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      Foreword 

     Regenerative Medicine: From Protocol to Patient 

 Second edition 

  Regenerative Medicine  is a fast emerging interdisciplinary  fi eld of research and 
clinical therapies on the repair, replacement or regeneration of cells, tissues or 
organs in congenital or acquired disease. This new  fi eld of research and clinical 
development focussing on stem cell science and regenerative biology is just starting 
to be the most fascinating and controversial medical development at the dawn of the 
twenty- fi rst century. It can be envisaged that this development will establish com-
pletely new molecular and cellular techniques for medical therapy. An early rush of 
scienti fi c development was set up more than 100 years ago by the physiology of 
blood regeneration (Hall    and Eubanks 1896) and successful vascular surgical tech-
niques for organ transplantation (Carrel and Guthrie 1905). However, the clinical 
realization of allogenic blood transfusion lasted until the discovery of the blood 
group antigens (Landsteiner and Levine 1928) and successful routine allogenic 
organ and bone marrow transplantation even until the end of the last century. 

 Similar to the  fi eld of allogenic cell and organ transplantation, it seems that 
 Regenerative Medicine  again condenses mankind’s visions, hopes, and fears regard-
ing medicine: Hopes of eternal life and effective treatment of uncurable disease as 
well as fears of misuse of technology and uncontrolled modi fi cations of life are 
polarizing the scienti fi c  fi eld. The development and public acceptance of new ethi-
cal and regulatory guidelines is a necessary process to support the further clinical 
development. Nevertheless, the vision of a new medicine using the regenerative 
power of biology to treat disease and restructure the organism is setting the aim for 
scienti fi c, technological and medical development. Viewing the great expectations 
to restructure and regenerate tissue, organs or organisms the current attempts of 
scientist and physicians are still in an early phase of development. 

 The  fi eld of  Regenerative Medicine  has developed rapidly over the last 20 years 
with the advent of molecular and cellular techniques. This textbook on “Regenerative 
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Medicine: From Protocol to Patient” is aiming to explain the scienti fi c knowledge 
and emerging technology as well as the clinical application in different organ 
systems and diseases. The international leading experts from four continents 
describe the latest scienti fi c and clinical knowledge of the  fi eld of  Regenerative 
Medicine . The process of translating science of  laboratory protocols into therapies  
is explained in sections on regulatory, ethical and industrial issues. Patient needs are 
advocated by the proposition initiatives on the scienti fi c development of new 
therapies. 

 This textbook is organized into  fi ve major parts: ( I )  Biology of Tissue Regeneration , 
( II )  Stem Cell Science and Technology , ( III )  Tissue Engineering ,  Biomaterials and 
Nanotechnology , ( IV )  Regenerative Therapies , and ( V )  Regulation and Ethics . 

 We start with an overview on the  History of Regenerative Medicine . This is fol-
lowed by the part of  Biology of Tissue Regeneration , which focuses on extracellular 
matrix, asymmetric stem cell division, stem cell niche regulation and stem cells 
during embryonic neurogenic development. The part on  Stem Cell Science and 
Technology  provides an overview on classi fi cation of stem cells and describes 
techniques for their derivation and culture. Basic properties of the cells are illus-
trated, and some areas of applications for these cells are discussed with emphasis on 
their possible future use in  Regenerative Medicine . 

 The part of  Tissue Engineering ,  Biomaterials and Nanotechnology  focuses the 
development of technologies, which enable an ef fi cient transfer of therapeutic genes 
and drugs exclusively to target cells and potential bioactive materials for clinical 
use. Chimerism, multifunctionalized nanoparticles and nanostructured biomaterials 
are described with regard to the technological development of new clinical cell 
technology. 

 The part on  Regenerative Therapies  gives a survey on the clinical development 
in the different organ systems. Disease speci fi c approaches of new therapies, appli-
cation technology, clinical achievements and limitations are described. The part on 
 Regulation and Ethics  describes the current legislation for clinical translation as the 
ethical and juridical development in different countries. 

 The textbook is aiming to give the student, the researcher, the health care profes-
sional, the physician, and the patient a complete survey on the current scienti fi c 
basis, therapeutical protocols, clinical translation and practised therapies in 
 Regenerative Medicine . On behalf    of the sincere commitment of the international 
experts we hope to increase your knowledge, understanding, interest and support by 
reading the book. 

 After the successful introduction in 2011, the textbook has been actualized for 
the second edition. The basic science and clinical part has been extended by  fi ve 
new chapters. 

 Rostock, August 2012  Gustav Steinhoff (Editor)
and Hoang Tu-Rapp (Assistant Editor)      

Foreword
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  Abstract   Generation and regeneration as an answer to disease are far from being a 
new idea. Philosophers, naturalists and scientists were intrigued by the marvels of 
regeneration seen in nature. By the middle of the 1990s life scientists thought we 
were only a few years away from bioarti fi cial organs grown in a Petri dish. However, 
by the dawn of the new millennium it became clear that the mechanistic approach 
dictated by tissue engineering so far, had neglected issues of vascularization. 
Processes of angiogenesis were central to homeostasis, bioassimilation and biointe-
gration of tissue engineered constructs. Furthermore, the  fi eld of tissue engineering 
had evolved into something vast, encompassing satellite technologies that were 
becoming separate science sectors. Advances in genetical engineering, stem cell 
biology, cloning, biomaterials and biomedical devices to name a few, would come 
to play a major role of their own – tissue engineering had become a part of a bigger 
whole. Regenerative medicine is the collective  fi eld to shelter these technologies 
“… that seeks to develop functional cell, tissue, and organ substitutes to repair, 
replace or enhance biological function that has been lost due to congenital abnor-
malities, injury, disease, or aging ”      
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    1.1   Introduction 

 “Those who cannot learn from history       are doomed to repeat it”, claimed the philoso-
pher G. Santayana in his book “The life of reason” (Santayana  1905  ) . Although this 
statement reminds somehow of a cliché and its essence is being constantly disputed 
through the ages, one could hardly  fi nd a better example to report upon, other than the 
case of regenerative medicine. It is widely admitted that the very term of “Regenerative 
medicine” was coined to express a need for reorientation (Table  1.1 ). By the end of the 
twentieth century, biotechnology  fi rms had maneuvered themselves into a dead-end 
 fi nancially, as well as conceptually (Mason  2007  ) . Furthermore, the  fi eld of tissue 
engineering had evolved into something vast, encompassing satellite technologies that 
were becoming separate science sectors. Advances in genetical engineering, stem cell 
biology, cloning, biomaterials and biomedical devices to name a few, would come to 
play a major role of their own – tissue engineering had become a part of a bigger 
whole. And it is undisputable that biologicals will be the future (Mason and Dunnill 
 2008  ) . To quote Paul Kemp: “hype, hubris and hyperbole aside – regenerative medicine 
will make a real and positive difference…” (Kemp  2006  ) . But where did it all start?   

    1.2   Regenerative Medicine in the Ancient World 

 In his  Theogony , Hesiod (eighth century  BC ) introduces Prometheus (Fig.  1.1 ) 
having created man out of clay and providing him with  fi re as a source of knowl-
edge. “Hear the sum of the whole matter in the compass of one brief word – every 
art possessed by man comes from Prometheus.” ( Aeschylus  1832  ) . By doing that, 
Prometheus had provoked the wrath of Zeus. He had Prometheus carried to Mount 
Caucasus (or the Carpathian mountains) where an eagle (often mistaken as a 
vulture) by the name of Ethon would pick at his liver; it would grow back each day 
and the eagle would eat it again. His torture lasted 30,000 years until he was freed 
by Hercules (Fig.  1.1 ). Interestingly enough, the liver is generally speaking the only 
of the human organs to regenerate itself spontaneously in the case of lesion. 1  The 
ancient Greeks were well aware of this, hence they named liver (Greek: hēpar, 
 ήp  a  r ) after hēpaomai ( h  p ά o  m  a  i ), meaning to “repair oneself”.  

 Later on, Aristotle devised two scripts dealing with generation and regeneration 
in the animal realm. In his “Generation of animals” he related early development 
with regenerative potential, whereas in “The history of animals” he made observa-
tions on regeneration on the limb of salamanders and deer antlers (Aristotle  1984  ) . 
He propagated that biological form originates from undifferentiated matter and 
clearly favoured what would later be described as “epigenesis   ” (Fig.  1.2 ).  

   1   Now the phenomenon of desquamation of the intestinal epithelium and the epidermis has been 
described. The intestinal epithelium is completely regenerated in 4–5 days. The total regeneration 
of the epidermis takes 4 weeks. This may mean that for a life expectancy of 77 years, the human 
epidermis is regenerated 1,000 times.  
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   Table 1.1    Scientometric data based on Thomson Reuters released information (August 2009)   

 Tissue engineering  Regenerative medicine 

 Total No of PubMed 
Papers (starting in.) 

 14,517 (since 1988)  2,197 (since 2001) 

 Year of maximum  –  2008 (ca 600) 

 Most cited paper  2,452 citations  1,366 citations 

 Top 100 papers  At least 200 citations each  At least 40 citations each 

     Fig. 1.1    Prometheus. 
“Prometheus”, Gustave 
Moreau 1868 (Musée 
Gustave Moreau, Paris). 
According to some 
investigators, his torture
held for 30,000 years. 
After having provoked the 
wrath of Zeus, the eagle 
Ethon, picked at his liver 
every night. During the day 
the liver would regenerate       
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 In the biblical tradition “the Lord God then built up into a woman the rib that he 
had taken from the man”  ( Jones  1988  ) . The quest for tissue replacement was even 
more graphically demonstrated in the tradition of Cosmas and Damian. Their practice 
of medicine and surgery in Asia Minor without fee (hence called ‘Anagyroi,’ without 
silver) and their martyrdom in Aegea, in Cilicia made a lasting impression upon the 
early Church. The grafting by these physician-surgeons of a moor’s leg in replacement 
of a patient’s diseased leg, and his surprise at  fi nding himself possessed of two sound 
legs, his own white, and the other black, has been the subject of numerous paintings 
the majority of which depict the brothers in long robes, holding surgical instruments, 
boxes of salves, gallipots, or other medical appliances (Matthews  1968  )  (Fig.  1.3 ). 
Graveyards from the Paracas and Parachamac regions in Peru provide ample evidence 
that pre-Incan surgeons were performing trephination    in great numbers as early 
as 3000  BC . A survey of more than 10,000 mummies from prehistoric Peru demon-
strated that roughly 6% showed cranial trephination. There is strong evidence that 
the occasional cranioplasty was also performed. Trephined Incan skulls have been 
discovered adjacent to shells, gourds, and silver or gold plates (Asenjo  1963  ) .   

    1.3   Regeneration in Early Research 

 Until the middle of the eighteenth century the motive power of biological organisms 
was thought to be an abstract vital force. Descartes (1596–1650) in his L’ Homme 
postulated that the body works like a machine and biological phenomena are void of 

  Fig. 1.2    Aristotle. Aristotle’s 
bust. Roman copy from the 
bronze original by Lyssipos 
( fi fth century B.C.). (Ludovisi 
Collection). Aristotle wrote 
two major works on 
generation and regeneration 
in the animal realm. He 
related early development 
with regenerative potential 
and propagated that 
biological form originates 
from undifferentiated matter 
(epigenesis)       
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a divine meaning but can be explained by means of their physical properties. 
Lavoisier (1743–1794) postulated further on, that function and viability of organisms 
depended on chemical processes that could be reproduced in the laboratory. During 
the same time phenomena of generation and regeneration intrigued scientists and 
divided them into two distinct camps. Preformationists supported that appendages 
to be regenerated and organisms to be born pre-existed as miniatures at the site of 
interest. So, at the base of a severed lizard tail   , in their conception a miniature tail 
was preformed and waited to be “activated” by an amputation. Likewise, in the 
sperm or in the ovum of the human there existed a miniature “homunculus” that 
grew into a newborn infant. This theory prevailed until the middle of the eighteenth 
century being concordant with the mechanistic framework provided at the time 
and did not come into a direct con fl ict with the Christian beliefs about divine 
involvement in the processes of life. On the contrasting end, came the Aristotelian 
thesis that undifferentiated matter was able to give rise to life. This theory had been 

  Fig. 1.3    Saints Cosmas and 
Damian. “Transplantation of 
a leg by Saints Cosmas and 
Damian, assisted by angels”, 
early sixteenth century 
(Stuttgart, Germany). 
According to the tradition of 
Cosmas and Damian these 
saints grafted a moors leg as 
a replacement of a patient’s 
diseased leg       
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actually named “epigenesis” by William Harvey (1578–1657) in his work “on the 
generation of animals” grossly repeating on Aristotle’s works. 

 In the eighteenth century the process of regeneration in amphibians    was matter 
of intense study. Abraham Trembley (1710–1784) produced several publications on 
the regenerative phenomena on freshwater polyps. He managed to obtain a clone of 
50 polyps from one organism that he had quartered. He performed sections at every 
conceivable plane, contradicting preformational beliefs of the time (Dinsmore 
 1991  ) . The question was posed: If the animal soul was the organizing and unifying 
element of life, how could a newly regenerated form arise? Reaumer and Spallanzani 
reported about their studies on crustaceans and salamanders respectively (Dinsmore 
 1991  ) . The latter, being a great methodologist, expanded his research on a number 
of different organisms including frogs, toads, slugs and snails. He published his 
 fi ndings in 1768 in his work “Prodromo”. It was noted by Newth. “In 1768 the 
snails of France suffered an unprecedented assault. They were decapitated in their 
thousands by naturalists and others to  fi nd out whether or not it was true, as the 
Italian Spallanzani had recently claimed, that they would then equip themselves 
with new heads” (Newth  1958 ; Weaver and Garry  2008  ) . 

 Until the end of the eighteenth century philosophical and religious debate linked 
to the science of regeneration was set aside, and epigenesis gained acceptance with 
the eventual ascendancy of epigenetic embryology   . 

 The last years of the eighteenth century marked a new  fi eld of interest for regen-
erative medicine: organ transplantation   . John Hunter (1728–1793) performed 
allograft transplantations between chickens as well as dental transplantation utilizing 
xenografts of human teeth to avian hosts. John Hunter was the most prominent surgeon 
and anatomist of his time. According to his instructions, his corpse was used for an 
anatomical dissection by his medical students on the day after his death. 

 At the beginning of the nineteenth century – following the  1794  description by 
B.L. in The Gentlemen’s Magazine in London of a forehead tissue transposition to 
restore the nose of a bullock cart driver named Cowasjee, that had been cut off as a 
punishment – the English surgeon Carpue was the  fi rst surgeon to apply methods of 
nasal reconstructions known to Indian surgeons for centuries  (  Carpue 1981  ) . 
Dieffenbach described methods for reconstructions of several components of the 
face, as well as the anus and the urethra (Goldwyn  1968  ) . Reverdin devised a method 
for transplantation of skin islets, similar to the later techniques for keratinocyte 
transplantation (Horch et al.  2001  ) . Transplantational biology was investigated by 
experimental approaches: In 1824, Franz Riesinger attempted corneal transplants 
from rabbits to humans, which were not successful (Moffatt et al.  2005  ) . In 1837 
Samuel Bigger performed a corneal transplant from a lab gazelle to another Gazelle 
with full recovery. Later on, Schleiden and Schwann in 1838–1839 postulated the 
cell theory    that was afterwards con fi rmed by Rudolf LK Virchow through micro-
scopic observations. He stated in 1858 the famous “ omnis cellula ex cellula ”. 
Ultimately, the idea of cells being the elementary units of life being able to replicate 
themselves by division was born (Coleman  1978 ; Stocum  2006  ) . 

 The eminent German pathologist Julius Cohnheim postulated in 1867 what 
became known as the “Cohnheim hypothesis   ”. He suggested that all of reparative 
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cells taking part in the regeneration of wounds come from the bloodstream (and 
therefore from the bone marrow) (Wohlrab and Henoch  1988  ) . 

 At the end of the nineteenth century, Barth observed that upon autologous bone 
transplantation in hounds the vast majority of cells die and leave a scaffolding 
behind to be slowly repopulated by new host cells and an adequate neovascular 
network (Barth  1893  ) . 

 Another very important advance was new knowledge on descriptive embryology    
that elicited a revolution in developmental biology. Even Darwin considered embry-
ology as key to providing a special insight into evolution of forms, as seen in his 
correspondence to his friend Asa Grey. 

 If the living cell is the key to the tissue engineering    of implantable parts and 
devices, then the advent of mammalian cell culture technology, i.e. the growing of 
mammalian cells out of the body, represents an event which ultimately opened the 
door for this  fi eld. Modern cell culture dates back to the early part of this century 
when a French scientist, Alexis Carrel, working at the Rockefeller Research Institute 
in New York, started a culture from a small slice of heart muscle taken from a chick 
embryo (Leff  1983  ) . This culture continued for several decades, although along the 
way the heart muscle cells died out and only  fi broblast cells continued to proliferate. 
Carrel’s historic chick-cell culture  fi nally was allowed to expire 34 years after it was 
started – and 2 years after his own death. Anecdotally and in the retrospect, his 
“immortal” adult cells might have bene fi ted from interventions from Carrel’s staff 
to keep the cells going and their teacher happy (Witkowski  1980  ) . Now it is known, 
that according to the “Hay fl ick limit”, cells in culture are not able to replicate more 
than 40–60 times and they are bound to display signs of senescence with successive 
passages (Hay fl ick  2007  ) . 

 Cell culture has led to research which has paved the way for a number of impor-
tant breakthroughs in the life sciences (Figs.  1.4  and  1.5 ). This includes the study of 
cellular processes, molecular biology and the ability to genetically manipulate cells, 
and the resulting development of new drugs, with much of recent drug-related 
research and product development being based on recombinant DNA technology 
(Nerem  1992  ) . In the early 1970s, Dr. W.T. Green, a pediatric orthopaedic surgeon 
at Children’s Hospital Boston, undertook a number of experiments to generate new 
cartilage using chondrocytes seeded onto spicules of bone and implanted in nude 
mice. Although unsuccessful, he correctly concluded that with the advent of innova-
tive biocompatible materials it would be possible to generate new tissue by seeding 
viable cells onto appropriately con fi gured scaffolds (Figs.  1.6  and  1.7 ). Several 
years later, Drs. John Burke, Massachusetts General Hospital, and Ioannis Yannas, 
MIT, collaborated in studies in both the laboratory and in humans to generate a 
tissue-engineered skin substitute using a collagen matrix to support the growth of 
dermal  fi broblasts. Dr. Howard Green later transferred sheets of keratinocytes onto 
burn patients. Dr. Eugene Bell seeded collagen gels with  fi broblasts, referring to 
them as contracted collagen gels. All of these examples represent seeds of the new 
discipline now known as tissue engineering (Vacanti  2006  ) .     

