
Utilizing TPM Functionalities on Remote
Server

Norazah Abd Aziz and Putri Shahnim Khalid

Abstract Trusted Platform Module (TPM) has become an essential functionality
in the information security world today. However, there are legacy computers that
do not have TPM onboard and would still want to use the TPM functionalities
without having to replace the hardware. Also, TPMs are not available for virtual
machines hence there is a need to provide integrity of the virtual machine plat-
forms. This paper introduces a framework to provide a remote server with TPM
capabilities for the legacy computer and also virtual machines to be able to utilize
TPM functionalities. In this framework, there is also a need to provide fault
tolerance mechanism to ensure reliability of the server and also scalability feature
is incorporated to cater for growing number of users. The main component of the
framework is the ‘vTPM Manager’ module which resides in the remote TPM
server. This vTPM Manager handles the creation and deletion of virtual TPMs,
providing fault tolerance mechanism and also scalability feature for the whole
system. By using this framework, users who do not have a TPM residing in their
device would be able to remotely access the TPM server to utilize the TPM
functionalities with the assurance of a fault tolerance mechanism and the number
of users is unlimited since it is scalable.

Keywords Fault-tolerance � Scalability � TPM instances � Migration � vTPM
Manager � Virtual TPM

N. Abd Aziz (&) � P. S. Khalid
MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
e-mail: azahaa@mimos.my

P. S. Khalid
e-mail: shahnim.khalid@mimos.m

S.-S. Yeo et al. (eds.), Computer Science and its Applications,
Lecture Notes in Electrical Engineering 203, DOI: 10.1007/978-94-007-5699-1_1,
� Springer Science+Business Media Dordrecht 2012

3



1 Introduction

Trusted Computing (TC) is a technology developed and promoted by non-profit
industry consortium. The technology aims to enhance the security of hardware and
software building blocks. The consortium known as Trusted Computing Group
(TCG) [1] has come up with specifications on Trusted Platform Module (TPM)
which has potentials to be used for security and trust related services like remote
attestation and key management. In order to utilize the Trusted Computing
functionalities, new PCs and laptops are equipped with a TPM [2] on the moth-
erboard by many hardware manufacturers.

However, legacy computers and older motherboards do not have TPMs
onboard. This poses a problem for users wanting to utilize the Trusted Computing
functionalities without having to replace all the equipments. Furthermore, most
virtual machine environments are not equipped with a TPM. Since virtual
machines are used widely in cloud computing environment, it is necessary to apply
TPM functionalities to provide integrity of the virtual machine platforms.

In this paper, we introduce a framework to provide a remote server with TPM
capabilities in the form of hardware TPM and/or software based TPM. Software
based TPM in this context is referred as virtual TPM (vTPM) in this paper. Users
can connect to the remote server and use the trusted computing capabilities. We
will discuss about fault tolerance mechanisms to ensure users can connect to the
server at all times through virtual TPM (vTPM) instances. In addition, we also
discuss on the scalability of the servers in order to cater for high number of users
and their associated vTPM instances at one time.

This paper is organized as follows. Section 1 starts with this brief introduction
and followed by current related work in Sect. 2. Section 3 of the paper explains
about the fault tolerance mechanism and scalability of the server. The basic
framework of the attempt implementation containing the process flow of system
requirement is presented in Sect. 4. The paper continues to describe the concept of
remote server with TPM capabilities implementation handled by a vTPM Manager
module. Finally Sect. 5 describes the current implementation. The paper ends with
a conclusion.

2 Related Work

A system which enables the trusted computing for an unlimited number of virtual
machines was proposed by [3]. Their approach is to virtualize the TPM, so the
TPM functionalities are available to operating systems and applications running in
virtual machines. We adopted their approach which provides added functions to
create and destroy virtual TPM instances as well as to maintain the migration of a
virtual TPM instance with its respective virtual machine. The difference is they

4 N. Abd Aziz and P. S. Khalid



implement multiplexing of request from clients to their associated vTPM instances
but our approach only interacts with the clients during initialization process.

The paper in [4] is extended from [3] by adding built-in attestation mechanism.
They have introduced a ticket-based remote attestation scheme. Compared to our
framework, their vTPM instances management resides in Virtual Machine (VM).
But, similar with our approach, the software TPM is also always protected by the
hardware TPM. During vTPM spawns, its PCR values are initialized with values
from the underlying hardware TPM.

The security and reliability issues in client virtualization were also discussed
in [5]. Their proposed solutions leverage on Intel vPro and TPM in order to
overcome the issues and using trusted VM container through remote attestation
protocol verification. Our approach is not limited to the Intel technology and
platform and hence is more feasible.

