
Chapter 13
Oxidative Stress in Infectious Diseases

Esther Jortzik and Katja Becker

Abstract The “big three” infectious diseases HIV/AIDS, tuberculosis, and malaria
were collectively responsible for nearly 260 million infected people in 2010. HIV,
Mycobacterium tuberculosis, and Plasmodium falciparum, the causative agents of
AIDS, tuberculosis, and malaria, are continuously exposed to reactive oxygen and
nitrogen species endogenously produced or derived from the host immune system
in response to infection. Oxidative stress has a key function in the pathogenesis
of many infectious diseases, and represents moreover a promising strategy for
chemotherapeutic development. Understanding the redox interactions and redox
signaling mechanisms of pathogens and their hosts is crucial for developing (1)
drugs that support the host antioxidant defense in order to protect cells from
oxidative damage, (2) drugs that enhance specific reactive oxygen or nitrogen
species to improve the host defense against pathogens, and (3) drugs that interfere
with the redox system of the pathogen in order to block its growth and survival.
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GST glutathione S-transferase
gp120 glycoprotein 120
Grx glutaredoxin
GSH reduced glutathione
GSSG oxidized glutathione
HAART highly active anti-retroviral therapy
HIV human immunodeficiency virus
KatG catalase-peroxidase
iNOS nitric oxide synthase
LTR long terminal repeat
Mca mycothiol S-conjugate amidase
MscR mycothiol-S-nitrosoreductase/-formaldehyde reductase
MSH mycothiol
MSNO S-nitrosomycothiol
MSSM mycothiol disulfide
Msr methionine sulfoxide reductases
Mtr mycothiol reductase
NAC N-acetylcysteine
NF›B nuclear factor ›B
NO nitric oxide
NOX NADPH oxidase
nPrx nuclear peroxiredoxin
Plrx plasmoredoxin
Prx peroxiredoxin
RNS reactive nitrogen species
ROS reactive oxygen species
SOD superoxide dismutase
Tat transactivator protein
TNF tumor necrosis factor
TPx thioredoxin peroxidase
Trx thioredoxin
TrxR thioredoxin reductase

13.1 Introduction

Oxidative stress is not a disease, but an unspecific pathological state that can be
worsened by depletion of antioxidants, immunosuppressants, zinc and selenium
deficiency, xenobiotics, and infections, thus being involved in the pathogenesis of a
variety of diseases (Stehbens 2004). Mammalian cells of the immune system use
the production of reactive oxygen and nitrogen species (ROS, RNS) to control
and defend themselves against infections with bacterial pathogens, parasites, or
viruses. Infectious agents counteract oxidative stress derived from the host immune
system by highly efficient antioxidant defense systems. Inhibiting the antioxidant
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defense of parasites, bacteria, and viruses is an intensely studied strategy in order to
develop effective anti-infectious drugs. AIDS (HIV), tuberculosis (Mycobacterium
tuberculosis), and malaria (Plasmodium falciparum) are the three leading infectious
diseases worldwide. In their pathogenesis, oxidative stress plays a major role, which
will be comprehensively discussed in this review.

13.2 Oxidative Stress in HIV/AIDS

According to the WHO, 2.7 million people were newly infected and 34 million
people were living with the human immunodeficiency virus (HIV) in 2010 (WHO
2011a). HIV infection leads to a complex disease with broad clinical symptoms and
complex pathogenic mechanisms. Dysregulation of the immune system is caused by
a constant decline of CD4C T cells (Pantaleo et al. 1993), which has been intensely
studied. ROS and oxidative stress are critically involved in the pathogenesis of
HIV infection, with the most important aspects being discussed in the following
paragraphs.

13.2.1 Mechanisms of Oxidative Stress in the Pathogenesis
of HIV Infection

A role of ROS in viral infections had already been described in 1970 (Belding et
al. 1970) and has been intensely investigated since that time. Oxidative stress, ROS,
and antioxidant defense systems appear to be implicated in many aspects of HIV
infection and AIDS such as immune function, inflammatory response, virus repli-
cation, and apoptosis. Humans infected with HIV show chronically increased levels
of oxidative stress, decreased concentrations of antioxidants, and perturbations in
the antioxidant systems (Gil et al. 2010). Furthermore, high plasma concentrations
of hydroperoxides and malondialdehyde were found in HIV patients, indicating
increased lipid peroxidation (Suresh et al. 2009). The activation of CD4C T cells
and monocytes/macrophages upon HIV infection is triggered by hydrogen peroxide,
superoxide anion, and peroxynitrite. Moreover, HIV infection of macrophages
results in enhanced production of peroxynitrite and superoxide (Elbim et al. 1999).
Oxidative stress upon HIV infection can be induced by the HIV transactivator
protein (Tat) and the envelope glycoprotein gp120 (Price et al. 2005). However,
the mechanisms of oxidative stress induction have not been completely unraveled.

13.2.1.1 Viral Replication

Redox signaling has an important function in the regulation of viral gene transcrip-
tion and replication. Oxidative stress has been found to increase HIV replication
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in vitro, while antioxidants show the opposite effect and reduce virus replication
(Schreck et al. 1991; Roederer et al. 1990). The promoter of HIV-1 is located
in the long terminal repeat (LTR) at the 50-end and contains binding sites for
different transcription factors, including NF›B that mediate the activation of viral
transcription in complex interplay with both viral and host factors (for review please
see Hiscott et al. 2001). Reactive oxygen intermediates such as H2O2 and oxygen
radicals disturb the redox balance towards oxidizing conditions and thereby activate
the translocation of NF›B into the nucleus, where it binds to the HIV LTR in
order to increase the expression of viral genes and replication (Schreck et al. 1991).
Moreover, peroxynitrite was shown to play a major role in virus replication, since
a synthetic peroxynitrite decomposition catalyst (MnTBAP) had a strong inhibitory
effect on virus replication. Peroxynitrite is suggested to also mediate its effects via
the NF›B pathway (Aquaro et al. 2007). Overexpression of peroxiredoxin IV in
T cells deactivated HIV LTR and thus inhibited HIV transcription by regulating
hydrogen peroxide-mediated activation of NF›B (Jin et al. 1997). Both degradation
of I›B and binding of NF›B to the LTR are suggested to be redox-controlled.
Furthermore, the HIV LTR contains binding sites for the transcription factors p53
and AP-1, which are also sensitive to redox regulation (Pereira et al. 2000).