 Modern research on embryonic stem cells originates from studies on teratocar-
cinomas arising from the gonads of imbred mice. These neoplasias displayed a 
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  Fig. 1.5    Reepithelialisation. Eight weeks after skin particle seeding. Complete reepithelialisation 
is accomplished after “in situ culture” utilizing regenerative potentials of the human body       

  Fig. 1.4    Back from bench to bedside. Back from bench to bedside: small particles of skin inocu-
lated into “biological” environment of wound showing expanding skin islet within a large wound 
3 weeks after seeding       

characteristic mixture of different tissues lined up next to each other randomly. By 
the end of the 1960s it was established that they originated from germ cells    that 
were able to give rise to a plethora of different tissues. So the concept of pluripo-
tency of germinal cells was introduced (Kleinsmith and Pierce  1964  ) . From its 
potential to generate a multitude of different cells, the tumour cell was named 

 

 



  Fig. 1.6    Human epidermal sheets. Human epidermal sheets of autologous keratinocytes, obtained 
by cell culture (14 days). Light microscopy. ( a ) Objective 20×. ( b ) Objective 60× (Laboratory of 
Cellular and Molecular Medicine, Prof. L.M. Popescu, Bucharest)       

  Fig. 1.7    Epidermal sheet treatment. Comparison between the regenerative processes of a donor 
area with (ES) or without (non-ES) epidermal sheet treatment. ( a ) Ten days after the application of 
the epidermal sheet. ( b ) Five weeks later (Courtesy of Prof. D. Enescu, Department of Plastic 
Surgery, Children’s Hospital, Bucharest)       
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embryonal carcinoma    stem cell (EC). Research with EC stem cells expanded 
considerably in the 1970s. In a series of experiments, chimeric mice were produced 
by injecting EC s into early blastocysts (Papaioannou et al.  1975  ) . Interestingly 
enough, in most of the cases, the tumour cells succumbed to the environment around 
the developing embryo and they contributed to a perfectly normal mouse pup. Hence 
it was shown that their genetic code could be “reprogrammed” according to the 
in fl uence of the environment. Furthermore, the EC stem cells in culture could be 
constantly kept undifferentiated by frequent splitting or left to differentiate when 
the culture became too dense and they piled up. However, the EC stem cells were 
inherently  fl awed displaying chromosome abnormalities and were unable to differ-
entiate into sperm and egg cells. Since ectopic blastocyst injections were also found 
to generate teratomas it became soon evident that pluripotent cells could also be 
derived from blastocysts directly (Damjanov  1993  ) . Soon the next logical step was 
undertaken, when Gail Martin (Martin  1981  )  in USA and Martin Evans (Evans and 
Kaufman  1981  )  in England generated in 1981 a stable diploid cell line that could 
generate every tissue of the adult body, including germ cells. Gail Martin referred to 
her cells as “embryonic    stem cells” and gave them the nickname “ES cells”. 

 The same line of advances had to be repeated for human cells: Human EC stem 
cell lines could be isolated and cultured from a rare tumor of the male testes, after 
orchiectomy procedures (Andrews  1988  ) . However, these cells are always aneu-
ploid and usually lack the capacity to differentiate into somatic tissue (Pera et al. 
 1989  ) . Human ES cells were not available at this time. What was available, were 
blastocyst-derived embryonic cells from primates including rhesus monkeys and 
marmosets (Thomson et al.  1996  ) . These cells displayed all favourable characteris-
tics: they were diploid and were able to give rise to all three types of germinal 
layers, including germ cells. Their phenotype resembled that of the human EC and 
were distinctly different from the mice ES. All major technological advances for 
cultivation and characterization of human ES was achieved by the late 1990s – but 
their harvest was not yet possible. 

 In 1998 a major step was accomplished toward this direction marking the dawn 
of a new era. Couples undergoing treatment for extracorporeal fertilization donated 
a surplus of blastocysts for experimental purposes. James Thomson isolated and 
cultivated a human ES line from these blastocysts (Thomson et al.  1998  ) . 

 Adult stem cells were also to enter the arena of biomedical research. The idea 
that bone marrow contained some kind of osteogenic precursor cells started in 1963 
when Alexander Friedenstein (Petrakova et al.  1963  )  showed that by implanting 
pieces of bone marrow under the renal capsule, it was possible to obtain an osseous 
tissue. After this he and his co-workers revealed a series of in vivo studies in which 
the possible existence of stem cells in the bone marrow was shown. Almost 20 years 
later, Caplan gave these cells the name they have today, Mesenchymal    Stem Cells. 
In 1994, the same author described that these cells, when placed in the adequate 
culture conditions, could be differentiated into cells with mesenchymal origin 
and eventually give origin to bone, cartilage, fat, muscle skin, tendon and other 
tissues of mesenchymal origin, through what he named “the mesengenic 
process”(Caplan  1994  ) . Since then, a series of researchers have elaborated on 
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the use of hES for the purposes of tissue engineering and regenerative medicine 
(Guillot et al.  2007  ) . 

 In summary the idea of utilizing stem cell transplantation for tissue regeneration 
or even potential organ replacement is by itself fascinating and generates a huge 
amount of various experimental and hypothetical approaches within the last years. 
Especially – similar to the principal idea of tissue engineering – the implantation of 
adult human autologous or embryonic stem cells, which are expanded ex vivo, 
might circumvent some of the current problems associated with transplantation sur-
gery, particularly in the elderly. This encompasses the hitherto naturally limited 
availability of organs or tissues as well as the numerous complications that are 
related to disease transmission and immune rejection. 

 This is especially true for the complex of so called musculoskeletal degeneration, 
that is closely associated with the aging process. However, to introduce adult MSC 
into clinical practice of substituting organs or tissues, it is necessary to vigorously 
de fi ne the capacity of MSC to maintain growth potential and regulated differentia-
tion of such cells into the desirable cell lineage. There is still not enough body of 
knowledge at the moment with regard to the physiological and pathophysiological 
parameters of MSC, including environmental conditions such as biomechanical 
forces, as to fully understand the potential in fl uence on MSC to differentiate and 
grow into desired tissues, once extracted and cultured ex vivo (Cheung  2010  ) . It is 
not known how MSC from young individuals behave versus cells harvested from 
the elderly. Nevertheless, many efforts are underways to gain more insight into 
the promising  fi eld of harnessing the power of stem cells for tissue and organ regen-
eration (Cheung  2010  ) . Other issues that concern the ethical aspects of human 
embryonic stem cells need to be further addressed before research and clinical 
translation will make its break through.  

    1.4   Tissue Engineering 

 The origins of tissue engineering             are generally traced to the beginning of the 1980s 
in Boston. Funding was received by the Bell Laboratories in Massachusetts Institute 
of Technology (MIT) for preparing a cell based vascular scaffold. Prior to that, 
Eugene Bell had published on the use of “living skin equivalents” in Science as 
early as 1981 (Bell et al.  1981  ) . Lysaght tracked a press release in 1982 stating that 
“Flow General”, one of the funding  fi rms based in Virginia, was pursuing research 
and development efforts in business segments including tissue engineering and 
“smart” computer systems (Lysaght and Crager  2009  ) . E. Bell founded in 1985 
“Organogenesis Inc.” and later on, “Tissue Engineering International – (TEI) 
Biosciences Inc.” both of which are renowned companies in the biotechnology 
landscape. During the same time, a few doors further in MIT, Joseph Vacanti of 
Children s Hospital approached Robert Langer with the idea to design custom made 
scaffolds for cell delivery. Thereupon, they started an extensive collaboration with 
studies on the properties of functional tissue equivalents (Vacanti  2006  ) . In 1987 a 
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special session was held at the US National Science Foundation meeting in 
Washington DC, where the denomination “Tissue engineering” (TE) was of fi cially 
given to the  fi eld and organisation of the  fi rst conference with focus on “the 
engineering of living tissue” was initiated, mainly by Y.C. Fung (Nerem  1992  ) . 
This conference took place in 1988, at Lake Tahoe, California and the  fi rst de fi nition 
of tissue engineering was introduced by Robert Nerem:

  Tissue engineering is the application of the principles and methods of engineering and the 
life sciences towards the fundamental understanding of structure/function relationships in 
normal and pathological mammalian tissues and the development of biological substitutes 
to restore, maintain, or improve functions.   

 The proceedings of this meeting were published a year later as a book titled 
“Tissue Engineering” (Skalak and Fox  1989  ) . The  fi rst peer reviewed article acces-
sible through the NLM database with the term appeared in 1989. It was a report on 
a biologically based vascular graft published by Tadashi Matsuda in ASAIO 
Transactions (Matsuda et al.  1989  ) . Maybe the most cited early review on tissue 
engineering is a 1993 publication by JP Vacanti and R Langer in the journal Science 
where the de fi nition is stated again in brief (Langer and Vacanti  1993  ) . 

 1995 was a turning point of TE, since it was the year of the “auriculosaurus”. 
Charles Vacanti, seeded a polymeric scaffold in the shape of a human ear with 
cartilage cells and implanted it subcutaneously on the back of a nude mouse. The 
pictures of this ear-formed bioarti fi cial implant,  fi lmed by a BBC crew, quickly 
made the round of the world and attracted a huge interest on the new biotechnology. 
It became a symbol for the emerging  fi eld of TE. 

 In 1996 the Tissue Engineering Society international    (TESi) was of fi cially founded 
by Joseph and Charles Vacanti, and the inaugural meeting took place at the Lake 
Buena Vista Hotel in Orlando, Florida the same year. The Asian tissue engineering 
societies were incorporated in TESi by 2000. By the turn of the century Raymund E 
Horch and G Björn Stark from Freiburg encouraged the foundation of the European 
branch of TESi the ETES   , and they hosted in 2001 the TESi meeting in Germany. 

 In 1998, a clinical application of tissue engineering became popular by the media. 
Charles Vacanti, used a biogenic matrix out of coral seeded with osteoblasts, for 
reconstruction of the skeleton of a traumatized thumb (Vacanti  2006  ) . The  fi rst tissue 
engineering products cleared FDA approval in the same year. Apligraf came from 
the E. Bell Laboratories and the  fi rm Organogenesis as living skin equivalent. Epicel 
evolved from Greens laboratory whereas Yannas together with Integra Life Sciences 
Inc. brought in 2002 an acellular dermis regeneration scaffold by the name of Integra 
in the market (Kemp  2006  ) . By the beginning of the twenty- fi rst century, there was 
a wild media hype about these fascinating new technologies with unrealistic expec-
tations both from the public and the biomedical society (Kratz and Huss  2003  ) . 
Time magazine described with a cover story, tissue engineers as the “hottest job” for 
the future: “ With man-made skin already on the market and arti fi cial cartilage not 
far behind, 25 years from now scientists expect to be pulling a pancreas out of a 
Petri dish ” ( What will be the 10 hottest jobs?   2009  ) . Just before 2001 there were 
over 3,000 people working in the sector, with funding exceeding US $580 million 
(Kemp  2006 ; Lysaght and Hazlehurst  2004  ) .  
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    1.5   The Era of Regenerative Medicine 

 However, by the middle of the  fi rst decade of the twenty- fi rst century, tissue engi-
neering seemed to be going through a crisis. Lysaght noted very graphically in 2006 
that “…such highly favourable media treatment has its bene fi ts, but research- 
minded professionals increasingly recognized a disconnect with the realities. And 
such disconnects rarely lead to happy endings” or “…Although aggregate develop-
ment costs exceed $4.5 billion, the  fi eld has yet to produce a single pro fi table 
product.” (Lysaght and Hazlehurst  2004  ) . 

 Furthermore, tissue engineering had reached some biological limitations. The 
mechanistic approach dictated by biomaterial scientists, neglected issues of vascu-
larization   . It became clear that angiogenic processes were central to homeostasis, 
bioassimilation and biointegration of tissue engineered constructs (Mooney and 
Mikos  1999 ; Vacanti et al.  1998  )  Experimental activities were directed to encom-
pass integrative strategies towards generation of autonomously vascularised 
bioarti fi cial tissue elements (Polykandriotis et al.  2007,   2008  )  (Figs.  1.8  and  1.9 ). 
In addition to that, emphasis was being given to cellular therapies, since the era of 
human embryonic stem cells had arrived. Other satellite technologies had acquired 
a momentum of themselves, with gene technology reaching the point where a whole 
mammal could be easily cloned (Wilmut et al.  1997  )  or genetically manipulated 
(the Monsanto swine case). Nanotechnology    came also into play with generation of 
new biomaterials (Beier et al.  2009  ) .   

 The whole  fi eld was consecutively renamed into “regenerative medicine”. The 
terms tissue engineering and regenerative medicine were used in parallel and 
synonymously to each other, but it is widely accepted that the very change of the 
name epitomized the beginning of a new era. 

  Fig. 1.8    Corrosion casting. 
A microvascular replica 
of a bioarti fi cial organoid 
showing angiogenesis. 
The neovascular capillaries 
are “polarized” towards a 
maximum regenerative 
stimulus. All these capillaries 
were formed during the 
course of less than 1 week       
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 The term “regenerative medicine   ” was popularized by William Hazeltine, the 
founding editor of Liebert’s  fi rst e-journal Regenerative Medicine and organizer of 
four conferences on this same  fi eld, in Washington, DC between 2000 and 2003 
(Lysaght and Crager  2009  ) . However, he was not the  fi rst to introduce it. 

 The term can be found in a 1992 article on hospital administration by Leland 
Kaiser. In the last paragraphs there was a brief account of future technologies about 
to in fl uence the sector. Under the epigram “Regenerative Medicine” it was stated 
that “A new branch of medicine will develop that attempts to change the course of 
chronic disease an in many instances will regenerate tired and failing organ systems” 
(Kaiser  1992  ) . Over the next few years, several reports used the expression in con-
nection with the New Jersey Company Integra and it could also be found in scattered 
newspaper reports. In spring of 1998 Business Week brought an article on biotech-
nology with a special reference on “Regenerative Medicine” (Arnst and Carey  1998 ; 
Lysaght and Crager  2009  ) . The term  fi rst appears in peer-reviewed citations found 
on PubMed in 2000 and was in widespread use by the following year. 

 At the early years of the new century a shattering process took place in USA. 
The new legislature had frozen most of federal granting for stem cell research. 

  Fig. 1.9    Advanced imaging 
applications.  Above  Micro 
magnetic resonance 
angiography of a bioarti fi cial 
organoid grown in a rat. A 
4,7 Tesla    Brucker bioscan 
equipment has been used for 
in vivo monitoring of the 
nascent biological construct. 
 Below  Ex vivo Micro CT 
study of the same organoid 
after injection of a contrast 
medium. Plasticity of the 
microvascular network 
produces a parenchyma – like 
circulation       
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Robert Nicholas Klein II, a lawyer and real-estate developer from Palo Alto, whose 
son suffered from diabetes mellitus type I, and whose mother suffered from 
Alzheimer’s disease became the leader of a public effort to change policy of the 
government on stem cell research and regenerative medicine. He himself invested 
more that $3 million from his own money on this purpose and was crowned with 
success. On 2 November 2004, the proposition No 71    passed through a public ballot 
initiative with a 59.05–40.95% majority. As a response to that, the California 
Institute of Regenerative Medicine was established as a superintending instance for 
a huge funding of more than $3 billion over 10 years. It is worth noticing, that 
proposition 71 was unique in many ways. First, it used  General obligation bonds , 
which are usually used to  fi nance construction projects such as bridges or hospitals, 
to fund scienti fi c research. Second, by funding scienti fi c research on such a large 
scale, California assumed a role that is typically ful fi lled by the  Federal Government 
of the United States . And third, Proposition 71 established the state constitutional 
right to conduct stem cell research. This initiative also represented a unique instance 
where the public directly decided to fund scienti fi c research  (  Wikipedia 2009  ) . 

 The NIH has currently adopted the following de fi nition: “ Regenerative medicine/
tissue engineering is a rapidly growing multidisciplinary  fi eld involving the life, 
physical and engineering sciences that seeks to develop functional cell, tissue, and 
organ substitutes to repair, replace or enhance biological function that has been lost 
due to congenital abnormalities, injury, disease, or aging ” (Daar and Greenwood 
 2007  )  .  The current FDA approved RM products cover a limited circumscribed range 
of markets in the 20–50 million scale (Kemp  2006  ) . Still, the public and academic 
interest remains vivid, owing mostly to the fact that RM has the potential to tackle 
huge health challenges including cardiovascular disease, brain and spinal cord 
damage, as well as organ failure (Cheung  2010 ). These medical issues cost the com-
munity billions nowadays, and more often than not so, medical solutions devised so 
far are unsatisfactory. When biotechnological advances permit it, these medical 
problems will be addressed and  fi rms well placed in the  fi eld fashioned with infra-
structure, skills and a corresponding logistic network will have a clear advantage 
(Kemp  2006  ) .      
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  Abstract   Extracellular matrix (ECM) is an important component of stem cell niche 
areas, which provide residence, regulate stem cell pool size and control stem cell mobi-
lization. ECM is a complex interlinked composite of collagenous molecules, non-
collagenous molecules and water-rich mucopolysaccharide ground substance. Cells 
are integrated to their matrix via integrin and non-integrin receptors, which are utilized 
in the control of adhesion, migration, division, growth, anoikis, transdifferentiation and 
other cellular behaviour. ECM provides architecture and strength, but also growth 
factor deposits, which proteinases as signalling scissors can release in a site- and 
process-speci fi c manner. Several processes, like wounds, cartilage, fractures, myocar-
dial infarctions and tumor growth are used to exemplify regenerative processes.      
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    2.1   Introduction 

 Bone marrow-derived mesenchymal stem cells (MSCs) are nurtured in specialized niche 
areas by coordinated action via contact with soluble factors, extracellular matrix (ECM) 
components and stem or feeder cells, which regulate the size and mobilization of the 
stem cell pool. MSCs can be recruited from their protected niche locations, be locally 
activated, or arti fi cially harvested from various anatomical locations to be implanted. 

 ECM     fi lls the void between cells (interstitial matrix) and is present at tissue (base-
ment membrane) and cellular (synovial lining) interfaces. ECM is a composite of  fi brous 
(1) collagen molecules and (2) non-collagenous proteins embedded in (3) water-rich 
mucopolysaccharides. Small leucine-rich proteoglycans (SLRP) regulate collagen 
 fi brillogenesis, but also cross-link  fi bres and cells and form deposits of growth and dif-
ferentiation factors. Elastins with its associated molecules, like  fi brillin and  fi bulin, and 
adhesive glycoproteins laminin and  fi bronectin, are important non-collagenous proteins. 
Large aggregating proteoglycans or lecticans, like aggrecan, and hyaluronan from the 
ground substance. Scaffolds or derivatization of scaffolds with ECM molecules are used 
to regulate proliferation and differentiation of progenitor and stem cells. 

 Cells are integrated to ECM via 24 different non-covalently coupled heterodi-
meric cellular integrin receptors, which form an important link in the integration of 
cellular actin cytoskeleton. They also allow exploration, migration and outside-in 
and inside-out signalling and act together with soluble factors and cell-cell contacts. 
Discoidin domain receptors, Lutheran Lu/B-CAM complex and  a / b -dystroglycan 
complex are non-integrin matrix receptors. Glycan binding receptors, in particular 
extracellular C-, R- and I-type lectins and galectins play roles in cell-matrix adhe-
sion and signalling, including MSC recruitment, bone marrow stem cell niche and 
adult collagen remodelling. 

 Proteinases modulate the composition of the ECM and are divided based on their 
catalytic mechanism to secretory neutral serine and metallo endoproteinases (and amino- 
and carboxypeptidases) and to mostly intralysosomal acidic cysteine and aspartate 
endoproteinases. They mediate tissue degradative events in normal remodelling and 
pathological tissue destruction, but are increasingly recognized as signalling scissors. 

 Classical examples of processes which re fl ect stromal stem cell function and 
some general and some site speci fi c challenges comprise wound healing, cartilage 
healing, fracture healing, healing of myocardial infarction and tumor growth. All 
these are so important that intensive research is ongoing to  fi nd options for thera-
peutic interventions utilizing recruitment and activation of local autologous stem 
cells, various forms of cell therapies and tissue engineering applications.  

    2.2   Stem Cell Niche    

 Bone marrow-derived mesenchymal stem cells    (MSCs) are nurtured in specialized 
but still poorly characterized niche areas by coordinated action via contact with 
soluble factors, extracellular matrix (ECM) components and stem or feeder cells. 
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These together regulate the size of the stem cell pool by switching them back and 
forth between symmetric and asymmetric cell divisions. 

