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Abstract Recommending communities in social networks is the problem of
detecting, for each member, its membership to one of more communities of other
members, where members in each community share some relevant features which
guaranteeing that the community as a whole satisfies some desired properties of
similarity. As a result, forming these communities requires the availability of
personal data from different participants. This is a requirement not only for these
services but also the landscape of the Web 2.0 itself with all its versatile services
heavily relies on the disclosure of private user information. As the more service
providers collect personal data about their customers, the growing privacy threats
pose for their patrons. Addressing end-user concerns privacy-enhancing tech-
niques (PETs) have emerged to enable them to improve the control over their
personal data. In this paper, we introduce a collaborative privacy middleware
(EMCP) that runs in attendees’ mobile phones and allows exchanging of their
information in order to facilities recommending and creating communities without
disclosing their preferences to other parties. We also provide a scenario for
community based recommender service for conferences and experimentation
results.
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1 Introduction

With the popularity of social networks in the last few years, users are incited to
build profiles containing their preferences, join different groups and utilize various
services provided within the social platform. Community based recommender
service (CRS) is a service running on social media platform and aims at providing
end-users referrals to join certain sub-communities out of large number of com-
munities that are relevant for a given end-user’s interests. This service is based on
the assumption that end-users with similar preferences have the same interests.
CRS generates referrals based on end-user profiles containing, for each one,
personal data and interests. The CRS is usually accessible and open to all
attendees. However, this flexibility brings forward new threats and problems such
as malicious behaviors against different participants from both service provider
and other participants. For instance, malicious users may get one another’s private
information, such as current and previous occupations, age and relationship status,
even if for the user the information is not supposed to be exposed publicly.

Several strategies have been proposed to control the disclosure of private
information. The most popular approach is to permit users to maintain a set of
privacy rules, according to which a decision is performed whether to release or not
certain preferences in owner profile. However, these approaches are either rather
coarse-grained, or require a deep understanding of the privacy control system, any
change of one privacy setting may result in unwanted or unexpected behaviors.
Moreover, these approaches are based on the logic of either to allow or deny
releasing certain preferences in users’ profiles. Once, the data is released the user
have no control over it and users will be vulnerable for the privacy breaches since
released pieces of users’ information is often interleaved, adversaries may be able
to infer other private information using inference techniques. For example work in
[1] shows that private information can be inferred via social relations, and the
stronger the relationships people have in the network, the higher inference accu-
racy can be achieved.

In this paper, we lay out recommending and creating communities functions
within user-side, this privacy architecture will help foster the usage and acceptance
of our proposed protocols and eliminates the risk of possible privacy abuses as the
sensitive data is only available to the owner but not to any other parties. However,
as a consequence of applying our protocols, the structure in data is destroyed. In
order to facilitate processing of such data, our protocols maintain some properties
in this data which is suitable for the required computation. In rest of this work, we
will generically refer to attendees’ preferences as interests. This paper is organized
as follows. In Sect. 2, related works are described. Section 3 presents the proposed
middleware enhanced middleware for collaborative privacy (EMCP) used in this
work. Section 4 introduces some definition required for this paper. The proposed
protocols that are used in EMCP are introduced in details in Sect. 5. In Sect. 6, the
Results from some experiments on the proposed mechanisms are reported. Finally,
the conclusions and recommendations for future work are given in Sect. 7.
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2 Related Works

The majority of the literature addresses the problem of privacy on social recom-
mender services, due to it being a potential source of leakage of private infor-
mation shared by the users as shown in [2]. In [3] a theoretical framework is
proposed to preserve the privacy of customers and the commercial interests of
merchants. Their system is a hybrid recommender system that uses secure two
party protocols and public key infrastructure to achieve the desired goals. In [4, 5]
a privacy preserving approach is proposed based on peer to peer techniques using
users’ communities, where the community will have a aggregate user profile
representing the group as a whole but not individual users. Personal information is
encrypted and communication done between individual users but not servers.
Thus, the recommendations are generated on the client side. Storing users’ profiles
on their own side and running the recommender system in a distributed manner
without relying on any server is another approach proposed in [6].

