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Preface

Reactive oxygen species (ROS) have long been branded as undesired cytotoxic
compounds to be avoided at all costs. This view has changed with the realization that
ROS, which are constantly produced in all aerobic organisms, play essential roles in
a plethora of signaling processes that act to control cell differentiation, proliferation,
and apoptosis. It is now clear that organisms need to achieve a fine-tuned balance
between oxidants and antioxidants (i.e., redox homeostasis) in order to function
properly. At the heart of many cellular ROS-controlled processes are redox-sensitive
proteins. These proteins use reversible posttranslational modifications, particularly
on functionally and/or structurally important thiol groups, to regulate their activity
and the activity of the pathway that they are part of. Based on extensive research
particularly in the last decade, a picture is now emerging that cells harbor a highly
complex network of redox-sensitive processes, which are constantly adjusting
the cell’s metabolism and physiology to the prevailing redox conditions of the
environment. Alterations in a cell’s redox homeostasis are involved in initiating stem
cell differentiation, are associated with tumor development, and are considered to
be a critical component in aging and age-related diseases.

The realization that redox-regulated processes influence almost every area of
modern biology and will be inevitably encountered by many non-redox biologists
provided a key motivation in the assembly of this book. We aim to provide a concise
overview of the current state of the art in redox biology for a wide range of people
from the novice to the expert. We start with a description of the chemical basis of
thiol oxidation followed by a summary of the major enzymatic and non-enzymatic
players involved in ROS detoxification and redox homeostasis in bacteria and
eukaryotes. The second part of the book introduces state-of-the-art experimental and
computational methodologies that are currently used in redox biology and discusses
their advantages and limitations. We decided to focus on three major methodologies
that nicely complement each other: (1) redox proteomics, which provides means
to discover novel redox-sensitive proteins and pathways in the cell and is a useful
approach to monitor changes in redox homeostasis during distinct physiological
or pathological states; (2) fluorescence imaging of ROS in multicellular organisms
using a variety of highly specific detection methods, which allow temporal and

vii
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spatial tracking of ROS in live organisms; and (3) redox bioinformatics to analyze,
characterize, and eventually predict features of redox-sensitive and redox-regulated
proteins in cells. Integration of these methods will eventually allow us to draw
a global and system-wide picture about redox homeostasis and redox regulation
in the living organism. The final, and the most applied, part of this book details
biological examples of oxidative stress and redox regulation in a variety of different
pro- and eukaryotic systems. Some chapters illustrate the importance of ROS in
cell signaling, epigenetics, and stem cell differentiation, while others provide expert
summaries and discussions about the role of redox regulation in infectious diseases,
cancer, and aging. The closing chapter summarizes recent drug developments,
which are aimed to modulate specific redox pathways in different human disease
pathologies.

We are tremendously grateful to each of our contributors for their enthusiasm
and willingness to provide the chapters for this book. Without them, this book
would have not been possible. It was great fun putting this book together, and
we hope that our book will infect the readers with the same enthusiasm about
this fascinating research field that we experience every day in working with redox-
regulated proteins.

Dana Reichmann
Ursula Jakob
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Chapter 1
The Chemistry of Thiol Oxidation and Detection

Mauro Lo Conte and Kate S. Carroll

Abstract The thiol functional group of the amino acid cysteine can undergo a wide
array of oxidative modifications and perform a countless number of physiological
functions. In addition to forming covalent cross-links that stabilize protein structure
and functioning as a powerful nucleophile in many enzyme active sites, cysteine
appears to be the principal actor in redox signaling, functioning as a regulatory
reversible molecular switch. It is increasingly appreciated that the thiol group of
cysteine in subset of proteins undergoes oxidative modification in response to
changes in the intracellular redox environment. To understand these complex but
critical biological phenomena, the chemistry of the thiol functionality and related
oxidation products must also be taken into consideration. Selective methods to mon-
itor and quantify discrete cysteine modifications will be central to understanding
their regulatory and pathophysiologic function. Accordingly, this chapter focuses
on the chemical feature of thiol oxidation and on selective methods for detecting
oxidants and individual cysteine chemotypes.

Keywords Thiol oxidation ¢ Cysteine ¢ Reactive oxygen species * Reactive
nitrogen species * Reactive sulfur species

1.1 Introduction

The thiol functional group of the amino acid cysteine can undergo a wide array of
oxidative modifications and perform a countless number of physiological functions.
In addition to forming covalent cross-links that stabilize protein structure and
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2 M. Lo Conte and K.S. Carroll

functioning as a powerful nucleophile in many enzyme active sites, cysteine appears
to be the principal actor in redox signaling, functioning as a regulatory reversible
molecular switch. It is increasingly appreciated that the thiol group of cysteine
in subset of proteins undergoes oxidative modification in response to changes
in the intracellular redox environment. To understand these complex, but pivitol
biological phenomena, the chemistry of the thiol functionality and related oxidation
products must be taken into consideration. Along these lines, selective methods to
monitor and quantify discrete cysteine modifications are key to understanding their
regulatory and pathophysiologic function. This chapter focuses on the chemistry of
thiol oxidation and detection.

1.2 The Biological Chemistry of Thiols

The cysteine side chain is generally considered the most potent nucleophile of
all amino-acid side chains under physiological conditions. This notable level of
reactivity is due to the presence of a thiol functional group. Thiol is a sulfur analogue
of alcohol, but the smaller difference in electronegativity between the sulfur atom
and the hydrogen atom makes the S—H bond less polarized than the O-H bond,
leading to a diminished propensity to form hydrogen bonds. In contrast, thiols are
much more acidic in comparison to alcohols, and this property can be explained by
the weakness of the S—H bond and the greater likelihood that the negative charge
will be distributed within sulfur 3d orbitals. Cysteine can be considered a triprotic
acid in which the pK, of thiol group has been determined to be 8.2 (Tajc et al.
2004). In glutathione, the most abundant low molecular weight thiol in the cytosol,
cysteine residue has a pK, of 9.1 (Tang and Chang 1996). In general, therefore,
thiols are mild acids, but the protein microenvironment can dramatically influence
the pKa value. The presence of a positively charged residue, such as lysine or
arginine (Copley et al. 2004), as well as the formation of a hydrogen bond (Wang
et al. 2001), may increase thiol acidity by 3—4 orders of magnitude. The reactivity of
thiols is correlated with its pKa value (Szajewski and Whitesides 1980). In cysteines,
a thiolate side chain becomes a stronger nucleophile and readily reacts with oxidants
and electrophilic species, although interactions with specific residues or metals can
also stabilize the thiolate form. With its remarkable reactivity, the cysteine thiol
group can play a key biological role in catalysis and serve as an important site
for many post-translational modifications. Considering the propensity of thiols to
undergo oxidative reactions, the need for methods and chemical tools to monitor
both reduced and oxidized cysteine residues has become clear. The key challenge
for effective detection of bio-functional groups is summarized by the concept of
chemoselectivity (Trost 1983) and, more specifically, in bioorthogonality (Bertozzi
2011). Indeed, chemists and biologists have sought to identify highly selective and
facile reactions to detect biomolecules in living systems without interfering with
native biochemical processes. Moreover, the relatively low abundance of cysteine,
in comparison to other amino acids, combined with its remarkable nucleophilicity
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Fig. 1.1 Chemical reactivity and detection of thiols

has made cysteine the most common target for selective protein bio-conjugation
(Chalker et al. 2009), creating fertile ground for the development of site-specific
strategies for protein modification. In this context, the thiol reacts as a soft
nucleophile with alkyl and aryl halides, carbonyl, phosphoryl, and sulfonyl groups
as well as with unsaturated compounds (Fig. 1.1a—f). There are a large number
of reagents that selective modify thiols, even in the presence of other strong
nucleophiles such as lysine or histidine (Fig. 1.1, 1-12). Such thiol conjugations
can be further subdivided into two categories: reversible and irreversible.

To date, the most well studied example of cysteine modification is disulfide
formation between two thiol groups and, thus it is no coincidence that one of
the first strategies to detect thiols was inspired by the process of thiol-disulfide
exchange (Fig. 1.1a). Bearing in mind that disulfide exchange is an equilibrium
reaction (see Sect. 1.4.3), a series of specific disulfides were designed in order to
favor one direction over the other. The well-known 5,5 -dithiobis-(2-nitrobenzoate)
(DTNB) or Ellman’s reagent is perhaps most common disulfide-based reagent used
to monitor and quantify protein free thiols (Ellman 1959). The notably low pKa of
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the 5-mercapto-2-nitrobenzoate leaving group (4.4, Little and Brocklehurst 1972)
ensures that this reaction occurs rapidly and, at the same time, does not perturb
naturally occurring disulfides in the protein of interest.

Thiopyridyl disulfides are another class of common disulfide-exchange based
detection reagents (Olsen et al. 2004). Thiopyridyl disulfides such as 1 (Fig. 1.1)
react rapidly with thiols to afford an electro-stabilized compound, pyridine 2-
thione, which can be followed by colorimetric analysis (i.e., absorption at 420 nm).
Based on the same concept, a series of selenyl-sulfides (Gamblin et al. 2004) and
thiosulfonates (Kenyon and Bruice 1997) have also been developed to selectively
functionalize cysteine side chains. For example, methyl methane thiosulfonate (2)
is the classic thiol-targeted reagent used to block free proteins thiols in the biotin
switch assay (Jaffrey et al. 2001). All of these reagents (e.g., 1-3) react with the thiol
side chain to form a mixed disulfide that can subsequently be reduced to regenerate
the free cysteine residue. The reversible nature of the disulfide linkage is acceptable
in some circumstances, but in other situations this feature can be problematic. As
a result, specific alkylating agents have been designed to irreversibly modify the
cysteine side chain (4—11). Alkyl halides react with thiols to yield stable thioethers
(Fig. 1.1c). Such reagents are usually not exclusive in their reaction with thiols;
however, with careful control of pH, a-halo carbonyl compounds (4—6) can provide
a satisfactory degree of bioorthogonality. lodoacetamide (4) is employed in standard
protein digestion protocols to block cysteine residues (Shevchenko et al. 1996).
Despite the popularity of iodoacetamide, side-reactions with lysine, methionine,
tyrosine, and histidine residues have been observed (Nielsen et al. 2008). In such
cases, this issue can be resolved by using chloroacetamide (Weerapana et al. 2008).

Another unusual class of organo-halides is halo-nitrophenyl derivatives (Fig. 1.1d
and 7). The strong electro-withdrawing nitro group makes haloarene extremely
reactive toward thiols, although other sulfur species may also be modified in the
presence of similar compounds (see Sect. 1.4). Thiolates are good Michael donors
and the addition reaction to an o,B-unsaturated system is an alternative way to
alkylate cysteine residues (Fig. 1.1e). Historically, maleimides have been the most
widely used tools in biochemistry for the modification of thiols. The popularity of
N-ethyl maleimide (8) is due to its good cell permeability and the ease with which
the ethyl group can be elaborated by other substituents (e.g., 9). However, what
must be considered is that the reaction is only selective toward the thiol group at
pH 7 (Crankshaw and Grant 1996). Vinyl sulfones are an alternative to the use
of maleimide derivatives. Although they offer the advantage of yielding a single
stereoisomer as a product (i.e., in theoretical models, maleimides can yield a mixture
of two diastereoisomers), vinyl sulfones may cross react with the e-NH, of lysine
(Masri and Friedman 1988). A selective new reagent for thiol modification reported
by Carroll’s research group is based on the a-halo 1,3-diketone scaffold (Fig. 1.1f).
In this reaction, 2-iodo-5, 5-dimethyl-1, 3-cyclohexandione (10, distinguished from
the aforesaid a-halo carbonyl compounds by virtue of its secondary halogen) and
related compounds (e.g., 11, 12) react with a thiol to give the sulfenyl iodide species;
this intermediate is rapidly attacked by the 1,3-diketone carbon nucleophile to afford
a stable thioether (Seo and Carroll 2011).
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1.3 Two-Electron Oxidants

Reactive oxygen species (ROS) are a family of molecules that are continuously
generated in cells as consequence of aerobic life. Traditionally, their production
has been strictly associated with oxidative stress, aging, and disease. However,
growing evidence indicates that controlled generation of ROS contributes to physi-
ological intracellular signaling events. ROS mediate redox modification of various
biomolecules via two-electron oxidation or radical-based reactions, and they react
in particular with cysteine residues. The term ROS encompasses a wide class of
activated oxygen molecules which, can undergo further reaction with nitrogen or
sulfur compounds, to produce reactive nitrogen species (RNS) and reactive sulfur
species (RSS). Here, we focus on two-electron oxidants without mentioning the
radical species, which will be described in subsequent chapters of this book.

1.3.1 Hydrogen Peroxide

A handful of enzymes generate H,O, directly. For example, significant quantities of
H,0, are produced in the peroxisome by the action of enzymes, such as D-amino
acid oxidase or uric acid oxidase. More generally, however, H,O, is formed in
cells via the disproportionation of superoxide (O, ). The major sources of O™~
production are the electron transport chain (ETC.) complex in the mitochondria
(Murphy 2009) and the family of NADPH oxidases (NOXs) (Bedard and Krause
2007). Superoxide disproportionation may occur spontaneously (7.6 x 10> M~! s~!,
Kutala et al. 2008) or may be catalyzed by superoxide dismutase (SOD) (Forman
and Fridovich 1973; Fukai and Masuko 2011). Finally, several studies have showed
the importance of monoamino oxidase (MAO) as an important source of H,O,
in neurons (Maker et al. 1981) and in relationship to neurodegenerative diseases
(Andersen 2004). Hydrogen peroxide has the ability to move between different
cellular compartments. Although H,O, has long been thought to diffuse freely
across membranes, its dipole moment of 2.2 x 10~'® C-m (Cohen and Pickett 1981)
is only slightly higher than that of water (1.9 x 10~'% C-m), rendering its passive
diffusion similarly limited. Recent studies have demonstrated the implication of
aquaporin water channels as specific mediators of H,O, passage across membranes
(Bienert et al. 2007) and the involvement of these channels in intracellular signaling
(Miller et al. 2010).

The unusual reactivity of H,O, is generally attributed to relatively low O-O
bond energy (47 kcal/mol) — hence, the ease with which it is homolytically or
heterolytically cleaved (Bach et al. 1996). H,0O, is a strong oxidant and may behave
as an electrophile as well a nucleophile depending on the nature of the reactant. In
cells, the principal targets of HyO,-mediated oxidation are thiols by means of two
electron nucleophilic substitution. A thiol with a low pK, value reacts rapidly to
yield sulfenic acid and water (Eq. 1.1).

R—SH + HO — OH — R — S — OH + H,0 (1.1)
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Although glutathione (GSH) is the most abundant low molecular weight thiol,
GSH contributes little to the reduction of H,O, in cells. In fact, the total protein
thiol concentration in human cells is at least two times higher than GSH (Hansen
et al. 2009). At steady state, cellular H,O, is kept in check by enzymes of the
peroxiredoxin (Prx) family (Winterbourn and Hampton 2008). The rate of H,O,
reduction catalyzed by Prx is exceptionally fast (1 x 10’ M~ s™! at pH 7), but this
reactivity cannot be explained solely by the low pK, of the peroxidative cysteine
(~5.7, Rhee and Woo 2011). More generally, the reactivity of peroxides (RO-OH)
shows an inverse relationship with the pKa of the leaving group RO (for this reason
CH3CO3H is much more reactive than H,O;). The presence of specific proton-
donating moieties within the protein microenvironment can serve to stabilize the
poor hydroxide-leaving group and thus, accelerate the reaction rate. Along these
lines, a recent series of experimental and computational studies by Nagy et al.
suggests that two highly conserved arginine residues contribute to reactivity of Prx
toward H,O, via hydrogen bonding (Nagy et al. 2011).

Although the recombinant form of proteins may undergo H,O,-mediated thiol
oxidation in the test tube, in many cases, it has been difficult to reconcile relatively
low oxidation rates observed in vitro with intracellular regulation of enzymatic
activity. For example, the rate constant measured for inactivation of recombinant
protein tyrosine phosphatase 1B (PTB1B) is ~10 M~! s™' (Denu and Tanner
1998), which would appear to be incompatible with intracellular signaling events.
With respect to this long-standing issue, recent work by Gates and co-workers has
proposed that more reactive species, such as peroxymonocarbonate and peroxy-
monophosphate, oxidize PTPs in cells (Zhou et al. 2011). Peroxymonocarbonate,
which may be spontaneously generated from bicarbonate anion in the presence of
localized high concentrations of H,O, (Eq. 1.3), can increase the rate of PTB1B
oxidation by a factor of 20; the elevated reactivity is easily explained by the higher
pK., value of the hydrogen carbonate leaving group.

H,0 + CO, = H;0" + HCO; (1.2)

HCO; + H,0, — H,0 + HO,COOH™ (1.3)

Peroxymonophosphate is even more powerful and reacts with PTB1B more than
7,000 times faster than H,O,, although the generation and existence of such
a species in vivo remains to be evaluated. One very speculative possibility is
that peroxymonophosphate could be biologically accessible via direct enzymatic
phosphorylation of HyO, (LaButti et al. 2007). On the other hand, the proximity
of proteins to the source of ROS/RNS can also have an obvious influence on target
selectivity and rates of thiol oxidation within the cell (Chen et al. 2008; Paulsen
et al. 2012).

Besides thiol oxidation, H;O, can also easy react via one electron reduction
with transition metals such as iron and copper. This reaction, known as the Fenton
reaction, generates hydroxyl radical (Eq. 1.4; where L =ligand), a highly reactive
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Oxidation reactions of H,0, Selective probes for H,0, imaging
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Fig. 1.2 Probes for the detection of hydrogen peroxide

species that can indiscriminately damage different biological target molecules
such as DNA, proteins, or lipids via radical-mediated reactions and contributes
significantly to the development of oxidative stress (Prousek 2007).

Fe’™ + H,0, — LFe*T + HO® + HO™ (1.4)

Although H,O, has a relatively short half-life in cells (t;, = 1079 s), high
variations in concentration can form locally and temporarily in cells (Giorgio
et al. 2007). Molecular imaging is a powerful method for real-time monitoring
of H,0, in biological systems. Traditional tools for ROS detection, such 2’'-7'-
dichlorodihydroflurescein, are not specific for H,O,, but recent years has seen the
development of many chemoselective probes, in particular by Chang’s research
group (Lippert et al. 2011). Because of its ambiphilic reactivity, HO, can be
chemically differentiated from other ROS. With a pKa value of about 11, H,0, is
also a good nucleophile owing to the a-effect of adjacent nonbonding orbitals on its
oxygen atoms (Jencks and Carriulo 1960), particularly in the deprotonated form.
H,0;-mediated deprotection of aryl boronates to phenols (Kuivila and Armour
1957, Fig. 1.2a) has served as the starting point for the development of selective
probes for H,O, imaging. The installation of boronic esters on the 3" and 6’ positions
of the fluorescein core, for example, produces masked fluorescein (e.g., 13a) in
which the two boronates block the molecule in the closed lactone form, eliminating
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its absorptive and emissive properties. The reaction with H,O, transforms the
boronates into phenols (e.g., 13b) with a strong increase in fluorescence intensity
(Chang et al. 2004). Although boronates should also react with alkyl peroxides (like
lipid peroxides), the reaction with H,O, should be faster because hydroxide anion is
a better leaving group than alkoxides (RO™). Obviously, the reaction is accelerated
at higher pH levels, and local pH changes can alter the probe response. Based on the
same approach, several other probes have been developed with enhanced sensitivity
(Dickinson et al. 2011) or which are targeted to specific subcellular compartments
(Dickinson and Chang 2008). Other bioorthogonal reactions have inspired alterna-
tive probes for selective H,O, detection. Chang’s group, for example, has developed
a hyperpolarized '*C probe based on oxidative decarboxylation of a-ketoacids
(Fig. 1.2b) for '3C MRI resonance imaging of H,O, (14a, Lippert et al. 2011).
Finally, Nagano’s group has taken advantage of the less known Baeyer-Villiger
benzil oxidations (Fig. 1.2c) to design a highly sensitive probe for H,O, (15a, Abo
et al. 2011). Together, these novel chemical tools have revealed fundamental new
insights into the role of H,O; in cells (Dickinson et al. 2011; Miller et al. 2010).

1.3.2 Hypo(Pseudo)halous Acid

The heme-containing enzymes myeloperoxidase (MPO) and lactoperoxidase (LPO)
use H,O;, to oxidize halides (C1™, Br™ and I7) and thiocyanate (SCN™) into their
respective hypohalous acids (HOXs). These species are more reactive than H,O, and
are used as antimicrobials by the immune system (Albrich et al. 1981). Although
chloride is the most abundant negative electrolyte in living systems (1-60 mM in
cell, 100 mM in extracellular fluids), the major substrate of MPO is SCN™, whose
affinity for the enzyme is a 1,000-fold greater than is that of C1~ (Hawkins 2009).
Generally SCN™ has a concentration of 20-250 uM (Van Dalen et al. 1997) but can
reach a concentration of 1 mM in saliva, where LPO produces almost exclusively
HSCN (Ashby 2008). Br™ is nearly 60-fold more specific for MPO but, with a
concentration of 20-100 uM, the HOBr generated from neutrophils is estimated
to be ~10% of HOCI production (Chapman et al. 2009). Finally, since the iodide
concentration in cells is usually low (~1 M), the production of hypoiodous acid
in vivo can be considered negligible. Hypohalous acids are weak acids; their pKa
values are 7.6 for HOCI, 8.7 for HOBr, 10.4 for HOI, and 5.3 for HOSCN (Davies
et al. 2008). Except for HOSCN, which is completely deprotonated, these species
exist as a mixture of their acid and anion forms at physiological pH. HOCI and,
to a lesser extent HOBTr, are extremely strong oxidants and indiscriminately react
with a large variety of functional groups in proteins, nucleotides, and membrane
lipids. HSCN is several times less reactive and selectively oxidizes thiols (Lloyd
et al. 2008).

HOX species may also interconvert, and this reaction reflects the relative
oxidizing strengths of these acids. As a result, if HOCI can oxidize Br™, I, and
SCN™, HOBr reacts solely with I™ and SCN™ (Spalteholz et al. 2005), though
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only the inter-conversion with SCN™ appears to be relevant in vivo (Nagy et al.
2006). HOXs are electrophilic oxidants and undergo two-electron nucleophilic
substitution. Thiols react with HOCI and HOBr via formation of a very unstable
sulfenyl halide (Eqs. 1.5 and 1.6), which readily rearranges to sulfenic acid (Nagy
and Ashby 2007a). Otherwise, HOSCN generates a sulfonyl-thiocyanate (Eq. 1.8),
which can react with another thiol to yield a disulfide and SCN™ (Eq. 1.9, Ashby
and Aneetha 2004). Kinetic studies indicate that reaction proceeds via thiolate and
hypothiocyanous acid reactants, indicating that this mild oxidant is very selective
for proteins with low pK, thiol residues (Nagy et al. 2009).

R-S"+HO-Cl-R-S—-Cl+HO™ (1.5)
R-S"+HO-Br—-R—-S—-Br+HO™ (1.6)
R-S-X+H,0O—-R-S-0OH+ X"~ 1.7
R—-S" +HO-SCN - R—-S—SCN + HO™ (1.8)
Ri—=S"4+R-S—-—SCN—-R-S—-S—-R; +SCN™ (1.9)

Itis generally accepted that the sulfur-containing residues (cysteine and methionine)
react most rapidly with HOCI (with rate constants of ~3—4x 1078 M~! s1), but
strong nucleophilic amines (such as lysine and histidine) are also modified at high
HOCI concentrations to yield chloramines (Pattison and Davies 2001).

RiR;NH + HO — CI - R|R;N - Cl + HO™ (1.10)

R—-S™ +RRyN—Cl+H' - R—S —Cl+R;R;NH (1.11)

Small-molecule amines such as ammonia or glycine may react with HOCI
to form membrane-permeable chloramines (Eq. 1.10), which selectively mediate
thiol oxidations (Midwinter et al. 2006). Taurine-chloramine (TauCl) is another
biologically relevant chlroamine. This cell-impermeable chloramine is generated
especially in neutrophils, in which taurine is the most abundant free “amino acid”
(10-30 mM) and also appears to play a scavenger role for chlorinated oxidants
(Marcinkiewicz et al. 1995).

Although HOCI plays a fundamental role in destroying a wide range of
pathogens, neutrophil-mediated HOCI production has also been implicated in
several inflammation-associated diseases. A series of detection methods have
been developed in order to shed light on its physiological and pathological roles
(Fig. 1.3). These selective probes are based on the major oxidant strength of
HOCI in comparison with other ROS. For example, p-methoxyphenol is selectively
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Fig. 1.3 Probes for the detection of hypochlorous acid

oxidized by HOCI (Fig. 1.3a) and shows good stability in the presence of other
ROS and RNS. Yang’s research group has taken advantage of this reaction to design
a BODIPY-based probe (16a) that displays a significant increase of fluorescence
after HOCI incubation (Sun et al. 2008). By analogy to chloramine formation,
Tae’s research group has instead developed a fluorescent probe based on HOCI-
mediated oxidation of hydroxamic acid (Yang et al. 2009). Following generation
of an unstable chlorinated intermediate, hydroxamic acid yields an acyl nitroso
compound with elimination of HCI (Fig. 1.3b). Starting from a rhodamine scaffold,
Tae’s group designed a hydroxyamido derivative enclosed in a stable spirocyclic
non-fluorescent form (17a), which demonstrates a rapid and selective fluorescent
response in the presence of exogenous HOCI in cells as well as in mice. Recently, a
thioether-rhodamine derivative was designed as a chemoselective probe for HOCL.
In fact, thioethers and thiols are the major target of HOCl-mediated oxidation and,
although thiols indiscriminately react with any ROS and RNS, thioethers show
selective oxidation (Fig. 1.3c). The thioether group maintains the Si-rhodamine
probe in the cyclic non-fluorescent form (18a), and the system recovers its highly
conjugated structure through the generation of a sulfone (18b), followed by
elimination of sulfinic acid (which then oxidizes to sulfonic acid) and a robust
increase in fluorescence (Koide et al. 2011). Finally, although many efforts have
been made, few methods (with the exception of probe 17a) appear to have the
appropriate characteristics for biological application in vivo.
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1.3.3 Nitric Oxide and Peroxynitrite

NADPH-dependent nitric oxide synthase (NOS) catalyzes the synthesis of nitric
oxide (NO) and L-citrulline via oxidation of the guanidine group of L-arginine
(Alderton et al. 2001). NO, like carbon monoxide (CO) and hydrogen sulfide
(H»S), is a small gaseous signaling molecule implicated in numerous physiological
processes (Cary et al. 2006). NO is a free radical species ((N=0) with a relative
long half-life in comparison to other ROS/RNS (t;» =1 s, Pacher et al. 2007) and
can freely diffuse across membranes. Although an S-nitrosothiol could be directly
generated by reaction with thiyl radicals (Jourd’heuil et al. 2003), most of its activity
is mediated by development of intermediary nitrosating agents (Keszler et al.
2010). These nitrosating species are generated via a series of oxidation reactions.
NO forms nitrous anhydride (N,O3) in the presence of oxygen (Eqgs. 1.12a and
1.12b), and this unstable species can easy be hydrolyzed (Eq. 1.13) or undergo
two-electron nucleophilic substitution by thiols (Goldstein and Czapski 1996) and
amines (Caulfield et al. 1998). N,Os is generally accepted as the major nitrosylating
agent in vivo, although other pathways are proposed to explain S-nitrosothiol
formation in cells (see Sect. 1.4.2).

NO + 0, — NO, (1.12a)

NO + NO, - O,N—N =0 (1.12b)

0,N—N = O + 20H™ — 2NO; + H,0 (1.13)
O.N-N=0+R-S" —R—S—NO + NO; (1.14)
0,N—N = 0+ R—NH, > R — NH— NO + HNO, (1.15)

O, transforms the relatively unreactive NO into peroxynitrous acid (ONOOH),
a strong oxidant (Eq. 1.16). This diffusion-controlled reaction has the largest rate
constant known for NO (1 x 10! M~! s7!) and, in vivo, is spatially associated with
the sources of superoxide (Radi et al. 2001). ONOOH is a weak acid with a pK,
value of 6.8 (Kissner et al. 1997) and is in equilibrium with its deprotonated form
(peroxynitrite, ONOO™) at physiological pH. Both species are strong oxidants and
can participate in one- and two-electron oxidation reactions, although HONOOH
shows a faster reactivity (Moro et al. 1994) and ONOO™ appears to be a powerful
nucleophile as well. Despite its short half-life, ONOOH appears able to diffuse
across the membranes (Ferrer-Sueta and Radi 2009) where it can react with a wide
group of substrates (Marla et al. 1997). Typically, thiols are oxidized to disulfides
by ONOOH (Squadrito and Pryor 1998), but it is still uncertain which intermediate
species are involved between the sulfenic acid (R-SOH) and S-nitrothiol (R-SNO5).
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Nevertheless, kinetic analysis clearly shows that this reaction involves the pairing
of the thiolate/peroxynitrous acid. Other studies have shown that ONOOH can also
mediate the S-nitrosylation of GSH with elimination of H,O, (van der Vliet et al.
1998). In any case, considering that ONOOH is very unstable and can undergo
hemolytic fission to generate the one-electron oxidant, hydroxyl ("OH), as well as
*NO; radicals (Szabo et al. 2007), it is difficult to assess which reaction ONOOH
participates in directly. ONOOH decomposition is also facilitated by bicarbonate
(HCO37). CO; and readily undergoes nucleophilic addition by ONOO™ (with a
constant rate of 5.8 x 10* M~! s™!) to yield "NO, and CO3"~ (Egs. 1.18 and 1.19).
CO; also mediates the generation of other oxidant species (Eq. 1.20) and is
considered to contribute to the nitration of tyrosine side chains (Squadrito and Pryor
1998).

NO + 03~ — ONOOH (1.16)
ONOOH — °NO, + *OH (1.17)
ONOO~ + CO, — ONO — OCO; (1.18)
ONO — 0CO; — *NO, + CO3~ (1.19)
ONO — 0CO; — O,N — 0CO; (1.20)

The development of powerful tools to detect NO signaling remains an active
area of research. The first approach developed to detect NO was based on the o-
phenylenediamine scaffold which, in the presence of NO and O, (Uppu and Pryor
1999), yields the corresponding aryl triazole (Fig. 1.4a). The electronic difference
between the electron-rich diamine (19a) and the electron-poor triazole (19b) leads
to a robust fluorescent switch (Kojima et al. 1998). Obviously, this is an indirect
approach for NO detection. Specifically, the aryl diamine reacts with N,O;3 to
form N-nitrosylamine, which evolves to triazole via intramolecular nucleophilic
displacement. Recently, Xu’s research group has developed an elegant new probe
based on the fluorescein scaffold; in this case, the diamine blocks the fluorophore
in spirolactame form; reaction with NO leads to the formation of a triazole ring and
concomitant fluorescence response (Zheng et al. 2008).

Parallel approaches for direct detection of NO have also been developed. It is
well-known that NO has strong affinity towards transition metals, including the
ability to bind the heme-group. Taking advantage of this property, several probes
have been designed conjugating transition metals to a fluorescent core (Lim and
Lippard 2007). This approach was based upon the release of a fluorophore, initially
quenched by electron or energy transfer through coordination to a paramagnetic
transition-metal center such as Fe(II), Co(II), or Cu(Il). The presence of NO causes
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Fig. 1.4 Probes for the detection of nitric oxide and peroxynitrite

the displacement of the metal-complex with concomitant fluorescence activation.
Taken together, the two approaches described are perfectly complementary for
chemospecific NO detection in living systems.

Largely because of the ongoing difficulty of direct and unambiguous detection,
the biological relevance of ONOOH remains controversial. Selective probes for
peroxynitrous acid have been inspired based on the similar chemical behavior of
ONOO™ and peroxymonosulfate (HOOSO3;7). In fact, ONOO™ can react with
ketones to yield dioxiranes (Yang et al. 1999). Furthermore, it is known that internal
dioxiranes can intramolecularly oxidize phenol derivatives to quinones and that
this reaction is facilitated when the dioxiranes are generated from ketones with
electron-withdrawing groups (Yang et al. 2000). Yang’s group has demonstrated
that ONOO™ can also oxidize anisole-derivative ketones via dioxirane in situ
formation (Fig. 1.4b). Based upon this reaction, several fluorescent probes have been
developed in which an anisole-derivative is conjugated with a fluorophore and the
peroxynitrite-mediated oxidation selectively allows the release of the fluorescent
molecule (e.g., 20a; Yang et al. 2006; Peng and Yang 2010).

1.3.4 Hydrogen Sulfide

For many years, hydrogen sulfide (H,S) was solely considered as a toxic gas, but in
the last decade its involvement in mammalian cell signaling has become apparent (Li
etal. 2011). H,S is synthesized by two pyridoxal 5’-phosphate-dependent enzymes
involved in cysteine metabolism (Chiku et al. 2009): cystathione f-synthase (CBS)
and cystathione y-lyase (CSE). H,S can also be generated from L-methionine via
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transsulfuration (Bearden et al. 2010) or release from a persulfide (RS-SH) by
thiol-disulfide exchange. Like other gaseous signaling molecules, such as NO and
CO, H;S rapidly crosses cell membranes with no specific transporter (Mathai et al.
2009). In fact, although H,S shows structural similarities with H,O it does not form
strong hydrogen bonds and, with a dipole moment of 0.9 D, H,S can freely diffuse
through the hydrophobic core of biological membranes.

H,S is a diprotic acid with a pKa; of 6.9 and pKa, of 11.96; consequently, H,S is
in equilibrium with its deprotonated form (with a H,S/HS™ of 1:3) at physiological
pH (Liu et al. 2011). In many respects, H,S exhibits a reactivity profile akin to
cysteine. It is a powerful nucleophile and, like thiols, can react with electrophiles
as well as oxidants. With two-electron oxidants (Eq. 1.21), H,S forms hydrogen
thioperoxide (HSOH — Carballal et al. 2011). HSOH is a very reactive sulfur species
and can be oxidized rapidly to SO4>~ or undergo reaction with thiols. In vitro,
the reaction of H,S with HSOH leads exclusively to the formation of a complex
mixture of polysulfides (HSx™ with x =2-8) (Eq. 1.22), which have been proposed
to mediate the S-sulfhydration of proteins (Nagy and Winterbourn 2010).

HS™ 4+ H,O, — HS — OH + H,0 (1.21)

HS — OH + n HS™ — HS — S, + H,0 (1.22)

The biological functions of H,S are still unclear, but growing evidence suggests
a role for H,S in the regulation of cardiovascular (Elsey et al. 2010) and gastroin-
testinal (Wang 2010) systems. Moreover, its biologically relevant levels are still
debated, and a wide range of concentrations has been reported (Kabil and Banerjee
2010). To investigate such issues, a number of research groups have focused their
efforts on the development of small-molecule probes for H,S detection (Fig. 1.5).
H,S can be considered a strong reducing agent and this property has been widely
exploited in organic synthesis to reduce aromatic nitro (Lin and Lang 1980) and
azido (N3) (Pang et al. 2009) groups to aniline. Chang’s research group developed
a selective probe for H,S detection by installing an N3 group in the 6’ position
of a rhodamine core (21a), which locks the fluorophore in the spirocyclic non-
fluorescent form. Reduction to the amine releases the fluorescence signal (21b)
and such probes display high selectivity for H,S over other biologically relevant
reactive sulfur, oxygen, and nitrogen species (Lippert et al. 2011). Subsequently,
Wang’s research group used a similar approach to design a sulfonylazide dansyl
derivative whereby the difference in electronegativity between the azide and amine
group triggers a change in electronic and, thus, fluorescent properties (Liu et al.
2011). Both probes appear quite promising given that azido group is quite inert and
has shown considerable compatibility for application in living systems.

As previously mentioned, H,S exhibits a similar reactivity as compared to
cysteine. Theoretically, H,S can be considered a non-substituted thiol and can give
nucleophilic attack twice, whereas other thiols, such as cysteine, can participate
in just one nucleophilic attack. Exploring this property, Xian’s research group
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hypothesized that a probe with two electrophilic centers could be selective for H,S
detection and developed a thiosalicylic acid ester of fluorescein in which the thiol
group is functionalized as thiopyridyl disulfide (22a). Both thiols and H,S readily
yield disulfide exchange with activated disulfide, but only the disulfide intermediate
from H,S (22b) can rearrange, via nucleophilic attack on the intramolecular phenyl
ester, leading to benzodithiolone (22¢) and fluorescein (22d) products (Liu et al.
2011). Along these lines, Chuan’s research group has developed a selective probe
for H,S using a Michael acceptor and an aldehyde group as two electrophilic
centers (23a). H,S forms a thioacetal with the aldehyde group (23b) followed by an
intramolecular Michael addition with the internal a,$-unsaturated compound (23c).
Such H,S-specific rearrangement leads to a strong increase in fluorescence. Using
this probe, Chuan’s group has succeeded for the first time in imaging enzymatic
H,S production in living cells (Qian et al. 2011a).

1.4 Ocxidative Modification of Protein Cysteine Residues

The cysteine side chain, with its high nucleophilic capacity, appears to be the prin-
cipal target of ROS/RNS in cells. The sulfur atom of cysteine may assume a wide
range of oxidation states (i.e., —2 to +4, Fig. 1.6) and each form exhibits a distinct
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chemical reactivity. In the thiolate form, sulfur undergoes oxidation to generate a
sulfenic acid, and this oxoform can be considered as a central species among thiol
modifications. Sulfenic acid may be reduced to a disulfide by reaction with intra-
and inter-molecular thiols or further oxidized to sulfinic acid at high ROS/RNS con-
centrations. In some cases, the sulfenic acid can lead to the formation of sulfenamide
and thiosulfinate ester groups. The cysteine reactivity landscape becomes more
complex given that the thiolate may react with RNS and RSS to form S-nitrosothiol
and persulfide, respectively. Moreover, depending upon the nature of the protein
microenvironment, many of these modifications are reactive and can interconvert
with one another. In order to highlight the possible role and significance of each
modification, their distinct physical and chemical properties are outlined below.

1.4.1 Sulfenic Acid

Sulfenic acids (RSOH) are directly formed in vivo by the oxidation of thiols
with two-electron oxidants such as H;O,, ONOOH, or alkyl peroxides and many
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enzymes form SOH intermediates during their catalytic cycles (Lim et al. 2011). In
addition, RSOH can be generated from the hydrolysis of sulfonyl-halides (Nagy and
Ashby 2007a), sulfonyl-thiocyanates (Ashby and Aneetha 2004), and thiosulfinates
(Nagy and Ashby 2007b). Hydrolysis of S-nitrosothiols can also yield RSOH
(Percival et al. 1999), but the reaction has a high activation barrier (Moran et al.
2011). The thiyl radical (RS®) can also yield sulfenic acid in the presence of
hydroxyl radicals ("OH); however, this reaction is not likely to be widespread
in a biological setting. Otherwise, sulfenic acids are usually obtained in organic
synthesis from the thermolysis of sulfoxides (Sivaramakrishnan et al. 2005) or
thiosulfinates (Block and O’Conner 1974).

The S—-O bond length in RSOH is distinctly longer than that of sulfoxides,
indicating that the tautomeric structure, R—-S(O)H, can be excluded (Goto et al.
1997). RSOH is a weak acid but, because of their high reactivity, their pKa has
been difficult to measure. In the case of some stable small-molecule sulfenic acids,
an acidity of two to three orders of magnitude lower than the corresponding thiols
has been found (Heckel and Pfleiderer 1983). This trend could quite realistically
offer an estimation of pKa value for other sulfenic acids. For example, the pKa
value of a high-hindered triptycenyl sulfenic species was recently reported to be
12.5 (McGrath et al. 2010), about three times higher than a typical thiol. Although
they are usually defined as transient species, intramolecular hydrogen bonds (Heckel
and Pfleiderer 1983) and steric hindrance (Nakamura 1983) can play major roles
in stabilizing protein RSOH. More generally, hydrogen bonds in apolar protein
microenvironments, and the absence of vicinal thiols can all stabilize sulfenic acids
(Claiborne et al. 1993).

Sulfenic acids exhibit potent electrophilic (Fig. 1.7) and relative weak nucle-
ophilic (Fig. 1.8) reactivity. In small-molecule RSOHs, this dual behavior can lead
to self-condensation in which one sulfur atom functions as a nucleophile and the
second as an electrophile to yield a thiosulfinate ester (Fig. 1.7a). In this reaction,
intermolecular hydrogen bonding mediates the self-condensation of RSOH, thereby
reducing the free energy of activation for thiosulfinate formation thermodynamically
preferred over the acid (Davis et al. 1986). On the other hand, self-condensation of
RSOH only competes with thiol-based reduction of sulfenic acid at high pH (Nagy
and Ashby 2007a, b) and is otherwise considered negligible.

As indicated above, thiols can reduce sulfenic acid to form a disulfide (Fig. 1.8a)
and this condensation represents an important biological reaction. Moreover, this
reaction allows the recycling of sulfenic acid in as much as the disulfide can be
reduced to thiol through the action of cellular-reducing agents such as glutathione
(GSH), glutaredoxin (Grx) and thioredoxin (Trx). Dithiols (such as DTT) and Trx
can also directly reduce RSOH back to the thiol form (Poole et al. 2004). Thiols are
also used as trapping agents to demonstrate the formation of aleatory sulfenic acid
in the thermolysis of sulfoxides (Kamiya et al. 1973). Several inorganic molecules,
such as NaAsO; (Saurin et al. 2004), hydrazine, and NaN3 (Allison 1976), have
been reported to reduce RSOH to the thiol; however, their selectivity has not been
sufficiently explored. Although sodium ascorbate (Fig. 1.9a) is generally considered
a specific reducing agent for S-nitrosothiols (Turell et al. 2008), it can also reduce
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Fig. 1.7 Sulfenic acid reactivity: S atom as a nucleophile

RSOH through an addition/elimination mechanism (You et al. 1975; Fig. 8b);
recently, the ability of sodium ascorbate to reduce sulfenic acid in vivo has also
been proposed (Monteiro et al. 2007).

Sulfenic acids can also be oxidized by two-electron oxidants (Fig. 1.7b) or by O,
in the presence of trace metal ions. The oxidation of non-hindered thiols leads only
to the disulfide. Considering that sulfenic acids can be intermediates in disulfide
formation, it is worth noting that oxidation of sulfenic acid is slower, compared to
its condensation rate with thiols (Luo et al. 2004). Kinetic studies have showed that
the rate constant for oxidation of cysteine sulfenic acid is approximately two to three
orders of magnitude slower than cysteine (Hugo et al. 2009). Two pathways may be
hypothesized for H,O, oxidation of RSOH: first, a concerted mechanism mediated
by formation of hydrogen bond and, second, the direct participation of a sulfenate
anion (RSO™). The pH profile of H,O,-mediated oxidation of RSOH indicates that
the sulfenate is the reacting species and therefore, RSOH generated from a very low
pKa cysteine should be more susceptible to irreversible oxidation to sulfinic acid.
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Reactive cysteine residues in specific proteins may readily oxidize to sulfenic
acid. This reversible thiol modification plays a significant role in protein regulation
and cell signaling (Paulsen and Carroll 2010). As the first (and sometimes only)
oxidation product, RSOH is a key “marker” for ROS/RNS-sensitive cysteine
residues and, as such, there is clear evidence of its role in cell signaling (Klomsiri
etal. 2011; Roos and Messens 2011). As a result, interest in the RSOH detection has
grown rapidly in the last decade and the reactivity of protein sulfenic acids continues
to be explored. Sulfenic acids react as weak nucleophiles with alkyl or aryl halides,
alkenes, and alkynes (Fig. 1.7c—e). Although sulfenate ions (RSO™) should be an
ambident nucleophile, alkylation with halides always yields the sulfoxide (Hogg and
Robinson 1979). This reaction should be taken in account when blocking protein
thiols with iodoacetamide since alkylation of sulfenic acid (Fig. 1.7¢, 24) becomes
relevant at reagent concentrations typically employed in such procedures. The
aromatic nucleophilic substitution of halonitroarene has been employed to detect
the sulfenic acid group in proteins (Fig. 1.7f). For example, the electrophilic reagent
7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-CI) reacts with both sulfenic acids
and thiols to yield covalent adducts (25 and Fig. 1.7f) that are distinguishable from
each other with respect to mass and their UV—vis absorption profiles (Ellis and
Poole 1997). Conversely, alkenes (Kingsbury and Cram 1960) and electron-deficient
alkynes (Goto et al. 1997) have long been used in organic synthesis in organic
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Fig. 1.9 Chemical reactivity and detection of S-nitrosothiols

solvent at high temperature for to trap transient sulfenic acid species (Fig. 1.7c—d).
Such nucleophilic addition reactions occur through a concerted, cyclic process — the
reverse of the elimination of sulfenic acids from sulfoxides — and should therefore
proceed through the same transition state via regiospecific Markovnikov addition
(Fig. 1.7¢).

The sulfur atom in sulfenic acid also functions as an electrophile (Fig. 1.8a—e).
Primary and secondary amines react with RSOH to yield sulfenamides (Fig. 1.8c,
Allison et al. 1973). This reaction is quite slow and, in a biological context, only
makes sense when this reaction takes place intramolecularly. In fact, in some
proteins sulfenic acid can react with the nitrogen backbone of the neighboring
residue to yield a five-member cyclic sulfenamide (see Sect. 1.4.4). Although
RSOH could also react with intramolecular lysine residues, this species has been
rarely detected (Raftery et al. 2001) and its formation in vivo remains unclear.
Sulfenic acids also react with phosphorous III compounds to yield trialkylphosphine
oxide and the corresponding thiol via hydrolysis of the intermediate phosphonium
(Fig. 1.8d, Goto et al. 2003). To date, coupling of RSOH with cyclic 1,3-diketones
is the only reaction that has demonstrated high selectivity for this cysteine oxoform.
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Cyclic 1,3-diketones react with sulfenic acid in their enol-form, likely through
hydrogen bond-mediated direct substitution (Fig. 1.8e).
5,5-dimethyl-1,3-cyclohexandione, commonly known as dimedone, is often used
trapping agent for detecting protein sulfenic acid modifications (Benitez and Allison
1974). However, this reagent is not ideal for proteomic studies since it lacks an
affinity and/or detection handle. In recent years, several advantageous derivatives
of dimedone have been developed. The first approach was direct conjugation of
1,3-cyclohexandione with a biotin or a fluorophore (Fig. 1.8, 25) moiety (Poole
et al. 2005). More recently, Carroll’s research group has functionalized the 1,3-
cyclohexandione scaffold with an azide (26a) (Leonard et al. 2009) or alkyne (26b)
(Paulsen et al. 2012) chemical reporter, known as DAz-2 and DYn-2, respectively.
These small probes are membrane-permeable and enable detection and trapping of
protein sulfenic acids directly in cells. After cellular tagging, lysates are generated
and coupled to detection reagents via Staudinger ligation or Huisgen azide-alkyne
1,3-dipolar cycloaddition (also known as click chemistry). Carroll’s group has also
reported the development of a heavy-isotope coded dimedone analogue, which in
combination with 10 (see Sect. 1.2) represents a powerful new approach to quantify
the extent of sulfenic acid modification at individual protein cysteine residues
(Seo and Carroll 2011). Furdui’s research group has reported a new effective
probe for sulfenic acids based on a related scaffold, 1,3-cyclopentadione (27, Qian
et al. 2011b). Finally, Carroll’s group has recently reported tri-functional probes
consisting of a dimedone-like warhead, chemical reporter, and binding module (28)
that enhances the detection of sulfenic acid in specific classes of signaling proteins
(e.g., PTPs, Leonard et al. 2011). In parallel research, antibodies that recognize
the protein-dimedone adduct have also been developed (Seo and Carroll 2009;
Maller et al. 2011). Carroll and co-workers have applied such antibodies to visualize
sulfenic acid modifications in tumor cells and profile growth factor-dependent
changes in thiol oxidation among breast cancer cell lines (Seo and Carroll 2009).

1.4.2 Nitrosothiol

NO and its metabolites may react with the side chain of cysteine to yield
S-nitrosothiols (Fig. 1.9, RSNO). This modification can lead to significant
changes in the structure and function of proteins (Denninger and Marletta 1999).
S-nitrosylation represents an important signaling mechanism and many proteins
have been identified as S-nitrosylation targets (Jaffrey et al. 2001). S-NOs may
be formed through the direct reaction of thiols with N,O3; and less commonly
with ONOOH (see Sect. 1.3.3) or by trans-nitrosylation with an NO-donor
(Fig. 1.9a). Trans-nitrosylation is also the most important reaction in which
RS-NOs are involved in biology and appears to the principal mechanism upon
which NO-signaling is based (Tsikas et al. 1999). RS—NOs are exceptionally labile
(Kashiba-Iwatsuki et al. 1997) and easy react with other thiols by trans-nitrosylation
or, in some cases, by disulfide formation. These two possible pathways are due to the
concomitant presence of two electrophilic centers on the S-nitrosothiol: one is the
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sulfur atom and the second is the nitrogen atom of the NO group. Sodium ascorbate
(Fig. 1.9b) or Cu I (Dicks and Williams 1996) can also restore the thiol group from
RS-NOs. Although the mechanism of ascorbate reduction is not entirely clear, the
formation of O-nitrosoascorbic acid (Holmes and Williams 2000) appears quite
accepted. The ascorbate-mediated reaction is used in the biotin switch assay. This
technique is the most popular method for detecting S-nitrosothiols in proteins from
cell extracts (Jaffrey et al. 2001) and involves three steps: (1) free thiols are blocked
with a “thiol-specific reagent” (see Sect. 1.2) such as MMTS; (2) nitrosothiols are
reduced by sodium ascorbate to thiols; and (3) nascent thiols are then conjugated to
biotin with N-[6-(biotinamido)hexyl]-30-(20-pyridyldithio)-propionamide (biotin-
HPDP, 1) and analyzed by Western blot (Fig. 1.9).

Along with issues inherent to indirect or subtractive methods of detection,
another challenge for this technique is the selective reduction of RSNOs with
sodium ascorbate. It is well-known that sodium ascorbate can give false-positive
signals for S-nitrosothiols when detected by the biotin switch assay (Huang and
Chen 2006). In fact, ascorbate can also reduce sulfenic acids (see Sect. 1.4.1)
and disulfides, albeit less efficiently. Furthermore, the ascorbate-mediated reduction
of RS-NOs is quite slow and some nitrosothiols cannot be reduced during the
incubation time. The reaction rate of reduction can be increased using catalytic
amounts of Cu™ (Kirsch et al. 2009). Copper promotes the direct de-nitrosylation of
RS-NOs while ascorbate maintains the minimum concentration of Cu(I) necessary
to catalyze the reaction, reducing Cu?>* to Cu™ (Egs. 1.23 and 1.24). However, it is
critical to note that Cu™ may also lead to oxidation of protein thiols.

