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Introduction to NDATED

Marian Wiercigroch and Giuseppe Rega

Abstract In this introduction, we briefly outline the origins behind organizing
the IUTAM Symposium on Nonlinear Dynamics of Advanced Technologies and
Engineering Design. We also give our view how the advancements of nonlinear
dynamics can be implemented into the engineering world and report on the structure
of the proceedings.

Keywords Nonlinear dynamics • New technologies • Engineering design

The IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and
Engineering Design (NDATED) held between 27 and 30 July 2010 in Aberdeen was
a part of the series of IUTAM Symposia focused on nonlinear dynamics and chaos.

The series originated at the end of the 1980s (Stuttgart, 1989) when the
International Union of Theoretical and Applied Mechanics realized the importance
of complex phenomena in applied mechanics and engineering. Starting with that
meeting, mechanics community began to think of nonlinear vibrations within a
wider and more modern context of nonlinear dynamics, where classical analytical
techniques are meaningfully paralleled by the development and use of computa-
tional, geometrical and experimental methods. Successive IUTAM Symposia in the
same area (London, 1993; Ithaca, NY, 1997) dealt with a variety of ever intriguing
problems in nonlinear and chaotic dynamics of engineering systems, where the
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vi Introduction to NDATED

complementary use of those approaches allows to gain overall more complete
understanding of the tacked problems.

Further Symposia in the series (Eindhoven, 1996; Rome, 2003; Nanjing, 2006)
highlighted the importance of the interaction between nonlinear dynamics and
control, which plays an important role in securing desired dynamic behaviour
and improved reliability of advanced engineering systems undergoing complex
phenomena, possibly in a stochastic environment.

Overall, the last Symposia highlighted the need to overcome the limitations
inherent in the archetypal single- or few-degrees-of-freedom systems considered
in the past, to develop more reliable models for the analysis of high-dimensional
systems and processes, and to explore implications of complexity in design and
operating conditions of advanced systems.

The Aberdeen (2010) IUTAM Symposium, from which this Proceedings volume
evolves, was mostly dedicated to applications, as described in the paragraphs below,
and aimed at making a meaningful step forward towards addressing real engineering
systems.

Indeed, upon enjoying for nearly four decades a vast development resulting in
a range of well established theory, nonlinear dynamics has now the potential to
significantly enhance performance, effectiveness, reliability and safety of physical
systems as well as to offer novel design and technologies. Although the research
programme for the Aberdeen Symposium was tuned to engineering, the applications
of the proposed approach are much more generic and similar nonlinear interactions
can be exploited in biology, genetics, finance, medicine, earth sciences and others.

It is believed that fundamental understanding of various nonlinear physical
phenomena producing bifurcations and of the ensuing complex response has
reached a critical mass and now there is time to develop basic technology, which
could take advantage of the natural richness of behaviour offered by nonlinear
systems or being a product of nonlinear interactions.

The basic philosophy of this approach is to investigate conditions that naturally
optimise the behaviour of systems and/or processes in such a way that nonlinear
interactions will generate favourable operation. The nonlinearities may arise either
as inherent characteristics of the system/process, or may be artificially created,
for example in a control system. This approach should radically influence the
current design, control and exploitation paradigms, in a magnitude of contexts,
which because of their incremental nature are often only able to produce marginal
improvements in performance of technological systems.

The main aim of the Aberdeen meeting was to stimulate engineering science
research to develop the technology for new generation products/processes operating
on principles of nonlinear interaction and in the nonlinear regimes, leading to more
effective, sensitive, accurate, and durable operations than are currently available.
This can be achieved by addressing the following five specific objectives:

1. To establish a basis for a unified framework harnessing nonlinear interactions by
critically appraising the state of the art and by exploiting the existing knowledge
to develop new theoretical tools and advanced practical and numerical techniques
for nonlinear analysis.
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2. To systematically classify various nonlinear phenomena and to investigate their
potential for appropriate applications in engineering design. To investigate how
various nonlinearities can be introduced to engineering systems and processes to
produce improved responses.

3. To set in progress a raft of high quality inter- and multidisciplinary activities at
the applied nonlinear systems/engineering interface, with emphasis on projects
in mechanical and electronic engineering, solid/structural mechanics, acoustics
and optics, with a high degree of coherence and collaboration with experts in
these areas.

4. To evaluate and demonstrate the viability of the undertaken approach in a series
of benchmark systems (demonstrators).

5. To synthesise the obtained methodologies and results into unified strategies,
criteria and procedures for design of new processes, devices, sensors, machines
for control, manufacturing and remote sensing, and for exploitation of natural
resources.

For the Symposium, an International Scientific Committee was appointed by the
Bureau of IUTAM with the following members: M. Wiercigroch (Aberdeen, Chair),
G. Rega (Rome, Co-Chair), F.L. Chernousko (Moscow), E. Kreuzer (Hamburg), F.C
Moon (Ithaca, NY), M.P. Paidoussis (Montreal), J.M. Thompson (Cambridge), D.H.
van Campen (Eindhoven). The Committee selected the papers to be presented at the
Symposium in lecture and poster-discussion sessions.

The Symposium gathered international experts from 20 different countries
including Austria (1), Brazil (5), Canada (1), China (3), Denmark (1), France (2),
Germany (3), India (2), Israel (2), Italy (3), Japan (4), Malaysia (1), Poland (3),
Portugal (1), Russia (4), Spain (1), The Netherlands (1), UK (21), Ukraine (1), and
USA (10).

Besides reviewing the state of the art and fostering future directions for the
development of engineering technologies and design using robust nonlinear dy-
namics modelling and analysis, the meeting put a strong emphasis on employing
experimentally calibrated and validated models, which reflect engineering realism.
Such models can provide a powerful vehicle for development of new (i) more effec-
tive technologies and designs and (ii) robust controllers and condition monitoring
systems enhancing performance of existing technologies and design.

In this volume we have included 32 contributed papers, among those presented
at the Symposium, which have been peer reviewed. The volume is divided into the
four following parts:

I. New Nonlinear Dynamics Methods and Theories
II. Smooth Engineering Systems

III. Non-smooth Engineering Systems
IV. Nonlinear Control of Engineering Systems

where Parts, I, II, III and IV contain 7, 13, 6 and 6 contributions, respectively. At
this point we would like to thank both the participants to the Symposium and the
authors of the papers for their valuable contributions.
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The Symposium was held in the Kings College Conference Centre of the Old
Aberdeen Campus. The opening remarks were given by Professor Ian Diamond
(The Principal and Vice-Chancellor, University of Aberdeen), Professor Dick
van Campen (IUTAM Representative), Professor Giuseppe Rega (Symposium
Co-Chair), Professor Marian Wiercigroch (Symposium Chair), and Sir Duncan
Michael(Symposium Honorary Chair).

The success of the Symposium would not have been possible without the work
of the local Organizing Committee established at the Centre for Applied Dynamics
Research, School of Engineering, University of Aberdeen, whose members were
Marian Wiercigroch (Chair), Marko Keber, Marcos Silveira, and Anna Najdecka.

The financial support of IUTAM, ARUP, and Aberdeen City Council is most
gratefully acknowledged.

Finally, we would like to express our gratitude to Springer, especially to
Ms. Nathalie Jacobs and Ms. Anneke Pot, for their support, patience and efficient
cooperation in producing this Proceedings volume.
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Noise-Induced Jumping Prior to a Fold:
Applied to Climate Tipping Predictions

J. Michael T. Thompson and Jan Sieber

Abstract We present a scheme of analysis for predicting the approach to a fold
in the noisy time series of a slowly evolving system. It provides estimates of the
evolution rate of the control parameter, the variation of the stability coefficient, the
path itself, and the level of noise in the time series. Finally, it gives probability
estimates of the future time at which the system will jump to a remote (dangerous)
steady state. We apply the technique, first, to the output of a computer simulation
from a model for sudden cooling of the Earth. Second, we use the algorithms to give
probabilistic tipping estimates for the end of the most recent glaciation of the Earth
using actual geological data from the Vostok ice core.

Keywords Noisy time series • Dangerous bifurcations • Climate tipping
prediction

1 Introduction

Geologists have accumulated, over a long period, many time series relating to
the Earth’s paleo-climate, using data derived from ice-cores, sediments, isotope
concentrations, etc. These provide a comprehensive picture of climatic changes
over millions of years of the Earth’s history, and some sample results are shown
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Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK
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Bookseries (closed) 32, DOI 10.1007/978-94-007-5742-4 1,
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Fig. 1 Past climates and ice ages as deduced from geological data. The main time axis shows
years before the present

in Fig. 1. Here the time scale includes the four latest ice ages (between �500
and 0 on the main time scale of the graph) with proxies for both temperature
and carbon dioxide; and we have summarized human evolution on the figure,
with the bronze age of homo sapiens appearing quite close to the end of the
main time scale. These ice ages are thought to correlate with the Earth’s orbital
variations in eccentricity, spin axis and perihelion as first postulated by Milankovitch
(1920, 1941). In terms of the closely correlated temperature and carbon dioxide
graphs, the start-up of each ice age is rather gradual: but each age ends with a
quite sudden jump to warmer conditions in what we would now call a climate
tipping point.

A much earlier event that happened about 34 million years ago was a sudden
cooling of the Earth in what is called the green-house to ice-house tipping. This
is illustrated in Fig. 2 which displays the calcium carbonate (CaCO3) content from
Pacific sediment cores which were laid down some 30–40 million years ago. In this
paper we shall be making prediction studies of, firstly, a computer simulation of
a model cooling event, and secondly ice-core data for the end of the most recent
glaciation of the Earth.
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Fig. 2 The sudden cooling of the Earth from tropical conditions to a state with ice caps that
is captured in the calcium carbonate percentage of oceanic sediment cores. The time series is
the calcium carbonate content from tropical Pacific sediment cores, laid down 30 to 40 million
years ago

2 Recent Prediction Studies

Given the current concerns about global warming (IPCC 2007), and even the
precautionary examination of massive geo-engineering interventions Launder and
Thompson (2010), there is currently much interest in examining climatic tipping
points to see if it is feasible to predict them in advance. This recent work looks for a
slowing down of the intrinsic transient responses, which is predicted to occur before
an instability is encountered (Thompson and Stewart 2002; Thompson and Sieber
2010). This is done, for example, by determining the short-term autocorrelation
coefficient ARC(1) which examines to what extent a current point is correlated to its
preceding point based on averaging over a sliding window of the time series. This
stability coefficient (a mapping eigenvalue) should increase to unity at tipping. Such
studies have been made both on climatic computer models and on real paleo-climate
data preceding ancient tipping events.

The paper by Livina and Lenton (2007) is particularly noteworthy because it
presents the first bifurcational predictions using real geological data (as opposed to
data from a computer simulation), namely the Greenland ice-core data spanning the
time from 50,000 years ago to the present. The unevenly spaced data comprised
1,586 points and their DFA-propagator, analogous to ARC(1), was calculated in
sliding windows of length 500 data points. The results are shown in Fig. 3, and the
rapid warming at the end of the last ice age, around 11,500 years before the present
is anticipated by an upward trend in the propagator, which is heading towards its
critical value of unity at about the correct time. The sliding window that ends near
the tipping is highlighted, and we note that from a prediction point of view, the
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event

propagator estimates would end at point A. The grey propagator curve beyond
A uses time-series points beyond the tipping point, which would not normally be
available: in any event, they should not be used, because they contaminate the grey
results with data from a totally different climatic state. In a second paper, Dakos
et al. (2008) systematically estimated the slowing of transients for real data in their
analysis of eight ancient tipping events via reconstructed time series. These were:

(a) The end of the greenhouse Earth about 34 million years ago when the climate
tipped from a tropical state (which had existed for hundreds of millions of years)
into an icehouse state with ice caps, using data from tropical Pacific sediment
cores,

(b) The end of the last glaciation, and the ends of three earlier glaciations, drawing
data from the Antarctica Vostok ice core,

(c) The Bølling-Alleröd transition which was dated about 14,000 years ago, using
data from the Greenland GISP2 ice core,

(d) The end of the Younger Dryas event about 11,500 years ago when the Arctic
warmed by 7 ı in 50 years, drawing on data from the sediment of the Cariaco
basin in Venezuela. This examines at a much shorter time scale, and with
different data, the transition of Fig. 3.

(e) The desertification of North Africa when there was a sudden shift from a
savanna-like state with scattered lakes to a desert about 5,000 years ago, using
the sediment core from ODP Hole 658C, off the west coast of Africa.
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Fig. 4 The prediction results of Dakos et al. (2008) for the green-house to ice-house tipping that
occurred about 34 million years ago, using the calcium carbonate (CaCO3) content from Pacific
sediment cores

In all of these ancient tippings, the dynamics of the system were shown to
slow down before the transition as revealed by the significant increase of the
short-term autocorrelation coefficient, ARC(1). An example of Dakos’s results, for
the transition shown in Fig. 2, is shown in Fig. 4. Here the upper time-series data is
the calcium carbonate (CaCO3) content from tropical Pacific sediment cores. The
smooth central line is the Gaussian kernel function used to filter out slow trends.

The lower graph shows the plot of ARC(1) based on the centre of the sliding
window (see discussion in Thompson and Sieber (2010)) and we notice that the
projection is heading fairly accurately towards the target, namely the known tipping
point from the paleo-data where ARC(1) should reach unity. Note, though, that other
studies by Dakos et al were often much less convincing, as we might expect from
the sparseness of much of the data.
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3 Thermohaline Circulation (THC)

The thermohaline circulation is a global oceanic flow, illustrated in Fig. 5, which
aids the burial of carbon in the deep ocean. The circulation is driven by the sinking
of cold salty surface waters near the poles, and an increase of fresh-water melt from
glaciers, etc., can disrupt this sinking. Such disruption has in the past shutdown
the THC, and such a shutdown can give less carbon burial, thereby increasing any
warming of the planet.

As a well-defined sub-system of the Earth’s climate which can suddenly tip into
an alternative steady state (namely a tipping element in the terminology of Lenton
et al. (2008)) the THC has been extensively studied over many years. Figure 6,
adapted from Rahmstorf (2000), summarizes the behaviour under a slow control
sweep of the freshwater forcing. We should note that the subcritical pitchfork
bifurcation will be observed in very simple models, but will be replaced by a fold in
more elaborate ones.

A prediction study, based on the simulation from a more realistic model of the
THC, is due to Held and Kleinen (2004) and is illustrated in Fig. 7. This study was
the archetype on which the later works of Livina and Lenton (2007) and Dakos
et al. (2008) were based. It uses the local decay rate as the diagnostic variable that
Held and Kleinen thought is most directly linked to the distance from a bifurcation
threshold. They demonstrated its use to predict the shutdown of the circulation
using the oceanic output of CLIMBER2, a predictive coupled model of intermediate
complexity. They made a 50,000 years transient run with a linear increase in
atmospheric CO2 from 280 to 800 parts per million (ppm), which generates within
the model an increase in the fresh water forcing. This run results in the eventual
collapse of the THC as illustrated.

Fig. 5 A schematic over-view of the thermohaline circulation. Warm surface currents are shown
in red, while cold deep currents are shown in blue (Map by Robert Simmon, NASA)
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The top graph in Fig. 7 corresponds approximately to the schematic diagram of
Fig. 6. It is fairly linear over much of the timescale, and there is no early prediction
of the fold bifurcation in terms of path curvature. The lower graph shows the
variation of the first-order autoregressive coefficient or propagator, c D ARC.1/.
Unlike the upper response diagram, the time-series of ARC(1), although noisy,
allows a fairly good prediction of the imminent collapse using the linear fit drawn.
The fairly steady rise of ARC(1) towards its critical value of C1 is indeed seen over
a very considerable time scale. Note that the linear fit is surrounded by a 95% zone,
giving probability bounds to the collapse time.

4 Slowing of Transients and ARC Analysis

A precursor of many bifurcational instabilities is a slowing of transients, and this
is exploited in the auto-regressive techniques that are used in the afore-mentioned
prediction studies. The transients that we have in mind here are the ‘internal
transients’ that are generated intrinsically within a complex dynamical system when
localized fast motions act as noisy disturbances on the slower overall dynamics.

Since a slowly evolving system, such as the Earth’s climate, can be expected
to encounter only codimension-one bifurcations, we list in Table 1 the known

Table 1 List of all co-dimension-1 bifurcations of continuous dissipative dynamics, with notes
on their precursors. Here S, E and D are used to signify the safe, explosive and dangerous events
respectively. LDR is the local decay rate, measuring how rapidly the system returns to its steady
state after a small perturbation

Name Type Precursor of codim-1 bifurcations

Supercritical Hopf S: point to cycle LDR! 0 linearly with control
Supercritical Neimark S: cycle to torus LDR! 0 linearly with control
Supercritical flip S: cycle to cycle LDR! 0 linearly with control
Band merging S: chaos to chaos Separation decreases linearly
Flow explosion E: point to cycle Path folds. LDR! 0 linearly along path
Map explosion E: cycle to torus Path folds. LDR! 0 linearly along path
Intermittency explosion: flow E: point to chaos LDR ! 0 linearly with control
Intermittency explosion: map E: cycle to chaos LDR! 0 as trigger (fold, flip, Neimark)
Regular interior crisis E: chaos to chaos Lingering near impinging saddle cycle
Chaotic interior crisis E: chaos to chaos Lingering near impinging chaotic saddle
Static fold D: from point Path folds. LDR! 0 linearly along path
Cyclic fold D: from cycle Path folds. LDR! 0 linearly along path
Subcritical Hopf D: from point LDR! 0 linearly with control
Subcritical Neimark D: from cycle LDR! 0 linearly with control
Subcritical flip D: from cycle LDR! 0 linearly with control
Saddle connection D: from cycle Period of cycle tends to infinity
Regular exterior crisis D: from chaos Lingering near impinging saddle cycle
Chaotic exterior crisis D: from chaos Lingering near impinging accessible saddle
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codimension-one events of dissipative nonlinear dynamics (Thompson et al. 1994;
Thompson and Stewart 2002; Thompson and Sieber 2010). We indicate in the table
those events that are preceded by a well-defined vanishing of the local decay rate
(LDR), and we see that the majority of the listed bifurcations do have this property.
For a more extensive review of the slowing of transients, and the related ARC
analyses see our reviews (Thompson and Sieber (2010, 2011a,b)).

5 Fold for Incipient Tipping (FIT)

Suppose we have reason to believe (as in the THC) that a fold is incipient. Under
this condition we can augment the ARC analysis to extract the fold normal form
parameters and their drift speed to estimate when a collapse is likely to occur. A
dynamical system near a fold bifurcation behaves like an overdamped particle at
position x in a gradually disappearing potential well (see Fig. 8a). Tipping then
corresponds to an escape of the particle from the well to �1. Generically the
potential well has the form

U.x/ D x3=3 � ax
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Fig. 8 (a) Overdamped particle in a potential well close to a fold. The displayed particle in the well
is shown slightly flattened to indicate “sliding” rather than “rolling” to convey an intuition about
the dynamical behaviour. (b) Static escape rate and cumulative escape probabilities (dynamic and
quasi-static) for fold normal form at various ratios between drift speed " and noise amplitude � .
For example, if � D 1 and the drift speed of a is " D 0:001 then the probability of escape before a
reaches 1:5 is 50%. The static escape rate k0.a/ and its integralK0.a/ have been used to obtain the
quasi-static approximation of the cumulative escape probability. The dynamic probabilities have
been computed by integrating the stochastic normal form with drifting a
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where a is a system parameter that is gradually decreasing. If we assume that the
system is affected by Gaussian white noise then the dynamics of the particle is
governed by the stochastic differential equation

dx D �@xU.x/dt C �dWt D Œa � x2�dt C �dWt ;

where � is the noise amplitude andWt is a Wiener process (that is, Wt has a normal
distribution of variance t and increments such that WtCs � Ws (for t , s > 0) are
independent from each other. With a gradually decreasing at a non-zero rate the
equation for x must be augmented by

da D �"dt;

where " is the drift speed of a. One expects that the balance between noise and drift
governs the statistics of the escape process. At the extremes we have two cases.
Without noise but with drift (� D 0, " > 0) the escape to infinity will be slightly
delayed (that is, it will not happen at a D 0). More precisely, x will escape to infinity
when a reaches "2=3a1 where a1 � �2:35. At the other extreme end, with noise
but without drift (� > 0, " D 0) the particle will escape almost surely for every
positive a. Now, for any given a at fixed � one can determine the escape rate k0,
that is, the probability of escape per unit time once ‘steady conditions’ are achieved.
This rate is shown in Fig. 8b as a graph (curve with circles). For a � �4=3 an
analytical expression for k0 is known as Kramers’ rate (Hänggi et al. 1990). If drift
and noise amplitude are both non-zero, early and delayed escape partly ‘balance’
each other resulting in the cumulative escape probabilities shown in Figs. 8b and 9.
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Fig. 10 Estimate of early or delayed escape from time series: (a) output of a transition model,
(b) ice-core record by Petit et al. (1999). The grey histogram shows the probability for the first
crossing of the critical value a D 0 for the estimated normal form parameter. The black-and-white
histogram shows the probability of escape corresponding to this normal form parameter estimate
(details in Sieber and Thompson (2012) and Thompson and Sieber (2011b)). The box plots show
the quartiles and the mean of the respective density

For slow drift or large noise level (" � �2) Pesc.a/ for the particle to escape
before the drifting parameter reaches the value a can be approximated analytically
using k0 (a quasi-static approximation, see Miller et al. (2010) and Thompson and
Sieber (2011b) for details). If we re-scale variables and time such that � D 1 the
probability of escape is approximately

Pesc.a/ D 1 � exp.�K0.a/="/ where K0.a/ D
Z a.0/

a

k0.a
0/da0;

provided that a.0/ � 1. The integral K0 is also shown in Fig. 8b along with the
resulting Pesc for various ratios of "=�2 (grey curves). Note that a decreases over
time as indicated by the arrow. For comparison the results of an integration of the
stochastic differential equation are given in black. Figure 9 gives an overview of the
percentiles of the cumulative escape probability over a range of drift-to-noise ratios.
In the rapid-drift (or small-noise) regime in Fig. 9b the percentiles (and, thus, the
escape probability densities) are concentrated near the curve given by the escape
value of the deterministic trajectory: a D "2=3a1. In both panels the horizontal
coordinate changes in time along trajectories with a speed determined by the vertical
coordinate. The two dotted lines (ice-core record in Fig. 9a and model output in
Fig. 9b) are examples which will be discussed below.

Figure 10 demonstrates how one can estimate if escape will be early or delayed
for two time series. Figure 10a shows the output of a model by Fraedrich (1978)
for a transition to an icehouse Earth, taken from a paper by Dakos et al. (2008).
Time series (b) is a snapshot of temperatures before the end of the last glaciation,
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20,000 years ago. The data is taken from a paper by Petit et al. (1999) and is
available at ftp.ncdc.noaa.gov. The window of the snapshot is identical to Fig. 1I
in Dakos et al. (2008).

The lower parts of Fig. 10 show the AR(1) coefficient c as extracted by least-
squares fitting the linear recursion xnC1 D cxn to the de-trended time series in a
moving window. Each point in the time series c is the result of a fit in a window
as indicated in the figure. For both time series the propagator increases. The critical
value c D 1 is indicated in the figure but the distance of c to the critical value is in
arbitrary units because this distance depends on the density of measurement points
taken. Correspondingly, the drifting normal form parameter a decreases toward
its critical value 0. Extrapolating the time series of the estimated normal form
parameter we get a probability for the first crossing of a D 0 (histograms shown
in grey in Fig. 10). The least-squares fit of the AR(1) coefficient also provides an
estimate of the noise amplitude � such that we can apply the normal form analysis
from Fig. 9 to estimate when the trajectory will escape (see Sieber and Thompson
2012; Thompson and Sieber 2011b for details of the procedure). The resulting
histogram is shown in Fig. 10 in black-and-white. The box plots in Fig. 10 show
the quartiles and means corresponding to the first crossing of the critical parameter
value (grey) and escape (black). That is, the vertical edges of the boxes correspond
to the times t0:25, t0:5 and t0:75 determined such that the probability of crossing the
critical value before t0:5 is 0:5 (for the grey box plot, similar for t0:25 and t0:75). The
mean is indicated by the longer vertical line. We conclude that the time series (a) is
from a system in the small-noise (or rapid-drift) regime (" � �2). Thus, the escape
is likely to have been slightly delayed. The time series of the ice-core record is in
the large-noise (or slow-drift) regime such that the escape is likely to have occurred
early. The estimated ratios "=�2 are also indicated in Fig. 9.

6 Conclusion

Lenton et al. (2008) have proposed that bifurcations of climate subsystems may be
the underlying mechanism for climate tipping in the foreseeable future. Similarly,
Dakos et al. (2008) have identified a slowing-down near rapid transitions in
paleo-climate time series that would hint at underlying fold bifurcations. Recent
research into early-warning signals estimates this slowing down via short term
autocorrelation or de-trended fluctuation analysis. A typical feature of dynamical
systems near dangerous bifurcations with slowly drifting system parameters and
noise is that the jump (escape) from the current attractor may occur early or delayed,
depending on the balance between drift speed and noise and the properties of the
noise (Baer et al. 1989; Kuske 1999; Miller et al. 2010; Thompson and Sieber
2011b). We have determined the probability distribution for escape over time for the
fold normal form subject to Gaussian white noise of constant amplitude depending
on drift speed and noise amplitude. Based on an estimate of the normal form

ftp.ncdc.noaa.gov
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parameters we demonstrated for two example time series how early escape affects
the early-warning signals and the prediction of tipping. In a more recent paper
(Sieber and Thompson 2012), we have incorporated nonlinear features into climate-
prediction studies.
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Computation of the Basins of Attraction
in Non-smooth Dynamical Systems

Ugo Galvanetto and Alessandro Colombo

Abstract The paper discusses several issues related to the numerical computation
of the stable manifold of saddle-like periodic cycles in piecewise smooth dynamical
systems. Results are presented for a particular stick–slip system. In the second part
of the paper the same mechanical model is used to briefly describe the interaction
between fold and adding-sliding bifurcations.

Keywords Non-smooth dynamical systems • Stable manifolds • Computational
methods

1 Introduction

Engineering systems affected by some form of nonlinearity can exhibit multiple
stable solutions under steady state conditions of the external forces. If the system
is dynamic it is common to express this concept by saying that there are coexisting
attractors. Usually only one of them represents the normal working mode of the
system from an engineering point of view, whereas the others are conditions to be
avoided because the system is too deformed or cannot function (safely) if it reaches
them. A classical problem of engineering mechanics is to determine whether the
normal working mode of the system is robust with respect to perturbations. These
can often be represented as variations in the positions or the velocities of the system.
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They are acceptable as long as they do not bring the system far from its normal
working mode, or unacceptable otherwise. In simple smooth systems, it is possible
to adopt a new design approach aiming at defining, within the basin of attraction,
a “safety set” of all initial conditions which do not compromise the integrity of the
system (Cruck et al. 2001; Barreiro et al. 2002). In these cases, the overall size
of the basin can provide a measure of the safety or robustness of an engineering
system. Another measure could be provided by the distance between the attractor
and its basin’s boundaries, that would provide an indication of the size or the
duration of the perturbation needed to bring the system out of the safety basin. Since
engineering systems may be subjected to pulse loads of finite duration, attention
should be given to both the absolute basins, related to steady external forcings,
and transient basins corresponding to transient excitations. Similar ideas have been
proposed in the past, for example in (Soliman and Thompson 1989; Thompson and
Soliman 1990). Therefore one of the classical problems in nonlinear dynamics, the
computation of the basins boundaries, which separate safe initial conditions from the
unsafe ones, could in the future become a standard step in the design of systems of
engineering relevance. In particular in smooth dynamical systems the boundaries of
the basins of attraction of coexisting attractors consist of stable manifolds of saddle
limit sets. The numerical computation of invariant manifolds has interested several
researchers in the past (Parker and Chua 1989) and has been practically solved for
the case of smooth dynamical systems. In the present work some properties of the
stable manifolds of equilibria or cycles of saddle type are discussed for the case of
piecewise smooth dynamical systems (Galvanetto 2008; Colombo and Galvanetto
2009). Our results can in principle be applied to systems of any dimension, but
the details reported here concern in particular three-dimensional systems, where the
computation of invariant manifold is of practical use and it is easier to visualize
the concepts. In particular, a crucial ingredient for the application of the method is
the understanding of the geometric constraints that the piecewise nature of the flow
imposes on the shape of the manifold (Colombo and Galvanetto 2009). The final
part of the paper presents a few results regarding transitions and bifurcations of the
piecewise smooth steady state motions investigated in earlier sections of the paper.

2 The Forced Friction Oscillator

The non-smooth dynamics investigated in the present work is generated by the
system sketched in Fig. 1, that was presented in reference (Oestreich et al. 1996):
a block of mass m is supported by a belt moving with constant velocity Vdr. The
block is connected to a fixed support by a linear elastic spring of stiffness k, which
assumes its unstretched length for x D 0, and is subjected to an external harmonic
force of magnitude a and frequency !. While the block rides on the belt with no
relative motion between them, the motion is in a stick phase described by the two
states of the system position x and time t in the following equation:
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Fig. 1 The mechanical
model under investigation

x.t/ D x .t0/C Vdr .t � t0/ (1)

where x(t0) is the position of the block a time t D t0. The block can stick if Px D Vdr

and the following conditions are simultaneously true:

�Fsf
k

C a

k
cos!t � x (2a)

x � a

k
cos!t C Fsf

k
(2b)

where Fsf is the magnitude of the maximum static friction force. The two sinusoidal
functions of time x(t) D [.a =k / cos! t ˙ Fsf =k ] are the boundaries in the plane
(x, t) of the stick zone. Once either of the two inequalities (2) is satisfied as equality
an accelerated motion starts, called slip phase, which can be of two types:

forward slip phase m Rx C kx D a cos!t � Fkf ; if Px > Vdr (3a)

backward slip phase m Rx C kx D a cos!t C Fkf ; if Px < Vdr (3b)

where Fkf is the magnitude of the kinetic friction force which will be defined later.
The motion described by Eq. (3a) starts when the equality in (2a) is verified, and
the speed of the block is greater than Vdr; otherwise if the equality in (2b) is verified
then the dynamics given by Eq. (3b) starts, and the speed of the block is less than
Vdr. During a slip phase the system is described by three states, x, t and velocity Px.

The static friction force can assume any value in the range between
�Fsf D ��smg and Fsf D�smg; where �s(D˛Cˇ) is the coefficient of static
friction and mg is the weight of the block. The magnitude of the kinetic friction
force is a function of the relative velocity and is defined as Fkf D�kmg, where �k is
the coefficient of kinetic friction defined as (Fig. 2):

�k D ˛

1C � j Px � Vdrj C ˇ C �. Px � Vdr/
2 (4)
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Fig. 2 Example of a commonly adopted friction characteristic, Vrel D Vdr � Px

If during an accelerated motion governed by either of Eqs. (3) the velocity of
the block coincides with that of the belt and the position of the block is within the
boundaries of the sticking region, then the block sticks to the belt and its motion is
described again by Eq. (1) in which t0 is the instant of re-attachment.

In the formalism usually adopted in the literature on non-smooth dynamical
systems (Di Bernardo et al. 2007) Eqs. (3), written in a way familiar to most
engineers, are recast in the following form:

Px D f .x/ D
�
f1.x/ if h.x/ > 0
f2.x/ if h.x/ < 0

(5)

Where x D (x1, x2) D (x, Px), h(x) D x2 � Vdr and

f1.x/ D
8<
:

x2
�kx1 C a cos .! t/

m
� g

�
˛

1C � .x2 � Vdr / C ˇ C �.x2 � Vdr /2
�

(6a)

f2.x/ D
8<
:

x2
�kx1 C a cos .! t/

m
C g

�
˛

1 � � .x2 � Vdr / C ˇ C �.x2 � Vdr /2
�

(6b)

In the paper the parameter values are fixed:

m D 1 k D 1 a D 3:5 ! D 1:0 g D 10 Vdr D 1

˛ D 0:3 ˇ D 0:1 �s D 0:4 � D 1:42 � D 0:01
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Fig. 3 (a) motion-1s, (b) motion-2s, (c) motion-2u. The scales of the figures are not the same

The friction characteristic adopted is the same presented in (Oestreich et al. 1996)
and is considered a good approximation of physically observed friction behaviours.

The mechanical system under investigation with the above parameter values
posses (at least) three steady states: two attractors and a saddle cycle as shown in
Fig. 3. The nature of the stability of the steady states and the algorithms adopted
to accurately locate unstable stick–slip motions have been described elsewhere
(Galvanetto 2000, 1999). The three steady states are called motion-1s, motion-2s
and motion-2u where the numbers 1 or 2 indicate how many stick phases are present
and the letter s or u indicate respectively the stable or unstable nature of the steady
state. In the plane of initial conditions (x, Px) at time zero the stable manifold of the
saddle cycle forms the boundary between the basins of the two coexisting attractors.
Figure 4 shows the basin of motion-2s (and of motion-1s) computed with a cell-
mapping type algorithm (Hsu 1987).

In Fig. 3c the saddle cycle of a stick–slip system is characterised by two portions
of sticking branch, the horizontal segments; points A and B on the orbit indicate
where the stick–slip transitions take place: the stick–slip transitions appear smoother
than the slip–stick transitions, this fact is related with the degree of continuity in the
friction force. If Px D Vdr in Eq. (4) then �s D�k D˛Cˇ therefore the transition
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Fig. 4 The blue area is the basin of attraction of motion-2s in the window �10< x< 5, �5<
Px < 2

from the static friction force to the kinetic friction force is continuous, although it
is non smooth as shown in Fig. 2. Vice versa the transition between kinetic and
static friction is in general associated to a jump in the forces applied to the block
and therefore in its acceleration (Galvanetto 1999). At a transition from kinetic to
static friction the friction force usually jumps from one of the two the extreme
values ˙(˛Cˇ)mg to a value within the range �(˛Cˇ)mg � C (˛Cˇ)mg defined
by the following equilibrium equation:

Fs D kx � a cos!t

in which the value of x is that of the slip–stick transition provided by the numerical
integration.

3 Reconstruction of the Stable Manifold

Figure 5 is a sketch of the flow around any of the two sticking branches of motion-
2u: if Px >Vdr the trajectories intersect transversally the line Px D Vdr from above;
in a similar way in the half-plane Px < Vdr the trajectories intersect transversally
the line Px D Vdr from below. Every point of the sticking phase can be thought
to belong simultaneously to three trajectories: the sticking-trajectory, the trajectory
converging to it from above and the trajectory converging from below. The main
idea of the method proposed in (Galvanetto 2008; Colombo and Galvanetto 2009)
to compute the stable manifold of a saddle cycle, is that the stable manifold can be
numerically reconstructed by integrating backwards in time all trajectories that in
forward time converge to the saddle limit set, thus, in the case of the cycle in Fig. 3c,
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x

ẋ
ẋ = Vdr

Fig. 5 Sketch of the flow
near a sticking branch

Fig. 6 Geometry of a single trajectory on the stable manifold at a generic intersection with a
discontinuity surface. In the figure, arrows on the orbits indicate the positive direction of time,
while grey arrows sketch the vector field above and below the switching surface

all trajectories that converge to the sticking branches of the cycle. Once a single
trajectory of the stable manifold is found, the whole manifold can be constructed by
numerical continuation, following the trajectory as its end point is changed along the
manifold. This idea has been successfully used in smooth systems and is explained
for example in (Krauskopf et al. 2005). To apply it to a piecewise smooth dynamical
system, a first and fundamental step is to understand how the orbits, and the families
of orbits that constitute a stable manifold, intersect the surfaces of discontinuity
of the system, taking into account the non-reversibility introduced by the non-
smooth nature of the flow. A careful look at the generic geometries of intersection
of families of orbits with smooth discontinuity surfaces, casted into the framework
of singularity theory, allows to conclude that a generic orbit belonging to a stable
manifold intersects a discontinuity boundary in one of the three scenarios in Fig. 6,
while a one-parameter family of orbits, that is, a two dimensional stable manifold,
may contain some of the seven singular points depicted in Fig. 7. Additionally,
certain conditions that have been identified, give place to some more singular
points, analogous to the one in Fig. 7g, where however the complex interplay of
vector fields with the discontinuity boundary cause a breakup of the manifold.
The geometries and consequences of these cases are subject of ongoing research.
Although, as shown in this short discussion, the geometry of these manifold can be
rather intricate, the picture is, in most applications, quite simpler.

As long as all sticking branches are stable, meaning that slipping trajectories
converge to the branch, rather than diverging, only scenarios (b) and (e) in Fig. 7 are
possible, since all others include unstable sticking branches. Many mechanical and
engineering systems admit only stable sticking phases, and in these cases scenarios



24 U. Galvanetto and A. Colombo

Fig. 7 Geometry of the stable manifold around each one of the seven singular points, [7]
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Fig. 8 (a) Three-dimensional phase portrait; the thick line is the trajectory of the unstable steady
state and the thin lines are the boundaries of the stick zone. (b) Projection of figure (a) on the plane
displacement-time; [6]

(b) and (e) are sufficient for the analysis (as long as the stable manifold is two-
dimensional). They represent respectively the end and start points of a sticking
phase.

Figure 8a is a three-dimensional view of the unstable limit cycle of Fig. 3c in
its phase space. Thick lines indicate the steady states, thin sinusoidal lines in the
plane (x, Vdr, t) show the boundaries of the stick zone. Since the saddle cycle has
(two) sticking segments, all orbits of its stable manifold must eventually converge
to these segments, each one of which can therefore be chosen as the family of end
points to generate the whole manifold. The stick phase ending at point A required
by the new method, is not only the portion belonging to the steady state trajectory
shown in Fig. 8a; it is the whole stick phase shown by the thin straight line AQ in
Fig. 8b, since it is apparent that all points belonging to such line will be attracted to
the unstable limit cycle. The stick phase AQ is found by starting from the end point
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Fig. 9 Stable manifold of
motion-2u; the green lines
represent attractors and the
red line the saddle-cycle. The
yellow lines are the basin
boundary to be compared
with that of Fig. 4

A and integrating backward in time along the stick trajectory to the first intersection
(point Q) with one of the boundaries of the stick phase. The same concept applies to
the other stick phase ending at B. The two portions of straight lines AQ and BR are
stick phases partially belonging to the unstable limit cycle and partially attracted by
it. They are not necessarily all the stick phases attracted by the unstable limit cycle,
transient stick phases could exist (and do exist!) which generate slip trajectories
eventually attracted by motion-2u. Infinitely many of these transient stick phases
could exist, as shown in (Galvanetto 2008). In the example examined in the present
paper only one transient stick-phase exists, which is indicated by the line CS in
Fig. 8b.

In Fig. 8b a transient slip trajectory could be drawn to connect point C with
a point of the line AQ, but it is not shown for clarity reasons. Points A, B, C of
Fig. 8 are singular points of the stable manifold of the type shown in Fig. 7b,
whereas points R, Q, S are singular points such as the one sketched in Fig. 7e. It
is worth observing that the knowledge of only one of the stick phases (for example
AQ) is sufficient to reconstruct computationally the whole manifold, since all others
stick phases are connected to it, either backward or forward in time. The algorithm
adopted for the computation of the stable manifold is fully described elsewhere
(Colombo and Galvanetto 2009).

Figure 9 shows part of the non-smooth stable manifold computed with the
method presented above. All orbits that, departing from the saddle cycle backward
in time, remain between the surfaces j Pxj> 5, are represented. The intersection of the
manifold with the plane t D 0 is marked in yellow, and corresponds to the boundary
of the basin shown in Fig. 4. Moreover Fig. 10 shows two projections of the same
manifold on the planes Px D 0 and x D 0.
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Fig. 10 Projections of the stable manifold on the planes Px D 0, left, and x D 0, right. Green orbits
are attractors, the red orbit is the saddle cycle

4 Remarks on Transitions and Bifurcations

In this last section of the paper we briefly describe how bifurcations and transitions
can interact in the evolution of the dynamics as a parameter is changed. For the given
set of parameter values there exist three steady state motions: motion-1s, motion-2s
and motion-2u, as already explained above. In reference (Merillas 2006) a smooth
co-dimension-two cusp bifurcation was presented. As can be seen in Fig. 11, taken
from the same reference, from the cusp point B2, two branches of fold bifurcation,
which we shall denote by � f1 and � f2, merge (tangentially). The resulting wedge
divides the parameter plane into two regions. In region 1, inside the wedge, there
are the three solutions shown in Fig. 3, while in the other region, outside the wedge,
there is a single solution, which is stable. Varying ! and crossing either � f1 or � f2

away from the cusp point we find a non-degenerate fold bifurcation. Along a third
bifurcation curve (not depicted in Fig. 11) inside the wedge, motion-1s gains one
more sticking segment, becoming topologically equivalent to motion-2u. This is
known in the literature as adding sliding bifurcation (Di Bernardo et al. 2007).

These bifurcations might be better understood by looking at the 1-d map induced
by the system, see (Oestreich et al. 1996) on how to obtain the map, which shows
some features of the dynamics of the system itself. Motion-1s has only one stick
phase, motion-2s and motion-2u have two stick phases, for that reason motion-1s
can be seen in the first-iterated map and in the second-iterated map as a fixed point
of the map. Motion-2s and motion-2u can only be seen as fixed points of the second-
iterated map shown in Fig. 12.

If the force frequency is reduced to !D 0.95 only motion-2s survives, as shown
in Fig. 13a. Motion-1s and motion-2u do not exist because there is no intersection
between the map and the bisection line at 45ı. The sudden disappearance of motion-
1s can be understood looking at the second iterated map of Fig. 13a, b.
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Fig. 11 Bifurcation diagram taken from page 99 of Merillas (2006)
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Fig. 12 Second iterated map
showing motion-1s,
motion-2s and motion-2u
for !D 1

Motion-1s and motion-2u have collided in what appears to be a non-degenerate
fold bifurcation which takes place after a transition has affected motion-1s: before
the fold occurs the trajectory of motion-1s changes so that a second branch of stick
phase appears. Once the transition has taken place the fold involves two motions
with the same topological structure. Figure 13b shows the second-iterated map
for an intermediate value of the parameter ! for which all three steady states are
characterized by two stick phases. Summarizing: for the parameter values defined
above the system possess the three steady states shown in Fig. 3. If the value of the
parameter ! is reduced below 1, an adding-sliding bifurcations adds a stick phase
to motion-1s, which is then shown in Fig. 13b as motion-1sa and -1sb. A further



28 U. Galvanetto and A. Colombo

0 1 2 3 4 5 6

m-2s

m-2u

m-2u

m-2s
m-2s

m-2s

m-1sa

m-1sb

j n
0 1 2 3 4 5 6

j n

j 
n+

2

j 
n+

2

0

1

2

3

4

a b

5

6

0

1

2

3

4

5

6

no intersection

no intersection

Fig. 13 (a) !D 0.95: second iterated map showing only one, period-2 motion for the map,
corresponding to motion-2s. (b) ! D 0.975: second iterated map showing three period-2 steady
states for the map corresponding to motion-2u, motion-2s, and the motion generated at the adding-
sliding bifurcation from motion-1s

reduction of ! causes a standard fold bifurcation in which motion-2u disappears
colliding with motion-1s. Several adding-sliding bifurcation lines exist in the wedge
of Fig. 11.

5 Conclusions

The paper presents the main ideas of a method to compute the stable manifolds of
saddle-like periodic cycles in piece-wise smooth dynamical systems. They represent
the basin boundaries of the relevant coexisting attractors. The method is applied to
a mechanical system affected by dry friction in which three steady states, two stable
and one of saddle-type, exist. In the second part of the paper the evolution of the
three steady states is followed as a parameter is varied. It is shown how standard
bifurcations and non-smooth bifurcations can interact; in particular an example
described in the paper shows that adding-sliding bifurcations may be required before
fold bifurcations can take place.
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Two Formulations of Nonlinear Normal
Vibration Modes and Their Applications

Yuri V. Mikhlin

Abstract Two formulations of nonlinear normal vibration modes (NNMs) in
conservative and near conservative systems are considered. Construction of the
NNMs and their applications in some mechanical problems are presented. Namely,
the nonlinear vibro-absorption problem, the cylindrical shell nonlinear dynamics
and the vehicle suspension nonlinear dynamics are analyzed.

Keywords Nonlinear normal modes • Vibration absorber • Cylindrical shells •
Vehicle dynamics

1 Introduction

Nonlinear normal vibration modes (NNMs) are a generalization of normal (or
principal) vibrations in conservative linear systems. In the normal vibration mode a
finite dimensional system behaves like a conservative one having a single degree of
freedom.

Kauderer (1958) became a forerunner in developing quantitative methods for
analyzing NNMs in some two-DOF conservative system. Rosenberg (1962, 1966)
defined NNMs as “vibrations in unison”, i.e., synchronous periodic motions during
which all coordinates of the system vibrate equiperiodically, reaching their maxi-
mum and minimum values at the same instant of time. He selected broad classes
of essentially nonlinear systems allowing NNMs with rectilinear trajectories (modal
lines) in a configuration space. The first formulation of the NNMs can be named the
Kauderer-Rosenberg concept. In general, the NNM modal lines are curvilinear.
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The power series method to construct these trajectories is proposed in Manevich
and Mikhlin (1972), Manevich et al. (1989), Mikhlin (1996).

Shaw and Pierre (1991, 1993) proposed the other formulation of NNMs for a
general class of nonlinear discrete conservative or non-conservative systems. This
analysis is based on the computation of invariant manifolds on which the NNM
oscillations take place. This NNMs formulation can be named the Shaw-Pierre
concept.

Different problems of the NNMs theory are studied in Vakakis and Rand (1992),
Vakakis and Cetinkaya (1993), Pilipchuk (2001). The Rauscher method was first
used for analyses of normal vibrations in some non-autonomous systems in Kinney
and Rosenberg (1966). Rauscher’s idea and the power-series method for trajectories
in a configuration space are used in construction of resonance solutions in Mikhlin
(1974). NNMs in self-excited systems are analyzed in Mikhlin and Morgunov
(2001). Generalization of the NNMs concepts to continuous systems is made in
King and Vakakis (1993), Shaw and Pierre (1994), Nayfeh and Nayfeh (1994).
Basic results on NNMs are presented in the book (Vakakis et al. 1996) where
quantitative and qualitative analyses of NNMs in conservative and non-autonomous
systems, as well in distributed systems, are considered. Development of the NNMs
theory during last years is presented in Vakakis et al. (2008), where problems of
the energy transfer and localization in mechanical systems are analyzed in details.
Generalization of the NNMs concept to systems with non-smooth characteristics is
presented in Pilipchuk (2010). General concepts and a development of the nonlinear
normal modes theory is described in Mikhlin and Avramov (2011). The nonlinear
normal modes theory has been used last years to solve different applied problems
some of them are presented in this paper.

The paper is organized as follow. In Sect. 2 the Kauderer-Rosenberg concept of
the nonlinear normal modes is presented. Equations and boundary conditions in the
finite-DOF conservative systems to obtain the NNMs trajectories in configuration
space are obtained. Construction of the modal lines in power series is described.
In Sect. 3 a generalization of the Kauderer-Rosenberg concept to non-conservative
systems is considered. The principal idea of the Shaw-Pierre concept for the
nonlinear normal modes is shown in Sect. 4. Then some applications of the NNMs
theory are presented. In Sect. 5 it is shown that the snap-through truss can be used
as effective vibration absorber. In Sect. 6 the NNMs theory is used to investigate
nonlinear dynamics of cylindrical shells with initial imperfections, in the supersonic
flow. In Sect. 7 the 7-DOF model of the nonlinear vehicle dynamics is considered
by using the NNMs approach.

2 The NNMs Concept by Kauderer and Rosenberg

The normal vibrations of the conservative systems can be presented by trajectories in
the configuration space. Equations of motion of the finite-DOF conservative system
are the following:

mi Rxi C…xi D 0; (1)
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where … D ….x/ is the system potential energy, which is a positive definite
analytical function. One introduces the next change of variables:

p
mixi ! xi .

Equations to obtain trajectories of motion in the system configuration space
can be obtained as the Euler equations for the Jacobi variation principle. If some
generalized coordinate is chosen as the independent one, for example, x1 � x, then
the following functions must be obtained:

xi D pi.x/I .i D 2; 3; : : : ; n/ (2)

The last relations define the NNMs by Kauderer-Rosenberg and describe some
synchronous periodic motions. The new independent variable x is introduced instead
of t. By using the energy integral, we can derive equations to obtain trajectories
(modal lines) in the system configuration space of the form:

2x00
i .h �…/

, 
1C

nX
kD2

x0
k
2

!
C x0

i .�…x/ D �…xi .i D 2; 3; : : : ; n/ (3)

Here and later the prime means a differentiation by the variable x. The Eq. (3) are
convenient to construct rectilinear, or nearly rectilinear, trajectories of the NNMs
(Rosenberg 1966; Manevich and Mikhlin 1972; Manevich et al. 1989; Mikhlin
1996; Vakakis et al. 1996). These equations have singular points on the maximal
equipotential surface ….x1; : : : ; xn/ D h. An analytical continuation of the NNMs
trajectories to the surface is possible if the next boundary conditions are satisfied
(Rosenberg 1966; Manevich and Mikhlin 1972; Manevich et al. 1989; Mikhlin
1996; Vakakis et al. 1996), namely,

x0
i .X/ Œ�…x .X; x2.X/ : : : ; xn.X//�D�…xi .X; x2.X/ : : : ; xn.X// .iD2; 3; : : : ; n/

(4)

Here x D X; xi .X/ are the trajectory return points lying on the maximal
equipotential surface ….x1; : : : ; xn/ D h.

Let’s the modal line (2) is obtained from the boundary problem (3), (4), and the
functions pi .x/ are single-valued and analytical. Then the law of motion in time t
can be found by using the equation

Rx C…x .x1; p2.x/; : : : ; pn.x// D 0: (5)

The periodic solution x.t/ can be found as inversion of the corresponding
integral. So, the NNMs are two-parametric (by energy and phase of the motion)
family of periodic solutions with smooth trajectories in the configuration space.

Note that the energy and amplitudes of the obtained single-DOF nonlinear system
are connected by the following relation: h D V.X/.

It is interesting that the number of NNMs in the nonlinear case can exceed the
number of degrees of freedom. This remarkable property has no analogy in general
linear systems, excepting some degenerate cases.
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One considers the dynamical system with the potential energy, ….0/ C "….1/,
where "�1; one assumes that the unperturbed system (for " D 0) allows the
rectilinear modal lines. The dynamical system can be written as

Rxi C Q….0/
xi
.x1; : : : ; xn/C " Q….1/

xi
.x1; : : : ; xn/ D 0I i D ��!

1; n: (6)

To construct the NNM close to the rectilinear NNM it can use the following
power series:

xi D
X
kD0

"kxik.x/I x � xI xik D
X
lD1

a
.l/

ik x
l (7)

A determination of coefficients of the power series (7) from the Eqs. (3) and
(4) is described in Manevich and Mikhlin (1972), Manevich et al. (1989), Mikhlin
(1996), Vakakis et al. (1996). Conditions of solvability and a convergence of the
power series are discussed in these publications. Analytical continuation of obtained
local expansions for large vibration amplitudes can be made by using the rational
diagonal Pade’ approximants (Manevich et al. 1989; Mikhlin 1995).

3 NNMs in Near-Conservative Systems

The perturbation methodology is utilized to the analysis of NNMs in broad
classes of finite-dimensional non-autonomous and self-excited systems close to
conservative ones. One considers the following near-conservative system:

Rxi C…xi .x1; x2; : : : ; xn/C " fi .x1; Px1; x2; Px2; : : : ; xn; Pxn; t / D 0I
�
i D ��!

1; n
�
(8)

Here " is a small parameter; … is a potential energy of the unperturbed
conservative system; the functions fi may be periodical with respect to time. This
system may involve friction of any physical nature.

It is considered such vibration modes when all positional coordinates of the
finite-dimensional non-conservative system are linked. In these modes, the system
behaves like a single-DOF conservative one. The periodic solutions could be called
Nonlinear normal modes of the non-conservative nonlinear system.

One considers a solution that all phase coordinates are defined as single-valued
and analytical functions of some selected coordinate x � x1. Besides, it is assumed
that within a semi-period of the periodic solution one can express t as a single-values
function of the displacement x. This idea was first introduced by Rausher (1938).
It means that along the NNM trajectory the non-conservative system behaves like
to some pseudo-autonomous system (Kinney and Rosenberg 1966; Mikhlin 1974;
Kubenko et al. 1984).
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Then, eliminating a time and introducing a new independent variable x, one
obtains equations governing trajectories of the NNMs in the system configuration
space and the additional boundary conditions which guarantee an absence of
singularities in these equations. These equations and boundary conditions, which
are not presented here, are similar to ones previously presented for the conservative
systems. The NNM modal line can be determined as power series by " and x
(Kinney and Rosenberg 1966; Mikhlin 1974; Kubenko et al. 1984; Nayfeh and
Nayfeh 1994). In case of the non-autonomous system a determination of the steady-
state resonance motions in form of the NNMs must be completed by condition of
periodicity. In a case of the self-excited system one has the additional condition that
the work of all forces over the period is equal to zero (Nayfeh and Nayfeh 1994).

4 The NNMs Concept by Shaw and Pierre

Shaw and Pierre (1991, 1993) reformulated the method of NNMs for a general class
of quasilinear dissipative systems. Their analysis is based on the computation of
invariant manifolds of motion on which the NNMs take place.

To use this approach the mechanical system must be presented of the next
standard vector form:

dx=dt D y; dy=dt D f .x; y/ (9)

One chooses a couple of new independent variables (u, v), where u is some
dominant generalized coordinate, and v is the corresponding generalized velocity.
By the Shaw-Pierre formulation, the nonlinear normal mode is such regime when
all phase coordinates are univalent functions of the selected couple of variables.
Choosing the coordinate and velocity with the index 1 as the selected couple of
variables, one writes the nonlinear normal mode as

x1 D u; y1 D v; x2 D X2 .u; v/ ; y2 D Y2 .u; v/ ; : : : ; xN D XN .u; v/ ; yN D YN .u; v/
(10)

Computing derivatives of all variables in the relations (10), and taking into
account that u D u(t) and v D v(t), then substituting the obtained expressions to the
system (9), one has the following system of partial differential equations:

@Xi

@u
v C @Xi

@v
f1 .x; y/ D Yi .u; v/;

@Yi

@u
v C @Yi

@v
f1 .x; y/ D fi .x; y/; .i D 1; 2; : : : ; N / (11)

It is possible to obtain the system (11) solution in power series by new
independent variables u and v.
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5 Snap-Through Truss as Vibration Absorber

Numerous scientific publications contain a description and analysis of different
devices for the vibration absorption. The NNMs in a system considering an
essentially nonlinear oscillator as absorber is studied in Mikhlin and Reshetnikova
(2005). Analysis of free or forced oscillations absorption by using of the snap-
through truss is considered in Avramov and Mikhlin (2004, 2006).

The snap-through truss with three equilibrium positions is attached to the linear
oscillator which is chosen as the simplest model of some elastic system. The
system dynamics is studied by the NNMs approach. If the localized mode is stable,
the system energy is concentrated in the nonlinear absorber. This situation is the
most appropriate to absorb elastic vibrations. Figure 1 shows the system under
consideration. The following notations are used: ® is the angle, which defines
the equilibrium position; L is a length of the undistorted spring; c is a stiffness
of the truss spring; c1 is a stiffness of the elastic subsystem. Coordinates (u,w),
which describe displacements of the systems, are transformed to dimensionless
coordinates (U,W): u D U=LI w D W=L. One introduces too the dimensionless
time, t D .M=c1/

1=2� and the new variable, u1 D u C � .1 � c/ = .1C �/, where
� D c=c1I� D m=M: By assumption, the mass and stiffness of the truss are
significantly smaller than corresponding parameters of the elastic system. Therefore,
the following relations are introduced: � D " N�I � D " N� I " << 1. The Taylor-series
expansions are performed. The truss is shallow, so, remaining the terms up to the
third order, the following system of motion, is derived:

Ru1 C .1C " N�/ u1 � " N�
	3

u1w
2 � " N�

2	2
w2 D 0I

� Rw � N�˛2w � N�
	2

wu1 C N�ˇ2
2

w3 D 0; (12)

where 	 D �Cc
1C� I˛2 D 1

	
C 1

c
� 2Iˇ2 D 1

	3
C 1

c3
:

Fig. 1 The snap-through truss as an absorber of elastic vibrations
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As the localized NNM, as well the non-localized NNM can be selected. The
localized periodic motions near the equilibrium position are presented of the form
u1 D "Nu1 .w1/, where: w � sin' D "w1, and then the following power series are
used: Nu1 D b0 C b1w1 C b2w21 C :::: The equations to obtain the NNM trajectory (3)
and the corresponding boundary conditions (4) are used. The obtained modal line is
a near-straight line close to y-axis. The non-localized NNM can be constructed in
power series too. The checking numerical simulation of the system shows a good
accuracy of the obtained analytical results.

Periodic motions of the system (12) with large amplitudes are studied by using
the NNMs approach too. The NNM is presented in the following form:

u1 D "Nu1.w/I Nu1.w/ D a0 C a1w C a2w
2 C : : : (13)

where a0,a1, : : : are unknown coefficients. These coefficients are obtained from
the equation for the NNM trajectories in configuration space of the form (3) and
the corresponding boundary conditions (4). The checking numerical simulation
confirms a good accuracy of the analytical results (Fig. 2). The snap- through truss
has significant amplitudes of oscillations and the main elastic system has small
amplitudes. If such motions are stable, it guarantees the vibration absorption.

In region of the non-localized NNM instability the transfer to the through-truss
motion is taken place. Stability of the absorption mode (13) is analyzed in Avramov
and Mikhlin (2004). The following conclusions can be made. If the angle ® is not
large, the unstable oscillations regions have an order O.©/. It can choose such values
of ®, that the considered NNM is always stable. In this case the snap-through
truss has large oscillation amplitudes, and the main linear subsystem has small
amplitudes.

Forced oscillations of a system, containing the snap-through truss, close to its
equilibrium position, are investigated too. In instability regions of non-localized
forced oscillations the absorber is fallen into the snap-through motions. These
vibrations, which are the most appropriate for absorption of the linear vibrations,
are analyzed in Avramov and Mikhlin (2006). The absorption mode is constructed
by using the NNMs method and the Rauscher approach. It is shown that the
vibration absorption mode is stable for almost all values of the system parameters,
excepting the very narrow resonance region. Therefore, the snap – through absorber
is effective.

6 Nonlinear Oscillations of the Non-ideal Cylindrical Shells
in a Supersonic Flow

A lot of studies were devoted to large amplitude vibrations of circular cylindrical
shells. In some of them the nonlinear oscillations of the non-ideal cylindrical shells,
that is cylindrical shells with initial imperfections, were considered. It can select
some review-type publications on the subject, in particular, papers (Budiansky and
Hutchinson 1966; Fung and Sechler 1974). There are too a great number of papers
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Fig. 2 Large amplitude periodic motions. (a) Analytical solution. (b) Numerical simulation with
initial conditions corresponding to the analytical results

which are available to the dynamics of cylindrical shells in the supersonic flow
(Fung and Sechler 1974; Bolotin 1963). The NNMs concept is used in Avramov
et al. (2007) to investigate the non-ideal cylindrical shells dynamics.

Free nonlinear oscillations of the circular cylindrical shells with imperfections
are described by the well-known Donnell equations, connecting the normal deflec-
tion w and the Airy stress function ˚ , as a functions of the space coordinates x,y
and of the time t (Fung and Sechler 1974; Kubenko et al. 1984). The shell normal
deflection is represented of the form:

w D f1.t/ sin rx sin sy C f2.t/ sin rx cos sy C f3.t/sin2rx (14)

Here s D n=R; r D m
=L; n is a number of waves in the circumference
direction; m is a number of half-wave in the longitudinal direction; unknown
functions f1(t), f2(t) describe two asymmetric modes; f3(t) is a general coordinate,
which characterizes the axisymmetric mode. It is assumed that a length of the middle
surface transverse section is constant during oscillations.
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The imperfections are chosen of the following form, which corresponds to the
first principal asymmetric mode:

w0 D f10 sin rx sin sy C f20 sin rx cos sy (15)

Using the Bubnov-Galerkin approach to the Donnell equations, two nonlinear
ODEs having quadratic and cubic nonlinearities can be derived (Bolotin 1963;
Avramov et al. 2007). If the initial imperfections are equal to zero, all NNM
trajectories in the configuration space of the system are rectilinear, and a number
of these NNMs are equal to infinity. So, it is advisable for a case of small
initial imperfections to use the straight line to approximate the NNMs in the
system:

f2 D kf1 (16)

Both analytical and numerical analysis shows that in the wide range of the
system parameters only a single stable nonlinear vibration mode exists. The system
trajectory is close to (16), where k D f20=f10.

One considers the NNMs approach to analyze the nonlinear dynamics of
cylindrical shells in a supersonic flow and a construction of periodic solutions
with large amplitudes. The Donnell equations are used to study dynamics of ideal
cylindrical shells in a supersonic flow. A first-order linear piston theory (Fung
and Sechler 1974; Bolotin 1963) is used to approximate the pressure. The shell
deflection is presented as

w D f1 sin rx sin sy C f2 sin rx cos sy C f3 sin 2rx sin sy

C f4 sin 2rx cos sy C f � .x; t / (17)

The inextensibility condition of a middle surface is used. The initial continuous
system is reduced, by using the Bubnov-Galerkin procedure, to the discrete one of
the form of four nonlinear ODEs. The region of the flutter is considered. In the linear
approximation the normal mode of vibration of the form f1 D f2; f3 D f4 exists
(Fig. 3a). In the plane f1, f3 corresponding modal lines are of the closed oval-type
ones (Fig. 3b). Accounting of the nonlinearity gives us some deformation of the
linear system modal lines. So, the periodic limit circle of the form of the NNM in
the flutter region is obtained. But on the large calculation interval the obtained limit
circle is unstable. One can observe a transfer to regime of beating, which amplitudes
are essentially more than ones of the unstable limit circle. This beating was obtained
in experiments (Fung and Sechler 1974). Additional analysis by using the harmonic
balance method and the numerical simulation confirm this result.

One considers now the combined influence of the initial imperfections and the
supersonic flow to the shell nonlinear dynamics. The following approximation of
the normal deflection is chosen:
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Fig. 3 Trajectories of the NNMs in the region of the flutter. (a) The NNM trajectory in the plane
f1; f2. (b) The NNM trajectory in the plane f1; f3

w D .f1 � f10/ sin rx sin sy C .f2 � f20/ sin rx cos sy C f3 sin 2rx sin sy

Cf4 sin 2rx cos sy C n2

4R

h
.f1 sin rxCf3 sin 2rx/2C.f2 sin rxCf4 sin 2rx/2

i
(18)
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Fig. 4 Regime of beating for not large values of the initial imperfections

Initial imperfections are chosen of the form (15). Then after determination
of the Airy stress function, and by using the Bubnov-Galerkin procedure, one
has the system of four nonlinear ODEs, which contains the unknown functions,
fi .t/; i D 1; 2; 3; 4. For the numerical calculations some physical parameters were
fixed. In Fig. 4 it is shown vibration regimes for not large values of the initial
imperfections. We can see regimes of beating. In the Fig. 4 f �

1 D f1=h, t� D !11t ,
where !11 is the first fundamental frequency of the system.

In the flutter region it can observe the NNMs modal lines, which are similar
to ones in the non-ideal shell without the flow influence (Fig. 3). Simultaneously,
a behavior in time is analogous to ones in the ideal shell in the flow. But these
vibration regimes are not typical for large values of the initial imperfections. The
chaotic dynamics of the shell is typical if the initial imperfections have an order
more that the shell thickness.

7 NNMs in the Vehicle Dynamics

In fact the vehicle models are nonlinear because it contains elastic components
with nonlinear characteristics. Nonlinear 7-DOF model of the vertical and axial
vehicle dynamics of a double-tracked road vehicle is considered here for a case
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Fig. 5 The first vibration
mode of the nonlinear system
(independent coordinates are
u D z and v D Pz; initial
values: z D 0; 075, and
Pz D 0). (a) Change of the
angle ˛ depending on
variables u and v. (b) Change
of displacement x1 depending
on variables u and v

of independent-solid axle suspension to predict the vehicle body and wheel states
(Avramov et al. 2007; Kubenko et al. 1984). It is possible to study, by using this
model, all principal vehicle motions. In some cases, for example, after impact,
the NNMs are, may be, the dominant regimes in the vehicle dynamics, because a
transient is very short-term due to a strong dissipation in the system.

In the 7-DOF model of the suspension dynamics the car body is represented
as a rigid body. The corresponding generalized coordinates are the following: z
is the vertical displacement, ˛ is the pitch angle, ˇ is the roll angle, xi are the
vertical displacement of i-th suspended mass which are equivalent to the wheel. In
this model tires are presented as elastic elements with linear characteristics. The
suspension is characterized by nonlinear elastic characteristics of the front and rear
springs, and by linear damping characteristics.

The NNMs concept by Show and Pierre is used. Solutions are obtained as power
series by new independent variables u and v, which are dominant coordinates of
chosen mode. This procedure permits to obtain seven NNMs of the system under
consideration. Two surfaces, which characterize the first NNM, and corresponding
trajectories of motion on these surfaces for some concrete values of the system
parameters are shown in the Fig. 5. Here the coordinate z, describing the vertical
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Fig. 6 The first vibration mode of the quarter car model (the piecewise linear damping charac-
teristic of the shock absorber). Independent variables are u D x1 and v D Px1. (a) Change of
displacement x2. (b) Change of the Px2 (depending on u and v)

displacement, is chosen as the independent variable u, and the corresponding
velocity Pz is chosen as the independent coordinate v. Numerical calculations show a
good exactness of the obtained analytical results.

To investigate the suspension dynamics taking into account a non-smooth char-
acteristic of the shock absorber, the quarter-car model is considered. Characteristic
of the damping functions is chosen as piecewise linear one. The first NNM obtained
by using the method described below are shown for some concrete values of the
system parameters in Fig. 6. It can be observed as motions on places corresponding
to the NNMs, as well a transient from one place to another one after gap of the
piecewise linear damping characteristic.
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Piecewise linear damping is considered as an approximation of more exact
characteristic. The stiffness characteristic in the suspension is chosen here as linear.

Similar results are obtained in a case of more realistic nonlinear elastic and
damping characteristics (in particular, in a case of the piecewise cubic damping).

8 Conclusion

Nonlinear normal modes (NNMs) are typical regimes which exist in different
classes of conservative or near-conservative finite-DOF systems. The Kauderer-
Rosenberg conception, when all positional coordinates are single-valued functions
of some of them, is associated with trajectories in configuration space. The Shaw-
Pierre conception is based on the computation of invariant manifolds of motion. In
this case the NNMs can be obtained as single-valued functions of two selected phase
coordinates. An efficiency of the NNMs theory is shown in some applied problems.
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Soliton-Mediated Electron Transfer and Electric
Transport Arising from Coupling Electron
Quantum Mechanics to Nonlinear Elasticity
in Anharmonic Crystal Lattices

M.G. Velarde, W. Ebeling, and A.P. Chetverikov

Abstract After recalling features of solitons in the Toda (more precisely an adapted
Morse-Toda) lattice a succint discussion is provided about the stability of such
solitons when the lattice is heated up to physiological temperatures for values of
parameters typical of bio-macro-molecules. Then the discussion is focused on the
soliton trapping of an added excess (originally free) electron thus creating the solec-
tron electric carrier. Results are presented for 1d- and 2d-anharmonic crystal lattices.

Keywords Cristal Lattices • Solitons • Electric transport • Heating

1 Background: Solitons

The study of anharmonic lattices owes much to the seminal work done by Fermi,
Pasta and Ulam (1955). They tried numerically albeit with no success to explain
equipartition of energy (of paramount importance in statistical mechanics) by using
the first few non-Hookean corrections to linear elasticity as a mechanism to allow
energy sharing and exchange between harmonic modes otherwise non-interacting.
The difficulty was clarified by Zabusky and Kruskal (1965) and Zabusky (2005)
who studied solitary waves, their overtaking collisions in such anharmonic lattices
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and their continuum counterpart. In view of their remarkable particle-like behavior,
these waves reappearing unaltered following collisions, the hallmark of their
dynamics, they denoted them by solitons (solit/solitary wave; on/like in electron,
proton, etc.). In fact, before the discovery of the soliton, Visscher and collaborators
numerical computations (Payton et al. 1967) had revealed “soliton-like” mediated
behavior and enhanced heat transport. Solitary waves and solitons, found also in
other realms of science, appear as potential “universal” carriers of almost anything
(del Rio et al. 2007; Nayanov 1986) (like surf waves/non-topological solitons
in the ocean or bores/topological solitons in rivers). Of particular interest to us
here is the model-lattice invented by Toda (1989) for which analytical, exact
solutions are known.

Let us recall how solitons appear in the anharmonic Toda lattice. Consider an
one-dimensional (1d) lattice of units (equal masses, m and m D 1 for simplicity)
interacting with their nearest-neighbors via a potential U.x/. Then, classically,
for the displacement of the nth-lattice unit/particle from its equilibrium position,
Newton’s equations are

Rxn D U 0 .xnC1 � xn/� U 0 .xn � xn�1/ ; (1)

where xn denotes displacement (depending on circumstances it is of interest to
focus on local lattice deformations or on gradient of displacements) of the unit
at site “n”. A dash indicates a derivative with respect to the argument. No on-
site dynamics or structure is considered. There are cases of, e.g., biological
interest where an intra-unit dynamics is added. If rather than actual unit-
displacements, relative displacements, �n D xnC1�xn, are considered, then Eqs. (1)
become

R�n D U 0 .�nC1/ � 2U 0 .�n/C U 0 .�n�1/ : (2)

The paradigmatic interaction potential introduced by Toda is

U .�n/ D �a
b

�
e�b.�n��/ C b .�n � �/ � 1

�
; (3)

where � is the mean equilibrium interparticle distance; a > 0 and b > 0 are
parameters; b accounts for the non-Hookean stiffness of the “springs” in the lattice;
the last term (�1) is added for computational convenience and need not to be
included. Note that with ab finite for b ! 0, the function (3) becomes the
harmonic potential (linear Hookean “springs” for a standard crystal lattice) and
!20 � ab=m defines the angular frequency of vibrations in the harmonic limit.
In the extreme opposite case b ! 1, the potential (3) approaches the hard-
rod/sphere limit (fluid-like system). Note also that under an external force or for
finite temperatures the lattice constant equilibrium distance may not correspond
to the minimum of the potential. Figure 1 shows the Toda potential adequately
compared with Morse and Lennard-Jones potentials of current use in Physics and
Chemistry. In what follows consideration will be given only to strong interparticle
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compressions such that � � �=2 (for simplicity � D 1). Materials are usually
stronger when compressed and weaker when stretched. In view of this, the fact
that the attractive part of Toda’s potential (3) is unphysical is of no concern to the
study here.

For any finite value of b, in the infinite lattice, the equations of motion (2) possess
a one-parameter family of soliton solutions

�n D � � 1 .1=b/ `n
�
1C sinh2�sech2 .�n	 sinh�/ !t

�
: (4)

Inverting the logarithm it is just the sech2 for e�b.�n��/. This exponential is
related to the force (3) and characterizes the strength of the solitonic pulse. The
parameter � controls the wave velocity and by the same token the wave amplitude
(higher solitons travel faster),

vsoliton.�/ D ˙!0 .sinh�/ =�; (5)

which in dimensionless units shows its supersonic character as the linear sound
velocity is here given by vsound D !0 (positive and negative signs merely give
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direction of wave propagation). When a periodic hence finite lattice is considered the
exact solution of the equations of motion is a periodic “cnoidal” wave formed with
Jacobian elliptic functions and complete elliptic integrals of the first and second
kind (Toda 1989). It can be shown that in the continuum limit the solution of the
discrete lattice can be approximated by the cnoidal solution of the Boussinesq-
Korteweg de Vries equation (Boussinesq 1877; Korteweg and Vries 1895; Nekorkin
and Velarde 2002) and in another limit by the solitary wave solution in the form of
sech2. When the lattice has fixed constant length, as expansion is not permitted,
experiences internal stress (pressure). If, however, the lattice length is free but no
external force to it is applied (like compression or stretching at a free end), it can
be shown that the lattice expands as it vibrates. The solitary wave is a compression
pulse, and cnoidal waves cause expansion with, however, high compression at each
periodic wave “peak” (or maximum). The exact wave dispersion relation of the Toda
lattice is known explicitely.

Incidentally, the Toda lattice cannot sustain a thermal gradient although it permits
a temperature difference, hence it is “transparent” to heat (solitons with exponential
interaction like (3) run freely in the Toda lattice). This problem does not arise
with Lennard-Jones interactions. In view of this, use is to be done of an imperfect
Toda lattice and, recalling that interest here focused only on rather-strong lattice
compressions, this can be achieved by substituting (3) with an adapted (non-
integrable, hence imperfect) Toda-Morse lattice whose solutions and corresponding
features should not differ significantly from the exact Toda solutions given above
(Chetverikov et al. 2006; Dancz and Rice 1977; Rolfe et al. 1979). Thus rather
than (3) we shall use:

UM.�/ D D
�
e�B.���/ � 1

�2
: (6)

The specific heat at constant length/volume of the Toda lattice was obtained long
ago (Toda 1989). The high-temperature limit CL D 0; 5 corresponds well with the
fluid-like, hard-sphere phase. Then around T D 1, CL � 0; 75 it is the soliton
range (T unit: 2D; see below for further scalings). Well below T D 1 D Ttransition,
phonons (Fourier modes) control the thermodynamics (and dynamics) of the system.
Similar phenomena can be observed in the dynamical structure factor (DSF) (typical
for inelastic thermal neutron scattering experiments, 4 Å 
 5meV 
 60K even
up to 0:3 Å 
 0:1 eV 
 103 K). The latter is the double Fourier transform of the
density-density correlation. When T is well below T D Ttransition a single phonon
peak appears that provides the linear sound velocity. As the transition temperature is
approached from below the phonon spectrum gets multipeaked with many phonons
or highly deformed phonons showing up (multiphonon range), until a much higher
peak clearly emerges above a messy background. It corresponds to the soliton with
supersonic velocity (5). Both the specific heat and DSF point to the significant role
played by strong lattice compressions leading to solitons (Chetverikov et al. 2006).
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2 Electron Capture and Electron Transfer

2.1 The Solectron Concept

If we now consider that lattice units are atoms with electrons and we add an excess
electron we can consider two possibilities, one is electron transfer (ET) from a donor
(D) to an acceptor (A) as schematized in Fig. 2 (Velarde et al. 2010a). The other
possibility is electric transport or current in the presence of an external electric
field. In both cases we have to follow the time evolution of the electron coupled
to that of the lattice units, one affects the other. In the simplest form we can use
the tight binding approximation (TBA) hence placing the electron at a lattice site
and allowing electron hopping to nearby sites. In the TBA the time evolution of the
electron follows the Schrödinger equation (for the lattice “space”) augmented with
the coupling with the anharmonic lattice, that reduces to

i„ Pcn D Encn � .Vn;n�1cn�1 C VnC1;ncnC1/ ; (7)

where the coupling of electron (normalized) probability density (amplitude, jcnj2)
to lattice variables implicit in the Vn;m appears. The choice

Vn; n�1 D V0e
�˛.�n��n�1/; (8)

is of current use dealing with, e.g., biomolecules. The parameter ˛ is an inverse
characteristic “length” scale.

