Computation of the Basins of Attraction
in Non-smooth Dynamical Systems

Ugo Galvanetto and Alessandro Colombo

Abstract The paper discusses several issues related to the numerical computation
of the stable manifold of saddle-like periodic cycles in piecewise smooth dynamical
systems. Results are presented for a particular stick—slip system. In the second part
of the paper the same mechanical model is used to briefly describe the interaction
between fold and adding-sliding bifurcations.
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1 Introduction

Engineering systems affected by some form of nonlinearity can exhibit multiple
stable solutions under steady state conditions of the external forces. If the system
is dynamic it is common to express this concept by saying that there are coexisting
attractors. Usually only one of them represents the normal working mode of the
system from an engineering point of view, whereas the others are conditions to be
avoided because the system is too deformed or cannot function (safely) if it reaches
them. A classical problem of engineering mechanics is to determine whether the
normal working mode of the system is robust with respect to perturbations. These
can often be represented as variations in the positions or the velocities of the system.
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They are acceptable as long as they do not bring the system far from its normal
working mode, or unacceptable otherwise. In simple smooth systems, it is possible
to adopt a new design approach aiming at defining, within the basin of attraction,
a “safety set” of all initial conditions which do not compromise the integrity of the
system (Cruck et al. 2001; Barreiro et al. 2002). In these cases, the overall size
of the basin can provide a measure of the safety or robustness of an engineering
system. Another measure could be provided by the distance between the attractor
and its basin’s boundaries, that would provide an indication of the size or the
duration of the perturbation needed to bring the system out of the safety basin. Since
engineering systems may be subjected to pulse loads of finite duration, attention
should be given to both the absolute basins, related to steady external forcings,
and transient basins corresponding to transient excitations. Similar ideas have been
proposed in the past, for example in (Soliman and Thompson 1989; Thompson and
Soliman 1990). Therefore one of the classical problems in nonlinear dynamics, the
computation of the basins boundaries, which separate safe initial conditions from the
unsafe ones, could in the future become a standard step in the design of systems of
engineering relevance. In particular in smooth dynamical systems the boundaries of
the basins of attraction of coexisting attractors consist of stable manifolds of saddle
limit sets. The numerical computation of invariant manifolds has interested several
researchers in the past (Parker and Chua 1989) and has been practically solved for
the case of smooth dynamical systems. In the present work some properties of the
stable manifolds of equilibria or cycles of saddle type are discussed for the case of
piecewise smooth dynamical systems (Galvanetto 2008; Colombo and Galvanetto
2009). Our results can in principle be applied to systems of any dimension, but
the details reported here concern in particular three-dimensional systems, where the
computation of invariant manifold is of practical use and it is easier to visualize
the concepts. In particular, a crucial ingredient for the application of the method is
the understanding of the geometric constraints that the piecewise nature of the flow
imposes on the shape of the manifold (Colombo and Galvanetto 2009). The final
part of the paper presents a few results regarding transitions and bifurcations of the
piecewise smooth steady state motions investigated in earlier sections of the paper.

2 The Forced Friction Oscillator

The non-smooth dynamics investigated in the present work is generated by the
system sketched in Fig. 1, that was presented in reference (Oestreich et al. 1996):
a block of mass m is supported by a belt moving with constant velocity V4. The
block is connected to a fixed support by a linear elastic spring of stiffness k, which
assumes its unstretched length for x =0, and is subjected to an external harmonic
force of magnitude a and frequency w. While the block rides on the belt with no
relative motion between them, the motion is in a stick phase described by the two
states of the system position x and time 7 in the following equation:
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where x(fy) is the position of the block a time ¢ = #y. The block can stick if X = Vg,
and the following conditions are simultaneously true:

B 2 cosor < (2a)

z [ coswl = x a
F

x < %coswt—i—l‘{—f (2b)

where F; is the magnitude of the maximum static friction force. The two sinusoidal
functions of time x(f) =[(a /k)coswt £ Fsy /k] are the boundaries in the plane
(x, 1) of the stick zone. Once either of the two inequalities (2) is satisfied as equality
an accelerated motion starts, called slip phase, which can be of two types:

forward slip phase mX + kx = acoswt — Fy, if x> Vg (3a)

backward slip phase mX + kx =acoswt + Fy, if X<V (3b)

where Fiy is the magnitude of the kinetic friction force which will be defined later.
The motion described by Eq. (3a) starts when the equality in (2a) is verified, and
the speed of the block is greater than Vy,; otherwise if the equality in (2b) is verified
then the dynamics given by Eq. (3b) starts, and the speed of the block is less than
Var. During a slip phase the system is described by three states, x, t and velocity x.