RS —NO + Cut - R—S™ + *NO + Cu** (1.23)
Cu’t + Asc™ — Cut + Asc*~ (1.24)

In light these limitations the biotin switch assay has been superseded by direct
and selective bioorthogonal reactions for RS—NOs in recent years. It is known that
triaryl phosphines react with RS—NOs to yield an aza-ylide intermediate, which is
hydrolyzed to phosphine oxide in water (Fig. 1.9c, Haake 1972). Xian’s lab has
employed such phosphine-mediated reactions to selectively modify S-nitrosothiols.
In these studies, an aza-ylide nucleophile is proposed, and in the presence of an
intramolecular electrophilic group (such as an ester), the S-nitrosothiols can be
converted into a sulfenamide by intramolecular acyl transfer (Wang and Xian 2008).
Although the resulting sulfenamide is more stable than the S-nitrosothiol, it is not
suitable for RS—NO detection in proteins. In particular, the sulfenamide is reduced to
the thiol in the presence of excess phosphine reagent. Consequently, Xian’s research
group has developed triarylphosphines (30a) with a thioester as a trap for the aza-
ylide intermediate (30b). This kind of reagent reacts with RS—NOs to generate a
sulfenamide (30c), which immediately undergoes nucleophilic attack of the thiol
leaving-group (formed after the intramolecular acyl transfer) to yield a disulfide
(30d), which is still prone to reduction, but is more stable than an S—-N bond.
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This approach appears promising and has been used to detect protein RS-NOs in
cell extracts (Zhang et al. 2010). However, the relative instability of the disulfide
link remains as a significant challenge for robust application of this approach in
vitro and especially in cells.

Several other phosphine reagents have been developed to detect RS—NOs (see
the review: Wang and Xian 2011). King’s group reported the first water-soluble
phosphine capable of direct labeling of S-nitrosothiols (Bechtold et al. 2010).
Tris(4,6-dimethyl-3-sulfonatophenyl)-phosphine trisodium salt hydrate (TXPTS)
appears to form a stable sterically hindered S-alkylphosphonium adduct, which
can be detected by 3'P-NMR. However, the selectivity of all these reagents must
be careful investigated. In fact, disulfides (see Sect. 1.4.3) and sulfenic acids (see
Sect. 1.4.1) are also reduced by phosphines. On the other hand, triarylphosphines do
not appear to be fast disulfide-reducing agents (Saxon and Bertozzi 2000) and the
presence of electron-withdrawing substituents should further reduce their reactivity
(Wang and Xian 2008). In contrast, Davis’s group has shown that a disulfide
formed between a short thio-peptide and methyl 4-thio-2-nitrobenzoate reacts very
rapidly (~15 min) with several phosphines, including triphenylphosphine (Chalker
et al. 2011). This reaction can be explained by the low pKa of methyl 4-thio-2-
nitrobenzoate, which works as an excellent leaving group during the phosphine
attack. Along these lines, some disulfides could exhibit cross-reactivity with the
phosphine reagents developed for RS—NOs detection (Bechtold et al. 2010). Finally,
cross-reactivity with sulfenic acids remains poorly understood. Although the se-
lectivity of triarylphospine probes for RS—NOs detection over sulfenic acids was
recently suggested (Li et al. 2012), however, the use of PTB1B as a model appears
contradictory. In fact, when PTB 1B is exposed to H,O; the catalytic cysteine residue
forms a stable, cyclic sulfenamide (Salmeen et al. 2003), which is predicted to be
less reactive toward phosphines.

1.4.3 Disulfides

The formation of a disulfide bond between two cysteine residues or between a
cysteine residue and a low-molecular-weight thiol may also have a significant
impact on the structure and function of the macromolecule (Fan et al. 2009; Wouters
et al. 2010). Protein disulfide generation is generally mediated by sulfenic acid
formation (Eq. 1.25, see Sect. 1.4.1) or by thiol-disulfide exchange (Eq. 1.26). Thiols
can also react with sulfenyl halides (Eq. 1.27), sulfenyl thiocyanates (Eq. 1.28),
and thiosulfinate esters (Eq. 1.29) to form disulfide. Moreover, the reaction of
S-nitrosothiols (Eq. 1.30) with thiols can sometimes proceed with release of nitroxyl
(HNO) and disulfide formation (Hogg 2002).

R-S—-OH+R;—-S" -R-S—-S—-R; +0OH" (1.25)

R-S—-SR;+R,—S" >R—-S—-S—R, +R;{ — S~ (1.26)
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R—-S—X+R —-S >R—-S—S—R; + X~ (1.27)
R—S—SCN+R;—S” >R—S—S—R; + SCN™ (1.28)
R-S—S(O)R;+R,—S" >R—-S—S—R,+R; —S—0"  (1.29)
R—S—NO+R; —S" >R—-S—S—R; +NO~ (1.30)

Thiol-disulfide exchange is one of the most important sulfur-based reactions in
biology and can regulate the structure and activity of proteins that contain regulatory
cysteines (Ilbert et al. 2007). Although this reaction is spontaneous, it can also be
catalyzed by transition metals (Arisawa and Yamaguchi 2008). The driving force
of the reaction is the relatively low activation energy required for thiols to break
disulfide bonds (Fernandes and Ramos 2004). The thiol-disulfide exchange reaction
is a bimolecular nucleophilic substitution reaction (SN2) in which the attacking
nucleophile is the thiolate. The reaction proceeds with a linear transition state
and this geometry has a significant impact on the reaction rate. Consequently, in
proteins, cysteines that are situated in a position in which a linear transition state is
difficult to achieve will be much less reactive.

The rate of protein thiol-disulfide exchange reactions is influenced by several
additional factors. These include the pKa of the thiolate and the leaving-group
thiol, nearby charged amino acid residues, and steric factors. When a thiolate
anion attacks an asymmetrical disulfide (R;S—SR;), the best leaving group will
be the thiol with lowest pKa (Jensen et al. 2009). Moreover, since thiol-disulfide
exchange involves negatively charged species, the reaction rate can be influenced by
electrostatic factors, such as negative charges adjacent to the reaction center (Bulaj
et al. 1998). The formation of an intramolecular disulfide is typically more efficient
than the formation of intermolecular disulfides. Consequently, the incubation of
disulfide with dithiothreitol (DTT) always leads to the oxidation of DTT. In biology,
thiol-disulfide exchange is the basis of the mechanism of action of many en-
zymes. Another thiol/disulfide exchange process that deserves special consideration
is S-glutathionylation of cysteine in proteins. Although S-glutathionylation was
thought to protect cysteine from irreversible oxidation (Thomas et al. 1995), it was
later shown that this modification affects the catalytic activity for several enzymes,
suggesting a regulatory role (Demasi et al. 2003).

Disulfides also react with strong oxidants to yield thiosulfinate and thiosulfinate
esters. However, this reaction is significantly slower than oxidation of a thiol
or sulfenic acid and thus, would take place only at extremely elevated, cyto-
toxic concentrations of ROS/RNS. Disulfides are reduced to thiols by a number
of inorganic compounds, including sodium borohydride (NaBH4) and sodium
cyanoborohydride (NaBH3CN). In biochemistry, dithiols and phosphite esters are
the most common reducing agents. It has been demonstrated that sodium ascorbate
can also reduce a disulfide (Holmes and Williams 2000), but this reaction appears
to be catalyzed by Copper(II). Chemical approaches to the detection of disulfides
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are largely indirect. The initial step consists of blocking free thiols with an
irreversible alkylating agent (see Sect. 1.2), followed by a disulfide reduction
(e.g., with tris(2-carboxyethyl)phosphine — TCEP). Finally, the nascent thiols are
trapped with the usual reagents (see Sect. 1.2). Two important considerations are:
(1) owing to a pKa of ~8 for most thiols, the blocking step must be carried
out at neutral pH or higher for this reaction to be efficient; (2) commonly used
reducing agents also reduce other reversible cysteine oxoforms, such as sulfenic
acids, nitrosothiols, sulfenamides, and thiosulfinates. Direct detection methods exist
only for S-glutathionylation (RS—-SG), which can be monitored through reduction
of this bond by glutaredoxin (Lind et al. 2002), radiolabeled with *>S-GSH (Fratelli
et al. 2002) or biotinylated glutathione ethyl ester (BioGEE, Sullivan et al. 2000).
Alternately, an immunochemical approach using specific antibodies against the
protein-glutathione adduct may be employed (Dalle-Donne et al. 2003).

1.4.4 Sulfenamide

A sulfenamide is a compound containing a trivalent nitrogen atom bonded to
divalent sulfur and is formally derived from the condensation of sulfenic acid
with an amine (Allison et al. 1973). Although a sulfenic acid and sulfenyl halide
may react with any nucleophilic amine to generate a sulfenamide, in general, this
reaction is several orders of magnitude slower then the equivalent reaction with
a thiol. Nonetheless, interest in such modifications has grown since the discovery
of cyclic sulfenamide formation in the active site of protein tyrosine phosphatase
1B (PTP1B) (Salmeen et al. 2003). The sulfenic acid intermediate produced by
oxidation of the PTP1B catalytic cysteine is rapidly converted into the sulfonamide
form. The crystalline structure of oxidized PTP1B reveals that the sulfenamide is
characterized by an isothiazolidinone ring formed by the binding of sulfur of the
cysteine to the backbone nitrogen of the adjacent serine residue (van Montfort et al.
2003). This species appears to be generated by nucleophilic attack of the main-chain
amide nitrogen on the electrophilic sulfur in sulfenic acid with elimination of water.
Beyond PTP1B, few other proteins have been found to form cyclic sulfonamide
modifications (Lee et al. 2007) and, as a result, it is difficult to say whether such
modification has a wider role in biology.

Sulfenamides appear to have similar a reactivity profile akin to sulfenic acid and
undergo attack by several nucleophilic species. For example they react with thiols
to yield disulfides (Nti-Addae et al. 2011) and, consequently sulfenamide formation
may mediate the S-glutathionylation of proteins such as PTP1B (den Hertog et al.
2005). Sulfenamides can also undergo trans-amination reactions (Craine and Raban
1989); considering that the only biologically relevant sulfenamide known to date is
cyclic, however, this reaction is unlikely occur in cells because the equilibrium of
the reaction is always shifted toward the cyclic form. Sulfenamides can be reduced
to thiols by phosphite esters, which also react with disulfides, sulfenic acids, and
S-nitrosothiols. The cyclic sulfonamide within PTP1B is often cited for its ability
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to protect the reactive thiol against irreversible oxidation to sulfinic and sulfonic
acid. This statement can be rationalized by the lesser nucleophilic character of
the sulfur atom in the cyclic sulfonamide as compared to the sulfenic acid. In
aqueous basic solutions of H,O,, the sulfenamide is readily oxidized to sulfinamide
and sulfonamide (Kharasch et al. 1946), but at physiological pH such oxidation
is negligible. In fact, although sulfinamide formation has been reported in short
peptides exposed to ROS (Shetty and Neubert 2009), no evidence of sulfinamide
or sulfonamide formation has been observed in PTP1B. This is true even in the
presence of high H,O, concentrations, as PTP1B exclusively undergoes sulfinic and
sulfonic acid modification, ascribed to the direct oxidation of the cysteine sulfenic
acid intermediate (Held et al. 2010).

The development of specific probes for sulfenamides is made more difficult by
the similarity with sulfenic acid reactivity (Fig. 1.10b). Shiau et al. have used a
series of relatively weak nucleophilic thiols to identify compounds that react with
sulfonamides, but not disulfides (Fig. 1.10). They identified a coumarin thioacid
(32), which reacts with a model sulfenamide (31) to generate the fluorescent
disulfide (33) and exhibits no cross-reactivity with disulfides (Shiau et al. 2006).
Unfortunately, this study provided no data regarding reactivity of 32 with sulfenic
acid; nonetheless, it is almost certain that the coumarin-derivative should also react
with sulfenic acids and related thiosulfinates.

1.4.5 Thiosulfinate Ester

Thiosulfinate esters can be formed by the condensation of two sulfenic acids (see
Sect. 4.1) or by oxidation of disulfides (Eq. 1.31). In a biological context, the auto-
condensation of sulfenic acids appears to have poor relevance in proteins owing to
steric hindrance, while it should be quite likely for small molecules such as cysteine
or glutathione. The direct oxidation of disulfide to the thiosulfinate would require
very high, localized concentrations of ROS/RNS and only biologically relevant for
glutathione in its oxidized state (Giles et al. 2002). Interestingly, the thiosulfinate
group forms as a reaction intermediate during sulfiredoxin (Srx)-mediated reduction
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of cysteine sulfinic acid in Prxs; however, this modification is generated through a
completely different mechanism (see Sect. 1.4.5).

The thiosulfinate ester is a highly reactive species and can readily undergo the
nucleophilic attack by thiols to yield a disulfide and a sulfenic acid (Nagy et al.
2007). Glutathione disulfide S-monoxide has consequently been proposed as a
mediator in S-glutathionylation (Huang et al. 2007). Thiosulfinates can also undergo
hydrolysis (Eq. 1.32), a reaction that is in equilibrium with self-condensation of
sulfenic acids (Nagy and Ashby 2007a, b). Formally, thiosulfinates can be oxidized
to sulfonate esters (Eq. 1.33), but this should take place only in the presence of
high concentrations of very strong oxidants such as those found in the phagosome.
Finally, disproportionation of aromatic thiosulfinate esters has been reported to yield
a disulfide and a thiosulfonate ester via a complex radical mechanism (Eq. 1.34,
Poudrel and Cole 2001).

R—S—SR + H,0, 2 R— S — S(O)R + H,0 (1.31)

R—S—S(O)R+H,0=2 2R—S—OH (1.32)
R—S—S(O)R + H,0, > R—S — S(0), R + H,0 (1.33)
2R—S—S(OR—>RS—S—R+R—S—S(0),R (1.34)

Except for the Prx-thiosulfinate intermediate, no other thiosulfinates are known in
proteins. This may be due, at least in part, to the difficulty of finding a selective strat-
egy for detecting this thiol modification. The thiosulfinate ester, like a thiosulfonate
ester (Schank et al. 2007) may react with dimedone (and its derivatives) to yield a
dimedone-thioether and a sulfenic acid, which in turn reacts with a second molecule
of dimedone. Rabinkov’s group has developed a simple spectrophotometric assay to
determine the presence of allicin (a natural thiosulfinate ester present in garlic) and
of allinase activity by the reaction between 4-mercaptopyridine (4-MP) and allicin
(Miron et al. 2002). The selectivity of this technique is based on the high reactivity
of the thiosulfinate in comparison to the disulfide, but its application with proteins
in complex biological samples appears since 4-MP should also react with the more
abundant sulfenic acid.

1.4.6 Sulfinic Acid

Sulfenic acid can be further oxidized to sulfinic acid (RSO, H) in the presence of
excess ROS/RNS (see Sect. 1.4.1). RSO, H is a relatively stable species as compared
to RSOH, and with a pK, value of ~2, is always deprotonated at physiological pH
(Burkhard et al. 1959). Sulfinic acids can be also generated by disproportionation
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of sulfenic acid (Eq. 1.35, Abraham et al. 1983) or by nucleophilic displacement of
thiosulfonate esters (Eqs. 1.36 and 1.37, Harpp et al. 1979).

2R—S—OH — R — SH + RS,0H (1.35)
R—S—S(0),R; + HO~ — RSO; +R; —S —OH (1.36)
R—S—S(0),R; +R,—S~ - RSO; +R; —S—S—R, (1.37)

In the deprotonated form, the sulfinate group (RSO, ™) is an ambident anion and
the negative charge is delocalized between the sulfur and the two oxygen atoms.
RSO;,™ behaves mainly as a soft nucleophile (Reddie and Carroll 2008) and can
react with many electrophilic species such as halides (Fig. 1.11a) (Khamis et al.
2010) and o,B-unsaturated compounds (Fig. 1.11b) (Ogata et al. 1970). Sulfinic
acids can therefore be alkylated by iodoacetamide as well as ethylmaleimide,
although these reactions are slower in comparison to thiols. In all these reactions, S-
attack is generally favored and leads to the thermodynamically more stable sulfone.
In the presence of strong electrophiles, the sulfonyl ester can be kinetically gener-
ated (Baidya et al. 2010), but this unstable species slowly rearranges to a sulfone
(Fig. 1.11a). Sulfinic acids can oxidize further to sulfonic acid, but neither of these
oxoforms can be reduced directly by thiols, hence the term “irreversible”. In recent
years, a biological role for RSO,H has emerged, for example, in both Parkinson’s
disease protein DJ-1 (Blackinton et al. 2009) and in matrilysin (MMP-7) activation
(Fu et al. 2001), although the best-known cysteine sulfinyl modification is occurs
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within the Prx family (Wood et al. 2003). Finally, the discovery of sulfiredoxin, an
ATP-dependent protein that specifically reduces sulfinic acid in Prx, has opened the
door to an additional layer of redox regulation (Jonsson et al. 2008) and increased
interest in detecting this specific modification.

Antibodies against individual proteins with sulfinyl/sulfonyl modifications have
been developed (see Sect. 1.4.7). At the moment, however, no selective chemical
probes are available to detect sulfinic acid formation in proteins. On the basis
of early physical-organic studies (Ritchie et al. 1961), the use of diazonium salts
(Fig. 1.11c, 34) as a trapping agent for protein sulfinic acids was recently proposed
(Jacob and Ba 2011). Although this approach has proven to be effective for
colorimetric detection of methane sulfinic acid (Babbs and Gale 1987), several
complications are present in this system. Diazonium salts are highly unstable species
that readily decompose under neutral aqueous conditions. Moreover, considering
the potential cross-reactivity with tyrosine (Hooker et al. 2004), as well as with
cysteine (Patt and Patt 2002), future application of this technique with proteins
may be limited. Whereas avoiding basic conditions can minimize cross-reactivity
with tyrosine, cysteine appears to react with diazonium salts under a wide range
of pHs (Eq. 1.38) to yield a stable sulfenyldiazene species (Lo Conte and Carroll,
unpublished data).

R—SH+Ar—Nf - R—-S—-N=N-Ar+H" (1.38)

As an alternative, the Carroll research group has been working to developing
a new selective ligation strategy using C-nitroso compounds, which condense
with sulfinic acids to yield N-sulfonyl hydroxylamines (Fig. 1.11d). N-sulfonyl
hydroxylamines are unstable at neutral or basic pH (Darchen and Moinet 1976).
As a result, in order to convert the product into a stable adduct, we can take
advantage of the nucleophilic behavior of hydroxylamine. In the presence of an
electrophilic center (e.g., a carboxylic ester) on the C-nitroso compound (35a),
N-sulfonyl hydroxylamine (35b) undergoes intramolecular cyclization to form a
stable N-sulfonyl benzisoxazolone adduct (35¢). Although thiols can also target the
C-nitroso group, selectivity for sulfinic acid is ensured by the fact that reaction with
the thiol leads to an unstable N-sulfenyl hydroxylamine linkage, which is readily
cleaved in the presence of additional thiols; this chemical approach is currently
under being adapted for detection of protein sulfinic acids in vitro (Lo Conte and
Carroll 2012).

1.4.7 Sulfonic Acid

Sulfonic acid represents the highest oxidation state for the cysteine sulfur atom and
no biological pathway is known to reduce this cysteine oxoform. Sulfinic acid can be
further oxidized to sulfonic acid by strong oxidizing species such as peroxynitrous
acid and hydrogen peroxide (Eq. 1.39, see Sect. 1.4.6). Sulfonic acid can also
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be generated by the disproportionation of sulfinic acid (Eq. 1.40). As alluded to
above, when an essential enzyme active site cysteine is oxidized to sulfonic acid the
catalyst is irreversibly inhibited. However, it has also been proposed that sulfonic
acid modification of Prx could enhance its proposed chaperone activity (Lim et al.
2008). This modification may also target proteins for degradation. For example, the
oxidation of N-terminal cysteine residues to sulfonic acid can mediate arginylation
and degradation of GTPase-activating proteins (Tasaki and Kwon 2007).

R —SOH + H,0, — R - SO3H 4 H,O (1.39)

4R — SO,H + H,0 — RSO3H + R — §(0), — S —R (1.40)

Sulfonic acid is one of the strongest organic acids. Cysteic acid, with a pKa of
—3, is always present in the deprotonated form as sulfonate at physiological pH
(Chang et al. 2010). Sulfonic acid is a very poor nucleophile and its derivatives are
usually obtained by activation as the sulfonyl chloride. No facile chemical methods
are available to trap and tag the sulfonic acid modification in proteins. Although
base-mediated B-elimination of cysteine sulfonic acid to dehydroalanine and sulfite
could provide a starting point for assay design (Dai et al. 2005), the concomitant
p-elimination of phosphoserine and phosphothreonine (McLachlin and Chait 2003)
represents a serious limitation of such as approach. To date, antibodies are the most
common technique for detecting the sulfonic acid form of a specific protein (Woo
et al. 2003). Unfortunately, this approach is not easily applied to all proteins, and the
resulting antibodies typically exhibit the same affinity for sulfinic and sulfonic acid
cysteine oxoforms. Recently, an innovative mass spectroscopy assay was developed
to selective enrich and identify peptides containing cysteine sulfonic acid. This
approach is based on ionic affinity capture using polyarginine-coated nanodiamonds
that exhibit good specificity even in the presence of phosphopeptides (Chang et al.
2010). The technique was applied to selectively enriched sulfopeptides obtained
from tryptic digests of over-oxidized BSA.

1.4.8 Sulfhydration

The process by which H,S mediates S-sulthydration of proteins is still unclear.
For example, the direct reaction of cysteine side chains with H,S (Mustafa et al.
2011) appears quite unlikely without any intermediary oxidant species. Persulfides
can be generated by the direct reaction of sulfenic acids (Kabil and Banerjee
2010), sulfenyl halides, sulfenyl-thiocyanates, or thiosulfenyl esters with H,S
(Egs. 1.41, 1.42, 1.43 and 1.44). Although less reactive, disulfides can also generate
persulfides via disulfide exchange with H,S (Eq. 1.45). Finally hydrogen persulfide
(HSSH) has recently been proposed as the physiological sulthydration agent in cells



1 The Chemistry of Thiol Oxidation and Detection 31

(Nagy and Winterbourn 2010). HSSH is generated by reaction of H,S with two-
electron oxidants and can easy react with low pKa thiols (Eq. 1.46).

R—SOH+HS™ - R—S—S" +H,0 (1.41)
R—-S—X+HS" >R-S—S +HX (1.42)
R—S—SCN+HS™ - R—S—S~ +HSCN (1.43)
R—S—S(O)R, +2HS” > 2R—-S—S" + H,0 (1.44)
R—S—S—R;+HS" >R—S—S +RS” (1.45)
R—S +HS—SH—>R—-S—S +HS™ (1.46)

Persulfides show intermediate behavior between thiol and disulfide reactivity.
In fact, the terminal sulfur is ambiphilic and can behave as an electrophile or a
nucleophile. For example, persulfides can undergo oxidation reactions to yield a
wide range of products or may also undergo disulfide exchange (Eqgs. 1.47 and 1.48),
following the same rules described in Sect. 1.4.3. If the internal sulfur atom of a
persulfide group has a pKa lower than 6.9 (corresponding to the pKa of hydrogen
sulfide), the reaction may proceed via trans-sulthydration; alternately, the result
is disulfide formation and the release of hydrogen sulfide. The terminal sulfur,
however, can also directly attack a disulfide or react with a sulfenic acid to generate
a trisulfide (Eqgs. 1.49 and 1.50). Trisulfides are widely distributed in the biological
world, although they are not a common post-translational modification, and the
number of proteins in which a trisulfide has been unambiguously identified is small
(Nielsen et al. 2011).

R-S-SH+RST —-R-S-S—-R;+HS™ (1.47)
R-S—-SH+R;ST—=R; —S—-S" +RS™ (1.48)
R-S-S"+R-S-S-R; =-R-S-S—-S—R; +R|S™ (1.49)
R-S-S"+R —-S-OH—-R-S-S-S—-R;+O0OH" (1.50)

In the presence of transition metals, persulfides can readily decompose to
generate ROS, and such reactions could mediate the anti-microbial and anti-cancer
properties of some natural products (Chatterji et al. 2005). The terminal sulfur is a
strong nucleophile and can react with a huge range of electrophiles. The richness of
its chemistry makes the persulfide group a versatile reagent for the incorporation of
sulfur along many metabolic pathways (Mueller 2006).

In the last decade, interest in H,S signaling has grown rapidly, but relatively
few proteins have been found to be sulfhydrates (Krishnan et al. 2011). This is due
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to the difficultly of monitoring such modifications uniquely. The Snyder research
group has reported an assay for proteins persulfides, which is a modification of
the classic biotin switch assay (Mustafa et al. 2009). In this method, MMTS is
employed to block free thiols and any persulfides are reacted with biotin-HPDP
(possibly forming a disulfide or trisulfide linkage) and analyzed by Western blot.
Applying this approach to complex cell lysates, several proteins were reported as
targets of H,S signaling. A key feature of this approach requires that the MMTS
reagent only modify thiols and not persulfides. Unfortunately, no rationale or data
was provided by Mustafa et al. to validate this claim. In fact, our own research
group has recently determined that MMTS does react with persulfides to yield a
trisulfide linkage as expected from the nucleophilic nature of sulfane sulfur (Pan
and Carroll, unpublished data). Therefore, considering that the chemical mechanism
and selectivity remain unknown, results obtained using this approach should be
interpreted with caution.

1.5 Conclusions

In the last decade, awareness of the number of proteins containing redox-sensitive
cysteine has grown significantly. Cysteine can assume a wide range of oxidative
states in response to dynamic changes in intracellular redox potentials. To un-
derstand the role of such protein modifications, methods have been developed to
distinguish between different cysteine oxidation states. The role of the biologist
is not simply to choose the most appropriate technique, but also to maintain
a critical view of possible artifacts. Opting for an in vitro approach can prove
unsatisfactory because many cysteine oxoforms are reactive and unstable outside
of the cellular milieu. The use of indirect methods, by which all free thiols are
trapped, must be preceded by the awareness that these thiol-trapping agents can react
inefficiently or be incompletely selective, resulting in under- or over-estimation.
The same considerations must be taken into account when using reducing agents
to identify specific modifications. Indeed, the selectivity and efficiency of such
reagents requires careful evaluation. Furthermore, in many cases, interconversion
of cysteine redox states dramatically increases the challenges of studying an
individual modification. Finally, given that the local microenvironment can exert
a remarkable influence on protein thiolate reactivity, the exploration of probes
and chemical methods exclusively in low-molecular-weight model systems may
prove unsatisfactory. Although more complex, a recommended course for future
research is the identification of selective reactions that can be employed to monitor
cysteine oxidation in situ, directly in cells. Obviously, this presents a formidable
challenge, but given the vast number of biological processes that thiol oxidation
plays a significant regulatory role, it should be well worth the effort.
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Chapter 2

Radical Scavenging by Thiols and the Fate
of Thiyl Radicals

Christine C. Winterbourn

Abstract Reduced glutathione reacts rapidly with the majority of biological free
radicals and is regarded as a good radical scavenging antioxidant. However, the
reaction generates thiyl radicals, which are strong, potentially damaging oxidants
that need to be removed for the process to be effective. Sequential reactions of the
radical with the thiolate anion and oxygen drive the scavenging reaction, producing
the disulfide and superoxide radicals. Protein thiols are also good radical scavengers
via a similar mechanism, and this is an efficient route for generating intramolecular
disulfides, mixed disulfides with glutathione and nitrosothiols. These interactions
are relevant not only to antioxidant defence but as part of a network of radical
reactions that can regulate the oxidation state of glutathione and the extent of protein
S-thiolation as well as acting as a source of superoxide and hydrogen peroxide. This
chapter discusses the radical chemistry of glutathione and other thiols and how it
could contribute to redox activity in the cell.

Keywords Free radical scavenging ¢ Glutathione ¢ Superoxide ¢ Protein
disulfide ¢ Thiyl radical

2.1 Introduction

Thiols are prime biological targets for oxidation and their ability to undergo
reversible oxidation and reduction enables them to contribute to many cell functions.
Thiol groups are required for the activity of numerous enzymes and they have
a major role in the antioxidant defenses of the cell. There are also a large
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number of regulatory proteins whose activity can be modified by oxidation of
the sulthydryl group. Thus, sulthydryl oxidation can affect cell function not only
through inactivating thiol enzymes, but also by altering the binding characteristics
of molecules involved in signaling pathways (Winterbourn and Hampton 2008;
Forman et al. 2004).

Thiol groups are generally reactive with all the oxidants that cells encounter,
although reaction rates may differ by many orders of magnitude. The reaction may
proceed either by a two electron mechanism to generate the sulfenic acid (or sufenyl
halide) as the initial product, as is the case with peroxides, hypochlorous acid and
peroxynitrite, or by a one electron free radical pathway to produce the thiyl radical.
The ultimate products of the two pathways are not necessarily the same. As a
consequence of this plus the difference in reactivity of individual reactive oxygen
species (ROS), all ROS will not undergo the same reactions in the cell. Therefore,
antioxidant strategies, as well as effects on cell metabolism or regulatory pathways
will differ depending on the oxidant involved.

The focus of this chapter is on radical pathways, with non-radical pathways
covered more extensively elsewhere in this book. However, it is useful to compare
the two pathways. With a few exceptions (notably peroxiredoxins, thiol-containing
glutathione peroxidases and the bacterial transcription factor oxyR) the direct
reaction of peroxides with thiol groups is slow (Winterbourn and Metodiewa 1999;
Winterbourn and Hampton 2008). Antioxidant defense against peroxides is not
due to a direct reaction with reduced glutathione (GSH), but is provided by well
characterized systems that involve either glutathione peroxidases plus GSH, or
peroxiredoxins acting in combination with thioredoxin/thioredoxin reductase (Flohe
et al. 2011; Rhee and Woo 2011). These enzymatic systems involve two electron
steps that cycle between thiol and disulfide and are ultimately dependent on NADPH
for reducing equivalents. Direct reactions between thiols and more reactive oxidants
such as hypochlorous acid, chloramines or peroxynitrite are more favorable. These
can result in oxidation beyond the sulfenic acid or disulfide, to the sulfinic (—SO,H)
or sulfonic acid (—SOszH). Particularly in the case of HOCI, condensation with
amino groups in GSH or proteins can give rise to sulfinamides or sulfonamides
(Harwood et al. 2006; Raftery et al. 2001). Therefore a range of higher oxidation
products is possible.

Thiols react with a wide range of radical species. These are generated by a
variety of cellular mechanisms (Fig. 2.1) and include hydroxyl, phenoxyl, alkoxyl,
arylamino, peroxyl, semiquinone and carbon centred radicals as exemplified in
Table 2.1. Some of the parent compounds that give rise to these radicals occur
physiologically, others are drugs or environmental chemicals. Some, such as
flavonoids, are themselves radical scavengers and of interest for their potential
health benefits as antioxidants. This article examines radical scavenging by GSH
and by thiol proteins within the context of antioxidant defense and also as a potential
mechanism for regulating redox-sensitive cell functions.
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Fig. 2.1 Examples of physiological sources of thiyl radicals. As described in the text and
Table 2.1, a majority of physiologically relevant free radicals can react with GSH and protein
thiols (shown as RSH in Figure) to generate thiyl radicals. Major sources of such radicals are
shown. Autoxidation and redox cycling mechanisms apply to many drugs and environmental
chemicals including polyphenols, quinones and other aromatic compounds. Other oxidoreductases
that generate superoxide radicals include xanthine oxidase, lipoxygenase and nitric oxide synthase.
Superoxide reacts only slowly with thiols (as designated by dashed line) and these mechanisms are
more relevant as a source of hydrogen peroxide for metal-catalyzed or peroxidase- mediated radical
generation

Table 2.1 Examples of radical generating systems that cause oxidation of GSH to its thiyl radical

Class of compound System References
Tyrosine Peroxidase Nakamura et al. (1986), Pichorner et al.
(1995)
Phenols Peroxidase, radiolysis Ross and Moldeus (1985), D’ Arcy Doherty
et al. (1986), Subrahmanyam and O’Brien
(1985)
Sugars Radiolysis Baker et al. (1982)
DNA bases Radiolysis Willson (1983)
Nitrogen dioxide Direct reaction Quijano et al. (1997), Bonini and Augusto
and peroxynitrite (2001)
Aromatic amines, Peroxidase, Ross and Moldeus (1985), Subrahmanyam
phenothiazines autoxidation and O’Brien (1985), Subrahmanyam et al.
(1987)
Ethanol Thermal Stoyanovsky et al. (1998)
(hydroxyethyl) decomposition
Tocopherol Radiolysis Niki et al. (1982)
Hydroxpyrimidines Autoxidation Munday and Winterbourn (1989)

2.2 Radical Scavenging by Reduced Glutathione

Radical scavenging by GSH generates the glutathionyl radical (reaction 2.1). In
most cases the reaction is fast; for example with tyrosine the rate constant, k, is
2x10° M~! s7! (Folkes et al. 2011) and with millimolar concentrations typically
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present inside cells, GSH would be expected to be an effective physiological
scavenger. However, the reduction potential of GSH is sufficiently high that
scavenging of many radicals is not highly favored on thermodynamic grounds
(Wardman and von Sonntag 1995). The reaction is reversible, and in many cases
the reverse reaction is at least as fast and the equilibrium lies far to the left
(e.g. for acetaminophen K; =3 x 10™* (Ramakrishna Rao et al. 1990)). For a
scavenging reaction to provide antioxidant protection, the products of the reaction
must be less reactive or damaging than the initial species. However, as discussed
in Sect. 2.7, thiyl radicals are oxidizing species that can undergo a number of
potentially damaging reactions with biological molecules. On these grounds, GSH
would not appear to have the qualities of a good radical scavenging antioxidant.
Yet in experimental systems where radicals are generated from substrates such as
acetaminophen and tyrosine, they are efficiently scavenged by GSH (for example
Ramakrishna Rao et al. 1990; Ross 1988; Pichorner et al. 1995).

R® + GSH 2 RH + GS* (2.1)
GS*®* 4+ GS™ 2 GSSG*™ (2.2)
GSSG*™ + 0, — GSSG + 0,°~ (2.3)

There are features of thiyl radical chemistry that enable GSH and other thiols
to act as effective scavengers and antioxidants (Wardman and von Sonntag 1995;
Winterbourn 1993; Wardman 1995). Most importantly, reaction (2.1) can be
kinetically driven in the forward direction by removal of GS® through a rapid
reaction with the thiolate anion (GS™) (reaction 2.2). Reaction (2.2) is also an
equilibrium. It converts an oxidizing radical (GS") into the disulfide radical anion
(GSSG™™), which is probably the strongest reductant produced in biological systems
(Buettner 1993). The position of equilibrium (2.2) is influenced by the thiolate
ion concentration, which is dependent on the pH, the pK, of the thiol (8.8 for
GSH) and the GSH concentration. At pH 7.4 and 5 mM GSH, the ratio of GS’
to GSSG'™ is 2:1 (Wardman 1995). However, the equilibrium is established rapidly
and reactions of GSSG'™ may dominate even if its concentration is relatively low.
GSSG'™ reacts with oxygen irreversibly (reaction 2.3) at a near diffusion-controlled
rate (k =2 x 103 M~! s7!). This displaces equilibrium (2.2) to the right and provides
the driving force for removing GS*. Thus reactions (2.1), (2.2), and (2.3) account for
the good scavenging ability of GSH.

Physiologically, this is a major decay route for thiyl radicals. An alternative path-
way is for the radical to react with oxygen to form a peroxyl radical (reaction 2.4).
This reaction is fast, but it is also reversible and in most situations it contributes
less to GS® removal than reaction (2.3). However, it becomes more significant at
lower pH or GSH concentration where less thiolate is present. Secondary reactions
of the peroxyl radical are the most likely source of the higher oxidation states of
glutathione (such as the sulfinic and sulfonic acid) that are minor products in some
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radical systems (Wefers et al. 1985; Winterbourn and Metodiewa 1994). GSSG™
may undergo alternative reactions to reaction (2.3) (e.g. reduce quinones and heme
proteins) when oxygen is limiting. Dimerization of GS" radicals to give the disulfide
(GSSGQG) is of limited significance at the low steady state radical concentrations that
are likely to be present physiologically and even under hypoxic conditions it should
only be a minor route for radical decay. Indeed, radical transfer to a carbon centre
on the peptide, as observed under anerobic conditions (Zhao et al. 1994, 1997) is
likely to be more favourable than dimerization.

GS* 4+ 0, = GSOO0* 2.4)

From the above argument, it is evident that oxygen plays an important role
in enabling GSH to act as a good scavenger without the build up of potentially
damaging thiyl radicals. As a corollary, in addition to producing GSSG as a final
product, the reaction sequence consumes oxygen and generates superoxide, which
will dismutate to hydrogen peroxide (reaction 2.5). Therefore, scavenging by GSH
could be regarded as a generator of oxidative stress or a potential source of oxidants
involved in redox regulation.

20,°” + 2HT — H,0, + O, (2.5)

From the perspective of antioxidant protection, however, this mechanism enables
GSH to act as an intermediary for removing radicals and channeling them to super-
oxide (Fig. 2.2). Superoxide acts as a radical sink and, with superoxide dismutase
(SOD) present, the sequence provides a mechanism for a single enzyme to control
the effects of radical generation (Munday and Winterbourn 1989; Winterbourn
1993). GSH acting in concert with SOD can therefore provide effective radical
scavenging antioxidant activity, with the sum of reactions (2.1), (2.2), (2.3) and
(2.5) for radical removal giving the net reaction (2.6). For full antioxidant protection,
enzymatic removal of hydrogen peroxide is also required.

2R® + 4GSH + O, — 2RH + 4GSSG + H,0, (2.6)

There is a plethora of evidence that superoxide and hydrogen peroxide are
produced during radical scavenging by GSH (for example O’Brien 1988; Munday
1994; Pichorner et al. 1995; Stoyanovsky et al. 1995; Ross et al. 1985; Galati et al.
1999). These examples include systems where phenoxyl radicals are generated from
tyrosine or dietary flavonoids by a peroxidase plus hydrogen peroxide (reaction 2.7),
in which case the hydrogen peroxide generated in the scavenging reaction is re-used
by the peroxidase. In this mechanism, referred to as thiol pumping (Ross et al. 1985),
much more GSH is oxidized than the initial peroxide added.

peroxidase

2RH + H,0, ——— 2R°® + 2H,0 2.7)
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Fig. 2.2 Major aqueous phase radical scavenging pathways in the cell. Pathways show potential
interactions with the two main aqueous scavengers, GSH and ascorbate. Note the reversibility and
interconversion of many of the reactions. Reactions equivalent to those shown for GSH occur with
thioredoxin and glutaredoxin and are also likely with other thiol proteins. A key difference between
the glutathione (red) and ascorbate (blue) pathways is that the former is a radical chain, driven
by the reaction of the disulfide radical anion (GSSG'™) with oxygen, and producing superoxide,
whereas ascorbate generates ascorbyl radicals (AA™™). SOD removes superoxide radicals but the
hydrogen peroxide generated could be pro-oxidant. Dashed lines signify less favourable reactions.
GS’ glutathionyl radical, PhO" phenoxyl radical, SO semiquinone radical, DHA dehydroascorbate;
reproduced from Winterbourn (2008) with permission

A similar mechanism operates when hydroquinones and hydroxypyrimidines
such as dialuric acid autoxidize in the presence of GSH (Winterbourn and Munday
1989, 1990). These compounds undergo superoxide-dependent autoxidation via a
semiquinone intermediate. GSH alone, by reducing the semiquinone and generating
superoxide, enhances autoxidation and the resultant hydrogen peroxide production,
and but with SOD also present, the whole process is inhibited. These are good
examples of where both GSH and SOD are required for effective antioxidant
protection.

2.3 Reaction of Superoxide with Thiols

The superoxide generated as a result of radical scavenging by GSH could potentially
react with more GSH and set up a chain reaction. If this reaction were fast, then
large amounts of GSH could be oxidized for each initial radical generated. Data
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from a number of sources indicate that superoxide does react with GSH. Although
a wide range of values for the rate constant is reported in the literature, there
is now a consensus that the reaction is relatively slow and at physiological thiol
concentrations there is only a short chain (Winterbourn and Metodiewa 1994, 1999).
Rate constants of 200 M~ s~! for GSH (Jones et al. 2002) and 68 M~! s~! for
N-acetylcysteine (Benrahmoune et al. 2000) have been measured. GSH reacts about
500 times more slowly than ascorbate with superoxide so even if SOD were limiting,
this reaction should play a minimal role in superoxide removal or GSH oxidation
in the cell. The same argument holds for N-acetylcysteine when it is added to
experimental systems as an “antioxidant”.

Experimental and theoretical studies with cysteine, GSH and dithiothreitol
indicate that the reaction with superoxide is likely to proceed via a complex
stabilized by a three electron sulfur — oxygen bond, which breaks down in reaction
(2.8) to give a sulfinyl radical (Zhang et al. 1991; Winterbourn and Metodiewa 1994;
Cardey and Enescu 2009). The thiyl radical is formed, but via a secondary reaction
with the thiol (reaction 2.9) rather than direct electron transfer, and superoxide
is regenerated via reactions (2.2) and (2.3). The short chain is probably due to
superoxide reacting with the intermediate radicals. Direct electron transfer to give
the thiyl radical should be more favorable for the hydroperoxyl radical (HO,") and
may be more relevant at lower pH.

0, + GSH — [GS e ¢ ¢ 0,H]*~ — RH + GSO*~ 2.8)

GSO°®*™ + GSH — GSOH + GS* (2.9)

2.4 Radical Scavenging by Protein Thiols

Protein thiols should undergo similar radical scavenging reactions as GSH. The
reactivity of a particular cysteine residue will depend on its pK, (the thiolate anion
is generally more reactive (Wardman and von Sonntag 1995)) and another thiol
being accessible so the equivalent of reaction (2.3) can proceed. Cysteine thiyl
radicals can be formed directly on proteins exposed to radical generating systems.
In addition, cysteine can act as a sink for radicals generated at other sites such
as tyrosine, tryptophan or carbon side chains (Schoneich 2008). For example, spin
trapping studies with myoglobin have shown intramolecular transfer from an initial
tyrosyl radical to cysteine (Witting and Mauk 2001). Radical transfer from tyrosine
to cysteine is also seen in ribonucleotide reductase where it is an integral part of
its enzymatic mechanism (Holmgren and Sengupta 2010). Generation of a protein
thiyl radical has also been observed during the enzymatic activity of mitochondrial
NADH dehydrogenase and endothelial nitric oxide synthase (Chen et al. 2005,
2011). With nitric oxide synthase this occurred in the absence of tetrahydrobiopterin
cofactor when the enzyme switched from nitric oxide to superoxide production.
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One consequence of intramolecular radical transfer is that nitration of tyrosine
residues can be inhibited by the presence of neighbouring cysteine residues (Zhang
et al. 2005). Tyrosine nitration proceeds by a mechanism that involves combination
of a tyrosyl and nitrogen dioxide radical. When this reaction was studied with tyro-
syl peptides containing cysteine residues, nitration was suppressed and formation of
thiyl radicals due to electron transfer from the tyrosine radical was observed.

Some protein thiols could be much more effective than GSH as radical scav-
engers. As reaction (2.2) is critical in the scavenging pathway, the presence of a
vicinal thiol group should facilitate formation of the disulfide bond and accelerate
the reaction. The vicinal thiols in dihydrolipoic acid and thioredoxin have both
been shown to scavenge phenoxyl radicals and generate superoxide in the process
(Goldman et al. 1995). In contrast to GSH, it was not possible to trap the thiyl radical
with these compounds. This implies a rapid reaction of the radical with the vicinal
thiol group. We studied this mechanism using the stable tetramethylphenylene-
diamine (Wurster’s blue) radical, following its disappearance by stopped flow
spectrophotometry. In this system, dithiothreitol was 5,000 times more efficient
than GSH at scavenging the radical (Winterbourn 2003). This observation raises
the possibility that proteins containing vicinal thiol groups could be efficient radical
scavengers and generators of superoxide. Radical mechanisms could then be a
significant route to disulfide formation in these proteins.

If radicals are formed on single cysteine residues on proteins, they would
be expected to react with GSH (reactions 2.2 and 2.3) to generate a mixed
disulfide, and produce superoxide in the process. This route to glutathionylation
of a specific cysteine residue has been observed for nitric oxide synthase (Chen
et al. 2011). Glutathionylation by a different radical mechanism can also be
facilitated by glutaredoxins. In addition to catalyzing disulfide interchange reactions
with glutathione, these thiol proteins react rapidly with glutathionyl radicals, and
accelerate oxygen-dependent formation of GSSG (Starke et al. 2003; Gallogly
et al. 2008). The proposed mechanism involves an initial reaction between the
glutathionyl radical and the active site thiolate of glutaredoxin (the equivalent of
reaction 2.2), which is favored because of its low pK, and because the enzyme
has a high affinity for the glutathionyl moiety (Gallogly et al. 2009). An enzyme-
SSG"™ radical anion would be formed and react rapidly with oxygen (equivalent
of reaction 2.3) to give superoxide and glutaredoxin-SSG. This is the catalytic
intermediate formed by glutaredoxin in thiol exchange reactions, and is turned
over by GSH to regenerate the enzyme thiolate and GSSG. This reaction has the
potential to be a significant radical scavenging pathway and source of superoxide in
the cell. It may also be a significant route for S-glutathionylation of cell proteins.
Glutaredoxins are efficient catalysts of this reaction and in studies with actin,
glyceraldehyde-3-phosphate dehydrogenase and protein tyrosine phosphatase 1B,
thiyl radical-mediated formation of glutathione adducts was found to be much more
efficient than any of the other mechanisms tested (Starke et al. 2003).

Protein glutathionylation has been widely observed in cells under oxidative stress
and is proposed as one of the major mechanisms for regulating redox sensitive
signalling pathways (Fratelli et al. 2003; Gallogly et al. 2009; Dalle-Donne et al.
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2003). The details of how this occurs are not fully understood, although two
electron oxidation pathways (e.g. with hydrogen peroxide) or thiol exchange is
usually invoked. However, with the addition of GSH to protein thiyl radicals and
glutaredoxin-mediated addition of GSH radicals both being facile mechanisms,
it is possible that radical mechanisms may play a more prominent role in redox
signalling than is generally considered.

2.5 Reactive Nitrogen Species and Nitrosothiol Formation

Nitrosylation of cellular GSH and protein thiols has been observed widely and
linked to the biological action of nitric oxide and regulation of cell signaling path-
ways (Foster et al. 2003). However, in spite the emphasis given to this process as a
regulatory mechanism, there is surprisingly little understood about how nitrosothiols
are formed from NO. Once one nitrosothiol has formed, it can readily exchange with
others, as exemplified by the protein S-thiolation by GSNO. However, NO and GSH
do not react directly. Either one or the other must be oxidized. The most commonly
cited reaction is between GSH and N,O3, which can be formed from the reaction
of NO with NO,. However, calculations by Lancaster (2006, 2008) show that the
NO concentrations required for this reaction to be significant (above 20 pM) are
unrealistically high for it to be a physiological pathway. In contrast, the reaction
between NO and the thiyl radical is fast (Madej et al. 2008), and it can be argued that
virtually all de novo nitrosothiol formations should occur via this reaction. However,
there are caveats here too, as competing reactions will decrease its efficiency. It has
been argued that this reaction will compete poorly with hydrogen transfer to the thiyl
radical from a carbon centre on the peptide (Hofstetter et al. 2007). In addition,
other species that are likely to be present in the systems where thiyl radicals are
generated, including the thiolate plus oxygen, are likely to react more efficiently
than NO. Therefore, in such situations nitrosation may account for only a small
fraction of the thiol modification. Lancaster (2008) has argued further that in the
redox signaling field, nitrosothiol formation may be an indicator, but not necessarily
the functionally important modification.

Peroxynitrite (ONOO") is produced in a very fast reaction from superoxide and
NO (reaction 2.10). It oxidizes GSH and other thiols both by two electron and
radical mechanisms (Ferrer-Sueta and Radi 2009). The direct (two electron) reaction
occurs in competition with breakdown of the peroxynitrite, which in physiological
media involves reaction with carbon dioxide. This forms an intermediate that
decomposes to give carbonate and nitrogen dioxide radicals (reaction 2.11). Both
of these react readily with thiols. At high millimolar GSH concentrations, some
of the oxidation is likely to be direct, but under most conditions radical-mediated
oxidation of GSH and protein thiols should predominate (Quijano et al. 1997). The
outcome is typical of any thiyl radical pathway, with disulfides as the major product
(reactions 2.12 and 2.13 followed by reactions 2.2 and 2.3). Even when perox-
ynitrite is generated from NO and superoxide, this is not an efficient mechanism
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for generating nitrosothiols. However, the pathway does consume oxygen and
at maximum efficiency more superoxide is generated than is used to form the
initial peroxynitrite (net reaction 2.14). Therefore, in addition to being a route
for the formation of GSSG or protein disulfides, this sequence is a physiological
mechanism for generating superoxide at the expense of GSH and NO.

0,*” + NO*®* - ONOO™ (2.10)

ONOO™ + CO; — intermediate — CO3°~ + NO,* (2.11)
CO;*” + GSH — HCO;5™ + GS* (2.12)

NO,* + GSH — NO,™ + GS* (2.13)

NO® + 4GSH + 20, — NO,~ + 2GSSG + H,0 + 2H" + 0,°~ (2.14)

2.6 Interactions Between Glutathione, Ascorbate and Other
Radical Scavengers

Although GSH is an effective scavenger in many experimental systems, the question
arises as to how efficient this process in relation to other scavenging pathways.
Ascorbate is an obvious alternative. It is a better one electron reductant than
GSH (Buettner 1993) and scavenges a wide range of radicals including thiyl
radicals. Therefore, it could act either by scavenging other radicals directly by
intercepting the glutathionyl radical, as shown in Fig. 2.2. The ascorbate radical is
relatively stable, does not react with oxygen, and decays primarily by dismutation.
Thus scavenging by ascorbate could bypass superoxide production from GSH.
Wardman (1995) has considered radical reactions involving ascorbate and GSH
from a thermodynamic perspective and calculated that with ascorbate and GSH
concentrations in the physiological range, thiyl radicals would preferentially react
with ascorbate, with a minor fraction giving rise to superoxide. Sturgeon and co-
workers (1998) used a peroxidase system to generate tyrosyl radicals and showed
that with 8 mM GSH, both oxygen uptake and thiyl radical formation were inhibited
by ascorbate in the 25-100 wM range. It can be concluded from both approaches
that ascorbate should dominate over GSH as a radical scavenger under typical
intracellular conditions. If this mechanism prevails, there is still synergy between the
two antioxidants, as the dehydroascorbate generated can be recycled intracellularly
by GSH in a two-electron reduction (Cuddihy et al. 2008). The overall outcome is
therefore oxidation of GSH to GSSG.

