen-activated protein kinase kinase 1/2 (MEK1/2) 
inside primary cilia, leading to phosphorylation of retinoblastoma-associated (RB) 
protein, which marks S-phase entry. The activation of PDGFR a  in primary cilia was 
also required for directional migration mediated by Na+/H + exchanger NHE1 
(Schneider et al.  2009  ) . Importantly, PDGF-AA failed to activate PDGFR a  to 
induce S-phase entry and directional migration in MEFs isolated from hypomorphic 
 IFT88  mutant mice ( IFT88   Tg737Rpw  ) defective for ciliogenesis. These observations 
suggest that PDGF-AA and PDGFR a  require primary cilia to transmit signals. 
Some of the observed defects, however, may be partly due to the low level of 
PDGFR a  in  IFT88   Tg737Rpw   MEFs after serum starvation, which dramatically induced 
a higher PDGFR a  level in wild-type but not in  IFT88   Tg737Rpw   MEFs (Schneider et al. 
 2005  ) . Thus, it will be important to determine whether PDGF-AA can activate sig-
naling in cells that lack primary cilia but have PDGFR a  at a similar level as wild-
type cells. It still remains to be determined whether primary cilia are required for 
PDGFR a  signaling  in vivo . 

 Another RTK, insulin-like growth factor 1 receptor (IGF1R) appears to function 
preferentially in primary cilia in MEF-adipose-like 3T3-L1 cells (Zhu et al.  2009  ) , 
which can be differentiated into adipocyte after growth arrest at con fl uence. IGF1R 
activation by insulin is essential to induce differentiation. Interestingly, in 3T3-L1 
cells, insulin activated IGF1R in primary cilia faster than IGF1R outside primary 
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cilia and induced accumulation of activated downstream signaling molecules, 
phosphorylated insulin receptor substrate 1 (IRS1) and protein kinase B (Akt), at 
the basal body. Remarkably, knockdown of  IFT88  or  Kif3a  encoding a subunit of 
essential ciliogenic Kinesin-II motor disrupted IGF1R signaling and blocked dif-
ferentiation of 3T3-L1, suggesting that IGF1R requires primary cilia to signal to 
induce differentiation. Like PDGFR a  signaling, it is unknown whether primary 
cilia are required for IGF1R signaling  in vivo . 

 In addition to PDGFR a  and IGF1R, epidermal growth factor receptor (EGFR) 
and the angiopoietin receptors Tie-1 and Tie-2 localize to primary cilia (Ma et al. 
 2005 ; Teilmann and Christensen  2005 ; Danilov et al.  2009 ; Wu et al.  2009  ) . 
Furthermore, recent studies showed that primary cilia negatively regulate the activ-
ity of mammalian target of rapamycin (mTOR) both  in vitro  and  in vivo  (DiBella 
et al.  2009 ; Boehlke et al.  2010 ; Berbari et al.  2011  ) , whereas mTOR positively 
regulates the length of primary cilia (Yuan et al.  2012  ) . mTOR is a key signaling 
molecule that integrates RTK signaling with cellular metabolism, a change in which 
is one of the hallmarks of cancers. Thus, primary cilia appear to participate in mul-
tiple RTK signaling pathways, providing them with a platform to crosstalk and inte-
grate. Future work should investigate whether primary cilia participate in RTK 
signaling  in vivo  and in the crosstalk of multiple RTK signaling pathways.  

    8.3.4   Notch Signaling 

 A recent study showed that Notch signaling requires primary cilia during skin devel-
opment (Ezratty et al.  2011  ) . Notch is a transmembrane receptor protein that under-
goes intramembrane proteolytic cleavage upon binding to its ligands, which are mainly 
transmembrane proteins as well (Kopan and Ilagan  2009  ) . After cleavage, the Notch 
intracellular domain (NICD) enters the nucleus and activates transcription of target 
genes. Removing primary cilia in mouse embryonic skin cells by knockdown of  IFT74  
or conditional ablation of either  IFT88  or  Kif3a  resulted in defective epidermal dif-
ferentiation, a process dependent on Notch signaling. Consistently, expression of 
Notch responsive genes was disrupted in cells lacking primary cilia. Expression of 
NCID partially rescued expression of a Notch reporter gene and differentiation defects. 
The study also showed that Notch3 is selectively localized to primary cilia, and 
Presenilin-2, the catalytic subunit of  g -secretase that cleaves Notch receptor to gener-
ate NICD, is localized at the base of primary cilia in addition to intercellular mem-
brane borders. These localizations were speci fi c to suprabasal cells in the embryonic 
skin, where Notch signaling is active. Remarkably, nuclear NCID3, the processed 
Notch3, was observed only in ciliated suprabasal cells and not in  Kif3a  mutant cells. 
These  fi ndings raise interesting questions: Does Notch3 require primary cilia to signal 
in other tissues and animals? Does any other Notch require primary cilia to signal? 
Are membrane-bound ligands for Notch3 also exclusively localized to a speci fi c 
domain of the signaling cell to be juxtaposed to the primary cilium of responding cells 
in developing skin? If so, what is the underlying mechanism? 
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 Why do vertebrate cells require primary cilia for multiple signaling pathways? 
Simplistically, the concentration of signaling molecules in primary cilia whose large 
surface area relative to the small volume would provide high sensitivity for detec-
tion of low levels of extracellular signals. Subtle structural defects in primary cilia, 
however, cause unique Hh signaling defects, suggesting that the function of primary 
cilia are more than concentrating and sensitizing signaling molecules for extracel-
lular signals. The primary cilium, although continuous from cytoplasm, is a distinct 
subcellular compartment, in which traf fi cking is restricted by IFT and the transition 
zone, a barrier at the base of cilia. This restriction may allow the coordinated spread 
or movement of second messengers or effecter molecules. In addition, the juxtapo-
sition of the basal body and the Golgi complex at the base of cilia may facilitate 
rapid traf fi cking of molecules like Smo into the cilia upon receiving extracellular 
signals and could help coordinate the cell cycle.   

    8.4   Primary Cilia and Medulloblastoma 

 One of the  fi rst bits of direct evidence showing that primary cilia play salient roles 
in cancer came from a study on medulloblastoma (Han et al.  2009  ) . Medulloblastoma 
is the most common malignant brain tumor in children, accounting for ~20% of 
childhood brain tumors. Medulloblastomas mostly arise in the cerebellum, but a 
recent study showed that a subgroup of medulloblastoma arises in the dorsal brain 
stem (Gibson et al.  2010  ) . Several transcriptional pro fi ling studies revealed that 
medulloblastoma comprises four principal subgroups, which have distinct demo-
graphic, clinical, transcriptional, and mutational characteristics (Thompson et al. 
 2006 ; Kool et al.  2008 ; Cho et al.  2011 ; Northcott et al.  2011 ; Taylor    et al.  2012  ) . 
These subgroups include Sonic Hedgehog (SHH, one of three mammalian Hedgehog 
proteins), WNT, subgroup 3, and subgroup 4. The SHH and WNT subgroups are 
named after the signaling pathways thought to drive tumorigenesis of that subgroup. 
Subgroup 3 often shows ampli fi cation of MYC. Molecular mechanisms that drive 
subgroup 4 have not been identi fi ed. 

 SHH subgroup medulloblastoma is characterized by aberrant activation of SHH 
signaling and constitutes about 25% of medulloblastoma cases. The SHH subgroup 
arises from granule neuron precursors (GNPs) in the cerebellum (Schuller et al. 
 2008 ; Yang et al.  2008  ) . GNPs are produced from radial glia in the anterior roof of 
the fourth ventricle, known as the upper rhombic lip, and migrate rostrally to form 
the external granular layer (EGL) on the surface of the developing cerebellum 
(Altman and Bayer  1997  ) . In the EGL, GNPs proliferate extensively to produce 
cerebellar granule neurons, the most abundant neurons that constitute more than 
half of the neurons in the central nervous system. Immature granule neurons pro-
duced from the EGL migrate inward, passing Purkinje neurons and forming the 
internal granule neuron layer. SHH secreted from Purkinje neurons is an essential 
mitogen for GNPs in the EGL (Dahmane and Ruiz i Altaba  1999 ; Wallace  1999 ; 
Wechsler-Reya and Scott  1999  ) . Consistent with the critical role of primary cilia in 
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Hedgehog signaling, GNPs lacking primary cilia failed to proliferate, resulting in 
severe hypoplasia and underdevelopment of the cerebellum (Chizhikov et al.  2007 ; 
Spassky et al.  2008  ) . 

 While SHH signaling is essential for the proliferation of GNPs, abnormal activa-
tion of SHH signaling leads to uncontrolled expansion of GNPs, resulting in 
medulloblastoma (Hatten and Roussel  2011  ) . A recent study revealed surprising 
dual roles of primary cilia in medulloblastoma development driven by abnormal 
activation of SHH signaling (Han et al.  2009  ) . Mice expressing a constitutively 
active form of Smo (SmoM2), which was identi fi ed in medulloblastoma and basal 
cell carcinoma (Lam et al.  1999  ) , in GNPs develop medulloblastoma (Hallahan 
et al.  2004 ; Mao et al.  2006 ; Schuller et al.  2008 ; Han et al.  2009  ) . In these mice, 
SmoM2 concentrated in the primary cilia of tumor cells and required this organelle 
to induce tumors; concomitant removal of primary cilia in SmoM2-expressing cells 
completely blocked medulloblastoma development (Han et al.  2009  ) . Unlike 
SmoM2, GNPs expressing a constitutively active form of GLI2, a downstream tran-
scription factor, that lacks an N-terminal repressor domain (GLI2 D N) did not form 
medulloblastoma (Roessler et al.  2005 ; Pasca di Magliano et al.  2006 ; Han et al. 
 2009  ) . Surprisingly, however, concomitant removal of primary cilia in GNPs 
expressing GLI2 D N resulted in 100% medulloblastoma development, suggesting 
that primary cilia suppress medulloblastoma development when the oncogenic 
mutation is in the GLI2 transcription factor. Thus, the primary cilium plays oppos-
ing dual roles in medulloblastoma: it is required for SmoM2 but suppressive for 
GLI2 D N to induce medulloblastoma (Fig.  8.1 ). The molecular mechanism by which 
primary cilia suppress GLI2 D N-driven medulloblastoma development remains to 
be determined. In the presence of primary cilia, Gli3 repressors may counteract 
GLI2 D N and inhibit medulloblastoma development, whereas in the absence of pri-
mary cilia, Gli3 repressors do not form (Haycraft et al.  2005 ; Huangfu and Anderson 
 2005 ; Liu et al.  2005 ; May et al.  2005  ) , which may allow GLI2 D N to induce 
medulloblastoma. Alternatively, primary cilia may be required for another signaling 
pathway to suppress tumorigenesis. Primary cilia may also function as a general 
barrier for cell cycle entry, as discussed above. Similar opposing dual functions of 
primary cilia were observed in basal cell carcinoma driven by SmoM2 and GLI2 D N 
(Wong et al.  2009  ) . Taken together, these suggest that, to induce cancer, some onco-
genic mutations may require intact primary cilia but others may require losing them. 
Notably, in support of this hypothesis, the presence or absence of primary cilia is 
tightly associated with speci fi c subgroups of medulloblastoma (Fig.  8.2 ). In humans, 
primary cilia are almost exclusively present in the SHH and WNT subgroups of 
medulloblastoma but absent in subgroups 3 and 4 (Han et al.  2009  ) . Thus, primary 
cilia may be required for the SHH and WNT subgroups but suppressive for sub-
groups 3 and 4. The presence of primary cilia in the WNT subgroup is somewhat 
contradictory to several studies showing that primary cilia constrain canonical WNT 
signaling; however, as discussed above, the role of primary cilia in WNT signaling 
is still controversial and speci fi c to cell type. Recently developed mouse models 
each representing WNT-subgroup medulloblastoma (Gibson et al.  2010  )  and sub-
group 3 (Kawauchi et al.  2012 ; Pei et al.  2012  )  will provide an excellent opportunity 
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to investigate the role of primary cilia in these tumors. These investigations will also 
provide clues to whether the dual roles of primary cilia are generally applicable to 
cancers in addition to those driven by Hedgehog signaling.   

 Currently, SMO inhibitors are under clinical trials to treat SHH subgroup 
medulloblastoma and basal cell carcinoma. Although these clinical trials show 
promise for SMO inhibitors for treating medulloblastoma, resistance to a SMO 
inhibitor was observed in a patient who initially showed a dramatic response (Yauch 

  Fig. 8.1    Dual and opposing roles of primary cilia in medulloblastoma formation. ( a ) SmoM2 is 
insensitive to inhibition by Ptch1 and constitutively localizes to primary cilia, where it inhibits 
production of repressor forms of Gli2 and Gli3 and induces production of activator forms. 
Uncontrolled activation of the signaling leads to medulloblastoma formation in  hGFAP::Cre; 
SmoM2    fl /+   mice. ( b ) Without primary cilia, SmoM2 cannot activate downstream signaling, thus 
loss of primary cilia in  hGFAP::Cre; SmoM2    fl /+  ;  Kif3a    fl / fl    mice completely blocks medulloblastoma 
formation. ( c ,  d ) Constitutively active form of Gli2 (Gli2 D N) is not suf fi cient to induce medullo-
blastoma in  hGFAP::Cre; CLEG2    fl /+   mice. Loss of primary cilia in  hGFAP::Cre; CLEG2    fl /+  ;  Kif3a    fl / fl    
mice allows Gli2 D N to induce medulloblastoma. Repressor forms of Gli2 and/or Gli3, whose 
formation requires primary cilia, may inhibits the tumorigenic activity of Gli2 D N. Alternatively, 
unknown mechanism through primary cilia may inhibit the tumorigenic activity of Gli2 D N       
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et al.  2009  ) . Subsequently, a point mutation in SMO conferring resistance to the 
SMO inhibitor was found in the medulloblastoma of this patient. Furthermore, 
 in vivo  and  in vitro  studies using the same SMO inhibitor revealed frequent appear-
ance of resistance (Dijkgraaf et al.  2011  ) . Currently, SMO is the only molecular 
target under clinical trials to treat medulloblastoma. Thus, it is necessary to develop 
strategies to overcome the resistance. Since Smo requires primary cilia to function 
and ciliogenesis requires a number of cellular processes involving a large number of 
proteins, primary cilia may provide multiple novel targets that can overcome resis-
tance to SMO inhibitors.  