In [6], the paper describes their approach to secure cloud-based system using
trusted computing. Their design mainly focuses on the virtual DRTM (Dynamic
Root of Trust for Measurement). By virtualizing the DRTM, they control the
locality by modifying the Xen vTPM Manager. Locality is based on the memory
addressing which corresponds to different levels in a system, for example security
kernel at Locality 0 while application at Locality 3 and so on. Our approach differs
in that we are not modifying the way the guest OS access the data based on these
locality using a certain algorithm that has to be embedded in the hypervisor (such
as Xen).

3 Fault Tolerance, Scalability and Attestation

3.1 Fault Tolerance

Fault-tolerance is the property of a software or hardware that enables a system
to operate continuously in the event of failure of (or one or more faults within)
some of its components [7]. In other word, it is designed to recover from failure
immediately with no loss of service. There are a few levels of fault tolerance based
on the ability to continue operation in the event of a power failure in time basis.
The levels are defined by whether the fault tolerance feature is provided by
software, embedded in hardware, or by both combinations.

A fault-tolerance mechanism consists of three types: replication, redundancy
and diversity. Fault-tolerance replication is requesting or directing tasks in parallel
from multiple identical instances of the same system or subsystem based on the
best output [7]. Similarly, fault-tolerance redundancy is also providing multiple
identical instances but switching to one of the remaining instances in case of a
failure [8]. In other word, it uses multiple nodes that are ready to provide service in
order to recover from service failure of a single node. In contrast to replication and

Utilizing TPM Functionalities on Remote Server 5



redundancy type, diversity provides multiple different implementations of the
same specification.

In this paper we focus on fault tolerance using hardware which is provided to
ensure the TPM server is available at all times. As mention earlier, trust and
security is the main concern for the framework, hence replication of the vTPM
instances is required to ensure users can connect to the server at all times even
when there is a failure.

3.2 Scalability

According to [9], scalability is desirable in technology as well as business settings
because both benefit significantly from the ability to easily increase volume
without impacting the contribution margin. Scalability is the ability of a hardware
or system to adapt to increasing demand due to the growing amount of context
volume or size in order to meet user capacity. Our framework is designed to be
scalable in the sense that the system can be upgraded easily and transparently to
the users without shutting down the system. Hence, further investment to the
system for adding new processors, devices and storage to the system has no
additional cost.

Scalability can be measured in various dimensions [9], but this paper focus on
load scalability. It means that the system easily expands and organizes its resource
to sustain heavier or lighter number of inputs for modification and deletion
activities. In our approach, the network scalability addresses the issue of retaining
performance levels while adding additional servers to a network. Additional
servers are typically added to a network when additional processing power is
required.

3.3 Attestation

One of the most important uses of TPM is to enable a computing platform to attest
its integrity to another entity. The attestation protocol involves measuring various
‘properties’ of the platform and storing the values in the TPM. When a remote
entity asks for assurance of the integrity of the platform, the measurements are
verified and sent over to the other entity. Our framework is designed to implement
this feature in virtualization environment which is used to assure users of the
integrity of the spawned vTPM. In our framework attestation protocol is run by
enhanced virtualization API named as TMCI and a vTPM to verify the integrity of
the associated VM. When a request for a VM is received, the TMCI will first ask
the vTPM to attest the integrity of the VM. The VM will be created and given to
the user if the attestation is successful. Otherwise another VM has to be created.

6 N. Abd Aziz and P. S. Khalid



4 Framework

There arise desires for a service which provides TPM capabilities in the form of
hardware and/or virtual TPM that would enable users who do not have TPM
hardware in their device to access TPM functionalities as and when they require it.
Therefore, our framework introduces a server which users can access remotely to
use the TC functionalities. The server which is called TPM server is embedded
with TPM hardware or a software-based TPM (vTPM) or both to cater for the
users’ needs. The concern is how to manage the multiple users and the multiple
instances of vTPM. In some applications such as cloud computing, there can be
millions of users connecting to the server at any one time. Hence, the TPM server
must be scalable. The TPM server will also have to be available at all times since
all the keys and state files are saved in the server and any disruption to the server
may lead to loss of information on the user side. These functionalities are handled
by a vTPM Manager (vMgr) on the TPM server which will be discussed further in
the next section.

Figure 1 illustrates components of our framework which contains a fault-
tolerance mechanism in order to maintain the availability of TPM server. The
framework consists of users which are running on different types of hardware, but
not limited to desktops, virtual machines, laptops and mobile devices. Users who
need to access the TPM server connects through the network. Other than vMgr to
handle all the resources related to vTPM, there is also a migration controller
component which manages the migration of the TPM server to another physical
location. However, in this paper we will not discuss further on migration
controller component. Since our approach for virtualization environment is spe-
cific for cloud computing, we have enhanced the virtualization API. The
enhanced virtualization API is called TMCI and is placed in the framework as
shown in Fig. 1.

