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Abstract We study a problem of passive nonlinear targeted energy transfer between
a two degrees-of-freedom suspension bridge model and a single degrees-of-freedom
nonlinear energy sink (NES). The system is studied under 1:1:1 nonlinear reso-
nance involved in targeted energy transfer mechanisms. Analytical expansions are
performed by mean of complexification methods, multiple scales expansions and
exploits also the concept of limiting phase trajectories (LPTs). Several control
mechanisms for aeroelastic instability are identified, and analytical calculations
bring to efficient parameters for the absorber design. Numerical simulations are
performed and good agreement with analytical predictions is observed. It results that
the concept of Limiting Phase Trajectories (LPT) allows formulating adequately the
problem of intensive energy transfer from a bridge to a nonlinear energy sink.

Keywords Aeroelastic instability • Nonlinear targeted energy transfer • Limiting
phase trajectories

1 Introduction

Suspension bridges under wind of constant velocity are subjected to oscillating
vertical external force due to vortex shedding by the separation of the wind along
the deck of the bridge. In the case of suspension bridges with thin decks aeroelastic
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instability can appear above a critical wind velocity and dangerously damage the
structure. The use of control devices, by means of passive nonlinear absorbers and
targeted energy transfer, to prevent from these instabilities, could be a powerful
solution. These range of absorber have been studied theoretically/numerically
by Gendelman and Manevitch (2001) and Vakakis and Gendelman (2001) and
experimentally to control linear modes of a building reduce model by Gourdon
et al. (2007) and Gourdon and Lamarque (2007, 2005). Their application have been
also studied by Lee et al. to suppress linear instability of system: the instability
suppression in the Van Der Pol oscillator (Lee et al. 2005), and in an aircraft
wing (Lee et al. 2006, 2007) have been considered. This study focuses on the
aeroelastic instability of a suspension bridge and investigates the efficiency of
a single degree of freedom passive nonlinear absorber introduced in the bridge
deck. We study the suppression mechanisms of the bridge aeroelastic instability
by mean of this nonlinear absorber. This study introduces an original analytical
approach based on the concept of Limiting Phase Trajectories (LPT) to predict the
asymptotic behavior of the controlled system. The Limiting Phase Trajectories have
been introduced by Manevitch et al., that showed in Manevitch (2007), Manevitch
et al. (2007), Manevitch and Musienko (2009), Manevitch and Musienko (2008),
Manevitch et al. (2009), Manevitch and Manevitch (2009a,b) and Manevitch (2009)
that the energy exchange in systems of weakly coupled oscillators or oscillatory
chains can be efficiently described introducing the concept of Limiting Phase
Trajectories (LPT). Contrary to normal modes (NM), LPT corresponds to complete
energy exchange between weakly coupled elements of the system. In appropriates
coordinates LPT can be simply described in terms of non-smooth basic functions
introduced in Pilipchuk (1985), Vakakis et al. (1996) and Manevitch et al. (1989) for
solution of problems close to vibro-impact ones. It turns out, however, that the most
adequate area for using these techniques is the problem of intensive energy transfer
in linear and nonlinear oscillatory chains. The analytical approach of the aeroelastic
instability problem throughout the LPTs concept gives a better understanding of
energy pumping triggering mechanisms and how the system variables such as initial
conditions or absorber nonlinearity interact during the control.

In Sect. 2 we introduce a two degrees of freedom model of a suspension bridge
coupled with a purely cubic nonlinear absorber. In Sect. 3 this three degrees of
freedom system is reduced to a single nonlinear oscillator. The more relevant
resonance case is considered and the concept of LPT is used to predict analytically
the asymptotic behavior of the whole system in Sect. 4. Finally Sect. 5 exhibits
numerical simulations with good agreement with the analytical prediction, and show
that the absorber is able to control the aeroelastic instability of the bridge.