    8.5   Primary Cilia and Other Brain Cancers 

 Given that primary cilia play important roles in cell cycle progression and signaling 
pathways frequently involved in oncogenesis, they are also likely to play important 
roles in other brain cancers in addition to medulloblastoma. Here we will discuss 
two types of brain cancers, the deadliest brain cancers of children and adults, in 
which primary cilia may have important roles. 

 Diffuse intrinsic pontine gliomas (DIPGs) are diffusely in fi ltrative high-grade 
gliomas in the ventral pons. DIPGs affect mostly children, peaking at age 6–7 years, 
constituting 10–15% of pediatric brain cancer (Hawkins et al.  2011  ) . DIPGs are 
extremely aggressive cancers that are almost universally fatal in less than a year. Yet, 
little is known about the biology of this tumor for which no effective therapy exists. 
The age- and region-speci fi c natures of DIPGs suggest that these tumors arise from 
deregulation of a speci fi c postnatal development process occurring in the ventral 

  Fig. 8.2    Primary cilia are present in human medulloblastomas showing oncogenic activation of 
SHH or WNT signaling ( a ), but mostly absent in other molecular subgroups of medulloblastomas 
( b ).  Arrows  indicate basal bodies stained with an antibody against pericentrin and  arrowheads  
indicate primary cilia stained with an antibody against acetylated tubulin       
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pons in children. Indeed, a recent study identi fi ed a putative neural precursor cell 
population positive for neural precursor markers, Nestin, Vimentin, and Olig2 in the 
ventral pons of both humans and mice, whose spatiotemporal distribution matches 
very closely to that of DIPGs (Monje et al.  2011  ) . Interestingly, the Hedgehog signal-
ing pathway was active in this precursor population in mice. Expression of SmoM2 
increased proliferation of these cells in mice, leading to hypertrophy of the ventral 
pons. Furthermore, blocking Hedgehog signaling reduced self-renewal of neuro-
spheres generated form human DIPGs, whereas addition of SHH increased self-
renewal. Thus, aberrant activation of Hedgehog signaling may contribute to DIPG 
formation by driving proliferation of these precursor cells. Unlike medulloblastoma, 
however, expression of SmoM2 was not suf fi cient to induce DIPGs, suggesting that 
another hit is necessary for DIPGs to form. This is consistent with the fact that people 
having germline mutations of PTCH1 are predisposed to medulloblastoma but not 
DIPG (Johnson et al.  1996  ) . Notably, recent genome-wide analyses identi fi ed fre-
quent ampli fi cation or overexpression of  PDGFR a , PDGF-A,  and  IGF1R , all of 
which encode proteins that may signal through primary cilia (Zarghooni et al.  2010 ; 
Paugh et al.  2011  ) . Cancer cells that have ampli fi cation or overexpression of these 
oncogenes may rely on normal signaling mechanisms through primary cilia. Thus, 
primary cilia may play important roles in the development of this devastating dis-
ease. It would be interesting to  fi nd whether DIPGs are ciliated and co-activation of 
SHH and PDGFR a  can cause DIPGs in mouse models, as well as to test the role of 
primary cilia in such mouse models. If primary cilia play a signi fi cant role, targeting 
ciliogenesis would be a valid treatment option. 

 Glioma is the most frequent brain tumor in adults, and malignant glioma (glio-
blastoma multiforme, GBM) comprises 80% of malignant tumors in the central 
nervous system (Chen et al.  2012  ) . Currently, GBM patients’ 5 year survival rate is 
less than 5%, and median survival is about 1 year. Two recent genome-wide studies 
including gene expression pro fi ling, DNA copy number variation, protein-encoding 
gene sequencing, and DNA methylation status revealed three core pathways that 
commonly mutated in GBM: the p53 pathway, the RB pathway, and the RTK path-
way (Parsons et al.  2008 ; TCGA  2008  ) . The majority (74%) of GBMs had altera-
tions in all three pathways, which enables cancer cells to proliferate unrestrictedly, 
escaping from cell-cycle checkpoints, senescence, and apoptosis. On the other hand, 
alterations affecting components in the same core pathway were mutually exclusive. 
Among RTKs, frequent aberrations were found in EGFR, ERBB2, PDGFR a , and 
MET. Similar to what was seen in medulloblastoma, several gene expression 
pro fi ling studies identi fi ed distinct molecular subtypes in GBM (Vitucci et al.  2011  ) . 
A recent study grouped GBM into four subtypes: proneural, neural, classical, and 
mesenchymal (Verhaak et al.  2010  ) . By integrating gene expression pro fi les with 
the previous genome-wide analysis of GBM, this study showed that aberrant status 
of  EGFR ,  NF1 , and  PDGFR a /Isocitrate dehydrogenase 1  de fi ne the classic, mesen-
chymal, and proneural subtypes, respectively. Notably, the classic subtype expressed 
high levels of Hedgehog (SMO, GLI2, and GAS1) and NOTCH (NOTCH3, JAG1, 
and LFNG) signaling components. Given the important role of primary cilia in 
Hedgehog, Notch, and PDGFR a  signaling pathways, the classic and proneural 
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subtypes may require primary cilia for their growth. Thus, it would be interesting to 
determine whether the presence or absence of primary cilia is associated with 
speci fi c GBM subtypes. Such associations may indicate distinct roles of primary 
cilia in different GBM subtypes. Primary cilia are absent in several GBM cell lines 
(Moser et al.  2009  ) ; however, the molecular subtypes to which the cell lines belong 
are unknown. If the presence or absence of primary cilia is associated with speci fi c 
GBM subgroups and such an association is important for oncogenesis, primary cilia 
will be an important diagnostic tool and a treatment target for GBM. 

 Although the cancer stem cell (CSC) theory is controversial, it suggests that 
primary cilia may have important roles in GBM and possibly in other brain cancers. 
CSCs are a subpopulation of cells in a cancer that can self-renew and give rise to 
highly heterogeneous cancer cells that make up the bulk of cancer. GBM CSCs were 
one of the  fi rst CSCs isolated from solid cancers (Singh et al.  2004  ) . Resistance to 
radiation and chemotherapies is thought to be partly due to CSCs, which have pref-
erentially active DNA repair pathways (Bao et al.  2006  )  and high levels of ATP-
binding cassette transporters to export chemotherapy agents (Bleau et al.  2009  ) ; 
thus, CSCs have important implications for cancer targeting strategy. CSCs are 
thought to have properties similar to those of somatic stem cells. A number of stud-
ies have shown that signaling pathways that critically regulate the behavior of nor-
mal somatic stem cells also regulate that of GBM CSCs (Clark et al.  2007 ; Takebe 
et al.  2011  ) . These pathways include Hedgehog, Wnt, and Notch signaling path-
ways, for which primary cilia play important roles. Consistently, recent studies 
showed that expression of Gli1 and  b -catenin are associated with recurrence after 
therapy and poor prognosis in GBM patients (Rossi et al.  2011 ; Kim et al.  2012  ) . 
Therefore, targeting these pathways is a vital therapeutic approach to increase the 
ef fi cacy of radiation and chemotherapies. Understanding the mechanism by which 
primary cilia function in these signaling pathways in normal stem cells and CSCs 
will be important for developing such a therapeutic intervention.  

    8.6   Conclusion 

 Brain cancer is a complex and heterogeneous disease. Its treatments, however, are 
largely similar, including surgical resection, radiation, and chemotherapy, thus 
resulting in individually different outcomes. Recent advances in genome-wide stud-
ies on large cohorts of brain cancer patients elucidated that cancers that otherwise 
appear identical are highly heterogeneous at the molecular level, with distinctive 
oncogenic mutations and gene expression pro fi les. These recent advances call for 
new treatment paradigms building on better understandings of the molecular and 
cellular processes involved in initiation and progression of particular brain cancer 
types. We envision that investigating the function of primary cilia together with 
oncogenic mutations speci fi c to distinct cancer types will reveal oncogenic mecha-
nisms that were not appreciated previously. We also envision that primary cilia hold 
a great therapeutic potential for treatment for brain cancer patients. Some cancers 
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have primary cilia, but others do not (Wheatley  1995 ; Han et al.  2009 ; Schraml et al. 
 2009 ; Seeley et al.  2009 ; Wong et al.  2009 ; Yuan et al.  2010 ; Kim et al.  2011a  ) . 
Most cells in our body have the primary cilium; thus, some cancers may have it as a 
default. Building and maintaining primary cilia requires complex processes involv-
ing a wide variety of proteins that function in cell cycle progression (Pugacheva 
et al.  2007 ; Spektor et al.  2007 ; Kim et al.  2011b ; Li et al.  2011  ) , cytoskeletal 
dynamics (Kim et al.  2010a  ) , apicobasal polarity (Fan et al.  2004  ) , planar cell polar-
ity (Kim et al.  2010b ; Wallingford  2010  ) , intra fl agellar transport (Rosenbaum and 
Witman  2002  ) , vesicle traf fi cking (Nachury et al.  2007 ; Zuo et al.  2009 ; Knodler 
et al.  2010  ) , and transcriptional regulation (Thomas et al.  2010  ) . Thus, some cancers 
may have lost primary cilia secondarily as they progress and accumulate mutations. 
In cancers driven by Hedgehog signaling, however, the presence or absence of pri-
mary cilia directly controls oncogenesis (Han et al.  2009 ; Wong et al.  2009  ) . 
Furthermore, the presence or absence of primary cilia is associated with speci fi c 
cancer types. Thus, the status of primary cilia in a particular cancer may re fl ect the 
role of primary cilia in that cancer; some cancers may keep primary cilia and others 
may eliminate them for growth and progression. Primary cilia will be important 
targets for such cancers. Since many proteins are involved in ciliogenesis, inhibiting 
ciliogenesis or ciliary function may be a plausible strategy to treat cancers that 
require primary cilia for their growth. Indeed, a high-throughput screening for 
inhibitors of Hedgehog signaling discovered a small molecule that inhibits cyto-
plasmic dynein and ciliogenesis (Firestone et al.  2012  ) . It will be challenging to 
restore primary cilia in cancers that have eliminated them for growth. Yet, recent 
studies showed that small molecules targeting signaling molecules or fatty acid syn-
thesis can restore primary cilia even in cancer cells (Wang et al.  2009 ; Willemarck 
et al.  2010  ) . Therefore, research in primary cilia will open up a completely new 
avenue of research to understand the biology and treatment of cancers.      
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  Abstract   More than one hundred congenital anomaly syndromes have now been 
attributed to structural or functional disruption of the primary immotile cilium 
(ciliopathies). Whilst most are rare, collectively the ciliopathies may affect as many 
as 1 in 700 of the general population. The majority of ciliopathies are multi-system 
disorders. Neuroanatomical, neurological, cognitive, psychiatric and behavioural 
features (central nervous system phenotypes) are frequently but not universally 
observed. This chapter aims to systematically collate clinical information related to 
central nervous system (CNS) phenotypes across the ciliopathy spectrum. There are 
notable similarities in the types of structural brain abnormalities and functional 
de fi cits observed across the spectrum, albeit with variations in frequency of abnor-
malities between syndromes (in part re fl ected in diagnostic criteria). Considerable 
variation exists within syndromes in the extent and severity of CNS abnormalities. 
Underlying genetic and developmental mechanisms are emerging, and it is antici-
pated that integration of clinical observation with interdisciplinary basic science 
will reap bene fi ts in the following years, both for understanding of these complex 
disorders and for improved patient outcomes.  

  Keywords   Cilia  •  Ciliopathy  •  Brain  •  Neurology  •  Intellectual disability  •  Autism  
•  Joubert  •  Bardet Biedl  •  MRI      

  Outline 

 This chapter will describe common and rare central nervous system (CNS) abnor-
malities observed in patients with ciliopathy syndromes. CNS abnormalities that cut 
across syndrome boundaries and that could re fl ect distinct ciliary functions during 
normal neurodevelopment will be discussed. We wish to emphasise that clinical 
observations can promote scienti fi c progress and vice-versa, and may one day lead 
to patient bene fi t.  

    9.1   Introduction 

 Approximately 2–3% of singleton new-born babies have a major congenital 
anomaly, which can arise from local errors in morphogenesis, deformation, disruption, 
teratogen exposure or germline genetic alterations. When a particular set of devel-
opmental anomalies consistently occur together, the condition is referred to as a 
syndrome. Of the ~7,000 phenotypes described in OMIM (McKusick-Nathans 
Institute of Genetic Medicine  2011  ) , approximately one third have a neurologic 
component, indicating the importance of dysmorphology and accurate diagnosis in 
the context of neurodevelopmental disorder. It is equally important to recognise 
that the combination of clinical signs that make up a syndrome can have several 
aetiologies. A classic example is non-syndromic retinitis pigmentosa with upward 
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of 50 genes that when mutated give rise to often indistinguishable retinal 
phenotypes. Within this spectrum are represented every form of inheritance pattern 
possible, differing ages at onset and severity. 