An HIV-encoded protein required for efficient viral transcription is Tat, a
transactivator protein activated upon oxidizing conditions and inhibited upon
reduction, thus functioning as a redox sensor (Koken et al. 1994; Washington et
al. 2010). Dysfunction of Tat leads to disturbed transcription with the formation of
prematurely terminated short transcripts (Kao et al. 1987). HIV Tat protein contains
a cysteine-rich domain with several CxxC motifs that form intramolecular disulfide
bonds required for the transactivation activity (Koken et al. 1994). In vitro inhibition
of HIV expression by N-acetylcysteine (NAC) might at least in part be mediated by
reduction and deactivation of Tat (Washington et al. 2010). Similarly, thioredoxin
reductase has been shown to act as a negative regulator of Tat transactivation
activity by reducing critical disulfide bonds (Fig. 13.1) (Kalantari et al. 2008).
Moreover, Tat itself enhances oxidative stress by increasing the expression of tumor
necrosis factor (TNF ’/“) and by repressing the expression of antioxidant defense
enzymes such as manganese superoxide dismutase, glutathione peroxidase, and ”-
glutamylcysteine synthetase (Romani et al. 2010; Buonaguro et al. 1994; Flores
et al. 1993; Richard et al. 2001; Choi et al. 2000). Therefore, Tat contributes to
the oxidizing environment during HIV infection by decreasing the levels of several
antioxidant enzymes.

13.2.1.2 Apoptosis

HIV manipulates apoptotic pathways of host cells by multiple factors in order to kill
non-infected inflammatory or immune cells and infected CD4C T cells by apoptosis
(reviewed in (Gougeon 2005)). Balancing of ROS and redox signaling are suggested
to be critically involved in HIV-induced apoptosis (Agrawal et al. 2007; Romero-
Alvira and Roche 1998; Buccigrossi et al. 2011; Banki et al. 1998). HIV infection
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Fig. 13.1 Scheme of the influence of reactive oxygen species on HIV transcription and replication.
Increased cellular concentrations of reduced glutathione (GSH) and supplementation with sele-
nium or N-acetylcysteine (NAC) decrease the concentrations of reactive oxygen species (ROS) and
activate antioxidant enzymes such as thioredoxin reductase (TrxR). ROS activate NF›B-dependent
gene expression, which is decreased under reducing conditions. HIV transactivator protein (Tat) is
inhibited by reduction of critical disulfide bonds. TrxR has been shown to reduce Tat and thereby
inhibits Tat-mediated HIV transcription (modified after Kalantari et al. 2008)

leads to an increase in mitochondrial ROS that subsequently trigger apoptosis
together with other agents such as viral proteins (Tat, gp120) and cytokines (TNF’).
Moreover, caspases are cysteine-dependent enzymes and are thus sensitive towards
the redox status of the cell (Hampton and Orrenius 1998).

Members of the thioredoxin (Trx) family including Trx itself, glutaredoxin (Grx),
and peroxiredoxins have been discussed in the context of apoptotic signaling during
HIV infection (Masutani et al. 2005). Trx is upregulated in the plasma of HIV-
infected patients (Nakamura et al. 1996), and is known to inhibit the activity of
apoptosis signal-regulating kinase 1 (ASK1) under reducing conditions, and thereby
blocks induction of apoptosis, an effect that is reversed under oxidative stress and
subsequent oxidation of Trx (Saitoh et al. 1998). In contrast, thioredoxin-dependent
peroxidases, peroxiredoxins, are able to inhibit apoptosis by scavenging hydrogen
peroxide (Kim et al. 2000).

Recently, it has been reported that HIV Tat protein can directly mediate apoptosis
in enterocytes via a redox-dependent mechanism, leading to damage of the intestinal
mucosa (Buccigrossi et al. 2011). Similarly, ROS have been shown to be crucial for
HIV Tat-induced apoptosis in neurons (Agrawal et al. 2007). Tat-induced apoptotic
signaling is suggested to be based on an increase in intracellular ROS concentrations
and an imbalance in the GSH/GSSG ratio (Buccigrossi et al. 2011; Agrawal et al.
2007; Choi et al. 2000). Moreover, NAC not only prevents oxidative stress by
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balancing ROS and GSSG concentrations, but also appears to inhibit Tat-induced
apoptosis (Buccigrossi et al. 2011).

13.2.2 Antioxidant Systems During HIV Infection

Several clinical studies showed that the redox balance in HIV-infected patients
without highly active anti-retroviral therapy (HAART) is severely disturbed, with
perturbations affecting almost all components of the antioxidant defense system
including glutathione, tocopherol, ascorbate, selenium, the thioredoxin system,
superoxide dismutase, and glutathione peroxidase (Gil et al. 2010), as summarized
in the following paragraphs.

13.2.2.1 Thioredoxin Family

In order to enter host cells, HIV requires the viral glycoprotein gp120, which under-
goes conformational changes depending on the reduction of disulfides. Reduction
of gp120 can be catalyzed by Trx1, Grx1, and protein disulfide isomerase, thus
demonstrating that the host redox system is required for virus entry into host cells
(Reiser et al. 2012; Azimi et al. 2010; Auwerx et al. 2009).

Dysregulation of the Trx system appears to be involved in apoptosis in HIV-
infected cells as outlined above. In vitro, HIV infection of T cell lines decreased
the expression of Trx3 shortly after infection (Masutani et al. 2005). Similarly, Trx
levels were decreased in monocytes from asymptomatic untreated patients, while
Trx expression in cells from AIDS patients was shown to be at a higher level
when compared to uninfected cells, which has been suggested to limit ROS levels
and apoptosis at later disease stages (Elbim et al. 1999). Thioredoxin reductase
1 (TrxR1) negatively regulates the activity of Tat and thereby Tat-dependent
transcription in human macrophages by reducing two disulfide bonds within the
cysteine-rich motif of Tat (Kalantari et al. 2008). Inhibition of Grx1 activity by anti-
Grx antibodies blocks HIV replication in vitro, most likely by inhibiting HIV entry
into CD4C T cells (Auwerx et al. 2009).

Peroxiredoxins reduce hydrogen peroxide by using Trx as an electron donor.
In HIV-infected T cell lines, peroxiredoxin IV is downregulated, while T cells
overexpressing peroxiredoxin IV show a decreased HIV transcription (Jin et al.
1997). Altogether, these results show that the Trx system is intriguingly involved
in HIV infection.