3 The Proposed Middleware

In the scope of this work, we aim to achieve privacy by empowering an individual
or group to seclude themselves or information about themselves thereby reveal
themselves selectively or based on levels. We seek to achieve privacy by imple-
menting a privacy by design approach [7] where we consider a middleware that
governs data collection and processing during community building process such
that attendees don’t have to reveal private interests in their profiles. This will help
them to control what they share with various communities and to join specific sub-
community with a customized profile that access only to a subset of their interests.
The intuition behind our solution stems from the fact that safest way to protect
sensitive profiles data is to not publish them online, but keep them at user side.
However, in order to gain most of PCRS ‘s functionalities, attendees disclose their
private data in some way to enable PCRS‘s functionalities.

EMCP is implemented as a middleware running on top of attendees’ mobile
phones [8—13]. EMCP consists of different agents each of which has a certain task,
but their co-operation is required to attain the whole functionality. The local
obfuscation agent creates a public profile that is used as an input to encryption agent.
The encryption agent is responsible for executing two cryptographic protocols; first
one is private community formation (PCF) protocol which builds general commu-
nities based on attendees’ profiles, while the other one is private sub-community
discovery (PSD) protocol that help to discover sub-communities inside each com-
munity. These protocols act as wrappers that conceal interests before they are shared
with any external entity. EMCP requires attendees to be organized into virtual
topology which may be a simple ring topology or hierarchical topology, this
ordering enables them to participate in multi-party computations as well. However,
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PCRS (private community based recommender service) is the server that initiates
the process to extract different communities and sub-communities. The scenario we
are considering here is the one introduced in [8] it can be summarized as following
based on conference various themes, research strategies and specific topics, the
organizers setup a list of available communities on PCRS which act as interaction
space that supports any interactions between attendees. Each attendee configures his
EMCEP to build a public profile that discloses some information about their general
interests that are related to conference topics for the purpose of networking and
collaboration. Attendees seek to hide from the public their specific expertise, pre-
vious conference engagements, details of their research domains and problems in
hand, current and previous funded projects, sessions and presentations they are
planning to attend and finally their arrival/departure times. Other Private informa-
tion such as names, company, etc, by default is protected by the privacy protection
laws. If attendees already belonging to previously created group, they can form a
sub-community inside the conference community such that they can participate in
discussions and have access to the already exchanged opinions. EMCP provides
referrals to suitable sub-communities and sessions for attendees based on their
interests.

3.1 Threat Model

The proposed solution is secure in an honest-but-curious model. Where, every
party is obliged to follow the protocol but they are curious to find out as much as
possible about the other inputs. The adversaries we consider here are untrusted
CRS and malicious attendees that aim to collect other attendees’ interests in order
to identify and track them. Moreover we do not assume CRS to be completely
malicious. This is a realistic assumption because CRS needs to accomplish some
business goals and increase its revenues. Intuitively, the system privacy is high if
CRS is not able to reconstruct the real attendees’ private interests.

4 Problem Formulation

In the following section we outline important notions used in our previous solution
in [8] and required in this work, attendees’ profiles can be represented in two
categories public profiles and private profile. Public profiles is a set of hypernym
terms in the same semantic categories for the interests in attendee’s profile [8], it
represent general information that attendee configures his/her EMCP to disclose,
while private profile represents the “hidden” interests that attendee does not want
to disclose publically to others. Our goal is to protect private participants’ profiles
when formulating communities and recommending sub-communities since these
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are the information that attendees wish to keep private against both PCRS and
third parties. The notion of community in this work can be defined:

Definition 1 A community is the set C = {cy,ca,...,¢, }, where n is the number
of sub-communities in C, has the following properties: (1) Each V?_,¢; € C is a 3-
tuple ¢ = {I., V,,d.} such that I. = {iy,is,...,i;} is a set of generalized interests,
Ve = {v1,va,..., v} is a corresponding set of attendees, and d, € I, is the main-
interest of c. (2) For each attendee sz Vi € Ve, v have the interests V.. (3) d. is the
frequent interest in V. profiles, and it represents the “core-point” of sub-com-
munity c¢. (4) For any two sub-communities ¢, and c¢,(1<a,b<n
anda #b), V. NV, =0and I, #1,.

5 Proposed Privacy Enhanced Protocols for EMCP

In our architecture, privacy is attained using EMCP middleware which is hosted in
attendees’ mobile phones and equipped with two cryptography protocols which are
private community formation protocol (PCF) and private sub-community dis-
covery protocol (PSD) that build communities and sub-communities. EMCP
allows the formation of attendees’ communities; such that attendees share the
same experience can engage in discussions and exchange experiences. An
important requirement for our solution is the ability of an attendee to search for
and join various sub-communities in private way.