    9.1.1   Ciliopathies 

 During the past decade we have witnessed the rapid emergence of knowledge sur-
rounding the role of primary cilia in cellular sensing, signalling, human disease and 
development. This sessile appendage and its associated structures (basal body, cen-
trosome) have been the focus of several recent protein inventories indicating that 
over 1,500 proteins are involved with both structure and function (Inglis  2006  ) . This 
in turn has provided a rich resource for the identi fi cation of ciliopathy-related genes 
many of which are fundamentally important during embryogenesis. In spite of this 
plethora of information, we are only seeing the tip of the cilia iceberg as it emerges 
that many of the ciliome components assemble in to functional complexes and that 
the same proteins have possibly separate cytosolic functions including gate-keeping 
roles and vesicular transport (Sang et al.  2011  ) . 

 Given the emerging level of complexity surrounding both ciliogenesis and the 
function of the primary cilium for cellular activities throughout the body, it is hardly 
surprising that dysfunction can have devastating effects on a large variety of tissues 
and organs. The pleiotropic presentation of the ciliopathies probably re fl ects the 
extent of underlying pathogenetic protein expression and/or the interactions with 
complex partners. The phenotypic manifestations range from isolated kidney disease 
or blindness to multi-organ involvement typi fi ed by the Bardet-Biedl syndrome 
(BBS) or Meckel syndrome (MKS). Amongst the hallmark features of ciliopathies 
are; retinitis pigmentosa (RP), cystic kidney disease, polydactyly, situs inversus, 
cognitive impairments, speci fi c brain malformations, hepatic disease, deafness, 
skeletal anomalies and olfactory disturbances. In fact, these core presentations have 
been valuable for prediction of other ciliopathies, many of which have no prior 
known aetiology (Baker and Beales  2009  ) . It has now been predicted that over 100 
such conditions exist and whilst most are rare, collectively the ciliopathies may 
present in as many as 1 in 700 of the general population. 

 In addition to phenotypic variability, the ciliopathies also display extensive 
genetic heterogeneity. Mutations in a wide range of genes can give rise to similar 
phenotypes such as BBS, or conversely, mutations in a single gene can underlie 
several phenotypes with differing severity. For example,  CEP290  gene mutations 
are associated with organ-speci fi c diseases such as RP or Leber’s Congenital 
Amaurosis (LCA) as well as Senior-Löken syndrome (SLSN), Joubert syndrome, 
MKS and BBS. There is no pattern or clustering of the 112 mutations described so 
far in  CEP290  that might explain this phenomenon. Contrast this with the situation 
for  OFD1  where mutations residing before amino acid residue 631 that truncate 
the protein upstream of the  fi fth coiled-coil domain give rise to the male-lethal Oral 
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Facial Digital Type 1 syndrome, whilst mutations beyond residue 631 lead to the 
less severe Simpson-Golabi-Behmel type 2 syndrome or Joubert Syndrome.  

    9.1.2   CNS Abnormalities as Core Ciliopathic Features 

 Amongst the known and predicted ciliopathies, CNS system anomalies are  present 
in over half of the syndromes described (Baker and Beales  2009  ) . The core fea-
tures that are associated with a ciliopathy include structural brain abnormalities 
such as hydrocephalus, hypoplasia or agenesis of the corpus callosum, cerebellar 
vermis hypoplasia, Dandy-Walker malformation and posterior encephalocoele 
formation (Table  9.1 ). However, many functional CNS abnormalities observed in 
ciliopathy patients do not have a clear structural correlate i.e. developmental delay 
and behavioural phenotypes. For example in BBS, some level of intellectual 
impairment is the norm, but even in the most severe cases, there are no consistent 
radiologically-apparent brain changes pathognomonic for the disorder. It is 
believed, but not proven, that ciliary dysfunction impacts neuronal function in the 
cerebral cortex. It has also been shown by us and others that BBS patients have 
abnormalities of the hippocampus, implicating defects in neurogenesis in intel-
lectual de fi cits (see below). Structure-function relationships remain indistinct 
even for hard signs such as oculomotor apraxia and cerebellar malformations in 
Joubert Syndrome.  

 It remains to be discovered as to why neurological anomalies are associated with 
some ciliopathy syndromes but not others, and why frequency and severity of neu-
rological features varies between individuals sharing the same ciliopathy diagnosis. 
Elucidation and integration of genetic and protein data into cilia systems networks 
will eventually reveal the source of phenotypic variability, including neurological 
involvement, so typical of ciliopathies.   

    9.2   Method of Review 

 The following sections describe CNS abnormalities reported for each of the 
currently-con fi rmed ciliopathies. There is an extensive and growing list of addi-
tional conditions which are associated with core ciliopathic phenotypes (includ-
ing CNS phenotypes), but where evidence for de fi nite ciliary pathology is lacking. 
In other conditions with ciliopathy-like phenotypes, disruption to signalling cas-
cades downstream of the immotile primary cilium have been detected e.g. Gli3-
associated disorders (Biesecker  2006  )  and Kif7-associated disorders (Putoux 
et al.  2011  ) . These two latter groups of conditions have not been included in the 
current review. 

 The diagnostic features and genetic basis for each syndrome will be brie fl y pre-
sented, followed by (1) clinically-apparent neurological features such as sensory 
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abnormalities, seizures and motor abnormalities, (2) neurodevelopmental 
 impairments such as developmental delay, learning disabilities, behavioural pheno-
types and psychiatric illness, (3) neuroradiological features (qualitative and quanti-
tative structural abnormalities) and (4) post-mortem neuropathology. To obtain this 
information on a semi-systematic basis, OMIM and GeneReviews entries for 
each syndrome were initially reviewed, followed by PubMed and bibliography lit-
erature searches. 

 There are several limitations to the existing published data which restrict 
comprehensive review. Clinical details for all diagnosed cases are not available, 
and published clinical descriptions are not always consistent in the use of termi-
nology or in methods of investigation (notes review, questionnaire survey or 
direct examination). Publication biases exist, toward describing core diagnostic 
features for each syndrome and ignoring or not recognising non-core associa-
tions. There may be additional bias toward reporting exceptionally unusual clini-
cal presentations. 

 Where syndromes are de fi ned by, and cases ascertained for, non-CNS features 
(for example skeletal, retinal or renal abnormalities) neurodevelopmental assess-
ment and related investigations such as neuroimaging may not have been carried 
out. For conditions that are lethal in early life, neurodevelopmental features may 
never become apparent. CNS assessment may not be a priority in the context of 
severe and life-limiting medical illness. For less severe conditions, it can be argued 
that neuroradiological investigations are not clinically indicated in the absence of 
focal neurological signs, epilepsy or regression. Indications for neuroimaging in 
the context of intellectual disability (ID) are controversial. Severe ID may preclude 
investigation without sedation or anaesthesia, and where a clear diagnosis has been 
achieved, imaging is unlikely to in fl uence medical management or outcomes. Since 
there has been little systematic research of CNS abnormalities in these rare condi-
tions, it is likely that the spectrum and frequency of CNS features has been incom-
pletely described. 

 Interpretation of the existing clinical and research literature requires consider-
ation of possible confounding factors, whereby non-CNS aspects of the ciliopathy 
syndrome may have an indirect impact on aspects of neurodevelopment. 
Importantly, visual impairment can confound assessment of developmental delay 
(motoric, cognitive and social), so requires specialist skills and methods. The 
impact of chronic medical illness, for example renal failure or cardiomyopathy, 
should also be taken into account. Several ciliopathy syndromes are associated 
with obesity and endocrine dysfunction, which may have indirect effects on brain 
development and function via metabolic and cardiovascular dysregulation. 
Interpretation of behavioural literature, for example on autistic spectrum disor-
ders, attention problems and anxiety, should take into account the multiple physi-
cal, sensory and psychosocial challenges encountered by patients with ciliopathy 
syndromes and their families.  



238 K. Baker and P.L. Beales

    9.3   CNS-Predominant Ciliopathies 

    9.3.1   Joubert Syndrome and Joubert-Related Spectrum 
Disorders (JS/JRSD) 

 Joubert Syndrome (JS) is a ciliopathy de fi ned according to speci fi c neurological 
and neuroradiological features. No formal diagnostic criteria have been estab-
lished, however it is generally agreed that diagnosis requires a radiological feature 
known as the Molar Tooth Sign (MTS, de fi ned below), alongside clinical features of 
hypotonia, disordered breathing patterns during early life, abnormal eye moments 
and developmental delay. JS was initially considered an isolated CNS disorder, 
but recognition of associations with extra-CNS ciliopathy features (renal, oph-
thalmic, skeletal) has broadened the categorisation to include several Joubert-
related conditions (JS-related spectrum disorders, JSRD). Features of JS in 
association with coloboma and hepatic  fi brosis is referred to as COACH (Cerebellar 
vermis hypoplasia/aplasia, Oligophrenia, Ataxia, Coloboma, and Hepatic  fi brosis), 
whilst association with ocular and renal signs is termed CORS (CerebelloOculoRenal 
Syndrome encompassing several previously de fi ned conditions e.g. Arima syn-
drome). Phenotypic classi fi cations into distinct JSRD sub-types have been pro-
posed (Valente et al.  2008 ; Zaki et al.  2008  ) , but it remains dif fi cult to categorise 
many cases, therefore a spectrum rather than discrete conditions may be more 
realistic (Sattar and Gleeson  2011  ) . CNS features characterising JS and JSRD will 
be considered collectively here. 

 Currently 14 genes have been associated with JS and JRSD, including genes 
previously associated with other CNS-phenotype ciliopathies (eg  MKS3, OFD1 ) 
and genes previously associated with non-CNS isolated ciliopathies (eg  NPHP1, 
RPGRIP ) (reviewed by Sattar and Gleeson  2011  ) . There is evidence for broad 
genotype-phenotype correlations, in that cerebello-renal subtypes and oculo-renal 
subtypes are more likely to be associated with genotypes that can also cause the 
relevant non-CNS isolated phenotypes (Parisi  2009  ) . For example,  TMEM67  
mutations are found at relatively high frequency in JSRD patients with hepatic 
 fi brosis (Iannicelli et al.  2010  ) . It has been argued that  AH1  is the JS genotype 
most likely to be associated with a CNS-only phenotype (Valente et al.  2006  ) . 
Mutations in  CEP29 0, on the other hand, seem capable of causing a very diverse 
range of ciliopathic disruptions including and in addition to JS, with no apparent 
mutation-to-phenotype predictability (Coppieters et al.  2010b  ) . It appears likely 
that ascertainment of JS cases has been biased toward more severe cognitive 
and neurological abnormality, since siblings of severely affected cases have been 
observed to carry minor abnormalities such as isolated DWM without develop-
mental delay which would not have otherwise come to diagnostic attention or been 
considered as part of the JS spectrum eg (Gunay-Aygun et al.  2009  ) . Diverse presen-
tations of ciliopathy within single families emphasises this complexity (Iannicelli 
et al.  2010 ; Zaki et al.  2011  ) . A molecular- fi rst approach to classi fi cation is there-
fore of limited clinical utility, because of variable penetrance for each CNS and 
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non-CNS phenotype, and low predictive value of mutations either between or within 
families. 

 Structure-function relationships are explicable for some but not all of the key 
CNS features of JS. Moreover, the requirement for an imaging-based diagnostic 
criterion has facilitated collection of valuable imaging datasets for exploration of 
the wider structural and functional phenotype. The embryological and molecular 
origins of observed neuropathology and neuroradiological abnormalities are not 
fully understood and the primary developmental defects underlying regionally-
speci fi c CNS features remain uncon fi rmed. 

    9.3.1.1   Neurology 

 Neonatal hypotonia is a universal feature of JS, but is a very non-speci fi c observa-
tion not strongly suggestive of a ciliopathic cause or JS. Apnoea and hyperpnoea in 
infancy are highly characteristic, although this feature usually improves with age 
therefore may only be contributory to diagnosis in retrospect depending on severity 
of other features. In an early series of 61cases, hyperpnoea was reported in 55% 
(with exacerbations during illness or excitement) and apnoea in 60% (Maria et al. 
 1999  ) . Seizures were observed in 4% cases in the same study. 

 Eye movement abnormalities (oculomotor apraxia) in JS are diverse and include 
pendular or see-saw nystagmus, lack of visual orienting, inconsistent smooth pur-
suit, inability to initiate saccades or to relate saccades to a target. Perhaps surpris-
ingly, only mild reduction in visual acuity is present in the majority of patients, 
where testing possible (Weiss et al.  2009  ) . Related signs include compensatory 
head-thrusting, whilst the vestibulo-ocular re fl ex is usually intact (Khan et al.  2008  ) . 
Additional ocular features are seen in some JS cases, most notably dystrophic reti-
nal appearance but normal electroretinogram in around 20% of affected individuals 
(Maria et al.  1999 ; Khan et al.  2008  ) . Ptosis and ophthalmic nerve palsies, and other 
cranial nerve abnormalities have also been reported (Burt et al.  2012  ) . Interestingly, 
Khan et al. demonstrated asymmetric visual evoked potentials in all cases investi-
gated. This asymmetry could be suggestive of abnormal decussation of the optic 
nerves, although this has not been directly visualised on neuroimaging to date. 
Abnormal chiasmatic decussation has been associated with see-saw nystagmus in 
other contexts. 