To have a universal description suffices to make quantities dimensionless by
introducing suitable scales/units: � D V0=„!M , Q̨ D ˛=B , and QV D V0=2D

thus using the depth of the Morse potential as unit/scale; !M D 	
DB2=M


1=2
, M

denotes lattice units mass (typical parameter values for some biomolecules (Gray
and Winkler 2003, 2005) are: B D 4:45 Å�1, ˛ D 1:75B , D D V0 D 0:1 eV,
!M D 3:1012 s�1, V0=„ D 0:6 � 1014 s�1, � D 10). Then we can rewrite (7) as

i Pcn D �� �e�˛.�n��n�1/cn�1 C e�˛.�nC1��n/cnC1
�
: (9)

Fig. 2 ET along a biomolecule modeled by a lattice. The excess electron (wave function  )
is emitted from site D (donor) by appropriate energy supply and travels along the bridge or
“backbone” lattice made of anharmonic elements down to the site A (acceptor)
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The parameter � shows explicitely the time scale of electron motions while the time
t corresponds to the slower time scale of the lattice vibrations. The latter obey the
Eq. (2) augmented with the coupling to electron hopping motions or better said,
electron probability coefficients,

R�n D �
1 � e.�nC1��n/� e�.�nC1��n/ � �

1 � e�.�n��n�1/
�
e�.�n��n�1/ �

�˛V �	c�
nC1cnCcnC1c�

n



e�˛.�nC1��n/C 	

c�
n cn�1Ccnc�

n�1


e�˛.�n��n�1/

�
:

(10)

Clearly, the interplay between electron and lattice vibrations has now a genuinely
new element, the soliton-mediated effect. This permits to consider the compound
electron-soliton “quasiparticle”, due to its “universal” carrier character, as a new
physical entity which is the “solectron” one way of providing electron “surfing” on
a subsonic/supersonic sound (longitudinal lattice soliton) wave (Cantu Ros et al.
2011; Velarde 2010).

2.2 Soliton Electron Trapping

Consider an electron placed at site “n” in a lattice. Then let alone the electron,
its evolution is dictated by Eq. (9) with ˛ D 0. Figure 3 shows how from an
initially peaked probability density as time proceeds the probability spreads down
to a uniform distribution over all lattice sites and hence ends up by being completely
delocalized.

Other evolution possibilities have been explored (Hennig et al. 2006, 2007).
Taking now Eq. (2) and launching as an initial condition a soliton at a certain
lattice site and then switching-on the electron-lattice interaction hence switching-
on Eq. (10), for an initial condition of the electron completely delocalized, and
then operating Eq. (9) in full, the striking result found is illustrated in Fig. 4.
Subsequently, after trapping the electron, the compound or bound state soliton-
electron, i.e., the solectron proceeds moving unaltered along the lattice.

When two solitons which are allowed to collide in their evolution along the lattice
are launched and the electron starts being trapped and carried by one of the solitons,
e.g. by the one moving left-to-right, then as the collision proceeds and “finishes”,
the electron may leave the first soliton and reappear trapped and carried by the
second soliton. Accordingly, the electron may change both partner and direction of
motion after the collision. Another striking result also observed numerically is the
electron probability density splitting thus illustrating how quantum mechanically
the electron (in probability sense) can move simultaneously! in both directions
(Velarde et al. 2008a).

If an external electric field is acting there is current, it suffices to add to Eq. (9)
the term (�nEcn) and then to compute

j D i
X	

c�
nC1cn � c�

n cn�1


; (11)
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Fig. 3 Soliton and electron taken separately (no interaction). (a) lattice soliton time evolution
starting at site n D 200. (b) Electron probability density time evolution. From initial “localization”
at site n D 200 the electron ends up completely delocalized, i.e., the proability density is spread
“uniformly” everywhere along the lattice

which then depends on the external field strength. This is apparently so but not
always in reality. Indeed, for high enough field strength it can be seen that the
latter forces the electron to follow Ohm’s law. But as the field strength becomes
low enough it is rather the soliton which commands the electric current which
becomes field-independent thus remaining constant as the field strength tends to
zero. This striking result is not unexpected if we recall what the “soliton” wave does
to a surfer.



54 M.G. Velarde et al.

0 50 100 150 200 250 300 350 400 0
50

100
150

200
250

300
350

400

-0.01
-0.005

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

lattice
a

b

n

t

0 50 100 150 200 250 300 350 4000
50

100
150

200
250

300
350

400

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
electron

n

t

Fig. 4 Interaction of a soliton with a completely delocalized electron. Right figure: the electron
after following evolution dictated by Schrödinger equation ends up completely delocalized with
probability density spread like “dust” over the entire lattice. Then at such time instant the soliton is
launched taking as initial condition for the electron the final state of the right picture in Fig. 3. Left
figure: the soliton after gathering the electron dusty probability density eventually reconstructs the
electron probability density in a kind of “vacuum cleaner” process

3 Heated Crystal Lattices

So far no mention was done of temperature other than when referring to the specific
heat (Fig. 5). Strictly speaking the results described above hold at zero-K. Let us now
consider that the system is heated-up from zero-K to the soliton range (T � 0:1�1)
defined in Fig. 5. The heating can be done by a suitable thermal bath satisfying
Einstein’s relation between noise strength and equivalent temperature in K. As we
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Fig. 5 Specific heat at constant length/volume in kB units. Ttransition D 1, for which here
CL � Cv D 0:75. Cv D 1 is the Dulong-Petit (Einstein) value (solid phase; harmonic interaction)
and Cv D 0; 5 corresponds to the fluid-like phase (hard-rod interaction). Missing in the figure
is the low temperature values arising from genuinely quantum mechanics (T d Debye law with
d denoting space dimension)

shall continue restricting consideration to 1d lattices let us recall the Hamiltonian,
Ha, using xn as lattice coordinates. Then we have

Ha D m

2

NX
nD1

v2n C 1

2

NX
n;iD1

U .xn; xi /; (12)

where vn denote velocities, and U corresponds to the Morse potential (6) (Fig. 1).
Then in the presence of random forces (hence nonzero temperature) and also
external forces the evolution of lattice particles is given by the Langevin equations

d

dt
vn C 1

m

@Ha

@xn
D ��0vn C

p
2Dv �n.t/: (13)

The stochastic forces
p
2Dv �n.t/ define a time delta correlated Gaussian white

noise. The parameter �0 describes the standard friction frequency acting from
the bath. The Einstein relation is Dv D kBT �0=m, where T denotes absolute
temperature and kB is Boltzmann’s constant.

In order to visualize the solitons we can focus attention to the “atomic” density.
We assume that each lattice unit is surrounded by a Gaussian electron density
providing a screened ion core of width s D 0:35� . Then the total atomic electron
density, defining a lattice unit, is given by
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Fig. 6 Visualisation of soliton-like running excitations. Density 	0 D 	
p
2
s refers to electrons

in lattice atoms (color coding in arbitrary units). N D 200; B� D 1; s D 0:35� . For two
temperatures (given in units of 2D) we have: Upper set of figures: (i) T D 0:005: Only harmonic
lattice vibrations show up with no evidence of soliton-like excitations; and bottom set of figures: (ii)
T D 1: Besides many excitations also a few strong solitons appear running with velocity around
1:3vsound . In both cases a snapshot of the distribution for a certain time instant and the actual time
evolution of the distribution are displayed

	.x/ D
X
n

1p
2
s

exp

�
� .x � xn.t//2

2s2

�
: (14)

Hence we assume that the atom is like a spherical object with continuous electron
density concentrated around each lattice site. In regions where the atoms overlap, the
electron density is enhanced. This permits easy visualization of soliton-like excita-
tions based on the colors in a density plot. This is of course a rough approximation.
Figure 6 shows the result of simulations for the temperatures T D 0:005 and T D 1.
The diagonal stripes correspond to regions of enhanced density which are running
along the lattice. This is a sign of solitonic excitations. Checking the slope we
see excitations which over 10 time units move with supersonic velocity. We have
solitonic excitations living about 10–50 time units corresponding to 1�3 ps. Besides
they survive even at T D 1which is well above the physiological temperature (about
300K which is above T � 0:1 withD ' 0:1 eV). Due to lack of space we shall not
discuss here the solectron survival as we heat the lattice. The formation of solectron
occurs as indicated above and does survive as a compound up to such temperatures.
For details we refer the reader to the analyses presented in Chetverikov et al. (2009,
2010, 2012), Ebeling et al. (2009), and Velarde et al. (2008b).
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4 Two-Dimensional Soliton-Like Excitations

Let us now extend the study to the case of a two-dimensional (2d) lattice still with
Morse interactions. The lattice Hamiltonian (12) becomes now

Ha D m

2

X
n

v2n C 1

2

X
i;j

V .ri ; rj /: (15)

The subscripts locate atoms at lattice sites n with coordinates (i; j ) and the
summations run from 1 to N . As before the characteristic distance determining
the repulsion between the particles in the lattice is � . We limit ourselves to nearest-
neighbors only using the relative distance r D jrn�rkj. The Morse potential (Fig. 1)
if for convenience, expressed as

UM D D fexpŒ2B.r � �/� � 2 expŒ�B.r � �/�g : (16)

In order to avoid unphysical cumulative interaction effects, a suitable cut-off rules
out a stronger interaction than due arising from the influence of particles outside
the first neighborhood of each particle. In fact, rather than a cut-off we consider the
interaction with a smooth decay to zero as distance increases. Hence rather than (16)
for the 2d lattice we take

UM.r/ D 2D fexp Œ�2b.r � �/� � 2 exp Œ�b.r � �/�g �
� f1C expŒ.r � d/=2��g�1 : (17)

As a rule the cut-off “interaction radius” is supposed to be equal to 1:5� , together
with parameter values d D 1:35� and � D 0:025. Beyond the cut-off radius the
potential is set to zero. To study, at varying temperature, the nonlinear excitations
of the lattice and the possible electron transport in a lattice it is sufficient to know
the lattice (point) particles coordinates at each time and the potential interaction
of lattice deformations with electrons. The former are obtained by solving the
equations of motion of each particle (15) under the influence of all possible forces.
The latter include forces between particles which are supposed to be of the Morse
kind and the friction and random forces accounting for a Langevin model bath in
the heated lattice. We use complex coordinates Z D x C iy, where x and y are
Cartesian coordinates for each r . Then the Langevin equations (13) for the lattice
units, n, become now

d2Zn

dt2
D
X
k

Fnk.Znk/znk C
�
�� Zn

dt
C
p
2Dv

	
�nx C i�ny


�
; (18)

where � ,Dv and �nx;y have earlier defined roles.Znk D Zn�Zk , then znk D .Zn�
Zk/=jZn � Zkj is a unit vector defining the direction of the interaction force Fnk .
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To have dimensionless variables we consider the spatial coordinates normalized to
the length � . The energy is scaled with 2D. The interaction force Fnk is given by

Fnk D Fnk.jZnkj/ D �dV.r/

dr
jrDjZnk j: (19)

In view of the above only those lattice units with coordinates Zk , satisfying the
condition jZn � Zk j < 1:5, are taken into account in the sum in Eq. (18). In
computer simulations the interaction of particles is considered to take place inside a
rectangular cell Lx � Ly with periodic boundary conditions and Lx;y , depending on
the symmetry of an initial distribution of units and their number N . For illustration
we consider a distribution corresponding to the minimum of potential energy for
an equilibrium state of a triangular lattice 10� � 10p3=2� for N D 100 or
20� � 20p3=2� for N D 400.

As in the preceding Section, we will assume that the atomic electrons may be
represented by a Gaussian distribution centered on each lattice site:

	.Z; t/ D
X

jZ�Zi .t/j<1:5
exp

�
�jZ �Zi.t/j2

2�2

�
: (20)

In Fig. 7 we show the evolution of one localized soliton-like excitation in a
triangular Morse lattice. The initial form of the excitation is a small piece of
a plane soliton-like wave with a front oriented along one of symmetry axes of
a triangular lattice and a velocity directed along an other axis (x-axis here). The
density distribution (left column), and the cumulated during the time mentioned
at each row amplitude-filtered density-distribution (right column) are presented for
three time instants. We observe the transformation of the initial piece of a plane wave
to a soliton-like horseshoe-shaped supersonic excitation. As the excitation travels a
distance of about 16 units in the time internal t D 8, its supersonic velocity is
16=8 D 2 in units of the sound velocity in 1D lattice. Note that vsound D 1 for
1d-lattices. In a 2d-triangular lattice the sound velocity is

p
2 ' 1:4 times higher

than the sound velocity in a 1d-lattice.
In a subsequent set of simulations we studied two solitons excited initially, the

left one propagating to the right, the right one – to the left. The parameter values are
the same as in the one-soliton case above. We have observed first a transformation of
the initial pieces of a plane wave to a 2d horseshoe-shaped soliton-like wave fronts
and then both moving head-on against each other. Looking at Fig. 8 we observe
that the two localized and supersonic excitations pass through each other without
changing their form. This is a signature of solitons. They are not solitons in the
rigorous mathematical sense because we do not prove that they are exact stationary
waves (indeed our 2d excitations are “long lasting” transitory waves) but clearly
their behavior is like that of surface solitons observed in fluids (Chetverikov et al.
2011b,c; Nepomnyashchy et al. 2002).
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Fig. 7 Propagation of soliton-like excitation in a triangular lattice. Left column: density of the
atom cores. Right column: a cumulated representation at final time. In order to study the evolution
of perturbations we changed the initial positions of the atoms at t D 0 in a small region. Parameter
values: N D 400, b� D 4, � D 0:3, T D 0:01

We have also studied the role of heating and hence observing excitations at finite
temperatures. As we have no space to discuss this problem here we refer the reader
to Chetverikov et al. (2011a).

5 Conclusion

We have succintly discussed features of solitons in 1d and 2d anharmonic crystal
lattices and, in particular, some consequences of heating the system. We have also
discussed features of coupling lattice solitons to added excess electrons leading to
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Fig. 8 Triangular lattice: Head-on collision of two oppositely moving solitons in the interval
t D 0� 8, both with the same parameters values: N D 400, b� D 4, � D 0:3, T D 0:01

the formation of bound states or compounds electron-soliton, denoted solectrons.
Recently, we have also studied, albeit only in the 1d case, the formation of electron
pairs (with opposite spins satisfying Pauli’s exclusion principle and experiencing
Coulomb repulsion using Hubbard’s local approximation) (Hennig et al. 2008;
Velarde and Neissner 2008; Velarde et al. 2010b, 2012). Finally, three recent
experiments have provided collateral verification of the major predictions of the
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theory here presented. One (Slinker et al. 2011) provides evidence of ballistic
transport in synthetic DNA and the other two (Hermelin et al. 2011; McNeil et al.
2011) (see also Chetverikov et al. (2012) and Nayanov (1986)) provide evidence
of electron “surfing” on sound waves in piezoelectric GaAs. Further details about
comparison between theory and experiments would be provided elsewhere.
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Dynamics of a Large Ring of Unidirectionally
Coupled Duffing Oscillators

P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski,
and Tomasz Kapitaniak

Abstract In this paper we study the dynamics of a large ring of unidirectionally
coupled autonomous Duffing oscillators. We paid our attention to the role of
unstable periodic solutions for the appearance of spatio-temporal structures and the
Eckhaus effect. We provide an explanation for the fast transition to chaos showing
that the parameter interval, where the transition from a stable periodic state to chaos
occurs, scales like the inverse square of the number of oscillators in the ring.

Keywords Coupled oscillators • Duffing • Spatio-temporal structures •
Transition to chaos

1 Introduction

In the last decade, one can observe a growing interest in the studies of
the networks of coupled oscillators (Strogatz 2001). The knowledge of the
dynamical behavior of such systems can lead to the understanding of fundamental
dynamical features of physical, biological, engineering or economical coupled
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systems (Zillmer et al. 2006; Mosekilde et al. 2002). The most important question is
how the specific properties of the individual behavior and the coupling architecture
can give rise to different types of collective behavior (Pikovsky et al. 2001). The
other problem, which is discussed here, is connected with the structure of the
attractors in higher dimensional phase space and, in particular, with the occurrence
of the hyperchaotic attractors. When a map is at least two-dimensional or a
flow is at least four-dimensional, its evolution can take place on a hyperchaotic
attractor. Such attractors are characterized by at least two positive Lyapunov
exponents for typical trajectories on them. The first example of such a system
with hyperchaotic attractor was presented by Rossler (1976) for a chemical reaction
model. Later, hyperchaotic attractors have been found in electronic circuits and
other chemical reactions (Baier and Klein 1991; Peinke et al. 1992). In the
works Kapitaniak et al. (1994) it was shown that by a weakly coupling of N
chaotic systems it is possible to obtain a hyperchaotic attractor with N positive
Lyapunov exponents. The transition from chaos to hyperchaos has been studied in
Kapitaniak and Steeb (1991), Kapitaniak (1993), and Harrison and Lai (1999). It
was shown that at this transition the attractor’s dimension and the second Lyapunov
exponent grow continuously. The role of the unstable periodic solutions in this
transition has been discussed in Lai (1999), Yanchuk and Kapitaniak (2001), and
Kapitaniak et al. (2000).

In this paper we present a interesting phenomena which occur in a ring with large
number of unidirectionally coupled autonomous Duffing oscillators. As a control
parameter we take the coupling strength. We use numerical integration and path-
following. We observe the coexistence of several periodic solution branches with a
stability boundary that can be interpreted in terms of the classical Eckhaus scenario
as a sideband instability within a family of solutions with different periods in space
and time (Eckhaus 1965; Tsiveriotis and Brown 1989; Tuckerman and Barkley
1991; Mukolobwiez et al. 1998; Wolfrum and Yanchuk 2006; Yanchuk and Wolfrum
2008). We calculate the symmetric unstable periodic orbits (UPO), identify their
role in the skeletons of the chaotic and hyperchaotic attractors, and point out their
importance for the development of spatio-temporal structures. We point out that the
transition from equilibrium to a chaos, that has been observed for certain choices
of nonlinearities in considered system, can take place in a parameter interval that
scales as 1=N 2, i.e., for a large number of oscillators this interval tends to zero and
a practically immediate transition to chaos is observed.

This paper is organized as follows: In Sect. 2 we introduce our system. In Sect. 3
we show the dynamics in the ring of 400 systems. Then, in Sect. 4 we present the
creation of complex spatio-temporal patterns. In Sect. 5 we present the scaling law
which is observed when the dynamics goes from a stable equilibrium to chaos and
the number of systems in ring is growing. Finally, we give conclusions in Sect. 6.
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2 The Model

We consider the ring of unidirectionally coupled oscillators shown in Fig. 1.
As a node system we take the autonomous Duffing oscillator described by the
following ODE:

Rz C d Pz C az C z3 D 0; (1)

where a and d are positive constants. In all numerical examples we use the fixed
the parameter values a D 0:1 and d D 0:3. The system (1) is a single-well Duffing
oscillator which has a single equilibrium point at z D Pz D 0. Due to the presence
of damping .d > 0/ in the oscillator this equilibrium is an attractor for all initial
conditions.

Introducing the new coordinates x D z, y D Pz in Eq. (1) the dynamics of the ring
of oscillators shown in Fig. 1 can be described by the following system:

Pxj D yj ;

Pyj D �dyj � axj � x3j C k
	
xj�1 � xj



; (2)

where k is a linear coupling coefficient and j D 1; : : : ; N is considered moduloN .
This type of unidirectional coupling appears in different applications, e.g. in reactive
flows (Rovinsky and Menzinger 1992; Yakhnin et al. 1994), motions of active
Brownian particles (Schimansky-Geier et al. 1995), etc. It should be mentioned
here that typically the studies of the dynamics of the rings of coupled oscillators are
concentrated on the possibility of the oscillators synchronization or the appearance
of clusters of synchronized attractors (Kaneko 1990; Akopov et al. 2005; Belykh and
Mosekilde 1996; Belykh et al. 2000, 2003; Verichev et al. 2007, 2009). Considered
study differs in that way that all observed here phenomena appear in the case when
all oscillators in the ring are unsynchronized. The synchronizations of oscillators in
the ring (Eq. (2)) reduce its dynamics to the stable steady state.

x1

xj+1

xj−1

xN xj

x2

Fig. 1 Ring of
unidirectionally coupled
oscillators
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3 The Dynamics in the Large Ring

The number of nodes is crucial for the development of complex behavior in the
networks of coupled oscillators, see e.g. Strogatz et al. (2005). In this section, we in-
vestigate the dynamics of a large network of unidirectionally coupled Duffing oscil-
lators (2) with N D 400. The choice of N is motivated from one side by numerical
limitations (path-following of a large system) and from another side by the fact that
this is about the value where some important spatio-temporal features like Eckhaus
phenomenon become visible. In Fig. 2 we show the bifurcation diagram versus
coupling coefficient k. The transition to chaotic behavior takes place for a much
lower value of the coupling coefficient (k D 0:1435) than in the case of three cou-
pled oscillators, but also one can observe the coexistence of several stable periodic
solutions, and the coexistence of stable periodic solutions and chaos (see Fig. 3).

In a ring of N D 400 coupled systems one can observe .N � 1/ =2 Hopf
bifurcations of the symmetric equilibrium. Each bifurcation leads to the appearance
of a branch of periodic solutions (PS) and most of the branches are unstable. The
increase of the number of unstable PS indicates already that one should expect here
more complex dynamics as the coupling parameter increases. The Hopf curve, on
which PS appear, can be obtained from the condition (for details see Perlikowski
et al. (2010))

i! D �d
2

C
s�

d

2

�2
� a � k .1 � ei'/; (3)

where the real part of eigenvalues vanishes at Hopf bifurcation. Equation (3) can be
solved with respect to the coupling parameter k and the Hopf frequency !

k.'/ D !.'/d

sin '
;

!.'/ D d˛.'/

2
C
s�

d˛.'/

2

�2
C a; (4)

Fig. 2 Bifurcation diagram
for 400 unidirectionally
coupled Duffing oscillators
versus coupling coefficient k.
Parameters of the system:
a D 0:1, d D 0:3
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Fig. 3 Period T (a) and (b)
along branches of periodic
solutions for 400
unidirectionally coupled
Duffing oscillators versus
coupling coefficient k. The
zoom and extension of (a) is
shown in (b). Stable periodic
solution – black bold line,
unstable periodic solution –
gray lines; Hopf curve – bold
black dashed line, Eckhaus
stability boundary – bold
black dotted line. Parameters
of the system are d D 0:3

and a D 0:1

where ˛.'/ D .1 � cos'/= sin' and ' 2 .0; 2
/ is the parameter along the Hopf
curve. We take into account only positive solutions with k.'/ � 0. The Hopf curve
is shown in Fig. 3 as black dotted line, from which the branches of PS emerge. Note
that the period of the emerging PS on the Hopf curve is T .'/ D 2
=!.'/.

In Fig. 3a we plot the period T along the branches of PS versus coupling
coefficient k. All shown solutions are rotating waves. The branches have been
calculated numerically by path following method using the software package Auto
(Doedel 2006). Due to numerical limitations we calculate only the 12 PS branches
closest to the stable region. Stable and unstable PS along the branches are shown by
black and gray lines respectively. In Fig. 3b we show an enlargement of the left part
of Fig. 3a. In addition to the numerically computed branches of PS (grey lines), we
show schematically also other branches, which appear from the Hopf bifurcation of
the symmetric equilibrium (gray dashed lines). One can observe here the occurrence
of the Eckhaus scenario (Wolfrum and Yanchuk 2006; Yanchuk and Wolfrum 2008;
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Eckhaus 1965), i.e. the emergence of a region of stable PS that covers a certain range
of frequencies and spatial wave numbers in the neighborhood of the primary stable
branch, emerging from the primary Hopf bifurcation. Except for the primary branch,
the PS branches emerge unstable at the Hopf bifurcation. Then the branches closest
to the primary branch become stable in a cascade of Neimark-Sacker bifurcations.
Note that here, the stability region is rather narrow and some branches are leaving
the stability region after passing through a further Neimark-Saker bifurcation. The
Eckhaus curve which encloses the stable region is shown in bold black dotted and
does not depend on N .

An important property of the Eckhaus stability region is its independence of
the number of oscillators (Yanchuk and Wolfrum 2008) in the network. With an
increasing number of oscillators, the PS branches become more dense, thus filling
more and more densely the Eckhaus stability region. In our example of Duffing
oscillators this region is rather small and therefore multiple coexistence can be
observed only for largeN .

4 Spatio-Temporal Patterns

In Fig. 4 we show some spatio-temporal plots. The oscillator number is shown
along the horizontal axis and the time along the horizontal axis. The amplitude of
oscillators xj .t/ is shown using a color gradient. For better visibility we restricted
the space to N D 200 oscillators. In Fig. 4a one observes a pattern corresponding
to a stable periodic rotating wave. The corresponding initial conditions are taken
from the primary branch of PS with k D 0:148. With increasing k, the PS escapes
the Eckhaus stability region and becomes unstable. The solution shows now the

Fig. 4 Spatio-temporal plots for 400 coupled Duffing oscillators. Number of oscillators versus
time. Oscillation amplitude is shown by a color gradient. Stable periodic pattern for k D 0:148 (a)
and chaotic dynamics for k D 0:171 (b). The space is restricted to 1 � j � 200
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Fig. 5 Cross sections of spatio-temporal plot (Fig. 4) in time (a) and (b) and in space (c) and
(d). Chaotic time evolution (black line) and irregular spatial pattern (black dots) follow locally the
unstable PS on the primary branch (grey); k D 0:171

irregular pattern given in Fig. 4b for k D 0:171. Although all the rotating waves
are already unstable, an intermittent periodic structure still exists locally in space
and time. The existence of such structures indicates that the unstable rotating waves
become a part of a new chaotic attractor after destabilization. As a result, the system
visits intermittently and locally in space such unstable PS during its evolution along
the chaotic attractor (Ott 2002). This phenomenon can be seen in more detail in
Fig. 5 where we show two cross-sections of Fig. 4b. The first one shows the time
evolution of one fixed oscillator (Fig. 5a, b). The second shows the amplitudes of
all oscillators for some fixed time moment (Fig. 5c, d). We plot the hyperchaotic
trajectory (black) and the unstable PS from the primary branch (grey). The black
dots in Fig. 5c, d indicate the positions of single oscillators. Figure 5a shows that the
chaotic trajectory frequently comes close to the unstable PS (see also enlargement
in Fig. 5b), where the amplitude and the period of the chaotic trajectory and PS are
close. The same scenario can be observed in the second cross-section in Fig. 5c, d.
In Fig 5d it is easy to see the good local correlation between the spatial profile of the
chaotic orbit and of the unstable PS.
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5 Scaling Law of Fast Transition to Chaos

In this section we show the scaling law of transition to chaos. For this configuration
it has been shown in Perlikowski et al. (2010) that already for N D 3 an increasing
coupling strength k induces a destabilization of the equilibrium at zero and a rich
dynamical behavior starting from periodic oscillations to hyperchaos. Here we focus
our attention on the transition to chaos and study its dependence on the increasing
number of oscillators. We calculate the maximum Lyapunov exponents for different
number of oscillators N varying the coupling coefficient k. We detect two values:
kH , at which the primary Hopf bifurcation occurs and kCh, at which the transition to
chaos takes place. A more or less reliable computation of the Lyapunov exponents
was possible for sizes of the ring up to N D 30. For larger systems, we used the
bifurcation diagrams for an appropriately chosen Poincare section to determine kH
and kCh. We plot these two values in Fig. 6a and observe that the distance between
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Fig. 6 (a) Coupling
parameter for Hopf
bifurcation (kH , crosses) and
transition to chaos (kCh,
circles) versus number of
oscillators N . (b) Rescaled
transition interval
kRe(circles) versus N
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kH and kCh is decreasing when the number of oscillators N is growing. Finally,
for a large enough number of oscillators, the transition to chaos appears practically
immediately after the Hopf bifurcation. In order to verify the 1=N 2 scaling law, we
plot the scaled transition intervals

kRe D .kCh � kH /N
2

in Fig. 6b. The numerical results clearly indicate that the scaled transition interval
neither tends to zero nor diverges to infinity, which supports the scaling result. More
details as well as a supportive multiscale analysis can be found in Yanchuk et al.
(2010).

6 Conclusion

We studied the appearance of complex dynamics in a ring of unidirectionally
coupled autonomous Duffing oscillators. Although the individual uncoupled system
has only trivial dynamics as a globally stable equilibrium, the coupled system
shows (with increasing coupling strength) a transition to periodic and chaotic
and hyperchaotic behavior. When the number of oscillators in the ring is large,
the system shows interesting phenomena. After destabilization we observed the
coexistence of multiple stable periodic solutions in a band of frequencies and wave
numbers close to the primary branch of periodic solutions, that can be interpreted
in terms of the well known Eckhaus scenario. We identified the symmetric unstable
periodic orbits, which are in the skeletons of the chaotic attractor. We discuss their
role in the development of spatio-temporal structures.

The next result is concerned with destabilization processes that can be observed
in the ring of unidirectionally coupled Duffing oscillators and with its dependence
on the system size. We have investigated the so-called fast transition to chaos.
This fast transition manifests itself as a decreasing parameter interval, in which
the transition takes place. More precisely, the distance between the parameter
value kH at which the primary Hopf bifurcation occurs and kCh, at which chaos
appears, decreases with the size of the system N . As a result one observes for
large N a practically immediate transition from a steady state to chaos. We show
by numerical computations that for increasing N , the size of the transition interval
scales as 1=N 2.
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Real-Time Subspace Tracking for Condition
Monitoring Using Karhunen–Loève–Transform

Edwin Kreuzer and Michael Steidl

Abstract In order to monitor the dynamics of a distributed or high-dimensional
dynamical system, an infinite- or high-dimensional Hilbert space is required as this
class of systems may show various and complex dynamics. For example, different
operational regimes can be observed depending on the current external loads.
However, very often, the relevant dynamics of each of the observed operational
regimes take place in a low-dimensional active subspace which is spanned by a low
number of active modes. For changes in operational conditions, the active modes
and therefore the low-dimensional subspace will be subjected to change as well. As
Karhunen–Loève–Transform (KLT) is always applied to a history of measurements,
good convergence and fast detection of changes in system dynamics conflict when
choosing the length of the time interval. We present an algorithm based on KLT
which uses an adaptive sliding time window. It can be employed for real-time
tracking of the active subspace. The data from the real-time subspace tracking
can be used to categorize different operational conditions and thus monitor the
system in real time. We show that with currently available technology, an efficient
implementation of the subspace tracking with sampling frequencies of 1,000 Hz
is possible.
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1 Introduction

In order to completely describe the dynamics of a distributed or high-dimensional
dynamical system, an infinite- or high-dimensional Hilbert space is required. When
looking at the vibrations of mechanical structures, the system dimension is infinite-
dimensional due to the distributed character of those structures, which implies that
for a complete characterization of such systems, an infinite number of modes is
necessary. However, various studies of high-dimensional structures indicated, that
usually a low-dimensional subspace exists, in which the most relevant part of the
dynamics takes place (Kerschen et al. 2005, 2006; Yan and Golinval 2006; He et al.
2007). Therefore, the spatio-temporal behavior of the considered structure can often
be described with only few modes; i.e. the relevant dynamics can be described with
a small number of active modes, which span the low-dimensional active subspace.
The dimension of the low-dimensional active subspace determines the number
of active modes. During operation, mechanical systems are frequently exposed
to time-variant (environmental influences, different operating state) and nonlinear
loads (friction, hardening nonlinearities, etc.). Forces and torques occurring during
operation are therefore time-variant and nonlinear, hence the considered systems
often show complex dynamical behavior, with both intensity and complexity
of the observed vibrations depending strongly on current operating conditions.
Accordingly, the number of active modes as well as the mode shapes depend on
the current dynamical behavior or operational regime of the system. Often, and
especially during the occurrence of unwanted vibrations, the considered system
behaves stationary over a longer period of time. During these intervals of quasi-
stationary behavior, the subspace spanned by the active modes is stationary as
well. On the other hand, the subspace in which the system dynamics takes place
will be time-variant when the system dynamics changes from one quasi-stationary
operational state to another one. Via real-time measurements of the system dynamics
at n discrete measurement points and real-time determination of the number and
shape of the active modes based on those measurements, the relevant active subspace
can be monitored continuously. The projection on the low-dimensional subspace
reduces the high- or infinite-dimensional system dynamics and can be employed
for condition monitoring or as a basis for adaptive, robust controllers to reduce
unwanted vibrations.

2 Application of KLT on a Finite Number
of Measurement Vectors

The Karhunen–Loève–Transform, Karhunen (1946) and Loève (1945), is a widely
used tool for examination of statistical data, but also for identification of multi-
dimensional processes (Kreuzer and Kust 1996) and model order reduction Holmes
et al. (1996). Recently, KLT is also applied for condition monitoring (Gloesmann
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and Kreuzer 2004, 2005; Tumer and Huff 2002). In Azeez and Vakakis (2001)
it was already suggested to employ KLT for real-time identification of structural
changes in mechanical systems. In the subsequent sections, vibrations of mechanical
structures are considered, which are described by the process u.x; t/, defined on
the domain ˝ . Here, u.x; t/ is the spatial-temporal-distributed velocity field or
displacement field of the considered mechanical structure. Aim of the Karhunen–
Loève–Transform is the determination of a finite number of basis modes 'i.x/
(Characteristic Functions), which, through a series of the form

um.x; t/ D
mX
iD1

ai .t/'i .x/; (1)

approximate the process u.x; t/ better than any other basis of the same dimension.
For condition monitoring of mechanical structures, the continuous process u.x; t/
is not available. Instead, only spatially and temporally discrete measurements are
available. With n points of measurement, the dynamics of the continuous process
u.x; t/ can be approximated. The n scalar measurements can be comprised in the
measurement vector

y.k/ D

0
B@
y1.k/
:::

yn.k/

1
CA ; (2)

where k is the discrete time variable at which the measurements are sampled. In the
literature, the process y.k/ is often interpreted as the result of an ergodic stochastic
process (e.g. Glösmann (2007)). Under this condition the expected value E exists,
which is defined as

E fg D limN!1
1

N

NX
kD1
./: (3)

Since the KLT is applied to a history of measurement vectors and is intended
to detect changes in the system behavior in real time, the condition of stationarity
and existence of an ergodic process are not fulfilled. Therefore, the existence of
the expectation value can not be assumed. The assumptions on stationarity and
ergodicity of the processes y.k/ are, however, not a prerequisite for the derivation
of the KLT (Bellizzi and Sampaio 2006). The KLT can be derived from the
optimality condition given above according to Lumley (1970), Holmes et al. (1996),
Kust (1998) and Kerschen (2002). In the following, an alternative derivation of
the discrete KLT is presented for a finite number of N measurement vectors,
k D 1; : : : ; N , using the properties and prerequisites of KLT, which are zero-mean
of the process y.k/, orthonormality of the Characteristic Functions 'i .x/ and the
pairwise uncorrelated weighting factors ai . In case y.k/ is not zero-mean in the
interval k D 1; : : : ; N , zero-mean can be achieved by subtracting the mean value
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Mdiscrete fg D 1

N

NX
kD1

./: (4)

Sought-after is a linear decomposition of y.k/ with the weighting factors ai .k/ and
the Characteristic Functions 'i for i D 1; : : : ; n:

y.k/ D
nX
iD1

ai .k/'i : (5)

Re-writing the weighting factors ai .k/ as a vector a.k/ D Œa1.k/ a2.k/ : : : an.k/�
T

and the Characteristic Functions 'i as matrix ˆ D Œ'1 '2 : : : 'n�, (5) can be
written as

y.k/ D ˆa.k/: (6)

As the Characteristic Functions 'i form an orthonormal basis, the following holds:

a.k/ D ˆTy.k/: (7)

The weighting factors ai .t/; i D 1; : : : ; n; are pair-wise uncorrelated:

Mdiscrete
˚
aiaj

 D �iıij : (8)

Plucking (7) in (8) yields:

Mdiscrete
˚
'T
i yyT'j

 D �iıij : (9)

The Characteristic Functions 'i can now be excluded from the calculation of the
mean value:

'T
i Mdiscrete

˚
yyT


'j D �iıij : (10)

Due to the orthonormality of the Characteristic Functions

'T
i 'j D ıij (11)

it is obvious that the Characteristic Functions, 'i ; i D 1; : : : ; n; solve the eigenvalue
problem

Mdiscrete
˚
yyT


' D �': (12)

The expressionMdiskret
˚
yyT


in (12) corresponds to the covariance matrix C of the

zero-mean process; thus the eigenvalue problem (12) can be simplified to

C' D �': (13)
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Due to the discretization, the calculation of the covariance matrix simplifies to

C fg D 1

N

NX
kD1
././T: (14)

3 Application of KLT for Condition Monitoring

The application of KLT for Condition Monitoring and for spatio-temporal analysis
of dynamic systems is described in Gloesmann and Kreuzer (2004) and Gloesmann
and Kreuzer (2005). By applying KLT in the sense of a sliding window on a series
of measurements originating from a mechanical system, qualitative and quantitative
changes in the system dynamics can be detected. The KLT provides, as described in
Sect. 2, a set of parameters, which can be utilized to characterize the system state:

Eigenvalues �i : The eigenvalues indicate the contribution of the respective Char-
acteristic Function to the intensity of motion. The sum of eigenvalues is thus a
measure for the entire intensity of motion. The number of �i > 0 is a measure for
the number of active Characteristic Functions or active modes and therefore for
the complexity of the system dynamics. It determines the necessary dimension
of the subspace to embed the measurements.

Characteristic Functions 'i.x/: The Characteristic Functions indicate the main
directions of the signal space. The subspace spanned by the firstm Characteristic
Functions is optimal in the sense of Sect. 2. Since the measurement vectors for the
calculation of the Characteristic Functions stem from scanning of a mechanical
system, they can be interpreted as the main directions of motion of the system.

Weighting Factors ai .t/: The weighting factors determine the course of the Char-
acteristic Functions over time.

The intention of using KLT for condition monitoring is not to describe every
possible system behavior or to identify the monitored system. Instead, it is intended
to describe only the current system behavior. For this purpose, the KLT has to
be applied to a sliding window, which, next to the current measurement vector,
comprises a history of N measurement vector. In the following section, three
different algorithms, based on a sliding window, are presented which can be utilized
for real-time subspace tracking.

4 Algorithms for Real-Time Subspace-Tracking

For real-time subspace-tracking, KLT is always applied on a sequence of mea-
surement vectors. In order to detect changes in the system behavior in real time,
algorithms with a ‘sliding window’ calculate the KLT on a basis of a history of
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measurement vectors. The measurement vector recorded at t0 is denoted as y.0/. In
real-time applications, after each time interval�t D T , a new measurement vector
is added. The measurement vectors recorded at times t0 C k � T , k D 1; 2; : : : ;

are denoted as y.k/. The most recent measurement vector is given by y.l/. At time
k D l , the measurement vector y.0/ is l �T in the past. When using a sliding window,
slow changes in the system dynamics will always be detected, since older data will
not be used for the calculation of the covariance matrix. When rapid changes in
the system dynamics occur, KLT might not reflect the current system dynamics
correctly, as measurement vectors from the former system dynamics will be used in
the calculation of the covariance matrix. This is important especially with regard to
potential control applications, as false assumptions about the system dynamics may
lead to false controller settings and thus in the worst-case may result in instability.
In order to detect changes in the system dynamics fast, a small window length is
desirable. However, for the accurate and robust determination of KLT-parameters, a
longer interval is advantageous. To combine these requirements, an algorithm with
variable window length was developed, which is compared with an algorithm with
fixed window length and an iterative algorithm with exponential forgetting.

4.1 Iterative Algorithm with Exponential Forgetting

In Hyvärinen et al. (2001) and Struck (2004), an algorithm is described which
calculates the covariance matrix C iteratively for each new measurement vector:

C D 1

N

	
.N � 1/C C C.N /



; (15)

with C.l/ D u.l/u.l/T . To weight newer measurement vectors stronger, a forgetting
factor � 2 Œ0; 1� is introduced:

CN D 1

nN

	
C.N /C �C.N � 1/C �2C.N � 2/C : : :C �N�1C1



: (16)

The covariance matrix can now iteratively be calculated to

CN D 1

1C �nN�1
	
C.N /C �CN�1
 (17)

with nN D 1 C �nN�1. The advantage of the algorithm is the fast computation of
the Characteristic Functions, as the covariance matrix is updated iteratively and only
one computation step is necessary.
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4.2 Sliding Window with Fixed Window Length

For a fixed window length N , the window is moved with each new measurement
vector y.l/, so the latest measurement vector will be taken into account, while the
measurement vector y.l �N/ is removed. The covariance matrix is given by

C D 1

N

NX
jD1

y.l C 1 � j /yT.l C 1 � j /: (18)

4.3 Sliding Window with Adaptive Window Length

Algorithms with fixed window length have the disadvantage that they cannot
distinguish between stationary and non-stationary system behavior. Thus, measure-
ment vectors may be used for the computation of the Characteristic Functions
which do not describe the current system dynamics. As a result, these algorithms
are not capable of fast detection of changes in the system dynamics (due to
changes in external loads, bifurcations, etc.). Furthermore, these algorithms cannot
distinguish between stationary and non-stationary system behavior. Aim of the
following algorithm with variable window length is to find a meaningful interval
of measurement vectors, which is suited to describe the current system dynamics.
As the system dynamics and therefore the covariance matrix are not known a priori,
a fixed reference does not exist. To solve this problem, the covariance matrices of
overlapping time intervals are compared. When the covariance matrices in both
intervals converge to the same values, this implies a similar system dynamics in
both time intervals. By adapting the window length, the algorithm is capable of
detecting fast changes in the system dynamics and thus can be applied for systems
with sudden changes in external loads or nonlinear systems which show rapidly
changing dynamics due to bifurcations. The following algorithm does not compare
the whole covariance matrix, but only the auto-covariance sequences:

ci i W N 2 N ! ci i .N / D 1

N

NX
jD1

yi .l C 1 � j /2 2 R: (19)

For the comparison, we use the concept of convergence rates developed in Glösmann
(2007). In order to facilitate a relative comparison, a second, shifted auto-covariance
sequence, the so-called peer-covariance, is defined as:

c�ii W N 2 N ! c�ii .N / D 1

2�

NC�X
jDN��

yi

�
l C 1 � N

2
� j

�2
2 R: (20)
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We chose � D 1
2

� N , so the peer-covariance sequence and the auto-covariance-
sequence are of same length:

c�ii W N 2 N ! c�ii D 1

2N

NCN=2X
jDN�N=2

yi

�
l C 1 � N

2
� j

�2
2 R: (21)

This implies that the peer-covariance is computed on an interval of equal length,
but the interval is shifted by N

2
time steps to the past. The convergence rate is now

defined as the comparison of both covariance sequences:

&ii W N 2 N ! &ii .N / D jci i .N / � c�ii .N /j
c�ii .N /

2 R: (22)

The convergence rates can now be combined in a single vector:

& D

0
B@
&11
:::

&nn

1
CA :

The window length is controlled by comparison of the largest element of the
convergence rate vector with a predefined, fixed convergence threshold value �& .
For stationary system behavior and N ! 1 holds: �& ! 0. If the largest element
of & is smaller than �& , the system dynamics is assumed to be stationary in the
considered time interval. In this case, the time interval is extended. In case the
maximal element of & is larger than �& , the auto-covariance sequel and the peer-
covariance sequel do not converge to the same values. This implies that the system
dynamics in the considered time interval is not stationary. The window length is
now decreased until the largest element of & is smaller than �& or until the minimal
window length is reached. The choice of�& strongly influences the convergence of
the algorithm. Depending on sensor noise, the desired sensitivity of the algorithm
and the properties of the monitored system, �& has to be adjusted.

The choice of Sampling Rate influences the sensitivity of all algorithm. A lower
sampling rate leads to lower sensitivity of the algorithm, as changes in the system
dynamics influence the covariance matrix less rapidly. The choice of the sampling
rate and the choice of�& are therefore not independent of each other and have to be
tuned together.

5 Comparison of Algorithms

The capability of the three algorithms presented above in detecting changes in the
system dynamics is compared using a simple generic spring-mass model (Fig. 1)
with mass mi D 1, damping d D 0:1 and stiffness k D 1. The change in system
dynamics is caused by a change in the external force:
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k k k k

d d d d

m m m

xx1 x2 x3

Fig. 1 Generic mass-spring system
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F.t/ D
0
@ sin.1:5t/

0

0

1
A 0 � t < 200; F.t/ D

0
@6 � sin.3t/

0

0

1
A t � 200: (23)

The velocities of the three masses are plotted in Fig. 2. Before and after the
change in the external forcing, the active subspace is two-dimensional, but the two
active Characteristic Functions spanning the active subspace differ.

The angle � between the active subspaces can be calculated to:

� D arccos.< .v1 � v2/; .w1 � w2/ >/ D 38:5ı: (24)

The average kinetic energy and the corresponding sums of eigenvalues for the
three algorithms are shown in Fig. 3. It is clearly visible that the adaptive algorithm
(red line) follows the actual kinetic energy better than the algorithms with fixed
window size. Especially the short period of higher kinetic energy is not detected by
the algorithms with fixed window size. This is especially important for condition



82 E. Kreuzer and M. Steidl

0 100 200 300 400
0

4

8

12

i
rec

i
it

i
ad

Fig. 3 Kinetic Energy and
P
� for twisting of subspace

monitoring, as one wishes to rapidly detect strong vibrations or instabilities. At the
same time, the convergence for steady-state behavior of the adaptive algorithm is as
good as the convergence of algorithms with fixed window size.

6 Application Examples: Vibrating Plate and Drill-String

The vibrations of a thin rectangular metal plate with side length of 1 m are
monitored. The dynamics of the plate are calculated with 100 Finite Elements,
the out-of-plane velocities of the plate are measured at nine discrete points. The
measurements are used for the calculation of KLT. The quality of the approximation
of the out-of-plane motion with the first two dominant KLT Characteristic Functions
is considered here for different dynamics of the plate. The three algorithms are
parameterized to converge to the same approximation error for quasi-stationary
motion. In this example, several of the dominant eigenmodes of the shell are excited,
however, the first eigenmode is explicitly not excited. Then, at time t D 30,
the first eigenmode is excited, which leads to a significant change in the system
dynamics, depicted in Fig. 4. The algorithm with adaptive window length is capable
of detecting this change and, therefore, adapting its window size, while the other
algorithms take longer to adapt to the new dynamics (Fig. 5). Due to the infinite
response character of the iterative algorithm, this algorithm is not well-suited to
detect immediate changes in system dynamics.

The algorithm with adaptive window length is applied for condition monitoring
of an experimental setup of a scaled drill-string of 10 m length at the Institute
of Mechanics and Ocean Engineering. While drilling, the real drill-strings are
subjected to various unknown, time-variant and nonlinear external forces and
disturbances at the drilling bit, but also along the string, which lead to several
different operational regimes, e.g. stick-slip vibrations at the drilling bit. Many of
these regimes can be reconstructed at the experimental setup, e.g. different friction
characteristics between bit and rock can be simulated via an AC-Motor.
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Fig. 4 Change in the dynamics of a vibrating plate
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Fig. 5 Approximation error of different algorithms

Angular velocities of the drill-string are measured with angular encoders at
the top, the bottom and at three equidistant points along the string. The real-
time subspace tracking algorithm with variable window length is written in C and
implemented as a dynamic link library which is called from a Lab-View Real-
Time (RT) System used to obtain the measurements and to display the results of
the algorithm. The LabView RT-System runs on a standard Quad-Core PC with
2,800 MHz, with one of the processors reserved for the calculation of the real-
time KLT. For a measurement vector of five measurements and a total (overlapping)
window length of 2,100 vectors, frequencies of up to 1,000 Hz for the RT-subspace
tracking can be achieved easily. For the drill-string model, frequencies between 100
and 250 Hz are more than sufficient, as the dynamics itself is in the range below
10 Hz. The subspace-tracking performs very well in calculating the active modes in
real time and in detecting changes in the dynamics and adapting the time window,
e.g. for the change from normal operations to stick-slip vibrations caused by a
strongly nonlinear friction characteristic at the bit.
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7 Conclusions

The analysis performed shows that KLT can be applied for real-time system
monitoring via subspace tracking. The problem is to find a meaningful time interval
onto which KLT is applied. Although the optimality property of KLT is preserved
in the way that any data used for KLT analysis is represented with a minimum
number of Characteristic Functions, an interpretation of the active Characteristic
Functions for condition monitoring is not possible when KLT is calculated with
data from different operational regimes. As algorithms with fixed window size
cannot distinguish between quasi-stationary and non-stationary system behavior,
an algorithm with adaptive window size was developed which recognizes changes
in the operational regime and adapts the window size to avoid using data for
calculation of KLT that does not represent the current operational regime. Tests of
the presented algorithm with numerical examples showed that the algorithm adapts
the active Characteristic Functions faster when changes in system dynamics occur.
The implementation for condition monitoring of an experimental setup of a drill-
string showed that the numerical effort can be handled with currently available
technology. Future work will be the analysis of adaptive control concepts based
on the real-time subspace tracking.
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Stability of the Elliptically Excited Pendulum
Using the Homoclinic Melnikov Function

Richard A. Morrison and Marian Wiercigroch

Abstract In this paper we investigate the dynamics of a pendulum subject to an
elliptical pattern of excitation. The physical model is motivated by the development
of sea wave energy extraction systems which exploit the rotating solutions of
pendulum systems to drive generation. We formulate the homoclinic Melnikov
function for the system and then demonstrate bounds on the set of parameters which
can support homoclinic bifurcation. As the homoclinic bifurcation is a precursor to
escape and the formation of rotating solutions in the evolution of the system under
increasing forcing, these estimates provide bounds on the parameter space outwith
which stable rotating solutions are not observed.

Keywords Elliptically excited pendulum • Homoclinic Melnikov function •
Rotating solutions

1 Introduction

The mathematical pendulum is an archetypal model in nonlinear dynamical
systems – sits investigations date at least as far back as Galileo and it has been
revisited continually since his time. Stephenson, for example, demonstrated
the stabilisation of the upright solution of the pendulum using high frequency
excitation in 1908 (Stephenson 1908). This particular phenomena continued
to generate interest nearly a century later in the work of Acheson (1993)
and Clifford and Bishop (1998).
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Fig. 1 Schematic for (a) parametrically excited pendulum system and (b) pendulum with mixed
parametric (vertical) and horizontal excitation

The pendulum benefits from the ability to write down a relatively straightforward
mathematical model which accurately describes the observed dynamics and is
amenable to analysis and simulation, but which nevertheless captures the vast
complexity of behavior that pendulums exhibit. It is possible to build experimental
models which can be subjected to well controlled conditions and measured closely
to verify and inform the theoretical investigations, see for example Xu et al. (2007).

The dynamically stable rotating solutions exhibited by pendulums under certain
forcing conditions represent a mechanism that allows the generation of rotational
motions from bounded excitation. Utilising these solutions to generate systems for
energy extraction, for example from sea wave excitation, is an active area of research
in the Centre for Applied Dynamics Research, at the University of Aberdeen, which
has been ongoing for several years (M. Wiercigroch, 2003, Energy extraction from
sea waves via a parametric pendulum, Private Communication; Xu 2005; Horton
2009). Specifically, we have focussed on harvesting the rotational motion as it is
much more efficient in terms of the energy being captured.

The structure and stability of the rotational solutions and the bifurcation structure
in the parameter space are of obvious importance when considering this application.

The transition from oscillating solutions to rotation in the pendulum can be
characterized in terms of escape (Clifford and Bishop 1994). Such escape is often
preceded by the emergence of chaotic behaviour (Thompson 1989) and in the para-
metrically excited pendulum, where the pivot is vertically excited, see Fig. 1a, the
structure of the homoclinic bifurcation is important in understanding the transition
to the escape region (Bishop and Clifford 1996). The Melnikov function provides an
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analytical tool which can be used to develop bounds on the parameter space where
these bifurcations can take place, see Guckenheimer and Holmes (1983). Koch and
Leven (1985) use Melnikov analysis to study the parametric pendulum and provide
expressions for both the subharmonic and homoclinic Melnikov functions.

In Xu et al. (2005) the authors explore the parameter space of the parametrically
excited pendulum and illustrate the organising effect the structure of the resonances
in the linearised equation have on the dynamics in the parameter space. The further
development of this line of investigation is reported in Xu and Wiercigroch (2007),
where perturbation arguments are used to provide analytical bounds in the parameter
space delineating the different possible motion and approximate analytical solutions
for the period one rotational orbits are computed. Most recently Lenci et al. (2008)
reported an extensive analytical study of the rotating solutions of the pendulum.
As well as developing the approach to provide approximate analytical solutions
via perturbation arguments, their methods allow computation of stability of the
rotating solutions.

2 System Specification

When analysing the potential of sea wave energy extraction, it is useful to consider
a model with both horizontal and vertical components of forcing. A schematic of
this mode of excitation, where planar excitation takes place on an ellipse, is in
Fig. 1b. Assuming that the horizontal component of excitation x and the vertical
(parametric) component y are both functions of time, the non-dimensional equation
of motion for this pendulum system can be cast in the form

R� C � P� C .1C y.t// sin � C x.t/ cos � D 0: (1)

If we further assume that both components of excitation are described by Fourier
series, which we truncate to first order for initial analysis, i.e.

x.t/ D ep cos .!t � ˛/ and y.t/ D p cos .!t/; (2)

we have a pendulum system with a parameter e which controls the extent to which
excitation is elliptical. The effect of adding an element of ellipticity to the excitation
of the parametrically excited pendulum is studied in some detail numerically in
Horton et al. (2011). The two main effects discussed are the merging of the two
1:2 and 1:1 resonance tongues into a single region of instability of the oscillating
solution and tendency of solutions of the system to prefer rotations with the same
direction as the pivot excitation. In effect the parameter regime supporting rotating
solutions is increased.

In this paper, we extend the analysis of Koch and Leven (1985) to calculate the
homoclinic Melnikov function for the elliptically excited pendulum. This provides a
straightforward proof that the system exhibits chaos and practical analytical bounds
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on the parameter space where escape can occur and therefor in which rotating solu-
tions can be stable. Analysis of this bound can then inform design of pendulum sys-
tems where escape is desirable in order to attain such solutions for energy harvest.

3 Calculation of Melnikov Function

A pendulum without forcing or damping such as (1) with � D x D y D 0 has one
stable fixed point corresponding to the hanging solution and a saddle point at the
inverted position; p D .0; 
/ in the .�; P�/ phase plane. There are two orbits (one
clock wise and one counterclockwise) which are homoclinic to the inverted rest
point. These orbits represent the coincidence of the stable and unstable manifolds
of the point. When " small damping and forcing are applied the point p becomes
a small periodic oscillation p0 C O."/. The perturbation leads to a splitting of the
stable and unstable manifolds, see Fig. 2. Developing a measure of their separation
becomes important because, if they do intersect transversally, a homoclinic tangle
will occur. The distance d between the two manifolds can be shown to take the form
d D "M.t0/CO."2/whereM.t0/ is the Melnikov function and t0 can be interpreted
as a phase variable in the parameterisation of the unperturbed homoclinic orbit. The
zeros of the Melnikov function under appropriate assumptions can therefor be taken
as indicative of homoclinic tangling. A comprehensive development of the Melnikov
function and its analysis is found in Guckenheimer and Holmes (1983).

To exploit Melnikov theory in this formulation we cast the system (1) in the form
of a first order perturbation problem

Px D f .x/C "g.x; t/ (3)

Fig. 2 Illustration of the splitting of the manifolds as " small perturbation acts
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by writing

Px D y;

Py D � sinx � �y � p cos .!t/ sin x � ep cos .!t � ˛/ cosx:

This is (3) with

f .x/ D
�

y

� sin x

�
and g.x; t/ D

�
0

��y � p cos .!t/ sin x � ep cos .!t � ˛/ cosx

�
:

(4)

The Melnikov function takes the form:

M.t0/ D
Z 1

�1
f .xh.t// ^ g.xh.t/; t0/dt

D
Z 1

�1
��y2h.t/ � p cos .!.t C t0// sin .xh.t//yh.t/C

�ep cos .!.t C t0/� ˛/ cos .xh.t//yh.t/ dt (5)

Here xh.t/ D 2 arcsin .tanh .t// D 2 arctan .sinh .t// and yh.t/ D ˙sech.t/ is a
parameterisation of the orbit homoclinic to the saddle point which represents the
pendulum balanced on the vertical. If we write the Eq. (5) as

M.t0/ D I1 C I2 C I3; (6)

the evaluation of three integrals provides us with an expression for the Melnikov
function. We have

I1 D �4�
Z 1

�1
sech2tdt D �8�; (7)

I2 D �2p
Z 1

�1
cos .!.t C t0// sin .2 arctan .sinh .t///sech.t/dt

D �4p sin!t0

!2 sinh !


2

1 � cosh
!
and (8)

I3 D �2ep
Z 1

�1
cos .!.t C t0/ � ˛/ cos .2 arcsin .tanh t//sech.t/dt

D �4ep cos .!t0 � ˛/

!2 cosh !


2

1C cosh
!
: (9)
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The integral (7) is standard and residue calculus provides the closed forms for (8)
and (9). Substituting these expressions into (6) provides us with

M.t0/ D �2� � p
!2
sin!t0 sinh !


2

1 � cosh
!
� ep
!2 cos .!t0 � ˛/ cosh !


2

1C cosh
!
(10)

This calculation adapts the Melnikov function for the parametrically excited
pendulum found in Koch and Leven (1985) with an additional term which accounts
for the addition of the extra excitation term.

4 Analysis

The system will exhibit homoclinic tangling when the Melnikov function (10)
vanishes. It is common in the literature, see for example Szemplińska-Stupnicka
(1995), to exploit this fact to find expressions for the minimal value of forcing which
will provide a zero and therefor a homoclinic event in terms of the other parameters.
In Koch and Leven (1985) the criteria for the parametrically excited pendulum is
found as

pM D 4�


!2
sinh


!

2
; (11)

in other words for p > pM one can expect homoclinic behavior.
To find the equivalent criteria for the elliptically excited pendulum we start by

setting M.t0/ D 0 and solving for the forcing amplitude p, which gives

p D 2�


!2
cosh2 
! � 1

.sin!t0 sinh 
!
2
/.1C cosh
!/Ce.cos!t0 cosh 
!

2
/.1� cosh 
!

2
/
: (12)

In this case the estimate is minimised by selecting a value of

t0 D 


!
� 1

!
arctan

�
sinh 
!

2
.cosh
! C 1/

cosh 
!
2
.e cosh
! � 1/

�
(13)

which reduces to t0 D 

2!

when e D 0:

Evaluating (12) at the minimising value of t0 specified in (13) provides the
expression used in Fig. 3 to illustrate the boundaries in the p;! parameter space.
The area above each curve contains parameters for which homoclinic tangles are
possible. The plots are show for � D 0:1 and illustrate that increasing e from 0 tends
to decrease the estimate of the amplitude parameterp. This finding is consistent with
the numerical picture of the bifurcation structure of the system presented in Horton
et al. (2011).
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Fig. 3 Plot of minimal forcing amplitude for a given frequency and increasing values of the
ellipticity parameter e. The dashed line indicates the position of the primary 1:1 resonance at
! D 1:0 which occurs for the system with e D 0:0

In the general bifurcation sequence for the system the homoclinic event occurs
before (with respect to increasing excitation amplitude) the regime under which
rotational solutions become stable. In other words the Melnikov function not only
provides the criteria for detecting the homoclinic tangle and the associated chaotic
phenomena, it also provides a lower bound on the forcing amplitude required for
stable rotation motions to take place.

5 Conclusion

In this paper we have studied stability of an elliptically excited pendulum analyt-
ically, which can be used for energy extraction. The elliptically excited pendulum
can be considered a parametrically excited pendulum with an additional (horizontal)
forcing term. We have formulated the homoclinic Melnikov function for a such
pendulum and this approach is used to provide analytical conditions on the system
parameters to determine a homoclinic bifurcation.

As can be seen from Fig. 3 the Melnikov conditions for the elliptically excited
pendulum have the same character to those found with only parametric excitation.
The increasing ellipticity has a small quantifiable effect in moving the Melnikov
curves downwards, implying that for given excitation frequency a smaller amplitude
parameterp is required for a homoclinic bifurcation to occur. It is clear however that
the effect is not large. We can therefore add the elliptically excited pendulum to the
catalogue of Melnikov criteria detailed in Szemplińska-Stupnicka (1995).
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Viscous Damping, Plasticity and Buckling
on Large Amplitude Vibrations of Beams

Pedro Ribeiro

Abstract Curious dynamic behaviour that beams may experience is discussed in
this article. In the model of the beams a simple type of viscous damping, an elasto-
plastic stress–strain relation and Von Kármán type of non-linearity are assumed. The
continuum system is discretized following a finite element, p-version approach, and
the equations of motion are numerically solved in the time domain. The analyses
focuses on the qualitative differences that appear in the oscillations of damped
beams when plasticity is present and on a buckling like phenomenon that plasticity
may induce, leading to a dynamic behaviour difficult to anticipate.

Keywords Large amplitude oscillations • Plasticity and damping • p-version
FEM model

1 Introduction

Much effort has been put – since, at least, 1950 (Woinowski-Krieger 1950) – in the
analysis of oscillations in one plane of straight beams with large displacements,
but in the elastic regime. This geometrically non-linear problem is rather well
understood, with many approximation methods proposed to derive more or less
detailed models, a few studies on the evolution of the vibration modes with the
vibration amplitude, investigations on forced oscillations under different forces and
with diverse boundary conditions.
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The analysis of oscillations with plasticity becomes necessary when the yield
stress is passed in part of the beam. Whilst geometrically non-linearity is “smooth”,
expressed by polynomials in the equations of motion, plasticity depends on history,
is non-reversible in the sense that it does not disappear with unloading, and
may affect only parts of the beams, parts which eventually change with the
evolving stresses. Hence, the analysis of geometrically non-linear and elasto-plastic
oscillations is more complex than linear elastic analysis.

This work explores curious behaviour – markedly different from the one
experienced by geometrically non-linear but elastic beams – that elasto-plastic and
geometrically non-linear beams can experience. Two issues are addressed. First we
focus on viscous damping and on the way it affects oscillations when concomitant
with plasticity; after we examine the appearance of a buckling type phenomenon,
which is induced by plasticity and can be avoided by increasing damping. The p-
version FEM model of Ribeiro and van der Heijden (2009) is employed to achieve
a detailed model of the beam. Pulse and harmonic loadings are considered.

2 Main Assumptions and Model

The next two sections describe the main points of the formulation and the method to
solve the equations derived. These equations and the stress computation procedure
were presented in Ribeiro and van der Heijden (2009).

2.1 Displacements Field and Stress-Strains Relations

Displacements are defined with respect to three fixed reference axes, labeled as x1,
x2 and x3. x1 is the longitudinal axis that crosses the centroids of the cross sections
of the undeformed beam; the other two are transverse axis. Subscripts 1, 2 and 3 in
any variable indicate directions x1, x2 and x3.

A first order shear deformation approach is adopted, being the displacement field
written as

u1 .x1; x3; t / D u01 .x1; t /C x3�
0 .x1; t/ (1)

u3 .x1; x3; t / D u03 .x1; t / (2)

where ui(x1, x3, t) represents the displacement component along axis xi and �0 .x1; t /
is the rotation of the cross section about axis x2. The superscript 0 indicates that the
point is on axis x1.

Keeping only the more important non-linear term .@u3 =@x1 /
2 in the longitudinal

Green strain "11 .x1; x3; t / (a Von Kármán type of model; the definition of Green
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strain can be found, for example, in Kojić and Bathe 2005), the longitudinal strain
and the transverse shear engineering strain, �13 .x1; t/, are

"11 .x1; x3; t/ D @u10 .x1; t /

@x1
C 1

2

�
@u30 .x1; t /

@x1

�2
C x3

@�0 .x1; t /

@x1
(3)

�13 .x1; t/ D 2"13 .x1; t / D @u30 .x1; t/

@x1
C �0 .x1; t / (4)

The relation between stresses �11 and �13 – other stresses are neglected – and the
strains involves the total and the plastic strain:

�
�11 .x1; x3; t/

�13 .x1; x3; t/

�
D
�
E 0

0 G

� �
"11 .x1; x3; t /� "

p
11 .x1; x3; t/

��13 .x1; t /� �
p
13 .x1; x3; t /

�
(5)

In the former, E represents Young’s modulus and G the shear modulus of
elasticity G D E/(2(1 C �)). Poisson’s ratio is represented by � and � is a shear
correction factor. Expression �D (5 C 5 �)/(6 C 5 �) is chosen, because it appears
to be a proper choice for beams with rectangular cross section (Kaneko 1975). The
longitudinal and shear plastic strains are respectively represented by "p11 .x1; x3; t /
and �p13 .x1; x3; t/.

2.2 Equations of Motion

The reference displacements are written as

8<
:

u01 .�; t /
u03 .�; t /
�0 .�; t /

9=
; D

2
4Nu1 .�/T 0 0

0 Nu3 .�/T 0
0 0 N� .�/T

3
5
8<
:

qu1.t/

qu3.t/

q� .t/

9=
; (6)

where q represents time dependent generalised displacement vectors. The vectors
of longitudinal, transverse and rotational shape functions are, respectively, Nu1 .�/,
Nu3 .�/ and N� .�/; they are formed by the displacement shape functions gi(�),
fj(�) and �k(�), which belong to a set of polynomials of arbitrary high order
(Ribeiro 2004) (in practice almost arbitrary high order, since extremely high order
polynomials may lead to ill-conditioning), with i, j and k taking values from 1
to a positive integer; � represents a non-dimensional coordinate. If one wishes
to increase the accuracy of the model, one should increase the number of shape
functions and generalized coordinates, i.e., increase the value of i, j or k.

The equations of motion can be obtained by the principle of virtual work and
have the following form
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2
4Mu1 0 0

0 Mu3 0
0 0 M�

3
5
8<
:

Rqu1 .t/

Rqu3 .t/

Rq� .t/

9=
;C “

2
4Mu1 0 0

0 Mu3 0
0 0 M�

3
5
8<
:

Pqu1.t/

Pqu3.t/

Pq� .t/

9=
;C

C
2
4K`

p
11

0 0
0 K`

�
22

K`
�
23

0 K`
�
32

K`
�
33

C K`
b
33

3
5
8<
:

qu1 .t/

qu3 .t/

q� .t/

9=
;C

2
4 0 Kn`12 0

Kn`21 Kn`22 � Kplast 0
0 0 0

3
5�

�
8<
:

qu1 .t/

qu3 .t/

q� .t/

9=
; D

8<
:

Fu1 .t/

Fu3 .t/

F� .t/

9=
;C

8̂
<
:̂

Fplastu1

	
"
p
11



Fplast�u3

	
�
p
13



Fplast�

	
"
p
11


C Fplast��

	
�
p
13




9>=
>;

(7)

The mass matrices Mu1 , Mu3 and M� ; the so-called linear stiffness matrices,
which are written as K`

k
ij , where i, j range from 1 to 3, and k can be p, ” or b (letters

that here indicate longitudinal, shear and bending, respectively); the geometrically
non-linear stiffness matrices Kn`ij , i, j D 1,2; and the vectors of generalized external
forces Fu1.t/, Fu3 .t/ and F� .t/ are given in Ribeiro (2004). The former matrices and
vectors are computed using analytical integration. “ is a proportionality damping
parameter.

The forces and matrix that depend upon plastic strains are computed employing
numerical integration based on a grid of Gauss points. The forces that depend upon
plastic strains are Fplastu1 , Fplast� , Fplast�u3

	
�
p
13



and Fplast��

	
�
p
13



; the matrix is Kplast.

These plasticity dependent terms are defined in Ribeiro and van der Heijden (2009).
The method of solution of the equations of motion is based on the implicit

Newmark scheme with Newmark’s parameters (Petyt 1990), and, in the presence
of plasticity, involves two main cycles. In the first cycle, the plastic strains from the
previous time step are assumed to be invariant and the generalized displacements
are computed by solving Eq. (7) iteratively. Convergence in this cycle is achieved
when the variation of the generalized displacements is below an accepted tolerance.
It is additionally verified that equation of motion (7) is approximately satisfied.

After convergence in the above cycle has been achieved, the stresses are
computed at the Gauss points using Eq. (5) and a yield criterion is employed to
verify if yielding took place. Here, Von Mises criterion is adopted and the yield
function fy is defined by

fy D 1

2
tC�tSij tC�tSij � 1

3
tC�t�2y i; j D 1; 2; 3 (8)

where the summation convention applies. tC�t�y is the yield stress, which changes
under hardening. In this particular work, a bilinear stress–strain relation, with
isotropic strain hardening, is assumed, but a similar model can be employed with
mixed hardening. Sij are deviatoric stress components given by

S11 D 2�11 =3 ; S22 D S33 D ��11 =3 ; S13 D S31 D �13 (9)



Viscous Damping, Plasticity and Buckling on Large Amplitude Vibrations of Beams 99

The remaining deviatoric stresses are null (S12 D S21 D S23 D S32 D 0).
In the presence of yielding, plastic strains and the variables that depend upon

those should be updated, a task that is carried out in the second main cycle. The
plastic strains are computed via the governing parameter method, and the governing
parameter used in this work is the increment of effective plastic strain, represented
by�eP (Ribeiro and van der Heijden 2009; Kojić and Bathe 2005). The generalized
displacements are re-calculated after.

Once the plastic-dependent terms have been re-calculated, the generalized
displacements are corrected so that equations of motion (7) are respected. When
convergence is achieved in this inner iterative procedure, the new generalized
displacements are used to compute the strains and stresses, and one verifies if
convergence has been as well achieved in the computation of the plastic strains and
back stresses. If all convergence checks are passed, one progresses to the next time
step, otherwise one returns to the computation of the plastic strains and repeats the
steps above.

3 Numerical Tests

In this section numerical tests are presented and peculiarities of the dynamic
behaviour of elasto-plastic beams are discussed. The first sub-section addresses an
aspect related with damping that may become obvious when one considers it, but
is nonetheless curious. The second sub-section presents examples of a phenomenon
analogous to buckling and that is due to plastic strains under harmonic transverse
forces. The two ends of the beams are clamped in all examples.

3.1 Damping and Plasticity

Consider a step force with amplitude F0, as represented in Fig. 1, applied to a linear
single degree of freedom system with stiffness k, natural frequency ¨n, so called
damped natural frequency¨d and non-dimensional damping ratio Ÿ.

t (s)

F (N/m)

F0

Fig. 1 Step excitation
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Fig. 2 Response of geometrically non-linear beam to step excitation (a) First cycles; (b) later

cycles. The damping parameters are: β=1, β=10, β=50.

Using the established convolution or Duhamel integral (Meirovitch 1986) one
obtains the following expression for the displacement u(t):

u.t/ D F0

k

"
1 � e��!nt

 
cos .¨d t/C �p

1 � �2 sin .¨d t/

!#
(10)

It results that the displacement tends to a value (the static solution) that solely
depends upon the stiffness and the amplitude of the applied force:

lim
t!1 u.t/ D F0

k
(11)

By modal analysis, one achieves the conclusion that also a multi-degree-of-
freedom proportionally damped system will tend to a configuration (i.e., a set of
displacements) that does not depend upon damping.

An analytical solution is not at hand for a geometrically non-linear multi-degree-
of-freedom version of the former problem. Nevertheless, numerical tests indicate
that also in the geometrically non-linear beam the steady state solution does not
depend on damping. In the case study of Fig. 2, an elastic beam with width
b D 0.03 m, thickness h D 0.01 m and length L D 1.0 m is analysed. Its Young
modulus is E D 2.00 1011 N m�2, the ratio of Poisson is �D 0.3 and the density
is 	D 7.8 � 103 kg m�3. Damping differs as indicated in the figure caption. The
variation in the damping coefficient is academic, and implemented to show how
damping may affect the dynamic response. In practice, damping may be changed,
for example, by adding a viscoelastic layer to part of the beam.

Now let us look at the same example, but in a beam with yield stress ¢y D 3.50
108 N m�2 and obeying a bilinear elasto-plastic law, with a tangent modulus
ET D 109 N m�2, which is a value that may occur in steels (Kojić and Bathe 2005).



Viscous Damping, Plasticity and Buckling on Large Amplitude Vibrations of Beams 101

0

0.5

1

1.5

2

0 0.01 0.02 0.03
1.5

1.6

1.7

1.8
a b

15.99 15.995 16

t (s) t (s)

u0
3 (0,t)

hu0
3 (0,t)

h

Fig. 3 Response of geometrically non-linear and elasto-plastic beam to step excitation: (a) first

cycles; (b) later cycles. The damping parameters are: β=1, β=10, β=50.

Figure 3 shows that plasticity introduces important changes in the response. To start
with, the peak displacement amplitude, which is attained in the beginning, is larger
than without plasticity, due to the softening that the latter induces. Still regarding the
initial cycles of the response, it is obvious that the difference between the amplitudes
of successive peaks of oscillation decreases faster due to plasticity, a behaviour we
can attribute to the plastic work. The vibration displacement amplitudes with respect
to the undeformed configuration attained in the later cycles are larger than without
plasticity. But possibly the more distinctive feature is that the final, steady-state,
amplitude achieved under a step force now depends upon viscous damping.

The dependence of the final equilibrium position on viscous damping results
from plasticity and is explained by the initial cycles. In fact, the diverse amounts of
viscous damping lead to different oscillations in the first oscillation cycles. These
different oscillations result in different plastic strain fields (see Figs. 4 and 5).
Since plastic strains do not disappear, they lead to different “rest” configurations
of the beam, unlike what occurred in the linear elastic structure with and without
geometrical non-linearity.

Figures 4 and 5 provide an example of the different magnitude attained by
longitudinal and shear strains with two damping factors. The shear plastic strains
are rather small in this beam, where the length is 100 times the thickness.