13.2.2.2 Glutathione

In HIV-infected patients, reduced levels of glutathione were found in the plasma,
lymphocytes, monocytes, as well as in CD4C and CD8C T cells (Eck et al. 1989;
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de Quay et al. 1992; Roederer et al. 1991; Buhl et al. 1989). Low levels of
reduced glutathione (GSH) are associated with a poor survival of HIV-infected
patients (Herzenberg et al. 1997). The mechanisms responsible for impaired GSH
production and GSSG reduction upon HIV infection are unclear. Depletion in GSH
is accompanied by increased concentrations of oxidized glutathione, indicating a
shift in the GSH:GSSG ratio (Aukrust et al. 1995), which has been confirmed
in infected macrophages (Morris et al. 2012). Progressively depleted intracellular
GSH levels are at least partially mediated by reduced GSH synthesis, since
HIV Tat protein decreases transcription and protein levels of ”-glutamylcysteinyl
synthetase (Choi et al. 2000). This was supported by a recent study showing that
expression of GSH biosynthesis enzymes is decreased in HIV patients, which
was attributed to chronically enhanced production of inflammatory cytokines
(IL-1, IL-17, and TNF-’) that might interfere with GSH biosynthesis (Morris
et al. 2012).

13.2.2.3 Superoxide Dismutase and Catalase

The first enzyme in the defense against superoxide anions is superoxide dismu-
tase (SOD), which converts superoxide anions into hydrogen peroxide, which is
subsequently reduced by catalase. The expression of mitochondrial manganese
superoxide dismutase (MnSOD) is decreased in HIV-infected patients, with the
effect being mediated by HIV Tat protein followed by increased oxidative stress
with enhanced protein carbonylation and lipid peroxidation (Flores et al. 1993).
In contrast, the expression of cytosolic CuZnSOD in macrophages is increased
during HIV infection in vitro, most likely to counteract elevated superoxide anion
concentrations (Delmas-Beauvieux et al. 1996). Hydrogen peroxide produced by
SOD is scavenged by catalase, which shows an increasing activity with progressing
HIV infection, and most likely compensates GSH deficiency in HIV-infected cells
(Leff et al. 1992).

13.2.3 Antioxidants in the Treatment of AIDS

Decreased concentrations of antioxidants observed in HIV-positive patients are
associated with deficiencies of micronutrients with antioxidant properties such
as vitamins C and E, thiamine, selenium, and zinc. There are many indications
that supplementation with antioxidants can have a beneficial therapeutic effect for
HIV-infected patients (reviewed e.g. in Lanzillotti and Tang 2005; Singhal and
Austin 2002).
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13.2.3.1 N-Acetylcysteine

Enhancing cysteine bioavailability in order to increase GSH concentrations is most
likely the major effect of the antioxidant NAC. Oral supplementation with NAC was
reported to increase the glutathione pool in plasma and muscle (Atkuri et al. 2007).

NAC has been found to efficiently inhibit HIV replication. NAC is a potent
inhibitor of NF›B by counteracting the effect of ROS (Staal et al. 1990), but has
also been shown to block the TNF’-stimulated replication of HIV-1 (Roederer
et al. 1990). Moreover, treatment with NAC can prevent Tat-induced apoptosis by
restoring the GSH:GSSG ratio in vitro and ex vivo, and thereby protects the intestinal
mucosa (Buccigrossi et al. 2011). An increase in GSH can be achieved by both
NAC and glutamine supplementation, with NAC supplying cysteine and glutamine
by delivering glycine (Borges-Santos et al. 2012). Similar to NAC, glutamine
supplementation enhances plasma GSH levels and significantly increases lean body
mass in patients with HIV infection (Borges-Santos et al. 2012).

13.2.3.2 Selenium

Selenium deficiency is strongly associated with disease progression and mortality
in HIV-infected patients. Selenium supplementation of HIV-infected individuals im-
proves the CD4 count, suppresses the virus load, decreases anxiety, and reduces the
need for hospitalization (Hurwitz et al. 2007; Shor-Posner et al. 2003; McDermid
et al. 2002). However, information on how selenium influences HIV infection is
limited. The effect is most likely mediated via selenoproteins such as TrxR and
glutathione peroxidase that shift the redox balance towards a reducing environment
and thereby inhibit Tat and thus HIV transcription as explained above (Kalantari
et al. 2008).

13.3 Oxidative Stress in Tuberculosis

Tuberculosis infected 8.8 million and killed 1.4 million people in 2010 and is after
HIV the second leading cause of death from an infectious disease worldwide (WHO
2011b). Mycobacterium tuberculosis, its causative agent in humans, infects and
multiplies in lung macrophages of the host. In immunodeficient individuals (e.g.,
HIV-positive individuals), M. tuberculosis can multiply to high numbers and induce
an active disease. In contrast, the immune system of immunocompetent individuals
is in most cases able to control the infection, and more than 90% of the infected
remain asymptomatic (Lawn and Zumla 2011). Despite the bactericidal environ-
ment, M. tuberculosis is able to survive in macrophages, a fact that demonstrates
the adaptation of the pathogen to the oxidant burden in the host.
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13.3.1 Mechanisms of Oxidative Stress in the Pathogenesis
of Tuberculosis

The host immune system is able to influence the virulence of M. tuberculosis by
producing ROS and RNS. As a reaction towards phagocytosis of M. tuberculosis,
macrophages can induce the expression of NADPH oxidase (NOX) and nitric
oxide synthase 2 (iNOS, NOS2) and thereby increase the oxidative burden. NOX
generates superoxide by catalyzing the one-electron reduction of O2 (Leto and
Geiszt 2006). iNOS produces NO•, which can react with superoxide to form highly
reactive peroxynitrite and can kill mycobacteria (Shiloh and Nathan 2000). iNOS
expression and release of RNS are suggested to be important for controlling the
virulence of M. tuberculosis in humans. A range of studies based on murine models
of tuberculosis using iNOS inhibitors and iNOS-deficient mice show that iNOS and
RNS are required in order to control tuberculosis infection (MacMicking et al. 1997;
Chan et al. 1995; Scanga et al. 2001). Moreover, NO appears to be important for
latent tuberculosis infection in mice and prevents reactivation together with RNS-
independent mechanisms (Flynn et al. 1998). Contrarily, another study reported no
influence of a lack of iNOS on tuberculosis infection (Jung et al. 2002). Similarly,
the function of ROS produced by NADPH oxidase in controlling M. tuberculosis is
controversially discussed. Experiments using NOX-deficient mice models showed
that the absence of NOX-produced superoxide increased bacterial growth during an
early infection stage (Cooper et al. 2000; Adams et al. 1997). In contrast, another
study did not show any differences between a murine knockout model lacking
NOX and wildtype mice in ability to control M. tuberculosis infection (Jung et al.
2002). However, clear experimental evidence on the ROS/RNS-based mechanisms
of infection control in humans is rare. Alveolar macrophages from M. tuberculosis-
infected patients show increased concentrations of iNOS compared to non-infected
individuals (Nicholson et al. 1996). Several single nucleotide polymorphisms of
the nos2a gene in African Americans show associations with susceptibility to
tuberculosis, thus supporting the role of iNOS for pathogenesis of tuberculosis in
humans (Velez et al. 2009; Gomez et al. 2007).