The static friction force can assume any value in the range between
—Fy =—pusmg and Fy = pugng; where ug(=a + f) is the coefficient of static
friction and mg is the weight of the block. The magnitude of the kinetic friction
force is a function of the relative velocity and is defined as Fyy = uimg, where iy is
the coefficient of kinetic friction defined as (Fig. 2):

o
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Fig. 2 Example of a commonly adopted friction characteristic, V,, =V, — X

If during an accelerated motion governed by either of Eqgs. (3) the velocity of
the block coincides with that of the belt and the position of the block is within the
boundaries of the sticking region, then the block sticks to the belt and its motion is
described again by Eq. (1) in which ¢, is the instant of re-attachment.

In the formalism usually adopted in the literature on non-smooth dynamical
systems (Di Bernardo et al. 2007) Eqgs. (3), written in a way familiar to most
engineers, are recast in the following form:

Al if hx) >0 )

x:ﬂ”:{ﬁw>#MM<o

Where x = (xy, x3) = (x, X), h(x) =x, — V4 and

X2
fi(x) = | —kx; +acos(w1) 2
" _g(1+y(xz—vd,)+5+'7(xz—Vd,~))
(62)
X2
f(x) = —kxi +acos(wl) g ( + B+ nlx2— Vd,~)2)
" 1—y (x2— Var)

(6b)

In the paper the parameter values are fixed:

m=1 k=1 a=35 w=10 g=10 Vg, =1
=03 B=01 u,=04 y=142 5=00l
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Fig. 3 (a) motion-1s, (b) motion-2s, (¢) motion-2u. The scales of the figures are not the same

The friction characteristic adopted is the same presented in (Oestreich et al. 1996)
and is considered a good approximation of physically observed friction behaviours.

The mechanical system under investigation with the above parameter values
posses (at least) three steady states: two attractors and a saddle cycle as shown in
Fig. 3. The nature of the stability of the steady states and the algorithms adopted
to accurately locate unstable stick—slip motions have been described elsewhere
(Galvanetto 2000, 1999). The three steady states are called motion-1s, motion-2s
and motion-2u where the numbers 1 or 2 indicate how many stick phases are present
and the letter s or u indicate respectively the stable or unstable nature of the steady
state. In the plane of initial conditions (x, x) at time zero the stable manifold of the
saddle cycle forms the boundary between the basins of the two coexisting attractors.
Figure 4 shows the basin of motion-2s (and of motion-1s) computed with a cell-
mapping type algorithm (Hsu 1987).

In Fig. 3c the saddle cycle of a stick—slip system is characterised by two portions
of sticking branch, the horizontal segments; points A and B on the orbit indicate
where the stick—slip transitions take place: the stick—slip transitions appear smoother
than the slip—stick transitions, this fact is related with the degree of continuity in the
friction force. If X = Vj, in Eq. (4) then s = yux = o + B therefore the transition
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from the static friction force to the kinetic friction force is continuous, although it
is non smooth as shown in Fig. 2. Vice versa the transition between kinetic and
static friction is in general associated to a jump in the forces applied to the block
and therefore in its acceleration (Galvanetto 1999). At a transition from kinetic to
static friction the friction force usually jumps from one of the two the extreme
values £(« + B)mg to a value within the range —(« + B)mg + + (@ + B)mg defined
by the following equilibrium equation:

F, = kx —acoswt

in which the value of x is that of the slip—stick transition provided by the numerical
integration.