 Non-ocular motor control abnormalities are also characteristic of JS, although 
less systematically documented. Features include truncal ataxia, affecting acqui-
sition of motor milestones and gait. Rhythmic, protruding tongue movements that 
may lead to tongue hypertrophy were reported in 45% by Maria et al.  (  1999  ) . An 
interesting feature occurring at unknown frequency is the presence of mirror 
movements, where hands move synchronously instead of independently. This fea-
ture was particularly remarked-upon as being a feature of the  fi rst cases in whom 
 AHI1  mutations were identi fi ed (Ferland et al.  2004  ) . This unusual motor abnor-
mality is presumed to re fl ect lack of decussation of the pyramidal (corticospinal) 
tracts, although functional neuroimaging or electrophysiological evidence for this 
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 association has not been reported. More subtle neurobehavioural abnormalities 
re fl ecting abnormal interhemispheric connections, which could potentially include 
perceptual and cognitive disturbance, have not been investigated to date.  

    9.3.1.2   Neurodevelopment 

 Developmental delay and intellectual impairment are probably universal in JS, but 
the severity and extent of impairments is very variable. The nature, frequency and 
severity of impairments, and mechanisms underlying these aspects of the pheno-
type, have yet to be fully established. 

 Maria et al.  (  1999  )  reported that all patients had severe developmental delay. 
Seventy three percent could sit independently, and 50% walked independently 
(at average age 4 years). Only 60% acquired any verbal language. An independent 
follow-up study of 18 cases con fi rmed that motor development is affected in all 
cases (only 12 individuals were independently mobile at the time of follow-up, and 
age at which walking achieved was delayed in all ambulant cases, varying between 
22 months and 10 years). However in contrast to the earlier study, one third of cases 
were attending mainstream education, with only mild or moderate impairments in 
communication and cognitive function (Hodgkins et al.  2004  ) . 

 One potential explanation for the discrepancy between these studies in the sever-
ity of non-motor cognitive impairment could be that later-diagnosed cases are in 
general less severe than the  fi rst-reported JS cases. Another possibility however is 
that early estimates of cognitive function were hampered by visuomotor, visual and 
motor impairments. Braddock et al. ( 2006  )  objectively evaluated speech and lan-
guage abilities and found some evidence for this methodological bias. Speech 
apraxia was a dominant feature, with severe dif fi culties in tongue movements and 
alternating lip/tongue sequences required for speech production. Expressive abili-
ties were found to be much more severely impaired than receptive abilities which 
were only mildly impaired in most cases. Since receptive language abilities are 
closely correlated with general intelligence in the general population, historic 
assessments based primarily on observations and parental reporting may have led to 
underestimation of cognitive ability. 

 An association between JS and autism remains controversial. Given that visual 
 fi xation and control of pursuit are universally impaired in JS, it is not surprising 
that gaze-dependent social developmental interactions will be disrupted, with 
consequential effects for social and linguistic development. It remains unclear 
whether the resultant behavioural phenotype is truly autism, or a mimic thereof 
that has different origins and different consequences for social relationships and 
personality development. Autism was  fi rst reported in two JS cases by Holroyd 
et al.  (  1991  ) . Ozonoff et al.  (  1999  )  investigated 11 JS cases at average age 7 years 
(seven cases being nonverbal at time of assessment), using standard diagnostic 
instruments (with uncon fi rmed validity for making diagnoses in children with 
both severe developmental delay and sensory impairments). In 4/11 cases an 
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autism-spectrum disorder was diagnosed, but the two assessment tools did not 
yield convergent diagnoses in three of these four cases and, importantly, diagnos-
tic assessments were not in agreement with parental reports of behavioural abili-
ties and concerns. 

 Which aspects of the ASD triad (impaired language development, abnormalities 
of social interaction, and repetitive and stereotyped behaviours) may be most 
affected in JS? One of the two original cases reported by Holroyd was said to dem-
onstrate repetitive and stereotyped behaviours but not de fi cits in reciprocal social 
interaction. Ozonoff et al. reported that stereotypies and restricted interests in addi-
tion to language delay were common amongst the total sample, whereas the chil-
dren who were diagnosed with an ASD also demonstrated limited emotional 
responses and enjoyment of social interactions. Hence JS appears to be more 
strongly associated with repetitive and stereotyped behaviours than with social 
de fi cits. Braddock et al.  (  2006  )  emphasise that communication in JS is not typically 
autistic, in that children with JS use gesture to overcome limitations in verbal com-
munication, especially when expressive ability is poor. Investigation of more subtle 
autistic phenomena, for example poor empathy and disturbance to theory of mind, 
has not yet been attempted. 

 Other behavioural dif fi culties reported in JS include temper tantrums, inattention 
and overactivity (Farmer et al.  2006  ) . The extent to which these behaviours may be 
an understandable consequence of frustration due to motor control, visuomotor and 
communication impairments has not been explored. However, it is also possible that 
cognitive and behavioural features of impaired attention and inhibitory control 
could directly re fl ect focal pathology or disturbed connectivity. 

In summary, the diversity and type of cognitive and behavioural abnormalities 
observed in JS is notable and surprising given the relatively isolated, subcortical 
neuroradiological and neuropathological features. Three non-exclusive explana-
tions may be worth exploring. One possibility is that cerebellar vermis dysgenesis 
and resultant disruption to distributed cerebellar-cerebral circuitry has extensive 
developmental consequences for higher-cognitive functions, dispelling the previ-
ous view that the cerebellum is primarily a motor control centre. A second, linked 
possibility is that the cerebellum and associated network function are primarily 
involved in motor control, but that motor control is itself necessary for the emer-
gence of higher order cognitive functions. Articulatory-sensory matching are rec-
ognised to be important for the development of language function, hence individuals 
with speech dyspraxia due to focal pathology can demonstrate associated linguistic 
impairments (Vargha-Khadem et al.  2005  ) . It has been proposed that a more gen-
eral de fi cit in matching observed and experienced behaviours (dependent on mirror 
neurons) could underlie abnormalities of social cognition, and the cerebellum 
could play a role within this system (Kana et al.  2011  ) . A third possibility could be 
that cognitive and behavioural aspects of JS are independent of cerebellar vermis 
hypoplasia, and re fl ective of other structural abnormalities (hippocampal and 
 temporal lobe disruptions, or disturbed white matter connectivity, or other abnor-
malities not yet described). Given interest in the role of the cerebellum (and vermis 
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in particular) in autism-relevant cognitive functions in the general population, 
JS has been viewed as an important aetiologically-homogeneous population for 
investigation of developmental pathophysiology underlying an autistic phenotype. 
Association has been sought between  AHI1  variants and non-syndromic Autism 
Spectrum Disorders, with some evidence that common variation in this gene is 
associated with elevated risk of an ASD (Alvarez Retuerto et al.  2008  ) .  

    9.3.1.3   Neuroradiology 

 The Molar Tooth Sign (MTS described by Quisling et al.  1999  )  is    a neuroradio-
logical observation required for diagnosis of JS. The MTS re fl ects the  convergence 
of several co-localised anatomical abnormalities: a deepened interpeduncular fossa 
(re fl ecting abnormality at the pontomesencephalic junction), elongated, horizontally-
 orientated superior cerebellar peduncles, and cerebellar vermis hypoplasia or 
agenesis (Fig.  9.1 , reproduced with permission of Mac Keith Press). Structures 
contributing to the MTS are derived from the primitive isthmus, but whether there 
is a primary problem with cerebellar patterning, or organisation of midbrain 
nuclei, or migration of neuronal precursors into both sets of structures, or a pri-
mary disturbance of brainstem-cerebellar connectivity is not clear. The severity 
of each of the component features of the MTS is variable between individuals 
with JS, leading investigators to speculate about corresponding variation in clini-
cal features of JS. Gitten et al.  (  1998  )  found no correlation between a composite 
posterior fossa score and developmental delay, whereas subjective severity of 
pontine hypoplasia was predictive of severity of eye movement abnormalities 
(Weiss et al.  2009  ) . No correlations have been detected between neuroradiological 
features and severity of respiratory dysfunction.  

 Whilst the MTS is a helpful objective diagnostic marker for JS, many addi-
tional structural abnormalities have been reported. Additional collections of cere-
brospinal  fl uid in the posterior fossa are common, and the Dandy-Walker 
Malformation (DWM) is a relatively frequent observation (6 of 45 patients, 
Maria et al.  1999  ) . It should be noted that DWM can sometimes obscure the 
MTS and that after decompression of posterior fossa, re-examination for MTS 
should be carried out (Sartori et al.  2010  ) . Whilst extensive cerebral abnormalities 
are not common in JS, perisylvian polymicrogyria and heterotopias have been 
noted in at least six patients (Zaki et al.  2008 ; Bachmann-Gagescu et al.  2012  ) . 
Ventriculomegaly has recently been reported to be characteristic of JS patients 
carrying  CC2D2A  mutations, accounting for around 8% JS cases overall 
(Bachmann-Gagescu et al.  2012  ) . Whether this observation relates to obstructive 
hydrocephalus or compensatory ventricular enlargement occurring alongside cere-
bral dysgenesis or atrophy is not clear. 

 Two comprehensive reviews of neuroimaging abnormalities in addition to MTS 
have recently been published. Senocak et al.  (  2010  )  reviewed MRI of 20 JS patients 
(ages at scan 18 months to 17 years). Hippocampal malformations (“globular” in 
shape and medially displaced) were reported for 80% of patients, with temporal 
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  Fig. 9.1    Magnetic resonance imaging showing a normal cerebellar vermis and superior cerebellar 
peduncles on ( a ) axial and ( b ) sagittal images. ( c ) and ( d ) show cerebellar vermis hypoplasia and 
thickened superior cerebellar peduncles perpendicular to the brainstem ( arrow ), consistent with 
the molar tooth sign ( Figure 2  from Sattar and Gleeson  (  2011  ) . Reproduced with permission of 
Mac Keith Press)       

lobe hypoplasia in 25%. Callosal abnormalities were also very common, and co-
existent with hippocampal abnormalities, suggesting that these re fl ect developmental 
disruption at a similar stage of neurodevelopment. Poretti et al.  (  2011  )  carried out 
an even larger survey of radiology in 75 JS patients (age at scan 2 days – 27 years). 
Occipital and atretic encephaloceles were detected in eight cases. The reported rate 
of hippocampal and corpus callosum abnormalities in this case series was much 
lower (11/71 and 6/71 cases respectively) than in the Senocak et al. review. An addi-
tional observation was abnormal cerebellar folia in a high proportion of cases. 
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Poretti et al. sought but found no evidence for genotype-neuroimaging correlations 
within their case series, except that amongst four patients with OFD-VI (presenting 
with severe developmental delay in addition to craniofacial features), hippocampal 
dysgenesis and hypothalamic hamartoma were frequent (two cases each), and cer-
ebellar vermis dysplasia was severe. 

 An additional perplexing neuroradiological feature of JS (both in terms of 
developmental origin and functional correlates) is lack of decussation (either 
complete absence, or severe reduction) of both the Superior Cerebellar Peduncles 
(SCP) and Corticospinal Tracts (CST, pyramidal tracts). Absent SCP decussation 
was  fi rst recognised on postmortem examination of three early cases (discussed 
below). Lee et al. ( 2005  )  demonstrated that the same abnormality could be 
observed in vivo, applying diffusion-weighted imaging (DWI) to a single case. 
Poretti et al.  (  2007  )  con fi rmed the sensitivity of  fi bre orientation mapping of 
 fractional anisotropy (FA), a measure of white matter organisation derived from 
DWI, for observing abnormal course and absent decussation of the SCP in six 
subjects (Fig.  9.2 ). Spampinato et al.  (  2008  )  demonstrated that the same abnor-
mality can be observed on conventional imaging by seeking “an ill-de fi ned oval 
area of lower T1 signal intensity in the region of the mesencephalic isthmus” 
(appearance of the normal decussation). Blind rating of this sign by two neurora-
diologists indicated that the sign could not be identi fi ed in any JS cases or controls 
before the age of 30 months, but that after 30 months the sign was present in all 
16 controls and absent in all six cases examined. Pyramidal tract decussation has 
not been systematically investigated, but it is interesting to note that similar abnor-
malities have been observed in individuals displaying mirror movements as an 
isolated abnormality (Nugent et al.  2012  ) . 

Parisi et al.  (  2004  )  explored the possible consequences of abnormal decussa-
tion for lateralised processing, using a  fi nger-tapping task and functional MRI in 
a single adolescent JS subject. Atypical bilateral activations were observed in 
sensorimotor cortex and cerebellar hemispheres, an observation that has not (to 
our knowledge) been explored in further subjects to date. The one published 
visual-evoked potential study in JS (Khan et al.  2008  )  reported indirect evidence 
for abnormal optic chiasm decussation. This leads to the suggestion of a more 
generalised inter-hemispheric axonal routing problem in JS, affecting at least 
three spatially and functionally distinct pathways, with possible consequences for 
perception as well as motor control.   