13.3.2 Antioxidant Defense Systems of Mycobacterium
tuberculosis

Several studies reported a remarkable resistance of M. tuberculosis towards oxida-
tive stress both in vitro and in vivo; the bacterium can tolerate H2O2 concentrations
up to 10 mM (Voskuil et al. 2011). In contrast to enteric bacteria, M. tuberculosis
shows very low but differential transcriptional responses after exposure to a range of
H2O2 and NO concentrations, and is resistant to DNA damage-mediated killing by
H2O2 (Voskuil et al. 2011; Garbe et al. 1996). Low H2O2 or NO concentrations lead
to an induction of few H2O2-/NO-responsive genes such as those encoding proteins
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involved in H2O2 scavenging, repair mechanisms, and iron acquisition (Voskuil
et al. 2011). Similarly, treatment with cumene hydroperoxide also did not have a
major impact on gene transcription (Garbe et al. 1996). Interestingly, the expression
of many genes involved in antioxidant defense did not show major changes after
H2O2 or NO exposition indicating that they are constitutively expressed at a high
level (Voskuil et al. 2011). Several antimycobacterial drugs, such as ethionamide,
isoniazid, and the nitroimidazopyran PA-824, have to be reduced for activation and
thus depend on the intracellular redox state. Moreover, an increased NADH/NADC
ratio, mutations in NADH dehydrogenase, and mutations in mycothiol biosynthesis
have been related to resistance against isoniazid (Vilcheze et al. 2005; Xu et al.
2011; Miesel et al. 1998). Therefore, understanding the redox homeostasis of
M. tuberculosis is important for drug identification strategies. As an intracellular
pathogen, M. tuberculosis employs different antioxidant systems to counteract
oxidative stress of the host defense system, as discussed in the following paragraphs.

13.3.2.1 Response Towards Oxidative Stress

M. tuberculosis shows an unusually low transcriptional response towards oxidative
and nitrosative stress when compared to other enteric bacteria (Garbe et al. 1996). In
different bacteria, transcriptional response towards oxidative stress is regulated by
the transcription factors OxyR and SoxR, which modulate transcription in response
to peroxide and superoxide, respectively. Both regulate the expression of a variety
of genes, including a range of redox-active proteins (summarized in (Zahrt and
Deretic 2002)). OxyR from M. tuberculosis is nonfunctional and is not able to
sense peroxide stress. Several mutations (deletions and frameshifts) in the oxyR gene
render the transcription factor inactive, which impairs the oxidative and nitrosative
stress response in M. tuberculosis (Deretic et al. 1995; Sherman et al. 1995).
Moreover, the soxRS regulon is missing in the genome of mycobacteria (Cole et al.
1998).

In M. tuberculosis, oxidative stress response can be mediated by the regulator
furA and catalase-peroxidase KatG, which are mutated and dysfunctional in human
pathogenic M. leprae. furA is located upstream of the catalase-peroxidase katG, and
is supposed to act as a negative regulator of katG expression (Zahrt et al. 2001;
Pym et al. 2001). This regulation was suggested to be important for virulence of
M. tuberculosis, since M. tuberculosis mutants lacking katG showed a severely
impaired persistence in mice and guinea pigs (Li et al. 1998). Moreover, KatG is
required for the conversion of the prodrug isoniazid into its active form (Zhang
et al. 1992).

The expression of katG can also be negatively regulated in a FurA-independent
manner by the transcriptional regulator OxyS. Via a cysteine residue in its DNA-
binding domain, OxyS binds directly to the katG promoter region, with the
DNA-binding capacity being diminished upon oxidation of OxyS. Mycobacteria
overexpressing OxyS show an increased susceptibility towards oxidative stress,
thereby indicating that OxyS functions as a redox sensor (Li and He 2012).
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Fig. 13.2 Regulation of oxidative stress response in Mycobacterium tuberculosis. The DosR
regulon is modulated by the histidine kinases DosS and DosT that sense NO, CO, and O2. The
DosR regulon comprises 48 genes with functions for persistence and stress adaptation. On the
basis of a redox switch mechanism, WhiB3 regulates lipid biosynthesis and other central metabolic
pathways involved in virulence, persistence, and redox homeostasis in response to oxidative stress
(modified after Kumar et al. 2011 and Singh et al. 2009)

The DosR/S/T system (also called DevR system) is a redox-sensing system
involved in virulence and persistence of M. tuberculosis (Leistikow et al. 2010;
Shiloh et al. 2008; Park et al. 2003). The DosR regulon is controlled by DosR
(DevR), a response regulator, and DosS and DosT, two sensor histidine kinases.
The DosR regulon is induced by conditions that inhibit aerobic respiration, since
the heme proteins DosS and DosT can sense NO, O2, and CO by binding them to
iron in their heme group (Shiloh et al. 2008). Subsequently, the DosR dormancy
regulon is induced, which includes at least 48 genes suggested to play a role in
persistence, latent infection, and stress adaptation (Fig. 13.2) (Park et al. 2003). The
DosR regulon enables M. tuberculosis to follow and respond to conditions that do
not allow aerobic respiration and is required for maintaining the redox balance and
energy levels under anaerobic conditions (Leistikow et al. 2010).

