
Chapter 2
Review of Frontier Models and Efficiency
Analysis: A Parametric Approach

Ana Sampaio

Abstract The parametric frontier approach to efficiency measurement has been
extensively used in applied research. Within this conceptual framework, techniques
for econometric frontier analysis will be described. The purpose of this paper is to
present an overview of parametric frontier methods related to the measurement of
economic efficiency, focusing on both deterministic and stochastic perspectives. In
addition, development and extension of the cross-sectional and panel data context
associated with specification of functional forms are also revisited.

Keywords Efficiency analysis • Parametric frontier models • Functional forms •
Stochastic and deterministic specification

2.1 Introduction

In the actual context of global economy, with some economies experiencing slow
and decelerating growth, accompanied by high levels of unemployment, sustainable
economic recovery of states emerges as a priority issue of world development
strategy. It is in this paradigm that organizations’ competitiveness, allied to effi-
ciency analysis, must be allocated as tools to improve societies well-being. Also
at the micro-level of analysis, efficiency is associated to sustainable development
as the concept evolves the parsimony use of economic resources in order to reach
cost minimization, output and profit maximization. Measurement of firm efficiency
represents one of the most important subjects of investigation at the microeconomic
level, either in the context of developing and developed countries or within different
contexts of analysis. This is supported by the amount of empirical studies dealing
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with analysis of organizational efficiency emerging over the past 30 years in bench-
marking scientific literature, covering a wide range of fields. Agriculture, banking,
environmental economics, finance, transport, education, forestry, tourism and sport
are examples of sectors where such evaluation has been applied. The research of
reasons behind firm inefficiency is very important as it may be used to correct
fragilities and to improve efficiency in the production context. According to the
literature, organization’ efficiency measures may be obtained through the estimation
of an efficient frontier, with distance to this frontier being an indicator of the
organization inefficiency (Kopp and Diewert 1982). Although traditional regression
analysis has been widely applied in economic analysis, for the study of firm effi-
ciency, it is consensual among the scientific community that frontier methodology
is much more appropriate than least-squares methods, because the adjustment of a
function through the middle of a cloud of points can only obtain average parameter
estimates of the production structure rather than those associated with ‘best practice’
technology (Greene 1997). The concept of (in)efficiency is associated with the
theory of optimization and with the extent to which an economic unit fails to achieve
a theoretically ideal level of production possibilities (Forsund et al. 1980).

The research of reasons behind firm inefficiency is very important as it may
be used to correct fragilities and to improve efficiency in the production context.
Efficiency is associated with (1) technical efficiency if the goal of the analysis is to
obtain maximum output given a set of inputs, (2) cost-efficiency if the aim is the
minimum cost of producing that output given the input prices or (3) profit efficiency
in the case where interest is in the maximum profit attainable given the inputs,
outputs and price of the inputs (Greene 2005).

In order to measure organizations’ economic (in)efficiency, two main alternative
approaches have been developed and applied in empirical studies: a parametric and a
non-parametric method, or stochastic frontier approach (SFA) and data envelopment
analysis (DEA) (Charnes et al. 1978), as the most efficient frontier is best described
by a parametric function involving econometric methods for estimation purposes
or constructed through the use of a mathematical programming model applied to
observed data, respectively.

Frontier models and the associated measurement of efficiency have a long history
in the field of applied economics. Indeed and although papers by Debreu (1951)
and Koopmans (1951) had marked the origin of discussion on measurement of
efficiency, it was the work of Farrell (1957), extending Debreu and Koopmans re-
searches that suggested to measure technical (in)efficiency as the realized deviation
from a frontier isoquant. After Farrell’s seminal article on efficiency measurements,
several other approaches have been developed. It is consensual that only after the
1950s was the threshold between micro- and macro-level production/cost analysis
developed, expanding economic analysis at firm level.

For contextualization of the parametric approach to economic frontier modelling
at the microeconomic level, the contributions, in estimating production functions,
of Cobb and Douglas (1928), Samuelson (1938), Dean (1951), Shephard (1953),
Johnston (1959), Arrow et al. (1961) and Nerlove (1963) represent a significant
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point in econometrical literature. Still in the paradigm of empirical analysis at the
micro context, extension and identification of the term inefficiency, with the usual
disturbance component of a regression model, have been frequently applied.

This chapter presents an overview of the parametric frontier approach to effi-
ciency measurement. Section 2.2 refers to the econometric approach to efficiency,
Sect. 2.3 reviews cross-sectional frontier models, Sect. 2.4 deals with frontier
analysis with panel data and, finally, Sect. 2.5 extends the theory to new statistical
developments and applications.

2.2 Econometric Approach to Efficiency

The econometric approach to efficiency results from the estimation of frontier
models which deal with parametric representations of technology along with a one-
sided error term or a two-part error term (composed error), depending on how
the functional form has been specified as being a deterministic or a stochastic
frontier (Kalirajan and Shand 1999; Murillo-Zamoran and Vega-Cervera 2001). As
the parametric approach to efficiency states an econometric specification, models
may also be classified according to the function form, production, cost or profit,
or functional form, which describes the relationship between inputs and outputs.
Additionally, other criteria may be assumed to classify frontier models, such as the
sample context (cross-sectional or panel data), the temporal variation of inefficiency
and the functional specification of the inefficiency term of the composed error.

Introduced by Koopmans (1951), extended by Debreu (1951) and developed in
the empirical econometric field through the seminal paper by Farrell (1957), the
concept of economic efficiency has been of interest to modern researchers. Both
(1) the conceptual contribution of Koopmans (1951), defining technical efficiency
as a feasible input–output combination where it is not possible to increase output
(decrease input) without simultaneously increasing input (decreasing output), and
(2) the Debreu coefficient of resource cost allocation for the measurement of techni-
cal and allocative inefficiency, supported by resources, technology and preferences
and resulting from the ratio between minimized resource costs of obtaining a given
consumption bundle and actual costs, for given prices and a proportional contraction
of resources (Forsund and Sarafoglou 2002), represent significant contributions to
interpretation of efficiency. Augmenting the Debreu coefficient of a proportionate
input contraction and associating technical inefficiency with deviations from an
idealized frontier isoquant, Farrell’ work has been greatly analysed and discussed
in the context of empirical literature on production and cost functions. Extending
the standard definition of production function, a production frontier model defines
the boundary of the former as it gives the maximum possible output for a given set
of inputs. So, an efficient organization will be located on the frontier of production,
reflecting technical or allocative efficiency. Technical efficiency occurs when a firm
produces at the maximum level of output given inputs or as it uses the minimum
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level of inputs given output. Allocative efficiency occurs when the marginal rate
of substitution between inputs equals the input price ratio, or as it operates at an
optimal proportion use of inputs, given the prices.

