
Chapter 3
Introduction to Data Envelopment Analysis

Jorge Santos, Elsa Rosário Negas, and Luı́s Cavique Santos

Abstract This chapter introduces the basics of data envelopment analysis tech-
niques, with a short historical introduction and examples of the constant returns to
scale model (CRS) and the variable returns to scale (VRS) model. The ratio models
are linearized and for both orientations primal and dual models are presented.
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3.1 Introduction

Data envelopment analysis (DEA) is a mathematical programming-based technique
to evaluate the relative performance of organisations. While the main applications
have been in the evaluation of not-for-profit organisations, the technique can be
successfully applied to other situations competing with other techniques as cost
benefit analysis and multi criteria decision making as can be seen, for instance,
in a recent study about the best choice for traffic planning, namely, the design and
location of a highway in Memphis (Bougnol et al. 2005).

DEA is suited for this type of evaluation because it enables results to be compared
making allowances for factors (Thanassoulis and Dunstan 1994). DEA makes it
possible to identify efficient and inefficient units in a framework where results are
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considered in their particular context. In addition, DEA also provides information
that enables the comparison of each inefficient unit with its “peer group”, that is,
a group of efficient units that are identical with the units under analysis. These
role-model units can then be studied in order to identify the success factors which
other comparable units can attempt to follow. Thanassoulis (1993) argue that DEA is
preferable to other methods, such as regression analysis, which also make it possible
to contextualise results.

This chapter is structured as follows. The next section describes the development
and fields of application of the technique, while Sect. 3.3 introduces the DEA
models followed by a numerical and graphical example. Section 3.4 presents the
mathematical formulation and the last one ends up with the main conclusions.

3.2 History and Applications of DEA

DEA is a mathematical programming technique presented in 1978 by Charnes
et al. (1978), although its roots may be found as early as 1957 in Farrel’s seminal
work (Farrell 1957) or even to Debreu’s, which introduced in the early fifties the
“coefficient of resource utilisation” (Debreu 1951). It deserves special attention
and also the work of the Dutch Nobel-prized Tjalling Koopmans and his “activity
analysis concepts” (Koopmans 1951).

The DEA technique is usually introduced as a non-parametric one, but in fact
it rests on the assumption of linearity (Chang and Guh 1991) and for the original
constant returns to scale (CRS) models even in the more stringent assumption of
proportionality.

Its application has been focused mainly on the efficiency assessment of not-
for-profit organisations, since these cannot be evaluated on the basis of traditional
economic and financial indicators used for commercial companies.

The first application of DEA was in the agriculture field; as a matter of fact,
Farrell applied it to 1950 data of 48 states in the United States of America,
considering 4 inputs and 2 outputs. At that time, the DEA term was not yet created,
so in fact the first time the term DEA and that technique was applied was in the area
of education, specifically in the analysis of Program Follow Through, conducted in
the USA, in the late seventies (Rhodes 1978). Since then it has been used to assess
efficiency in areas such as health (Wilson et al. 2012), county gaols (Seiford and Zhu
2002), courts (Schneider 2005), universities (Bougnol et al. 2010) and many other
not-for-profit sectors. Nowadays DEA can be seen to have spread to other fields such
as transit (Chiu et al. 2011), mining, (Chen et al. 2010), air transportation (Pestana
e Dieke 2007) and even banking (Emrouznejad and Anouze 2010).

In data envelopment analysis, the organisational units to be assessed should be
relatively homogeneous and were originally termed decision-making units (DMUs).
As the whole technique is based on comparison of each DMU with all the remaining
ones, a considerable large set of units is necessary for the assessment to be
meaningful. We will assume that each DMU produces N outputs by means of M
inputs.
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3.3 The Meaning of DEA Efficiency

We will introduce some simple examples based on the following data set with 4
variables: 2 inputs – X1 and X2 – and 2 outputs – Y1 and Y2. Since this data will be
used for pedagogical proposes, it is a small data set with just 12 decision-making
units (DMU) (Table 3.1).

First, to introduce some basic concepts, we will suppose that only X1 and Y1

would be important for our analysis.
In this case, we can graph the 12 observations on a scatter plot, and it would

be obvious that the most efficient one will be the DMU 3 since a straight line
originating at the (0;0) point towards DMU 3 has the higher slope than any of the
remaining (Fig. 3.1).