    9.3.1.4   Neuropathology 

 Post-mortem evaluation is extremely valuable for delineating the type and extent of 
macroscopic and microscopic pathology in genetic disorders, but for many ciliopa-
thies no such evaluations have been published. Whilst limitations such as cause 
and age of death,  fi xation methods and dissection artefacts should be recognised, 
integration of neuropathology with in vivo neuroimaging may give convergent 
perspectives on developmental anomalies. 
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  Fig. 9.2    Color-coded FA-maps at the level of the decussation of the superior cerebellar pedun-
cles. ( a ) In a healthy subject, on the color-coded FA-maps the decussation of the superior cerebel-
lar peduncles is identi fi ed as a “ red dot ” ( arrow ) at the level of the inferior colliculi of the 
midbrain. The decussating  fi bers have a transverse orientation and consequently show a “ red 
color  coding.” ( b ) In JS, the absence of the “ red dot ” on color-coded FA-maps within the mid-
brain con fi rms the failure of the superior cerebellar peduncles to decussate. ( c ,  d ) Fiber tractog-
raphy displays that, in JS, the  fi bers within the superior cerebellar peduncles that connect the 
dentate nucleus with the nucleus ruber do not cross and remain ipsilateral. Axial, coronal, and 
sagittal anatomic T2-weighted images are projected within the display for orientation purposes 
( Figure 2  from Poretti et al.  (  2007  ) )       

 Yachnis and Rorke  (  1999  )  reported the autopsy  fi ndings for a 30 year-old adult 
with JS. Vermal agenesis with enlargement and rostral extension of 4th ventricle 
were seen as expected, but additional features not visible on MRI include extensive 
abnormal development of medullary and cerebellar nuclei including hypoplasia of 
the inferior olives and islands of grey matter foci corresponding to dentate nuclei. 
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Disorganisation of the spinal cord posterior columns was also noted, and pigmented 
neurons corresponding to the locus coeruleus were dispersed from their typical 
location. No apparent decussation of pyramidal tracts could be traced. Within the 
cerebellum, reduction in Purkinje cell number was observed. Neuropathology for 
 fi ve individuals with diverse JS genotypes have recently been reported (Juric-
Sekhar et al.  2012  )  (Figs.  9.3  and  9.4 , reproduced with permission of Springer). 
Three cases were prenatal and carried out after diagnosis by fetal ultrasound and 
MRI and elective feticide (20–23 weeks gestation at autopsy). All three cases demon-
strated cerebellar hypoplasia and enlargement of the 4th ventricle, and two cases had 
occipital encephalocoele (perhaps re fl ecting more severe presentations detectable 
at this gestation). Two cases showed dorsal enlargement of the medulla, but other 
macroscopic abnormalities of pons and midbrain were minimal. More extensive mac-
roscopic abnormalities could be reported for the two postnatal cases (ages 
13 months and 22 years), including fragmentation of the dentate gyri, abnormali-
ties of the substantia nigra, and in one case hippocampal and parahippocampal 
hypoplasia. Histological examination con fi rmed extensive hypocellularity and 
fragmentation of cerebellar, midbrain and hindbrain nuclei in both fetal and post-
natal cases (with variability between cases in extent). Cortical appearance was nor-
mal in all cases, but two cases showed hippocampal hypoplasia, and basal ganglia 
were also abnormal in two cases.     

    9.3.2   Meckel Syndrome (MKS) 

 MKS is a severe CNS-dominant ciliopathy that shares many features with both JS 
and with the multi-system ciliopathies described below. Diagnostic features of 
MKS are occipital encephalocele, polycystic kidney disease, polydactyly (more 
usually postaxial) and  fi brosis of the liver with bile duct proliferation (Logan et al. 
 2011  ) . Some authors have advocated widening the diagnostic net by including any 
major brain structural malformation in association with the extra-CNS features 
listed above (Baala et al.  2007b  ) . Associated abnormalities include orofacial cleft-
ing, genitourinary anomalies, pulmonary hypoplasia, and microphthalmia/
coloboma. MKS is genetically heterogeneous (7 loci to date:  MKS1, TMEM67, 
TMEM216, CEP290, CC2D2A, RPGRIP1L  and  B9D1 ), and allelic to several oth-
ers ciliopathies (JS, BBS, OFD1), with some evidence that more severe muta-
tional mechanisms are more likely to lead to MKS (Tallila et al.  2009  ) . For 
example, the mutational spectrum of  CCD2A  involves missense mutations in JS 
versus truncating mutations in MKS (   Bachmann-Gagescu et al.  2012  ) . Conversely, 
hypomorphic mutations at three loci associated with MKS can cause BBS but 
with some atypical BBS features    notably seizures (Leitch et al.  2008  ) . Hopp et al. 
 (  2011  )  deployed Next Generation Sequencing to investigate the complexity of 
MKS. In one family they identi fi ed a frameshift mutation in one allele and a dele-
tion in the other allele of  B9D1 , and an additional likely-pathogenic difference in 
one copy of  CEP290 , suggesting oligogenic inheritance. It is possible that the 
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  Fig. 9.3    Brain    at postmortem examinations in subjects with Joubert syndrome.  a ,  b  Posterior 
views of the cerebellum and brainstem in Subjects 2 ( a ) and 3 ( b ) show enlarged wide-open 4th 
ventricle, hypoplastic vermis and markedly hypoplastic cerebellar hemispheres. Abnormal excess 
tissue is visible on the dorsal aspect of the cervicomedullary junction ( black arrows ).  c  Cerebellum 
and brainstem in an age-matched unaffected fetus.  d  The cerebellum and brainstem of Subject 2 
(midline cut) demonstrate hypoplastic cerebellum ( black asterisk ),  fl at pons, and abnormal excess 
tissue on the dorsal aspect of the cervicomedullary junction ( black arrow ).  e  Subject 4 displays an 
elongated medulla lacking inferior olivary prominences ( black arrowhead ). No obvious pyramidal 
decussation is seen ( black arrow ). Cerebellar tissue wraps ventrally around the medulla to the 
pyramids ( black asterisk ).  f  Mid-pons and cerebellum (cut perpendicular to the long axis at the 
level of cranial nerve V exit) in Subject 4 show aplasia of the cerebellar vermis ( white arrow ) and 
enlarged 4th ventricle. Crossing  fi bers are seen in the hypoplastic basis pontis ( black arrowheads ), 
and fragmented dentate nuclei are seen bilaterally ( red arrowheads ).  g  The dentate nucleus of 
Subject 5 is also fragmented ( red arrowheads ).  h  The pons and cerebellum (midline cut, medial 
view) of Subject 5 demonstrate enlarged 4th ventricle, aplastic vermis ( black asterisk ), and 
hypoplastic cerebellum.  Scale bar  1 cm ( a–h ) ( Figures 2 and 3  from Juric-Sekhar et al.  (  2012  ) . 
Reproduced with permission of Springer)       
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severity of MKS relates to mutational load, in  addition to speci fi c mutational 
mechanisms, converging on ciliogenesis and disrupting neural development at a 
relatively early stage. 

    9.3.2.1   Neurology and Neurodevelopment 

 To date, no case of classical MKS is known to have survived the perinatal period, 
with the majority of pregnancies resulting in intra-uterine demise, termination, 
stillbirth or premature delivery of a non-viable infant. Following the identi fi cation 
of MKS-associated genotypes, sequencing of the MKS genes has been carried out 
in patients with milder phenotypes overlapping with other ciliopathies in whom 
other attempts to identify causative mutations have been unsuccessful. For exam-
ple, Gunay-Aygun et al.  (  2009  )  identi fi ed truncating (splice site) and missense 
MKS3 mutations in three individuals ascertained for cystic renal disease and 
minor CNS features of a JSRD. No case had an encephalocele, challenging the 
diagnostic speci fi city of  MKS3  mutations, and potentially broadening the MKS 
spectrum.  

  Fig. 9.4    Histopathology of the brain and spinal cord in Joubert Syndrome.  a  The cerebellum and 
brainstem of Subject 2 (sagittal section, rostral left) shows dorsal heterotopia with numerous 
calretinin-positive cells ( black arrow ). The pyramidal tract is appropriately positioned in the brain-
stem ( black asterisk ).  b, c  The medulla of Subjects 1 and 3, immunostained to detect GFAP, shows 
bilateral periolivary gliosis around the simpli fi ed inferior olivary nuclei ( black arrowheads ).  d  The 
rostral medulla of Subject 4, immunostained to detect  NF , demonstrates hypoplastic inferior olivary 
nuclei ( black arrowheads ), and thickened arcuate nuclei ( black asterisk ).  e  Cervicomedullary 
junction of Subject 4 immunostained for  MBP  demonstrates absence of the posterior median sulcus, 
with disorganized dorsal column tracts and nuclei ( black arrowheads ). Due to nondecussation, 
the corticospinal tract is located mainly in anterior rather than lateral white matter. A few fascicles 
of  MBP -positive corticospinal  fi bers cross the midline, as seen at higher magni fi cation in  f  
(corresponding to  boxed area  in  e .  g  The cerebellar cortex in Subject 4 shows an increased GFAP-
positive Bergmann glia.  h  GFAP-immunopositivity in the cerebellar cortex from an unaffected 
age-matched fetus.  i ,  j  The cerebellar cortex in Subjects 1 and 3 shows a paucity of GFAP-positive 
Bergmann glia, and decreased thickness of external and internal granular layers.  k  The pontomed-
ullary junction in Subject 1 shows vermis aplasia ( HE ).  l  The cerebellar hemisphere of Subject 4 
shows fragmented deep nuclei forming a chain of neuronal clusters in the white matter ( NF ).  m  
The cervical spinal cord in Subject 2 shows disorganized, poorly de fi ned posterior funiculi with 
nests of medium-sized neurons ( black arrowheads ), and a poorly formed posterior median sulcus. 
The anterior corticospinal tracts were greatly enlarged ( black asterisk ), consistent with nondecus-
sation.  n  Axial section of cervical spinal cord from an unaffected age-matched fetus stained with 
HE.  o  The basal ganglia in Subject 4 demonstrate fragmentation of the claustrum ( black arrows ) 
with small neuronal heterotopia in the extreme capsule ( MBP ).  p  Cerebellar heterotopia in Subject 
5 (stained with HE) consists of disorganized granule cells and Purkinje neurons.  Scale bars  40  m m 
( g–i ), 20  m m ( f ,  j ,  p ), 10  m m ( b – e ,  l ), 5  m m ( a ,  k ,  m – o ). Sections: sagittal ( a ,  l ), axial ( b – j ,  m – p ), 
coronal ( o ).  GFAP  glial  fi brillary acidic protein,  HE  hematoxylin and eosin,  MBP  myelin basic 
protein,  NF  neuro fi lament protein ( Figures 2 and 3  from Juric-Sekhar et al.  (  2012  ) . Reproduced 
with permission of Springer)       
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    9.3.2.2   Neuroradiology 

 MKS can be detected by ultrasonography from as early as 11–14 weeks gestation, 
but is often not detected until anomaly scanning after 20 weeks (Chen  2007  ) . Fetal 
MRI is now the modality of choice for delineating the extent of CNS and extra-
CNS abnormalities to assist in de fi nitive diagnosis and decision-making. Behairy 
et al.  (  2010  )  reported antenatal MRI  fi ndings in two MKS cases. Both cases had 
occipital encephalocoele (small in one case, not detected on ultrasonography), with 
vermian hypoplasia an additional  fi nding in one case, and bilateral enlarged dys-
plastic kidneys in the other (Fig.  9.5 , reproduced with permission of Elsevier 
Ireland Ltd.). MKS is sometimes described as being associated with neural tube 
defects. However, spinal dysraphisms in addition to occipital encephalocele (which 
may be mild, moderate or severe) have not been reported, and MKS mutations have 
not to date been identi fi ed in individuals with isolated neural tube defects.   

    9.3.2.3   Neuropathology 

 Unlike JS, the majority of information about the spectrum of neuro-embryological 
abnormalities in MTS comes from autopsy examination (Logan et al.  2011  ) . 

  Fig. 9.5    A 24-week-fetus 
with Meckel Gruber 
syndrome. Fetal MRI in 
sagittal view showing marked 
oligohydramnios, bilateral 
enlarged dysplastic kidneys 
( narrowed arrow ), small 
occipital cephalocele that was 
missed on US ( thick arrow ) 
( Figure 5  from Behairy et al. 
 (  2010  ) . Reproduced with 
permission of Elsevier 
Ireland Ltd.)       
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In addition to encephaloceles of variable location and extent, midline abnormali-
ties predominate – holoprosencephaly, agenesis of the corpus callosum, fused thalami, 
small or absent pituitary gland. Somewhat in contrast to the dilated CSF systems 
seen in JS, hypoplasia of the third ventricle has been observed. Aqueductal stenosis 
leading to hydrocephalus has also been reported. Both common and rare features 
associated with JS are also seen in MKS (agenesis of the cerebellar vermis, elon-
gated brain stem, Dandy–Walker malformation, microcephaly. polymicrogyria) 
leading to the suggestion that MKS represents the most severe end of the JSRD 
spectrum. 

 Recent studies exploring the frequency of different MKS genotypes and asso-
ciated phenotypes has highlighted this overlap, and pointed toward genotype-
phenotype correlations. Khaddour et al.  (  2007  )  reported the clinical characteristics 
of families mapped to the  MKS1  and  MKS3  loci (prior to gene identi fi cation). 
Baala et al.  (  2007a  )  provided detailed information about ten families (several 
with multiple affected siblings) in whom either homozygous or heterozygous 
 CEP290  mutations were identi fi ed. DWM was noted in nine cases, cerebellar 
vermis hypoplasia or agenesis in seven cases, and brain stem dysgenesis in 12. 
Histological observations included “chaotic organization of  fi bers and tracts” in 
the midbrain and involving the corticospinal tracts, enlarged and elongated supe-
rior cerebellar peduncles, as well as vermis hypoplasia.   