TMCI is the virtualization API which processes the URI and then communi-
cates bidirectional with vMgr and public API in Libvirt command. Public API
will pass the request to the driver API and look into the corresponding Virtual
Machine (VM) driver in Libvirt. In our approach, QEMU-KVM is used for the
VM creation, spawn or destroy activities through Libvirt. Before creating and
destroying the VM, TMCI will verify the integrity of the vTPM instances with
vMgr. If the verification fails vMgr will send an error message to TMCI and
TMCI will cut off the communication with Libvirt. Since the communication to
TMCI is disconnected, Libvirt cannot create or destroy the VM.

The fault-tolerance component supported by TPM Server comprises of TPM
Primary Server and TPM Backup Server. The TPM Primary Server is the main
server and backup is provided by duplicating the server in the TPM Primary
Backup Server. For scalability purposes, TPM Secondary Server is connected to
the TPM Server Primary and its backup is provided in the TPM Secondary Backup
Server. The scalability function does not limit the number of servers; hence there

Utilizing TPM Functionalities on Remote Server 7



can be Tertiary Server and so on. All the servers are connected to the database
where all the states are saved periodically.

4.1 vTPM Manager

vTPM Manager (vMgr) is the main feature in our framework. It is tasked to handle
the creation or spawning of vTPM instances for individual users. Each user will be
assigned a dedicated vTPM instance, which is linked to the TPM hardware. vMgr
will assign dedicated port to the vTPM for the user to connect. vMgr is also
responsible to update the storage or database with all the vTPM information and
keys, which are also called the ‘state files’. vMgr is the point of contact for the
users to create, reactivate, suspend, resume, terminate and destroy the vTPM
instances. The main process of vMgr is defined in Fig. 2.

The creation of a vTPM instance starts when the vMgr receives a request from
user. vMgr is a service module which keeps running as a daemon to receive any
request from the users. The request can be for creation, resume, suspend or destroy

Fig. 1 Basic implementation
framework

8 N. Abd Aziz and P. S. Khalid



the vTPM instance. Each new vTPM will be assigned parameters which include
vTPM ID, port number, IP and unique property value by vMgr. Then, vMgr will
spawn the new vTPM instance. The parameter will be stored in the database and
also sent to the user.

In addition to the creation of vTPM instances and managing its status, vMgr
also handle scalability issue. When a TPM server has run out of system resource,
another TPM server is needed to answer the users’ request to spawn a vTPM.
Here, the main vMgr will manage and decide which TPM server should accept the
request. For this, the main vMgr must first register itself to the system. Before the
process of ensuring scalability in spawning that vTPM can happen, the main vMgr
must register itself to the system. Once registration has been completed, as a
request arrives, the main vMgr would either spawn the vTPM instance or pass the
request to a Secondary vMgr if it has exhausted its resources.

The main vMgr handles all registration of the Secondary vMgr which has just
joined to the system. Once the main TPM server has reached its maximum
spawned vTPM, the vMgr that handles vTPM instances in that server interacts
with the registered Secondary vMgr located at a different TPM server and request
that vMgr to spawn a new vTPM instance using parameters given during the
interaction process given by the main vMgr. A centralized database is used to store

Fig. 2 Creation and
management of vTPM
instance flow diagram

Utilizing TPM Functionalities on Remote Server 9



all data of the Secondary vMgr. The data consist of the IP and port number, as well
as an ID of the Secondary vMgr.

Therefore, when the main vMgr wants the Secondary vMgr to spawn a new
vTPM instance, the main vMgr will retrieve the represented data of the Secondary
vMgr from the database, and uses that data to send request to the Secondary vMgr
to spawn a vTPM instance. Once the Secondary vMgr retrieved the request, it will
then spawn a new vTPM based on the parameters given by the main vMgr and
updates the centralized data indicating that the spawned vTPM ID is being
spawned from that server and managed by the new vMgr.

Another function of vMgr is to handle the fault tolerance mechanism. This is
separated into two processes: replication and fault tolerance itself. As mentioned
earlier, the process starts with user sending request for a vTPM to the vTPM
Manager Primary (vMP) to spawn a vTPM instance. Next, the vMP will generate
IP and port number for the vTPM and record the information into the database.
After the updating, vMP will spawn a vTPM instance. Then, the vTPM creates the
state file and updates the vMP. The vMP will check updates of the state file
periodically. If there is an update, vMP will send updated vTPM state file to vTPM
Manager Primary Backup (vMPB). The vMPB will retrieve the virtual machine ID
or user ID from the vTPM state file. The vMPB will get virtual machine data or
user data from database. The vMPB will spawn vTPM accordingly and end the
process.