The straight line originating at the (0;0) point towards DMU 3 is called the
efficiency frontier and together with the X axis it defines a cone with its vertex

Table 3.1 Illustrative
data set

DMU X1 X2 Y1 Y2

1 4;0 140;0 2,0 28;0

2 5;0 90;0 1,0 22;5

3 6;0 36;0 6,0 12;0

4 10;0 300;0 8,0 60;0

5 11;0 66;0 7,0 16;5

6 8;0 36;0 6,0 12;0

7 9;0 12;0 7,0 6;0

8 5;0 210;0 3,0 30;0

9 5;5 33;0 4,4 5;5

10 8;0 288;0 4,0 72;0

11 10;0 80;0 2,0 20;0

12 8;0 8;0 1,0 4;0
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Fig. 3.1 Example with 12 hypothetical farms consuming X1 and producing Y1
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Fig. 3.2 Example of EMS results under constant returns to scale minimisation of inputs

at the origin. This cone is called the production possibility set, since it contains all
real data, and according to DEA axioms, only points inside this cone correspond to
possible working conditions based on best-achieved performance.

We will analyse in greater detail unit 1. There are two ways for DMU 1 to
reach efficiency: increasing output, till it reaches M.O. (maximisation of output)
or reducing the input till m.i. (minimisation of input).

The actual value for efficiency is defined as the ratio between the distances:
d .m:i: � z:i:/ =d .1 � z:i:/D.2 � 0/ =.4 � 0/D50%. On a similar way, the
actual value for inefficiency is defined as the ratio between the distances:
d .M:O: � Z:O:/ =d .1 � Z:O:/D.4 � 0/ =.2 � 0/D100%. In these calculations,
z.i. means the zero input point and Z.O. the zero output point for the DMU 1.

We conclude that in DEA, there are two different means of optimization related
with radial measures of score: input minimisation and output maximisation. The
artificial points M.O. and m.i. are termed targets or composite points for DMU 1.
Point 3 is the only efficient one, and it is the peer for all remaining points.

Under constant returns to scale, efficiency is the reciprocal of inefficiency; the
peer set is also the same, regardless of the orientation, although their targets are
different as we conclude from the exposition above.

Typical DEA software like efficiency measurement system (EMS), developed
by Holger Scheel (Scheel 2000) at Dortmunt University (using Csaba Mészáros’
BPMPD interior-point solver) would give us results as depicted in Fig. 3.2.

EMS highlights the efficient units and provides us all the necessary values:

– Score means efficiency.
– X1fIgfVg presents the virtual input of variable X1, in a similar way Y1fOgfVg

presents the virtual output of variable Y1.



3 Introduction to Data Envelopment Analysis 41

Fig. 3.3 Example of EMS results under constant returns to scale maximisation of outputs

– Benchmarks means that all farms, except for the third, are benchmarked against
farm 3 and so is used 11 times for comparison. The coefficients in this column
mean that if we multiply farm 3 by those values, it will result in the composite-
projected target point.

– fSgX1fIg presents the slacks for input X1, in a similar way fSgY1fOg presents the
slacks for output Y1.

Thinking again around unit 1, it means that its target under input minimisation is
0,33 � (6;6) D (2;2). These are exactly the coordinates of point m.i. in Fig. 3.1. The
concepts of virtual multipliers and slacks will be clarified after the presentation of
the mathematical formulation.

So far it is very important to emphasise that there are two different radial
orientations: input minimisation and output maximisation. There are target points
and a set of efficient units that benchmark the non-efficient ones.

The results for output maximisation are depicted on Fig. 3.3.
We can confirm that the conclusions are very similar to those from Fig. 3.2; more

specifically the score now is the inefficiency, the reciprocal of the scores under input
minimisation. Slacks are identically null as in the minimisation of inputs.

We can proceed with our analysis including output Y2 in our analysis. In this case
we will have 3 variables, and we cannot represent them on the XY plane. Anyway,
since we assume that constant returns to scale prevail, we can normalise the outputs
by the single input X1. That way, we get the Fig. 3.4, where we can easily spot
three efficient farms: Farm 3 remains efficient (whenever we add new variables,
efficiencies never decrease), and farms 4 and 10 turn out efficient, joining the new
efficiency frontier.



42 J. Santos et al.

0

1

2

3

4

5

6

7

8

9

10

0

.
0.2

m.i = M.O. 

1

2

12
Z.O.

0.4

.

11

10

0.6

1

5

8

0.8

4

6

7 9

. z.i.