3.2 Buckling Type Phenomenon

Another noticeable difference between the dynamic behaviour of elasto-plastic and
elastic beams, geometrically non-linear in both cases, results from a buckling type
phenomenon. This is shortly illustrated in this section, for a deeper study the reader
is referred to Ribeiro (2011).
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Fig. 5 Shear plastic strains at later cycles when: (a) “ D 1; (b) “ D 50

The beam now analysed has the width (b D 0.03 m), length (L D 1.0 m) and
thickness (h D 0.01 L) assumed in the previous section. Most material properties are
also the same (E D 2.00 1011 N m�2, �D 0.3, 	D 7.8 � 103 kg m�3) and so is the
shear correction factor. The tangent modulus ET D 109 N m�2 and the initial yield
stress ¢yv D 2.0 � 108 N m�2, are from an example of reference Kojić and Bathe
(2005).

Figure 6 shows the displacement in direction x3 when an equally distributed
force, sinusoidal in time, is applied. The results are computed with very similar
models, but with different integration time steps, which are all small. One verifies
that in the initial cycles all time integration steps provide the same results.
Nevertheless, after a while, and when steady state appears to have been achieved,
each time step leads to its own result. Furthermore, depending on the time step,
the beam oscillates either about a negative or a positive reference position. Similar
variations in the results were attained when “perturbations” were introduced in the
number of Gauss points, in the thresholds defined for the errors, or in the number of
shape functions.
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Fig. 6 Transverse displacement due to an equally distributed force, sinusoidal in time. Data
was computed using a model with po D 13, pi D 15, p™ D 15, and 64 � 64 Gauss points and the
following time steps: — �t D 10�5 s, �t D 5 � 10�5 s, — �t D 7.5 � 10�6 s

The variation in the predictions of the long term behaviour of this beam excited
by a harmonic force is due to a buckling like phenomenon. The plastic strains
accumulate under the excitation, imposing plastic forces and reducing the stiffness.
As a result, at a certain stage “buckling” occurs – the word “buckling” is here used in
the sense that the almost straight beam configuration suddenly is not the reference,
stable equilibrium, configuration anymore, but two new equilibrium states appear.
Curiously, although the oscillations found are – or in some cases approach – periodic
oscillations the long term response to this harmonic excitation appears to be very
difficult, or even impossible, to forecast.

Figures 7 and 8 show the plastic strains that are predicted after “buckling” using
two time steps in the integration procedure. The strains are different and although
not exactly symmetric, there is a certain inversion of the values. This inversion
is to be related with the displacements with different signals that are computed
employing the respective time steps.

Behaviour of a not very different nature from the one now discussed, has been –
for example in Symonds and Yu (1985), Lee et al. (1992), Ma et al. (2005) – found
to occur in vibrations of beams with fixed ends and with plasticity. The examples
shown in these and other references differ from the ones shown in the present
text not only in the models employed, but also in the fact that impulsive forces
and/or external forces with a longitudinal component have been considered. Here
we consider the case where the external applied force (apart from boundary forces)
is harmonic and transverse.
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We must emphasize that diverse time steps were tried in the integration, and
although rather small steps were experimented, convergence to a solution was not
found. Recently, reference Ribeiro (2011), where this issue is discussed in detail,
was accepted for publication.

Also, but not only, in order to connect with the previous section, a word on
the effect of damping is now written. By increasing damping the displacement
amplitude decreases; as a result, so do the stresses and eventually the plastic induced
forces and the stiffness loss are not large enough to cause the buckling type of
phenomenon just presented. The long term predictions are hence not so sensitive and
do not qualitatively vary with small changes either in time or space discretizations,
as occurs in the presence of buckling.
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4 Conclusions

Oscillations of beams excited by transient and by harmonic forces were analysed
taking into account two origins of non-linearity: (1) large displacements and (2) a
non-linear constitutive relation, more specifically an elasto-plastic bilinear relation.
It was verified that, although it is quite often neglected, plasticity can be important
in the dynamic behaviour of beams. First, plasticity was found to be responsible for
a variation of the rest configuration of damped beams excited by transient forces.
This opposes to the fact that damping does not affect the asymptotic solution of
linear elastic beams, even when the geometrical non-linearity is considered. In a
second type of case studies, it was verified that the plastic strains that develop under
harmonic transverse excitations can induce a buckling like phenomenon, and cause
a rather unpredictable behaviour of the beam that suffers this buckling, because the
plastic strains depend very significantly on the rapid buckling phase. Since plastic
strains are history dependent, the characteristics predicted for the beam change with
minor variations in the computational procedure, be it in the error thresholds, in the
time step or in the model discretization.
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Kojić, M., Bathe, K.-J.: Inelastic Analysis of Solids and Structures. Springer, Berlin (2005)
Lee, J.-Y., Symonds, P.S., Borino, G.: Chaotic responses of a two-degree-of freedom elastic–plastic

beam model to short pulse loading. Trans. ASME J. Appl. Mech. 59, 711–721 (1992)
Ma, G.W., Liu, Y.M., Zhao, J., Li, Q.M.: Dynamic asymmetrical instability of elastic–plastic

beams. Int. J. Mech. Sci. 47, 43–62 (2005)
Meirovitch, L.: Elements of Vibration Analysis, 2nd edn. McGraw-Hill, New York (1986)
Petyt, M.: Introduction to Finite Element Vibration Analysis. Cambridge University Press,

Cambridge (1990)
Ribeiro, P.: A p-version, first order shear deformation, finite element for geometrically non-linear

vibration of curved beams. Int. J. Numer. Method. Eng. 61, 2696–2715 (2004)
Ribeiro, P.: On the predictability of elasto-plastic and geometrically non-linear oscillations of

beams under harmonic excitation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0104-5
Ribeiro, P., van der Heijden, G.H.M.: Elasto-plastic and geometrically nonlinear vibrations of

beams by the p-version finite element method. J. Sound Vib. 325, 321–337 (2009)
Symonds, P.S., Yu, T.X.: Counter-intuitive behavior in a problem of elastic–plastic beam dynamics.

Trans. ASME J. Appl. Mech. 52, 517–522 (1985)
Woinowski-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech.

17, 35–36 (1950)

http://dx.doi.org/10.1007/s11071-011-0104-5


Part II
Smooth Engineering Systems



Motion of Oscillating Two-Link System in Fluid

Felix L. Chernousko

Abstract Locomotion of a mechanical system consisting of two rigid bodies, a
main body and a tail, connected by a cylindrical joint, is considered. The system
moves in a resistive fluid and is controlled by periodic angular oscillations of the tail
relative to the main body. The resistance force acting upon each body is a quadratic
function of its velocity. Under certain assumptions, a nonlinear equation of motion
is derived and simplified. The average velocity of locomotion is estimated. This
velocity is positive, if the deflection of the tail is performed slower that its retrieval.
The optimal time history of oscillations is found that corresponds to the maximal
locomotion velocity.

Keywords Oscillations • Quadratic resistance • Locomotion • Optimal control

1 Introduction

It is well–known that a multilink mechanical system, whose links perform specific
oscillations relative to each other, can move progressively in a resistive medium.
This locomotion principle is used by fish, snakes, insects, and some animals (Blake
1983; Gray 1968; Lighthill 1975). In robotics, the same principle is applied to
locomotion of snake-like robots along a surface (Hirose 1993).

Dynamics and optimization of snake-like multilink mechanisms that move along
a plane in the presence of Coulomb’s dry friction forces acting between the
mechanism and the plane, have been studied in Chernousko (2001, 2003, 2005).
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Various aspects of fish-like locomotion in a fluid have been studied in many papers,
and a number of swimming robotic systems have been developed, see, e.g., Colgate
and Lynch (2004), Mason and Burdick (2000), Terada and Yamamoto (1999), and
http://en.wikipedia.org/wiki/RoboTuna # References.

In this paper, we consider a progressive motion of a two-link system in a fluid
in the presence of resistance forces proportional to the squared velocity of the
moving body. The mechanical model is described in Sect. 2. The equation of motion
is analyzed in Sect. 2, where the asymptotic method of averaging is applied. The
important case of a piecewise constant angular velocity of the tail is considered
in Sect. 3. Certain generalizations are discussed in Sect. 4, where the case of two
links attached to the main body is considered, and in Sect. 5, where, besides the
drag force, the lift force acting upon the tail is also taken into account. The optimal
control problem for the motion of the tail is formulated, and its exact solution is
presented in Sect. 6, along with an example. It is shown that the optimal motion
does not differ much from the case of the piecewise constant angular velocity of the
tail. The conclusions are stated in Sect. 7.

2 Mechanical Model and Preliminary Analysis

Consider a mechanical system consisting of two rigid bodies, called the main body
and the tail, connected by a cylindrical joint O , see Fig. 1. The length of the tail
OA is denoted by a, and its mass is negligible compared to the mass m of the
main body.

Let us introduce the Cartesian coordinate frame Cxy connected with the main
body and denote by i and j the unit vectors directed along the axes Cx and Cy.

Fig. 1 Mechanical model:
main body of mass m with a
link OA attached to it



Motion of Oscillating Two-Link System in Fluid 111

Fig. 2 Two symmetric links
attached to the main body

The tail performs periodic oscillations of period T about the joint O that are
symmetric relative to the axis Cx. Hence, the angle ' between the tail OA and the
axis Cx satisfies the equations

'.t C T / D '.t/; '.t C T=2/ D �'.t/ (1)

for each time instant t .
The two-body system moves in a resistive fluid that acts upon each moving

element with a force directed against the velocity of the element and proportional to
its squared velocity.

Under certain assumptions listed below, the motion of the main body can be
regarded as a translational rectilinear motion, so that the axis Cx does not change
its direction in the inertial space. These assumptions are:

1. The oscillations of the tail obey the periodicity and symmetry conditions (1).
2. The frequency of the oscillations is high enough.
3. The moment of inertia of the main body is large enough.
4. The main body is symmetric with respect to the axis Cx.
5. The resistance force of the main body in the lateral direction (along the axis
Cy) is much higher than its resistance in the longitudinal direction (along the
axis Cx).

Under the assumptions made, the change of the orientation of the main body, as
well as its angular and lateral motions, can be neglected.

Note that the translational motion of the main body occurs also in the case of two
equal and symmetric links OA and O 0A0 attached to the main body by cylindrical
joints O and O 0, see Fig. 2. Suppose that these two links perform synchronous and
symmetric oscillations about the axes O and O 0, so that the link O 0A0 is always
symmetric to the link OA with respect to the axis Cx.

If the system of Fig. 1 can be considered as a model of a fish with a tail, the
system of Fig. 2 models swimming of an animal with two legs (e.g. a frog) or flying
of a bird. The case of two links attached to the main body is considered in Sect. 5.

Denote by v the velocity of the progressive motion of the main body along the
axis Cx. We will consider only forward motions, so that v � 0. The value of the
resistance force acting upon the body is denoted by c0v2, where c0 is a positive
constant.
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Suppose for simplicity that the resistance forces acting upon the tail OA can be
reduced to a force applied at the point A. Denote by V the velocity of this point and
by ! the angular velocity of the tail OA, We have (see Fig. 1):

V D vi C a! sin 'i � a! cos'j; ! D P': (2)

Here and below, dots denote derivatives with respect to time t .
The resistance force applied to the point A is given by

F D �k0VV; (3)

where k0 > 0 is a constant coefficient.
Under the assumptions made, the equation of the progressive motion of the main

body can be written as follows:

mPv D �c0v2 C Fx ; (4)

where Fx is the projection of the vector F from (3) onto the axis Cx. Note that the
added mass of the main body can be included into m. Introducing the denotations

c0=m D c; k0=m D k

and using Eqs. (2) and (3) to determine Fx , we convert Eq. (4) to the form:

Pv D �cv2 � k.v C a! sin'/
p

v2 C a2!2 C 2va! sin ': (5)

Note that the coefficients c and k have the dimension inverse to length. To
clarify their physical meaning, let us consider the linear motion of a unit mass in
the presence of the quadratic resistance. The equations of motion of this system are

Px D v; Pv D �cv2;

where x is the coordinate of the mass and v is its velocity. Integrating these equations
under the initial conditions x.0/ D 0; v.0/ D v0, we obtain v D v0 exp.�cx/.
Hence, the inverse c�1 of the coefficient c is the distance that the moving mass
covers in the resistive fluid while its velocity decreases by factor e D 2:718 : : : .

We assume that the resistance of the point A is much less than the resistance of
the main body: k � c. Let us introduce a small parameter

� D k=c � 1 (6)

and suppose that the oscillations of the tail have a short period and small amplitude.
Let us introduce new variables:

' D � ; T D �T0; t D T � D �T0�; v D �.a=T0/u: (7)
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Here, the new variable  and constant T0 are of order O.1/, � is a new (fast) time,
and u is the new non-dimensional velocity.

Let us transform the equation of motion (5) using the change of variables (7) and
omitting terms of higher order of small parameter � from (6). After simplifications,
we obtain the equation

du

d�
D �"

�
u2 C

�
u C  

d 

d�

� ˇ̌
ˇ̌d 
d�

ˇ̌
ˇ̌
�
; " D ca�2: (8)

Here, " is a small parameter, and .�/ is a periodic function of � with a period equal
to 1. By virtue of (1) and (7), we have

 .� C 1/ D  .�/;  .� C 1=2/ D � .�/: (9)

Applying the asymptotic methods of averaging (Bogoliubov and Mitropolsky
1961) to Eq. (8), we obtain the equation of the first approximation as follows:

du

d�
D �".u2 C I1u C I0/ ; (10)

where the notation

I1 D 2

Z 1=2

0

ˇ̌
ˇ̌d 
d�

ˇ̌
ˇ̌ d�; I0 D 2

Z 1=2

0

 
d 

d�

ˇ̌
ˇ̌d 
d�

ˇ̌
ˇ̌ d� (11)

is used. Here, the properties (9) are taken into account. The solution u.�/ of
the averaged Eq. (10) differs from the solution of Eq. (8), under the same initial
conditions, by the terms of order " for the large time interval of order "�1.

Note that, according to (11), I1 > 0.
If I0 > 0, then the right-hand side of Eq. (10) is positive for all u > 0. Hence,

du=d� < �"I0 < 0, the velocity decreases and reaches zero in finite time. In this
case, the forward motion of the system is impossible.

We will consider below a more interesting case, where I0 < 0. Then Eq. (10) has
a unique positive stationary solution

u� D Œ�I0 C .I 21 =4/�
1=2 � I1=2 > 0 (12)

which is globally asymptotically stable. Thus, for any initial condition u.�0/ D
�u0 � 0, we have u.�/ ! u� as � ! 1.

To check the inequality I0 < 0 and evaluate the velocity u�, we are to specify the
periodic function  .�/ subject to conditions (9) and calculate the integrals I1 and
I0 from (11).
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3 Piecewise Constant Angular Velocity

Let us first consider a piecewise linear time history of the angle '.t/. We assume
that the normalized angle  .�/ from (7) is described by

 .�/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

b1�; � 2 Œ0; ��
b2.1=2� �/; � 2 Œ�; 1=2�
b1.1=2� �/; � 2 Œ1=2;C��
b2.� � 1/; � 2 Œ1=2C �; 1�:

(13)

Here, b1; b2, and � 2 .0; 1=2/ are positive constants. Since  .�/ should be a
continuous function, its values for � D � � 0 and � D � C 0 must coincide.

Thus, we obtain the condition b1� D b2.1=2� �/ imposed on parameters b1; b2,
and � . Hence, we can express � through the dimensionless angular velocities of the
deflection .b1/ and retrieval .b2/ as follows:

� D b2

2.b1 C b2/
: (14)

The graph of function  .�/ is shown in Fig. 3.
Substituting (13) into integrals (11) and using also (14), we obtain

I1 D 2b1b2

b1 C b2
; I0 D b21b

2
2.b1 � b2/

4.b1 C b2/2
: (15)

The condition I0 < 0 is satisfied, if and only if b1 < b2. Inserting (15) into
Eq. (12), we evaluate the stationary velocity:

u� D b1b2

b1 C b2

"�
1C b2 � b1

4

�1=2
� 1

#
> 0; b2 > b1: (16)

Fig. 3 Piecewise linear
function  .�/
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Denote by !1 and !2 constant dimensional angular velocities of the deflection
and retrieval of the tail, respectively. By virtue of (7), they are expressed through b1
and b2 as follows:

!i D �bi=T D bi=T0; i D 1; 2: (17)

On the strength of Eqs. (7), (16), and (17), the dimensional stationary velocity v� is
given by

v� D �a

T0
u� D �a!1!2

!1 C !2

(�
1C .!2 � !1/T0

4

�1=2
� 1

)
; T D �T0; � D k

c
:

(18)
We see from Eq. (18) that our system will move forward .v� > 0/, if and only if

the angular velocity of the retrieval of the tail is higher than the angular velocity of
the deflection: !2 > !1.

4 Two Links Attached to a Body

Let us consider the case of the three-element system shown in Fig. 2. We assume that
the symmetric linksOA andO 0A0 perform periodic oscillations about the respective
jointsO andO 0 so that the angles ' and ' 0 between these links and the axis Cx are
always equal: '.t/ D ' 0.t/.

The analysis of this case is quite similar to the case of one link attached to the
main body. First, we should replace k in Eq. (5) by 2k. By contrast to the case of one
link, here the angle ' (and also ' 0) is always positive and changes within the interval
Œ0; '0�, where '0 > 0. Introducing the dimensionless variables (7) with � D 2k=c,
we again obtain Eq. (8) for u.�/ and the averaged Eq. (10), where, instead of (11),
we have

I1 D
Z 1

0

ˇ̌
ˇ̌d 
d�

ˇ̌
ˇ̌ d�; I0 D

Z 1

0

 
d 

d�

ˇ̌
ˇ̌d 
d�

ˇ̌
ˇ̌ d�: (19)

For the average velocity u�, we obtain Eq. (12) with I1 and I0 defined by (19).
Suppose that the normalized angle  .�/ is a piecewise linear function of time

similar to (13):

 .�/ D
8<
:

b1�; � 2 Œ0; �1� ;

b2.1 � �/; � 2 Œ�1; 1� ;
(20)

where b1; b2, and �1 are positive constants. Since the function .�/ is continuous at
� D �1, we have b1�1 D b2.1 � �1/. This condition entails

�1 D b2=.b1 C b2/: (21)
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Similarly to (15) and (16), we obtain from (19)–(21):

I1 D 4b1b2

b1 C b2
; I0 D b21b

2
2.b1 � b2/

.b1 C b2/2
;

u� D 2b1b2

b1 C b2

"�
1C b2 � b1

4

�1=2
� 1

#
: (22)

To return to the dimensional variables in (22), we use Eqs. (7) and (17) to obtain:

v� D 2�a!1!2

!1 C !2

(�
1C .!2 � !1/T0

4

�1=2
� 1

)
;

T D �T0; � D 2k=c; !i D �bi=T; i D 1; 2: (23)

Thus, for the case of two links attached to the main body, we have obtained
expression (23) for the average velocity similar to the respective expression (18) for
the case of one link attached.

5 Lift Force

Let us return to the case of one link attached to the main body (Fig. 1). We assumed
above that the fluid acts upon the tail OA with the resistance force called drag and
applied at the endpoint A. Let us suppose now that the tail ends with a rectangular
fin, its shorter side being oriented alongOAwhereas its longer side is perpendicular
to the plane Cxy. In this case, besides the drag force applied to the tail, the lift
should be also taken into account. It is shown that the lift force acting upon the tail
always increases the average velocity of motion.

Certain results of computer simulation of the motion of our system in the
presence of both drag and lift components of the hydrodynamical force are shown
in Figs. 4 and 5. In these figures, the dependence of the average velocity v� on the
length of the tail a and angular velocity of deflection !1 is shown. The lower/upper
curves in correspond to the absence/presence of the lift.

6 Optimal Control

Let us consider the optimal control problem for the angular motion of the tail.
We will regard the dimensionless angular velocity ˝ as the control subject to the
constraints

�˝� � ˝ D d =d� � ˝C; (24)

where˝� and ˝C are given positive constants.
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Fig. 4 Velocity vs. length of the tail for the cases with and without lift

Fig. 5 Velocity vs. angular velocity of the tail for the cases with and without lift

Suppose that the normalized angle  changes over the interval � 2 .0; 1=2/ as
follows: it grows from  .0/ D 0 to  .�/ D  0 > 0 and then decreases from  0 do
 .1=2/ D 0. Here, � 2 .0; 1=2/ and  0 > 0 are constant parameters. The behavior
of  .�/ for � 2 .1=2; 1/ is defined by the second condition (9). The problem is to
find functions ˝.�/ and  .�/ that satisfy (24), the boundary conditions imposed
above and maximize the average velocity u� defined by (12).

The solution of this problem is obtained by means of Pontryagin’s maximum
principle (Pontryagin et al. 1986). After that, parameter � 2 .0; 1=2/ is chosen in
order to maximize u�. Omitting this rather lengthy analysis, we present below the
final results.
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The optimal control ˝.�/ and the corresponding optimal time history of the
normalized angle  .�/ are given by equations

˝ D ˝C;  D ˝C� for � 2 .0; ��/;

˝ D ˝C
�
1C 3.� � ��/

2��

��1=3
;

 D ˝C��
�
1C 3.� � ��/

2��

�2=3
for � 2 .��; �/;

˝ D �˝�;  D ˝�.1=2� �/ for � 2 .�; 1=2/: (25)

Here, parameters �� and � are defined by equations

�� D s�; � D 1=2�  0=˝�; (26)

where s is the only root of the cubic equation

s.3 � s/2 D 4. 0=˝C/3.1=2�  0=˝�/�3 (27)

lying in the interval s 2 .0; 1/. Equations (25)–(27) define the functions ˝.�/ and
 .�/ for the interval .0; 1=2/; for the rest of the period � 2 .1=2; 1/, these functions
are defined according to Eq. (9).

The maximum value of the average stationary velocity u� that corresponds to the
solution presented above is given by

u� D Œ 20˝� � 4. 30=�/.2� s/.3 � s/�2 C 4 20 �
1=2 � 2 0; (28)

where s 2 .0; 1/ is the root of Eq. (27).
Thus, the optimal control is completely determined in terms of normalized

variables. To return to the original dimensional ones, one is to use Eq. (7).
If the upper bound (24) on the angular velocity is absent .˝C ! 1/, we obtain

from Eqs. (27) and (26): s D 0; �� D 0. In this case, Eqs. (25), (26) and (28) are
reduced to

˝ D .2=3/ 0�
�2=3��1=3;  D  0.�=�/

2=3 for � 2 .0; �/;

˝ D �˝�;  D ˝�.1=2� �/ for � 2 .�; 1=2/; � D 1=2�  0=˝�;

u� D Œ 20˝� � .8=9/. 30=�/C 4 20 �
1=2 � 2 0:

If the lower bound on ˝ in (24) is absent .˝� ! 1/, we have, by virtue of
Eqs. (26) and (27), � D 1=2; u� ! 1. Here, the interval .�; 1=2/ in Eq. (25)
vanishes, the retrieval becomes instantaneous, and the velocity u� formally tends
to infinity.
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Fig. 6 Optimal control ˝.�/
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Fig. 7 Optimal trajectory  .�/

As an example, let us consider a numerical example. We assume that  0 D 1,
˝C D ˝� D 5 and obtain from the optimal solution (25)–(27):

� D 0:3; s D 0:145; �� D 0:044; u� D 0:442: (29)

The time histories of functions ˝.�/ and  .�/ from Eq. (25) are shown in Figs. 6
and 7, respectively.

Let us compare this optimal solution with the case of a piecewise constant
angular velocity from Sect. 4. We choose parameters b1; b2, and � so that the
piecewise linear function  .�/ from (13) coincides with the optimal one from (25)
(see Fig. 7) at three time instants: � D 0; � D � , and � D 1=2. Thus we obtain
� D 0:3; b1 D 10=3; b2 D 5:
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The corresponding average velocity defined by (16) is u� D .17=3/1=2 � 2 D
0:380. Comparing this result with the optimal value u� from (29), we see that the
difference is about 14%.

7 Conclusions

A mechanical system consisting of a main body and one or two links attached to it
by cylindrical joints can move progressively in a medium that acts upon moving
bodies with forces proportional to the squared velocities of the bodies. Under
assumptions made, the equation of motion is simplified, and the average velocity
of the progressive motion is evaluated.

The case of a piecewise constant angular velocity of the links is analyzed. It is
shown that the progressive forward motion occurs, if the angular velocity of the
deflection of the links attached is lower than the angular velocity of their retrieval.

The optimal time history of the angular oscillations of the links is obtained that
corresponds to the maximal, under the conditions imposed, average speed of the
progressive motion.

The obtained results correlate well with observations of the process of swimming.
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Nonlinear Dynamics of Low-Prandtl Number
Rayleigh-Bénard Convection

Pankaj Wahi, P.K. Mishra, S. Paul, and M.K. Verma

Abstract We present a detailed bifurcation structure and associated flow patterns
for lowPrandtl-number (P D 0.005, 0.02) Rayleigh-Bénard convection near its onset.
We use both direct numerical simulations and a 30-mode low-dimensional model
for this study. The main flow patterns observed for this range are 2D straight rolls,
stationary squares, asymmetric squares, oscillating asymmetric squares, relaxation
oscillations, and chaos. At the onset of convection, low-P convective flows have
stationary 2D rolls and associated stationary and oscillatory asymmetric squares.
The range of Rayleigh numbers for which the stationary 2D rolls exist decreases
rapidly with decreasing Prandtl numbers and vanishes in the zero-P limit giving rise
to chaotic solutions at the onset itself. Our results are in qualitative agreement with
results reported earlier on this topic.

Keywords Rayleigh-Bénard convention • Numerical simulation • Instability and
bifurcation

1 Introduction

In this paper we study the nonlinear dynamics of low-Prandtl number Rayleigh-
Bénard convection (RBC) using DNS and a low-dimensional model. Low-Prandtl
number fluids, for example, mercury (P � 0:02), liquid sodium (P � 0:01),
solar plasma in the convective zone (P 
 10�3), exhibit interesting convective
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patterns and chaos (Chandrashekhar 1961; Croquette 1989a,b). For low-Prandtl
number (low-P) convection, the inertial term u � ru becomes quite important and
generates vertical vorticity. As a result, the flow pattern becomes three-dimensional,
and oscillatory waves along the horizontal axes are generated just near the onset of
convection (Busse 1970).

The instabilities and patterns near the onset for low-P have been studied
experimentally (Croquette 1989a,b), analytically (Newell et al. 1990; Segel 1969;
Siggia and Zippelius 1981; Busse and Bolton 1985) and numerically (Bolton and
Busse 1985; Thual 1992). Readers are referred to Mishra et al. (2010) for more
details. Busse (1970) showed using perturbative analysis that for small Prandtl
numbers, the 2D rolls become unstable beyond a critical value for the amplitude
of the convective motion. Busse and Bolton (1985) argued that under free-slip
boundary conditions, stable 2D rolls exists only for Prandtl numbers above a critical
value Pc which is around 0.543. Clever and Busse (1974) extended the oscillatory
instability analysis to no-slip boundary conditions and showed that the convective
rolls are unstable for Prandtl numbers less than about 5. Thual (1992) performed
detailed DNS to study the different types of instabilities that occur for low-P
and zero-P convection and established that zero-P convection may be treated as a
limiting approximation of low-P convection.

Several low-dimensional models have been proposed to study the patterns and
instabilities near the onset for the limiting case of zero-P convection. Kumar et al.
(1996) showed using a six-mode model of zero-P convection that the growth of the
2D rolls saturate through the generation of the vertical vorticity (wavy nature). Pal
and Kumar (2002) explained the mechanism of selection of the square patterns using
a 15-mode model of the zero-P RBC. Pal et al. (2009) constructed a 13-mode low-
dimensional model for zero-P convection wherein they observed various convective
patterns including squares, asymmetric squares, oscillating asymmetric squares,
relaxation oscillations with an intermediate square pattern, and chaos. In this paper,
we discuss some salient nonlinear dynamical features of a 30-mode model for low-P
convection which was originally presented in Mishra et al. (2010).

The main motivation of our study is to understand the dynamics of different
nonlinear instabilities that appear near the onset of convection for low-P convection
through DNS and low-dimensional models. We present a detailed analysis of insta-
bilities and bifurcations observed near the onset for low-P convection in a 3-d box
with free-slip and conducting boundary conditions on top and bottom plates, and pe-
riodic conditions in the horizontal directions. The low-dimensional model has been
constructed with the large scale modes of DNS that are most active in the regime
near the onset of convection. Low-P convection exhibits static patterns, such as rolls,
squares, asymmetric square, and time-dependent patterns, such as oscillating asym-
metric squares, relaxation oscillations. We observe the presence of chaotic attractors
both in DNS and low-dimensional model for low-Prandtl numbers (P � 0:005).
However, low-P convective flows always exhibit stationary 2D rolls and associated
stationary and oscillatory asymmetric squares in contrast to zero-P convection where
chaos appears at the onset itself (Pal et al. 2009). The generation of chaos at the onset
itself for zero-P has been explained by considering the limiting case of P ! 0.
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2 Governing Equations and Parameters of RBC

The governing hydrodynamical equations of RBC flow (Chandrashekhar 1961;
Busse 1970) are

@u
@t

C .u � r/u D � 1

	0
r� C 1

	0
	.T /gOz C �r2u; (1)

@T

@t
C .u � r/T D �r2T; (2)

r � u D 0; (3)

where u D .u1; u2; u3/ is the velocity field, T is the temperature field, � is the
pressure field, g is acceleration due to gravity and Oz is the buoyancy direction. �
is the kinematic viscous coefficient, � is the thermal diffusivity coefficient, 	0 is
the fluid density at a reference temperature, and 	.T / is the density of the fluid at
temperature T. We assume Boussinesq approximation under which all the properties
(e.g., �; �) of the fluid are considered to be independent of temperature, and the
fluid is considered to be incompressible except for the buoyancy term where 	 _
�	0.1 � ˛T / with ˛ as the heat expansion coefficient.

We consider that the fluid is confined in a box with dimensionLx�Ly�d , where
Lx and Ly are the lengths in x and y directions respectively, and d is the vertical
height of the container. In experiments, top and bottom plates are kept at constant
temperatures, i.e., T jzD0 D TL; T jzDd D TU . The Boussinesq approximation is

valid for small �T D TL �TU . Considering T .x; t/ D TL � �T

d
z C �.x; t/; where

�.x; t/ is the fluctuation about the linear conduction profile, Eqs. (1)–(3) become

@u
@t

C .u � r/u D � 1

	0
r� C �r2u C ˛g� Oz; (4)

@�

@t
C .u � r�/ D �T

d
u3 C �r2T; (5)

r � u D 0 ; (6)

where an additional term ˛g	0

�
�T

2d
z2 � TLz

�
has been absorbed into pressure.

The boundary condition for the � at the top and bottom plates would imply

� jzD0 D 0 D � jzDd : (7)

For the velocity field, typical boundary conditions used are no-slip

ujzD0 D 0 D ujzDd ; (8)
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and free-slip or stress-free conditions

u3jzD0 D 0 D u3jzDd ;

@zu1jzD0 D 0 D @zu1jzDd ; @zu2jzD0 D 0 D @zu2jzDd ; (9)

at the thermal plates. We use the free-slip boundary condition in this study. For
the lateral walls, we use periodicity for both the velocity and the temperature
fields to ignore the effects of the side walls. Equations (4)–(6) with the boundary
conditions (7), and (8) or (9) form the mathematical model of Rayleigh-Bénard
convection.

Equations (4)–(6) contain various parameters such as ˛, g, �, � etc. whose
number can be reduced by choosing relevant length, time, and temperature scales.
Choosing d as a length scale, d2=� as a time scale (thus �=d for velocity), ��T=�
as a scale for the temperature, the corresponding non-dimensional equations of
RBC are

@u
@t

C .u � r/u D �r� CR� Oz C r2u; (10)

P

�
@�

@t
C u � r�

�
D u3 C r2�; (11)

r � u D 0 ; (12)

where R D ˛g�Td3

��
is the Rayleigh number, and P D �

�
is the Prandtl number.

These two dimensionless numbers, together with the boundary conditions, charac-
terize the convection problem and hence they are the main control parameters. The
Prandtl number (P ) measures the relative importance of the advection of momentum
with heat advection, thus affecting the non-linear properties of the convection
accordingly. The Rayleigh number (R) is proportional to the temperature difference
across the fluid layer, and relates the strength of the driving mechanism (buoyancy
force) to the dissipative processes (viscous diffusion and thermal diffusion). For
our analysis we will typically use the reduced Rayleigh number r D R=Rc ,
where Rc is the critical Rayleigh number at which convection begins as our control
parameter.

The dynamical equations (10)–(12) are relevant to low Prandtl number fluids
since the viscous diffusive time scale used for non-dimensionalization is the
dominant scale in this regime. These equations can also be written in an alternate
form using the vertical velocity (u3) and the vertical vorticity (!3), where !3 D
Oz � .r � v/ as

@t .r2u3/ D r4u3 CRr2
H� � Oz � r � Œ.! � r/u � .u � r/!�; (13)

@t!3 D r2!3 C Œ.! � r/u3 � .u � r/!3�; (14)
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P.@t � C .u � r/�/ D u3 C r2�; (15)

r � u D 0 (16)

where ! D r � u, and r2
H D @xx C @yy is the horizontal Laplacian.

3 Various Patterns in Low-P RBC

We perform direct numerical simulations (DNS) of convective flows by solv-
ing equations (13)–(16) with the boundary conditions (7) and (9) for P D
0:02; 0:005; 0:002 and 0:0002. We use a pseudo-spectral scheme for the simulations
with a 643 rectangular grid for r ranging from 1 to 1:25. We use the fourth-
order Runge-Kutta scheme for time-stepping. The aspect ratio of our simulations
is �x D Lx=d D 2

p
2; �y D Ly=d D 2

p
2. Equations (13) and (15) provide us an

estimate of dt 
 P�=v3 
 P=R for the DNS. For P D 0:0002, dt 
 10�7 that
makes numerical simulations very demanding.

In DNS of low-Prandtl number convection, we observe various static patterns
such as a 2-D roll, asymmetric square (ASQ), square (SQ), and time-dependent
patterns such as oscillatory asymmetric square (OASQ), oscillatory rolls with
square pattern in the intermediate regime and chaotic attractors near the onset of
convection. Some of these patterns were first observed in the numerical observations
of Thual (1992) and Meneguzzi et al. (1987) for low-P and/or zero-P convection.
For P D 0:02, Fig. 1 shows the static convective flow patterns in the mid-plane
(z D 0:5) at different values of Rayleigh numbers near the onset of convection.
Figure 1a exhibits straight rolls along the x-axis observed at r D 1:0005. As the
Rayleigh number is increased, roll starts appearing in the perpendicular direction
and superposition of two perpendicular rolls gives rise to static asymmetric square
(ASQ) and square (SQ) patterns. The two perpendicular rolls have unequal intensity
for ASQ patterns while they have equal intensity for SQ patterns. Figure 1b, c show
the “weak” and “strong” asymmetric square patterns respectively. Figure 2 shows
a periodic transition from roll pattern in one direction to the roll pattern in the
perpendicular direction with square patterns in the transition regime (SQOR) for
P D 0:02 at r D 1:031. Figure 2a shows the roll along x-axis at t D 0; Fig. 2b
shows the intermediate square at t D T=4 (T is the time period of the oscillation);
and Fig. 2c shows the roll along y-axis at t D T=2.

Similar patterns were observed for other low-Prandtl numbers (P D 0:002,
0:005, 0:0002) considered for our study with the range of static patterns appearing
near the onset decreasing with decreasing Prandtl number. For low-Prandtl numbers
(P D 0:005 andP D 0:0002) we also observe chaotic behaviour of the flow close to
onset. The origin of these different patterns for low-P convection cannot be explored
through DNS since each simulation run takes significantly long time. Therefore, for
a systematic study of the instabilities giving rise to these patterns we construct a
low-dimensional model of low-P convection presented in the next section.
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Fig. 1 Static patterns in the mid-plane of the convection 3-d box observed in DNS near the onset
for P D 0:2 on 643 grid size. Temperature snapshots at: (a) r D 1:0005 exhibits roll pattern,
(b) at r D 1:007 exhibits “weak” asymmetric square (ASQ) pattern, (c) r D 1:186 exhibits
“strong” asymmetric square (ASQ) pattern, and (d) r D 1:217 exhibits square (SQ) pattern. Blue
and red regions represent the upcoming and downgoing convective flow of the fluid respectively

Fig. 2 Relaxation oscillation with an intermediate square regime (SQOR) pattern observed in
DNS at r D 1:031 for P D 0:02. Snapshots of temperature at: (a) t D 0, (b) t D T=4, and
(c) t D T=2, where T is the time period of oscillation

4 Low-Dimensional Model and Associated
Bifurcation Diagrams

A careful analysis of the DNS data reveals that a few large scale modes are
instrumental in the dynamics of convection near the onset and are dominant for all
the observed flow patterns. Using these important modes we construct a 30-mode
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low-dimensional model for low-Prandtl number convection. We run the model and
DNS in the range of r D 1 � 1:25. Cumulative energy contained in these modes
ranges from 85 to 98% of the total energy of DNS, and each of these modes has
1% or more of the total energy. We pick 11 large-scale vertical velocity modes:
W101, W011, W112, W211, W121, W301, W103, W013, W031, W202, W022; 12 large-scale
� modes: �101, �011, �112, �211, �121, �301, �103, �013, �031, �202, �022, �002; and
7 large-scale vertical vorticity modes: Z110, Z112, Z211, Z121, Z220, Z310, Z130.
The three subscripts here are the indices of the wavenumbers along the x, y, and
z directions. All the Fourier modes, 30 in total, are taken to be real. We perform a
Galerkin projection of the RBC equations (Eqs. (13)–(15)) on the above modes, and
obtain a set of 30 equations for the amplitudes of the above Fourier modes. As a
preliminary test, we numerically solve the 30-mode model by employing accurate
implicit ODE solvers of MATLAB and observe the solutions corresponding to the
patterns observed in DNS. The Fourier amplitudes of all the modes obtained from
the low-dimensional model for SQ and ASQ patterns match with corresponding
DNS values within 20%.

We investigate the origin of various convective flow patterns for low-Prandtl
numbers (P D 0:02; 0:005; 0:0002) through the bifurcation diagrams generated
using the low dimensional model. To generate the bifurcation diagram, we start
first with the fixed points of the system. Branches of fixed points are obtained
using a fixed arc-length based continuation scheme (Wahi and Chatterjee 2008)
in conjunction with the Newton-Raphson method. An eigenvalue analysis of the
Jacobian evaluated at a fixed point determines its stability and this process on the
branch of fixed points determines the bifurcation points. New branches of fixed
points and limit cycles born as a result of the bifurcation are obtained analogously.
For aperiodic and chaotic solutions, we resort to numerical integration and report
the extremum values of the important modes. We use our own MATLAB code as
well as MATCONT (Dhooge et al. 2003) for the analysis.

Among all the 30 modes representing the phase space of our system,W101,W011,
�101, and �011 are the most important modes of our model, and they represent the
rolls along the y and the x directions respectively. We will describe the fixed points
and associated time-dependent patterns using a bifurcation diagram in the range of
0:95 � r � 1:25. Figure 3 illustrates the bifurcation diagram for P D 0:02 where
we plot the positive value of .W101/extremum as a function of r . A three-dimensional
bifurcation diagram depicting variation of the fixed points with r is given in Mishra
et al. (2010).

At r D 1 the conduction state bifurcates to stationary 2D rolls (purple curve)
through a codimension-2 pitchfork bifurcation. Unstable stationary SQ (shown as
dashed black curve) with W101 D ˙W011 are also generated as a result of this
bifurcation. As r is increased further, at r � 1:0035, these 2D rolls bifurcate to
ASQ patterns (solid blue curves) through a pitchfork bifurcation. Subsequently, at
r � 1:0114, ASQ patterns bifurcate to limit cycles (red curves) through a Hopf
bifurcation. These limit cycles represent OASQ and their oscillatory flow patterns
form standing waves along the roll axis that have been discussed earlier by Thual
(1992). Figure 4a, b illustrate the projection of two of these stable limit cycles for
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Fig. 3 Bifurcation diagram of the low-dimensional model for P D 0:02 in the range
0:95 � r � 1:25. The stable branches corresponding to conduction state, 2D rolls, SQ, and ASQ
are represented by solid cyan, solid purple, solid black, and solid blue curves respectively. The
red and green curves depict the extrema of OASQ and SQOR respectively. The dashed curves
represent unstable solutions

r D 1:016 on the W101 �W011 plane. The time-period and amplitude of these limit
cycles increase as r is increased. At r � 1:0184, these limit cycles collide with
the unstable SQ fixed points (saddles) originating from r D 1 and form homoclinic
orbits whose phase space projection on the W101 �W011 is shown in Fig. 4c, d.

Beyond r � 1:0184, there is a smooth transition to regular limit cycles
corresponding to SQOR, illustrated as green curves in the bifurcation diagram. The
dynamical behaviour of theW101 andW011 modes in the SQOR regimes is similar to
the homoclinic orbit shown in Fig. 4c, d. There is an alternate but periodic growth
and decay of theW101 andW011 modes. The flow pattern corresponding to the SQOR
pattern is shown in Fig. 2 and it changes in time from an approximate roll in one
direction to a roll in the other direction. The limit cycles corresponding to SQOR
form another set of homoclinic orbits at r � 1:1034 after which it bifurcates into
two separate limit cycles. These limit cycles (OASQ shown as red curves) diminish
in size as r is increased until they transform to stable fixed points (ASQ shown
as blue curves) through an inverse Hopf bifurcation. As r is increased further, at
r � 1:183, the stable ASQ branches meet the unstable SQ branch (the dashed black
curve) resulting in stabilization of the SQ pattern (solid black curves). Thus, the
low-dimensional model for P D 0:02 exhibits patterns that are consistent with the
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Fig. 4 Phase space projection on W101 and W011 plane is shown to compare between the DNS
and the model results in OASQ and SQOR regimes of convection for P D 0:02. Red and blue
curves show the results obtained from DNS and the model respectively. (a) shows the limit cycle
obtained in DNS at r D 1:016, (b) shows the limit cycle obtained in the model for r D 1:0129,
(c) shows the homoclinic orbit obtained in DNS at r D 1:027, and (d) shows the homoclinic orbit
at r D 1:0184 for the model. The black dots shown in (b) and (d) indicate the symmetric square
saddle point. Note that the two limit cycles corresponding to OASQ in the Homoclinic orbit are
very close but they don’t touch each other

earlier investigations of low-P convection (Thual 1992; Meneguzzi et al. 1987). The
DNS and low-dimensional results for P D 0:02 are in good agreement with each
other (also see Table 1).

In the following discussion we will consider the bifurcation diagrams for lower
Prandtl numbers (P D 0:005; 0:002; 0:0002) for which we observe several chaotic
attractors near the onset of convection. We start with P D 0:005 for which the
bifurcation diagram shown in Fig. 5, is similar to Fig. 3 with a major difference that
chaotic attractors appear near the onset in the band of r D 1:000685�1:0068. There
are three qualitatively different chaotic attractors Ch1, Ch2, and Ch3 shown in the
inset of Fig. 5 as (i)–(iii), and with phase space projections depicted in Fig. 6b–d for
r D 1:0023, r D 1:0053, and r D 1:0064 respectively. We explore the origin of
these chaotic attractors in the following discussions.

As we increase r beyond 1, we observe 2D rolls, ASQ, and OASQ just like
P D 0:02, however, at lower r values (see Table 2). The phase space projection
on the W101 � W011 plane of two of the limit cycles corresponding to OASQ are
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Table 1 Range of reduced Rayleigh number r corresponding to various
flow patterns observed in the 30-mode model and the DNS for P D 0:02.
Here SQ, ASQ, OASQ, and SQOR represent stationary squares, station-
ary asymmetric squares, oscillatory asymmetric squares, and relaxation
oscillation of squares respectively

Flow patterns r (model) r (DNS)

Roll 1� 1:0032 1� 1:0038

ASQ 1:0033 � 1:0122 1:0039� 1:0114

OASQ 1:0123 � 1:0183 1:0115� 1:0236

SQOR 1:0184 � 1:1027 1:0237� 1:0874

OASQ 1:1028 � 1:1402 1:0875� 1:1407

ASQ 1:1403 � 1:1830 1:1408� 1:2015

SQ 1:1831 � 1:4859 1:2015� 1:2528
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Fig. 5 Bifurcation diagram of the low-dimensional model for P D 0:005 in the range
0:95 � r � 1:25. The color convention is same as that forP D 0:02 (Fig. 3). The chaotic attractors
are shown in brown colour. A zoomed view of the bifurcation diagram for the chaotic regime is
shown in the inset where the x axis is chosen as log.r � 1/ to highlight the behaviour near r D 1.
The three attractors Ch1, Ch2 and Ch3 are shown as (i), (ii), and (iii) respectively

shown in Fig. 6a. Subsequently these limit cycles appear to approach their basin
boundary (the horizontal axis of the figure), and the system becomes chaotic due to
a “gluing bifurcation” Meron and Procaccia (1987) related to the “attractor merging
crisis” Ott (2002). These terminologies refer to the phenomena wherein two or more
distinct attractors simultaneously hit their common basin boundaries to result in a
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Fig. 6 Phase space projections of the attractors on the W101 �W011 plane obtained from the low-
dimensional model for P D 0:005 near r D 1: (a) two of the limit cycles at r D 1:0006844;
(b) the chaotic attractor Ch3 at r D 1:0023; (c) the chaotic attractor Ch2 at r D 1:0053; (d) the
chaotic attractor Ch1 at r D 1:0064, with the inset depicting the chaotic nature of the attractor

Table 2 Table depicting the reduced Rayleigh number rp
at which the 2D rolls bifurcate to ASQ, rt where ASQ
patterns bifurcate to limit cycles, and the frequency ! of
the limit cycle at the Hopf bifurcation point. These values
are computed for Prandtl numbers P D 0:02; 0:005; 0:002

and 0.0002

P rp rt !

0.02 1.0035 1.01139 1:15� 10�3

0.005 1.000179 1.000683 2:9� 10�5

0.002 1.000042 1.00012 1:15� 10�5

0.0002 1 C 2:5� 10�7 1.000018 1:15� 10�7

single large attractor. The former is used when the pre-bifurcation attractors are
regular, e.g., limit cycles, while the latter involves chaotic attractors. The resulting
chaotic attractor is Ch3 whose phase space projection is shown in Fig. 6b. As r is
increased further, the Ch3 attractors merge together to yield a single large chaotic
attractor Ch2. At a larger r value, the Ch2 attractor breaks into four separate chaotic
attractors Ch1. The Ch1 chaotic attractors become regular for r � 1:0068 giving rise
to the SQOR limit cycles. The subsequent patterns are same as those for P D 0:02.
The Ch1 chaotic attractors are generated as a result of “homoclinic chaos” where the
stable and unstable manifolds of a saddle intersect each other. The chaotic attractors
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observed in the low-dimensional model are also observed in DNS and their phase
space projections are provided in Mishra et al. (2010).

A further lowering of the Prandtl number from P D 0:005 shifts the range of
stationary 2D rolls and the associated ASQ patterns even nearer to r D 1 as evident
from the entries of Table 2. The branch points corresponding to ASQ (rp) and OASQ
(rt ) asymptotically approach r D 1 as P ! 0 (Table 2). The 2D rolls and ASQ
occur for 1 < r < 1 C 2:5 � 10�7 and 1 C 2:5 � 10�7 < r < 1 C 1:8 � 10�7
respectively (a very small window) for P D 0:0002. Consequently it would be
very difficult to observe them in experiments and DNS; a small noise is sufficient
to push the system from the ordered region to chaos which is the feature of zero-P
convection (Pal et al. 2009).

We observe from Table 2 that rp � 1, rt � 1, and ! (imaginary part of the
eigenvalue at r D rt ) appear to vary approximately as P2 with prefactors around
10, 30 and 3 respectively. The P2 dependence is consistent with the theoretical
predictions of Busse (1970) that rt�1 � 0:310P 2 for free-slip boundary conditions.
Our analysis indicates stable 2D rolls for any nonzeroP , in contrast to the prediction
of absence of these rolls for P < Pc D 0:543 by Busse and Bolton (1985).
Our results are in agreement with the experiments on mercury (P D 0:02) by
Krishnamurti (1970) where she found stable 2D rolls near the onset (r � 1:3 ˙
0:1) indicating that Pc predicted in Busse and Bolton (1985) is an overestimate.
Comparing our results with those of Pal et al. (2010) when oscillatory modes like
Z010 etc. are included in their model, we find that the bifurcation scenario forP ! 0

is exactly the same as P D 0 as noted by Thual (1992). Hence, zero-P convection
is a valid limiting case of low-P convection.

5 Conclusion

In this paper, we presented a detailed bifurcation structure and associated flow
patterns for low-Prandtl number (P D 0:0002; 0:002; 0:005; 0:02)Rayleigh-Bénard
convection near its onset using a low-dimensional model. The results of the low-
dimensional models are in good agreement with those of DNS. We observed
that low-Prandtl number convection exhibits various patterns, namely squares,
asymmetric squares, oscillating asymmetric squares, and relaxation oscillations. We
observed that the bifurcation diagram for low-P convection is very similar to zero-
P convection (Pal et al. 2009, 2010), except near the onset of convection where
2D stationary rolls, and stationary and oscillatory asymmetric squares are observed
for finite P . Chaotic solutions have been observed for very low Prandtl numbers
(P � 0:005). The range of Rayleigh numbers for which 2D rolls and associated
ASQ and OASQ are observed shrinks rapidly (
P2) as P is decreased. For P �
0:0002, the range of reduced Rayleigh numbers for which the stationary 2D rolls
could be observed is too narrow (<1 C 10�7) to be observed in experiments or in
DNS making it equivalent to zero-P for all practical purpose. This pushes the critical
Prandtl number Pc below which stable rolls does not exist to P 
 0:0002 which
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is much lower than that predicted by Busse and Bolton (1985). Our comparative
study of low-P convection with zero-P convection of Pal et al. (2009) shows how
the limiting behavior of zero-P convection is obtained as P approaches zero. Our
analysis provides useful insights into the origin of patterns and chaos for low-P and
the limiting case of zero-P convection.
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Mixed-Modal Self-Excited Oscillation
of Fluid-Conveying Cantilevered Pipe
with End Mass

Kiyotaka Yamashita, Hiroshi Yabuno, Yuuki Hirose,
and Masatsugu Yoshizawa

Abstract An experimental and theoretical investigation was conducted into the
spatial motion of the self-excited oscillation of a pipe which is built-in at upper end
and has an attached mass at the other. A certain characteristic mode of the pipe vibra-
tion is self-excited when the axial flow velocity in the pipe exceeds a certain value.
For higher flow velocity, the two distinct eigen modes of the pipe can be simultane-
ously self-excited with two different natural frequencies, which called mixed-mode
flutter. Equations governing amplitudes and the phases were derived and used to
clarify nonlinear modal interactions numerically the above specific cases. It is
theoretically clarified that the planes, on which second modal oscillation and the
third modal oscillation are produced, are perpendicular. Furthermore experiments
were conducted with the silicon rubber pipe conveying fluid. As a result, typical
features of the mixed-mode flutter were confirmed qualitatively by experiments.

Keywords Fluid-conveying pipe • Self-excited oscillation • Linear and nonlinear
stability

1 Introduction

The spatial behavior of pipe-conveying fluid is a subject of study attracting the
interest of many researchers from the viewpoint of nonlinear dynamics. Recent
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developments in the field of spatial pipe vibration started with the work of Bajaj
and Sethna (1984) and Steindl and Troger (1992).

It is well known that the attached end mass enrich the spatial dynamical
features of pipe conveying fluid. Copeland and Moon revealed some complex spatial
behaviors following an increase of the fluid velocity by visual inspection (Copeland
and Moon 1992). Paı̈dousis and Semler clarified the chaotic motion of a fluid-
conveying cantilevered pipe with an end mass (Paı̈dousis and Semler 1998). A
certain characteristic mode of the pipe vibration is self-excited when the axial flow
velocity in the pipe exceeds a certain value (Paı̈dousis 1998). As increasing the flow
velocity, another higher mode can be also destabilized. Then, the two eigen modes
of the pipe are simultaneously self-excited with two natural frequencies, which is
called mixed-mode flutter (Chamara and Coller 2004). The phenomenon in the case
of cantilevered pipe is essentially different from the coupled-mode flutter in case of
the pined-pined or clamped-clamped pipe (Paı̈doussis 2005).

In the present study, the equations govern the nonlinear dynamics of amplitudes
and phases of the self-excited vibration modes are derived from the basic equations
of the spatial lateral vibrations of a vertical fluid-conveying pipe with an end mass.
It is clarified theoretically that the behavior of the mixed-modal self-excited pipe
vibration consists of the lower modal oscillation on a plane and the higher modal
oscillation on the perpendicular plane. Furthermore, experiments were conducted
with a silicon rubber pipe conveying water. The mixed-modal self-excited vibrations
of the vertical fluid-conveying pipe with an end mass were observed using the image
processing system with two CCD cameras.

2 Basic Equations

The system under consideration (Fig. 1), consists a flexible pipe, built-in at one end
and with an end mass at the other. The pipe conveys an incompressible fluid which
discharges to atmosphere from the free end. The pipe is flexible in bending yet

M
X

Y

Z

g

vs

s
v

w

O

Fig. 1 Analytical model of a
pipe conveying fluid with an
end mass
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inextensible. It also has uniform circular cross section and a length far in excess of
its diameter. The pipe, of length `, flexural rigidity EI , mass per unit length m and
bore area S , is hung vertically under the influence of gravity g in its rest state.

Let v.s; t/ and w.s; t/ be the displacements along the pipe centerline in the Y and
Z directions respectively. These are expressed as functions of coordinate s along the
pipe axis and time t . Assuming that v and w are small but finite and the pipe is not
subjected to torsion about centerline, the governing equations of the spatial pipe
behavior may be derived (Yoshizawa et al. 1998).

First, some dimensionless variables are introduced (denoted with *): s D `s�,
v D `v�, w D `w�, t D p

.mC 	S/`4=EIt�. Retaining terms up to the third order
of v� and w�, the dimensionless equation for pipe vibrations in the X �Y plane can
be expressed:

Rv C c Pv C ı Pv0000 C 2
p
ˇVs Pv0 C V 2

s v00 � � �.˛ C 1 � s/v0�0 C v0000 D nv (1)

where P.�/ and ./0 denote the derivatives with respect to t and s, respectively. The
asterisks indicating the dimensionless variables are omitted in Eq. (1) and hence
forward except for Sect. 4. The boundary conditions for both ends of the pipe in
X � Y plane are expressed as follows:

s D 0 W v D v0 D 0

s D 1 W v00 C ı Pv00 D 0; v000 � ˛�v0 � ˛Rv � c Pv C ı Pv000 D bv (2)

From the governing Eqs. (1) and (2) and the similar equations associated with w,
the lateral deflections v and w are uncoupled in the linear sense and coupled through
nonlinear terms described nj and bj (j D v,w). The equation of the pipe motion in
the X � Z plane and its boundary conditions, are expressed by exchanging v for w
and w for v.

As a result, the spatial behavior of the pipe is described by two equations and
eight boundary conditions with respect to v and w. There are six dimensionless
parameters involved in Eqs. (1) and (2) and their similar equations in X �Z plane,
i.e. the dimensionless velocity Vs , the ratio of the lumped mass to the total mass
˛ D M=.mC	S/l , the ratio of the fluid mass to the total mass ˇ D 	S=.mC	S/,
the ratio of the gravity force to the elastic force to the pipe � D .m C 	S/gl3=EI,
the dimensionless external damping coefficient c D C l2=

p
EI.mC 	S/, the

dimensionless internal damping coefficient ı D E�=Œl2E
p

EI=.mC 	S/�.
The governing equations (1) and (2) and similar equations associated w can be

converted to the vector forms by defining vv Dt .v @v=@t/, vw Dt .w @w=@t/. The
governing equations of vj .j D v and w/ are expressed in the vector form as follow:

@vj
@t

D Lvj C N j (3)
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Boundary conditions associated with vv are as follows:

s D 0 W B1vj D 0; s D 1 W B2 Pvj D B3vj � Nbj (4)

where Nj Dt .0 nj / and N bj Dt .0 bj / .j D v;w/ in Eqs. (3) and (4) are
expressed as the nonlinear polynomials with respect to v and w.

3 Method of Solution

In this section, the solution method of mixed modal self-excited pipe vibration is
briefly described by using the method of Lyapnov-Schmidt reduction.

3.1 Linear Stability

Neglecting the nonlinear terms with respect to v and w in Eqs. (3) and (4), vv and
vw become independent of each other and they have the identical linear eigenvalues
and eigenfunctions. Letting vj D qe�t , q.s/ Dt .˚1.s/ ˚2.s// and substituting
them into Eqs. (3) and (4), we can cast into the eigenvalue problem.

The eigenvalue, being the root of the complex characteristic equation, which is
symbolically described by f .� W Vs; ˛; ˇ; �; c; ı/ D 0 can be found numerically.
The jth eigenvalue is equal to i.!jrCi!j i /, where!jr is the linear natural frequency
and !ji corresponds to the damping ratio.

Figure 2 shows !ji as a function of Vs for the second and third modes of the
system in the case of ˛ D 0:36, ˇ D 0:30, � D 42:2, c D 0:025 and ı D 0:8�10�3.
These parameter values used in the numerical examples henceforward are equal to
the values of the experimental ones in Sect. 4. Second mode of the pipe vibration
is self-excited when the axial flow velocity in the pipe exceeds Vs D 5:98. As
increasing the flow velocity, third mode can be also destabilized. Then, the two eigen
modes of the pipe are simultaneously self-excited with two natural frequencies.

From the condition: hLqi ; q�
i i D hqi ;L�q�

i i, we can determine the adjoint vec-

tor q�
i of qi , where brackets denote the inner product< x;y >D R 1

0 x.s/ Ny.s/ds.

3.2 Nonlinear Stability

In this subsection, the equations governing the amplitudes and phases of v and w
are derived for the case when the second and third modes of the pipe vibration
can be simultaneously self-excited. The Banach space, which includes vv and vw,
is expressed as Z D X ˚ M (Carr 1981). X is the eigenspace spanned by the
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Fig. 2 The damping ratio !2i and !3i as functions of the flow velocity Vs (˛ D 0:36, ˇ D 0:30,
� D 42:2, c D 0:025 and ı D 0:8 � 10�3)

eigenvectors q2 and q3, which correspond to the linear unstable vibration modes
of vv and vw. M is the subspace of X . Therefore vj .j D v;w/ are expressed as
follows:

vv.s; t/ D C2.t/q2.s/C C3.t/q3.s/C yv C c:c:;

vw.s; t/ D D2.t/q2.s/CD3.t/q3.s/C yw C c:c:; (5)

where c.c. stands for the complex conjugate of the preceding terms and the C2,
C3, D2 and D3 are complex valued functions, which will be determined by the
Lyapunov-Shmidt reduction at the next level of approximation. Ci and Di are the
complex amplitudes of the ith mode vibration in the X � Y plane and X �Z plane
respectively. yv and yw are the elements of M . So yj , which spanned by the linear
stable vibration modes, become zero with time.

We use the following projection Pj which project x onto jth eigenspace qj .

Pjx D < x; q�
j > qj : (6)

Using the projection P2 onto the eigenspace spanned by second mode, the
Eq. (3) with boundary conditions (4) and their associated equations about w are
decomposed as follows:

PA2 D .�!2i C �12jA2j2 C �22jA3j2 C �32jB2j2 C �42jB3j2/A2
C�52A2B2

2 C .�62A3B3 C �72A3B3/B2; (7)

PB2 D .�!2i C �12jB2j2 C �22jB3j2 C �32jA2j2 C �42jA3j2/B2
C�52B2A22 C .�62B3A3 C �72B3A3/A2; (8)
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where C2 D A2e
i!2r and D2 D B2e

i!2r . In the same way, using the projection P3,
the following amplitude equations are derived.

PA3 D .�!3i C �13jA3j2 C �23jA2j2 C �33jB3j2 C �43jB2j2/A3
C�53A3B2

3 C .�63A2B2 C �73A2B2/B3; (9)

PB3 D .�!3i C �13jB3j2 C �23jB2j2 C �33jA3j2 C �43jA2j2/B3
C�53B3A23 C .�63B2A2 C �73B2A2/A3; (10)

where C3 D A3e
i!3r and D3 D B3e

i!3r . The complex constant coefficients �12,
�22, : : :, �73 in Eqs. (7) through (10) can be numerically determined as functions of
˛, ˇ, � , c, ı and Vs . Above equations govern the time variations of the complex
amplitudes A2, A3, B2 and B3 for the second and third modes and are coupled
through the cubic nonlinear terms. The interactions between the second and third
vibration modes are examined by solving numerically Eqs. (7) through (10).

Letting A2 D a2e
i�2=2; A3 D a3e

i�3=2; B2 D b2e
i 2=2; B3 D b3e

i 3=2,
separating the real and imaginary parts of Eqs. (7) through (10). We obtain the first-
order ordinary differential equations, which govern the amplitudes and the phases
of A2, A3, B2 and B3. Next we define the phase difference ˝2 D  2 � �2 and
˝3 D  3 � �3. Finally the autonomous equations governing a2, a3, b2, b3, ˝2 and
˝3 are obtained.

In the first place, we consider the effects of nonlinear interaction terms on A2
using Eq. (7). These classifications can be performed as in the case of A3, B2
and B3. The nonlinear interaction terms are divided into the following classes:
.a/jA2j2A2, jA3j2A2, jB2j2A2, jB3j2A2, .b/ NA2B2

2 and .c/A3 NB3B2, NA3B3B2. The
nonlinear interaction terms in class (a) can modify the linear damping ratio of A2.
Thus, theses terms act like self-excitation terms. The coefficient B2

2 of NA2 in class
(b) originate in the nonlinear terms which shows a periodic change. This term is
same form which appears in parametrically excited system. The terms in class (c)
are inhomogeneous terms. These terms act like the external excitation terms. The
nonlinear interaction terms between the second and the third modes are divided into
(a) and (c).

Figure 3 shows the transient time histories for a2, b2, a3, b3, ˝2 and ˝3 and the
steady state pipe motion in the horizontal plane (s D 0:7) for Vs D 7:7. In this
case, the second and the third modes of the pipe are simultaneously self-excited
with two distinct natural frequencies i.e. !2i < 0, !3i < 0. The initial conditions
are a2.0/ D 0:01, b2.0/ D 0:02, ˝2.0/ D 0:3
 , a3.0/ D 0:01, b3.0/ D 0:02 and
˝2.0/ D 0:3
 . a2, b2, a3 and b3 converge to the steady state. ˝2 and ˝3 gradually
approach zero and �
 respectively. So, both the second and third mode flutter is
planar. It is also clarified that the planes, on which second modal oscillation and the
third modal oscillation are produced, are perpendicular. These planes in which the
second and the third mode flutter occur depend on the initial conditions a2, b2, a3,
b3, ˝2 and ˝3.
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In the case of B3 ¤ 0, the third term of Eq. (7) �22jA3j2A2 and the fifth term of
Eq. (8) �42jA3j2B2 serve as damping terms to reduce A2 and B2 respectively, since
�22 < �42 < 0. Comparison of the size of these values reveals that the third mode
flutter in X � Z plane have more damping effects on B2. The same idea applies
well in A2. As a result, the planes, on which second modal oscillation and the third
modal oscillation are produced, become perpendicular.

4 Experiments

We conducted an experiment with a model that was based on the analytical model as
described before and employs a 425 mm long silicon rubber pipe of 12 mm external
diameter and 7 mm bore diameter. The equivalent bending rigidity EI, estimated
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using the first mode natural frequency Vs D 0, is 2:26� 10�3 Nm2. The end mass is
in the form of a brass ring fixed to the end of the pipe and the mass employed was
M D 19:6 g. Water density 	 D 1:0 g=cm3. The spatial motions of the flexible pipe
were measured using an image processing system, based on the images from two
CCD cameras, which is capable of performing measurements of a marker position
in three dimensional space. The displacements v and w parallel to Y- and Z-axis
respectively in a horizontal plane were then measures for a range of flow velocities.
The mean flow velocity was measured by the electromagnetic flow-meter.

Over a certain value of mean flow velocity, non-planar pipe vibration was
observed, shown in Fig. 4. This figure shows time histories of v and w at vs D
3:7m=s. This velocity is much higher than the critical velocity vcr D 2:2m=s, above
which the second mode of the lateral pipe vibration is self-excited due to an internal
flow. v has a dominant frequency, which corresponds to the natural frequency of the
third mode. The frequency corresponds to the natural frequency of second mode
is not observed. w has a dominant frequency, which corresponds to the natural
frequency of the second mode. In short the plane in which planar vibration of third
mode flutter occurred intersects at right angles with the plane planar second mode
flutter occurred. Nonlinear interaction terms vw2 and wv2 produce the frequency
components !3 � !2 and 2!2 � !3 respectively.

At much higher velocity, the pipe oscillated in the third mode. The motions of
the pipe vibration in its third mode were planar.
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5 Conclusion

The mixed-mode vibration of the fluid-conveying cantilevered pipe with an end
mass was experimentally observed under the condition that the flow velocity is
much higher than the critical value for the second mode. Here the mixed-mode
flutter includes both the second and third modes simultaneously. Complex amplitude
equations of the second and third modes of the pipe vibration, which are coupled
through the nonlinear terms caused by cubic nonlinear terms of the lateral pipe
deflection, are derived with the use of the orthogonal condition between the linear
eigenfunctions and their adjoint functions. It is clarified from the theoretical analysis
that the planes, on which second modal oscillation and the third modal oscillation
are produced, are perpendicular.
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Parametric Study for Lock-In Detection
in Vortex-Induced Vibration of Flexible Risers

Marko Keber, Marian Wiercigroch, and Jerzy Warminski

Abstract An observation that a parameter plot of a harmonically forced wake
oscillator, which shows three distinct regions, in qualitative sense corresponds well
with results of numerical and experimental investigations has prompted further
investigations into dynamical behaviour of a flexible cylinder experiencing vortex-
induced vibration. For this purpose, a reduced-order model representing a vertical
pipe excited by surrounding fluid flow was built and certain aspects of its dynamics
were studied. When resonance curves of a numerical and an analytical solution
obtained with the method of multiple scales were compared, it became apparent
that the former gives a much wider resonance region as the latter. This difference
expectedly narrowed for lower values of the coupling strength parameter, indicating
not only that the initial value might have been very large as defined in the method
used, but also that because of this the overall dynamics were dominated by the linear
part, the structure.
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1 Introduction

In the past three decades drilling for oil has moved into ever deeper waters and
further from shore. Consequently, tools used in exploration and later in exploitation
are subjected to harsher environments resulting in increased risk of fatigue and
damage. This is true especially for structures such as risers, which are subjected
to varying loading or excitation. Since future projections for offshore oil and gas
exploration show that the trend of deepwater drilling will continue (Sasanow 2010)
new demands will be imposed on designs of long, slender structures, fully or
partially submerged, to guarantee their safe as well as cost effective operation.

From the perspective of dynamics, vortex-induced vibration (VIV) is commonly
considered to be the most problematic phenomenon. This type of vibration, which is
inherently nonlinear, is excited by the flow of the fluid surrounding the submerged
structure, and in a certain speed range this causes vortices to shed behind the
structure’s bluff body. When the frequency of shedding approaches the natural
frequency of the structure synchronisation of the two oscillations occurs. This
synchronisation is manifested in large amplitudes of the structure and in a modified
shedding pattern.

For practical purposes it is especially interesting to understand the onset of
lock-in and how characteristics of the synchronisation region change under varying
conditions. Such knowledge would lead to design solutions that would allow pipes
and risers to avoid the critical regions of lock-in and thus prolong their operational
life time.

Research presented in this paper is a step forward in an attempt to build a
comprehensive model based on an approach using wake-oscillators for simulating
the effect of vortex shedding. Wake oscillators have been used extensively in
the past 30 years. Their popularity can be attributed especially to the fact that
they can be easily adapted to different problems of VIV and, more importantly,
to their efficiency with respect to computational time and complexity. However,
because of their properties, they are capable of modelling only dynamics of cases
where structural and fluid oscillations are synchronised. Therefore, the analysis is
performed firstly in this region by employing methods of nonlinear dynamics to
determine the system’s parametric sensitivity and to give an indication of the effect
of the forcing parameter on the amplitude as well as the shape of the resonance peak.

2 Model Description

Properties of a single wake oscillator forced by a harmonic function representing
oscillations of a rigid riser were taken as the basis for this work. Its parametric
analysis shows that there are three main regions, which can be very narrow
when forcing from the structure is small and widen as excitation increases. With
this increases also the transition area, in which a riser can experience a variety
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of different oscillations before finally reaching the lock-in state (see Keber and
Wiercigroch (2007) for more details). Since flexible risers experience the same
excitation as the rigid ones, it can be expected that they will exhibit similar
characteristics when speed of flow is varied. A simple phenomenological model
of a vertical offshore riser has been built in order to verify how a flexible structure
behaves during transition to lock-in.

Mathematical models in which geometrical complexity has been reduced to a
minimum number of degrees of freedom have been used extensively for predicting
the dynamic behaviour of submerged structures, especially for rigid cylinders (see
for example a review by Gabbai and Benaroya (2005)). In many cases excellent
correspondence with experimental data was obtained mainly because it could be
assumed that properties of flow for at least the simplest, most basic examples didn’t
change much along the span of the structure. However, for a typical flexible riser a
span-wise constant shedding pattern cannot be assumed even when the structure is
submerged in fluid with perfectly uniform flow, as is the case here. For oscillations
in the lock-in condition it can be predicted that no significant three-dimensional
interactions between vortices will occur (Blevins 1990) but that the configuration of
shedding will still be affected by the displacement of the structure as its parts can
move in different directions with different amplitudes depending on their positions.
Consequently, dynamics of both the structure as well as the fluid part of the coupled
system need to be described with PDEs that include span-wise position z as a
variable:

m� @
2v.z; t/

@t2
C EI

@4v.z; t/

@z4
� T

@2v.z; t/

@z2
D FF (1)

@2q.z; t/

@t2
C �˝R

	
q.z; t/2 � 1


 @q.z; t/
@t

C ˝2
R q.z; t/ D FS (2)

The structural part is modelled as an Euler-Bernoulli beam with bending stiffness
E I and tension T , which is considered to be constant for simplicity. Effects of
vortex shedding due to fluid flow are described with a separate, van der Pol-type
equation (Eq. (2)) built by Facchinetti et al. (2004). Transfer of energy between the
structural and fluid part is achieved through coupling terms, which for the latter is
of the inertial type, as suggested in Facchinetti et al. (2004):

FS D A
@2v.z; t/

@t2
(3)

For the structural part the input of energy is defined by the lift force, while the
hydrodynamic damping acts as a limiting force:

FF D 1

4
CL0 	F D U 2

0 q.t/ � 1

2
CD 	F D U0

@v.z; t/

@t
(4)
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2.1 Model Reduction

Configurations of forcing and flow condition as described above permit a reduction
of the system to modal space of a single structural normal mode. By taking into
account that lock-in occurs in the vicinity of the natural frequency, it can be assumed
that the shape of the structure’s response under uniform flow will closely resemble
the shape of the normal mode that would be excited by the same natural frequency.
In cases of linear systems, orthogonality of normal modes applies:

Z 1

0

Qvn.z/ Qvi .z/ D
�
0I n ¤ i
L
2
I n D i

(5)

and the standard Galerkin procedure can be used to limit the dynamics of the
distributed system only to its temporal part by expressing the solution in the
following form:

v.z; t/ D
1X
nD1

vn.t/ sin.� z/I q.z; t/ D
1X
nD1

qn.t/ sin.� z/ (6)

where sin .� z/ was chosen to describe modal shapes of a vertical offshore riser
pinned at both ends. Such boundary conditions, although not always achievable,
are most ideal from the point of view of curvatures and stresses since ends
of the structure are not constrained. Therefore, the industry is developing and
implementing solutions that resemble hinges to allow riser end rotations.

Because of the interaction, span-wise distribution of shedding (modelled by the
variable q.z; t/) will follow the displacement of the structure v.z; t/. Therefore, its
spatial component can be set to be the same as the spatial component of v.z; t/:

Qqn.z/ D Qvn.z/ D sin
�
n


z

L

�
D sin.�z/ (7)

For the i -th structural mode the reduced-order model of the system described by
Eqs. (1) and (2) becomes:

d2vi .�/

d�2
C !2R vi .�/ D a˝R

dvi .�/

d�
C b ˝2

R qi.�/ (8)

d2qi .�/

d�2
C �˝R

	
� qi .�/

2 � 1

 dqi.�/

d�
C ˝2

R qi .�/ D A
d2vi .�/

d�2
(9)

where variables vi .�/ and qi .�/ have been nondimensionalised with respect to time:

� D t !c (10)
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Reference frequencies !R and ˝R are ratios of actual natural and shedding
frequencies with the chosen arbitrary frequency !c :

!R D !0i
!c

I ˝R D ˝Fi

!c
(11)

In the analysis that follows the chosen frequency is that of the first mode, i.e. !c D
!01 , which gives for the perfect lock-in !R D ˝RD1, yielding a periodic and
harmonic structural vibration and quasi-harmonic oscillation of the fluid variable, as
would be expected. However, outside lock-in only amplitude and frequency change
but there is no immediate indication of qualitative change in the response for the
initial values of coupling strength A D 12 and the van der Pol parameter � D 0:3

(Facchinetti et al. 2004). Consequently, it can be inferred that, although the model
is very good for the lock-in region, more information is needed to understand how
it behaves on its border, or even outside it. To this end, an analytical solution of
Eqs. (8) and (9) was sought in the first step.