3 Reconstruction of the Stable Manifold

Figure 5 is a sketch of the flow around any of the two sticking branches of motion-
2u: if X > V,, the trajectories intersect transversally the line x = V. from above;
in a similar way in the half-plane x < Vj, the trajectories intersect transversally
the line X = Vj from below. Every point of the sticking phase can be thought
to belong simultaneously to three trajectories: the sticking-trajectory, the trajectory
converging to it from above and the trajectory converging from below. The main
idea of the method proposed in (Galvanetto 2008; Colombo and Galvanetto 2009)
to compute the stable manifold of a saddle cycle, is that the stable manifold can be
numerically reconstructed by integrating backwards in time all trajectories that in
forward time converge to the saddle limit set, thus, in the case of the cycle in Fig. 3c,
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Fig. 5 Sketch of the flow A
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Fig. 6 Geometry of a single trajectory on the stable manifold at a generic intersection with a
discontinuity surface. In the figure, arrows on the orbits indicate the positive direction of time,
while grey arrows sketch the vector field above and below the switching surface
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all trajectories that converge to the sticking branches of the cycle. Once a single
trajectory of the stable manifold is found, the whole manifold can be constructed by
numerical continuation, following the trajectory as its end point is changed along the
manifold. This idea has been successfully used in smooth systems and is explained
for example in (Krauskopf et al. 2005). To apply it to a piecewise smooth dynamical
system, a first and fundamental step is to understand how the orbits, and the families
of orbits that constitute a stable manifold, intersect the surfaces of discontinuity
of the system, taking into account the non-reversibility introduced by the non-
smooth nature of the flow. A careful look at the generic geometries of intersection
of families of orbits with smooth discontinuity surfaces, casted into the framework
of singularity theory, allows to conclude that a generic orbit belonging to a stable
manifold intersects a discontinuity boundary in one of the three scenarios in Fig. 6,
while a one-parameter family of orbits, that is, a two dimensional stable manifold,
may contain some of the seven singular points depicted in Fig. 7. Additionally,
certain conditions that have been identified, give place to some more singular
points, analogous to the one in Fig. 7g, where however the complex interplay of
vector fields with the discontinuity boundary cause a breakup of the manifold.
The geometries and consequences of these cases are subject of ongoing research.
Although, as shown in this short discussion, the geometry of these manifold can be
rather intricate, the picture is, in most applications, quite simpler.

As long as all sticking branches are stable, meaning that slipping trajectories
converge to the branch, rather than diverging, only scenarios (b) and (e) in Fig. 7 are
possible, since all others include unstable sticking branches. Many mechanical and
engineering systems admit only stable sticking phases, and in these cases scenarios
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Fig. 8 (a) Three-dimensional phase portrait; the thick line is the trajectory of the unstable steady
state and the thin lines are the boundaries of the stick zone. (b) Projection of figure (a) on the plane
displacement-time; [6]

(b) and (e) are sufficient for the analysis (as long as the stable manifold is two-
dimensional). They represent respectively the end and start points of a sticking
phase.

Figure 8a is a three-dimensional view of the unstable limit cycle of Fig. 3¢ in
its phase space. Thick lines indicate the steady states, thin sinusoidal lines in the
plane (x, Vg, f) show the boundaries of the stick zone. Since the saddle cycle has
(two) sticking segments, all orbits of its stable manifold must eventually converge
to these segments, each one of which can therefore be chosen as the family of end
points to generate the whole manifold. The stick phase ending at point A required
by the new method, is not only the portion belonging to the steady state trajectory
shown in Fig. 8a; it is the whole stick phase shown by the thin straight line AQ in
Fig. 8b, since it is apparent that all points belonging to such line will be attracted to
the unstable limit cycle. The stick phase AQ is found by starting from the end point
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A and integrating backward in time along the stick trajectory to the first intersection
(point Q) with one of the boundaries of the stick phase. The same concept applies to
the other stick phase ending at B. The two portions of straight lines AQ and BR are
stick phases partially belonging to the unstable limit cycle and partially attracted by
it. They are not necessarily all the stick phases attracted by the unstable limit cycle,
transient stick phases could exist (and do exist!) which generate slip trajectories
eventually attracted by motion-2u. Infinitely many of these transient stick phases
could exist, as shown in (Galvanetto 2008). In the example examined in the present
paper only one transient stick-phase exists, which is indicated by the line CS in
Fig. 8b.

In Fig. 8b a transient slip trajectory could be drawn to connect point C with
a point of the line AQ, but it is not shown for clarity reasons. Points A, B, C of
Fig. 8 are singular points of the stable manifold of the type shown in Fig. 7b,
whereas points R, Q, S are singular points such as the one sketched in Fig. 7e. It
is worth observing that the knowledge of only one of the stick phases (for example
AQ) is sufficient to reconstruct computationally the whole manifold, since all others
stick phases are connected to it, either backward or forward in time. The algorithm
adopted for the computation of the stable manifold is fully described elsewhere
(Colombo and Galvanetto 2009).