2.3 Cross-Sectional Frontier Models

In a cross-sectional context and depending on the specification of the parametric
frontier function error term (one or two component), models used for the estimation
of technical efficiency can be classified as deterministic frontier models or as
stochastic frontier models. The parametric approach to efficiency measurement
estimation appears in the production theory with Aigner and Chu (1968) being the
first to follow Farrell’s suggestion, but it is in the 1970s that the study of economic
efficiency in the sectional context develops most. In the econometric literature,
various criteria exist for classifying frontier models (Forsund et al. 1980).

The models are statistical when the error term is specified by a given distribution
of probability and the estimators have statistical properties. On the contrary, models
are not statistical when this term does not have statistical properties. In nonstatistical
deterministic models, linear programming and quadratic programming techniques
are used to construct the frontier.

In the category of statistical models, they are deterministic or stochastic ac-
cording to the error term of the respective objective function being formed by one
component, which only translates inefficiency of the process or by two components,
an inefficiency term and a white noise, respectively. Parametric deterministic models
evolve both goal programming and econometric techniques in order to either
calculate the parameter vector or estimates of inefficiency.

With goal programming techniques, the technology parameter vector is calcu-
lated through the solution of a deterministic optimization method (Aigner and Chu
1968; Timmer 1971; Forsund and Hjalmarsson 1979; Nishimizu and Page 1982;
Forsund 1992). This type of frontier was subsequently abandoned and replaced by
another type more suited to statistical analysis of the results, that is, by deterministic
parametric frontiers with statistical properties.

With the deterministic statistical approach, the parameters are estimated rather
than calculated, allowing the use of additional statistical inference procedures. This
new type of model, initially developed by Afriat (1972), was later enhanced by the
contributions of Richmond (1974), Gabrielsen (1975), Schmidt (1976) and Greene
(1980a). At the end of the 1970s and as an alternative to deterministic frontiers,
stochastic frontiers appeared, allowing deviation in relation to the frontier to be also
explained by a factor outside the firm’s control (Lee and Tyler 1978). Stochastic
frontier specification includes a two-sided error term, capturing not only the effects
of the classical statistical noise but also technical inefficiency or the magnitude of
the shortfall of output from its maximal possible value.
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2.3.1 Deterministic Frontier Models

Under statistical deterministic models, all the deviations from the frontier are
assumed to be the result of technical inefficiency of the production process, and
no account is taken of measurement errors or statistical noise. The error term
is completely due to inefficiency which may be specified according to a given
asymmetric distribution of probability, such as a semi-normal, a truncated normal,
an exponential (Schmidt 1976) or a gamma distribution (Greene 1990).

Aigner and Chu (1968) were the first authors to estimate a parametric and
deterministic frontier model through a Cobb–Douglas function, which would
express behaviour’s heterogeneity of firms in the production context. According to
them, differences captured from a cross-sectional group of units would be explained
by technological reasons associated to the industry where they operate, by the scale
of operations and by different options of management structures. When a firm
operates at the frontier of production it is expected a zero disturbance in its model
specification, meaning that it operates at the potential level of production.

By contrary, when a firm operates under the potential level of production, it is
expected that the disturbance captures this fact, through a distance from the frontier,
or the inefficiency magnitude. A deterministic parametric frontier may be specified
as Yi D f .Xi I ˇ/TEi , where i indicates the producer, Y the scalar output, X a vector
of inputs, f (�) the production frontier, ˇ the parameter vector and TE technical
efficiency. This last formulation is obtained through the ratio of the observed output
to the maximum feasible output, or

TEi D Yi.observed/

f
�
Xi.frontier/; ˇ

� (2.1)

This formulation suggests that technical efficiency is assessed, for each produc-
tive unit, through TEi D exp.�ui/, with 0 < TEi � 1, reflecting the distance of each
unit from the production frontier. So, the deterministic frontier formulation may be
expressed through:

yi D f .Xi Iˇ/ exp.�ui / �i � 0 (2.2)

where yi represents the dependent variable and translates the production observed
for a productive unit i, with i D 1; 2; :::::N; ˇ represents a vector of unknown
technological parameters, xi represents a vector of non-stochastic productive factors
for observation i and ui is the model’s error component translating technical
inefficiency and restricted to be �0, in order to guarantee that TE � 1.

ln yi D ˇ0 C
NX

nD1

ˇn ln xni � ui

ui � 0 (2.3)
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where the observations in u for each productive unit are non-negative, independent
and identically distributed random variables, with an expected value to be positive
and constant and the variance finite. It is also assumed that these random variables
are not correlated with the regressors. Although the slope parameters in the
deterministic frontier models can be consistently estimated by ordinary least squares
(OLS) method, the constant term cannot be consistently estimated as the error term
is not normality distributed. Considering some additional hypotheses or including
adjustments on the specification of the error term of the frontier model, efficiency
measures can also be obtained just from OLS as the adjustments restrict the frontier
specification to be similar to the classical regression model.

Two methods for evaluating efficiency from OLS estimator involve the corrected
ordinary least squares (COLS) and the modified least square (MOLS) as the
estimated average-practicing frontier had been shifted up by the maximum amount
of residuals (Gabrielsen 1975) or by the mean of residuals (Richmond 1974).
Proposed by Winsten (1957) and developed by Gabrielsen (1975) and Greene
(1980a, b) to estimate the frontier, COLS method adjusts the OLS line upwards or
downward, by the maximum or by the minimum of the residuals, for a production
function or for a cost function, respectively, in a way that COLS line rests parallel
to the OLS line. Bounding all the units from above, inefficiency may be measured
as a distance function from the COLS line so that all the unknown parameters may
be consistently estimated.

In a first stage, OLS is used to obtain estimates of the slope parameters and a
consistent but biased estimate of the intercept. In the second step, the estimated
intercept is shifted up by the maximum value of the OLS residuals Ǒ

COLS D
Ǒ
OLS C mKax Oei so that the resulting COLS intercept is consistently obtained.

Individual efficiency measures result from subtracting to an individual OLS residual
the maximum sample residual such as Oui D OeolsIi � max OeolsIi .

Under a parametric context and proposed by Afriat (1972) and by Richmond
(1974),1 the modified least-squares method (MOLS) represents an alternative
technique to OLS procedure in the frontier context, consisting in the correction
of the intercept with the expected value of the error term such that the estimated
frontier function could be displaced upwards by the estimate of EŒui �; or; Oui . As in
the context of the COLS method, the residuals also provide consistent estimates of
individual measures of efficiency, provided the estimated mean of the error term is
subtracted: �Oui D Oei � Oei � Oui instead of the maximum residual.

Indeed, this difference between two methods does not ensure that all units under
MOLS estimation procedure are bounded from above by the estimated production
frontier, although both frontiers (COLS and MOLS) led to parallel line to the OLS
regression. The inconvenient of this parallelism is associated to the fact that it
restricts the structure of the production technologies, best practice (frontier models)
and mean practice (classical mean regression) to be equal. Also in the deterministic

1These two authors proposed an exponential and a half-normal to model the error term of the
model, respectively.
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frontier context, Greene (1980b) propose maximum-likelihood (ML) estimation,
which represents the most popular and widely used technique in the estimation of
frontier models. Kumbhakar and Lovell (2000) present an excellent review of the
various distributions for modelling technical efficiency, necessary for maximum-
likelihood estimation.