 Healing tissue recruits cells from local already differentiated cells, which 
undergo symmetrical cell divisions. This recruitment extends to local resident or 
circulating mesenchymal stem cells (MSC) from bone marrow or other sources, 
which are capable of asymmetric cell divisions and able to perform various regula-
tory functions. 

 Stem cells reside in a niche, which refers to a local  in vivo  or  in vitro  cellular and 
matrix tissue microenvironment able to home, house, interact, maintain or mobilize 
one or more stem cells interacting with them and regulating their fate. The cellular 
“host” of the niche probably represents a cell, which is able to produce such ECM 
components, which the stem cell itself may not be able to produce or organize to a 
niche, but to which it adheres to via integrin and non-integrin matrix receptors and 
which ECM molecules this way regulate stem cell behaviour. Interactive participa-
tion of the nurturing “host” cell and stem cell in the process and their responsiveness 
to external stimuli, such as stem cell mobilizing pro-in fl ammatory cytokines, makes 
the niche dynamic. It can thus regulate stem cell proliferation and differentiation 
during the embryonic development but maintains stem cells in a quiescent state in 
adults, and helps them to get activated upon tissue injury and to disclose the poten-
tial of the stem cells to undergo also asymmetric cell divisions (Doe and Bowerman 
 2001  ) . This may be determined by the orientation of the cytokinesis of the stem cell 
division, which is in part regulated by the architecture of the niche and by integrin 
mediated anchorage. If the division occurs in a plane parallel to the niche cell-stem 
cell contact surface, the proximally located parent cell is likely to remain in contact 
with the niche whereas the distally located daughter cell is displaced from it. This 
(1) maintains the stemness and the size of the stem cell pool and (2) produces pro-
genitor cells, which loose contact with the niche and their stemness and leave the 
niche to migrate and/or transit via circulation to a new location to terminally dif-
ferentiate to specialized cells, respectively (Ellis and Tanantzapf  2010  ) . Staining of 
chondroitin sulphate sulphation motif epitopes can be used to identify articular car-
tilage progenitor cells and was used to localize perlecan and aggrecan but not versi-
can in the stem cell niche (Hayes et al.  2008  ) . 

 Interactive niche-stem cell factors    can be broadly classi fi ed to three different 
categories, (1) soluble factors (growth factor, nutrients, electrolytes, pH, oxygen, 
chemokines, cytokines and differentiation factors), (2) direct cell-cell interactions 
(stem cell-stem cell, stem cell-feeder/other cell interactions utilizing various adhe-
sion molecules and counter-ligands) and (3) extracellular matrix (ECM)-stem cell/
niche cell interactions, which are the topic of this chapter. MSC integrin receptors 
for interstitial type I collagen  a  
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  integrins (for more, see Docheva et al.  2007  ) , which may help the stem 

cells to home, anchor, structure, divide and leave the niche as well as otherwise to 
perform their other functions as stem cells. However, in spite of the knowledge of 
the integrins present in hMSCs, the actual integrin receptors relevant for the niche 
cells and for the MSCs are poorly known at present, but based on currently available 
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information on different stem cell-niche systems, several redundant integrin receptors 
are probably involved (Ellis and Tanantzapf  2010  ) . 

 Integrin    chain speci fi c antibodies coupled to paramagnetic micro-beads, which 
are subjected to an inhomogeneous magnetic  fi eld, and various computer controlled 
culture substrate stretching devices have been developed to test the effect of integ-
rin-mediated mechanical forces on cellular phenotype and function (Sasaki et al. 
 2007 ; Pommerenke et al.  1996  ) . Mechanotransduction may help to shape the stem 
cell niche and regulate the stem cell function as has been recently proven by mecha-
noactive tenogenic differentiation (Kuo and Tuan  2008  ) . 

 Understanding the effects of the above mentioned niche factors on chromatin 
remodelling (heterochromatin or active euchromatin state) and gene expression, 
(including microRNA-mediated epigenetic regulation), is essential for proper con-
trol of tissue engineering constructs produced in cell culture, bioreactors or  in situ  
utilizing heterotopically seeded cells or cells locally recruited to the scaffold or 
damage area. A delicate balance protects stem cells from depletion, but at the same 
time prevents excessive, cancer cell-like proliferation. Stem cell niche constitutes 
the basic unit of stem cell physiology the same way as osteons, chondrons and 
salivons do in bone, cartilage and salivary gland tissue, respectively. Integration of 
signals at the interface between the bone marrow and stem cells in the niches are 
still poorly understood. 

 Niche    has relatively wide implications also for cancer cells    and hematopoietic 
cells   . Self-renewing cancer stem cells may reside and renew in cancer stem cell 
niche composed of a specialized vascular bed of endothelial cells, some sort of 
mesenchymal cells and ECM components (Nie  2010  ) . Bone marrow derived MSCs 
in their bone marrow stem cell niche may via their immunosuppressive properties 
be involved in cancer progression and metastasis. MSCs of bone marrow may also 
provide the cellular support structure in the niche for hematopoietic stem cells 
(Battiwalla and Hematti  2009  ) . 

 In spite of their predicted existence, it is a challenge to learn to unanimously 
identify stem cells in their natural surrounding. In tissues they can not be recognized 
by their ability to differentiate along various specialized cell lineages and demon-
stration of a palette of markers used for cultured or cloned stem cells by using  fl ow 
cytometry are not easily adaptable to histological tissue sections at the single cell 
level in static cytometry. 

 To regulate the size of the stem cell or progenitor cell pool   , stem cells have a 
capability pendulate between the above mentioned asymmetric and symmetric cel-
lular divisions to either increase the stem cell pool or the progenitor pool. Probably 
the stem cell pool is expanded during embryogenesis, whereas asymmetric divi-
sions could allow rapid generation of progenitors upon high demand in various 
tissue regenerative processes. The process of expansion of the stem cell pool must 
be controlled at some critical checkpoints to prevent cancer, whereas to latter is 
also strictly regulated to prevent precocious depletion of the stem cell pool; the 
cells can probably switch back and forth between these two different modes of 
proliferation. The size of the stem cell pool is probably downsized upon aging via 
senescence or apoptosis.  
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    2.3   Mesenchymal Stromal Cells 

 Mesenchymal stem cells    can be recruited from their protected niche, locally 
activated, or arti fi cially harvested from various anatomical locations to be implanted 
as such or in tissue engineering constructs to tissue defects to facilitate repair by 
expansion, differentiation or perhaps mostly by orchestration of the more simply 
programmed resident or immigrant repair cells during tissue regeneration. 

 Bone, cartilage and other tissue defects can be repaired by differentiated autolo-
gous cells    or tissues isolated from the donor site(s) for transplantation, but often it 
is impossible to obtain enough autologous cells or tissues for such repair procedures 
and harvesting them from e.g. iliac bone or non-weight bearing femoral head carti-
lage can be complicated and painful. Usage of autologous cells requires usually 
enrichment and control of phenotype. Allogeneic and xenogeneic cells       would be 
better available for clinical use, but immunosuppressive treatment would be neces-
sary to overcome immunological rejection evoked by foreign cells. Only scid mice 
with severe combined immunode fi ciency can be used for experimental studies of 
such allogeneic or xenogeneic cells. Foetal cells might provide a low immunogenic 
option (O’Donoghue and Fisk  2004  )  but the use of foetal and embryonic stem cells 
raises ethical issues. 

 Tissue injury triggers cellular mechanisms, which lead to injury site speci fi c cell 
division and matrix synthesis, which regulate homing and engraftment of circulat-
ing and local stem cells to the void and to regulate the sequential and ordered heal-
ing cascades. To avoid scar tissue formation and promote true regeneration with 
functional tissue with original tissue characteristics, MSCs and various natural or 
synthetic scaffolds seeded with mesenchymal (or even foetal or embryonic) stem 
cells have raised interest. They could be used to augment healing in critical size 
defects, non-union, non-healing and otherwise clinically threatening tissue defects. 

 Autologous MSCs from various sources    in adults have potential to expand in 
numbers via symmetric cell divisions and then to differentiate into different special-
ized phenotypes via asymmetric cell divisions. The optimal source of stem cells for 
bone, cartilage and tissue engineering purposes is still debated due to insuf fi cient 
knowledge on the eventual commitment of cells of different origins. Potential 
sources include bone marrow, adipose tissue, synovial membrane, skeletal muscle, 
periosteum, dental pulp, umbilical cord blood, amniotic  fl uid and others. 

 Apart from differentiation cocktails containing mixtures of somewhat variable 
growth and differentiation factors and basic nutrient medium or transduction of sev-
eral genes to already differentiated cells such as skin  fi broblasts to produce induced 
progenitor cells, also several other actors play a role. ECM-integrin interface exerts 
mechanotransductive in fl uences on MSCs so that mechanical stimulation may com-
mit them towards osteogenic lineage (Engler et al.  2006  ) , although excessive mechan-
ical strain may again favour  fi broblast-like phenotype, e.g. at the implant-bone 
interface or tendon formation as described above. Apart from mechanical forces, 
hypoxia is likely to play a role in the differentiation of MSCs to bone,  fi brous tissue, 
cartilage or  fi brocartilage, the formation of the latter two being favoured by hypoxia. 
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 Vision of MSCs as precursors for resident cellular components of various specialized 
tissues is oversimpli fi ed, because MSCs can prolong the survival of skin and cardiac 
allografts, ameliorate acute graft-versus-host disease and experimental autoimmune 
encephalomyelitis, which all indicate important regulatory roles in the orchestration of 
specialized local cells in void  fi lling tissue repair (Zhao et al.  2010 ; Keating  2012 ).  

    2.4   Extracellular Matrix 

 Extracellular matrix     fi lls the void between cells (interstitial matrix) and is present at 
tissue (basement membrane) and cellular (synovial lining) interfaces. It is synthe-
sized, maintained and modulated by cells to adapt to development, growth, aging, 
changing mechanical and developmental needs, to meet the needs after micro- and 
macrodamage to renew and regenerate and to produce new editions of instructive 
outside-in signalling matrix. ECM is a composite of  fi brous (1) collagen molecules 
and (2) non-collagenous proteins embedded in (3) water-rich mucopolysaccharides. 
Small leucine-rich proteoglycans (SLRP) regulate collagen  fi brillogenesis ( fi bre 
thickness), but also cross-link  fi bres and cells and form deposits of growth and dif-
ferentiation factors. Elastin with its associated molecules, like  fi brillin and  fi bulin, 
and adhesive glycoproteins laminin and  fi bronectin, are important non-collagenous 
proteins. Apart from SLRPs, large aggregating proteoglycans or lecticans, like 
aggrecan, and hyaluronan from important components of the ground substance. 
Scaffolds or derivatization of scaffolds with ECM molecules are used to regulate 
proliferation and differentiation of progenitor and stem cells. 

    2.4.1   Extracellular Matrix: Collagens    

 ECM  fi lls the void between cells (interstitial matrix) and between tissue interfaces 
(basement membrane), providing by its toughness structure and physical support to 
tissue-typical multicellular but dynamically generated (organogenesis   ) and main-
tained (remodelling   ) architecture as well as adhesion substrate and an instructive 
editable matrix, which literarily is decisive for cellular survival and for the regulation 
of multiple aspects of cellular behaviour (Aszódi et al.  2006  ) . For most soft (skin, fat, 
fasciae, muscles, tendons, blood vessels, brain, peripheral nerves etc.) and hard or 
semi-hard (bone, cartilage, cornea etc.) “connective tissues” collagen nano fi bres 
form a three dimensional and highly organized scaffolded backbone, whereas the 
more hydrophilic and permeable ground substance largely composed of hydrophilic 
proteoglycans and glycoproteins occupies the inter fi brillar spaces enabling transfer 
and  fi ltration of nutrients, oxygen and metabolites. Linker proteins bind these two 
major components to extensive networks, which provide dynamic and adjustable 
biomechanical strength, associated with  fl exibility, to such cell-matrix composite 
structures. Due to the high biomechanical and instructive demands imposed to the 
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ECM, it undergoes almost continuous mechanotransduction    and remodelling    by 
replacing damaged and degenerated tissue with new intact and properly organized 
tissue to adapt to the varying local functional needs (Aszódi et al.  2006  ) . 

 Human body contains altogether 28 different collagen types, which are classi fi ed 
to nine different subtypes, including  fi brillar collagens, which form the bulk of the 
interstitial stromal collagens as described above and in some more detail in Table  2.1 . 
Structurally all collagens are characterized by the archetypical Gly-X-Y repeat 
sequences, in which X is often proline and Y often either hydroxyproline or hydrox-
ylysine the formation of which requires speci fi c hydroxylases and vitamin C. After 
synthesis of collagen  a -chains, regularly repeated glycins with their minimal side 
chains (−H) allow three individual collagen chains to wind up around each other 
into triple helical collagen monomer, procollagen, with globular amino- and car-
boxyterminal propeptide heads. The collagen superhelix domain is, due to its struc-
ture, very resistant against non-speci fi c proteinase-mediated degradation. After 
processing and removal of the globular propeptides individual collagen monomers, 
tropocollagens, spontaneously non-enzymatically assemble side by side to near one 
quarter overlapping supramolecular stacks with the typical cross-striation visible in 
electron micrographs developing as a result of this ( fi brillogenesis). Fibre thickness 
is for type I collagen regulated in part by type III collagen and for type II collagen 
in part by collagens IX (embedded in part inside the collagen type II  fi bre) and XI 
(located on the surface of collagen type II  fi bre). These still relatively loose  fi bre 
stacks mature by covalent cross-linking in a process, which involves speci fi c cross-
linking enzymes, lysyl oxidase. Collagen network provides substrate for attachment 
of ground substance and cells and provides the framework for deposition of various 
bioactive factors.  

 Puri fi ed native or processed allogeneic and recombinant human collagens, espe-
cially type I, are composed of nanosize biodegradable bio fi bres with potential for 
use in plastic and cosmetic surgery, drug delivery and tissue engineering in form of 
sheets, pellets, plugs, sponges and other products. Collagen sponge seeded with 
bone marrow-derived MSCs can develop healing tissue which to its biomechanical 
strength to 75% matches that of the corresponding healthy tissues (Juncosa-Melvin 
et al.  2006  ) . 

 Basement membranes    support epithelia and endothelia, casting them to their 
structural shapes, such as simple sheets or tubes or relatively sophisticated tubulo-
acinar, tubuloalveolar and vascular structures. Basement membrane also surrounds 
some individual cells, like adipocytes, Schwann cells and skeletal muscle cells. 
Basement membrane components are found in the intercellular cementing substance 
between  fi broblast-like type B and macrophage-like type A synovial lining cells 
joining them to form synovial lining or intima of the joint cavity, which in spite of 
its sheet-like structure does not have an actual sheet-like basement membrane. 

 Basement    membrane is a 100–300 nm thick barrier with perforations in the order 
of ~50 nm permitting free bidirectional movement of small molecules whereas the 
movement of cells and larger molecules is controlled. Certain cells, like the neutro-
phils, do cross the BM with great ef fi ciency. Chemoattractants and proteolytic 
events play a role in this process. 
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 It has been thought that type IV collagen    polymer network serves as the base 
platform upon which that laminin network is deposited but laminin polymers may 
actually serve as a template for the subsequent assembly of the BM (Li    et al.  2005a   ; 
McKee et al.  2007  ) . Collagen IV and laminin forms ternary complexes linked 
together by nidogen-1 and -2 (Fox et al.  1991 ; Kohfeldt et al.  1998  ) . A heparan 
sulphate/chondroitin sulphate proteoglycan, perlecan, is also found as an integral 
part of this network and is important for its integrity and as a local storage of growth 
factors (Gohring et al.  1998  ) . 

 The type IV collagens were  fi rst identi fi ed by Kefalides in 1966 (Kefalides  1966  ) . 
Depending upon its location it is synthesized either by  fi broblasts, paranchymal 
cells, epithelial cells, endothelial cells, or by various other cells that are surrounded 
by the BM. The collagen type IV genes in human encoding its different  a  chains are 
arranged head-to-head in three pairs. Gene encoding type IV collagen  a  

1
 ,  a  

2
  

( COL4A1 -  COL4A2 ) and  a  
3
 ,  a  

4
  ( COL4A3 - COL4A4 ) is located on chromosome 13, 

and on chromosome 2, respectively, while the gene encoding for type IV collagen 
 a  

5
 ,  a  

6
  ( COL4A5 - COL4A6 ) is located on chromosome X. A common ancestral gene 

may have been duplicated three times resulting in six evolutionary related genes 
(Zhou et al.  1994  ) . Sequences and characteristic exon–intron organizations divide 
them into  a  

1
 -like group ( COL4A1 ,  COL4A3 ,  COL4A5 ), and  a  

2
 -like group ( COL4A2 , 

 COL4A4 ,  COL4A6 ). A unique feature of the type collagen IV gene pairs is that they 
share bidirectional promoters. 

 All type IV collagen  a  chains are ~1,400 amino acids long. They are composed 
of a ~15-residues long N-terminal 7S domain, collagenous segments consisting of 
Gly-X-Y repeats, which are interrupted by 22 short non-collagenous sequences 
(which provide  fl exibility and serve as cell-binding sites) and a ~230-residue long 
C-terminal non-collagenous NC1 domain (Kalluri  2003  ) . Three type IV collagen  a  
wind up to a triple helical tropocollagen. According to the currently known combi-
natorial rules three distinct trimers are formed,  a  

1
  a  

1
  a  

2
 ,  a  

3
  a  

4
  a  

5
 , and  a  

5
  a  

5
  a  

6
  (Boutaud 

et al.  2000 ; Hudson et al.  2003 ; Khoshnoodi et al.  2008  ) . 
 The collagen monomers    further self-assemble to supramolecular networks. First, 

dimers are formed by head-to-head association of two protomers via their trimeric 
NC1 domains so that bonding NC1 hexamers are formed. Four dimers then join at 
their N-terminal cystine- (disul fi de bonds) and lysine-rich (lysine-hydroxylysine 
bonds) containing regions to form a heavily glycosylated 7S-tetramer. This knot is 
relatively resistant to collagenase activity and can be isolated from bacterial colla-
genase treated basement membranes at a sedimentation coef fi cient 7S (Risteli et al. 
 1980  ) .  a  

1
  a  

1
  a  

2
 (IV) and  a  

3
  a  

4
  a  

5
 (IV) trimers form independent networks, while 

 a  
1
  a  

1
  a  

2
 / a  

5
  a  

5
  a  

6
  (IV) molecules form combined aggregates (Borza et al.  2001  ) . 

 Type IV collagen composition of the basement membrane seems to affect cell 
adhesion, proteolytic susceptibility and ability to interact with other BM compo-
nents (Kalluri  2003  ) . The  a  

1
 (IV) and  a  

2
 (IV) are ubiquitously found throughout the 

human body, while the other 4  a  chains have a more restricted tissue distribution. 
The  a  

3
  a  

4
  a  

5
 (IV) network is found in the glomerular and some tubular basement 

membranes of the kidney, cochlea, eye, lung and testis, whereas the  a  
5
  a  

5
  a  

6
 (IV) 

trimer is located in the skin, oesophagus, Bowman’s capsule of the kidney and 
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smooth muscle cells. A temporal regulation of type IV collagen  a  chains expression 
is seen for instance in the glomelular BM of human kidney. During early embryonic 
development (day 75), the genes which encode  a  

1
 (IV) and  a  

2
 (IV) chains are 

expressed. As the development proceeds the expression of genes encoding the 
 a  

3
 (IV),  a  

4
 (IV) and  a  

5
 (IV) chains starts while the levels of  a  

1
 (IV) and  a  

2
 (IV) chains 

gradually decrease. This switch in gene expression during developmental is critical 
for maturation of the glomerular BM. 