3 Analytical Solution of the Coupled Equations

Damping in Eq. (2) is the only nonlinear term in the coupled system. The advantage
of including this term is that it allows the fluid equation to incorporate self-excited
oscillations while limiting its maximum amplitude, which is precisely what occurs
in VIV (Blevins 1990). On the other hand, this same term is responsible for the
change in dynamical behaviour of the harmonically forced van der Pol. This can
range from periodic, almost harmonically shaped oscillation, to quite complex tran-
sient behaviour, even chaotic response (Thompson and Stewart 2002), depending
predominantly on numerical values of two main parameters—the coupling strength
A and the van der Pol parameter �. When coupled with a linear oscillator, as is done
here, additional factors will most probably need to be considered. For this reason,
all forces in both oscillators are multiplied by an arbitrary parameter ":

d2vi .�/

d�2
C !2R vi .�/ D ."˛/˝R

dvi .�/

d�
C ."ˇ/˝2

R qi .�/ (12)

d2qi .�/

d�2
C˝2

R qi .�/D�."�/˝R

	
� qi .�/

2�1
 dqi.�/
d�

C."�/ d
2vi .�/

d�2
(13)

In the context of the analysis that follows, " acts as a book-keeping device without
prejudice about its size (Nayfeh 2000a). However, for better understanding of
the procedure, terms on the right-hand side of Eqs. (12) and (13) can initially be
presumed to be at least an order of magnitude smaller than the underlying linear
autonomous systems. Forcing then acts as a small perturbation of the stable solution.
Furthermore, by setting " as small, the coupled system is at the beginning classified
as weakly nonlinear and its analytical approximate solution is obtained with the help
of the Method of Multiple Scales (see for example Nayfeh (2000b) for details).
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A first-order expansion is carried out on nondimensional time:

� D T0 C "T1 (14)

Because the independent variable is now expressed with two time scales, T0 and T1,
the displacement functions must also reflect this change:

vi .�/ D w0.T0; T1/C"w1.T0; T1/I qi .�/ D q0.T0; T1/C"q1.T0; T1/ (15)

For convenience, the structural nondimensionalised frequency !R is expressed with
the shedding frequency˝R (representing frequency of external forcing) and a small
perturbation " � around it:

!2R D ˝2
R � " � (16)

After substitution of Eqs. (15) and (16) into Eqs. (12) and (13), only terms related to
"0 and "1 are collected. This way the system is expanded into four coupled equations,
which are solved sequentially:

"0 W D2
0 w0 C˝2

R w0 D 0

D2
0 q0 C˝2

R q0 D 0 (17)

"1 W D2
0w1 C˝2

Rw1 D �2D0D1w0 C ˛˝RD0w0 C ˇ˝2
Rq0 C �w0

D2
0q1 C˝2

Rq1 D �2D0D1q0C�D2
0w0C�˝RD0q0��˝R�D0q0q

2
0 (18)

whereD0,D1, andD2
0 represent the first and second order derivatives, respectively:

D0 D @

@T0
I D1 D @

@T1
I D2

0 D @2

@T 20
(19)

Area 1 in Fig. 1 encloses the region where oscillation of the fluid variable q.�/
is synchronised with the forcing frequency for the single wake model (Keber
and Wiercigroch 2007). In order to simulate the same kind of response for the
wake coupled with a flexible linear structure, the first terms in variable expansions
(Eq. (15)) are expressed in complex form as:

w0 D X.T1/ e
i˝R T0 C X.T1/ e

� i˝R T0 (20)

for the structural part, and:

q0 D Y.T1/ e
i˝R T0 C Y .T1/ e

� i˝R T0 (21)
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Fig. 1 Parameter plot showing qualitatively different responses of the forced single wake oscilla-
tor for varying frequency ratio fR and forcing intensity A (Keber and Wiercigroch 2007): Area
1—lock-in region (periodic, harmonic oscillation), area 2—transition to lock-in (periodic and
harmonic oscillation can occur after transient), area 3—out of lock-in (oscillation can resemble
harmonic motion but generally it is not periodic, but quasiperiodic)

for the fluid part, which are also solutions of the zeroth-order equations (Eq. (17)).
These are then substituted into Eq. (18) to get the correction of the first order. After
reorganisation of terms the following system of equations is obtained:

D2
0 w1.T0; T1/ C ˝2

R w1.T0; T1/

D � ei˝RT0 	��X.T1/ � i˛˝2
RX.T1/ � ˇ˝2

RY.T1/C i2˝RD1X.T1/



� e�i˝RT0 	��X.T1/C i˛˝2
RX.T1/� ˇ˝2

RY .T1/� i2˝RX.T1/



(22)

D2
0 q1.T0; T1/ C ˝2

R q1.T0; T1/

D ie�i3˝R T0 � �˝2
R Y .T1/

3 � ; ei3˝R T0 � �˝2
R Y.T1/

3

� ei˝R T0 	�˝2
R X.T1/ � i�˝2

R Y .T1/ C i� �˝2
R Y .T1/ Y.T1/

2
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C i2˝RD1Y.T1// � e�i˝R T0 	�˝2
R X.T1/ � i�˝2

R Y .T1/

� i� �˝2
R Y.T1/ Y .T1/

2 � i2˝RD1Y .T1/



(23)

from where terms related to e˙ i˝R T0 need to be equated to zero in order to eliminate
secular properties of the final solution (Nayfeh 2000b), hence the correction to the
response of the linear system will not include contributions at excitation frequency
˝R. Complex amplitudesX.T1/,X.T1/, Y.T1/, and Y .T1/ in the remaining nonzero
terms are at this stage converted to polar form for practical reasons:

X.T1/ D 1

2
x.T1/ e

i˚1.T1/I X.T1/ D 1

2
x.T1/ e

� i˚1.T1/ (24)

Y.T1/ D 1

2
y.T1/ e

i˚2.T1/I Y .T1/ D 1

2
y.T1/ e

� i˚2.T1/ (25)

Finally, corrections w1.T0; T1/ and q1.T0; T1/ can be calculated and by expressing
them with trigonometric functions, the total solution in the time domain can be
defined as:

v.�/ D x.T1/ cos .˝RT0 C ˚1.T1// (26)

q.�/ D y.T1/ cos .˝RT0 C ˚2.T1// � "
32
y.T1/

3�� sin .3˝RT0 C 3˚2.T1//

(27)

where x.T1/ and y.T1/ are amplitudes of structural and fluid responses, respectively,
while ˚1.T1/ and ˚2.T1/ are the corresponding phases.

As expected, the response of the system has an underlying linear characteristic
with a sinusoidal shape, which, depending on the strength of the nonlinearity,
is more or less skewed at the peaks for the fluid part (Eq. (27)). However, the
more important properties of the system’s nature are given by the modulation
equations, which define the amplitudes and phase angles in Eqs. (26) and (27).
These are obtained by treating terms previously eliminated from Eq. (22). Expressed
in trigonometric form, their real and imaginary parts can be easily separated and
equated to zero to give further reduction for the coupled system:

dx.T1/

dT1
D 1

2
˝R .˛ x.T1/ � ˇ y.T1/ sin .˚1.T1/ � ˚2.T1/// (28)

dy.T1/

dT1
D 1

8
˝R

	
4�y.T1/���y.T1/3�4�x.T1/ sin .˚1.T1/�˚2.T1//



(29)

d˚1.T1/

dT1
D !2R � ˝2

R

2˝R

� ˇ˝R y.T1/ cos .˚1.T1/ � ˚2.T1//

2 x.T1/
(30)
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a b

Fig. 2 Solutions of modulation equations for A D 12 and � D 0:3: (a) amplitude of the
structure’s response x.T1/, (b) amplitude of the shedding variable y.T1/

d˚2.T1/

dT1
D �˝R x.T1/ cos .˚1.T1/ � ˚2.T1//

2 y.T1/
(31)

Again, periodic solutions are extracted from the above system of equations by
setting the rates of change of all variables to zero:

dx.T1/

dT1
D dy.T1/

dT1
D d˚1.T1/

dT1
D d˚2.T1/

dT1
D 0 (32)

Graphs in Fig. 2 show interesting solutions of variables x.T1/ and y.T1/. For both
the structure and the fluid, two analytical solutions appear, one of which suddenly
disappears as the frequency˝R approaches resonance. Stability of individual points
of both solutions was determined next (see for example Thomsen (1997) for details
of the method). Eigenvalues of the Jacobian matrix for points on the first curve
(continuous line in Fig. 2) have either negative real values, or are complex numbers
with negative real part, which implies that this solution may be stable for all ˝R.
Conversely, negative eigenvalues are observed for the second solution (dashed line
in Fig. 2) only until it disappears (its real part becomes zero). Then the eigenvalues
can be real or complex and negative or positive. Better understanding of what is
happening in this region would be required before a definite statement could be
made regarding the stability of the second solution.

4 Preliminary Parametric Study

Dynamical responses of any structure are determined by external forcing. Therefore,
in systems like the one studied here, coupling, through which energy is exchanged,
must be evaluated very carefully. Of particular interest in this study is the dominant



156 M. Keber et al.

a b

Fig. 3 Comparison of analytical (—) and numerical (� � �) solutions of Eqs. (8) and (9) with
A D 12: (a) amplitude of the structure’s response x.T1/, (b) amplitude of the shedding
variable y.T1/

a b

Fig. 4 Change of amplitude x.T1/ as coupling strength A is varied from 0 to 12: (a) Solution 1,
(b) solution 2

influence of the structure over the fluid. This becomes evident once the wake
oscillator model is used outside the perfectly synchronised region, where effects of
nonlinearity are not observed (at least for the typically small initial conditions used
here—v.0/ D Pv.0/ D q.0/ D 0, Pq.0/ D 0:01). By varying the coupling strength
A, evolutions of amplitudes and shapes of resonance curves could be plotted.

Comparisons of numerical and analytical solutions shown in Fig. 3 for the initial
value A D 12 indicate that despite the almost perfect correspondence at ˝R D 1,
the forcing of the wake oscillator is large and that its definition in terms of the
method used should be re-evaluated. On the other hand, larger forcing of the wake
gives a wider lock-in region for structural as well as shedding displacement, which
is typical for vortex-induced vibration.

As the coupling strength is decreased, the width of the region decreases with
it and soon becomes similar to the analytical solution. Interestingly, a relatively
small difference can be seen along the A axis in Fig. 4a, indicating a smaller
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a b

Fig. 5 Change of amplitude y.T1/ as coupling strength A is varied from 0 to 12: (a) Solution 1,
(b) solution 2

a b

Fig. 6 Comparison of analytical (——- sol. 1, � � � sol. 2) and numerical solutions (� � �)
for: (a) A D 5:046067, (b) A D 1:2

influence of the strength on the width of the analytical solution. However, it does
have a much bigger effect on the second solution, which at smaller values of A
becomes continuous for all ˝R when plotted on a graph of real values (Figs. 4b
and 5b). This inversion from complex to real numbers occurs at about A D 5:05.
See Fig. 6 for comparisons of resonance curves obtained analytically (two solutions)
and numerically at the point of inversion and with A ten times smaller than
originally.

Future research should give more insight into what is happening around this
particular value with respect to stability and how it varies when values of other
parameters change. It should also evidence what role nonlinear damping in the fluid
equation plays in the properties of the second solution.
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5 Conclusions

Results presented here clearly show that many open questions remain unanswered
and that much work will need to be invested in order to gain good understanding
of even the simplest model of a flexible riser experiencing VIV. The method of
multiple scales used in the analytical approach shows interesting results, namely
two distinct resonance curves for the structural as well as for the fluid part. One of
the curves experiences a jump from complex to real values as coupling strength is
varied, which has implications also for the stability of the solution. Consequently,
this will require a dedicated analysis.

Additional issues related to coupling strength have to do with the width of the
lock-in region and, primarily, with the suitability of the current definition of forcing
terms for the analytical method. Observations based on evolutions of VIV in the
time domain (especially the response of the van der Pol equation) suggest that the
system may have weakly nonlinear properties since time series do not appear to
depart very much from perfectly linear oscillation. However, actual strength of the
nonlinearity has yet to be determined. In future work, the analytical solution will be
formulated in the second order approximation in order to try to get better agreement
with direct numerical simulations.
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Importance of Accurately Modeling Nonlinear
Damping in Predicting Parametric Ship Rolling

Hisham Moideen and Jeffrey M. Falzarano

Abstract Parametric rolling has become an important design issue in the safe
operation of large high-speed container ships. This interest is partly based upon
the well-published large amplitude rolling incident of the APL China several years
ago and numerous other incidents which have also since come to light. What we
have found in our research is that a simple linear model of roll damping does
not accurately predict the threshold nature of this phenomenon. However, when
we accurately include nonlinear damping we are able to capture the qualitative
nature of this phenomenon. Moreover the Mathieu Ince-Strutt stability diagram is
limited to linear harmonic excitation. What we have done in this work is to extend
the Mathieu Ince-Strutt stability diagram to include non-harmonic excitation and
nonlinear damping.

Analysis of ship parametric rolling has generally been restricted to simple analyt-
ical models and sophisticated time domain simulations. However, simple analytical
models do not capture all the critical dynamics while time-domain simulations
are time consuming to implement. Our model captures the essential dynamics of
the system without over simplification. This work incorporates important aspects
of the system and assesses the significance of including or ignoring these aspects.
Many of the previous works on parametric rolling make the assumption of linearized
and harmonic behaviour of the time-varying restoring arm or metacentric height.
This assumption enables modelling the roll as a Mathieu equation.
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1 Introduction

Analysis of ship parametric roll has generally been restricted to simple analytical
models and sophisticated time domain simulations. Simple analytical models do not
capture the all the critical dynamics while time-domain simulations are often time
consuming to implement. Our model captures the essential dynamics of the system
without over simplification. This work incorporates various important aspects of the
system and assesses the significance of including or ignoring these aspects. Many
of the previous works on parametric roll make the assumption of linearized and
harmonic behavior of the time-varying restoring arm or metacentric height. This
assumption enables modeling the roll motion as a Mathieu equation.

It is well known that most hull forms especially container ships, Ro-Ro ships and
fishing trawlers are found to be prone to parametric roll instability are asymmetric
about the design water line. Hence the variation in the metacentric height will
be asymmetric as well. This asymmetry invalidates the harmonic approximation.
Studies by other researchers (Spyrou and Thompson 2000; ABS 2004) have shown
that the harmonic assumption is very crude.

Many of the past research on ship parametric roll have been to predict the
occurrence of parametric roll. Fewer analytical methods have been developed to
predict the resulting roll amplitude. Some studies were done by Bulian et al. (2003).
In his study a harmonic form was assumed for the response with a slowly varying
amplitude and phase. However this required a complicated calculation and statistical
linearization. Due to the large amplitude of motion resulting from the parametric
instability the effects of non-linear damping also become important. Non-linear
damping controls the bounded roll motion amplitude. So far there have been very
few attempts to incorporate the effects of non-linear damping into analytical model
to predict roll motion amplitude. Many researchers have attempted to evaluate the
effects of non-linear damping using time simulations which is very time consuming
and does not help in understanding the behavior of the non-linearity throughout the
entire domain.

Ships typically have varying forward speeds and hence varying encounter or
exciting frequency. This property of ships makes them susceptible to both sub
and super harmonic parametric resonance and possible instability as compared to
offshore structures. Perturbation methods and harmonic assumption greatly affect
the domain under which boundaries between the stable and unstable regions are
valid. Extending the model to higher harmonics will enable accurate prediction
over the entire range of operation. Such simple yet more accurate models can be
used as benchmarks to predict parametric instability as well as bounded roll motion
amplitude which in-turn can be utilized in the preliminary design stage so as to avoid
hull forms prone to parametric rolling.
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2 Background

Ship rolling motions is perhaps the most studied of the ship motions considering the
disastrous consequences of failure. Large amplitude ship rolling motions can lead
to progressive flooding and may eventually lead to the capsizing or foundering of
a ship. Roll motion for ships is more complicated as compared to the other ship
motions due to the presence of a non-linear restoring moment and small linear
radiation damping. The presence of light damping leads to large amplitude motion
when forced at the resonant frequency. As a consequence of the large amplitude roll
motion the non-linear viscous damping becomes important and this further adds
to the complexity of the analysis. Hence many studies have been carried to out
to predict ship roll motion in regular seas. The beam sea condition is believed to
produce maximum rolling and hence has been extensively analyzed, see e.g. Nayfeh
(1986). Falzarano et al. (1990) analyzed the complicated dynamics involved in roll
motion leading to capsize using the Melnikov method. The beam seas rolling can
be controlled with additional dampening such as that provided by bilge keels, roll
tanks, stabilizing fins, etc.

Apart from the beam sea capsizing condition, capsizing in the astern or following
seas has also been analyzed (Paulling 1961; Hamamoto et al. 1996; Umeda
et al. 1995).

Parametric rolling is a form of parametric vibration due to time varying stiffness.
Studies have shown that for some ships this phenomenon can lead to larger
amplitude rolling motion in comparison to the beam seas condition. The change
in the underwater hull form and hence the variation of the righting lever in waves
leads to a time varying stiffness. If the variation in stiffness is large enough, it
can result in large amplitude motion and eventual capsize. Numerical modeling of
parametric rolling of ships in regular waves has been studied (Umeda et al. 2004;
Bulian et al. 2004; Munif and Umeda 2006). The Mathieu instability criterion is
the most common method used to determine the onset of parametric roll. Most
of the studies have been done with stability charts that do not indicate the effects
of damping. Damping dramatically affects the boundaries between the stable and
unstable region. Among container ships the post-Panamax container ship (C11
class) is the most studied vessel as a result of the cargo damage it suffered in
1998. The effect of parametric roll on the failure of container lashing system was
studied by the SNAME ad-hoc panel #13 on Parametric Rolling (France et al. 2001).
Spyrou et al. (2008) also studied the prediction potential of the parametric rolling
for the post Pana-max container ships. This current paper discusses the methods
commonly used to study parametric roll. One of the most common methods is to use
simple Ince-Strutt stability diagram for Mathieu’s equation in predicting the onset
of parametric roll. A major drawback of the method is that the Ince-Strutt diagram
for Mathieu’s equation is generic and does not depend on the ship characteristics.
A stability chart which depends on the ship parameters would be a more accurate
approach.
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Since parametric excitation can lead to large amplitude roll motion, the effects
of non-linear damping cannot be neglected. Nonlinear roll damping may lead
to bounded motion. Hence incorporating the effects of non-linear damping into
stability charts would give a more realistic prospect of predicting roll behavior
Hence without getting into complicated analyses, we can analyze the occurrence
of parametric roll and also predict the roll motion amplitude using these charts at an
early design stage.

3 Parametric Roll Equation

The roll equation of motion in general for linear uncoupled motion is given by

.I C A .!D// R� C B .!D/ P� C C� D M cos .!t/ (1)

Where,

ˆ – Roll Amplitude
I – Moment of Inertia about Roll Axis
A(¨) – Added Interia
B(¨) – Roll radiation wave damping
C – Restoring moment in roll D �•GM
M – External roll moment
¨ – Forcing Frequency

For the case of head/astern sea there would be no direct roll excitation. One
would expect no motion considering (1). But as discussed, (1) only represents linear
damping and stiffness. This is one of the assumptions in linear strip theory where the
wave profile is approximated by a flat surface at the design draft. If one considers
the actual wave profile then the underwater hull form of the vessel changes as the
wave passes by the vessel. This leads to a time varying restoring moment and hence
a time varying stiffness.

The parametric roll equation of motion in roll considering time varying hydro-
statics is given by

.I C A .!D// R� CB .!D/ P� C C.t/� D 0 (2)

Where,

C.t/ D �g•GZ.t/

GZ(t) – Time varying roll restoring arm
!D D !n

p
1� �2 – Damped natural frequency, !n -natural frequency

� – Damping ratio



Importance of Accurately Modeling Nonlinear Damping in Predicting. . . 163

Note that in (2) the nonlinear viscous damping is not yet explicitly considered in
the roll equation of motion.

The righting arm of a vessel is generally approximated by a polynomial function
of the roll angle.

GZ D C1� C C3�
3 C C5�

5 : : : (3)

Here GM (metacentric height) of the vessel is given by slope of the GZ curve at
origin, If we linearize and neglect higher order terms (since they are important only
for large amplitudes of roll), then (2) becomes,

.I C A .!D// R� C B .!D/ P� C�GM.t/� D 0 (4)

If the time varying GM is modeled as

GM.t/ D GM0 C ıGM cos .!t/ (5)

Where, GM0-still water GM
Using the following transformation, Eq. (3) is converted into a non-dimensional

form,

� D !t; !D D
s

g�GM0

.I C A.!D//
; . /0 D d

d�

˛ D
�!D
!

�2
; � D ıGM

GM0

˛; � D B .!D/

.I C A .!D// ! (6)

d2

d�2
� C �

d

d�
� C .˛ C � cos .�// � D 0 (7)

With �D 0, Eq. (6) represents a typical Mathieu Type equation (undamped).
The Ince-Strutt diagram/Mathieu stability charts help determine the occurrence of
parametric vibration.

Hence by determining the GM variation in waves one can predict the occurrence
of parametric roll using the Ince-Strutt diagram. The method for developing Mathieu
Charts and effects of Damping are discussed in the next section.

4 Mathieu Equation and Stability Charts

Mathieu equation is extensively studied in the field of parametric vibration. Several
approaches are used to develop the stability charts. The range of validity of these
charts as expected is limited. Another method is called the Hill’s infinite determinant
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method can also be used to develop stability charts. These charts are very accurate
in the region where they are defined.

The standard Mathieu Equation with damping is given by

x00 C �x0 C .˛ C � cos .�// x D 0 (8)

In order to develop the Mathieu charts the solution (2  & 4 ) of the equation is
expressed as Fourier series,

x2
.t/ D a0 C
1X
nD1

.an cos .n�/C bn sin .n�// (9)

x4
.t/ D a0 C
1X
nD1

�
an cos

�n�
2

�
C bn sin

�n�
2

��
(10)

Substituting Eqs. (8) and (9) into Eq. (7) and setting the secular terms to zero we
get two matrices for each solution as given below.
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Neglecting the trivial case of a0Da1Db1 : : :D0, the determinant of the parametric
matrix (matrix containing˛ & � ) should be zero. This gives the relationship between
the parameters ˛ and � . The instability boundaries for various damping ratios are
shown in Fig. 1.
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Fig. 1 Ince-Strutt diagram for Mathieu’s equation with constant damping. The shaded region
indicates the unstable zone

As evident from the charts, the effect of damping is to elevate the curves from
the ˛ axis, thereby reducing the unstable region. In terms of energy one can imagine
damping tending to drain the energy from the excitation until the threshold energy is
reached to instigate parametric vibration. Hence one method of avoiding parametric
roll in ships would be to increase the damping.

The advantage of the chart above is that it can be used to study the parametric
instability of any dynamical system whose equation of motion can be modeled as a
Mathieu equation. This is so because the charts are not affected by the parameters
of the system under study. Depending on where the .˛; �/ pair falls in the chart, it
becomes trivial to predict parametric instability.

If the stiffness variation is not single frequency harmonic and sinusoidal
the system cannot be represented by a Mathieu equation. In such a case we
can always represent the time varying coefficient (stiffness for ships) as a
Fourier expansion. The resulting equation is called Hills Equation. Since the
formulation of the Hills equation depends on ship parameters, these charts give
a better prediction model. Our current and future work has concentrated on
studying the details of Hills equation and developing the corresponding stability
charts.
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5 GM Variation in Waves

5.1 Ship Details

As discussed in the previous sections modern container ships seem to be more
prone to parametric excitation. In order to develop realistic charts for prediction
it is necessary to use a model which has parametric instability. It has been shown
that post-Panamax C11 hull form exhibit parametric rolling (France et al. 2001).
Here a modified C11 hull form is analyzed. The stern of the hull is modified to have
fuller form, this model is named Pram aft body (MARIN Report No 17701-2-SMB,
2005). The main particulars of the vessel are shown in the Table 1.

The body plan of the modified C11 hull form is shown in Fig. 2. A 3D-wire
mesh model of the vessel is shown in Fig. 2. The fine underwater hull form and
wide flare above design draft is clearly evident from the wire mesh model. Such hull
characteristics are one of the main reason for drastic variation of the submerged hull
form and hence metacentric height. Hence ship stability in waves is a lot different
from static stability.

Figure 3 shows the variation of the submerged hull with wave crest at midship
and wave trough at midship.

Table 1 Main Particulars of
C11 Hull form (pram
aft body)

Parameter Value

LPP (m) 262.00
B (m) 40.00
D (m) 24.45
Mean Draught (m) 11.50
Displacement (tones) 69128.00
KG (m) 18.37
GMt (m) 1.96
Natural Roll Period ,Tˆ (s) 25.14

Fig. 2 Left-Body Plan of modified C11 Hull form (not to scale), Right- Wire mesh model of
modified C11 Hull
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Fig. 3 Change in underwater Hull form in waves of modified C11 Hull form. Left -Wave Crest
Midship, Right -Wave Trough Midship. Wave length D Ship LPP

5.2 GM in Regular Waves

In order to estimate the GM variation in regular waves, the roll restoring curve (GZ)
for 10 different wave crest positions along the ship are calculated. The slope of the
GZ curve at origin gives the GM. Standard hydrostatic software is used to obtain the
GM for different wave crest position. Calculations are done for zero forward speed
and free trim condition (hydrostatic balance). The details of the regular wave used
for estimation is given below,

Wavelength � D LPP D 262m
Wave Number D k D 2


�
D 0:024

For deep water the wave frequency is given by

!2 D gk; ! D 0:485 rad=s

The ship’s natural frequency of roll is given by

!n D 2

T�

D 0:25 rad=s

The damping ratio � D B.!n/

2.ICA.!n//!n 
 0:003

Hence !D 
 !n
Hence the parameter ˛ D 	

!n
!


2 D 0:265

Looking at the Mathieu Chart (Fig. 1) this value is very close to principal
parametric resonance zone .˛ D 0:25/. The value of metacentric height (GM) for
the wave crest at different position along the ship length is shown in Fig. 4.

A wave height equal to 1/40 of wave length is used to estimate GM, HW D 6.55 m.
The non-linear coupling effects of pitch and heave on the hydrostatics of the vessel
is neglected. Figure 4 depicts a form for the GM variation and hence can be
approximated into Mathieu’s equation. The comparison between the Mathieu fit
and actual GM is shown in Fig. 5. As shown by Spyrou et al. (2008) a case of cosine
fit of GM with a phase shift (Fig. 5) has a better fit. The phase shift used here is
 /8. The poor fit of the Mathieu approximation (even phase shifted) to the actual
GM variation is clearly evident. Hence, there is a need to use a method with which
we can approximate the GM variation more accurately. The Hill’s equation and the
corresponding stability charts could be a solution to this problem.
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Shift of  /8)

Considering Fig. 5, a more exact stability analysis of the equations of motion
has been undertaken. This analysis considers both the non-harmonic nature of the
variation in the roll restoring moment and the nonlinearity of the damping. The non-
harmonic nature of the ship roll restoring moment curve has been taken into account
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Fig. 6 Stability diagram for Hill’s equation with linear and non-linear damping (R0 is bounded
roll motion amplitude)

by considering the Hill’s equation in lieu of the Mathieu equation. The nonlinear
damping has been incorporated into the analysis by considering an equivalent linear
damping term into the Hill’s equation. Unfortunately the stability chart becomes
three dimensional and depends not only on the particular vessel but also upon the
amplitude of motion. An example of this more general stability chart is given in
Fig. 6.

6 Conclusions

The abrupt changes in the underwater hull of the vessel are one of the primary
reasons for the drastic change in stiffness of the vessel. The analysis carried out in
the paper clearly exhibits the usefulness of simple Ince-Strutt diagrams or instability
chart in predicting parametric roll of ships. The chart also demonstrates the implicit
dependence of the phenomenon on damping.

The ability of the charts to predict the bounded roll motion amplitude is perhaps
a feature so far not discussed. The effects of non-linear damping (which is important
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due to large amplitude motion due to parametric roll) which is to bound the motion
can be explained using these stability charts. Being able to estimate the bounded
roll motion amplitude can be very helpful in the initial design stage to study the
implications of parametric roll on the stability of the vessel.

The Hill equation tend to consider the time varying stiffness better in comparison
to a Mathieu and hence the use of a stability diagram for Hill’s equations would give
a much more accurate prediction of the occurrence of parametric roll especially
in higher instability zones. The charts can also be used to calculate the critical
frequency and the threshold wavelength which would initiate large amplitude rolling
motion.

The parametric stability of the vessel for different forward speeds can also
be predicted using these charts. The charts also enable the study of parametric
stabilization. For example by merely increasing or decreasing the speed of the vessel
we might be able to avoid parametric roll or worsen the situation by moving into a
more unstable region. These instability charts can act as a guide for crew onboard a
ship experiencing large amplitude motion in head/following sea in deciding whether
to increase or decrease the vessel speed and to what extent.

Hence apart from serving the purpose of a simple and practical tool for
parametric roll study during the initial design stage the Mathieu or Hill stability
charts can also be helpful during the operation of the vessel in a seaway.
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Practical Stability of Rotating Solutions
in a Parametrically Excited Experimental
Pendulum via Dynamical Integrity Concepts

Stefano Lenci, William Luzi, Enrico Venturi, and Giuseppe Rega

Abstract This paper aims at showing how global safety can be used to interpret
experimental results of a parametrically excited pendulum. The experimental
investigation shows that rotations exist in a region smaller than the theoretical
one, a discrepancy which has deeper motivations than the sole experimental
approximations. By comparing the experimental results with the dynamical integrity
profiles we understand that rotations exist only where a measure of dynamical
integrity, accounting for both attractor robustness and basin compactness, is enough
large to support experimental imperfections leading to changes in initial conditions.

Keywords Parametric pendulum • Rotating solutions • Experiments vs. theory •
Robustness • Dynamical integrity • Practical stability

1 Introduction

The extraction of energy from sea waves by means of a parametrically excited
pendulum is a potentially useful technological application of nonlinear dynamics,
which has been proposed at the beginning of this millennium (Wiercigroch et al.
2010). The basic idea consists of exploiting the rotations of a pendulum on a
pontoon undergoing a vertical motion induced by sea waves at a given (average)
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frequency. In addition to the rest position, the excitation produces oscillations and
rotations, which compete with each other. If one succeeds in getting robust rotations,
a generator applied to the pendulum pivot may provide electrical energy. While
being conceptually simple, this smart idea is quite difficult to be realized in practice,
so that to date it is still at an early stage. The aim of this work is to make a step
forward towards its practical implementation.

The investigations were first directed to obtain a fuller understanding of the
parametric pendulum nonlinear dynamics, by adding to generic studies (Koch
and Leven 1985; Szemplinska-Stupnicka et al. 2000; Garira and Bishop 2003)
researches with the energy extraction hidden in the background (Xu et al. 2005;
Xu and Wiercigroch 2007; Lenci et al. 2008; Horton et al. 2008; Lenci and Rega
2008). Both numerical (Szemplinska-Stupnicka et al. 2000; Garira and Bishop 2003;
Xu et al. 2005; Horton et al. 2008; Lenci and Rega 2008) and analytical (Xu
and Wiercigroch 2007; Lenci et al. 2008) studies were carried out. For a detailed
literature review we refer to the introduction of Lenci et al. (2008).

To complement the theoretical investigations, the experimental approach has
been developed in de Souza Paula et al. (2006), Blackburn et al. (1987). Focussing
attention to the experiments developed within the energy generation framework,
a shaker has been first used to provide vertical motion of the pivot (Xu et al.
2007). Successively, a pendulum-buoy prototype was put in a water channel at the
Centre for Applied Dynamics Research at Aberdeen University, and wave-induced
rotations and tumbling chaos were observed (Wiercigroch, M, private communi-
cation, 2007). Then, a systematic experimental campaign has been performed at
the Polytechnic University of Marche, Ancona, with the specific goal of detecting
rotations. The goal was challenging, since rotations have a small basin of attraction
with respect to competing attractors, so that they are very difficult to be realized
and maintained. Eventually we were successful with it, as discussed in the report
(Lenci et al. in preparation) on the experimental investigation which is referred to
for further details.

In the excitation frequency-amplitude parameters plane, rotations have been
found within a strip strictly contained within the region of theoretical existence.
Yet, in spite of many efforts, we were unable to enlarge this strip up to the whole
theoretical region. This paper aims at finding a theoretical justification of this
experimental evidence, and at enlightening on the apparent drawback, by using
dynamical integrity arguments.

Dynamical integrity consists of studying the robustness of attractors and the
safety of their basins in phase space. The basic idea, introduced earlier in Thompson
(1989), Soliman and Thompson (1989) and recently reconsidered in Lenci and Rega
(2008), Rega and Lenci (2005, 2008), is that stability is not enough for observing
attractors in real cases. In fact, if the basin of attraction is “small,” there is no hope to
observe experimentally the associated attractor, since even small (and unavoidable)
experimental uncertainties will certainly lead out of the basin of attraction.
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In this paper, after presenting the mechanical model (Sect. 2) and summarizing
the experimental results (Sect. 3), the dynamical integrity issue is discussed in
Sect. 4 via integrity profiles which are used to interpret and justify the experimental
observations.

2 The Mechanical Model

The dimensionless equation governing the planar motion of a pendulum (Fig. 1)
subjected to a vertical displacement y0(t) D �(A/l)cos[(2 f /!0)t] of its axis of
rotations is

R� C h P� C Œ1C p cos .!t/� sin � D 0; (1)

where A and f are the physical amplitude and frequency, respectively, of the
harmonic pivot motion, !0 D p

(g/l) is the natural pulsation (the natural frequency
is f0 D!0/2
), l is the nominal length of the pendulum, h is the damping coefficient,
!D 2
f /!0 D f /f0 and p D A!2/l.

3 Experimental Investigations

The experiments were conducted in the water channel of the Hydraulic Laboratory
of the Polytechnic University of Marche, Ancona (Fig. 2). A detailed description
of the setup and the experimental results is reported in Lenci et al. (in preparation).
Herein the main relevant aspects are summarized.

The pendulum consists of a PVC bar with an added steel mass at the end (Fig. 3).
It has l D 586 [mm], !0 D 4.090, f0 D 0.651 [Hz], it stands on a buoy made of
polyurethane (Fig. 3) and is inserted in an aluminium frame built over the water

rotation

oscillation

excitation

Fig. 1 A parametric
pendulum exhibiting
oscillation and rotation
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Fig. 2 Photograph showing the Ancona experimental setup where the pendulum system shown in
Fig. 3 below is excited by waves generated in a water tank

Fig. 3 (a) Design drawing and (b) photograph of the pendulum system

channel (Fig. 2). Attention was paid to the whole rig to guarantee that the pendulum
axis can move only vertically. The damping coefficient h D 0.015 was determined
experimentally.

The experimental campaign was based on the construction of several time
histories, obtained by measuring the pivot displacement and the pendulum rotation.
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Fig. 4 Time histories (a) of the pendulum pivot and (b) of the angular velocity for f D 1.2 [Hz]
(or !D 1.84) and a nominal amplitude of the waves imposed at the generator of 60 [mm]

A representative example is reported in Fig. 4. We can clearly distinguish the
following different phases.

1. At T Š 12 [s] the first travelling wave produced by the generator arrives at the
buoy.

2. From T Š 12 [s] to T Š 25 [s] the transient behaviour develops, with an increas-
ing amplitude, until, at T Š 25 [s], a steady state wave supports the buoy.

3. During the transient the operator manually brings the pendulum from the rest
position to the chosen initial position (first isolated peak in the time history of
Fig. 4b).

4. At T Š 33 [s], after the steady state waves have been set, the operator launches
the pendulum.

5. From T Š 33 [s] to T Š 75 [s] we have ‘regular’ pivot motion (Fig. 4a) and
pendulum rotation (Fig. 4b). This is the good part of the time histories, and it
is actually the sole one used for interpreting the pendulum dynamics.

6. At T Š 75 [s] the reflected wave arrives at the buoy, and suddenly destroys the
harmonicity of the pivot motion.

We aimed at detecting in the (!, p) parameters space the region where rotations
can be found experimentally, irrespective of their robustness, i.e. even if they exist
for just one single initial condition. With this objective, we spanned the frequency
range ! 2 [1.15; 2.30], and for each considered frequency we applied different
increasing amplitudes, paying a special attention to determine the lowest and highest
amplitude values where rotations can be found experimentally. The 34 considered
couples of parameters are reported in Fig. 5, where the region of existence of
experimental rotations is clearly seen to be a strip of finite magnitude, which shrinks
for low frequencies.
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Fig. 5 The behaviour chart, i.e. the map where rotations can be found experimentally

Each rotation point was repeated at least twice to assess its reliability. Further-
more, as regards the oscillation points, we tried several initial conditions before
deciding that rotations do not exist. Thus, strictly speaking, we cannot say that in
the oscillation points rotations do not exist, but only that we were not able to find
them, in spite of repeated attempts.

To better understand the experimental scenario it is necessary to compare it with
the theoretical behavior. For each excitation frequency, rotations appear by a saddle-
node (SN) bifurcation at a certain amplitude threshold pSN (Lenci and Rega 2008).
Then, they have an interval of existence and stability, which ends up with a period-
doubling (PD) bifurcation at pPD. This event triggers a period doubling cascade
ending with a boundary crisis at pBC, where rotations definitely disappear (Lenci
and Rega 2008). The curves pSN(!), pPD(!) and pBC(!) are also reported in Fig. 5.

The theoretical pSN
theor and experimental pSN

exp thresholds in Fig. 5 are seen
to share the same qualitative behavior, but the latter is significantly higher than
the former. This has various motivations. In fact, as previously said, the real
pSN

exp would be certainly lower, and closer to pSN
theor, if we would be able to test

many more initial conditions. Furthermore, the actual damping could be (slightly)
larger than that measured experimentally. This is likely to be a consequence of
aerodynamic dissipation during rotations which could rise to pSN

theor. Then, of
course, there are always experimental uncertainties which play some role. But
these are not the main motivations. In fact, in Sect. 4 it will be shown by global
dynamics arguments (Lenci and Rega 2008) that the theoretical threshold will never
be obtained even in extremely careful experiments, since it is not robust enough.

Concerning the upper threshold of stability pPD, we see that theoretically it is an
increasing function of !. We were able to experimentally detect this threshold for
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low excitation frequencies. As the wave frequency! increased, we reached the limit
due to the water channel characteristics, which is thus an experimental constraint.
But, as in the case of the lower bound, this is not enough to completely justify the
experimental results. In fact, we were not able to find rotations even for amplitudes
admitted in the water channel. Once more, this fact will be theoretically justified in
Sect. 4 in terms of dynamical integrity.

The main conclusions which can be drawn from Fig. 5 is that, above a certain
frequency threshold, experimental rotations have a well defined region of existence
in the parameters plane. This is smaller than the theoretical one but in any case
large and robust enough since it spreads over a ‘large’ frequency range, thus
being possibly able to account, up to a certain extent, also for wave frequency
modifications as they occur, e.g., in transients or sea waves.

4 Interpretation of Experimental Results
via Dynamical Integrity

Referring to Eq. (1), the key tool for understanding why the rotating solutions can be
practically observed only in a subset of the stability domain is the integrity profile,
i.e. a curve which reports how the integrity measure varies for increasing excitation
amplitude p. In this paper the safe basin (Rega and Lenci 2005, 2008) is the basin of
attraction of the clockwise rotating solution, and the considered measure of attractor
robustness and basin integrity is the Integrity Factor (IF), which is the normalized
radius of the largest circle entirely belonging to the safe basin (Lenci and Rega 2008;
Rega and Lenci 2005, 2008).

A representative integrity profile for !D 1.3 is reported in Fig. 6, where IF has
been normalized with respect to its maximum value (accordingly, the maximum
value of the curve is IF D 1).

For increasing amplitude p, we can clearly identify the following succession of
events and properties.

• At p D pSN Š 0.0476 the rotation appears through a SN bifurcation. This is the
starting point of the integrity profile of period 1 rotation.

• Just after the attractor is born, its basin of attraction enlarges around it;
accordingly, the integrity profile increases.

• At p D p6 Š 0.080 a rotation of period 6 (the velocity has a period which is 6
times that of the excitation) appears, by means of a SN bifurcation, inside the
basin of attraction of the main rotation. This entails an instantaneous decrement
of the compact part of the safe basin, and the associated sudden reduction of
its IF.

• Soon after being born, the period 6 rotation undergoes a classical PD cascade,
and disappears at about p Š 0.090, likely by a boundary crisis. The former basin
of attraction of the disappearing solution is (re)captured by the main rotation,
which in fact increases its robustness and recovers (and slightly increases) the
former IF.
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Fig. 6 The integrity profile of period 1 rotation for h D 0.015 and !D 1.3

• At p D p5 Š 0.100 a period 5 rotation appears, again by a SN bifurcation and
again inside the basin of attraction of the main rotation. Since the period 5
rotation is more robust than the previous period 6 rotation, there is a larger fall
down of the integrity profile.

• Like the period 6 rotation, also the period 5 rotation undergoes a classical period
doubling cascade and disappears at about p Š 0.110 by a boundary crisis. The
former basin of attraction of the disappearing solution is partially recaptured by
the main rotation, which slightly increases its IF up to a value which is however
well below the value before the sudden fall. This is due to the fractalization
occurring for increasing p, which erodes from outside the compact part of the
basin of the main rotation, thus smoothly decreasing its IF.

• In the p-range 0.130 � 0.140 there is another phenomenon like the two just
described, which entails a sudden reduction of IF and a subsequent recovery.

• At p D p3 Š 0.190 a period 3 rotation appears by a SN bifurcation inside the
basin of attraction of the main rotation. It is more robust than the previous period
6 and 5 rotations, and accordingly there is a large decrement of IF. The sudden
decrease due to the period 3 rotation was also observed in Lenci and Rega (2008)
for h D 0.1, while the other minor attractors were not present in that case.

• The period 3 rotation has an interval of existence and stability which is larger than
that of the period 6 and 5 rotations, but it is in any case small. Thus, it suddenly
disappears and leaves the main rotation, which has however a merely residual
IF, since the disappeared attractor had previously tangled with the surrounding
fractal part, so that integrity is definitely lost.
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• After p Š 0.200 the dynamical integrity is residual. The basin of attraction is
definitely small and almost completely eroded.

• At p DpBC Š 0.369 the path ensuing from the rotation solution, which previously
underwent a period doubling cascade, disappears by a boundary crisis. This is
the last point of the integrity profile.

For the purpose of interpreting Fig. 5, the main property of Fig. 6 is that the
IF of the period 1 rotation is high only in the central part, where the attractor
is relatively robust and its basin is substantially uneroded. It is clear that out of
this central part the dynamical integrity is marginal (a small and eroded basin),
and thus the attractor cannot be observed in practice. This provides the theoretical
justification for experimentally observing rotations only in the central strip of the
excitation amplitude range.

This justification is not limited to the case !D 1.3, since (not reported) integrity
profiles built for different values of the excitation frequency share the same
qualitative properties.

It is worth to remark that, looking at the dynamical integrity, not only we
understand why we have not observed rotations for large excitation amplitudes,
which is somehow expected, but also why we have not observed rotations for
excitation amplitudes just above the SN bifurcation, which is much less intuitive.

It is useful to stress out the importance of secondary attractors, which variously
affect the reduction of robustness of the main attractor and/or of integrity of its basin.
They are completely lost by a local analysis, also of path-following or brute force
bifurcation type, and this further stresses the importance of a global analysis for a
modern and reliable approach to system dynamics.

The previous considerations provide a qualitative justification of the experimen-
tal results. To proceed with a quantitative comparison, we report in Fig. 7 the contour
plot of IF(p, !) together with the experimental points of Fig. 5. The contour curves
are partially smoothed for graphical reasons.

Figure 7 shows that for ‘low’ excitation frequencies, say ! < 1.6, the experimen-
tal points are on the ‘plateau’ of high IF (see the light gray region of Fig. 6). It is
particularly remarkable that the PD points are just after the sudden fall of IF, which
therefore can be considered, up to the experimental approximation, as the upper
practical threshold for the existence of rotation. Note that it corresponds to the onset
of period 3 rotations, p3, and only global safety arguments show why it constitutes
an upper limit for main rotations: above, the dynamical integrity is marginal, and
there is no hope for the relevant region to be observed experimentally.

In this range, the bottom curve pSN
exp seems to follow the minor fall after the

first peak of the integrity profile, i.e. it approximately follows the boundary between
the dark and the light gray of Fig. 6. The fact that it is not below, at least in
correspondence of the principal peak, is likely due to experimental approximations.

For ‘large’ values of excitation frequencies, say ! > 1.6, the experimental points
are clearly around the main ridge of IF, which is a definitive confirmation that only
rotations with large dynamical integrity can be practically observed. The fact that for
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Fig. 7 The contour plot of IF(p, !) and the experimental data. Square D oscillations, trian-
gles D rotations and circles D rotations of period 2. The value increases from dark to light gray

‘very large’ !, say ! > 2.2, the points no longer follow the ridge is a consequence
of the fact that in he experiment the amplitudes have a technical upper bound which
cannot be overcome.

The bottom curve pSN
exp now approximately stands on a contour level of IF,

showing the minimal dynamical integrity necessary for the onset of experimental
rotations.

5 Conclusions

An experimental apparatus to simulate the production of energy from sea waves
has been built at the Polytechnic University of Marche, Ancona, Italy. An extensive
experimental programme has been undertaken, showing that main rotations of the
pendulum are possible only in a strict subset of their theoretical region of existence
and stability.

With the aim of justifying this experimental evidence, the dynamical integrity
of the pendulum has been systematically investigated, showing that the generic
integrity profile suddenly increases after appearance of the associated attractor.
The successive onset of a number of secondary, highly periodic rotations sud-
denly reduces the basin of attraction of the main rotation, so that the integrity
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profile suddenly falls down. Although the main attractor may sometimes regain its
robustness, the fractalization induced by the secondary attractors with increasing
excitation amplitude generally entails a non-recoverable loss of basin compactness,
which corresponds to a decrease of the IF measure down to a marginal value.

Comparing the numerical integrity profiles with experimental data we have found
that the latter occur in ranges of solely high integrity, thus permitting to understand
why rotations are not observed elsewhere, namely where the dynamical integrity is
not enough to sustain experimental imperfections and guarantee practical stability
of rotations.

The main conclusion is that the experimental results are theoretically fully
justified, up to the experimental uncertainties. Furthermore, this paper constitutes
an experimental proof of the Thompson’s (1989; Soliman and Thompson 1989) and
authors’ (Rega and Lenci 2005, 2008) idea that local stability is not enough for
practical use, and must be complemented with the analysis of global safety.
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Dynamics, Synchronization and Control
of Parametric Pendulums

Anna Najdecka, Vahid Vaziri, and Marian Wiercigroch

Abstract In this work the dynamics and synchronization of the coupled parametric
pendulums system is examined with a view to its application for wave energy
extraction. The system consisting of two parametric pendulums on a common
support has been modeled and its response studied numerically, with a main focus on
synchronized rotation. Different methods of controlling the response the pendulums
have been introduced and compared. Numerical results have been verified in
experimental studies.

Keywords Parametric pendulum • Synchronization of pendulums • Delayed
feedback control

1 Introduction

The concept of parametric pendulum application for wave energy extraction has
been proposed by Wiercigroch, where a vertical wave motion of the parametric
pendulum is transformed to a rotation of a shaft. The dynamics of the pendulum
regarding this application has been extensively studied by Xu et al. (2005) and
by Horton et al. (2008). A floating structure containing the pendulum, would be
subjected not only to the excitation originating from the sea waves but also re-
action forces related to the rotating pendulum acting on the pontoon. Therefore the
real system for energy extraction would consist of multiple pendulums, so that the
forces associated with single pendulums acting on the pontoon compensate each
other, resulting in a stable structure. The dynamical behavior of a system consisting
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of at least two coupled oscillators under common excitation needs to be studied.
The main interest of this study lies in examining the synchronization phenomena,
as the target state for energy extraction is to achieve synchronized counter rotating
motion of pendulums.

2 Physical and Mathematical Modeling

The system considered in the first stage of the study consists of the two pendulums
mounted on the commonly excited flexible supporting structure. It has been modeled
as a four-degree of freedom system illustrated at the Fig. 1, where x and y denote the
displacement of the structure in horizontal and vertical direction, �1 and �2 describe
the angular displacement from the downward zero position. Synchronized state
can be achieved due to coupling effect of the elastic base, capable of transmitting
vibrations between the pendulums. The forcing of the harmonic nature has been
applied in the horizontal and vertical direction (approximating the movement of the
sea waves). For such an arrangement of the pendulum the whole problem can be
treated on the x, y plane. After nondimensionalisation with respect to the natural
frequency the equations of motion for the two pendulums are given by:

� 00
1 C x00 cos �1 C 	

1C y00
 sin �1 C ���
0
1 C e1 D 0

� 00
2 C x00 cos �2 C 	

1C y00
 sin �2 C ���
0
2 C e2 D 0 (1)

where �� denotes the damping on the pendulum shaft and e1, e2 are the nondimen-
sionalised energy extraction terms, corresponding to the loading torque, which can
be applied on the rotating shaft. The external forcing is applied at the base. Initially
purely vertical forcing has been considered, i.e. px D 0. The parametric excitation
terms x00, y00 included in the above equations are described by the equation of motion
of the flexible supporting structure:

Fig. 1 Model of the two
pendulums system under
parametric excitation
(Adopted from Yokoi et al.
(2009))
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x00 C �xx
0 C ˛xx C a

�
� 00
1 cos �1 � � 0

1
2 sin �1 C � 00

2 cos �2 � � 0
2
2 sin �2

�
D 0

y00 C �y
	
y0 C py! sin.!�/


C ˛y
	
y � py cos.!�/




C a
�
� 00
1 sin �1 C � 0

1
2 cos �1 C � 00

2 sin �2 C � 0
2
2 cos �2

�
D 0 (2)

where all the system parameters are nondimesional. �x and �y are the damping
coefficients in horizontal and vertical direction respectively, ˛x and ˛y are the stiff-
ness coefficients, py the forcing amplitude, ! is the forcing frequency, � is the
time, a is a mass ratio. The relation between the pendulums equations is not given
explicitly. It exists through x00 and y00 terms, which depend on both �1 and �2. In this
case, all of the above equations are mutually coupled.

3 Numerical Results

The response of the aforementioned system has been simulated with MatLab, using
the set of parameters corresponding to the experimental rig, used for the further
studies. The non-dimensional values of the system parameters are given by: ˛x D
7:8808, ˛yy D 23:4398, �� D 0:0121, ˛x D 118; 1:3961, ˛y D 463; 292:5726, and
a D 0:0540. The forcing parameters have been chosen according to the limitations
of the experimental rig, with py ranging from 0.0127 to 0.0929 and ! from 1:0360

to 3:1250. The pendulums systems can experience a variety of responses. For small
forcing level it is equilibrium point in zero position, when increasing the forcing,
oscillations, rotations and finally chaotic motion appear. Several types of synchro-
nized motion have been observed, including oscillations, rotations, and rotations of
one pendulum synchronized in phase with the oscillations of the second one. The
some of the responses have been show at the Fig. 2. The pendulums have a natural
tendency to synchronize with each other through the external force. However,

Fig. 2 Numerical phase diagrams showing different types of synchronized motion of the two
pendulums. (a) Synchronized period one rotation, (b) synchronized period two rotation, (c) rotation
of pendulum 1 synchronized with the oscillation of pendulum 2
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only very specific initial conditions result in synchronized rotational response. For
the majority of initial conditions the steady state responses will be oscillations.
Therefore to achieve the target state of synchronized rotation controlling algorithm
is necessary with the primary function of initiating rotational responses.

4 Experiments

The experimental studies have been carried out in the Centre for Applied Dynamics
Research at the University of Aberdeen. In the experimental studies the harmonic
excitation of the system has been provided by the electromagnetic shaker, model 806
LS by Ling Dynamical Systems Ltd. In the first step the system forced with only
vertical excitation has been considered. The two pendulums system has been fixed
on the shaker and using LabView the response of the system has been observed for
different initial conditions and varying frequency and amplitude. The experimental
setup is shown at the Fig. 3.

5 Control Methods

A robust control algorithm is necessary to both start up the rotational motion and
then to maintain the synchronized rotation state irrespective of changes in the ex-
citation. Therefore the control function can be divided into two steps, initialization

Fig. 3 (a) Experimental rig. Experimentally observed synchronized counter-rotation of pendulum
1 (black) and 2 (gray), for ! D 2, py D 0:07; (b) phase diagram, (c) angular displacement of
pendulum 2 as a function of the displacement of pendulum 1
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Fig. 4 Initialization of the rotation of a single pendulum using the bang-bang method (multi-
switch). Control signal and angular displacement plotted against time (experimental results)

of the desired motion and its maintenance. Different methods of control have
been discussed and applied numerically and experimentally. In the experimental
study the controlling action is performed by two servo-motors attached to the
pendulums shafts, working alternating as a motor, to provide the torque necessary
to initiate rotational motion or to synchronize the two pendulums. Once the motion
is stabilized it can act as a generator extracting energy form the rotating shaft. In the
experimental conditions the limitations of the driving motor need to be taken into
account while choosing the control method.

5.1 Bang-Bang Method

The simplest method for initiating the rotational motion of the pendulum is bang-
bang control. In this method the constant magnitude signal is used to initiate
the rotation. If the maximum power of the motor is not sufficient for achieving
rotational motion directly, multi-switching control needs to be applied to swing up
the pendulum, where the control signal is given by:

ui D ki sgn.�i /I (3)

where ui is a control signal ki is the signal gain and is the control variable
representing angular velocity of i-th pendulum. The motor is providing the torque in
two directions: clockwise and anticlockwise, so that irrespective of the direction of
pendulum swing, the action of the motor amplifies the amplitude of the oscillation
until the pendulum rotates. In this method the critical point is the switch off time
for the motor. Immediate setting the control signal to zero once the first rotation is
achieved does not guarantee stabilization of this motion. The position and velocity
of pendulum at the switch off time need to belong to the rotational attractor, so
that the stable rotation can be maintained (Fig. 4). Therefore the knowledge of the
structure of the basins of attraction for particular forcing parameters is required so
that the switch off point can be determined accurately in each case. This makes the
method difficult to implement.
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5.2 Velocity Comparison

To solve the problem of the bang-bang method, a second method has been proposed.
In this method, the velocities of the two reference points have been compared with
the known velocities of the corresponding point on the desired orbit. �
 and 0
has been chosen as the reference points and the velocities there compared with the
period one rotational orbit. For an angular displacement of the pendulum between
�
 and 0, the difference between the previous velocity of pendulum at the zero
point and the velocity expected there was applied as a control signal, between 0 and

 the difference between the previous velocity of the pendulum at � D 
 and the
velocity expected there was applied:

ui D ki . P�i.�D0/ � � 0
i.�D0// if �
 < �i < 0

ui D ki . P�i.�D
/ � � 0
i.�D
// if 0 < �i < 
 (4)

where P�i.�D0/ and P�i.�D
/ are the velocities of the particular pendulums at the zero
point and at 
 , while � 0

i.�D0/ and � 0
i.�D
/ are the velocities for period one rotation at

the zero point and at 
 . In the experiments due to the limitations of the motor the
control method has been modified. The multiswitch approach has been applied to
use more efficiency the power of the motor. The modified control signal is given by:

ui D ki sgn. P�i /. P�i.�D0/ � � 0
i.�D0// if �
 < �i < 0

ui D ki sgn. P�i /. P�i.�D
/ � � 0
i.�D
// if 0 < �i < 
 (5)

5.3 Delayed Feedback Control

The continuous method, so-called delayed feedback control, has been proposed
by Pyragas (1992). In this method the system can be stabilized by a feedback
perturbation proportional to the difference between the present and a delayed state
of the system. The delay time can be determined from the period of the forcing. The
period of stable period n-rotation of the parametric pendulum needs be a n-multiple
of the period of excitation, where n is a natural number. As period one rotations are
of most interest for this study n D 1 and therefore the delay time equals to the period
of excitation t D � . The angular displacement for period one rotation increased 2

for each forcing cycle, therefore the control signal is given by:

ui D ki .�i .t � �/� �i .t/C 2
/: (6)

Once the pendulum stabilizes on the period one rotational orbit the control signal
automatically goes to zero. This method is capable of initiating period one rotation
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Fig. 5 Experimental results showing angular displacements of the two pendulums without (a) and
with delayed feedback control (b) while changing the excitation frequency form 2.9 to 1.3 Hz (c)
and control function over time (d)

from all initial conditions, if only such an orbit exists for the system parameters.
Additionally, the delayed feedback method can be applied to maintain the rotational
motion while parameters of the forcing are varied. Figure 5 shows the difference in
the responses of the system with and without control, while the forcing frequency
was rapidly decreased. In Fig. 6 the response with the control has been simulated
numerically. Both numerical and experimental results show that the pendulums with
the delayed feedback control applied remain completely synchronized in antiphase
irrespectively of the parameter change. A jump in the control signal value for the
frequency around 1.5–1.3 was observed both numerically and experimentally.

5.4 Synchronization

One of the methods to synchronize the two pendulums is an application of the two
independent delayed feedback controllers of rotational motion. Once the pendulums
rotate, their phases lock as the transient time elapses and remain locked as long as
the rotational motion is maintained (Fig. 5). Another approach to synchronizing and
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Fig. 6 Numerical results showing the response of the system with the delayed feedback control
applied for the frequency changing in the range 2.9–1.3 Hz. (a) Synchronized response of two
pendulums in terms of their angular displacements, (b) the forcing frequency, (c) control signals,
(d) response of the base (vertical oscillation)

controlling the system is to make use of the interactions between the two pendulums
and use the information about the state of one of them as a control input for the
second one. The idea is to apply a delayed-feedback control to maintain the rotation
of one of the pendulums and synchronize the second pendulum with the first one.
The velocity difference between the driving and driven pendulum has been used as a
second control input. By this control algorithm the pendulums are coupled according
to the master-slave scheme, where the ‘slave’ pendulum is forced to synchronize
with the ‘master’ and supplied with following control signal:

ui D ki . P�1.t/ � P�2.t//: (7)

The numerical results showing initialization of the synchronized rotation with
this method are shown in the Fig. 7.

6 Conclusions

In this study it has been found that the most dominant response of the system
consisting of two pendulums coupled by a common base is a synchronized motion.
The synchronisation in anti-phase rotation of the two pendulums can be relatively
easy to control and several control methods have been proposed. It has been shown
that the synchronized rotation can be maintained with both with two dependent and
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Fig. 7 Numerical results showing the initialization of synchronized rotation for py D 0:07,
! D 2. (a) Angular displacements of pendulum 1 (black) and pendulum 2 (red), (b) control signals
u1 (violet) and u2 (orange)

independent controllers. Investigating their efficiency is a scope of further study,
where the optimal control strategy minimizing the energy input is to be developed.
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A Combined Semi-analytical and Experimental
Approach for Multiphysical Nonlinear MEMS
Resonators

R.M.C. Mestrom, Rob H.B. Fey, K.L. Phan, and H. Nijmeijer

Abstract A combined semi-analytical and experimental approach is proposed for
predictive modelling of the nonlinear dynamic behaviour of microelectromechanical
resonators. The approach is demonstrated for a clamped-clamped beam resonator,
for which the mechanical, electrical, and thermal domains are relevant. Multiphysics
modelling is applied, based on first principles, to derive a reduced-order model of
the resonator. A qualitative correspondence between numerical and experimental
steady-state responses has been obtained. Depending on the excitation values, both
simulations and experiments show hardening and softening nonlinear dynamic
behaviour. Since the model captures the observed experimental behaviour, it can be
used to optimize the resonator behaviour with respect to nonlinear dynamic effects.

Keywords Nonlinear MEMS resonators • Multiphysics modelling • Simulation
vs experiments
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1 Introduction

During the past two decades, there has been strongly increasing attention for
development of microelectromechanical systems (MEMS), because they can be
easily integrated in electronic circuits due to their small size and their fabrication
process, which is compatible with IC technology. Moreover, in general they offer
much lower dissipation levels than their fully electronic component counterparts,
resulting in lower noise sensitivity and lower power needs. An important class of
MEMS components are MEMS resonators. These find wide application, e.g. in
oscillator circuits for timing devices (Nguyen 2007), in sensors, in switches, in
filters, and in micro-mirrors.

In order to avoid costly trial-and-error prototyping of MEMS devices, it is
desired to have accurate predictive modelling and analysis tools available for the
devices in the design and optimisation stage. Scaling effects in MEMS cause the
models to be intrinsically multiphysical of nature. Often, the mechanical, electrical,
thermal, and fluidic domains are intertwined. Additionally, due to their limited
energy storage capability, MEMS devices are often driven into nonlinear regimes
to obtain signals with good signal to noise ratios. Therefore, it is essential to take
nonlinear behaviour into account, which may be caused by various effects from the
involved domains (Kaajakari et al. 2004; Mestrom et al. 2008). Multiphysics finite
element modelling may be used, but in general, this is less appropriate for carrying
out extensive parameter studies, due to high model dimensions.

In this paper, a combined semi-analytical and experimental approach will be pro-
posed for fast and accurate predictive modelling of MEMS devices. The approach
will be demonstrated on a specific MEMS device, namely a clamped-clamped
beam MEMS resonator. The approach extends lumped modelling efforts (Kaajakari
et al.2004; Shao et al. 2008) to a first-principles based approach. Such an approach
has been described in, for instance, Younis et al. (2003) (simulations only). The main
benefit of this modelling approach is that the derived model is much more suitable
for parameter studies and optimisation, since physical and geometrical parameters
will appear in the model explicitly.

The outline of the paper is as follows. First, the MEMS resonator that is used for
the case study will be introduced in Sect. 2. Next, the modelling approach will be
explained in Sect. 3. Numerical and experimental results will be presented in Sect. 4
and the paper will be concluded in Sect. 5.

2 MEMS Resonator

In this work, an electrostatically actuated clamped-clamped beam MEMS resonator
is under investigation. A schematic representation of the resonator is depicted in
Fig. 1. The resonator beam has a length of l D 47:75 �m, a width of h D 4�m
and a of b D 1:4 �m (out-of-plane). The electrode gaps (of electrodes 1 and 2) are
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Fig. 1 Schematic layout of the clamped-clamped beam resonator
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Fig. 2 Schematic model of the clamped-clamped beam resonator. (a) Schematic layout. (b) Beam
dimensions and deflection. (c) Distributed electrostatic load.

d1 D d2 D 342 nm. A more detailed schematic of the model will be given in Fig. 2
in Fig. 2 in Sect. 3. The characteristic flexural vibration shape of the beam is depicted
by the dashed lines. The resonator is actuated by a dc (Vdc) and an ac (Vac) voltage
component, which are applied to the electrodes of the resonator by means of bias
tees. During measurements, the resonator is located in a vacuum chamber (pressure
p D 4:6 � 10�4 mbar). The steady-state dynamic behaviour of the resonator is
investigated by measuring the resonator output voltage Vout as a function of the ac
excitation frequency f . From the peak-to-peak values of Vout during a (stepped)
sweep-up and sweep-down in frequency, an amplitude-frequency curve can be
constructed. Voltage Vout results from capacitive detection of the resonator motion
and is related to the clamped-clamped beam flexural displacement and velocity, as
will become clear from Sect. 3. The resonators are fabricated using Silicon-On-
Insulator (SOI) wafers. For more details on the fabrication process, see Mestrom
et al. (2008).
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3 Modelling

The semi-analytical modelling approach for the MEMS resonator is based on
first-principles descriptions (partial differential equations (PDEs) and functional
relations) of relevant effects in three physical domains. Since the resonator is
operated in vacuum, the fluidic domain will not be included. The model will contain
effects from the mechanical, thermal, and electrical domain. In the next two sections,
the model of the MEMS resonator and its implementation as a reduced-order model
will be described, respectively.

3.1 Model of the MEMS Resonator

A detailed representation of the clamped-clamped beam resonator is depicted in
Fig. 2. The schematic layout of the resonator depicted in Fig. 2a is the same as given
in Fig. 1. Dimensions and the transverse displacement of the beam are depicted in
Fig. 2b and the distributed electrostatic force qe, acting on the beam, is shown in
Fig. 2c. For the MEMS resonator considered in this work, the width-to-length ration
h=l (see Sect. 2) is such that shear deformation may play a role. Therefore, Tim-
oshenko beam theory will be used (Timoshenko 1921), which includes both shear
deformation and rotary inertia. By using this theory, the transverse displacement
w.x; t/ and shear deformation '.x; t/ can be described by two coupled PDEs:
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where x denotes the coordinate along the beam length, see also Fig. 2a. Furthermore,
	 is the mass density, A D bh and I D bh3=12 denote the area and the area
moment of inertia, respectively, E is Young’s modulus, G is the shear modulus,
ks D .5 C 5�/=.6 C 5�/ is the shear correction factor (Kaneko 1975), where �
is Poisson’s ratio. The term with

R
. @w
@x
/2dx in (1a) denotes midplane stretching of

the beam, resulting in cubic stiffness terms. This will yield a hardening nonlinear
effect, see for instance (Kaajakari et al. 2004). Furthermore, the terms MT and NT

are related to thermoelastic damping and couple (1) to the temperature distribution
(or thermal field) �.x; z; t/ through:

MT D E˛b

Z h
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� h
2

z�dz; NT D E˛b

Z h
2

� h
2

�dz; (2)
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where ˛ is the thermal expansion coefficient and z is the coordinate across the beam
width. The heat equation, which describes the thermal field of the beam, is derived
from general thermoelasticity theory (Boley and Weiner 1960). The resulting heat
equation is in line with results from Lifshitz and Roukes (2000) and Zener (1937)
and reads:
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where cp denotes the heat capacity per unit volume, k is the thermal conductivity,
and where T0 is the equilibrium temperature. Thermal variable � denotes the
temperature difference with respect to T0.

For the distributed electrostatic load, qe in (1a), first-order fringing field correc-
tion (Osterberg and Senturia 1997) is included. The load is given by:

qe D "0bV
2
1 .t/

2.d1 � w/2

�
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� "0bV
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�
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d2 C w

b

�
; (4)

where "0 denotes the permittivity of vacuum and where the voltages on the
electrodes (see Figs. 1 and 2a) are given by:

V1.t/ D Vdc C Vac sin.2
f t/ and V2 D Vdc: (5)

Equation (4) corresponds with recently reported work on an electrostatically
actuated microbeam (Krylov 2007). It is known from literature (Kaajakari et al.
2004; Mestrom et al. 2008) that electrostatic actuation causes softening nonlinear
behavior.

Finally, boundary conditions for the mechanical PDEs (1) and the thermal
PDE (3) correspond to clamped edges and insulated boundaries, respectively, and
are given by:

w D 0; ' D 0 at x D 0; l ; and
@�

@z
D 0 at z D ˙h

2
: (6)

Several dissipation mechanisms can be present in MEMS resonators. Fluidic
loss mechanisms (such as squeeze film damping or viscous drag) are considered
to have negligible influence, since the resonators are operated in vacuum. Next to
thermoelastic damping, anchor loss is included in the resonator model, since the
MEMS resonator is clamped at two edges. In the current model, anchor loss will
be accounted for by means of an effective Q-factor. The amount of dissipation
in a structure can be expressed by means of a total mechanical quality factor
Qtot (Tilmans et al. 1992):

Qtot D 2

W

�W
; (7)

where W equals the total energy stored in the resonator and �W is the total
energy dissipated per cycle of vibration. All loss mechanisms contribute to the total
energy dissipated. Under the assumption of linear dissipation effects, the principle
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V1 V2

C2C1

i2

YcYa

Yb

resonator

Fig. 3 Measurement circuit for the MEMS resonator containing parasitic effects

of superposition holds for individual Q-factors. By introducing quality factors Qi ,
attributed to each loss mechanism,Qtot then becomes:

1

Qtot
D 1

Qa
C 1

Qth
; (8)

whereQa andQth denote the quality factors related to anchor loss and thermoelastic
damping, respectively. In Hao and Xu (2009), 2D elastic wave theory has been
applied in order to derive an analytical estimate of the anchor loss. In the theory,
elastic waves are assumed to radiate into an infinite substrate. By applying this
theory, an estimate of Qa D 120 is found. From experiments, see Sect. 4, this value
is found to be much too low. This is believed to be caused by the fact that the
current resonator layout does not correspond well with the one analysed in Hao and
Xu (2009) and by wave reflections in the anchors. For this reason, tuning freedom
will be allowed for Qa in the model.

Furthermore, the effect of thermal noise is taken into account. In every electrical
system, thermal agitation of the electrons inside electrical conductors forms a source
of noise. This noise is called Johnson-Nyquist or thermal noise (Nyquist 1928). The
expression for the root mean square (rms) of the noise voltage vn generated in a
resistor is given as Nyquist (1928):

vn D
p
4kBTR�f ; (9)

where kB denotes Boltzmann’s constant, T denotes absolute temperature, R is the
resistor value, and�f is the bandwidth, in which the noise is measured. An estimate
for the thermal noise can be found by using the resonator motional resistance Rm

for the resistor value R in (9). This will become clear in Sect. 4.
As indicated in Sect. 2, the motion of the resonator is sensed capacitively and

transformed to an output voltage Vout. This is done using the measurement circuit
around the resonator as depicted in Fig. 3. The resonator is depicted in the gray
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circle. From an electrical point of view, it can be considered as a pair of varying
capacitors C1 and C2, denoting electrode gaps 1 and 2, respectively, see also (4).
Voltages V1 and V2 are given in (5). Admittances Ya, Yb, and Yc have been included
in a ˘ -network around the resonator, in order to describe the response of the
parasitics in the circuit. In general, each of these admittances can be written as
a parallel combination of a resistor and a capacitor. Therefore, the admittances
become:

Yi D 1

Ri
C j!Ci ; i D a; b; c: (10)

Note that this is a mathematical description, based on a resistor and capacitor
in parallel, which may result in negative resistance or capacitance values. If this
happens, a representation using a series combination of a resistor and a capacitor
would be physically more appropriate.

Only parasitics Yb of the circuit in Fig. 3 contribute to the measured response Vout.
Parasitics in Ya do not influence the output at port 2 and only a single electrode of
the resonator—variable capacitorC2—is used for output measurements. In addition,
at port 2, a bias tee is present to decouple the dc component from the output current
i2 (hence, Yc does not influence Vout). As a result, the ac part of the output current i2
can be found using Kirchoff’s current law and equals:

i2 D V1 � V2
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dt

� d.C2V2/

dt
: (11)

Using (5) gives:

i2 D Vac
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f t/C 2
f VacCb cos.2
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: (12)

The capacitance C2 depends on the resonator deformation w. Similar as in the
electrostatic distributed force qe (4), first-order fringing field effects are included,
giving:
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By elaborating the time derivative of C2, the output current (iout D i2) of the
resonator becomes:
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which is measured on a 50˝ resistor R50. Therefore the measured output voltage
equals:

Vout D R50 iout: (15)

3.2 Reduced-Order Model

The total model of the MEMS resonator under consideration is formed by the PDEs
describing the transverse deflection and the heat equation (1)–(5), together with
the associated boundary conditions (6) and the anchor loss dissipation mechanism.
Galerkin discretisation (Meirovitch 2001) will be applied to arrive at a reduced-
order model for the PDEs. In this weighted residual technique, the solution to the
PDEs is assumed to be in the form of a linear combination of trial functions that
satisfy the boundary conditions a priori. The method can also be applied to nonlinear
systems, both conservative and non-conservative.

For the reduced-order model, the transverse deflection w.x; t/, the shear defor-
mation '.x; t/, and thermal variable �.x; z; t/ can be written as summations of n
basis functions (modes):

w.x; t/ D Pn
iD1 qi .t/Wi .x/; (16)

'.x; t/ D Pn
iD1 pi .t/˚i .x/; (17)

�.x; z; t/ D Pn
iD1 ri .t/�i .x; z/; (18)

where qi.t/, pi .t/, and ri .t/ denote time-dependent generalised coordinates and
Wi.x/, ˚i.x/, and �i.x; z/ are spatial basis functions. Undamped eigenmodes are
used as spatial basis functions for the mechanical part (1), see also (Han et al. 1999).
For the thermal field, basis functions�i.x; z/ have been derived from the linearized
version of (3) in a similar way as presented in Lifshitz and Roukes (2000).
An overview of the expressions for the basis functions is presented in Table 1.
Furthermore, only symmetric modes will be used for Galerkin discretisation, since
the electrodes of the resonator span the whole beam length. This translates to
i D 1; 3; 5; : : : in Table 1.

After the application of Galerkin discretisation, a set of nonlinear coupled ordi-
nary differential equations (ODEs) in the time-dependent generalised coordinates
pi , qi , and ri is obtained. This set of ODEs is solved using dedicated numerical
techniques, available in the package AUTO97 (Doedel et al. 1998). This package
can be used to calculate branches of steady-state periodic solutions for varying
excitation frequency f . In addition, it calculates the local stability of these solutions
and detects local bifurcation points on these branches. In this way, numerical
amplitude-frequency curves can be determined for the MEMS resonator.

As explained before, two dissipation mechanisms are included in the model.
Thermoelastic damping is included intrinsically, through the mutual coupling
between the structural and heat PDEs. Quality factor Qth can be obtained from the
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Table 1 Spatial basis functions for the fields w, ', and �

Function Expression
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physical and geometrical parameters of the system. Secondly, an effectiveQ-factor
Qa accounts for anchor loss in the reduced-order model. Its value will be determined
from experiments, since a theoretical derivation of Qa was too low. Subsequently,
using (8), the total Q-factorQtot can be determined.

Preliminary simulations have been performed to determine the number of basis
functions needed to describe the dynamic response of the system accurately. For the
MEMS resonator considered, a single-mode discretisation for each field has been
found to be sufficient to accurately describe the dynamic response in the frequency
range of operation, i.e. near the first harmonic resonance peak.

4 Results

A series of experiments has been performed in order to validate the simulation
model derived in the previous section. Physical parameter values for the model
have been obtained from literature (evaluated at a temperature of T0 D 300K).
These are listed in Table 2. Geometrical and other parameter values are also listed
in Table 2. With respect to the beam geometry, the width h and thickness b are
assumed to be fixed (see Sect. 2). The length of the beam is adjusted such that
the first natural frequency in the simulations is the same as in the experiment.
The length may differ from the nominal design value due to under-etching of
the clamped ends. Additionally, this may compensate for non-ideal clamping. The
first natural frequency of the resonator equals f0 D 13:0724MHz. Values of the
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Table 2 Physical and geometrical parameter values used in the simulations

Parameter Value Unit Parameter Value Unit

	 2;329 kg m�3 l 47:75 �m
E 130:02 GPa d1; d2 342 nm
G 79:51 GPa h 4 �m
� 0:2785 (–) b 1:4 �m
k 156 W m�1 K�1 f0 13:0724 MHz
cp 716 J kg�1 K�1 Cb 7:156 fF
˛ 2:616 	 10�6 K�1 Rb �2:9886 G˝
T0 300 K Qth 14;250 –

parasitic electrical parameters Cb and Rb have been determined from electrical
characterization of the resonator (using S-parameter measurements, see Pozar
(2005)). It can be seen that the resistance value Rb is negative, indicating that the
parasitic admittance Yb is more appropriately modelled as a series combination of
a capacitor and a resistor. The Q-factor related to thermoelastic damping can be
determined from a damped eigenvalue analysis of the model. Its value is also listed
in Table 2.

For variousVac and Vdc excitation settings, measurements and simulations will be
compared. For a range of values corresponding approximately to a constant VdcVac

product, the influence of Vdc is investigated, by varying it between 10 and 40V. The
product VacVdc is a measure for the harmonic excitation amplitude (due to V 2-terms
in the excitation).

Figure 4 shows amplitude-frequency curves in terms of the peak-to-peak values
of Vout versus ac excitation frequency f . Excitation settings as listed in Table 3
have been used. The four measurement results are shown in Fig. 4a and the four
corresponding simulation results are depicted in Fig. 4b. The measured response is
observed to jump between high-amplitude and low-amplitude solutions, indicated
by the arrows in Fig. 4a. It can be seen from Fig. 4 that for higher Vdc-values,
the resonance frequency is lower. Furthermore, jumps in the measured amplitude-
frequency curves indicate that for Vdc D 10V, hardening nonlinear behavior is
present, whereas the curves at Vdc D 30 and 40V show softening nonlinear
behavior. The response at Vdc D 20V, for Vac D 500mV shows a resonance without
frequency hysteresis.