5.1 Private Community Formation Protocol

Our aim is to cluster attendees’ profiles into different communities. There are two
challenges in identifying these communities: first one is representation of com-
munity, i.e., good intra-community similarity and inter-community separation.
And the second one is the protection of private profiles in the process of com-
munity identification. In order to do so, attendees build public profiles using global
information supplied by PCRS (e.g. concept taxonomy and term vocabulary)
independently of their profile content, then local obfuscation agent at attendees
side start mapping their profiles into this global information space to get public
profiles as proposed in [8].

After building public profiles, EMCP invokes the encryption agent to execute
PCF protocol that is responsible for clustering attendees into general communities,
such that each general community contains various attendees who share similar
interests in their profiles. An attendee can belong to multiple communities, thus
allowing the separation between public profiles from his/her private profiles. Our
novel secure multi-party computation protocol ensures participants privacy when
forming communities and matching participant public profile with the list of
available communities. PCF is executed in distrusted manor; it first creates a bag
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of interests representations of each attendee using their profiles data. Then, the
extracted interests (words) are stemmed and filtered using domain-specific dic-
tionary; these interests associated with a user V, are used to create a word vector
Ve = (ec.(w1), .. ...ec(wn)), where m is the total number of distinct words in his/her
is profile, and e.(w;) describes the degree of importance of user V, in interest w;
(weighted frequency). The further computation proceeds to calculate term fre-
quency inverse profile frequency [14] as following:

Term — frequencyy, (w;) = #w; in V. profile/#words in V. profile
inverse — profile — frequencyy, (w;) = log(F#user/#profiles contain word w;)
ec.(wy) = Term — frequencyy, (w;) x inverse — profile — frequencyy, (w;)

The similarity function between two attendees’ profiles data should adequately
capture the similarity of attendees’ interests, and should be easy to calculate in a
distributed and private fashion. Specifically, we leverage the Dice similarity for
this task. Let V. (Vq4) be the two word vectors for attendees C and D then:

UsersSimilarity(Ve, V) = 2|Ve N Va| /| Ve P+ |Va)?

Intuitively, this means that two attendees C and D would be considered similar
if they share many common words in their associated profiles, and even more so if
only a few users share those words. Users have high similarity in set of interests
will be clustered into the same community. To protect user privacy, an attendee’s
interests are stored locally and are not disclosed to other parties including the
PCRS. Therefore, a secure multi-party computation mechanism is needed to
compute the similarity between every two attendees. We present in the next sub-
section the similarity calculation procedure in PCF protocol as follows:

1. For any attendee C,D € V and a set of word vectors e.(w;) and eq(w;), the
similarity is calculated in two steps first, it computes the numerator |Vc N Vp|
between attendee C and D and then it computes the denominator |Vc|*4|Vp|*.

2. After selecting a super-peer as the root for computations, a virtual ring topology
between attendees is employed for calculating the numerator between every
two participants. Each public profile is associated with certain interests that
need to be compared with other participants’ public profiles then they submit
similarity values to super-peers. Both attendees C and D apply a hash function
h to each of their word vectors to generate V, = h(e.(w;)) and V; = h(eqs(w;)).
EMCEP at attendee C generates an encryption E and decryption U keys then it
submit the encryption key E to D.

3. Encryption agent at attendee D hides V; by By = {es(w;) x r°|w; € V,;} where
r is a random number for each interest w;, and send B, to C.

4. Encryption agent at attendee C signs B, and get the signature Sy, then sends S,
to D again with the same order it receives. EMCP at attendee D reveals set S,
using the set of r values and obtains the real signature SI;, then it applies hash
function & on SI; to produce SIH; = H(SI;).
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5. Encryption agent at attendee C signs the set V. and gets signature SI. then
applies same hash function % on SI; to produc e SIH, = H(SI.) and submits
this set to D.

6. Encryption agent at attendee D compares SIH,; and SIH, using the knowledge
of V,, D gets the intersection set IN¢c p = SIH, N SIH, that represent |V, N Vp|.
EMCP at D applies hash function & on IN¢ p then it encrypts this value along
with |Vp|, |V¢| and attendees pseudonyms identities using super-peer public
key and forwards them to super-peer of this group.