Figure 9 shows part of the non-smooth stable manifold computed with the
method presented above. All orbits that, departing from the saddle cycle backward
in time, remain between the surfaces | x| > 5, are represented. The intersection of the
manifold with the plane # = 0 is marked in yellow, and corresponds to the boundary
of the basin shown in Fig. 4. Moreover Fig. 10 shows two projections of the same
manifold on the planes X = 0 and x =0.
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Fig. 10 Projections of the stable manifold on the planes x = 0, left, and x = 0, right. Green orbits
are attractors, the red orbit is the saddle cycle

4 Remarks on Transitions and Bifurcations

In this last section of the paper we briefly describe how bifurcations and transitions
can interact in the evolution of the dynamics as a parameter is changed. For the given
set of parameter values there exist three steady state motions: motion-1s, motion-2s
and motion-2u, as already explained above. In reference (Merillas 2006) a smooth
co-dimension-two cusp bifurcation was presented. As can be seen in Fig. 11, taken
from the same reference, from the cusp point B;, two branches of fold bifurcation,
which we shall denote by I'y; and I'rp, merge (tangentially). The resulting wedge
divides the parameter plane into two regions. In region 1, inside the wedge, there
are the three solutions shown in Fig. 3, while in the other region, outside the wedge,
there is a single solution, which is stable. Varying w and crossing either I'y; or I'p
away from the cusp point we find a non-degenerate fold bifurcation. Along a third
bifurcation curve (not depicted in Fig. 11) inside the wedge, motion-1s gains one
more sticking segment, becoming topologically equivalent to motion-2u. This is
known in the literature as adding sliding bifurcation (Di Bernardo et al. 2007).

These bifurcations might be better understood by looking at the 1-d map induced
by the system, see (Oestreich et al. 1996) on how to obtain the map, which shows
some features of the dynamics of the system itself. Motion-1s has only one stick
phase, motion-2s and motion-2u have two stick phases, for that reason motion-1s
can be seen in the first-iterated map and in the second-iterated map as a fixed point
of the map. Motion-2s and motion-2u can only be seen as fixed points of the second-
iterated map shown in Fig. 12.

If the force frequency is reduced to w = 0.95 only motion-2s survives, as shown
in Fig. 13a. Motion-1s and motion-2u do not exist because there is no intersection
between the map and the bisection line at 45°. The sudden disappearance of motion-
1s can be understood looking at the second iterated map of Fig. 13a, b.
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Motion-1s and motion-2u have collided in what appears to be a non-degenerate
fold bifurcation which takes place after a transition has affected motion-1s: before
the fold occurs the trajectory of motion-1s changes so that a second branch of stick
phase appears. Once the transition has taken place the fold involves two motions
with the same topological structure. Figure 13b shows the second-iterated map
for an intermediate value of the parameter @ for which all three steady states are
characterized by two stick phases. Summarizing: for the parameter values defined
above the system possess the three steady states shown in Fig. 3. If the value of the
parameter o is reduced below 1, an adding-sliding bifurcations adds a stick phase
to motion-1s, which is then shown in Fig. 13b as motion-1sa and -1sb. A further
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Fig. 13 (a) w =0.95: second iterated map showing only one, period-2 motion for the map,
corresponding to motion-2s. (b) @ = 0.975: second iterated map showing three period-2 steady
states for the map corresponding to motion-2u, motion-2s, and the motion generated at the adding-
sliding bifurcation from motion-1s

reduction of @ causes a standard fold bifurcation in which motion-2u disappears
colliding with motion-Is. Several adding-sliding bifurcation lines exist in the wedge
of Fig. 11.

5 Conclusions

The paper presents the main ideas of a method to compute the stable manifolds of
saddle-like periodic cycles in piece-wise smooth dynamical systems. They represent
the basin boundaries of the relevant coexisting attractors. The method is applied to
a mechanical system affected by dry friction in which three steady states, two stable
and one of saddle-type, exist. In the second part of the paper the evolution of the
three steady states is followed as a parameter is varied. It is shown how standard
bifurcations and non-smooth bifurcations can interact; in particular an example
described in the paper shows that adding-sliding bifurcations may be required before
fold bifurcations can take place.
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