    9.3.3   Summary 

 Is there a unifying mechanism underlying the range of CNS features observed in 
patients with JS, JSRD and MKS? Barkovich et al.  (  2009  ) , in their developmental 
classi fi cation of mid-brain hindbrain abnormalities, comment that vermian abnor-
malities in JS could re fl ect abnormal neuronal migration, whilst decussation abnor-
malities may be a sign of abnormal axonal growth. These discrete embryological 
anomalies could, however, be dependent on shared ciliary mechanisms: cilia func-
tioning as chemotactic cue-guidance antennae, deployed by migrating neurons and 
by axonal growth cones, Abnormal migration would be consistent with the presence 
of polymicrogyria and heterotopias in some patients, but does not explain why the 
cerebellar-hindbrain pathology in JS is so region-speci fi c. Subtle disturbances to 
corticogenesis and hippocampal organisation have also been observed and may 
relate to cognitive impairment. Whether one or multiple mechanisms can explain 
the neuropathological features of JS, and whether this mechanism is relevant to 
CNS features in other ciliopathies has yet to be determined. 

 Further insights into JS pathogenesis have been provided by recent investigation 
of an  Ahi1 -de fi cient mouse model (Lancaster et al.  2011  )  that recapitulates cerebellar 
vermis hypoplasia, but not fragmentation of nuclei or abnormal decussations. 
Examination of knock-down mouse embryos identi fi ed restricted proliferation of 
midline cerebellar granule neurons and a midline cerebellar fusion defect, similar to 
defects previously seen in Wnt-mutant mice. The investigators went on to demon-
strate a speci fi c decrease in Wnt activity in cerebellar cells surrounding the midline 
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in mutant tissue, and showed that this phenotype could be partially rescued by lithium 
chloride injections. The authors propose that proliferation of speci fi c cell popula-
tions, mediated via cilia-Wnt signalling, is responsible for vermian agenesis in JS. 
Embryological disruptions in MKS begin as early as neurulation, with disruption to 
neural tube formation and closure (Weatherbee et al.  2009  ) . Whether these features 
re fl ect similar aspects of ciliary function and downstream signalling as JSRD has 
yet to be established.   

    9.4   Multi-System Ciliopathies 

    9.4.1   Alstrom Syndrome (AS) 

 AS is de fi ned by cone-rod dystrophy before age 1, obesity and insulin resistance, 
dilated cardiomyopathy, recurrent pulmonary infections, progressive renal and 
hepatic disease, and absence of polydactyly (Marshall et al.  2011  ) .  ALMS1  is the 
only gene in which mutations have been identi fi ed to date (Collin et al.  2002  ) , with 
mutations detectable in 25–40% clinically diagnosed cases. Therefore AS appears to 
stand in contrast to CNS-dominant ciliopathies discussed above, with no genetic 
heterogeneity identi fi ed to date, and apparent absence of CNS features. However on 
closer inspection some similarities with the CNS-dominant ciliopathies may perhaps 
emerge, as well as neurological abnormalities that may be speci fi c to this condition. 

    9.4.1.1   Neurology 

 Early visual impairment is a required criterion for diagnosis of AS. Features include 
pendular nystagmus, photophobia and reduced acuity, in addition to abnormal elec-
troretinogram (ERG) characteristic of severe retinal dystrophy. Progressive bilateral 
sensorineural hearing impairment affects at least 70% in  fi rst decade of life (Van 
Den et al.  2001  ) , perhaps due to requirement of ALMS1 for maintenance of planar 
cell polarity of cochlear hair cells (Jagger et al.  2011  ) . 

 Marshall et al.  (  2005  )  surveyed clinical features in 150 patients with AS, and 
reported a number of unexplained neurological or neuromuscular complaints – partial 
unilateral paralysis, unexplained joint or muscle pain and muscle dystonia. One 
possibility is that these features could re fl ect peripheral nervous system abnormalities, 
secondary to metabolic syndrome and disturbed glycaemic control. One interesting 
observation, however, is the relative lack of neuropathic signs and apparent protection 
from neuropathic ulcers in AS patients with diabetes compared to other young type 2 
DM patients (Paisey et al.  2009  ) . Marshall et al. reported that hypore fl exia was present 
in 33 patients (20%; age range, 9 months to 41 years). Twenty of these same patients 
reported absence seizures, although supporting EEG evidence is lacking.  
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    9.4.1.2   Neurodevelopment 

 Although developmental delay is not a diagnostic criterion for AS, Marshall et al. 
 (  2005  )  reported that developmental milestones were delayed in around half of their 
cohort of patients. In around half of patients who demonstrated delay, all domains 
of development were affected, whereas in the remainder either  fi ne motor function 
or language development were predominantly affected. Later cognitive functions 
were in the learning disability range (lQ < 70) in 16% of cases, although it should be 
noted that the availability of assessments was variable, and necessarily limited by 
visual impairment, which is severe in all cases. Severe medical problems such as 
cardiomyopathy also affect a signi fi cant proportion of AS children from an early 
age, with likely impact on global abilities. Mild autistic spectrum behaviours were 
reported to affect a minority of children but have not been systematically evaluated 
or compared to other children with visual impairment, including JS.  

    9.4.1.3   Neuroradiology 

 No publications found   

    9.4.2   Oro-Facial-Digital Syndrome (OFD) 

 OFD is a large group of conditions. Shared diagnostic criteria for OFD are the pres-
ence of a lobed tongue with hamartomatous or lipomatous oral lesions, cleft palate 
(50%) and variable facial and digital abnormalities. OFD-1 is an X-linked dominant 
condition that demonstrates male lethality, caused by mutations in  OFD1 . OFD-6 is 
generally considered to be part of the JSRD spectrum, indicating that multi-system 
and CNS-dominant ciliopathies may overlap to some degree. 

    9.4.2.1   Neurology 

 Epilepsy is a recognised feature of OFD-1 but the frequency and types of seizure 
disorders have not been systematically documented. Sensory abnormalities appear 
not to be frequent in OFD.  

    9.4.2.2   Neurodevelopment 

 At least 50% of OFD-1 individuals demonstrate developmental delay and learning 
disabilities. Mild to moderate intellectual disability was reported in 11 of 25 cases 
in the largest study to date (Thauvin-Robinet et al.  2006  ) . No domain speci fi city of 
de fi cits has been described.  
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    9.4.2.3   Neuroradiology 

 Structural brain abnormalities are common and diverse in OFD-1, and show many 
similarities with JS/JSRD. Odent et al.  (  1998  )  reported imaging in two families and 
three sporadic cases. Abnormalities included porencephaly or arachnoid cysts, 
periventricular heterotopia and cerebellar vermis hypoplasia. In the larger case 
series of Thauvin-Robinet et al.  (  2006  ) , imaging was mainly available for patients 
with signi fi cant developmental delay. The most common abnormality was agenesis 
of corpus callosum common (11/14), followed by cerebellar hypoplasia, arachnoid 
cysts, hydrocephalus and porencephaly. OFD-1 mutations can also be associated 
with severe cerebral dysgenesis (affecting all midline structures), and may underlie 
the observed male lethality. Recent molecular testing of post-mortem material (from 
a severely affected female fetus) identi fi ed a de novo OFD1 mutation. This same 
mutation had previously been found in two sporadic cases, one with normal intelli-
gence and one with learning disability, highlighting possible genetic complexity in 
determining phenotype (Thauvin-Robinet et al.  2011  ) .   

    9.4.3   Bardet-Biedl Syndrome (BBS) 

 BBS is a multi-system ciliopathy in which CNS features are core but not absolutely 
required for diagnosis (Beales et al.  1999  ) . Primary diagnostic features are rod-cone 
dystrophy, postaxial polydactyly, truncal obesity, hypogonadism, developmental 
delay, and cystic renal disease. Secondary features that add support to the diagnosis 
in the absence of suf fi cient primary features include neurological abnormalities and 
learning disability. Historically, two syndromes were described (BBS and Laurence 
Moon Syndrome, LMS) which could not be consistently discriminated from each 
other, hence were subsumed into (LM)BBS (Moore et al.  2005  ) . CNS features were 
recognised in both BBS and LMS, but it is notable that the original description of 
LMS involved more extensive and frequent expression of neurological abnormali-
ties than BBS. 

 BBS demonstrates considerable genetic heterogeneity, with 16 loci identi fi ed to 
date, including genes implicated in other ciliopathy syndromes (Forsythe  2012  ) . 
Novel diagnostic strategies have recently been developed to improve diagnostic 
ef fi ciency (Janssen et al.  2011  ) . The number of patients diagnosed with BBS is 
likely to increase over time, leading to renewed focus on understanding each 
component of the phenotype, in the hope that interventions can be directed at each 
aspect of morbidity, and long-term health outcomes improved. 

    9.4.3.1   Neurology 

 Information about the range of clinical dif fi culties experienced across the lifespan 
in BBS was collated in a questionnaire-based study by Beales et al.  (  1999  ) . Sensory 



2559 Abnormalities of the Central Nervous System Across the Ciliopathy Spectrum

impairments not directly related to cone-rod dysytrophy were frequent. Seven per-
cent reported ocular abnormalities (strabisumus, cataracts, astigmatism), whilst 
21% (23/109) had a history of conductive hearing loss. Mixed sensorineural and 
conductive hearing loss was reported rarely (3%). An additional sensory de fi cit of 
note in BBS is anosmia – objective evidence for smell identi fi cation impairment 
was reported for two members of an extended family carrying homozygous  BBS4  
deletion (Iannaccone et al.  2005  ) , and replicated in humans and in a  Bbs4  mouse 
knockout model (Kulaga et al.  2004  ) . 

 The frequency of seizures reported in BBS cohorts has varied from 11% (Moore 
et al.  2005  )  to 4% (Beales et al.  1999  ) . This may re fl ect population differences 
in BBS genotype frequencies, since the Moore et al. study was carried out in a 
genetically-isolated population (Newfoundland) with an increased BBS prevalence. 
As discussed above, BBS caused by mutations in the MKS genes appears to demon-
strate a speci fi c association with seizures (Leitch et al.  2008  ) . The neurobiological 
basis for seizures in BBS, and in association with MKS genotypes, has not been 
elucidated. 

 Motor co-ordination impairment appears to be relatively frequent problem in 
BBS. Abnormal gait was a feature of the  fi rst sib pair reported by Laurence and 
Moon. Beales et al.  (  1999  )  reported the presence of ataxia with poor coordination in 
40% (43/109). Moore et al.  (  2005  )  reported that ataxia and impaired co-ordination 
were present in 86% (18/21) of patients directly examined. The temporal relation-
ship between gait co-ordination dif fi culties and slowly-progressive retinal dystro-
phy from late childhood has not been established, but it appears that ataxia may be 
independent of visual impairment in BBS. Examination of cerebellar function after 
the onset of visual impairment is challenging, but upper limb dysmetria is not usu-
ally observed. 

 Hypertonia was historically considered to be a core feature in LMS. Moore et al. 
 (  2005  )  reported that 21% (5/24) of BBS patients had spasticity, involving all limbs 
in 4/5 patients and only lower limbs in one. However, hypotonia was also reported 
in two families. Progressive spastic paraplegia was reported in two cases by Beales 
et al.  (  1999  ) , and quadraparesis had been observed in LMS previously. Genotypes 
and mechanisms underlying this rare severe neurological presentation of BBS is not 
known. One possible link between progressive hypertonia and BBS could be that 
 TRIM32  (an E3 ligase which speci fi cally binds to and ubiquitinates dysbindin, and 
is a cause of limb-girdle muscular dystrophy) is synonymous with  BBS11  (Chiang 
et al.  2006  ) . 

 Hirschprungs disease (colonic aganglionosis) is a rare feature of BBS, present in 
2% of the Beales et al. cohort. Moore et al.  (  2005  )  reported colonic dysmotility in a 
much higher proportion (15%) including one child with con fi rmed Hirschprungs. 
Tobin et al.  (  2008  )  showed that inhibition of neural crest cell migration underlies 
this rare manifestation of BBS, and it is not clear whether a minor degree of dysmo-
tility, not of suf fi cient severity to necessitate rectal biopsy or surgical management 
of bowel obstruction, may be a more frequent peripheral neurological manifestation 
of BBS. Hirschprungs has also, rarely, been reported in Joubert Syndrome (Maria 
et al.  1999  ) .  
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    9.4.3.2   Neurodevelopment 

 Parental survey of 109 BBS patients (Beales et al.  1999  )  con fi rmed previous clinical 
observation that developmental delay evolving into learning disability is a frequent 
but variable component of the BBS phenotype. Some degree of delay had been rec-
ognised in 50% of cases. Sixty two percent were reported by parents to have learn-
ing disabilities, although lack of formal evaluation is likely to underestimate the true 
prevalence of mild or domain-speci fi c de fi cits. Neuropsychological evaluation of 21 
children with BBS reported that IQ ranged from 42 to 108 (Barnett et al.  2002  ) . 
A recent investigation of adults with BBS (Bennouna-Greene et al.  2011  )  classi fi ed 
26% of individuals as having moderate intellectual disability, 35% mild or border-
line impairments and the remainder performing within the average range of abilities 
(one above average). Moore et al.  (  2005  )  reported that mean verbal IQ (VIQ) in 24 
children and adults with BBS was 75 (range 53–102, n = 24). The Haptic Intelligence 
Scale, designed to estimate cognitive abilities in individuals with severe visual 
impairment, was used to obtain an estimate of performance IQ (PIQ). Mean PIQ 
was 83 (range 44–105, n = 14), indicating no apparent difference between verbal 
and performance abilities. Population-normed scores of less than 70 (cut-off gener-
ally used to de fi ne signi fi cant learning disability) were recorded in 33% (8/24) of 
cases for VIQ and 21% (3/14) for PIQ, again indicating the lack of apparent domain-
speci fi city of learning disability in BBS. 