7. Super-peer collects all these results and decrypts them with its private key.
Then it starts to cluster participants into communities, such that each com-
munity contains participants who share similar interests. Super-peer performs
S-seeds [8] clustering algorithm as follows first, randomly select S attendees’
profiles as clusters representatives. Then, it calculates the distance between
these S seeds and each data point as specified in PCF protocol. Then, assigns
each point to the community with the closest seed. Inside each community,
choose the point with the smallest average distance to other data as the new
seed. Finally, repeat last two steps until the S-seeds do not change. In S-seeds
clustering, only the distance calculations among data points are required to
identify the communities without disclosing attendees’ profiles.

The above protocol performs it computations on m hashed values held by m
parties without exposing any of the inputs values. This protocol is based on secure
multi-party computation (SMPC), which was studied first by Yao in his famous
Yao’s millionaire problem [15].

5.2 Private Sub-Community Discovery (PSD) Protocol

Encryption agent in EMCP executes PSD protocol on the proximate general
communities extracted from PCF protocol, PSD protocol determines in a bilateral
manor the associated interests within attendees’ public profiles, then the final
results is used in building sub-communities. PSD protocol is adapted from the
work in [16, 17] with the intuition that many frequent interests of attendees should
be shared within a sub-community (group) while different sub-communities should
have more or less different frequent interests. However, there are no predefined
sub-communities yet inside these communities; hence PSD should operate with the
available bounded prior domain knowledge and full dimensional profiles.

Definition 2 (Frequent interests) Frequent interests is a notion similar to frequent
itemsets in association rule mining, it represent a set of interests that occur together
in some minimum fraction of attendees’ profiles. For example, let’s consider two
frequent interests, “libraries” and “C”. Profiles containing the interest “libraries”
may relate to digital archiving services and Profiles that contain the interest “C”
may relate to Healthcare services. However, if both interests occur together in
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many profiles, then a specific interest sub-community related to C-programming
should be identified.

Definition 3 (Global Frequent Interests) Global frequent interests is a set of
interests that appear together in more than a minimum fraction of the whole
attendees ‘profiles in community C; a minimum community support is specified
for this purpose. If this set contains k-interests, it called global frequent k-interests
such that each interest that belongs to this set is called global frequent interest.
Global frequent interest is frequent in sub-community c; if this interest is contained
in some minimum fraction of attendees’ profiles; a minimum sub-community
support is specified for this purpose.

The attendees are arranged in hierarchical topology in order to compute sub-
communities, PSD protocol can be summarized as follows:

1. The initialization process of PSD protocol is invoked by PCRS, whereas
attendees form groups then after they negotiate with each other to elect a peer
who will act as a “super-peer” for each group. Super-peers distribute a list of 1-
candidate frequent interests; therefore, different group members run concur-
rently a local algorithm to generate local frequent interests using their local
support and closure parameters. we use the algorithm presented in [18] to find
global & local frequent interests for each group.

2. After local extraction of frequent interests at each member V|P;, member P;
encrypts this local list with his own key and send it to member P, such that
each member successively sends both his local and received lists to next
neighbor. Last member in the group P,_; send collected message to the super-
peer. Super-peers now, have a set of local supports and closures of candidate
frequent interests; generating global support is done by making the sum of these
local supports. The global closure is calculated using intersection of the col-
lected local closure. In the same way, repeating the previous steps, super-peer
can generate the candidates of higher size. In order to decrypt the final results,
the super-peer encrypts and sends global supports & closures lists to member
P,_; in arbitrary order. Member P,_; decrypts his encryption from these lists
using his own private key, and then sends this list to the next member P,_; in
arbitrary order. When super-peer receives these lists back, these lists will be
encrypted with his own key only, which enables him/her to obtain final results.

3. For each adjacent set of global frequent interests at super-peer side, we setup an
initial sub-community that includes all attendees’ profiles that contain these
interests, such that all profiles in this sub-community contain all these global
frequent interests. These initial sub-communities are overlapped because each
profile may contain multiple global frequent interests. PSD will use these global
frequent interests as a sub-community representative. Then after, for each
attendee’s profile V;, encryption agent determines the best initial sub-commu-
nity ¢; using the following score function:
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SimilarityScore(c; — V;) = {ZW e,(w;) * sub — community support(w,-)]
- {Z* er (1) * community Support(WZ)}

where w; is a global frequent interest in profile r and this interest is also

frequent in sub-community ¢; while w! is a global frequent interest in profile r

and is not frequent in sub-community ¢;. e;(w;) and e, (w{) are the weighted
frequency of w; and wi in profile r, which already calculated during the exe-
cution of PCF protocol. After this scoring, each attendee‘s profile belongs to
exactly one sub-community.