2 Dynamics of the System

We investigate the response of a two DOF suspension bridge model from Blevins
(1977). This model takes into account the coupling between aerodynamical actions
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Fig. 1 Two DOF bridge deck coupled with a SDOF NES on the elastic axis

on the structure and its elastic response. Considering only the torsional and flexional
natural modes the equations of motion representing the wind induced aeroelastic
instability can be written as follows:
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with the following variables:

k" : NES nonlinear stiffness �" : NES damping
K : flexional rigidity � : torsional displacement
2l : width of the bridge deck � : mass per unit of volume of air
L : length of the bridge deck ' : bending displacement
m : mass per unit of length of the bridge !2

1 = K/m
m" : NES mass !0 D V/l
m0 �4:5¡l2 !2

2 D Kl2=mr2

m1 �6:3¡l2 V : wind velocity
mr2 : moment of inertia along longitudinal axis

These equations illustrate the aeroelastic instability of the bridge, this linear
system exhibits linear instability for a critical value of wind velocity V .

We consider in this paper the solution of adding a SDOF NES, coupled along the
bending direction on the elastic axis. This coupling is represented in Fig. 1.

The NES characteristics are in the previous nomenclature. Taking into account
this nonlinear coupling equation (1) can be rewritten as a three DOF system:
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The terms involving !0 P' and !0
P� cannot be ignored, as they are produced by

wind loading !0. For simplicity, these terms are assumed small compared to all
other terms of order 1. Considering the smallness of parameters it is reasonable to
rewrite (2) as:
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where � D z�' is the internal displacement between the NES and the bridge deck.
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3 Reduction of the System to a Single Oscillator
and Resonance Oscillations

In this Section we study the system under 1:1 resonance using complexification,
multiple scales methods and limit phase trajectory approach (Manevitch and
Musienko 2009; Manevitch et al.). First we will reduce the three DOF system to
a single oscillator considering the bridge behavior as an external forcing applied to
the NES.

We solve the bridge equations without damping terms to reduce the bridge
motion to an external forcing. We have to solve the following system:

R' C ˝2
1 ' � "k� D "2K� 3;

R� C ˝2
2 � D 0; (4)
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with initial conditions:

'.0/ D "q10; P'.0/ D "˝1v10; �.0/ D q20;

P�.0/ D ˝2v20; z.0/ D 0; Pz.0/ D 0:

Solution �.t/,'.t/ is:

�.t/ D Y2 sin.˝2t C �2/

'.t/ D "˚1 sin.˝1t C �1/ C "k˚2 sin.˝2t C �2/ C "2K1I.t/ (5)

with the following parameters:

˚2 D Y2
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2
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20/
1=2, tan �2 D v20

q20

,

˚1 D .Z2
1 C Z2
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2
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1 � ˝2

2

,

for i D 1; 2 Qi D ˝2
i ˚i , K1 D K

˝1

,

I.t/ D
Z t

0

sin.˝1.t � s//�3.s/ ds.

Finally we obtain the external forcing applied on the NES:

R'.t/ D �"Q1 sin.˝1t C �1/ � "kQ2 sin.˝2t C �2/ C "2K� 3.t/ � "2K˝1I.t/

According to Eq. (3) we have:

R� C � P� C K� 3 D � R'
with � R' D "F.t/ � "K1I.t/

and F.t/ D Q1 sin.˝1t C �1/ C kQ2 sin.˝2t C �2/; K" D "K˝1 (6)

We investigate the 1:1 resonance of the system. For this reason we introduce
parameter ! corresponding to the resonant pulsation of the system under 1:1
resonance assumption. We will determine later the vicinity of this parameter
according to the bridge modal parameters. As a result Eq. (6) can be rewritten as
follows:

R� C !2� C "�Œ� P� C K� 3 � !2�	 D "F.t/ � "K"I.t/ (7)
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with � D 1

"
. For parameter � to be considered as independent from variable " the

sum in the square brackets must be small compared to the other terms of order 1.
This means that we have to verify the following relation:

Œ� P� C K� 3 � !2�	 D o.1/ (8)

In Eq. (7) the term in � 3 appears at first of higher order but we must consider that
the integral term I.t/, under some special resonant cases can be of order "�1 and
must be taken into account for the asymptotic analysis. We will expand Eq. (6) using
complexification and multiple scale expansions with ! near ˝1 and ! near ˝2

considering primary resonance only.
In order to describe the system evolution we introduce a complex valued

transformation, with variables ˚ and ˚�, such that:

˚ D P� C i!�; ˚� D P� � i!�;

P� D ˚ C ˚�

2
; � D ˚ � ˚�

2i!
: (9)

where i D p�1 and the asterisk denotes complex conjugate. Introducing these new
variables in (6) we obtain:

P̊ �i!˚ C"
��

2
.˚ �˚�/�"

3i�K

8!
.˚ �˚�/3C"�

i!