In the simulated steady-state responses, the occurrence of cyclic fold (CF)
bifurcation points (Thomsen 2003) coincides with experimentally observed jumps
in amplitude. In the simulations, CF bifurcations mark turning points, where tran-
sitions from stable to unstable periodic solutions (and vice versa) occur. Simulation
results show the same transition from hardening to softening nonlinear behaviour
for increasing Vdc as the experimental results. For the hardening responses, the
mid-plane stretching effect is dominant, whereas for the softening responses, the
electrostatic nonlinear effect is dominant. This has also been observed in simulations
in Younis and Nayfeh (2003). By comparing numerical and experimental results,
it can be seen that a good qualitative match has been obtained. Simulated and



A Semi-analytical and Experimental Approach for Nonlinear MEMS Resonators 205

a

b

Fig. 4 Transition from hardening to softening nonlinear behavior for varying excitation values.
(a) Experimental results. (b) Simulation results

Table 3 Excitation settings
corresponding approximately
to VdcVac D constant

Vdc .V/ Vac .mV/

10 1;000

20 500

30 300

40 250
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measured resonance peaks are located at the same frequencies and they also have
similar shapes. However, a mismatch in amplitudes is present, which is likely to
be caused by thermal noise (9) and by cabling impedance (impedance mismatch).
The explanation is as follows. Firstly, the effect of thermal noise can be included
as a postprocessing step (see Mestrom et al. 2008), resulting in a vertical shift of
the curve. The motional impedance Rm of the resonator ranges from 396 k˝ up to
1:63m˝ . Using (9), this translates to rms noise voltages of vn D 1.3�2.6 mV.
The effect of noise can most clearly be observed as the mismatch away from
resonance. Secondly, the mismatch in impedance varies with the resonator response,
since, from an electrical point of view, the impedance is a function of frequency and
vibration amplitude. For a nonlinear resonator, this relation cannot be determined in
a straightforward way. This effect is most pronounced as a mismatch in amplitude of
the resonance peak. The total observed mismatch pattern results from a combination
of these two effects, which makes it difficult to distinguish between these two
error sources. The dip in the amplitude-frequency curves, both in experiments and
simulations, at a frequency slightly above the resonance frequency, is caused by the
presence of parasitic effects Yb (mainly by Cb) in the measurement circuit.

As described in Sect. 3.2, anchor loss has been implemented by means of a Q-
factor Qa. Using relation (8), Qa is tuned such that the shapes of the simulated
resonance peaks match the experimental ones and such that the downward jump
frequency in experiments corresponds with the upper cyclic fold (CF) bifurcation
points in simulations. In this way, a value of Qa D 11;000 is found, to obtain an
overallQ-factor of Qtot D 6;210, see (8).

5 Conclusions

In this paper, a combined semi-analytical and experimental approach has been
proposed for fast and accurate predictive modelling and analysis of a nonlinear
MEMS resonator. A good qualitative correspondence between simulations and
experiments has been obtained, thereby validating the multiphysical model. Char-
acteristic hardening and softening nonlinear dynamic behaviour is captured well.
A main advantage of the followed approach is that the obtained model is in
parameterised form, containing physical parameters, instead of a more heuristic (or
lumped) description. The approach is not restricted to the specific MEMS resonator
considered in this paper. It can also be applied to other MEMS devices. In addition
to characterization of the dynamic response, the efficient semi-analytical modelling
and analysis approach also enables optimisation of pre-designs of MEMS devices.
Finite element modelling and analysis may be seen as a complementary approach,
which can be used in the final design stage.
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Vibration Reduction Using Shape
Memory Alloys
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Abstract Smart materials have a growing technological importance due to their
unique thermomechanical characteristics. Shape memory alloys (SMAs) belong to
this class of materials being easy to manufacture, relatively lightweight, and able
of producing high forces or displacements with low power consumption. These
aspects could be explored in different applications including vibration control.
Nevertheless, there is a lack in literature concerning the experimental analysis of
SMA dynamical systems. This contribution deals with the experimental analysis
of SMA dynamical systems by considering an experimental apparatus composed
of low-fiction cars free to move in a rail. A shaker that provides harmonic forcing
excites the system. Vibration analysis reveals that SMA elements introduce complex
dynamical responses to the system and different thermomechanical loadings are of
concern showing the main aspects of SMA dynamical response. Special attention is
dedicated to the analysis of vibration reduction that can be achieved by considering
different approaches exploiting either temperature changes or vibration absorber
techniques.
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1 Introduction

The remarkable properties of SMAs are attracting much technological interest,
motivating different applications in several fields of sciences and engineering.
Robotics, aerospace and biomedical applications are some areas where SMAs have
been applied (Lagoudas 2008; Paiva and Savi 2006; Machado and Savi 2002,
2003). Due to their high dissipation capacity related to hysteretic behaviour, SMA
elements are being used in vibrating systems (Williams et al. 2005; Rustighi et al.
2005a, b; Elahinia et al. 2005; Tiseo et al. 2010). Moreover, the temperature induced
phase transformation can be used in order to promote stiffness variations and, as
a consequence, altering system dynamical characteristics. Dynamical behaviour
of SMA systems is investigated in different research efforts, presenting complex
behaviours. For details, see some of the references: (Savi et al. 2002, 2008; Machado
et al. 2003, 2009; Savi and Pacheco 2002). Recently, SMAs are being used in impact
systems where the dissipative characteristics of SMA can produce very different
behaviours when compared with elastic systems: (Sitnikova et al. 2010; Santos
and Savi 2009). This paper deals with an experimental analysis of the dynamical
behaviour of oscillators with SMA elements. An experimental apparatus composed
of low-fiction cars free to move in a rail is attached to an SMA helical spring. This
apparatus is used to investigate two different systems: one- and two degrees-of-
freedom. A shaker that provides harmonic forcing excites the system. Vibration
analysis reveals that SMA elements introduce complex dynamical responses to
the system and different thermomechanical loadings are of concern showing the
main aspects of SMA dynamical response. Vibration reduction can be achieved by
considering different approaches exploiting either temperature changes or vibration
absorber techniques.

2 Experimental Apparatus

The dynamical behaviour of SMA oscillators is studied with the use of the apparatus
shown in Fig. 1, composed of low-fiction cars free to move in a rail. Basically, two
different configurations are of concern: one- and two degrees-of-freedom. The one-
degree of freedom (1DOF) system is composed of a car connected to two springs:
elastic and SMA spring. The elastic spring is connected to an excitation system
composed of an electrodynamic shaker (LabWorks ET-126 with 58 N peak force
capacity) connected to the system with the aid of an extra car. The SMA spring
is fixed to the load-cell (Alfa SV-20 with 196 N capacity). Figure 1 presents the
schematic draw together with a picture of the 1DOF system.

The two-degree of freedom (2DOF) system considers a new car connected to the
system. This system is employed to represent a vibration absorber composed of a
primary system with linear elastic characteristics, and a secondary system composed
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Fig. 1 Experimental apparatus to study the dynamical behaviour of one-degree of freedom SMA
oscillator – (a) schematic draw and (b) picture of the system

of a linear elastic spring together with an SMA spring. Therefore, this system is
composed of two elastic springs. On one side, there is a spring connected to the
excitation system. On the other side, there is a spring connected to the car of the
secondary system. This new car is connected to an SMA spring that is connected to
a load cell. Figure 2 presents the details of the 2DOF system.

The vibration system is mounted in a close-loop configuration controlled by a
vibration controller system (LabWorks VibeLab VL-145s Digital Sine Controller)
with sine-sweep controller capability. Cars are monitored by accelerometers trans-
ducers (Kyowa AS-10GB with 10 g capacity) connected to a data acquisition system
(HBM Spider 8) with 400 Hz acquisition rate. A laser sensor is also employed
to monitor displacements (Baumer OADM 20I4460/S14C). Temperature variations
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Fig. 2 Experimental apparatus to study the dynamical behaviour of two degrees-of-freedom SMA
oscillator – (a) schematic draw and (b) picture of the system

Table 1 Transducer and accelerometer technical specifications

Laser transducer Accelerometers

Resolution <0.06 mm –
Linearity error ˙0.2 mm ˙ 1.0% RO
Response time / release time <10 ms –
Max. switching frequency 1,000 Hz 350 Hz
Hysteresis – ˙1.0% RO

are induced through joule effect by the application of an electrical current using
a stabilized current source (Minipa MPL-1303). Temperature is monitored by an
infrared camera FLIR A-320. Table 1 presents the technical specifications of laser
transducer and accelerometers.
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3 Spring Characterization

Elastic and SMA springs are employed in experimental apparatus. Tension helical
springs made of steel with an external diameter of 7.3 mm, a wire diameter of
0.85 mm and 40 active coils are used. Moreover, the system uses an SMA helical
spring built with NiTi that is in martensitic phase at room temperature. This SMA
spring has an external diameter of 6 mm, a wire diameter of 0.75 mm, 20 active
coils, and an activation temperature in the range of 45–55ıC. Table 2 shows the
stiffness of the elastic springs used in experiments.

The thermomechanical analysis of the SMA spring is presented in (Aguiar
et al. 2010). The characterization is obtained through force-displacement and
displacement-current tests. The tensile test device shown in Fig. 3 is employed
in both situations. Basically, this device is composed of a rigid frame that has
a load-cell (Alfa SV-20 with 196 N capacity) fixed at the top. SMA spring is
connected to the load-cell and the other end is attached to the rod of a resistive
displacement transducer (Gefran PY-1-F-100 with 100 mm span). Both transducers

Table 2 Stiffness of the
springs

Spring Type k [N/mm]

1 (steel) Linear elastic 0.573
1 (steel) Linear elastic 0.528
SMA Nonlinear Nonlinear

Fig. 3 Tensile test device for thermomechanical characterization of SMA helical springs
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Fig. 4 Experimental data related to displacement-electric current curves

are connected to a data acquisition system (HBM Spider 8). A fluid reservoir is
attached to the other end of the transducer rod in order to produce mechanical
loadings. The SMA spring is subjected to mechanical loading controlled by the
fluid level of the reservoir that is done by changing the vertical position of a second
fluid reservoir that is connected to the first by a tube. This procedure allows one
to apply smooth loading-unloading conditions to the spring element. Temperature
variations are induced through Joule effect by the application of an electrical current
using a stabilized current source (Minipa MPL-1303). The SMA spring is subjected
to different thermomechanical loading-unloading processes in order to reproduce
shape memory and pseudoleastic effects.

The shape memory effect is imposed by considering a two-stage thermo-
mechanical test: (1) a mechanical loading-unloading followed by (2) a thermal
heating-cooling. The first stage promotes a residual strain that is eliminated
during the second stage. Three different maximum load levels are considered:
3, 3.5 and 4 N. The heating of the SMA helical spring to a temperature where
austenitic formation is completed is performed by applying an electric current of
1.2 A. All tests are performed at room temperature (22ıC). The pseudoelastic
test is performed by assuming a constant temperature loading together with a
mechanical loading-unloading test. Two different mechanical loading-unloading
procedures are performed being related to maximum load levels (7 and 8 N)
together with a constant temperature induced by applying an electrical current
of 0.8 A. Initially, SMA spring is characterized by considering a temperature
variation with a constant stress level. This test has the objective to establish
a relation between electric current and phase transformation. Figure 4 presents
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the displacement-electric current curve showing the hysteresis loop that allows
one to identify the phase transformation current related to phase transformation
temperatures.

SMA spring force-displacement curves are now in focus trying to represent shape
memory effect (SME) and pseudoelasticity. Figure 5 presents experimental curves
for both situations. At the beginning of each test, the SMA helical spring is at room
temperature (22ıC), a situation where martensitic phase is stable. In order to assure
that each test is done with a spring where its wire section has a homogeneous
twinned martensitic phase distribution, the following process is applied. Initially,
all mechanical loads are removed and then, an electric current of 1.2 A is applied
to the spring. Finally, the spring is subjected to cooling prescribed in order to allow
a thermal equilibrium with the medium. SME test is performed after this initial
stage by imposing a mechanical loading that promotes the formation of detwinned
martensite. This phase remains present after the mechanical loading removal,
causing a residual displacement. At this point, an electric current of 1.2 A is applied
and the SMA helical spring recovers part of the residual displacement developed
during the loading stage. A residual load with a magnitude of approximately
1 N is still present at the end of the unloading as a consequence of the devices
attached to the spring (for example, resistive displacement transducer and fluid
reservoir). A loading rate of approximately 2.7 � 10�2 N/s is used in the developed
tests. Pseudoelastic test is performed by considering an applied electric current
of 0.8 A that increases the SMA temperature promoting a phase transformation
from twinned martensite to austenite. Afterwards, mechanical loading–unloading
process is imposed to the spring by considering two different maximum values:
7 and 8 N. As expected, pseudoelastic test shows a complete reverse phase
transformation after the loading is removed and, as a consequence, there is no
residual displacement. Figure 5 presents force-displacement curves related to shape
memory and pseudoeleastic experimental tests.
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4 One Degrees-of-Freedom System (1DOF)
Dynamical Analysis

Experimental tests are conducted to investigate the possibility of vibration attenu-
ation using the temperature variation of the SMA systems. Temperature variation
promotes phase transformation that changes the system characteristics as the
equilibrium points and the SMA helical spring stiffness. Several situations involving
the influence of temperature on the system dynamics are explored.

At the beginning of each test, a standard procedure is considered. The SMA
helical spring in load-free condition is heated, by applying an electric current of
0.8 A in order to recover its original length. Afterwards, SMA helical spring is
attached to the device in a high temperature condition and the shaker provides an
excitation with amplitude of 0.25 g. Before the signal acquisition a stabilization
period of 1960s is adopted. The system is subjected to sinusoidal excitation with
a constant frequency. SMA helical spring temperature variation is obtained by
changing the applied electric current.

Figure 6 shows experimental results involving SMA one-degree of freedom
oscillator. Basically, the system is subjected to a sinusoidal excitation with 10 Hz
that coincides with the resonant frequency for 0.8 A. The test starts with an electric
current of 0.8 A and after 2.5 s this value is increased and stabilized on three
new electric current values: 2, 2.5 and 3 A. Two different signals are presented:
acceleration measured by accelerometer (left panel) and displacement measured
by the laser sensor (right panel). Note that vibration reduction is achieved by the
variation of SMA temperature. Figure 7 presents a comparison between both cars
accelerations for an applied electric current of 3A. It should be highlighted the
sinusoidal excitation and the amplitude decrease associated with the car when the
electric current is increased.

An infrared camera monitors temperature variation imposed by the electrical
current. Figure 8 shows an infrared thermal image of the SMA spring during the
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Fig. 6 Vibration reduction promoted by SMA oscillator temperature variation
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Fig. 7 Vibration reduction promoted by SMA oscillator temperature variation

Fig. 8 Thermal infrared image of the SMA spring submitted to a current of 0.8 A (left panel) and
3.0 A (right panel)

experimental procedure where temperature variation promotes vibration reduction.
Left panel of Fig. 8 is related to a current of 0.8 A while the right panel is associated
with a current of 3.0 A.

5 Two Degrees-of-Freedom System (2DOF)
Dynamical Analysis

At this point, a two degrees-of-freedom system (2DOF) is of concern. The basic
idea is to represent a vibration absorber with an SMA element. The tuned vibration
absorber (TVA) is a well established passive vibration control device for achieving
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Fig. 9 Vibration reduction of the 2DOF system. Primary (left) and secondary (right) systems

reduction in the vibration of a primary system subject to external excitation. The
TVA consists of a secondary oscillatory system that once attached to the primary
system is capable of absorbing vibration energy from the primary system. By tuning
the natural frequency of the TVA to a chosen excitation frequency, one produces
an attenuation of the primary system vibration amplitude for this specific forcing
frequency. An alternative for systems where the forcing frequency varies or has a
kind of uncertainty is the concept of an adaptive tuned vibration absorber (ATVA).
This device is an adaptive–passive vibration control similar to a TVA but with
adaptive elements that can be used to change the tuned condition. SMA represents an
alternative to be used in ATVA where temperature variations can be used to promote
system adaptability. In the experimental set up, an extra car is connected to the
primary system, introducing a secondary system.

Initially, we present a test where the primary system is subjected to a harmonic
excitation with a 0.25 g amplitude and frequency of 6.9 Hz. SMA spring is
subjected to 0.8A of electric current. The SMA spring is then subjected to different
electric current after 10 s reaching the following values: 1.5, 2.0, 2.5, and 3.0 A.
Figure 9 presents acceleration of primary and secondary systems for different
electric current. It is noticeable the amplitude reduction. Figure 10 presents a
comparison of acceleration of the three cars. The left panel presents acceleration
response that shows that the constant amplitude excitation is reduced in both
primary and secondary systems after the electric current increases. The right panel
presents the displacement of the primary system.

Sweep tests are now performed trying to verify the influence of frequency
on the vibration reduction. Basically, the system is harmonically excited with a
0.25 g sinusoidal acceleration with constant amplitude. The excitation frequency
signal changes linearly during the test from 6 to 18 Hz with 0.02 Hz/s. Different
temperatures are also considered by assuming variation of the electrical current: 0.8
and 1.4 A. Figure 11 shows the acceleration time history of the primary system
(left panel). Once again, it should be highlighted the vibration reduction promoted
by the temperature increase. A frequency analysis is presented in the right panel of
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Fig. 10 Vibration reduction of the 2DOF system: acceleration (left panel) and displacement of the
primary system (right panel)
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Fig. 11 Sine-sweep tests of the 2DOF system: primary system

Fig. 11 by considering the maximum amplitudes of the acceleration. Note that the
peaks can change the position with temperature variation. This behaviour defines
an important characteristic of this system since it is possible to change the tuned
frequency related to vibration reduction. It is important to highlight that there is a
competition between stiffness and hysteresis in order to define the system response.
Hence, the temperature change can reduce the stiffness changing the position of the
resonant peaks, but this change is also related to different hysteretic behaviour that
cause an amplitude change. Figure 12 presents the same curves for the secondary
system, showing the same qualitative behaviour.

6 Conclusions

This paper deals with an experimental investigation of the nonlinear dynamics of
shape memory alloys systems. The system is composed of low-fiction cars free to
move in a rail. Two different systems are treated: one- and two-degree of freedom.
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Fig. 12 Sine-sweep tests of the 2DOF system: secondary system

The main objective is the investigation of the vibration reduction exploring the SMA
behaviour due to temperature variations imposed by electric current. Sensors are
employed to monitor the main system variables. Concerning the 1DOF system, it
is shown the vibration reduction due to temperature variations. The 2DOF system
represents an adaptive vibration absorber with SMA element. Therefore, there is a
primary system connected to a secondary system with SMA spring. Once again,
vibration reduction is achieved and it is important to highlight the capacity of the
SMA system to change the tuned frequency.
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Nonlinear Dynamics and Instability
as Important Design Concerns for a Guyed Mast
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Abstract This paper analyses the static and dynamic buckling behavior of a
simplified 2-DOF model of a cable stayed tower with emphasis on the safety of the
pre-buckling solutions whose stability must be preserved for a safe design. First, the
influence of the inherent symmetries of the model on the buckling loads and the
post-buckling paths emerging from the bifurcation point is investigated. Then, a
global dynamic analysis is conducted to investigate the degree of safety of the static
pre-buckling solution. To understand the behavior of the guyed mast in a dynamic
environment, a base excitation is considered and the influence of its direction on the
escape stability boundary in the force control space is studied. Finally, the erosion
and integrity of the basins of attraction of the stable solutions are investigated.
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P.B. Gonçalves (�)
Department of Civil Engineering, Catholic University, PUC-Rio,
22453-900 Rio de Janeiro, Brazil
e-mail: paulo@puc-rio.br

G. Rega
Department of Structural and Geotechnical Engineering, Sapienza University of Rome,
00197 Rome, Italy
e-mail: giuseppe.rega@uniroma1.it

S. Lenci
Department of Civil and Building Engineering, and Architecture, Polytechnic University
of Marche, 60131 Ancona, Italy
e-mail: lenci@univpm.it

M. Wiercigroch and G. Rega (eds.), IUTAM Symposium on Nonlinear
Dynamics for Advanced Technologies and Engineering Design, IUTAM
Bookseries (closed) 32, DOI 10.1007/978-94-007-5742-4 18,
© Springer ScienceCBusiness Media Dordrecht 2013

223



224 D. Orlando et al.

The paper shows how the tools of nonlinear dynamics can help in the understanding
of the global safety and integrity of the model, thus leading to a safe structural
design.

Keywords Guyed mast • Static and dynamic buckling • Nonlinear dynamics •
Basin erosion • Dynamic integrity • Safe design

1 Introduction

Cable stayed masts are used in several engineering areas including off shore,
mechanical, telecommunications and aero space engineering. The efficiency of
these structures in supporting axial loads is due to the cables and their behavior
is characterized by large displacements associated with high load bearing ratios. As
cable stayed structures show large displacements, high nonlinearities are associated
to their static and dynamic behavior. Therefore, the knowledge of their nonlinear
behavior is of great interest to engineers and scientists. The analysis of cable stayed
structures has been object of several investigations in the last decades. Among the
most important studies we can mention the works by Xu et al. (1997), Wahba et al.
(1998), Kahla (1997), Chan et al. (2002) and Yan-Li et al. (2003).

In the present paper the stability and integrity of a simplified 2-DOF model of
a guyed tower is studied. The static stability analysis of the model was performed
by Thompson and co-workers (Thompson and Gaspar 1977; Thompson and Hunt
1984). They showed that this model displays a complex post-buckling behavior
with a strong modal coupling leading to several unstable post-buckling paths. In
such cases, the load-carrying capacity of the structure is governed by the unstable
branches of the post-buckling response. Also, in these structures the imperfections
may substantially decrease the load capacity of the structure and the choice of a
safe load level for design becomes usually a complex and difficult task for the
engineer. However, most of the studies in this area rely on the local stability
analysis of an equilibrium configuration and no additional information is given
on the safety of a given equilibrium state. In such case a global stability analysis
using the mathematical methods of classical mechanics, in particular Lagrangian
or Hamiltonian mechanics, can help the engineer in the understanding of the
problem and in evaluating the degree of safety of the —–safe pre-buckling configuration
(Gonçalves et al. 2007, 2010). To understand the behavior of the guyed mast in
a dynamic environment, a base excitation is considered and the influence of its
direction on the escape stability boundary in the force control space is studied.
Finally, the erosion and integrity of the basins of attraction of the stable solutions
are investigated. The paper shows how the tools of non-linear dynamics can help
in the understanding of the safety and integrity of the model, thus leading to a safe
structural design.
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2 Problem Formulation

Figure 1 illustrates a simplified model of a cable stayed tower. It is an inverted spatial
pendulum composed of a slender, rigid (but massless) bar of length l , pinned at the
base and with a tip-mass m. The lateral displacements are restricted by three linear
springs, initially inclined at 45ı. The first spring of stiffness k1, is located in the y�z
plane, while the others, k2 and k3, are located symmetrically about the y axis, with
their positions defined by the angle ˇ. The two degrees of freedom are u1 D sin �1
and u2 D sin �2, where �1 and �2 are the pendulum rotations in the vertical planes
x � z and y � z, respectively (Orlando 2010).

The potential energy of the system is given by
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Fig. 1 Model of a guyed mast
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Following Thompson and Gaspar (1977), it is assumed that the stiffness of the
second and third springs are equal, i.e., k2 D k3 D $K , where $ D 1

ı	
4 sin2 ˇ



,

a positive constant, the stiffness of the first spring is given by k1 D .1 � 2$/K and
ˇ D 120ı. The latter value corresponds to the usual configuration of stay cables in
practical applications. Thus, Eq. (1) can be rewritten as:
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The kinetic energy is given by
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(3)

The equations of motion of the system are obtained using Lagrange equations
by considering an harmonic base excitationDb.t/, Fig. 1, acting at an angle ' with
respect to the x axis. The excitation Db.t/ is decomposed into two components,
ub.t/ in the x direction and vb.t/ in the y direction. These components are given by
ub D Fb cos' sin .!et/ and vb D Fb sin ' sin .!et/, where is the base displacement
magnitude and !e is the excitation frequency.

The dynamics of the system is described by the following equations of damped
forced motion in non-dimensional form, containing both geometric and inertial non-
linearities (Orlando 2010),
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where the dot means d=d� and� D !e=!p , being !2p D g=l , � D !et , F D Fb=l ,
K=ml2 D !2p=�, � D P=Pcr and �i are the damping factors.

3 Stability Analysis and Safe Pre-buckling Region

The behavior of the model for different values of the angle ˇ was studied by
Thompson and co-workers (Thompson and Gaspar 1977; Thompson and Hunt
1984). They found that the value of ˇ has a significant influence on the stability
of the model. For the case herein considered, ˇ D 120ı, k2 D k3 D $K , k1 D
.1 � 2$/K , with $ D 1=3, namely equal stiffnesses of all springs, the cable stayed
tower displays two coincident buckling loads, Pcr1 D Pcr2 D Pcr D Kl=4. Due
to symmetry, the model also displays two coincident natural frequencies, leading to
possible internal resonances.

Figure 2 shows the fundamental path (u1 D u2 D 0), which is stable up to the
static critical load (� D P=Pcr D 1:0) and the three post-buckling paths: two
coupled unstable solutions, and one uncoupled unstable solution with u1 D 0. The
interaction of the buckling modes leads to increased imperfection sensitivity. Three
different projections of the equilibrium paths are shown in Fig. 3.

The analysis of post-buckling paths is not actually sufficient to reliably evaluate
the global safety of the system, which depends on the robustness of the equilibrium
solution, namely on the extent of its safe basin.

Safe basins are objects of the same dimension as the phase space, four-
dimensional in our case. From Fig. 2 one can conclude that, for load levels lower
then the critical load, the safe basin, defined here as the set of initial conditions
that lead to safe motions around the static pre-buckling configuration, is bounded
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Fig. 2 Equilibrium paths of the system

Plane u1 × g Plane u2 × g Plane u1 × u2

Fig. 3 Projections of the equilibrium paths onto three different planes

by the invariant manifolds of the three saddles associated with the three unstable
post-buckling paths. Figure 4a shows the curves of equal energy for � D 0:7. Each
saddle has an independent homoclinic orbit which encompasses the minimum point
at the origin and lays in an equally spaced plane, see the two projections in Fig. 4b.
They separate the initial conditions that lead to bounded solutions surrounding the
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Fig. 4 (a) Curves of equal energy for � D 0:7. PS: Saddles. PMi: Stable position corresponding
to a local minimum. (b) Projection of the homoclinic orbits of the upper two saddles on the plane
u1 � Pu1, for � D 0:7

pre-buckling configuration from those leading to unbounded escape solutions. The
knowledge of these frontiers helps the designer to separate the phase space into safe
and unsafe domains.

Useful insight of the four-dimensional safe region can be obtained from ob-
servation of its two- and three-dimensional cross-sections. The geometry of the
hypersurface that bounds the initial conditions leading to bounded solutions around
the trivial pre-buckling solution can be obtained by the conservation of the total
energy principle, equating the sum of expressions (2) and (3) to the value of the
total energy at one of the saddles, that is

T .ui ; Pui /C V .ui / D Csaddle (6)

Two three-dimensional projections of the safe region are shown in Fig. 5.
This 4D region is defined as the conservative safe basin of the pre-buckling

configuration. This safe hyper-volume decreases swiftly as the static load increases
and vanishes at the critical point. So, the choice of a suitable safe region, based
on some design constraints (e.g. maximum stresses or displacements), enables to
determine a safe design load.

4 Nonlinear Dynamic Analysis

In order to understand the behavior of the structure in a dynamical environment, a
parametric analysis of the tower under a base excitation is now conducted.
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Plane u1 × u2 × u1 Plane u1 × u2 × u1

Fig. 5 Two three-dimensional sections of safe pre-buckling region for � D 0:7
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45°

-30°

90°

Fig. 6 Escape stability boundaries vs. excitation frequency for different values of the excitation
direction ' with � D 0:7 and �1 D �2 D 0:01. Fesc : escape load

4.1 Escape Boundaries

Figure 6 shows the escape stability boundaries in force control space for different
values of the excitation direction � (Orlando 2010). The escape load, Fesc ,
corresponds to escape from the pre-buckling potential well in a slowly evolving
system (dynamic buckling). For any value of � the lowest escape loads occur in the
neighborhood of the fundamental resonance !e D !1 D !2. A second important
instability region occurs in the neighborhood of twice the natural frequencies of the
structure.
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 F × u1  F × u2

a b

Fig. 7 Bifurcation diagrams for � D 0ı, � D 0:6546, � D 0:7 and �1 D �2 D 0:01

4.2 Bifurcation Diagrams, Basin Erosion and System
Dynamic Integrity

In practical terms, information on the stability boundaries as obtained here are not
enough to assess the safety of the structure. These data are based on the assumption
that the bifurcation parameter varies slowly. In order to evaluate the safety of a
structure (in particular structures liable to catastrophic bifurcations) one should
analyze the behavior of the basins of attraction of competing solutions (here, the in-
well and the unbounded escape solutions). The safety of the structure under dynamic
excitation depends not only on the local stability of its solutions, but also on the
continuous and uncorrupted basin surrounding each one of them, the total erosion
of a given basin corresponding to the system failure.

Figure 7 shows the bifurcation diagram for � D 0:6546 and � D 0ı. As F
increases from zero the system exhibits a period one solution. At F D 0:0043 the
response undergoes a pitchfork bifurcation, leading to two period one solutions, P10
and P100. The two solutions experience a supercritical flip bifurcation just prior to
escape. Figure 8 shows the cross-sections of the 4D basin of attraction by the u2� Pu2
plane for � D 0ı and � D 0:6546 (main resonance region, !e D !1 D !2) for
increasing values of the excitation magnitude. The two colors identify in this case
two period one solutions arising from a pitchfork bifurcation. For F D 0:01, an
uncorrupted basin is observed. As F increases to 0:02 most of the reference region
becomes fractal and when the load level reaches 0:03, most of the initial conditions
lead to unbounded solutions and the compact region surrounding each fixed point
of the Poincaré map becomes almost zero.

Figure 9 shows the variation of the local integrity measure (LIM) proposed by
Soliman and Thompson (1989), which is defined for a multidimensional system as
the maximum radius of the hyper-sphere entirely belonging to the safe basin and
centered at the attractor, as a function of the excitation amplitude. The resulting
integrity profile clarifies the evolution of the robustness of the in-well solutions



232 D. Orlando et al.

Fig. 8 Erosion of the basins of attraction of P10 and P100 with increasing forcing magnitude F for
� D 0ı, � D 0:6546, � D 0:7 and �1 D �2 D 0:01

Fig. 9 Variation of the integrity factor LIM as a function of the forcing magnitude F for � D 0ı,
� D 0:6546, � D 0:7 and �1 D �2 D 0:01

along with the overall erosion of the in-well safe basin from the escape solution,
thus showing to be a good measure of the safety of the structure in an evolving
environment.

5 Conclusions

This paper analyses the buckling and nonlinear dynamic behavior of a simplified
2DOF model of a cable stayed tower with emphasis on the safety of the static
pre-buckling configuration, whose stability must be preserved for a safe design,
and of the ensuing dynamic solutions. Due to inherent symmetries of the model,
it displays two coincident buckling loads. This leads to a strong modal coupling
and the existence of several unstable post-buckling paths emerging from the static
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bifurcation point. These unstable branches limit the safe region surrounding the
equilibrium configuration. This region decreases as the load increases and becomes
zero at the critical load. So, as the applied load increases the magnitude of
the allowable perturbations decreases. The safe region is defined by the saddles
associated with the unstable post-buckling paths. The same overall behavior is
observed in the forced case. As the force approaches the critical value (escape), the
safe basin decreases steadily and, as shown here, may become fractal, due to a global
bifurcation (homoclinic or heteroclinic intersection), for load levels well below the
escape value. Due to symmetry, the model also displays two coincident natural
frequencies leading to 1:1 internal resonances. The lowest escape load occurs in the
vicinity of this region. These features are characteristic of structural and mechanical
systems exhibiting unstable post-buckling response (Gonçalves and Santee 2008),
in particular those exhibiting modal interaction (Orlando et al. 2011). The system
safety may be increased by enlarging the manifolds distance and thus postponing
the homoclinic (or heteroclinic) intersection as much as possible (Lenci and Rega
2009, 2011).

The paper shows that the tools of analytical dynamics can give the engineer a
satisfactory understanding of the safety and integrity of the model, essential for a
safe design of the structure.
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Gonçalves, P.B., Santee, D.: Influence of uncertainties on the dynamic buckling loads of structures
liable to asymmetric post-buckling behavior, mathematical problems in engineering, p. 24.
Article ID 490137 (2008)
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A Problem of Stability in Milling Process
of Materials Used in Aviation Industry

Rafal Rusinek, Krzysztof Kecik, and Jerzy Warminski

Abstract The paper presents results of stability analysis of milling process.
Machining of nickel superalloys Inconel 713C, titanium alloy Ti6Al4V
and epoxide-polymer matrix composite reinforced carbon fibers (EPMC) is studied
here, classically using stability lobe diagrams (SLD) received by modal analysis and
next verified by recurrence quantification analysis (RQA). Finally some measures of
recurrence quantification analysis are proposed as a tool for stability examination.

Keywords Superalloys • Milling • Recurrence quantification analysis • Aviation
industry

1 Machining of Superalloys

Nowadays, superalloys, such as titanium or nickel alloys, are more and more popular
mainly because of its low mass and high strength combined with high heat resistance
and corrosion as well. Therefore they are applied for extremely loaded components
e.g. in civil and military aviation where rotor blades of jet engines are made of nickel
(Inconel) or titanium alloys. Composite materials are also willingly used for parts
of modern aircrafts such as fuselages, wing skins, flaperons and rudders. Initially,
the percentage of structural weight of composites used in manufacturing was very
small, at around 2% in the fighter aircraft F15. However, the percentage has grown
considerably, through 19% in the F18 up to 24% in the F22 and 50% in the Boeing
878 (Deo et al. 2001), where mainly carbon-fiber composite are used for most of its
construction. Therefore the problem of composite materials cutting is important and
difficult because of its high strength, tendency to delamination and very fast cutting
tool wear.
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Fig. 1 Development of
titanium alloy machining as
material removal rate (MMR)

Demand for a steadily growing productivity and product quality lead to in-
creasing of cutting parameters and this, in combination with particular mechanical
and physical properties of superalloys and composites can also make difficult
machining. High productivity can be ensured by high speed machining (HSM)
process but chatter vibrations which are generated during cutting can deteriorate
a final surface quality of workpiece, shorten tool life time or even destroy the
tool or product. Thus, stability analysis of cutting process is so important to avoid
chatter vibrations. Usually, stability conditions of machining process are visualized
by stability charts (called stability lobe diagram SLD) which plot the maximum
chatter-free chip width or depth of cut as a function of spindle speed. Theoretical
stability analysis is done by many researches, who use a theoretical model (Fofana
2002a, b; Insperger et al. 2003) but verification of their results is still an open
question and should be taken into thorough consideration. Therefore, this chapter
presents outcomes of cutting forces measurements during milling titanium alloy
(Ti6Al4V), nickel alloy (Inconel 713C) and epoxide-polymer matrix composite
reinforced carbon fibers (EPMC). Next, the time series of cutting force is analysed
with the help of newer methods like recurrence plots (RP), recurrence quantification
analysis (RQA), reconstructed phase portraits (RPP), Hurst (H) and Lyapunov (œ)
exponents. The methods are applied in order to compare cutting process dynamics
and choose a proper index to recognize stable and unstable behaviour.

1.1 Titanium Alloys

Machining of titanium alloys has started since 1940s last century but the fastest
development, measured by material removal rate (MMR), is observed in the 1980s
and 1990s (Fig. 1).

Nowadays, a tendency of high increase is slowed down (plateau in Fig. 1) mainly
due to very strength modern materials which are as hard as cutting tools. Therefore,
researchers look for suitable tool materials and tool coat. Some of them believe
that alloyed cemented carbide (W–Ti/Ta)C–Co is not suitable for machining of
titanium alloys. However, the result of study reported in Haron et al. (2007) shows
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that this tool and also alloyed CVD-coated carbide have good possibility to use in
end milling of titanium alloy Ti-6242S even under extreme dry cutting condition
but in the range of cutting speed between 60 and 150 m/min which are not accepted
as HSM. Faster cutting speed, up to 300 m/min, is applied in the study (Sun et al.
2009), where the most common titanium alloy Ti6Al4V is cut on a lathe with a
tool CNMX1204A2-SMH13A (Sandvik). Classical dependence between the cutting
forces and feed rate is noticed. Cutting forces increase with feed, however, a drop
in cutting forces is observed in the feed range 0.122–0.149 mm. On the other hand,
the variation of average cutting force with the cutting speed is more complicated. It
increases initially with cutting speed up to 21 m/min due to strain hardening and then
decreases dramatically with cutting speed from 21 to 57 m/min, which is attributed
to thermal softening due to the increase of cutting temperature and next from about
120 to 250 m/min. What is more, the authors prove that the cyclic frequency of
cutting force is directly proportional to the cutting speed and indirectly proportional
to the feed rate. General tendency of the cutting forces decrease with increasing
cutting speeds (up to 700 m/min) is also reported in Abele and Frochlich (2008).

The problem of chatter specially during finish machining of titanium alloy is
described in Ezugwu and Wang (1997). According to authors, the low modulus
of elasticity of titanium alloys is a principal cause of the chatter. The appearance
of chatter may also be partially ascribed to the high dynamic cutting forces in
machining. This can be up to 30% of the value of static forces.

Despite the fact that static and dynamic cutting forces are analysed and also their
cyclic frequency, there is a lack of stability analysis on the basis of measurements.
There are only stability diagrams made for mathematical model.

1.2 Nickel Alloy

Generally it is known that nickel-base super alloys are one of the most difficult
materials to machine. Poor selection of machining parameters causes fast cutting
tools wear and even tool break and also economical losses produced by damaged
workpiece and poor surface quality. One of the most popular nickel based superal-
loy – Inconel 718 is machined by using cemented carbide inserts at lower speeds
while it is machined by using ceramic cutting tools at higher speeds (Nalbant et al.
2007a). The investigation performed on a lathe in the paper concerns the effects
of cutting tool coating material and cutting speed on cutting forces and surface
roughness. The lowest main cutting force is found at cutting speed of 75 m/min
with multicoated cemented carbide insert whose top layer is coated by Al2O3.
Lowest average surface roughness is obtained at the cutting speed of 15 m/min with
single coated (TiN) cemented carbide inserts. Moreover, relationship between main
cutting force and cutting speed indicates that there is a linear relationship between
main cutting force and cutting speed that is unexpected because the others study
demonstrate weak or even strong nonlinear dependence (Arunachalam et al. 2004a –
axial cutting force, Devillez et al. 2007; Liao et al. 2008; Nalbant et al. 2007b).
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As it is demonstrated in the previous literature, the cutting force decreases with
cutting speed in certain speed regions whereas an increase of feed rate always
increases the cutting forces (Kose et al. 2008).

The cutting speed is very important factor that influences the tool wear and tool
life when cutting nickel based alloys. Therefore a number a publications present
the influence of cutting speed on tool wear and tool life. In the paper (Altin et al.
2007) authors use round and square silicon nitrite based and whisker reinforced
aluminum oxide (Al2O3 C SiCw) ceramic inserts for Inconel 718 turning. Based on
experimental results, the optimum cutting speed can be deduced as 250 m/min and
the tool life is affected negatively above this speed. Generally, square type inserts
show good performance compared to round type inserts at low cutting speeds whilst
round type insert was recommended at high cutting speeds.

For optimizing the cutting speed in the turning of Inconel 718 a series of
experiments using various coated carbides and ceramics are presented in Li et al.
(2002). The experiment results show that PVD-coated carbides are more suitable
for cutting than CVD-coated carbides, and ceramic inserts with negative rake angle
of round type are the best choice for high speed turning up to 300 m/min. General
conclusion can be drawn that the magnitude of all the forces is lower at higher than
at lower cutting speed (Pawde et al. 2007).

Other studies show effect of cutting edge preparation and geometric modification
when turning Inconel 718 at high speed cutting (HSM) conditions (Coelho et al.
2004) or residual stress and surface roughness during turning with cubic boron
nitride (CBN) and ceramic tools (Arunachalam et al. 2004a). Sometimes coated
carbide cutting tools are used (Arunachalam et al. 2004b).

Most of the available machinability data on nickel-based superalloys is based
on orthogonal turning operations where a continuous engagement of tool – work
material exists. Despite many publications on tool wear in turning, reports of
tool wear with respect to milling are still lacking. The paper (Jawaid et al. 2001)
compares milling performance of PVD TiN coated and uncoated tungsten carbide
with identical geometry. The uncoated tool performs better at the lowest cutting
speed of 25 m/min while PVD TiN coated tool gives better performance at cutting
speed of 50 m/min. according to authors, this can be attributed to the high wear
resistance and low thermal conductivity of TiN coating layer.

Cutting force variation in the dry end milling of Inconel 718 with coated carbide
inserts is shown in Li et al. (2006), while with cemented carbide tools is presented
in Liao et al. (2008). Only the peak value of the forces is analysed without deeper
investigations of vibrations.

1.3 Composite Materials

The problem of metal cutting stability based on regenerative model is quite
well known but the stability lobes of composite material cutting is still being
developed. It arises from the lack of detailed specification of composite materials,
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their mechanical properties which are necessary to obtain the proper stability
lobe diagram (SLD). Nowadays, publications which are concerned with composite
material machining, frequently focus on tool wear (Conceicao and Davim 2002;
Davim and Conceicao 2001) or methods of avoiding delamination (Davim and Reis
2005). The investigations of composite material machinability refers both to carbon-
fiber or glass-fiber reinforced materials (Davim et al. 2004; Langella et al. 2005;
Ramulu et al. 2003) and metal matrix composites (Zhu and Kishawy 2005). As far
as tool wear is concerned, diamond tools are the most suitable for use in finishing
turning of carbon-carbon composite. In rough turning, the carbide tools can be used
but with some restrictions parameters. Tool flank wear is the least for high speed
cutting, in the range from 500 to 800 m/min (Ferreira et al. 2001).

Generally, there is a lack of experimental methods which can tell us about process
dynamics and their stability. One of the most interesting approaches is presented
in Ramulu et al. (2003) where the effect of fiber orientation on the normalized
frequency spectrum in orthogonal cutting glass fiber reinforced polyester (GFRP) is
analysed. Thus, taking into account achievements in this field, a stability analysis
should be also done. Therefore, this study proposes to engage recurrence plot
technique to estimate cutting process stability.

2 Experimental Methodology

The experimental investigations are conducted on three material, used in aviation
industry, namely nickel alloy – Inconel 713C, titanium alloy – Ti6Al4V and
epoxide-polymer matrix composite reinforced carbon fibers (EPMC). For nickel
and titanium alloy stability lobs diagrams (SLD) are determined with the help of
CutPro software which bases on the tool modal analysis. SLD for EPMC cannot
be done because of difficulties coming from the software limitations. Therefore, the
experimental setup, presented schematically in Fig. 2, is used in order to measure
all components of the total cutting forces (Fx, Fy and Fz) and torque (Mz). The
experimental system is composed of the numerical controlled milling machine
DMU 80P duoBlock Deckel Maho, the piezoelectric rotating four component
dynamometer Kistler 9123C, piezoelectric conditioner Kistler 5134 and the analog-
digital converter NI 6062E by National Instruments.

For the purpose of modal analysis, the hammer PCB model 086C03 which
has 8 kHz frequency range and 10 mV/lbf sensitivity is used and, the 2-axes
piezoelectric accelerometers 352C43 as well. The gauging point of modal hammer
is the tool tip. The modal hammer is used for delivering impulse forces into the
tested structure. Hammer model selection involves determining the size and mass of
the hammer, which provide the force amplitude and frequency content required for
proper excitation of the structure under the test. In the experiment, three end milling
cutters specially designed for finishing milling of hard materials are used. The first
made of solid carbide with diameter of 16 mm and four cutting edges (Kasuka
DM600 WND16) to cut Ti6Al4V alloy. Second, Al-Tec ECH060B16-6C06 made
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Fig. 2 Experimental setup scheme

also of solid carbide with diameter of 6 mm and four cutting edges. The third, made
of PCD with diameter of 12 mm (CutTech). The sampling rate of data reordered
during the test equals 3 kHz.

Next, the signal of cutting force is put to further analysis which is based on
recurrence plots (RP) technique, recurrence qualification analysis (RQA) and also
Hurst and Lyapunov exponents.

3 Cutting Process Stability

Most often milling process is modeled as single or two degree of freedom
system with regenerative effect. Then the process is described by delay differential
equations. Stability of the process is determined by stability lobes diagram (SLD).
In this study, SLD is plotted by commercial CutPro9 module using modal analysis.
This software identifies the structural dynamic parameters of a tool-machine from
Frequency Response Function (FRF). Accurately prediction of natural frequency,
damping ratio and modal stiffness from FRF let us identify parameters which are
crucial in predicting chatter vibration and stable lobs. The stability lobe diagram for
Ti6Al4V and Inconel 713C are presented in Figs. 3 and 4, respectively. The cutting
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Fig. 3 Stability lobe diagrams for milling Ti6Al4V

Fig. 4 Stability lob diagrams for milling Inconel 713C

conditions – spindle speed and depth of cut are shown in Table 1. Above black
line areas the process produces chatter vibrations, while machining with parameters
below stability lobs should be free from harmful chatter vibrations.

Milling Ti6Al4V at cutting depth below 2.25 mm should be stable all time
regardless of spindle speed (Fig. 3). While, in case of Inconel 713C, the stable
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Table 1 Cutting conditions – spindle speed and depth of cut for Ti6Al4V and
Inconel 713C

Point for
Ti6Al4V

Speed
[rpm]

Depth of
cut [mm]

Point for
Inconel 713C

Speed
[rpm]

Depth of
cut [mm]

1 2,700 1.5 13 1,714 2.5
2 2,700 2.5 14 2,450 2.5
3 2,700 3.5 15 1,714 2.0
4 2,700 5.0 16 2,450 2.0
5 3,050 1.5 17 1,714 1.5
6 3,050 2.5 18 2,450 1.5
7 3,050 3.5 19 1,714 1.0
8 3,050 5.0 20 2,450 1.0
9 3,500 3.5 21 1,714 0.5
10 4,000 3.5 22 2,450 0.5
11 4,500 3.5 23 3,000 2.5

limit is lower, about 1.9 mm (Fig. 4). The black points marked at SDL represent
parameters where the cutting forces Fx, Fy and Fz are measured for the purpose of
further analysis. As far as titanium alloy is concerned, stable points 1 and 10 are
chosen and unstable 4, 9 (Fig. 3).

Points 1, 4 are obtained under the same spindle speed of 2,700 rpm. The forces
in points 9 and 10 are recorded at cut depth of 3.5 mm for 3,500 and 4,000 rpm,
respectively. This let us compare an influence of cutting depth and spindle speed on
process stability. Similarly, in case of Inconel 713C milling, the points 14 and 22
are selected from Fig. 4. Unstable points 14 and stable 22 is received at 2,450 rpm.

4 Recurrence Qualification Analysis

For chosen points from Figs. 3 and 4, cutting force signals (Fx) is analysed with
the help of recurrence plot (RP) technique originally introduced by Eckmann
et al. in (1987). RP graphically presents the system state when recurrence between
points exists. More detailed description of RP technique and the delay coordinates
method which is used to obtain embedding parameters required for RP construction
can be found in Abarbanel (1996), Kantz and Schreiber (1997). Analysis of RPs
sometimes may be labour consuming and equivocal, therefore later the recurrence
quantification analysis (RQA) is developed mainly by authors of the following
papers (Marwan 2003; Webber and Zbilut 1994; Zbilut and Webber 1992). RQA
quantifies the number and duration of recurrences of a dynamical system presented
by its state space trajectory. The main advantage of RQA is that it can provide
useful information as a index number even for short and non-stationary data, where
other methods fail. According to Marwan et al. (2007), there are 14 measures of
RQA. All of them have been tested in this study and next recurrence rate (RR)
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Fig. 5 Recurrence qualification analyses for Inconel 713C and Ti6Al4V; Recurrence Rat (RR) (a);
ratio DET/RR (b)

and ratio (DET/RR) between determinism (DET) and RR are selected for cutting
process analysis. Recurrence Rate (RR) is the density of recurrence points in a
recurrence plot. Determinism or predictability (DET) is the fraction of recurrence
points forming diagonal lines. The results of calculations RR and DET/RR for
TI6Al4V and Inconel 713C is shown in Fig. 5, where the circled numbers represent
stable points while unstable ones are marked just by number. Recurrence rate of
stable points is distinctly higher than the points considered as unstable. The stability
limit of milling TI6Al4V and Inconel 713C can be put at 0.003 (dashed line in
Fig. 5a). High RR means that there are many points in recurrence.

On the other hand, the ratio DET/RR of stable points is small (below dashed line
in Fig. 5b) that means the number of points which create diagonal lines (DET) is not
big compared to the all recurrence points. This is because the cutting force signal
(Fx) obtained for stable points (1, 10, 22) is less regular than time series of cutting
force of unstable cutting.

Next, series of measurements of composite (EPMC) milling are performed with
feed rate of 520 mm/min and cutting depth and speed depicted graphically as
black points in Fig. 6. Some of the measurements have been analysed in the paper
(Rusinek 2010) where a simple stability criterion based on ratio between dynamic
and static force is introduced. Furthermore, recurrence plots and reconstructed
Poincaré maps are used to check the criterion. Now, RR and DET/RR (Fig. 7)
is applied to investigate where the process is stable. Finding a critical value of
RRcr and (DET/RR)cr is a main problem. Point can be recognized as stable when
both RR>RRcr and (DET/RR)< (DET/RR)cr. Such points have circled number
in Figs. 6 and 7. Looking at Fig. 6 it can be noticed that stable points appear
periodically versus spindle speed. This proves that SLD for composite material,
or others whose mechanical properties are not clearly defined, can be found without
solving dynamic equations of motion but just by analyzing cutting forces. We should
remember that the procedure is time consuming because needs to calculate RQA for
every or almost every points in stability diagram. The proposal how SLD looks like
for EPMC is presented in Fig. 6.
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Fig. 6 Measured points during EPMC milling

Fig. 7 Recurrence rate (RR) and ratio DET/RR for milling EPMC
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5 Conclusions

This study focuses on verification of milling process stability in case of superalloys
and composite materials machining used in aviation industry. Stability of cutting
process of typical, common used materials is quite well done. The problem arises
when workpiece is made of material which has heterogeneous properties e.g.
composite (EPMC). In this case recurrence quantifications analysis looks promising.
Among all recurrence quantification measures recurrence rate (RR) and ratio DET
to RR are chosen because their efficiency is satisfactory. In case of stable cutting,
RR of cutting force signal is higher than some critical value RRcr on the other
hand DET/RR ratio is less than critical indicator (DET/RR)cr. The proper choice of
RRcr and (DET/RR)cr is the main problem which is solved here. The critical value
should be about half of maximum value of the measures obtained both for stable and
unstable cutting parameters. The new method of stability analysis has been verified
in case of Ti6AlV4 and Inconel 713C milling and applied for finding unstable,
unwanted cutting parameters of epoxide-polymer matrix composite reinforced
carbon fibers. The results demonstrate that RQA method can be used for short time
series analysis that can be taken full advantage in damage detecting of cutting tool,
dull of tool or instability control.
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Abstract A dynamical integrity analysis is performed for an electrostatic micro-
electro-mechanical system (MEMS) device. The analysis starts from the experi-
mental data of dynamic pull-in due to a frequency-sweeping process in a capacitive
accelerometer. The loss of dynamical integrity is investigated by curves of constant
percentage of integrity factor. We found that these curves follow exactly the
experimental data and succeed in interpreting the existence of disturbances. On
the other hand, instead, the theoretical curves of disappearance of the attractors
represent the limit when disturbances are absent, which never occurs in practice.
Also, the obtained behavior chart can serve as a design guideline in order to ensure
safety of the device.
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1 Introduction

As remarked by Thompson (1989) and realized by others since then (Rega and Lenci
2005), the existence of an attractor in a dynamical system does not guarantee its
safety from a practical point of view. This is because in experiments and practice,
disturbances exist, giving uncertainty to the operating initial conditions. If the safe
basin is not sufficiently robust, the dynamical outcome can be totally different from
what is theoretically predicted.

The shrinkage and erosion of the safe basin particularly concerns systems
of softening-type behavior, such as those with asymmetric potential wells. The
consequence of this out-of-well phenomenon is the escape, which is dangerous
from a practical point of view because it leads to failure. This phenomenon arises
in several applications in MEMS (Senturia 2001). For example, in the so-called
electrostatic MEMS, which is the class of MEMS we are referring to in this paper,
a device can be operated with high level of electrodynamic excitations. For growing
excitation amplitude the energy of the system increases up to exceeding the barrier
of its potential well (Nayfeh et al. 2007; Alsaleem et al. 2009; Krylov and Dick
2010). The resulting escape manifests itself through the dynamic pull-in instability,
i.e. the resonating microstructure collapses on the substrate leading to its failure
through stiction or short circuiting.

The present work starts from the experimental data of dynamic pull-in of
a particular MEMS device, a capacitive accelerometer. They are obtained by a
frequency-sweeping process, where the voltage is kept fixed and the frequency is
increased or decreased slowly, i.e. quasi-statically. Performing a classical dynamical
analysis, we note that identifying the inevitable escape zones does not succeed in
predicting the experimental pull-in bands. This calls for a more detailed analysis,
where also dynamical integrity concepts are considered. This is the aim of the
present paper.

The response of the device is simulated by a nonlinear single degree of freedom
(d.o.f.) model (Sect. 2). It shares the same main qualitative features of other
softening systems investigated in depth (Gottlieb and Champneys 2005; Lenci and
Rega 2006) (Sect. 3). After these traditional simulations, we focus on the range
where tongues of the out-of-well attractor enter the potential well, and the erosion
proceeds up to the complete destruction of the safe basin for sufficiently high
dynamic voltage (Sect. 4).

Our main theoretical motivation is to highlight the effectiveness of the dynamical
integrity for interpreting the experimental data. To guarantee the accuracy of the
analysis, a continuous parallelism between theory and experiments is established.
All the chosen theoretical tools, as the definition of the safe basin and the integrity
factor measure, are constantly justified by the experimental conditions of the
sweeping process. Finally, the curves of constant percentage of integrity factor
are constructed. They follow exactly the experimental data, succeeding in the
interpretation of the presence of disturbances.
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In addition to the theoretical motivation, there is also a practical benefit. In
fact, the chart serves as a guideline for the design. Depending on the expected
disturbances, it allows to identify the most dangerous ranges in order that the safety
of the device is ensured.

2 Experimental Data and Mechanical Model

The considered capacitive accelerometer (Fig. 1a) consists of a proof mass sus-
pended by two cantilever beams. The upper electrode is formed by the proof mass,
with length 9 mm, width 5.32 mm, and thickness 150 �m. The lower electrode is
placed directly underneath it on a silicon substrate; it is of the same length of the
proof mass and slightly smaller width, 4.4 mm. The separation gap is 42 �m. When
electrically excited, the proof mass oscillates in the out-of-plane direction, i.e. out
of the plane of the substrate. Although the mass is not in a micro-range, the system
has the same main characteristics of a MEMS device: gap and thickness are in the
micro-range and it is actuated electrostatically. Differently from other devices, it has
the advantage of surviving the repetitive failures due to pull-in, which allows a deep
experimental investigation.

The capacitive accelerometer is simulated using a spring-mass model (Fig. 1b)
with a single d.o.f. Its governing equation of motion is

m Rx C c Px C kx D "AŒVDC C VAC cos .˝t/�2

2.d � x/2
(1)

In Eq. (1) x is the deflection of the proof mass, m is its mass, c is the viscous
damping coefficient due to the squeeze film effect, k is the linear effective stiffness
of the cantilever beams, " is the dielectric constant of the gap medium (air,
"D 8.854�10�12 C2/(N m2)), A is the lower electrode area, d is the capacitor gap

d
x

m

ck

a b

VDC

VAC

Fig. 1 (a) A picture of the considered capacitive accelerometer and (b) the spring-mass model



252 L. Ruzziconi et al.

width, VDC and VAC are respectively the electrostatic and electrodynamic voltage,�
is the electrodynamic voltage frequency, t is the physical time, and the superscript
dot denotes the time derivative.

The device has been experimentally tested in (Alsaleem et al. 2009, 2010), which
are referred for the experimental data. From these data, the coefficients in Eq. (1)
have been derived as explained in (Alsaleem et al. 2009).

The experimental static response of the proof mass is analyzed for different
increasing VDC inputs, and the static pull-in voltage is determined, Vpull-in D 115.3 V.
This value is used to obtain the stiffness coefficient k by drawing, in the static case,
the bifurcation diagrams of the governing Eq. (1) for increasing VDC, and by tuning
the stiffness in order to produce in the model a saddle-node just at Vpull-in. This yields
k D 215 Nm�1. The experimentally measured natural frequency is 192.5 Hz. From
this information, the effective mass of the proof mass is evaluated, m D 0.14697 g.

The dynamical pull-in data come from a frequency-sweeping process, where the
dynamic voltage is kept fixed and the frequency is increased or decreased slowly,
i.e. quasi-statically. They refer to the case of primary resonance, with electrostatic
voltage VDC D 40.1 V, and pressure very close to an ultra-high vacuum environment,
153 mtorr. We consider only the viscous squeeze-film damping contribution, since
it is the most significant source of energy loss in the analyzed MEMS device. The
damping coefficient due to the squeeze-film effect is computed by means of an
elaborate procedure, largely used in the MEMS literature, which is well explained
for example in (Senturia 2001).

From the previous considerations, Eq. (1) becomes:

Rx C 10:1 Px C 1:4629 � 106x D 1:2 � 10�12 � Œ40:1C VAC cos .˝t/�2

.42 � 10�6 � x/
2

(2)

The frequency step is 0.5 Hz, and the time step is 1 s, which guarantees the
steady-state condition at the end of each step. As an example, an experimental
frequency sweeping is reported in Fig. 2 for VAC D 18.4 V (almost half of the static
voltage). Similar frequency sweepings are used to extract the data points of the
experimental pull-in bands, shown with dots in the forthcoming Fig. 5.

3 Hamiltonian System and Homoclinic Bifurcation

Before analyzing the overall dynamics, we focus on the unforced, undamped system
derived from Eq. (2). This system is Hamiltonian. It has a single asymmetric well,
with the escape direction at right, showing the softening type behavior. Accordingly,
there are only two physical equilibrium points: the elliptic center xc D 0.776 �m,
and the hill-top saddle xs D 35.942 �m (Fig. 3).



Dynamical Integrity for Interpreting Experimental Data and Ensuring Safety... 253

Fig. 2 An experimental frequency response curve obtained in Alsaleem et al. (2009) by the
frequency-sweeping process (forward sweep and backward sweep) at VAC D 18.4 V
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Fig. 3 The unperturbed phase space

The homoclinic orbit separating the in-well from the out-of-well oscillations is
implicitly defined by:

t D ˙
Z x

xe

drp
2 ŒV .xs/� V.r/�

(3)
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where xe D �29.884 �m is the intersection of the orbit with the horizontal axis and

V.x/ D 1

m

�
k
x2

2
� "AV 2

DC

2 .d � x/

�
(4)

is the potential function. Note that Eq. (3) is an even function of the time t and it can
be computed only numerically.

Adding perturbations to the unforced undamped Hamiltonian system, the stable
and unstable manifolds of the saddle xs split. For some parameter values they
may intersect, producing the erosion of the safe basin. The threshold that triggers
this mechanism is represented by the homoclinic bifurcation, where the stable and
unstable manifolds become tangent. It is detected using the Melnikov method. A
similar analysis has been carried out in (Gottlieb and Champneys 2005; Lenci and
Rega 2006) for the case of a thermoelastic electrostatically actuated MEMS device.
We refer to them for more details.

The perturbed system is deduced considering both the damping and the electro-
dynamic force as small perturbations to the unforced undamped Hamiltonian case.
The first order measure of the distance between the manifolds is proportional to the
classical Melinkov function M(t0), which has the standard form (Guckenheimer and
Holmes 1983):

M .t0/ D I1 C I2 sin .�t0/ ; (5)

where I1 depends on the damping and I2 depends on the excitation frequency
and amplitude. The values of damping, frequency, and amplitude where M(t0)
has a quadratic zero are the homoclinic bifurcation values, which satisfy the
equation jI1j D jI2j. Below this threshold, which is reported by a dotted line in
the forthcoming Fig. 5, the erosion is prevented. The dynamic pull-in data are
considerably far from it, i.e., the device continues being in safe conditions well
above it. To analyze the safety of the mechanical system in this range, a dynamical
integrity analysis is required since the triggered erosion makes the jump not so
obvious.

4 Dynamical Integrity Analysis

Above the homoclinic bifurcation of the manifolds of the hill-top saddle, the escape
area penetrates with fractal tongues into the in-well basins. Numerical simulations
are performed by the combined use of frequency response diagrams and attractor-
basins phase portraits. Next to the classical behavior chart, the loss of integrity
of the safe basins is discussed. In particular, we focus on the interpretation of
the experimental data of dynamical pull-in using curves of constant percentage of
integrity factor.
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Fig. 4 Frequency response diagram (solid lines) and erosion profile (dotted lines) near primary
resonance, at VAC D 30 V

4.1 Behavior Chart and Basin Erosion

In a neighborhood of the primary resonance, the device behaves as a softening
oscillator. To illustrate this, an example of frequency response diagram is reported
in Fig. 4, where the solid lines represent the normalized maximum deflection for
VAC D 30 V. The attractors show the characteristic bending toward the left. Note
that, in the range�D [174.1, 184] Hz the inevitable escape from the potential well,
i.e. the dynamical pull-in, is the only possible outcome.

One can note from Fig. 4 that there are two kinds of bifurcations through
which the stable steady-state frequency-response curve loses stability. The non-
resonant attractor (left frequency curve of Fig. 4) disappears by a saddle-node
bifurcation (SN). The resonant attractor, on the other hand (right frequency curve
of Fig. 4), experiences the classical period-doubling cascade (PD) followed by
chaotic motion and boundary crisis (BC). The frequency corresponding to these
main dynamical phenomena have been reported in the behavior chart of Fig. 5
by solid lines. Repeating this process for different values of VAC, the curves of
appearance/disappearanceand the curve of first period-doubling have been obtained.
They summarize the overall scenario, which has the same main qualitative features
of other softening oscillators (Lenci and Rega 2006; Szemplinska-Stupnicka 1992):
the degenerate cusp bifurcation at �Š 187.5 Hz, where the saddle-nodes of the
non-resonant and resonant branches collapse; the �-shaped region where the two
attractors coexist; and the V-shaped region of inevitable escape, with vertex at
�Š 178.3 Hz. Note that the experimental data do not follow these classical curves.
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Fig. 5 Frequency-dynamic voltage behavior chart of the capacitive accelerometer with harmonic
excitation close to the primary resonance �res D 192.5 Hz. The solid lines correspond to the
main dynamical phenomena in the attractors (curves of appearance/disappearance, first period-
doubling); the dotted line to the homoclinic bifurcation; the dashed lines to the curves of constant
percentage of IF; the dots to the experimental data obtained in Alsaleem et al. (2010)

A similar behavior has been highlighted also in (Virgin 2000) for a different case-
study. Interpreting the discrepancy between the experimental data and the theoretical
inevitable escape requires other numerical simulations and the introduction of
dynamical integrity concepts.

For low values of VAC when an attractor disappears by the SN bifurcations, there
is safe jump to the other (resonant or non-resonant, respectively) attractor, as can be
noticed by the absence of dynamical pull-in in the experimental data.

The homoclinic bifurcation represents the threshold that triggers the erosion.
Above it, we build attractor-basins phase portraits to analyze the shrinkage of the
basins due to the penetration of fractal tongues of the out-of-well attractor into the
safe well. Since the system is of the softening type, the development of the erosion
is particularly dangerous because the out-of-well phenomenon is the escape, which
leads to the failure of the device.

Two examples of this mechanism are reported in Fig. 6 at fixed dynamic voltages,
VAC D 8 V and VAC D 15 V, and increasing frequency values. The fractal tongues
of escape (white) enter the well though the resonant basin (dark gray). The non-
resonant one (light gray), instead, is not involved because it is protected by the
stable manifolds of its saddle.
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Fig. 6 Attractor-basins phase portraits for VAC D 8 V and (a) �D 180 Hz, (b) �D 183 Hz, (c)
�D 185 Hz; VAC D 15 V and (d) �D 178 Hz, (e) �D 181 Hz, (f) �D 187 Hz. The circles used
in the definition of the IF are in dashed lines

For lower values of VAC the erosion concerns only a small part of the resonant
basin boundary (not reported in pictures). At about VAC D 8 V (Fig. 6a–c), instead,
the fractal escape area starts developing more rapidly and, remarkably, it enters into
the potential well and separates the two basins. For a small range of parameters,
a part of the resonant basin continues surrounding the non-resonant one (Fig. 6b),
even if with fractal tongues. Then, it quickly vanishes and the separation settles
exactly along the boundary between the two basins, preventing any safe jump
between the attractors (Figs. 6d–f). Although they coexist, when an attractor is
disappearing (Fig. 6d–e), its basin is replaced by the escape area and not by the
basin of the other attractor, even if this one exists and it is still robust.

4.2 Curves of Constant Percentage of Integrity Factor

Since disturbances commonly encountered in practice produce uncertainty to the
operating initial conditions, the existence and stability (in the classical sense) of an
attractor does not mean ‘safety’ from pull-in. Hence a dynamical integrity analysis
is required to illustrate whether the attractors are paralleled with a sufficiently robust
safe basin.
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As we are interested in the vibrations of the device at steady state, following
previous studies (Rega and Lenci 2005; Lenci and Rega 2006), we can consider
the safe basin as the union of the classical basins of attraction of all the attractors
inside the potential well, i.e. the union of the non-resonant and resonant basins.
Note that the safe basin is then a property of the well. This is because the
unwanted phenomenon is the out-of-well escape and not the in-well jump between
the attractors: the escape leads to the failure of the device; the jump, instead,
although undesirable in some applications, changes the response of the system
without destroying it.

We choose the integrity factor (IF), introduced in (Lenci and Rega 2003), as a
measure of the dynamical integrity of the safe basin. It is the normalized radius of
the largest circle entirely belonging to the safe basin. It is an appropriate measure for
the considered case-study. In fact, the IF is a property of the safe basin and not of the
attractor. It succeeds in describing when the system is in safe or unsafe conditions,
since it focuses on the compact ‘core’ of the safe basin, ruling out the fractality that
induces unpredictability of motion. Therefore it is a rather conservative measure,
more reliable for an engineering application. Finally, we compute IF in the steady
dynamics, neglecting the transient. This is suitable for the experimental data we are
analyzing because they come from a sweeping process, where at the end of each
step the system is in steady state conditions.

Examples of the circles used in the definition of the IF are depicted in Fig. 6a–f
in dashed line. Note that, when the escape enters into the potential well separat-
ing the basins, the resulting safe basin presents two distinct compact areas: one
around the resonant, the other around the non-resonant attractor. Accordingly, in
this range the IF of the well coincides with the IF of the most robust attractor.

From the previous considerations, the device remains in safe conditions up to
VAC Š 8 V, which is beyond the homoclinic bifurcation threshold triggering the
erosion. When the non-resonant basin is next to disappearance, the safe jump
between the attractors is ensured by a large compact area including both the basins
(Fig. 6c): at about the non-resonant saddle-node bifurcation, the resonant catches
the trajectories, tolerating the experimental disturbances coming from the sweeping
process. These theoretical predictions are well verified in practice, as can be seen in
Fig. 5 by the absence of pull-in data in the experiment.

After this scenario, the increased fractality settles exactly near the saddle-node,
separating the safe basin into two compact regions (similar to Fig. 6b, but with
the non-resonant basin next to disappear). Nevertheless, in a very small range (not
reported in the figures) the area around the non-resonant attractor includes a part of
the resonant basin which succeeds in ensuring the safe jump.

Over this safe threshold, each compact region includes only one attractor. In the
following, we focus on this range. We draw erosion profiles to investigate the loss of
structural safety when the parameters are varying. They are obtained by plotting the
IF, i.e. the chosen measure for the dynamical integrity, as a function of the increasing
frequency amplitude. Therefore, they describe the changes in the IF, which depend
both on the increased fractality in the resonant basin and on the shrinkage next to
disappearance in the non-resonant one. An example of erosion profile is shown in
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Fig. 4 with dotted line. It is overlapped to the frequency response curve, in order to
compare the amplitude of the safe basins to the amplitude of the oscillations. Each
radius used in the analysis is normalized with the analogous radius at �D 80 Hz
and �D 215 Hz, respectively for the non-resonant and the resonant compact area.
These choices for the normalization frequencies are justified by the fact that, far
from resonance, the basins are not affected by the erosion and their amplitude is
nearly constant.

We consider the resonant attractor when the frequency is decreasing (right side
of Fig. 4). Far from resonance, the erosion of the safe basin is slightly sketched,
producing only a slight decrement in the dynamical integrity. After this safe part,
the erosion is very quick and it occurs together with the increasing in amplitude
of the oscillations; experimental pull-in appears precisely in this range (30–50% of
IF). Finally the wide range where the amplitude of oscillations is very high, ending
with PD and possibly chaotic motion (difficult to be detected since it occurs in a
very small range), is associated with a very small safe basin. From a practical point
of view, under realistic conditions, it cannot be caught by the sweeping process.
Similarly, the non-resonant attractor has an analogous behavior.

Several erosion profiles have been made for different values of VAC and the curves
of constant percentage of IF have been obtained and reported in the behavior chart
in Fig. 5. They summarize the overall scenario of the loss of structural integrity in
the analyzed device.

The experimental data follow “exactly” these curves. In particular, near primary
resonance, safe conditions are ensured when the IF of the compact ‘core’ is at
least above the 40% near the non-resonant attractor, and above the 50% near the
resonant attractor. Below this percentage, the device becomes practically vulnerable
to dynamical pull-in, since the safe basin is not sufficiently robust to tolerate
the disturbances and the discontinuous steps coming from the sweeping process.
Therefore, not only the classical area of inevitable escape, but also the practical
pull-in area has to be avoided.

It is worth observing that, for the considered experimental conditions, the safe
curves for the resonant case are considerably far from the curve of disappearance.
The loss of structural safety in the analyzed mechanical system is summarized in
Fig. 7 with a schematic behavior chart, where the three main different regions are
identified: the safe no-escape area (white); the practical escape area whose wideness
depends on the magnitude of disturbances (light grey); the theoretical inevitable
escape (dark grey).

We conclude that the curves of constant percentage of IF succeed in interpreting
the existence of disturbances existing in the experiments and under realistic
conditions; the curves of disappearance, instead, represent the limit case when
disturbances are absent.

Finally, the charts in Figs. 5 and 7 are guidelines for the design. Depending on
the expected disturbances, they can be used to establish factors of safety in order to
operate the system reliably far from the out-of-well escape phenomenon, i.e. from
the pull-in bands and from the danger of pull-in.
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Fig. 7 Schematic behavior chart. The white region corresponds to the no-escape area; the light
grey region to the practical escape; the dark grey region to the theoretical inevitable escape

5 Conclusion

Investigating the response of a capacitive accelerometer at primary resonance,
the issue of the dynamical integrity in a mechanical system has been addressed.
Its qualitative evaluation has been performed, choosing the most suitable tools
according to the considered experimental conditions. The effectiveness of this
analysis has been highlighted, showing the accuracy of the curves of constant
percentage of IF in interpreting the existence of disturbances in experiments and
practice. Also, their use in a design has been proposed.
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Suppressing Aeroelastic Instability
in a Suspension Bridge Using a Nonlinear
Absorber

B. Vaurigaud, L.I. Manevitch, and C.-H. Lamarque

Abstract We study a problem of passive nonlinear targeted energy transfer between
a two degrees-of-freedom suspension bridge model and a single degrees-of-freedom
nonlinear energy sink (NES). The system is studied under 1:1:1 nonlinear reso-
nance involved in targeted energy transfer mechanisms. Analytical expansions are
performed by mean of complexification methods, multiple scales expansions and
exploits also the concept of limiting phase trajectories (LPTs). Several control
mechanisms for aeroelastic instability are identified, and analytical calculations
bring to efficient parameters for the absorber design. Numerical simulations are
performed and good agreement with analytical predictions is observed. It results that
the concept of Limiting Phase Trajectories (LPT) allows formulating adequately the
problem of intensive energy transfer from a bridge to a nonlinear energy sink.

Keywords Aeroelastic instability • Nonlinear targeted energy transfer • Limiting
phase trajectories

1 Introduction

Suspension bridges under wind of constant velocity are subjected to oscillating
vertical external force due to vortex shedding by the separation of the wind along
the deck of the bridge. In the case of suspension bridges with thin decks aeroelastic
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instability can appear above a critical wind velocity and dangerously damage the
structure. The use of control devices, by means of passive nonlinear absorbers and
targeted energy transfer, to prevent from these instabilities, could be a powerful
solution. These range of absorber have been studied theoretically/numerically
by Gendelman and Manevitch (2001) and Vakakis and Gendelman (2001) and
experimentally to control linear modes of a building reduce model by Gourdon
et al. (2007) and Gourdon and Lamarque (2007, 2005). Their application have been
also studied by Lee et al. to suppress linear instability of system: the instability
suppression in the Van Der Pol oscillator (Lee et al. 2005), and in an aircraft
wing (Lee et al. 2006, 2007) have been considered. This study focuses on the
aeroelastic instability of a suspension bridge and investigates the efficiency of
a single degree of freedom passive nonlinear absorber introduced in the bridge
deck. We study the suppression mechanisms of the bridge aeroelastic instability
by mean of this nonlinear absorber. This study introduces an original analytical
approach based on the concept of Limiting Phase Trajectories (LPT) to predict the
asymptotic behavior of the controlled system. The Limiting Phase Trajectories have
been introduced by Manevitch et al., that showed in Manevitch (2007), Manevitch
et al. (2007), Manevitch and Musienko (2009), Manevitch and Musienko (2008),
Manevitch et al. (2009), Manevitch and Manevitch (2009a,b) and Manevitch (2009)
that the energy exchange in systems of weakly coupled oscillators or oscillatory
chains can be efficiently described introducing the concept of Limiting Phase
Trajectories (LPT). Contrary to normal modes (NM), LPT corresponds to complete
energy exchange between weakly coupled elements of the system. In appropriates
coordinates LPT can be simply described in terms of non-smooth basic functions
introduced in Pilipchuk (1985), Vakakis et al. (1996) and Manevitch et al. (1989) for
solution of problems close to vibro-impact ones. It turns out, however, that the most
adequate area for using these techniques is the problem of intensive energy transfer
in linear and nonlinear oscillatory chains. The analytical approach of the aeroelastic
instability problem throughout the LPTs concept gives a better understanding of
energy pumping triggering mechanisms and how the system variables such as initial
conditions or absorber nonlinearity interact during the control.