The main advantage of deterministic statistical models is the ease of obtaining
individual estimates of efficiency for productive units although the estimation
of a deterministic frontier, common to all productive units, assumes that all the
deviations from the frontier are entirely interpreted as inefficiency. Indeed, in a
deterministic frontier model context, maximum production is given by a function
whose error term only reflects the firm’s technical efficiency.

However, there are other factors outside its control which affect its behaviour and
which are also ‘captured’ by the unilateral error term. So, the residuals of estimation
provided by deterministic methods are therefore overvalued. Assessment of the
performance of productive units and their comparison from efficiency measurement
based on these residuals is consequently harmed. Summarizing, a deterministic and
statistical frontier of production means that all observations (except one) are situated
below the production frontier (or in the case of a cost function, above the cost
frontier).

This restriction is the main limitation of using deterministic frontiers. The non-
existence of a symmetric component in the error term able to capture random or
uncontrollable shocks is the principal criticism of statistical deterministic frontier
models.

2.3.2 Stochastic Frontier Models

The origins of parametric stochastic frontier analysis are in the efforts made to
overcome the limitations imposed by deterministic models in assessing efficiency.
This new approach assumes that the frontier varies randomly between productive
units, that is, incorporating in its specification an additional error term that captures
the effects caused by factors outside the productive unit’s control. With a stochastic
frontier to model an economic process, the error term is structured according to
two components: a first component that would capture statistical noise and a second
component that would translate the effects of technical inefficiency.

Both components of error term are specified from probability distributions (an
asymmetric one for modelling inefficiency component and a symmetric/normal
distribution for modelling the stochastic error component). From an econometric
perspective, the stochastic statistical method refers to estimation of models based
on functional forms that allow observations on both sides of the frontier.

This method was proposed almost simultaneously in three continents: Meeusen
and Van den Broeck (June 1977), Aigner et al. (July 1977) and Battese and
Corra (1977), in an attempt to overcome the disadvantages caused by deterministic
frontiers in assessing the individual efficiency of productive units.
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These models possess not only a component reflecting the distance from the
frontier due to producers’ technical inefficiency but also a new component that
absorbs the impact of random shocks on production. These models are characterized
by having an error term with two elements " D v � u. The first component of
the error, usually assumed to follow a Gaussian distribution, reflects disturbances
or factors which affect the production level but cannot be controlled (climatic
variations, equipment breakdown, illnesses : : : ).

The second component of the error captures the inefficiency in managing
production and is assumed to follow a one-sided distribution, such as an half-normal
(Aigner et al. 1977), a truncated normal (Stevenson 1980), an exponential (Meeusen
and van den Broeck 1977) and a gamma (Greene 1990). Considering a stochastic
formulation for a frontier model, the following Cobb–Douglas log-linear function
will include a compound error term and a deterministic part as is showed in (2.4):

ln Yi D ˇ0 C
NX

nD1

ˇnXni C vi � ui (2.4)

where Yi is the logarithm of production concerning producer i; i D 1; : : : N; Xi is
a vector of productive factors used by producer i, ˇ is a vector of technological
parameters to be estimated, (vi) are random i.i.d variables with zero mean and
independent of ui and of the regressors and ui � 0 are non-negative random i.i.d
variables, independent of vi and of the regressors. Both error components, v and
u, have constant means (0 and �) and variances, �2

v and �2
u , respectively, over all

observations.
The joint density of these two error components will underlie likelihood func-

tions. So, according to the distribution assumed for the asymmetric compo-
nent of the error term, model designations will be given by normal-half-normal,
normal-truncated-normal, normal-exponential and, finally, normal-gamma. Initially,
stochastic frontiers only allowed estimation of one measurement for the sample’s
average efficiency.

The main limitation of the stochastic frontier model is the impossibility of separating the
two components from the individual residual, i.e., it does not allow estimation of individual
technical inefficiency. (Forsund et al. 1980)

Two years later, Jondrow et al. (1982) presented a method which was able to
overcome this major limitation of stochastic frontiers. They showed that for the
half-normal case, the expected value of ui conditional on the composed error term is

E

�
ui

"i

�
D ��

.1 C �2/

�
�.ei�=�/

ˆ.�ei �=�/
� ei �

�

�
(2.5)

where �.�/ represents the density of the standard normal distribution and ˆ.�/ the
cumulative density distribution,

� D �u

�v
; ei D vi � ui and � D �

�2
u C �2

v

�1=2
(2.6)
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The basic idea of this method consisted in using the mean and mode of
conditional distribution to obtain estimates for each producer as TEi D 1�E Œui =ei �.
Jondrow et al. (1982) applied the methodology to models with the ui component
specified from a semi-normal and an exponential distribution. For the models
described through a Cobb–Douglas function and in the form of logarithm, Battese
and Coelli (1988) suggested the use of another estimator adapted to sectional
data and for normal-truncated-normal and for normal-half-normal distributions and
expressed as

E

�
exp

.�ui /

ei

�
D
�

1 � ˆ .ı C .�ei =ı//

1 � ˆ.�ei =ı/
exp

�
�ei C

�
ı2

2

���
(2.7)

where

ı D �u�v

�
I � D �2

u

�2
: (2.8)

With sectional data, two methods of estimating stochastic frontiers are generally
analysed: maximum likelihood (ML) – Afriat (1972), Greene (1980b) and Steven-
son (1980); and modified least squares (MOLS). The option between methods based
on OLS and the ML method also depends on the distribution asymmetry intensity of
ui: when this is not very pronounced, distribution of the error term is approximately
symmetric and normal. In these circumstances, results of estimation are similar to
those obtained with OLS. The efficiency gains attained by using the ML method
only occur if the joint distribution of the error term is clearly asymmetric.

Calculation of the sample’s mean technical efficiency can be made from the mean
of the residuals from stochastic model estimation: with vi being a random variable
normally distributed with zero mean, the value of the sample’s mean efficiency
is identical to the mean of the asymmetric component of the error or E Œ"i � D
E Œvi � ui � D EŒ�ui �. So, ET D 1=N

�P
i .�Oui /

	
or ET D 1=N

�P
i exp .�Oui /

	
if

the model is presented in logarithmic form.
The expressions for the sample’s mean efficiency and for the respective expected

value depend on the probability distribution assumed for ui (Jondrow et al. 1982).
Therefore, if a semi-normal or exponential distribution is assumed, the sample’s
mean efficiency will be given by ET D �O�u

p
2=� and by ET D 1= O� respectively.