The process above will ensure that the backup server will always have updated
state files of all the vTPM instances. In the event of failure of the main TPM
server, an intelligent device routes the request to the backup server. Hence the
users can still access their vTPM instances even though main TPM server is down.
When this happens, the backup TPM server will take over the functions of the
main TPM server. Once the faulty machine is has recovered, the vMgr will ensure
that the record is synchronized again between the main TPM server and its backup
server.

4.2 Prototype Implementation

Referring to the above framework, installation of all components must be estab-
lished in order to proceed with the development. The current phase of imple-
mentation setup is focusing on providing the environment development for TPM
server and its components. Some of the components are based on [10, 11]
implementation such as OpenSSL engine, TrouSerS TCG Software Stack, TPM
Tools, the TPM Device Driver and the modified TPM Emulator. The main com-
ponents are vMgr daemon and database such as using mySQL. The vMgr daemon
is configured to be able to accept requests from any virtualization API for future
implementation of cloud computing.

In our prototype, we use Libvirt [12] as the virtual machine control engine.
Libvirt is a library which provides the functions to provision, create, modify,

10 N. Abd Aziz and P. S. Khalid



monitor, control, migrate and terminating an operating system running on a virtual
machine. Due to the use of Uniform Resource Identifier (URI), Libvirt is able to
support different types of hypervisors such as QEMU-KVM and Xen. In the
prototype, Libvirt is used directly by TMCI.

We have conducted the system test on the components after it is integrated into
our proposed framework to ensure the system runs well. The test involved up to
1000 instances of vTPM and works as expected. Each component after the inte-
gration in our framework can still run its original and enhanced functions.

5 Conclusion

In this paper, we have provided a framework for users to access TPM function-
alities on a remote server. Typical scenario would be when the users of the system
are using legacy computers or devices which does not have a built-in TPM but
would still want to benefit from the Trusted Computing technology. By providing
this framework however, the system needs to cater for the growing number of
users and also the recovery from failure. Hence we have provided ways for the
server to overcome this using the scalability feature and also the fault tolerance
mechanism. With this approach, users can access the servers at any time with the
ease and reliability that comes with the whole framework.

References

1. Trusted Computing Group: http://trustedcomputinggroup.org
2. TPM Main: Part 1 design principles. 1.2 revision 85 edition, (2005)
3. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., Doorn, L.v.: vTPM: virtualizing

the trusted platform module. In: 15th USENIX security symposium (2006)
4. Stumpf, F., Benz, M., Hermanowski. M., and Eckert, C.: Approach to a trustworthy system

architecture using virtualization. ATC 2007, LNCS 4610, pp. 191–202, Springer (2007)
5. Wang, W., Zhang, Y., Lin, B., Wu, X.Y., Miao, K.: Secured and reliable VM migration in

personal cloud, 2nd international conference on computer engineering and technology
(ICCET), IEEE (2010)

6. Dai, W., Jin, H., Zou, D., Xu, S., Zhen, W. and Shi, L.; TEE: A virtual DRTM based
execution environment for secure cloud-end computing. Proceeding CCS’10 proceedings of
the 17th conference on computer and communications security, ISBN: 978-1-4503-0244-9,
ACM (2010)

7. Shilin, Z., Mei, G.: Distributed multimedia content processing based on web service.
Proceeding of international forum on computer science-technology and applications, ISBN:
978-0-7695-3930-0, IEEE (2009)

8. Morel, G., Pétin, J.F., Johnson, T.L.: Reliability, maintainability, and safety. Springer
handbook of automation (2009)

9. Clarke, J., Dede, C.: Robust designs for scalability. AECT research symposium, June 22–25,
Bloomington, Indiana (2006)

Utilizing TPM Functionalities on Remote Server 11

http://trustedcomputinggroup.org


10. Norazah, A.A., Lucyantie, M.: Identity credential issuance with trusted computing, 2nd
international conference on computing and informatics, ICOCI’09 (2009)

11. Lucyantie, M., Norazah, A.A., Habibah, H., Mohd Anuar, M.I.: Attestation with trusted
configuration machine. Proceeding of international conference on computer applications and
industrial electronics ICCAIE, ISBN: 9781457720574, IEEE (2011)

12. The virtualization API, http://libvirt.org/

12 N. Abd Aziz and P. S. Khalid

http://libvirt.org/

	1 Utilizing TPM Functionalities on Remote Server
	Abstract
	1…Introduction
	2…Related Work
	3…Fault Tolerance, Scalability and Attestation
	3.1 Fault Tolerance
	3.2 Scalability
	3.3 Attestation

	4…Framework
	4.1 vTPM Manager
	4.2 Prototype Implementation

	5…Conclusion
	References