2
.˚ �˚�/ D "F.t/�"K"I.t/

(10)
Then we apply a multiple scale method to construct an approximate solution of (10)
as an " expansion:

˚.t; "/ D ˚10.T0; T1/ C "˚11.T0; T1/ C : : :

d

dt
D @

@T0

C "
@

@T1

C "2 @

@T2

C :: (11)

with Tj D "j t; j D 0; 1; 2; : : : . We can substitute expression (11) in (10). Equating
the different power of " we obtain:

"0 W @˚10
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i!T0 (12)
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3 C i�!

2
.˚10 � ˚�

10/ D F.t/ � K"I.t/ (13)
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Suppressing secular terms from (13) we obtain:
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In order to calculate C" it is convenient to introduce function:

G.!; ˝1/ D "K
1

16!3
e�i!T0

Z T0

0

ei˝1T0 ei.!�˝1/sds (16)

The integral C" can be expressed in function of G:

C".T0/ D '10G.3!; ˝1/�'10G.3!; �˝1/ C '�
10G.�3!; ˝1/�'�

10G.�3!; �˝1/
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These equations should be studied in the vicinity of different system pulsation !.
For the sake of simplicity and considering numerical evidence of Sect. 4 we will
focus on the resonant case ! � ˝2, which involves that ˝1 does not generate
resonant terms.

3.1 Case ! � ˝2, ˝1 Does Not Generate Resonance Terms

Let us consider ! � ˝2, in this particular case ˝1 does not generate resonance
terms which involves that C".T0/ is not a resonance term. Secular terms give:
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8!3
'2

10'
�
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2i
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Considering ˝2 D ! � "
2 secular terms permit to write Qf .T0/ as:

Qf .T0/ D �kQ2

i

2
e�i.
2T1��2/ C non-secular terms D Qf2.T0/ C non-secular terms

(19)
We finally get the reduction to a single oscillator for ˝2 D ! � "
2:
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3.2 Single Oscillator Differential System

We consider the "-order equations of Sect. 3.1 and introduce the polar representation
of complex variable '10 D aei� into Eq. (20) and separate real and imaginary parts
to get an amplitude-phase differential system. We obtain the following differential
system for variables a and �:

8̂̂
<
ˆ̂:

@a

@T1

D ���

2
a � F sin �

a
@�

@T1

D ��!

2
a C 3�K
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a � F sin �
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D �a.�s C ˛a2/ � F cos �

(22)

˛ D 3K

8!3
s D !

2
� 
2

�

In the next section differential system (22) is studied. The fixed points of the
system are first investigated and then the Hamiltonian of the undamped (22) system,
corresponding to � D 0 is considered.

4 Analytical Study of the Nonlinear SDOF Oscillator

In this part we will consider the differential system (22) in the damped (� ¤ 0) and
undamped case (� D 0). This analysis is mainly based on the analysis of Manevitch
and Manevitch (2009b).
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4.1 Fixed Points

Stationary points of the phase portraits correspond to periodic vibrations and can be
found from conditions:

F 2 D �2a2

�
�2

4
C .˛a2 � s/2

�
(23)

This equation is a cubic equation in the variable X D a2, and (25) can be rewritten
as:

X3 � 2s

˛
X2 C �2 C 4s2

4˛2
X � F 2

�2˛2
D 0 (24)

Equation (24) gives the fixed points of system (22), taking the bridge damping into
account. To understand the general behavior of the system it is easier to get rid of
damping. Let us consider system (22) without damping, which means for � D 0.