The main disadvantages arising from estimating stochastic frontiers from sec-
tional data for assessment of technical efficiency of productive units are associated
with the requirement of major restrictions, such as the absence of correlation
between regressors and the term of technical efficiency, suitability of the chosen
distributions for modelling the asymmetric component of the compound error and
the impossibility of ensuring consistency of the estimators when a productive unit
is observed only once. The variance of distribution assumed for the component of
technical efficiency conditional in the entire error term does not disappear when
the size of the sample increases. Advantages of the panel data stochastic frontier
models versus cross-sectional data are presented and explored in Schmidt and
Sickles (1984).
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2.4 Frontier Models in Panel Data Framework

The literature is very rich with regard to theoretical and empirical use of data set
in a panel (see Baltagi 1995). The first parametric approach to frontier models with
panel data for estimating measurements of technical inefficiency is due to Pitt and
Lee (1981), who combined the potential of analysing time series with the advantages
of sectional analysis to estimate frontier models through maximum likelihood. This
was followed immediately by innovative studies in this domain, responsible for the
later development of this type of model.

The contributions of Schmidt and Sickles (1984), Cornwell et al. (1990), Battese
and Coelli (1988, 1992, 1995) and Kumbhakar et al. (1991) stand out particularly.
For a review of the literature on using panel data in the context of stochastic
frontiers, see the studies by Kumbhakar (1990) and Kumbhakar and Lovell (2000).
In the literature referring to frontier models estimated from panel data, we find
different econometric specifications, resulting from the various hypotheses assumed
for the term of technical inefficiency (Ahmad and Bravo-Ureta 1996). Regarding the
hypotheses assumed for the term of technical inefficiency, these hypotheses can be
summarized as follows:

(a) Absence of correlation between the term of efficiency and regressors
(b) Correlation between the term of efficiency and regressors
(c) Temporal invariance of the term of technical efficiency
(d) Temporal variance of the term of technical efficiency

The models are classified according to the hypotheses assumed for the term
of technical inefficiency and according to the method of estimation adopted. The
following categories may be therefore considered:

A – Models with time-invariant inefficiency term

• Fixed effect models
• Random effect models
• Maximum-likelihood models

B – Models with time-variant inefficiency term

• Models based on least-squares correction (fixed effect model and random effect
model)

• Maximum-likelihood models
• Exogenous influence function models

2.4.1 Fixed Effect Model with Time-Invariant
Inefficiency Term

In the non-frontier context of estimation with panel data, the fixed effect model
was introduced by Mundlack (1961) and developed by Hock (1962) among others.
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As the starting point, it is consider the general model (Cobb–Douglas), of just one
product, for panel data:

ln yit D ˇ0 C
NX

nD1

ˇnit ln xnit C "it (2.9)

with i D 1, : : : , N producers; t D 1, : : : , T periods and n D 1; : : : N 0, explanatory
variables. The level of production for individual i in period t is represented by ln yit ,
the independent term is given by ˇ0 and the ˇnit regression coefficients may or may
not vary in i or in t. It is noted that in a traditional panel data model, the error term
has an expected value of E Œ"it � D 0 and a constant variance V Œ"it � D �2

" . Schmidt
and Sickles (1984) proved that, in a context of using panel data to estimate efficiency
measurements, it was possible not to specify a particular distribution for the effects
of inefficiency, since the model’s parameters could be estimated using traditional
estimation methods with panel data, where the fixed effect method is included.

Schmidt and Sickles (1984) considered models where individual effects are
constant parameters that can be correlated with the explanatory variables. Coef-
ficients are estimated from the idea of variation in productive units, within-firm
variation (Farsi et al. 2005, 2006), not being affected by the existence of correlation
between regressors and individual effects. The specification underlying this type of
model suggests that the differences found in terms of productive factors are simply
explained by a set of individual factors, constant over time, which in frontier models
translate technical inefficiency. Productive structure is identical for all firms. The
estimation techniques adopted depend on the absence, or not, of correlation between
regressors and the technical inefficiency term and on the imposition, or not, of a
specific distribution for the technical inefficiency term.

The frontier model with time-invariant technical efficiency is therefore expressed
as follows:

yit D ˇ0 C
X

n

ˇn ln xnit C vit � ui �i � 0 (2.10)

where i D 1; : : : ; N , t D 1; : : : ; T , n D 1; : : : ; N 0 are, respectively, the index
distinguishing the different productive units, the time index and the index describing
the N 0 regressors used by producer i. vi t � ui represents the compound term of
model disturbance, where the first component of the error is an i.i.d random variable,
E Œvi � D 0 and V Œvi � D �2

v , which varies over units and time and the second
component .ui / is the asymmetric inefficiency error term, assumed to vary only
over units.

This last error component is treated as firm-specific constants or as fixed effects
or individual effects. It is assumed that ui � 0, that is, the non-negativity of this
component for any i, and also that E Œui � D � and V Œui � D �2

u . It is also considered
that ui is distributed independently of vi t and that vi t is not correlated with the
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regressors. The model presented in (2.10) may be adapted for OLS estimation
proposes, by eliminating the intercept term and adding a dummy variable for each
sample element:

yit D ˇ0i C
X

n

ˇn ln xnit C vit (2.11)

where ˇ0i D .ˇ0 � ui / represents the specific N intercepts associated with each
producer. In this new model, named the fixed effect frontier model, no distribution
is specified for the asymmetric error term (ui) which can be correlated with the
regressors or with vi. As the component ui is estimated together with the specific
intercept of each producer, it is treated as a fixed effect (not random). OLS
estimation procedure is applied, and individual estimates are obtained for Ǒ

0i from
the mean of the within estimation residuals and by productive unit: Ǒ

0i D O"	W

where O"	W D Ny	 � ˇ0 .xit � Nx	/ with Ny	 D PT
tD1 yit =T and Nx	 D PT

tD1 xit =T and
Nv	 D PT

tD1 vi t =T . The estimate for ui is obtained from the following correction
(Gabrielsen 1975 and Greene 1980a method): Oui D Ǒ

0 � Ǒ
0i . This correction

ensures the positivity of the individual effects and is done on the assumption that
the most efficient firm is 100 % efficient, that is, it presents when Ǒ

0 D max Ǒ
0i .

The estimates are consistent when the respective variances tend towards 0 as the
number of observations (N � T) tends towards infinity. Individualized estimates
for the measurement of technical efficiency are given by TEi D exp f�Oui g with
Oui D Ǒ

0 � Ǒ
0i , that is, it is given by the difference between the global estimate for

the intercept and the estimates obtained for producers’ specific intercepts.