Another redox signaling pathway in M. tuberculosis is controlled by WhiB3, a
redox regulator that senses NO and O2 from the host and is involved in virulence
and pathogenesis of mycobacteria (Fig. 13.2) (Steyn et al. 2002). WhiB3 from
M. tuberculosis contains four cysteine residues coordinating an iron-sulfur cluster
that can specifically bind NO and O2 (Singh et al. 2007). DNA binding of WhiB3
occurs independently of its iron-sulfur cluster but depends on the oxidation state of
its four cysteines: oxidation stimulates DNA binding, while reduction diminishes
it (Singh et al. 2009). Oxidation of WhiB3 stimulates DNA binding to several
lipid biosynthetic genes and directly regulates production of lipids including poly-
and diacyltrehaloses, sulfolipids, and triacylglycerol. WhiB3 is regarded as a
redox sensor that connects host redox signals with its intermediary metabolism,
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since it induces a metabolic shift to fatty acids by regulating lipid anabolism in
response to oxidative stress during tuberculosis infection (Singh et al. 2009). Thus,
WhiB3 maintains the intracellular redox homeostasis in part by channeling reducing
equivalents into M. tuberculosis lipid synthesis, which modulate inflammatory
cytokine production (Singh et al. 2009).

13.3.2.2 Thioredoxin System

Intracellular redox homeostasis can be maintained by the Trx family, which can cat-
alyze thiol/disulfide exchange reactions and comprises TrxR, Trx, and thioredoxin
peroxidases (TPx). M. tuberculosis encodes one TrxR and three Trx (A, B, and
C) (Akif et al. 2008). However, no mRNA transcripts of trxA have been observed.
This is supported by the finding that recombinant TrxA cannot be reduced by TrxR.
Thus, trxA was suggested to be a cryptic gene in M. tuberculosis and is most likely
not involved in antioxidant defense (Akif et al. 2008). The TrxR/Trx couple from
M. tuberculosis is able to reduce peroxides and dinitrobenzenes, while cumene
hydroperoxide can only be reduced by TrxR and not by Trx in vitro (Zhang et al.
1999). Moreover, TrxC is able to reduce mycothiol, GSSG, and S-nitrosoglutathione
in vitro, which was suggested to be important for defense against host-derived
oxidative stress (Attarian et al. 2009). The crystal structure of M. tuberculosis TrxC,
both oxidized and in complex with an inhibitor, has been solved and can be exploited
for structure-based inhibitor development (Hall et al. 2006, 2011)

Thioredoxin peroxidase (TPx) from M. tuberculosis shows homology to atypical
2-cys peroxiredoxins but has been characterized as a 1-cys peroxiredoxin with
Cys60 being the peroxidatic cysteine (Trujillo et al. 2006). TPx can use TrxB and C
as electron donors to efficiently reduce hydrogen peroxide, t-butyl hydroperoxide,
cumene hydroperoxide, and peroxynitrite (Trujillo et al. 2006; Jaeger et al. 2004).
The crystal structure of dimeric TPx revealed a Trx fold similar to that of other
peroxiredoxin family members (Rho et al. 2006). M. tuberculosis mutants lacking
TPx show an increased sensitivity towards hydrogen peroxide and nitric oxide.
Moreover, they are unable to survive and grow in macrophages, cannot establish
acute infections or maintain persistent infections in murine tuberculosis models,
and show an attenuated virulence. This indicates that TPx is an essential component
of the antioxidant defense of M. tuberculosis (Hu and Coates 2009).

13.3.2.3 Mycothiol

Like other actinomycetes, M. tuberculosis lacks detectable levels of glutathione and
glutathione peroxidases and employs mycothiol (MSH, AcCys-GlcN-Ins) as its ma-
jor low molecular weight thiol. MSH is a cysteinyl pseudo-disaccharide consisting
of N-acetylcysteine, glucosamine, and myo-inositol, and was discovered in 1993
(Newton et al. 1993). In M. smegmatis and M. tuberculosis, MSH concentrations
are in a low millimolar range, comparable to the concentrations of glutathione in
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eukaryotes (Newton et al. 1996). MSH is required for the survival of M. tuberculosis
(Sareen et al. 2003), but not for M. smegmatis (Rawat et al. 2002).

The biosynthetic pathway of MSH consists of five steps catalyzed by four
enzymes, which cannot be found in eukaryotes or eubacteria and are thus discussed
as highly feasible targets for chemotherapeutic interventions against mycobacteria.
MshA is an N-acetylglucosamine transferase that forms 3-phospho-GlcNAc-Ins,
which is converted into GlcNAc-Ins by dephosphorylation catalyzed by a phos-
phatase termed MshA2. The deacetylase MshB deacetylates GlcNAc-Ins to form
Gln-Ins, which is then ligated to cysteine by MshC, a mycothiol ligase. Cys-Gln-
Ins is subsequently acetylated by mycothiol synthase MshD generating MSH (for
detailed reviews of MSH biosynthesis please see (Jothivasan and Hamilton 2008;
Fan et al. 2009)).

The functions of MshA-D have been intensely investigated by gene knockout
studies in M. smegmatis and M. tuberculosis. MshA and C are indeed essential
for growth and survival of M. tuberculosis (Buchmeier and Fahey 2006; Sareen
et al. 2003), while mutants lacking MshB and D are still viable (Buchmeier et al.
2006). These studies show that only the absence of MshA or C leads to complete
depletion of MSH, while still 10 and 2% of normal MSH levels could be detected
in the mutants lacking MshC or MshD, respectively (Sareen et al. 2003; Buchmeier
and Fahey 2006; Buchmeier et al. 2003, 2006). Moreover, disruption of the MshD
gene in M. tuberculosis results in high levels of the MshD substrate Cys-GlcN-Ins
and N-formyl-Cys-GlcN-Ins, with the latter being maintained in a reduced state.
Thus, N-formyl-Cys-GlcN-Ins might function as a surrogate for MSH under normal
conditions, but is not sufficient under increased oxidative stress (Buchmeier et al.
2006). These studies indicate that MshA and C might be more feasible as targets for
anti-mycobacterial drug development (Fan et al. 2009).

MSH exerts a range of protective functions in mycobacteria by serving as an
intracellular redox buffer as a functional analog of GSH and by maintaining the
redox balance. Low MSH levels in M. smegmatis result in a remarkably increased
sensitivity towards free radicals, oxidants, alkylating agents, and antibiotics includ-
ing erythromycin, rifamycin, and penicillin G (Rawat et al. 2002; Buchmeier et al.
2006). Thus, MSH is involved in protection against oxidative stress and antibiotics.
In contrast, MSH-depleted mutants show a 200-fold increased resistance towards
isoniazid, demonstrating a function of MSH in the drug mechanism of isoniazid
(Rawat et al. 2002). Furthermore, MSH protects against electrophilic xenobiotics
by forming MSH-toxin conjugates (Rawat et al. 2004).