However, conditions will vary between cell types and within cell compartments,
and over time of oxidant exposure as components are consumed, and there are
a number of experimental studies in which thiyl radicals have been trapped in
cells subjected to free radical stress (for example Kwak et al. 1995; Stoyanovsky
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et al. 1996). Therefore, it is reasonable to assume that there will be conditions
where scavenging by GSH is important, and that relative concentrations of GSH
and ascorbate will influence the extent to which GSH undergoes radical-mediated
oxidation with resultant superoxide generation. Furthermore, unless cultured cells
are supplemented, they almost invariably contain no ascorbate. Most studies of
oxidative stress responses and redox signalling have been carried out with cultured
cells, in which scavenging by thiols should be more dominant and redox reactions
could be different from normal tissues. How this affects signaling mechanisms needs
to be addressed using ascorbate-replete cells.

Synergism is likely to be important for other antioxidant activities. Ascorbate,
and to a lesser extent GSH, is able to scavenge vitamin E radicals, thereby
transferring radicals generated by peroxidation in the lipid phase to the aqueous
phase for disposal (Niki et al. 1982). Synergism may also be relevant to the action
of dietary or pharmacological antioxidants such as polyphenolics and carotenoids.
Even though these compounds are good radical scavengers, dietary intake is unable
to increase tissue concentrations sufficiently to impact on total radical scavenging
capacity (Halliwell 2007). One way in which they could act as radical scavenging
antioxidants (and it should be noted that this mode of action is not unequivocally
established), would be to facilitate radical transfer to more abundant species such as
ascorbate or GSH.

2.7 Ogxidative Reactions of Thiyl Radicals

GS® is an oxidizing species that can react with hydrogen-donating molecules
including NADH, polyunsaturated fatty acids, retinol, and ferricytochrome ¢ and
other proteins (Schoneich et al. 1992; Forni and Willson 1986a, b; Nauser et al.
2004; Chatgilialoglu and Ferreri 2005; Borisenko et al. 2004). Thus it can initiate
lipid peroxidation, generate trans fatty acids through cis-trans isomerization and
cause irreversible protein modification. Cysteine thiyl radicals generated on proteins
can also undergo intramolecular hydrogen transfer to form carbon centred radicals
that give rise to dehydroalanine (Mozziconacci et al. 2011) and other side chain
modifications (as reviewed Schoneich 2008). Most of the experimental studies of
these reactions have been studied under anaerobic conditions where the reaction of
the radical with the thiolate and oxygen is not possible. However, they illustrate
the point that without efficient removal of the thiyl radical by the latter mechanism,
radical scavenging by thiols is more likely to be damaging rather than protective.

2.8 Detection of Thiyl Radicals

Detection of any short lived radical species in a biological system is difficult and
thiyl radicals are no exception. However, they have been detected directly by elec-
tron paramagnetic resonance (EPR) in cell free systems and mechanistic studies also
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provide strong evidence for thiyl radical generation. Recent technological advances
have made it possible to detect thiyl radicals in cellular systems (Stoyanovsky et al.
2011). For the most part this involves the use of spin traps, such as DMPO (5,5'-
dimethyl-1-pyrroline N-oxide), which form radical adducts that can be detected not
only by EPR but also by chromatographic, mass spectrometric and immunological
methods. Although the initial spin-trapped species is a metastable nitroxide radical,
this is readily converted to the stable hydroxylamine or nitrone, which in the case of
GSH can be quantified in extracts of cells exposed to a radical stress using HPLC
(Stoyanovsky et al. 1996; Cuddihy et al. 2008). A major advance introduced by the
Mason group was the introduction of immuno-spin trapping (Mason 2004). In this
technique, DMPO is used in an experimental system to trap radicals, then an anti-
body raised against DMPO is applied to detect radical adducts. Western blotting has
been used to detect radical formation on proteins such as myoglobin, and immuno-
precipitation plus mass spectrometry to identify the protein modified and pinpoint
the radical site that reacted with the DMPO (Bonini et al. 2007; Bhattacharjee
et al. 2007). Formation of cysteine radicals on nitric oxide synthase and NADH
dehydrogenase have been detected using this approach (Chen et al. 2005, 2011) and
the method has wider potential for following thiol oxidation in cells.

2.9 Thiyl Radicals and Redox Regulation

The radical scavenging properties of GSH and other thiols are generally considered
in relation to the biological antioxidant defense network. As described in this chap-
ter, thiols perform this function efficiently, provided the oxygen/thiolate mechanism
can operate to remove the thiyl radical. However, radical scavenging could have a
physiological impact beyond antioxidant protection. The field of redox biology has
in recent years evolved from having a sole focus on oxidative damage to encompass
oxidative stress and redox regulation, and the current view is of a continuum with
no distinct boundaries. The same concept can be applied to thiyl radical reactions,
with their capacity both to be regulated by cellular conditions and to be regulators of
the proteins with which they interact. They are a source of superoxide and hydrogen
peroxide, generated as a result of radical scavenging and able to be regulated by
factors such as thiol concentration, oxygen and ascorbate. Thiyl radical reactions
are also routes to protein disulfides, glutathionylated proteins and nitrosothiols,
which are major players in redox regulation. Currently, the main emphasis is on
two electron oxidants as transmitters of redox signals. However, based on the above
argument, and the knowledge that major enzymatic generators of reactive oxidants
such as NADPH oxidases, nitric oxide synthases, peroxidases and mitochondrial
oxidoreductases operate by one electron mechanisms, radical mechanisms warrant
more attention.
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Chapter 3
Redox Homeostasis

Joris Messens, Nicolas Rouhier, and Jean-Francois Collet

Abstract Multiple factors, including small sulfur-containing molecules and
oxidoreductases, are involved in the control of intracellular redox homeostasis.
In this chapter, we first review properties and functions of the small sulfur-
containing molecules glutathione, mycothiol, bacillithiol and trypanothione. These
low molecular weight thiols, which cycle between a reduced and oxidized form, are
present at high intracellular concentrations and function as redox buffers to protect
cells against oxidative stress conditions. In the second part of this chapter, we focus
on the two oxidoreductases, thioredoxin and glutaredoxin. These enzymes are key
players in pathways aimed to reduce disulfide bonds in intracellular proteins and
to maintain cellular redox homeostasis. We review the general properties of these
enzymes and highlight their significant diversity. Finally, we discuss the recent
discovery that monothiol glutaredoxins coordinate an iron sulfur cluster, which
suggests a novel link between redox and iron homeostasis.
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3.1 Introduction

The redox environment of cellular compartments is tightly controlled by the com-
plementary action of oxidoreductases and high concentrations of sulfur-containing
molecules, such as glutathione, which play the role of redox buffers. We review in
this chapter the role and function of the low molecular weight thiols glutathione,
mycothiol, bacillithiol and trypanothione in maintaining the intracellular redox
state under both physiological and oxidative stress conditions. We also focus on
thioredoxins and glutaredoxins, the most important classes of oxidoreductases
involved in controlling the cellular redox homeostasis in both prokaryotes and
eukaryotes.

3.2 Low Molecular Weight Thiols

Most living organisms contain high concentrations of low molecular weight (LMW)
thiols that serve as redox buffers to protect the cells against a variety of reactive
chemical species, such as reactive oxygen species (ROS), reactive nitrogen species
(RNS), reactive electrophilic species (RES), metalloids, and some antibiotics
(Dalle-Donne et al. 2008; Roos and Messens 2011). Glutathione is the most ubiq-
uitous of these LMW thiols but certain microorganisms contain high concentrations
of other related compounds, such as bacillithiol, mycothiol and trypanothione.

3.2.1 Glutathione

Glutathione (L-y-glutamyl-L-cysteinylglycine, GSH) is a water-soluble, low molec-
ular weight tripeptide (Fig. 3.1), which is present at millimolar concentrations in
nearly all eukaryotic cells and in many bacteria, most of which are Gram-negative.
Glutathione is synthesized by the consecutive action of two ATP-dependent en-
zymes. First, y-glutamylcysteine synthetase catalyzes the rate-limiting formation of
L-y-glutamylcysteine from glutamic acid and cysteine. Then, glutathione synthetase
catalyzes the ligation of L-y-glutamylcysteine with glycine.

Glutathione cycles between two species, a reduced GSH-form and a disulfide
bonded GSSG form. The standard redox potential of the GSH-GSSG couple is
—240 mV at pH 7.0 (Meister and Anderson 1983). The reduced form is the most
abundant form in vivo, and the overall cellular GSH/GSSG ratio ranges from 30:1 to
100:1 (Hwang et al. 1992), which corresponds to a redox potential of approximately
—221 to —236 mV (Hwang et al. 1992). The GSH/GSSG ratio is maintained by
glutathione reductase, a flavoenzyme that uses the reducing power of NADPH to
reduce GSSG back to GSH (Fahey et al. 1978). Noteworthy, the ratio of GSH to
GSSG is significantly lower in the secretory pathway, ranging from approximately
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Fig. 3.1 The structure of low molecular weight thiol molecules in their reduced state.
Glutathione (GSH): L-y-glutamyl-L-cysteinylglycine; Dihydrotrypanothione [T(SH),]: N1,N8-
bis(glutathionyl)spermidine; Mycothiol (MSH): N-acetylcysteine amide-linked to 1D-myo-inosityl
2-acetamido-2-deoxy-a-D-glucopyranoside [GlecN-a(1-1)-Ins] and Bacillithiol (BSH) are shown.
Similar chemical motifs are shown in the same color. Different chemical motifs are in black.
Structures were made with MarvinSketch 5.7.1 (ChemAxon)

1:1to 3:1 (Hwang et al. 1992). This reflects a more oxidizing redox environment in
the endoplasmic reticulum, the compartment where disulfide bond formation occurs
in eukaryotes [for a review, see Depuydt et al. 2011].

Because of its high concentration and its low redox potential, glutathione, which
is essential in eukaryotes but dispensable in bacteria such as Escherichia coli, is
usually considered as a redox buffer that protects cells against oxidative damages.
The thiol moiety of GSH enables this molecule to act as a scavenger reacting with
various electrophilic compounds including ROS and RNS. Rate constants at pH 7.4
vary for each oxidant and range between 3 x 10’ M~! s™! for NO, (Ford et al. 2002),
6.6 x 10> M~ s™! for peroxynitrite (Radi et al. 1991; Koppenol et al. 1992; Zhang
et al. 1997; Quijano et al. 1997), 115 M~! s™! for taurine chloramines (Peskin and
Winterbourn 2001), 3 x 107 M~! s™! for hypochlorous acid and 1 x 10 M~! 5!
for hydroxyl radicals (Winterbourn and Hampton 2008).

Glutathione is also indirectly involved in peroxide scavenging by participating
in the recycling of ascorbate, an electron donor to ascorbate peroxidases (Rouhier
et al. 2008), and by supplying some thiol peroxidases, like glutathione perox-
idases and peroxiredoxins with reducing equivalents with or without the help
of glutaredoxins (Grxs, see below). Glutathione peroxidases and peroxiredoxins
are antioxidant enzymes that use a thiol-based chemistry to reduce H,O, and
lipid peroxides. However, among the so-called glutathione peroxidases, only the
selenocysteine-containing enzymes are truly dependent on glutathione, whereas
cysteine-containing enzymes are in fact dependent on thioredoxin (Trx) for their
recycling (Navrot et al. 2006). In the peroxiredoxin family, several members have
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been shown to be recycled by GSH alone or by the GSH/Grx couple, the first
reported example being a poplar type II peroxiredoxin (Rouhier et al. 2001). Finally,
some members of the glutathione S-transferase family, as well as some Grxs also
exhibit a glutathione-dependent peroxidase activity (see the Chap. 8 by Jacquot
et al., in this book).

In addition to its role in scavenging oxidizing molecules, glutathione can also co-
valently modify cysteine residues in a process called S-glutathionylation, although
the cellular levels of glutathionylated proteins in non-stressed cells are low (<0.1%
of the total protein cysteines) (Hansen et al. 2009). S-glutathionylation is reversible
and is assumed either to protect cysteine residues from irreversible oxidation or to
regulate proteins, whose cysteines are essential for activity or folding. In general,
S-glutathionylation is reversed by the action of Grxs, which constitute a family
of glutathione-dependent oxidoreductases that almost exclusively reduce cysteine
glutathione adducts formed on proteins in the course of their catalytic cycle or under
oxidative stress conditions (see Sect. 3.3.2 for more details). S-glutathionylation is
mediated by mechanisms that can be schematically classified as ROS-dependent or
ROS-independent (Ghezzi and Di Simplicio 2007). Although the final product is
the same, the rates of the reactions are very different. The ROS-independent process
occurs via thiol/disulfide exchange between GSSG and the proteins. However,
under physiological conditions, the low concentration of GSSG in the cytosol
is unlikely to favor the formation of mixed disulfides with protein thiols in
this compartment. Moreover, the thermodynamic barrier limits the oxidation of
proteins by GSSG, which occurs via a nucleophilic attack of a protein thiolate
(R-S7) on GSSG: the mixed disulfide formed must thus have a redox potential
higher than that of the [GSH]*/[GSSG] couple, which is theoretically possible,
but extremely unlikely (Forman et al. 2010). In contrast, in the endoplasmic
reticulum, where the GSH/GSSG ratio is lower, the formation of protein-glutathione
mixed disulfides is more likely to occur via the direct reaction of a thiolate with
GSSG (Townsend 2007; Forman et al. 2010; Chakravarthi et al. 2006). In ROS-
dependent processes, sensitive cysteine residues are first oxidized to a sulfenic
acid upon ROS exposure. Sulfenic acids are extremely unstable modifications that
can be irreversibly oxidized to sulfinic and sulfonic acids (Roos and Messens
2011). Glutathione reacts with sulfenic acid to form a glutathione-protein mixed
disulfide, which effectively protects those cysteines against irreversible oxidation.
For example, the a-glutamyl transpeptidase is protected against oxidative damage
by S-glutathionylation (Dominici et al. 1999). S-glutathionylation is not only a pro-
tective mechanism but can also regulate protein function (Dalle-Donne et al. 2008).
For instance, the enzyme a-ketoglutarate dehydrogenase is reversibly inactivated
by S-glutathionylation in response to alterations in GSH levels in mitochondria
(Nulton-Persson et al. 2003). For more examples, we refer to Mieyal et al. (2008).
Altogether, the reversible S-glutathionylation of specific proteins has implications
for the regulation of cellular homeostasis in health and disease. For instance,
changes in the S-glutathionylation state of specific proteins play important roles in
diabetes, cardiovascular, lung and neurodegenerative diseases (Dalle-Donne et al.
2008; Mieyal et al. 2008).
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The data summarized above indicate that glutathione is a central player in
redox homeostasis. However, depending on the organism, the essential function of
glutathione might not always be due to its role in thiol-redox control but rather
due to its role in iron homeostasis, as recently revealed by work done in the yeast
Saccharomyces cerevisiae (Kumar et al. 2011).

3.2.2 Trypanothione

Since its discovery in 1985 (Fairlamb et al. 1985), trypanothione has enjoyed a
lot of attention (Fig. 3.1). Trypanothione has not been found in prokaryotes but is
present in kinetoplastida, which are primitive eukaryotes that parasitize animals and
plants. In these organisms, most of the glutathione content is found in the form of
a unique thiol, N1, N8-bis(glutathionyl)spermidine, also known as trypanothione. It
is a conjugate of two glutathione molecules with one molecule of spermidine, and
is synthesized by the ATP-dependent enzyme trypanothione synthetase (Oza et al.
2002).

Oxidized trypanothione (TS,) is reduced to dihydrotrypanothione [T(SH),] by
the FAD disulfide oxidoreductase trypanothione reductase [reviewed in Flohe et al.
1999]. Whereas the redox potential of the TS,-T(SH), couple (—242 mV) is
similar to that of glutathione (Fairlamb and Cerami 1992), trypanothione is more
reactive than glutathione in thiol-disulfide exchange reactions under physiological
conditions, due to the lower pK, value of its thiol group (7.4 compared to 8.7 in
glutathione) (Krauth-Siegel et al. 2005).

T(SH), functions as the donor of reducing equivalents to several enzymes of
the parasite, including thioredoxin (Schmidt and Krauth-Siegel 2003), tryparedoxin
(Nogoceke et al. 1997; Ludemann et al. 1998), monothiol glutaredoxin-1 (Filser
et al. 2008) and ribonucleotide reductase (Dormeyer et al. 2001). T(SH), can also
spontaneously reduce protein sulfenic acids in the model protein glyceraldehyde-3-
phosphate dehydrogenase (Filser et al. 2008).

Tryparedoxin is a distant relative of the thioredoxin superfamily (see below),
which has a WCPPCR active site motif and is substantially larger (16 kDa) than
most thioredoxins (Krauth-Siegel and Leroux 2012). As such, tryparedoxin is
reduced by T(SH), (Nogoceke et al. 1997; Gommel et al. 1997) and can reduce
glutathione-protein mixed disulfides (Melchers et al. 2007). Tryparedoxin can also
transfer reducing equivalents from T(SH), to a variety of protein targets, making the
tryparedoxin/T(SH), couple the determining factor for the intracellular redox state
of the parasite (Reckenfelderbaumer and Krauth-Siegel 2002).

In addition to providing reducing equivalents to oxidoreductases, T(SH), can
also efficiently scavenge hydrogen peroxide, peroxynitrite and radiation-induced
radicals (Thomson et al. 2003; Awad et al. 1992; Carnieri et al. 1993). T(SH); main-
tains the redox homeostasis by passing electrons to peroxidases via intermediate
shuttle molecules, which can either be tryparedoxin, ascorbate, or even glutathione
[reviewed in (Castro and Tomas 2008)].
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3.2.3 Mpycothiol

Glutathione was thought to be an essential molecule in all living cells until it was
found that many Gram-positive bacteria do not produce this compound (Fahey et al.
1978). In the early 1990s, it was shown that glutathione-lacking bacteria Mycobac-
terium bovis and Streptomyces clavuligerus produce an alternative low molecular
weight thiol that was given the common name “mycothiol” (Spies and Steenkamp
1994; Newton et al. 1995). Mycothiol is the major thiol in most Actinomycetes and
is produced at millimolar levels in Mycobacteria and Streptomycetes. It is comprised
of N-acetylcysteine amide-linked to a 1D-myo-inosityl 2-acetamido-2-deoxy-a-D-
glucopyranoside [GIcN-a(1-1)-Ins] (Fig. 3.1). Mycothiol biosynthesis occurs by
linkage of GIcNAc to inositol (Ins), deacetylation to GlcN-Ins, ligation of the latter
to L-cysteine, and the transacetylation of the cysteinyl residue by acetyl Coenzyme
A (CoASAc) (Newton et al. 2008).

Like glutathione, mycothiol is also present in a reduced (MSH) and a disulfide-
bonded (MSSM) state. However, the redox potential of the MSH/MSSM couple
is not known, probably due to the limited availability of mycothiol for research
purposes. The chemical synthesis of mycothiol with the correct stereochemistry is
a challenging task, making bacterial isolation of mycothiol still far more efficient
(Ordéiiez et al. 2009).

A key property of mycothiol is its high resistance to oxidation by molecular oxy-
gen in the presence of redox metals. For instance, the copper-catalyzed autoxidation
of mycothiol is about 30-fold slower than that of cysteine and 7-fold slower than
that of glutathione (81), due to the acetyl and GlcN-Ins moieties blocking the amino
and carboxyl groups of the cysteine, respectively. In Actinobacteria, mycothiol-
disulfide-selective reductase (MTR), a NADPH-dependent flavoenzyme, reduces
MSSM back to MSH in order to maintain the intracellular redox homeostasis
required for the proper functioning of a variety of biological processes (Rawat
and Av-Gay 2007). Interestingly, we showed in Corynebacterium glutamicum that
mycothiol cannot be replaced by glutathione, which indicates that mycothiol plays
a specific role in that organism (Ordéfiez et al. 2009). Accordingly, mycoredoxin-
1 (Mrxl), the glutaredoxin analog of Actinomycetes, does not function with
glutathione but has a strict specificity for mycothiol in a reaction coupled to MTR
and NADPH (Ordéiiez et al. 2009). These results suggest that glutaredoxins and my-
coredoxins have specific binding sites for glutathione and mycothiol, respectively.

Mycothiol serves as a storage form of cysteine in Mycobacterium smegmatis
(Bzymek et al. 2007) and plays a role in the detoxification of thiol-reactive
substances, including formaldehyde, various electrophiles and antibiotics (Newton
et al. 2000; Rawat and Av-Gay 2007). Mycothiol S-conjugates derived from
electrophiles and antibiotics are then cleaved by mycothiol S-conjugate amidase
to release GlcN-Ins, which is used to resynthesize mycothiol, and a mercapturic
acid, which is excreted from the cell. Some enzymes depend also on mycothiol for
proper functioning, such as formaldehyde dehydrogenase MscR (Misset-Smits et al.
1997), later identified as nitrosomycothiol reductase with a role in the protection
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against oxidative stress (Vogt et al. 2003), and maleylpyruvate isomerase (Feng
et al. 2006; Wang et al. 2007). Moreover, we have recently found that the activity
of C. glutamicum arsenate reductases 1 and 2 depends on reducing equivalents
transferred from mycothiol by mycoredoxin (Ordéiez et al. 2009). Very recently,
the identification of a mycothiol S-transferase has been reported in Mycobacterium
smegmatis and M. tuberculosis (Newton et al. 2011). This enzyme is postulated
to help protect the cells against antibiotics, as evidenced by the appearance of
mercapturic acids in the fermentation broth of producing cultures (Rawat and
Av-Gay 2007).

3.2.4 Bacillithiol

Bacillithiol (BshC) was discovered in Bacillus subtilis as a molecule disulfide-
linked with OhrR. OhrR is a peroxide sensitive transcription factor, which contains
a single cysteine residue required for redox sensing (Lee et al. 2007; Fuangthong
and Helmann 2002). A thiol compound with the same mass was independently
discovered in extracts of Bacillus anthracis after labeling with monobromobimane
(Nicely et al. 2007).

Bacillithiol is widely found among low-GC Gram-positive bacteria (Firmicutes)
and is also sporadically present in more distantly related bacteria, including
Deinococcus radiodurans (Helmann 2011). The structure of bacillithiol was deter-
mined after purification from this latter bacterium (Nicely et al. 2007). Bacillithiol
is structurally similar to mycothiol. The inositol group is replaced by L-malate,
which makes bacillithiol an a-anomeric glycoside of L-cysteinyl-D-glucosamine
with L-malic acid (Fig. 3.1). Bacillithiol biosynthesis requires three enzymes that
sequentially couple GIcNAc to malic acid (BshA), deacetylate the GIcNAc-Mal
intermediate to generate GlIcN-Mal (BshB), and finally couple this latter product to
a cysteine to generate bacillithiol. Like mycothiol, bacillithiol is also not available
in sufficient amounts to allow biochemical studies; therefore the redox potential of
bacillithiol is not known and information on the rate constants of the reaction with
ROS and RNS is not available.

By analogy with glutathione and mycothiol, bacillithiol is likely to be a central
player in thiol-disulfide homeostasis. It can therefore be anticipated that bacillithiol-
containing organisms encode a bacillithiol reductase to mediate the recycling of the
oxidized form of bacillithiol as well as oxidoreductases for the reduction of protein-
bacillithiol mixed disulfides. The name ‘bacilliredoxin’ (Brx) has been proposed
for such proteins (Helmann 2011). A bacillithiol S-transferase responsible for the
conjugation of bacillithiol with various substrates has been recently described in
B. subtilis (Newton et al. 2011). Moreover, mutants lacking bacillithiol are highly
sensitive to fosfomycin (Gaballa et al. 2010), probably due to the inability of FosB,
a presumed bacillithiol-S-transferase, to detoxify this antibiotic.
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As explained above, protein S-thiolation is thought to protect active site cysteine
residues of essential enzymes against irreversible oxidation to sulfinic or sulfonic
acids. In B. subtilis OhrR, it has been shown that S-bacillithiolation of a single
cysteine functions as a redox-switch (Lee et al. 2007; Newton et al. 2009). It leads to
the inactivation of the OhrR repressor and derepression of ohrA transcription. OhrA
is a thiol-dependent peroxiredoxin that converts organic peroxides into organic
alcohols and protects the cell against NaOCI. In a recent proteomic study of NaOCl-
treated cells using shotgun-LC-MS/MS analysis, several other proteins, including
two methionine synthase paralogs (MetE and YxjG), the inorganic pyrophosphatase
PpaC, the 3-D-phosphoglycerate dehydrogenase SerA and the thiol-disulfide oxi-
doreductase YphP were found to be S-bacillithionylated (Chi et al. 2011). The latter
enzyme YphP might function as a putative bacilliredoxin that reduces the mixed
disulfide between bacillithiol and essential cysteines in proteins.

3.3 A Diversity of Oxidoreductases

Although cells have millimolar concentrations of glutathione and alternatives that
serve as redox buffers to prevent the formation of unwanted disulfides, they need
more efficient reducing systems to catalyze the reduction of disulfide bonds and
maintain the cellular redox homeostasis. The major cellular reducing pathways
involve thioredoxins and glutaredoxins.

3.3.1 Thioredoxins

Thioredoxins (Trxs) are ubiquitous antioxidant enzymes that were originally dis-
covered in 1964 in the bacterium Escherichia coli as an electron donor for
ribonucleotide reductase, an enzyme that provides deoxyribonucleotides required
for DNA synthesis and repair (Laurent et al. 1964; Moore et al. 1964). Since
their discovery, Trxs have been found to be at the heart of numerous fundamental
processes in living organisms, ranging from Archaea to mammals. Trxs are present
in various cellular compartments, including the cytosol (Arner and Holmgren 2000),
nucleus (Hirota et al. 1997, 1999), mitochondria and plastids (Schiirmann and
Buchanan 2008), and are found to be attached to the cell membrane (Martin and
Dean 1991) or secreted to the extracellular environment (Arner 1999; Xu et al.
2008).

Trxs are best known for their catalytic role in reducing disulfide bonds that
form in proteins, either in the course of their catalytic cycle or upon exposure
to oxidative stress conditions. Therefore, Trxs are part of the antioxidant defense
against peroxides and other ROS. However, Trxs also play other roles in the cell.
For instance, Trx proteins have been shown to regulate programmed cell death via
denitrosylation (Benhar et al. 2008), to act as growth factor (Powis et al. 2000), to
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modulate the inflammatory response (Nakamura et al. 2005), to play important roles
in the lifecycle of viruses and phages (Holmgren 1989) or to activate antimicrobial
peptides (Schroeder et al. 2011).

3.3.1.1 General Properties

Thioredoxins are characterized by a highly conserved structural fold consisting of
two motifs (Fig. 3.2a), as described first by Holmgren et al. (1975). The structure of
Trx consists of five B-strands surrounded by four a-helices (Holmgren et al. 1975)
(Fig. 3.2b). The P-sheets and a-helices can be divided in a N-terminal B0 B20203
and a C-terminal B4Psos motif connected by the as-helix. The B-strands of the
N-terminal motif run parallel, and the B-strands of the C-terminal motif run anti-
parallel. The o, and o4 helices are located on one side of the central B-sheet
while the asz-helix is located on the opposite side (Fig. 3.2b). The ajs-helix is
oriented perpendicularly to helices o, and ay4. The catalytic site of Trxs consists
of a canonical WCGPC motif that is located on the surface of the protein in a short
segment at the N-terminus of the a,-helix. Many proteins, including glutaredoxins
(see below) (Xia et al. 2001) (Fig. 3.2c), protein disulfide isomerases (McCarthy
etal. 2000; Tian et al. 2006; Heras et al. 2004 ), glutathione S-transferases (Reinemer
et al. 1991), some thiol-peroxidases (Ren et al. 1997), and the recently characterized
protein DsbG (Depuydt et al. 2009; Heras et al. 2004) present a minimal version of
the Trx fold. This version, known as the “Trx-fold” (Martin 1995), lacks the ;-
strand and the o -helix of Trx.

The WCGPC motif is a landmark feature of Trx proteins. The cysteine residues of
this motif are found predominantly reduced in vivo, allowing Trxs to break disulfide
bonds in oxidized substrate proteins. The reaction can be seen as a transfer of the
disulfide bond from the substrate protein to Trx, or as a transfer of electrons from
the reduced cysteines of Trx to the substrate protein. The molecular details of the
reaction catalyzed by Trx have been the subject of extensive research [see Collet
and Messens 2010 for a review]. The reaction starts with a nucleophilic attack of
the N-terminal thiol of the WCGPC motif on the disulfide of the target protein,
leading to the formation of a mixed disulfide complex between Trx and the target
protein. The N-terminal cysteine of the WCGPC motif has a pK, value of about ~7
(Dyson et al. 1991; Dillet et al. 1998), which is lower than the pK, value of free
cysteines in solution (~9). Therefore, a large fraction of this cysteine is present as a
thiolate under physiological conditions, enabling this residue to act as a nucleophile.
The low pK, value of the first cysteine residue results from the stabilization of
the negative charge of the thiolate anion through the formation of hydrogen bonds
between the sulfur atom and neighboring residues. Once a mixed-disulfide has
formed between Trx and its substrate, the C-terminal thiol is activated as a thiolate
and attacks the mixed-disulfide (Roos et al. 2009). This results in the release of the
reduced substrate protein and oxidized Trx. The recycling of Trx to the reduced form
is catalyzed by thioredoxin reductase (TrxR) at the expense of NADPH (Lennon
et al. 2000), enabling Trx to start another reaction cycle.
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Fig. 3.2 The structures of the Trx-fold proteins, thioredoxin (Trx) and glutaredoxin (Grx). (a) The
topology of the two motifs that constitute the Trx-fold. (b) The secondary and three-dimensional
structures (PDB code: 207K) (Roos et al. 2007) of Staphylococcus aureus Trx are shown. The
structure consists of 4 a-helices and a central 5-stranded p-sheet. The conserved WCGPC motif
is located at the N-terminus of the a,-helix. The a-helices are in red, the B-strands in yellow and
the disulfide bond is shown in blue. (¢) The secondary and three-dimensional structures of E.
coli glutaredoxin are shown (PDB code: 1EGO) (Xia et al. 1992). Glutaredoxins have a Trx-fold
consisting of two motifs connected by the a,-helix. The conserved active site CXXC motif is
always located at the same position, at the N-terminal site of an a-helix. The figure was generated
using TopDraw from CCP4 suite and MacPyMol (Delano Scientific LLC 2006). An adapted
version of the figure was reprinted with the permission of (Collet and Messens 2010)

3.3.1.2 Diversity and Roles of Thioredoxins

Escherichia coli Trx1 (Ec_Trx1), the first identified Trx, is usually considered as the
prototype of the thioredoxin superfamily of which members have been identified in
most genomes. Here, we briefly review the most prominent Trx proteins to highlight
the diversity within this ubiquitous family.
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Bacterial Thioredoxins

Ec_Trx1 is the most reducing protein present in the cytoplasm of E. coli. Its redox
potential value has been estimated to be —270 mV (Krause and Holmgren 1991) but
a more recent study suggests that it might be even lower (E® = —284 mV) (Cheng
et al. 2007). Ec_Trx1 catalyzes the reduction of several cytoplasmic enzymes that
form a disulfide bond in their catalytic cycle, including ribonucleotide reductase,
methionine sulfoxide reductases (MsrA, MsrB and fRMsr) and 3-phosphoadenosine
5’-phosphosulfate (PAPS) reductase (Holmgren and Bjornstedt 1995). Ec_Trx1 also
provides reducing equivalents to DsbD, an inner membrane protein, which transfers
electrons across the membrane and delivers them to periplasmic oxidoreductases
(Rietsch et al. 1997). Moreover, Ec_Trx1 is required for the growth of several
bacteriophages including T7, M13 and f1 (Russel 1991). For this latter function,
which does not require the catalytic cysteine residues, Ec_Trx1 binds to viral DNA
polymerase, to mediate the interaction between DNA polymerase, DNA and other
replication proteins (Ghosh et al. 2008; Hamdan et al. 2005).

The E. coli cytoplasm contains a second thioredoxin, Ec_Trx2 (Miranda-Vizuete
et al. 1997). Ec_Trx2, which shares only 28% sequence identity with Ec_Trx1,
has a redox potential of —221 mV (El Hajjaji et al. 2009), and is therefore a
significantly less reducing enzyme than Ec_Trx1. Like Ec_Trx1, Ec_Trx2 is able
to reduce ribonucleotide reductase, DsbD and PAPS reductase. However, Ec_Trx2
has two striking characteristics that distinguish it from Ec_Trx1 and suggest that this
protein may have a specific function in E. coli. First, the expression of Ec_Trx2 is
controlled by OxyR, a transcription factor that controls the response to oxidative
stress (Ritz et al. 2000). Second, Ec_Trx2 contains an additional N-terminal domain
of 32 amino acids that harbors two CXXC motifs. We found that these additional
cysteine residues bind Zn>" with an extremely high affinity (10'® M~") (Collet et al.
2003). The zinc-binding CXXC motifs of Ec_Trx2 are conserved in several other
bacterial Trxs, making Ec_Trx2 the prototype of a new zinc-binding Trx family.
Noteworthy, we recently showed that the zinc center of Ec_Trx2 fine-tunes its redox
and thermodynamic properties (El Hajjaji et al. 2009).

Yeast and Mammalian Thioredoxins

In the budding yeast Saccharomyces cerevisiae, there are two cytosolic (Sc_Trx1,
Sc_Trx2) and one mitochondrial (Sc_Trx3) thioredoxin (Herrero et al. 2008).
A double mutant lacking both sc_trx1 and sc_trx2 is viable but exhibits a more severe
phenotype than the single mutants, indicating that Sc_Trx1 and Sc_Trx2 are only
partially redundant. For instance, mutants lacking both Trxs have a longer S-phase
in their cell cycle due to an inefficient reduction of ribonucleotide reductase, are
auxotrophic for sulfur amino acids (Muller 1991) due to their inability to reduce
PAPS reductase, and are unable to use methionine sulfoxide as a source of organic
sulfur due to their inability to reduce methionine sulfoxide reductases.
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The function of the mitochondrial Trx, Sc_Trx3, is less defined than that of its
cytosolic counterparts. This protein seems to play a role in the defense mechanisms
against ROS generated in mitochondria, as suggested by the fact that a mutant
lacking Sc_Trx3 is hypersensitive to hydroperoxide (Pedrajas et al. 1999).

Mammalian cells possess two Trx isoforms, ma_Trx1 (~12 kDa) and ma_Trx2
(~18 kDa), which are present in the cytosol and mitochondria, respectively. The
ma_Trx1 has also been detected in the nucleus of certain normal and tumor cells,
even though it does not have a nuclear localization sequence (Maruyama et al. 1999;
Hirota et al. 1997). In addition to the catalytic cysteines present in the CGPC motif,
ma_Trx1 contains three extra cysteine residues (Qin et al. 1994). In the human
protein, two of these cysteines (C62 and C69) flank the as-helix that links both
motifs of the Trx-fold (Fig. 3.1a). The third additional cysteine (C73) is located in
a turn close to the CGPC active site motif. Several reports have shown that these
extra cysteines are involved in regulating the function of Trx via post-translational
modifications, such as glutathionylation and S-nitrosylation (Casagrande et al. 2002;
Kuster et al. 2006). For instance, C73 has been shown to be S-nitrosylated after
treating the human protein with S-nitrosoglutathione (Mitchell et al. 2005). This S-
nitrosothiol can be transferred from C73 to caspase 3 in vitro (Mitchell and Marletta
2005) and in vivo (Mitchell et al. 2007). Moreover, under oxidizing conditions, a
disulfide can be formed between C69 and C72 (Watson et al. 2003). The formation
of this disulfide is predicted to have a profound effect on the structure of Trx and to
decrease the rate by which the active site is regenerated by TrxR.

Plant Thioredoxins

The Trx family is particularly important in plants. Plant Trxs have been primarily
found to regulate enzymes involved in carbon metabolism but, as suggested
by the identification of putative target proteins by proteomic studies, are likely
also involved in many other cellular processes, such as photorespiration, lipid
metabolism, membrane transport, hormone metabolism, and ATP synthesis (Balmer
et al. 2003, 2004; Schiirmann and Buchanan 2008). Moreover, plant Trxs also play
an important role in sustaining early seedling growth of germinating cereal seeds
(Wong et al. 2004).

Plants possess the largest group of Trxs found in all organisms. For instance,
recent genomic analyses identified more than 40 Trx genes in higher plants, taking
into account atypical variants with modified active sites and multidomain proteins
with at least one Trx domain, such as nucleoredoxins (Chibani et al. 2009). The fact
that only 28 out of the 46 Trxs found in Populus trichocarpa contain the typical
WCGPC active site motif illustrates the diversity of the plant Trx family (Chibani
et al. 2009).

Plant Trxs with CGPC active site are distributed into nine classes: Trx f,
h, m, o, X, y, z, tetratricopeptide domain-containing thioredoxins (TDX) and
nucleoredoxins. They are found in several subcellular compartments such as
the cytoplasm, the mitochondria and the chloroplasts. Whereas TrxR reduces
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mitochondrial and cytoplasmic Trxs, Trxs present in chloroplasts are recycled by
a ferredoxin-thioredoxin reductase (FTR) [reviewed in Gelhaye et al. 2005]. FTR is
almost exclusively found in photosynthetic organisms and uses the reducing power
provided by light to reduce Trxs. Although plant Trxs adopt the Trx-fold, some of
them present specific characteristics that differentiate them from classical Trxs. For
instance, the presence of an additional cysteine residue at position four in poplar
Trx h4 prevents the recycling by TrxR but renders the enzyme glutathione- and
Grx-dependent (Koh et al. 2008). In addition, some other Trxs harboring an unusual
CXXS active site motif are also recycled by glutathione (Gelhaye et al. 2003).

3.3.2 Glutaredoxins

3.3.2.1 General Properties

Glutaredoxins were first discovered in Escherichia coli, when Holmgren identified
E. coli Grxl as an alternative electron donor for ribonucleotide reductase in
cells lacking Trx1 (Holmgren 1976). Grxs are glutathione-dependent disulfide
oxidoreductases that catalyze a variety of thiol-disulfide exchange reactions, in-
cluding the reduction of protein disulfides, as well as protein glutathionylation and
deglutathionylation (Lillig et al. 2008; Mieyal et al. 2008; Gallogly et al. 2009).
Grxs are usually small, heat-stable proteins that adopt a typical Trx-fold despite a
low sequence homology with Trxs (Eklund et al. 1984; Martin 1995) (Fig. 3.2¢). In
Grxs, the solvent exposed CXXC active site motif is often replaced by a CXXS motif
where the C-terminal active site cysteine is substituted by a Ser [for an overview,
see Gallogly et al. 2009; Couturier et al. 2009].

When dithiol Grxs function as general protein disulfide oxidoreductases, they
become oxidized upon reducing the protein disulfide, in a way similar to Trx.
They are then converted back to the reduced state by glutathione (GSH), which
forms a mixed-disulfide with the first cysteine of the catalytic cycle, which is then
resolved by a second GSH molecule, releasing reduced Grx and GSSG (Fig. 3.3).
As explained above, the intracellular GSH/GSSG ratio is maintained by glutathione
reductase at the expense of NADPH. Albeit some Grxs, such as E. coli Grxl,
catalyze the reduction of protein disulfide bonds, Grxs seem to function mostly
as monothiol oxidoreductases for protein deglutathionylation reactions (Fernandes
and Holmgren 2004). Under physiological conditions, the thiolate of the active site
nucleophilic cysteine attacks the disulfide bond of a S-glutathionylated protein,
releasing the protein thiol in the reduced form while becoming itself glutathiony-
lated (Fig. 3.3). Then, GSH attacks the glutathionylated sulfur as explained above,
releasing reduced Grx and GSSG. Alternatively, some Grxs were found to be either
uniquely regenerated by TrxR or by both, a glutathione- or TrxR-dependent system
(Johansson et al. 2004; Zaffagnini et al. 2008).
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Fig. 3.3 Catalytic mechanisms employed by glutaredoxins. Grxs can reduce both disulfide bonds
and protein-glutathione adducts by using either a dithiol or a monothiol mechanism. In the dithiol
mechanism, the two cysteines of the active site are required and generally form an intramolecular
disulfide bond, which is then reduced by GSH. This is similar to the reduction mechanism used by
Trxs, except the latter are reduced by thioredoxin reductases instead of GSH. In the monothiol
mechanism, only the catalytic cysteine (first cysteine of the active site) is required to reduce
the protein-glutathione adducts. The Grx is glutathionylated in the course of the reaction, and
is subsequently regenerated by a GSH molecule. Almost no information is available about the
glutathionylation process in vivo, but it has been proposed that Grxs could also catalyze the
glutathionylation of proteins

3.3.2.2 Diversity and Roles of Glutaredoxins

Grxs have been identified in most living organisms, including viruses, bacteria,
plants and mammals. For instance, there are four Grxs in E. coli (Ec_Grx1 to 4),
seven Grxs in S. cerevisiae (Sc_Grx1 to 7) and four in human (Hs_Grx1, Grx2, Grx3
and Grx5). Initially, Grxs were classified into a dithiol (with a CPY/FC catalytic
motif) and a monothiol (with a CGFS catalytic motif) subgroup based on the active
site sequence. However, this classification has now been further refined into six
classes, considering the existence of either plant- or bacterial-specific isoforms or
of multimodular isoforms containing additional domains (Couturier et al. 2009).
The dithiol subgroup is now referred to as class I Grxs while the monothiol Grxs are
included into class II. However, several monothiol Grxs with CPYS or CSYS active
site motifs also belong to class I (Couturier et al. 2009).

Bacterial Glutaredoxins: The Example of E. coli Grxs

Four Grxs (Ec_Grx1, Ec_Grx2, Ec_Grx3 and Ec_Grx4) have been identified in
E. coli. As stated previously, Ec_Grx1, which is about ten times less abundant than
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Ec_Trx1, has been shown to catalyze the reduction of disulfide bonds in various
cytoplasmic enzymes. For instance, Ec_Grx|1 is an alternate electron donor for PAPS
reductase and methionine sulfoxide reductases (Fernandes and Holmgren 2004).
Moreover, Ec_Grx1 specifically reduces the disulfide bond that inactivates the
transcription factor OxyR (see Sect. 3.2) under oxidative stress conditions (Aslund
et al. 1999). As the gene that codes for Ec_Grx1 is induced by OxyR, the OxyR
response to oxidative stress is therefore autoregulated [reviewed in Antelmann and
Helmann 2011].

Much less is known about the other three E. coli glutaredoxins, particularly
Ec_Grx3, which exhibits 5% of the activity of Ec_Grx1 with ribonucleotide re-
ductase, and lacks activity with PAPS reductase. The in vivo substrates of this
protein are unknown. With a molecular mass of about 24 kDa, Ec_Grx2 is unique
among E. coli Grxs, which typically range in molecular weights from 9 to 14 kDa.
Although Ec_Grx2 cannot reduce PAPS reductase or ribonucleotide reductase, this
protein, which is up-regulated in stationary phase, is very active in catalyzing
deglutathionylation. This is highlighted by the high catalytic activity of the enzyme
towards mixed-disulfides between glutathione and artificial or physiological sub-
strates (Vlamis-Gardikas 2008). Ec_Grx4 is the only E. coli Grx that belongs to the
class of monothiol Grxs. Like other monothiol Grxs, Ec_Grx4 has been shown to
bind an iron sulfur cluster (see Sect. 4.3) (Iwema et al. 2009). Its function remains
obscure.

Eukaryotic Glutaredoxins: The Example of Plant Grxs

As for the Trx family, comparative genomic analyses revealed the presence of
expanded Grx families in higher plants (from 27 to 35 genes), compared to non-
photosynthetic organisms, which contain only a limited number of these genes
(Couturier et al. 2009). Besides their roles associated with their capacity to bind
and transfer Fe-S clusters, which is described in the next section, the established
functions for plant Grxs are likely related to their capacity to reduce glutathionylated
substrates. Several members from three out of the four Grx classes existing in land
plants have been characterized so far. Grxs from class I have been divided into five
subclasses (GrxCl1, C2, C3, C4 and C5/S12), whereas class II is sub-divided into
four subclasses (GrxS14, S15, S16, S17). Because the number of class III Grxs is
variable between species (from 13 to 24 isoforms), a precise classification has not
yet been achieved (Couturier et al. 2009). In general, if we exclude the targeting
sequence, class I and III Grxs have a molecular weight comprised between 10 and
13 kDa. In contrast, the size of class II Grxs ranges from ca 12 kDa for GrxS14 and
S15 to 53 kDa for GrxS17. The latter is composed of an N-terminal Trx-like domain
fused to three Grx domains.

Owing to the large number of Grxs, deciphering the functions of plant Grxs is
a daunting task. The present knowledge indicates that Grxs are important for the
response of plants to oxidative stress. As already indicated, class I Grxs participate
in the regeneration of specific subgroups of antioxidant enzymes, including type
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II peroxiredoxins and methionine sulfoxide reductases of the Bl type (Rouhier
et al. 2001; Tarrago et al. 2009). These two types of enzymes use a single redox
active cysteine that is successively sulfenylated and glutathionylated during the
catalytic cycle. Grxs thus contribute to the recycling of the active form by reducing
the glutathione adduct. Among class I Grxs, knock-out mutants have only been
described for GrxC1l and C2. Whereas the single mutants did not exhibit any
phenotype, the double mutant was lethal at an early stage after pollinization. This
probably indicates that GrxC1 and GrxC2 have redundant functions, at least for
some early developmental stages (Riondet et al. 2011).

Among class II Grxs, the study of knock-out, knock-down or overexpressing
lines indicated that seedlings of A. thaliana knock-out mutants for GrxS14 (other-
wise named AtGrxcp) exhibited a higher sensitivity to oxidative stress treatment,
whereas overexpression of the respective ortholog from the arsenic hyperaccumu-
lator Pteris vittata increased arsenic resistance (Cheng et al. 2006; Sundaram et al.
2009). Quite similarly, silencing of tomato GrxS16 led to increased sensitivity to
oxidative, salt and drought stresses while over-expression had opposite effects (Guo
et al. 2010). Arabidopsis mutant plants, in which GrxS17 is disrupted, displayed
several phenotypes under high temperature, including defects in proliferation and/or
cell cycle control, accumulation of ROS, cellular membrane damages and altered
auxin perception. These phenotypes highlight the important role of this protein
for temperature-dependent postembryonic growth (Cheng et al. 2011). Last but not
least, several studies have implied class III Grxs in developmental or stress response
processes, via the regulation of transcription factors of the TGA family (La Camera
et al. 2011; Laporte et al. 2011; Ndamukong et al. 2007; Xing and Zachgo 2008).

3.3.2.3 Glutaredoxins and Iron Homeostasis

While Grxs have been identified in the 1970s as an alternative reducing system to
Trxs, it has only recently been recognized that several monothiol or dithiol Grxs
are able to bind [2Fe-2S] cluster (Fig. 3.4) (Lillig et al. 2005; Rouhier et al. 2007;
Bandyopadhyay et al. 2008). The [2Fe-2S] center, which is ligated by the catalytic
cysteines of two Grx monomers and two glutathione molecules, can be efficiently
transferred to acceptor proteins, as demonstrated for a plant plastidial Grx. Related
to this observation, a role for S. cerevisiae Grx5, a protein with a CGFS active site,
has been suggested as a carrier protein in Fe-S cluster biogenesis in yeast. In a S.
cerevisiae grx5 null mutant, deficient cluster assembly for the mitochondrial Fe-S
enzymes aconitase and succinate dehydrogenase has been reported (Rodriguez-
Manzaneque et al. 2002; Muhlenhoff et al. 2003). Furthermore, deletion of the
zebrafish mitochondrial grx5, which also coordinates an iron sulfur cluster, causes
hypochromic anemia. As such, the mitochondrial Fe-S cluster assembly machinery
is required for heme biosynthesis (Wingert et al. 2005). Moreover, most prokaryotic
or eukaryotic Grx orthologs were able to complement the zebrafish grx5 mutant,
which suggests that this function has been conserved throughout evolution (Molina-
Navarro et al. 2006).
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Fig. 3.4 Three-dimensional structure of the dimeric A. thaliana GrxC5 bridging a [2Fe-2S]
cluster. The a-helices are shown in red, and p-strands are shown in yellow. The [2Fe-2S] center
in A. thaliana GrxCS5 is bridged by the catalytic cysteine of each monomer (PDB code 3RHC)
(Couturier et al. 2011) and by two GSH molecules shown in stick representation. The figure was
generated using MacPyMol

Some Fe-S containing Grxs function as redox sensors (Lillig et al. 2005;
Rouhier et al. 2007; Couturier et al. 2011). In vitro, the [2Fe-2S] clusters on both
poplar GrxC1 and human Grx2 are stabilized by GSH and destabilized by GSSG.
Therefore, changes in the cellular GSH redox state could serve as a balance to
promote or inhibit Grx activity. However, determining the exact ratio between the
holo- and apo-protein in vivo is technically very challenging and has never been
performed, which makes it difficult to differentiate the reductase activity from the
capacity to bind Fe-S clusters.