The global estimate for the intercept is the result of Ǒ
0 D max

n Ǒ
0i

o
. The

producer situated on the frontier is considered 100 % efficient presenting max
n Ǒ

0i

o
,

and the efficiency of the others is assessed in relation to this producer. Estimation
with a fixed effect frontier model (within estimator) generates consistent estimates
for the technological parameters Ǒ

n when T or N tends towards infinity, without
the need to assume absence of correlation of the asymmetric error term with
the regressors or normality of the symmetric error term distribution. As for the
consistency property for the estimates of the specific intercepts for each producer,n Ǒ

0i

o
, this is only found when T ! 1. Estimates for the asymmetric error term are

only consistent if N and T ! 1. Another possible transformation to the previously
specified model (2.10) consists in estimating a frontier model (2.12) by OLS after
the within-groups transformation (or after all observations have been transformed in
order to be expressed in terms of deviations from the individual means):

yit � yit D ˇ0 .xit � xi / C vi t � vi (2.12)

The possibility of obtaining consistent estimators of individual technical ef-
ficiency, even faced with the hypothesis of correlation between regressors and
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individual effects, is the main attraction of estimation based on fixed effect models.
Another relevant advantage lies in the fact of ui is fixed, and so, the specification of
the respective distribution is not necessary.

The main limitations arising from using these models can be expressed in the
following points: (a) estimation of the model means the variables must present
sufficient time variations, since the within technique assumes the respective param-
eters estimated from the deviations of variables from the respective means. If the
variation is small, the accuracy of the estimates is in doubt; (b) the measurements of
technical inefficiency reflect not only the inefficiency of the productive process but
also the effect of other factors which are invariable over time and variable between
productive units; (c) the productive unit with the smallest intercept is understood to
be the efficient unit with which the other units are compared.

Among many other studies with fixed effect production frontier models, that of
Ahmad and Bravo-Ureta (1996) stands out, comparing the effects on measuring
the efficiency of fixed effect models and stochastic frontier models with different
specifications for the asymmetric error component (semi-normal and truncated
normal). It should be mentioned that the first fixed effect frontier models only
considered balanced data panels. Some years later, these models were developed
and adapted by Battese and Coelli (1988) to integrate also unbalanced panels.

2.4.2 Random Effect Model with Time-Invariant
Inefficiency Term

The first developments in the sphere of random effect models were the work
of Pitt and Lee (1981). The authors considered a model with distributional as-
sumptions about the error term where vi t \ i:d:N

�
0; �2

v

�
represents noise and

ui t \ i:d:N C �0; �2
u

�
represents distribution of the non-negative component which

translates the inefficiency of the model.
For the respective estimation, Pitt and Lee (1981) proposed the ML technique.

Several years later, Battese and Coelli (1988) adopted this formulation, proposing
truncated-normal distribution for modelling the component of technical inefficiency
and using ML for estimation purposes. Schmidt and Sickles (1984) used another
random effect model aiming to avoid the drawbacks arising from the Pitt and Lee
specification which assumed a particular distribution for the inefficiency component
and regressors variable over time. Assuming now independence of the inefficiency
term and the regressors and that ui are random than fixed results new modification
of the initial model (2.10) or the random effect model given by the expression:

ln Yi D ˇ�
0 C

NX

nD1

ˇn ln Xnit C vit � u�
i (2.13)
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where ˇ�
0 D ˇ0 �E .ui / and u�

i D ui �E .ui / and zero mean for u�
i and vi. With the

introduction of this transformation, zero mean for the error term, GLS (generalized
least squares) technique can be applied to estimate the model (2.13). The random
effect model operates in exactly the same way as the error component (one-way)
model described in the literature on panel data. To estimate this model, the GLS
technique in two steps is used.

The method involves, at the first stage, OLS estimation of all the model’s
parameters. When the matrix of covariances of the error vi t � u�

i is known, that
is, �2

v and �2
u are known, the GLS estimator for ˇ�

0 and for ˇn is BLUE (best linear
unbiased estimator), and consistency is ensured either when N ! 1 or when T !
1. However, usually �2

v and �2
u are not known. In this situation, it is appropriate to

use the FGLS (feasible generalized least squares) method to estimate the variance
of the compound error term OV Œ"� D OV Œui � C OV Œvi � D O�2

u C O�2
v . The estimate for

the variance of the symmetric error term is given by the variance of the residuals
of the fixed effect model (within2 residuals), O�2

v D O"0 O" =ŒN .T � 1/ � K� and the
estimate for the variance of the asymmetric error term is given by the combination of
the residuals of the between3 estimation with the residuals of the within estimation
O�2

v D fO"0 O"=ŒN � K� � O�2
v g =T . At a second stage and after estimation of ˇ0 and

ˇn (with GLS or FGLS), the measurements of technical efficiency are given by
TEi D expf�Ouig with Oui D maxfOu�

i g � Ou�
i and u�

i resulting from the mean residuals
of FGLS estimation:

Ou�
i D 1

T

X

t

 

ln yit � Ǒ�
i

X

n

Ǒ
n ln xnit

!4

(2.14)

In these conditions, the estimates obtained for individual inefficiency translate,
just as in the case of the fixed effect model, the distances between the intercept
of each productive unit and the greatest intercept relating to the productive unit
considered efficient. The frontier is then moved to the greatest intercept estimated in
the sample. The BLUP (best linear unbiased predictor) by Lee and Griffiths (1979)
is an alternative estimator to u�

i and is given by

Qu�
i D �O�2

u

T O�2
u C O�2

u

TX

tD1



ln yit � Ǒ�

0 FGLS � Ǒ
n FGLS ln xit

�
(2.15)

2The residuals of the within estimation are given by O"0 O" D
NP

iD1

TP

tD1

h
yit � yi � Ǒ0

Within .xit � xi /
i2

:

3"�0

"� D
NP

iD1



yi � Ǒ�

Between � Ǒ0

Betweenxi

�2

. The latter residuals are the result of applying the

OLS technique to the model: yit D ˇ� C ˇ0xi C vi � u�

i .
4These estimates are consistent as long as N and T ! 1.
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The GLS5 estimator for ˇ�
0 and for ˇ�

n is consistent when simultaneously N and
T ! 1, and the variances of the two components of the error term are known.
When these are unknown, it is necessary that T ! 1 for the variance of u to
be estimated consistently and that N or T ! 1 for the FGLS estimator of the
variance of v to be consistent. The estimators of Qui and Oui are consistent when N and
T ! 1. The FGLS estimator is suitable when N is large and when the hypothesis
of the existence of correlation of u with the regressors is rejected. Opting for the
FGLS estimator or the within estimator depends on the hypothesis of absence of
correlation between technical inefficiency and the regressors being confirmed or not.

Hausman and Taylor (1981) developed an alternative estimator (HT) which
shares characteristics with within and FGLS estimators, being indicated for testing
this hypothesis of absence of correlation between technical inefficiency and the
regressors. Equally, adoption of a random effect model also involves limita-
tions. Firstly, these models do not allow us to distinguish the inefficiency of
non-observable heterogeneity (only one parameter is specified to capture that
heterogeneity).

As in the fixed effect model context, to check consistency of the asymmetric
error term, it is necessary that Ti ! 18i . Secondly, the frontier associated with a
random effect model is constructed from moving the frontier to the intercept relating
to the most efficient unit in the sample. However, if the sample is small, it may not
include any efficient unit or one close to optimal production.