1

3

1.2

Fig. 3.4 Cut of the PPS at X1 D 1, under CRS, two outputs: Y1 and Y2

We point out in Fig. 3.4 the zero output point (Z.O.) at the origin and the zero
input area that lies outside the production possibility space (PPS). The PPS is now
a polyhedral cone (an inverted pyramid) with 3 specific edges: the rays that depart
from the origin to each of the 3 efficient units (3;4;10). There are other 3 edges
that are not specific, since they exist always regardless of the specific data set; one
belongs to the plane defined by X D 0, the other belongs to the plane with Y D 0 and
finally the third is the Z axis with both X D 0 and Y D 0 (Fig. 3.4).

The graph in Fig. 3.4 is a cut of the PPS at X1 D 1, since we normalised the
outputs. The dashed line is the intersection of the horizontal plane X1 D 1 with the
efficiency frontier (the polyhedral cone). The dotted line is an isoefficiency contour.

It is clear that DEA clusters DMU according to their specificities; farms 1 and
8 are related to farms 4 and 10, their peer group. The same way farm 6 will be
similar to farm 3, and so on. A different situation arises with farm 2, which cannot
be expressed as a finite linear positive combination of the efficient ones; in that
case, it is necessary to have a slack in Y1. The same situation happens with farms
7 and 9, they “need” slacks in Y2, and this means that after their projection on the
vertical part of the dashed line, they still have to increase its production of Y2. This
can be confirmed by the EMS results for this case. Typically this kind of figure is
associated with input minimisation, since we have only one input to reduce. It can
be associated also to output maximisation, where an equiproportional maximisation
of both outputs (keeping the output mix constant) is required.

Finally, we examine the case for two inputs and a single output Y2. This time we
cannot anticipate the results, since we did not study efficiencies for pairs of these
three variables. Again, since we assume that constant returns to scale prevail, we
can normalise the inputs by the single output Y2. That way we get Fig. 3.5 where we
plotted X2/Y2 versus X1/Y2 where we can easily spot three efficient farms:

The PPS is again a polyhedral cone (an inverted unbounded pyramid) with 3
specific edges: the rays that depart from the origin to each of the 3 efficient units
(3;7;10). There are no other edges since the inefficient units are located in an
unbounded region that tends to infinity as outputs approach zero.
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Fig. 3.5 Cut of the PPS at Y2 D 1, under CRS, two inputs: X1 and X2

Fig. 3.6 EMS results for the two inputs, X1 and X2, and a single output, Y2

Farm 12 is not strongly efficient, since farm 7 has the same ratio on X2/Y2, but a
smaller one on X1/Y2. Indeed there is a slack on X1. We can see in the graph that the
two points differ 0.5 on X1/Y2. This happens at the cutting plane Y2 D 1, as the true
scale of operation of farm 12 is Y2. The slack is 0.5 � 4 D 2 as can be seen in Fig. 3.6
where we present the results for this case. We can notice that the only farms that
EMS classifies as efficient are farms 3, 7 and 10, those that are on shadowed lines of
the table. Farm 12 presents a score of 100%, although it is not efficient since it has
2-unit slack in X1; its efficiency according to the Charnes Cooper and Rhodes model
(CCR model) is 100% � 2" where " is a small non-Archimedean entity. These units
that are on the “horizontal or vertical” parts of the efficiency frontier are termed
“weakly efficient DMUs”; we will come back to this matter when we present the
models in the remaining of this section.
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Fig. 3.7 Comparison of efficiency frontiers of the CCR and BCC models

So far we have assumed we are operating in a constant returns to scale situation.
We will now present only one graphical example for the variable returns to
scale (VRS) model, introduced by Banker, Charnes and Cooper in 1984 (Banker
et al. 1984).

We will study again the one input (X1) producing one single output (Y1) case,
but according to Banker, Charnes and Cooper the efficiency frontier is not anymore
a polyhedral cone, but instead the intersection of all the polyhedral cones, one for
each DMU; this result is based on the convex hull of the all DMUs. In the CCR
model, we had flexibility on the choice of the weights; now in the BCC model, we
are free to choose also the origin of our data (the vertex of the polyhedral cone).