 Mutations in the genes encoding either  a  
1
 (IV) or  a  

2
 (IV) are embryonic lethal, 

while mutations in the genes encoding the  a  
3
 (IV),  a  

4
 (IV),  a  

5
 (IV) or a

6
 (IV) chains 

may lead to human diseases (Hudson et al.  2003 ; Hudson  2004  )  (Table  2.1 ). 
Mutation of the  COL4A5  gene results in Alport syndrome. This mutation is mostly 
inherited and results in glomerulonephritis and hearing loss. Goodpasture’s syndrome 
is an autoimmune disease manifest by rapidly progressive glomerulonephritis and 
pulmonary hemorrhage. The Goodpasture antigen, which is usually the NC1 domain 
of the  a  

3
 (IV) chain, is most exposed in the glomeruli and alveolar basement 

membranes. 
 Type IV collagen expression is suppressed by pioglitazone (Ohga et al.  2007 ; Ko 

et al.  2008  )  and methotrexate (Yozai et al.  2005  ) . Tumstatin, the NC1 domain of 
 a  

3
 (IV) chain, is an endogenous inhibitor of pathological angiogenesis and sup-

presses tumour growth via integrin  a  
v
  b  

3
 , because tumstatin binding inhibits focal 

adhesion kinase and some other signalling pathways, which inhibits endothelial cell 
proliferation and induces apoptosis (Maeshima et al.  2001,   2002  ) . 

 Endothelial cells, basal cell layer keratinocytes, hepatocytes, carcinoma cells, 
melanoma cells,  fi brosacroma cells and many other cells bind via adhesion recep-
tors to multiple sites in the NC1 and/or the triple helix domains of type IV collagen 
as explained below in the paragraph on integrin and non-integrin receptors.  

    2.4.2   Extracellular Matrix: Non-Collagenous Proteins    

 Elastin    is a highly elastic stretchable and recoiling strong and elastic  fi brous protein of 
many connective tissue matrices of the body, including in particular large and medium 
size arteries (conductance vessels, e.g. aorta), lung alveoli, skin and intervertebral discs. 
It yields under stress but stores energy upon stretching. Polymorphic and soluble tro-
poelastin monomers is produced and secreted by smooth muscles cells in arteries and 
by  fi broblasts. Around 65 kD size, glycine-, proline-, valine- and alanine-rich tro-
poelastin monomers are rapidly close to their cellular source covalently cross-linked by 
lysine oxidase to form elastic di-, tri- or tetrafunctional crosslinks, e.g. desmosine, 
isodesmosine. This leads to the formation of irregularly organized and randomly coiled 
amorphous and yellowish elastin-rich networks and sheets. In these structures elastin is 
surrounded by  fi bulin and  fi brillin sheaths and a pathogenic mutation of  fi brillin-1 is 
linked to Marfan syndrome with e.g. risk for dissection of the aorta. 

 Heterotrimeric laminins glycoporteins form one of the two major non-collage-
nous networks in the basement membranes. The laminin network    is via entacin or 
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nidogen linked to the other major basement membrane network, which is composed 
of type IV collagen. Laminins    are composed of  fi ve different  a  chains (of which  a  

3
  

chain has two variants), three different  b  chains and three different  g  chains, which 
according to currently known combinatorial rules can combine to 17 different tri-
meric laminin molecules (Table  2.2 ). They have a tightly regulated tissue-speci fi c 
localizations to be able to contribute to the heterogeneity and site-speci fi c regulation 
of cells and tissues (Table  2.3 ). This latter aspect should be emphasized, because in 
spite of the fact that the effect of soluble regulatory factors can be con fi ned in space 
and time by localized synthesis, deposition and release and short half life and thus 
short range of action, they still can by accident diffuse over and beyond their physi-
ological limits to cause pathology, whereas solid regulatory molecules are from this 
point of view more site speci fi c and safe.   

 Laminin  a  
1
  in the acinar basement membrane in salivary glands is an example of a 

site-speci fi c factor, which can help migration of progenitor cells from the adjoining 
intercalated duct to the acinar space and then guides locally trans-differentiation of the 
progenitor to a mature acinar cell capable of exocrine secretion. This process seems to 
proceed normally in salivons in healthy human salivary glands, but to be disturbed in 
a common salivary gland disease known as Sjögren’s syndrome, which syndrome is 
characterized by qualitative and quantitative impairment of exocrine secretion (Laine 
et al.  2004,   2008  ) . This laminin  a  

1
 -guided (according to the combinatorial rules of 

Table  2.2  a component of LM-111 composed of laminin  a  
1
 ,  b  

1
  and  g  

1
  chains) and Int 

 a  
1
  b  

1
  and  a  

2
  b  

1
 -mediated process can also be reproduced in an  in vitro  model utilizing 

   Table 2.2    Classi fi cation laminins, their abbreviations according to current nomenclature with 
some alternative names and the genes encoding them   

 Laminin (LM)  Abbreviation and alternative names  Genes encoding the laminin chains 

 LM- a  
1
 ß 

1
  g  

1
   LM-111, Ln-1   LAMA1, LAMB1, LMAC1  

 LM- a  
2
  b  

1
  g  

1
   LM-211, Ln-2   LAMA2, LAMB1, LAMC1  

 LM- a  
1
  b  

2
  g  

1
   LM-121, Ln-3   LAMA1, LAMB2, LAMC1  

 LM- a  
2
  b  

2
  g  

1
   LM-221, Ln-4   LAMA2, LAMB2, LAMC1  

 LM- a  
3
 A b  

3
  g  

2
   LM-332/LM-3A32, Ln-5/5A   LAMA3A, LAMB3, LAMC2  

 LM- a  
3
 B b  

3
  g  

2
   LM-3B32, Ln-5B   LAMA3B, LAMB3, LAMC2  

 LM- a  
3
 A b  

1
  g  

1
   LM-311/LM-3A11, Ln-6   LAMA3A, LAMB1, LAMC1  

 LM- a  
3
 A b  

2
  g  

1
   LM-321/LM-3A21, Ln-7   LAMA3A, LAMB2, LAMC1  

 LM- a  
4
  b  

1
  g  

1
   LM-411, Ln-8   LAMA4, LAMB1, LAMC1  

 LM- a  
4
  b  

2
  g  

1
   LM-421, Ln-9   LAMA4, LAMB2, LAMC1  

 LM- a  
5
  b  

1
  g  

1
   LM-511, Ln-10   LAMA5, LAMB1, LAMC1  

 LM- a  
5
  b  

2
  g  

1
   LM-521, Ln-11   LAMA5, LAMB2, LAMC1  

 LM- a  
2
  b  

1
  g  

3
   LM-213, Ln-12   LAMA2, LAMB1, LAMC3  

 LM- a  
3
  b  

2
  g  

3
   LM-323, Ln-13   LAMA3, LAMB2, LAMC3  

 LM- a  
4
  b  

2
  g  

3
   LM-423, Ln-14   LAMA4, LAMB2, LAMC3  

 LM- a  
5
  b  

2
  g  

3
   LM-523, Ln-15   LAMA5,LAMB2, LAMC3  

 LM- a  
5
  b  

2
  g  

2
   LM-522   LAMA5, LAMB2n, LAMC2  

  Modi fi ed from Patarroyo et al.  (  2002  ) , Aumailley et al.  (  2005  ) , Tzu and Marinkovich  (  2008  ) , and 
Egles et al.  (  2007  )   
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human submandibular gland HSG cells of an intercalated duct phenotype. Upon culture 
on and in laminin  a  

1
  chain containing Matrigel they trans-differentiate to acinar cells 

without any need for support by any additional growth and differentiation factors. 
Thus, laminins affect tissue morphogenesis, maintenance and function by in fl uencing 
proliferation, migration and differentiation (   Jones et al.  2000 ). 

 One important adhesive  fi brous glycoprotein either locally synthesized or pre-
cipitated from the circulation is  fi bronectin   . In spite of local  fi broblast-mediated 
 fi bronectin synthesis,  fi bronectin does not stain or stains only weakly at the base of 
chronic, non-healing ulcers (Herrick et al.  1992,   1996  ) . This is probably due to 
rapid proteolytic degradation of newly synthesized extracellular  fi bronectin matrix 
in such in fl ammatory and proteinase-rich environment (Weckroth et al.  1996  ) . 
Cartilage oligomeric matrix protein (COMP) is a pentamer with  fi ve collagen bind-
ing “arms”, found in cartilage, ligaments and tendons. COMP binds to free collagen 
type II and I molecules facilitating formation of banded  fi bres. It is not found in 
mature  fi bres, except at the tip/end of eventually growing  fi bres.  

    2.4.3   Extracellular Matrix: Ground Substance 

 Ground substance    is largely composed of proteoglycans, which are composed of an 
organizing protein core on the surface of the cell or in the interstitium, with attached 
linear hydrophilic glycosaminoglycan (GAG)    bipolymers (mucopolysaccharides). 
GAGs are composed of 50–1,000 repeat disaccharide units and based on the structure 
of the disaccharide backbone, chemical bonding utilized between the sugar residues 
and side chain modi fi cations (such as acetylation and sulphation). 

   Table 2.3    Tissue distribution of laminin alpha, beta and gamma chains   

  a  
1
   Early embryo, Neuroretina, Adult kidney proximal tubules, Salivary and 

mammary glands 
  a  

2
   Trophoblast, foetal skin and kidney, adult skin, skeletal and cardiac muscle, 

peripheral nerve, some capillaries, brain and other tissues 
  a  

3
   Foetal skin, lung alveoli and bronchi, adult skin, alveoli, bronchi and most other 

epithelia 
  a  

4
   Foetal skin and kidney, skeletal muscle, adult skin, cardiac and visceral smooth 

muscles, nerve, blood vessel endothelia, bone marrow and other tissues 
  a  

5
   Foetal skin, lungs and kidney, adult skin, alveoli, bronchi, diverse epithelia, kidney, 

blood vessels, bone marrow, developing muscle and nerve, synaptic membrane 
  b  

1
   Most tissues 

  b  
2
   Foetal bronchi and alveoli, kidney, adult neuromuscular junction, blood vessels, 

kidney glomeruli 
  b  

3
   Foetal skin and lungs, adult skin and most other epithelia 

  g  
1
   Most tissues 

  g  
2
   Foetal skin and lungs, adult skin, bronchi and most other epithelia 

  g  
3
   Kidney, lungs, reproductive tract, nerve and brain 

  Modi fi ed from Patarroyo et al.  (  2002  )  and Tzu and Marinkovich  (  2008  )   
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 GAGs are divided into (1) heparin    composed of L-iduronate  a (1 → 4) N-sulfo-
D-glucosamine-6-sulphate  a (1 → 4) backbone with variable degrees of sulphation 
of the L-iduronate (2-O position) and/or glucosamine (3-O or 6-O position, in addi-
tion, the N-position of the glucosamine can be sulphated, acetylated or unsubsti-
tuted, located in mast cell granules), (2) heparan sulphate    composed of D-glucuronate 
 b (1–3) N-sulfo-D-glucosamine-6-sulfate  b (1–4) with variable degrees of sulphation 
of the glucoronate (2-O position) and/or N-acetylglucosamine (3-O or 6-O position, 
in addition the N-position of the glucosamine can be acetylated, sulphated or unsub-
stituted). It contains fewer N- and O-sulphate groups and more N-acetyl groups than 
heparin, but it is heterogenous as it also contains heparin-like segments, found e.g. 
in cell surface proteins, lung, basement membranes, heparin or heparin sulphate are 
found in extracellular perlecan (can alternatively contain chondroitin sulphate), cell 
surface syndecans and glypicans and a small leucin-rich proteoglycan (SLRP) 
known as prolargin (coded by the  PRELP  gene, standing for proline arginine-rich 
end leucine-rich repeat protein); SLRPs may in addition to proteoglycans also con-
tain O-linked oligosaccharides and sulphated tyrosine residues, and one member, 
integrin-binding chondroadherin, only contains O-linked short oligosaccharides, 
which form only 1% of its molecular mass, (3) chondroitin sulphate (composed 
D-glucoronate  b (1–3) N-acetyl-D-galactosamine  b (1–4) backbone with variable 
degrees of sulphation of the glucuronate (carbon 2) and/or N-acetyl-D-galactosamine 
(carbon 4 in chondroitin-4-sulphate and/or carbon 6 in chondroitin-6-sulphate), e.g. 
cartilage, bone, tendons, ligaments, found in large aggregating proteoglycans or 
hyaluronan-binding lecticans (hyalectans), like aggrecan (forming 95% of the pro-
teoglycans in cartilage, bound to hyaluronan core), versican, neurocan and brevi-
can, and some SLRP which contain either chondroitin and/or dermatan sulphate 
side chains, as found in decorin/small proteoglycan II (1 chain), biglycan/small pro-
teoglycan I (2 chains) and epiphycan (2 chains) in the epiphysis), (4) dermatan 
sulphate (differs from chondroitin sulphate by also containing L-iduronate  a (1 → 3) 
N-acetyl-D-galactosamine-4-sulphate  b (1 → 4) disaccharides in its backbone 
with variable degrees of sulphation of the iduronate (carbon 2) and/or N-acetyl-
D-galactosamine (carbon 4 and/or 6), e.g. skin, blood vessels, heart valves) and 
(5) keratan sulphates (composed of D-galactose  b (1 → 4) N-acetyl-D-glucosamine-
6-sulphate  b (1 → 3) with variable degrees of sulphation of the galactose (carbon 6) 
and/or N-acetyl-D-glucosamine (carbon 6), e.g. cornea, bone, cartilage, nucleus 
pulposus, found in some SLRPs, like lumican, keratocan and mimecan (osteoglycin 
or osteoinductive factor) in the transparent cornea, integrin-binding osteoadherin 
(osteomodulin) in mineralized tissues and  fi bromodulin in the cartilage, all with 1–3 
N-linked keratan sulphate chains and sulphated tyrosine residues). The sulphate 
content is highly variable and its molecular components are occasionally substituted 
with e.g. fucose or mannose. For hyaluronan, see below. 

 At the physiological pH most of the sulphate and carboxyl groups of these long 
molecules are negatively charged making these molecules viscous, highly charged, 
able to bind water and elastic. These molecules exert swelling pressure checked by 
the collagen  fi bres of the matrix. These proteoglycans    occur as cell surface and 
interstitial molecules and provide a cell-friendly hydrogel-like but permeable 
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 surrounding for the cells. Perhaps the best recognized role these proteoglycans 
relates to their ability to bind and deposit growth factors, like most of the 22 now 
known  fi broblast growth factors (FGFs, some of these bind less avidly and can have 
systemic, endocrine actions), hepatocyte growth factor (HGF), keratinocyte growth 
factor (KGF), vascular endothelial growth factors (VEGF) and endostatin derived 
from degradation of type XVIII collagen (with anti-angiogenic properties). Due to 
local release and paracrine mode of action these GAG-deposited growth regulating 
factors play important roles in tissue repair. Chondroitin sulphate sulphation motif 
epitopes are useful in the identi fi cation of articular cartilage progenitor cells. 

 Some hundred bottle brush-like aggrecan molecules, the prototype of lecticans, 
are in cartilage attached to a hyaluronan core via the globular G1 domain of the 
aggrecan    core molecule located at the N-terminus. This binding to hyaluronan is 
enforced by a HA-binding link protein. G1 is via an interglobular domain combined 
with another globular domain, G2, followed by a long GAG-binding region,  fi rst 
one keratan sulphate-rich region (able to bind collagen) and then two chondroitin 
sulphate-rich regions, and  fi nally a third globular domain G3 (composed of a splice-
dependent complement regulatory protein-like module and an epidermal growth 
factor (EGF)-like modules, and a constant C-type lectin-module) able to mediate 
binding to  fi bulin-1 and-2,  fi brillin-1 and tenascin-R, but according to its lectin 
nature also to cell surface glycolipids. Several of the G3 domain ligands are di- or 
oligomers and could therefore mediate cross-linking of the hyaluronan-lectican 
complexes to each other. Such cross-linking would be impaired upon age-related 
fragmentation of aggrecan and loss of the cross-linking G3 domains. Early arthritis 
is characterized by loss of metachromatic proteoglycan staining, which is due to 
proteolytic solubilisation of aggrecan by ADAMTS4 (a disintegrin and a metallo-
proteinase with a thrombospondin motif 4) and ADAMTS 5, often at the sensitive 
interglobular domain. Versican is named for its versatile molecular structure, is pro-
duced by vascular smooth muscle cells,  fi broblasts, keratinocytes and many other 
cells. In mesenchymal condensations and developing cartilage versican expression 
precedes aggrecan expression, which is found together with  fi bulins as in an attempt 
to organize the early matrix. Neurocan    produced by neuronal cells and brevican    
produced by astrocytes (with the shortest core protein in this family, occurs also in 
a glycosylphosphatidylinositol -form) are mainly found in the nervous system    and 
participate in glial scar formation and central nervous system repair (Fawcett and 
Asher  1999  ) . 

 SLRPs decorin,  fi bromodulin and lumican reduce collagen  fi bre thickness of 
both type I and II collagens. Fibromodulin may also catalyze lateral growth of type 
I collagen, whereas perlecan with attached chondroitin sulphate can promote 
 fi brillogenesis of type II collagen. 

 Ground substance also contains non-core protein bound and non-sulphated sixth 
GAG known as hyaluronan (Gr. Hyalos = glass) composed of D-glucuronate  b (1–3) 
N-acetyl-D-glucosamine  b (1–4) backbone and found in e.g. synovial  fl uid, articular 
cartilage, vitrous  fl uid of the eye ball   . It can be 25–25,000 disaccharide units long and 
imparts high viscosity to hyaluronan containing body  fl uids. Due to its water binding 
ability a hyaluronan domain occupies some 1,000-fold the volume of its dry state. 
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 GAG-derivatized chitosan membranes    increased MSC growth rate about 
 fi vefold compared to tissue culture plastic or chitosan alone, but in a GAG-type 
and concentration-dependent manner. Effects of heparin, heparin sulphate, der-
matan sulphate and chondroitin-6-sulphate were  fi bronectin-dependent, but those 
of hyaluronan and chondroitin-4-sulphate were  fi bronectin-independent (Uygun 
et al.  2009  ) .   

    2.5   Integrin and Non-Integrin Matrix Receptors 

 Integrins    are 24 different non-covalently coupled heterodimeric cellular receptors 
composed of 16  a  and 8  b  chains, which form an important link in the integration 
of cellular actin cytoskeleton with the cellular surrounding, including the ECM. 
They do not only bind cells to matrix, but also allow exploration, migration and 
outside-in and inside-out signalling, which acts in concert with soluble and cell-cell 
signals in the regulation of cell behaviour. Discoidin domain receptors, Lutheran 
Lu/B-CAM complex and  a / b -dystroglycan complex form important collagen, lami-
nin and/or other ligand binding matrix receptors. Lately lectins, glycan binding 
receptors, in particular extracellular C-, R- and I-type lectins and galectins have 
been shown to play roles in cell-matrix adhesion and signalling, including MSC 
recruitment, bone marrow stem cell niche and adult collagen remodelling. 

    2.5.1   Integrin-Type Matrix Receptors    

 Integrins form the major class of cellular receptors for ECM ligands, so much so 
that the other matrix receptors are often summed up as non-integrin receptors. 
Integrin receptors are heterodimers, which are composed of one of the 16  a  and 8  b  
chains, which all cross the cell membrane only once. They combine in a non-covalent 
fashion along currently known combinatorial rules to altogether 24 different integrin 
receptors (Fig.  2.1 ). All integrin receptors are able to bind to at least two ligands, 
which leads to overlap and redundancy and cover many important components of the 
ECM (Table  2.4 ). Alternative processing of  a  and  b  chains confers further diversity 
to the integrin receptor system.   