2.4.3 Temporal Variation of Efficiency Term

The fixed effect, random effect and maximum-likelihood models share the assump-
tion of temporal invariance in the component of technical inefficiency. However, we
find that, when analysing the efficiency of a productive process, it is often more
appropriate to consider the time effect on this component of the error, principally
when there are sufficient data on the same productive unit observed in various
periods. In these circumstances, it is improbable that productive units continue to
present a constant measurement of inefficiency in all the periods of observing their
production.

Indeed, knowledge of the level of technical inefficiency over time necessarily
causes interventions in the production process that affect results in the following
periods, invalidating the initial hypothesis of individual effects being constant in t.
Cornwell et al. (1990), Lee and Schmidt (1993), Heshmati and Kumbhakar (1994),

5When the variances of the components of the error term are unknown, the FGLS estimator of �2
v

is consistent with N or T ! 1, whereas for �2
u consistency is ensured only with T ! 1.
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Kumbhakar and Heshmati (1995) and Battese and Coelli (1992, 1995) were pioneers
in studying frontier models with time variation of technical efficiency, and Cuesta
(2000) enhanced the literature on this subject with new developments.

The different models, which in the respective specifications integrate the time
variation of technical efficiency, can be classed in three categories: (1) fixed effect
models and random effect models (based on correction of least squares), (2)
models estimated using ML and (3) exogenous influence function models. The main
difference between the categories of models with time-variable efficiency lies in how
this is modelled. In fixed and random effect models, efficiency is modelled from the
independent term, whereas in maximum-likelihood models and those incorporating
exogenous influences, this is modelled from the error term, therefore meaning
imposition of joint probability distribution.

For each of the first two categories mentioned, they are also differentiated by
the specifications where the standard of time-variable efficiency is common to all
producers from those specifications where the efficiency standard varies between
producers. Prominent among the first type of model are those by Cornwell et al.
(1990), with a distinct standard of time variation for each productive unit,6 and by
Lee and Schmidt (1993), with a standard of time variation common to all productive
units, both estimated using COLS techniques. In these models, it is not possible to
separate the effect of technological progress from the effect of technical inefficiency
in the independent term.

In the context of the second group of models, assuming simultaneously the
conditions of independence of u regarding the regressors and the distributional
suppositions mentioned concerning the two components of the respective errors,
this includes those satisfying the conditions required for maximum-likelihood
estimation. Of special note are the models suggested and developed by Kumbhakar
(1990), Battese and Coelli (1992, 1995) and Cuesta (2000). While the models
by Kumbhakar (1990) and Battese and Coelli (1992) have a standard of time-
variable efficiency common to all firms, the models proposed by Battese and
Coelli (1995) and Cuesta (2000) present a rate of time-variable inefficiency which
varies between firms. In this second group of models, it is possible to separate the
effect of technological progress from the effect of inefficiency on the productive
process.

The third category of models concerns a type of frontier model where the term of
inefficiency is a vector of observable factors. Kumbhakar et al. (1991) developed a
model in a sectional context, and Battese and Coelli (1995) generalized it for panel
data context.

6The effects where the inefficiency is contained are given by the product of time effects (common
to all firms) and individual effects: ˇit D 
t ıi .
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2.4.3.1 Fixed and Random Effect Models

According to the literature on the subject, in this type of model, time-variable
efficiency is incorporated from the independent term also named individual effects.
In these models, the independent term incorporates two components: one reflecting
the effect of technological progress and the other the effect of technical inefficiency
on the productive process. Concerning the estimation method, as in the case of
time-invariant inefficiency, this is based on corrections carried out on the results
of estimation obtained with the least-squares method.

Two subgroups of models are distinguished, however: those for which a standard
of efficiency variation is assumed for each productive unit and models where this
standard is common to all productive units. The Cornwell et al. (1990) model is
included in the first type of models, and the model proposed by Lee and Schmidt
(1993) falls into the second type.

The Cornwell et al. (1990) Model

Cornwell et al. (1990) developed and estimated a frontier model in whose specifi-
cation they introduced the component of technical inefficiency varying over time.
The functional form is based on a Cobb–Douglas technology of production where
the independent term and some regression coefficients vary with the individuals and
with time.

This model generalizes the one by Schmidt and Sickles (1984), considering in
the production function, a function of variable coefficients which is quadratic in t
and contemplates the individual and time variation of technical efficiency which is
identical for all productive units. The model can therefore be presented with the
following formulation:

yit D ˇ0t C
X

k

ˇn ln xnit C vi t � ui t

D ˇit C
X

k

ˇn ln xnit C vi t (2.16)

with ˇit D ˇ0t � ui t expressing the intercept of unit i in period t and with ˇ0t

translating the common frontier intercept in period t. The authors assume a quadratic
function to explain, or �it D ˆ1i C ˆ1i t C ˆ3i t

2, where ˆ’s are specific producer
parameters. With this new specification, production levels vary between firms and
over time, as well as technical efficiency. For estimation proposes, authors applied
GLS random effect estimator, as they assumed time-invariant regressors, time-
varying technical efficiency in the specified model and independence between the
asymmetric error term and regressors.
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Lee and Schmidt (1993) Model

The main difference in relation to the last model lies in the fact that these authors
have imposed a standard time variation for ui, which is identical for all the sample’s
productive units. They propose an alternative specification for the asymmetric error
component �it D ıt �i or the product between the time effects (dummies) and
individual producers’ inefficiencies.

2.4.3.2 Maximum-Likelihood Models

For a second group of models, there is simultaneous assumption of the conditions
of independence of ui with regard to the regressors and distributional suppositions
about the two components of the respective errors. These models can then be
estimated by ML, highlighting the models suggested and developed by Kumbhakar
(1990) and Battese and Coelli (1992), with a standard of time variation common
to all producers, and by Battese and Coelli (1995) and Cuesta (2000), where the
standard time variation is specific for each producer.

Kumbhakar (1990) Model

Kumbhakar (1990) was the first to suggest and use a stochastic frontier model with a
time variation standard of levels of technical inefficiency common to all productive
units with estimation by maximum likelihood. The author suggests that the time
variation of u assumption may be defined through an exponential function of time
given by ui t D f .t/ � ui or the product of a function in t or

f .t/ D �
1 C exp

�
˛t C ˇt2

�	�1
(2.17)

by ui which is modelled as a truncated-normal distribution ui \ i:i:d:N C.0; �2
u /,

independent of regressors. The estimation of the time-varying efficiency effect
model is realized in a random effect framework and using ML method.

Battese and Coelli (1992) Model

Battese and Coelli (1992) generalized Kumbhakar’s idea to unbalanced (or in-
complete panel data) models, proposing an alternative frontier model to that of
Kumbhakar, also assuming time varying for efficiency and restricted to be common
to all individuals (productive units).