 Delay and disorder to language development has been noted as a predominant 
concern, with 54% of the Beales et al.  (  1999  )  cohort manifesting speech and lan-
guage impairments requiring therapeutic intervention. Speci fi c abnormalities of 
speech and language reported (based on parental report and SALT examination in 
four cases) included high pitched voice, hypernasal speech, poor articulation, palatal 
incoordination, consonant omissions/substitutions, and poor comprehension. Moore 
et al.  (  2005  )  reported speech assessments for 19 patients (18 adults, one child aged 
13 years), including a standardised consonant and syllable articulation test. Syllable 
repetition times for patients were markedly prolonged, suggesting a subtle impairment 
in oromotor co-ordination. 

 In addition to concerns about developmental and educational progress, families 
frequently report that behavioural, emotional and social dif fi culties can be equally 
problematic for children with BBS. Parental survey highlighted frequent concerns 
about social development, anxieties and obsessions in children with BBS (Beales 
et al.  1999  ) . Barnett et al.  (  2002  )  deployed standardised questionnaires to explore 
behavioural features further. One quarter of children were assessed to have clini-
cally signi fi cant internalising behaviours (for example anxiety and somatic com-
plaints). Social problems and attention problems were also frequently reported and 
to be of a severity suggestive of clinically-signi fi cant dif fi culties. Rating scales for 
autistic spectrum disorders (ASD) were completed for around half of cases. Two 
children demonstrated mild to moderate features suggestive of an ASD, and a further 
two children demonstrated severe features that may correspond to a diagnosis of 
autism on more thorough evaluation. Moore et al.  (  2005  )  reported that one child 
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with mutations in the  MKKS/BBS6  gene had an ASD, although systematic evaluations 
were unavailable for the majority of cases. 

 During adulthood, mental health dif fi culties are a relatively frequent and dis-
abling feature of BBS. Anxiety and depression are common, and relatively severe. 
Psychiatric chart reviews for 14 adults reported by Moore et al.  (  2005  )  indicated 
that 30% of individuals met criteria for a lifetime diagnosis of a major psychiatric 
disorder. Anxiety disorders occurred in 20%, a common presentation being recur-
rent psychosomatic symptoms at ages 20–40 years. Mood disorders occurred in 9%, 
including three with major depression and one with bipolar disorder. All except one 
of these cases had required at least one inpatient admission to a psychiatric facility 
i.e. symptoms were severe and disruptive. Neuropsychiatric evaluation of 34 adults 
with BBS (mean age = 25 years old, ranging from 17 to 53 years old) con fi rmed that 
signi fi cant psychopathology was present in 35%, with diverse dif fi culties including 
depression, anxiety disorders, obsessive compulsive disorder, psychosis and eating 
disorders (Bennouna-Greene et al.  2011  ) . Whether mental health dif fi culties re fl ects 
the understandable challenge of adjustment to progressive visual loss during adoles-
cence and other medical and social dif fi culties, or a more direct neurobiological 
susceptibility to mood disorder has yet to be determined. Neuroanatomical abnor-
malities discussed below, together with genetic and cellular evidence for conver-
gence between disruptions in BBS and in idiopathic mental illnesses (Kamiya et al. 
 2008 ; Han et al.  2008  ) , led to the speculation that mood disorder may be a direct 
re fl ection of neuronal ciliopathy in BBS.  

    9.4.3.3   Neuroradiology 

 Structural brain abnormalities apparent on qualitative radiological assessment are 
not frequent in BBS. Cerebellar abnormalities, including cerebellar vermis hyp-
oplasia, have been reported in single case studies (Baskin et al.  2002 ; Rooryck 
et al.  2007  ) . Recently, three independent neuroimaging studies of BBS have been 
carried out, aiming to describe qualitative and quantitative neuroanatomical 
abnormalities, that may correlate with neurodevelopmental aspects of the BBS 
phenotype. These three studies differ somewhat in methodology, and not all 
 fi ndings are consistent. 

 Global grey matter (GM) volume reduction was reported by (Baker et al.  2011  ) , 
but not replicated by Keppler-Noreuil et al. ( 2011b  ) . Global white matter (WM) 
volume reduction was reported by Keppler-Noreuil et al.     (  2011b  ) , with a trend 
toward similar reduction in the Baker et al.  (  2011  )  study. Bennouna-Greene et al. 
 2011  reported a radiological appearance of hippocampal dysgenesis in 11 out of 34 
cases (Fig.  9.6 , reproduced with permission of Blackwell Munksgaard). Signi fi cant 
reduction in hippocampal volumes has been quanti fi ed by region-of-interest 
morphometry and temporal lobe grey matter volume differences quanti fi ed by voxel-
based morphometry (Baker et al.  2011  )  (Fig.  9.7 , reproduced with permission of 
Wiley). Caudate volumes were found to be reduced in both quantitative studies 
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(Baker et al.  2011 ; Keppler-Noreuil et al.  2011a,   b  ) . Studies are in agreement that 
cerebellar volumetric abnormalities are not a consistent feature of BBS.   

 Keppler-Noreuil et al.  (  2011b  )  reported that occipital lobe WM volumes were 
disproportionately reduced in comparison to volumes in the temporal, parietal and 
frontal lobes. Baker et al.  (  2011  )  applied voxel-based morphometry to identify 

  Fig. 9.6    Magnetic resonance imaging of normal hippocampus and hippocampal dysgenesis 
in Bardet Biedl Syndrome. ( a  and  b ) Coronal T2 weighted image centered on the hippocampus 
showing normal anatomy. The hippocampus presents a lateral position, an ovoid form, a transversal 
orientation, its internal structures are distinguishable and the collateral sulcus is short and transver-
sally orientated. ( c  and  d ) Coronal T2 weighted images of patient 4.02.02. Bilateral hippocampal 
dysgenesis extending from the body to the head, partial on the right side (medial position of the 
hippocampus, pyramidal form, blurring of hippocampal internal structures, deep and vertically 
oriented collateral sulcus, but the hippocampus is not vertically oriented) and complete on the left 
side (medial position of the hippocampus, a round vertically oriented hippocampus, blurring of 
hippocampal internal structures, deep and vertically oriented collateral sulcus). ( e  and  f ) Coronal 
T2 weighted images of the hippocampus of patient 1.08.12. Bilateral complete hippocampal 
dysgenesis extending from the tail to the body and the head (medial position of the hippocampi, 
round vertically oriented, blurring of hippocampal internal structures, deep and vertically oriented 
collateral sulci) ( Figure 1  from Bennouna-Greene et al.  (  2011  ) . Reproduced with permission of 
Blackwell Munksgaard)       

  Fig. 9.7    ( a ) Neuroradiological abnormalities—T1-weighted scans illustrating qualitative abnor-
malities detected in  BBS  patients (presented in comparison to age-matched and gender-matched 
comparison subjects). ( b ) Voxel-based morphometry ( gray matter ). Background: averaged nor-
malized GM segment for all patients and controls;  Red areas : relative gray matter de fi cit in  BBS  
patients (P<0.001 uncorrected); presented in neurological orientation. ( c )  Total gray matter and 
hippocampal volume  measurements ( Figures 1, 2 and 4  from Baker et al.  (  2011  ) . Reproduced with 
permission of Wiley)           
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regions of WM volume difference. Reductions in WM volume within the inferior 
longitudinal fasciculus and inferior fronto-occipital fasciculus were detected, and at 
lower statistical thresholds more extensive WM reductions within the occipital lobes 
were also observed. These observations show similarity with previous reports of 
WM tract abnormalities involving visual pathways in individuals with congenital or 
early onset visual impairment (Bridge et al.  2009 ; Ptito et al.  2008  ) , leading to the 
possibility that these speci fi c WM tract abnormalities in BBS may be consequential 
to visual impairment. Diffusion-weighted imaging and tractography is supportive of 
this proposal (Baker et al. unpublished data). 

 Hence it appears that there are several discrete neuroanatomical characteristics 
of BBS, including hippocampal and temporal lobe GM abnormalities, global WM 
volume reduction, and regional WM abnormalities involving the occipital lobe and 
associated pathways. Developmental mechanisms and functional associations are 
yet to be resolved.   

    9.4.4   McKusick-Kaufman (MKKS) 

 MKKS is a rare ciliopathy de fi ned by postaxial polydactyly, congenital heart 
disease, and abnormalities of the internal genitalia (hydrometrocolpos in females), 
associated with poor prognosis. Absence of additional features consistent with a 
diagnosis of BBS is a requirement for diagnosis of MKKS, and given the consider-
able overlap in physical features, individuals with features suggestive of MKKS 
require observation until at least age 5 to determine which syndromic phenotype 
will evolve. MKKS is likely to be genetically heterogeneous, but it is notable that 
 BBS6  mutations have been identi fi ed in some patients with MKKS, adding further 
fuel to the debate about whether MKKS should be considered a subtype of BBS (on 
both genetic and phenotypic grounds). Given this debate, it is relevant to note 
whether neurocognitive features of BBS and MKKS overlap, however information 
is lacking that would enable this issue to be addressed. 

    9.4.4.1   Neurology 

 By de fi nition, sensory impairments including retinal dystrophy would lead to a 
diagnosis of BBS rather than MKKS.  

    9.4.4.2   Neurodevelopment 

 Developmental delay was reported for 3 of 37 patients (14%) in review of reported 
cases (Slavotinek and Biesecker  2000  ) . Where signi fi cant learning disability is present, 
MKKS is likely to be reclassi fi ed as BBS.  
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    9.4.4.3   Neuroradiology 

 No studies identi fi ed.   

    9.4.5   Summary 

 Multi-system ciliopathies are associated with neurological signs, developmental 
delay, learning disability, childhood behavioural features and adult psychiatric 
illness in a signi fi cant proportion of cases. By de fi nition, the posterior fossa abnor-
malities and associated oculomotor apraxia characteristic of JSRD are absent. The 
observation that BBS is associated with hippocampal and temporal lobe structural 
abnormalities, which have also been seen in JS, suggests that there could be common 
mechanisms underlying these neurodevelopmental features across the ciliopathy 
spectrum. However, there is a high degree of intra-syndrome and inter-syndrome 
variability in CNS features, and mechanisms of pathology and modifying factors, 
including the impact of sensory impairment and physical illness remains to be inves-
tigated. Addressing these complex aspects of the ciliopathy phenotype is a high 
priority for improving quality-of-life for families and patients.   

    9.5   Skeletal-Predominant Ciliopathies 

    9.5.1   Jeune Asphyxiating Thoracic Dystrophy (JATD) 

 JATD is a severe abnormality of the development of the thoracic skeleton, associ-
ated with polydactyly. Diagnosis depends on presence of characteristic chest wall 
deformity, speci fi c signs of osteochondrogenesis on skeletal survey, and supporting 
evidence of relevant pathology in other organ systems. It is usually a lethal disorder 
with prenatal or early postnatal demise. Survivors into infancy develop severe kidney 
and liver disease, and some have manifested retinal dystrophy. 

    9.5.1.1   Neurology and Neurodevelopment 

 CNS features have not been extensively documented in view of the severity of the 
somatic phenotype in the majority of diagnosed cases. However, in a recent review 
(Keppler-Noreuil et al.  2011a  )  140 previously published JATD cases were discussed 
alongside description of eight new cases, six of whom survived beyond infancy, 
indicating that the spectrum of milder clinical presentations may not previously 
have been appreciated. Neurological features were not prominent, however one case 
was reported to have generalised hypotonia and oculomotor dyspraxia (with no evi-
dence of MTS on MRI). Developmental delay of moderate severity was reported in 
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one out of eight new cases. In one additional case mild motor delay was apparent, 
but was attributed to severity of respiratory compromise and skeletal dysplasia. 
Interestingly, Hirschprungs disease was reported in two cases from the reviewed 
literature – this phenotype appears to be present, consistently in a very small number 
of cases across the ciliopathy spectrum.  

    9.5.1.2   Neuroradiology 

 Evidence for structural brain abnormalities in JATD is very limited – two cases in the 
literature were reported to have CNS defects, speci fi cally Dandy–Walker malforma-
tion and hydrocephalus. Cranial MRI was abnormal in one case in the Keppler-
Noreuil 2011 series, features being mild ventriculomegaly including 4th and lateral 
ventricles, hypoplastic corpus callosum, and diffuse spinal stenosis (development not 
documented, alive at 9 years of age).   

    9.5.2   Ellis-van Creveld/Short-Rib Polydactyly/
ChondroEctodermal Dysplasia 

 This group of conditions is characterised by short limbs, short ribs, postaxial poly-
dactyly, and dysplastic nails and teeth. Congenital heart defects are present in around 
60%, typically atrio-ventricular canal defects including common atrium, frequently 
requiring surgery in the early months of life with variable prognosis (Hills et al. 
 2011  ) . Mutations in two genes ( EVC  and  EVC2  that encode centrosomal proteins) 
are detectable in two thirds of cases (Tompson et al.  2007  ) . OMIM lists intellectual 
disability and Dandy-Walker malformation as part of the phenotypic spectrum for 
this syndrome, however the frequency, nature and severity of these de fi cits have not 
been surveyed. Stevens and Lachman  (  2010  )  reported a severely affected infant 
with a skeletal dysplasia, Dandy-Walker malformation and congenital heart defect, 
reminiscent of EVC but without con fi rmed genetic diagnosis, suggesting that CNS 
involvement in EVC may be a genetically distinct condition.  