Equating the system to zero we obtain:

�
sin � D 0

�a.˛a2 � s/ D F cos �
(25)

Let us consider a range �� � � � � , then � D ˙� Œ2�	 and amplitudes a for
stationary vibrations satisfy the equation:

�a.˛a2 � s/ D ˙F (26)

where CF and �F correspond to � D 0 and � D � respectively. Discriminant of
Eq. (26) is R:

R D 1

˛2

�
F 2

�2
� 4

27

s3

˛

�
(27)

If R < 0 system (22) has three real roots: a nonsensical negative one and two
positive roots corresponding to saddle point and quasilinear center of the system.

If R > 0 system (22) has one single real root that corresponds to the nonlinear
resonance center.

4.2 Analytical Study of the LPT

Equation (22), for the undamped oscillator, has the following Hamiltonian:

H D �

�
˛a4

4
� sa2

2

�
� aF cos � (28)
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Let us consider Eq. (22) for the LPT (H D 0), � D 0 or � D � .

�˛

2
a3 � �sa ˙ 2F D 0 a D 0 (29)

This is a cubic equation of discriminant Q:

Q D 16

˛2

�
F 2

�2
� 2s3

27˛

�
(30)

We will observe qualitative transformation of the phase plane for:

˛ D ˛c D 2�2s3

27F 2
(31)

While ˛ < ˛c the LPT encircles the non-resonance quasilinear center at
� D �� .

If ˛ > ˛c the LPT does not encircle the quasilinear center, but the LPT encircles
the resonance center at � D 0.

If ˛ > 2˛c then quasilinear center and saddle point coincide and ‘annihilate’.
That can be explained studying the discriminant R of Eq. (26).

There are no other important transformations of the phase plane, for ˛ > 2˛c we
get one single stationary point that decreases with the rise of parameter ˛.

5 Numerical Simulations in the Case ¨ � �2

For the numerical simulations we fix the bridge parameters as :

V D 27:5 m:s�1 m0

m
D m1

m
D 1

50
!2

1 � 0:72

l D 6 m 
 D 0:5 !2
2 � 2!2

1

l2

2r2
D 1 "2 D 0:1 � D 0:1 (32)

And initial conditions to:

'.0/ D 0 P'.0/ D 0:3 �.0/ D 0

P�.0/ D 0:3 z.0/ D 0 Pz.0/ D 0 (33)

Under these initial conditions and choosing nonlinear parameter K D 2:5 N.m�3

we observe that the NES is able to control the bridge instability. Figure 2 shows
that both variables � and ' are controlled. The dashed line represents the linear
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0 50 100 150 200 250 300 350 400 450 500
t (s)

0 50 100 150 200 250 300 350 400 450 500
t (s)

without NES
with NES

without NES
with NES

Fig. 2 Displacements of bridge variables ' and � with and without nonlinear coupling with K D
2:5 N.m�3 and initial conditions (33) (— with coupling, . . . without coupling)

unstable system whereas the solid line represents the system under the NES control
(to display correctly the control the plot has been cut, and only the part j'.t/j < 2

and j�.t/j < 2 is presented).
We now observe the different types of behavior that can occur for different values

of K .
We choose to work under the assumption of a ! � ˝2 resonance. This

assumption is numerically verified as shown in Fig. 3a, the main harmonic of the
signal correspond to frequency ˝2, nevertheless the other resonance approximations
give only small shift in the results, mainly because frequencies ˝2 and ˝1 are very
close to each other.

We focus on parameter K to study the influence of the NES design, and specially
the NES nonlinear stiffness, on the quality of the control. Investigating numerically
the behavior of the bridge we can determinate three very different kind of behavior
depending on the nonlinearity of the NES. These curves presented Fig. 3 show the
displacements in time of variables ' and z. We can separate three very different
types of behavior. Nevertheless they are linked together by the nonlinear beating that
characterizes the nonlinear control that asymptotically occurs. When the stiffness is
too low system displacements grow up until a critical value for the nonlinear beating
and the control to start (see Fig. 3b), this is the first case: a long time before nonlinear
control starts, and a control that occurs at very high displacements. On the contrary
when the stiffness is too strong system displacements decrease until a critical value
for the nonlinear control to start (see Fig. 3d), the bigger the stiffness is, the longer is
the decrease. The control resulting from this case is very efficient (the displacement
reduction is huge), but takes a long time to start.