The author suggests that the time variation of u should be defined from a function
given by ui t D f .t/ � ui , where

f .t/ D exp Œ� .t � T /� ; f .t/ � 0I f .T / D 1 (2.18)
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involving only one unknown parameter and so, less flexible (Coelli et al. 1998,
pp. 278). Since the rate of time variation is identical for all units, the value estimated
for the additional parameter allows analysis of the tendency of efficiency over time:
efficiency increases (for all units) if the value estimated for this parameter is positive,
diminishing if it is constant over time if the parameter assume a zero value.

With this new specification only in the last year of analysis, productive units
present a specific standard of efficiency. In the other years, the standard is also com-
mon to all productive units. Battese and Coelli (1992) used the method of maximum
likelihood together with a truncated-normal distribution for the asymmetric error
term modelling.

2.4.3.3 Models with Exogenous Influences

The third category of models is used as the result of research for an answer to
the existence of inefficiency, and it is associated with a type of frontier where
the inefficiency term is a vector of observable factors. Kumbhakar et al. (1991)
developed this methodology in the context of sectional data, and Battese and Coelli
(1995) generalized it to panel data.

For Kumbhakar et al. (1991), technical inefficiency would be composed by a
deterministic part with exogenous variables and by a stochastic component ui D
� 0mi C 
i with mi being a vector of observable qualitative factors, � a vector of
parameters and non-observable random component (inefficiency model error term).

Additionally, Kumbhakar et al. (1991) assuming (1) vi \ i:i:d: N.0; �2
v /, (2)

ui \ N C


�

0

mi; �2
u

�
and (3) v and u independently distributed, suggested ML

estimation procedure. According to this specification, technical inefficiency only
varies between productive units and depends on specific exogenous variables.

This type of model has been criticized due to the fact that it tries to explain
differences in inefficiency through variables that already appeared in the models, as
productive factors.

Battese and Coelli (1995) Model

Battese and Coelli proposed a model where the inefficiency term varies over
time, follows truncated-normal distribution and is a function of certain explanatory
variables, such as ui t D zi t ıCWit . ı is a unknown vector of coefficients, z represents
a vector of observable explanatory variables and W the error term of the inefficiency
model.

These explanatory variables (also called exogenous variables or inefficiency ef-
fects) of the inefficiency effects model include determinant factors for understanding
the magnitude of the distance of the observed production in relation to the
corresponding production situated on the respective stochastic frontier. The term
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(") or error term of the Battese and Coelli (1995) model is given by two random
variables, "it D vi t � ui t , which translate two types of effects or disturbances
affecting the productive process.

The first component is the error term that captures effects caused by errors of
measurement and by all factors outside the productive unit’s control and is modelled
through a Gaussian (0, 1). The second component is a non-observable measurement
of technical inefficiency which may be time varying and controllable by the unit.
This component measures the magnitude of the effort made to reduce the distance
from the technological frontier.

These variables are therefore non-negative variables representing the technical
inefficiency of production. Values for the inefficiency measurements are derived
from generalization of the Jondrow et al. (1982) methodology, that is, deduced by
means of the expected conditional value of the estimated error value, and the other
parameters of the model are estimated in just one step using maximum likelihood.

The size of the panel has quality estimation implications whatever the method
used. The most favourable situation, or when N and T ! 1, allows consistent
estimators. When T is high, but N is low, the within estimator subject to hypotheses
of correlation between regressors and technical inefficiency and absence of distribu-
tion for ui is the most appropriate. When N is high, but T is low, consistency is not
guaranteed whatever the method used.

2.5 New Developments

When firm characteristics are not taken in account and they are erroneously
estimated as being inefficiency, it may cause serious biases in efficiency results.
Modelling heterogeneity among organizations represents an important field of
research. Indeed, in the conventional panel data context, firm-specific heterogeneity
was incorrectly considered as inefficiency.

In the fixed effects model of Schmidt and Sickles (1984), time-invariant unob-
served heterogeneity was captured by the inefficiency component until Greene’s
(2005) suggestion of the true fixed effects model which restricts fixed effects to only
represent the unobserved firm heterogeneity and not inefficiency. Research in this
field has been conducted by Farsi et al. (2005, 2006) and Greene (2005). Modelling
heterogeneity has been extended to the Bayesian context by Caudill et al. (1995),
Tsionas (2001, 2002) and Huang (2004).

Nowadays, stochastic frontier approach to organizations efficiency measurement
may play an important role in the field of economical sustainable development of
societies, as it allows managements to reach high levels of performance restricting
resources, minimizing undesired outputs or optimizing desired outputs. More
research is needed in order to enlarge the knowledge in this issue.



2 Review of Frontier Models and Efficiency Analysis: A Parametric Approach 33

References

Afriat SN (1972) Efficiency estimation of a production function. Int Econ Rev 13(3):568–598
Ahmad M, Bravo-Ureta BE (1996) Technical efficiency measures for dairy farms using panel data:

a comparison of alternative model specifications. J Product Anal 7:399–415
Aigner D, Chu SF (1968) On estimating the industry production function. Am Econ Rev

58:826–839
Aigner D, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier

production function models. J Econ 6:21–37
Arrow K, Chenery H, Minhas B, Solow R (1961) Capital labor substitution and economic

efficiency. Rev Econ Stat 45:225–247
Baltagi B (1995) Econometric analysis of panel data. Wiley, New York
Battese GE, Coelli TJ (1988) Prediction of firm-level technical efficiencies with a generalised

frontier production function and panel data. J Econ 38:387–399
Battese G, Coelli T (1992) Frontier production functions, technical efficiency and panel data: with

application to paddy farmers in India. J Product Anal 3:153–169
Battese G, Coelli T (1995) A model for technical inefficiency effects in a stochastic frontier

production function for panel data. Empir Econ 20:325–332
Battese G, Corra G (1977) Estimation of a production frontier model: with application to the

pastoral zone of eastern Australia. Aust J Agric Econ 21(3):169–179
Bhattacharyya A, Parker E, Raffiee K (1994) An examination of the effect of ownership on the

relative efficiency of public and private water utilities. Land Econ 70(2):197–209
Caudill S, Ford J, Gropper D (1995) Frontier estimation and firm specific inefficiency measures in

the presence of heteroscedasticity. J Bus Econ Stat 13:105–111
Charnes A, Harnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency on decision making

units. Eur J Oper Res 2:429–444
Cobb S, Douglas P (1928) A theory of production. Am Econ Rev 18:139–165
Coelli T, Prasada Rao DS, Battese GE (1998) An introduction to efficiency and productivity

analysis. Kluwer Academic Publishers, Boston
Cornwell C, Schmidt P, Sickles RC (1990) Production frontiers with cross-sectional and time-

series variations in efficiency levels. J Econ 46(1/2):185–200
Cuesta RA (2000) A production model with firm-specific temporal variation in technical ineffi-

ciency: with application to Spanish dairy farms. J Product Anal 13:139–158
Dean J (1951) Managerial economics. Prentice Hall, Englewood Cliffs
Debreu G (1951) The coefficient of resource utilization. Econometrica 19:273–292
Farrell M (1957) The measurement of productive efficiency. J R Stat Soc A Gen 120:253–281
Farsi M, Filippini M, Greene WH (2005) Efficiency measurement in network industries: applica-

tion to the Swiss railway companies. J Regul Econ 28(1):69–90
Farsi M, Filippini M, Kuenzle M (2006) Cost efficiency in regional bus companies: an application

of alternative stochastic frontier models. J Transp Econ Policy 40(1):95–118
Forsund FR (1992) A comparison of parametric and non-parametric efficiency measures: the case

of Norwegian ferries. J Product Anal 3:25–43
Forsund FR, Hjalmarsson L (1979) Generalised Farrell measures of efficiency: an application to

milk processing in Swedish dairy plants. Econ J 89:294–315
Forsund FR, Sarafoglou N (2002) On the origins of data envelopment analysis. J Product Anal