 The  a -chain of the integrin receptor largely determines its ligand binding 
speci fi city, whereas the  b -chain mainly participates in the assembly of integrins to 
specialized clusters known as focal adhesions, which mediate external physical 
stress from extracellular collagen,  fi bronectin, laminin and other matrix ligands to 
cellular actin cytoskeleton, i.e. integrate the cell to its matrix. Integrins are often 
grouped to subfamilies based on their ligand binding speci fi city, evolutionary rela-
tionships and topological restrictions (e.g. leukocyte integrins). 

 The binding force of one individual integrin-matrix ligand pair is minor com-
pared to other more specialized anchoring transmembrane molecules, but the com-
bined avidity of a myriad of integrins can resist considerable mechanical forces. At the 
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  Fig. 2.1    Integrins are heterodimeric receptors composed of one of the 16 known  a  and 8  b  chains. 
They combine in a non-covalent fashion along currently known combinatorial rules, which are 
shown in the  fi gure, and which leads to the formation of altogether 24 different integrin receptors       

same time this arrangement allows the cell to explore and respond to its extracellular 
matrix, to bind and to let go, i.e. enable dynamic cellular migration along solid 
substrates in a process known as haptotaxis   . Integrins can form new bonds at the 
advancing edge of the cells, at the same time when integrin-ligand bonds dissociate 
at the retracting rear. 

 Integrins are not passive matrix binders but their expression and binding are 
actively regulated in a bidirectional inside-out and outside-in signalling, which 
qualitatively and quantitatively regulates integrin-mediated cell-matrix interactions. 
Binding to ECM delivers signals regulating migration, proliferation, growth, dif-
ferentiation and apoptosis, often along the same signal transduction pathways which 
act in concert with various soluble chemotactic, growth and differentiation factors 
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   Table 2.4    Some non-integrin receptors and their ligands   

 Receptor  Other names or comments  Ligand 

  Tyrosine kinase receptors  
 DDR1  Collagen I, II, III, IV, V, VI, VIII 
 DDR2  Collagen I, III, X 
  Lutheran blood group 

antigen  
 B-CAM  Lm-511, -521, -523 

  Dystroglycan-glycoprotein 
complex  

 Lm-111, Lm-211 

  Lectins  
 C-type lectins  Ca 2+ -dependent 
 E-selectins  Endothelial  sLeX, s6SLeX, CD44, CD43 
 L-selectins  Leukocyte  Collagen XVIII, GlyCAM-1, 

MadCAM-1, MMR, s6SLeX, 
versican 

 P-selectins  Platelet and endothelial  sLeX, s6SLeX, PSGL-1 
 Macrophage mannose receptor  MMR, CD206  Collagen IV, gelatin, mannose 
 PLA 

2
 R  Collagen I, IV 

 R-type lectins  Ricin-like 
 Endo180  uPARAP, CD280, 

contains also C-type 
lectin domains 

 Collagens I, II, IV, V, gelatin 

 I-type lectins  Ig-like domain 
containing 

 Neural cell adhesion 
molecule 

 NCAM  Heparin/heparin sulphate, 
chondroitin sulphate/
neurocan 

 Galectins   b -Galactoside-binding   b -galactoside 
  Scavenger receptors  
 SR-A1  Collagen I, thrombospondin 
 SR-A2  Collagen I, thrombospondin 
 CD36  GPIV, GPIIIb  Collagen I, IV 
  CD44   Extracellular matrix 

receptor III 
 Collagen I, IV, hyaluronan 

  Annexin A5   Annexin V, anchorin II  Collagen II, X 
  Glycoprotein VI   Fibril-forming collagens, (GPO) 

10
  

  LAIR-1   Collagen I, III, XVII, (GPO) 
10

  
  LAMR1   34/67 kDa laminin 

receptor 
 Lm-111 

  RHAMM   CD168  Hyaluronan 
  Glypicans  
 Glypican-1  Collagen I 

(continued)



40 Y.T. Konttinen et al.

 Receptor  Other names or comments  Ligand 

  Syndecans  
 Syndecan-1  Collagen I, III, V,  fi bronectin, 

Lm-111, Lm-211, thrombos-
pondin, Tn-C, vitronectin 

 Syndecan-2  Fibroglycan  Collagen I 
 Syndecan-4  Ryudocan  Collagen I,  fi bronectin, protein 

kinase C- a  

  Heino  (  2007  ) , Heino and Käpylä  (  2009  ) , Ekblom et al.  (  2003  ) , Leitinger and Hohenester  (  2007  ) , 
Morais Freitas et al.  (  2007  ) , Kikkawa et al.  (  2002  ) , Eckes et al.  (  1999  ) , Martinez-Pomares et al. 
 (  2006  ) , East and Isacke  (  2002  ) , Wienke et al.  (  2003  ) , Shimaoka et al.  (  2002  ) , Bern fi eld et al. 
 (  1992  ) , and Xian et al.  (  2010  )  
  B-CAM  basal cell adhesion molecule,  DDR  discoidin domain receptor,  GlyCAM-1  glycosyla-
tion-dependent cell adhesion molecule-1,  GP  glycoprotein,  GPO  glycine-proline-hydroxypro-
line,  LAIR1  leukocyte-associated immunoglobulin-like receptor-1,  LAMR1  laminin receptor 1, 
 MAdCAM-1  mucosal addressin cell adhesion molecule,  MR  mannose reseptor,  PLA2R  M-type 
phospholipase A2 receptor,  PSGL-1  P-selectin glycoprotein ligand-1,  RHAMM  receptor for 
hyaluronan-mediated motility,  s6SLeX  sialyl 6-sulpho Lewis-X,  SLex  sialyl Lewis-X,  SR  scav-
enger receptor,  Tn-C  tenancin,  uPARAP  urokinase-type plasminogen activator receptor associ-
ated protein  

Table 2.4 (continued)

and their receptors. Thus, integrins both bind cell to its surrounding but also help the 
cell to respond to it. Integrins are not constantly active but their activity is regulated, 
in part via other integrins.  

    2.5.2   Non-Integrin Matrix Receptors    

 Some of the non-integrin receptors are shortly summarized (Table  2.5 ). Discoidin 
domain receptors-1    and -2    (DDR1 and DDR2) mediate in its various isoforms cel-
lular non-integrin binding to collagen and are tyrosine kinase receptors, which regu-
late cell adhesion, proliferation and ECM. DDR1 has been described in cells in 
brain, skin, colonic mucosa, kidney tubules, lungs and thyroid gland, whereas DDR2 
has been found in heart and skeletal muscle, lung, brain and kidney. Cartilage collagen 
type II stimulates DDR2 and MMP-13 expression in chondrocytes, which parameters 
are linked to the severity of osteoarthritis (Sunk et al.  2007  ) .  

 The Lutheran system Lu/B-CAM    comprises Lutheran (Lu) and its alternatively 
spliced form, basal cell adhesion molecule (B-CAM). They are expressed by red 
blood cells, over-expressed in sickle cells, but also expressed by vascular endothe-
lial cells and epithelial cells. In normal cells they are polarized and in cancer cells 
they are over-expressed. They bind laminin  a  

5
  containing Lm-511, Lm-521 and 

Lm-523. Human embryonic stem cells synthesize laminin  a  
1
  and  a  

5
  chains together 
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   Table 2.5    Some non-integrin receptors and their ligands   

 Receptor  Other names or comments  Ligand 

  Tyrosine kinase receptors  
 DDR1  Collagen I, II, III, IV, V, VI, VIII 
 DDR2  Collagen I, III, X 
  Lutheran blood group 

antigen  
 B-CAM  Lm-511, -521, -523 

  Dystroglycan-glycoprotein 
complex  

 Lm-111, Lm-211 

  Lectins  
 C-type lectins  Ca 2+ -dependent 
 E-selectins  Endothelial  sLeX, s6SLeX, CD44, CD43 
 L-selectins  Leukocyte  Collagen XVIII, GlyCAM-1, 

MadCAM-1, MMR, s6SLeX, 
versican 

 P-selectins  Platelet and endothelial  sLeX, s6SLeX, PSGL-1 
 Macrophage mannose 

receptor 
 MMR, CD206  Collagen IV, gelatin, mannose 

 PLA 
2
 R  Collagen I, IV 

 R-type lectins  Ricin-like 
 Endo180  uPARAP, CD280, contains 

also C-type lectin 
domains 

 Collagens I, II, IV, V, gelatin 

 I-type lectins  Ig-like domain containing 
 Neural cell adhesion 

molecule 
 NCAM  Heparin/heparin sulphate, 

chondroitin sulphate/
neurocan 

 Galectins   b -galactoside-binding   b -galactoside 
  Scavenger receptors  
 SR-A1  Collagen I, thrombospondin 
 SR-A2  Collagen I, thrombospondin 
 CD36  GPIV, GPIIIb  Collagen I, IV 
  CD44   Extracellular matrix 

receptor III 
 Collagen I, IV, hyaluronan 

  Annexin A5   Annexin V, anchorin II  Collagen II, X 
  Glycoprotein VI   Fibril-forming collagens, 

(GPO) 
10

  
  LAIR-1   Collagen I, III, XVII, (GPO) 

10
  

  LAMR1   34/67 kDa laminin 
receptor 

 Lm-111 

  RHAMM   CD168  Hyaluronan 
  Glypicans  
 Glypican-1  Collagen I 

(continued)
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with laminin  b  
1
  and  g  

1
  chains suggesting that Lms-111 and -511 may be important 

for the their cell-matrix contacts. Correspondingly, functional adhesion experiments 
suggested that in particular Lutheran blood group antigen and B-CAM together 
with Int  a  

3
  b  

1
  play an essential role for their adhesion to Lm-511, whereas Int  a  

6
  b  

1
  

mediated adhesion to Lm-411 (Vuoristo et al.  2009  ) . Such studies are important 
because one important role for the non-homologous feeder cell layer may be pro-
duction of ECM, which is necessary for their interactions with stem cells and for 
stem cell proliferation and maintenance. It might be possible to culture stem cells 
without feeder cells and to replace stem cell-feeder cell communication by perform-
ing stem cell cultures on appropriate matrix substrate. 

 Alpha-dystroglycan    is extracellular molecule, which binds laminin- a  
2
 , agrin 

and perlecan, whereas the associated transmembranous  b -dystroglycan compo-
nent links the dystroglycan complex intracellularly to dystrophin, which further 
mediates contact with the actin cytoskeleton.  a / b -dystroglycan provides struc-
tural integrity and synaptic acetylcholine receptor organization in muscle and 
other tissues. 

 Lectins    are sugar moiety speci fi c carbohydrate binding non-integrin receptors 
mediating attachment and aggregation of cells via binding to and cross-linking 
(at least two sugar binding sites, referred to as carbohydrate-recognition domains) 
glycoproteins, glycolipids and other glycoconjugates (glycans). Some of them are 
cell membrane bound. If their glycan ligands locate in the extracellular matrix, they 
mediate cell-matrix recognition and interactions, but their main task seems to be 
recognition of various microbial pathogens. Due to their binding speci fi city, lectin-
mediated binding can be regulated by blocking mono- or oligosaccharides, which are 
useful to study their sugar speci fi city and have potential as drugs and research tools. 

 Extracellular lectins include C-type (Ca 2+ -dependent), R-type (ricin-like), 
I-type (immunoglobulin domain containing) and galectins ( b -galactoside binding), 

 Receptor  Other names or comments  Ligand 

  Syndecans  
 Syndecan-1  Collagen I, III, V,  fi bronectin, 

Lm-111, Lm-211, thrombos-
pondin, Tn-C, vitronectin 

 Syndecan-2  Fibroglycan  Collagen I 
 Syndecan-4  Ryudocan  Collagen I,  fi bronectin, protein 

kinase C- a  

   B-CAM  basal cell adhesion molecule,  DDR  discoidin domain receptor,  GlyCAM-1  glycosyla-
tion-dependent cell adhesion molecule-1,  GP  glycoprotein,  GPO  glycine-proline-hydroxypro-
line,  LAIR1  leukocyte-associated immunoglobulin-like receptor-1,  LAMR1  laminin receptor 1, 
 MAdCAM-1  mucosal addressin cell adhesion molecule,  MR  mannose reseptor,  PLA2R  M-type 
phospholipase A2 receptor,  PSGL-1  P-selectin glycoprotein ligand-1,  RHAMM  receptor for 
hyaluronan-mediated motility,  s6SLeX  sialyl 6-sulpho Lewis-X,  SLex  sialyl Lewis-X,  SR  scav-
enger receptor,  Tn-C  tenancin,  uPARAP  urokinase-type plasminogen activator receptor associ-
ated protein  

Table 2.5 (continued)
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but new extracellular and intracellular lectin families have been recently described. 
Selectins (endothelial E-, leukocyte L- and platelet and endothelial P-selectins) 
belong to C -type lectins, which participate in leukocyte recruitment (tethering 
and rolling). MSCs seem to lack the conventional P-selectin ligands, P-selectin 
glycoprotein ligand 1 (PSGL-1) and CD24. They may instead express some novel 
ligand because P-selectin on endothelial cells induces rolling and tethering of 
circulating MSCs. Chemokines attract and activate MSCs via chemokine recep-
tors to express the very late activation antigen-4 (VLA-4 = Int  a  

4
  b  

1
  recep-

tor = CD49d/CD29), which  fi rmly adheres the MSC to the vascular cell adhesion 
molecule-1 (VCAM-1, CD106) on endothelial cell, enabling transmigration to 
damaged tissues via diapedesis (Fox et al.  2007 ; Rüster et al.  2006  ) . Selectins    may 
also play a role in the homing to and maintenance of stem cells in the bone mar-
row stem cell niche. Endo180 on  fi broblasts and macrophages, a member of R 
(ricin-like)-type lectin, contains  fi bronectin-like domains, which can mediate 
binding to e.g. collagens I, II, IV and V. It forms a trimolecular complex with 
urokinase plasminogen activator (uPA) and its receptor (uPAR), but it is not known 
if its C-type and R-type lectin domains and glycan recognition sites are important 
in Endo180-mediated cell-matrix adhesion events. Endo180    is also a collagen 
internalisation receptor, which together with  a  

2
  b  

1
  integrin receptors mediate 

speci fi c binding, cellular uptake and delivery of collagens to intracellular, lyso-
somal degradation. In addition to its major role in the intracellular collagen deg-
radation, endo180 seems to regulate the other major collagenolytic pathway, 
namely the extracellular and pericellular MMP-dependent collagen degradation 
pathway (Messaritou et al.  2009  ) . I (Ig-like domain containing)-type lectins con-
tain many members belonging to the siglec group (sialic acid-binding immuno-
globulin superfamily lectins) or other I-type lectins. They have been described on 
various leukocytes, like macrophages, dendritic cells, B cells, neutrophils, eosino-
phils etc., but one of the best studied I-lectins is NCAM (neural cell adhesion 
molecule). NCAM can bind heparin/heparin sulphate containing cell surface and 
matrix proteins and chondroitin sulphate containing neurocan. It can also indi-
rectly bind to collagen via heparin/heparin sulphate bridges (   Angata and 
Brinkman-van der Linden  2002  ) . Galectins ( b -galactoside-binding) are expressed 
on many immune cells and participate in innate and adaptive responses by modu-
lating T-cell apoptosis, proliferation, adhesion, chemotaxis and synthesis of 
cytokines and other mediators. They are also expressed on keratinocytes (galec-
tin-7), lung (galectin-8) and adipocytes (galectin-12), where they play roles in 
skin healing, lung cancer and adipogenic signalling/adipocyte differentiation, 
respectively. Galectin-1 and -3 have been described to modulate cell-matrix inter-
actions (Rabinovich et al.  2002  )  and galectin-9 to accelerate TGF- b  

3
  induced 

chondrogenic responses (Arikawa et al.  2009  ) . 
 Some broad-speci fi city scavenger receptors of class A, B and C may also bind 

components of extracellular matrix, e.g. CD36 belonging to scavenger receptor type 
on the surface of platelet can bind it to collagen. Hyaluronan can by bound by 
hyaluronan cell surface receptor CD44, which has several different isoforms and is 
found on the surface of chondrocytes and other cells.   
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    2.6   Matrix Modulating Proteinases    

 Proteinases    participate in normal tissue remodelling, but can cause tissue destruction 
when uncontrolled and excessively active. Proteinases are divided based on their 
catalytic mechanism to secretory neutral serine and metallo endoproteinases (and 
amino- and carboxypeptidases) and to mostly intralysosomal acidic cysteine and 
aspartate endoproteinases. Classi fi cation of the proteinases is based on their catalytic 
mechanisms, which is re fl ected in the key amino acids necessary for the catalysis. 
In practice, classi fi cation is often based on the use of class speci fi c inhibitors. 

    2.6.1   Neutral Endoproteinases 

 Matrix metalloproteinase or MMP    family consists of 22 members, subdivided in col-
lagenases, stromelysins and other MMPs (archetypical MMPs); gelatinases; matri-
lysins; type I and II transmembrane “membrane type MMPs” (MT-MMP), GPI 
anchored MT-MMPs and secreted MMPs (furin-activatable MMPs) (Table  2.6 ).  

 MMPs have so an extended substrate speci fi city that they can in practice degrade 
any protein component of the ECM. MMP activity is regulated at the level of gene 
transcription (cis-regulatory elements and epigenetic mechanisms), translation 
(mRNA stability, translational ef fi ciency and probably also micro-RNA-mediated), 
storage/secretion (e.g. pro-MMP8 is stored in neutrophils in the secondary or 
speci fi c granules), focalization (e.g. MT1-MMP/TIMP-2/MMP-2 complexes), 
activation (of pro-MMP to MMP) and endogenous inhibitors (tissue inhibitor of 
metalloproteinases, TIMPs). MMPs are subjected to single nucleotide polymor-
phism, which can modulate their transcriptional ef fi ciency and disease susceptibility. 
MMPs have a modular structure, which in archetypical MMPs includes a secretory 
signal sequence (pre-peptide), an activation peptide (pro-peptide), a catalytic Zn 2+  
containing domain, a hinge region and a hemopexin-like domain. In gelatinases the 
catalytic domain is  fl anked by a  fi bronectin-like domain and the MMP structure 
may contain a furin activation sequence (furin-activatable MMPs), a transmembrane 
domain (in transmembrane MT-MMPs), a cytoplasmic tail, a glycophosphati-
dylinositol (GPI) linker (and a GPI anchor), a cysteine array or an immunoglobulin 
domain, which regulate various aspects of MMP function, such a substrate speci fi city, 
activation and membrane-localization. Classi fi cation of MMPs is based on their 
domain arrangement (Fanjul-Fernández et al.  2010  ) . 

 When neutral pH prevails in ECM only specialized proteinases,  fi rst described in 
the tadpole tail, collagenases, can degrade across the triple helix at  775 Gly– 776 Ile(Leu), 
which is the speci fi c initial cleavage site (see below). At normal body temperature 
¾- and ¼-degradation fragments formed undergo helix-to-random coil transition to 
gelatines, which is simply denatured collagen. 