In Sect. 2 we introduce a two degrees of freedom model of a suspension bridge
coupled with a purely cubic nonlinear absorber. In Sect. 3 this three degrees of
freedom system is reduced to a single nonlinear oscillator. The more relevant
resonance case is considered and the concept of LPT is used to predict analytically
the asymptotic behavior of the whole system in Sect. 4. Finally Sect. 5 exhibits
numerical simulations with good agreement with the analytical prediction, and show
that the absorber is able to control the aeroelastic instability of the bridge.

2 Dynamics of the System

We investigate the response of a two DOF suspension bridge model from Blevins
(1977). This model takes into account the coupling between aerodynamical actions
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Fig. 1 Two DOF bridge deck coupled with a SDOF NES on the elastic axis

on the structure and its elastic response. Considering only the torsional and flexional
natural modes the equations of motion representing the wind induced aeroelastic
instability can be written as follows:

R' C m0

m
!0 P' C !21' � m0

m
!20� D 0

R� C m1l
2

2mr2
!0 P� C

�
!22 � m0l

2

2mr2
!20

�
� C m0l

2

2mr2
!0 P' D 0 (1)

with the following variables:

k" : NES nonlinear stiffness �" : NES damping
K : flexional rigidity � : torsional displacement
2l : width of the bridge deck 	 : mass per unit of volume of air
L : length of the bridge deck ' : bending displacement
m : mass per unit of length of the bridge !21 = K/m
m" : NES mass !0 D V/l
m0 �4:5¡l2 !22 D Kl2=mr2

m1 �6:3¡l2 V : wind velocity
mr2 : moment of inertia along longitudinal axis

These equations illustrate the aeroelastic instability of the bridge, this linear
system exhibits linear instability for a critical value of wind velocity V .

We consider in this paper the solution of adding a SDOF NES, coupled along the
bending direction on the elastic axis. This coupling is represented in Fig. 1.

The NES characteristics are in the previous nomenclature. Taking into account
this nonlinear coupling equation (1) can be rewritten as a three DOF system:



266 B. Vaurigaud et al.

R' C m0

m
!0 P' C !21' � m0

m
!20� C �"

m
. P' � Pz/C k"

m
.' � z/3 D 0

R� C m1l
2

2mr2
!0 P� C

�
!22 � m0l

2

2mr2
!20

�
� C m0l

2

2mr2
!0 P' D 0

m"Rz C �".Pz � P'/C k".z � '/3 D 0 (2)

The terms involving !0 P' and !0 P� cannot be ignored, as they are produced by
wind loading !0. For simplicity, these terms are assumed small compared to all
other terms of order 1. Considering the smallness of parameters it is reasonable to
rewrite (2) as:

R' C "2�1 P' C˝2
1' � "k� � "2� P � "2K3 D 0

R� C "2�2 P� C˝2
2� C "2�3 P' D 0

R' C R C � P CK3 D 0 (3)

where  D z�' is the internal displacement between the NES and the bridge deck.

˝2
1 D !21 , "2�2 D m1l

2

2mr2
!0, "k2 D m0l

2

2mr2
!20 , "k D m0

m
!20 ,

˝2
2 D !22 � "k2, "2�1 D m0

m
!0,

m"

m
D "2, "2�3 D m0l

2

2mr2
!0,

�"

m
D "2�,

k"

m
D "2K .

3 Reduction of the System to a Single Oscillator
and Resonance Oscillations

In this Section we study the system under 1:1 resonance using complexification,
multiple scales methods and limit phase trajectory approach (Manevitch and
Musienko 2009; Manevitch et al.). First we will reduce the three DOF system to
a single oscillator considering the bridge behavior as an external forcing applied to
the NES.

We solve the bridge equations without damping terms to reduce the bridge
motion to an external forcing. We have to solve the following system:

R' C ˝2
1' � "k� D "2K3;

R� C ˝2
2� D 0; (4)
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with initial conditions:

'.0/ D "q10; P'.0/ D "˝1v10; �.0/ D q20;

P�.0/ D ˝2v20; z.0/ D 0; Pz.0/ D 0:

Solution �.t/,'.t/ is:

�.t/ D Y2 sin.˝2t C �2/

'.t/ D "˚1 sin.˝1t C �1/C "k˚2 sin.˝2t C �2/C "2K1I.t/ (5)

with the following parameters:

˚2 D Y2

˝2
1 �˝2

2

, Y2 D .q220 C v220/
1=2, tan�2 D v20

q20
,

˚1 D .Z2
1 CZ2

2/
1=2, tan�1 D Z2

Z1
,

Z1 D q10 � k
q20

˝2
1 �˝2

2

, Z2 D v10 � k
v20

˝2
1 �˝2

2

,

for i D 1; 2 Qi D ˝2
i ˚i , K1 D K

˝1

,

I.t/ D
Z t

0

sin.˝1.t � s//3.s/ ds.

Finally we obtain the external forcing applied on the NES:

R'.t/ D �"Q1 sin.˝1t C �1/� "kQ2 sin.˝2t C �2/C "2K3.t/ � "2K˝1I.t/

According to Eq. (3) we have:

R C � P CK3 D � R'
with � R' D "F.t/ � "K1I.t/

and F.t/ D Q1 sin.˝1t C �1/C kQ2 sin.˝2t C �2/; K" D "K˝1 (6)

We investigate the 1:1 resonance of the system. For this reason we introduce
parameter ! corresponding to the resonant pulsation of the system under 1:1
resonance assumption. We will determine later the vicinity of this parameter
according to the bridge modal parameters. As a result Eq. (6) can be rewritten as
follows:

R C !2 C "�Œ� P CK3 � !2� D "F.t/ � "K"I.t/ (7)
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with � D 1

"
. For parameter � to be considered as independent from variable " the

sum in the square brackets must be small compared to the other terms of order 1.
This means that we have to verify the following relation:

Œ� P CK3 � !2� D o.1/ (8)

In Eq. (7) the term in 3 appears at first of higher order but we must consider that
the integral term I.t/, under some special resonant cases can be of order "�1 and
must be taken into account for the asymptotic analysis. We will expand Eq. (6) using
complexification and multiple scale expansions with ! near ˝1 and ! near ˝2

considering primary resonance only.
In order to describe the system evolution we introduce a complex valued

transformation, with variables ˚ and ˚�, such that:

˚ D P C i!; ˚� D P � i!;

P D ˚ C ˚�

2
;  D ˚ � ˚�

2i!
: (9)

where i D p�1 and the asterisk denotes complex conjugate. Introducing these new
variables in (6) we obtain:

P̊ �i!˚C"��
2
.˚�˚�/�"3i�K

8!
.˚�˚�/3C"�i!

2
.˚�˚�/ D "F.t/�"K"I.t/

(10)
Then we apply a multiple scale method to construct an approximate solution of (10)
as an " expansion:

˚.t; "/ D ˚10.T0; T1/C "˚11.T0; T1/C : : :

d

dt
D @

@T0
C "

@

@T1
C "2

@

@T2
C :: (11)

with Tj D "j t; j D 0; 1; 2; : : : . We can substitute expression (11) in (10). Equating
the different power of " we obtain:

"0 W @˚10
@T0

� i!˚10 D 0 ) ˚10.T0; T1/ D '10.T1/e
i!T0 (12)

"1 W @˚10
@T1

C @˚11

@T0
� i!˚11 C ��

2
.˚10 � ˚�

10/

�3i�K
8!3

.˚10 � ˚�
10/

3 C i�!

2
.˚10 � ˚�

10/ D F.t/ �K"I.t/ (13)
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Suppressing secular terms from (13) we obtain:

@'10

@T1
C ��

2
'10�3i�K

8!3
'210'

�

10C
i!�

2
'10 D Q1

2i
.ei.˝1�!/T0Ci�1 � e�i.˝1C!/T0Ci�1/

C k
Q2

2i
.ei.˝2�!/T0Ci�2 � e�i.˝2C!/T0Ci�2/

� C".t/ (14)

C".T0/ D "K
i

8!3
e�i!T0

Z T0

0

sin.˝1.T0 � s//.'10.s/e
i!s � '�

10.s/e
�i!s/3 ds

(15)

In order to calculate C" it is convenient to introduce function:

G.!;˝1/ D "K
1

16!3
e�i!T0

Z T0

0

ei˝1T0ei.!�˝1/sds (16)

The integral C" can be expressed in function of G:

C".T0/ D '10G.3!;˝1/�'10G.3!;�˝1/C '�
10G.�3!;˝1/�'�

10G.�3!;�˝1/

C3j'10j2'10G.!;˝1/� 3j'10j2'10G.!;�˝1/

C3j'10j2'�
10G.�!;˝1/� 3j'10j2'�

10G.�!;�˝1/ (17)

These equations should be studied in the vicinity of different system pulsation !.
For the sake of simplicity and considering numerical evidence of Sect. 4 we will
focus on the resonant case ! � ˝2, which involves that ˝1 does not generate
resonant terms.

3.1 Case ! � ˝2, ˝1 Does Not Generate Resonance Terms

Let us consider ! � ˝2, in this particular case ˝1 does not generate resonance
terms which involves that C".T0/ is not a resonance term. Secular terms give:

@'11

@T0
C @'10

@T1
C ��

2
'10 � 3i�K

8!3
'210'

�
10 C i!�

2
'10 D Qf .T0/

Qf .T0/ D k
Q2

2i
.ei.˝2�!/T0Ci�2 � e�i.˝2C!/T0Ci�2/C non-secular terms (18)
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Considering˝2 D ! � "�2 secular terms permit to write Qf .T0/ as:

Qf .T0/ D �kQ2

i

2
e�i.�2T1��2/ C non-secular terms D Qf2.T0/C non-secular terms

(19)
We finally get the reduction to a single oscillator for˝2 D ! � "�2:

@'10

@T1
C ��

2
'10 � 3i�K

8!3
'210'

�
10 C i!�

2
'10 D �kQ2

i

2
e�i.�2T1��2/ (20)

3.2 Single Oscillator Differential System

We consider the "-order equations of Sect. 3.1 and introduce the polar representation
of complex variable '10 D aei� into Eq. (20) and separate real and imaginary parts
to get an amplitude-phase differential system. We obtain the following differential
system for variables a and �:

8̂
<̂
ˆ̂:

@a

@T1
D ���

2
a � F sin�

a
@�

@T1
D ��!

2
a C 3�K

8!3
a3 � F cos�

(21)

� D � C �2T1 � �2 F D 1

2
kQ2

8̂
<̂
ˆ̂:

@a

@T1
D ���

2
a � F sin�

a
@�

@T1
D �a.�s C ˛a2/ � F cos�

(22)

˛ D 3K

8!3
s D !

2
� �2

�

In the next section differential system (22) is studied. The fixed points of the
system are first investigated and then the Hamiltonian of the undamped (22) system,
corresponding to � D 0 is considered.

4 Analytical Study of the Nonlinear SDOF Oscillator

In this part we will consider the differential system (22) in the damped (� ¤ 0) and
undamped case (� D 0). This analysis is mainly based on the analysis of Manevitch
and Manevitch (2009b).
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4.1 Fixed Points

Stationary points of the phase portraits correspond to periodic vibrations and can be
found from conditions:

F 2 D �2a2
�
�2

4
C .˛a2 � s/2

�
(23)

This equation is a cubic equation in the variable X D a2, and (25) can be rewritten
as:

X3 � 2s

˛
X2 C �2 C 4s2

4˛2
X � F 2

�2˛2
D 0 (24)

Equation (24) gives the fixed points of system (22), taking the bridge damping into
account. To understand the general behavior of the system it is easier to get rid of
damping. Let us consider system (22) without damping, which means for � D 0.

Equating the system to zero we obtain:

�
sin� D 0

�a.˛a2 � s/ D F cos�
(25)

Let us consider a range �
 � � � 
 , then � D ˙
 Œ2
� and amplitudes a for
stationary vibrations satisfy the equation:

�a.˛a2 � s/ D ˙F (26)

where CF and �F correspond to � D 0 and � D 
 respectively. Discriminant of
Eq. (26) is R:

R D 1

˛2

�
F 2

�2
� 4

27

s3

˛

�
(27)

If R < 0 system (22) has three real roots: a nonsensical negative one and two
positive roots corresponding to saddle point and quasilinear center of the system.

If R > 0 system (22) has one single real root that corresponds to the nonlinear
resonance center.

4.2 Analytical Study of the LPT

Equation (22), for the undamped oscillator, has the following Hamiltonian:

H D �

�
˛a4

4
� sa2

2

�
� aF cos� (28)
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Let us consider Eq. (22) for the LPT (H D 0),� D 0 or � D 
 .

�˛

2
a3 � �sa ˙ 2F D 0 a D 0 (29)

This is a cubic equation of discriminantQ:

Q D 16

˛2

�
F 2

�2
� 2s3

27˛

�
(30)

We will observe qualitative transformation of the phase plane for:

˛ D ˛c D 2�2s3

27F 2
(31)

While ˛ < ˛c the LPT encircles the non-resonance quasilinear center at
� D �
 .

If ˛ > ˛c the LPT does not encircle the quasilinear center, but the LPT encircles
the resonance center at � D 0.

If ˛ > 2˛c then quasilinear center and saddle point coincide and ‘annihilate’.
That can be explained studying the discriminant R of Eq. (26).

There are no other important transformations of the phase plane, for ˛ > 2˛c we
get one single stationary point that decreases with the rise of parameter ˛.

5 Numerical Simulations in the Case ¨ � �2

For the numerical simulations we fix the bridge parameters as :

V D 27:5m:s�1 m0

m
D m1

m
D 1

50
!21 � 0:72

l D 6m � D 0:5 !22 � 2!21

l2

2r2
D 1 "2 D 0:1 � D 0:1 (32)

And initial conditions to:

'.0/ D 0 P'.0/ D 0:3 �.0/ D 0

P�.0/ D 0:3 z.0/ D 0 Pz.0/ D 0 (33)

Under these initial conditions and choosing nonlinear parameterK D 2:5N.m�3
we observe that the NES is able to control the bridge instability. Figure 2 shows
that both variables � and ' are controlled. The dashed line represents the linear
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0 50 100 150 200 250 300 350 400 450 500
t (s)

0 50 100 150 200 250 300 350 400 450 500
t (s)

without NES
with NES

without NES
with NES

Fig. 2 Displacements of bridge variables ' and � with and without nonlinear coupling withK D
2:5N.m�3 and initial conditions (33) (— with coupling, . . . without coupling)

unstable system whereas the solid line represents the system under the NES control
(to display correctly the control the plot has been cut, and only the part j'.t/j < 2

and j�.t/j < 2 is presented).
We now observe the different types of behavior that can occur for different values

of K .
We choose to work under the assumption of a ! � ˝2 resonance. This

assumption is numerically verified as shown in Fig. 3a, the main harmonic of the
signal correspond to frequency˝2, nevertheless the other resonance approximations
give only small shift in the results, mainly because frequencies˝2 and ˝1 are very
close to each other.

We focus on parameterK to study the influence of the NES design, and specially
the NES nonlinear stiffness, on the quality of the control. Investigating numerically
the behavior of the bridge we can determinate three very different kind of behavior
depending on the nonlinearity of the NES. These curves presented Fig. 3 show the
displacements in time of variables ' and z. We can separate three very different
types of behavior. Nevertheless they are linked together by the nonlinear beating that
characterizes the nonlinear control that asymptotically occurs. When the stiffness is
too low system displacements grow up until a critical value for the nonlinear beating
and the control to start (see Fig. 3b), this is the first case: a long time before nonlinear
control starts, and a control that occurs at very high displacements. On the contrary
when the stiffness is too strong system displacements decrease until a critical value
for the nonlinear control to start (see Fig. 3d), the bigger the stiffness is, the longer is
the decrease. The control resulting from this case is very efficient (the displacement
reduction is huge), but takes a long time to start.

If we choose a good balance between the two previous cases the nonlinear
beating starts quickly enough, and reduces significantly the system vibrations (see
Fig. 3c). These different cases underline a range of efficiency for the NES system.
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Fig. 3 (a) K D 2:5N.m�3 Frequency analysis of variable  ; (b) K D 0:01N.m�3, (c) K D
2:5N.m�3, (d) K D 500N.m�3 Displacements of variables ' and z for different value of K ,' in
solid line and z in dotted line

5.1 Behavior of the Hamiltonian

Let us consider the case of initial conditions (33) and K D 2:5N.m�3, under the
assumption of an ! � ˝2 resonance. We perform numerical simulation on the
general system (2) and on the reduce system (22), checking that assumption (8) is
numerically confirmed.

In Fig. 4a the numerical integration of variable a.t/ from general system (2) is
presented. This Figure shows a good agreement with Fig. 4b which represents the
Hamiltonian of the associated single oscillator of system (22) with the numerical
integration of variable a from this system. The LPT is highlighted with a large black
line. It results that the concept of LPT allows predicting the asymptotic behavior of
the controlled system. These numerical integrations show good agreement with the
prediction made using the single oscillator approximation and its Hamiltonian.

It is also interesting to study the evolution of the Hamiltonian with the nonlinear-
ity parameter ˛. According to Eq. (31) we obtain ˛c � 0:147N.m�3. The evolution
of the Hamiltonian (28) around the critical value ˛c is plotted in Fig. 5a–d.
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Fig. 4 K D 2:5N.m�3, (a) Numerical integration of variable a from (2), (b) Hamiltonian of
Eq. (22) with LPT in large line
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Fig. 5 Evolution of the Hamiltonian with the stiffness of the NES, the LPT is underlined in large
line. (a) ˛ < ˛c , (b) ˛ � ˛c , (c) ˛ > ˛c , (d) ˛ > 2˛c

The numerical simulations of Fig. 5a–d are in good agreement with the analytical
predictions of Sect. 4.2. These figures correspond to the different cases ˛ < ˛c ,
˛ � ˛c , and ˛ > ˛c . They are similar to the results obtained in Manevitch
et al.,Manevitch and Musienko (2009), and Manevitch and Musienko (2008).
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6 Conclusion

This study demonstrates that a NES (Nonlinear Energy Sink) can control the
aeroelastic instability of a structure using targeted energy transfer. The example
chosen was a two degree of freedom bridge under a constant wind excitation.
Numerical and analytical calculations underline two different behaviors for the
system, around a critical constant depending on the nonlinear stiffness and system
initial conditions. The energy exchange in the system gives a good understanding of
these behaviors.

The analytical approach gives approximate solutions under the assumption of
1:1:1 resonance using the concept of LPT (Limiting Phase Trajectories). The
procedure applied in our study permits to reduce the Bridge/NES three degrees of
freedom model to a single forced oscillator, and then allows us to construct the
limiting phase trajectories and approximate the steady state of the resulting system.
We have shown that LPT-concept provides efficient solution to the aeroelastic
instability control problem. This method shows good agreement with numerical
integration and gives elements to understand how the nonlinear stiffness and the
initial conditions govern the system.

Acknowledgements This work has been supported by French National Research Agency under
the contract ANR-07-BLAN-0193.
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Near-Grazing Dynamics of Macro-scale
and Micro-scale Cantilevers with Nonlinear
Tip Interaction Forces

Ishita Chakraborty and Balakumar Balachandran

Abstract In this article, the dynamics of base-excited elastic cantilevers with
non-linear attractive and repulsive forces in macro-scale and micro-scale systems
are studied through experimental and numerical means. The macro-scale set-up
consists of a base-excited elastic cantilever with a long-range attractive force and
a short-range repulsive force. The attractive force is generated by a combination of
two magnets, one located at the cantilever structure’s tip and another on a movable
translatory base. The repulsive force is generated through impacts between the
cantilever tip and a compliant material that covers the magnet on the translatory
stage. This macro-scale experimental system is motivated by micro-scale cantilevers
used in tapping mode or dynamic mode atomic force microscopy (AFM). In
tapping mode AFM, the micro-cantilever undergoes a long-range van der Waals
attractive force and a short-range repulsive force as the cantilever tip approaches
the sample. The authors study the macro-scale system and the micro-scale system,
when the excitation frequency is away from the first natural frequency. For off-
resonance excitations, period-doubling events are observed in these impacting
systems. A reduced-order model is developed to numerically study these systems on
the basis of a single mode assumption. In the numerical studies, similar nonlinear
tip-sample forces are used to model the interaction forces on the cantilever’s tip
in both macro-scale and micro-scale systems. In an effort to understand the effects
of noise on the dynamics, the responses of the systems are studied when Gaussian
white noise is introduced into the base excitation, along with a harmonic component.
It is observed that the addition of Gaussian white noise facilitates contact between
the tip and the sample, for low levels of a harmonic base excitation.
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Keywords Macro-scale and micro-scale systems • Tapping mode AFM • Near-
grazing dynamics

1 Introduction

In this article, the dynamics of macro-scale and micro-scale base-excited elastic can-
tilevers are studied in the presence of attractive and repulsive interaction forces. The
macro-scale system is constructed as a vehicle for understanding the dynamics of
the micro-scale AFM micro-cantilevers operated in tapping mode. The focus of this
study is to observe qualitative changes for off-resonance excitations. It is observed
that when the impacts are of “grazing” type (i.e., “zero-speed” impacts between the
tip and the sample), the period of response of the beam tip becomes twice the period
of excitation for certain excitation frequencies between the first and the second
natural frequencies of the system. This type of qualitative change is further analyzed
by using a reduced-order numerical model developed with a single mode approxi-
mation. In addition to studying the bifurcations for near-grazing impacts, the authors
explore the effects of additive Gaussian white noise into the inputs of these systems.
Noise effects, which can be prominent in micro-scale system dynamics, can arise
due to fabrication irregularities and thermal fluctuations. In what follows, to
contextualize the current work, a brief discussion on prior work on impact dynamics,
AFM cantilever dynamics, and stochastic dynamics of AFM cantilevers is provided.

Impact oscillators have been extensively studied over the past several decades
(Shaw and Balachandran 2008). A special situation arises at zero-speed incidence or
grazing impacts. Nordmark (1991) studied bifurcations caused by grazing impacts
and studied the phenomenon by using a map construction. Dankowicz and Nord-
mark (2000) studied grazing impacts by constructing a discontinuity map around
the bifurcation point. di Bernardo et al. (2001) derived a normal form map to study
grazing incidence. Ing et al. (2010) studied impact induced bifurcations for near-
grazing impacts for a linear oscillator. Long et al. (2008) studied corner-collision
bifurcations for soft impacts, while Dick et al. (2009) reported period-doubling
bifurcations for near-grazing impacts for excitation frequencies between the first
and the second natural frequencies of the system. For off-resonance excitation
frequencies, period-doubling bifurcations were reported for the current macro-
scale experimental system and micro-cantilevers in the prior work of the authors
Chakraborty and Balachandran (2011a,b, 2012).

For an AFM micro-cantilever operating in a tapping mode, the tip-sample
interaction forces are inherently nonlinear and related nonlinear phenomena have
been extensively studied (Hu and Raman 2006; Lee et al. 2002; Basak and Raman
2007). However, the focus of most of this literature is on cantilever dynamics,
when the excitation frequency is at the first natural frequency of the cantilever. The
tip-sample interaction forces between the tip and the sample have been modeled
as Lennard-Jones potential forces, piece-wise linear forces, and a combination of
van der Waals attractive and DMT contact forces. In the literature, the reported
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nonlinear behaviors include bistability, period-adding bifurcations due to grazing
contact, and chaos. The work carried out on addressing the effects of noise on micro-
scale cantilever dynamics has been limited.

The presence of noise can have a significant effect on both micro-scale
and macro-scale systems. For example, it was shown by Ramakrishnan and
Balachandran (2010) that the addition of noise influences the formation of intrinsic
localized modes in a micro-scale resonator array. In the studies of Butt and Jaschke
(1995) and Stark et al. (2001), the thermal noise levels in AFM cantilevers was
quantified by using numerical means. It is noted that the presence of a double-
well potential can make the vibrating micro-cantilever system amenable to the
phenomenon of stochastic resonance. The addition of noise may move the system
from one potential well to another.

For micro-scale and macro-scale systems excited by off-resonance excitations,
period-doubling bifurcations related to grazing contact have been examined in the
present work. The effects of adding Gaussian white noise to the input signal is also
studied for the considered systems. The rest of the article is organized as follows:
The experimental arrangement and results for the macro-scale system are presented
in Sect. 2. The reduced-order model and the numerical results generated by using
it are presented in Sect. 3. The experimental and numerical results obtained for a
micro-scale cantilever are presented in Sect. 4. The effects of Gaussian white noise
on the system dynamics are explored in Sect. 5. Concluding remarks are provided at
the end.

2 Experimental Arrangement and Results

The macro-scale experimental arrangement consists of a base-excited Aluminum
cantilever structure, which has a small magnet attached to its tip. This magnet
is attracted by another magnet that is fixed to a high-resolution translatory stage.
The magnet on this stage is covered by a compliant material. The tip of the
cantilever structure experiences a repulsive contact force, when this tip makes
contact with the compliant material. The schematic of the experimental arrangement
is shown in Fig. 1. The distance between the tip and the compliant material can
be controlled by using the translatory stage. The experimental arrangement is
oriented in the horizontal plane, so that the gravity effects on the bending mode
of vibration can be neglected. The material properties related to the cantilever
structure and the tip-interaction forces are provided in Table 1, and the associated
material property and geometry values have been used to conduct the numerical
simulations of Sect. 3. The first and the second natural frequencies of the cantilever
structure are experimentally determined as 7.1 and 46.8 Hz, respectively. The
authors use a single mode approximation to model the system, since the first and
the second natural frequencies are well separated. The response of the system is
studied for off-resonance excitation frequencies while maintaining near-grazing
contact between the tip and the compliant material. The experimentally obtained
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Fig. 1 Schematic of experimental arrangement at macro-scale
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Fig. 2 Experimentally obtained diagram of qualitative changes on Poincaré section for excitation
frequencies higher than the system’s first natural frequency. Here, the scalar control parameter is
the excitation frequency. The Poincaré sections are constructed by using the excitation frequency
as the clock frequency

Poincaré section results are plotted in Fig. 2, where the excitation frequency is
the quasi-statically varied scalar parameter. A period-doubling window is observed
between the excitation frequencies of 14.5 Hz (2.03 times the first natural frequency)
and 17.1 Hz (2.39 times the first natural frequency).
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3 Numerical Results

The response of the impacting cantilever structure is studied by using a reduced-
order model developed through a Galerkin projection of the governing equations
of motion. The derivation of the open domain equation of motion and the cor-
responding boundary conditions are discussed in detail in the authors’ previous
work Chakraborty and Balachandran (2011b, 2012). The model of the base-excited
cantilever with the tip-sample arrangement is shown in Fig. 3. The transverse
displacement field is denoted by w.s; t/, where t is the time and s is the spatial
coordinate along the length of the cantilever. After neglecting the nonlinear terms,
the equation of motion of the base excited cantilever in the open domain can be
written as

	A Rw C EIwiv D !2	AX0 cos.!t/; (1)

where 	 is the density of the beam material, EI is the flexural rigidity, A is the cross
section of the beam, ! is the excitation frequency, and X0 is the amplitude of the
base excitation. The boundary conditions for this system read as

w.0; t/ D 0; w0.0; t/ D 0

w00.L; t/ D 0; EIw000.L; t/ D m Rw C Fc: (2)

In Eq. (2), m is the mass of the beam tip and Fc is the net force experienced by
the cantilever tip, due to the tip-sample interactions. The contact force along with
the magnetic attractive force is taken into account in the boundary conditions. The
tip-sample force is given by

Fts.z/ D
8<
:

� KM
.zCdCA0/2 for d C z > 0

� KM
.A0/2

CKE.�d � z/1:5 for d C z � 0
(3)

Fig. 3 Schematic of the elastic structure and the tip sample arrangement
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Table 1 Simulation
parameter values

Property Value

Beam length (L) 295 mm
Cross-sectional area (A) 20 mm � 0.9 mm
Material density (	) 2,700 Kg/m3

Cantilever Young’s Modulus (E) 70 GPa
Tip mass (m) 0.094 gm
Thickness of compliant material (A0) 5 mm
Quality factor (Q) 10

Constant related to magnetic force (KM ) 4:3� 10�10

Constant related to elastic force (KE ) 2:3� 103

where z is the absolute displacement of the cantilever’s tip, A0 is the compliant
material thickness, d is the initial separation between the cantilever tip and the
sample (see Fig. 3 for details of the tip arrangement), and KM and KE are
constants related to the attractive and repulsive forces, respectively. This force
interaction is qualitatively similar to attractive-repulsive force interactions (modeled
by van der Waals force and Derjaguin-Muller-Toporov forces) in tapping mode
AFM (Chakraborty and Balachandran 2011b). In further development, all of the
parameters used in the above equations are nondimensionalized, the displacement
field is described by using a single mode assumption, and a reduced-order model is
obtained in terms of the nondimensional parameters as

m1 Rq1 C k1q1 C c1 Pq1 D fb C fc: (4)

Details of the different coefficients in Eq. (4) are given in the Appendix. The
simulation parameter values used for the numerical simulations are listed in Table 1,
which pertains to the experimental conditions described in Sect. 2. The numerical
studies are performed at two selected frequencies, and the experimentally obtained
Poincaré sections for the selected frequencies are marked by the solid and dotted
ellipses in Fig. 2. The selected frequencies are 15.4 and 16.1 Hz as pointed out
in Fig. 2. The comparisons between the numerically and experimentally obtained
phase portraits are plotted in Fig. 4 for unconstrained and constrained motions.

4 Application to Micro-scale Cantilever

Following the observation of the period-doubling phenomenon close to grazing
for off-resonance excitation frequencies in the macro-scale system, the authors
studied qualitative changes for grazing impacts in the micro-scale system, for
excitation frequencies in between the first and the second natural frequencies of
the system. The micro-scale experiments were carried out by using an Asylum
Research MFP 3D AFM equipment and a soft Si cantilever and a Si(100) sample.
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Fig. 4 (a) Experimentally obtained phase portraits for excitation frequency of 15.4 Hz, (b) nu-
merically obtained phase portraits for excitation frequency of 15.4 Hz, (c) experimentally obtained
phase portraits for excitation frequency of 16.1 Hz, and (d) numerically obtained phase portraits
for excitation frequency of 16.1 Hz. The phase portrait that occupies a smaller area is obtained for
the unconstrained motion and the other phase portrait is obtained for the constrained motion

The corresponding experimental arrangement is shown in Fig. 5. The length, width,
and the thickness of the cantilever are 450, 50, and 2�m, respectively. The first
natural frequency of the system is at 12.72 kHz. The response signals are monitored
by using a real time signal analyzer to identify qualitative changes associated with
grazing contact, when the excitation frequency is in between the first and the second
natural frequencies of the system.

The phase portraits shown in Fig. 6 are illustrative of the period-doubling
phenomenon associated with near-grazing contact, when the excitation frequency
is 2.34 times the first natural frequency; this phenomenon is similar to what was
observed in the macro-scale system wherein the frequency location is different.
The numerical model used for simulations of the micro-scale cantilever dynamics
is similar to that reported in Sect. 3. However, the tip-sample forces are modeled
as a combination of van der Waals attractive force and DMT contact force (see
Chakraborty and Balachandran 2011b; Lee et al. 2002) and the tip mass of the
cantilever is neglected in the micro-scale case.

For AFM cantilevers, a near-grazing contact can be identified by a period-
doubling response for the chosen off-resonance excitation. This method of oper-
ation can ensure grazing contact between the AFM tip and sample which would
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Fig. 5 Experimental arrangement with micro-scale cantilever
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Fig. 6 (a) Experimentally obtained phase portrait for Si cantilever and Si(100) sample combina-
tion. (b) Numerically obtained phase portrait. The dotted lines correspond to the location of the
sample

effectively reduce the repulsive tip-sample forces. High repulsive forces tend to
destroy the tip of the cantilever or damage the soft samples.

5 Effects of Noise

In order to form a basis to study the effects of white noise on the tapping mode
AFM operations, first, noise effects are studied in a macro-scale test apparatus. It
is observed that grazing contact and associated period-doubling take place for low
levels of harmonic excitation than previously observed, when white noise is added
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Fig. 7 (a) Phase portrait of the cantilever tip response for a harmonic base excitation. (b) Phase
portrait of the cantilever tip response when noise is added to the harmonic base excitation and SNR
is 402.88

along with the harmonic excitation. The experimental data obtained for the macro-
scale system is presented in Fig. 7. For a harmonic excitation, the phase portrait
for the cantilever tip response is plotted in Fig. 7a. It is seen that the fundamental
response frequency is at the excitation frequency and that the cantilever’s tip does
not make contact with the sample. The excitation frequency is chosen as 16 Hz
(which is within the period-doubling window), so that contact can be identified by
a period-doubled response that occurs for near-grazing impacts. From Fig. 7b, it is
noted that the orbit becomes nominally close to the period-doubled orbit when the
signal to noise ratio (SNR) in the base excitation reaches a value of 402.88. This
phenomenon is explored at length in the related work of the authors Chakraborty
and Balachandran (2011a).

The potential function associated with tip-sample interactions and the elastic
micro-cantilever has a double-well characteristic. This means that there is a
possibility of “stochastic resonance” in such cases when the addition of noise pushes
the system from one potential well to another. The authors have observed similar
effects of noise in the micro-scale cantilever system, as in the macro-scale system.

Numerical simulations were carried out for a Si cantilever and HOPG sample
combination. The selected forcing frequency is 2.24 times the first natural frequency
of the system. The excitation amplitude and initial tip sample distance are selected as
56 and 100 nm, respectively. The potential function for this case is plotted in Fig. 8.
The potential function is obtained from the van der Waals and DMT forces used
to model the tip-sample forces in AFM. For the case without noise, the response
phase portrait is shown in Fig. 9a. The associated harmonic oscillation corresponds
to the dotted line in the potential function plot shown in Fig. 8. The motions are
symmetric in the phase portrait and they occur around the lower potential well.
Furthermore, it is observed that the fundamental response frequency is at the same
frequency as the excitation frequency, and that the cantilever tip does not make
contact with the sample. Next, Gaussian white noise is added to the harmonic input
signal by using the MATLAB function ‘awgn’. The harmonic excitation term is
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Fig. 9 (a) Phase portrait of the cantilever tip response when there is no noise addition in the base
input. (b) Phase portrait of the cantilever tip response when there is noise added to the base input.
The signal to noise ratio is 100. The vertical lines correspond to the location of the sample

passed through this additive noise channel, which adds noise of a prescribed SNR
to the harmonic signal. For the case with noise and a signal to noise ratio of 100, the
obtained response phase portrait is presented in Fig. 9b. The associated oscillation
corresponds to the solid line in the potential function shown in Fig. 8. A “stochastic
resonance” like phenomenon is observed, wherein the inclusion of noise in the base
excitation pushes the solution to a higher energy level where the motions encounter
a double-well potential. It is observed that the cantilever tip makes contact with
the sample, due to the addition of white noise in the base excitation, with all of
the other conditions remaining the same as in the previous case without noise
and no contact. The fundamental response frequency of the cantilever is at half
the excitation frequency. The contact induced through the addition of white noise
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in the excitation signal and the corresponding period-doubled response is seen to
be realizable in the micro-scale AFM cantilever system as previously noted in the
macro-scale system.

6 Concluding Remarks

A macro-scale experiment with a base-excited cantilever structure with long-range
attractive force and short-range repulsive force has been constructed and studied.
This system is inspired by micro-cantilevers used in tapping mode AFM opera-
tions. During off-resonance excitations, period-doubling bifurcations are studied in
macro-scale and micro-scale systems through experimental and numerical efforts,
when the impacts between the tip and the sample have a zero speed. The period-
doubling phenomenon is seen to be scalable, and furthermore, it takes place in a
similar frequency ratio ranges for the two systems. The nonlinear phenomenon is
numerically explored through a reduced-order model developed by using a single
mode approximation. Effects of Gaussian white noise on such systems have also
been studied through experimental and numerical means. It is observed that addition
of Gaussian white noise to a harmonic base excitation input facilitates contact and
period doubling, when previously no contact was observed for a harmonic base
excitation. The present efforts provide a glimpse into the scalability of nonlinear
phenomena and the application of it to atomic force microscopy.
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Appendix

The terms in Eq. (4) can be expressed as:

m1 D
Z 1

0

�1.Ns/�1.Ns/d Ns C � f�1.Ns D 1/g2

k1 D
Z 1

0

�1.Ns/�1.Ns/d Ns

c1 D 2m1�

fb D
�Z 1

0

�1.Ns/d Ns
�
˝2� cos.˝�/

fc D .�1.Ns D 1// fts.Nz/:
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Here, � is the damping ratio, �1.Ns/ is the spatial function related to the nondimen-
sional displacement, � is the ratio of the tip mass to the mass of the cantilever,
� is the nondimensional excitation amplitude, ˝ is the nondimensional forcing
frequency, � is the nondimensional time, Nz is the nondimensional displacement, and
fts is the nondimensional tip-sample force.

The nondimensional quantities are listed as:

Nw D w

L
; Ns D s

L
; � D !nt; � D X0

L
; � D d

L
; � D A0

L
;

� D m

	AL
; � D KE

	A
p
L!2n

; � D KM

	AL4!2n
;˝ D !

!n
:

For a single mode assumption, the response of the system is given by:

Nw.Ns; �/ D q1.�/�1.Ns/;

where �1 is given by:

�1.Ns/ D C1 Œsin.ˇ1 Ns/ � sinh.ˇ1 Ns/�C C2 Œcos.ˇ1 Ns/ � cosh.ˇ1 Ns/� :
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Reduced Inductance in DC-DC Converter
Circuits via the Application of Filippov’s
Method

O. Imrayed, B. Zahawi, Damian Giaouris, and V. Pickert

Abstract A method for reducing the size of filter inductance in DC-DC converter
circuits based on Filippov’s theory is presented in this paper. In this method, the state
transitional matrix of the system over one complete switching cycle, including the
state transitional matrices across the converter switching events, is used to stabilize
converter operation with a substantially reduced inductor size while maintaining
circuit average currents and voltages. An analysis of circuit conduction losses shows
that losses are not significantly affected by higher inductor current ripple resulting
from the use of the smaller inductor. The switching frequency of the converter will
not vary or change compared to a conventionally designed DC-DC converter. The
new control/design method is demonstrated using an experimental voltage-mode-
controlled buck converter.

Keywords DC-DC converter circuits • Nonlinear design/control method •
Reduced inductance

1 Introduction

DC-DC converters are some of the simplest and most widely used power electronics
circuits and can be found in almost any power supply equipment in use today for
anything from mobile phones and laptop computers to hybrid electric vehicles and
aircraft power supplies. The main components of a DC-DC converter are the power
electronic switches, an LC filter used to smooth the circuit voltage and current
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waveforms and the electronic controller needed to generate the switch firing pulses
necessary to ensure the desired operation of the circuit.

Due to the inherent switching action of the circuit, the steady-state operating
point of any DC-DC converter is a periodic oscillation around a predefined value
determined by the application. Conventionally, these discontinuities introduced by
the switching action of the circuit are ignored by converter designers who simply
assume that the converter behaves like a 2nd order low pass filter implying that the
system is always stable (Middlebrook and Ćuk 1977; Krein et al. 1990). Converter
components are then chosen to guarantee the stable behaviour of the system and
avoid any operating regions in which the converter is likely to exhibit any one of
a number of unstable, nonlinear behaviours. As a result, converter components are
significantly oversized giving a larger, more expensive, heavier and less efficient
product than could be achieved by the application of appropriate nonlinear control
methods (Di Bernardo et al. 1998; Di Bernardo and Vasca 2000; Hiskens and Pai
2000; Dranga et al. 2005; Giaouris et al. 2008).

A new control method based on the analysis of the behaviour of the system
during the switching instants is presented in this paper to maintain the stable period-
1 operation of the converter. Compared with conventional linear design methods,
the analysis allows for substantially smaller circuit component sizes to be used
thus increasing power-to-weight and power-to-size ratios and reducing cost without
jeopardising the overall operation of the system. The proposed technique can be
applied to any DC-DC converter topology (bi-directional power flow, uni-directional
power flow, isolated or non-isolated designs) and does not require new materials or
special magnetic components. What’s more, the new design/control method can
run on a simple microcontroller and does not require an expensive high speed
DSP.

In this paper, the new design/control method is applied to a simple voltage
controlled buck converter as a typical example of a simple DC-DC converter circuit.
The new design method guarantees a substantially wider stable operating range and
a reduction in the size of circuit components by incorporating the switching action of
the converter switches into the design process. Results demonstrate the possibility
of achieving a substantial reduction in the size of the converter inductance. The
basic operation of the voltage mode controlled buck converter is presented in
Sect. 2 of this paper. Section 3 gives an overview of the nonlinear dynamical
phenomena observed in the buck converter circuit and a review of the Saltation
matrix method of analysis (Leine et al. 2004) employed as the basis for the new
design/control methodology proposed in this paper. Using this matrix, it is possible
to add small perturbations to the control signal that will influence the stability of the
periodic motion, without greatly influencing the steady-state performance and other
transient properties of the converter, to guarantee a stable periodic motion with a
substantially smaller inductor size as demonstrated in Sects. 4 and 5. The analysis
is experimentally verified using a 24 V laboratory voltage-mode-controlled buck
converter circuit.
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2 Basic Operation of the Voltage-Mode-Controlled
Buck Converter

The buck converter, also known as a step-down DC-DC converter, is a circuit used
to convert an input DC voltage to a lower DC output voltage. Figure 1 shows
a schematic diagram of the voltage mode controlled buck converter. The circuit
comprises a diode D and a switch S controlled by a pulse-width modulated signal.
The required output voltage is achieved by setting the switch’s duty cycle d. The
capacitor C and the inductor L work as a low pass filter to smooth the current and
voltage waveforms seen by the load resistor R.

The most common control technique applied to power DC-DC converters is
pulse width modulation (PWM). In voltage mode PWM control, the output voltage
is compared with a reference voltage to generate an error signal which is amplified to
provide the control signal. The switch firing pulses are generated by comparing the
control signal with a saw-tooth signal as shown in Fig. 1. The switch will be closed
if the ramp signal is greater than the control signal and open otherwise. During the
interval when the switch is ON, the diode is reverse biased and the input voltage
provides energy to the load and the inductor. During the interval when the switch
is OFF, the inductor current flywheels through the diode transferring some of the
stored energy to the load.

Assuming that the converter is designed to operate in continuous conduction
mode (i.e. the inductor is sized to ensure that the converter current does not fall
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Fig. 1 The voltage mode controlled DC-DC buck converter
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to zero at any time during its operation), the operation of the circuit during the OFF
interval toff (when the switch is open) can be described by the following equations:

dVC

dt
D 1

C

�
iL � vC

R

�
(1)

diL
dt

D �vC
L

(2)

These equations can be written in state space form as:

:

X D AOFF X C BOFF Vin (3)

Where X D �
vC iL

�T
; AOFF D

�� 1
RC

1
C

� 1
L
0

�
; BOFF D

�
0

0

�
;Vin is the input

voltage, vC is the capacitor voltage and iL is the inductor current.
During the ON interval ton (when the switch is closed) the equations are:

dvC
dt

D 1

C

�
iL � vC

R

�
(4)

diL
dt

D Vin � vC
L

(5)

These can be described in state space form as:

:

X D AON X C BON Vin (6)

where, AON D
�� 1

RC
1
C

� 1
L
0

�
and BON D

�
0
1
L

�

The duty cycle d is defined as tonT, where T is the switching period of the PWM
waveform.

In the steady-state, the buck converter produces a lower output voltage than the
input voltage. The mean output voltage can be expressed in terms of the input
voltage and the duty ratio:

Vout D dVin (7)

Figure 2 shows the bifurcation diagram of a standard buck converter circuit
design to accept an input voltage of 24 V and produce a regulated output voltage
of about 12 V (Fossas and Olivar 1996), plotted for L as the bifurcation parameter.
The diagram shows that the circuit is stable for larger values of L. However, as
the value of the L is reduced, a period-doubling bifurcation occurs at L D 19.5 mH
and the stability of the period-1 orbit is lost to another periodic orbit of double the
period (period-2). This periodic solution continues until the value of L is further
reduced to about 13.2 mH when it loses its period-2 stability and bifurcates to a
period-4 response. As the value of L decreases further, a cascade of period-doubling
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Fig. 2 Bifurcation diagram of the voltage mode controlled buck converter; fs D 2.5 kHz,
Vu D 8.2 V, Vl D 3.8 V, Vref D 11.3 V, C D 47 �H and R D 22 �

bifurcations is interrupted by a border collision at L D 13 mH, which causes the
system to behave chaotically. Parasitic circuit elements and are not included in this
analysis. It has been shown (Di Bernardo et al. 1998; Di Bernardo and Vasca 2000)
that these components move the bifurcation points slightly but do not change the
bifurcation sequences and therefore have no significant or qualitative influence on
the overall dynamics of the system.

Figure 3 shows the stable period-1 experimental output voltage and inductor
current waveforms obtained with an inductor value of 20 mH. The period-1 stability
of the system broken down and period-2 stability was born when the 20 mH inductor
was replaced with a smaller 15 mH inductor as shown in Fig. 4. Finally Fig. 5 shows
the system operating chaotically when a 7.8 mH inductor is used, completely in
agreement with the bifurcation diagram of Fig. 2.

3 Analysis of Switching Converter Circuits

The theory developed by Filippov (1988) gives a generalised definition of a solution
for systems involving a switching, including systems with a discontinuous right-
hand side such as power electronics circuits. Such systems can be described as
follows:

PX.t/ D f .X.t/; t / D
�

f� .X.t/; t / X 2 V�
fC .X.t/; t / X 2 VC

(8)
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Fig. 3 Experimental output voltage and inductor current waveforms; stable period-1 operation,
L D 20 mH

Fig. 4 Experimental output voltage and inductor current waveforms; period-2 operation,
L D 15 mH
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Fig. 5 Experimental output voltage and inductor current waveforms; chaotic operation,
L D 7.8 mH

Fig. 6 Evaluation of a
solution of a nonsmooth
system

where f�.X.t/; t/ and fC.X.t/; t/ are the two smooth vector fields before and after
the switching, respectively. V� and VC are two different regions in state space
separated by the switching hyper-surface †, as shown in Fig. 6 (in the case of a
simple DC-DC converter these regions will correspond to the ON and OFF switch
states).

The switching hypersurface is defined by an algebraic equation:

h
	
X
	
tP


; tP


 D 0 (9)

The vector field is piecewise continuous. It is smooth in V� and VC, and
discontinuous on †. However, the vector field is not defined on the hypersurface
given by Eq. (9). To avoid this problem, Filippov suggested that the vector field
at the switching instance should not be a single valued function but a set valued
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function whose limits are the values of the vector fields before and after the
switching:

PX.t/ 2 F .X.t/; t / D
8<
:

f� .X.t/; t / X 2 V�
co ff� .X.t/; t / ; fC .X.t/; t /g X 2 †
fC .X.t/; t / X 2 VC

(10)

Where co ff�.X.t/; t/; fC.X.t/; t/g denotes the smallest closed convex set contain-
ing f�.X.t/; t/ and fC.X.t/; t/, and it can be defined as follows:

co ff�; fCg D f.1 � q/ f� C qfC 8q 2 Œ0; 1�g (11)

The extension of a discontinuous system (8) to a convex differential inclusion
(10) is known as Filippov’s convex method (Leine et al. 2004; Filippov 1988).
The existence of a Filippov solution can be guaranteed if F(X(t), t) is upper semi-
continuous. The solution is unique for every initial condition, if it crosses the
hypersurface transversally and spends almost zero time on the switching manifold.

In smooth systems, the fundamental matrix ˆ will map the perturbation at the
initial condition �X(t0) to the perturbations at the end of the period �X(t) by
�X(t)Dˆ(t; Xp(t0),t0) �X(t0). In nonsmooth systems, however, the vector field
will be discontinuous at the switching instance. As a result, the fundamental matrix
breaks down as the perturbed solution reaches the switching instance after or before
the original trajectory, as shown in Fig. 7. A map is needed that will relate the
perturbation vectors before the switching�X(t†�) to the vectors after the switching
�X(t†C):

�X
	
tPC


 D S �X
	
tP�



(12)

This map S is referred to as the saltation matrix (Leine et al. 2004) or the jump
matrix (Baushev et al. 1992). The saltation matrix, when the solution transversally
intersects the hypersurface, is derived in the following manner:Referring to Fig. 7,
the perturbation vectors before and after the switching are given by:

�X
	
tP�


 D X Qp
	
tP

 � Xp

	
tP



(13)

�X
	
tPC


 D X Qp
	QtP
 � Xp

	QtP
 (14)

Using Taylor’s expansion theorem, it can be shown (Leine et al. 2004) that these
two vectors are related by the saltation matrix S as �X(t†C) D S �X(t†�), where

S D I C
�
fC
	
Xp .t†/


 � f�
	
Xp .t†/


�
nT

nT f�
	
Xp .t†/


C ht
	
Xp .t†/ ; t†


 (15)

The saltation matrix is the state transition matrix across the switching hyper-
surface. Figure 8 shows a periodic solution of a nonsmooth system in which the
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Fig. 7 Evaluation of a solution of a nonsmooth system and its perturbation

Fig. 8 The periodic solution
of a non-smooth system

trajectory crosses the switching manifold † twice at t†1 and t†2. The fundamental
solution matrix for one complete cycle (the Monodromy matrix) is given by:

M.T / D X
	
tP

3



S2 X

	
tP

2



S1 X

	
tP

1



(16)



304 O. Imrayed et al.

Where X(t†1) D ˆ1(t†1; X(t0), t0) is the state transition matrix when X 2 V�;
X(t†2) D ˆ2(t†2; X(t†1), t†1) is the state transition matrix when X 2 VC;
X(T) D ˆ3(t0 C T; X(t†2), t†2) is the state transition matrix when X 2 V�; and
S1 and S2 represent the state transition matrices at X 2†.

4 Derivation of the Buck Converter Monodromy Matrix

With reference to Fig. 9 showing the steady-state waveforms of the buck converter,
the operation of the circuit can be described by two sets of equations which, by
defining x1(t) D vC(t) and x2(t) D iL(t), may be written as:

dx2

dt
D
(

Vin�x1.t/
L

; A
	
x1.t/ � Vref



< Vramp, at ˆON

� x1.t/

L
; A

	
x1.t/ � Vref



> Vramp, at ˆOFF

dx1
dt

D x2.t/�x1.t/=R
C

at both ˆON and ˆOFF.
The switching hypersurface (h) at switching time (d0T) is given by:

h .X.t/; t / D x1.t/ � Vref � Vramp

A
D 0

Fig. 9 Buck converter waveforms; the switch is OFF when Vcon>Vramp and ON when
Vcon<Vramp
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Fig. 10 Transversal intersections in the orbit of the buck converter

where t D d0T, f�(x(t), t) and fC(x(t), t) are the two smooth vector fields before and
after the switching, defined as:

f� .x.t/; t / D
�
x2.t/=C � x1.t/=RC
.Vin � x1.t// =L

�
(17)

fC .x.t/; t / D
�
x2.t/=C � x1.t/=RC

�x1.t/=L
�

(18)

It is obvious from (17) and (18) that there is a discontinuity when the main
switching element passes from the ON state to the OFF state, since f�(x(t),
t) ¤ fC(x(t), t).

The normal to the switching manifold n is given by:

n D rh .x.t// D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

@h .X.t/; t/
@x1.t/

@h .X.t/; t/
@x2.t/

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D

�
1

0

�
(19)

As shown in Fig. 10, the solution intersects the switching manifold transversally
and the orbit spends an infinitely small time on the switching manifold. Therefore,
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Filippov’s method for obtaining the saltation matrix and the Monodromy matrix of
the system can be applied. This is true for all DC-DC converter circuits operating in
continuous conduction mode (CCM) where the inductor current never falls to zero.
In the case of discontinuous conduction, the orbits slide along the switching surface
(Di Bernardo et al. 1998).

The components of the saltation matrix (Giaouris et al. 2007, 2008, 2009) are
obtained as:

lim
t!d 0T

f� .x.t// D
�
x2 .d

0T / =C � x1 .d 0T / =RC
.Vin � x1 .d

0T // =L

�
;

lim
t!d 0T

fC .x.t// D
�
x2 .d

0T / =C � x1 .d 0T / =RC
�x1 .d 0T / =L

�

nT lim
t!d 0T

f� .x.t// D x2 .d
0T / � x1 .d 0T / =R

C

The switching manifold is defined by a scalar indicator function h(x,t) D 0, thus
the derivative of h(x,t) with respect to t for period-1 operation t 2 (0,T) is:

@h.x; t/
@t

D �VU � VL
AT

;

giving the saltation matrix:

S D

2
664

1 0
Vin=L

x2 .d
0T / � x1 .d

0T /
C

� VU � VL

AT

1

3
775 (20)

The state transition matrix during the first interval (when the switch is OFF)
is given by ˆOFF .d

0T; 0/ D eA1d
0T and the state transition matrix for the second

interval (when switch is ON) is given by ˆON .T; d
0T / D eA2.T�d 0T /, where

A1 D A2 D
��1=RC 1=C

�1=L 0

�

It is now possible to calculate the Monodromy matrix M(T,0) of the system:

M .T; 0/ D ˆON.T; d
0T / � S .d 0T / � ˆOFF.d

0T; 0/ (21)

The stability of the periodic orbit can be determined by obtaining the Floquet
multipliers of the system, i.e. the eigenvalues of the Monodromy matrix. Figure 11
shows that the computed eigenvalues of M leave the unit circle (and the system
losses its stability via a period-doubling bifurcation) when the value of the induc-
tance is reduced to 19.55 mH, completely in agreement with previous simulation
and experimental results.
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Fig. 11 Loci of the eigenvalues of the Monodromy matrix

5 Supervisory Control Based on the Saltation Matrix

In this section, two supervisory controllers based on the above analysis are applied
to stabilise the operation of the buck converter and avoid the onset of the period
doubling bifurcation as the value of the inductor is reduced. Computer simulations,
as well as analytical and experimental results are used to support the theoretical
analysis. The new controller has no impact on the switching frequency of the
converter compared to a conventionally controlled DC-DC converter circuit.

5.1 Control Method-1 (Changing the Slope
of the Ramp Signal)

The upper value of the ramp signal VU is multiplied by factor (1 C a), allowing us
to manipulate the location of the Floquet multipliers by varying the value of a.

S D

2
664

1 0
Vin=L

x2 .d
0T / � x1 .d 0T /

C
� aVU � VL

AT

1

3
775 ;
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Fig. 12 Experimental waveforms for iL and vC with standard PWM control and the proposed
supervisory controller; L D 15 mH, stable period-1 operation

It is now possible to calculate a value of a required to keep the Floquet
multipliers within the unit circle and thus maintain system stability over a wider
range of inductor values by solving a nonlinear equation such as j eig .M .T; 0// j �
0:8241 D 0:

Figure 12 shows the experimental waveforms of the system with an inductor
value of L D 15 mH. The figure shows a comparison between the responses of the
standard voltage mode controlled buck converter and that of the new supervisory
controller. Clearly, the new control strategy is able to alter the previous period-2
orbit and achieve the desired stable period-1 response despite the lower value of L.

5.2 Control Method-2 (Altering the Time Derivative of h)

The time derivative of h(x(t)) can be altered by adding the function .1C b sin .!t//
to the reference signal Vref result in the following expression for the saltation matrix:

S D

2
664

1 0
Vin=L

x2 .d
0T /� x1 .d 0T /

C
�
�
!Vref b cos! C VU � VL

AT

� 1

3
775

Altering the value of b will now have an effect on the eigenvalues of the
Monodromy matrix allowing these to be placed at any chosen location within
the unit cycle. In a similar approach to that adopted in the previous section, the
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Fig. 13 Experimental waveforms for iL and vC with standard PWM control and the proposed
supervisory controller; L D 7.8 mH, stable period-1 operation

eigenvalues can be maintained at a value corresponding to a stable period-1 orbit
obtained for a higher value of L (for instance 0.8241 when L D 20 mH) by solving
the nonlinear transcendental equationj eig .M .T; 0// j � 0:8241 D 0:

Figure 13 shows the experimental waveforms of the system with an inductor
value of L D 7.8 mH. The figure shows a comparison between the response of the
system with a standard PWM controller and that of the new supervisory controller.
The new controller is able to alter the previous chaotic orbit to achieve the desired
stable period-1 response at the lower value of L.

6 Circuit Losses

The above results have clearly shown that it is possible to reduce the size of the
circuit inductance substantially while maintaining stable period-1 operation of a
buck converter with continuous current conduction by the application of advanced
nonlinear control methods based on Filippov’s method. However, a smaller inductor
inevitably means a higher current ripple content as evident from Fig. 4. This issue
needs further examination since it could imply higher total losses in the circuit
because of the higher rms inductor current values. In this section, total conduction
losses in the inductor, diode and MOSFET switch employed in the converter circuit
are calculated with different inductor values to assess the impact of the higher
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Table 1 Calculated circuit conduction losses; Ron D 0.8 �,
VF D 0.75 V, RF D 0.25 �

Conduction loss

L (mH) RL Mosfet Diode Inductor loss Total

20 80 m� 0.139 W 0.210 W 0.024 W 0.373 W
7.8 50 m� 0.142 W 0.212 W 0.015 W 0.369 W

current ripple content. It was assumed that switching losses and other high frequency
effects would not be affected by inductor size since the new control strategy has no
impact on the switching frequency of the converter.

Table 1 gives the calculated conduction losses for operation with a 20 mH
inductor and a 7.8 mH inductor at an average inductor current of 0.56 A and an
average output voltage of 12.0 V, showing no significant change in the calculated
total conduction loss when using the smaller inductor. The average inductor loss
was calculated as the integral of (i2RL) over one switching cycle, where RL

is the measured inductor DC resistance. Average MOSFET loss was calculated
as the integral of (i2Ron) over one switching cycle, where Ron is the on-resistance
of the MOSFET. The forward voltage drop across the diode was modelled as a
constant DC source VF in series with a resistor RF giving an average power loss
calculated as the integral of (i2RF C iVF) over one switching cycle.

7 Conclusions

Using the voltage-mode-controlled buck converter circuit as an example, we have
demonstrated in this paper that the size of the filter inductance in a DC-DC converter
can be substantially reduced by the application of Filippov’s method of studying
switching systems, reducing the size, weight and cost of the circuit. The method has
been used as the basis for designing supervisory controllers to place the eigenvalues
of the state transition matrix of the system over one complete switching cycle
(the Floquet multipliers of the system) within the unit cycle to insure system
stability for operation with the smaller inductor sizes without effecting the switching
frequency of the circuit or converter average current and voltage values. The new
design/control method has been demonstrated using a 24 V laboratory voltage-
mode-controlled buck converter circuit. An analysis of the conduction losses in
the main switching device, the diode and the inductor, have shown no significant
change in losses as a result of the higher current ripple content when using the
smaller inductor values.
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Dynamics of a Drifting Impact Oscillator
with a Conical Profile
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Alfred Akisanya, and Gyory Kaŕoyli

Abstract A new model of the progression phase of a drifting oscillator is proposed
to account more accurately for the penetration of a conical impactor through elasto-
plastic solids under a combination of a static and a harmonic excitation. The
dynamic response of the semi-infinite elasto-plastic medium subjected to repeated
impacts by a rigid impactor with conical contacting surface is considered and a
power law force–penetration relationship is adopted to describe the loading and
unloading phases of contact. These relationships are then used to develop a physical
and mathematical model of this drifting oscillator, where the time histories of the
progression through the medium include both the loading and unloading phases.
A limited nonlinear dynamic analysis of the system was performed and it confirms
that the maximum progressive motion of the oscillator occurs when the system
exhibits periodic motion.
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1 Introduction

Some industrial applications such as ground moling, percussive drilling and ultra-
sonic machining involve the repeated impacts of machine elements upon different
types of media aiming to induce a permanent deformation or damage to the medium
and to drive the machine elements. These systems have been effectively modelled
by various drifting oscillators, but very few attempts have been made to adequately
describe the influence of contact geometries and the governing force–displacement
relationship during the crashing stages of the interactions. For example, studies in
Pavlovskaia et al. (2001), Pavlovskaia and Wiercigroch (2004, 2007), and Franca
and Weber (2004) have described these systems by representing the impacted
medium by so–called sliders. A slider consists of a pair of massless plates with
a spring and damper between them.

However, all these previous models inadequately represented the force–
penetration dependence for the medium impacted by inserts of conical surface
geometry. Conical indenters are commonly found on drill-bits used in borehole
drilling, and moling tools used in cable laying and mining. The optimisation of the
loading, geometric and material parameters to enhance the penetration rate is of
major importance to these industries. This work aims to incorporate the dependence
of the penetration on the applied force in a new drifting oscillator model to assess
the dynamic behaviour of the system.

Some authors Lee (1940), Shivakumar (1985), and Wu and Yu (2001) have
proposed low–dimensional models that represent observed experimental force–
penetration response of elasto-plastic structures under impact. The present work
goes further and applies similar principles to modelling impacts upon an elasto-
plastic semi-infinite medium. In Sect. 2, the force–penetration relationship are
presented for the loading and unloading phases of contact and then built into a
physical and mathematical model that describes the dynamics of a drifting oscillator.
The corresponding equations of motion for the different phases of the system
operation are derived. A nonlinear dynamic analysis of the system is presented in
Sect. 3 for the conical impactor.

2 Modelling of a Drifting Oscillator

First, we note that the force–penetration relationshipF.ı/, during the loading phase
of the impact of a cone on the elasto–plastic medium has been shown to be of the
form (Ajibose 2009; Ajibose et al. 2010)

Fl.ı/ D Klcı
nlc ; nlc D 2; (1)

where Klc is the contact stiffness during the loading. In the case of the unloading
the phase the relationship becomes,

Ful D Kuc.ı � ıf /
nuc : (2)
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m

P(t)=Pd cos(Ωt+ϕ)+Ps

Pr
X2

X1

Pr

δ

Fig. 1 Physical model of an
impactor colliding with an
elasto-plastic medium

Here, where nuc < 2 and Kuc are material constants determined from experiments
and ıf is the final deformation of the elasto-plastic medium given as

ıf D ım �
�
Kl.ım/

nl

Ku

�1=nu

: (3)

It was noted earlier that some low dimensional models (Lee 1940; Shivakumar
1985) have already been put forward to describe the response of elasto-plastic struc-
tures to a single impact. Although these models were used for structures of finite
size, they can afford us an insight for developing a physical and mathematical model
for the considered problem of impacting an elasto-plastic semi-infinite medium.
Hence, a system consisting of an oscillating mass colliding with a slider of nonlinear
properties, see Fig. 1, is adopted in this paper to model the dynamic response of
an impactor upon the elasto-plastic semi-infinite medium during repeated impacts.
Here, the slider models the semi-infinite medium during the loading and unloading
phases of the contact: its response is described by Eq. (1) during the loading phase,
and by Eq. (2) during unloading. It is assumed that the dynamic response during
subsequent impacts is not influenced by any material damage due to the preceding
impacts. This is typically the situation in machining or drilling where the cuttings
are carried away by the drilling fluid.

Here, the massM is subjected to an external force P.t/ D Ps CPd cos.˝tC'/

consisting of a harmonic component of amplitude Pd , forcing frequency ˝ and
phase shift ', and a static component Ps . The mass impacts intermittently with the
slider which has nonlinear characteristics. The slider is used to represent the elasto–
plastic half space. The absolute displacement of the mass is denoted by X1, while
the absolute displacement of the slider by X2. All the displacements are referenced
to the position at time t D 0.
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At the beginning, the mass and the slider plate are not in contact and there exists
a gapGjtD0 D G0 between them. The size G.t/ of the gap changes as the mass is in
motion. The mass and the slider are in contact atG D 0. The motion is characterised
by three different phases namely: no contact, loading and unloading phases. In the
no contact phase, there is no interaction between the mass and the slider. During
the loading phase, the mass and the slider are in contact and move forward at the
same velocity. This phase ends when the velocity of the mass becomes zero. The
unloading phase then begins with the mass moving in the opposite direction, while
still in contact with the slider, until the displacement of the mass is less than Xf .
The whole process is then re-initiated with the no contact phase, which ends when
the mass impacts the slider at its previously attained displacement. The mass then
continues in contact with the slider till it reaches zero velocity. The unloading phase
is then repeated.

The final progression Xf of the slider at the end of the actual contact phase is
calculated using Eq. (3):

Xf D .X�
1 �Xp/�

�
Kl.X

�
1 � Xp/

nl

Ku

�1=nu

; (4)

where X�
1 is the maximum displacement of the mass during the current loading

phase,Xp is the original position of the slider at the beginning of the current contact
phase.

The displacementX2 of the slider during the loading and unloading phases of the
contact is in phase with the displacement X1 of the mass. The magnitude of X1 is
greater than X2 by the gap G between the initial position of the slider and the mass,
X1 D X2 CG0.

The equations of motion of the system can be written in terms of dimensionless
variables and parameters defined as

� D ˝0t; xD X1
�
; yD dx

d�
; z D X2

�
; xp D Xp

�
; xf D Xf

�
; x�

1 D X�

1

�
;

! D ˝
˝0
; a D Pd

M�˝2
0

; b D Ps
M�˝2

0

; g D G
�
; � D

h
Ku
Kl

i
�nu�nl ;

where˝2
0 D �nl�1Kl=M and � is a characteristic length defined as

� D
�
Fy

Kl

� 1
nl

: (5)

This implies that the equations of motion can now be written as follows:

No Contact (x < z C g0)

x0 D y

y0 D a cos.!� C '/C b

z0 D 0 (6)
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Loading (x D z C g and y � 0)

x0 D y

y0 D a cos.!� C '/C b � .x � xp/
nl

z0 D y (7)

Unloading (x D z C g0; y < 0 and x � xp � xf )

x0 D y

y0 D a cos.!� C '/C b � �.x � xp � xf /
nu

z0 D y (8)

where 0 denotes differentiation with respect to non-dimensional time � .

The dimensionless final deformation xf is given by

xf D .x�
1 � xp/�

�
.x�
1 � xp/nl
�

�1=nu

: (9)

3 Nonlinear Dynamic Analysis

In this section, the dynamic response of the impacting oscillator with a conical
surface profile is investigated. In accordance with the discussion in Sect. 2, we
assume nl D 2:0 and nu D 1:7. The time histories, bifurcation diagrams and phase
space trajectories with superimposed Poincaré maps are calculated and the resulting
dynamic behaviour is discussed in this section. In the presented numerical results, a
number of parameters are kept constant: a D 0:4, g D 0:02, ! D 1:0, ' D 0 and
� D 1; 000.

The dynamic responses of the system described above are calculated for values
b D 0:10; 0:15; 0:2 as shown in Fig. 2. The solid lines represent the motion of
the impacting mass while the dashed lines represent the motion of the slider. It
can be observed that the system exhibits a similar dynamics as that observed in
Pavlovskaia et al. (2001), Pavlovskaia and Wiercigroch (2004, 2007), and Franca
and Weber (2004). However, the slider shows motion in the opposite direction
during the unloading phase (see Fig. 2b) which was not possible for the slider used
in Pavlovskaia et al. (2001), Pavlovskaia and Wiercigroch (2004, 2007), and Franca
and Weber (2004). This is because previous studies did not capture the unloading
phase of the force–displacement relationships for the medium. Hence, this new
dynamic model captures both the loading and unloading response of the elasto-
plastic half space due to the conical impactor.

In Fig. 2b, the no contact phase is represented by the segment ab on the
time history of the displacement of the mass. This is followed by loading phase
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a b

Fig. 2 Time histories of the conical impactor for various values b of the static load. Displacement
x of the mass is shown by solid lines, displacement z of the slider by dashed lines. (b) Is a blow-up
of a small part of (a)

Fig. 3 Bifurcation diagram of the relative velocity y � z0 as a function of the static load b in case
of the conical impactor

represented by segment bc, while cd is the unloading phase. Notice here that
the displacement curve of the slider and the mass have a similar shape in the
segment bd . Afterwards, the subsequent no contact phase is depicted by de where
the displacement of the slider maintains a contact value, indicating the permanent
deformation of the elasto–plastic solid at that stage.

The bifurcation diagram for the normalised relative velocity y� z0 (Fig. 3) shows
how the behaviour of the system changes as a function of the normalised static
load b. The figure is constructed using for 150 cycles of harmonic forcing while
skipping the first 50 cycles. This diagram reveals that for b < 0:1 the response of
the system is mainly chaotic with a few short ranges of the static force b where
periodic motion occurs, while for b � 0:1, the system response is mainly periodic.
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Fig. 4 Progression z during 150 cycles of forcing as a function of the static force b for the conical
impactor

The relative velocity reaches the maximum value at b D 0:32, then drops to zero
for values b > 0:32.

The time histories presented in Fig. 2 suggest that an increase in the static force
tends to improve the progression of the impactor. If we measure the progression of
the impactor as a function of the static load as shown in Fig. 4 using 150 cycles
of harmonic forcing, it can be observed that an increase in the static force tends to
improve the progression if the static load is less than 75% of the amplitude of the
dynamic force. Note that the result shown were for a normalised force amplitude
a D 0:4. Beyond this point, a further increase in the static load does not give
greater progression. A comparison of Fig. 3 with Fig. 4 reveals that the maximum
progression occurs at b D 0:32. This suggests that beyond the optimal static load
the influence of the harmonic forcing is reduced and the oscillating mass tends to
stay in contact with the medium for longer periods of time.

In Fig. 5a, the trajectory of the system is plotted in the phase plane .x� z; y � z0/
for b D 0:1. Here x � z is the normalised relative displacement and y � z0 is the
normalised relative velocities between the impactor and the slider. This trajectory
forms two distinct loops in the phase plane and also has a straight segment. The
relative displacement x�z along the straight segment is 0.02, which is the magnitude
of the initial gap between the mass and the slider. This implies that the straight
portion of the trajectory corresponds to the loading and unloading phases of the
motion of the mass, while the loops correspond to the no contact phases of the
motion. The three black diamonds are snapshots of the trajectory at each time
periods of the dynamic forcing. The black diamond snapshot shown in Fig. 5b are
the corresponding positions on the time histories where the Poincaré map were
taken. As it can be seen from Fig. 5b the motion of the system is period–4 (i.e
the motion repeats itself after every four time periods). However, this could not be
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Fig. 5 (a) Trajectory of the conical impactor in the .x � z; y � z0/ phase plane, and the Poincaré
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Fig. 6 (a) Trajectory of the conical impactor in the .x � z; y � z0/ phase plane, and the Poincaré
map. (b) Velocity y of the impactor as a function of time � for b D 0:2

obtained on the phase plane trajectory shown in Fig. 5a because the relative velocity
was plotted rather than the actual velocity, and there two snap shots appear as one
when the relative velocity is zero. Figures 6a, b show the phase portraits and time
dependence of the velocity of the mass, respectively, for b D 0:2. Here, the phase
portrait, the velocity time history and the superimposed Poincaré map confirms a
period–1 motion of the system.

4 Conclusions

In this work, the penetration of a conical impactor into an elasto-plastic solid has
been investigated using a new model for the progression phase of a drifting impact
oscillator. In our model, we assume a power–law relationship between the force
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and penetration, with a power–law exponent which depends on the contact phase
(loading or unloading).

These relationships were then used to develop a physical and mathematical
model of a new drifting oscillator where the time histories of the progression through
the medium include both the loading and unloading phases of the contact. The
motion of the system was shown to consist of three phases: no contact, loading
and unloading phases. The dynamic response of the system was calculated for a
mass with a conical contacting surface.

The nonlinear dynamic analysis of the system was carried out, and it was found
that the maximum progression occurs when the system exhibits periodic motion and
the static load value is approximately 75% of the harmonic force amplitude. Past
this critical value, the system tends to experience decreased progression because the
mass is almost always in contact with the slider.

From the discussions on the results obtained from the nonlinear analysis of the
new model presented here, it is expected that the design of vibro-impact systems
could be optimised for enhanced performance. In addition, the model could also
serve as a means of assessing the influence of the geometry of the impactor on the
efficiency of the system.
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Bit-Bounce and Stick-Slip in Drill-String
Dynamics

K. Nandakumar, Marian Wiercigroch, and Chris Pearson

Abstract A recently proposed two degrees-of-freedom model for axial and tor-
sional vibrations of drill-string elsewhere is here revisited. The model involves state-
dependent time delay, with discontinuous cutting and friction force nonlinearities.
The original model is, here, enhanced by introducing axial and torsional damping,
and axial stiffness. Stability analysis, which is relatively recent for systems with
state-dependent delays, is conducted on the enhanced model. For representative
parameter values, it is concluded from the analysis that the original model (with no
damping) had no stable operating regime, while the enhanced model possesses some
practically relevant stable operating regime. The steady drilling state corresponding
to the enhanced model is, however, still unstable for a major portion of the operating
regime leading to stick-slip and bit-bounce situations.

Keywords Drill-string dynamics • Stick-slip • Axial and torsional damping •
Delay differential equations

1 Introduction

Drill-string constitutes an important component in the rotary drilling equipment
employed in oil and gas exploration (Spanos et al. 2003). Drill-strings primarily
vibrate in axial, torsional and lateral modes, leading to axial – bit-bounce (Spanos
et al. 1995), lateral – forward and backward whirl motions (Jansen 1991; Théron
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et al. 1995), and torsional – stick-slip motions (Jansen and van den Steen 1995).
The literature on drill-string vibrations is vast. In this paper, we restrict attention to
the study of axial-torsional vibrations of the drill-string.

Stick-slip instabilities of the drill-string have been traditionally attributed to the
drooping nature of the speed-dependent dry friction (Stribeck effect) at the bit-rock
interface (Kyllingstad and Halsey 1987; Brett 1991; Challamel et al. 2000).

In contrast to these speed-dependent friction models, Richard et al. (2007)
demonstrates stick-slip instabilities in a model with a constant friction coefficient,
and traces the origin of stick-slip motion to the coupling between the axial and
torsional motions at the bit-rock interface. In Richard et al. (2007) a two degree
of freedom model for axial-torsional vibrations of drill-strings with drag bits is
proposed. The model involves state-dependent delays arising due to the dependence
of the instantaneous cutting forces on the history of the motion of the tool. It was
shown in Richard et al. (2007), that the model exhibits stick-slip motions due to a
combination of time-delay, and the coupling between the cutting and contact forces.
The model of Richard et al. (2007) also exhibits bit-bounce for a vast operating
regime. Indeed, the steady drilling solution is unstable, as will be shown here, for
any operating weight on bit and rotary speed. It is important to note that this model
neglected damping in axial and torsional motions. Also, the axial elasticity of the
drill pipes is ignored in their model.