Multidomain monothiol glutaredoxins formed by a Trx-like domain fused to one
to three Grx domains have also a function in the nucleus where they are involved
in intracellular iron trafficking. In S. cerevisiae and Schizosaccharomyces pombe,
the nucleocytoplasmic class II Grxs (Grx3 and Grx4) regulate iron homeostasis by
modifying the function of several transcription factors (Pujol-Carrion et al. 2006;
Ojeda et al. 2006; Mercier and Labbe 2009; Jbel et al. 2011). Recently, Hoffman
et al. showed that S. cerevisiae Grx4 functions as an iron sensor (Hoffmann et al.
2011). The C-terminal domain of this protein binds to the iron-sensing transcription
factor Aftlp, whereas its N-terminal Trx domain was found to be essential in vivo.
Furthermore, Miihlenhoff et al. found that Grx3 and Grx4 have an essential function
in intracellular iron trafficking and sensing (Muhlenhoff et al. 2010). Depletion of
grx3 and grx4 in S. cerevisiae specifically impaired all iron-requiring reactions in
the cytosol, mitochondria, and nucleus, including the synthesis of Fe-S clusters,
heme, and di-iron centers. From all these observations, we can conclude that these
Grxs function in the intracellular iron trafficking and sensing through the bridging
of a glutathione-containing iron sulfur center.

This class of Grxs forms also a complex with two other proteins, FRA1 and
FRAZ2 (Fe repressor of activation-1 and 2), corresponding to aminopeptidase P- and
BolA-like proteins, respectively (Kumanovics et al. 2008). The exact function of
the two latter proteins in this complex is not yet clear, since BolA, in particular,
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was initially described as a protein affecting the morphology and elongation of
E. coli cells (Aldea et al. 1988). The whole complex is an intermediate that links
the mitochondrial Fe-S cluster assembly machinery to the transcription of the iron
regulon, which is under the control of the iron-sensing transcription factor Aftlp.
The biochemical and spectroscopic characterization of the Grx-BolA heterodimeric
complex allowed Li ef al. to identify three out of the four iron binding sites,
which are constituted by the active site cysteine of Grx3 or Grx4, glutathione and a
histidine residue from BolA (Li et al. 2009, 2011). The fact that an Fe-S containing
Grx homodimer is converted into a Grx-BolA heterodimer upon addition of BolA
in vitro supports the proposal that BolA could act as an adaptor protein changing
the function of Grxs from an Fe-S scaffold/delivery protein to an iron sensor. Based
on the strong co-occurrence of grx and bolA genes and their frequent association in
bacterial genomes, it is likely that this interaction is conserved between kingdoms
(Couturier et al. 2009; Rouhier et al. 2010). However, the absence of Grx3/4
orthologues with an N-terminal Trx domain in bacteria together with the absence
of Aftlp orthologues in non-yeast organisms suggest a diversity of iron sensing
mechanisms and transcription factors that might be involved.

3.4 Conclusions

The redox biochemical and biological fields are emerging with the identification
of several LMW thiols that function as redox buffers and a variety of oxidore-
ductases, mostly from the Trx superfamily. However, many cellular mechanisms
are still not known. Moreover, further work is required to explore how redox
regulation affects complex cellular processes, and to fully characterize the role
and function of various Grxs and Trxs involved in redox pathways. How redox
and iron homeostasis are interconnected also requires further investigation. To
advance our knowledge in redox biochemistry, we need to monitor the redox state
and to quantify cellular thiol/disulfide redox buffers in vivo. New methods need
to be developed to individually quantify both symmetrical and mixed disulfide
populations in the correct biological context. Furthermore, for the more recently
discovered LMW sulfur-containing compounds, many new targets and mechanisms
are waiting to be discovered. Unraveling the role of these sulfur molecules in thiol
redox regulation pathways and in the interplay between cytosolic thiol redox status
and intra/extracellular stimuli will be one of the challenges for the next decade.
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Chapter 4
Sulfenic Acids and Peroxiredoxins in Oxidant
Defense and Signaling

Leslie B. Poole, Kimberly J. Nelson, and P. Andrew Karplus

Abstract In recent years, there has been tremendous growth in awareness of the
importance of sulfenic acids to biological processes. This is in part related to reactive
oxygen species in general and hydrogen peroxide in particular becoming widely
recognized as intermediates or second messengers crucial to signaling processes
that guide cell growth and development. Thus a picture is emerging of sulfenic
acids being important both for defending against oxidative stress and for normal
growth. Although the work is challenging due to the fleeting and localized nature
of some of the intermediates involved, substantial progress has been made in
identifying modified proteins and the roles they play. The landscape of modifications
uncovered thus far suggests that we have barely scratched the surface of the many
stress-induced and regulatory oxidation events taking place in cells on a regular
basis. This chapter recounts the chemistry of sulfenic acids and their effects in
modulating function in a few recently-studied proteins. We also discuss cysteine-
based peroxidases in more depth, with a focus on the structural and biochemical
features of the peroxiredoxin family.
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Abbreviations

ROS reactive oxygen species
Prx Peroxiredoxin

Orpl oxidant resistance protein

NBD-Cl 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole
GAPDH glyceraldehyde-3-phosphate dehydrogenase
PTP protein tyrosine phosphatase

SHP Src homology 2 domain-containing phosphatase
DEP1 density-enhanced phosphatase-1

PTEN phosphatase and tension homolog

HEK human embryonic kidney

VEGF vascular endothelial growth factor

EGF epidermal growth factor

VEGFR  VEGEF receptor

PDGF platelet-derived growth factor

MEF mouse embryonic fibroblasts

PKGIa  cGMP-dependent protein kinase

Ohr organic hydroperoxide resistance protein
(O peroxidatic cysteine

C resolving cysteine

Trx thioredoxin

Grx glutaredoxin

FF fully folded

LU locally unfolded

AhpC alkyl hydroperoxide reductase C protein
TrxR thioredoxin reductase

BCP bacterioferritin comigratory protein
Yapl yeast activator protein 1

Papl activator protein-1 from Schizosaccharomyces pombe

Tpx1 thiol peroxidase 1

Nrf-2 NF-E2-related factor

ARE antioxidant response element

Keapl Kelch like ECH-associated protein 1
CDKl1 cyclin dependent kinase 1

4.1 Introduction and Scope

Reactive oxygen species (ROS) are produced in aerobic organisms by many
avenues including as a result of incomplete oxygen reduction by the mitochondrial
electron transport chain, as a result of exposure to certain environmental toxins
and chemotherapeutics, and even purposefully as part of an immune response or of
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signaling pathways. It has long been recognized that cellular proteins that remove
these damaging species play a critical role in preventing or minimizing mutagenesis
and in delaying carcinogenesis and aging (Greenberg and Demple 1988; Imlay
2008; Stadtman 2006). The peroxiredoxin (Prx) family of cysteine-based peroxi-
dases is now thought to be the system responsible for removing the majority of
intracellular hydrogen peroxide and other alkyl hydroperoxides (Winterbourn 2008;
Adimora et al. 2010). The functions of these enzymes undoubtedly extend well
beyond defense, however. It has more recently become apparent that ROS, and
hydrogen peroxide in particular, are also produced during normal cell growth by
NADPH oxidase enzymes as a part of receptor-mediated signaling pathways that
lead to proliferation, differentiation and immune responses (Murphy et al. 2011).
Activated cysteine thiol groups (SH) in proteins can be oxidized by peroxide to
first form cysteine sulfenic acid (SOH) and, in many cases, then go on to form
other reversible species (e.g., disulfides, sulfenamides) or irreversible species (e.g.,
sulfinic and sulfonic acids). Functionally, SOH has most clearly been established
as a catalytic intermediate in cysteine-dependent antioxidant enzymes like Prxs and
methionine sulfoxide reductases; however, it has also been shown to serve a role
in regulating a range of other transcription factors and signaling proteins (Poole
et al. 2004; Paulsen and Carroll 2010; Klomsiri et al. 2011). Here we describe
the chemical attributes and summarize the biological roles for sulfenic acids as
widespread posttranslational modifications in cellular proteins. We also describe in
more detail structural and biochemical characteristics of the peroxiredoxin family
as an elegant example of mechanisms by which cysteine oxidation can be used both
catalytically and to regulate protein function.

4.2 Cysteine, a Special Amino Acid

A major site of oxidant reactivity that underlies cellular defenses and oxidant-
sensitive switches in proteins is the thiol, or sulthydryl group, of cysteine. This
residue has very special physicochemical properties that are responsible for its high
prevalence within protein functional sites in spite of its overall low abundance within
proteins compared with most other amino acids (Marino and Gladyshev 2010a).
These properties include a nominal pK, value around 8.5 that allows cysteine
to function as a nucleophile or an acid/base catalyst, redox properties that bring
additional catalytic versatility to enzymes as well as the possibility of forming
disulfide bonds that can stabilize proteins or lock in a specific conformation of a
protein. Moreover, bioinformatic evidence suggests that the high tendency of this
residue to be functional has led to an evolutionary selection against its presence
on protein surfaces, leading to the overly simplistic interpretation that, because of
its high propensity to be buried in protein structures, this amino acid residue is
considerably hydrophobic in nature (Marino and Gladyshev 2010a). Only the very
low abundance “21st” amino acid selenocysteine can be functionally interchanged
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with cysteine in proteins; this feature has been the basis for a bioinformatic approach
to identify putative redox-active cysteine residues within the sequences of divergent
proteins (Fomenko et al. 2007).

An important chemical product of the oxidation of cysteine thiols is the sulfenic
acid, formed when the nucleophilic thiolate anion attacks the terminal oxygen atom
of hydroperoxides like hydrogen peroxide, lipid hydroperoxides and peroxynitrite,
releasing the alcohol (or water) product. Compared to the rate of reaction with an
unactivated thiol or thiolate-containing molecule like glutathione, this chemistry is
highly accelerated in the active sites of cysteine-based peroxidases like peroxire-
doxins (Parsonage et al. 2005) and NADH peroxidases (Parsonage et al. 1993), and
in the oxidant-sensor sites of transcriptional regulators like OxyR (Aslund et al.
1999) and OhrR (Lee et al. 2007). The enhanced reactivity of these proteins toward
peroxides reveals the large influence that protein microenvironment can have on
the reactivity of particular cysteine residues, supporting second order reaction rates
as high as 107-10% M~ s7!, far higher than the 10-20 M~! s™! expected for small
molecule thiolates (Parsonage et al. 2005; Winterbourn 2008; Manta et al. 2009;
Hall et al. 2010). The nucleophilic nature of activated cysteine residues also renders
them susceptible to alkylation by electrophiles, S-nitrosation, and other types of
modifications. A series of bioinformatic analyses have been developed with the
goal of identifying features which activate or fine tune the oxidant or electrophile
reactivity of given cysteinyl residues; however, this task has been difficult due to
the limited number of known redox-regulated proteins and the range of structures
and functions exhibited by the proteins reportedly exhibiting sensitivity in vivo or
in vitro (Dennehy et al. 2006; Greco et al. 2006; Salsbury et al. 2008; Sanchez et al.
2008; Codreanu et al. 2009; Marino and Gladyshev 2010b). Early indications based
on a functional site profiling and electrostatic analysis of ~50 sites known to be
modified to sulfenic acid are that (1) the solvent exposure of modifiable cysteines is
not different from the average cysteine, (2) charged residues are underrepresented in
the structure near these modifiable sites, and (3) threonine and other polar residues
appear to exert a large influence on the cysteine pK,, thus playing a role in promoting
the reactivity of these cysteinyl residues toward oxidants (Salsbury et al. 2008). In
the case of the highly peroxide-reactive active site of the widespread and diverse
Prx family of proteins, structural and computational analyses have been more
informative regarding the active site features which promote peroxide reactivity of
these proteins, described in more detail below.

4.3 The Fate of Sulfenic Acids in Proteins

Sulfenic acids are reactive species in solution and in many proteins. In some
proteins, however, they are quite stable (e.g., in the cysteine-based peroxidases
NADH peroxidase and human PrxVI), and this must be ascribed to features
of the protein microenvironment including the presence of stabilizing hydrogen-
bonding partners and the lack of nearby thiol groups (Choi et al. 1998; Claiborne
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Fig. 4.1 Major redox forms of oxidized cysteinyl residues. (a) Sulfenic acids are formed by
reactions of cysteine thiolates with oxidants, and particularly hydroperoxides (ROOH). In proteins,
sulfenic acids can condense with thiol groups to form intramolecular, intermolecular or mixed
disulfides (/eft), undergo a reversible condensation with a proximal amine or amide nitrogen
to form a sulfenamide (middle), or become further oxidized to sulfinic and perhaps sulfonic
acids (right). Species in the middle and left are readily reversible by cellular reductants back
to the thiol state. Sulfonic acids are biologically irreversible, as are sulfinic acids, except in the
case of the unique repair pathway catalyzed by sulfiredoxin that exists to recover hyperoxidized
peroxiredoxins (dotted line). (b) A cyclic sulfenamide can be formed within protein tyrosine
phosphatases like PTP1B through condensation of the cysteine sulfenic acid (showing «; and B,
carbons) with the neighboring main-chain nitrogen of the next residue, serine in PTP1B (side chain
attached to the o, carbon not shown). (¢) Thiol-disulfide interchange reactions transfer electrons
between dithiol/disulfide centers, effectively transferring the disulfide bond; this mechanism is
used by common physiological reductases like thioredoxin and glutaredoxin

et al. 2001). Proximity of a protein sulfenic acid to thiol groups from small
molecules, from other proteins, or from other parts of the same protein leads to
disulfide bond formation (with loss of one water molecule). This may be the most
common fate of cellular protein sulfenic acids, at least when exposed to relatively
low levels of ROS where much of the oxidation is reversible (Fig. 4.1). Recent
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recognition that a sulfenamide (also known as sulfenyl-amide) can form between
an amine or amide nitrogen through a condensation reaction with the sulfenic
acid in some proteins has highlighted this reversibly oxidized species as another
way in which reversible, signaling-related protein oxidation may be sustained
(Fig. 4.1a, b). Sulfenamides have been observed in in vitro experiments in several
proteins (Lee et al. 2007; Salmeen et al. 2003; van Montfort et al. 2003; Yang
et al. 2007). The cyclic sulfenamide formed at the active site of protein tyrosine
phosphatase 1B (PTP1B) (Fig. 4.1b) has been observed crystallographically and
proof of its occurrence and importance in vivo has recently been demonstrated using
endogenously produced, conformation-specific, single chain antibodies (known as
intrabodies) (Haque et al. 2011).

Disulfide or sulfenamide linkages (or those of related, further oxidized forms)
have the potential to serve as cross-links between proteins within a complex, and/or
to cause or stabilize large conformational changes within the oxidized proteins.
These changes may enhance protein stability or make the downstream product(s)
of the initial sulfenic acid more accessible to reductants. Disulfide bonds may
also readily migrate to other sites containing free thiols through thiol-disulfide
interchange reactions, the same type of thiol-disulfide reactivity by which dithiol-
containing reductants reductively recycle oxidized proteins (Fig. 4.1¢c). Thus, any
subsequently-generated disulfide bond(s), as downstream products of sulfenic acid
formation, may be quite distant from the initial site where the sulfenic acid is
formed, including being located on a different protein. This type of disulfide
exchange occurs in Saccharomyces cerevisiae, for example, during the transfer
of oxidizing equivalents from peroxides to Yapl, a stress-activated transcriptional
regulator, which occurs via a sulfenic acid initially generated on a reactive cysteine
within the Gpx3 glutathione peroxidase homologue Orpl (i.e., oxidant resistance
protein 1) (Delaunay et al. 2002).

Further oxidation of a sulfenic acid as is promoted by high levels of oxidants
first generates the sulfinic acid (R-SO,7), and then subsequently the sulfonic
acid (R-SO37). Nearly all such “hyperoxidized” cysteine residues in proteins are
irreversibly damaged in that the thiol group cannot be regenerated in biological
systems. The exception to this is in the sulfinic acid-containing Prxs, where a
specialized repair protein known as sulfiredoxin can catalyze the ATP-dependent
regeneration of the Prx active site thiol (discussed further below) (Biteau et al. 2003;
Jonsson et al. 2008b).

In vivo, the fate of sulfenic acids generated in cellular proteins will be highly
dependent on the nature and levels of oxidants and reductants within the envi-
ronment of the protein, as well as the proximity of the sulfenic acid to potential
reactive groups. For many proteins that are rapidly oxidized by peroxide, the lifetime
of the sulfenic acid that is formed is governed by how fast it forms a disulfide
or becomes reduced by a relevant protein (e.g., thioredoxin or glutaredoxin) or
small molecule (e.g., glutathione or cysteine) reductant. This allows for the RSOH
lifetime to be tuned for functional purposes, with for example, oxidized forms of
certain transcriptional regulators purposefully experiencing rather slow turnover so
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as to optimize the oxidation signal that gives rise to transcriptional activation or
derepression (Aslund et al. 1999; Lee et al. 2007; Parsonage et al. 2005; Horta et al.
2010; Reeves et al. 2011).

4.4 Approaches to Assess Cysteine Oxidation
Within Proteins

The most straightforward assessment of protein oxidation products can be accom-
plished when the modification is not susceptible to reductant treatment and has
little or no propensity to migrate to other locations during the analysis. Thus, the
irreversibly oxidized sulfinic and sulfonic acids, as well as sulfinamide (R-S(O)-
NH-R’) and sulfonamide (R-S(O;)-NH-R’) products that are oxidized beyond the
sulfenamide state, can be identified by mass spectrometry and in some cases by
peptide mapping techniques (Griffiths et al. 2002; Raftery et al. 2001; Shetty and
Neubert 2009; Shetty et al. 2007). Sulfinic and sulfonic acid products at the active
sites of Prx and PTPI1B proteins have also been characterized crystallographically
(Sarma et al. 2005; Schroder et al. 2000; van Montfort et al. 2003), and hyper-
oxidized forms of mammalian Prxs can be recognized by redox state-sensitive
antibodies that do not cross-react with the thiol-containing protein (Woo et al. 2003).
Hyperoxidation of Prxs is also often detected by a change in the protein’s isoelectric
point (due to the more acidic pK, of the hyperoxidized forms) that causes a shifted
mobility in two-dimensional gel electrophoresis (Mitsumoto et al. 2001; Rabilloud
et al. 2002; Yang et al. 2002). For human Prx I, the hyperoxidized form is separable
from the thiol or sulfenic acid containing forms by reverse-phase HPLC, as was used
to quantitatively assess sulfiredoxin activity (Jonsson et al. 2008a). As a point of
caution, however, these hyperoxidized protein sites may in some cases be generated
from sulfenic acids that become exposed and air oxidized during sample workup
and/or analysis (Ellis and Poole 1997a; Fuangthong and Helmann 2002; Shetty et al.
2007). For this reason, chemical trapping of sulfenic acids as early as possible in the
analytical protocol used is recommended to minimize such artifacts (Ellis and Poole
1997a; Klomsiri et al. 2010).

In pure proteins amenable to NMR analyses, sulfinic and sulfonic acids can in
principle be distinguished from thiols and sulfenic acids using '*C-NMR, although
the sulfinic and sulfonic acids are expected to be quite similar to one another in '3CP
chemical shift (Crane et al. 1997). Such analyses were applied to assess the redox
states of cysteine within various forms of NADH peroxidase from Enterococcus
faecalis.

In pure proteins of interest, disulfide-bonded cysteine residues may be accurately
assessed as long as great caution is taken to rapidly alkylate free thiols prior to
and during denaturation to prevent disulfide “scrambling,” which is more of a
problem in alkaline pH conditions (Hansen and Winther 2009; Chouchani et al.
2011). Traditional peptide mapping with Edman degradation or MS analyses to
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sequence peptides, particularly in conjunction with comparisons between oxidized
and reduced forms, can often be used to pinpoint the location of the disulfide bond of
interest (Baker and Poole 2003; Poole 1996). Methods for detecting sulfenic acids
in pure proteins have been more of a challenge to develop, particularly for proteins
where this modification is not verifiable by crystallographic or NMR approaches.
Because of the transient nature of this species, particularly when proteins are
denatured, chemical trapping approaches have been developed that rely on either the
nucleophilic or electrophilic properties of this species. The electrophilic compound
NBD-CI (7-chloro-4-nitrobenzo-2-oxa- 1,3-diazole) was found to be highly useful in
this regard. While this reagent reacts with both thiols and sulfenic acids, the products
of these two are readily distinguished by their spectral signatures (with thiol- and
sulfenic acid-generated adducts giving absorbance maxima of 420 and 347 nm,
respectively), and by the higher mass (by 16 atomic mass units) of the sulfenic acid-
derived product (Ellis and Poole 1997a; Poole and Ellis 2002). While this approach
has been useful for identifying sulfenic acids in a number of systems (Kettenhofen
and Wood 2010; Poole 2008), the nucleophilic compound dimedone (5,5-dimethyl-
1,3-cyclohexanedione), which forms a stable thioether bond with cysteine residues
containing sulfenic acids, has found wider application. This reagent was used
in early experiments with glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
taking advantage of the '*C-labeled dimedone that was available at the time;
incorporation of the radiolabel was observed with the oxidized, but not reduced,
form of the enzyme (Benitez and Allison 1974). As radiolabeled dimedone is
no longer commercially available, most subsequent studies using dimedone have
relied on the increase in mass (by 140 Da) observed upon covalent attachment of
dimedone to proteins (Ellis and Poole 1997a; Kettenhofen and Wood 2010; Willett
and Copley 1996). In the past several years, anti-dimedone antibodies have also
become available, allowing for yet another way to detect incorporation of this
compound into proteins (Seo and Carroll 2009).

For the most part, the methods described above are quite useful when assessing
cysteine oxidation within pure proteins, but not for more complex mixtures of
proteins as are typically encountered in proteomic experiments. Most strategies
for detecting thiol modifications across large proteomes are designed to detect
reversible thiol oxidation in general, not distinguishing between disulfides, sulfenic
acids and S-nitrosothiols, for example (Leichert and Jakob 2006; Ying et al. 2007;
Chouchani et al. 2011; Victor et al. 2012). Recent approaches have, however, been
developed to specifically label and detect sulfenic acid formation across proteomes
using conjugated derivatives based on dimedone that possess fluorescent or affinity
labels (Poole et al. 2005, 2007; Charles et al. 2007; Leonard and Carroll 2011). A
major advantage of specifically targeting sulfenic acid is that it is the direct protein
product of cysteine modification by peroxides so that one can be confident that the
site where the oxidation chemistry is initiated is revealed; this question is more
difficult to resolve when subsequent products like disulfide bonds are analyzed.
These approaches are beginning to reveal a large and growing list of oxidizable
proteins that are important to redox regulation and oxidative stress across a wide
range of biological systems.
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4.5 Cysteine Sulfenic Acids as Catalytic and Regulatory
Components of Enzymes and Transcriptional Regulators

4.5.1 Regulatory Sulfenic Acids in Cellular Proteins

The clearest examples of signaling-related sulfenic acid generation are in the above-
mentioned bacterial transcriptional regulators OhrR and OxyR, which sense the
presence of peroxides through their reactive cysteine residues, transducing the
signal directly to modulate transcriptional activity. Both Escherichia coli OxyR and
Xanthomonas campestris OhrR form intramolecular disulfide bonds upon oxidation;
in OxyR, the “locking in” of the significant, oxidation-induced conformational
change by disulfide bond formation has been referred to as “fold editing,” altering
the protein’s structural and functional properties (Choi et al. 2001; Panmanee
et al. 2006). Interestingly, Bacillus subtilis OhrR only has the one cysteine residue
that forms sulfenic acid upon exposure to organic peroxides. Without a disulfide-
bonding partner within the protein, this sensor site forms either a sulfenamide
intermediate or a mixed disulfide with a low molecular weight thiol such as cysteine
or the recently-discovered bacillithiol, promoting derepression and suppressing
hyperoxidation, which would interfere with reductive recycling of this transcription
factor (Lee et al. 2007; Soonsanga et al. 2008; Newton et al. 2009).

Protein sulfenic acids as regulatory features of thiol-dependent enzymes have
been well established for many years, particularly through the work of Allison and
co-workers, which demonstrated the oxidant sensitivity of the protease papain and
the metabolic enzyme GAPDH (Allison 1976). Like papain, another related cysteine
protease, cathepsin K, showed evidence of sulfenic acid formation after treatment
with S-nitrosoglutathione, suggesting a role for this inhibitory modification in NO-
mediated bone resorption (Percival et al. 1999). Cathepsins B and L were also
shown to lose 50-75% of their activity after treatment with low levels (10 wM)
of H,O, (Headlam et al. 2006). As mentioned above, protein tyrosine phosphatases
like PTP1B and PTPa, possess redox-sensitive cysteinyl residues at their active sites
(Yang et al. 2007; Tonks 2005); in vivo sulfenic acid formation at the active sites of
other cysteine-dependent phosphatases like SHP1 and SHP2, DEP1 and PTEN has
also been observed after treatment of T-cells with antigen (Michalek et al. 2007),
endothelial cells with vascular endothelial growth factor (VEGF) (Oshikawa et al.
2010), and HEK 293 cells with tumor necrosis factor a, respectively (Michalek et al.
2007; Oshikawa et al. 2010; Nelson et al. 2010). Some of these same phosphatases
were also shown to be oxidized in vivo to sulfenic acid by EGF treatment of
A431 cells (Paulsen et al. 2011). Enzymes which use cysteine at the active site
to defend against cellular oxidants are also prone to oxidative regulation, and these
are discussed in the next section.

Reactive cysteine residues adjacent to or even remote from the active site
or binding site have also been shown to modulate the function of a wide va-
riety of signaling-relevant proteins through sulfenic acid formation. Like with
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phosphorylation, whether oxidation is activating or inhibitory varies with the
protein, the site of the modification, and potentially the nature of the downstream
oxidation product(s). In the absence of a localized PrxII to remove nearby H,O,,
the murine VEGF receptor 2 (VEGFR2) is subject to oxidative inhibition of its
tyrosine kinase activity through the oxidation of Cys1206 near the C-terminus
which forms an intramolecular disulfide with Cys1199 (Kang et al. 2011). In
contrast, direct oxidation of epidermal growth factor receptor (EGFR) at Cys797
by H,0, elicited by EGF treatment of A431 cells enhances its tyrosine kinase
activity (Paulsen et al. 2011). Another important sulfenic acid modification target
of VEGF-induced ROS also appears to be the scaffolding protein IQGAP, which
is oxidized preferentially at the leading edge of actively migrating cells (Kaplan
et al. 2011). As IQGAP plays a pivotal role in regulating cytoskeletal elements and
facilitating localized ROS production, this localized modification potentially serves
to promote directional endothelial cell migration. Increasingly, non-receptor kinases
are also being identified which undergo oxidative regulation in vivo in ways that
modulate their activities (reviewed in Cross and Templeton 2006; Klomsiri et al.
2011; Poole and Nelson 2008). A recent study demonstrated that sulfenic acid and
disulfide bond generation through platelet derived growth factor (PDGF)-induced
ROS occurs in and inhibits serine-threonine protein kinase Akt2 but not Aktl,
leading to changes in glucose uptake (Wani et al. 2011b). In a separate study, Akt2
knockout MEFs expressing recombinant Akt2 proteins (wild type and an oxidation
insensitive mutant) were also used to demonstrate a role for Akt2 oxidation in
promoting cell migration (Wani et al. 2011a). As an example of oxidative activation,
disulfide bond formation through initial sulfenic acid formation in cGMP-dependent
protein kinase (PKGIa) upon perfusion of rat hearts with H,O, led to intersubunit
disulfide bond formation, enzyme relocalization, and an increase in kinase activity
of this protein (Burgoyne et al. 2007). Src is another very important nonreceptor,
membrane-associated tyrosine kinase which is activated by oxidation at two critical
cysteine residues which may form an intrasubunit disulfide bond, although direct
evidence for the latter is still lacking; interestingly, in vitro oxidation at a different
site in this and other Src-family kinases is inhibitory, suggesting that the redox
regulation of this class of enzymes may be quite complex (Giannoni et al. 2010). As
more methods become available to reveal sites of SOH formation, the list of proteins
susceptible to sulfenic acid formation will continue to grow and more specific roles
for oxidation to SOH in cellular processes will undoubtedly be established.

4.5.2 Sulfenic Acids in Catalysis and Regulation of Oxidative
Defense Enzymes, Focusing on Prxs

As examples of sulfenic acid-generating proteins, cysteine-based peroxidases have
been much studied, in the 1980s and 1990s with the NADH peroxidase from lactic
acid bacteria (Crane et al. 1997; Poole and Claiborne 1989; Yeh et al. 1996)
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Fig. 4.2 Prx catalytic cycle. The first step (1) of the Prx catalytic cycle is conserved across all
Prxs and involves the thiolate form of the C,, (S,”) reacting with peroxide to form cysteine sulfenic
acid (SpOH). In step 2, the sulfenic acid is resolved through the formation of a disulfide with
a resolving thiol (S;H) from the same subunit, from another Prx subunit, or from an exogenous
molecule. In step 3, the Prx is recycled back to the reduced form through a disulfide exchange
reaction with Trx or a similar protein or domain. Local unfolding occurs in the C,-loop (and in
2-Cys Prxs in the region of the protein including C,) during step 2 so that the disulfide bond can
form. Overoxidation of the C, (step 4) and reduction of the Cys-S,0,H by sulfiredoxin (Srx; step 5)
depict redox regulation and repair occurring in eukaryotic sensitive 2-Cys Prxs (Adapted from Hall
et al. 2009a, b)

and more recently with the widespread Prx proteins (Ellis and Poole 1997a, b;
Baker and Poole 2003; Hugo et al. 2009). In these proteins, as well as Ohr (a bacte-
rial organic hydroperoxide resistance enzyme with no structural relationship to Prxs)
and non-selenium glutathione peroxidase homologues (Lesniak et al. 2002; Flohé
et al. 2011), the peroxidatic cysteine (the C,) is oxidized to the sulfenic acid by the
hydroperoxide substrate, then forms a disulfide bond through condensation with a
“resolving” cysteine (the C;) that is either also present in the peroxidase or provided
by another protein or small molecule (Fig. 4.2). The return of the oxidized protein
and C, to the activated thiol state typically involves a thiol-containing reductant
like thioredoxin (Trx). Prxs are good models for cysteine chemistry because, with
the possible exception of sulfenamides, all of the examples described above of
cysteine chemical states (including S-glutathionylated and S-nitrosylated species)
are observed in these proteins (Fang et al. 2007; Chae et al. 2012). It may be no
coincidence that one group of Prxs (the Prx1/AhpC group) would not be able to form
the type of cyclic sulfenamide observed in PTP1B because the residue following
the C, is almost always a proline (99.5% of the members identified from the 2008
release of GenBank) (Nelson et al. 2011).

Any sulfenic acid generated in an active site during catalysis may also impart
oxidant sensitivity to that protein through the potential to form the typically
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irreversible sulfinic and sulfonic acids through further reactions with oxidants.
Findings alluded to above showed that some eukaryotic Prxs are indeed sensitive
to this type of inactivation, whereas other eukaryotic Prxs and most bacterial Prxs
are much less sensitive (Hall et al. 2009a; Wood et al. 2003). The fact that an
ATP-dependent repair system (the sulfiredoxins) has evolved to reduce and restore
the activity of these easily hyperoxidized Prxs highlights the importance of this
redox switch in biology. The nature of when and where Prx hyperoxidation plays
an important role is less clear, but it may be critical to the ability of H,O, to
serve as a transiently-generated chemical signal or second messenger within cells.
One proposal for how this might work is the “floodgate hypothesis” (Hall et al.
2009a; Wood et al. 2003). It suggests that Prxs are generally reduced and abundantly
present to rapidly detoxify peroxides when the cell is in a “resting” state, but that
during an oxidative signaling event, H,O,, superoxide and/or lipid hydroperoxide
is locally generated, and the high concentrations at the site of generation lead to
inactivation of the nearby Prx molecules before reductants are able to reduce them.
This would turn off flux through these enzymes and, in a positive feedback loop,
contribute to heightened oxidant concentrations. The built-up oxidants would in
turn have the effect of promoting the oxidation of other proteins in the vicinity
that would normally not be able to compete with reactive peroxidases. In this way
the oxidation signal could influence susceptible sites in a wide range of signaling-
relevant proteins. An alternative, but not mutually exclusive, model has also been
suggested by the propensity of hyperoxidized Prx proteins in yeast to form large
aggregates with chaperone activity; in these organisms, they act like heat shock
proteins in helping to ameliorate protein damage due to heat stress (Jang et al.
2004). Such chaperone activity may carry over to higher organisms as well, although
this has been a difficult question to address (Moon et al. 2005; Kim et al. 2009;
Park et al. 2011). Oxidized Prxs may also behave similarly to the Orpl protein
described above, transmitting the original oxidation signal from the peroxide to
other interacting proteins through a series of thiol-disulfide exchange interactions
(D’ Autreaux and Toledano 2007; Hall et al. 2009a).

The cellular conditions under which Prx hyperoxidation has a significant impact
on defense and/or signaling are still being investigated. Direct exposure of cells to
low, chronic levels of H,O, can be quite informative in this regard (Phalen et al.
2006; Yang et al. 2002). Recent evidence shows that in mammalian cells, sensitive
Prxs are hyperoxidized at even very low levels of HO, (<10 uM) (Baek et al.
2012). These low H,O; levels were not toxic to wild-type cells, but were toxic to
cells that were missing sulfiredoxin, verifying that the sulfiredoxin-catalyzed repair
process is of critical importance to maintaining the redox homeostasis under these
conditions. In a similar vein, studies in yeast showed that normal aging results in
an accumulation of the hyperoxidized form of the Prx Tsal, but that sulfiredoxin
expression was upregulated by caloric restriction and blocked that accumulation so
as to maintain an effective oxidant defense system (Molin et al. 2011). Strikingly,
the addition of an extra copy of the sulfiredoxin gene mimicked the life-extending
effects of caloric restriction.
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4.6 Active Site Features and Oligomeric Forms Impacting
Catalytic Function and Oxidant Hypersensitivity in Prxs

4.6.1 Roles for Conserved Residues in the Specificity and High
Catalytic Efficiency of Prxs Toward Hydroperoxide
Substrates

All Prxs share a highly conserved active site structure with a nearly universal
PXXXTXXC, sequence and a conserved Arg that is distant in sequence but nearby
in the three-dimensional fold. These peroxidases have diverged from a common
ancestor of the Trx-fold superfamily that includes Trxs and glutaredoxins (Grxs);
comparisons of sequences and structures indicate that the TXXC active site in Prxs
directly corresponds to the CXXC active sites in Trxs and Grxs (Fomenko and
Gladyshev 2003; Copley et al. 2004). Interestingly, the conserved Arg of the Prxs
corresponds in position to a conserved cis-Pro of the Trxs and Grxs which, in these
proteins, is particularly important for accommodating large protein substrates in the
active sites (Copley et al. 2004).

Using a standardized nomenclature for the secondary structural elements
(a-helices and B-strands) of Prxs (Hall et al. 2011), the central 5-stranded beta
sheet with an initial beta hairpin has two helices on the “back” side (a; and oy)
and three on the “front” where the active site is situated (at the N-terminus of
helix o) (Fig. 4.3). This arrangement of secondary structural elements has been
described as a cradle, where the C,-containing central a, helix (the “baby”) rests
upon the B-sheet mattress, flanked by a3 and a5 helices that make up the sides of the
cradle (Hall et al. 2009c, 2011). This structural arrangement provides stability to
the a; helix and accommodates the large, though localized, conformational changes
which take place during the course of catalysis — conformational changes which
vary between Prxs from different subfamilies (see below). These conformational
changes are necessary to accomplish the multi-step catalytic cycle of Prxs. At the
beginning of the catalytic cycle, the enzyme is in its “fully folded” (FF) state with
the deprotonated C, (thiolate) prepared to encounter the peroxide substrate in the
specialized environment of the FF Prx active site (Fig. 4.2). After the oxidation
of Cp, the sulfenic acid must flip out of the protected pocket of the active site to
reach and react with the thiol of the C;, from wherever it comes. This requires an
unfolding of the C,-containing loop and helix to generate the “locally unfolded”
(LU) state. While details vary somewhat with the different Prxs (Hall et al. 2009c,
2011; Perkins et al. 2012), approximately one turn of the a, helix is unraveled, and
a disulfide bond is formed between C,, and C;, locking in the LU state. Reductants
can then, in principle, attack either sulfur of the disulfide bond to finish the recycling
process. However, several studies focused on the Prx1/AhpC group that includes
four of the six human Prxs have demonstrated that the physiological reductants
attack at the C; sulfur in these proteins (Budde et al. 2003; Jonsson et al. 2007).
The enzyme is reactivated with the refolding of the segment with the regenerated
C, thiol to form the active site in the FF state (Fig. 4.2).
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Fig. 4.3 Core secondary structure of Prx proteins. (a) Shown is the back view of a representative
monomer of a fully folded (FF) Prx (Salmonella typhimurium AhpC; PDB entry 1N8J) with the
conserved structural elements labeled and B-sheets shown in black. The C, is located in the first turn
of helix o, and is shown as spheres. An asterisk represents the position of attachment of the rest
of the C-terminal tail that has been hidden in this view (normally absent in other subfamilies); the
C-terminus of Prx1 and Prx6 subfamily members extends from here to make extensive interactions
with an adjacent monomer. (b) The same monomer viewed from the front side of the cradle (related
to A by a ~180° rotation around a vertical axis). This and other molecule model figures were
prepared using Pymol (DeLano 2002)

Because the thiolate is a much stronger nucleophile than the protonated thiol
group, one of the widely recognized features of reactive cysteine residues, including
those at the active site of Prxs, is their lowered pK, relative to that of an
unperturbed cysteine (pK,~ 8.5). For Prxs, pK, values have been measured by
several approaches. A simple one is to take absorbance measurements at 240 nm
over a pH range, with the deprotonation event being measureable due to the higher
extinction coefficient of the thiolate (Benesch et al. 1955; Kortemme et al. 1996;
Roberts et al. 2005). An alternative approach is to measure the pH dependence of
catalysis in competition with heme-containing peroxidases; this has the advantage
of yielding a function-relevant pK, that likely specifically reflects the C, protonation
in the FF state (Nelson et al. 2008; Ogusucu et al. 2007). Direct determination
of the pH dependence of alkylation rates was not particularly useful, at least for
bacterial AhpC, because the C,, in the FF active site is apparently unable to react
with iodoacetamide or its derivatives; this means that the pK, value measured would
reflect the C,, in the LU form of the protein (Nelson et al. 2008). Published pK,
values for the C, residue in the FF state of Prxs have ranged from 5.2 to 6.3
(Ogusucu et al. 2007; Trujillo et al. 2007; Nelson et al. 2008; Hugo et al. 2009;
Manta et al. 2009; Horta et al. 2010; Reeves et al. 2011). Using the average pK,
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value of 5.75, about 94% of the C, residues would be deprotonated at pH 7 as
compared with only ~3% if the thiol pK, were unperturbed. It should be noted,
however, that the nucleophilicity of the thiolate decreases as the pK, is lowered, so
it would be a disadvantage to decrease the C,’s pK, much below the 5.75 value.
During catalysis by Prxs, the two oxygen atoms of the hydroperoxide substrate
move apart, with the bond between them ultimately breaking to form the hydrox-
ide/alkoxide and the Cp-sulfenic acid products. The reaction is a classic in-line SN2
attack by the thiolate nucleophile on the terminal oxygen of ROOH (called Oy here)
that weakens the peroxyl -O-O- bond and generates a planar intermediate around
O,, followed by inversion of stereochemistry, bond breakage, and departure of the
leaving group. Many of the various ligands found bound to Prxs in crystal structures
in fact possess one or two oxygen atoms bound in a way which could mimic the
peroxyl oxygens of the substrates or products (Hall et al. 2010). Analysis of these
structures, as well as one Michaelis complex with H,O, (PDB identifier 3a2v) and
structures with water molecules bound in the active site, together paint a picture of
the catalytic process. Interestingly, with all of the structures taken together, the posi-
tions of the oxygen atoms from the various structures are all found within the active
site distributed along a narrow track (Fig. 4.4a). We interpret these positions as rep-
resenting a thermodynamic well that stabilizes the positions occupied by substrate
oxygens during the bond breaking process. In this way, catalysis can simplistically
be viewed as the sliding of the terminal oxygen (O4) along the S-O4-Og track, away
from Op and toward the attacking C, sulfur, ultimately transferring O, to the sulfur
and releasing the alkoxide (or hydroxide) product (Fig. 4.4b). Close inspection of
the hydrogen bonding interactions around the active site indicates that some of the
interaction geometries will be stronger with the O, located partway between Og
and the C;, sulfur, as would be consistent with preferential binding of the enzyme to
the transition state (Hall et al. 2010). Such evidence for transition state stabilization
fits well with the concept that enzymes accelerate chemical reactions by lowering
the activation energy through such preferential interactions with the high-energy
transition state, as originally proposed many years ago by Linus Pauling (1946).
Dissection of the hydrogen-bonding and electrostatic interactions around the
active site also clarifies specific roles for the active site side chains and backbone
interactions, as well as the a, helix, not only in activating the C, sulfur, but also
in positioning and activating the incoming peroxide substrate (Fig. 4.4b; Hall et al.
2010). An independent mechanistic analysis of substrate recognition and thiolate
activation within the Prx active site offered similar conclusions in this regard,
although some aspects of the proposed interactions were different (Ferrer-Sueta
et al. 2011). Together, these analyses support the following specific roles for the
conserved Prx residues in promoting catalysis: (1) the threonine hydroxyl (on rare
occasion substituted by a serine hydroxyl) positions and activates the protonated
O, atom of the incoming peroxide substrate; (2) the arginine positions and interacts
with both the active site thiolate and the peroxide substrate through both charge and
hydrogen-bonding interactions; (3) two backbone NH groups from the first turn of
the a, helix help position and activate the peroxide O5 and Og atoms; and (4) the
proline shields the active site and positions the backbone of the next two residues
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to provide additional hydrogen bonding interactions with Cp, and indirectly (via
the threonine hydroxyl) with the peroxide O, (Hall et al. 2010). These analyses
have brought considerable insight into the origins of the specificity of Prxs — in
other words, how the extremely high catalytic power of the Prx active site toward
hydroperoxides is generated without a parallel enhancement of reactivity toward
alkylating agents and other oxidants such as chloramines (Peskin et al. 2007; Nelson
et al. 2008).

4.6.2 The Structural Basis for Oxidation Sensitivity

As alluded to above, the most abundant eukaryotic Prxs are sensitive to inactivation
resulting from hyperoxidation of the C,, sulfenic acid when a second molecule of
peroxide outcompetes the resolution reaction and generates the sulfinic acid at C,,.
Some bacterial and cyanobacterial Prxs have also exhibited a relatively high degree
of oxidant sensitivity (Baker and Poole 2003; Pascual et al. 2010). It has also been
seen that a third molecule of peroxide can, in some cases, further oxidize this site
to the sulfonic acid form, a redox form which cannot be repaired by sulfiredoxin
(Sarma et al. 2005; Seo et al. 2009). The structural basis for this sensitivity has
been explored, in particular, within the “typical 2-Cys” (Prx1/AhpC) group of Prxs
(see below), where C; resides near the C-terminus of another monomer within the
dimeric (or oligomeric) protein. Comparisons of the structures of representative
sensitive versus robust Prxs revealed specific structural features, especially a
conserved YF motif within the C-terminal a-helix, correlated with sensitivity, and
as described below, provided a rationale for the sensitivity (Wood et al. 2003).
Because the Prx catalytic cycle requires local unfolding of the active site loop and
helix to allow C,-C; disulfide bond formation, excessive stabilization of the FF form
will hinder the resolution reaction and promote hyperoxidation of the longer-lived
sulfenic acid within the Prx active site. What was noted by Wood et al. (2003) is that
the C-terminal a-helix present in sensitive Prxs packs against the active site C-loop
to stabilize of the FF form (Fig. 4.5, upper left). In contrast, the architecture and
mobility of the protein in the vicinity of the active site in the bacterial AhpC protein

)
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Fig. 4.4 (continued) Interactions in the Prx active site. (a) Cutaway view of the active site pocket
of a peroxiredoxin (PDB structure 3A2V) with bound H; O, (green) overlaid with water molecules
(red spheres) taken from many other peroxiredoxin structures. Surrounding atoms including the
C,-loop and conserved arginine are shown as sticks and colored by atom type and select hydrogen
bonds are shown as dashed cyan lines. (b) Schematic drawing of the peroxide-bound active site
emphasizing the hydrogen-bonding interactions present. The in-line geometry for the C, thiolate
to attack O, for the peroxidatic Sy2 reaction (bold broken line) and key hydrogen-bonding
interactions (pale broken and dotted lines) are indicated. The view is as in (a). Backbone atoms in
the C,-loop are identified by their residue position relative to C,. The negative charge on the C,-
thiolate is indicated. Panel b is reproduced with permission from the Journal of Molecular Biology
(Hall et al. 2010)
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Fig. 4.5 Structural differences between robust and sensitive Prxs identified by Wood et al. (2003).
Ribbon diagrams of the peroxidatic active site region of sensitive (fop, Rattus norvegicus PrxI)
and robust (bottom, S. typhimurium AhpC) structures in the fully folded (FF) and the locally
unfolded (LU) conformations. Side chains for C, and C; cysteines (with balls emphasizing the
sulfur positions), the four universally conserved active site residues (black), the YF motif of PrxI
(# in upper left panel), and the main-chain segment containing the conserved GGLG motif of PrxI
(top panels in black and marked with an “x”) are shown. The partner subunit contributing the C;
is depicted in a darker shade of gray. Structures shown are: fop left, FF, C52S form of sensitive
PrxI (PDB entry 2Z9S); top right, LU, disulfide form of sensitive PrxI (1QQ2); lower left, FF,
C46S form of StAhpC (IN8J); and lower right, LU, disulfide form of StAhpC (1YEP). Asterisks
marking the ends of the visible C-termini of the LU conformations indicate that many additional
C-terminal residues are disordered. Comparison of the upper and lower FF panels (leff) provides
the most dramatic image of how the two sequence features common to sensitive enzymes result in
a major difference in the burial of the C,-containing helix

is noticeably different (Fig. 4.5, lower left), with a shorter C-terminus and greater
mobility in all regions near the C, (as suggested by the higher crystallographic
B-factors in these regions). Local unfolding to allow for disulfide bond formation
between C, and C, is therefore less hindered by the active site microenvironment in
AhpC. This explanation of the origins of sensitivity also emphasizes the important
role played by C; in protecting the Prx C, from overoxidation (Ellis and Poole
1997b; Trujillo et al. 2006).
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Validation of this structural explanation for the heightened “redox sensitivity”
of certain Prxs has come from mutational and biochemical experiments conducted
with several eukaryotic enzymes. Koo et al. demonstrated that a sensitive Prx from
Schizosaccharomyces pombe became “robust” toward high peroxide levels upon
experiencing either single residue substitutions or small deletions at the C-terminus
that disrupted the wild type packing interactions (Koo et al. 2002; Wood et al. 2003).
Furthermore, simple swapping, through genetic manipulations, of the C-terminal
tails of sensitive and robust Prxs from a single organism, Schistosoma mansoni,
showed that the sensitivity of the enzymes toward oxidative inactivation tracked
with the distinct C-terminal sequences (Sayed and Williams 2004). This has been
taken as strong evidence that a “tuning” of the sensitivity of Prxs to hyperoxidation
has taken place during evolution to match the properties of the specific enzymes to
their biological function(s) (Poole et al. 2004).

4.6.3 Quaternary Structures of Prxs

Most Prxs form dimers or in some cases higher order oligomers that are associations
of dimers. Only E. coli BCP and related proteins in the same subfamily have
been shown to exist as stable monomers (Hall et al. 2011; Reeves et al. 2011).
Interestingly, Prxs form two types of dimers (Sarma et al. 2005), and these are
characteristic of the subfamily to which they belong (see below). A-type dimers,
which arguably represent a more ancestral mode of interaction, are formed through
a tip-to-tip association at strands B; and B, (the B-hairpin) and the loops preceding
helices a,, a3 and oy (Fig. 4.6a). B-type dimers are quite distinct, with head-to-
tail interactions at the edges of the B-sheets (through the B; strands) that generate
an extended, 10-stranded B-sheet (Fig. 4.6b). B-type dimers, which form only
in proteins in the Prx1 and Prx6 subfamilies (see below) can also form higher
order doughnut-shaped structures (typically decamers, but also dodecamers or
octamers) through association through the A-interface (Fig. 4.6¢c). These dimer-
dimer interactions were found to be redox-sensitive in proteins like bacterial AhpC
and plant and human Prx1-like proteins, and were seen to promote catalysis through
stabilization of the FF active site and through a limitation of the dynamic sampling
of side chain conformations that strongly affect the C, pK, (Barranco-Medina et al.
2008; Parsonage et al. 2005; Wood et al. 2002; Yuan et al. 2010). Larger aggregates
of Prx proteins have also been observed and associated with chaperone activity,
as mentioned above (Jang et al. 2004); studies of human PrxII using transmission
electron microscopy and 3D reconstruction were consistent with the formation (on
a holey carbon support film) of dodecamers of the decameric forms that were
large, spherical particles with M; ~2.62 MDa and an external diameter of ~20 nm
(Meissner et al. 2007).
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Fig. 4.6 Quaternary structures of Prxs. Many Prxs form dimers either through A-type dimers (a)
that interact near helix a3, or through B-type dimers (b) that interact edge to edge to form an
extended 10-strand B-sheet. (¢) Members of the Prx1 and Prx6 subfamily form B-type dimers
and many of them form higher order doughnut-like oligomers through the A-interface that can be
comprised of 8, 10, or 12 subunits, with the majority being decameric. Structures depicted are for
human PrxV (1HD2) (a), Arenicola marina Prx6 (2V2G) (b), and human PrxII (1QMV) (¢)

4.7 Prx Subfamilies

Prxs are a diverse group of proteins, which can be classified into 6 subfamilies
(Prx1, Prx6, Prx5, Tpx, PrxQ, and AhpE) based on sequence similarities, structural
homology, and residue conservation in the vicinity of the C, (Copley et al. 2004;
Hall et al. 2011; Nelson et al. 2011). Most species contain multiple Prx proteins
from multiple subfamilies; for example, humans have 6 Prxs from 3 subfamilies,
E. coli has 3 Prxs from 3 subfamilies, Saccharomyces cerevisiae has 5 Prxs from
4 subfamilies, and Arabidopsis thaliana has 10 Prxs from 4 subfamilies. While
the mechanisms for sulfenic acid formation and peroxide reduction, as well as the
PXXX(T/S)XXC,, motif, are conserved across all Prxs, other features, including
oligomeric state, susceptibility to hyperoxidation, substrate specificity, and the
presence and location of the C; can vary between and within the subfamilies (Hall
et al. 2011; Nelson et al. 2011). While the C; is now known to reside in at least
five different locations within the Prx structure (Fig. 4.7a and Lian et al. 2012),
in the early 1990s, only a single C; location was recognized (Chae et al. 1994a).
This C,, near the C-terminus of the Prx, forms a disulfide bond between two
chains across the B-type interface (Chae et al. 1994b; Poole 1996) and at that
time, the terms “2-Cys” and “1-Cys” were used to distinguish the only two known
patterns for resolution of the C, (Chae et al. 1994a). Later, with the discovery that
other Prx proteins formed intrasubunit disulfide bonds using C; residues in other
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Fig. 4.7 Variability in locations of C; within and between Prx subfamilies. (a) The four prototyp-
ical locations for the C, (labeled by location and the subfamily it is commonly associated with)
are mapped onto a composite structure based on StAhpC (1YF1). The conserved C, (red) is also
shown. The two chains of the B-type dimer are colored in dark and light blue and helix a2 is
colored pink. (b) Pie charts based on ~3,500 Prx sequences showing the frequency at which the C;
is in a given location for each subfamily (Nelson et al. 2011). Wedges are colored by C, position
consistent with panel A using the same notation: no C; (gray), C-term’ (cyan), o5 (orange), o3
(green), a2 (purple) and uncertain (pale yellow). The exact positions are defined as in Hall et al.
(2011). Sequences marked as “uncertain” have additional Cys residues present, but none align
exactly with one of the known locations. We suspect most of them are 1-Cys Prxs. This figure is
reproduced with permission from the journal Antioxidants and Redox Signaling (Hall et al. 2011)
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locations, the term “typical 2-Cys” was used to distinguish the earlier-recognized
Prxs containing a C; in the C-terminus of the protein from “atypical 2-Cys Prxs”
with a C; in any other location. The terms 1-Cys, typical 2-Cys, and atypical 2-Cys
are still sometimes used to describe the mechanism by which the protein resolves the
sulfenic acid, but they are not particularly useful in distinguishing Prx subfamilies
because all subfamilies likely include both 1-Cys and 2-Cys members and because
the “atypical 2-Cys” category is not homogeneous (Fig. 4.7b). In all cases, disulfide
bond formation requires the localized unfolding of the region surrounding C, (and
often C,), as described above, promoting the next step of reduction by a thiol-
containing disulfide reductase system. The preferred reductant can also vary among
and within subfamilies. For many Prxs, Trx serves as the direct reductant, but Grx,
AhpF, and small molecule thiols like glutathione have also been shown to reduce
particular Prxs.