 MMPs can destroy old or excessive matrix to provide space for cells, such as 
during vascular invasion,  fi broblast or osteoblast migration or chondrocyte align-
ment. Degradation of cell attachment substrates induces a special form of apoptosis 
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in ECM-dependent mesenchymal cells, so called anoikis, but can also release 
suppressive effects and stimulate cellular proliferation and differentiation. Due to 
their effects on non-matrix proteins, such as cell surface molecules or heparin-bound 
matrix deposited factors and activation of latent pro-proteinase zymogens, MMPs 
can exert various anti-in fl ammatory and pro-healing effects. The relatively recently 
recognized fact that MMPs do not only degrade tissues, but also act as signalling 
scissors, may explain the failure of more or less generalized MMP-inhibitors 
(Steinmeyer and Konttinen  2006  )  in the treatment of tissue destructive diseases, 
such as cancer growth and metastasis. 

 As has been learnt from tissue engineering constructs, the pore size and intercon-
nectivity have to be appropriate for the cells to migrate into wound healing scaf-
folds. With natural scaffolding substances such as  fi brin and collagen this does not 
pose much of a problem, because the cells are capable to widen proteolytically too 
tight pores. In contrast, if the matrix is too sparse, cells sense it and produce more 
matrix to create extracellular substrate for their integrin and non-integrin matrix 
receptors adequate for adhesion or directed migration. To at least slightly mimic this 
natural situation tissue engineering scaffolds    are often constructed of bioresorbable 
(biodegradable) materials   , which are hydrolyzed and actively degraded to be 
replaced by natural matrix. Matrix provides solid substrate along which the cells 
can migrate to assume their optimal positions in the matrix-cell composite in a pro-
cess known as haptotaxis or contact guidance, guidance of cellular migration via 
extracellular matrix ligands instead of soluble chemotactic stimuli. This way extra-
cellular matrix can regulate morphogenesis, would healing and vessel growth as 
well as pathological cancer cells. 

 Transmigration and invasion of MSCs       requires coordinated action of selectins 
and glycoproteins, chemokines, integrins and adhesion molecules, cellular cytoskel-
eton and proteinases and their inhibitors, such as MT1-MMP, MMP-2, TIMP-1, 
TIMP-2 and TIMP-3 (Ries et al.  2007 ; Steingen et al.  2008  ) . 

 Serine proteinase form the largest class of mammalian proteinases, which par-
ticipate in coagulation,  fi brinolysis, complement activation, kininogen metabolism 
and many other cascades as well as tissue remodelling and destruction. Important 
enzymes in tissue repair are elastase and cathepsin G in neutrophils and monocytes 
as well as mast cell tryptase and chymase. Neutrophil elastase    is synthesized during 
the promyelocyte stage, stored in the primary or azurophilic granules and released 
from triggered neutrophils whereas macrophage metalloelastase is released from 
activated macrophages. It degrades elastin, but also type III and IV collagens, carti-
lage proteoglycans,  fi bronectin and laminin. Elastase can activate pro-MMP-3 (pro-
stromelysin-1) and degrades TIMPs. Cathepsin G is similarly stored and packaged 
in serglycin matrix in active form and can degrade matrix, activate some pro-MMPs 
and degrade TIMPs once released. Also plasminogen activators (tissue type and 
urokinase type), plasmin, plasma kallikrein are considered to take part in degrada-
tion of extracellular matrix (Takagi  1996  ) . 

 Serine proteinases are inhibited  a  
2
  macroglobulin, which utilizes a bait sequence 

and entrapment, and by speci fi c inhibitors of serine proteinases or serpins. Serpins 
comprise  a  

1
 -antitrypin ( a  

1
 -proteinase inhibitor, synthesized mainly in liver, the 
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main inhibitor of elastase),  a  
1
 -antichymotrypsin (acute phase reactant, the main 

inhibitor of cathepsin G), antithrombin III,  a  
2
 -antiplasmin, plasminogen activator 

inhibitors (PAIs) and C1-inhibitor and protease nexins (e.g. uPA is inhibited by 
protease nexin-1). High expression of PAI-1 in MSCs seems to associate with a 
poor migration capacity (Li et al.  2009  ) .  

    2.6.2   Acidic Endoproteinases    

 Cathepsins    comprise in man 11 members, cathepsins B, C, F, H, K, L, O, S, W, X 
and Z. Asparate proteinase family has also many members, including cathepsin D 
and pepsins, which are produced by the chief cells in the stomach and known for 
their role in digestion. Acidic proteinases become activated by acid and are active in 
phagolysosomes, in Howship’s lacunae below the bone resorbing osteoclasts, in the 
stomach and extracellularly in acidic pH. They participate in the killing and diges-
tion of microbes, ECM and autologous cellular components (autophagy or 
autophagocytosis). Apart from pH-dependent regulation of activation, cathepsins 
are inhibited by endogenous cysteine proteinase inhibitors, cystatins, e.g. the extra-
cellular cystatin C. An acidic cysteine endoproteinase cathepsin K, the major cathe-
psin of bone resorbing osteoclasts, can cleave across the collagen triple helix at 
several sites and may play a role also in the extracellular degradation of matrix, not 
only in the Howship’s resorption lacuna but also around loosening joint implants 
and other acidic locations (Ma et al.  2006  ) . High levels of cathepsin B (a cysteine 
endoproteinase) and cathepsin D (an aspartate endoproteinase) are associated with 
a high migration capacity of MSCs (Li et al.  2009  ) .   

    2.7   Wound Healing 

 Wound healing    occurs in stages, which comprise haemostasis, in fl ammation, migra-
tion, proliferation and differentiation of  fi broblasts and angioblasts, re-epithelializa-
tion and scar remodelling. Clot, early, intermediate and mature connective tissue 
matrices interact with the repair cells via integrin and non-integrin receptors so that 
chemokinetic, mitogenic and differentiation signals and lytic enzymes can be pro-
duced in organized waves following one another. Wound healing provides a good 
model for the study of angiogenesis. 

 Skin    wound healing comprises several stages, which include (1) haemostasis via 
vasoconstriction, adhesion and aggregation of platelets and activation of the external 
coagulation cascade to form a temporary blood clot and wound matrix  fi lling the 
 tissue defect and attracting blood leukocytes to the wound, (2) in fl ammatory protec-
tion of the wound site from microbial invasion by neutrophils and monocyte/ 
macrophages, migrating from wound margins along the  fi brin- and tenascin-rich 
temporary scaffold (Badylak  2002 ; Hodde and Johnson  2007 ; Ågren and Werthén 
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 2007  ) , and removal of necrotic tissue and blood clot in a proteolytic process, in part 
 orchestrated, neutrophil extracellular traps by lymphocytes via chemokine- and 
cytokine-mediated processes (Schultz et al.  2005  ) ; in addition, these leukocytes pro-
duce factors attracting and stimulating, (3) migration of  fi broblasts to the lesional site 
via haptotaxis along  fi brin,  fi bronectin  and other components of the temporary 
wound matrix,  fi broblast proliferation,  fi broblast-mediated synthesis of subepithelial 
connective tissue dermal matrix or a more permanent wound matrix, and vascular 
endothelial cell in-growth and angiogenesis, to form so called granulation tissue, 
(4) contraction of the open wounds via the action of specialized actin-rich myoepi-
thelial cells, (5) followed by re-epithelialisation by marginal epithelial cells in prop-
erly closed (or sutured) wounds and (6) gradual remodelling of the early healing 
tissue (Clark  1995  ) . 

 Cells can actively and dynamically assemble and disassemble matrix ligand-integ-
rin receptor attachment areas as platforms to assemble cytoskeletal actin  fi bres to 
focal adhesion complexes, which in the subcytolemmal cytoplasm attract and bind 
many adapter, linker and signalling molecules. Focal adhesions    do not only temporar-
ily anchor the cell to matrix, but they are also used for cellular migration via coordi-
nated, directed and extracellularly guided contractions of the contractile cytoskeletal 
elements. Such phenomena play a role in migration of macrophages,  fi broblasts and 
vascular endothelial cells to wound area and of epithelial cells from the wound  margins 
to the subepithelial healing tissue to cover it again with an intact epithelium. 

 Dermal  fi broblasts    contain several integrins, including  a  
1
  b  

1
 ,  a  

2
  b  

1
 ,  a  

3
  b  

1
 ,  a  

4
  b  

1
 ,  a  

5
  b  

1
 , 

 a  
v
  b  

1
 ,  a  

v
  b  

3
 , and  a  

v
  b  

5
 . The collagen receptors ( a  

1
  b  

1
 ,  a  

2
  b  

1
 ) and the  fi bronectin receptors 

( a  
5
  b  

1,
   a  

3
  b  

1
  and  a  

v
 -integrins) are expressed in the quiescent state and used for adhesion 

to matrix. It is not completely clear which  b -subunits combine with the  a  
v
  to form the 

functional integrin heterodimers  in vivo . When wounding occurs, quiescent  fi broblasts 
are activated to migrate into the blood clot along collagen  fi bers or other molecules 
that cover or associate with the collagen  fi bers. There is evidence that in early wound-
healing,  fi broblast migration may be primarily mediated by  fi bronectin. Migrating 
 fi broblasts express the primary  fi bronectin receptor  a  

5
  b  

1
  and  a  

3
  b  

1
  and in an experi-

mental study migration was blocked with antibodies against  a  
5
  b  

1
  and  a  

v
  b  

3
  integrins. 

Cells at the wound margin down-regulate the expression of the collagen-binding  a  
1
  

and  a  
2
  integrins and express  a  

v
  integrins that can interact with multiple ligands, 

including  fi bronectin, vitronectin,  fi brin and  fi brinogen. It is not clear how these inte-
grins are used for cell migration  in vivo . However, there is some evidence that the 
composition of the ECM is one of the mechanisms that regulate integrin expression 
during wound-healing (Steffensen et al.  2001 ; Ågren and Werthén  2007  ) . 

 Unlike post-natal human skin wounds, which can lead to the development of 
chronic wounds, foetal skin wounds (<24 weeks gestation) and adult oral mucosal 
wounds heal rapidly without or only with minimal scarring. Therefore, an oral ulcer, 
which does not spontaneously heal within 2 weeks, has to be considered as oral 
cancer until shown otherwise. The reason for this effective healing without scar 
formation is that foetal and probably oral mucosal skin  fi broblasts migrate more 
swiftly, produce and remodel ECM components faster and transform to wound 
 closing myo fi broblasts more rapidly than their adult counterparts (Irwin et al.  1998  ) . 
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Further, the composition of the provisional and mature wound matrices produced in 
foetuses and oral mucosa lesions differs slightly from that produced in adult wounds 
(Bullard et al.  2003  ) . 

 Composition of the matrix signals to locally involved cells the current state of 
the wound healing and guides the clearance of necrotic and damaged tissues and syn-
thesis of matrix components via outside-in signalling    (Ågren et al.  2000  ) . This ECM-
integrin signalling can synergistically utilize signalling pathways, which overlap with 
those used by soluble growth and differentiation factors and cell-cell signalling. If this 
well orchestrated cascade of event fails due to obliterating arteriosclerosis or diabetic 
macro- and microangiopathy, the risk for chronic ulcers increases due to in fl ammation, 
 fi broblast senescence and uncontrolled proteolysis (Menke et al.  2007  ) . On the other 
hand, exuberant, nodular and reddish hypertrophic or outright keloid scarring may 
lead to contractures and aesthetic problems (Robles and Berg  2007  ) . 

 Endothelial cells    contain at least nine different integrin receptors (Martinez-
Lemus et al.  2003 ; Silva et al.  2008  ) . They attach to vascular basement membrane 
through their laminin, collagen type IV and/or  fi bronectin binding  b  

1
  integrin recep-

tors,  a  
1
  b  

1
 ,  a  

2
  b  

1
 ,  a  

3
  b  

1
 ,  a  

4
  b  

1
 ,  a  

5
  b  

1
 ,  a  

6
  b  

1
  and  a  

9
  b  

1
 , but have alto other speci fi cities 

(Table  2.4 ). This process is not passive, because various intracellular endothelial 
events modulate integrin-ligand binding in inside-out signalling   . In addition, peri-
cytes contain  a  

7
  b  

1
  and  a  

8
  b  

1
 . 

 Especially cultured and sprouting vascular endothelial cells forming vacuoles 
and lumen  in vivo  express integrin receptors  a  

V
  b  

3
  (the classical vitronectin recep-

tor),  a  
v
  b  

5
  (vitronectin speci fi c receptor) and up-regulate  a  

5
  b  

1
  (the classical 

 fi bronectin RGD receptor), which bind them also to the provisional basement mem-
brane matrix, which in addition to vitronectin may contain  fi brinogen, von 
Willebrand factor, thrombospondin,  fi bronectin, thrombospondin or thrombin. Also 
 a  

1
  b  

1
  and,  a  

2
  b  

1
  are up-regulated. These integrin receptors as well as VEGFs, angio-

poietins, FGF and transforming growth factor- b  (TGF- b ), are required for endothe-
lial cell activation and angiogenesis because they regulate endothelial cell 
proliferation, migration, MMP activation and apoptosis (Brooks et al.  1994 ; Laurens 
et al.  2009  ) .  a  

V
  b  

3
 ,  a  

v
  b  

5
 ,  a  

5
  b  

1
 ,  a  

1
  b  

1
  and  a  

2
  b  

1
  integrin inhibitors prevent angiogenesis 

(Nisato et al.  2003 ; Laurens et al.  2009  ) . Endothelial cells align themselves actively 
along the matrix  fi bres, but also modulate it proteolytically to enable spouting 
towards the centre of the healing wound (Paweletz and Knierim  1989  ) . In contrast, 
laminin binding integrin receptor  a  

6
  b  

1
  may promote endothelial cell differentiation 

and stabilization (Davis and Senger  2005  ) . 
 Syndecan   , a cell surface heparin sulphate proteoglycan, binds endothelial cells to 

heparin-binding domains of matrix  fi brillar collagen, laminin,  fi bronectin, vitronec-
tin and thrombospondin. It seems that when syndecan-1 comes into contact, probably 
via lateral interactions, with integrin receptors  a  

V
  b  

3
  and  a  

v
  b  

5
  they are clustered and 

activated (Beauvais et al.  2009  ) . Various isoforms of the hyaluronan receptor CD44 
mediate binding to hyaluronan,  fi bronectin and collagen and may also stimulate 
angiogenesis. It is expressed on vascular endothelial cells in granulation tissue. 

 Keratinocytes    contain several integrins, including  a  
1
  b  

1
 ,  a  

2
  b  

1
 ,  a  

3
  b  

1
 ,  a  

5
  b  

1
 ,  a  

8
  b  

1
 , 

 a  
9
  b  

1
  and  a  

v
  b  

5
  as well as the hemidesmosomal component  a  

6
  b  

4
 . To enable rapid 
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migration, keratinocytes dissolve their hemidesmosomal complexes. Keratinocytes 
can then migrate on or through the provisional blood clot matrix or, in dermal 
wounds, under the clot in contact with dermal type I collagen-rich matrix, which 
require different and only partly overlapping set of integrins for cellular adhesion/
migration, signalling and focalized proteolysis (Steffensen et al.  2001  ) . 

 Venous, arterial and neuropathic leg ulcers form an increasingly important health 
problem leading to pain, complicating infections, amputations, and decreased qual-
ity of life. One strategy is to  fi ll the persisting tissue defect with matrix biomaterial 
to push it through this bottleneck and to support  fi broblast and endothelial cell 
adhesion, guided migration and local synthesis of ECM to  fi ll the defect and to 
promote healing through the  fi nal stage of the natural wound healing process as 
described above. One biomaterial used for this purpose is Matrigel   , a gelatinous 
basement membrane-like protein substrate composed of laminin and collagen 
matrix with growth factors deposited in it. Further, such relatively loose matrices 
exert mechanotranduction by transferring stains from ECM to cells embedded in or 
on it, which may stimulate matrix synthesis or induce directional sprouting (branch-
ing) and angiogenesis. This is an example how integrin and non-integrin matrix 
receptors modulate cellular behaviour. Another such proteins is amelogenin, an 
ECM protein that self-assembles into globular micron-size aggregates, which are 
able to provide provisional matrix for cell attachment and healing of chronic 
wounds as described above.  

    2.8   Cartilage Extracellular Matrix and Regeneration 

 Cartilage    is composed of chondrons, which are organized in lines and connected by 
interterritorial matrix. In addition, cartilage contains endogenous mesenchymal pro-
genitor cells. Super fi cial (tangential), middle (radial) and deep (hypertrophic) zone 
are separated by a tidemark from the calci fi ed cartilage matrix lying on bone. 
Cartilage contains many growth factors, like TGF- b  and IGF-1, and chondrocytes 
released factors like HMGB-1, which together with the integrin and non-integrin 
mediated matrix contacts regulate the behaviour of the chondrocytes and matrix 
production and composition. Against earlier dogma, cartilage contains some mes-
enchymal stromal cells in its super fi cial layers. Stimulated by success of the autolo-
gous chondrocyte transplantation, these features are simulated in bioresorbable 
natural and synthetic scaffolds in tissue engineering applications. 

    2.8.1   Cartilage Structure 

 Cartilage can be divided to hyaline articular cartilage (rich in type II collagen), 
menisceal and other adapter  fi brocartilages (rich in type I collagen), and elastic 
cartilage (rich in elastin, e.g. in the ear and epiglottis). The basic unit of the cartilage 
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is chondron, which typically contains several lacunar chondrocytes, formed by 
division from the same mother cell (isogenous), each surrounded by its pericellular 
matrix and with the whole unit being surrounded by territorial matrix. Chondrons 
are often organized in radial lines and separated from each other by interterritorial 
matrix, which has a composition different from the intraterritorial matrix in the 
chondrons (Poole  1992  ) . Hyaline articular cartilage on the surface of long bones in 
synovial joints is, due to its apparent role in osteoarthritis, of prime interest. 

 Hyaline articular cartilage ECM    contains a  fi brous network of type II collagen 
embedded in PG and glycoprotein-rich hydrophilic ground substance. Hydrophilic 
heparan sulphate- and keratan sulphate-rich proteoglycans assemble via link pro-
teins to huge macromolecular complexes organized around a HA core (Allemann 
et al.  2001  ) . Pericellular matrix contains a collagen type VI-rich basket for chondro-
cytes, but also contains proteoglycans,  fi bronectin and structure enforcing type II 
and IX collagen. Matrix proteoglycans decorin, biglycan and  fi bromodulin form 
deposits of various soluble factors, such as TGF- b  

1
 , IGFs and BMPs, which upon 

proteolytic release couple matrix degradation with neosynthesis of cartilage matrix 
(van der Kraan et al.  2002 ; Sekiya et al.  2001  ) . Cellular adhesion via integrin liga-
tion regulates the activity of some growth factor receptors. Apart from paracrine 
factors, chondrogenesis by juvenile chondrocytes seems to acquire autocrine mor-
phogens, which are inhibited by serum-derived growth factors. Articular chondro-
cytes may lose their capacity to proliferate and maintain cartilage homeostasis at the 
onset of puberty (Solchaga et al.  2001  ) . 

 Non-calci fi ed articular cartilage    is subdivided into three zones: super fi cial or tan-
gential, middle, intermediate or radial, and deep or hypertrophic zones. Cartilage 
type II collagen forms about 60% of the dry weight of the articular cartilage. Small 
10 nm  fi bres are distributed in all three zones. In addition to that, the super fi cial 
zone, subjected to high shear forces, is enforced by 35 nm  fi bres oriented parallel to 
the cartilage surface; the middle zone contains 70–100 nm randomly organized 
 fi bres; and the deep zone contains ~140 nm radially organized  fi bres. Thickness and 
organization of type II collagen  fi bres, as well as their intermolecular linkage, are 
organized by trace amounts of types I, VI, X, and XI collagens (Naumann et al. 
 2002  ) . Cartilage tissue is anisotrophic. 