    9.5.3   Cranioectodermal Dysplasia/Sensenbrenner Syndrome 

 This rare condition is unusual in that sagittal craniosynostosis (not reported in 
other ciliopathies) is a core diagnostic criterion, in addition to facial, ectodermal 
and skeletal abnormalities. The  fi rst gene mutated in cases of CED was  IFT122 , the 
encoded protein of which is a component of the intra- fl agellar transport complex B 
important for ciliogenesis and hedgehog signal transduction (Walczak-Sztulpa 
et al.  2010  ) . Exome sequencing in CED patients recently identi fi ed mutations in 
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 WDR35  (Gilissen et al.  2010  )  and in  IFT43  (Arts et al.  2011  )  and  WDR19  (Bredrup 
et al.  2011  ) , genes that encode presumed ciliary transport proteins. 

 Amar et al.  (  1997  )  presented a case report and review of 12 previously published 
cases. The detailed case report involved a female child with delayed psychomotor 
development and hypoplasia of corpus callosum, in addition to skeletal  fi ndings and 
abnormal calcium homeostasis. Three of twelve previously reported cases had 
CNS abnormalities (unspeci fi ed), and developmental delay was not surveyed. In both 
cases with  WDR35  mutations intelligence was normal with no behavioural concerns 
and therefore no clinical indications for neuroimaging (Gilissen et al.  2010  ) . Therefore 
the spectrum of CNS abnormality, and possibly genotype-phenotype associations 
remains to be con fi rmed.   

    9.6   Retinal-Predominant Ciliopathies 

    9.6.1   Leber Congenital Amaurosis (LCA) 

 LCA is a severe retinal dystrophy, presenting with early-onset blindness, variable 
retinal appearances and severely abnormal ERG. LCA is associated with roving-
eye movements and nystagmus, plus a characteristic behavioural sign: eye-pok-
ing, rubbing and pressing (Franceschetti’s oculo-digital sign) in order to stimulate 
scotopic sensation, resulting in enophthalmos. LCA is genetically heterogeneous 
– chip-based testing for 14 genes identi fi ed mutations in 70% of 90 probands, 
with CEP290 mutations contributing in 30% (Coppieters et al.  2010a  ) . LCA gene 
functions are diverse – in addition to ciliary proteins, three LCA genes are involved 
in Vitamin A metabolism. It has been proposed that oligogenic inheritance and 
mutational load may be a contributory factor in some cases (Wiszniewski et al. 
 2011  ) . Whether LCA is associated with extraocular features, or whether in the 
presence of extraocular features an alternative diagnosis is appropriate (for CNS 
feature, reclassi fi cation as a JSRD is likely to be suggested), remains a matter of 
debate. 

    9.6.1.1   Neurology 

 Fazzi et al.  (  2005  )  carried out neurological examinations in 40 children with LCA 
(ages 8–50 months), with abnormal  fi ndings in 31 cases. Hypotonia was observed 
in 27 cases (67.5%), and cerebellar ataxia in 4 (10%). In two of these cases, ataxia 
was associated with other cerebellar signs (dysmetria and intentional tremor). Yzer 
et al.  (  2012  )  reported epilepsy in one patient, and abnormal EEG in an additional 
patient. Abnormal proprioception was also a feature in two patients. Anosmia may 
be a feature in a proportion of cases – objective smell testing revealed impairment 
in LCA patients with CEP290 mutations only (McEwen et al.  2007  ) .  
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    9.6.1.2   Neurodevelopment 

 A relatively early study of LCA reported the presence of intellectual disability in 20% 
of over 200 cases (Schuil et al.  1998  ) . Limited neuroimaging and genetic testing was 
available, and methods of assessing visual impairment are unclear. Fazzi et al.  (  2005  )  
carried out neuropsychological assessments using the Reynell–Zinkin Scales for visu-
ally impaired children (assessing social adaptation; sensorimotor understanding; explo-
ration of the environment; response to sound and verbal comprehension; expressive 
language): performance was normal in 24 cases (60%), borderline in 5 (12.5%), while 
in 11 cases (27.5%) de fi nite impairments of variable severity were detected. Perhaps 
unsurprisingly, predominant dif fi culties related to sensorimotor understanding and 
exploration of the environment. Perrault et al.  (  2007  )  investigated genotype-phenotype 
correlations and reported that  CEP290 -associated LCA was not linked to intellectual 
disability, unless neuroimaging  fi ndings suggestive of JSRD were present.  

    9.6.1.3   Neuroradiology 

 Fazzi et al.  (  2005  )  reported MRI to be normal in 22 (55%) of subjects and pathological 
in 13 (32.5%). In two cases (5%) a slight reduction in the dimensions of the chiasma 
and/or optic nerve were observed, whilst seven cases (17.5%) demonstrated mild and 
nonspeci fi c alterations on MRI—mild atrophy in four subjects (10%) and white matter 
alterations in three (7.5%). Speci fi c WM imaging (DWI and tractography) would assist 
in determining whether these abnormalities are most likely to re fl ect the impact of early 
severe visual loss on maturation of visual and non-visual pathways. The remaining four 
(10%) subjects (two of whom were siblings) had clearcut evidence of MTS on neuroi-
maing. All four cases were ataxic with developmental delay, but a diagnosis of JS was 
not thought to be appropriate because the ERG was too severely abnormal, and other 
supporting features such as disordered breathing were absent. Yang et al.  (  2010  )  
reported that 6 of 31 patients (19%) with LCA in whom MRI was clinically indicated 
had radiologically documented brain abnormalities. Two patients had cerebellar vermis 
hypoplasia, 1 patient showed an absence of septum pellucidum, two subjects showed 
mild external hydrocephalus, and one patient was found to have a small cerebellum. 
Therefore in patients with LCA in whom neurological or neurodevelopmental con-
cerns are highlighted, neuroradiological features similar to JS are likely.    

    9.7   Renal/Hepatic Predominant Ciliopathies 

    9.7.1   Nephronophthisis (NPHP) 

 NPHP pathology can be isolated or feature as part of multisystem ciliopathies. Key 
aspects of renal pathology include tubulointerstitial  fi brosis, tubular dilatation and 
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cyst formation and tubular atrophy, in most cases leading to end-stage renal failure 
by the teenage years. Genotypes associated with NPHP have been shown to be 
associated with JS as well as Senior-Loken syndrome, challenging previous 
classi fi cation systems. Moreover, it is unclear whether patients ascertained for 
NPHP have always been fully evaluated for neurodevelopmental features. Salomon 
et al.  (  2009  )  reported that 10–20% of individuals with a primary diagnosis of NPHP 
demonstrate extra-renal features including cerebellar signs and learning dif fi culties 
(in some cases suggestive of the milder end of the JS spectrum). An example of 
the genetic and phenotypic complexity inherent to the ciliopathy spectrum was pro-
vided by Tory et al.  (  2007  ) , who identi fi ed a family expressing NPHP and JS-related 
neurological symptoms carrying homozygous  NPHP1  deletions in combination 
with a heterozygous truncation mutation in  CEP290  and a heterozygous missense 
mutation in  AHI1 .  

    9.7.2   Polycystic Kidney Disease (PKD) 

 PKD (autosomal dominant or recessive forms) is de fi ned by the presence of cystic 
kidney disease, sometimes in association with hepatic cysts, and absence of features 
suggestive of a multi-system ciliopathy. Rarely, PKD has been reported to be associ-
ated with DWM (Goldston syndrome). The presence of more severe CNS structural 
abnormalities with functional consequences is likely to prompt reclassi fi cation as a 
cerebro-renal syndrome (for example a Meckel syndrome subtype). One exception 
to this rule is that a small proportion of ADPKD cases (8% of almost 250 cases)   , 
have been found to have arachnoid cysts. Arachnoid cysts are usually asymptomatic 
but sometimes associated with chronic subdural haematoma (Leung and Fan  2005  ) , 
(Schievink et al.  1995  ) .   

    9.8   Discussion 

 We have described the broad panoply of CNS abnormalities accompanying many 
ciliopathies. The degree of variability that exists between and within diseases is strik-
ing, despite common genetic aetiologies. Moreover, many CNS features cut across 
syndromal boundaries, and are seen at variable frequency across the entire ciliopathy 
spectrum. In spite of the recent rapid growth in our understanding of the causation of 
ciliopathies, we are only just scratching the surface of the knowledge required to 
understand how the cilium functions in typical brain development and dysfunctions in 
neurological disease, including potential involvement of the primary cilium in the 
pathogenesis of acquired or congenital isolated CNS disease. 

 A greater understanding of the genetic basis of ciliopathies will provide insight 
into phenotypic determinants. With the advent of new and rapid sequencing tech-
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nologies, diagnosis of most rare, monogenic diseases will be achieved within the 
next 5 years. For us to make any correlation between genotype and phenotype 
amongst the ciliopathies will require more extensive investigation of the genetic 
mechanisms underlying disease in general. One explanation may be afforded by 
evidence of the in fl uence of the total mutational load on  fi nal phenotypic outcomes. 
Here, both oligogenic inheritance patterns and modi fi er mutations have an important 
role to play in generating the clinical variability observed even within families with 
ciliopathies. Such examples of published modi fi er genes already include  TTC21B  
(Davis et al.  2011  ) ,  AHI1  (Louie et al.  2010  )  and  RPGRIP1L  (Khanna et al.  2009  )  
each of which codes for a protein within the cilia proteome. Oligogenic inheritance 
has been described for BBS and nephronophthisis whereby more than two mutations 
in two different genes are necessary and required for manifestation of the phenotype 
(Katsanis et al.  2001  ) . 

 The cilium should be viewed as a complex organelle, rather than an isolated 
cellular appendage, that forms an integral part of the cell. Despite periods of absence 
at cell division, the primary cilium is clearly important for many and diverse cellular 
activities. Research in the coming years will unravel the extent of networks of 
protein complexes that underlie the role of the primary cilium and this is likely to 
differ from cell to cell and tissue to tissue. Loss of function of a given cilia protein 
in the epidermis, for example, may be fully tolerated whereas loss within the devel-
oping brain of the same protein may have a profound effect on neuronal migration 
or synapse formation. Recently, a network of crucial protein interactions was dis-
covered linking nephronophthisis, Joubert, and Meckel-Gruber syndromes, ciliopa-
thies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube 
malformation (Sang et al.  2011  ) . Using proteomics, 850 interactors copurifying 
with nine NPHP/JBTS/MKS proteins were discovered. These revealed three 
connected modules: one of which functions predominantly at the apical surface, 
another at centrosomes, and a third linked to Hedgehog signalling. This study 
showed that perturbation of the  fi rst, apical module leads to predominantly renal 
cystic disease whereas the other two modules are linked to retinal or neural de fi cits. 
This illustrates the power of combining proteomic networks with human genetics to 
uncover critical disease pathways. 

 Through the study of human diseases and animal models we are beginning to 
piece together the mechanisms by which cilia impact development of the cerebellum, 
hippocampus and the retina. The cerebellum comprises numerous granule cells, 
which make up more than 50% of all the neurons in the brain. It also contains 
Purkinje cells – large, complex neurons that control motor coordination. Normally 
the cerebellum undergoes massive proliferation of granule cell progenitors during 
development but this is interrupted in the absence of cilia (Chizhikov et al.  2007  ) . 
Other studies have shown that the loss of cilia genes prevented granule cell progenitors 
from responding to sonic hedgehog signals important for guiding axons and control-
ling division of stem cells (Breunig  2008 ; Spassky  2008  ) . More recently Han et al. 
 (  2008  )  identi fi ed a requirement for cilia in the dentate gyrus progenitor cells of the 
hippocampus, and linked this to volume loss and memory de fi cits in rodents. 
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Importantly, ciliary function could be partially restored resulting in improvements in 
recall and maze navigation (Amador-Arjona et al.  2011  ) . 

 Already, the combined of use of the cilia proteome (Gherman et al.  2006  )  with 
syndrome categorisation (Baker and Beales  2009  )  has proved invaluable in predict-
ing and de fi ning many ciliopathies. It remains a challenge to extend their bene fi ts to 
clinical diagnosis (targeted capture/whole exome analysis), prognosis (genotype-
phenotype correlates), recurrence risks (confounded by intrafamilial variability of 
phenotypes), and ultimately clinical management of disease, including amelioration 
of CNS disruptions. The latter is now being actively explored by several labs whereby 
the approaches fall into three main categories (1) gene therapy (retinal disease) 
(2) cell therapies (retinal disease) and (3) drug therapy. Drug therapies hold great 
promise as it may be possible to administer compounds systemically to either limit 
damage to cells resulting from protein misfolding events, or to genetically modify 
the translation of damaged proteins in a subset of patients. Other considerations for 
drug therapy especially for neuronal disease will be the ability of test compounds to 
cross the blood–brain barrier. Biomarkers to monitor the impact of any interventions 
targeted at CNS disease are lacking, and must re fl ect clinically-meaningful outcomes. 
What is certain is that it will take the combined efforts of several disciplines to come 
up with effective therapeutic interventions for ciliopathies, a promise that may be 
realised sooner than expected.      
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