4.7.1 PrxI Subfamily

The Prx1 subfamily, also called the Prx1/AhpC subfamily (Nelson et al. 2011),
includes highly expressed and widely distributed proteins such as the bacterial alkyl
hydroperoxide reductase C protein (AhpC), the tryparedoxin peroxidases, the yeast
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TSAT1 and 2, and the human PrxI-IV proteins. While members of this subfamily have
been shown to react very rapidly with H,O, (catalytic efficiencies of ~107 M~! 57!
with the best substrates), turnover in in vitro assays is typically limited by the rate
of reduction (~10° M~! s7!) (Baker and Poole 2003; Horta et al. 2010; Manta et al.
2009; Parsonage et al. 2005). Prx1 subfamily members contain a 40-50 residue
extension at the C-terminus compared to the common core structure. All known
members form stable B-type dimers and, in the FF form, the resolving cysteine
in >99% of the subfamily members is buried within the C-terminal extension
approximately 14 A away from the C, in the adjacent monomer. Upon oxidation, the
region surrounding both the C,, and the C, become locally unfolded, allowing for the
formation of a disulfide bridge across the B-type interface (Fig. 4.5). As described
above, Prx1 subfamily members can further associate through the A-interface to
form oligomeric, doughnut-like structures of 4—6 dimers. The redox sensitivity of
the oligomeric state was first explored in detail for AhpC from S. typhimurium.
Using analytical ultracentrifugation, reduced AhpC was shown to exist as a stable
decamer whereas disulfide bond formation destabilized the decamer, promoting
dissociation into dimers at low concentration (Wood et al. 2002). The importance
of the decamer interface was further highlighted by studies in which disruption of
the decamer interface led to a 100-fold decrease in catalytic efficiency (Parsonage
et al. 2005). While eukaryotic Prx1 subfamily members are typically reduced by
Trx, many of the bacterial AhpC-like subfamily members have a specific partner
flavoprotein reductase, AhpF, encoded within the same operon (Poole 2005). AhpF
enzymes have a specially evolved double Trx-fold domain (Roberts et al. 2005; Hall
et al. 2009b) that is fused to a C-terminal thioredoxin reductase (TrxR)-like region
which, unlike the thioredoxin system, is NADH- rather than NADPH-dependent
(Poole and Ellis 1996; Poole et al. 2000).

4.7.2 Prx6 Subfamily

The first Prx to be structurally characterized was human PrxVI from which
this subfamily takes its name. Prx6 sequences are widely distributed and have
sometimes been grouped with Prx1 subfamily members due to their somewhat
similar sequences, the formation of B-type dimers, and the presence of a C-terminal
extension (Copley et al. 2004). However, in contrast to the Prx1 subfamily, only a
subset of Prx6 members forms decamers using the A-type interface. Also, members
of this subfamily contain a longer C-terminal extension than observed in the Prx1
subfamily and the large majority appear to be 1-Cys Prxs (i.e., lacking a C; in the
protein) (Nelson et al. 2011). One member of this subfamily, Aeropyrum pernix
“Tpx”, has a cysteine (C213) in the extended C-terminal extension that serves as
a C; (Jeon and Ishikawa 2003), and ~16% of the Prx6 sequences identified in a
large-scale bioinformatic analysis of Genbank(nr) contain a cysteine residue in the
same location (Nelson et al. 2011). The identity of reductant(s) of Prx6 subfamily
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members is also largely unknown; some subfamily members are reduced by Trx
while others are not. At least some subfamily members may be regenerated by
GST and glutathione, or by ascorbate (Hall et al. 2011).

4.7.3 Prx5 Subfamily

The best characterized member of this subfamily is human PrxV, which is less
reactive with H,O», (second order rate constant ~10° M~! s7') than human PrxI
or PrxII, but is more reactive with both organic hydroperoxides (~10% M~ s7!)
and peroxynitrite (~10" M~ 571 (Trujillo et al. 2007; Manta et al. 2009). Prx5
subfamily members are found in archea, bacteria and higher eukaryotes and
are localized to various locations within eukaryotic cells including mitochondria,
peroxisomes, cytoplasm, and plant chloroplasts. This family includes a group of
bacterial proteins that contain a Grx domain fused to the C-terminus of the Prx5
domain. Although the canonical location of the C; has been considered to be in
helix as as observed in human Prx5, recent analysis shows that a cysteine is found
in this location only 17% of the time in this subfamily (Nelson et al. 2011), implying
that most Prx5 subfamily members are 1-Cys Prxs.

4.7.4 Tpx Subfamily

Whereas the Tpx subfamily takes its name from the first family member to be
biologically characterized, Escherichia coli thiol peroxidase, a major confusion is
that this same moniker (Tpx) has been used to abbreviate “thioredoxin peroxidase”
and is the common name for many Prxs not belonging to this subfamily. Tpx
subfamily members are found almost exclusively in bacteria (Nelson et al. 2011) and
are comprised of A-type dimers that stay associated in both oxidized and reduced
states (Baker and Poole 2003; Hall et al. 2009c¢). The K, for cumene hydroperoxide
(a bulkier and more hydrophobic substrate than H,O,) is more than two orders of
magnitude lower than the Ky, for H,O; in E. coli Tpx (Baker and Poole 2003). For
more than 99% of Tpx subfamily members the C; is located in helix a3, with the
remainder apparently being 1-Cys proteins (Nelson et al. 2011).

4.7.5 PrxQ Subfamily

This subfamily contains the plant PrxQ chloroplast proteins as well as the bacterial
BCP proteins and, based on recent bioinformatic analysis, is distributed widely
across archea, bacteria, plants, and fungi (Nelson et al. 2011). While the PrxQ
subfamily is not as well characterized as other Prx subfamilies, recent structural
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and kinetic studies have shown that members of this subfamily are rather diverse
in terms of oligomeric state, presence and location of the C;, and kinetic activity,
supporting the hypothesis that this subfamily is most similar to the ancestral Prx
and that C;-positions have arisen independently multiple times in the course of
evolution (Copley et al. 2004; Hall et al. 2011; Horta et al. 2010; Reeves et al. 2011).
PrxQ subfamily members have been shown to exist as either monomers or A-type
dimers, and mechanistically can be either 1-Cys or 2-Cys Prxs with the C; existing
in one of two locations: 54% of the subfamily members contain a C; five residues
after the C,, in helix a, (Fig. 4.7) while another 13% exhibit a C; in helix a3 (the
position commonly associated with members of the Tpx subfamily) (Nelson et al.
2011). The catalytic activity of this family also varies widely. E. coli BCP exhibits
a similar, slow rate of reaction with H,O, and other alkyl hydroperoxides (second
order rate constants ~10* M~ s7') and can be reduced efficiently by a range of
reductants including Trx1, Trx2, Grx1, and Grx3 (Reeves et al. 2011). In contrast, a
plant PrxQ from Xylella fastidiosa has been shown to react much more rapidly with
H,0, (~10" M~! s7!) (Horta et al. 2010). Members of the PrxQ subfamily have also
been shown to exhibit both the highest (at —146 mV, E. coli BCP) and lowest (at
—325 mV, poplar PrxQ) redox potentials reported to date for any Prx (Reeves et al.
2011; Roubhier et al. 2004).

4.7.6 AhpE Subfamily

The AhpE subfamily is comprised of a small number of proteins that have to date
only been found in a limited number of gram positive bacterial species closely
related to Mycobacterium tuberculosis (Nelson et al. 2011). AhpE does not group
clearly with any other Prx subfamily, however, it shares ~30% amino acid sequence
identity with Prx1 subfamily members and ~25% sequence identity with members
of the PrxQ subfamily. M. tuberculosis AhpE has been shown to react faster with
peroxynitrite (~107 M~' s7!) than with H,O, (~10° M~! s7') and is the only
structurally characterized subfamily member to date (Hugo et al. 2009). Although
M. tuberculosis AhpE is a 1-Cys Prx, other members of this subfamily contain
a potential C; in helix o, similar to many PrxQ subfamily members (Nelson
et al. 2011).

4.8 Regulation of Prx Activity

4.8.1 Transcriptional Regulation of Prx Expression

Peroxiredoxin expression is frequently up-regulated in response to oxidative stress.
In E. coli, H,O, activates OxyR through reaction with its sensor site, Cys199, to
form a sulfenic acid; subsequent disulfide bond formation with Cys208 leads to
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activation of the transcription factor, inducing expression of a variety of antioxidant
proteins including AhpC and AhpF, KatG catalase, glutathione reductase, and Grx1
(Aslund et al. 1999). Transcriptional activity of OxyR is subsequently modulated by
these antioxidants which directly or indirectly decrease H,O; levels in the cell; in
addition, Grx1 directly reduces and inactivates OxyR, providing multiple feedback
mechanisms to regulate OxyR activity (Aslund et al. 1999). Although OxyR is
present in many bacteria, a distinct transcriptional regulator known as PerR regulates
Prx expression in Bacillus subtilis in response to specific peroxide or general
oxidative stress (Mongkolsuk and Helmann 2002). In Saccharomyces cerevisiae, the
Gpx homolog Orpl serves as a peroxide sensor by forming a sulfenic acid on Cys36
in the presence of H,O, (Delaunay et al. 2002). Although this protein has its own
C; for intramolecular disulfide bond formation, a kinetic pause at this step allows
formation of an intermolecular disulfide bond with yeast activator protein 1 (Yapl),
a transcription factor that controls antioxidant gene expression. A second cysteine
in Yapl then attacks the intermolecular disulfide to form an intramolecular disulfide
bond within Yapl and release Orpl, activating transcription and upregulating Prx
expression (D’ Autreaux and Toledano 2007). In Schizosaccharomyces pombe, the
Yapl homologue, activator protein-1 (Papl), is activated by “low” peroxide levels
(below 0.2 mM) in concert with thiol peroxidase 1 (Tpxl), a member of the
Prx1 subfamily, and both are inactivated at HO, levels greater than 1 mM. At
this high peroxide level, the Styl transcription factor is independently activated
through a mechanism involving a bacterial-like His phospho-relay system and
potentially promoted by disulfide bond formation either intermolecularly with Tpx1
or intramolecularly through direct oxidation of a cysteine on Styl (Day et al.
2012; Karplus and Poole 2012). In Homo sapiens, the transcription factor, NF-
E2-related factor-2 (Nrf-2) has been shown to regulate the expression of Prx1 and
Prx4 as well as the Prx reductants, Trx, TrxR1, and Srx (Bell and Hardingham
2011). Transcriptional regulation of these genes involves a cis-acting DNA sequence
known as the antioxidant response element (ARE), which recruits the transcription
factor Nrf2. Under non-stress conditions, Nrf2 is ubiquitinated and targeted for
degradation by Kelch like ECH-associated protein (Keap 1); during oxidative stress,
oxidation of one or more cysteine(s) on Keapl releases Nrf2, allowing for Nrf2
accumulation in the nucleus and subsequent activation of ARE-containing genes
(Brigelius-Flohé and Flohé 2011). In parasites, Prxs are very important factors for
defending against the immune system, and their expression tends to be regulated by
developmental stage and environment (Gretes et al. 2012).

4.8.2 Regulation of Prx Activity by Phosphorylation and Other
Posttranslational Modifications

Recent studies have identified a group of post-translational modifications (in
addition to redox modifications described above) that regulate Prx activity, including
phosphorylation, acetylation, and glutathionylation (Parmigiani et al. 2008; Woo
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et al. 2010; Chae et al. 2012). Most of these studies have focused on human
PrxI and PrxII, and it is still too early to completely understand the role some
of these modifications play in the cell. In particular, PrxI has been shown to be
phosphorylated by cyclin dependent kinase 1 (CDK1) at Thr90 during the mitotic
phase in HeLa cells (Chang et al. 2002) and at Tyr194 in response to stimulation
by growth factors (e.g. EGF and PDGF), or by antibodies to IgM and CD3 in the
case of B-cells and T-cells, respectively (Woo et al. 2010). Both phosphorylation
events appear to exhibit specificity for the PrxI isoform over PrxIl, and decrease
the peroxidase activity of the phosphorylated Prxs, thus allowing for a localized
increase in H,O, levels in response to growth factor signaling (Rhee and Woo
2011). Acetylation at the C-terminus of PrxI and PrxII by HDAC6 was reported
to increase Prx activity (Parmigiani et al. 2008), perhaps a result of disrupting the
packing of the C-terminal helix to promote disulfide bond formation during catalysis
and avoid oxidative inactivation. Glutathionylation of the non-catalytic Cys83 has
recently been shown to shift the oligomeric state of human PrxI from predominantly
decameric to predominantly dimeric structures, eliminating its ability to serve
as a chaperone; additional effects of glutathione in recycling or regulating Prx
activity likely varies with the specific protein, and adds to the complexity of
glutathionylation as a regulatory mechanism for Prxs (Parmigiani et al. 2008; Woo
et al. 2010; Chae et al. 2012).

4.9 Outlook

The last two decades have seen a tremendous growth in the recognition of the
importance in biology of sulfenic acid derivatives of cysteine. Although much
research involving sulfenic acid derivatives does not include the word “sulfenic”
in the abstract, Pubmed searches using the word “sulfenic” yield 20, 41, 102 and
199 hits for the 5 year periods of 1990-1994, 1995-1999, 2000-2004, and 2005—
2009, respectively. Related to this, hydrogen peroxide has since early in this century
transitioned from being simply numbered among the many dangerous oxidative
stressors to being in its own right seen as an important and widespread second
messenger crucial to fundamental signaling processes that guide normal growth and
development. These research areas were initially connected by the recognition of the
evolutionary significance of sensitive Prxs (Wood et al. 2003) and their reactivation
by sulfiredoxin (Woo et al. 2003; Biteau et al. 2003), along with the discovery of the
sulfenamide-inhibited form of protein tyrosine phosphatases (Salmeen et al. 2003;
van Montfort et al. 2003), and the identification of widely expressed isoforms of
NADPH oxidases that function in growth factor signaling (Oakley et al. 2009).
Our understanding of these processes is still rather primitive but the results in
hand are enough to predict confidently that discoveries in this area — including
the challenging processes of mapping of the temporal and spatial dynamics of the
occurrence of sulfenic acids in vivo — will play a prominent role in advancing our
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understanding of basic eukaryotic cell biology and our ability to combat major
health problems such as obesity, cancer, and aging.
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Chapter 5
Fluorescent Imaging of Redox Species
in Multicellular Organisms
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Abstract Redox processes play a crucial role in many aspects of physiology
and changes in cellular redox species are increasingly being linked to a wide
range of pathological conditions. Redox species can change dynamically at the
subcellular compartment-, cell- and tissue-level and different redox species likely
convey different biological information. The investigation of redox biology in a
living multicellular organism is particularly difficult and is hampered by the lack
of tools which offer redox species specificity and the necessary spatial and temporal
resolution. In recent years there has been intense development of small organic
chemical and genetically encoded fluorescent probes which have vastly improved
our ability to investigate cellular redox processes. In this chapter we describe the
currently available fluorescent probes, focusing in particular on those which have
already been applied to multicellular organisms or those which we believe have the
potential for in vivo use in the future. We discuss advantages and disadvantages of
the different kinds of probes and highlight their major problems and limitations.
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5.1 Introduction

5.1.1 Why Study Redox Changes In Vivo?

It is becoming increasingly clear that changes in biological redox species are
associated with many aspects of human pathology. However, obtaining a detailed
understanding of organism redox biology is incredibly difficult. Redox species
are regulated at the subcellular compartment-, cell-, and tissue-specific level.
Furthermore, many cellular redox species are often independently regulated and
change dynamically over time.

Contrary to the classically assumed status of reactive oxygen species (ROS)
as unwanted and damaging agents, certain ROS are now known to fulfill crucial
roles in many cellular contexts. Hydrogen peroxide (H,O,) is specifically produced
in response to a range of stimuli, including growth factors and cytokines (Veal
et al. 2007). In this context H,O, acts as a second messenger, leading to the
post-translational modification of a range of proteins involved in cellular signaling
pathways. Thereby, H,O, can influence cellular decisions including proliferation,
differentiation, migration and apoptosis (Veal et al. 2007).

Both H,0, and nitric oxide (NO-) are produced in phagocytic immune cells
where they contribute to both the killing of invading pathogens and to the regulation
of immune signaling pathways, including the pro-inflammatory response (Wink
et al. 2011; Grivennikov et al. 2010; Harrison et al. 2011). Inflammation in this
context is a crucial part of the immune response; however, prolonged high levels of
ROS and reactive nitrogen species (RNS) are associated with chronic inflammation
which plays a major role in the initiation and progression of a wide range of
pathologies, including atherosclerosis, diabetes and cancer (Drummond et al. 2011;
Pashkow 201 1; Harrison et al. 2011; Grivennikov et al. 2010). Perturbations in other
cellular redox species have also been linked to a range of diseases, for example,
sustained alterations of the glutathione system have been associated with malignant,
cardiovascular and neurodegenerative disorders (Mieyal et al. 2008; Mieyal and
Chock 2012). It goes without saying that redox processes are clearly of huge
biomedical interest.

In reality, the actual biomedical significance of redox processes, e.g. protein
redox regulation, remains to be demonstrated in the truly in vivo context of model
animals. It also remains unclear if pharmacological intervention can target cellular
redox processes accurately and specifically enough in order to facilitate a beneficial
medical outcome. For example, it is becoming clear that even commonly used
redox agents such as N-acetyl cysteine (NAC) can elicit unexpected outcomes in
the context of a multicellular organism (Albrecht et al. 2011).

To date, our understanding of redox processes in vivo has been constrained by
the lack of appropriate investigative tools and methodology. In particular there are
several key difficulties associated with measuring redox processes in the context of
multicellular organisms. These include (i) obtaining redox species-specificity, (ii)
obtaining subcellular compartment-specificity, (iii) obtaining cell- and tissue-type
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resolution (iv) obtaining temporal resolution and (v) dealing with the high op-
tical opacity of many model organisms, which impedes standard microscopic
investigation.

Redox studies of multicellular organisms have typically relied on disruptive
whole organism techniques, but such methods are prone to post mortem artifacts
and offer little in the way of spatial resolution as evidenced for example by whole
organism reduced glutathione (GSH)/oxidized glutathione (GSSG) assays. In situ
staining (for example of tissue sections) has also been widely used, however,
problems include the frequent use of non-specific probes and the observation of late-
stage markers of oxidative damage which are indirect and offer little information
relating to the initial redox species involved. Cell or tissue culture is more amenable
to investigation with redox probes, but at best cell culture only crudely approximates
the true in vivo environment and must be viewed in light of the typically non-
physiological molecular oxygen concentration (de Souza 2007; Atkuri et al. 2007).

In this chapter we focus on the challenge of investigating redox processes
taking place inside multicellular organisms. In particular we focus on the organic
chemical and genetically-encoded fluorescent probes which are currently available,
and discuss their applicability for use in observing biologically relevant redox
species in the context of multicellular organisms.

We believe the ultimate goal should be the development of methodologies
that allow the non-invasive, real-time observation of defined redox species, with
subcellular compartment resolution in living multicellular organisms, even when
not optically transparent. At present, in most situations, this goal is far from
being realized. The best approximation that is currently available is the imaging
of genetically encoded redox probes in transparent model organisms such as
C. elegans, Drosophila larvae and Danio rerio (zebrafish) (Niethammer et al. 2009;
Back et al. 2011; Albrecht et al. 2011). For non-transparent organisms including
mice, the next best choice is a minimally invasive technique such as intravital
imaging, i.e. observation through a window preparation. However, to reach deep
tissues, non-transparent organisms must be sacrificed and measurements performed
on organ or tissue preparations or tissue sections. While such procedures in principle
allow in situ redox measurements, there is a high risk that the disruption of organism
integrity changes the redox processes of interest. The chemical conservation of
the biosensor redox state during dissection is one possible solution to the problem
(Albrecht et al. 2011).

5.1.2 Which Redox Species Are of Particular Interest
Jor In Vivo Measurements?

We consider there to be two classes of redox species that are particularly worthy of
investigation. The first class consists of those oxidants that are primarily produced
and involved in signaling and regulation. Most prominently, these are superoxide
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(027), H,0, and NO-. O, is of interest because in most situations it is the primary
ROS produced and a precursor of H,O,. Although O, reactivity with thiols is
very low, it can react with 4Fe-4S clusters, as seen in the O, ™ -responsive bacterial
transcription factor SoxR (Winterbourn and Hampton 2008). Thus O, ™ may in
principle also play a role in regulating protein function. In terms of redox signaling
and redox regulation, H,O; is arguably the most important endogenous oxidant.
It is the most stable of the ROS, clearly involved in regulating protein function,
and under certain circumstances it is also a precursor of the hydroxyl radical
(HO-) and hypochlorous acid (HOCI) (Dickinson and Chang 2011), which along
with peroxynitrite (ONOO™) constitute the highly reactive oxygen species (hROS).
These species are also of interest as they are very short-lived and indiscriminately
react with biological molecules, thus they are likely to be the actual source of ROS-
induced cellular damage. NO- is specifically produced by nitric oxide synthases
(NOS) and serves as both an autocrine and paracrine signaling molecule, for
example in vasodilation and neurotransmission. NO- is known to regulate protein
function via post-translational modification. Indeed, S-nitrosylation is reported to
affect as many as 3,000 different proteins (Hess and Stamler 2012).

The second class of redox species of fundamental importance comprises redox
couples that are central to metabolism and redox homeostasis. Here we focus
primarily on the redox couples for which fluorescent probes are currently avail-
able, GSH/GSSG and NAD"/NADH. The glutathione redox couple provides an
abundant source of reducing equivalents that protect cells from oxidative stress
and are crucial for detoxification of xenobiotics (Grant et al. 1996; Meister
1988). S-glutathionylation is a mechanism for regulating redox-sensitive signaling
pathways (Dalle-Donne et al. 2009) and alterations of glutathione homeostasis are
known to accompany cell death, senescence, aging and a number of pathophysiolog-
ical conditions. Likewise, the NAD*/NADH redox pair has many important roles
in the cell. Disrupted NAD*/NADH homeostasis has been found to be associated
with several pathological conditions, including cancer (Zhang et al. 2000).

5.1.3 What Kinds of Redox Probes Exist?

Generally we can distinguish between optical and non-optical redox probes. The
most prominent non-optical redox probes are those based on electron paramagnetic
resonance (EPR) spectroscopy (Vikram et al. 2010). The main advantage of EPR
is the ability to non-invasively image redox species in whole living animals, e.g.
mice (Vikram et al. 2010; Shulaev and Oliver 2006). However, the disadvantages
of EPR include (i) the low spatial resolution of images (cellular or subcellular
compartment imaging is not possible), (ii) the necessity to load organisms with
high concentrations of spin-trap probes, which can be toxic and suffer from many of
the pharmacokinetic complications described below for chemical fluorescent probes
(Shulaev and Oliver 2006) and (iii) the lack of chemical specificity of those EPR
probes amenable to in vivo application, with the notable exception of NO- specific
probes (Yoshimura et al. 1996).



5 Fluorescent Imaging of Redox Species in Multicellular Organisms 123

Most optical probes are either based on fluorescence or luminescence. Only
relatively few examples of luminescence-based redox probes exist compared to
fluorescent probes. In this review we focus primarily on the fluorescent probes,
because they have been most widely used for imaging in multicellular organisms
and show promise for further improvements.

The vast majority of fluorescent redox probes are either organic chemical or
genetically-encoded, and these types are the main focus of this review. However, it
should be mentioned that there are now fluorescence-based redox probes, which are
neither small organic chemicals nor proteins, namely nanotube- and nanoparticle-
based probes designed to react to signaling concentrations of H,O, or NO- (Jin et al.
2010; Casanova et al. 2009; Boghossian et al. 2011).

5.2 Chemical Fluorescent Probes and Their Applications

Chemical fluorescent probes have two key advantages over genetically encoded
probes. The first and major advantage is that chemical probes can be applied to
almost any sample without the prior need for lengthy genetic manipulation steps.
Consequently, chemical probes can be directly applied, for example to human
clinical samples, which may ultimately be useful in the context of disease diagnosis.

Chemical fluorescent probes are also especially flexible as their properties
can be readily modified via the addition of chemical moieties. This strategy has
been used to create novel probe variants with increased specificity towards target
molecules and increased membrane permeability. The latter can be achieved by
protecting hydroxyl and carboxyl groups with acetyl or acetoxymethyl (AM)
groups, thus allowing cells to be more efficiently loaded with fluorescent probes.
Chemical modifications can also be used to manipulate spectroscopic properties
such as the fluorescence emission wavelength. This can be particularly useful for
in vivo imaging; near-infrared (NIR) fluorescence, in the range of 650-900 nm
enables deeper imaging of animal tissue than visible wavelengths because of low
background fluorescence and minimal absorption by hemoglobin and water at
these longer wavelengths (Weissleder and Ntziachristos 2003). The exact tissue
penetration efficiency of NIR fluorescence is dependent on the particular tissue type
examined, but is usually in the order of 1 cm (Lee et al. 2007). In particular, the
cyanine fluorophore exhibits strong fluorescence in the NIR range and has been
widely used as the basis of fluorescent probes or labeling agents for in vivo imaging
applications (Klohs et al. 2008).

Chemical fluorescent probes can be broadly categorized into two main classes:

1. Hydro-type fluorescent probes, which are molecules delivered in the non-
fluorescent reduced state and which become fluorescent upon oxidation. These
are the ‘conventional’ probes that can react non-specifically and indirectly with
a broad range of oxidants.
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2. Fluorescent probes selective to particular oxidants. These probes have been
designed from the outset to respond specifically to defined oxidant species.

Representative probes and their key properties are summarized in Tables 5.1
and 5.2.

5.2.1 Hydro-Type Fluorescent Probes

In the past, hydro-type chemical fluorescent probes, in particular dichlorodihy-
drofluorescein, dihydrorhodamine 123 and hydroethidium, have been widely used to
report changes in ‘cellular redox status’ or ‘ROS production’. However, fluorescent
changes observed with this class of probes can be the result of a wide range
of cellular processes and thus great care must be taken when designing and
interpreting experiments. Hydro-type fluorescent probes are non-specific, highly
susceptible to oxidation by undefined enzymatic processes (Halliwell and Whiteman
2004) and easily excluded from the cell by membrane transporters, including
multidrug resistance protein (MDR) and multidrug resistance-associated protein
(MRP) transporters (Huai-Yun et al. 1998; Ludescher et al. 1992). Due to the
low specificity of these probes and the complexity of the cellular environment, the
biological basis of fluorescence changes remains poorly understood in most cases.
In fact, it may be difficult to determine if observed fluorescence changes are the
result of changes in ROS concentration at all (Wardman 2007). In this section we
focus on the three most commonly used hydro-type fluorescent probes, as well as
the recently introduced hydrocyanines.

5.2.1.1 2’,7’-Dichlorodihydrofluorescein (DCFH)

DCFH is one of the most commonly used chemical fluorescent redox probes. An
acetylated derivative, DCFH-DA, is typically used for intracellular measurements.
Intracellular esterases catalyze the deacetylation of DCFH-DA to DCFH, which can
then be oxidized to yield the highly fluorescent product 2’,7’-dichlorofluorescein
(DCF) (Fig. 5.1a). However, the intracellular process of DCFH oxidation is complex
and ill-defined. In vitro, DCFH appears to be unreactive toward H,O, and O,
DCFH oxidation by H,O, can be facilitated by peroxidase activity (LeBel et al.
1992). DCFH oxidation can also be mediated by ferric iron and cytochrome ¢ via
the generation of HO- or peroxidase compound I-type oxoferryl species, respectively
(LeBel et al. 1992; Lawrence et al. 2003). 5-lipoxygenase (LOX) was also reported
as a potent catalyst of DCFH oxidation (Hempel et al. 1999). DCFH oxidation may
generally be influenced by the intracellular concentration of heme and heme proteins
(Ohashi et al. 2002). Additionally, DCFH is prone to photo-oxidation, which may
pose problems when the probe is exposed to high-intensity laser irradiation. In
general, DCFH oxidation proceeds via a radical intermediate (DCF™) which is
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Fig. 5.1 Hydro-type fluorescent probes DCFH (a), DHR123 (b), DHE and MitoSOX™ Red (c),
and hydroCy7 (d)

further oxidized to DCF with the concomitant generation of O, ™. Thus, DCFH-
induced O, formation (and subsequent formation of H,O,) likely fuels further
DCFH oxidation, potentially leading to an overestimation of ROS production
(Wrona et al. 2005). In addition to these considerations, DCFH may also diffuse
spontaneously out of cells or be actively removed by membrane transporters. Thus
it is often not clear to what extent differences or changes in fluorescence actually
reflect intracellular ROS production (Halliwell and Whiteman 2004; Wardman
2007). Despite these limitations, DCFH-DA has been applied widely to the study
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of redox changes in multicellular organisms, including C. elegans and zebrafish
(Schulz et al. 2007; Morgan et al. 2010; Kishi et al. 2008; Harding et al. 2003).

5.2.1.2 Dihydrorhodaminel23 (DHR123)

DHRI123 is based on the rhodamine fluorophore and is frequently used as a ROS
probe (Fig. 5.1b). DHR123 readily crosses cellular plasma membranes and thus
will likely distribute in the cytosol. DHR123 appears to suffer from many of the
problems already described for DCFH and the intracellular reactivity of DHR123
is complex and poorly understood. Like DCFH, DHR123 has been shown to have
very low intrinsic reactivity towards H,O, and O, (Hempel et al. 1999). Instead,
the reaction of DHR123 with H,0, is dependent on catalysis and was shown to be
mediated by peroxidases and oxidases, including xanthine oxidase (Hempel et al.
1999). Consequently, differences or changes in the expression level of peroxidases
and oxidases may affect intracellular DHR123 oxidation. Like DCFH, DHR123
is susceptible to photo-oxidation. Following oxidation, the positively charged and
hydrophobic product, rhodamine123, accumulates in the mitochondrial matrix due
to the negative potential of the mitochondrial inner membrane (Johnson et al.
1981). Therefore, the extent of matrix accumulation may be affected by changes
in mitochondrial membrane potential (Johnson et al. 1981). Finally, it should be
noted that the level of MRP expression is known to influence the intracellular
concentration of rhodamine123 (Ludescher et al. 1992).

5.2.1.3 Hydroethidium (HE) and Mito-HE

Hydroethidium (HE) and Mito-HE (known as MitoSOX™ Red) are commercialized
as probes specific for O, (Fig. 5.1c). MitoSOX™ Red is an HE derivative with a
triphenylphosphonium (TPP) moiety for mitochondrial targeting. Photo-oxidation
of HE is ten times more rapid than that of DCFH and DHR123, leading to high
background fluorescence (Buxser et al. 1999). It has been shown that HE can
react directly with ferricytochrome ¢ (Benov et al. 1998) and similar to DCFH and
DHR123, HE may be oxidized by peroxidases (Wardman 2007). However, recent
work suggests that O, ~-mediated HE oxidation can be measured more specifically.
It is believed that HE initially interacts with heme proteins to form an ethidium
radical (HE ™) intermediate, independent of the presence of O, (Robinson et al.
2006). By radical coupling with O, the intermediate can further oxidize to yield
2-hydroxy-ethidium (HO-E™). In contrast, one electron oxidation by other electron
acceptors generates ethidium (E™), in a reaction possibly mediated by heme proteins
(Robinson et al. 2006). Both oxidation products rely on intercalation into DNA to
become highly fluorescent. The much faster rate of radical coupling compared to
one electron oxidation likely ensures that HO-E1, rather than ET, is the dominant
product that results from the interaction with O, ™ (Robinson et al. 2006). Thus,
for specific detection of O, it is crucial to differentiate between the two different
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oxidation products. The different excitation wavelengths (385—405 and 480-520 nm
for HO-E™ and E™, respectively) may allow to discriminate between the two species
(Robinson et al. 2006, 2008). However, in nearly all previous studies using HE or
MitoSOX™ Red, fluorescence excitation was in the 480-520 nm range, therefore
E* rather than HO-ET was measured, and it remains unclear if O, production
was specifically detected. Astrocytes expressing a superoxide dismutase mutant
associated with amyotrophic lateral sclerosis were shown to exhibit increased HO-
E™ generation (Robinson et al. 2008).

5.2.1.4 Hydrocyanine-Based Probes

Reduced cyanine-based probes known as hydrocyanines, e.g. Hydro-Cy3 and
Hydro-Cy7, fluorescent in the NIR range, were recently employed as ROS probes
(Kundu et al. 2009). Hydrocyanines can be obtained by NaBH4-mediated reduction
of commercially available cyanine dyes. Similar to other hydro-type probes,
reduction disrupts -conjugation of the cyanine fluorophores, making them non-
fluorescent. In vitro, direct oxidation by O, or HO- recovered the original cyanine
fluorophore (Fig. 5.1d). Hydro-Cy3 was found to be oxidized in live cells and tissue
explants in response to angiotensin II and lipopolysaccharide (LPS) stimulation,
respectively (Kundu et al. 2009). Hydro-Cy7 oxidation was observed in vivo during
acute inflammation in LPS-treated mice (Kundu et al. 2009). However, in each
case, it remains unclear which ROS are driving probe oxidation. Further probe
characterization is required to understand the mechanism of oxidation and to assess
specificity and pharmacokinetics.

5.2.2 Fluorescent Probes Selective to Oxidants

Recently, chemical fluorescent probes which promise much greater ROS specificity
have been developed (Chen et al. 2011). The deliberate design of chemical moieties
which react directly and selectively with defined redox species forms the basis for
this group of probes. Although these probes should be preferable over hydro-type
probes, most of them are not yet commercially available. Several of these probes
have so far only been described in one publication and thus remain incompletely
characterized, especially in terms of their in vivo applicability.

5.2.2.1 0O, -Selective Fluorescent Probes

The probe 4, 5-dimethoxy-2-nitro-benzenesulfonyl tetrafluorofluorescein (BESSo)
becomes fluorescent in the presence of O, (Maeda et al. 2007). Fluorescence
is initially quenched because the fluorescein hydroxyl group is protected as a
4, 5-dimethoxy-2-nitro-benzenesulfonyl (BES) ester. Nucleophilic substitution of
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Fig. 5.2 Fluorescent probes selective for superoxide (a), hydrogen peroxide (b) and hROS (c)

the sulfur atom in the BES ester by O, ™ releases the highly fluorescent tetraflu-
orofluorescein (Fig. 5.2a). In vitro experiments suggest that BESSo has little
reactivity with a wide range of other redox species, including the dominant cellular
nucleophile GSH. An acetoxymethyl derivative of BESSo, which allows for more
efficient cellular loading, was used to detect O, generation in activated human
neutrophils and following butyric acid treatment of Jurkat T cells (Maeda et al.
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2007). The reaction rate of BESSo oxidation by O,™ has not yet been determined.
Thus, the ability of the probe to compete with endogenous O, ™ scavenging systems
remains unclear. This aspect may be especially important when studying processes
generating low levels of O, ™.

5.2.2.2 H,;0,-Selective Fluorescent Probes

The selective detection of H,O, has been accomplished by the use of three
different chemical strategies. The first strategy utilizes aryl boronate cages as
protecting groups. H,O, selectively opens the boronate cage, thus deprotecting
the fluorescent dye (Fig. 5.2b). This principle forms the basis for a series of
H,O, probes with various spectral and chemical properties, as described below.
Probes with a range of different fluorescence emission wavelengths have been
created, offering much greater flexibility for making simultaneous measurements
with other probes, or potentially for parallel HO, measurement in more than one
subcellular compartment (Albers et al. 2008; Dickinson et al. 2010). Aryl boronate
cage-based probes based on fluorescence resonance energy transfer (FRET) (e.g.
Ratio Peroxyfluor-1) or internal charge transfer (ICT) (e.g. Peroxy Lucifer-1) have
also been generated (Albers et al. 2006; Srikun et al. 2008). These probes enable
ratiometric measurement which reduces concerns relating to differential cellular
probe accumulation. Further, targeting of these probes to the mitochondrial matrix
and nucleus has been demonstrated, thus enabling a certain degree of compartment-
specific HO, detection. (Dickinson and Chang 2008; Srikun et al. 2010; Dickinson
et al. 2011a, b). NucPE1, which localizes to the nucleus, has been used for H,O,
detection in C. elegans (Dickinson et al. 2011b).

A new type of cyanine, QCy7, which fluoresces in the near-infrared region,
has also been developed to utilize the boronate-cage protection mechanism for
H,0, detection (Karton-Lifshin et al. 2011). —conjugation in the fluorophore is
disturbed by caging with a boronic acid benzyl ether, resulting in fluorescence
quenching. The reaction with HyO, drives the release of the caging moiety to
generate highly fluorescent, deprotected QCy7. A QCy7-based H,O, probe has
already been applied to a mouse model of inflammation, and a fluorescent signal
was observed in inflamed tissues (Karton-Lifshin et al. 2011).

The boronate cage protection strategy has also been extended to a biolumine-
scence-based probe (Van de Bittner et al. 2010). PeroxyCaged Lucifecin-1 (PCL-1)
is a firefly luciferin derivative that is unreactive towards luciferase. Its reaction with
H,0, leads to the selective removal of the boronate cage, releasing luciferin which
then acts normally as a substrate for luciferase, thus producing a bioluminescent
readout. PCL-1 was used to show H,O, production in an LNCaP-luc tumor
xenograft model following testosterone stimulation (Van de Bittner et al. 2010).

Some boronate-based probes have the disadvantage that they react with H,O,
rather slowly, with rate constants of ~1 M~! s™! in vitro, as shown for Peroxy
Green-1 (PG1) and Peroxy Crimson (PC1). It is not clear what drives the observed
fluorescence increase of these probes in cellulo given that the highly abundant and
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efficient H,O, scavenging enzymes (rate constants up to 10’—108 M~! s™!) should
almost completely outcompete the probes’ reaction with H,O, (Rhee et al. 2010).
Further, it should be noted that phenyl boronates were recently shown to react much
more efficiently with ONOO™ and HOCI than with H,O, (Sikora et al. 2009),
which may be an important consideration when applying boronate-based probes
to inflammation models.

The second chemical strategy for the detection of H,O, is the use of a benzil
(dibenzoyl) moiety, which selectively reacts with HO, to form benzoic anhydride
via a Baeyer-Villiger reaction and subsequent hydrolysis. The only probe currently
based on this mechanism, NBzF, has a much larger fluorescence enhancement
ratio than boronate-based probes due to stronger fluorescence quenching prior to
the reaction (Abo et al. 2011). NBzF is able to detect physiologically relevant
signaling concentrations of H,O, as demonstrated in epidermal growth factor
(EGF)-stimulated A431 cells (Abo et al. 2011).

A third strategy for the detection of H,O, involves peroxalate nanoparticles,
which carry a peroxylate ester and a fluorescent dye (Lee et al. 2007). One advantage
of this probe is light-source independence. The peroxalate ester is thought to react
with H,O, specifically, giving rise to a high energy dioxetanedione intermediate
which excites the dye to emit in the NIR range. Another advantage of this
probe is that the fluorescence emission wavelength can be tuned by the choice of
different fluorescent dyes. Fluorescence emission from peroxalate nanoparticles was
observed in a mouse inflammation model (Lee et al. 2007).

5.2.2.3 hROS-Selective Fluorescent Probes

2-[6-(4’-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF) and 2-[6-(4'-
amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) have been introduced
as probes for highly reactive oxygen species (hROS) (Setsukinai et al. 2003).
The intrinsic fluorescence of HPF and APF is quenched by the protection of
the phenolic hydroxyl group at the 6’-position of fluorescein by electron-rich 4-
hydroxyphenoxyl and 4-aminophenoxyl groups, respectively. Upon reaction with
hROS, an O-dearylation reaction releases fluorescein (Fig. 5.2c) (Setsukinai et al.
2003). HPF is known to react selectively with HO- and ONOO™ to become highly
fluorescent (Setsukinai et al. 2003). In addition to HO- and ONOO™, APF also reacts
with HOCI, thus HOCI production can be infered by comparison between APF
and HPE. Both probes are highly resistant to photo-oxidation. Although HPF and
APF have clear advantages for detecting hROS, the fluorescent product fluorescein
can be transported out of cells. Intracellular retention of APF was improved by the
introduction of two imino-diacetic acid groups, yielding APC (Izumi et al. 2009).
This simple concept of increasing cellular retention by introducing negative charge
to yield a calcein—based structure may serve as a general strategy to increase the
sensitivity of fluorescent probes in living cells (Izumi et al. 2009).



5 Fluorescent Imaging of Redox Species in Multicellular Organisms 135

MitoHR and MitoAR are based on the rhodamine fluorophore. The positive
charge of rhodamine drives localization to the mitochondrial matrix. One advantage
of rhodamine-based probes is a general resistance to laser irradiation-induced
photo-bleaching, making them especially suitable for fluorescence microscopy
(Koide et al. 2007). The intrinsic probe fluorescence is quenched by the electron
rich 4-hydroxyl- and 4-aminophenyl ether moieties. Reaction with hROS leads to
cleavage of the ether moiety, giving rise to 2-hydroxymethyl tetramethylrhodamine
(HMTMR), a highly fluorescent product (Fig. 5.2c¢) (Koide et al. 2007). MitoHR
mainly reacts with HO-, and to a lesser extent with ONOO™ and HOCI, whereas
MitoAR reacts with HO- and HOCI, and to a lesser extent with ONOO™. MitoAR
was shown to detect myeloperoxidase (MPO)-derived HOCI in HL60 cells (a human
promyelocytic leukemia cell line) stimulated with H,O,, but not in HeLa cells
(which do not express MPO) (Koide et al. 2007).

There are several fluorescent probes considered to detect HOCI specifically,
including sulfonaphthoaminophenyl fluorescein (SNAPF), which emits in the NIR
region (Shepherd et al. 2007). Similar to the protection mechanism employed in
APF, the fluorescence of the unreacted probe is quenched by a 4-aminophenoxyl
moiety. In SNAPF, but apparently not APF, this moiety is selectively removed by
reaction with HOCI. SNAPF has been used in vivo to demonstrate HOCI production
in a mouse peritonitis model (Shepherd et al. 2007).

HySox is also designed to specifically detect HOCI and is based on a ring-
opening mechanism (Kenmoku et al. 2007). It is initially colorless and non-
fluorescent because of a closed ring structure that disrupts —conjugation in
the fluorophore. Upon oxidation of the sulfur atom in the five-membered ring
structure, the rhodamine fluorophore is formed. An advantage of this probe is the
complete absence of fluorescence in the unreacted molecule. Thus, any increase
in fluorescence can be ascribed with a high degree of certainty to HOCI rather
than other factors such as unreacted probe accumulation. This property of HySox
leads to excellent signal-to-background ratios in contrast to probes that contain
the mature fluorophore prior to activation and thus can generate high background
signals by simple accumulation (Kenmoku et al. 2007). HySox has been used to
detect HOCI production in activated neutrophils (Kenmoku et al. 2007). The same
principle has been extended to the NIR fluorophore MMSiR and its water-soluble
analogue, wsMMSIR. These are based on the Si-rhodamine NIR fluorophore, and
have enabled HOCI detection in vivo in a mouse peritonitis model (Koide et al.
2011).

Several fluorescent probes are considered to specifically detect ONOO™. Mech-
anistically, these probes are based on either nitration (NiSPY-1) (Ueno et al.
2006), formation of a dienone from a trifluoromethyl ketone (HKGreen-1 and
HKGreen-2) (Yang et al. 2006; Sun et al. 2009) or selenium oxidation (CyP-
Se) (Yu et al. 2011). Of these, HKGreen-2 and CyP-Se, based on BODIPY and
cyanine fluorophores, respectively, were applied to demonstrate ONOO™ generation
in stimulated macrophages (Sun et al. 2009; Yu et al. 2011). As CyP-Se fluoresces
in the NIR region, it may have potential for future applications in vivo.
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The cyanine-based probe FOSCY-1 consists of two fluorophores, Cy5SOsH and
the Cy7-based IR786S (Oushiki et al. 2010). Fluorescence is quenched by self-
stacking between the two hydrophobic fluorophores. Activation of fluorescence is
based on the different reactivities of Cy5 and Cy7 to a range of ROS. Upon oxidation
of the IR786S moiety by HO-, ONOO™ or HOCI, and to a lesser extent by O, ™, the
Cy5 moiety becomes fluorescent due to the loss of intramolecular stacking. FOSCY-
1 has been successfully used to detect ROS production in an in vivo peritonitis model
(Oushiki et al. 2010). Although reactive to a broad range of ROS, the oxidation
mechanism of this probe suggests that one advantage may be a very slow rate of
photo-oxidation.

5.2.2.4 NO- Selective Fluorescent Probes

NO--selective fluorescent probes are based either on an o-phenylenediamine moiety
or a metal complex. The former are indirect NO- probes because they actually
react with nitrosonium equivalents (NO*/N,03) to generate a triazole (Fig. 5.3a).
It is assumed that in the presence of molecular oxygen, nitrosonium equivalents
are continuously generated from NO-: (Ignarro et al. 1993) and can be taken as a
proxy for NO-. The diaminofluorescein (DAF) probes are based on this principle
(Kojima et al. 1998a, b, 1999). DAF2-DA has been used to detect NO- production
in the CAl region of hippocampus brain slices following stimulation with N-
methyl-D-aspartic acid (NMDA) (Kojima et al. 1998b). However, DAF2-DA suffers
from pH sensitivity and susceptibility to photo-bleaching. DAF-FM was developed
to be less sensitive to pH and photo-bleaching than DAF2. Using a di-acetate
derivative of DAF-FM, changes in NO-: production were observed in the notochord
and caudal fin of developing zebrafish (Lepiller et al. 2007). However, it remains
to be unambiguously demonstrated that the changes observed with DAF-FM-DA
are solely a result of NO- production rather than a differential accumulation of the
unreacted probe or fluorescent product. Diaminorhodamine (DAR)-4M, based on
the rhodamine fluorophore, is less sensitive to photo-bleaching and pH changes than
any of the DAF probes (Kojima et al. 2001). DAR-4M has been used to demonstrate
cell layer-specific NO- production in freshly prepared mouse cortical slices upon
NMDA stimulation (Imura et al. 2005).

Although the DAF and DAR probes are promising tools for detecting intracellu-
lar NO- in cell culture or transparent model organisms, they have the disadvantage
of limited cellular retention, thus decreasing their sensitivity for NO- detection. This
problem has recently been overcome by the introduction of imino-diacetic acid
groups into DAF4, producing dichloro-diamino-calcein (DCI-DA-Cal). DCI-DA-
Cal was found to be more sensitive than DAF2 in detecting NOS-generated NO-
in bovine aortic endothelial cells upon bradykinin stimulation (Izumi et al. 2009).
Cyanine-based diaminocyanine (DAC)-P and DAC-S have also been created to
enable NO- detection in the NIR region. DAC-P detected NO- release in isolated rat
kidneys perfused with the NO--generating compound NOC13 (Sasaki et al. 2005).
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Fig. 5.3 Fluorescent probes selective for nitric oxide based on o-phenylenediamine (a) or metal
complex (b)

In contrast to o-phenylenediamine-based probes, metal complex-based probes
detect the NO- radical directly (Fig. 5.3b). To date, all probes developed in this
class consist of a fluorophore ligand coordinating a paramagnetic Cu®* ion, which
quenches the fluorescence of the fluorophore. Reduction of Cu?>* to Cu™ by
NO-. releases a nitrosylated and highly fluorescent fluorophore ligand. CuFL, a
fluorescein-based probe based on this mechanism has been reported to detect NO-
generated by constitutive and inducible NOS in SK-N-SH human neuroblastoma
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cells and Raw264.8 murine macrophages, respectively (Lim et al. 2006). In a direct
comparison with DAF2-DA, CuFL generated a brighter signal in response to ctNOS
activation. The intracellular retention of Cu-based NO- probes has been improved
with the development of Cuy(FL2A), in which two additional negative charges
have been introduced (McQuade et al. 2010). Cu,(FL2E) contains two carboxylic
acids protected as ethyl esters which can be cleaved by intracellular esterases.
Despite the fact that this probe needs to react with two NO- molecules in order
to become fluorescent, its improved cellular retention renders it more sensitive to
NO-: than CuFL. Application of Cu,(FL2E) to murine olfactory bulb brain slices
successfully detected cell layer-specific NO- generation (McQuade et al. 2010).
Another probe utilizing a Cu-based quenching mechanism, MNIP-Cu, is based on
the 4-methoxy-2-(1H-naphtho [2,3-d] imidazol-2-yl) phenol (MNIP) fluorophore
(Ouyang et al. 2008). Reaction with NO- generates N-nitroso MNIP as an NO-
reaction-specific fluorescent product. MNIP-Cu does not seem to exhibit acute
in vivo toxicity. MNIP-Cu injection has been applied to a mouse liver injury model,
where a NO--dependent fluorescent increase was detected in cryosections in situ
(Ouyang et al. 2008).