 The super fi cial zone of hyaline articular cartilage contains tangentially orien-
tated  fl attened chondrocytes aligned along the tightly packed type II collagen  fi bre 
layers, providing resistance to shear forces of the articular gliding pair and protec-
tion to the deeper layer of the cartilage. Middle zone is composed of obliquely ori-
ented collagen  fi bre meshes resisting compressive forces and serving as a transition 
zone between the super fi cial and deeper layers subjected to compressive forces. 
Tidemark is the interface between the deep hypertrophic cartilage zone and the 
underlying calci fi ed cartilage, which tidemark can in osteoarthritic cartilage be mul-
tiplied (Alford and Cole  2005  )  and contains deposits of high mobility group box-1 
(HMGB-1; Heinola et al.  2010  ) . HMGB-1 is a non-histone, DNA-binding protein, 
which regulates gene transcription, but released into the extracellular space from 
necrotic, activated or perhaps even apoptotic hypertrophic chondrocytes acts as an 
endogenous alarmin and a master cytokine. It can also recruit osteoblasts, vascular 
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endothelial cells and monocyte/macrophages as well as stimulate transdifferentiation 
of MSCs to osteoblasts. Its release into extracellular matrix and deposition in the 
tidemark are dependent on the state of the OA changes (Heinola et al.  2010  ) . Such 
a delicate tissue and macromolecular organization posses a real challenge to tissue 
engineering attempts. Against earlier dogma, apart from chondrocytes also mesen-
chymal progenitor cells have been identi fi ed in healthy human articular cartilage 
(Alsalameh et al.  2004  ) . 

 Collagen facilitates integrin- and non-integrin-mediated adhesion to matrix, 
which regulates cellular attachment, spreading, migration, differentiation and sur-
vival of the chondrocytes (Kleinman et al.  1981  ) . To avoid a special form of apop-
tosis, called anoikis, chondrocytes need to attach to collagen  fi bres using their  a  

1
  b  

1
  

integrin receptors (van der Kraan et al.  2002  ) . By their counterforce against the 
swelling pressure exerted by the matrix embedding hydrophilic ground substance 
hydrogels collagens determine the viscoelastic and compressive properties of the 
hyaline articular cartilage. Protein core attached keratin and chondroitin sulphate 
side-chain glycosaminoglycans of aggrecan molecules are negatively charged, dis-
playing high electrostatic repulsion and hydrophilicity.  

    2.8.2   Culture on Different Scaffolds 

 The aim of cartilage tissue engineering    scaffolds is manifold. Optimally they allow 
cell seeding, they mimic the 3D environment of the ECM, provide preferably tem-
porary and resorbable structural support, an increased surface area-to-volume ratio 
promoting cellular adhesion, migration and differentiation and integrate with host 
tissues (Capito and Spector  2003 ; van Osch et al.  2009  ) . 

 Cartilage regeneration    requires chondrocytes or MSCs able to differentiate to 
chondrocytes in numbers high enough to enable production and maintenance of 
hyaline articular cartilage under the demanding physicochemical articular circum-
stances (Getgood et al.  2009  ) . ECM/scaffold-cell contacts in solid or gel-like scaf-
folds composed of or containing agarose, alginate, carbon nanotubes, chitosan, 
chondroitin sulphate, collagens, elastin-like polypeptides,  fi brin, gelatine, hyaluro-
nan, polycaprolactone, polylactic acid (PLA), polyglycolic acid (PGA) and polylac-
tide-co-glycolide copolymer (PLGA) are used to support such a development. All 
these scaffolds can be coated with adsorbed proteins or immobilized functional 
groups. We know of no studies that have evaluated chondrocyte function on type II 
collagen sponges spiked with cross-linked CS and hyaluronate. On the other hand, 
before mass production and clinical use of any such scaffolds, a balance must be 
reached between bioactivity/-compatibility and production costs. 

 Apart from its chemical composition, also the shear stress forces, loading and 
microarchitecture of the cartilage play a role in mechanotransduction and guidance. 
Optimal pore size and interconnectivity may at the cellular level be rather similar in 
different species. Devitalized, porous chicken knee 3D scaffold has been reported to 
form a good framework for bovine neocartilage formation (Warden et al.  2004  ) . 
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Over 95% porous arti fi cial collagen sponges, produced from approximately 0.5 wt. 
% collagen solutions, can by lyophilized and physically or chemically crosslinked 
to obtain 120–200  m m pore size and permissive interconnectivity (Kato et al.  1995  ) . 
Crosslinking and porosity prevented formation of amorphous hydrogels to which 
the cells can not migrate (Kato et al.  1995  ) . It is possible to follow expression of 
chondrocyte genes of aggrecan core protein and collagen type II and accumulation 
of cartilage matrix in such porous 3D sponges (Glowacki and Mizuno  2007 ; 
Lu et al.  2001 ; Mizuno and Glowacki  1996 ; Yates et al.  2005  ) . Collagen scaffold-
autologous chondrocyte    tissue engineering constructs improve histological repair 
over controls of articular cartilage defects in rabbit, sheep and other experimental 
models (Lu et al.  2001  ) . MSCs seeded in a collagen gel developed  fi rst at 12 weeks 
hyaline-like repair tissue and subchondral bone, but 12 weeks later articular 
cartilage was thin and incompletely integrated with host tissues (Wakitani et al. 
 1994  ) . In contrast, in 2D monolayer cultured chondrocytes soon dedifferentiate to 
 fi broblast-like cells, which produce tough  fi brous-type interstitial type I collagen-
rich matrix rather than hydrated elastic cartilage matrix. 

 For cell culture foetal bovine serum, rich in various but poorly de fi ned as to its 
growth factor content, is used to support cellular proliferation and growth  in vitro . 
Due to its heterologous nature, this may cause adverse in fl ammatory or immuno-
logical reactions. This has stimulated attempts to develop well de fi ned synthetic cell 
culture media, which may contain critical growth factors like transforming growth 
factor- b . Feeder cells    could perhaps be used with tissue engineering scaffolds con-
taining appropriate ECM molecules. Reprogramming of already differentiated cells 
using gene transduction offer a third option to produce and guide stem cells along 
the desired cell lineage. 

 When the distance of a cell from the surface of a 3D scaffold increases, diffusion 
of nutrients and oxygen to cells in the implant centre is impaired. Bioreactors and 
solvent  fl ow have been used to extend this distance. Perfusion also exposes cells to 
shear stress and hydrostatic pressure dependent on the  fl ow rates and other condi-
tions applied. Under such dynamic culture conditions both adherent stromal and 
non-adherent haematopoietic cells are more evenly distributed to the 3D implants 
and usually display improved viability and matrix deposition compared to static 
culture conditions (Shanbhag et al.  2005 ; Nichols et al.  2009  ) . 

 Scaffolds seeded with genetically engineered chondrocytes, transduced with 
bone morphogenic protein-2, produced at 6 months in a rabbit model hyaline-like 
repair tissue biochemically and biomechanically similar to native tissue, whereas 
empty collagen sponges was compressed and adhered to the underlying structures 
(Wakitani et al.  1994  ) . 

 Chitosan    is a bi-copolymer of glucosamine and N-acetylglucosamine. Its degra-
dation products are non-toxic and can be used in the synthesis of articular cartilage 
(Guo et al.  2006  ) . Chitosan is cationic and, due to its high charge density in acidic 
solutions, forms water-insoluble complexes with a variety of polyanionic sub-
stances, including some growth factors. Chitosan/glycerol copolymer hydrogel 
(BST Cargel, Biosyntech, Quebec, Canada) mixed with blood and injected into a 
chondral defect following microfracture provided in a rabbit model better results 
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than microfracture alone and results from an ongoing human trial are awaited 
(Hoemann et al.  2007  ) . 

 Chondroitin sulphate can be used to enhance growth factor binding capacity/
proliferation and biocompatibility/matrix deposition of collagen-based scaffolds 
(Veilleux and Spector  2005  ) . The major GAG of native cartilage tissue is chondroi-
tin sulphate as clari fi ed above. 

 Chondrocytes growing in a  fi brin scaffold produced IGF-1 and produce type II 
collagen rich matrix (Fortier et al.  2002  ) . 

 Hyaluronan is a hydrophilic macromolecular component of the ECM. 
Chondrocytes use various isoforms of hyaluronan receptor CD44 to attach and read 
hyaluronan. This stimulates chondrogenesis of MSCs by itself and matrix formation 
in collagen scaffolds is enhanced by addition of small amounts of hyaluronan. 
Hyaluronan can be cross-linked by esteri fi cation, glutaraldehyde or otherwise to 
produce hylan implants for cartilage repair, but such modi fi cation of the natural 
molecule impairs its biocompatibility and can lead to formation of degradation 
products that can cause chondrolysis (Knudson et al.  2000  ) . 

 We believe that natural 3D scaffold materials   , such as collagen, chitosan, chon-
droitin sulphate and hyaluronan, have an edge over synthetic products because they 
are better provided with cues involved with cellular adhesion and signalling at the 
same time when resorption can be designed to lead to reciprocal release of matrix 
deposited growth factors, to couple scaffold degradation with matrix formation. 

 Synthetic scaffolds    produced of PLA, PGA or PLGA are easy to mould and pro-
duce and it is possible to control the speed of their biodegradation (Capito and 
Spector  2003  ) . Carbon nanotube composites support chondrocyte proliferation and 
deposition of ECM (Khang et al.  2008  ) . Similarly, collagen  fi bre-mimicking elec-
trospun polycaprolactone nano fi bre scaffolds support MSC-chondrocyte differenti-
ation (Li et al.  2005  b  ) . 

 The future of cartilage repair and restoration is promising and the role of ECM 
in this process is pivotal.   

    2.9   Bone 

 Bones    (skeleton) provide support and de fi ne the shape and form of the body. 
Relatively rigid bones together with synovial,  fi brous, cartilagineous (and bony) 
articulations and mechanically well placed insertions of ligaments, tendons and 
joint capsules make locomotion and guidance of it possible. Some parts of the skel-
eton protect internal organs and bones themselves contain bone marrow with 
hematopoietic and mesenchymal stromal cells and most of the calcium and phos-
phate mineral deposits of the body. Bone represents one of the most dynamic remod-
elling tissues of the body so that osteoclasts, some mononuclear cells and osteoblasts 
form temporary bone basic multicellular units (BMU), which undergo activation-
resorption-formation (ARF) cycles in bone remodelling compartments. Bone lining 
cells and lacunar osteocytes cover the outer and inner bone surface and the whole 
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bone is surrounded by periosteum containing a protective outer  fi brous and an 
inner cambian cell layer containing progenitors activated upon fracture and frac-
ture healing. MSCs seeded on scaffolds can be induced to bone to replace various 
types of bone defects. 

 According to mode of mineralization, bone is divided into intramembranous 
bone (direct mineralization, e.g. the  fl at bones of the skull) and enchondral bone 
(formation of a cartilage model precedes mineralisation of the matrix, e.g. the long 
bones of the extremities). Bone is further divided into compact cortical and spongy 
trabecular bone. The basic unit of cortical bone is an osteon or a Haversian system, 
which is 0.2 mm in diameter and typically several millimetres long. It is composed 
of concentric bone lamellae, the interfaces of which are marked by lacunar osteo-
cytes organized into cellular rings interconnected with bone canaliculi around a 
central Haversian canal, which houses blood vessels. 

 In addition to bone matrix    entrapped osteocytes, bone contains bone matrix 
forming osteoblasts on the surface of the osteoid (newly forming bone), bone resorb-
ing multinuclear osteoclasts in resorption lacunae and lining cells covering the sur-
face of resting bone (resting osteoblasts). Bone is typically covered by periosteum 
composed of an outer protective  fi brous layer and an inner cambium layer contain-
ing osteoblast progenitors. 

 Bone cells form the basic multicellular unit (BMU),    which is a temporary cel-
lular structure composed of a few osteoclasts, which form the cutting cone resorb-
ing bone, followed by a closing cone, in which new bone is formed by osteoblasts 
on the wall of the cavity formed by the osteoclasts. The transition zone between the 
cutting and closing cone is covered by relatively poorly de fi ned mononuclear cells, 
which seem to clean and prepare the bone surface after osteoclast-mediated bone 
resorption for the attachment and bone synthesis work of the osteoblasts. Osteoclasts 
resorb the bone only a week or two, but the subsequent  de novo  bone synthesis in 
the closing cone takes a few (6–7) months. 

 BMU nicely re fl ects different phases in the bone remodelling cycle, referred to as 
activation-reversal-formation (ARF)    cycle. Activation leads to the fusion of osteoclast 
progenitors belonging to the monocyte/macrophage cell linage to multinuclear osteo-
clasts, which during the resorption phase lyse bone tissue. This resorption phase is via 
release of matrix bound molecules, S1P/S1PRs and EphB4/ephrinB2 coupled to 
osteoblast-mediated bone formation. In adult human skeleton the loss of bone and the 
subsequent formation of bone balance each other so that a  status quo  remains. It is not 
quite known what activates the ARF cycle, but microfractures of old and strained 
bone, leading to osteocyte death and release of osteocyte factors, may initiate the cycle 
and in part direct the BMU-mediated ARF activity towards microfractures. 

 The special feature of bone tissue is that it is a composite consisting of type I 
collagen-rich organic matrix (for other bone collagens, see Table  2.1 ) in which 
impure 50 nm long, 28 nm wide and 2 nm thick nano-size hydroxyapatite crys-
tals (Cui et al.  2007  )  have precipitated as bone mineral during primary (rapid 
mineralization of newly formed osteoid seams) and secondary (slowly increasing 
mineralization of already formed bone) mineralization (Rho et al.  1998 ; Veit 
et al.  2006  ) . 
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 Bone is an ingenious natural material, a composite which consists of solid cortical 
and porous trabecular, polymeric and ceramic, and lamellar (a few microns thick) and 
woven ( fi brous) phases (Canty and Kadler  2005  )  organized from nano- to macroscale. 
Toughness and visco-elasticity of bone depend on its collagen matrix (Young’s modu-
lus 1–2 GPa, an ultimate tensile strength 50–1,000 MPa), which also de fi nes the shape 
and volume of a bone, whereas the hardness and mechanical strength (Young’s modu-
lus 130 GPa, an ultimate tensile strength 100 MPa; Park and Lakes  1992  )  but also 
brittleness are attributed to hydroxyapatite composed of calcium, phosphorus, 
hydroxyl ions containing trace amounts of  fl uoride, sodium, magnesium and other 
ions (Gray et al.  1995  ) . Non-collagenous proteins (NCP) of bone regulate impregna-
tion of hydroxyapatite crystals in the organic bone collagen matrix framework. High 
energy fractures cause fractures even in young patients, whereas pathological, low 
energy fractures occur more commonly in elderly osteoporotic individuals. 

 In bone growth    and fracture healing    bone can form  de novo  from MSCs as a result 
of osteoinduction. This involves several MSC  b  

1
  integrin receptors, including collagen 

receptors  a  
1
  b  

1
  and  a  

2
  b  

1
 ,  fi bronectin receptor  a  

5
  b  

1
  and laminin receptor  a  

6
  b  

1
 , but also 

multi-speci fi c  a  
v
  b  

3
  and  a  

V
  b  

5
  receptors, which bind e.g. vitronectin and osteopontin 

(Gronthos et al.  2001  ) . Osteoconduction    or bone in-growth, as tissue regeneration in 
general, can be guided by haptotaxis and physical barriers. Migration of MSCs through 
tissues can be aided by  a  

v
  b 

3
, which can bind and, focalize, MMP-2 to the leading edge 

of the migrating cells (Karadag and Fisher  2006  ) . A well  fi xed implant in bone seems 
at the light microscopic level to be in direct contact with the surrounding bone although 
high resolution electronmicroscopic images disclose a thin  fi brous interface tissue 
even in these so called osteointegrated implants (Hutmacher et al.  1998  ) . 

 According to the law of Wolff, the orientation, density, crosslinking and miner-
alization of the bone trabeculae adjust according to the local mechanical needs, in 
which mechanotransduction process interacts between bone cells (Table  2.4 ) and 
bone collagen (Table  2.1 ) and NCPs play a role at the sensing and transducing inter-
face (Taylor  2007  ) . 

 Bone tissue engineering    aims to repair/regenerate bone defects, such as congeni-
tal, iatrogenic and non-unions. To avoid immunological rejection, usually autolo-
gous osteoblasts or MSCs are seeded to biodegradable (more rarely to biostable) but 
temporarily supporting and void  fi lling porous scaffolds, which hybrids are referred 
to as tissue engineering constructs (TEC) or products (TEP). Scaffold is in a few 
milliseconds dynamically coated by soluble plasma/interstitial proteins, which upon 
maturation is more or less replaced  fi rst by provisional and  fi nally by more mature 
ECM synthesized by the inmigrating scaffold colonizing cells. The natural bone 
milieu, with its embedded growth and differentiation factors, supports this process. 
The purpose designed scaffold should retain its strength from a few weeks to several 
months depending on the purpose of its use. Gradually during a year or two the 
bioresorbable scaffold should be hydrolytically degraded to water and carbon diox-
ide without causing a foreign body reaction. This loss of external implant support 
protects against stress shielding, bone weakening and pathological peri-implant 
fractures and allows bone formation and remodelling, which lead to the replacement 
of the arti fi cial construct with natural living bone (Hutmacher  2000  ) . 
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 Both natural and synthetic materials have been tried in bone tissue engineering, 
including polymers, such as gelatine, agar,  fi brin, collagen, brushite and deminera-
lised bone matrix; synthetic bioresorbable polymers, such as polyglycolic-lactic 
acid (PGLA), poly-L,D-lactic acid (PLDLA) or polycaprolactone (PCL); and 
porous ceramics, such as bioglass, hydroxyapatite composites or various other 
calcium phosphate compounds, or naturally occurring ceramics, such as coral. 
Composites of natural and synthetic materials, such as collagen–PLA-hydroxyapatite 
and chitosan–hydroxyapatite composites, have been studied. Just like in chondro-
genesis, also the architecture of the scaffold matters and both human MSCs (from 
various sources) and human embryonic stem cells form bone better in natural 3D 
than on artefactual 2D scaffolds. 

 Fracture repair is a sequential process that requires a coordinated action of cells, 
signalling molecules and extracellular matrices. The sequence of events is initiated 
by the blood clot (provisional healing  fi brin mesh scaffold) and ends up with orga-
nized, mature and remodelling lamellar bone. Intermediate steps can include forma-
tion of granulation tissue, cartilage (in enchondral bone formation) and woven 
bone.  

    2.10   Extracellular Matrix in Heart Regeneration    

 Ischemic heart disease is a common cause for angina pectoris, myocardial infarction 
and chronic heart disease, which in cases refractory to medicinal treatment cause a 
great clinical problem. Endogenous repair ability of necrotic heart muscle tissue or 
 fi brous heart valvular tissue is poor. Therefore, attempts have been made to treat 
these patients with cell therapies, guided tissue regeneration and tissue engineering 
constructs. Many different cell types (MSC, cardiac stem cell, endothelial progeni-
tor cell, embryonic stem cells, multipotent adult stem cells, skeletal myoblasts or 
hematopoietic stem cell) and processes (transmigration/extravasation, migration 
and engraftment, angiogenesis, proliferation, apoptosis, stem cell produced para-
crine factors, cardiomyogenesis, arrhythmias) have to be mastered in clinical trials 
before these therapies can be more widely applied. Interestingly, these cell based 
therapies do not seem to act so much as cell replacement therapies as to act via 
complicated orchestration of the repair and regeneration. 