In this paper, we enhance the model of Richard et al. (2007) by incorporating
axial and torsional damping. The axial compliance of the drillpipes is also ac-
counted. In this context, we mention that in a recent work Besselink et al. (2011)
a modification of the model presented in Richard et al. (2007) is proposed wherein
axial stiffness of the drillpipes and axial damping are included. However, Besselink
et al. (2011) still does not account for damping in the torsional direction. Also, the
stability analysis decouples the axial and torsional dynamics by analysing a single
delay differential equation.

Our model formulation leads to a system of state-dependent delay differential
equations with discontinuous cutting and friction force nonlinearities. Subsequently,
a detailed stability analysis, which was not attempted in Richard et al. (2007), of
the ensuing state-dependent delay differential equations is conducted. Such stability
analysis for state-dependent delay systems are relatively rare (Insperger et al. 2007).
Linear stability analysis reveals the stable and unstable operating regimes in the
weight on bit-rotary speed parameter plane. It is found that the addition of damping
enhances stability for larger rotary table speeds.

2 Axial-Torsional Two Degrees-of-Freedom Model

A schematic of the model of Richard et al. (2007) is presented in Fig. 1 (left). In
Richard et al. (2007), a two degree of freedom model (one-axial, and one-torsional)
is proposed for the axial and torsional vibrations of drill-strings mounted with
drag bits.
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Fig. 1 A schematic of the axial torsional model (Adopted from Richard et al. (2007))

We present a brief description of the model here and refer the reader to Richard
et al. (2007) for details. The torsional portion of the model idealizes the drill-string
as a torsion pendulum. The combined rotational inertia of the BHA and drill-pipes,
denoted by I , is lumped at the end of a torsion spring, of spring constant C ,
which represents the torsional rigidity of the drill-pipes. The top end of the torsion
spring is assumed to rotate at a constant spin speed ˝0. The rotation of the bottom
end, connected to the rotational inertia, is measured by the angle ˚ from a fixed
reference. The torque-on-bit T arising due to the bit-rock interaction is applied to
the rotational inertia.

The axial portion of the model idealizes the BHA and the drillstring as a single
lumped mass M . The axial compliance of the drill-pipes is ignored in the model. A
constant vertical hook load H0 (which is directly related to the applied weight on
bit W0) is applied at the top of the mass M and the weight-on-bit W arising from
the bit-rock interaction is applied on the mass as shown in Fig. 1.

Consider an idealized drag bit composed of n blades. Two blades are shown
for clarity in Fig. 1 (right). Let U denote the axial position of the bit along the z
direction as measured from a fixed reference. The total depth of cut per revolution
for n blades is

d D n .U.t/ � U.t � tn//: (1)

In the presence of torsional oscillations, the time delay tn is state-dependent and is
governed by

˚.t/ �˚.t � tn/ D 2 


n
: (2)
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Thus the governing differential equations of the axial-torsional model of Richard
et al. (2007) are

M RU D W0 � �
� a " d H. P̊ / H.d/CWf H.d/H. PU /� ; (3)

I R̊ C C .˚ �˝0 t/ D �
�
a2 " d

2
H.d/H. P̊ /C�� aWf

2
H.d/ sign. P̊ /H. PU/

�
;

(4)

where H.:/ is the Heaviside function and sign.:/ is the sign function. The applied
weight on bit W0 is a controlled parameter. The expressions for cutting and friction
forces at bit involves: normal-contact force Wf D � a l ; bit parameters – a, � , l ;
rock parameters: � , "; bit-rock interaction parameters: �.

3 Modified Model

In this paper we enhance the model of Richard et al. (2007) by adding dissipation in
the axial and torsional motions, and also add a spring in the axial direction to account
for the compliance of the drill-pipes. The torsional portion of the model, with added
viscous damping Ct , is shown in Fig. 2 (right). The axial portion, with added axial

Fig. 2 Left: A schematic of the axial portion of the drillstring model with a lumped mass
approximation for the BHA and a spring modeling the drill-pipes. Right: A schematic of the
torsional portion of the model with a lumped inertia representing the BHA and a torsion spring
modeling the drill-pipes. A constant rotary speed is assumed for the top end of the drill-pipe
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stiffnessKa, is shown in Fig. 2 (left). The top end of the axial spring, of free length
l0, is assumed to descend at a constant velocity V0. Axial viscous dissipation is
accounted by Ca. We mention here that a constant hook load is used as the boundary
condition at the top of the drill-pipes in Richard et al. (2007). However, a constant
rate of hook could be a more appropriate boundary condition if the axial compliance
effects of the drill pipes are to be accounted for. During steady drilling, however,
the axial spring develops a constant deflection and in this situation, the constant
hookload case (Richard et al. 2007) and the constant rate of penetration boundary
condition are equivalent. In our model, when axial oscillations develop around
steady drilling, the spring forces start fluctuating around the steady value thus lead-
ing to fluctuating hook loads. Such fluctuating hook loads are often observed in field
situations whenever the drill-string undergoes axial vibrations. Thus the presence of
an axial spring with a constant rate of descent of the top (as adopted in this paper)
seems more closer to reality as opposed to the case of a constant hook load.

With these modifications, the equations of motion of the drilling system are:

M RU C Ca PU CKa.U � V0 t � l0/

D W0 � �
� a " d H. P̊ / H.d/CWf H.d/H. PU/� ; (5)

I R̊ C Ct P̊ CKt .˚ �˝0 t/D�
�
a2 " d

2
H. P̊ /C�� aWf

2
sign. P̊ /H. PU /

�
H.d/;

(6)

d D n .U.t/ � U.t � tn//; (7)

˚.t/ �˚.t � tn/ D 2 


n
: (8)

3.1 Steady Drilling

Steady drilling state, whose stability we are interested in, corresponds to rotation of
the drill bit at a constant rate ˝0, and a constant axial penetration rate given by V0.
The depth of cut and, hence, the cutting forces and torques attain constant values.
Denoting the steady state solutions with an overhat, we have:

V0 D ˝0 d0

2 

; d0 D W0 � � a l

� a "C Ca ˝0
2 


; OU .t/ D V0 t C l0 : (9)

Also,

˚0 D �
�
a2 " d0 C �� a2 � l C 2Ct ˝0

2Kt

�
; O̊ D ˝0 tC˚0; Otn D 2 


n˝0

: (10)
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3.2 Perturbation, Non-dimensionalization, and Linearization

We introduce perturbations, which are small compared to the steady quantities, to
the steady drilling solution as follows

U.t/ D OU .t/CX.t/; (11)

˚.t/ D O̊ .t/C �.t/; (12)

tn.t/ D Otn C S.t/ : (13)

The governing equations for small perturbations (ignoring the discontinuities) are

M RX C Ca PX CKa X D �n � a "
h
� V0
˝0

˚
� � �

	
t � Otn � S


C ˚
X �X 	t � Otn � S


i
; (14)

I R� C Ct P� CKt � D �na
2 "

2

h
� V0
˝0

˚
� � �

	
t � Otn � S




C ˚
X � X

	
t � Otn � S
i ; (15)

The above equations are nonlinear due to the state-dependent nature of the delay.
In the lines of Richard et al. (2007), we introduce the following dimensionless

variables and parameters:

QL D 2Kt

" a2
;  D � a " I

M Kt

; x D X

QL ; � D
r
Kt

I
t; (16)

ı0 D d0
QL ; !0 D ˝0q

Kt
I

; v0 D ı0 !0

2 

: (17)

� D Ca

2
p
KaM

; � D Ct

2
p
Kt I

; ˇ D
q

Ka
Mq
Kt
I

; (18)

s D Sq
I
Kt

; O� D Otnq
I
Kt

D 2 


n!0
: (19)

Note that !0 and v0, or equivalently, !0 and ı0 are the non-dimensional operating
control parameters.

Denoting �-derivatives with overdots, the linearized, dimensionless equations are

Rx C 2 � ˇ Px C ˇ2 x D �n 
�
� v0
!0

f� � � .� � O�/g C fx � x .� � O�/g
�
; (20)
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R� C 2 � P� C � D �n
�
� v0
!0

f� � � .� � O�/g C fx � x .� � O�/g
�
: (21)

Note that the linearization has resulted in equations with a constant delay as opposed
to the state-dependent nature of the delay in the original system. The state-dependent
nature of the delay in the original system, nevertheless, manifests in the above two
equations through the first term in the right hand sides, which couples the axial and
torsional degrees-of-freedom.

4 Linear Stability Analysis

We set x D x0 e
� t and � D �0 e

� t into Eqs. 20 through 21, and obtain the
characteristic equation

.�2 C 2 � ˇ �C ˇ2/.�2 C 2 � �C 1/� n v
�
1 � e

� 2 
 �
n !0

�
.�2 C 2 � ˇ �C ˇ2/

C n 
�
1 � e� 2 
 �

n !0

�
.�2 C 2 � �C 1/ D 0; (22)

where we have v D v0
!0

. On the stability boundaries we have � D i ! with
! > 0. After some routine manipulations, we get parametric equations for v and
!0 governing the stability boundaries.

v D
	
!4 � 2!2 C 4!2�2 C 1


 	�ˇ4 � 2 ˇ2n C 2 n !2 C 2 ˇ2!2 � 4 �2ˇ2!2 � !4

2 n .! � 1/ .! C 1/

	
!4 � 2 ˇ2!2 C 4 �2ˇ2!2 C ˇ4


 ;

(23)

!0 D 2 ! 


n .2 k 
 C atan2 fA.!/; B.!/g/ ; k D 0; 1; � � � ; (24)

where A.!/ and B.!/ are lengthy expressions for sine and cosine functions, not
provided here for brevity.

Since v > 0 and ! > 0, we have the following range of ! to be considered for
generating the stability charts

! 2 .0;min.!1; 1//[ .max.!1; 1/; !2/ ;

where

!1 D
q
n C ˇ2 � 2 �2ˇ2 �

p
n2 2 � 4 �2ˇ2n � 4 �2ˇ4 C 4 �4ˇ4 (25)

!2 D
q
n C ˇ2 � 2 �2ˇ2 C

p
n2 2 � 4 �2ˇ2n � 4 �2ˇ4 C 4 �4ˇ4 : (26)
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Table 1 List of parameter values for stability chart

Parameter Symbol Value Units

Drillpipe axial stiffness Ka 7e5 N/m
Drillpipe torsional stiffness Kt 940 N m/rad
Vibrational mass M 34;333 Kg
Vibrational mass moment of inertia I 115:3 Kg m2

Radius of bit a 0:108 m
Wear flat length l 0:0012 m
Rock specific strength " 60 MPa
Rock contact stress � 60 MPa
Coefficient of friction � 0:6 –
– � 0:6 –
– � 1 –
Axial damping coefficient � 0:01 –
Torsional damping coefficient � 0:01 –
Number of blades n 4 –

4.1 Stability Chart

We provide stability charts for the set of parameters provided in Table 1. We vary !
over the permissible range of values and obtain v and !0. We finally convert the so-
obtained v and !0 into dimensional forms (for practical utility) and plot the results.

For the case in hand, !1 D 1:5816 and !2 D 10:6609; thus we choose the limits
of ! according to the previous section and plot the results. Two curves, one for each
interval of !, result for each value of k. A sample set of curves for various values of
k and for each separate range of ! are plotted in Fig. 3. We have chosen to plot the
effective weight on bit, which is the applied weight on bit less the wear flat reaction,
along the Y axis. It is clear that negative Y values do not result in any penetration.
The stable and unstable regions for the various lobes is determined by numerical
study of the roots on either side of the lobes. The final stability chart, based on the
lobes for all values of k, demarcating the stable and unstable regions is plotted in
Fig. 4.

4.2 Some Numerical Results

To verify the conclusions of the stability analysis, we choose three representative
parameters labelled 1–3 in Fig. 4. These parameters are

1: .200 rpm; 50 kN/; 2: .250 rpm; 100 kN/; 3: .80 rpm; 80 kN/ :

For these parameters, Eqs. 5 through 8 are integrated numerically using a constant
time-step Forward Euler scheme. The initial conditions are
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Fig. 3 Stability boundary curves for Eqs. 20 through 21. Top: ! 2 .0; 1/; Bottom: ! 2 .!1; !2/
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labelled 1–3 are used for simulations (see text for details)
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U D V0 t; PU D V0; ˚ D ˚0 C˝0 t; P̊ D ˝0; 8t < 0; (27)

U.0C/ D 0; PU .0C/ D V0; ˚.0C/ D ˚0; P̊ .0C/ D 1:1˝0 : (28)

From Fig. 5 it is clear that the stability of the steady drilling state as predicted
by the stability chart is in accordance with direct numerical solutions, thus giving
confidence on the stability analysis procedure. For example, the operating point 1
in Fig. 4 is predicted to be stable by our analysis, and the numerical integration
results of Fig. 5a confirms that the steady drilling state is indeed stable for the
perturbation introduced. The long term evolution of the solutions is out of the scope
of the stability analysis, and may depend on the particular parameter values, initial
conditions, and the nature of the nonlinearities. Thus although parameters labelled 2
and 3 in Fig. 4 represent unstable drilling, 2 corresponds stick-slip while 3 represents
bit bouncing.

4.3 Stability Chart for the Model of Richard et al. (2007)

The model of Richard et al. (2007) is deduced as a special case of our model for � D
� D ˇ D 0. We plot in Fig. 6 the stability charts for three sets of parameters with
progressively damping and axial stiffness (i.e., �, � and ˇ). It is seen from Fig. 6,
that as the damping and stiffness are reduced, the extent of stable operating regime
gets reduced. In the limiting case, the stability region degenerates to a straight line
which starts at a point on the X axis and extends to 1. To obtain this limit, we note
that for the limiting case, from Eqs. 25 and 26, !1 D 0 and !2 D p

2 n . Thus
the range of variation of ! becomes ! 2 .1;p2 n /. Also in the limiting situation
� D � D ˇ D 0 we have (from the characteristic equation: details omitted)

cos

�
2
! 


n!0

�
D �1; sin

�
2
! 


n!0

�
D 0 :

Thus

!0 D 2 !

n
;

which at ! D !2 yields

!0c D 2

r
2 

n
: (29)

The stability chart in the limiting case to a portion of X axis starting at a speed,
!0c , indicated by Eq. 29 and extending all the way upto 1. The time-delay
corresponding to this speed !0c is given by

O�c D 2 


!0c
D 
p

2 n 
: (30)
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For the parameters considered in Table 1, the critical speed (after converting to
dimensional form) yields 143:7 rpm. This is also seen from Fig. 6 as the point
corresponding to the point of intersection of the stability boundary with the X axis.
It is interesting to note that the critical time-delay of Eq. 30 coincides with that of
the analysis presented in Richard et al. (2007).

From the present analysis, it is clear that the stability in the limiting case is
unrealistic as it requires no applied weight on bit and thus represents no penetration.
For any non-zero weight on bit, and thus penetration, the steady drilling is unstable
in the limiting case as the entire parameter plane represents unstable drilling regime.

5 Conclusions

We conclude our stability analysis of an enhanced two degree of freedom model for
the axial and torsional vibrations of oilwell drillstrings. The model involves two
coupled delay differential equations, with a state-dependent delay. The stability
of the steady state drilling solution to infinitesimal perturbations is analyzed
considering the coupled axial and torsional motions, unlike the uncoupled analysis
of Richard et al. (2007). The predictions of stability charts are confirmed through
direct numerical treatment of the original equations. The stability charts reveal that
the addition of damping and axial stiffness renders the steady drilling stable for
certain rotary speeds and weight on bit, while the model of Richard et al. (2007)
predicts unstable drilling for the operating speed-weight on bit parameter regime.
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Analysis of Stick-Slip Oscillations of Drill-String
via Cosserat Rod Model

Marcos Silveira, Charles Wang, and Marian Wiercigroch

Abstract An integrated model for the study of the complex dynamical and geo-
metrical behaviour of a drill-string is developed based on the modified Cosserat rod
element method. The model includes general deformation of the rod with flexure,
extension, torsion and shear, and allows analysis of the main vibration modes,
torsional, axial and lateral, and also their couplings. Shape functions are obtained
from the solution of nonlinear partial differential equations of motion in quasi-
static sense, containing up to third order nonlinear terms, and the final ordinary
differential equations of motion for the elements are derived from Lagrange’s
approach. Boundary conditions are taken as applied to a drill-string to account
for the motor and the drill-bit. The model offers significant performance advantage
over a standard Finite Element approach, which facilitates numerical analysis. Such
model is capable of simulating stick-slip oscillations in the drill-bit–rock interface
and contact of the drill-string with borehole wall along its length.

Keywords Drill-string • Stick-slip oscillations • Cosserat rod model

1 Introduction

Drilling a borehole for oil and gas extraction is done by means of rotary motion
of a drill-bit against the rock. The rotary motion is transmitted to the bit from a
motor, usually at the surface of the well, by the use of a drill-string. This drill-string
is made of tube sections with threaded connections. It can reach lengths of various
kilometers, making it a very slender structure. The lower part of the drill-string,
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comprised of drill-collars, stabilizers, vibration absorbers, MWD tools and the
drill-bit is called the bottom-hole assembly (BHA). The drill-string vibrations can
either be induced by drill-bit–formation and drill-string–bore-hole interactions, or
be self induced (Spanos et al. 2003). The complexity of the drill-string dynamics
comes in part from the coupling mechanisms. The drill-bit, which relates the
axial force to torque, and the borehole are important players in these mechanisms.
Low-dimensional models are useful tools to study separate modes and related
phenomena, but in order to capture the full dynamics of the system a fully coupled
nonlinear model needs to be employed. The model adopted in this study is based on
the Cosserat theory of rods, from which a 3D rod element with general deformation
including shear is developed (Cao et al. 2006; Wang et al. 2004; Liu et al. 2007).

2 Cosserat Rod

A slender structure in three dimensions is a body with high ratio of length to cross-
sectional area. Such structures undergoing large displacements and rotations are
often encountered in various engineering systems such as space structures, robotics,
aircrafts, micro-electro-mechanical systems and even DNA strands. Nonlinear finite
element method is suitable to model these structures, but its practical application is
hampered by the large amount of elements needed because of the high frequency
modes present, making such method computationally expensive. A new finite
element method based on the Cosserat approach has been introduced in Cao et al.
(2006), Wang et al. (2004) and Liu et al. (2007) giving an element (modified
Cosserat rod element – MCRE) with general deformation, including shear.

By using the Cosserat theory, the equations of motion are nonlinear partial
differential equations, which are functions of time and one space variable. For static
problems, however, the equations become nonlinear ordinary differential equations,
which can be solved approximately using standard techniques, like the perturbation
method to satisfy boundary conditions. In contrast, for dynamical problems, it is
necessary to introduce a numerical procedure which discretizes the equations.

The shear deformation may be of considerable importance and can not be
negligible for studying the vibration of high frequencies when a dynamic rod is
subdivided into comparatively short elements. In this study, the modelling strategy
of a 3-D rod element with general deformation including shear, a modified Cosserat
rod element (MCRE) is developed using the Cosserat theory. In this approach, the
fundamental problem of any finite element formulation is the choice of the shape
functions. The approximate solutions of the nonlinear equations of motion in a
quasi-static sense are chosen as the shape functions with up to third order nonlinear
terms of generic nodal displacements. In three dimensions, the nonlinear differential
equations cannot be integrated in a close form even in the static sense, therefore
the Frobeniu’s method is employed here to solve the system approximately. This
way the dynamics of the element is reliably defined through an action principle
that guarantees basic conservation laws. Based on the Lagrangian constructed by
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the Cosserat kinetic energy and strain energy expressions, the principle of virtual
work is used to derive the ordinary differential equations of motion with third order
nonlinear generic nodal displacements.

3 The Cosserat Rod and Its Directors

The motion of a nonlinear rod segment can be modelled as a Cosserat rod whose
configuration is described by its neutral axis r.s; t/ (Cosserat curve) and three
orthogonal unit vectors di .s; t/, .i D 1; 2; 3/ (Cosserat directors) where s, t denote a
length parameter and time, respectively (see Fig. 1). At any time, r describes the axis
of the rod whose cross-section orientations are determined by di such that v3 D @sr �
d3 > 0. This condition implies that (I) the local ratio of deformed length to reference
length of the axis cannot be reduced to zero since jri j > 0, and (II) a typical cross-
section .s D s0/ cannot undergo a total shear in which the plane determined by d1
and d2 is tangent to the curve r at r.s0; t/ (Antman 1995). In an inertial Cartesian
basis e1; e2; e3 and Newtonian time t , the Cosserat curve is defined as:

r.s; t/ D ri .s; t/ei D x.s; t/e1 C y.s; t/e2 C z.s; t/e3: (1)

Let di .s; t/ D dij .s; t/ej satisfying the orthogonality condition dikdjk D ıij . The
motion involves both the velocity of the curve, @t r , and angular velocity of the
cross-sections, w D wi di so that @tdi D w � di . The strains of the Cosserat rod
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Fig. 1 A simple Cosserat rod described by its neutral axis r.s; t / and three orthogonal unit vectors
di .s; t /, .i D 1; 2; 3/ in an inertial Cartesian basis e1; e2; e3 (a) and the model applied to a drill-
string as shown from a snapshot of a stick-slip simulation (b)
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are classified into ‘linear strain’ vector v D @sr D vi di and ‘angular strain’ vector
u D ui di so that @sdi D u � di . The kinetic and strain energy expressions are
used to construct the Lagrangian density that, through the variational principle with
the action functional S D R

Ldsdt , generates the dynamics of the Cosserat rod as
follows (Wang et al. 2004; Liu et al. 2007):

(
	A@tt r D @sn

@th D @smC @sr � n (2)

where h D I.w/ is the angular momentum per unit length and n D K.v � v0/ and
m D J.u � u0/ are contact force and moment densities, respectively.

The rotation matrix is chosen to be parameterised by the rotation vector, that is
free of both singularities and constraints (Cao et al. 2006; Wang et al. 2004; Liu et al.
2007). Following this, the three directors d1.s; t/, d2.s; t/, d3.s; t/ can be obtained
by rotating Cartesian frame e1, e2, e3 with rotation vector

� D �x.s; t/e1 C �y.s; t/e2 C �z.s; t/e3: (3)

Assume the rod deformations are restricted in amplitude so that all nonlinearities
can be expanded in Maclaurin’s series. The directors di .s; t/ can be expanded up to
third order in terms of �x , �y , �z.

4 Shape Functions for Modified Cosserat Rod Elements

For convenience, consider a uniform and initially straight rod element of constant
length L, supported in an arbitrary manner at s D a D 0 and s D b D L. Assume
that the static equilibrium of the rod corresponds to the situation where d1, d2 and
d3 are parallel to e1, e2 and e3, respectively. The principal axes are chosen to parallel
e1, e2 and e3. For the sake of simplicity, it will be assumed that the axes along the
directors d1, d2 and d3 are chosen to be the principal axes of inertia of the cross
section at s, and centered at the cross section’s center of mass. Then, for a uniform
rod with cross-section area A.s/, we have Jij D 0, Iij D 0 for i ¤ j Assume that
the shape functions for a MCRE satisfy the corresponding static equations (2), i.e.

(
@sn.s/ D 0

@sm.s/C v.s/ � n.s/ D 0:
(4)

As a prelude to expanding the nonlinear shape functions to a form suitable for a
perturbation analysis of the motion, it is useful to introduce some natural scales to
obtain a dimensionless equation of motion. Introduce the dimensionless variables

� D s
L0
; Nr D r

L0
; Nx D x

L0
; Ny D y

L0
; Nz D z

L0
; � D !0t; (5)
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whereL0 and w0 are the reference length and natural frequency yet to be determined
later, respectively.

Assume that the dimensionless generic nodal displacements (boundary displace-
ments and rotations) at � D 0 and � D L=L0 are

qa D �
"Xa "Ya "Za "ˆxa "ˆya "ˆza

�T
;

qb D �
"Xb "Yb "Zb "ˆxb "ˆyb "ˆzb

�T
: (6)

Substituting (6) into (1), we obtain the boundary conditions for Nx, Ny, Nz, �x , �y and �z

at � D 0 and � D l , where l D L=L0 is the dimensionless length of the rod element.
Treating " as a perturbation parameter which is the order of the amplitude of the
displacement, the shape functions can be obtained by solving the static equations (4)
with the corresponding boundary conditions. To do this, we seek a straightforward
expansion in x, y, z, �x , �y and �z of the form

Nx.�/ D " Ox1.�/C "2 Ox2.�/C "3 Ox3.�/C : : : ; (7)

Substituting (7) into (4) and, because Oxi , Oyi , Ozi and O�xi , O�yi , O�zi are independent
of ", set the coefficient of each power of " equal to zero. This leads to a set of
linear ordinary differential equations which can be solved using the Frobeniu’s
method (Arfken 1985) under the corresponding boundary conditions. By solving
(4), the approximate series solutions are obtained. All first orders terms are ex-
plicited in Liu et al. (2007). To investigate deflections up to third order nonlinearity
in " it is adequate to adopt the truncated (7) to "3 order terms.

5 Equations of Motion for Modified Cosserat Rod Elements

In this section, the Lagrangian approach is employed to formulate the ordinary
differential equations of motion of the Cosserat rod elements. The generalized
Hamilton’s principle which, in its most general form, is given by the variational
statement Z t2

t1

ı.T � V /dt C
Z t2

t1

ıW dt D 0; (8)

where T is the total kinetic energy of the system, V is the potential energy of the
system (including the strain energy and the potential energy of conservative external
forces), ı represents the virtual displacement (or variational) operator, and ıW is
the virtual work done by nonconservative forces (including damping forces) and
external forces not accounted for in V . The generalized displacement vector for the
element can be described by

qe.�/ D �
qTa .�/ q

T
b .�/

�T
: (9)
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Consistent with the kinematic and constitutive assumptions described in Cao et al.
(2006), Wang et al. (2004) and Liu et al. (2007) and the shape functions derived
previously, the kinetic energy per unit length is

T D 1

2
	A@t r � @t r C I.w;w/ D 1

2
	A!20L0 PNr � PNr C !20I. Nw; Nw/ (10)

where 	 and A are the density and the area of cross-section of the rod, respectively.
Under small strain conditions the strain energy per unit length of rod can be
expressed in terms of the strain vectors u and v as:

U D 1

2
J.u; u/CK.v � d3; v � d3/ D 1

2

1

L20
J.Nu; Nu/CK.Nv � Nd3; Nv � Nd3/ (11)

Utilizing the time varying generic nodal displacements introduced in (9) instead of
the static generic nodal displacements introduced in (6), the time varying generic
displacements at any point within the element can be expressed as nonlinear
functions of the length parameter � and the nodal displacement vector qe.�/.

To define the type of loading, let us assume that a load acting on the element is
composed from three additive parts. The first one is the interaction of the neighbored
elements f ie . The second one is the external point (concentrated) loadings acting
on the nodes f ce . The last one represents a distributed load with fixed direction and
prescribed intensity.

Same as done in Cao et al. (2006) and Liu et al. (2007), the generalized Lagrange
equations of motion for the Cosserat rod element are:

d

d�

�
@L

@ Pqj
�

� @L

@qj
D f ie

j .�/C f ce
j .�/C f de

j .�; qe/: (12)

For a general configuration with nonzero generic nodal displacements qe, the
ordinary differential equations of motion with up to third order nonlinearities of
displacements and first order kinetic terms can be obtained as

Me Rqe CKeqe C ge.qe/ D f ie.�/C f ce.�/C f de.�; qe/; (13)

where Me and Ke are mass and (linear) stiffness matrices of the element model,
ge.qe/ is a nonlinear vector with quadratic and cubic terms of qe .

6 Boundary Conditions as Applied to a Drill-String

Boundary conditions for a drill-string are applied at the first node (top), where the
motor and rotary table are, in this case, simulated with the imposition of a constant
angular velocity ˝1. This is achieved by eliminating the lines corresponding to
lateral and axial degrees-of-freedom of the first node from the matrices in (13),
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Fig. 2 Phase-plane of stick-slip vibrations of drill-string with length of 1,000 m (a) and 4,000 m
(b), showing the deformations of the limit-cycle caused by higher order modes in the structure

leaving only possibility of rotational motion at this node. It is also possible to model
the top drive as an electric motor coupled at the first node. The effect of damping of
the drilling mud is included with a damping matrixD on the left hand side of (13).

Additionally, at the last node (bottom), a resisting torque is present following
the friction torque characteristic as in Wang et al. (2004), in order to model the
conditions experienced by the drill-bit. The torque-on-bit (Tb) is a friction law,
a function that defines the resistive torque on the bit and models the interaction
between the drill-bit and the rock. The simplest model for Tb is a piecewise
Coulomb-like friction law (see Wiercigroch (1994); Galvanetto (2001)), with a
value for static friction (Tst ) and another, lower, value for sliding (or dynamic)
friction (Tsl ), which in this case is independent of the velocity. This effect is
achieved by adding the sliding or sticking torque in the last element of f ce in (13).
The simulations have to tackle the problem in a piecewise manner, by separating
the discontinuous phase space into a series of adjacent continuous regions. In the
present case, two regions are necessary, one for the stick mode and one for the
slip mode, with the stick region being a straight line. A switch function is used to
perform the transitions from stick to slip modes, which is done by monitoring the
velocity of the last node and the torque built in the drill-string to determine in which
mode the system is. The simulations performed using the methodology described
show the expected stick-slip oscillations of the bit. As is well known, the existence
of stick-slip depends on a combination of torsional stiffness, angular velocity and
damping effects. However, the simulations show that these oscillations excite higher
torsional modes of the structure, causing deformations on the stick-slip limit-cycle
and interfere in its stability, which can be seen in Fig. 2.

As is observed for lower order models aimed at studying stick-slip limit-
cycles, this model also shows the limit cycle as it goes through a non-smooth
fold bifurcation, ceasing to exist. This bifurcation is well known to occur in
systems with the presence of stick-slip oscillations, when increasing the driving
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velocity of the system. A point attractor co-exists at the centre of the stick-slip
limit cycle, and its basin of attraction expands until it touches the limit cycle at
the slip-to-stick transition point. When this occurs, the limit cycle is destroyed,
meaning that there is no stick-slip oscillations. Apart from this wellknow destruction
mechanism, the higher frequencies observed during the simulations could also cause
the disappearence of the limit-cycle. Through a series of deformations, it can be
observed that at some point the trajectory does not reach the sliding surface between
the stick and slip motions, and therefore there is no stick-slip motion.

7 Conclusions

The modelling strategy with Cosserat rod element employs the exact nonlinear
kinematic relationships in the sense of the Cosserat theory. The model accounts for
finite displacements and rotations as well as finite extensional, torsional, bending
strains, and shear deformation. The shape functions for MCREs are derived from
the differential equations governing the non-planar flexural-torsional motion of
extensional rods. Consequently, the higher accuracy of the dynamic responses can
be achieved by dividing the rod into few elements, which is much less than the
traditional finite element methods in which the interpolation functions are usually
simple functions such as low order polynomials.

As an application of this model, a drill-string has been presented to illustrate the
formulation procedure of the MCRE model. The comparison of MCRE model with
classical beam theory has been carried out through the natural frequency analysis
of the linearized equations and the numerical simulation of the nonlinear dynamic
equations. Using appropriate boundary conditions and a piecewise approach, the
model is able to simulate stick-slip oscillations.
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Mechanical Oscillator in a Magnetic Field

J.-H. Ho, Ko-Choong Woo, V.C.-C. Lee, and Y.A. Abakr

Abstract An analytical solution for a system exhibiting oscillations of a conductor
in magnetic field which is controlled by a discrete waveform is developed by means
of multiple scales. The solution provides a guideline to design an effective control
strategy so as to guide the system to a desirable attractor. Initial tests were also
conducted to investigate the effect of hydrodynamic forces on an inertia excited by
this mechanism.

Keywords Mechanical oscillator • Electromagnetic • Impact • Hydrodynamic

1 Introduction

A new electro-vibro-impact system (Nguyen et al. 2008), as shown in Fig. 1,
has been studied experimentally (Nguyen and Woo 2008) and through numerical
analysis (Ho et al. 2011). The system involves the use of a solenoid driven by a RLC
circuit, coupled with a solid state relay (SSRL), to generate large electro-magnetic
forces acting on a conductor, which oscillates within the solenoid. Impacts are
generated by means of a stop in the path of bar oscillations. The forward progression
of the device can then be generated. Experimental studies (Nguyen and Woo 2008)
have shown that the performance of the device is closely related to the control
frequency of the SSRL. This piece of work describes the approximate analysis of
the electro-vibro-impact system without impacts by means of multiple scales.

The steady state response of the metal bar, in terms of oscillations is described.
This solution is expressed in terms of system and circuit parameters. In this way,
a large amplitude and high frequency of oscillations may be prescribed by an
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Fig. 1 New electro-vibro-impact system (Nguyen et al. 2008)

appropriate selection of mass, spring stiffness and electrical parameters, the latter of
which may be varied in real time to maintain a certain dynamical response. While it
would have been ideal to obtain a solution to a system with impacts, the strong
system nonlinearity associated with hard impacts requires an analytical method
alternative to that of multiple scales. With the present solution, the dependence
of oscillatory amplitude and frequency on system characteristics is explicitly
described. It would then be possible, in future work, to deduce this relationship
for the case of impacts and forward progression. A detailed understanding of
the system dynamics is required in order to design a feedback control system to
achieve better progression rate. For investigate the effect of hydrodynamic forces,
optimization of vibro-impact mechanism requires a mathematical model, which
incorporates effects of excess water for cooling purposes. Mathematical description
of hydrodynamics forces is possible, as demonstrated by the analysis of ship heave
and roll by Thompson and De Souza (1996). The investigation of heave can be
traced to the work of Ursell (1949) from a fundamental point of view. An application
to marine engineering, Ellermann et al. (2003) had been approached with continu-
ation methods and multiple scale analysis. A two-dimensional boundary-integral
approach to ship hulls had been reported by Kral et al. (2003). This nonlinear
function needs to describe characteristics in a vertical downward direction, and yet
at the same time, should represent adequately the nature of hydrodynamic forces.
A parameter identification procedure based on the approach of Jaksic et al. (2008)
computes unknown coefficients of nonlinear restoring forces. An experimental rig
has been constructed to mimic vibro-impact oscillator operating in a borehole filled



Mechanical Oscillator in a Magnetic Field 349

Fig. 2 Schematic of the experimental setup

with water. Of particular interest is the possibility of chaotic motion, which had
previously been observed in ships by Lin and Yim (1995). It is also known that
control of chaos is possible, as reported by Chacon (1846) and Kapitaniak (1994).
The physical system is depicted in Fig. 1 and a schematic of the experimental setup
is shown in Fig. 2.

The rig consists of two parts which is the oscillatory component and the acrylic
cylinder containing water. The oscillatory component consists of three parts namely;
electromechanical device mounted on a frame, and linked to the cylinder partially
submerged in water by means of a connecting rod. The upper connection between
the support and connecting rod is attached by means of force fit connection with
tolerance of 1 �m. The lower connection between the connecting rod and the
cylinder is secured by means of bolts and nuts.
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2 Mathematical Model

In consideration of Newtonian mechanics, which, in an electromechanical system,
is dependent on current fluctuation and resulting magnetic electromotive force, an
equation of motion and current equation may be written as follows:

Rx C 2�!n Px C !n
2 .x � ı/ D 1

2

1

m

@L

@x
i2 (1)

L
d2i

d t2
C
�
RC 2

@L

@x
Px
�
di

dt
C
�
1

C
C @2L

@x2
Px2 C @L

@x
Rx
�
i D �VsPctr cos .�t/ (2)

where dot denotes differentiation with respect to time t, x is the displacement of
the metal bar, � is the damping ratio, !n is the natural frequency of the metal bar
and the spring, ı is the initial displacement of the metal bar, m is the mass of the
metal bar, L is the inductance function in the RLC circuit, I is the current flow
through the circuit, R and C are the resistance and the capacitance in the RLC
circuit respectively, Vs is the externally supplied time dependent voltage and ˝ is
the frequency of the power supply. The control waveform sent to a solid state relay
is a square wave of frequency !c ., Pc�� is the factor of control frequency which is
given by the following expression

Pctr D
(
1; if �

�
mod 2


!c

�
< 


!c

0; otherwise
:

To obtain an approximate analytical solution to the system equations, fur-
ther information pertaining to inductance and discontinuous function is required.
Experimental measurement of the inductance and subsequent approximation by a
polynomial function is necessary for the multiple scales perturbation method to be
made possible. Being a discontinuous function, Pc�� may be expanded in a Fourier
series. Defining a parameter, ", to describe small terms, it is then possible to state the
range of oscillatory displacement, less than which system characteristics are weakly
nonlinear. Since the electromagnetic forces increase with displacement, larger
oscillations experience greater electromagnetic restoring forces. In the domain of
weak nonlinearity, it is important to specify that the obtained analytical solution
describes small oscillations where the metal bar is placed close to the centre of the
solenoid. The obtained solution expresses the bar displacement retaining the first
two terms in descending magnitude.

x .t; "/ D x0 .T0; T1/C "x1 .T0; T1/C : : : (3)

Two cases were studied here, namely non-resonant and superharmonic reso-
nance. In the non-resonant case, whereby !c and ˝ are away from !n, the solution
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to x0 was found to decay exponentially, which an oscillatory description to x1 had an
amplitude expressed as a function of supplied voltage, solenoid inductance, circuit
capacitance and resistance, as well as power supply frequency. This steady state
solution .x1 .T0; T1// is a periodic function consisting of frequencies of 2˝ , !c ,
2!c , 3!c , 4!c , 6!c , 2˝ ˙ !c , 2˝ ˙ !c , 2˝ ˙ 3!c , 2˝ ˙ 4!c and 2˝ ˙ 6!c .

In the second case, a superharmonic resonance was considered, whereby !c is
close to 1

2
!n and˝ is away from !n, the solution x0 was found to oscillate with the

natural frequency, !n. To express the closeness of !c to 1
2
!n, a detuning parameter,

�, was introduced, whereby 2!c D !n C "�. Setting up the condition for secular
terms, two differential equations containing the amplitude, a, and phase, ˇ, of x0
can be obtained. Steady state solution to x0 can be solved by setting ˛0 and ˇ0 to
zero. Solution to x1 contain 45 other combination frequencies, all amplitudes are
small except for the terms involving !c . As a result, period 2 motion was observed
with dominant frequencies of !c and !n.

To understand the effect of hydrodynamic forces, the nonlinear restoring forces
are described in a cubic way.

m Rx C cd Px C kx C �x3 D 0 (4)

where m denotes mass of experimental rig, cd is a combined damping of both
mechanical spring and water, and � is an unknown coefficient which needs to be
determined. Its value determines the strength of the nonlinearity from hydrodynamic
forces.

For the case of a weak nonlinearity, an analytical solution can be found
using the strained coordinates (Nayfeh 2000) by means of a series. Based on
principles of perturbation methods, this approach yields convergent solutions for
slight nonlinearities. However, the convergence may be elusive due to the large
nonlinearity of water.

Hence, a numerical iteration solution is necessary so that parameters are com-
puted by means of a least squares fit of chi-squared merit function. The chi-squared
merit function written as:

%2 D
 

nX
iD1

Rxi C C1 Pxi CK1xi CK2xi
3

!2
(5)

where C1 D cd
m
; K1 D k

m
and K2 D �

m
.

Curve fitting is performed in Matlab software and the predicted values are
verified by generating system response to check with experimental observation. For
purposes of comparison, the nonlinearity � is estimated by numerical algorithm
based on k and cd values from analytical solution.
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3 Approximate Analytical Solution

A non-dimensionalised form of the equations was derived.

Nx00 C 2� Nx0 C Nx � 1 D 	 NLa C NLb Nx
 Ni 2 
1C NLa Nx C

NLb
2

Nx2
!

Ni 00 C 	 NR C 2 NLa Nx0 C 2 NLb Nx Nx0
 Ni 0

C 	 NC C NLb Nx02 C 	 NLa C NLb

 Nx00
 Ni D NVs NP ctr cos

	 N��
 (6)

where

NPctr D
(
1; if �

�
mod 2
N!c

�
< 


N!c
0; otherwise

:

This discontinuous function was expanded in a Taylor series and two terms were
retained.

NPctr D 1

2

�
4




�
sin . N!c�/C sin .3 N!c�/

3

�
C 1

�
:

For small oscillations, a smallness of the inductance and damping were described
by a minute parameter, ".

" Nla D NLaI " Nlb D NLb I " N� D 2�!n

Different time scales are introduced by

Tn D "n� for n D 0; 1; 2 � � �

For example, a first term of solutions for bar displacement and current flow are
written as

Nx0 .T0; T1/ D A0 .T1/ e
iT0 C NA0 .T1/ e�iT0 C 1 (7)

by comparison of like terms of ". A0 and B0 are complex functions and NA0 is the
complex conjugate of A0:

4 Results and Discussion

To verify the approximate solution obtained from multiple scale analysis, a linear
variable displacement transducer (LVDT, RS model 646-460) was used to measure
the displacement of the metal bar oscillations. The following parameters were used
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Fig. 3 (a) The experimental result of the metal bar displacement and (b) the approximate
displacement function obtained from multiple scales analysis. The SSRL control frequency was
set at 49.51 rad/s (7.88 Hz)

Fig. 4 (a) The experimental result of the metal bar displacement and (b) the approximate
displacement function obtained from multiple scales analysis. The SSRL control frequency was
set at 17.66 rad/s (2.81 Hz)

in the experiment: Vs D 56:57 V, m D 0.975 kg, k D 1,243 N/m, ˝ D 314:16 rad/s
(50 Hz), C D 30 � F, R D 22 � and !n D 35:71 rad/s (5.68 Hz). In this first case,
period 1 motion was observed with !c D 49:51 rad/s (7.88 Hz) and ı D �0:0094m.
The experimental result and the approximate solution were showed in Fig. 3a, b
respectively. Results showed close co-relationship in both amplitude and frequency
with some offset value. In the second case, experimental results showed that there
are some discrepancies in amplitude, but period 2 motion can be observed with
!c D 17:66 rad/s (2.81 Hz) and ı D �0:0094 m. This is shown in Figs. 3 and 4.

A numerical computation was performed with Fluent software (ANSYS, Inc
2006) to gain insight to the behaviour of water under the influence of a descending
inertia, so that pressure and velocity profiles may be predicted with a variation of
depth and time. Computation of the fluid dynamics allows for visualisation of water
movement at different instants in time (Figs. 5 and 6).
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Fig. 5 Plot of dynamic pressure of water plotted against time

Fig. 6 Plot of velocity magnitude of water plotted against time

The analytical solution for the system with no water returns cd and k of 4.893
Ns/m and 1,680.288 N/m. By applying a numerical method, � is estimated numer-
ically program to be 0.163 N/m3 with chi-squared merit function error of 2:187 �
10�7. From the numerical iteration, cd is found to be 4.902 Ns/m, k D 1,673.828
N/m and �D 0.0863 N/m3. The chi-merit function error is 9; 476 � 10�9.
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Table 1 Parameters of system with no water

Parameter Analytical solution Numerical solution Combination

Damping cd (Ns/m) 4.893 4.902 4.893
Stiffness k (N/m) 1,680.288 1,673.828 1,680.288
Nonlinear stiffness � (N/m3) Not available 0.0863 0.1626
Chi-squared merit function

error (N)
Not available 9.476 � 10�9 2.187 � 10�7

Table 2 Parameters of water damped system

Parameter Analytical solution Numerical solution Combination

Damping cd (Ns/m) 13.267 12.988 13.267
Stiffness k (N/m) 1,318.273 1,259.766 1,318.273
Nonlinear Stiffness � (N/m3) Not available 0.163 4.893
Chi-squared merit function

error (N)
Not available 1.7456 � 10�10 1.496 � 10�6

Displacement and velocity responses of the estimated parameter are plotted by
4th order Runge Kutta method using Matlab, using an adaptive step size and a
tolerance of 1e-6 in both absolute and relative terms (Tables 1 and 2).

Based on a computation of fluid dynamics, an approximate tendency of hydro-
dynamic resistance to vary with respect to downward displacement in the manner
of a polynomial has been observed, and a cubic form of nonlinearity has been a
subject of parameter identification. Convergence of numerical algorithm has been
achieved by implementing a bisection method to avoid divergence as reported
by Martinez (1994). Selection of algorithm formulation had been based on a
recommendation by Hirsch et al. (2009). The unknown damping, linear stiffness
and nonlinear coefficients have been calculated to a high precision. Comparison of
numerically integrated time history without forcing based on identified parameter
values compares favourably with transient responses observed in a laboratory.

5 Results and Discussion

An approximate analytical solution to a system exhibiting oscillations of a conduc-
tor in magnetic field which is controlled by a discrete waveform is sought by means
of multiple scales. The solution provides a guideline to design an effective control
strategy so as to guide the system to a desirable attractor. Initial tests were also
conducted to investigate the effect of hydrodynamic forces on an inertia excited by
this mechanism. Results from the studies show that nonlinearity of a vibro-impact
oscillator is mainly contributed by nonlinear restoring forces in water instead of
other factors such as springs and stiffness of air. Similar situation applies to the
real moling machine where the borehole created accumulates water. By using the
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procedure developed, nonlinearity in actual system can be quantified. The estimated
values of damping and nonlinearity in a water-damped system are significantly
larger than in the case of no water.
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Part IV
Nonlinear Control of Engineering Systems



Control of Intrinsic Localized Mode in Coupled
Cantilever Array

Masayuki Kimura and Takashi Hikihara

Abstract Intrinsic localized mode (ILM) in coupled oscillators is one of nonlinear
modes, which show the temporally periodic and spatially localized characteristics.
Since the theoretical discovery of the mode, the existence of ILM has been
confirmed in many system including biological molecular chains, 1D material
structure, and MEMS. In the paper, we are going to discuss control of ILM in a
coupled cantilever array.

Keywords Coupled cantilever array • Intrinsic localized mode • Global dynamics
and control

1 Introduction

1.1 Background

Coupled vibrators or resonators are considered as a simple model to describe
mechanical structure and material science. The spatio-temporal phenomena of
the distributed system are also analyzed by coupled lattice of oscillators. Those
are the thermal propagation, acoustic waves, electromagnetic field, and so on. In
1988, Takeno and Sievers theoretically found an intrinsic localized mode (ILM)
in the discrete lattice structures through the analysis for the anharmonic resonant

M. Kimura
The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
e-mail: kimura.m@e.usp.ac.jp

T. Hikihara (�)
Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
e-mail: hikihara@kuee.kyoto-u.ac.jp

M. Wiercigroch and G. Rega (eds.), IUTAM Symposium on Nonlinear
Dynamics for Advanced Technologies and Engineering Design, IUTAM
Bookseries (closed) 32, DOI 10.1007/978-94-007-5742-4 28,
© Springer ScienceCBusiness Media Dordrecht 2013

359



360 M. Kimura and T. Hikihara

modes in perfect crystal (Sievers and Takeno 1988; Takeno and Sievers 1988). The
localized mode is a typical nonlinear mode in the discrete system related to breather
in continuous systems. The mode is temporally periodic and spatially localized
waves. Since the discovery, the localized mode has attracted many researchers.
General features such as the existence, the stability, and the movability have been
investigated both theoretically and numerically (Flach and Willis 1998). In addition,
the number of experimental studies increases in this decade. The localized mode is
experimentally generated or observed in various systems, for instance, Josephson-
junction array (Trı́as et al. 2000; Binder et al. 2000; Ustinov 2003), optic wave
guides (Eisenberg et al. 1998; Morandotti et al. 1999), micro-mechanical oscilla-
tors (Sato et al. 2003a), and electronic circuits (Sato et al. 2007). These experiments
directly suggest us the phenomenological universality of ILM and the possible
application phase. In fact, there appear the studies toward future applications both
in fundamental science and in practical engineering (Campbell et al. 2004).

Observation of ILM in micro-cantilever arrays is first reported by Sato et al.
(2003a,b). They used a well-designed micro-cantilever array which is fabricated
by micro-electromechanical system (MEMS) technology. In the tiny cantilever
array, ILM not only stands at a certain site but also wanders in the array. This
implies that ILM can be manipulated without decaying of the energy concentration.
In fact, it has been reported that ILM can be manipulated by a locally added
impurity (Sato et al. 2004, 2006). Since cantilever structure is widely used in MEMS
devices (Waggoner and Craighead 2007), these experimental results in micro-meter
scale suggest the possibility of a micro-/nano-device using energy localization
phenomena. Obviously, establishing control method for ILM is imperative to realize
such applications. Therefore, the global dynamics of traveling ILMs should be
investigated as well as the local dynamics of standing ILMs.

The global dynamics of traveling wave was investigated with the phase structure
around standing waves in a coupled magneto-elastic beam system which is quali-
tatively similar to the micro-cantilever array (Hikihara et al. 1997, 2001a,b). It is
revealed that there coexists several standing waves and the phase structure around
them governs the onset behavior of traveling waves. Since ILM can be thought
of as a standing wave, the global dynamics for ILM can be investigated with the
same manner. In this paper, we will first discuss the relationship between the phase
structure and the global behavior of traveling ILM. Then a method for manipulating
ILM is proposed based on structure of phase space. In addition, another method is
shown in experiments.

1.2 Intrinsic Localized Mode

Intrinsic localized modes are roughly classified into two kinds, “Sievers-Takeno
mode (ST-mode)” and “Page mode (P-mode)” (Flach and Gorbach 2005) when
the energy is concentrated at only a few sites. ST-mode has an odd-symmetry in
its amplitude distribution as shown in Fig. 1a. On the other hand, two neighboring
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Fig. 1 Sievers-Takeno (ST) mode and Page (P) mode for both optic and acoustic ILMs (Flach
and Gorbach 2008) and dispersion relation for Run D �!20un C C.2un � unC1 � un�1/. !0 and

!
 D
q
!20 C 4C represent the lower and the upper bound of frequency, respectively. (a) Spatial

symmetry. (b) Dispersion curve

oscillators have the same amplitude for P-mode. That is, ST-mode stands on a site
whereas P-mode is centered between sites. In addition, ILM is called optic/acoustic
ILM when oscillators move in anti-/ in-phase (Campbell et al. 2004). For coupled
cantilever arrays, all cantilevers obey the linear ordinary differential equation, Run D
�!20unCC.2un� unC1� un�1/ while the amplitude is sufficiently small. The linear
ODE leads a dispersion relationship, namely, a band shown in Fig. 1b. If a nonlinear
lattice allows ILM to exist, optic/acoustic one appears above/below the band.

2 Coexistence and Stability

2.1 Coupled Cantilever Array

Intrinsic localized modes were observed in the micro-cantilever array which is
fabricated by using photolithography technology (Sato et al. 2003a). The micro-
cantilever array consists of a thin SiNx film, which forms cantilevers and overhang,
and a thick Si support. Here we assume that each cantilever has the same length to
one another for simplicity. The overhang provides the coupling between neighboring
cantilevers by bending itself. The size of the array is determined as followed in Sato
et al. (2003b).

The vibration of cantilever is described by a partial differential equation. Since
the cantilever is thin, Euler-Bernoulli beam theory can be applied to obtain the
resonant frequencies and shape functions of the cantilever. The lowest resonant
frequency corresponds to the first mode oscillation of cantilever. Because the micro-
cantilever array is excited near the lowest frequency (Sato et al. 2003b), we only
focus on the first mode oscillation. The shape function of the first mode shows the
maximum amplitude at the free end of cantilever. Here we describe the motion of
the tip of cantilever by a simple spring-mass model which has the same resonant
frequency as the original cantilever.
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The nonlinearity of cantilever is arisen by more precise analysis. On the basis of
the theoretical analyses (Crespo da Silva and Glynn 1978; Crespo da Silva 1988;
Malatkar and Nayfeh 2003), the cantilever tends to be hard as the deformation
increases. This hardening nonlinearity is arisen from geometric nonlinearity. The
hardening nonlinearity, which appears as a cubic term in the restoring force, has
already been confirmed by experimental analyses (Sato et al. 2006; Malatkar and
Nayfeh 2003). Therefore the cantilever is depicted by a spring-mass system with
cubic nonlinearity in the spring. The coupling force caused by the overhang is
modeled by the same way (Sato et al. 2006). The difference in displacements
of neighboring cantilevers causes the deformation of the overhang region. The
restoring force also has a cubic nonlinearity (Sato et al. 2006). Consequently, the
motion of the micro-cantilever array is depicted by

Run D �˛1un � ˛2

n
.un � un�1/C .un � unC1/

o

�ˇ1u3n � ˇ2

n
.un � un�1/3 C .un � unC1/3

o
; (1)

where un represents the displacement at the free end of nth cantilever. The first and
third terms represent the restoring force caused by bending each cantilever with
coefficients, ˛1 and ˇ1. The second and fourth terms with ˛2 and ˇ2 describe the
nonlinear coupling force. Since the equation of motion has no term of Pun in the
right-hand side, the total energy

H D
NX
nD1

�
1

2
Pu2n C ˛1

2
u2n C ˇ1

4
u4n C ˛2

2
.un � un�1/2 C ˇ2

4
.un � un�1/4

�
(2)

is conserved.
The equation of motion is nondimensionalized by scaling with appropriate unit

time and length. The unit time is chosen so that ˛1 is 1. The unit length is set to let
ˇ1 be 0:01. Consequently,˛2 and ˇ2 are determined to respectively be 0:1 and 0:001
by using values regarding the micro-cantilever array (e.g. material constants, size of
the array) in Sato et al. (2003b). This means that the linear and nonlinear coupling
coefficients are uniquely determined by the design of cantilever array. This paper
thus investigates ILMs for various value of the coupling coefficients, especially ˇ2.

2.2 Coexistence

Intrinsic localized modes what we focused on are temporally periodic solutions in
Eq. (1). The periodic solutions can be treated as fixed points on a hyper surface in
the phase space. Let ˙p be a hyper surface defined by

˙p D ˚
.u; Pu/ 2 R

16 j up > 0; Pup D 0

; (3)
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Fig. 2 Coexisting ILMs at ˛1 D 1, ˛2 D 0:1, ˇ1 D 0:01, and ˇ2 D 0:001. (a) ST1. (b) P1-2.
(c) ST4. (d) P4-5

where p is the index of cantilever and is set at 4. An ILM corresponds to a fixed
point x� 2 ˙p for the Poincaré map P W ˙p ! ˙p . According to the Floquet
theory, the stability of the ILM is equivalent to that of the corresponding fixed point.
The stability of x� can be investigated with eigenvalues of the matrix DP which
is obtained by linearizing P around x�. If one of the eigenvalues is located outside
unit circle on complex plane, the ILM is unstable solution in Eq. (1). Since Eq. (1) is
a Hamiltonian system, the ILM is determined not to be unstable if and only if all the
eigenvalues are on unit circle. It is called marginally stable or simply stable (Flach
and Gorbach 2005).

By using the anticontinuous limit (Marı́n and Aubry 1996), several ILMs are
obtained in the coupled cantilever array at which the boundaries are fixed and
parameters are set at N D 8, ˛2 D 0:1, ˇ2 D 0:001, and H D 250. Some of
the obtained ILMs are shown in Fig. 2. ILMs shown in Fig. 2a, c correspond to
ST-mode. They are obtained by initial guesses that only one cantilever is excited.
P-modes are shown in Fig. 2b, d. The initial guesses for P-modes are that two
neighboring cantilevers are excited in anti-phase.

Coexisting ILMs in the cantilever array can be distinguished by the index number
of cantilevers which have large amplitude. In this paper, the ST-mode standing atm-
th site is called STm. For example, ST4 corresponds to the ST-mode centered on the
4th cantilever as shown in Fig. 2c. The P-mode is depicted Pm-m0 withm0 D mC1,
because the P-mode has even symmetry in amplitude distribution. The locus of the
P-mode is found at mC 1=2.
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a b

c d

Fig. 3 Floquet multipliers of ST4 and P4-5 for ˇ2 D 0:001 and 0:01. The circle drawn by dashed
curve indicates unit circle in complex plane. Insets show the corresponding ILMs. (a) ST4 at
ˇ2 D 0:001. (b) P4-5 at ˇ2 D 0:001. (c) ST4 at ˇ2 D 0:01. (d) P4-5 at ˇ2 D 0:01

2.3 Stability

The stability of ILM generally depends on the symmetry of amplitude distribution
in space (Flach and Willis 1998). As mentioned in the previous section, coexisting
ILMs in the coupled cantilever array are classified into two kinds. Generally, one is
stable if the other is unstable and vise versa. Floquet multipliers of ST4 and P4-5
at ˇ2 D 0:001 are shown in Fig. 3a, b, respectively. All the multipliers for ST4 are
on unit circle. ST4 is thus stable. On the other hand, P4-5 is unstable because one
of the multipliers is outside unit circle as shown in Fig. 3b. For the other coexisting
ILMs, P-modes are unstable while ST-modes are stable. The relationship between
the stability and the spatial symmetry is the same as that of nonlinear Klein-Gordon
lattices (Flach and Willis 1998). Therefore, in terms of the stability of ILM, the
coupled cantilever array at ˇ2 D 0:001 is similar to the nonlinear KG lattices.

However the relationship between the stability and the spatial symmetry is
changed for ˇ2 D 0:01. Figure 3c shows the Floquet multipliers of ST4. One of
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Fig. 4 Locus and stability of coexisting ILMs. Solid curve corresponds to stable ILMs. Unstable
ILMs are represented by dashed curve

the multipliers is clearly located outside unit circle. In the case of ˇ2 D 0:01 all
coexisting ST-modes are unstable. The stability of P-modes is also flipped. All the
Floquet multipliers of P4-5 are on unit circle as shown in Fig. 3d. Such stable P-
modes are also observed in Fermi-Pasta-Ulam (FPU) lattices (Sandusky et al. 1992),
while ST-modes are unstable. Thus, the cantilever array at ˇ2 D 0:01 is similar to
the FPU lattices in terms of the stability of ILM.

In the coupled cantilever array, the ratio between on-site and inter-site nonlinear-
ity depends on the design of the array. The ratio determines whether the cantilever
array is similar the nonlinear KG lattice or the FPU lattice. Since the stability of ILM
is different between nonlinear KG and FPU lattice, the stability of ST- and P-modes
is exchanged between ˇ2 D 0:001 and 0:01. It implies that local bifurcations are
caused by varying the nonlinear inter-site coefficient ˇ2 with fixing the nonlinear
on-site coefficient ˇ1.

The locus and the stability of coexisting ILMs are shown with respect to ˇ2
in Fig. 4, where the total energy H is kept at 250 and the locus is obtained by
XILM D P8

nD1 njunj=P8
nD1 junj (Zueco et al. 2005). The figure clearly shows how

the stability of coexisting ILMs is flipped with the change of the nonlinear inter-site
coefficient. ILMs standing around the center of array almost simultaneously gain or
lose stability at ˇ2 ' 0:00545.

On the other hand, ST1 coincides with P1-2 at ˇ2 ' 0:00238 and disappears with
increment of ˇ2. The disappeared P1-2 appears again with ST2 at ˇ2 ' 0:00716.
That is, a wide parameter gap exists near the end of array. The wide parameter gap
is caused with the fixed end because it vanishes in the ringed array (Kimura and
Hikihara 2008).
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The almost simultaneous stability change implies that a drastic change of global
phase structure is also caused. If the traveling ILM is governed by the global phase
structure, it can be controlled by varying ˇ2. In the next section, a manipulation
using the stability change is discussed after the relationship between the global
phase structure and traveling ILMs is investigated.

3 Control for ILM

3.1 Invariant Manifolds of Standing ILMs

Invariant manifolds are globally extended in the phase space. Then the phase space
and the configuration space are not suitable for discussing the global structure of
coupled cantilever array. Hence a projection G W ˙p ! C is introduced to extract
the position of ILM in the array. The projectionG is the inner product of the energy
distribution of ILM and the sinusoidal wave whose wave number is unity in the
array (Houle 1997). Therefore, the phase of G.xk/, namely �k D argG.xk/, in
complex plane reveals the locus of the energy distribution, where xk and k are an
ILM solution and the number of the Poincaré map iterations, respectively. For the
case of coexisting ILMs, the phase corresponds to the center of ILM. In addition,
the velocity of an traveling ILM can be estimate from the differences between �k
and �kC1, namely,��k D �kC1 � �k (Houle 1997).

In the previous section, it was revealed that the stability of coexisting ILMs is
flipped by the nonlinear inter-site coefficient ˇ2. Structures of unstable manifolds in
phase space also depend on ˇ2. Figure 5a, b show structures of unstable manifolds
at ˇ2 D 0:005 and 0:006. As mentioned in the previous section, the stability change
occurs between ˇ2 D 0:005 and 0:006.

For ˇ2 D 0:005, the structure connecting the vicinities of unstable P-modes are
observed. The right branch of W u.P3-4/ reaches the vicinity of P4-5 as shown in
Fig. 5a. The unstable manifold returns to the vicinity of P3-4 again (see the inset

a b

Fig. 5 Coexisting ILMs and unstable manifolds at ˇ2 D 0:005 and 0:006. Structure of the vicinity
of an unstable ILM is shown in the insets. Although unstable manifolds are located very close to
each unstable ILM, any homo- or heteroclinic connection cannot be observed for ˇ2 D 0:005 and
0:006. (a) ˇ2 D 0:005. (b) ˇ2 D 0:006
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a

b c

Fig. 6 Two different traveling ILMs generated from initial conditions which are close to
each other. (a) Unstable manifolds of unstable ILMs. Filled circle and asterisks correspond to
trajectories of traveling ILMs generated near ST3. (b) Reciprocally traveling ILM generated at
IP1. (c) Traveling ILM initially started at IP2

of Fig. 5a). Other unstable manifolds show the same structure as the right branch
of W u.P3-4/. Then Fig. 5a seems to be quite simple. The global phase structure at
ˇ2 D 0:006 is shown in Fig. 5b. The structure is drastically changed from that at
ˇ2 D 0:005. Although the connections between P-modes disappear, the vicinities
of ST-modes are connected each other with unstable manifolds of themselves. The
drastic change of phase structure is caused by the stability change which occurs
between ˇ2 D 0:005 and 0:006. Unstable manifolds observed at ˇ2 D 0:005 is van-
ished with unstable P-modes by increasing ˇ2. Since ST-modes lose their stability
by the stability change, invariant manifolds of ST-modes appear at ˇ2 D 0:006.

3.2 Sensitive Dependence on Initial Condition

The behaviors of traveling ILMs become completely different even if the initial
points of the traveling ILMs are close each other. Here we take two initial points,
IP1 and IP2, as shown in Fig. 6a, where ˇ2 D 0:006 andH D 250. IP1 is inside the



368 M. Kimura and T. Hikihara

a

b

c

Fig. 7 Concept of ILM manipulation using stability change. Squares and circles correspond to
unstable and stable ILMs, respectively. Solid curves indicate unstable manifolds of unstable ILMs.
The arrow represents the trajectory of the traveling ILM. (a) Initial state. (b) Release. (c) Capture

cyclic structure formed by unstable manifolds of unstable ST-modes, whereas IP2 is
outside the structure. The trajectory started at IP1 turns clockwise and the other tra-
jectory moves to the right hand side. The corresponding time-development of energy
concentrations is shown in Fig. 6b, c. For the case of IP1, the locus of the high energy
concentration reciprocally moves between n D 3 and 4. On the other hand, a travel-
ing ILM started from IP2 wanders beyond ST4. Although IP1 and IP2 are close to
each other, the behavior of the ILMs show completely different feature. It suggests
that the structure of unstable manifolds determines the behavior of traveling ILM.

3.3 Capture and Release Manipulation

As shown in the previous section, the behavior of traveling ILM is sensitively
affected by the unstable manifolds. In addition, the drastic change of the global
phase structure was observed with respect to the nonlinear inter-site coefficient ˇ2.
These facts allow us to expect that the behavior of traveling ILM can be manipulated
by adjusting ˇ2. Figure 7 depicts a concept to manipulate ILMs by changing the
global phase structure. Here, it is assumed that a traveling ILM is initially excited
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a b

Fig. 8 Capture and release manipulation of traveling ILM. Dashed-lines indicate when the
stability change is caused. (a) Coexisting ILMs and unstable manifolds at (A) ˇ2 D 0:005,
(B) ˇ2 D 0:006. (b) Time-development of energy concentrations

near a stable ILM. Then the traveling ILM stays around the stable ILM as shown in
Fig. 7a. When ˇ2 is rapidly varied, the stability of coexisting ILMs changes and the
drastic change of the global phase structure occurs. As a result, the traveling ILM
begins to move along unstable manifolds of the destabilized ILMs (Fig. 7b). That is
to say, the traveling ILM is released. The released ILM will wander in the array. The
wandering ILM will be captured by the secondary stability change of ILMs, when
the wandering ILM approaches to the vicinity of an unstable ILM. The captured
ILM stays around the stabilized ILM at a site as shown in Fig. 7c. As results, the
traveling ILM is shifted from a site to the next.

A numerical simulation is shown for the capture and release manipulation
as in Fig. 8. The structure of unstable manifolds is shown in Fig. 8a. The time
development of energy distribution is shown by the tone in Fig. 8b. Here, an
initial condition is set as stable ST3 at ˇ2 D 0:005. The locus of the energy
concentration initially exists at n D 3. The first stability change at t D 100 is
due to the discontinuous change of ˇ2. Then the global phase structure changes
from Fig. 8a (A) to (B). ST3 loses its stability and begins to travel toward n D 4

for 100 < t < 820. That is, ST3 is released. The nonlinear inter-site coefficient ˇ2
is changed to 0:005 again at t D 820. Then the traveling ILM is captured around
n D 4. Consequently, the ILM is manipulated from the site at n D 3 to 4.

4 Experimental Manipulation in Macro-mechanical System

4.1 Macro-mechanical Cantilever Array

Intrinsic localized modes in a coupled cantilever array need nonlinearities in the
array in order to exist (Kimura 2009). Then, a macro-cantilever is designed to have
a nonlinearity in its restoring force. A static magnetic force is often employed to
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a

b

Fig. 9 The mechanically coupled cantilever array and the configuration of magnetic charges.
(a) Side view of a cantilever with external exciter. (b) Overview of the cantilever array

induce the nonlinearity (Hikihara et al. 1997, 2001a,b; Moon et al. 1979). In this
paper, a magnetic interaction between a permanent magnet and an electro magnet is
applied. A schematic configuration is shown in Fig. 9a. The magnetic force between
permanent magnet (PM) and electromagnet (EM) can approximately be described
by Coulomb’s law for magnetic charges. Then the interaction force is nonlinearly
changed against the displacement of cantilever (Kimura and Hikihara 2009):

F.un/ D mpme.IEM/

4
�0

un	
u20 C d20


 3
2

D %.IEM/
un	

u20 C d20

 3
2

; (4)

wheremp andme.IEM/ correspond to magnetic charges of PM and EM, respectively.
Because the magnitude of me.IEM/ depends on the current flowing EM, which is
denoted by IEM, the coefficient of the interaction can be represented as a function of

the current, namely,
mpme.IEM/

4
�0
D %.IEM/ ' %0 C %1IEM.

The overview of the cantilever array is shown in Fig. 9b. Each cantilever is
coupled by an elastic rod and a voice coil motor is attached to excite the whole
of the array. When the voice coil motor is driven by a sinusoidal signal, the motion
of the cantilever is depicted by Kimura and Hikihara (2009)

Run D �!20un � � Pun C F.un/CA cos .!t/�C .un � unC1/�C .un � un�1/ ; (5)

whereA and ! denote the magnitude and the angular frequency of the external force
excited by the voice coil motor, respectively. The damping coefficient � is due to the
air resistance. Parameters which are experimentally estimated are listed in Table 1.
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Table 1 List of symbols
in Eq. (5)

Symbol Value Symbol Value

!0 2
�35.1 rad/s � 1.5 s�1

C 284 s�2 %0 �4:71� 10�5 m3/s2

d0 3.0 mm %1 �9:14 � 10�3 m3/s2A
A 3.0 m/s2 ! 2
 � 36:1 rad/s

a b c

Fig. 10 Experimentally excited ILMs. The cantilever array was externally vibrated with 36:1Hz.
(a) ILM at n D 5. (b) ILM at n D 6. (c) No ILM

4.2 Observation of Localized Oscillations

Several ST-modes were observed in the coupled cantilever array by an external
excitation. Figure 10a, b show wave forms of observed localized oscillations. One
of the cantilevers has a quite large amplitude while the others are relatively small.
The amplitude distribution is obviously localized.

We also observed localized oscillations at n D 2 and n D 4. However, a
localized oscillation standing at n D 3 could not be excited. The reason seems a
disorder of the array. The disorder is implied by symmetry of amplitude distribution.
As shown in Fig. 10a, amplitude of 6th cantilever is larger than 4th cantilever.
That is, the symmetry of observed localized oscillation is slightly broken. Since
the asymmetricity of ILM is not observed in numerical simulations in which any
disorders are not considered, the disorder of array seems to break the symmetry of
localized oscillations.

P-modes could not be excited experimentally. It implies that the even symmetric
oscillations are unstable. Floquet multipliers are obtained numerically for both ST4
and P4-5. Figure 11a, b show the Floquet multipliers. All multipliers of ST4 are
located inside unit circle. Even if a small fluctuation around the ST4 is caused by
a disturbance, the fluctuation is exponentially decreased in time. Then, the ST4 is
stable. On the other hand, the P4-5 has two Floquet multipliers on the real axis. The
right panel in Fig. 11b shows that one of the multipliers are outside unit circle. Thus,
the P4-5 is unstable for the parameters in Table 1.

However, the absolute value of the Floquet multiplier which is outside unit circle
is very close to C1. Thus, the multiplier will enter unit circle if the damping
coefficient is slightly larger. It implies that there is possibility to excite P-modes
experimentally.
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a b

Fig. 11 Floquet multipliers of ST-mode and P-mode. The left panel of each case shows an
enlarged figure around C1 on unit circle. Parameters are set to ! D 2
 � 36:1 rad/s, A D 3m=s2,
and IEM D 24mA. (a) ST4. (b) P4-5

Fig. 12 Manipulation of an ILM by adding the impurity which is added at n D 4 by varying the
current IEM4 from 24:0 to 11:5mA. The manipulation starts at t D 0:81 s and ends at t D 1:55 s

4.3 Manipulations of ILM

Excitation of ILM is usually realized by causing the modulational instability (Flach
and Willis 1998; Sato et al. 2003a). However, the position and the number of ILM
cannot be controlled because the modulational instability causes a random behavior
of traveling ILMs (Cretegny et al. 1998). On the other hand, it has been reported that
ILM can be excited at a selected site by adding an impurity there (Sato et al. 2004).
The manipulation using impurity is also realized (Sato et al. 2004). An excited ILM
is attracted or repulsed by impurities. Here we consider the manipulation of ILM
using an impurity in the macro-cantilever array.

An impurity on nth site is created by varying the current flowing nth EM,
namely, IEMn. In this paper, the current IEM4 was decreased from 24:0 to 11:5mA
at the beginning of the manipulation, and was increased to 24:0mA again at the
end of the manipulation. Figure 12 shows the waveforms of individual cantilever
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in the attractive manipulation. In the manipulation, ST5 is initially excited. After
the impurity is added, the amplitude of 4th cantilever begins to increase. On the
other hand, the amplitude of 5th cantilever is decreased. The impurity is removed
when the amplitudes of 4th and 5th cantilever are almost same. The oscillation of
5th cantilever becomes smaller with spreading small traveling waves. However, the
amplitude of 4th cantilever grows in large. As a result, the locus of ILM shifts from
n D 5 to n D 4.

5 Conclusion

In this paper, manipulation for ILM in micro-cantilever array is discussed. At first,
it was shown that several ILMs coexists in the array. The stability of the coexisting
ILMs are flipped at a critical value of the nonlinear coupling coefficient. The global
phase structure is investigated by computing the invariant manifolds of unstable
ILMs. As results, it was revealed that the global phase structure is drastically
changed with the nonlinear coupling coefficient. On the basis of the fact that the
behavior of traveling ILM is governed by the global phase structure, the capture
and release manipulation is proposed. The manipulation method was numerically
confirmed.

Another method to manipulate ILM was experimentally demonstrated in a
macro-cantilever array which was newly proposed for experimental investigation
of ILM. For the manipulation, an artificial impurity was induced into the array.
An initially excited ILM was attracted to the impurity and survived after removing
the impurity. For confirming the capture and release manipulation in experiment,
the proposed cantilever array has to be improved to have nonlinearity in coupling.
We will attempt to improve the macro-cantilever array and to confirm the capture
and release manipulation.
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Abstract The paper presents the deployment and retrieval control of a tethered
satellite system from both theoretical and experimental points of view. The ideas of
online optimization and receding horizon control enable one to design a feedback
controller for the tethered satellite system. The presented feedback control law is
not in any closed-form, but can accounts for the nonlinearity in the system model
and the mission-related constraints. Furthermore, the paper outlines a technically
and economically feasible solution to verify the efficacy of the controller via a
ground-based experiment. The two key issues concerning the design of the ground-
based experiment are the principle of dynamic similarity and the idea of using
thrusts for simulating the gravity gradient field and the Coriolis forces. Finally,
the paper presents the experimental verification of proposed control scheme for the
deployment and retrieval processes of the satellite simulator.
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1 Introduction

The concept of Tethered Satellite System (TSS), that is, two or more satellites
connected by thin and long cables, promises to revolutionize many aspects of
space exploration and exploitation (Wen et al. 2008a). Recent years have witnessed
numerous important applications of such systems, ranging from propellant-less
propulsion for satellites, gravity gradient stabilization, tether-assisted re-entry,
electro-dynamic propulsion to debris mitigation, and so on (Wen et al. 2008a; Kumar
2006; Cartmell and Mckenzie 2008). However, the dynamics and control of any
TSS are quite complex. Because of their overall flexibility, the tethers are strongly
susceptible to undergoing a complicated set of librations and vibrations when they
are placed into a space environment and coupled with satellites (Kumar 2006). Even
in the station-keeping phase, the libration motions of the TSS may become chaotic
when the orbit is eccentric (Fujii and Ichiki 1997). The problem becomes even
more challenging when the deployment and retrieval parts of a TSS mission are
taken into consideration because the librations and vibrations of the tether can grow
dramatically due to the effect of the Coriolis accelerations. If the TSS is not carefully
controlled, the large motion may result in an excessively high tensional stress
beyond the strength of tether material and may lead to the failure of a whole TSS.
In particular, the electro-dynamic TSS in an inclined orbit deserves special attention
paid to the possible instability because of the continuous pumping of energy from
electro-magnetic forces into the tether attitude motion (Peláez et al. 2000).