MSH-dependent enzymes are involved in several cellular processes, including
defense against ROS and RNS and detoxification of electrophilic xenobiotics
(Fig. 13.3). Mycothiol disulfide (MSSM) can be reduced by the NADPH-dependent
flavoenzyme mycothiol disulfide reductase (Mtr, mycothione reductase), which
maintains a high MSH:MSSM ratio by the same disulfide reducing mechanism
found in glutathione reductase (Argyrou et al. 2004; Argyrou and Blanchard 2004).
MSH-toxin conjugates can be hydrolyzed by mycothiol S-conjugate amidase (Mca)
forming a mercapturic acid and GlcN-Ins. While the mercapturic acid derivative can
be exported from the cell, GlcN-Ins is recycled for re-synthesis of MSH (Newton



372 E. Jortzik and K. Becker

Fig. 13.3 Functions of mycothiol, the major low molecular weight thiol in Mycobacterium
tuberculosis. Mycothiol (MSH) can reduce proteins and oxidants and is thereby oxidized to
mycothiol disulfide (MSSM). MSSM is recycled by mycothiol reductase (Mtr) under consumption
of NADPH C HC. S-nitrosomycothiol (MSNO) can be reduced by mycothiol-S-nitrosoreductase/-
formaldehyde reductase (MscR) to MSH sulfonamide (MSNOH2). MSH can react with formalde-
hyde (HCOOH) to form the hemothioacetal formylmycothiol (MSCH2OH), which is reduced by
MscR. Thiol-reactive reagents (RX) form MSH-toxin conjugates that are hydrolyzed by mycothiol
S-conjugate amidase (Mca) yielding a mercapturic acid and GlcN-Ins. The latter can enter the
MSH biosynthesis pathway to be recycled to MSH (modified after Newton et al. 2008)

et al. 2000). M. tuberculosis Mca has a crucial function in drug resistance, a fact that
directed interest towards the development of inhibitors against Mca (Nicholas et al.
2003). MSH can rapidly react with formaldehyde forming a hemithioacetal, which is
a substrate of mycothiol-S-nitrosoreductase/-formaldehyde reductase (MscR) (Vogt
et al. 2003). Moreover, MscR can reduce S-nitrosomycothiol (Vogt et al. 2003) and
is required for growth of M. tuberculosis (Sassetti et al. 2003).

13.3.2.4 Further Enzymes of Antioxidant Defense

M. tuberculosis encodes a catalase peroxidase (KatG) that exhibits catalase, per-
oxidase, and peroxynitritase activity and can therefore detoxify ROS and RNS
(Rouse et al. 1996; Manca et al. 1999; Wengenack et al. 1999). Experiments using
transgenic murine models indicated that the major role of KatG is the defense
against the oxidative burden in the host by metabolizing peroxides generated by
the host phagocyte NADPH oxidase (Ng et al. 2004). In order to exhibit its
antimycobacterial activity, the most effective and specific antimycobacterial drug
isoniazid has to be converted from a prodrug form into its active form by KatG
(Zhang et al. 1992). Mutations in the mycobacterial katG gene are associated with
resistance to isoniazid. At least 130 known mutations of katG are characterized by a
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decreased or diminished activity of KatG and thus reduced formation of the adduct
INH-NAD (reviewed in Vilcheze and Jacobs 2007).

The peroxiredoxin-type alkyl hydroperoxide reductase (AhpC) can directly
detoxify hydroperoxides and peroxynitrite (Bryk et al. 2000; Master et al. 2002).
Although AhpC is considered to be a 2-cys peroxiredoxin, it involves a third cysteine
in catalysis (Koshkin et al. 2004). AhpC employs the Trx-like protein AhpD, a
protein with a low alkylhydroperoxidase activity of its own, as an electron donor
but cannot be reduced by Trx (Hillas et al. 2000; Bryk et al. 2002). Moreover, M.
tuberculosis codes for a 1-cys peroxiredoxin named alkyl hydroperoxide reductase
E (AhpE), which is involved in peroxide and peroxynitrite detoxification (Hugo
et al. 2009). In order to detoxify superoxide radicals, M. tuberculosis encodes two
SODs, an iron-dependent SOD, and a Cu and Zn-dependent one (Zhang et al. 1991;
D’Orazio et al. 2009). Two methionine sulfoxide reductases (MsrA and B) are
supposed to reduce methionine sulfoxide to methionine in M. tuberculosis. MsrA
and B appear to have redundant functions, since only a mutant lacking both genes
would be more sensitive to nitrite and hypochlorite compare to wildtype (Lee et al.
2009).

13.4 Oxidative Stress in Malaria

Besides HIV/AIDS and tuberculosis, malaria is one of the world’s most devastating
diseases. Although the number of reported malaria cases was reduced by more
than 50% between 2000 and 2010, the estimated number of malaria-related deaths
is with 665,000–1,133,000 people in 2010 still high (WHO 2011c; Murray et al.
2012). Approximately 86% of malaria deaths globally were of children under
5 years of age, and 91% of the deaths were in Africa (WHO 2011c). Tropical
malaria is caused by Plasmodium falciparum, a unicellular eukaryotic parasite
that lives and multiplies both in Anopheles mosquitoes and humans. An infected
Anopheles mosquito injects sporozoites into the subcutaneous tissue of the human
host. The sporozoites migrate to the liver, where they develop into merozoites,
which subsequently can invade red blood cells. There, the parasites undergo asexual
replication until merozoites are formed and released by rupture of the red blood
cell membrane. Most merozoites infect new red blood cells and thus restart the
intraerythrocytic cycle leading to the typical symptoms of tropical malaria. Some
parasites differentiate into the sexual forms required for transmission into the
mosquito vector (for review please see Tuteja 2007; Kappe et al. 2010).

13.4.1 Sources of Oxidative Stress in Malaria Parasites

During their intraerythrocytic development, malaria parasites face high concen-
trations of oxygen and iron and are exposed to intense oxidative stress derived
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from different sources. Plasmodium parasites degrade host hemoglobin as their
major source of nutrients for protein synthesis, which is at the same time also
a major source of oxidative stress. Hemoglobin is taken up from the erythrocyte
cytoplasm into the acidic food vacuole and is systematically degraded by proteases
into free heme and amino acids (Francis et al. 1997). Most of the highly toxic
free heme (ferriprotoporphyrin IX) aggregates to crystalline hemozoin, the so-called
malaria pigment (Stiebler et al. 2011). Alternative detoxification pathways of heme
comprise heme degradation and binding to glutathione or heme-binding proteins
(Loria et al. 1999; Ginsburg et al. 1998). However, small amounts of heme escape
from the detoxification mechanisms and cause major oxidative damage including
lipid peroxidation and DNA damage (reviewed in Kumar and Bandyopadhyay
2005). In the acidic food vacuole, free heme is oxidized from Fe(II) to Fe(III)
with concomitant production of superoxide and H2O2 (Atamna and Ginsburg 1993).
Additionally, malaria parasites have to counteract ROS released by the host immune
system in order to fight the infection (Becker et al. 2004).