17(1–2):23–40
Forsund F, Lovell K, Schmidt P (1980) A survey of frontier production functions and of their

relationship to efficiency measurement. J Econ 13:5–25
Gabrielsen A (1975) On estimating efficient production functions. Working Paper No. A-85, Chr.

Michelsen Institute, Department of Humanities and Social Sciences, Bergen, Norway
Greene W (1980a) On the estimation of a flexible frontier production model. J Econ 3:101–115
Greene W (1980b) Maximum likelihood estimation of econometric frontier functions. J Econ

13:27–56



34 A. Sampaio

Greene W (1990) A gamma distributed stochastic frontier model. J Econ 46:141–163
Greene W (1997) Frontier production functions. In: Pesaran MH, Schmidt P (eds) Handbook of

applied econometrics, vol II, Microeconomics. Blackwell, Oxford
Greene W (2005) The econometric approach to efficiency measurement. In: Lovell K, Fried H,

Schmidt S (eds) The measurement of productive efficiency, 2nd edn. Oxford University Press,
New York

Hausman JA, Taylor WE (1981) Panel data and unobservable individual effects. Econometrica
49:1377–1398

Heshmati A, Kumbhakar SC (1994) Farm heterogeneity and technical efficiency: some results
from Swedish dairy farms. J Product Anal 5:45–61

Hock I (1962) Estimating of production function parameters combining time series and cross-
section data. Econometrica 30:1

Huang HC (2004) Estimation of technical inefficiencies with heterogeneous technologies. J Prod-
uct Anal 21:277–296

Johnston J (1959) Statistical cost analysis. McGraw-Hill, New York
Jondrow J, Lovell K, Materov I, Schmidt P (1982) On the estimation of technical inefficiency in

the stochastic frontier production function model. J Econ 19:233–238
Kalirajan KP, Shand RT (1999) Frontier production functions and technical efficiency measures. J

Econ Surv 13(2):149–172
Koopmans TC (1951) An analysis of production as an efficient combination of activities. In:

Koopmans TC (ed) Activity analysis of production and allocation. John Wiley and Sons, Inc.
Kopp RJ, Diewert W (1982) The decomposition of frontier cost function deviations into measures

of technical and allocative efficiency. J Econ 19(2/3):319–332
Kumbhakar S (1990) Production frontiers and panel data, and time varying technical inefficiency.

J Econ 46:201–211
Kumbhakar SC, Heshmati A (1995) Efficiency measurement in Swedish dairy farms: an applica-

tion of rotating panel data, 1976–88. Am J Agric Econ 77:660–674
Kumbhakar S, Lovell K (2000) Stochastic frontier analysis. Cambridge University Press, Cam-

bridge
Kumbhakar S, Ghosh S, McGuckin J (1991) A generalized production frontier approach for

estimating determinants of inefficiency in U.S. Dairy farms. J Bus Econ Stat 9:279–286
Lee LF, Griffiths WE (1979) The prior likelihood and best linear unbiased prediction in stochastic

coefficient linear models. Working Paper 1, University of New England
Lee YH, Schmidt R (1993) Production frontier model with flexible temporal variation in techni-

calefficiency. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive
efficiency. Oxford University Press, New York, pp 237–255

Lee L, Tyler M (1978) The stochastic frontier production function and average efficiency. J Econ
7:385–390

Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production
functions with composed error. Int Econ Rev 18:435–444

Mundlack Y (1961) Empirical production function free of management bias. J Farm Econ
43:44–56

Murillo-Zamoran LR, Vega-Cervera JA (2001) The use of parametric and nonparametric frontier
methods to measure the productive efficiency in the industrial sector. A comparative study. Int
J Product Econ 69(3):265–275

Nerlove M (1963) Returns to scale in electricity supply. In: Christ C et al (eds) Measurement in
economics. Stanford University Press, Stanford

Nishimizu M, Page JM (1982) Total factor productivity growth, technological progress and
technical efficiency change: dimensions of productivity change in Yugoslavia, 1967–1978.
Econ J 92:920–936

Pitt M, Lee L (1981) The measurement and sources of technical inefficiency in the Indonesian
weaving industry. J Dev Econ 9:43–64

Richmond J (1974) Estimating the efficiency of production. Int Econ Rev 15:515–521
Samuelson P (1938) Foundations of economic analysis. Harvard University Press, Cambridge



2 Review of Frontier Models and Efficiency Analysis: A Parametric Approach 35

Schmidt P (1976) On the statistical estimation of parametric frontier production functions. Rev
Econ Stat 58:238–239

Schmidt P, Sickles R (1984) Production frontiers with panel data. J Bus Econ Stat 2(4):367–374
Shephard R (1953) Cost and production functions. Princeton University Press, Princeton
Stevenson R (1980) Likelihood functions for generalized stochastic frontier functions. J Econ

13:57–66
Timmer P (1971) Using a probabilistic frontier production function to measure technical efficiency.

J Polit Econ 79:776–794
Tsionas EG (2001) An introduction to efficiency measurement using Bayesian stochastic frontier

models. Glob Bus Econ Rev 3(2):287–311
Tsionas EG (2002) Stochastic frontier models with random coefficients. J Appl Econ 17:127–147
Winsten CB (1957) Discussion on Mr. Farrell’s paper. J R Stat Soc Ser A Stat Soc 120(3):282–284


	Chapter 2: Review of Frontier Models and Efficiency Analysis: A Parametric Approach
	2.1 Introduction
	2.2 Econometric Approach to Efficiency
	2.3 Cross-Sectional Frontier Models
	2.3.1 Deterministic Frontier Models
	2.3.2 Stochastic Frontier Models

	2.4 Frontier Models in Panel Data Framework
	2.4.1 Fixed Effect Model with Time-Invariant Inefficiency Term
	2.4.2 Random Effect Model with Time-Invariant Inefficiency Term
	2.4.3 Temporal Variation of Efficiency Term
	2.4.3.1 Fixed and Random Effect Models
	2.4.3.2 Maximum-Likelihood Models
	2.4.3.3 Models with Exogenous Influences


	2.5 New Developments
	References