Over the past two decades, numerous attempts have been made to gain an insight
into the complex dynamics and to solve the control problem of a TSS, mainly in the
following two aspects: theoretical analyses and numerical simulations. For example,
Yu presented a range-rate control scheme for the TSS model with a mass-distributed
and flexible tether, and investigated the stability of the stationary (quasi-stationary)
configurations (Yu 2002). Steindl et al. designed the optimal controllers to achieve
force controlled deployment and retrieval of a TSS based on the multiple shooting
method (Steindl and Troger 2003; Steindl et al. 2005). Peláez et al. identified a
new kind of instability due to the pumping of energy from electro-dynamic forces
and presented an in-depth analysis of the periodic motion of TSS (Peláez et al.
2000; Peláez and Andrés 2005). Jin and Hu proposed a control strategy based on the
combination of quasi-linearization and truncated Chebyshev polynomials to solve
the constrained nonlinear optimal control problem of the TSS with three degrees
of freedom (Jin and Hu 2006). Wen et al. introduced two infinite-horizon control
schemes to stabilize the three-dimensional retrieval process of an elastically tethered
subsatellite (Wen et al. 2008b).

Recent studies on TSS reveal a growing trend towards the collaboration between
theoretical and experimental researches. Especially, ground-based experiments have
been recognized as a kind of very efficient means to verify the theoretical studies
on the dynamics and control of a TSS in the initial stage of design before any costly
and time consuming spaceflight experiments. Ground-based experimental systems
for TSS roughly fall into three main categories, that is, rotating table (Higuchi
et al. 1997), drop-tower (Taketiara et al. 2005), and air-bearing table (Mori and
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Matunaga 2007; Chung et al. 2007). For example, Higuchi and Natori presented an
experimental set-up where a piece of dry ice was placed on a slope on a rotating table
to simulate the in-plane dynamics of a TSS (Higuchi et al. 1997). Takehara et al. pre-
sented a flexible multi-body model for simulating a TSS undergoing a large defor-
mation and a large displacement, and performed drop-tower experiments to evaluate
the validity of the numerical formulations (Taketiara et al. 2005). Mori and Matu-
naga presented a two-dimensional ground experiment system consisting of a ground
station and three satellite simulators floating on a flat floor by using air-bearings.
Soon-Jo et al. demonstrated the decentralized nonlinear control of tethered forma-
tions via ground experiments conducted at the Synchronized Position Hold, Engage,
and Reorient Experimental Satellites (SPHERES) test-bed (Chung et al. 2007).

This study follows a research philosophy of balancing theoretical excellence and
practical mission. Both theoretical and experimental investigations deal with the
control problems concerning tether deployment and retrieval. The first objective of
the study is to devise control strategies that are not only versatile in terms of system
nonlinearity and constraints, but also efficient enough to be implemented on digital
hardware. Therefore, the ideas of nonlinear optimization and receding horizon
control (RHC) are introduced to design a feedback controller for the deployment
and retrieval processes of the TSS. The second purpose of the study is to provide a
technically and economically feasible solution for verifying the efficacy of the con-
troller via a ground-based experiment, during which both the gravity gradient field
and the Coriolis forces experienced by the TSS can be well simulated on the ground.
These issues will be discussed more extensively in the remainder of the paper.

2 Model Descriptions

This section presents fundamental models governing the dynamics of the TSS and
the proposed ground-based experiment system, and establishes a bridge between
the two models based on the principle of dynamic similarity. Furthermore, it gives
a brief introduction to the main subsystems and components of the ground-based
experiment system.

2.1 Tethered Satellite System

Figure 1 shows an idealized ‘dumbbell’ model for the TSS consisting of a spaceship
S1 of mass M and a subsatellite S2 of mass m connected by a tether of length l
(Wen et al. 2008a). In the model, the tether is assumed as a rigid mass-less rod with
variable length, while the spaceship and subsatellite are simplified as two lumped-
masses. The in-plane position of the tether is given by the pitch angle � whereas the
out-of-plane motions are neglected because only the two-dimensional dynamics of a
TSS can be simulated in the ground-based experiment. Furthermore, the assumption
m << M is made such that the orbit center of the system can be assumed to
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Fig. 1 The schematic view
of the TSS on a circular orbit

coincide with the mass center of the spaceship moving on a circular orbit of radius
R0. The angular position � of the TSS in its orbit is defined as � D � t , where �
represents the orbital angular velocity of the system. Under the above assumptions,
the dynamic equation of the TSS reads

l� 00 C 2l 0� 0 D 2�l 0 � 3l�2 sin � cos �

l 00 � l� 02 D �2�l� 0 C 3l�2cos2� � T=m (1)

where the prime represents the derivative with respect to time t , T is the tensional
force along the tether and serves as the control input.

2.2 Ground-Based Experiment System

This subsection presents a ground-based experiment system to simulate the in-
plane motions of the TSS as shown in Fig. 1. The experiment features in a
combination of air-bearing facilities and on-board thrusts to achieve the simulation
of the gravity gradient field and the Coriolis forces experienced by the TSS. The
ground experiment system consists of a flat table of 3.5 m long and 2.5 m wide, a
satellite simulator floating on the flat table via air-bearings, and a tether connecting
the satellite simulator to the Tether Control Unit (TCU), as shown in Fig. 2. In
the figure, S

�

1
is the towing point on the TCU side, S

�

2
is the center of mass

of the satellite simulator, and l represents the distance between S
�

1
and S

�

2
. Two
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Fig. 2 The schematic view
of the ground-based
experiment system

groups of thrusters are installed along two mutually perpendicular axes of the
satellite simulator, respectively. The resultant forces of all the thrusters can be
resolved into two components, i.e., Fl along the tether and F� perpendicular to
the tether, as shown in Fig. 2. By modeling the satellite simulator with a point-mass
approximation and neglecting the mass and flexibility of the tether, the dynamic
equation of the tethered satellite simulator reads

l� 00 C 2l 0� 0 D F�=m; l 00 � l� 02 D .Fl � T /=m (2)

Based on the principle of dynamic similarity, Eq. (1) is equivalent to Eq. (2) if the
following conditions hold true

F� D m�.2l 0 � 3l� sin � cos �/; Fl D m�l.3�cos2� � 2� 0/ (3)

The “dynamic similarity” implies that the dynamic equation of the TSS on an orbit
and the ground-based experimental system can be further transformed to the same
dimensionless form. In addition, it is indicated by Eq. (3) that F� and Fl will be
too small to be simulated precisely on the ground if the value of � is set to be the
real orbital angular velocity of the TSS. Therefore, in the ground-based experiment,
the orbital angular velocity� of the TSS is not directly used, but enlarged by many
times based on the principle of dynamic similarity. As an example, the value of �
is taken to be 0:03 rad=s in this study.
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Fig. 3 The subsystems and components of the ground-based experiment system

Recent technologies of computer vision and wireless local network enable one to
design the experimental facilities as shown in Fig. 3, where the main subsystems and
components of the ground-based experiment system include the satellite simulator
and the corresponding TCU, a Charge-Coupled Device (CCD) camera to sense
the position of the satellite simulator, as well as two computers. There are four
optical markers placed on the top surface of the satellite simulator such that the
state information of the simulator can be acquired via the CCD camera. Figure 4
depicts the satellite simulator floating on the flat table. According to Eq. (3), the
on-board thrusters of the satellite simulator are actively controlled to simulate the
gravity gradient field and the Coriolis forces in real-time. The first computer in
the system performs the tasks of computer vision from the CCD camera, wireless
communication with the simulator and experiment supervision, whereas the second
computer solves the control law online and sends the control commands of tether
length to the TCU.

3 Controller Design

Optimal control is perhaps best-suited for the deployment and retrieval problems
of the TSS because they can not only optimize the mission performance, but also
account for the nonlinearity in the system model and the mission constraints. How-
ever, the classical strategies of closed-loop optimal control are generally ill-suited
for such complex problems. Therefore, the idea of nonlinear optimization and RHC
scheme are exploited to generate a feedback control for the TSS. The feedback
control law is not analytically explicit, but determined via a rapid re-computation of
the open-loop optimal trajectory online. In other words, the feedback control law is
formed by gluing a sequence of open-loop control laws together (Wen et al. 2009a).
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Fig. 4 The satellite simulator floating on the flat table

First Computer Solver Module

Output Module TCU 

A 

B 

Second Computer

C 

Fig. 5 The flow chart of the control system

Figure 5 illustrates the flow chart of the control system of the experiment. As
shown in the figure, the software of second computer consists of two main modules
running in parallel, namely a solver module and an output module. The solver
module is responsible for re-solving the open-loop control problem every one
second, according to the latest state information sent from the first computer. The
output module determines the control commands of tether length by interpolating
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the latest solution of the solver module, and sends the commands to the TCU every
20 ms. In Fig. 5, the arrow ‘B’ represents the procedure that the solution of the solver
module is used to update the open-loop control law stored in the output module as
soon as a new solution is available.

The optimal control problem involved in the i th online computation is to look
for the continuous vector function Œ�i �i C Tp� Ö � 7! q so as to minimize the
following cost function

J.ƒ.�// D E.).�i C Tp//C
Z �iCTp

�i

F .ƒ.�//d� (4)

which is subject to the end-point constraints x.�i / D Qxi , and the general state-
control path constraints

hL � h.ƒ.�// � hU (5)

Here all the variables are in dimensionless form, the dot denotes the derivative with
respect to the orbital angular position �, Tp represents the control horizon of the
RHC controller, �i corresponds to the instant when the i th online computation
begins, Qxi is the latest state feedback, hL and hU are the lower and upper bounds
for h.ƒ.�//, ƒ D .qI PqI Rq/, x D .qI Pq/, q D .� I �/T, � D l=lc , the semicolon
denotes the vertical concatenation of vectors, and lc is a reference length equal to
2; 500 mm. It is worth noticing that Eq. (5) is a more general form of Eq. (1),
the second row of which can be transformed to the following formulation of a
differential inclusion of the second order

� NTup � R� � � P�2 C 2� P� � 3� cos2 � � � NTlow (6)

where NTup and NTlow represent the upper and lower bounds of the dimensionless
tension force NT D T=.m�2lc/, respectively.

The Legendre Pseudo-spectral (LP) method of the second order can be in-
troduced to solve the problem of open-loop optimal control (Wen et al. 2009b).
The basic idea is to discretize the optimal control problem first and then solve
the resulting large-scale optimization problem via nonlinear programming. The
presented algorithms are coded into a reusable general optimal control package in
CCC language, and the computation efficiency is improved by using a symbolic
preprocessor and putting the sparse structures of involved matrices into full use.

4 Experiments of Dynamic Control

This section presents the experimental verification of the proposed control scheme
and the efficacy of the experiment system for the deployment and retrieval processes
of the satellite simulator.
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Fig. 6 Experimental results for the deployment control of the satellite simulator

4.1 Deployment Control

In the case study of deployment control, the cost function (4) is chosen to be

J D Œ100�2 C 100.� � �d /2 C 20. P�2 C P�2/�
ˇ̌
ˇ
�D�iCTp

C
Z �iCTp

�i

Œ5�2 C .� � �d /2 C 10 P�2 C P�2/�d� (7)

where Tp D 3, the desired tether length ld D lc D 2; 500 mm (corresponding to
�d D 1:0), and the state-control constraints are set as

� 2 Œ�1 1�; � 2 Œ0:35 1:05�; NT 2 Œ0:1 6� (8)

Figure 6 shows the experimental results for the deployment control. It takes about
100 s for l to reach the desired value ld D 2; 500 mm, and then l continues to
increase until it reaches the upper bounds 2; 625 mm (corresponding to � D 1:05),
as shown in Fig. 6a. After that, the tethered simulator demonstrates a pendulum-
like movement for dozens of seconds, with l remaining almost unchanged at its
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upper bounds, as shown in Fig. 6. In the final few seconds, l gradually decreases
to the desired value ld , and � finally falls within the range from �0.05 to 0 rad.
The angular velocity P� and the length rate Pl are not directly obtained via computer
vision, but estimated online based on the discretely measured values of � and l .
The experimental results show that there are two stages involved in the deployment
process of the tether. In the first stage, the tether is deployed in a fast way with
significant pitch motions induced, whereas the change in tether length becomes quite
slow in the second stage and finally evolves into state-keeping motions.

4.2 Retrieval Control

In the case study of the retrieval control, the cost function is chosen to be

J D Œ10�2 C 200.� � �d /
2 C 10. P�2 C P�2/�

ˇ̌
ˇ
�D�iCTp

C
Z �iCTp

�i

Œ4.� � �d /2 C 4 P�2/�d� (9)

where the desired tether length ld D 1; 100 mm (corresponding to �d D 0:44), and
Tp is gradually reduced from Tp D 5 in the beginning to Tp D 3 when � < 0:8 just
holds to Tp D 3, and then to Tp D 1:5 when � < 0:6 just holds in order to improve
the control performance. The system constraints are set as

� 2 Œ�1 1�; � 2 Œ0:42 1:2�; NT 2 Œ1 6� (10)

Figure 7 shows the experimental results for the case study of retrieval control.
The experiment of retrieval control yields more significant motions of the satellite
simulator compared with the deployment control, especially when the simulator
is close to the target position. There may be two reasons for the motions under
retrieval control being more significant than that under deployment control. One is
that the retrieval is always unstable because of the negative damping (Kumar 2006).
The other is that the attitude of the satellite simulator puts more significant effects
on the motions of the system in the final part of the retrieval experiment because
the final length of the tether in the retrieval case is much shorter than that in the
deployment case.

5 Conclusions

The paper presents both theoretical and experimental studies on the deployment
and retrieval control of a tethered satellite system, and focuses on the planar
case here because of the experimental limitations. However, the three-dimensional
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Fig. 7 Experimental results for the retrieval control of the satellite simulator

extension of the presented control strategy is straightforward. The experimental
results well demonstrate the effectiveness of the experimental design and the real-
time performance of the proposed control scheme. In this study, the subsatellite is
simplified as a lumped-mass in controller design. One of the future studies is to take
the attitude dynamics of the subsatellite into consideration.
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Chaos Control Methods Applied to Avoid
Bifurcations in Pendulum Dynamics

Aline S. de Paula, Marcelo A. Savi, Marian Wiercigroch,
and Ekaterina Pavlovskaia

Abstract This paper deals with the application of chaos control methods in order to
perform bifurcation control of a parametric pendulum-shaker system. The extended
time-delayed feedback control method is employed to maintain stable rotational
solution of the system avoiding bifurcation to chaos. The considered pendulum
system is chosen due to its potential application for extracting energy from sea
waves. This alternative concept of energy harvesting is based on exploiting the
rotational unbounded solution of the pendulum dynamics. The bifurcation control
proposed allows the system to keep the desired rotational solution over extended
parameter range avoiding undesirable changes in system dynamics.

Keywords Pendulum dynamics • Delayed feedback control • Rotating solutions

1 Introduction

The idea of energy harvesting from various renewable sources has been gaining an
increasing interest and importance in recent years. The sea waves though possessing
the largest renewable energy source are practically untapped. Wiercigroch proposed
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an energy generation concept from the sea waves using a pendulum system by
converting the base oscillations of the structure into a rotational motion of the
pendulum mass. In such case, the oscillations of the structure are caused by the
sea waves, whereas the pendulum rotational motion provides a driving torque for an
electrical generator (Xu 2005; Horton and Wiercigroch 2008). In order to explore
potentials of this concept, the dynamics of the pendulum system has to be carefully
considered and the means of maintaining the periodic rotational solutions have to
be developed.

The dynamics of parametrically excited pendulum has been extensively inves-
tigated in the literature. Although rotating solutions of the pendulum are found
and studied by different authors (Clifford and Bishop 1995; Szemplinska-Stupnicka
and Tyrkiel 2002; Lenci et al. 2008), it should be pointed out that they only exist
over limited parameters range and there are a lot of bifurcations of the system that
destabilize this kind of motion. In this regard, the bifurcation control can be very
useful in maintaining the rotational solution of the system and crucial in potential
energy extraction applications.

Chaos control exploits the richness of chaotic behaviour and may be understood
as the use of tiny perturbations for the stabilization of an unstable periodic orbit
(UPO) embedded in a chaotic attractor. In this work continuous chaos control
methods are employed in order to maintain the rotating solution of the pendulum
system by stabilizing UPOs of the system. The main goal is to avoid bifurcations
that destabilize the rotating motion.

2 Chaos Control Methods

Chaos control may be understood as the use of small perturbations in order to
stabilise UPOs. Since UPOs belong to the system dynamics, the stabilisation of
these orbits is associated with low energy consumption. Chaos control methods
can be split into discrete and continuous methods. Continuous methods are based
on continuous-time perturbations to perform stabilization. This approach was first
proposed by Pyragas (1992) and deals with a dynamical system modelled by a set
of ordinary nonlinear differential equations as follows:

Px.t/ D Q.x; t/C B.t/ (1)

where t is time, x.t/ 2 <n is the state variable vector, Q.x; t/ 2 <n defines the
system dynamics, while B.t/ 2 <n is associated with the control action.

Socolar et al. (1994) proposed a control law named as the extended time-delayed
feedback (ETDF) control considering the information of time-delayed states of the
system represented by the following equations:

B.t/ D K Œ.1� R/S� � x�

S� D
N�X
mD1

Rm�1xm�;
(2)
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where K 2 <n�n is the feedback gain matrix, 0 � R< 1 is a control gain, S� D
S.t � �/ and xm� D x.t � m�/ are related to delayed states of the system and � is
the time delay. The UPO stabilisation can be achieved by a proper choice of K and
R. Note that for any gain defined by K and R, perturbation of Eq. (1) vanishes when
the system is on the UPO since x(t � m�) D x(t) for all m if � D Ti, where Ti is the
periodicity of the ith UPO. It should be pointed out that when R D 0, the ETDF turns
into the original time-delayed feedback (TDF) control method proposed by Pyragas
(1992).

The controlled dynamical system consists of a set of delay differential equations
(DDEs). The solution of this system is obtained by establishing an initial function
x0 D x0(t) over the interval (�N� � ,0). By estimating this function by a Taylor series
expansion, as proposed by Cunningham (1954), the following system is obtained:

Px D Q.x; t/C K Œ.1� R/S� � x�

where

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

S� D
N�X
mD1

Rm�1 Œx �m� Px� ; for .t �m�/ < 0:

S� D
N�X
mD1

Rm�1xm�; for .t �m�/ > 0

(3)

Note that DDEs contain derivatives that depend on the solution at delayed
time instants. Therefore, besides the special treatment that must be given for
.t � N��/ < 0, it is necessary to deal with time-delayed states while integrating
the system. A fourth-order Runge-Kutta method with linear interpolation on the
delayed variables is employed in this work for the numerical integration of the
controlled dynamical system (Mensour and Longtin 1997).

Before the control stage, where the desired UPOs are stabilised, it is necessary to
identify the UPOs embedded in chaotic attractor, which is done by using the close-
return method (Auerbach et al.1987), and to define proper controller parameters, K
and R, for each one of the desired orbits. The controller parameter values for each
UPO are defined by calculating the Lyapunov exponents of the correspondent orbit
in such a way that the exponents become all negatives and the UPO becomes stable.
A proper procedure to calculate these Lyapunov exponents is presented by De Paula
and Savi (2009).

3 Parametric Pendulum-Shaker System

The idea that energy harvesting can be provided from sea waves was previously
addressed in Xu (2005) and Horton and Wiercigroch (2008) that investigated the dy-
namics of a parametrically driven pendulum. Motivated by this idea, Xu et al. (2007)
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Fig. 1 Physical model of the pendulum-shaker system (Xu et al.2007) with mechanical and
electrical components

analysed the behaviour of a parametric pendulum excited by electro-dynamical
shaker, which is chosen to be studied in this work. Experimental studies undertaken
at the University of Aberdeen have confirmed the validity of such model. Figure 1
presents a schematic picture of this system identifying mechanical and electrical
parts. The mechanical system (Fig. 1a) is comprised of three masses: the pendulum
mass, M, the armature assembly mass, Ma, and the body mass, Mb, that represents
the mass of the magnetic structure containing the field coil. The excitation is pro-
vided by an axial electromagnetic force, Fem, which is generated by the alternating
current in the constant magnetic field represented by the electrical system.

The mechanical part of the pendulum–shaker system is described by three
generalized coordinates: angular displacement of the pendulum, � , and the vertical
displacements of the body and the armature, Xb and Xa, respectively. The electrical
system is described by the electric charge q, that is related to the current I by
its derivative: I D dq/dt. Equations of motion for each degree-of-freedom of the
parametric pendulum-shaker system are given by (Xu et al.2007). Considering the
state variables fx1; x2; x3; x4; x5; x6; x7g D f�; P�;Xa; PXa;Xb; PXb; I g, the equations
of motion are written as a set of first order differential equations:
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Table 1 Pendulum-shaker
system parameters

M 0.845 kg L 0.3166 m c 0.0475 kg/s
Ma 68.38 kg ka 86,175.9 kg/s2 ca 534.05 kg/s
Mb 820 kg kb 244,284 kg/s2 cb 679.35 kg/s
RE 0.3� L 2.626 � 10�3 H � 130 N/A

Px1 D x2

Px2 D .TC =l � clx2/.Ma CM/� Œca.x4 � x6/C ka.x3 � x5/C �x7�M sin x1
Ml.Ma CM �M sin2 x1/

C

C M2lx2
2 cos x1 sin x1

Ml.Ma CM �M sin2 x1/

Px3 D x4

Px4 D .Ma CM/g CMlx2
2 cosx1 � �x7 � ca.x4 � x6/ � ka.x3 � x5/
Ma CM �M sin2 x1

C

�clx2 sinx1 �mgsin2 x1
Ma CM �M sin2 x1

Px5 D x6

Px6 D Mbg C �x7 � cbx6 C ca.x4 � x6/ � kbx5 C ka.x3 � x5/

Mb

Px7 D E0 cos.�t/ � REx7 C �.x4 � x6/

L
(4)

where TC corresponds to the control parameter actuation, which consists of a torque
applied to the pendulum. By using the formalism presented for the extended time-
delayed feedback control law, with N� D 3, TC may be expressed as follows:

TC D Ml.Ma CM �M sin2 x1/

.Ma CM/
KŒ.1� R/.x� CRx2� CR2x3� / � x�; (5)

where x� D x2.t � �/, x2� D x2.t � 2�/ and x3� D x2.t � 3�/. Moreover, matrix
gain K becomes a scalar K once only component K22 is different from zero. This
component influences time evolution equation related to x2 and multiplies a term
that depends on delayed states of x2.

Xu et al. (2007) discussed experimental aspects of the pendulum-shaker dynam-
ics. Here, we use the proposed model with experimentally determined parameters
presented in Table 1.

At this point, let us briefly analyse the uncontrolled system behaviour. Bifurca-
tion diagrams are constructed by assuming a quasi-static stroboscopically increase
of the voltage amplitude E0 with initial value of E0 D 60 V. The first 200 periods
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Fig. 2 (a) Bifurcation diagram constructed at�D 9 rad/s and (b) Poincare section at E0 D 115 V

Fig. 3 Bifurcation diagram E0 D 85 V by increasing and decreasing the forcing frequency.
Different coexisting solutions are highlighted

are neglected in order to reach steady state response. The diagram shows period
doubling bifurcations that reach chaotic regions and then, periodic window related
to a period-6 response. Figure 2a presents this bifurcation diagram for ˝D 9 rad/s.
A Poincaré section, whose cross-section is shown in Fig. 2a, is also presented in
Fig. 2b for E0 D 115 V considering the phase space bounded within (–
 , C
).

In order to explore some details of the dynamical behaviour of the pendulum-
shaker system, a different bifurcation diagram is now constructed under the
variation of frequency parameter˝ and E0 D 85 V. Figure 3 presents three different
situations: increasing the forcing frequency, in pink, and decreasing the frequency
with different initial conditions, in black and in gray. The analysis of Fig. 3 shows
that the system seems to have similar behaviour at ˝ D 12.2 rad/s and ˝ D
10.25 rad/s. Nevertheless, in the first case the system presents three co-existing
periodic attractors, while at ˝ D 10.25 rad/s there are two quasi-periodic and one
periodic attractors co-existing.
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The analysis of the system dynamics shows that the parametric pendulum may
present different kinds of solutions. Periodic, quasi-periodic and chaotic responses
are all present in the system behaviour. Besides, it is important to highlight the
coexisting attractors that can occur for the same set of parameters. Therefore,
bifurcation control is important when we are thinking of the use of this pendulum
system in some application. In terms of energy harvesting, it is of special interest to
keep a period-1 rotating orbit avoiding any kind of bifurcation. In the same context,
an interesting procedure could be the stabilization of a rotation solution immersed in
chaotic attractor and not only a period-1 orbit. In this regard, we will apply control
techniques for bifurcation control.

4 Controlling the Pendulum-Shaker System

In this section continuous chaos control method is employed in order to prevent
bifurcation to chaos by stabilizing originally unstable period-1 rotating orbit.

Figure 4 presents some co-existing orbits identified in bifurcation diagram of
Fig. 3. Figure 4a presents a phase space with three orbits: two orbits of period-1 and
a period-2 orbit that coexist at ˝D 12.2 rad/s and E0 D 85 V. Figure 4b presents
the phase space of the same orbits at ˝D 10.25 rad/s and E0 D 85 V showing the
change of the two period-1 orbits to two quasi-periodic orbits. This picture also
presents the Poincare sections of quasi-periodic responses.

It is considered the case where the forcing frequency is decreasing. The aim is to
keep a rotating orbit, avoiding the bifurcation to chaos. Moreover, since the period-2
orbit is not a rotating orbit, this response is not desirable. Before the bifurcation to
chaos the system presents a quasi-periodic behaviour, the period-1 “positive” orbit
identified at E0 D 85 V and ˝D 12.2 rad/s is considered as the fiducial trajectory.
Figure 5 shows the bifurcation diagram constructed at E0 D 85 V with and without
control action. Controller uses R D 0.2 and K D 0.4 with the objective of keep
the rotating response of the system. It is important to mention that on the results

Fig. 4 Coexisting attractors at E0 D 85 V: (a) �D 12.2 rad/s; (b) �D 10.25 rad/s
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Fig. 5 Bifurcation diagram at E0 D 85 V with and without control action

presented in Fig. 5 the controller waits until the system trajectory “falls” in the
neighbourhood of the desired orbit before being in the control on mode. Moreover,
the desired orbit is the period-1 orbit identified at ˝D 12.2 rad/s. This wait time is
necessary due to the quasi-periodic behaviour before the bifurcation. If there were
a period-1 response before the bifurcation, instead of the quasi-periodic behaviour,
the system would already be at the neighbourhood of the desired orbit and the wait
time would not be necessary. This wait time is an essential characteristic of discrete
chaos control method (Ott et al.1990) being not usually employed in continuous
methods (Pyragas 1992).

5 Conclusions

This paper presents the analysis of bifurcation control of a pendulum-shaker system.
This electric-mechanical system may be used to simulate the dynamics of the
pendulum to explore the concept of energy harvesting from sea waves. This idea
requires the rotating unbounded periodic response of the system to be maintained
throughout significant parameters range. The bifurcation control is applied in
order to stabilize desired rotational orbits for the parameters values where they
are originally unstable. The continuous control methods known as extended time
delayed feedback is employed to avoid bifurcation to chaos and stable rotating
solution is successfully obtained.
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A Study on Swing up Control for Rotation
of Parametric Pendulum

Yuichi Yokoi and T. Hikihara

Abstract A parametric pendulum inherently demonstrates a conversion from
external vibration to rotational motion and this property is applicable to energy scav-
enging from vibration of external source in nature. The periodic rotation of the para-
metric pendulum has a benefit to convert the mechanical energy to electric energy
through conventional electric machines. On the other hand, the onset of the periodic
rotation depends on the initial condition. We propose a control method for starting
up the parametric pendulum to the periodic rotations based on an external force
input with time delay. The feasibility of proposed method is verified numerically
and experimentally. The results show that there exists a certain range of control gain
to achieve the control from any initial condition. This paper advocates that the pro-
posed method is suitable for crossing over a separatrix which governs the dynamics.

Keywords Parametric pendulum • Delayed feedback control • Rotating solutions

1 Introduction

Parametrically excited pendulums have been widely investigated as a simple
nonlinear dynamical system with complex behaviour. There appear a variety of
steady motions for the parametric pendulum (McLaughlin 1981; Koch et al. 1983;
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Clifford and Bishop 1995). The rotation corresponds to a conversion from external
vibration to the rotational motion. This suggests that the parametric pendulum is
applicable to energy scavenging from vibration of external source. The periodic
rotation of the parametric pendulum is useful in this sense. This study was motivated
by the previous work Xu and Wiercigroch (2007), Lenci et al. (2008), and Horton
et al. (2008). Because the onset of the periodic rotation depends on the initial
condition, the parametric pendulum has to be controlled for the desirable motion.

We propose a control method for starting up the parametric pendulum to
the periodic rotation (Yokoi and Hikihara 2011) based on the external force
control (Pyragas 1992). The onset to the inherent periodic rotation requires a null
control input after the rotary motion is established. It is worth pointing out here that
an exact model cannot be developed from a practical point of view. This paper shows
that the external force control with delayed feedback is well suited for starting up.

The feasibility of the proposed control method is verified numerically and
experimentally. The external force control has been used as a method for controlling
chaos (Pyragas 1992), which stabilizes an unstable periodic orbit embedded in
a chaotic attractor (Otto et al. 1990; Schuster 1999; Schöll and Schuster 2008).
The controlling chaos is based on the properties of chaos such as the topological
transitivity representing that the state accesses the vicinity of each one of the
periodic orbits, and the sensitive dependence on small perturbation. It is obvious that
the same properties as chaos are not observed in the periodic rotation of parametric
pendulum. However, the periodic structure of the state space and a torque control
makes it possible for the state to approach the periodic rotation instead of the
topological transitivity. Since the desired motion is a stable periodic rotation, the
sensitive dependence is not required. Thus the external force control can operate for
the periodic rotation of parametric pendulum without the above chaotic properties.
The reference signal needed in the control can be designed by using the delayed
state. Additionally, the control method, called the delayed feedback control (Pyragas
1992), possesses the property that an exact model of the controlled system is not
required (Pyragas and Tamas̆evic̆ius 1993; Hikihara and Kawagoshi 1996).

2 Start-Up Control

Before introducing the start-up control, the target periodic rotation is introduced.
The dynamics of parametric pendulum is described by the following differential
equations with the angular displacement �.t/ and the velocity v.t/:

8̂
ˆ̂<
ˆ̂̂:

d�

dt
D v;

dv

dt
D ��v � .1C p cos!t/ sin �;

(1)
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the parametric pendulum (1)
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where � is the viscous damping coefficient. The term p cos!t gives the parametric
excitation with the amplitude p and the frequency !. Steady states of a parametric
pendulum can be expressed by a natural number n and an integer r as

�.t/ WD �.t � nT /C 2
r; (2)

where T denotes the period of parametric excitation. A combination of n and r
expresses that the pendulum rotates r times during n periods. The positive (negative)
value of r represents that the pendulum rotates in the direction to increase (decrease)
the angular displacement � , respectively. Periodic oscillations are expressed as
r D 0.

In the following, the parameter setting for Eq. (1) is fixed at � D 0:1, p D
0:5, and ! D 2 so that the parametric pendulum rotates once during the excitation
period T (Clifford and Bishop 1995). The periodic rotation coexists with a periodic
rotation in the inverse direction and a 2T -periodic oscillation. Figure 1 shows the
domain of attraction at the parameter setting. The periodic states are depicted by the
fixed points nSr , where n and r correspond to Eq. (2). Here we focus on the periodic
rotation in the positive direction (r > 0) as the target motion to control.

We propose a control method for starting up a periodic rotation inherent in
the parametric pendulum based on the external force control (Pyragas 1992). The
external force control requires the reference signal for the target motion. The
expression (2) describes that the current angular displacement �.t/ is equivalent
to the sum of the delayed displacement �.t � nT / and the rotation angle 2
r . The
required reference signal can be designed by using a delayed angular displacement
and a constant. Figure 2 shows the block diagram of the proposed start-up control.
The proposed method regulates a torque applied to the parametric pendulum so
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control system

Parametric
Pendulum

Fig. 2 Block diagram of the
proposed control method for
starting up a periodic rotation
of parametric pendulum

that the pendulum follows the reference signal. The reference signal consists of
the delayed angular displacement �.t � �/ memorized in the delay block D� and
the constant 2
l . Based on the external force control, the feedback loop constructs
the control signal u from the current angular displacement � , the reference signal
�.t � �/C 2
l , and the control gainK as shown in Fig. 2. In the case that the target
motion is described by the expression (2), the control parameters are adjusted at
� D nT and l D r . Thus, the start-up control does not require an exact model of
the parametric pendulum and any information about the target except n and r . The
equations governing the controlled parametric pendulum are given as

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

d�

dt
D v;

dv

dt
D ��v � .1C p cos!t/ sin � C u.t/;

u.t/ D K
	
�.t � �/C 2
l � �.t/



:

(3)

The characteristics of control method are determined by the control gain K , the
delay time � , and the rotation number l .

3 Numerical Study

We numerically examine the performance of the start-up control. Throughout this
section, the start-up control is applied to the parametric pendulum (1) at the above
parameter setting. The control parameters are fixed at � D T D 2
=! and l D 1

for starting up the periodic rotation, at which the pendulum rotates once during the
excitation period T .

Figure 3 shows the start-up control for the periodic rotation inherent in the
parametric pendulum from the coexisting periodic oscillation. Onset of the control
is t D t0 D 3T . The initial condition of the delay component is set on the angular
displacement before the onset of control, that is �.t0 C s/ where s 2 Œ�T; 0/.
The points on the curves denote the stroboscopic points taken at every excitation



A Study on Swing up Control for Rotation of Parametric Pendulum 401

–π

–π/2

0

π/2

π

0 t0

t0

5T 10T 15T 20T

q

t

–0.5

0

0.5

1
u

–π

–π/2

0

π/2

π

0 5T 10T 15T 20T

q

t

–0.5

0

0.5

1

u

a

b
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periodic oscillation. Onset of the control is t D t0 D 3T . The points on the curves denote the
stroboscopic points at every excitation period T

period T . Figure 3a shows that the periodic rotation can be established by using
the proposed control. After the onset of control, the null control input implies that
the periodic rotation is inherent in the parametric pendulum. On the other hand, the
proposed control cannot start the periodic rotation from the different initial condition
as shown in Fig. 3. Therefore the performance of the start-up control depends on the
initial condition.

The performance also depends on the control gain K (Pyragas 1992). In order
to understand the characteristics of the proposed control, the domain of attraction
in the controlled parametric pendulum (3) is investigated for the control gain.
Figure 4 shows the domain of attraction at K D 0:05, 0:1, 0:15, and 0:2. The initial
condition of the delay component is given as the inherent motion of the parametric
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Fig. 4 Domain of attraction in the controlled parametric pendulum (3) at � D 0:1, p D 0:5,
! D 2, � D 2
=!, and l D 1. The initial condition of the delay component is given as the
inherent motion of the parametric pendulum (1). The periodic states are depicted by the fixed
points nSr , where n and r correspond to Eq. (2). (a) K D 0:05. (b) K D 0:1. (c) K D 0:15.
(d) K D 0:2

pendulum (1). Increasing the control gain expands the basin of the target rotation,
denoted by 1S1 in Fig. 4. For small control gain, the achievement of the target
rotation strongly depends on the initial condition. The target rotation becomes only
one attractor on the domain at K D 0:2 as shown in Fig. 4d. At the control gain, the
start-up control can establish the target periodic rotation from any initial condition.
The result shows that the proposed method can start up the parametric pendulum to
the inherent periodic rotation from any initial condition for a certain control gain.
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4 Experimental Verification

The feasibility of the start-up control is verified experimentally. Figure 5 shows the
experimental setup for parametric pendulum constructed by exciting a mechanical
pendulum vertically. The mechanical pendulum consists of the mass 189:1 g and
the length 138:3mm by constructing a rod and a bob in Table 1. The pendulum is
supported by a mechanical rig mounted on an electromagnetic shaker. The shaker
generates a vertical excitation corresponding to the parametric excitation. The setup
involves the angle sensor for the angular displacement of pendulum and the DC
motor for the control input torque. The control loop can be implemented as a
program in a computer with A/D and D/A converters.

The vertical excitation of the shaker is adjusted to the sinusoidal waveform
having amplitude 1:1m=s2 and frequency 2:0Hz so that the periodic rotation
coexists with a periodic oscillation. The control gain is set at K D 0:072A=rad.
This is equivalent to 0:013N � m=rad in terms of the control torque. The start-up
control beginning from the periodic oscillation in the experimental pendulum is
shown in Fig. 6. The result shows that the periodic rotation is achieved from the
periodic oscillation. After the accomplishment of control, the control input u.t/
disappears. This suggests that the periodic rotation is inherent in the experimental
setup at the parameters.

shaker

angle sensor

dc motor

accelerometer

pendulum

Fig. 5 Experimental setup
of the parametric
pendulum (Horton 2008)

Table 1 Size of mechanical
pendulum

Rod Bob

Mass 39:6 g Mass 144:9 g
Length 180:0 mm Diameter 50:0 mm
Diameter 6:0 mm Width 10:0 mm
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Fig. 6 Start-up control for the periodic rotation of the experimental pendulum from the periodic
oscillation

5 Summary

In this paper, we proposed a control method for starting up the parametric pendulum
to the periodic rotation and examined the feasibility numerically and experimentally.
The proposed method with time delay works as a control to cross over separatrixes
which form boundaries between basins of steady states. The control generates a path
to the target state by adding dimensions to the inherent state space. For the delayed
feedback control which is the framework of the proposed method, the extended and
the generalized schemes have been reported (Schöll and Schuster 2008; Pyragas
1995). Since these concepts are essentially the same as that of the original method,
we confined the discussion to the most fundamental control scheme in this paper.
It is obvious that the extension and the generalization are valid for the proposed
start-up control.
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On Nonlinear Dynamics and Control Design
in a “MEMS” Gyroscope System

Fábio Roberto Chavarette, José Manoel Balthazar,
and Jorge Luis Palacios Felix

Abstract This paper deals with a (MEMS) Gyroscope nonlinear dynamical system,
modeled with a proof mass constrained to move in a plane with two resonant modes,
which are nominally orthogonal. We present some modifications to the governing
equations of the considered system, taking into account the nonlinear interactions
between the parts of the systems. We also develop a linear optimal control design,
for reducing the oscillatory movement of the nonlinear system to a stable point.

Keywords Non-ideal vibrating MEMS gyroscope • Nonlinear dynamics and
stability • Linear optimal control

1 Introduction

The technology of micro electro mechanical systems, called (“MEMS”) has found
numerous applications in recent years. It is also well known that the classical tuning-
fork (“MEMS”) gyroscope contains a pair of masses that are driven to oscillate with
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equal amplitude but in opposite directions. When rotating, the Coriolis force gives
rise to an orthogonal vibration that can be sensed by a variety of mechanisms (see
e.g., Oropeza-Ramos et al. 2007). The Draper Lab gyroscope uses a comb-type
structure to drive the tuning fork into resonance. Rotation causes the proof masses
to vibrate out of plane, and this motion is sensed capacitive with a custom CMOS
ASIC. The micro-tuning fork gyroscope may be mathematically modeled (by a
Macro Model) by two proof masses must be driven into oscillations which are
opposite in directions (Oropeza-Ramos et al. 2007; Lee et al. 2008). Microscopic
gyroscopes (Miller et al. 2008; Oropeza-Ramos et al. 2008) help to enable an
emerging technology called electronic stability control.

By another hand, it is known that control problems consist of attempts to stabilize
an unstable system to an equilibrium point, a periodic orbit, or more general, to a
given reference trajectory (periodic or not).

In the last years, a significant interest in control of nonlinear systems exhibiting
unstable behavior, has been observed and many of the techniques have been
discussed in the literature (Ott et al. 1990; Sinhá et al. 2000; Rafikov and Balthazar
2008). Among strategies of control with feedback, the most popular is the OGY
(Ott-Grebogi-Yorke) method (Ott et al. 1990). This method uses the Poincaré map
of the system. Recently, a methodology, based on the application of the Lyapunov-
Floquet transformation, was proposed by Sinha et al. (2000) in order to solve this
kind of problem. This method allows directing the chaotic motion to any desired
periodic orbit or to a fixed point. It is based on the linearization of the equations,
which describe the error between the actual and the desired trajectories. Recently,
a technique was proposed by Rafikov and Balthazar in (and 2008): The linear
feedback control problem for nonlinear systems has been formulated, under the
optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear
system is guaranteed by means of a Lyapunov function, which can clearly be seen
as the solution of the Hamiton-Jacobi-Bellman equation, thus guaranteeing both
stability and optimality. The formulated theorem (Rafikov and Balthazar 2008)
expresses explicitly the form of the minimized functional and gives the sufficient
conditions which allow using the linear feedback control for nonlinear systems.

The aim of this paper is to propose the application of the optimal linear control
(Rafikov and Balthazar 2008) to the unstable movement of the non-ideal vibrating
“MEMS” gyroscope. We organize the paper as follows: in Sect. 2, we present the
mathematical model. In Sect. 3, we analyze the non-linear dynamics and stability
of the non-linear “MEMS” gyroscope model. In Sect. 4, we discuss an optimal
control design problem for the “MEMS” gyroscope. In Sect. 5, we end up with
some concluding remarks.

2 “MEMS” Gyroscope Mathematical Model

Here, we consider the model for the “MEMS”, with variable capacitor, (Fig. 1).
This model is based on the combination of the models, considered before

in (Oropeza-Ramos et al. 2007; Luo and Wang Fei-Yue 2004; Luo 2002;
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Fig. 1 A model of an electrostatically actuated micro-structure with variable capacitor

Wauer et al. 1009) with the inclusion of a kind of nonlinear interaction (Chavarette
et al. 2010). The fixed plate of the capacitor is assumed to have area A. The other
plate of the capacitor is a movable, rigid plate of mass m. The support of the
moving plate is represented by a nonlinear spring with elastic restoring forces Fr(x)
and Fr(y) in the x and y direction, respectively, and damping coefficients cx and
cy. V(t) is the voltage applied across the drives, with a polarization voltage VDC

and with an AC voltage VAC D VAcos (wt), where VA, w are the AC amplitude,
and frequency, respectively. Without the electric force, the gap between the two
plates of the capacitor in the “MEMS” is d. The coordinates of motion are x
and y. The governing equations of the nonlinear “MEMS”, with electrostatic
force of the variable capacitor and by considering a conventional vibratory
gyroscope, are:

m Rx C cx Px C kx1x C kx3x
3 D Fe C 2m�z Py

m Ry C cy Py C ky1y C ky3y
3 D �2m�z Px (1)

where, Fe, the electrostatic force between the capacitor plates (the fixed plate and
the movable plate) generated by applying a voltage V(t), can be expressed as:

Fe D "0AV
2

2.d � x/2
(2)

Note that the terms 2m�z Px and 2m�z Py represent the rotation-induced by
Coriolis forces, the angular rotation is considered to be constant, and "0 is the
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absolute dielectric constant of vacuum. The electric variable charge is adopted in
the following form:

q D CV D "0AV
2

d � x
(3)

and substituting it into the first Eq. (1), we will obtain

m Rx C cx Px C kx1x C kx3x
3 D q2

2"0A
C 2m�z Py

m Ry C cy Py C ky1y C ky3y
3 D �2m�z Px (4)

Considering the equation of motion of the electric variable of the micro-structure

L Rq CR Pq C 1

C.x/
q D V (5)

the governing equations of the nonlinear micro-gyroscope are

m Rx C cx Px C kx1x C kx3x
3 D q2

2"0A
C 2m�z Py

m Ry C cy Py C ky1y C ky3y
3 D �2m�z Px

L Rq CR Pq C 1

C.x/
q D V (6)

Using the following dimensionless variables

� D wxt; wx D
r
kx

m
; X D x

d
; Y D y

d
; � D w

wx
; ˇ0 D VAC

Lq0w2x
; ˇ1 D VA

Lq0w2x
;

�1 D cx

mwx
; �2 D cy

mwx
; � D 2�z

wx
; wy D

r
ky

m
; ı D wy

wx
; r D R

Lwx
;

�1 D q20
2"0Amdw2x

; �2 D d

"0ALw2x
; ˛1 D k3xd

2

mw2x
; ˛2 D k3yd

2

mw2x

we may transform the equations of motion (6) to a dimensionless form

X 00 C �1X
0 CX C ˛1X

3 D �1Q
2 C �Y 0

Y 00 C �2Y
0 C ı2Y C ˛2Y

3 D ��X 0

Q00 C rQ0 � �2 .1 � X/Q D ˇ0 C ˇ1 cos�� (7)
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3 Nonlinear Dynamics and Stability Analysis

The chosen numerical values for the parameters are: �D1.0, ˇ0 D 0.15,
ˇ1 D 0.1026, r D 0.015, �1 D 1.2, �2 D 0.5, ˛1 D˛2 D 0.75, �1 D�2 D 0.01,
ıD 1.0, whereas X’ and � D are varied. The Jacobian matrix J is:

J D

2
66666664

0 1 0 0 0 0

�1 � 1:62X 0 �0:01 0 � 0:6 0

0 0 0 1 0 0

0 �� �0:000164 �0:01 0 0

0 0 0 0 0 1

�0:125 0 0 0 0:5� 0:5X 0 �0:015

3
77777775

(8)

The eigenvalues of J, will provide the conditions for stability or instability
of the equilibrium points: an equilibrium point is asymptotically stable if all the
eigenvalues have negative real part and unstable if at least one of them has positive
real part (Guckenheimer and Holmes 1983). The stability diagram for Eq. (7) is
showed in Fig. 2.

The bifurcation diagram for Eq. (7), are showed in Fig. 3a (� D varied) and the
Lyapunov exponents are showed in Fig. 3b.
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The phase portraits and the time history of Eq. (7), are showed in
Fig. 4 and exhibit a chaotic behavior. This was obtained, by considering the
following numerical values of the parameters: �D 1.0, ˇ0 D 0.15, ˇ1 D 0.1,
r D 0.015, �1 D 1.2, �2 D 0.5, ˛1 D˛2 D 0.75, �1 D�2 D 0.01, ıD 1.0 and
”D 0.116.



On Nonlinear Dynamics and Control Design in a “MEMS” Gyroscope System 413

4 The Particular Case Including a Non-linear Cubic Term

Including the term �3Q3, the governing equations of motion are:

X 00 C �1X
0 CX C ˛1X

3 D �1Q
2 C �Y 0

Y 00 C �2Y
0 C ı2Y C ˛2Y

3 D ��X 0

Q00 C rQ0 � �2 .1 �X/QC �3Q
3 D ˇ0 C ˇ1 cos�� (9)

Figure 5 illustrates the dynamic behavior of the enriched model, by using the
same values of the parameters as considered before and �3 D 0.75, ”D 0.15. The
beating phenomenon is obtained, resulting from the superposition of two waves,
propagating in the same direction, with slightly different frequencies. Figure 5
illustrates this behavior.

5 The Control Design

In this section, we develop an optimal linear control design, for the considered
“MEMS” Gyroscope vibrating problem, reducing the oscillatory movement to
a stable point. Next, we present a summary of the used methodology. Due to
the simplicity of its configuration and implementation, the linear state feedback
control, is especially attractive (Rafikov and Balthazar 2008). It was used before
in (Chavarette et al. 2009a, b) based on the models proposed by Miller et al. (2008),
Oropeza-Ramos et al. (2008). We remark that this approach analytical, and does not
disregard any non-linear term.

Let’s consider the nonlinear governing equations of motion (7), re-written in a
state form

Px D Ax C g.x/C U (10)

Here, we take into account a vector function Qx, that characterizes the desired
trajectory, and consider the control U vector as consisting of two parts: Qu is the feed
forward and uf a linear feedback, such that

ut D Bu (11)

where B is a constant matrix. Next, taking the deviation of the trajectory of system
(10) to the desired one (11) y D x � Qx, the following equation is obtained

Py D Ay C g.x/ � g. Qx/C Bu (12)
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Fig. 5 (a) Time histories (X, Y, Q); (b) The time histories (X, Q); (c) The projection of portrait
phase (X0, X); (d) The projection of phase portrait (Y0 , Y), (e) The projection of phase portrait
(Q0, Q); and (f) The time history of the energy consumption of the system

where G .x; Qx/ it is a limited matrix. We use the important result (Rafikov and
Balthazar 2008): If there exits matrices Q (t) and R (t), positive definite, being Q
symmetric, such that the matrix QQ D Q�GT .y; Qx/P.t/�P.t/G.y; Qx/ is positive
definite for the limited matrix G, then the linear feedback control

u D �R�1BT P y (13)
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is optimal, in order to transfer the non-linear system (7) from any initial state to

the final one y(tf ) D 0, by minimizing the functional QJ D
1R
0

.yT QQy C uT R u/dt .

The symmetric matrix P(t) is evaluated through the solution of the matrix Riccati
differential equation

PAC AT P � PBR�1BT P CQ D 0 (14)

Satisfying the final condition P(tf ) D 0.
In addition, with the feedback control (13), there exists a neighborhood �0 � � ,

� � <n, of the origin such that if x0 2 �0, the solution x.t/ D 0; t � 0; of
the controlled system (12) is locally asymptotically stable, and Jmin D xT0 P.0/ x0:

Finally, if � D <n then the solution y.t/ D 0; t > 0; of the controlled system
(12) is globally asymptotically stable.

Next, we will present an important result, concerning a control law that guaran-
tees stability for the nonlinear system and minimizes a non quadratic performance
functional (for details, see Rafikov and Balthazar 2008).

5.1 Application of the Control Design Theory
to a “MEMS” Gyroscope

For the application of the control technique to the system, the Eq. (11), describing
the controlled model, must be written in the following form

X 00 C �1X
0 CX C ˛1X

3 D �1Q
2 C �Y 0 C U

Y 00 C �2Y
0 C ı2Y C ˛2Y

3 D ��X 0

Q00 C rQ0 � �2 .1 � X/Q D ˇ0 C ˇ1 cos�� (15)

Defining the state variables

0
BBBBBBB@

x1
x2
x3

x4
x5
x6

1
CCCCCCCA

D

0
BBBBBBB@

X

X 0
Y

Y 0
Q

Q0

1
CCCCCCCA

, the matrix A of Eq. (12) becomes

A D

2
66666664

0 1 0 0 0 0

�1 � 1:62X2 �0:01 0 0:116 2:4Q 0

0 0 0 1 0 0

0 �0:116 �1 � 1:62Y 2 �0:01 0 0

0 0 0 0 0 1

�0:5Q 0 0 0 0:5 � 0:5X � 2:25Q2 �0:015

3
77777775
:
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Then, we will obtain B D

2
66666664

1

1

0

0

0

0

3
77777775
; y D

2
66666666664

x1 � Qx1
x2 � Qx2
x3 � Qx3
x4 � Qx4
x5 � Qx5
x6 � Qx6

3
77777777775

and Qx D

2
6666666664

0:1

0:1

0:1

0:1

0:1

0:1

3
7777777775

; the matrix

Q D

2
66666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
77777775

is positive definite, i.e. its eigenvalues are all positive, in this

case œ1.6 D 1, and R D [1], A D

2
66666664

0 1 0 0 0 0

�1:0162 �0:01 0 0:116 0:0024 0

0 0 0 1 0 0

0 �0:116 �1 �0:01 0 0

0 0 0 0 0 1

�0:0005 0 0 0 0:45 �0:015

3
77777775

;

when the matrix M D ˇ̌
BjABjA2B : : : jA2nB ˇ̌ ¤ 0, then the dynamical system is

controllable (Ogata 2003).
Using the command lqr in the software matlab® we will obtain the matrix P(t) as

P D

2
66666664

2:731 �2:683 �1:638 1:801 �3065:782 �4519:386
�0:283 1:084 0:787 �0967 �796:457 �1174:090
�1:638 0:787 16:900 0:137 �683:557 �1007:662
1:801 �0:967 0:137 17:700 �3743:479 �5518:407

�3065:782 �796:457 �683:557 �3743:479 11243398 16574330

�4519:386 �1174:090 �1007:662 �5518:407 16574330 24432865

3
77777775

and then we will obtain that the optimal control is given by u D .0:0024x1 C
0:0008x2 � 0:0008x3 C 0:0008x4 � 3:8622x5 � 5:6934x6/ � 103:

The trajectories of the system with control may be seen, in Fig. 6.
According to the optimal control verification (Rafikov and Balthazar 2008), the

function (12) is numerically calculated across L.t/ D yT QQy, where L(t) is defined
positive and it is shown in Fig. 6e.

6 Conclusions

In this work, a model of “MEMS” gyroscope system with nonlinear and nonlinear
interactions is proposed and its dynamics are investigated. We applied the optimal
linear control technique to control “MEMS” Gyroscope. This control allows
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Fig. 6 (a) The projection of controlled phase portrait (X0, X); (b) The projection of controlled
phase portrait (Y0, Y); (c) The controlled time history (X); (d) The controlled time history (Y); (e)
The controlled time history (Q), and (f) The controlled time history of the energy consumption of
the system

reduction of the chaotic oscillatory movement of the system to a desired stable
point. Figures 6 and 7a illustrate the effectiveness of the control strategy applied
to these problems. Figures 7a, b and 8a show that the optimal linear control
reduces the energy consumption expended by the system and Figs. 7b, 8c, d
illustrate the inclusion of the non-linear cubic term, which reduces the energy
consumption.
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Control of Chains of Mass Points in a Frictional
Environment

Carsten Behn and Klaus Zimmermann

Abstract This paper is devoted to the adaptive control of worm-systems, which are
inspired by biological ideas. We introduce a certain type of mathematical models of
finite DOF worm-like locomotion systems: modeled as a chain of k interconnected
(linked) point masses in a common straight line (a discrete straight worm). We
assume that these systems contact the ground via (1) spikes and then (2) stiction
combined with Coulomb sliding friction (modification of a Karnopp friction model).
In general, one cannot expect to have complete information about a sophisticated
mechanical or biological system, only structural properties (known type of actuator
with unknown parameters) are known. Additionally, in a rough terrain, unknown or
changing friction coefficients lead to uncertain systems, too. The consideration of
uncertain systems leads to the use of adaptive control. Gaits from the kinematical
theory (preferred motion patterns to achieve movement) can be tracked by means
of adaptive controllers (�-trackers). Simulations are aimed at the justification of
theoretical results.

Keywords Worm-like locomotion systems • Chains of mass points • Adaptive
control • Friction

1 Introduction

The following is taken as the basis of our theory, Zimmermann et al. (2009): (i)
A worm is a mainly terrestrial (or subterrestrial, possibly also aquatic) locomotion
system characterized by one dominant linear dimension with no active (driving)
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xn xi xi-1 x1

11(t)1i(t)

x0

x

Fig. 1 Chain of point masses with spikes

legs or wheels; (ii) global displacement is achieved by (periodic) change of shape
(in particular local strain: peristalsis) and interaction with the environment (undula-
tory locomotion); (iii) the model body of a worm is a 1-dimensional continuum that
serves as the support of various physical fields. This interaction (mentioned in (ii))
could emerge from a surface texture or from a surface endowed with spikes which
suppress or prevent backward displacements. It is responsible for the conversion of
(mostly periodic) internal and internally driven motions into a change of external
position (undulatory locomotion (Ostrowski et al. 1995)), see Steigenberger (1999).
In contrast to (iii) only discrete straight worms shall be considered in this paper:
chains of mass points moving along a straight line, Fig. 1.

First we focus on interaction via spikes (thorough kinematic theory), later on we
introduce Coulomb friction as a ground contact.

2 Kinematics

Following Steigenberger (2004), the motions of the worm system, t 7�! xi .t/,
are investigated under the general assumption to be of differentiability class
D2.R/, i.e.,

xi .�/ and Pxi .�/ continuous; Rxi .�/ piecewise continuous . Rxi 2 D0.R// :: (1)

The spikes (attached to each mass point) restrict the velocities of the contact points,

Pxi � 0 ; i D 0; : : : ; n; 8 t: (2)

This is a system of differential constraints the system’s motions are subject to.
Introducing the distances of consecutive mass points (= actual lengths of the

links) lj WD xj�1 � xj , j D 1; : : : ; n, and the actual distance of the mass point i
from the head Si WD x0 �xi D Pi

jD1 lj there holds for the velocities Pxi D Px0 � PSi ,
i D 0; : : : ; n ; and the constraint (2) yields Px0 � PSi � 0, i.e., Px0 � PSi , i D 0; : : : ; n.
This necessarily entails

Px0 � V0 WD maxf PSi j i 2 f0 ; : : : ;ngg: (3)
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Consequently, the head velocity is Px0 D V0Cw, w � 0; and for the others it follows
Pxi D V0� PSi C w, i D 0; : : : ; n. Since w is a common additive term to all velocities
Pxi , it describes a rigid part of the motion of the system.

The worm system is called to move under kinematic drive if by means of the
actuators all distances lj (or Plj ) are prescribed as functions of t . Then PSi and V0
become known functions of t , and in the velocities Pxi the rigid part w is now the
only free variable. The rigid part w of the velocities keeps arbitrary in kinematics.
So it seems promising to put it equal to zero, then all velocities of the mass points
are known functions of t . Putting w D 0 locks the single degree of freedom.
There remains a nicely simple Kinematical theory: (worm with kinematic drive
and w.t/ D 0)

Prescribe W lj .�/ 2 D2.R/ W t 7! lj .t/ > 0; j D 1; : : : ; n:

Determine W Si WD
iP

jD1
lj ; V0 WD maxf PSi j � 2 f0 ; : : : ;ngg 2 D1.R/:

Result W x0.t/ D
tR
0

V0.s/ds; xj .t/ D x0.t/ � Sj .t/; j D 1; : : : ; n:

(4)

The kinematical theory is valid if and only if at any time at least one spike is
active. In applications it might be necessary to use a kinematic drive that ensures
a prescribed number of spikes to be active at every time.

Example 1. We consider a worm system with n D 2. We present (construction
suppressed here) a kinematic drive such that at every time exactly one of the three
spikes is active. Using the Heaviside function

h.t0 ;t1 ;�/ W � 7! h.t0 ;t1 ;�/ WD
�
1; if t0 < � � t1
0; else

we define

l1.t/ WD l0

h
1C a l0

	
1 � cos.
 t/


i
h.0; 2; t/C l0 h.2; 3; t/

l2.t/ WD l0

h
1 � a l0

	
1 � cos.
 t/


i
h.0; 1; t/C l0 Œ1 � 2 a l0� h.1; 2; t/

C l0

h
1 � a l0

	
1C cos.
 t/


i
h.2; 3; t/ (5)

on the primitive time interval Œ0; T �; T WD 3, and then take their T -periodic
continuation to R

C. Here l0 D 2 is the original length of the links, and l0a with
a D 0:1 is the amplitude of the length variation in time. Applying (4) we obtain the
results sketched in Fig. 2. The cycle of active spikes is 1 ! 0 ! 2. Average speed
of center of mass is v � 0:5333.
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Fig. 2 Left: Gait l1 (upper curve) l2 (lower curve) vs. t=T ; middle: V0 vs. t=T , right: worm
motion—x0 (upper curve), x1 (middle curve) and x2 (lower curve) vs. t=T

3 Dynamics

The following forces are applied to mass point i , all acting in x�direction, see
Fig. 3:

• gi , the external impressed (physically given) force (e.g., resultant of viscous
friction and weight component backward: gi D �k0 Pxi � �i ).

• �i , the stress resultant (inner force) of the links (let, formally, �0 D �nC1 WD 0).
• zi , i 2 f0 ; : : : ;ng, the external reaction force caused by the constraint (2), acting

on the spiked mass points.

The dynamics of the worm system are formulated by means of Newton’s law for
each of the mass points:

m Rxi D gi C �i � �iC1 C zi ; i D 0; : : : ; n: (6)

As the constraint (2) describes a one-sided restriction of Pxi , velocity and reaction
force are connected by a complementary-slackness condition:

Pxi � 0; zi � 0; Pxi zi D 0; i D 0; : : : ; n: (7)

This means that zi .t/ is zero if at time t the mass point i is moving forward, whereas
zi .t/ may have arbitrary non-negative values as long as Pxi .t/ D 0 (reaction force at
resting spike).

An actuator is, first, a multi-pole with input activation signal and energy
(immanent energy source—e.g., electrical battery. Its output are forces, torques,
displacements, twists, respectively. Often the internal dynamics of an actuator are
not modeled, rather the output is connected with the input: the multi-pole remains a
black box. We hint at four physical models of actuators from literature: (a) in Huang
(2003) with output force, (b) in Steigenberger (2004) with output displacement,
(c) in Steigenberger (1999) a mixed case, and (d) in Hirose (1993) with output torque
or rotation.
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i
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−μi+1 −μi−1−μiμi

gi
zi

gi−1
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Fig. 3 Mass points with forces (Ai: actuator)

i i-1

Fig. 4 Actuator, general
physical model

Our starting-point for introducing an actuator is a given output law. Let �i be
qualified as impressed forces:

�i.t; x; Px/ WD ci
	
xi�1 � xi � l0i


C ki . Pxi�1 � Pxi /C ui .t/: (8)

This mathematical relation describes the parallel arrangement of a linear-elastic
spring (constant stiffness ci , original length l0i ), a Stokes damping element (constant
coefficient ki ), and a time-dependent force ui .t/. Figure 4 shows the corresponding
physical model of this actuator (now a white box), where the circular box represents
a non-modeled device generating the force ui .t/.

Under the assumption that all actuators have the same data the equations of
motions follow from (6) in the actual form

m Rx0 D �c.x0 � x1 � l0/ � k00. Px0 � Px1/� k0 Px0 � u1.t/ � �0 C z0;

m Rxj D �c.2xj � xjC1 � xj�1/� k00.2 Pxj � PxjC1 � Pxj�1/C
Cuj .t/ � ujC1.t/ � k0 Pxj � �j C zj ;

m Rxn D c.xn�1 � xn � l0/C k00. Pxn�1 � Pxn/� k0 Pxn C un.t/ � �n C zn: (9)

The accompanying complementary slackness conditions can be satisfied through
expressing the zi by means of the “controller” (see Steigenberger (2004))

zi .fi ; Pxi / D �1
2

	
1 � sign. Pxi /


	
1 � sign.fi /



fi ; i 2 f0 ; : : : ;ng; (10)

where fi is the resultant of all further forces acting on the mass point i .
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Remark 1. Let us briefly discuss this controller (10). For brevity we dropped the
index i here:

• If Px > 0 than (10) yields z D 0, and we have Px z D 0.
• If Px D 0 it follows z D � 1

2
.1 � sign.f /



f .

– If now f > 0 then z D 0, that means, a movement of this mass pointm starts
immediately in positive direction.

– If f < 0 we get z D �f and the spikes cancel the resultant of all forces.
– f D 0 implies z D 0 (no acting forces, no existence of a spike force).

• If Px < 0, Eq. (10) is ill defined, in other words, it breaks down. But this case does
not happen:

Let Px < 0, then by continuity of Px and, as it has to be, initial condition
Px.0/ � 0, Px has a zero, without loss of generality, at t D t0. Then at t D t0 C 0

(f .t0C0/ DW f 0) we havem Rx.t0C0/ D f 0Cz D f 0� 1
2
2 .1�sign.f 0/



f 0 D

f 0 � .f 0 � jf 0j/ D jf 0j � 0. If f 0 6D 0 then Rx � 0 and it follows Px > 0 for
some t 2 .t0; t1/. Contradiction. If f 0 D 0 and f D 0 for t 2 .t0; t1/ then Px D 0.
Contradiction. If f 0 D 0 and f 6D 0 for t 2 .t0; t1/ then Rx > 0 for these t and Px
goes to positive values. Contradiction. Summarizing, Px < 0 cannot occur.

At this stage, the ui are to be seen as prescribed functions of t (offline-controls), later
on they are handled as depending on the state .x; Px/ (feedback, online-controls).

If the actuator data are known (l0, c and k00), and n is small (n � 2), then an
actuator input ui .t/ can be calculated which controls the system in such a way as to
track a preferred motion-pattern constructed in kinematical theory like (5). But, as
a rule, the actuator data are not known exactly.

4 Adaptive Control

The lack of precise knowledge of parameters (actuator data, worm system parame-
ters, environmental contact) leads to the consideration of uncertain systems. Hence,
it is impossible to calculate force inputs u to achieve a prescribed movement. We
have to design a controller which on its own generates the necessary forces to track
a prescribed kinematic gait. This leads us to an adaptive high-gain output feedback
controller (learning controller). The aim is not to identify the some data, but to
simply control this system in order to track a given reference trajectory (kinematic
gait), i.e., to ensure a desired movement of the system. We do not focus on exact
tracking, rather we focus on the �-tracking control objective tolerating a pre-
specified tracking error of size �.

Considering the worm system (9) we choose as outputs the actual lengths of
the links, i.e., yj WD xj�1 � xj , for j D 1; : : : ; n. �-tracking now means, given
� > 0, a control strategy y D .y1; : : : ; yn/ 7! u D .u1; : : : ; un/ is sought which,
when applied to this system (9), realizes tracking of any reference signal yref D
.yref 1; : : : ; yref n/ in the following way:
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a b c

Fig. 5 (a) Outputs y1 and y2 with �-tubes; (b) gain parameter k.	/; (c) worm motion; all vs. time t

(i) Every solution of the closed-loop system is defined and bounded on R
0, and
(ii) The output y.�/ tracks yref.�/ with asymptotic accuracy quantified by � > 0 in

the sense that max
n
0;
��y.t/ � yref.t/

�� � �
o

! 0 as t ! 1.

The following controller realizes our goal, for a mathematical proof (and a general
system class where it works) see Behn (2005) and Behn and Zimmermann (2006):

e.t/ WD y.t/ � yref.t/ ; yref.�/ 2 W 2;1.a Sobolev � Space/

u.t/ D
�
k.t/e.t/C d

d t

	
k.t/e.t/


�
;

Pk.t/ D � max
n
0;
��e.t/�� � �

o2
; k.0/ 2 R ;� > 0 ;� > 1

9>>=
>>;
: (11)

For simulations we consider a worm with n D 2 links, and yref 1; 2 WD t 7! l1;2.t/

from (5). So the control u1;2 is sought such that y1;2 gets close to l1;2 in the above
precise sense. We choose the following data:

worm system: m0 D m1 D m2 D 1, c D 10, k00 D 5; initial conditions:
x0.0/ D 0, x1.0/ D �2, x2.0/ D �4, Pxi .0/ D 0 (i D 1; 2; 3); environment:k0 D 0,
�1;2;3 D 2:7 (ensures kinematical theory to be dynamically feasible); reference gait :
(5) with l0 D 2, a D 0:1; controller: k.0/ D 0, � D 0:2, � D 300. The actuator
and environmental data .c ;k00 ;k0 ;� / are fixed just for doing the simulations. In
general they could be understood as estimates the unknown values may vary about.

For numerical reasons we use the smooth approximation sign.x/ �
tanh.10000 x/.

Simulation 1. Worm with ideal spikes, i.e., (10) with controller (11).

The figures (compared with Fig. 2) show a good tracking behavior after a
transient phase until t � 3. Average speed of center of mass is v � 0:4938 (after
transient process). Figure 5b shows a monotonic increase of k.t/ towards a limit k1.
But if some perturbation repeatedly caused the output to leave the �-strip then k.t/
would take larger values again and again. That is why we introduce an improved
adaptation law, see Behn and Steigenberger (2009), that makes k.t/ decrease as
long as further growth is not necessary. We distinguish three cases: (1) increasing
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a b c

Fig. 6 (a) Outputs y1 and y2 with �-tubes; (b) gain parameter k.	/; (c) worm motion; all vs. time t

k.�/ while e is outside the tube, (2) constant k.�/ after e entered the tube—no longer
than a pre-specified duration td of stay, and (3) decreasing k.�/ after this duration
has been exceeded. For instance:

Pk.t/ D

8̂
ˆ̂<
ˆ̂̂:

�
���e.t/�� � �

�2
;
��e.t/�� � � ;

0;
���e.t/�� < �� ^ .t � tE < td / ;

�� k.t/;
���e.t/�� < �� ^ .t � tE � td /;

(12)

with given � > 0, � � 1, and td > 0, whereas tE is an internal time variable.

Simulation 2. Controller from (11) with adaptor (12) (� D 0:2, td D 1).

Figure 6b indicates that the maximal value k � 130 is only due to the transient
behavior (until e enters the �-tube) whereas the minimum high gain is obviously
k� � 100. Average speed of center of mass is v � 0:4859 (after transient process).

5 Friction

Now, we replace the worm-ground interaction via spikes by stiction combined with
Coulomb sliding friction (a more realistic description of the interaction). First,
we present a mathematical model for the Coulomb laws that is both theoretically
transparent and handy in computing. It is by far simpler than various sophisticated
laws in literature (e.g. Armstrong-Hélouvry et al. 1994; Awrejcewicz and Olejnik
2005; Canudas de Wit et al. 1995; Olsson et al. 1998) but similar to the model given
in Karnopp (1985) and it well captures stick-slip effects in application to worm
dynamics, see Behn et al. (2007) and (Steigenberger, 2006, unpublished). We note
that this modeling makes friction a real-valued function of two arguments, and not
a set-valued one depending solely on the velocity as preferred by most authors. Let
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F.f; v/ WD

8̂
<̂
ˆ̂:

F�; v < �" _ 	jvj � " ^ f < �F �
0



;

�f; jvj � " ^ f 2 � � F�
0 ; F

C
0

�
;

�FC; v > " _ 	jvj � " ^ f > FC
0



:

(13)

Think of F acting on a mass point whose dynamics in R
1 are Px D v,m Pv D f CF .

Then (13) essentially indicates the mutual cancelation of forces if the point is at
rest and jf j is bounded by F0̇ , and a piecewise constant ‘braking’ of magnitude
F˙ during motion. Different F˙ or F0̇ values characterize a friction anisotropy.
A suitable " > 0 replaces the computer accuracy and mimics the vague processes at
small velocities as well.

Using the Heaviside function h from Example 1 F can be given a closed form
(disregarding its values at v D ˙"). In order to avoid difficulties in computing
caused by jumps of the h-function we turn to a smooth mathematical model (in the
sense of an approximation). Basically, we use a tanh-approximation of the sign-
function sign.x/ � tanh.A x/ with some sufficiently large A � 1.

The smooth mathematical model then is

F.f; v/ D �f H.�"; "; v/H.�F�
0 ; F

C
0 ; f /

CF � ˚H.�1;�"; v/CH.�"; 0; v/H.�1;�F�
0 ; f /


�FC ˚H.";C1; v/CH.0; "; v/H.FC

0 ;C1; f /

; (14)

where F is now a C 1-function in closed analytical form by means of

H.a; b; x/ WD 1

2

n
tanh

	
A .x � a/
C tanh

	
A .b � x/


o
; (15)

the smooth approximation of h.a; b; x/.
We use A D 105 and " D 0:005 in the sequel.
Mind that F�

0 � 1 essentially leads to the theory of ideal spikes, whereas a small
F�
0 corresponds with a breakable or broken spike.

Again, adaptive control has to be used when considering uncertain or randomly
changing friction data (rough terrain). Successful application is shown by the
following simulation results: (1) stiction only, (2) sliding friction only, and (3) both.

Simulation 3. First, we consider only stiction, i.e., FC D F� D 0 for (14). We
choose F�

0 D 16 (guided by spikes-worm theory—not outlined here) and FC
0 D 3.

Applying controller (11) with adaptor (12) (� D 0:2, td D 1) yields the results
shown in Fig. 7:

There are some short backward motions at the beginning (see Fig. 7c), afterwards
the motion coincides with that of Simulations 1 and 2. Average speed of center of
mass is v � 0:4857 (after transient process).
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a b c

Fig. 7 (a) Outputs y1 and y2 with �-tubes; (b) gain parameter k.	/; (c) worm motion; all vs. time t

a b c

Fig. 8 (a) Outputs y1 and y2 with �-tubes; (b) gain parameter k.	/; (c) worm motion; all vs. time t

a b c

Fig. 9 (a) Outputs y1 and y2 with �-tubes; (b) gain parameter k.	/; (c) worm motion; all vs. time t

Simulation 4. Now, we replace stiction by sliding friction. We put FC
0 D F�

0 D 0

and choose instead F� D 16 and FC D 3. Again applying controller (11) with
adaptor (12) (� D 0:2, td D 1) yields (shown in Fig. 8):

Though there is again a good tracking of the desired gait from kinematical theory
(see Fig. 8a), we observe an unsatisfactory external behavior of the worm (recurring
negative velocities), see Fig. 8c, obviously owing to the cancelation of stiction.
Average speed of center of mass is v � 0:2399 (after transient process).

Simulation 5. At last, applying the friction model (14) with F�
0 D 18, FC

0 D 3

(remind F �
0 D 16 in Simulation 3), F� D 8, FC D 1 (additional sliding friction)

and using the same control data as before we obtain the following results (shown
in Fig. 9):
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Good behavior (see Fig. 9a, c), comparable with that in Simulation 3, but now a
bit smaller average speed v � 0:4793 due to the sliding friction.

If F�
0 D 16 was used then the worm would run backwards. The need of F�

0 D
16 C 2 is caused by the forward sliding friction FC D 1. This is essentially the
same effect as it would be caused by an increase of � from 2:7 to 4:7 since two
mass points are sliding at every moment during the motion. So FC leads to an
additional backward force of magnitude 2 that has to be compensated by stiction.

6 Conclusion and Outlook

In the foregoing examples the (adaptive) control has been directed to ensure
a prescribed gait (i.e., a temporal pattern of shape—something internal!). It is
intelligible that a changing environment or changing type of interaction influences
the global movement and the driving forces ui despite a good tracking of the gait.

A comparison of Simulations 3–5 points at stiction as the essential part of
Coulomb interaction with the ground and gives a warning of a careless reducing
of the interaction to pure sliding friction (Fig. 10).

Finally we sketch some current and future tasks:

– To track a prescribed global movement of the worm (first step: to track a reference
head speed—a pure tracking of the prescribed gait is not sufficient to do this),

– To investigate tracking under friction which randomly changes online, possibly
coupled with appropriate change of gaits (‘gear shift’),

– To investigate tracking under randomly changing internal data (failing actuator),
– To validate the theory by experiments:

For this purpose a locomotion system is developed (the ‘TM-Robot II’). It is
designed to have a better dynamical behavior than older systems. The drive is by
motors, pulleys and springs. The adaptive control algorithms are prepared to be
implemented in order to track reference motions.

Fig. 10 CAD-model (left) and prototype (right) of the TM-Robot II.
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Fig. 11 The bristle-structure

Each mass point is equipped with a bristle-structure to prevent slipping back-
wards, see Fig.11.
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