13.4.2 Oxidative Stress in the Pathogenesis of Malaria

Oxidative stress has been implicated in different aspects of malaria pathogenesis
(reviewed in Becker et al. 2004; Hunt and Stocker 1990). Human glucose-6-
phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy
and confers resistance to infection and/or the development of severe clinical
symptoms of malaria (Ruwende and Hill 1998). Protection from malaria is thought
to be based on a lack of reducing equivalents in the form of NADPH, leading
to oxidation of hemoglobin to membrane-associated hemochromes, which finally
lead to early IgG-based detection and degradation of G6PD-deficient parasitized
erythrocytes (Cappadoro et al. 1998). Moreover, a reduced multiplication rate was
attributed to an intracellular accumulation of toxic oxidized molecules such as
oxidized glutathione and hemozoin. Similar protection mechanisms were proposed
for glutathione reductase-deficient erythrocytes (Gallo et al. 2009).

During disease manifestation, the redox balance of the patient is disturbed.
The levels of glutathione, tocopherol, catalase, and superoxide dismutase in the
erythrocyte and the concentrations of ascorbate and albumin in the plasma are
significantly decreased in patients with malaria when compared to uninfected
erythrocytes (Das and Nanda 1999; Pabon et al. 2003; Narsaria et al. 2011). Reduced
’-tocopherol content in the erythrocyte membrane was associated with malaria and
may contribute to erythrocyte loss and anemia in severe malaria (Griffiths et al.
2001). Moreover, increased lipid peroxidation has been reported in patients infected
with falciparum or vivax malaria (Polat et al. 2002; Das et al. 1990; Pabon et al.
2003; Narsaria et al. 2011). Micronutrients including vitamins A, E, and zinc may
have a beneficial effect on the severity of malaria by modulating immune response
and decreasing oxidative stress (Nussenblatt and Semba 2002; Zeba et al. 2008).
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The role of macrophage-derived ROS in controlling malaria infection has been
controversially discussed. It has been hypothesized that phagocyte-derived ROS
are involved in host immunity against malaria infections (Hunt and Stocker 1990).
Superoxide produced by NADPH oxidase was reported to be involved in malaria
transmission and gametocyte development but not in parasitemia patterns, as shown
in murine malaria models lacking NADPH oxidase (Harada et al. 2001). Similarly,
another study did not show any effect of the absence of functional NADPH oxidase
and thus of phagocyte-derived ROS on parasitemia and parasite burden in murine
malaria models. This indicates that ROS generated by phagocytes are not involved
in controlling malaria infection (Potter et al. 2005). Furthermore, phagocyte-derived
ROS are not associated with the pathogenesis of cerebral malaria in mice malaria
models (Sanni et al. 1999) but have been implicated in neuronal damage in humans
(Becker et al. 2004).

In uncomplicated and severe malaria, low levels of nitric oxide (NO) were
detected and are associated with increased disease severity and mortality. Plasma
levels of IL-10, a cytokine that suppresses NO synthesis, were increased with
severity, while levels of NOS2 were decreased in cerebral malaria (Anstey et al.
1996). Moreover, severe malaria is associated with depletion of arginine, the
precursor of NO, and elevated levels of plasma arginase, which catabolizes arginine
(Weinberg et al. 2008). Therefore, suppression of NO was suggested to protect
against severe disease rather than to contribute to malaria pathogenesis (Anstey et al.
1996).

A beneficial role of antioxidants as an adjunctive treatment of severe malaria has
been discussed. Treatment of adults with NAC increased the rate of normalization
of plasma lactate by a TNF-independent mechanism that was attributed to improved
red cell deformability or increased GSH levels (Watt et al. 2002). However,
NAC as an adjunctive treatment with artesunate did not influence the disease
outcome in patients with severe falciparum malaria (Charunwatthana et al. 2009).
The effect of NAC appears to be concentration-dependent: low doses of NAC
decrease H2O2 levels and lipid peroxidation by increasing GSH concentrations,
while supplementation with high doses of NAC had the opposite effect in vitro (Fitri
et al. 2011). Thus, putative beneficial effects of NAC treatment remain controversial.

As explained above, NO is supposed to have a significant function in controlling
malaria infection (Weinberg et al. 2008). Supplementation with L-arginine, the
substrate of NO synthase and precursor of NO, leads to recovery of arginine levels
and improvement of endothelial function in patients with severe malaria as shown
in a Phase I trial (Yeo et al. 2008).

13.4.3 Antioxidant Defense System

In order to avoid oxidative damage and maintain a redox balance, malaria parasites
employ an efficient combination of antioxidant systems based on GSH and Trx as
outlined in the following paragraphs. Moreover, Plasmodium codes for two SODs,
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which convert superoxide radicals to hydrogen peroxide (Gratepanche et al. 2002;
Sienkiewicz et al. 2004). However, enzymes with major antioxidant functions in
other organisms such as catalase, glutathione peroxidase, and methionine sulfoxide
reductase are missing in Plasmodium (Sztajer et al. 2001; Clarebout et al. 1998).

13.4.3.1 The Glutathione System

Glutathione is the major low molecular weight thiol in malaria parasites and
functions as a thiol redox buffer by cycling between a reduced and an oxidized
form (Becker et al. 2003b). GSH is a cofactor for detoxification of electrophilic
compounds and methylglyoxal (Harwaldt et al. 2002; Iozef et al. 2003), reduces the
dithiol glutaredoxin (Rahlfs et al. 2001), and directly reduces a range of ROS, RNS,
protein disulfides, and sulfenates (Becker et al. 2003b). GSH is synthesized by the
consecutive activity of ”-glutamyl-cysteine synthetase and glutathione synthetase.
A lack of the glutathione biosynthesis pathway leads to decreased GSH levels and
a significant growth delay during the intraerythrocytic stage but completely blocks
oocyte development in the Anopheles vector (Vega-Rodriguez et al. 2009). During
the intraerythrocytic stage, the parasites depend on either GSH de novo synthesis
or efficient reduction of GSSG by glutathione reductase, since a knockout of both
enzymes is lethal for the parasites (Pastrana-Mena et al. 2010).