In Fig. 3.7, we have a vertical facet that ends at DMU 1; this facet means that we
assume a fixed amount of input (X1 D 4) necessary just to start the business. DMU
2 under VRS will have a much higher efficiency than under CRS, especially in the
minimisation of inputs case. DMU 2 is spending 5 units of input, and it was expected
to spend just one in the CRS case; this leads to a CRS efficiency of 1/5 D 20%; in
the more benevolent BCC model, it was expected to spend 4 units, so its efficiency
rises to 4/5 D 80%. The ratio between CRS efficiency and VRS efficiency is called
scale efficiency and increases from the origin (XD0; YD0) till DMU 3 and then
starts decreasing. The first region is the increasing returns to scale region, and the
second is the decreasing returns to scale region. In higher dimensions it seems more
difficult, but it is much easier than it seems at first look. The most productive scale
size (MPSS) is simply the intersection between the VRS and the CRS efficiency
frontiers. From the origin till the MPSS, we are in the increasing returns to scale
region; from the MPSS till infinity, we are on the decreasing returns to scale region.

In CRS, we had a simple relation between the scores of input minimisation
and output maximisation (they were reciprocals: efficiency D 1/inefficiency). Under
VRS it does not happen anymore. In fact there is no clear relation between those
two scores since the peer set most of the times differs from one orientation to the
other. For instance, DMU 10 under input minimisation has DMU 1 and 3 as peers,
but if we intend to maximise its output, the reference set is 3 and 4.
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Fig. 3.8 EMS results for the one input, X1, and a single output, Y1, under VRS

In Fig. 3.8, we present the results for the one input, X1, and a single output,
Y1, under VRS and minimisation of inputs. We cannot represent graphically any
3 variables case under variable returns to scale, so now we have to introduce the
mathematical formulation that relies on linear programming and duality.

3.4 Mathematical Formulation for DEA

In DEA, efficiency (Efa) of a specific decision-making unit (DMUa) under analysis
is defined as the ratio between a weighted sum of its s outputs Yra and a weighted
sum of its m inputs Xia, a natural extension of the concept of efficiency used in the
fields of physics and engineering (Charnes et al. 1978).

Efa D
Ps

rD1 �rayra
Pm

iD1 viaxia

(3.1)

When assessing a set of J organisations, where Xik stands for the ith input of
the kth DMU, with a similar meaning for Yrk, the weights �rk and vik, in Eq. (3.1),
are chosen for each DMUj, under evaluation as those that maximise its efficiency as
defined by Efa. Several constraints have to be added to the maximisation problem:

• The strict positivity (Charnes et al. 1978) of the weights �rk and vik, (also known
as virtual multipliers).
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• For scaling purposes, all n DMUs under analysis must have efficiencies not
exceeding an agreed value, typically one or 100%, as is usual in engineering
definitions of efficiency.

• A third kind of restriction has to be included since otherwise this linear fractional
program would yield an infinite number of solutions. In fact, if a set of weights
�rk and vik returns the optimal solution, so would k�rk and kvik. Making the
denominator in Eq. (3.1) equal to one or 100% circumvents this situation.

So, we have to solve the following linear programmingmaximisation problem for
each one of the J DMUs under analysis:

max Efa D
Ps

rD1 �rayra
Pm

iD1 viaxia

(3.2)

s:t: �ra � " > 0 r D 1 : : : s (3.3)

via � " > 0 i D 1 : : : m (3.4)

Efk D
Ps

rD1 �rkyrk
Pm

iD1 vikxik

� 1 k D 1 : : : n (3.5)

mX

iD1

viaxia D 1 (3.6)

This fractional linear program can be solved by the Charnes and Cooper trans-
formation (Charnes and Cooper 1962) which yield the following linear program:

Max Efa D
sX

rD1

�rayra (3.7)

s.t.

mX

iD1

viaxia D 1 (3.8)

mX

iD1

viaxik �
sX

rD1

�rayrk � 0 j D 1: : :J (3.9)

�ra � " > 0 r D 1: : :s (3.10)

via � " > 0 i D 1: : :m (3.11)

The problem above is known as the multiplier problem, since its unknowns are
the weights, which are usually lower bounded by a small quantity non-Archimedean
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entity, " (Eqs. 3.10 and 3.11), so that all inputs and outputs are considered in the
evaluation (Charnes et al. 1979) even if with a minor weight ", set typically equal
to 10�6.

The dual of this problem, which we shall call the envelopment problem, provides
important information about economies that could be achieved in all the inputs;
it also indicates which efficient units the inefficient unit being assessed should
emulate. Those efficient units are usually referred to as the reference set or peer
group of the unit under evaluation.