5.2.3 Fluorescent Probes Reactive to Thiols

The compartment-specific concentration and redox state of intracellular glutathione
is one of the key elements of cellular redox homeostasis. Chemical probes for
glutathione are only able to measure relative differences in the concentration
of free GSH. Such probes must be membrane-permeable and should be able
to discriminate GSH from other thiol-containing molecules, in particular protein
thiols and cysteine. Only monochlorobimane (mBCl), i.e. syn-(1-chloroethyl)-1,5-
diazabicycla[3.30]acta-3,6,-diene-2,8-dione, is commercially available at this time,
although several other fluorescent probes for the detection of intracellular GSH have
been reported (Chen et al. 2010). mBCl is essentially non-fluorescent until it forms
a strongly fluorescent glutathione-bimane adduct. Adduct formation is catalyzed
by intracellular glutathione S-transferases (GSTs) and it is typically assumed that
mBCl reacts mainly with cytosolic GSH, due to the abundance of GST activity
in this compartment. mBCl is frequently applied to measure relative differences
in cytosolic GSH concentration between cell types. However, when making such
comparisons it is necessary to ensure that the fluorescent signal has reached a
‘plateau’ level for all samples. Otherwise, the measurements can be affected by cell-
type specific differences in GST activity, which influence the rate of fluorescence
accumulation but should not alter the final fluorescence intensity. When mBCl
was applied to measure the distribution of GSH concentrations in cancer cells
from a primary tumor, substantial variability in mBCl fluorescence was observed
(Rice et al. 1986; Cook et al. 1991). Further, cell-type specific mBCl fluorescence
was observed by microscopy in both plant tissues and brain slices (Keelan et al.
2001; Meyer and Fricker 2000; Meyer et al. 2001; Sun et al. 2006). As a note of
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caution, mBCl is routinely used to measure the activity of glutathione conjugate
transporters (Ishikawa et al. 1994), whose expression varies between cell types and
situations. Thus the process of glutathione-bimane adduct efflux likely influences
the intracellular fluorescence to different extents in different cell types. Further, the
general specificity of mBCl for glutathione has been questioned (van der Ven et al.
1994).

5.3 Genetically Encoded Redox Probes and Their
Applications

Genetically encoded probes have two major advantages over currently available
chemical probes. These are (i) precise targeting and (ii) redox species specificity.
In principle, genetically encoded probes can be accurately targeted to almost any
subcellular location. This is achieved either by the addition of appropriate targeting
sequences or via translational fusion to a protein which localizes to the cellular
location of interest. Redox species specificity is not an inherent property of all
genetically encoded probes but is typically realized by the incorporation of an
oxidant-specific protein domain within the probe structure, which serves to couple
the probe response to a defined redox species. Current genetically encoded redox
probes can be categorized by their mode of operation, into the following four
classes:

1. Fluorescent proteins (FPs) that have been engineered to be redox sensitive by
placement of a pair of cysteines onto the surface of the beta barrel. There are two
archetypes in this class: redox-sensitive yellow fluorescent protein (rxYFP) and
reduction-oxidation-sensitive green fluorescent protein (roGFP).

2. Fusion proteins based on the redox-sensitive FPs in class 1. They are engineered
redox relays in which a redox enzyme is translationally fused to a redox-sensitive
FP in order to catalyze its equilibration with a defined redox pair. This class
includes the Egsy probe Grx1-roGFP2 and the H,O, probe roGFP2-Orpl.

3. Probes based on a FP that is not redox sensitive in itself but is responsive to
conformational changes in a redox-sensitive protein domain to which it is fused.
The best known example being the H,O, probe HyPer.

4. FRET probes which either make use of thiol-containing peptide linkers or redox-
sensitive protein domains to modulate the spatial arrangement of two FPs which
make up a donor-acceptor FRET pair.

Representatives of the four classes are listed in Table 5.3 and those of particular
interest will be discussed briefly in the following subsections. Aspects that have
been covered in recent reviews (Meyer and Dick 2010; Morgan et al. 2011;
Bjornberg et al. 2006a), in particular molecular mechanisms, thermodynamic
considerations, and principles of ratiometric fluorescence measurements, will not
be discussed here.
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In the following discussion of genetically encoded probes we have not included
circularly permuted YFP (cpYFP), which has been suggested to be responsive to
the presence of O, ™ (Wang et al. 2008). The validity of this suggestion remains
controversial (Muller 2009; Schwarzlander et al. 2011; Huang et al. 2011), with
the main issue being that cpYFP is inherently highly pH sensitive. Therefore, it
is conceivable that a pH response has been misinterpreted as a O, ™ response
(Schwarzlander et al. 2011). pH sensitivity must always be taken into account when
considering the use of cpYFP or cpYFP-based probes as discussed for HyPer below.

5.3.1 Fluorescent Proteins with an Engineered
Dithiol-Disulfide Pair

The founding members of this class are rxYFP (Ostergaard et al. 2004) and the
roGFPs 1 and 2 (Hanson et al. 2004; Dooley et al. 2004). Both types of probe
are engineered to contain a pair of cysteine residues, C149/C202 in the case of
rxYFP and C147/C204 in the case of the two roGFPs. In both instances, the
formation of a disulfide bridge between the engineered cysteine residues changes
the fluorescent properties of the protein, thus allowing the determination of the
redox state of the engineered dithiol-disulfide redox pair. When expressed inside
cells, both probes predominantly, if not exclusively, equilibrate with the glutathione
redox couple. Importantly, this equilibration is not a spontaneous process, but rather
depends on the catalytic activity of endogenous glutaredoxins (Grx) (Ostergaard
et al. 2004; Meyer et al. 2007). However, this implies that differences and changes
in endogenous Grx expression or activity may affect the state of the probe in a way
that does not properly reflect the actual Egsyy. This possibility must be kept in mind
when comparing different cell types or the same cell type under different conditions.

Applications in multicellular organisms have focused on roGFPs (roGFP1 and
roGFP2), rather than rxYFP, for two main reasons: (i) they allow ratiometric
measurements and (ii) the measured ratio is resistant to perturbation by changes in
pH and halide ion concentration. RoOGFP1 is based on wild type GFP and exhibits
a redox potential of about —290 mV, whilst roGFP2 is based on the brighter EGFP
and has a slightly less negative redox potential of about —280 mV. These low
midpoint potentials make both probes suitable for measurements in the cytosol,
nucleus, mitochondria, and peroxisomes. However, their utility is limited in the
more oxidizing environment of the endoplasmic reticulum (ER). For this reason,
roGFP variants with higher midpoint potentials (roGFP1-iX probes) have been
developed recently (Lohman and Remington 2008). Attempts to establish the use
of these probes in the ER are ongoing (Delic et al. 2010; van Lith et al. 2011).

The first application of roGFPs in a multicellular organism was in the plant
Arabidopsis thaliana. One early study asked if different cell types in the root
display recognizable redox differences; transgenic expression of cytosolic and
mitochondrially-targeted roGFP1 under a viral promoter apparently identified
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increased probe oxidation in the elongation zone of the root tip relative to the other
parts of the root (Jiang et al. 2006). Several studies have since applied roGFPs to
investigate the impact of stress conditions. Increased oxidation of roGFP2 was ob-
served in response to mechanical wounding of leaves (Meyer et al. 2007). Oxidation
of mitochondrial-targeted roGFP2 (mt-roGFP2) was visualized in seedlings exposed
to heat, salt and heavy metals (Schwarzlander et al. 2009). Apparent oxidation
of cytosolic roGFP1 was observed in response to water stress (Jubany-Mari et al.
2010) and dark-induced senescence in leaves (Rosenwasser et al. 2011). Finally, two
Arabidopsis studies combined redox imaging with genetic manipulations. Depletion
of mitochondrial manganese superoxide dismutase (MnSOD) led to increased
oxidation of mitochondrially-targeted roGFP1, but had no significant effect on
cytosolic roGFP1 in leaf epidermis cells (Morgan et al. 2008). Further, deletion
of all three Arabidopsis homologues of the Plasmodium falciparum chloroquine-
resistance transporter family led to increased cytosolic roGFP1 oxidation, but had
no effect on plastid-localized roGFP1. This study showed that the transporters have
a role in regulating cytosolic GSH levels, probably by mediating glutathione or y-
glutamylcysteine transport to the cytosol (Maughan et al. 2010).

The first application in mice was the expression of roGFP2 in the liver by
adenoviral gene transfer. Hepatic ischemia was found to induce roGFP2 reduction,
whilst subsequent reperfusion led to roGFP2 oxidation, the degree of which was
dependent on the length of the preceding ischemia and which correlated with
subsequent liver damage as assessed by caspase-3 activity and serum levels of
damage markers (Haga et al. 2009). So far, two kinds of roGFP-transgenic mice
have been reported. First, mice expressing mitochondrially-targeted roGFP2 in
dopaminergic neurons under the control of the tyrosine hydroxylase promoter have
been used for two photon imaging of midbrain slices. The results indicated that
roGFP2 in the substantia nigra is more oxidized than in the ventral tegmental area
(Guzman et al. 2010). Second, mice have been created to express roGFP2 under the
control of a B-globin mini-promoter, which mediates expression in red blood cells
(Xu et al. 2011). The authors concluded from their data that roGFP2 in red blood
cells becomes more oxidized with increasing cellular age.

Finally, roGFP1 has been expressed in the mitochondria of body wall muscle
cells in C. elegans with the aim of observing redox changes linked to the mitochon-
drial fusion associated proteins EAT-3 and FZO-1. Increased roGFP1 oxidation was
observed in strains containing mutant eat-3 alleles, but not in fzo-1 mutants (Johnson
and Nehrke 2010).

5.3.2 Fusion Proteins Based on roGFP

The observation that rxYFP and roGFPs require the activity of endogenous Grx
to equilibrate with the glutathione redox couple, led to the concept of genetically
fusing a Grx directly to the redox-sensitive FP. The advantage is twofold: first,
the resulting fusion protein is now a complete glutathione-specific biosensor,
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independent of endogenous enzymes. Second, the translational fusion increases
the effective concentration of Grx by 2-3 orders of magnitude relative to unfused
Grx, thus the rate of equilibration with the glutathione redox couple is strongly
enhanced. The first example in this class was the fusion of rxYFP to yeast Grx1p,
which was used to gain mechanistic insight into the reaction between Grx1p and
rxYFP in vitro (Bjornberg et al. 2006b). This study found that the fusion increased
the rate of GSSG-mediated rx YFP oxidation by a factor of 3,300 while the rate of
rx YFP oxidation mediated by other oxidants including cystine remained unchanged.
Thus, the Grx1p fusion also dramatically increased the specificity of rx YFP towards
glutathione. Based on this principle the ratiometric roGFP2 was fused to human
glutaredoxin-1; this construct was used to provide the first real-time measurements
of the glutathione redox potential in cellulo (Gutscher et al. 2008).

Subsequently the concept of roGFP-based bipartite redox relays was extended to
create a probe for HyO, (Gutscher et al. 2009). To this end, the GSSG-sensing Grx
domain was replaced with the H,O,-sensing oxidant receptor peroxidase 1 (Orpl)
protein. Orpl is well characterized as a sensitive and specific H,O, sensor protein
by which yeast cells regulate their transcriptional response to H,O,. Orpl appears
to contribute to H,O, tolerance only as a sensor and not as a conventional H,O,-
scavenging peroxidase (Delaunay et al. 2002). The physiological function of Orpl
is to convert H,O; into a disulfide bond and to relay that disulfide bond to a recipient
protein, the transcription factor Yapl, which is activated by oxidation. An adapter
protein, Ybpl, is required to bring Orpl and Yapl into proximity and position for
disulfide exchange. The key idea is to mimic the natural H,O,-Orpl-Yapl relay by
creating a HyO,-Orpl-roGFP2 relay. A peptide linker between Orpl and roGFP2
provides proximity and thus abrogates the need for an adaptor protein. Furthermore,
roGFP2 replaces Yapl, hence yielding a fluorescent instead of a transcriptional
response.

Both Grx1-roGFP2 and roGFP2-Orpl have been applied as in vivo probes in
multicellular organisms. First, transgenic expression of cytosolic Grx1-roGFP2 in
A. thaliana was applied to demonstrate the relative contributions of glutathione
reductase and the thioredoxin system to glutathione redox homeostasis (Marty et al.
2009). Second, four different lines of transgenic Drosophila have been created to
express either Grx1-roGFP2 in the cytosol or in mitochondria or roGFP2-Orpl
in the cytosol or in mitochondria. Of note, the domain order is critical for proper
mitochondrial expression in plants and insects. While Grx1-roGFP2 and roGFP2-
Grx1 are equivalent probes in terms of specificity, kinetics and dynamic range,
in plants and insects only the latter one can be properly targeted to mitochondria
(Albrecht et al., unpublished data). Living larvae from each of the four redox
probe lines were used in combination with reverse genetics and feeding experiments
(Albrecht et al. 2011). Interestingly, Egsy and H,O, levels were found to respond
independently of each other, in a subcellular compartment- and tissue-specific
manner. The pattern of changes that occurred varied according to the specific
chemical treatment or genetic modification studied. In addition a chemical redox
conservation method has been developed to prevent artificial roGFP disulfide-bond
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formation during tissue dissection and paraformaldehyde (PFA) fixation, thereby
allowing the imaging of optically-inaccessible tissue from non-transparent adult
flies (Albrecht et al. 2011).

5.3.3 Fluorescent Proteins Coupled to Redox-Responsive
Proteins Domains

Probes in this class include the H,O, probe HyPer (Belousov et al. 2006), and the
very recently introduced NADT/NADH probes Peredox (Hung et al. 2011) and Frex
(Zhao et al. 2011). All three probes allow ratiometric measurements.

HyPer is based on the bacterial H,O, sensor OxyR, which has been fused to
cpYFP. The OxyR domain is selectively oxidized by H,O, to form an intramolecular
disulfide bond. The resulting conformational change subsequently changes the
fluorescent properties of cpYFP. An improved variant, HyPer2, exhibits a wider
dynamic range and a faster response (Markvicheva et al. 2011). Although there
is no doubt that HyPer responds to H,O, in a sensitive and specific manner, the
significant pH sensitivity, which is inherent to cpYFP, should be given careful
attention, especially in the context of in vivo studies. The pH sensitivity of the HyPer
fluorescence ratio was already reported in the original publication (Supplementary
Figure 1 of Belousov et al. 2006), but only recently it has been documented that
HyPer measurements can be confounded by pH effects in cellulo (Roma et al. 2012).
A HyPer mutant with an inactivated H,O;-sensing domain (C199S) can be utilized
as a ratiometric pH probe (named ‘synthetic pH sensor’ = SypHer) (Poburko et al.
2011). In conclusion, if HyPer and SypHer are used in parallel experiments it should
be possible to discriminate between H,O, and pH mediated ratio changes.

To date, HyPer has been expressed in zebrafish, plants and C. elegans. General
cytosolic HyPer expression in zebrafish was achieved by injection of HyPer mRNA
into oocytes. Interestingly, following tail fin wounding, increased H,O, production
was observed at the wound edge, which extended up to 200 pm into the surrounding
tissue, creating a gradient of decreasing H,O, away from the wound margin
(Niethammer et al. 2009). Very recently a Src family kinase (SFK) was proposed to
act as a redox sensor in neutrophils which responds to the wounding-induced H,O,
gradient and mediates neutrophil recruitment to the wound site (Yoo et al. 2011).
HyPer was also expressed in A. thaliana; cytosolic and peroxisomally-targeted
HyPer was observed in epidermal leaf cells and stomatal guard cells (Costa et al.
2010) and used to suggest Ca>*-dependent peroxisomal H,O, scavenging.

Finally, HyPer was introduced into C. elegans. A plate-reader based method was
used to measure HyPer fluorescence. A slight increase in the HyPer fluorescence
ratio was observed in a longer lived SOD1 overexpressing strain which was inter-
preted as an increased steady-state H,O, level. This interpretation was supported by
an Amplex red assay performed on worm lysates (Cabreiro et al. 2011). Also HyPer
fluorescence was measured in aging C. elegans (Back et al. 2011). Differences in
HyPer fluorescence ratio were observed dependent upon the region of worm imaged.
Further an age-dependent increase in HyPer fluorescence ratio was observed, which
was delayed in calorically-restricted worms.
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Most recently, two genetically encoded probes for the NADT/NADH redox
couple have been developed. Both of them are based on the bacterial NADH-binding
protein Rex. The Peredox probe (Hung et al. 2011) uses two copies of the Thermus
aquaticus Rex protein, and interposed between them, the non-ratiometric cpGFP
variant T-Sapphire. A tandemly attached mCherry provides the ratiometric reference
for signal normalization. Peredox seems to report the NAD1T/NADH ratio. With a
pKa of about 5, T-Sapphire should be pH insensitive in the physiological range
of most cellular compartments. The Frex probe (Zhao et al. 2011) uses a tandem
dimer of the Rex protein from Bacillus subtilis in combination with the ratiometric
cpYFP. Thus, like other cpYFP-based probes, Frex is pH sensitive. Frex appears to
measure changes in NADH concentration, rather than the NADT/NADH ratio. As
these probes have just been reported in the literature, their in vivo/in situ application
in model animals is a task for the future.

5.3.4 FRET-Based Redox Probes

In comparison to the probes mentioned above, FRET-based redox probes are
the least investigated and their overall potential for in vivo studies is still to be
established. FRET probes are ratiometric by design, yet their dynamic range appears
to be quite limited. At least four FRET-based redox probes have been described in
the literature. All of them place a redox-sensitive peptide or protein domain between
the two FPs that make up the FRET pair.

In the family of RL-FRET probes, an a-helical linker peptide with four cysteine
residues separates ECFP from EYFP (Kolossov et al. 2008). Formation of disulfide
bonds within the a-helical linker increases FRET efficiency. The mid-point potential
of the variant RL7-FRET was determined as —143 mV suggesting that this probe
may find applications for measurements in the endoplasmic reticulum (Kolossov
et al. 2011). In the ‘Redoxfluor’ probe Cerulean and Citrine are separated by a
tandem repeat of the cysteine-containing 50-amino acid C-terminal peptide of the
yeast transcription factor Yapl. Here, disulfide bond formation decreases FRET
efficiency (Yano et al. 2010). In HSP-FRET the redox-sensitive heat shock protein
Hsp33 links CFP and YFP (Waypa et al. 2006). Oxidation of Zn>T-coordinating
thiols in Hsp33 leads to a conformational change (Jakob et al. 1999) which is
responsible for a change in FRET efficiency. Finally, FRET-MT places human
metallothionein (hMTIIa) between ECFP and EYFP (Pearce et al. 2000). The probe
primarily monitors binding and release of metal ions by MT. It was shown to
respond to NO- which triggers release of metal ions from MT. FRET-MT seems
to the only FRET-based redox probe that has been employed in a transgenic
multicellular context. Expression in the mouse lung was achieved by adenoviral
somatic gene transfer. The isolated lung was freshly imaged by confocal microscopy
and appeared to show hypoxia-induced NO- production (Bernal et al. 2008).
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All FRET probes have in common the problem of undefined specificity. Metal ion
binding and release by MT is likely influenced by a number of redox- and non-redox
processes. The Zn?>*-coordinating thiols of Hsp33 are known to react with various
oxidants, including H,O,, NO- and HOCI. The cysteine-containing peptides of RL-
FRET and Redoxfluor seem to equilibrate with GSH/GSSG, but it is unclear which
additional redox reactions may occur in vivo. It would seem important to define
which redox catalysts actually interact with the cysteines in the peptide linkers.
Redoxfluor is suggested to communicate with both the glutathione and thioredoxin
systems (Oku and Sakai 2012). It remains to be seen how mixed measurements of
various redox couples can contribute to the study of physiological processes.

5.4 Conclusions and Outlook

5.4.1 Problems and Considerations

In recent years there has been an explosion of interest in the use of chemical and
genetic probes to visualize redox species in vivo. There have been many publications
using many different redox probes in many different systems. However, in general,
very little comparison or cross-checking has been done and many examples of
contradictory results exist. In addition, very few examples of established probe
application methodology exist. This raises the questions: Which observations and
interpretations can be trusted? And what kind of errors can lead to false conclu-
sions? Obviously there are two major sources of human error. First, measurement
and/or data processing errors (e.g. the failure to recognize measurement artifacts)
and second, interpretation errors, typically based on the belief that the probe is
measuring what it is supposed to measure compounded by the lack of appropriate
control experiments. Here we give a few examples.

For most fluorescent probes, especially when applied on the level of tissues
and organisms, fluctuating signal-to-noise-ratios and auto-fluorescence are serious
issues. For example, when analyzing microscopic images based on ratiometric
genetic probes, it is critical to calculate the fluorescence emission ratios only for
those pixels that show above-background signals in both channels and which are not
affected by autofluorescence. Inappropriate image processing procedures can lead
to incorrect ratio images that indicate probe oxidation where there is in fact none.
Great care should be taken to obtain control images, to identify auto-fluorescence
signals and to avoid auto-fluorescent areas altogether.

In many situations and with many of the probes, interpretation of the measure-
ments is difficult. The interpretation of hydro-type probe oxidation is most difficult
because it can be influenced by factors unrelated to ROS, and the process of probe
oxidation may generate further oxidants. The in vivo distribution of small molecule
chemical fluorescent probes is usually unpredictable and uncontrolled. Systemic
administration may give rise to accumulation in certain locations, leading to areas
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of increased fluorescence that are unrelated to ROS production. Differential uptake
and efflux can lead to the possibility that probe fluorescence is observed at a site
different from the site of probe oxidation.

The response of genetically encoded probes should also be interpreted with
caution. In the case of the cpYFP-based probes it may be difficult to determine
if fluorescence changes are due to changes in pH rather than the redox species
of interest. A general concern that applies to probes which utilize two different
fluorescent proteins (e.g. FRET probes) is that differences in pH sensitivity,
maturation rate and photo-stability can lead to measurement artifacts (Miyawaki
2011).

Interpretation issues can also arise when genetically-encoded probes are adapted
for use in other subcellular compartments. For example, roGFPs predominantly
equilibrate with the glutathione redox couple, but this requires the presence of
Grxs. Nonetheless, roGFP1-iX probes are increasingly being applied with the aim of
measuring Eggsy in the ER, which is not known to harbor any Grxs, thus it is unclear
what is actually measured by these probes. Instead, the ER harbors a protein thiol
oxidizing machinery and a host of protein disulfide isomerases (PDIs) involved in
thiol oxidation, disulfide reduction and isomerization. At present it not known to
what extent roGFP1-iX probes interact with any of these factors. Therefore, the
assumption that roGFP1-iX probes report Egsy in the ER is at best premature.

5.4.2 Future Developments

Evidently, more detailed probe characterization and especially cross-checking
would be of great interest and utility to the redox biology field. It should be
possible to compare a panel of different probes (chemical and genetic, e.g. all probes
considered to respond to H,O,) in the same experimental system and compare
the responses under various conditions and treatments. Such experiments should
initially be performed in a cell culture setting, but ultimately could be extended to
in vivo applications.

We are still along way from obtaining the goal highlighted in Sect. 4.1.1 of being
able to image any redox species of interest, in a defined subcellular compartment,
with high temporal resolution in a multicellular organism. Below we describe a
wish-list of developments which we believe are reasonable to expect in the near
future and which are likely to make a substantial contribution to the study of redox
biology.

5.4.2.1 Further Development of Chemical Probes
» Targeting: very few possibilities exist to target chemical probes to defined

subcellular compartments of interest. The recently developed SNAP-tag tech-
nology offers the possibility to target chemical probes to specific locations,
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with the limitation that this approach relies on prior genetic manipulation.
A protein residing in the location of interest is genetically fused to a mutant O6-
alkylguanine-DNA alkyltransferase, which reacts specifically and rapidly with
benzylguanine (BG) derivatives. Fluorescent probes containing a BG moiety will
be retained in the specific location of the SNAP-tag (Srikun et al. 2010). The
SNAP-tag principle may be applicable to a range of chemical ROS probes.

* Reaction rate: in order to react with oxidants, chemical probes must compete
with endogenous oxidant-scavenging systems. At present, ROS-specific chem-
ical probes have very low reaction rates, and fluorescent signals accumulate
slowly. Ideally, novel probes would combine ROS specificity with greatly
enhanced reaction rates.

5.4.2.2 Further Development of Genetic Probes

* Multi-color redox imaging: the development of a redox-sensitive red fluorescent
protein (RFP) would greatly enhance the possibilities for making simultaneous
measurements of different redox species or of the same redox species in different
subcellular compartments.

* Novel probe specificities: genetically encoded probes for several key biological
redox species are still lacking. Most prominently, probes for the oxidants NO-
and O, ™, and for the redox couples NADPH/NADPT, thioredoxin (ox/red) and
ascorbate/dehydroascorbate, do not currently exist.
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Chapter 6
Redox Proteomics

Alexandra Miiller and Lars 1. Leichert

Abstract In the presence of oxidative and nitrosative stress, proteins can undergo
oxidative modification. A large variety of such modifications have been identified
to date, including carbonylation, oxidation of aromatic amino acids, methionine
sulfoxidation, and cysteine oxidation. While unintended oxidative modifications
most often lead to the damage of the affected proteins, oxidative modifications also
play important roles in cellular redox sensing. Classical redox sensor proteins use
reversible oxidative modifications to change their activity in response to a changing
redox environment. These redox sensors are the focus of oxidative stress research
and have been identified in all three kingdoms of life. They are involved in a
wide variety of cellular processes ranging from central energy metabolism over
protein quality control to the regulation of the oxidative stress response. Proteomic
methods have been used to globally monitor the oxidation state of these redox
sensors and to identify novel redox sensitive proteins. These methods can help us in
understanding redox regulation and the role of protein oxidation under physiological
and pathological conditions. In this chapter, we will provide an overview of the
different oxidation products of amino acid side chains in proteins, discuss examples
of their physiological relevance and present a selection of global methods to identify
them. We put an emphasis on quantitative proteomic methods that are able to
identify targets of oxidative modifications down to the amino acid.
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6.1 Introduction: Reactive Oxygen Species, Oxidative Stress,
and Cellular Defense Strategies

6.1.1 Reactive Oxygen Species and Redox Homeostasis

The oxygen-rich atmosphere of present-day earth has emerged some 2.4 billion
years ago, when cyanobacteria first started to use water as electron source during
photosynthesis (Buick 2008). Thus, molecular oxygen became available as an
electron acceptor for metabolic processes such as respiration, which is energetically
highly favorable compared to anaerobic fermentation and therefore regarded as a
prerequisite for the evolution of multicellular life-forms (Buick 2008; Donoghue
and Antcliffe 2010). However, oxygen utilization is a two-edged sword as molecular
oxygen is a highly reactive element and its utilization in the respiratory chain and
in oxidizing enzymes is accompanied by the generation of reactive oxygen species
(ROS) (see Chambers et al. 1985; Turrens 2003 for a comprehensive review). ROS
have the potential to damage virtually all cellular macromolecules including DNA,
proteins, lipids, and carbohydrates. Three well-studied and common ROS in cellular
systems are superoxide (O, ™), hydrogen peroxide (H,O;), and the hydroxyl radical
(HO"). They correspond to the reduction of molecular oxygen by one, two, or three
electrons and differ with respect to reactivity, half life, and abundance. Superoxide
(O,7) reacts quite specifically with iron-sulfur clusters and possesses a half life of
0.05 s at 0.1 M concentration (Fridovich 1983). The probably most stable ROS is
hydrogen peroxide (H,0,) (Pryor 1986). Like superoxide, H, O, is mainly generated
as a result of oxygen reduction in the respiratory chain but may also be produced
by oxygenases and in the endoplasmic reticulum during disulfide bond formation
(Gross et al. 2006; Kuthan and Ullrich 1982; Loschen et al. 1971). HO-, which
may be generated through biologically relevant Fenton chemistry, i.e. the reduction
of hydrogen peroxide catalyzed by redox-cycling metal ions, occurs at very low
concentrations and possesses a half life as low as 10~ s (Halliwell and Gutteridge
1989; Sies 1993). Nevertheless, HO' is regarded as the most harmful of these ROS
because it reacts instantly with any cellular macromolecules in its vicinity. It is
thought that in non-photosynthetic organisms, ROS are predominantly generated in
the respiratory chain, whereas in photosynthesizing cells the photosystems are by far
the main contributors of partially reduced oxygen (Halliwell and Gutteridge 1989;
Ivanov and Khorobrykh 2003).

Because proteins are the most abundant targets of ROS in the cell, organisms
have evolved sophisticated defense strategies to protect them against the con-
sequences of oxidative damage (Rinalducci et al. 2008). These cellular defense
strategies basically act on three different levels: prevention of ROS formation,
interception, and repair or removal of damaged proteins (Fig. 6.1). Prevention
of ROS formation includes the chelation of metals that could otherwise drive
radical-forming reactions, protection from radiation by specialized pigments, and
structural hindrance of radical release by enzymes that are generally prone to radical
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Fig. 6.1 Protein damage and redox regulation in cells exposed to oxidative stress. Endogenous or
exogenous oxidative stress leads to the accumulation of reactive oxygen species (ROS) within the
cell. These ROS lead to protein oxidation. While typical (non-redox) proteins are damaged by ROS
and need to be repaired or degraded, redox sensor proteins alter their activity upon oxidation and
often protect cells from oxidative stress. One example would be the redox-regulated chaperone
Hsp33, which can prevent protein aggregation under severe oxidative stress conditions. If the
redox-sensing protein is a regulator, it can induce different cellular pathways. A prominent example
of this mechanism is the induction of the oxidative stress response in E. coli following oxidation
of the regulator OxyR

formation as for example ribonucleotide reductase (Reichard and Ehrenberg 1983;
Sies 1993). When generation inside the cell cannot be prevented or when organisms
are exposed to exogenous oxidative stress, cells can remove ROS through enzyme-
based decomposition or by the help of small-molecule antioxidants (Halliwell
and Gutteridge 1989). Superoxide dismutase converts superoxide to oxygen and
hydrogen peroxide. The latter is further dismutated to oxygen and water by catalase
or reduced by peroxidase (Chance et al. 1979). These systems are supported by non-
enzymatic antioxidants such as glutathione, ascorbic acid, a-tocopherol, flavonoids,
and carotenoids. They work in concert with the thioredoxin and the glutaredoxin
systems (Holmgren 1989). The thioredoxin/thioredoxin reductase system has been
identified in all kingdoms of live. Thioredoxins are small proteins with a highly
conserved Cys-Gly-Pro-Cys motif, which is exposed at the surface. They exhibit a
highly reducing redox-potential, which allows rapid reduction of oxidized cysteine
thiols under conditions of increased oxidative stress. This reduction is accompanied
by the formation of a disulfide bond within the Cys-Gly-Pro-Cys motif, which
is then re-reduced by thioredoxin reductase in an NADPH-dependent manner.
Glutaredoxins are related small redox proteins with a similar active site consisting
of two cysteines. In contrast to thioredoxins, however, glutaredoxins are reduced
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non-enzymatically by the tripeptide glutathione (Holmgren 1989). As long as ROS
production does not exceed the capacity of these defense systems, the thiol-disulfide
ratio remains fairly stable (Ghezzi et al. 2005). If the exposure to ROS lasts,
detoxifying and repairing systems become overwhelmed and irreversibly modified
proteins may accumulate under these conditions. These are then subjected to the
cellular degradation machinery, which represents the third level of the oxidative
stress defense strategies (Grune and Davies 1997; Sies 1993).

6.1.2 Oxidative Stress

However, under certain circumstances, for example under nutrient deficiency,
disease, and infection by pathogens, the above mentioned systems may be over-
whelmed by ROS, a condition termed oxidative stress (Halliwell and Gutteridge
1989; Sies and Cadenas 1985). This imbalance between ROS generation and proper
disposal by cellular defense strategies has been proposed to be one of the underlying
mechanisms of aging (Harman 1956). Additionally, a variety of diseases has been
linked to oxidative stress for a long time, among them neurological diseases, such
as Alzheimer’s and Parkinson’s, as well as cardiovascular diseases, including heart
failure and stroke (Alexandrova and Bochev 2005; Dai et al. 2011; Ogawa et al.
2002). However, in many cases it is still not clear, if oxidative stress is one of
the causes or a symptom of these diseases, spawning the development of global
and targeted methods to determine the mechanism of cell damage and to study the
oxidative damage to biomolecules.

6.1.3 Redox Sensing

Over the past decades it has increasingly been realized that reactive oxygen species
not only produce oxidative stress and cause damage of cellular components but also
serve as potent signaling molecules involved in important cellular processes, in-
cluding cell proliferation, differentiation, and apoptosis (D’ Autréaux and Toledano
2007; Janssen-Heininger et al. 2008). Therefore the concept of ‘redox signaling’,
which describes entire cascades from sensing of reactive oxygen species down to
cellular responses was introduced (Bochner et al. 1984; Proctor and McGinness
1970). This concept is similar to the signaling by nitric oxide (NO-), a radical
molecule that was also initially thought to be too unstable and harmful for signaling.
While the canonical NO-sensing is accomplished by a heme center in guanylate
cyclase (Craven and DeRubertis 1978; Katsuki et al. 1977), more recently it has
been discovered that NO-signals can be transduced by amino acid modifications,
including tyrosine nitration and S-nitrosylation (Ischiropoulos et al. 1992; Stamler
etal. 1992; van der Vliet et al. 1994). Similar to oxidative stress, a disturbance of the
physiological NO--levels causes nitrosative stress and uncontrolled modifications,
which led to protein damage (Calabrese et al. 2009).
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Since the early 1990s a variety of so-called redox sensors has been identified,
among them transcription factors like the bacterial OxyR and the eukaryotic
NFkB, metabolic enzymes such as glyceraldehyde-3-phosphate dehydrogenase and
carbonic anhydrase, as well as molecular chaperones like Hsp33 and peroxiredoxins
(Chae et al. 1994; Chai et al. 1991; Jakob et al. 1999; Ravichandran et al. 1994,
Staal et al. 1990; Storz et al. 1990; Zheng et al. 1998). What all these proteins have
in common is the possession of redox-reactive cysteines, which are specifically
oxidized, leading to an alteration of the protein’s activity. Once the cause of the
oxidation is removed, the cysteines can be reduced by the cellular antioxidant
systems and the protein returns to its original redox state and activity (Fig. 6.1).
The identification and characterization of these redox sensors is probably just
a starting point on our way to understand the full impact of ROS on cellular
metabolism, physiology, and signaling. While cysteine, due to the reversibility of
thiol modifications in low oxidation states, is a particularly well-suited amino acid
for redox sensing, oxidative modifications of other amino acids, such as methionine
sulfoxidation have been demonstrated to have functions in redox signaling as well
(Vogt 1995; Wong et al. 2008). Hence it is not surprising that in the ‘omics’ era, a
variety of techniques have been developed to globally detect and identify oxidative
changes within cellular proteins. The term ‘redox proteomics’ has emerged to set a
boundary to classical proteomic approaches. Redox proteomics “aims to detect and
analyze redox-based changes within the proteome both in redox signaling scenarios
and in oxidative stress” (Sheehan et al. 2010). This chapter aims to give a com-
prehensive overview about the most recent proteomic approaches for the large-scale
identification of different oxidative protein modifications. In the context of signaling
it is important to know which fraction of a redox-sensitive protein is modified and
which amino acids are targeted by ROS. Therefore, we will focus on quantitative
techniques that allow for the identification of redox-sensitive sites down to the
amino acid.

6.2 ROS-Mediated Protein Modifications
and Methods for Their Detection

Although virtually all amino acids are vulnerable to oxidation and more than
35 different oxidation products of amino acids have been identified so far, only
a few of them have been investigated with respect to their physiological rel-
evance (Madian and Regnier 2010). The observed oxidative modifications can
be grouped into two categories: in vivo reversible and irreversible modifications.
It could be argued that an effective regulative oxidative modification should be
reversible in vivo, as only reversibility allows for a back-and-forth change and
adjustment of the activity of a redox-regulated protein to the changing redox
environment. Of the known oxidative amino acid modifications, only the lower
oxidation states of cysteine and methionine sulfoxidation fit these criteria and
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these two amino acids can therefore serve in their corresponding proteins as
true ‘redox switches’. Most of the regulative oxidative modifications described so
far are cysteine modifications, such as disulfide bond formation or sulfenic acid
formation, although recent publications suggest a regulative role for methionine
sulfoxidation as well (Abulimiti et al. 2003; Ciorba et al. 1997; Sun et al. 1999).
In contrast, amino acid carbonylation and the oxidation of aromatic amino acids
is irreversible in vivo, and proteins modified in this way typically are rapidly
degraded to circumvent harmful aggregation (Nystrom 2005). However, recent
studies suggest that these irreversible modifications may have a regulatory impact
as well (Wong et al. 2008). In the next sections, we will discuss these oxidative
protein modifications and proteomic methods, which have been successfully used to
study them.

6.2.1 Protein Carbonylation

Protein carbonylation is a post-translational modification resulting from at least four
different reactions. The most disruptive event is the oxidation of the protein back-
bone, leading to the formation of protein fragments with an N-terminal a-ketoacyl
amino acid and hence total loss of protein integrity (Stadtman 1990). Additionally,
the side-chains of lysine, proline, arginine, and threonine may undergo metal ion-
catalyzed oxidation leading to the corresponding ketone or aldehyde derivatives
(Fig. 6.2). Carbonylation can also occur by 4-hydroxy-2-nonenal (HNE), which
is a product of lipid peroxidation (Dalle-Donne et al. 2003a, b). Finally, lysine,
cysteine, and histidine can be glycated or glycoxidated through the conjugation with
reducing sugars and their oxidation products, respectively. The latter two reactions
are referred to as ‘secondary reactions’ (Dalle-Donne et al. 2006).

Carbonylation is irreversible in vivo, and the fate of such modified proteins is
degradation by the proteasome in higher organisms or the Lon protease in E. coli
(Grune et al. 2003; Grune and Davies 1997; Levine 2002). Mildly carbonylated
proteins are much more susceptible to degradation than non-modified proteins
and it has been suggested that the carbonyl group can act as a recognition tag
for the proteasome (Grune et al. 2003; Grune and Davies 1997). Age-related
disorders like Parkinson’s disease, Alzheimer’s disease, cancer, and diabetes are
associated with an accumulation of carbonylated proteins, which escape the cellular
degradation machinery, causing the accumulation of cytotoxic protein aggre-
gates (Dalle-Donne et al. 2003a, b; Levine 2002). Carbonylated proteins there-
fore often serve as biomarkers for the detection of oxidative stress conditions
and several proteomic approaches have been developed to gain insights into the
‘carbonylated proteome’ (Aksenov et al. 2000; Dalle-Donne et al. 2003a, b;
Reinheckel et al. 2000). As evidence for a regulatory function of carbonylation
emerges (Lee and Helmann 2006; Wong et al. 2008), these methods are constantly
improved to enable the site-specific identification of amino acids undergoing
carbonylation.
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Fig. 6.2 Biologically relevant amino acid side chain modifications caused by reactive oxygen and
reactive nitrogen species. Bidirectional arrows indicate modifications that are potentially reversible
in vivo

6.2.1.1 Identification of Carbonylated Proteins

One of the first methods developed to detect carbonylated proteins was the so-
called OxyBlot technique. The carbonyl group readily reacts with hydrazine and
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Fig. 6.3 Detection of protein Carbonylated 2,4-Dinitrophenyl-
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its derivatives, such as dinitrophenyl hydrazine (Fig. 6.3). This condensation
of dinitrophenyl hydrazine with a carbonyl leads to the formation of a stable,
intensely colored dinitrophenyl hydrazone product in a reaction well-known from
carbohydrate analysis. In 1995, Nakamuro and Goto developed an antibody against
dinitrophenyl hydrazine-treated carbonylated BSA, which proved to be specific for
the dinitrophenyl hydrazone moiety. Western blots with this antibody allowed them
for the first time to identify carbonylated proteins on a 2D gel from rat tissue
(Nakamura and Goto 1996). Reinheckel et al. improved this procedure by adding
the dinitrophenyl hydrazine in gel, after the separation of the proteins in the first
dimension, which made it possible to directly correlate spots from the blot with
the stained protein pattern, because there is no isoelectric shift caused when the
hydrazone condensation is done after isoelectric focusing (Reinheckel et al. 2000).

Still, the site-specific identification of carbonylated side chains poses a challenge,
as the carbonylated form of a given protein is often in low abundance when
compared to the unmodified protein. However, Bollineni et al. recently reported a
mass spectrometric method, in which dinitrophenyl hydrazine-modified peptides are
separated by 2-dimensional liquid chromatography and which makes use of the fact
that dinitrophenyl hydrazine can directly act as the matrix for MALDI-based mass
spectrometry. In a bottom-up approach they could identify carbonylation-sensitive
sites in BSA and p-lactoglobulin (Bollineni et al. 2011).

To further enrich carbonyl-containing proteins it is possible to chemically couple
affinity tags to hydrazine. The use of biotin-hydrazine and subsequent affinity-
purification with avidin columns to reduce sample complexity made it possible to
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identify carbonylation sites of rat liver proteins by LC-MS/MS (Mirzaei and Regnier
2005). The same group successfully identified oxidation sites in transferrin by using
Girard P reagent, which has the hydrazine linked to a quaternary amine that allowed
for enrichment of carbonylated peptides by strong cation exchange chromatography
(Mirzaei and Regnier 2000).

Even more sophisticated carbonyl-reactive probes, which combine affinity tags
with a so-called element code have been developed. O-ECAT (oxidation-dependent
carbonyl-specific element-coded affinity mass tag) specifically labels aldehyde and
keto groups of oxidized amino acid side chains by forming an oxime and adds a
chelating site for metal ions to the peptide. Differential insertion of metals such as
terbium or holmium into the chelating site prior to liquid chromatography allows
quantification of the relative oxidation of different samples based on the mass
difference of the two metals. With this method oxidation sites in recombinant human
serum albumin and E. coli RNA polymerase could be identified (Cheal et al. 2009;
Lee et al. 2006).

To date these novel mass spectrometry-based methods have been used mainly for
model proteins, while experiments on a global level in a physiological context are
still missing and the quantification of carbonylations in more complex biological
samples seems still challenging.

6.2.2 Oxidation of Protein-Bound Aromatic Amino Acids

The aromatic amino acid residues tryptophan, phenylalanine, histidine, and tyrosine
are highly prone to oxidation, yielding very different oxidation products (Fig. 6.2)
(Guan and Chance 2005). Furthermore, tyrosine is readily nitrated to 3-nitrotyrosine
by reactive nitrogen species (Ischiropoulos et al. 1992), which we will discuss
here as well. Because of the wide variety of possible modifications and the
issue of physiological relevance, site-specific identification of aromatic amino acid
modifications in complex samples is still challenging and is therefore, with few
exceptions, a relatively unexploited research area to this day.

6.2.2.1 Tryptophan Oxidation

Oxidation of tryptophan may occur by singlet oxygen, derived from UV radiation
of molecular oxygen, a so-called type 2 photo-oxidation, or by the reactive nitrogen
species peroxynitrite (Ischiropoulos and al-Mehdi 1995; Nakagawa et al. 1977).
Although in total 11 different oxidation products of tryptophan have been identified
in an in vitro system using synthetic peptides, only a few of them have been
found in vivo (Grosvenor et al. 2010). Among the products found in vivo are
N-formylkynurenine and kynurenine (Anderson et al. 2002; Taylor et al. 2003b).
As antibodies against tryptophan oxidation products are lacking, mass spectrometry
is the method of choice for the detection of tryptophan modifications. Oxidation
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of tryptophan results in mass shifts ranging from 44 Da (kynurenine) to 464 Da
(dihydroxy-N-formylkynurenine), which can be used for the identification of
modified peptides from MS/MS spectra.

Site-specific identification of oxidized tryptophan was mostly carried out for
isolated proteins or protein complexes. In these experiments, the protein of interest
is exposed to oxidative stress in vivo and then isolated from the complex protein
mixture before digestion and LC-MS/MS. This experimental set up was successfully
used to identify oxidized tryptophans in histidyl-tRNA synthetase and rat muscle
actin (Fedorova et al. 2010; van Dooren et al. 2011). Anderson et al. studied isolated
photosystem II from spinach chloroplasts and identified a single tryptophan residue
(Trp-352) of CP43 core antenna complex in three distinct oxidation states, namely
as kynurenine, oxindolylalanine, and a hydroxylated indole derivative, by tandem
mass spectrometry. A role of this tryptophan oxidation as signal for the turnover of
photosystem IT was proposed (Anderson et al. 2002).

Because of the tell-tale mass shift, the identification of tryptophan oxidation
sites in complex samples is possible. Two independent research groups investigated
oxidative tryptophan modifications in mitochondrial proteins. Taylor et al. re-
evaluated a previously compiled proteomic MS/MS data set of cardiac mitochondria
for the occurrence of N-formylkynurenine, making use of the 32 Da mass increase
(Taylor et al. 2003a). In total, 51 different N-formylkynurenine-containing peptides
from 39 proteins of all mitochondrial respiratory complexes except complex II were
discovered upon re-inspection of this data set (Taylor et al. 2003a). The observed
tryptophan oxidation of mitochondrial proteins was proposed to be the consequence
of exposure to ROS generated during respiration in the mitochondria. Mgller
and Kristensen studied rice leaf and potato tuber mitochondria and also searched
specifically for N-formylkynurenine-containing proteins. 29 peptides containing
oxidatively modified tryptophan from 17 different proteins where identified (Mgller
and Kristensen 2006). Both of these studies identified largely proteins directly
involved in cellular respiration, demonstrating that these proteins, often the source
of reactive oxygen species themselves, are particularly prone to oxidative damage.
However, according to Perdivara et al., some kynurenine and N-formylkynurenine
formation can potentially be attributed to artifactual modification during sample
processing. A comparison of the extent of kynurenine and N-formylkynurenine
occurrence in several antibodies, based on sample handling showed that oxidative
tryptophan modifications can be readily identified after separation of the proteins
on SDS-PAGE and tryptic in-gel digest but were not detectable after in-solution
digest (Perdivara et al. 2010). These results demonstrate the challenges of redox-
proteomics, and the need for suitable sample preparation procedures to avoid
artifactual oxidative protein modifications.

6.2.2.2 Phenylalanine Oxidation

Oxidation of phenylalanine by HO" or peroxynitrite leads to the formation of
ortho-, meta-, and para-tyrosine (Fig. 6.2) (Maskos et al. 1992). The atypical amino
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acid isomers ortho- and meta-tyrosine are used as biomarkers for the detection
of oxidative protein damage associated with diseases such as p-thalassemia and
atherosclerosis (Leeuwenburgh et al. 1997; Matayatsuk et al. 2007). Site-specific
information about phenylalanine oxidation may be obtained by mass spectrometry,
taking advantage of the 16 Da mass increase of tyrosine over phenylalanine. How-
ever, a global screening for phenylalanine oxidation has not been reported to date.

6.2.2.3 Histidine Oxidation

Oxidative histidine modification is used as biomarker for oxidative stress (Uchida
and Kawakishi 1993). Histidine is particularly prone to metal-catalyzed oxidation
leading to 2-oxo-histidine (Fig. 6.2). Histidine oxidation has deleterious effects on
proteins: oxidation of histidine in Cu,Zn superoxide dismutase leads to a significant
decrease in enzyme activity in aging rats (Maria et al. 1995). But regulatory effects
of histidine oxidation have been described as well. In the Bacillus subtilis H>O,-
sensing transcription factor PerR, three histidine and two aspartic acid residues
typically coordinate an Fe?>* -ion in the regulatory site. Hydroxyl radicals, generated
in situ through H,O, reduction by the coordinated Fe’*-ion oxidize histidine
residues 37 or 91 of PerR to 2-oxo-histidine. The direct consequence is the loss of
the metal ion and dissociation of PerR from the DNA followed by the transcription
of target genes. This irreversible mechanism allows PerR to sense low levels of
hydrogen peroxide in vivo (Herbig and Helmann 2001; Lee and Helmann 2006).

Despite its physiological importance, global proteomic screenings for 2-oxo-
histidine have not yet been reported. Identification of histidine oxidation sites is
complicated by changes in the MS/MS dissociation pattern of peptides contain-
ing oxidatively modified histidine due to the lower proton affinity and weaker
nucleophilicity of 2-oxo-histidine. This can be particularly challenging in highly
oxidized proteins, when several isomers differing in their site of oxidation are
present (Bridgewater et al. 2007).

6.2.2.4 Tyrosine Oxidation

Tyrosine residues can be converted to protein-bound 3,4-dihydroxyphenylalanine
(PB-DOPA; Fig. 6.2), or if two tyrosines are present in the immediate vicinity,
they can be cross-linked to bi-tyrosine (Gross and Sizer 1959; Simpson et al.
1992). Formation of PB-DOPA occurs enzymatically, via metal-catalyzed oxidation,
gamma irradiation, or UV light (Ito et al. 1984; Simpson et al. 1993). Similar
to phenylalanine and histidine oxidation, oxidative tyrosine modifications can
serve as biomarkers for the detection of oxidative stress-associated diseases: PB-
DOPA levels were shown to be increased in a number of pathologies including
atherosclerosis and lens cataract (Fu et al. 1998; Woods et al. 2003).

A global screening for PB-DOPA was recently published by Lee et al., demon-
strating growing interest in this research field (Lee et al. 2010). Lee and co-workers
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specifically searched for the PB-DOPA modification in LC-MS/MS spectra and
identified as many as 67 PB-DOPA-bearing sites in E. coli and nine sites in
HeLa mitochondria using this approach. These included proteins typically prone
to oxidative modification, such as GAPDH and superoxide dismutase.