High intracellular concentrations of GSH in malaria parasites are maintained by
an NADPH-dependent reaction catalyzed by the flavoenzyme glutathione reductase
(GR). A range of studies examined the kinetic mechanism of GR in detail and
developed selective inhibitors of the parasite enzymes (e.g. Bohme et al. 2000;
Krauth-Siegel et al. 1996; Sarma et al. 2003). As a consequence of its central
position in antioxidant defense, P. falciparum GR was regarded as a highly attractive
drug target (Becker et al. 2003b, 2004). However, recent studies demonstrated
that P. berghei GR is not essential during the intraerythrocytic stage but is
required for sporogony in the Anopheles vector (Buchholz et al. 2010; Pastrana-
Mena et al. 2010). High functional redundancy in the antioxidant network of
P. falciparum allows reduction of GSSG by several GR-independent pathways
such as direct reduction by Trx, reduction by protein S-glutathionylation, and by
dihydrolipoamide-dependent reactions catalyzed by Grx (Becker et al. 2003b, 2004;
Kanzok et al. 2000). In order to maintain low intracellular GSSG concentrations, the
parasite exports GSSG into the erythrocyte cytosol (Atamna and Ginsburg 1997).

A major function of glutathione is the non-enzymatic reduction of Grx, a dithiol
protein that catalyzes the reduction of a variety of proteins on the basis of a dithiol
exchange mechanism (Holmgren 1989). Plasmodium encodes one classic dithiol
Grx (i.e., PfGrx) and three monothiol Grx (Rahlfs et al. 2001; Deponte et al.
2005). PfGrx can serve as a hydrogen donor for ribonucleotide reductase (Rahlfs
et al. 2001), interacts with several proteins from different metabolic pathways in
Plasmodium (Sturm et al. 2009), and catalyzes the deglutathionylation of proteins
in vitro (Kehr et al. 2011).
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GSH is a cofactor of glutathione S-transferase, an enzyme that catalyzes the
conjugation of electrophiles with GSH for detoxification of xenobiotics (reviewed
in Eaton and Bammler 1999). P. falciparum GST cannot be assigned to any of the
described GST classes and has been investigated in detail (Harwaldt et al. 2002;
Fritz-Wolf et al. 2003).

13.4.3.2 The Thioredoxin System

Thioredoxins are central proteins in redox homeostasis and reduce a large variety of
protein and non-protein substrates. Trx are directly involved in antioxidant defense
and furthermore contribute to redox signaling and regulation by modulating the
structure and/or activity of many proteins in response to the intracellular redox
state (Arner and Holmgren 2000; Holmgren 1989). Plasmodium employs three
Trx and two Trx-like proteins with distinct subcellular localization (Nickel et al.
2006). Cytosolic Trx1, the most intensely studied P. falciparum Trx, detoxifies
hydroperoxides and glutathione disulfide directly, functions as an electron donor for
peroxiredoxins and plasmoredoxin (see below), and regulates a variety of proteins
(Nickel et al. 2006; Sturm et al. 2009; Jortzik et al. 2010).

Thioredoxin reductase (TrxR) maintains Trx in a reduced state in an NADPH-
dependent reaction. TrxR regulates antioxidant defense and cell growth either
indirectly by reducing Trx or directly by reducing other substrates including
hydrogen and lipid peroxides, dehydroascorbate, selenium compounds, Grx, protein
disulfide isomerase, and ubiquinone (reviewed in Becker et al. 2000). P. falciparum
TrxR contains two catalytic centers each consisting of two cysteine residues, while
mammalian TrxR contains a selenocysteine-cysteine in its C-terminal active site
(Gladyshev et al. 1996; Williams et al. 2000). By using alternative translation
initiation, P. falciparum expresses two isoforms of TrxR, which are located in
the cytosol and in the mitochondrion (Kehr et al. 2010). P. falciparum TrxR was
discussed as an excellent drug target (Becker et al. 2000; Nickel et al. 2006).
Knockout studies demonstrated that TrxR is indeed essential for P. falciparum
(Krnajski et al. 2002) but not for the rodent malaria parasite P. berghei (Buchholz
et al. 2010). Whether the discrepancy is due to in vitro culture conditions, technical
aspects, or indeed major differences in the redox metabolism of P. falciparum and
P. berghei remains to be studied. However, high redundancies in the Trx and GSH
systems might allow compensation for the loss of single components. Simultaneous
inhibition of the two Plasmodium disulfide reductases GR and TrxR provides a
good strategy for the development of antimalarial chemotherapeutic interventions
(Buchholz et al. 2010).

Trx protects from oxidative damage by serving as an electron donor for
Trx-dependent peroxidases, which catalyze the reduction of different peroxides
including hydrogen peroxide, peroxynitrite, cumene hydroperoxide, and tert-
butylhydroperoxide. According to the number of catalytic cysteines, the enzymes
are clustered into 1-cys and 2-cys peroxiredoxins (Wood et al. 2003). Plasmodium
harbors six peroxidases (recently reviewed in Gretes et al. 2012): Prx1a (TPx1) and
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Prx1m (TPx2) (Nickel et al. 2005; Komaki-Yasuda et al. 2003), Prx5 (antioxidant
protein, AOP) (Sarma et al. 2005), and Prx6 (1-cys peroxiredoxin) (Nickel et al.
2006) are classic peroxiredoxins. Additionally, a glutathione peroxidase-like TPx
and a nuclear peroxiredoxin (PrxQ, nPrx) associated with chromatin have been
described (Sztajer et al. 2001; Richard et al. 2011). Except for nPrx (Richard et al.
2011), all P. falciparum peroxidases prefer Trx as a reducing substrate. Additionally,
malaria parasites import human peroxiredoxin 2 as an enzymatic scavenger of
hydroperoxides into their cytosol (Koncarevic et al. 2009).

A Plasmodium-specific oxidoreductase is plasmoredoxin (Plrx), a dithiol protein
belonging to the thioredoxin superfamily. Plrx can be reduced by glutathione but
more effectively by Trx and Grx in vitro; it transfers electrons to ribonucleotide
reductase and glutathione disulfide and interacts with several enzymes involved in
different cellular pathways (Becker et al. 2003a; Nickel et al. 2005; Sturm et al.
2009). In P. berghei, Plrx is dispensable under unstressed conditions, indicating a
high functional redundancy with other redox-active proteins (Buchholz et al. 2008).
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