If we choose a good balance between the two previous cases the nonlinear
beating starts quickly enough, and reduces significantly the system vibrations (see
Fig. 3c). These different cases underline a range of efficiency for the NES system.
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0.1 0.12 0.14 0.16 0.18 0.2

a b

c d

0.22

Frequency (Hz)

ω2/(2π)

Ω2/(2π)

ω1/(2π)

0 100 200 300 400 500 600 700 800 900 1000

t (s)

0 100 200 300 400 500 600 700 800 900 1000

t (s)
0 100 200 300 400 500 600 700 800 900 1000

t (s)

NES
Phi

z
Phi

NES
Phi

Fig. 3 (a) K D 2:5 N.m�3 Frequency analysis of variable � ; (b) K D 0:01 N.m�3, (c) K D
2:5 N.m�3, (d) K D 500 N.m�3 Displacements of variables ' and z for different value of K ,' in
solid line and z in dotted line

5.1 Behavior of the Hamiltonian

Let us consider the case of initial conditions (33) and K D 2:5 N.m�3, under the
assumption of an ! � ˝2 resonance. We perform numerical simulation on the
general system (2) and on the reduce system (22), checking that assumption (8) is
numerically confirmed.

In Fig. 4a the numerical integration of variable a.t/ from general system (2) is
presented. This Figure shows a good agreement with Fig. 4b which represents the
Hamiltonian of the associated single oscillator of system (22) with the numerical
integration of variable a from this system. The LPT is highlighted with a large black
line. It results that the concept of LPT allows predicting the asymptotic behavior of
the controlled system. These numerical integrations show good agreement with the
prediction made using the single oscillator approximation and its Hamiltonian.

It is also interesting to study the evolution of the Hamiltonian with the nonlinear-
ity parameter ˛. According to Eq. (31) we obtain ˛c � 0:147 N.m�3. The evolution
of the Hamiltonian (28) around the critical value ˛c is plotted in Fig. 5a–d.
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0 100 200 300 400 500

a b

600 700 800 900 1000
t (s)

−10 −8 −6 −4 −2 0 2 4 6 8 10

Δ

Fig. 4 K D 2:5 N.m�3, (a) Numerical integration of variable a from (2), (b) Hamiltonian of
Eq. (22) with LPT in large line

−10 −8 −6 −4 −2 0

a b

c d

2 4 6 8 10
Δ

−10 −8 −6 −4 −2 0 2 4 6 8 10
Δ

−10 −8 −6 −4 −2 0 2 4 6 8 10
Δ

−10 −8 −6 −4 −2 0 2 4 6 8 10
Δ

Fig. 5 Evolution of the Hamiltonian with the stiffness of the NES, the LPT is underlined in large
line. (a) ˛ < ˛c , (b) ˛ � ˛c , (c) ˛ > ˛c , (d) ˛ > 2˛c

The numerical simulations of Fig. 5a–d are in good agreement with the analytical
predictions of Sect. 4.2. These figures correspond to the different cases ˛ < ˛c ,
˛ � ˛c , and ˛ > ˛c . They are similar to the results obtained in Manevitch
et al.,Manevitch and Musienko (2009), and Manevitch and Musienko (2008).
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6 Conclusion

This study demonstrates that a NES (Nonlinear Energy Sink) can control the
aeroelastic instability of a structure using targeted energy transfer. The example
chosen was a two degree of freedom bridge under a constant wind excitation.
Numerical and analytical calculations underline two different behaviors for the
system, around a critical constant depending on the nonlinear stiffness and system
initial conditions. The energy exchange in the system gives a good understanding of
these behaviors.

The analytical approach gives approximate solutions under the assumption of
1:1:1 resonance using the concept of LPT (Limiting Phase Trajectories). The
procedure applied in our study permits to reduce the Bridge/NES three degrees of
freedom model to a single forced oscillator, and then allows us to construct the
limiting phase trajectories and approximate the steady state of the resulting system.
We have shown that LPT-concept provides efficient solution to the aeroelastic
instability control problem. This method shows good agreement with numerical
integration and gives elements to understand how the nonlinear stiffness and the
initial conditions govern the system.
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