Any linear problem has a dual, which we will call the envelopment problem that
can be written as follows:

min W Za � "

(
sX

rD1

SC
ra C

mX

iD1

S�
ia

)

(3.12)

s:t:
nX

kD1

�kxik C S�
ia D Zaxia i D 1 : : : m (3.13)

nX

kD1

�kyrk � SC
ra D yra r D 1 : : : s (3.14)

�k � 0 k D 1 : : : n (3.15)

SC
ra � 0 r D 1 : : : s (3.16)

S�
ia � 0 i D 1 : : : m (3.17)

This formulation can be interpreted as follows: Given DMUa, find the composite
unit which has no smaller outputs than this one and whose inputs are smaller than
those of DMUa scaled down by a factor Za as small as possible. This is why
this formulation is known as input minimisation; since we are minimising Za, we
are seeking the minimal inputs that, based on best-achieved performance, could
still produce the same amount of outputs as DMUa is currently producing. These
composite units are finite linear combinations of efficient units more specifically
finite positive combinations which lie on the efficiency frontier. These efficient
DMUs are known as the peer group, the role-model units that inefficient DMUa

should try to emulate.
In the envelopment problem, it is easy to understand the role of the small non-

Archimedean entities "; they simply multiply by the sum of slacks so that slacks are
not ignored in the overall score.

As a whole, the interpretation of the DEA technique is straightforward and can
be put in the following terms:
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3.4.1 Multiplier Problem

Evaluate each DMU with the set of weights which maximises its efficiency, provided
that all other DMUs, rated with that set of weights, have efficiency not greater than
unity.

3.4.2 Envelopment Problem

Find the smallest proportion Za of inputs that would bring the current DMUa to the
enveloping surface of all DMUs.

The model presented above, named CCR after the acronym of the authors
Charnes et al. (1978), assumes constant returns to scale. This means that when
the input of an efficient unit is multiplied by a given factor, its output level is also
multiplied by the same factor. In this case, the production possibilities set will be a
closed convex polyhedral cone in R nCm in the positive orthant.

In other situations this is not the case. The scale of operations may have an impact
on the outputs, creating “economies” or “diseconomies” of scale. The BCC model,
developed by Banker et al. (1984), can deal with variable returns to scale.

The BCC envelopment model can be obtained from the CCR envelopment model
by adding the convexity constraint to the envelopment problem:

nX

kD1

�k D 1 (3.18)

The multiplier problem is the dual of the envelopment formulation, and the
extra restriction originates an extra free variable. It is important to note that if we
relax the convexity constraint to

Pn
kD1 �k � 1 than its dual, variable will become

non-negative and it becomes clear that this model (the non-decreasing returns to
scale model) is nothing else but a CCR model with an extra output identically
unitary.

The same analysis could be conducted based on the maximisation of outputs,
leading to similar formulations.

For instance, DMU 10 will be rated under VRS as 5/8 efficient and 4/8 D 50%
under CRS. It is straightforward to conclude that VRS efficiency is never smaller
than the CRS efficiency. This became clear if we note that the envelopment problem
has an extra constraint, and it is a minimising program. The ratio between those two
efficiencies is called scale efficiency, and it is important in the efficiency analysis.
All those definitions can be made also for the output maximisation orientation.

In VRS we can define several regions, the increasing returns to scale and
the decreasing returns to scale that expands until the infinity. Those regions are
separated by the most productive scale size, where the frontier of the pointed cone
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intersects the convex hull of the DMUs. In Fig. 3.7 it corresponds to point 3, the
intersection between the dotted line (a linear hyperplane of dimension 1) and the
dashed polygon.

3.5 Concluding Remarks

Using all the typical graphical representations of data envelopment analysis, the
authors introduced based on a visual and spatial approach the basic ideas and
principles of DEA. The two models for CRS and VRS, known as the CCR and BCC
models, respectively, were presented, as well as both input minimisation and output
maximisation orientations; this makes a total of 4 different models, and for each of
those 4, there is a dual (weights D multipliers versus envelopment problems).

Many new developments of DEA could be presented here, most specifically
weights restrictions, non-controllable inputs and outputs and what may be the
most important one, the superefficiency model, that was introduced by Andersen
and Petersen from Odense University by 1993 (Andersen and Petersen 1993).
This technique is rather appealing because they allow efficiency to be greater
than one, discriminating between efficient DMUs that otherwise are all ranked
equal; it avoids also ambiguity on weights of those units (multiple solutions on the
weights D multipliers problem, degeneracy in its dual).

The equations presented allow the implementation of DEA software in many
programs as Excel, SAS, Mosel, Stata, OpenOffice and on any other program with
linear programming solving capabilities.
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