Sharov and co-workers have developed a derivatization technique transforming
PB-DOPA to 6-amino-substituted benzoxazoles using benzylamine derivatives
(Sharov et al. 2010). The resulting modified proteins display characteristic flu-
orescence properties making this method suitable for gel-based identification of
PB-DOPA. In addition, the use of substituted benzylamines carrying functional
groups to enable enrichment will conceivably facilitate MS-based identification of
target proteins.

6.2.2.5 Tyrosine Nitration

In addition to hydroxylation, nitration of tyrosine to 3-nitrotyrosine (3-NT; Fig. 6.2)
has been extensively studied. Accumulation of 3-NT is considered a typical
marker of peroxynitrite stress (Beal et al. 1997). A variety of techniques for site-
specific identification of 3-NT are available, including immunoprecipitation and
immunoaffinity chromatography using anti-3-NT antibodies, gel-based techniques
with subsequent immunoblotting and mass spectrometry, as well as gel-free mass
spectrometry-based techniques (see Abello et al. 2009 for a comprehensive review).

The concentration of 3-NT in human plasma is in the pM to nM range and
has been shown to remain fairly constant, even under conditions of disease,
physical exercise, and pharmacological treatment. This low abundance in highly
complex biological samples complicates its detection, making selection of a suitable
methodology most critical for the generation of reliable data (Tsikas 2010). This
challenge is further complicated by artifactual tyrosine-nitration, which occurs by
acid-catalyzed reactions in the presence of nitrate or nitrite in solution. To avoid
this problem, 3-NT can be converted chemically into stable derivatives, preferably
during early steps of sample preparation (Tsikas 2010).

A variety of such derivatization techniques, including fluorogenic tagging
with  ABS (4-(aminomethyl)benzenesulfonic acid), APPD ((3R,45)-1-(4-
(aminomethyl)phenyl-sulfonyl)pyrrolidine-3,4-diol), or benzylamine as well as
isotope-coded tagging via iTRAQ after protection of free amino groups and
chemical modification was proven to be suitable for identification of 3-NT
(Chiappetta et al. 2009; Dremina et al. 2011; Sharov et al. 2008, 2010). APPD
derivatization of 3-NT-containing proteins from peroxynitrite-exposed cell lysates
was developed recently and makes it now possible to quantify the amount of 3-NT
through fluorescence spectrometry or boronate affinity chromatography followed
by MS-based proteomics. In addition, localization and quantification of 3-NT has
been performed by a clever extension of the iTRAQ chemistry. Specific iTRAQ
labeling of 3-NT-bearing sites is facilitated by protection of lysine residues and
N-termini of trypsin-digested peptides prior to reduction of the nitro group in 3-NT
to an amino group, which can then be iTRAQ modified (Chiappetta et al. 2009).
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These methods allowed for site-specific identification of 3-NT even at its typically
very low abundance in complex protein samples, such as human uremic plasma and
cell lysates (Chiappetta et al. 2009; Dremina et al. 2011).

6.2.3 Methionine Oxidation

Oxidation of protein-bound methionine residues to methionine sulfoxide is one of
the few protein oxidation events that are reversible in vivo (Fig. 6.2). Methionines
that undergo sulfoxidation can thus serve as on/off sensors of oxidative stress
in certain proteins. A number of such proteins has been identified, among them
calmodulin and glutamine synthetase (Levine et al. 1996; Wolff et al. 1980; Yao
et al. 1996). Surface-exposed methionines are especially prone to oxidation, and
once oxidized to methionine sulfoxide can be further oxidized to methionine
sulfone, a modification that is irreversible in vivo (Fig. 6.2) (Levine et al. 2000). The
modified amino acid methionine sulfoxide has different physico-chemical character-
istics from reduced methionine, which in turn can lead to conformational changes in
the affected protein, causing loss of function or altered susceptibility to degradation
(Bigelow and Squier 2005). Therefore almost all organisms, from bacteria to human,
possess methionine sulfoxide reductases (Msr), which reduce methionine sulfoxide
back to methionine in a thioredoxin-dependent manner. Two different classes of
methionine sulfoxide reductases, MsrA and MsrB, can be distinguished, based
on their stereospecificity towards S- and R-enantiomers of methionine sulfoxide,
respectively (see Weissbach et al. 2005 for a comprehensive review).

Methionine sulfoxide reduction activity is required under oxidative stress condi-
tions. Consequently, deletion of msrA causes severe phenotypes related to oxidative
stress both in prokaryotes and in eukaryotes. Increased sensitivity towards oxidative
stress has been observed in Escherichia coli and Saccharomyces cerevisiae msrA
deletion strains (Moskovitz et al. 1995, 1997). Knock-out of msrA in mice resulted
in a 40% reduced life span, abnormal behavior and significantly increased brain
dopamine levels, demonstrating the often observed connection between oxidative
stress, aging and neurodegenerative diseases (Oien et al. 2008).

In contrast, msrA overexpression in Drosophila melanogaster and S. cerevisiae
extended the life span and increased resistance against oxidative stress, respectively
(Moskovitz et al. 1998; Ruan et al. 2002). The observed positive effects of msrA
overexpression are attributed to an antioxidant effect of methionine oxidation. While
reducing oxidized methionines, methionine sulfoxide reductase becomes oxidized,
which is then reversed through thioredoxin-based reduction. Hence, methionine
oxidation and the subsequent reduction of methionine sulfoxide is thought to be
able to act as a sink for reactive oxygen species, protecting amino acids in close
vicinity from oxidation (Levine et al. 2000).

In addition to this protective function of methionine oxidation, several studies
found a role of methionine sulfoxidation in regulation of enzyme and peptide
hormone activity. One of the earliest examples for regulation of protein activity
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by reversible methionine oxidation was the discovery of the oxidation of Met3
in the voltage-gated potassium channel ShC/B from Drosophila melanogaster.
Sulfoxidation of this specific methionine residue causes a significant slowdown of
channel inactivation, which can be restored by co-expression of msrA. The authors
proposed that membrane depolarization itself could induce oxidation and that the
associated modulation may play a role in learning and memory (Ciorba et al. 1997).

In the case of IkBa (inhibitor of kappa B alpha), which is involved in the
immune response, it was shown that oxidation of a methionine residue increased
its resistance against proteolytic degradation. This stabilization leads to a decreased
activation of the immune response (Agbas and Moskovitz 2009).

However, it is still not clear if the reduction by methionine sulfoxide reductases is
a non-specific process on all cellular proteins with exposed methionines or if there
are preferred targets of this antioxidant system. To trap potential target proteins,
affinity chromatography with immobilized plastidial MSRB1 was carried out in
Arabidopsis thaliana. Interestingly, 13 out of the 24 identified MRSB I -interacting
proteins directly participate in photosynthesis, including the ATP synthase a- and
pB-subunits, the large RubisCO subunit and GAPDH (Tarrago et al. 2011). These
results indicate that methionine sulfoxide reductase activity is of special importance
in compartments that are generally exposed to oxidative stress, such as plastids.
The authors noted that homologs of several identified MSRB 1-interacting proteins
were also shown to be methionine sulfoxide reductase substrates in other organisms.
These include catalase and GAPDH from Helicobacter pylori and Synechocystis,
respectively (Alamuri and Maier 2006; Sato et al. 2007), indicating that methionine
oxidation itself could be targeted to some highly susceptible substrate proteins.

In a recent study, a combination of SILAC (stable isotope labeling with amino
acids in cell culture) and COFRADIC (combined fractional diagonal chromatogra-
phy) was used to identify methionine sulfoxide-containing peptides from complex
samples and to quantify their degree of oxidation (Ghesquiere et al. 2011). Human
Jurkat cells were cultured in medium containing '3*Cs-methionine and treated with
hydrogen peroxide prior to cell lysis and tryptic digest. This hydrogen peroxide-
treated sample was mixed with a completely oxidized ‘reference sample’ labeled
with '2Cs methionine. In contrast to the hydrogen peroxide-treated sample, the
‘reference sample’ was oxidized in vitro after trypsin digest to ensure complete
oxidation of all methionines. The subsequently performed COFRADIC method
relies on the fact that the retention time of a modified peptide in an LC run is
different from the retention time of the unmodified peptide. Thus, the removal
of the methionine sulfoxide modifications from a fraction of a first LC run and
a subsequent second LC run of this fraction under the same conditions will lead
to characteristic peak shifts, which make it possible to identify modified peptides
(Fig. 6.4). Subsequent tandem mass spectrometry could identify the oxidation-
sensitive methionine of these peptides. Furthermore, by comparison of the peak
areas of the light and heavy peptides, which correspond to the fully oxidized
reference and the hydrogen peroxide-treated sample, respectively, the degree of
sulfoxidation in the cells could be determined. As many as 2,000 oxidation-
sensitive methionines from more than 1,600 proteins were identified in this way.
As these proteins were not associated with particular pathways or protein classes,
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Fig. 6.4 Application of
COFRADIC (Combined
Fractional Diagonal
Chromatography) and SILAC
for the identification and
quantification of peptides
containing methionine
sulfoxides. In the first HPLC
run, a complex peptide
mixture including '2Cs
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methionine labeled peptides
from a fully oxidized
reference and an
H,0;-treated sample,
respectively, is separated.
The peptides are collected in
fractions and then reduced
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reductase A and B, which
removes all sulfoxides.
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performed using the same
chromatographic conditions.
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sample and were reduced by
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later time from the column
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of the intensities of the >Cs
and the '3Cs signal in the MS
allows for a quantification of
the oxidized fraction of the
peptide in the H,O,-treated
sample

1strun

2nd run

MS/MS

Absorbance

Absorbance

Intensity

o)

171

Peptide of
interest
L'J Time
MS/MS
SILAC-light SILAC-heavy

100 % H,0,-
oxidized treated
A reference sample

>

m/z

it was assumed that hydrogen peroxide-mediated oxidation of methionine is a non-
targeted event (Ghesquiere et al. 2011). This non-specificity and the susceptibility of
methionine-containing peptides to form methionine sulfoxide through air oxidation
during sample handling is a particular challenge when studying this modification.
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The SILAC/COFRADIC method could also be used by the same group to
detect and quantify methionine oxidation in a mouse sepsis model. In mice, the
intravenous injection of Salmonella leads to a massive oxidative burst event due to
the septic shock. Under these conditions 35 oxidatively modified methionines from
27 different proteins were identified in the serum. Most of these proteins, including
myoglobin and NADP-dependent malic enzyme are not typical serum proteins and
were thought to be released by the onset of necrosis (Ghesquicre et al. 2011).

6.2.4 Cysteine Oxidation

Cysteine is one of the least used proteinogenic amino acids, with its fraction ranging
between 0.7% in archaea and 2.3% in mammals. One of the reasons seems to be the
high reactivity of its terminal thiol group, which brings a high risk of damaging ox-
idation to proteins that carry this amino acid (Giles et al. 2003). However, this high
reactivity is critical for some proteins and can facilitate their structural stabilization
by disulfide bond formation, mediate their binding of catalytic metal ions, ensure
catalytic activity, and regulate their protein function (Miseta and Csutora 2000).

Depending on the cellular location of a protein, cysteine oxidation can occur
under physiological conditions or under pathological stress conditions. In highly ox-
idizing compartments, such as the bacterial periplasm or the eukaryotic endoplasmic
reticulum, protein cysteines are oxidized to form disulfide bonds under physio-
logical conditions. This stabilizes the structure of extra-cellular proteins and helps
them to maintain proper function in an environment devoid of active protein-folding
systems (Darby and Creighton 1995). In these compartments, oxidoreductases such
as protein disulfide isomerases in eukaryotes or the Dsb-system in Gram-negative
bacteria introduce disulfide bonds during protein maturation (Depuydt et al. 2011).

In contrast, the cytoplasm is a highly reducing environment and most cysteines
are required to be in their free thiol state in this compartment for proper protein
function. Here, the thioredoxin and glutaredoxin systems keep cysteines in their
reduced state. However, upon oxidative stress, cysteine thiol groups may become
oxidatively modified. On the one hand, this protein oxidation often results in protein
damage, e.g. through non-native disulfide bond formation, misfolding, or direct
blockage of active sites. On the other hand, in so-called redox-regulated proteins, the
oxidation can have regulative effects and change the protein’s function. Cysteines
are well-suited to function in this way as redox-sensing nano-switches, because
oxidative thiol modifications in low oxidation states are fully reversible in vivo
through the thioredoxin and glutaredoxin systems. These reversible modifications
include cysteine sulfenic acid (Fig. 6.2), inter- and intramolecular disulfide bonds,
and mixed disulfides with free cysteine, glutathione, or other low molecular weight
thiols (Dickinson and Forman 2002).

The reactivity of a cysteine residue towards oxidants and other chemicals
depends on its solvent exposure and its pK,. The latter is strongly influenced by
the local amino acid environment. The average pK, of cysteine is 8.5. Because the
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negatively charged thiolate is the redox-active form, typical cysteines are somewhat
protected from oxidative modifications under physiological pH-conditions. How-
ever, in specific protein domains or in special local environments, the pK, may be
lowered significantly and the thiol group may exist mainly in its thiolate anion form
even at physiological pH. These cysteines are highly prone to oxidation (Lindahl
et al. 2011; Salsbury et al. 2008).

6.2.4.1 Formation of Disulfide Bonds

Disulfide bond formation occurs under physiological conditions during oxidative
folding in specialized compartments, such as the bacterial periplasm or the eu-
karyotic endoplasmic reticulum. Disulfide bonds can be formed intramolecularly
by two cysteines in the same peptide chain or intermolecularly between two
different proteins (Fig. 6.2). Introduction of structural disulfides is achieved by
specific oxidoreductases such as the Dsb-system in bacteria and the protein disulfide
isomerases in eukaryotes (Depuydt et al. 2011).

Disulfide bond formation can also be observed within the cytoplasm. These
disulfide bonds can be formed as part of a catalytic cycle, but under oxidative
stress conditions, non-native disulfides may form. Some cytoplasmic proteins are
especially prone to the formation of non-native disulfide bonds upon oxidative stress
and such disulfides typically need to be removed to restore the protein’s activity.
This reduction can be carried out by thioredoxin, which leads to the formation
of a catalytic intramolecular disulfide bond in thioredoxin. This disulfide bond
is subsequently reduced by thioredoxin reductase. Electrons for the reduction of
thioredoxin reductase are provided by NAD(P)H (Bindoli et al. 2008).

A well-studied example of a protein prone to form a disulfide bond in its ac-
tive site is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which catalyzes
the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate during
glycolysis. During this reaction, NAD™T is reduced, yielding NADH. GAPDH
possesses two cysteines in its active site, one of which is essential to overcome
the high activation energy of the reaction (Harris et al. 1963). Interestingly, these
cysteines are not only important for catalysis but are also able to sense oxidative
and nitrosative stress through reversible thiol oxidation. The inactivation of GAPDH
under these stress conditions is thought to divert glucose to the pentose phosphate
pathway, resulting in increased NADPH levels, an important cofactor of the
thioredoxin and glutaredoxin systems (Godon et al. 1998; Ralser et al. 2007).

6.2.4.2 Sulfenic Acid Formation

Formation of disulfide bonds within proteins is thought to be preceded by the
formation of sulfenic acid when the reaction is initiated by certain oxidants, such
as hydrogen peroxide (Fig. 6.2). Generally, cysteine sulfenic acids are considered to
be unstable and easily react with other free thiol groups to form disulfides. However,
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a cysteine sulfenic acid may be stabilized and can have regulatory function, as has
been shown in protein tyrosine phosphatase, which catalyzes the dephosphorylation
of tyrosine. A reactive cysteine in the active center of this enzyme is reversibly
oxidized to sulfenic acid by hydrogen peroxide resulting in inactivation of the
enzyme (Meng et al. 2002).

6.2.4.3 Sulfinic and Sulfonic Acid Formation

Persistent oxidative stress may result in the formation of sulfinic acid in proteins
(Fig. 6.2). This modification has long been viewed as an irreversible overoxidation
product but this assessment dramatically changed with the identification and
characterization of sulfiredoxin. This oxidoreductase has been identified in yeast,
mammals, and cyanobacteria and catalyzes the regeneration of cysteine sulfinic acid
of overoxidized peroxiredoxins (Biteau et al. 2003; Boileau et al. 2011; Chang et al.
2004). Peroxiredoxins are ubiquitous in all kingdoms and belong to the antioxidant
enzyme systems, as they catalyze the removal of hydroperoxides and hydrogen
peroxide (Hofmann et al. 2002; Wood et al. 2003).

In typical dimeric 2-Cys peroxiredoxins, a sulfenic acid intermediate is formed
during the reaction with hydrogen peroxide at an N-terminally located cysteine
residue during the reaction with hydroperoxides. The thiol group of a C-terminal
cysteine residue from the other subunit reacts with the sulfenic acid to form an
intermolecular disulfide bond, which is then reduced by thioredoxin. However,
the sulfenic acid intermediate may also be further oxidized to sulfinic acid by
excess hydrogen peroxide, which blocks disulfide bond formation and results in the
inactivation of the peroxiredoxin (see Wood et al. 2003 for a comprehensive review).
Sulfiredoxin can reduce the overoxidized cysteine and thus restore peroxiredoxin
activity (Biteau et al. 2003). So far, sulfinic acid reduction by sulfiredoxin has only
been demonstrated for peroxiredoxins and a growing body of evidence suggests that
sulfiredoxins are highly specific for peroxiredoxin reduction (Woo et al. 2005).

Sulfinic acids can be further oxidized to sulfonic acid (Fig. 6.2), an oxidation
event that is thought to be irreversible even in peroxiredoxins and typically leads
to the inactivation of the corresponding protein. Sulfonic acid is hence used as a
marker of cumulative damage due to excessive oxidative stress. Selective detection
of proteins bearing cysteine sulfonic acid can be achieved by nano-diamonds coated
with poly-arginine, which specifically bind to the sulfonate groups of over-oxidized
proteins (Chang et al. 2010).

6.2.4.4 Formation of Mixed Disulfides by S-Thiolation

Cysteine overoxidation often goes along with protein damage. Glutathione and
other low molecular weight thiols can play an important role in preventing this
overoxidation both during conditions of oxidative stress and under physiological
conditions. In many organisms, the tripeptide glutathione is present at millimolar
concentrations in the cytoplasm. Under normal physiological conditions, it has
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been shown that up to 20% of glutathione exists in a protein-bound state as mixed
disulfide (Ghezzi et al. 2005). A protein sulfenic acid that might form when a protein
encounters oxidative stressors can react with the free thiol group of glutathione,
releasing a water molecule, and forming a glutathione adduct. The mixed disulfide
is then protected from overoxidation.

In addition, S-glutathionylation has been shown to modulate the activity of
several proteins that are involved in different cellular processes, including sig-
nal transduction and metabolism (Rinna et al. 2006; Zaffagnini et al. 2007).
Cobalamine-independent methionine synthase (MetE) in E. coli is a prominent
example of a protein, whose activity is regulated by reversible S-glutathionylation.
MetE catalyzes the formation of methionine from homocysteine by the use of
methyl-tetrahydrofolate as a methyl group donor. Under oxidative stress conditions,
MetE was shown to become S-glutathionylated at cysteine 645 at the entrance of
the active site, resulting in a conformational change and thereby the loss of enzyme
activity. As a consequence, cells treated with oxidizing agents become methionine
auxotroph (Hondorp and Matthews 2004). It has been proposed that the inactivation
of MetE by S-glutathionylation protects the enzyme against irreversible oxidation
damage with the possibility to restore the activity when the redox-environment is
returned to pre-stress conditions.

In eukaryotes, regulation of protein activity by reversible S-glutathionylation
seems to be a far more common event than in prokaryotes. Examples of proteins
regulated by S-glutathionylation include metabolic enzymes, such as carbonic
anhydrase III and a-ketoglutarate dehydrogenase, as well as transcription factors,
such as NF-kB and c-Jun. The list of newly identified proteins that become
S-glutathionylated is constantly growing (Dalle-Donne et al. 2007). In most organ-
isms, reversibility of S-glutathionylation is achieved by the glutaredoxin system.
Not surprisingly, the disturbance of this system is associated with the onset or the
progression of neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and
Huntington’s disease (Sabens et al. 2012).

Not all organisms use glutathione as a cellular low molecular weight thiol
(Zaffagnini et al. 2007). Most Gram-positive bacteria, as for example the soil
bacterium Bacillus subtilis, do not possess glutathione and although S-thiolation
was readily observed, the nature of such modifications remained unclear (Hochgrife
et al. 2005). Interestingly, cysteine biosynthesis is greatly increased upon oxidative
stress in B. subtilis, suggesting a role of high cysteine levels for oxidative stress
protection. Hochgrife et al. demonstrated, that proteins in B. subtilis undergo
reversible S-cysteinylation (Hochgrife et al. 2007). Using a mass spectrometry-
based approach, they identified six different proteins that become S-cysteinylated by
oxidative stress treatment. One of these proteins is methionine synthase MetE that
is regulated in E. coli by glutathionylation. This reversible inactivation of MetE in
B. subtilis is thought to increase cysteine levels by redirecting of synthesis capacity
from methionine towards cysteine biosynthesis (Hochgrife et al. 2007). Hence,
though the nature of cysteine modification may differ in particular organisms, it
seems that similar metabolic pathways are targeted through the protective inactiva-
tion of functionally related proteins. Another common low molecular weight thiol
in B. subtilis is the recently discovered bacillithiol. Bacillithiol is synthesized from
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L-cysteinyl-D-glucosamine and L-malic acid and functions as a redox buffer similar
to glutathione in this organism. It was shown to directly react with protein-bound
cysteine residues in regulative events leading to S-bacillithiolation. The anorganic
peroxide-sensing transcription factor OhrR in B. subtilis is S-bacillithiolated upon
hydroperoxide stress, resulting in its release from the operator, which allows
transcription of oxidative stress response genes (Lee et al. 2007).

6.2.4.5 Proteomic Identification of Thiol Modifications

The proteomic identification of thiol modifications is typically based on modi-
fication of the thiol group with specific probes. The reduced thiolate is highly
nucleophilic and is therefore easily modified by nucleophilic substitution or addition
reactions. Typical probes used for this purpose are derived from iodoacetamide or
maleimide. Because oxidized cysteines typically do not undergo these reactions,
this allows for differential thiol trapping: after modification of all free cysteines
in a protein sample with one probe, the sample can then be reduced and the now
accessible, previously oxidized thiols can be labeled with a different probe in a
second labeling step (Fig. 6.5). Thus, reduced and oxidized cysteines can be clearly
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distinguished and potentially quantified, based on the nature of the probe. When
typical thiol reductants such as DTT or TCEP are used in the reduction step, all
reversible thiol modifications will be reduced and thus labeled with the second
probe.

One of the first approaches to quantify the thiol status by the use of differential
thiol trapping was accomplished in E. coli using a gel-based approach with
unlabeled and '“C-labeled iodoacetamide (Leichert and Jakob 2004). A number
of so far unknown redox-regulated proteins were identified by the comparison of
control and oxidative stress conditions. The same technique also allowed for the
identification of substrates of the disulfide bond forming DsbA-system and the
antioxidant thioredoxin system.

The well-known DIGE (differential gel electrophoresis) technique has also been
adapted to redox proteomics by the use of derivatized cyanine (Cy) fluorescent dyes,
which specifically react with free thiol groups (Chan et al. 2005; Hurd et al. 2007). In
a typical workflow, a control sample and an oxidative stress-treated sample are first
treated with NEM (N-ethyl maleimide) to block all free thiol groups. DTT is then
added, which unspecifically reduces all reversibly oxidized cysteines. Subsequently,
two different DIGE dyes (e.g., Cy3 maleimide and Cy5 maleimide) are used to label
the formerly oxidized cysteines in the control and the treated sample, respectively.
Samples are then mixed and 2-dimensional gel electrophoresis is performed. Due to
the use of two distinguishable fluorophores, differences in the thiol redox state of
individual proteins can be detected with this so-called redox-DIGE method.

Nevertheless, several control steps are needed, as differences in the relative
expression of proteins and their stability, as well as differences in the labeling
efficiency of the two dyes might have an influence on spot intensities. Swapping
of the two labels and analysis of several gels in parallel can avoid false-positives
(Hurd et al. 2007).

Among gel-free methods for the identification of reversible cysteine mod-
ifications, the ICAT technique (isotope-coded affinity tag) is well established.
This tagging system is composed of a biotin moiety for purification, a linker
region that can be isotopically light (light ICAT) or heavy (heavy ICAT), and
iodoacetamide. ICAT has initially been developed for quantitative proteomics based
on the differential expression of proteins and is typically used with fully reduced
samples to gain the highest labeling efficiency (Gygi et al. 1999). But as labeling
is based on the reaction of the iodoacetamide moiety with free sulfthydryl groups of
cysteines, it also proved useful to detect changes in the oxidation state of cysteines.
Light and heavy versions of ICAT are added to sets of non-reduced samples, which
are expected to have differences in the thiol state. Samples are subsequently mixed,
digested, purified, and analyzed by mass spectrometry. Because the ICAT reagent
only modifies reduced cysteines, a decrease in intensity in a given sample (light or
heavy) indicates a decrease in available free cysteines and in reverse an increase in
oxidation. Using this approach, Sethuraman et al. identified and quantified oxidized
cysteines in a hydrogen peroxide-treated particulate membrane fraction of rabbit
heart (Sethuraman et al. 2004). However, as two different samples are compared,
differential protein expression and protein stability needs to be taken into account
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as they will also change signal intensities. A modified technique, which uses a
differential thiol trapping approach as it labels reduced cysteines with light ICAT
and oxidized cysteines with heavy ICAT avoids this problem, and was termed
OxICAT (Leichert et al. 2008). In this setup, the ratio of reduced and oxidized
cysteines in a peptide sample can be quantified and these ratios can be compared
across samples to identify redox-sensitive proteins. This technique has successfully
been used in E. coli, Caenorhabditis elegans and S. cerevisiae, identifying a
number of putative redox-regulated proteins affecting a variety of cellular pathways
(Brandes et al. 2011; Kumsta et al. 2011; Leichert et al. 2008).

6.2.4.6 Global Approaches for the Identification
of Specific Thiol Modifications

It is often desirable to distinguish between different reversible thiol modifications,
such as disulfide bonds, glutathionylation, sulfenic acids, or nitrosothiols. This can
be accomplished by the use of specific reductants, such as for example ascorbate,
which selectively reduces nitrosothiols with some specificity. Another approach
is the use of probes that react specifically with the modified cysteine, such as
dimedone, which exclusively reacts with sulfenic acids. However, these approaches
can be sometimes complicated by the instability of the modification in question or
the lack of specificity of the reductant.

The biotin-switch technique, which detects S-nitrosylated proteins in a three step
procedure is based on the use of ascorbate as a specific reductant (Jaffrey and Snyder
2001). Free thiol groups are blocked by a thiolating agent, such as MMTS (methyl
methanethiosulfonate) or an alkylating agent, such as NEM. Proteins are then
treated with ascorbic acid, which reduces S-nitrosylated cysteines. These cysteines
are then biotinylated by biotin-HPDP. Biotinylated proteins can be detected either
by electrophoresis and subsequent western blotting using streptavidin-conjugated
fluorophores or anti-biotin antibodies or by mass spectrometry after tryptic digest
and affinity purification (Huang et al. 2009). Instead of biotin-HPDP, probes such
as the cysTMT sixplex reagent may be used for protein labeling. The cysTMT is
a mass spectrometric probe that has six different isobars, which release different
reporter ions when fragmented in an MS/MS experiment. These reporter ions can
then be used to quantify up to six different samples in a single experiment (Murray
et al. 2012).

Although ascorbic acid is considered to be a specific reductant of S-nitrosothiols,
there is evidence that it may also reduce disulfide bonds in the colorimetric thiol
probe 5,5'-dithiobis-2-nitrobenzoic acid (DTNB), cystine, mixed disulfides, and
even in biotin-HPDH in a pH and concentration-dependent manner (Giustarini et al.
2008; Landino et al. 2006). To circumvent this problem, triphenylphosphate ester
derivatives such as PE PEG or PE SO3, which have been shown to be even more
specific reductants of S-nitrosothiols, can be used (Li et al. 2011).

Sulfenic acid is a very unstable intermediate and often reacts with free thiols
to disulfides or is further oxidized to sulfinic and sulfonic acid. This instability
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complicates the specific detection of sulfenic acid. Different dimedone-based probes
including DAz-1 and DCP-Biol have been developed that react specifically with
sulfenic acid. These reagents contain affinity or fluorescent tags, which enable
enrichment or visual detection, respectively (Klomsiri et al. 2010; Poole et al.
2005; Reddie et al. 2008). DAz-1 was successfully used to demonstrate that the
thioredoxin-related protein DsbG protects single cysteine residues of periplasmic
proteins from oxidation to sulfenic acid (Depuydt et al. 2009).

Specific detection of S-glutathionylation can be achieved by reduction of
S-glutathionylated cysteines with glutaredoxin (Grx) and subsequent labeling with
N-ethylmaleimide-biotin (Lind et al. 2002). Other methods that have been used for
detection of S-glutathionylated proteins include the detection of proteins modified
by ¥3S-labeled or biotinylated glutathione (Brennan et al. 2006; Lind et al. 1998).

6.3 Summary

Redox-proteomics methods can provide us with global insights into protein damage
caused by oxidation, as well as into the molecular mechanisms that underlie redox-
regulation. But the identification of target proteins of oxidative stress is only a first
step in understanding the connection between oxidative stress and its pathological
consequences. The availability of precise mass spectrometers and highly specific
derivatization techniques already facilitated the identification of numerous proteins
that are prone to oxidation and the role of their oxidative modification in redox-
regulation, oxidative protein folding, and protein damage. The ongoing development
of probes that show high specificity for defined oxidative modifications has the
potential to further expand our insights, especially when these efforts are targeted
at unstable and transient oxidative modifications. Global data sets gathered from
redox-proteomics experiments will continue to provide a useful starting point for
concise analyses of the role of protein oxidation within global cellular networks and
will help us understanding the role of oxidative stress and redox signaling in health
and disease.
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Chapter 7
Computational Redox Biology: Methods
and Applications

Stefano M. Marino, Goedele Roos, and Vadim N. Gladyshev

Abstract Cysteine (Cys) is the most important amino acid in redox biology: it is
the premier residue used by proteins to maintain redox homeostasis, sense redox
changes in the environment, and counteract oxidative stress. Cys is often used as a
catalytic redox-active residue and plays a key role in protein structure stabilization
via disulfides and metal binding. Cys is much different from other common amino
acids in proteins: its unique chemical and physical properties provide high affinity
for metal ions, support formation of covalent bonds with other Cys, and confer
response to changes in the environment. These features are largely responsible for
the broad variety of its biological functions. Thus, a better understanding of basic
properties of Cys is essential for understanding the fundamental roles Cys plays in
redox biology, as well as for prediction and classification of functional Cys residues
in proteins. In this chapter, we provide an overview of theoretical and computational
tools that have been developed in the area of thiol regulation and redox biology. In
particular, we introduce and discuss methods to investigate basic properties of Cys,
such as exposure and pKa, and a variety of algorithms for functional prediction of
different types of Cys in proteins.
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7.1 Introduction

One of the major mechanisms of regulating protein function involves posttransla-
tional modifications of specific amino acid residues. The modifications can occur at
certain regulatable positions (residues not directly involved in protein function) or
functional sites in proteins (e.g., catalytic residues). Through these modifications,
enzymes are able to sense and respond to changes in the cellular environment. In
the case of the response to redox perturbations, the major sites involved typically
include the amino acid cysteine (Cys). This residue is the predominant target of
redox control of protein function and is key to the redox regulation of cellular
processes. This chapter provides a general overview of computational methods used
in redox biology. Because of their importance for the subject of this chapter, we will
initially focus on Cys properties and theoretical methods available to investigate
these properties.

Among the 20 common amino acid in proteins, Cys is often an outlier with
respect to descriptors used to classify and systematize properties and features of
amino acid residues. For a start, it is one of the least abundant amino acids in
organisms, but in spite of this, it is frequently observed in functional sites of
proteins, where it serves catalytic, regulatory, structure stabilizing, cofactor binding,
or other functions. Furthermore, Cys is thought to be a relatively recent addition to
the genetic code (Trifonov 2004), but it appears to accumulate more than any other
amino acid in present day organisms (Jordan et al. 2005). Other distinctive features
of Cys, highlighting its importance in biology, include the following: (i) in humans,
Cys mutations lead to genetic diseases more often than expected on the basis of its
abundance (Wu et al. 2007); (ii) the content of this amino acid in mitochondrially
encoded proteins is particularly low and inversely correlates with lifespan of animals
(Moosmann and Behl 2008). The biological interpretation of this relationship is
debated (Jobson et al. 2010; Moosmann 2011; Schindeldecker et al. 2011), but it
highlights the fact that Cys residues in proteins appear to be under strict evolutionary
control. This feature has to be associated with several unique biological functions
of Cys, as detected by genome-wide analyses of its tendency to form functional
clusters, such as structural disulfides and metal-binding sites (Beeby et al. 2005;
Marino and Gladyshev 2010a). Indeed, in the protein realm, a very unique property
of Cys is its ability to react with another Cys forming disulfide bonds. The only other
naturally occurring amino acid, albeit much less frequent in proteins, capable of a
similar reactivity is selenocysteine (Sec). Sec is a selenium-containing amino acid
that differs from Cys by a single atom (i.e., Se in place of S). In all characterized
selenoproteins, Sec is a redox active functional residue (e.g. directly involved in
catalytic function), albeit recently an exception to this rule has been reported (Lee
et al. 2011). Its function can be partially preserved when Cys replaces Sec, although
the replacement often leads to a considerable decrease in catalytic efficiency (Bock
et al. 1991; Kim and Gladyshev 2005). A recent study made the relation between
Cys and Sec even more intriguing. It has been found that Cys can be inserted in
proteins in place of Sec (Xu et al. 2010).
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What are the relevant physico-chemical features of Cys? What makes this
amino acid so special for protein structure, function and regulation? The main
features appear to be the high reactivity and chemical capabilities of its sulfur-
based functional group. As mentioned above, the nature of its side chain allows
for a unique reactivity in the protein world, i.e. the covalent interactions with other
thiols create intra- and intermolecular disulfide bonds. In addition, its functional
group can coordinate a variety of metals and metalloids. Therefore, Cys residues
hold a special role in terms of protein structure stabilization (e.g., through metal
binding and covalent bonds that help hold the structure together).

As incorporated into proteins, the side chain of Cys contains a sulfhydryl group,
representing the most reduced state of sulfur in proteins. This moiety is very
reactive when it comes in contact with various oxidants and other electrophiles
under both physiological and pathophysiological conditions. Reversible oxidation
of Cys thiols is known to play a role in redox regulation of proteins via the formation
of sulfenic acid intermediates (Cys-SOH), overoxidation to sulfinic acids (Cys-
SO,H) (Leonard et al. 2009; Poole et al. 2004; Shenton and Grant 2003; Wood
et al. 2003), intra- and intermolecular disulfide bonds (Paget and Buttner 2003),
and mixed disulfides with glutathione (Cabiscol and Levine 1996). Additionally,
Cys is the main target of nitrosative stress, leading to the formation of reversible S-
nitrosothiols (Hess et al. 2005). The susceptibility of Cys to these modifications
is largely dependent on the reactivity of each specific thiol: Cys thiolates are
good nucleophiles and more prone to oxidation than Cys thiols (Winterbourn and
Metodiewa 1999). Cys residues are also very polarizable (i.e., the thiol dipole can
be easily perturbed by interaction with other residues of the protein). Documented
examples include the effects of N-terminal helix dipole (Igbalsyah et al. 2006),
proximity to other titrable residues (Marino and Gladyshev 2009; Salsbury et al.
2008) and hydrogen bond partners (Foloppe et al. 2001). Therefore, Cys reactivity
ultimately depends on local environmental features (e.g., secondary structure
composition, proximity with charged residues, H-bond donors, etc.). A relevant
functional consequence is that its sensitivity to oxidation and over-oxidation greatly
varies with changes in the environment: an exposed Cys residue can be turned into
a very reactive residue and thus more likely to be either functional or dysfunctional.

7.2 Computational Methods to Investigate Thiol Reactivity

7.2.1 General Aspects of Cys Reactivity in Proteins

The general features of Cys in proteins are difficult to define. Their chemico-
physical properties are greatly influenced by the environment: deeply buried Cys
residues tend to behave as hydrophobic residues (due to hydrophobic packing inside
the protein body) while solvent accessible Cys residues have an opportunity to
interact with many H-bond partners and titratable groups of polar residues, which
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titration range

Fig. 7.1 Effect of pH perturbation on Cys located on molecular surfaces. For many exposed and
polar Cys, pKa is close to the physiological pH (shown in white, between pH values of 7 and 8,
in the figure). In this scenario, assuming Henderson-Hasselbach (HH) behavior for a monoprotic
acid (in a physiological solution), sudden net charge switches can happen in response to even small
local pH shifts, e.g. small pH increase, favoring deprotonation. Cys is in the anionic form, as shown
above the red shaded portion on the graph. Conversely, relatively small pH changes may promote
protonation and loss of the net negative charge. This can translate into sudden charge switches,
which can affect considerably physico-chemical properties of molecular surfaces in proximity to
the “switching” Cys. The latter event can affect protein-protein interaction patterns

are abundant on protein surfaces. These interactions can polarize considerably the
exposed Cys. Indeed, Cys can be easily perturbed by closely positioned titratable
residues (and also by interaction with the solvent), significantly affecting both its
pKa and its titration range (Marino and Gladyshev 2010a).

According to computer-based evaluations, exposed Cys are the naturally occur-
ring titratable residues with the closest pKa (i.e., average pKa in proteins) to the
physiological pH (Marino and Gladyshev 2010a). This observation is significant
per se: it implies that even for small variations of local pH (within the physiological
range), exposed Cys residues may experience sudden charge shifts and significant
electrostatic changes, which may extend to proximal portions of the molecular
surface (e.g., Cys can act as a charge switch, potentially affecting local electrostatic
properties and protein-protein interactions) (Fig. 7.1). For the same reason (i.e., pKa
of many exposed Cys being close to physiological pH), Cys residues on molecular
surface can experience sudden variation in their ability to serve as nucleophiles.

These observations highlight the intrinsically high responsiveness of exposed
Cys to changes in physiological states and environmental conditions, with con-
siderable implications in terms of protein function. Consequently, Cys aptitude
may provide a biological explanation for why Cys residues are found much less
frequently (than expected) on molecular surfaces. Unless employed for a specific
function, exposed Cys residues tend to be removed from protein surfaces (Marino
and Gladyshev 2010a).



7 Computational Redox Biology: Methods and Applications 191
7.2.2 Exposure and pKa

It follows from the discussion above that, in computational biology, two particu-
larly important descriptors of Cys reactivity are its exposure to solvent and the
protonation status of its functional group. In both cases, structural information
is needed to evaluate Cys properties. To estimate protein exposure, a common
approach consists of rolling a molecular probe (e.g., a sphere of 1.4 A radius to
mimic dimensions of the water molecule) over the protein body; the latter, usually,
is treated as rigid body: the probe can just touch its residues, but cannot penetrate
the surface. Commonly used (and free for download) programs include Naccess
(v2.1.1, http://www.bioinf.manchester.ac.uk/naccess/) and Surface Racer® (http:/
apps.phar.umich.edu/tsodikovlab/index files/Page756.htm). These methods exist in
stand-alone versions and, therefore, are suitable for automated large-scale analysis.
Relevant to exposure calculations are algorithms searching for residues, which,
albeit accessible to the solvent, are fostered in small pockets of the protein body
(Laurie and Jackson 2005). These methods are usually called pocket predictors (e.g.
http://www.modelling.leeds.ac.uk/pocketfinder/) and can be useful for investigation
of Cys modifications that occur in particularly controlled environments (e.g.,
some cases of S-nitrosylation) (Marino and Gladyshev 2010b). Additionally, some
programs use simplified docking procedures to discover regions of proteins, which,
alongside being exposed, are also suitable to accommodate larger substrates (Laurie
and Jackson 2005). One such program is Q-site finder (http://www.modelling.leeds.
ac.uk/qgsitefinder/). It can be useful for detection of particularly reactive types of
residues, such as catalytic Cys.

In the case of pKa predictions, no definitive computational protocols exist. As
hinted before, thiolates are better nucleophiles than their protonated counterparts.
Also, thiolates can react more rapidly with natural oxidants, such as peroxide (Win-
terbourn and Metodiewa 1999), even though this depends on the local environment
(Winterbourn and Hampton 2008). For these reasons, the ability to correctly predict
Cys pKa is a much sought after feature that would prove to be extremely valuable
in redox biology.

Different approaches have been used to study reactive Cys. One method makes
use of DFT (density functional theory) calculations to calculate pKa through
Natural Population Analysis (NPA) charge on Cys sulfur atoms (Roos et al.
2009a, b). The method worked well when tested with some known cases (e.g.
thioredoxins, and other thioredoxin fold thiol oxidoreductases). Considering the
intrinsic complexity of this analysis, DFT methods for pKa prediction can be
computationally demanding: usually, reduced protein models of the active site (i.e.
the functional site under investigation) are studied instead. Another method, which
has been applied to the investigation of reactive Cys is the empirical pKa predictor
PROPKA (Sanchez et al. 2008). For a titratable residue, a pKa shift is evaluated as
a function of the sum of energy contributions provided by surrounding residues.
Although the approach’s theory is relatively simple, it has been praised for its
balance of speed and performance (Marino and Gladyshev 2011a, b).
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A third category of methods, which found applications in the analysis of redox
Cys (Tosatto et al. 2008; Foloppe et al. 2001), is based on the numerical solution
of the Poisson-Boltzmann (PB) equation. The electrostatic calculations provide
(free) energies of each of the protonation microstates in the system. This allows
calculation of partition functions and, ultimately, for each titrable residue, the
probability of protonation over a range of pH values. The latter is a bonus of PB-
based pKa predictors: along with the pKa value, they can produce information
about the titration curve for pH values close to the pKj,, a feature which can be
very informative (Ondrechen et al. 2001; Marino and Gladyshev 2009). PB-based
approaches for pKa prediction have been applied successfully to various redox
related problems, such as glutathione peroxidases (Tosatto et al. 2008).

Each approach has its unique features, e.g. PROPKA is ultrafast while still
providing acceptable results. If properly set-up, the quantum mechanics (QM)-based
methods can be very accurate, and PB methods can compute, besides the pKa,
the whole titration curve in proximity to the pKj,. So, rather than in competition,
these methods can be considered complementary, as they can provide insights from
different perspectives and ultimately help establish a more complete picture of Cys
reactivity.

Related to Cys reactivity, a new proteomics approach, called isoTOP-ABPP
(Weerapana et al. 2010), allows high-throughput identification of all reactive Cys
in proteins, while at the same time quantifying their reactivity (through a reactivity
score, R). As R-values reflect Cys nucleophilicity, and the latter depends (among
other factors) on the acid dissociation constant of its functional group, methods like
isoTOP-ABPP could be very useful for large-scale comparison between theoretical
prediction of reactivity and experimental data. It would be interesting to compare
theoretically based ranking of Cys reactivity such as pKa and exposure with
R-values, experimentally obtained for all reactive Cys.

Besides pKa prediction, QM investigations can be useful in unraveling other
aspects of Cys properties and reactivity, as detailed in the following section.

7.2.3 DFT in the Study of Redox Proteins

Cys reactivity can be assessed using reactivity descriptors founded in conceptual
density functional theory, DFT (Parr and Yang 1995; Geerlings and De Proft 2008),
describing the preferred reaction energetics and thus the kinetics in terms of the
properties of the reagents in the ground state. Conceptual DFT looks at energy
perturbation (Parr and Yang 1995; Geerlings and De Proft 2008) upon changing
the number of electrons or the external potential, i.e. the potential felt by the
electrons due to the nuclei. Sulfur is an electron rich element having d-electrons
not tightly bound to the nucleus making it polarizable. Therefore, sulfur can be
classified as a ‘soft’ element. The softness (S) is the reciprocal of the hardness,
which is defined as the second derivative of the energy to the number of electrons. It
measures the resistance of the system to changes in the number of electrons (Pearson
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and Parr 1983; Geerlings and De Proft 2008). The S can be approximated via the
ionization energy (IE) and the electron affinity (EA), i.e. S ~ 1/(IE -EA). When the
reactive part of a molecule (e.g., the functional group, the thiol/thiolate for Cys) is
considered, the Fukui function f(r) can be used as a local descriptor (Pearson and
Parr 1983; Geerlings and De Proft 2008). The condensed Fukui functions on A can
be approximated as:

1. fo~ = qa(No — 1) — qa(Np), for the nucleophilic attack (performed by atom A)
2. fat = ga(No) —qa(No + 1), for the electrophilic attack (received by atom A)

where qa(No), ga(No + 1) and gqa(No — 1) are the atomic populations for atom A
in the neutral molecule (Ny electrons) and the corresponding anion (No + 1) or
cation (Ng— 1), as evaluated at the geometry of the Ny electron system. Both,
the Fukui function and the softness have been successfully applied to reveal
details of enzymatic reaction mechanisms, as well as in the interpretation of
biochemical experimental observations (Roos et al. 2009a, b). For example, the
detailed mechanism of the reaction for thioredoxin mediated reduction of target
disulfides (a process involving formation and dissociation of mixed disulfides) was
studied via these descriptors (Roos et al. 2009a, b). Using the Fukui function and the
softness it was possible to identify and rationalize the succession of events involved
in the reaction. In the catalytic C;xxC, motif (where x denotes any amino acid,
and C stands for Cys) of thioredoxin, the first Cys (C;) is not only the attacking
nucleophile (i.e., the one which initiates the reaction) but also the site receiving the
final nucleophilic attack from the second Cys (C,) of thioredoxin (i.e., C; attacks
the substrate, then C, attacks Cj, releasing the reduced substrate). It was found
that C, activation, after the mixed disulfide bond complex is formed, is due to
hydrogen bonds (Roos et al. 2009a, b). This example shows that the Fukui function
is able to identify the preferential sites for nucleophilic attack in disulfide bonds,
a useful feature that can provide valuable insights in the investigation of reaction
mechanisms involving this type of covalent modifications (e.g., the Dsb family).
As discussed above, sulfur is very prone to oxidation (Winterbourn and
Metodiewa 1999; Winterbourn and Hampton 2008) and can adopt oxidation states
ranging from —2 (the thiol group in Cys residues), to +4 (the sulfonic acid,
R-SO;3H). In most biologically relevant forms, Cys oxidation states include —2
(thiol), —1 (disulfide), and O (sulfenic acid, R-SOH). Cys oxidation thermodynamics
have not been experimentally studied, due to the high reaction rates between
thiols and oxidants (Roos and Messens 2011). From a computational perspective,
reduction potentials are real challenges: for small and medium sized systems,
high level free energy calculations can be performed, albeit being computationally
expensive, in a thermodynamic cycle linking the process in the gas phase with that
in solvent (Baik and Friesner 2002; Schmidt Am Busch and Knapp 2005). For
large protein systems, the free energies can be calculated in a quantum mechanics-
molecular mechanics framework (Hu and Yang 2008; Mark et al. 2002; Kamerlin
et al. 2009). However, to the best of our knowledge, these techniques have never
been applied in redox biology, e.g. to study Cys oxidation in proteins. Recently,
an alternative approach, called the Reduction potentials from Electronic Energies
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(REE) method, was developed (Billiet et al. 2012). The REE approach is based
on the correlation between reaction path, independent reaction energies and free
energies. To assess its applicability in redox biology, the oxidation of thiol to
sulfenic acid in human peroxiredoxin was studied (Billiet et al. 2012). It was found
that a polar environments favor the sulfenylation of the deprotonated thiolate RS™.
Furthermore, when redox couples at different protonation states were compared,
it was calculated that RSH/RSOH oxidation is thermodynamically favored over
deprotonated RS™/RSO™ oxidation. This thermodynamic preference for the
protonation state can, however, be reversed in the active site of human Prx by a
conserved arginine: the hydrogen bond between this arginine and the active site Cys
favors the oxidation of the deprotonated couple (RS™/RSO™). With this interaction,
in the active site of peroxiredoxin, not only kinetics but also thermodynamics favor
the oxidation of thiolates (i.e., the reaction between oxidants and RS™ groups is
favored over the reaction with RSH groups, both energetically and kinetically).

The REE method is not limited to the study of sulfenic acid/thiol redox couple
and can also apply to other oxidized Cys couples, such as sulfinic acid or sulfonic
acid derivatives. Furthermore, methionine oxidation and Sec oxidation can, in
principle, be studied this way too. Therefore REE is one of few existing tools for
detailed mechanistic studies of redox control. Once available to the community, it
would offer a significant addition to the current arsenal of computational tools in
the redox biology area (e.g., to provide in silico estimation of redox potentials for
particular protein residues).

7.3 Bioinformatics Approaches for Prediction
of Reactive Cys in Proteins

As introduced above, Cys may serve different functions in proteins. These residues
can act as stabilizing elements, e.g. by binding metals or forming stable structural
disulfides, or serve as posttranslational modification sites. Thus, a common classi-
fication of Cys residues in proteins is based on their function: different functional
classes of Cys have different salient features determining their ability to complete
the specific function. For example, Cys residues serving catalytic functions have to
be accessible to their substrates, and they often show features of high reactivity, such
as low pKa or high electrostatic perturbation of their functional groups (Marino and
Gladyshev 2009).

Different functional categories of Cys include: (i) catalytic Cys residues,
(i1) structural cystine residues (i.e., stable disulfide-bonded Cys), (iii) metal-
coordinating Cys residues, and (iv) Cys residues, which serve as sites of
posttranslational modifications (often called regulatory Cys). However, it has to
be noted that while this classification is certainly useful, not all Cys residues can
be unambiguously assigned to one of the above functions (e.g., redox switchable



7 Computational Redox Biology: Methods and Applications 195

Cys). In the following paragraphs, we briefly introduce relevant biological aspects
of each Cys functional category. Then, for each category, a brief discussion of
how bioinformatics approaches can be used to investigate the subject, and with
which tools, is provided (for an overview of most relevant methods discussed in this
chapter, see Table 7.1). Finally, we comment on the challenges to bioinformatics
analyses posed by redox switches.