4. For each community, super-peer organizes sub-communities in hierarchical
structure using global frequent k-interests in each sub-community as repre-
sentatives. In that case, PSD treats all attendees’ profiles in each sub-commu-
nity as single conceptual profile. The sub-community with k-interests will
appear at level k in this structure, while the parent sub-community at level k-1
must be a subset of its child sub-community’s representatives at level k. The
selection of the potential parent for each child sub-community is done using
scoring function presented in previous step. After that, super-peers exchange
discovered sub-communities with each other to efficiently remove the overly
sub-communities based on inter sub-community similarity. The same frequent
interests might be distributed over multiple small sub-communities obtained
from different super-peers’ results, thus merging every two sub-communities
into one general sub-community occurs only if they are very similar to each
other. Inter sub-community similarity is similar to scoring function presented
before with the only difference is that this similarity value should be normalized
to remove the effect of varying number of attendees in each sub-community, it
is measured using the following functions:

SubcommunitySimilarity(c; < ¢;) = {SimilarityScore (i = Vi Vi€ cj)/

{Z”’/ e(wj> + anf €(WJ’)]] +1

Then, Intersubcommunity similarity(c; < c;)
= [SubcommunitySimilarity(c; < c;) * SubcommunitySimilarity(c; < c;)]

where ¢; and ¢; are two sub-communities; V_, V, € ¢; stands for single con-
ceptual profile for sub-community c¢;. w; represents a global frequent interest in
both ¢; and ¢; while w} represent a global frequent interest in ¢; only but not in
ci. e(w;) and e(w;) are the weighted frequency of w; and w} sub-community ¢;
5. Finally, for a new attendee, in order to privately recommend suitable sub-
communities for him/her, EMCP obtains a list of sub-communities represen-
tatives then it generalizes his/her host interests and extract frequent interests for



322 A. M. Elmisery et al.

this generalized profile. EMCP encrypts these frequent interests and measure
their similarity with sub-communities’ representatives in order to build a list of
similar sub-communities. Finally EMCP assigns his/her host to the sub-com-
munity with the highest similarity.

6 Experiments

In this section, we describe the implementation of our proposed solution. The
experiments are run on 2 Intel® machines connected on local network, the lead
peer is Intel® Core i7 2.2 GHz with 8 GB Ram and the other is Intel® Core 2
Duo™ 2.4 GHz with 2 GB Ram. We used MySQL as data storage for the par-
ticipants’ profiles that is acquired by learning agent. PCRS has been implemented
and deployed as a web service while EMCP has been deployed as an applet to
handles the interactions between its owner, PCRS and other participants; it uses
the implementation of the MPI communication standard for distributed memory
implementation of our proposed protocols to mimic a distributed reliable network
of peers. Our proposed protocols implemented using Java and boundycastel©
library, RSA key length is set to 512 for the experimental scenario. The experi-
ments were conducted using a dataset pulled from a recruiter network in Denmark
(Manpower Professional) in period of 1990-1997. It contains registration data and
information related to different participants that attend exhibitions organized by
this agent which held concurrently with various scientific conferences. This data
set is comprised of approximately 67,000 users and contains various details about
them. Each of those details fell into one of several categories: affiliation, expertise,
domains, projects, activities, publication and awards, etc. Due to the lack of a
reliable subject authority, some other categories were discarded from all experi-
ments. To generate the public profiles from these profiles we use same method
proposed in [8].

In the first experiment, we want to measure the execution time for PCF pro-
tocol, from first step to last step at each attendee (excluding the time required to
generate RSA keys). We divided our dataset into approximately same number of
records and distribute then between 20 participants, then we run this experiment 7
times, so each point in the Fig. 1 is the mean value of the 7 runs. Additionally, we
performed two other experiments in our dataset in which data was not divided into
parts of same number of records. The first experiment, one client got 60 % of total
number of records and the rest of records were divided to other clients as parts of
approximately same number of records. While, in the second one, one client got
40 % of total number of records, other clients got the rest. The results of these
experiments are summarized in Fig. 1. The results indicate the performance
benefits of our protocol, as it is not sensitive to the number of shared interests
(Fig. 2).
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In the next experiment, we need to measure the accuracy of extracted sub-
communities using PSD protocol. In order to evaluate the accuracy of our results,
we apply hierarchical agglomerative clustering in our dataset in order to indentify
natural sub-communities from attendees’ private profiles. These sub-communities
are utilized for measuring the accuracy of the results produced by PSD protocol.
Each cluster represents a sub-community which is constructed from a set of
attendees’ private profiles who share the same specific interests about the same
topic. To measure the goodness of our results, we considered two error metrics
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defined in [19] which are grouping error (GR) and critical error (CIE). The first
one, the grouping error (GR), takes into account the number of attendees’ profiles
included in a sub-community, but belonging to a topic different from the dominant
topic in that sub-community. The second one, the critical error (CIR) measures the
number of attendees’ profiles belonging to a topic that is not the dominant one in
any sub-community. The graphs in Fig. 3 and 4, contain both GR and CIE values
for the results obtained from both hierarchical clustering and PSD protocol for
different number of sub-communities. This experiment is performed on two ver-
sions of our dataset; attendees’ generalized profiles are utilized by our PSD pro-
tocol, while hierarchical agglomerative clustering utilizes attendees’ private
profiles that should kept private in our scenario.

We can deduce that both GR and CIE for PSD decrease with the increase in no.
of sub-communities till reaching natural number of sub-communities. This indi-
cates that achieving privacy is feasible and does not severely affect the accuracy of
the generated sub-communities.

In the last experiment on PSD protocol, we want to measure the overhead of the
execution time when applying PSD protocol to preserve attendees’ privacy. We
divided our dataset into different number of records from 30,000 to 67,000, such
that each party held approximately the same number of records. We recorded the
execution time when applying our PSD with encryption and without encryption on
this data, then we calculated the percentage as following:percentage =

(fime without encryption. . .. encryption) + 100.The graph in Fig. 5 shows

time comparison of our PSD protocol with and without encryption for different
sizes of our dataset. From the results, we can find that the proposed PSD protocol
has a reasonable performance and the privacy preserving nature has marginal
impact on the execution time in comparison with non encryption option.

In order to measure the correctness of our solution to capture correlated
interests between attendees. We extracted sample data from conference proceeding
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related to 500 authors and co-authors. We crawled authors’ website to create
public profiles for them. Our aim here is to determine if our proposed solution can
group attendees in the same sub-community and help them to find the right people
to communicate or work with. For every sub-community recommendation for each
participant in the conference, we need to test whether or not participants knew
each other in this sub-community from previous work and if this recommendation
accurate or not. Figure 6 shows a breakdown of the results by our protocols, the
percentage of unknown attendees recommended by EMCP are shown above the
horizontal center line and the percentages of co-authors below. The chart also
shows the percentage of accurate versus inaccurate in two different colors.
PCF algorithm recommends other participants than the co-authors, which is not
surprising because it mostly creates communities considering only similar interests
without take in considerations the correlations between these preferences. In
contrast, applying PCF and PSD extract sub-communities for people that are likely
similar as sub-communities relies heavily on associations between preferences.
These results confirm our intuitions that the more associations between partici-
pants’ preferences, the more accurate sub-communities are produced.

In the last experiments, we evaluated the proposed solution from different
aspects: privacy achieved and accuracy of results. We used precision and recall
metrics proposed in [8] to measure privacy and accuracy of the results, the results
are shown in Fig. 2. As we can see, a good quality is achieved due to: identifying
communities that involve different sub-communities enables accurate recom-
mendations to the attendees who share the same interests. Also, the effect of each
interest inside the community can be easily measured, which enables to detect and
remove outlier values that are very different than the general interests. We also
evaluated the leaked private interests of different attendees when running our
solution. We consider users, who published portion of their real interests in their
public profiles, for each of these users; we tried the attack procedure proposed in
threat model to reveal other hidden interests in their profiles based on the sub-
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community they belong. The obtained interests are quantified using our proposed
metrics and the results are shown in Fig. 2. As we can see, our solution manages to
reduce privacy leakages for exposed attendees’ private interests, However, the
revealed interests are only a hashed hypernym terms for attendees private interests.
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7 Conclusion and Future Work

In this paper, we presented our attempt to develop an enhanced middleware for
collaborative privacy for community based recommender service in conferences or
exhibitions. We gave a brief overview of EMCP architecture and proposed pro-
tocols. We tested the performance of the proposed protocols on a real dataset. The
experimental and analysis results show achieving privacy in recommending sub-
communities is feasible under the proposed middleware without hampering the
accuracy of the recommendations. A future research agenda will include utilizing
game theory to better formulate user groups, sequential preferences release and its
impact on privacy of whole profile.
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