7.3.1 Catalytic Cys Residues

In many enzymes, Cys plays a critical role as a nucleophile in enzyme-catalyzed
reactions. Such Cys residues belong to the functional category of catalytic Cys
residues. Depending on whether or not Cys residues change redox states during
catalysis, a further division can be made between redox and non-redox catalytic
Cys functions. Examples of enzymes with non-redox catalytic Cys are protein
tyrosine phosphatases, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Cys
peptidases, various members of the deubiquitination system, and dCMP hydrox-
ymethylases. It has to be noted that, while in their normal catalytic cycle the
active site Cys of these enzymes do not change redox state, some of them (e.g.,
GAPDH) are redox sensitive (i.e. they are easily targeted by various oxidant, such
as hydrogen peroxide) and experience redox regulation. Other enzymes, called thiol
oxidoreductases possess an active site nucleophilic Cys that, during the catalytic
function, changes redox state. Here, the catalytic Cys function involves substrate
oxidation or reduction, disulfide bond isomerization and detoxification of various
compounds. To our knowledge, no computational approaches for the detection of
catalytic non-redox Cys residues have been developed. So, we further focus on thiol
oxidoreductases, for which better progress has been made.

Thiol oxidoreductases are the only known enzymes that make use of Sec as
the catalytic residue (Fomenko et al. 2007). In cases where Sec is not employed,
Cys is used in its place. Corollary considerations follow: (i) Sec in active sites of
enzymes is always redox-active, (ii) in thiol oxidoreductases, homologous Sec/Cys
pairs of residues (i.e., Cys substituting Sec in orthologous proteins) indicate that
both residues ought to be considered redox-active. The latter observation was
used as a foundation for designing an algorithm (Fig. 7.2) for high-throughput
identification of catalytic redox Cys in protein sequences. The method searches for
sporadic Cys/Sec pairs in homologous sequences (Fomenko et al. 2007). First, it
identifies unique Cys/Sec pairs flanked by homologous sequences within a pool
of translated nucleotide sequences. These pairs then serve as seeds for sequence
analysis at the level of protein families and subfamilies. In other words, because Sec
is exclusively used in redox catalysis, an alignment between two protein sequences
where Sec and a conserved Cys are paired points to the catalytic role for the
Cys. A useful characteristic of the method (Fig. 7.2a) consists of it ability to
identify thiol oxidoreductases through their catalytic residues (e.g. not only thiol
oxidoreductases, but also the exact identity of their redox active Cys). Together with
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redox catalytic Cys

Query protein G SWRETYCILOQTTASTIOQLLSY
G R+++CTI Q + + + I QL SY
Selenoprotein GSTRKSFUIQOQSVTTIOQLWSY

>Active site
b TKTGYCILQTGR

«» compositional similarity

< secondary structure content

< Cys reactivity prediction

Fig. 7.2 Methods for thiol oxidoreductase prediction. (a) Sec2Cys method. A query protein is
analyzed with tBlastn against a database of nucleotide sequences. Sec pairing with Cys in the
sequence directly points to the catalytic redox function of the Cys. (b) Structure-based prediction
of thiol oxidoreductases. By analyzing sequence and structural homology with known thiol
oxidoreductases, and by theoretical estimation of Cys reactivity, a query protein is evaluated.
Important parameters include amino acid and secondary structure composition within 8 A from
the catalytic Cys, and the deviation from the Henderson-Hasselbach (HH) behavior. A typical
representation of the latter is shown in the bottom part of panel B, where the deviation (ju; + |12)
reflects the difference between the theoretical titration curve calculated from the structure (blue
curve), and the corresponding curve (red curve) for a standard HH behavior

sensitivity, a key advantage of this approach is speed. High-throughput analyses
are possible in reasonable amount of time, allowing genome-wide analyses of thiol
oxidoreductases. When tested, the method was capable of correctly recognizing
nearly all known thiol oxidoreductases and predicted several new families, such as
the one within a superfamily of AdoMet-dependent methyltransferases, as having
thiol-based redox functions. This specific family (arsenic methyltransferases) was
then experimentally verified to contain the catalytic redox-reactive Cys (Fomenko
et al. 2007), further validating the approach. More recently, this approach was
applied to assess the general use of thiol-based oxidoreduction in biology (Fomenko
and Gladyshev 2012). These analyses showed that approximately 1% of all proteins
are thiol oxidoreductases and that these proteins are used in all living organisms.
Thus, thiol-based redox control is an essential feature of all cellular life.

A different computational approach, developed principally to investigate com-
mon structural features of catalytic residues in thiol oxidoreductases, was also
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employed for predictive purposes (Fig. 7.2b) (Marino and Gladyshev 2009). Fea-
tures describing the majority of catalytic residues in thiol oxidoreductases included:
(i) weak, yet detectable sequence similarities between different families of thiol
oxidoreductases, (ii) preference for an a-helix or helix/coil secondary structure,
(iii) theoretical titration spectra deviating from the corresponding Henderson-
Hasselbalch (HH) behavior (this feature described catalytic redox Cys better than
the pKa, particularly when compared to non-redox catalytic Cys), and (iv) docking
affinity for small and uncharged molecular probes, used as mimics for generic
substrates (Laurie and Jackson 2005). These features were combined into a multi-
parameter scoring function and implemented in the form of a predictive algorithm.
The method was examined with different test cases, correctly predicting known
thiol oxidoreductases. Additionally, the method predicted some new candidates,
among which particularly interesting was 6-O-methylguanine-DNA methylase
(MGMT). This protein showed high scores, higher than those for many known
thiol oxidoreductases. Because some MGMTs also have sporadic Cys/Sec pairs
in homologous sequences, these enzymes can be predicted as interesting thiol
oxidoreductase candidates.

The main advantages of the structure-based approach described above reside
in its ability to specifically trace back the contribution of each component to
the overall prediction. The contribution of each sub-part of the algorithm can be
separately analyzed, and therefore the weight of each to the final output value
can be immediately retrieved. As each sub-part corresponds to specific physical,
chemical or biological aspects of Cys reactivity (e.g., exposure and accessibility,
titration curve and its deviation from HH, sequence homology with known thiol
oxidoreductases), the user can easily extract biological information from the final
output of scoring function. In addition, it showed an ability to detect new thiol
oxidoreductases. On the other hand, the main disadvantage of the method is its
speed: several different structure-based calculations are needed, some of which are
computationally demanding. Therefore, the method is not well suited for extensive
high-throughput analyses.

Bioinformatics approaches applied to the study of thiol oxidoreductases are
certainly not limited to their prediction. Indeed, computational investigations
examined a variety of aspects of thiol oxidoreductase evolution, distribution and
functional classification. We further discuss several specific cases. Babbitt and co-
workers developed computational strategies to analyze the structure and sequence
landscape of thiol oxidoreductases and examined how, in particular within the
thioredoxin fold, they evolved into different protein families and functionalities
(Atkinson and Babbitt 2009a). For example, the authors inferred the evolution
of a protein from a thioredoxin-like common ancestor of peroxiredoxins (Copley
et al. 2004); the two protein families shared the same fold, but evolved different
catalytic mechanisms (with peroxiredoxin forming sulfenic acid intermediates on
the catalytic Cys, a feature not present in thioredoxins) and rescue modality (i.e.,
reductants, which in the case of peroxiredoxin are type- and cell-specific, while a
single enzyme, thioredoxin reductase, evolved in the case of thioredoxin) (Copley
et al. 2004). The effect of evolutionary divergence in shaping functional specificities
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can be assessed with Blast-based evaluation of sequence distance, and the functional
consequences of such variation can be traced to the protein fold through structural
superimpositions.

In another study, evolution of glutathione transferases (GSTs) was assessed
though evaluation of both structure and sequence similarity networks (Atkinson and
Babbitt 2009b). The study showed the effects of sequence variability (e.g., the loss,
in most members, of the nucleophilic catalytic Cys, typically found in CxxC like
motifs in thiol oxidoreductases with the thioredoxin fold) in term of structure and
function, a process that ultimately produces proteins with different functions. Other
bioinformatics approaches to redox biology include the use of functional active site
profiling to classify different subfamilies of peroxiredoxins (Nelson et al. 2011;
Soito et al. 2011). By using active site signatures, this method allowed researchers
to define six peroxiredoxin subfamilies, each of them with specific functionalities.
A carefully curated database for peroxiredoxin sub-families classification (PREX)
has been developed and is publicly available (http://csb.wfu.edu/prex/).

7.3.2 Structural Disulfides

As discussed above, Cys is one of only two naturally occurring amino acids (the
other one being Sec) capable of covalent interaction with other residues of the
same type. This property provides fundamental advantages, including structural
stabilization and folding guidance. Prior to discussing the relevant computational
methods, an important note is due: all the approaches described address (and, thus,
apply to) the case of stable, structurally relevant disulfides. In fact, the prediction
of transient disulfides (e.g., those present in reducing compartments of the cell)
represents a very challenging task because of protein movement associated with
disulfide formation or reduction. Therefore, to date, their identification still relies
on the case by case in depth analysis, either through theoretical analysis of protein
mobility (e.g., molecular dynamics approaches), or by direct solution of protein
structure at different oxidation states (e.g., crystal structures of both reduced and
oxidized forms).

Computational approaches to predict stable structural disulfides can be divided
into sequence-based and structure-based (Fig. 7.3). The former strategy has been,
and still is, the elective choice for large-scale analysis of proteomes, where structural
information is not available. In turn, structure-based algorithms, albeit slower and
inapplicable to proteins, where no structural information is available, can provide
distinct advantage in terms of accuracy and precision. The approach to structure-
based computation of disulfides can be very straightforward. Starting from the
atomic coordinates, the distance between each Cys sulfur is computed. As a
common practice, the pairs found to lie within 2.5 A are considered safe candidate
for residues engaged in covalent bonds (Fig. 7.3b). Disulfide bonds detected by
analyzing the S-S distance often can be found already annotated in the PDB
repository (they can be found by directly accessing the PDB file header).
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>candidate_sequence
MPSVSIVALNKKSKKISRKEAEKKRSSKKEASKQKVARPRTPLSVP
CVSTRGSCKPPAPACCHPCASCQCRFFRSACSCRVLNVNCAAA

al
C-X(6)-C-X{ﬁ}-C-C-X(2)-(:-)(|(2}-C-X-C;X{SJ-C-X-C-X(S, 9)-C

Fig. 7.3 Sequence- and structure-based approaches for disulfide detection. (a) A simple structure-
based approach for disulfide identification. Two distances are routinely considered: (i) sulfur (Sy)
to sulfur distance, with the usual cut-off distance of 2.5 A; and carbon alpha (Ca) to carbon
alpha distance, with the usual cut-off of 8 A. (b) A typical PROSITE based approach is shown.
A candidate sequence under investigation is parsed with PROSITE patterns describing known
disulfides. A match is found for the pattern PDOC60024 (also called, Agouti domain signature).
For explanation of the regular expression vocabulary for PDOC60024, see the main text. Conserved
Cys are shown in red, which form disulfides in a sequence specific arrangement (shown as dotted
lines, connecting Cys in the figure)

A powerful modification of this method consists of the analysis of distances
between carbon alpha atoms. In this case, a common cut-off distance is 8 A
(Fig. 7.3b). The main advantage in doing this sort of analysis is the fact that
the prediction of “only” the alpha-trace represents a considerable computational
advantage. Disregarding positioning side chains and focusing only on the main
chain folding, it allows (i) prediction for very difficult homology model cases (e.g.,
very low homology with a template, using threading approaches), and (ii) reduction
of computational time needed to obtain the model. This approach is well suited for
large-scale comparative analyses (Beeby et al. 2005; Marino and Gladyshev 201 1a),
which benefit from a reasonable speed of calculations, along with the ability to
analyze scarcely refined structural models.

In some cases, however, it is desirable to work without structural information at
all: the structural coverage of natural proteins is still largely incomplete. In this area,
various computational approaches have been developed. As a common theme, they
search protein sequences for recurring motifs, as found in the primary structure.
Usually, these features are discovered by manual curation (i.e., investigating known
cases), and are then compiled in the form of rigorous patterns. An example
of one such pattern is C-x(6)-C-x(6)-C-C-x(2)-C-x(2)-C-x-C-x(6)-C-x-C-x(6,9)-C
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(Fig. 7.3a), where C is Cys, x denotes any amino acid, and the number in parenthesis
indicates the number of such amino acids. This is an example of a pattern, which
includes several disulfides, compiled, curated and maintained by PROSITE (Sigrist
et al. 2002). Indeed, perhaps the simplest approach for sequence-based prediction
of disulfides is the direct implementation of sequence patterns and profiles found in
PROSITE. These patterns are annotated regular expressions that describe relatively
short portions of protein sequence that may have biological meaning or function.
They can be directly implementable in simple programming scripts for relatively
quick searches of entire proteomes. Alternatively, for non-specialist users, the
PROSITE web server provides a simple access interface (ScanProsite, de Castro
et al. 2006) to browse for S-S patterns in any input sequence. However, although
many S-S patterns with perfect specificity have been compiled, PROSITE profiles
and regular expressions can detect only a minority of disulfide-bonded Cys. It has
been estimated that only one out of four of them are matched by a pattern with high
specificity (Passerini and Frasconi 2004).

Improved sequence-based approaches have been developed in recent years
that could overcome this limitation. To enhance performance, machine learning
approaches were implemented (Chen et al. 2004; Cheng et al. 2006; Ceroni et al.
2006), which employ various levels of sequence-based information, such as nature
of adjacent amino acids, conservation of flanking residues, etc. Very generally,
the scheme includes the definition of (i) a set of true positive cases (i.e., known
disulfides), and (ii) a set of true negatives (known non-covalently bonded Cys
residues). Then, the algorithm is trained to distinguish the two groups. Rules and
parameters allowing for a better resolution are kept and become part of the search
program. In other words, starting from the training set of manually collected known
cases, the algorithm can learn a classification function, which can then be used for
prediction purposes. One such approach is called DISULFIND (Ceroni et al. 2006):
it uses support vector machine (SVM) and neural networks to classify and rank
different Cys in protein sequence. It is available as a user-friendly web service, at
http://disulfind.dsi.unifi.it/. The algorithm is fast and performs, overall, better than
PROSITE (Ceroni et al. 2006). A viable alternative is represented by the machine
learning approach called EDBCP (Lin and Tseng 2010). Its main feature is that
it employs structural information through automatic modeling (starting from an
input consisting of a protein sequence) via the Modeller package (Lin and Tseng
2010). After the model is created, an SVM-based algorithm uses the information to
score and rank all Cys in proteins. These values are then compared with reference
scores for true positive candidates. Therefore, only Cys pairs that show structural
resemblance to known disulfides are predicted as cystine residues. Similarly to
DISULFIND, EDBCP is publicly available as a web accessible service (http://
biomedical.ctust.edu.tw/edbcp/).

7.3.3 Metal-Binding Cys

Metal-binding Cys residues are found in structurally and evolutionary distinct
groups of proteins, present in all branches of life. Together with histidine (His), Cys
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is the most frequently employed amino acids in metal coordination (Dokmanic et al.
2008), especially for binding zinc, cadmium, copper, iron, and nickel. A particularly
common occurrence is the coordination of Zn: biologically relevant assets include
tetra-Cys coordination (Zn-Cyss) and mixed Cys and His binding (e.g. Hisy-Zn-
Cys,). These structures are present in zinc fingers motifs, where they exert a crucial
role in scaffolding the local structure of the broad variety of proteins that use this
motif to bind DNA (Klug 2010). In the case of Zn-Cyss complexes, four thiolate-
Zn** bridges act as stabilizing elements for protein structure (Kroncke and Klotz
2009). This structure can be thought of as a sort of “substitutive” for structural
disulfide in cellular compartments characterized by overall reducing conditions,
such as the cytosol, where the formation of disulfides is disfavored while Zn-Cys,
complexes can form and be stable.

Besides structural roles, metal binding sites carry out many other important
functions, such as serving as catalysts and regulatory sites. In this regard, Cys
properties make this amino acid an excellent site for redox-dependent regulation
of metal binding. For example, Zn?>*-Cys complexes allow for tight binding, but at
the same time the involved Cys are potentially amenable to oxidation, which would
destabilize the complex and release the metal. From a computational perspective,
metal-Cys sites can be studied with various approaches, somewhat mirroring the
case of disulfides. Thus, the simplest approach uses manually curated sequence
patterns/profiles recurrently found in different classes of metal-binding sites. These
motifs can be found, meticulously curated, at the PROSITE website. In spite
of their speed and simplicity, pattern-based approaches can be affected by low
performance. Furthermore, while several patterns provide perfect specificity (e.g.,
PS00198, PS00190, PS00463, at the PROSITE website), other patterns are much
less specific, and some Cys residues can match more than one pattern (i.e., circa
12% of metal bound Cys can be detected by multiple patterns, Passerini et al. 2006).
Obviously, another limitation includes their inapplicability for detecting new types
of metal-binding sites.

Thus, more sophisticated approaches have been developed based on machine
learning (Passerini and Frasconi 2004; Passerini et al. 2006) and non-linear statis-
tical methods (Lin et al. 2005). A generic (and simplified) presentation of similar
approaches could be as follows: for each candidate Cys, feature vectors are derived
that include sequence information in the form of (i) conservation, for example,
through a position specific substitution matrix (PSSM), and (ii) distance, in primary
structure, between pairs of candidates (e.g.[C];-x(d)-[C],, where [C];) denotes a
candidate site, x any amino acid, and d the number of amino acids separating the
two Cys. Various additional layers can be added to the analysis, such as conservation
of amino acids within a certain distance from the candidate site. A particularly
interesting approach of this type is MetalDetector (Passerini et al. 2006). It considers
only a subset of binding sites, where Cys and/or His are involved. Here, feature
vectors include PSSM based information and global descriptors, such as protein
length and amino acid composition. The feature vector is first classified by an SVM,
and then a bi-directional recurrent neural network is used to distinguish metal and
non-metal binding sites. These steps are meant to help separate the two types of
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structural Cys, i.e. those present in the disulfide form from those in metal-binding
sites. The latter is a prominent feature of MetalDetector: for any candidate site, a
likelihood score is provided that reflects the probability that this Cys is metal bound,
as opposed to disulfide bonded (or vice versa). The method is freely available both
as a web accessible service and as a standalone program (http://metaldetector.dsi.
unifi.it/). Various other SVM ranking methods have been developed for predicting
metal-binding Cys (Shu et al. 2008). These approaches usually outperform simpler
sequence based descriptors (e.g. pattern-based, such as PROSITE, or homology-
based, such as Blast-derived comparative analyses) while maintaining many of the
advantages, such as speed (Shu et al. 2008).

Like in the case of disulfide prediction, structure-based approaches can be a
valuable alternative for the prediction of metal-binding Cys. One interesting method
involves the use of empirical force field FoldX (Schymkowitz et al. 2005). The
search algorithm uses geometric information typically found in metal-binding sites
as a starting point for prediction of new sites. It first analyzes typical (e.g. recurrent)
arrangements of Cys ligands around zinc coordination sites. The method can recog-
nize similar geometrical and compositional patterns, such as the nature of ligands
clustered in space and their relative geometries. The information gained for each
type of metal binding site is then stored, and in its final form, the procedure is ca-
pable of scanning a candidate protein structure recognizing potential metal-binding
sites and identifying residues and types of metal involved (Schymkowitz et al. 2005).
To be noted, FoldX, available free of charge for academic users at http://foldx.crg.
es/, is not specific for Cys, or His or zinc. In turn, it can work with almost all com-
mon metal-binding site types. However, due to the use of structure-based informa-
tion and employment of energy-based calculations, it has its limitations: it heavily
depends on the quality of structural data (highly resolved experimental structure is
the ideal situation for such analysis). Thus, it may be not the best choice for large
scale analyses of protein datasets, or for the analysis of models with low refinement.

Alternative structure-based strategies that could overcome this issue are now
available, such as the algorithm implemented in FINDSITE-metal (Brylinski and
Skolnick 2011). This method allows prediction of metal-binding sites in weakly
homologous proteins. This is achieved by combining the power of threading
techniques for structural modeling based on distantly related templates with evo-
lutionary information (e.g. through comparative analysis of conservation patterns)
and, finally, machine learning evaluation and classification of feature vectors. This
program is capable of working with entire proteomes in a reasonable time (Brylinski
and Skolnick 2011) and is freely available to the community at http://cssb.biology.
gatech.edu/findsite-metal.

7.3.4 Regulatory Cys

As discussed above, Cys residues are subject to different types of redox posttrans-
lational modifications (PTMs), with sulfenic acid (Cys-SOH), disulfide bonds (both
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intramolecular and intermolecular), S-nitrosylation (NO-Cys) and glutathionylation
being the most common. Additionally, Cys can react with endogenous hydrogen
sulfide (H,S), a modification that can lead to significant physiological (Yang et al.
2004; Johansen et al. 2006) and structural effects (Jiang et al. 2010). All of the above
can be classified as redox-based PTMs and are reversible. However, other important
Cys modifications, which are stable and do not involve a change in the redox state,
also occur. They include, for example, the formation of thioether bonds with farnesyl
or geranylgeranyl groups, leading to protein lipidation and membrane anchoring
(Zhang and Casey 1996) or covalent binding of protein cofactors, such as heme.
These Cys modifications could be classified into a separate category of functional
Cys residues. In the following text, we discuss the role of bioinformatics in the
study of reversible Cys modifications that can affect protein properties, function
and interaction networks. For these reasons, they are often referred to as regulatory
Cys (Marino and Gladyshev 2011a, b).

Large-scale computational investigation of regulatory Cys was hindered in the
past by scarcity of experimental data. However, in recent years several proteomic
approaches have been developed, which provided substantial improvements with
regard to experimental data (Fratelli et al. 2004; Hao et al. 2006; Leonard et al.
2009; Michelet et al. 2008). Benefitting from this large influx of information,
bioinformaticians could start addressing the existence of recurrent patterns defining
the specificity of Cys to regulatory modifications. To the day, no sequence-
based predictive pattern has been found, for any type of Cys PTM sites. Instead,
computational studies revealed heterogeneity of sequence features around different
Cys PTMs. In some cases, enriched motifs were detected (Greco et al. 2006; Wu
et al. 2010), like adjacent negatively charged residue in the case of some NO-
Cys sites, but these could not describe the majority of regulatory sites of this type
(Marino and Gladyshev 2010b).

Better results were obtained with structure-based approaches, particularly in
the case of NO-Cys (Greco et al. 2006; Marino and Gladyshev 2010b). First, a
quantum mechanics (QM)-based study demonstrated that NO modification induces
a significant charge redistribution, which largely affects its side chain atoms in
a manner inversely proportional to the distance from the modification sites (e.g.,
carbon alpha is the least affected). At the same time, the effect is negligible for main
chain atoms of the same residue (Han 2008). NO-Cys specific force field parameters
and charge schemes for NO-Cys were developed, by using a restrained electrostatic
potential (RESP) approach (Cieplak et al. 1995). Structural restrains for dihedral
angles for NO-Cys sites were derived from the analysis of crystal structures, and
geometrical optimization was conducted at the Hartree-Fock (HF) level of theory
(HF/6-31G*). With these modifications, molecular dynamics (MD) simulation tests
were performed and found to be in good agreement with previously available data
(e.g., analysis of human thioredoxin 1, for which the structures of both unmodified
and modified protein forms are available in PDB) (Han 2008).

These theoretical findings provide the basis for docking simulation studies with
NO-Cys containing proteins or substrates. A first computational approach, using
the new and ad hoc developed parameters for NO-Cys to investigate a database of
potential Cys targets for GSNO mediated trans-nitrosylation, was recently reported
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Fig. 7.4 Docking-based approaches for identification of S-nitrosylation sites. Availability of ad
hoc parameters for S-nitrosylation of Cys residues in proteins (see main text) allowed their
implementation for NO-modified proteins. In the example in the figure, S-nitrosylated glutathione
(GSNO) is shown. As a putative trans-nitrosylating agent, GSNO is docked to a protein. Among
the best ranked docking complexes, one (or more) poses might be consistent with reactivity (e.g.
GSNO approaches an exposed Cys with a favorable interaction, and a sulfur to sulfur distance is
less than 3 A with no steric clashes). In the example, a reactive pose is found (labeled “reactive
pose”). The Cys is, in this docking based assay, a positive target for GSNO mediated trans-
nitrosylation. In addition to GSNO, similar approaches can be applied to many other agents (e.g.
Cys-NO, or even small S-nitrosylated proteins)

(Marino and Gladyshev 2010b). This docking approach was able to address the
issue of prediction of a specific subset of NO-Cys sites, i.e. Cys modified via
trans-nitrosylation with GSNO. Similarly, other trans-nitrosylating agents could be
explored with this strategy (Fig. 7.4). Indeed, docking calculations could be a valid
computational alternative for detection of specific Cys amenable to modification
with different NO-sylated substrates (NO-Cys, S-nitrosylated small peptides, etc.).
Particularly challenging, but certainly feasible, is the investigation of the role
of protein-protein interactions in the transfer of NO groups from one protein to
another, the so-called protein interaction-based trans-nitrosylation. This process has
so far escaped detailed computational studies. However, the steady development
of suitable docking software (e.g., Rosetta dock) and the information gained from
previous studies (Han 2008) may make it soon possible to investigate protein
interaction-based trans- nitrosylation.

7.3.5 Cys as Redox Switches

Classification of Cys residues based on their biological roles is certainly reasonable
in the context of a general overview. However, in some known cases (and, perhaps,
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in many still unknown) the situation is more promiscuous, with the division between
different Cys types being much less clear cut, i.e. Cys residues could belong to
two or more of these categories. For instance, catalytic non-redox Cys in GAPDH
also undergoes regulation by reactive oxygen species and thiols (Fermani et al.
2007; Hara et al. 2005; Hook and Harding 1997). Indeed, thiol redox regulation
of enzymes may act on different Cys types, such as catalytic and metal binding
(Ilbert et al. 2007; Jakob et al. 1999). Whenever the modification leads to a
change in protein structure and/or function, the Cys can be viewed as a sort of
switch. In cases where the modification is redox, it is often called the redox switch
(Klomsiri et al. 2011). Redox switches are widely employed in a variety of processes
and proteins, e.g. transcription factors OxyR and Yapl, kinases, phosphatases,
chaperones, mitochondrial branched chain aminotransferase and other proteins. For
a detailed discussion on the subject, we refer the reader to representative and updated
reviews (Maret 2006; Brandes et al. 2009; Kumsta and Jakob 2009; Nagahara 2010;
Klomsiri et al. 2011).

A very interesting case is represented by Hsp33 (Jakob et al. 1999, 2000). This
protein protects bacteria from oxidative stress that results in protein unfolding and
aggregation. In unstressed conditions, the protein is monomeric and inactive. It has
four Cys residues (Cys232, Cys234, Cys265, and Cys268) involved in binding a zinc
atom. After exposure to increasing levels of oxidants, e.g. hydrogen peroxide, one of
the four Cys is oxidized to sulfenic acid. This transient state leads to the formation
of a disulfide, and the loss of the zinc atom. Ultimately, the process triggers a large
change in structure (tertiary and quaternary) and activates the chaperone function of
Hsp33.

In humans, up to 10% of proteins are believed to possess Zn-binding sites
(Kroncke and Klotz 2009; Maret 2006). The majority of these sites contain Cys
residues. As discussed in various sections of this chapter, when Cys binds zinc,
a very relevant property is the tight binding, but also susceptibility to oxidative
modification. This property, together with reversibility of binding as a function
of the intracellular redox state, open up the possibility that many Cys-coordinated
Zn sites are candidate redox switch sites. The distribution, function and general
physiological relevance (i.e. beyond the few known cases) of metal-based redox
switches have yet to be thoroughly explored.

Currently, no computational methods can properly deal with Cys redox switches.
Sequence-based computational predictors for metal-binding Cys are often unable
to distinguish them from Cys capable of disulfide bonding, and vice versa. For
instance, when E. coli Hsp33 sequence is scanned with a state-of-the-art machine
learning-based metal-binding site prediction program (Passerini et al. 2006), Metal
detector (http://metaldetector.dsi.unifi.it/), two of its Cys (Cys265, Cys268) are clas-
sified as metal binding, whereas the other two Cys are not. Additionally, the program
predicts that all Hsp33 Cys residues have a negligible tendency to form disulfides.
But we know that Cys265 and Cys268 form the first Hsp33 redox switch, and thus
are indeed capable of disulfide bonding, even if only after one of them is oxidized.
This is not surprising as the algorithm has not been trained to distinguish redox
switches, and training is the most essential part of machine learning approaches.
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Therefore, it is perhaps possible that similar approaches, properly devised and
implemented, could provide a starting point to initiate bioinformatics to this very
important, intriguing and still largely unexplored area of redox biology.

7.4 Concluding Remarks

The main subject of this chapter is Cys, a relatively scarce, but often functional,
residue in proteins. Cys residues are leading characters in the play of redox
regulation, and their many unique properties make them a very interesting, albeit
challenging, subject to study. Believing that many aspects of the biology of Cys are
tightly linked to its unique chemical and structural features, we dedicated the first
part of this review for discussion of fundamental properties of this amino acid, as
well as theoretical descriptors employed by researchers to describe Cys reactivity.
In our opinion, a better understanding of basic chemical and physical features of
Cys is crucial in order to improve currently available tools for recognition and
subsequent functional annotation of reactive thiols in proteins. In the second part
of the chapter, we shifted the discussion to the various functional roles played
by reactive Cys residues in proteins. Moreover, we reviewed the current state of
computational methods for investigation and prediction of Cys functions. In some
cases, bioinformatics provided important insights and tools, especially for catalytic
redox Cys, metal-binding Cys and disulfide bonds. In other cases, progress has been
limited, e.g. for regulatory Cys, sites of stable posttranslational modifications and
catalytic non-redox Cys.

On the other hand, experimental advances, especially in proteomics and struc-
tural and post-translational datasets, provide researchers with new opportunities to
address critical issues in thiol-based redox control. We expect a steady growth of the
use of bioinformatics in redox biology, a boost that will help filling the gap between
different types of Cys reactivity, ultimately enabling the community to have a more
extensive array of tools for large scale investigation (and prediction) of all main
types of Cys function, including the ones which have been so far more elusive (e.g.
regulatory Cys and redox switches).
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Chapter 8
Redox Regulation in Plants: Glutathione
and “Redoxin” Related Families

J.P. Jacquot, K.]J. Dietz, N. Rouhier, E. Meux, P.A. Lallement, B. Selles,
and A. Hecker

Abstract Photosynthetic organisms and especially terrestrial plants contain ex-
panded redox regulatory pathways. Proteins involved in these redox chains and
detoxification reactions often evolved on a thioredoxin fold structural basis. We
discuss in this review the proteins associated with this superfamily, their modes
of reduction/regeneration and their known protein targets, focusing in particular on
the protein disulfide isomerase and glutathione transferase families. We also discuss
the evolution of the redoxin and target families along the plant kingdom and provide
information on the systems biology of the redox circuitry.

8.1 General Background

In general, redox reactions involve changes in the oxidoreduction state of par-
ticipating compounds. Single redox reactions are combined to redox chains or
pathways. In this respect, the electron transfer chain components are redox actors,
with transitions at the oxidation state of metals like copper and iron for example.
In this review, however, we will consider only the oxidation/reduction reactions
that involve cysteine or methionine residues. In this context, the most documented
redox reactions in plants concern the dithiol-disulfide exchange cascades involving
components of the thioredoxin (TRX) and glutaredoxin (GRX) systems. Some
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glutathione S-transferases (GST) have the capacity to reduce disulfides in the
presence of glutathione. Likewise, protein disulfide isomerases (PDI) belong to that
category being able to oxidize, reduce or isomerize disulfide bonds. Besides these
dithiol-disulfide exchange reactions, we will also consider those reactions, which
are catalyzed by peroxiredoxins (PRX) or methionine sulfoxide reductases (MSR)
and in which the redox state of catalytic cysteines varies. Overall, the changes
in cysteine oxidoreduction state are essential for the catalysis of certain enzymes
(e.g., formation of sulfenic acid on the catalytic cysteine of methionine sulfoxide
reductases and peroxiredoxins) but they can also induce structural transitions needed
to control the catalytic rates of enzymes (e.g., dithiol-disulfide control of fructose-
1,6-bisphosphatase or NADP malate dehydrogenase in the chloroplasts) and of
many other target proteins with diverse functions in transcription, translation,
signalling and regulation.

8.2 Why Is There Redox Regulation in Plants?

It has become apparent in the last decades that redox reactions, as defined above, are
particularly exacerbated in plants. For example, there are between 3 and 6 thiore-
doxin and glutaredoxin genes in non-photosynthetic prokaryotes and mammalian
systems but about 40 genes of each family in photosynthetic eukaryotes. The PDI,
MSR and PRX families are also extended but to a minor extent. The reasons for
this expansion of redoxins are probably multiple. Part of it could be related to the
existence of specialized tissues in plants, like the phloem and xylem for transport,
epidermal and stomatal cells for leaf protection and gas exchange, stamen and pistil
for reproduction etc. A more likely explanation is related to the physiology of plants.
Unlike animal cells, plants contain plastids/chloroplasts, which play an essential
energetic role by providing ATP and NADPH needed for CO; fixation. In animal
cells, the energetic demands are mostly met by mitochondria, which are also present
in plant cells. Chloroplasts not only fix CO, but they also release O, in a process
called water photolysis at the level of photosystem II. As a result, in oxygenic
photosynthetic organisms, in addition to mitochondria, NAD(P)H oxidases and
peroxisomes, the chloroplast is an additional site of reactive oxygen species (ROS)
generation. In plant mitochondria, ROS are generated at the level of complex I,
ubiquinone and complex III (Navrot et al. 2007). In the chloroplasts, ROS are essen-
tially generated at the level of photosystem II and photosystem I (Asada 2006). One
plausible reason for the need of elevated redoxin systems in oxygenic photosynthetic
organisms might therefore be related to the increased production of ROS in the
light. Another specificity of plants is that unlike animal systems, they rely on light
as an energy source, and this energy is converted into utilisable chemical energy
by chlorophyll, a pigment specifically present in the chloroplasts. The presence of
this specific additional compartment in plants has several consequences. First, for
a number of reasons, it is essential to switch on selected enzymes in the light and
turn them off in the dark. This could prevent futile cycles, like the one potentially
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occurring between fructose-1,6-bisphosphatase (FBPase) and phosphofructokinase.
Would such a futile cycle occur, it would induce the consumption of ATP with no
net gain for the plant. Another observation is that plants lack in general efficient
alternative splicing that allows in animal cells for the multiplication of isoforms
from a single gene. Thus, possible explanations for the expansion in the number of
genes would be first to keep “security copies” of a given gene, second to generate
variants with improved selectivity or efficiency without having to rely on alternative
splicing. Another relevant observation is that there is much duplication in plant
genomes, which are often polyploid. Finally the sessile lifestyle of plants requires
integration of many environmental input parameters to optimize plant performance
and fitness. It appears that redox cues are sensed and extensively exploited to
modulate or switch developmental and acclimation processes.

8.3 Glutathione and Redoxin-Linked Pathways in Plants

Several regulatory or detoxification pathways depend on glutathione (GSH) or TRX
and other thiol-linked systems in plants. In general, the proteins that have the
capacity to mediate dithiol-disulfide exchange reactions (redox transmitters) possess
a so-called TRX fold, namely a central pleated p sheet with 5p-strands surrounded
by three or more a-helices. In TRX itself (classically about 110 amino acids), the
active site with the conserved sequence WC[G/P]PC is rather surface exposed which
favors the reactivity of the catalytic cysteine. Its reactivity is further enhanced by an
adjacent helix dipole effect, which lowers the pKa of the thiol. In plants, TRXs
are reduced either by light and the ferredoxin-thioredoxin system in plastids, or by
NADPH-dependent thioredoxin reductases (NTR) in the cytosol and mitochondria.
An alternative pathway in plastids consists of a fused enzyme (NtrC), composed
of a NTR and a Trx module (Spinola et al. 2008). Ferredoxin thioredoxin reductase
(FTR) is essentially restricted to photosynthetic organisms and is absent in mammals
and non-photosynthetic organisms. This heterodimeric enzyme is uniquely shaped
to accommodate on one side the substrate ferredoxin and on the other side TRX.
At the interface between the two subunits of FTR lies a critical [4Fe4S] cluster and
a catalytic disulfide in close proximity (Dai et al. 2007). The convergent structural
evolution between FTR and NTR has been discussed in a recent review together
with an exhaustive listing of the thioredoxin reductases in photosynthetic organisms
(Jacquot et al. 2009). The thioredoxin structural model has given rise to a number
of variants, which differ in their active site sequences, their modular organization,
and/or their regeneration mechanisms. GRXs are proteins with a size similar to
TRXs but with active sites that have been modified into C[P/G/S][Y/F][C/S] (class
1), CGFS (class 2), CCx[C/S] (class 3) or Cxx[C/S] (class 4) (Couturier et al. 2009).
Most GRXs are reduced by the tripeptide glutathione, which itself is maintained
in its reduced form via NADPH-dependent glutathione reductase. As mentioned
previously, in land plants, the TRX and GRX repertoires have been greatly enhanced
with about 40 genes of each category identified. TRXs, GRXs and their reducing
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Fig. 8.1 Major functions associated with TRX and GSH/GRX reducing pathways. TRXSs are usu-
ally reduced by the NADPH/NADPH-thioredoxin reductases (NTR) or the Ferredoxin/ferredoxin
thioredoxin reductase (FTR) systems but a few isoforms have been shown to rely on GSH and/or
GRX for their regeneration (Koh et al. 2008). GSH, maintained in its reduced form by the
NADPH/glutathione reductase (GR) system, provides electrons to both GSTs and GRXs. FNR:
ferredoxin NADP reductase

pathways have been discussed extensively in a number of recent reviews (Dietz
2003; Gelhaye et al. 2005; Rouhier et al. 2008; Chibani et al. 2009; Couturier et al.
2009; Meyer et al. 2009) and we will not detail them any further in this section.
Figure 8.1 depicts the reducing systems of TRXs and GRXs in plants and some
of the known functions associated to each system. The reader is invited to consult
these papers and the chapter by Collet and Messens for more information on the
biochemical and structural properties of these two protein families.

At least two other types of enzymes, glutathione S-transferases and protein
disulfide isomerases, contain thioredoxin domains. The protein disulfide isomerases
are located predominantly in the ER and the most common forms contain four
thioredoxin-like modules, with an overall organization of the a-b-b’-a’ type. The
a and a' domains display CGHC active sites whereas the b and b’ modules
present a TRX fold but lack the active sites. However, they are essential for some
aspects of PDI activities, particularly the b’ module, which is involved in substrate
recognition (Byrne et al. 2009). In the ER, the functions of PDIs are to create
and isomerise disulfide bonds to ensure correct protein folding. Consequently,
PDIs have both an oxidizing and reducing activity. After PDI oxidizes its protein
substrates, its own disulfide bonds become reduced and need to be reoxidized. Based
on results published on human and yeast proteins, different pathways apparently
lead to PDI oxidation. The first candidates are the sulthydryl oxidases Erol o
and B flavoproteins, which catalyze the formation of disulfide bonds on PDIs with
concomitant reduction of oxygen to hydrogen peroxide (Sevier and Kaiser 2008).
The produced H,O; can in turn be reduced by ER-located thiol-peroxidases, such
as 2-Cys peroxiredoxins or glutathione peroxidases, which, once oxidized, also
contribute to PDI re-oxidation (Tavender et al. 2010; Nguyen et al. 2011). Hence, the
consumption of one oxygen molecule can serve to form two disulfides, allowing a
tight control of ROS accumulation into the ER. Finally, it was also proposed that the
proportion of oxidized glutathione, which is elevated in the ER compared to other
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subcellular compartments, could be thermodynamically sufficient to reoxidize PDI
active sites. It should be mentioned that these different modes of reoxidation might
not equally target all PDI isoforms and that there might be specificities linked to
the variety of PDI representatives, especially in photosynthetic organisms. A recent
genomic analysis of PDIs in photosynthetic organisms has demonstrated that apart
from the classical multimodular L-type PDI (that contains the a-b-b’-a’ modules), 8
additional PDI classes exist, which differ in their modular composition, some being
monomodular, some trimodular and some others containing thioredoxin unrelated
modules. Six of the PDI classes are present in terrestrial plants but three of them are
restricted to algae. The detailed phylogenetic analysis can be found in Selles et al.
(2011).

Another example of enzymes, which contain a TRX-like module, is glutathione-
S-transferase. These enzymatic systems are often ignored although some of these
enzymes possess GRX-like and peroxidase activities. For this reason, we will give
a comprehensive overview of these enzymes in plants in this review. Glutathione
transferases, better known as glutathione S-transferases, have been identified more
than 40 years ago in rat liver (Booth et al. 1961) and in plants through their
roles in the detoxification of herbicides in annual species (Lamoureux et al. 1970;
Shimabukuro et al. 1971). GSTs are present in both eukaryotes and prokaryotes and
constitute a multigenic superfamily that is widely distributed in nature. GSTs are
the main players involved in the metabolism of electrophilic compounds within the
cell. Through the addition or the substitution of a glutathione molecule (GSH, a
non-ribosomally synthesized y-Glu—Cys—Gly tripeptide) to an electrophilic center
present in a small acceptor molecule, these enzymes are able to metabolize a
broad range of endogenous and exogenous substrates for their detoxification,
subsequent transport, export or secretion. In addition, they are also able to reduce
peroxides and to recycle antioxidant molecules (ascorbate in particular) thereby
providing protection against endogenous or xenobiotic substances with genotoxic
and carcinogenic effects. GSTs are also involved in several other cell functions
through their capacity to bind non-catalytically to a large number of endogenous
and exogenous compounds.

Based on their primary sequence, 3D structure, function and cellular localization,
GSTs have been initially classified into three main subfamilies: (i) the cytosolic (or
soluble) GSTs, which form the largest family, (ii) the mitochondrial and peroxiso-
mal GSTs also known as kappa GSTs, and (iii) the microsomal GSTs belonging
to the superfamily of the trimeric Membrane Associated Proteins involved in
Eicosanoids and Glutathione metabolism (MAPEG) (Pearson 2005). A further dis-
tinct family is represented by the plasmid-encoded bacterial Fosfomycin-resistance
GSTs (FosA), a manganese-containing metalloglutathione transferase conferring
resistance to the antibiotic fosfomycin (Bernat et al. 1997). The ambiguity here is
that kappa GSTs are also soluble enzymes and that many GSTs included in the
cytosolic/soluble class are located in organelles (nuclei, mitochondria, peroxisomes
and plastids in the case of plants). Hence, although cytosolic GSTs, kappa GSTs
and MAPEGs have indeed evolved separately and have to be distinguished, this
classification is clearly no longer fitting (Sheehan et al. 2001).
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Kappa GSTs have been discovered and characterized in both prokaryotes and
eukaryotes and fulfill, in the latter, specific functions associated with mitochondria
and peroxisomes, particularly in energy production and lipid metabolism, respec-
tively (Morel and Aninat 2011). Microsomal MAPEG GSTs are enzymes, which
differ substantially in size and structure from other GST families, having an average
length of 150 amino acids comprising four possible membrane spanning domains
and a less than 10% identity with other GST classes (Jakobsson et al. 1999, 2000;
Bresell et al. 2005). In mammals, these membrane-bound trimers are involved in
eicosanoid, prostaglandin and leukotriene synthesis by catalyzing GSH-dependent
transferase and peroxidase reactions (Jakobsson et al. 1999).

Other GST classes initially classified as members of the cytosolic GST subfamily
are present in mammals, plants, insects, parasites, fungi and bacteria. They are
notably involved in primary and secondary metabolisms, and in stress response
through their herbicide and xenobiotic detoxification capacities. Whereas some
GST classes are found only in certain kingdoms or phyla (lambda (L), phi (F) and
tau (U) in plants; delta (D), epsilon (E) in insects; beta (B) in prokaryotes, rho
(R) in fishes; nu (N) in nematodes; gamma (G), etherases (GTE) and glutathione
transferase (GTT) in fungi), some others are present in several kingdoms (mu (M),
alpha (A), pi (P), theta (T), sigma (S), zeta (Z), omega (O), Ure2p-like as well as
tetrachlorohydroquinone dehalogenase (TCHQD) and S-glutathionyl hydroquinone
reductase (GHR) classes) (Table 8.1).

Although GSTs share less than 30% identity among different classes, almost
all GSTs are homo- or heterodimeric enzymes with subunits of 25-35 kDa (i.e.,
200-250 amino acids). Structural analyses have shown that GSTs can be divided
into two domains: a highly conserved N-terminal GSH-binding domain (G-site),
which is structurally similar to, and has evolved from, the TRX-fold (Atkinson and
Babbitt 2009), and a less conserved C-terminal alpha-helical domain (H-site), which
allows binding of a wide range of hydrophobic co-substrates (Sheehan et al. 2001).
Amino acids from both domains form the catalytic site of the protein. Most typical
GSTs have serine, tyrosine or cysteine as catalytic residue, but some atypical GSTs
seem to use arginine or asparagine. In dehydroascorbate reductase (DHAR) and
lambda GSTs, for example, the residue responsible for the enzymatic activity is a
cysteine, included in a CPxA motif reminiscent of the CPxC motif found in GRXs.
As a consequence, the presence of this cysteine completely changes the biochemical
properties of these GSTs. Instead of promoting the formation of the reactive thiolate
anion of GSH necessary for its reaction with electrophilic compounds, the presence
of the cysteine provides the capability to reduce glutathionylated substrates in a
manner similar to GRXs.

In plants, GSTs (encoded by 83 genes in Populus trichocarpa and 54 in
Arabidopsis thaliana) can be divided into at least seven classes: theta, zeta, phi,
tau, lambda, DHAR and tetrachlorohydroquinone dehalogenase (TCHQD) (Smith
et al. 2004; Basantani and Srivastava 2007; Lan et al. 2009). Genes encoding GSTs
are generally close to each other and grouped by class in genomes forming gene
clusters. In A. thaliana, GSTs are divided into 34 class-specific clusters, with iso-
lated genes representing less than 30% of the GST gene panel (Dixon et al. 2002b).
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GST class ~ Symbol  Origin Subunit structure  Catalytic residue
Alpha A Mammals Dimer Tyr
Beta B Bacteria Dimer Cys
Gamma G Fungi Dimer Tyr
Delta D Insects Dimer Ser
Epsilon E Insects Dimer Ser
Zeta zZ Animals, plants and bacteria Dimer Ser
Theta T Animals, plants and bacteria Dimer Ser
Kappa K Eukaryotes and prokaryotes Dimer Ser
Lambda L Plants Monomer Cys
Mu M Mammals Dimer Tyr
Nu N Nematodes ? Tyr
Pi P Mammals Dimer Tyr
Rho R Fishes Dimer ?
Sigma S Animals, red and brown algae ~ Dimer Tyr
Tau U Plants Dimer Ser
Phi F Plants Dimer Ser
Chi C Bacteria Dimer ?
Omega 0} Mammals, fungi, insects Dimer Cys
DHAR - Plants Monomer Cys
GHR - Fungi and prokaryotes Dimer Cys
GTE Fungi Dimer ?
GTT - Fungi Dimer ?
MAPEG - Eukaryotes and bacteria Trimer Arg
TCHQD - Bacteria, plants Dimer ?
Ure2p-like - Fungi and bacteria Dimer Asn

GSTs are classified according to several criteria: (i) two GSTs belong to the same class if they
share more than 40% identity, (ii) less than 25% identity separate classes in mammals, and less
than 20% separate classes of GST in plants. When the percentages of identity are between 25
and 40%, other techniques are used to refine the classification such as gene structure and their
number in a given species, size and position of introns and exons, immunological properties and
finally enzyme activity. A few other protein families are usually classified as GSTs (EF1By,
MAKI16, CLIC), but in general this is related to structural similarities, not to the existence of a
glutathione-dependent activity. This table has been essentially constructed from the references,
Pearson (2005) and Morel et al. (2009)

As an example, seven Tau GST genes are located on a fragment of 14 kb on
chromosome 2 (Lin et al. 1999). In rice, less than 25% of GST genes (15 genes)
are present in isolated loci in the genome. The most important cluster includes 23
Tau GSTs on a 239 kb genomic fragment of chromosome 10 (Soranzo et al. 2004).
In poplar, 37 of the full-length tau GSTs and 20 tau-type fragments are arranged in
six clusters (clusters I to V and VII) on five chromosomes (1, 8, 10, 11 and 19) and
4 phi GST genes constitute one cluster (cluster VI) on chromosome 14. Members of
minor GST classes are sparsely distributed at single loci on different chromosomes
(Lan et al. 2009). Interestingly in mammals, human alpha, mu and theta (Morel
et al. 2002) and murine pi GST genes (Henderson et al. 1998) are located on specific
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sections of the genome whereas delta GSTs form a single compact block of genes
in insect genomes (Ding et al. 2003). The almost systematic presence of GST gene
clusters in plant and animal genomes reveals common evolutionary mechanisms
allowing the generation of gene redundancies.

Phi and tau GSTs are the most abundant in plants and are plant-specific.
Tau GSTs catalyze conjugation reactions not only on conventional substrates but
also on herbicides, such as atrazine, metolachlor, fluorodifen and thiocarbamates
(Edwards and Dixon 2005). These GSTs seem to be involved in cell protection by
playing a role in tolerance to environmental stress by enhancing the detoxification
of herbicides (Kawahigashi 2009). Tau GSTs are also able to transfer GSH on
anthocyanins, allowing their import into the vacuole by ABC transporters (Edwards
et al. 2000). Members of the phi class have peroxidase and transferase activity,
notably on herbicides (Marrs 1996). In addition, expression of phi GSTs is induced
in response to auxin. Interestingly, AtGSTF2, the best-studied Phi GST of A.
thaliana, is strongly induced by oxidative stress and phytohormone treatment
and it is able to bind auxin non-enzymatically. Thus, this protein is involved
not only in response to stress, but also in growth and development (Gong et al.
2005; Smith et al. 2003). A GST class present both in plants and animal systems
is the theta class. Theta GSTs function as GSH-dependent peroxidases using
glutathione to reduce organic hydroperoxides into the corresponding alcohols during
oxidative stress (Frova 2003). Zeta GSTs, highly conserved GSTs in eukaryotes,
act as GSH-dependent isomerases in the catabolism of tyrosine by catalyzing the
isomerization of maleylacetoacetate to fumarylacetoacetate (Dixon et al. 2000).
In contrast, lambda and DHAR classes show neither transferase nor peroxidase
activity but exhibit GRX-like activities through their capacity to reduce disulfides
(hydroxyethyldisulfide) and dehydroascorbate using, as described below, a con-
served reactive cysteinyl residue. Thus, like GRXs, they might be involved in the
maintenance of the cellular redox balance (Dixon et al. 2002a). The ability of GSTs
to bind a large range of small molecules led to hypothesize tha