    2.10.1   Integrins in the Cell Cycle Withdrawal 
of Cardiomyocytes 

 Integrins    have been studied in the developing heart. Int  b  
1
 A chain was present in the 

proliferating cardiomyocytes but decreased with 30% after birth. Integrin  b  
1
 D was 

found a little later, at the foetal day 18, increased 2 days after birth and remained 
then constant, which resulted in 1:1 ratio of these integrin chains in the adult heart. 
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Adhesion to matrix via these  b  
1
  integrins may drive cardiomyocyte proliferation, 

but this effect is lost in the neonatal heart and upon  b  
1
 A to  b  

1
 D shift. The adult ß 

1
 D 

form in particular plays a role in anchorage and transmission of mechanical load to 
heart tissue during heart beats (Sun et al.  2003  ) . After birth  b  

1
  integrin binding part-

ners, the  a  chains of the heterodimeric laminin integrin receptors, are  a  
3
  and  a  

6
 , 

which are transiently increased at neonatal day 2, while three different isoforms of 
 a  

7
  chains, part of the LM-111 receptor, increased gradually to the adult stage. 

Fibronectin receptor  a  
5
  b  

1
  did not change during foetal-to-neonatal transition. 

Because cardiomyocyte proliferation ceases upon terminal differentiation shortly 
after birth, it is assumed that the above mentioned integrin changes initiate cell 
cycle withdrawal   , inhibit S-phase entry and block the cells in G1 phase (Maitra 
et al.  2000  ) .  

    2.10.2   Heart Diseases 

 Angina pectoris refers to ischemia of the heart muscle, usually caused by stenosis 
of one or more of the coronary arteries impairing local blood delivery critically 
upon strenuous physical or mental activities, but it can also be caused by anaemia 
(universally diminished oxygen delivery) or hypertrophic heart diseases and/or 
rapid arrhythmias (increased oxygen consumption). Myocardial infarction    (MI) 
upon rupture of the atherosclerotic plaque and subsequent intra-arterial blood clot 
(thrombosis) formation leads to ischemia, then injury and  fi nally necrosis of cardiac 
tissue. One of the important clinical consequences of atherosclerotic heart diseases 
is chronic heart failure leading to dyspnoea, fatigue, swelling, increased jugular 
vein pressure etc. 

 MI triggers rapidly a process of repair to maintain the structural integrity of the 
heart. Signal transduction involves cell-cell signalling, but also soluble factors and 
ECM-cell signalling. In fl ammatory leukocytes invade the injured area, angiogenesis 
ensues, and  fi broblasts start to replicate. This early in fl ammatory phase of healing 
results in granulation tissue. In large transmural Q-wave MIs the entire heart may be 
engaged in the repair, which leads to diffuse and widespread  fi brosis and remodel-
ling also at sites remote from the actual infarct area. Postinfarction healing is almost 
complete 6–8 weeks following MI, but the infarct scar, which was once considered 
to be relatively inert, is quite a dynamic remodelling tissue. 

 During the in fl ammation phase leukocyte produce pro-in fl ammatory cytokines, 
such as TNF- a  and IL-1ß, which up-regulate local synthesis, secretion and activa-
tion of matrix metalloproteinases (e.g. MMP-2 and -9). In this early phase, these 
cytokines play a protective and coordinating role so that anti–IL-1ß impairs repair 
(Hwang et al.  2001  ) . Similarly, glucocorticosteroids leads to poor healing. MSCs can 
stimulate  fi broblasts to produce MMP-2, MMP-9 and MT1-MMP, which reduces 
post-MI  fi brosis (Mias et al.  2009  ) . Still remaining cardiomyocytes hypertrophy. 

 Necrotic tissue is gradually phagocytosed and replaced with a collagen-rich scar 
(Deten et al.  2002  ) . Diffuse  fi brosis develops to enforce the heart and cells are via 
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integrin and non-integrin matrix receptors integrated to this  fi brous scaffold. 
Particularly ß 

1
  integrins seem to be associated with anchoring of the myocytes to 

matrix. Contractile myo fi broblasts proliferate and angiogenesis ensue and, to a lim-
ited extent, progenitor cells proliferate (Deten et al.  2001 ; Sun et al.  2003  ) . 

 MMPs are present in healthy myocardial cells and interstitium, but only in low 
concentrations and mostly as latent zymogens. They are readily activated within 
minutes of ischemia by free radicals and proteinases, such as plasmin and other 
MMPs. The ratio between MMPs and tissue inhibitors of metalloproteinases 
(TIMPs) shifts in favour for MMPs (Creemers et al.  2001  ) .  

    2.10.3   Cell Therapies 

 Cell therapies    have emerged as a potential new mode of treatment in a variety of 
cardiac diseases, including acute MI, refractory angina pectoris and chronic heart 
failure (Menasche  2009  ) . Attention has been drawn to selection of appropriate cells, 
their delivery via myocardial implantation  vs . intracoronary or systemic infusion, 
and creation of a speci fi c extracellular matrix niche to promote engraftment, sur-
vival and function of the transplanted cells. Transplantable cells can be embedded 
in  fi brin or peptide nano fi bres, which seem to enhance graft retention due to higher 
viscosity of the injectable graft and improved cellular viability, to create a 3D envi-
ronment and to improve cellular cohesion, cell-to-cell and cell-to-matrix contacts 
and signalling. Biomaterial “shell” may protect cells from in fl ammatory and immune 
damage in fl icted by host neutrophils, monocyte/macrophages, lymphocytes and 
other cells. ECM of transplanted cells could be supplied with agents promoting 
homing, migration, engraftment, proliferation and differentiation of these cells 
(Fig.  2.2 ). Repopulation of the damaged zone with contractile or regulatory cells 
and bene fi cial modulation of matrix may help to normalize the hemodynamic load 
on the surviving cardiomyocytes and the potentially deleterious consequences of 
ventricular remodelling (Penn and Mangi  2008  ) .  

 Injury and/or repair triggered induction of stem cell homing factors    in myo-
cardial tissue lead to homing of bone marrow derived and cardiac stem cells to 
the injured myocardium. Re-expression of laminin-1 (Lm-111) in the adult 
human heart revokes in part mechanisms, which were operative during organo-
genesis but are now engaged in heart repair. Lm-111 in the ischemic heart may 
help to create a niche permissive for epithelial-mesenchymal transition in the 
adult heart, whereas laminin-2 (Lm-211) seems to be essential for the mainte-
nance of already existing cardiac muscle cells. Binding    of extracellular heart 
matrix ligands by integrins results in signal transduction across the plasma mem-
brane that regulate cell shape, migration, growth, and survival, a process termed 
outside-in signalling. 

 Adhesion molecules and integrins (Wu et al.  2007 ; Ip et al.  2007  )  play a role in 
the mobilization, engraftment and migration of stem cells through injured myocar-
dial tissue and in the modulation of their connective tissue microenvironment 
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(Xiang et al.  2005 ; Shimazaki et al.  2008 ; Tamaoki et al.  2005  ) . Several proteinases, 
which are potential targets for gene based modulation prior to stem cell transplanta-
tion, participate in these processes (Xiang et al.  2005  ) . Inhibitors of MMP activa-
tion, such as plasmínogen activator inhibitor-1    (PAI-1), affect leukocyte in fi ltration 
and remodelling of the left ventricle (Askari et al.  2003 ; Xiang et al.  2004  ) . 
Up-regulation of PAI-1 decreased tissue-type plasmin (tPA) activity, which conse-
quently diminished leukocyte in fi ltration and tissue degradation and decreased left 
ventricular dilation (Askari et al.  2003  ) . Down-regulation of PAI-1 associated with 
increased tPA activity at the time of acute myocardial infarction increased engraft-
ment of exogenously delivered CD34 +  cells in the infarct zone due to enhanced 
vitronectin-dependent transendothelial migration from the blood stream (Xiang 
et al.  2004  ) . This increase in stem cell engraftment after MI following PAI-1 inhibi-
tion was recently shown to associate with a decrease in cardiac myocyte apoptosis 
and an improvement of heart function (Xiang et al.  2005  ) . 

 Many attempts have been done to produce scaffolds that directly via their 
composition or indirectly via matrix remodelling enable myocardial grafts (Xiang 
et al.  2004,   2005  ) . Particular interest has been paid to three factors: tenascin-C 
(Tamaoki et al.  2005  ) , relaxin (Perna et al.  2005  )  and periostin (Litvin et al.  2006  ) . 

 Tenascin-C    is a provisional extracellular matrix molecule that is expressed dur-
ing wound healing in various tissues, including myocardium following acute MI 
(Imanaka-Yoshida et al.  2001  ) . Tenascin-C, up-regulated by angiotensin II (Nishioka 
et al.  2007  ) , seems to be pro fi brotic. Although it is crucial for normal healing, its 
down-regulation associates with improved long-term outcome. Tenascin-C accelerates 

  Fig. 2.2    As a result of tissue injury, MSCs have been mobilized from stem cell niches or injected 
into the circulation. At the site of the injury they transmigrate (extravasate) through the blood ves-
sel wall to tissues or simply  fl ow there with blood and become embedded in the blood clot. They 
migrate in the interstitial tissues towards the injured area and engraft, but in spite of a growing 
distance from the source of oxygen and nutrients, they have to maintain their vitality to proliferate. 
Locally activated or injected stem and progenitor cells may participate in the process. The main-
stream idea is nowadays that the stem cells produce locally factors and effects, which promote 
tissue repair and healing via paracrine mode of actions on a mix of some local resident or immi-
grant cells, but some of them may terminally differentiate to replace lost resident cells, according 
to the older view (Modi fi ed from Penn and Mangi  2008  )        
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 fi broblast migration and  a -smooth muscle actin expression (myo fi broblast formation). 
Increased serum tenascin-C indicates pathologically increased remodelling (Sato 
et al.  2006  ) . 

 Relaxin    is a hormone belonging to the relaxin superfamily, which also includes 
insulin-like peptides. Relaxin liberates NO and causes vasodilatation. Administration 
of relaxin decreased myonecrosis, cardiac myocyte apoptosis and leukocyte 
in fi ltration into the injured myocardium after an experimental MI (Perna et al. 
 2005  ) . Chronic over-expression of relaxin in C2C12/RLX myoblasts increased local 
MMP-2, VEGF, vascular density and cardiac function compared to untreated and 
control animals treated with C2C12/GFP (green  fl uorescent protein) myoblasts 
alone (Bani et al.  2009  ) . 

 Periostin is a secreted ECM protein, which regulates left ventricular remodelling, 
stem cell engraftment and differentiation in multiple heart diseases (Katsuragi et al. 
 2004  ) . Periostin is found in cardiac  fi broblasts and up-regulated in the ECM of the 
heart following MI. When periostin was injected into the infarct zone following 
acute MI, it caused adult cardiomyocytes to re-enter the cell cycle. This was associated 
with the activation of  a  

V
 ,  b  

1
 ,  b  

3
  and  b  

5
  integrins and signalling via phosphatidylinos-

itol-3 (PI3K) pathway. This was followed by improved ventricular remodelling and 
cardiac function, reduced  fi brosis and infarct size and increased angiogenesis (Kuhn 
et al.  2007  ) . 

 Matrix proteins, matrix receptors or modulators of matrix deposition offer 
molecular targets that could be genetically engineered or otherwise modulated prior 
to stem cell infusion or injection. Up-regulation could be achieved directly via 
introduction of encoding cDNA or indirectly via inducers, e.g. periostin   . 

 Improved cellular survival in the in fl ammatory myocardial environment after MI 
poses a challenge because typically 90% of all implanted and/or recruited cells die 
within a week (La fl amme and Murry  2005  ) . Several principal strategies have been 
envisioned to improve stem cell intervention results and prognosis in MI, refractory 
angina pectoris or chronic heart failure. Because different stem cells tested, e.g. 
MSC, cardiac stem cell, endothelial progenitor cell, embryonic stem cells, multipo-
tent adult stem cells, skeletal myoblasts or even hematopoietic stem cell, differ even 
the molecular details of these potential therapeutic strategies vary (Fig.  2.3 ; Penn 
and Mangi  2008  ) . Cell surface receptors form potential targets for genetic engineer-
ing prior to stem cell delivery to target the cells correctly and effectively. 
Transmigration/extravasation of circulating stem cells could improve by up-regula-
tion of receptors for stem cell homing factors (CXCR4/receptor for stromal-cell 
derived factor-1). Transient integrin expression (e.g.  b  

1
  integrins) in delivered cells 

could improve stem cell migration and engraftment, whereas appropriate long-term 
integrin over-expression could alter stem cell differentiation towards the cardiac 
phenotype (Wu et al.  2006  ) . Endothelial cell nitric oxide synthetase (eNOS)-medi-
ated up-regulation of MMP-9 is estradiol dependent, suggesting a potential explana-
tion for the better prognosis of MI in women (Iwakura et al.  2006  ) . Because 
persistent ischemia leads to death of the transplanted cells, improved angiogenesis 
via angiogenic factors (VEGF, FGF-2, angiopoietins, TGF- b  etc.) could enhance 
stem cell survival. Stem cell proliferation could be directly or indirectly be improved 
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via growth and trophic factors (FGF-2, IGF-1, BMP-2 and VEGF) or signal transduces 
(constitutively active serine/threonine protein kinase P-Akt, which mediates growth 
factor-associated cell survival signals). To improve ECM-cell survival signals and 
to prevent anoikis, the composition of the ECM could be modulated as to its tenas-
cin-C (to be decreased), relaxin (to be increased) and periostin (to be increased) 
content (see above), but stem cells could also be embedded and added in epicardial 
collagen or laminin-1/Matrigel patches (Menasche  2007 ; La fl amme  2007  )  or the 
stem cell could be subjected anti-apoptotic gene transduction (of e.g. B-cell lym-
phoma 2 = Bcl-2). Paracrine factors produced by stem cells can exert important 
effects, e.g. granulocyte-colony stimulating factor (G-CSF), stromal cell-derived 
factor 1 (SDF-1), monocyte chemoattractant protein-3 (MCP-3) and IL-8 are 
chemotactic and guide migration, VEGF, FGF-2 and HGF    stimulate angiogenesis, 
FGF-2 stimulates proliferation, HGF reduces apoptosis, IL-10, TGF- b  

1
  and HGF 

exert anti-in fl ammatory effects and HGF and IGF-1 activate neighbouring resident 
stem cells. Further, MSCs decrease production of collagen type III, collagen type I 
and TIMP-1 (Crisostomo et al.  2008  ) . Cardiomyogenic stimuli, like 5-azacytidine, 
BMP-2, FGF-4, HGF and transduction with Bcl-2 have tentatively been shown to 
induce differentiation of MSCs to cardiomyocytes, albeit this may only affect a 
small proportion of cells (Nesselmann et al.  2008  ) .    Finally, heart arrhythmias cor-
relate with connexin protein expression (Mills et al.  2007  ) . MSCs, which express 
connexins 40, 43 and 45 components of the gap junctions, have a signi fi cantly 

  Fig. 2.3    Options to improve the bene fi ciail effects of mesenchymal stem cell therapies in heart 
disease include modulation of  1  Transmigration/extravasation,  2  migration and engraftment,  3  
angiogenesis,  4  proliferation,  5  apoptosis,  6  stem cell produced paracrine factors (e.g. to help 
recruit endogenous resident stem cells),  7  cardiomyogenesis and  8  tendency to arrythmias 
(Modi fi ed from Penn and Mangi  2008  )        
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decreased arrhythmogenic potential, whereas intramyocardially injected skeletal 
myoblasts with a high arrhythmogenic potential do not express any connexin pro-
teins  in vivo . Transplantation of myoblasts engineered to express connexin 43 
decreased signi fi cantly ventricular tachycardias compared to transplantation with 
control skeletal myoblasts (Roell et al.  2007  ) .   

    2.10.4   Heart    and Valve    Tissue Engineering 

 All four cardiac valves, aortic, mitral, pulmonary and tricuspidal, are attached to 
a  fi brous supporting skeleton of tendon like tissue via a  fl exible hinge region com-
posed of loose connective tissue intermingled with some muscle tissue. They have 
a similar layered and strong architectural structure. Heart valves    are covered by 
endocardium composed of valvular endothelial cells (VEC)   , which are in contact 
with blood and which form a thin haemocompatible surface. The connective tis-
sue matrix of the heart valve consists of three layers, which contain valvular inter-
stitial cells (VIC)    embedded in it. On the out fl ow surface is a dense and strong 
collagen-rich layer, which provides structural strength and stiffness. Collagen 
 fi bres withstand high tensile forces when taut, but buckling occurs upon compres-
sion. In the central core of the valve is the middle layer composed of GAG-rich, 
loose and spongy connective tissue absorbing shear and compression forces dur-
ing the heart cycles. On the in fl ow surface is a layer rich in elastin, which extends 
in diastole and recoils in systole. In the aortic and pulmonary valves these three 
layers are called   fi brosa ,  spongiosa  and  ventricularis , respectively. Heart valves 
are mostly avascular and have relatively poor repair ability although they adapt to 
their functional requirements as is for example seen in so called Ross operation, 
when the autologous pulmonary valve is transplanted to replace the aortic valve 
subjected to high  fl ow and pressure circumstances (and a homograft is used to 
replace the pulmonary valve). 

 Healthy heart valves maintain unidirectional blood  fl ow and act as back fl ow 
valves via an extraordinarily dynamic functional structure with suf fi cient strength 
and durability to withstand acute stresses and chronic fatigue-induced changes. The 
diastolic pattern of collagen alignment in the plane of the valve tissue is virtually 
complete already early after valve closure because diastolic collagen realignment 
occurs when the back pressure increases from 0 to 4 mgHg during the onset of car-
diac diastole. Collagen crimp decreases rapidly as pressure is applied and is nearly 
completely (90%) lost at a transvalvular back pressure of 20 mgHg and only little 
further rearrangement occurs upon further increase of the pressure (Sacks and 
Yoganathan  2007  ) . 

 Most VICs    in the healthy valve are quiescent  fi broblast-like cells, but they are 
highly plastic as shown by transition to their activation and matrix remodelling state 
in response to mechanical loading, injury or disease. Valvuloplasty    or replacement 
of damaged cardiac valves    by bioprosthesis or mechanical prostheses enhances 
quality of life and is often life saving. Due to the risk of thromboembolic complications 
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mediated via external coagulation cascade and in part integrin-mediated platelet 
aggregation and associated with abiotic mechanical prosthetic valves, long-term 
anticoagulation is used in spite of inherent risks for hemorrhagic complications. 
Therefore, valvuloplasties or bioprostheses, produced for example from 
glutaraldehyde- fi xed porcine atrio-ventricular valves or bovine pericardium, are 
used even in half or more of valve replacements. Tissue degeneration leads gradu-
ally in the course of time to a failure of the bioprosthesis. Cumulative damage and 
dystrophic cuspal mineralization, initiated already by the devitalized VICs in the 
installed bioprosthesis, are the major causal mechanisms. Due to chemical  fi xation 
with glutaraldehyde the VICs and  fi broblasts in the bioprosthesis die. Lack of 
remodelling capacity leads to irreversible and cumulative valve damage and impaired 
valve survival. 

 Attempts have been done to produce tissue-engineered heart valves    by cultur-
ing autologous cells derived from vascular wall or bone marrow on biodegradable 
synthetic valve-like polymer scaffolds. An alternative tissue-engineering strategy, 
called guided tissue regeneration    (Mendelson and Schoen  2006 ; Brody and Pandit 
 2007  )  uses an implanted scaffold composed of natural biomaterial or de-cellularized 
valve designed to attract circulating endothelial and other precursor cells and to 
provide a suitable environment for their adherence, growth, and differentiation. 
Attempts to produce engineered heart tissue have been done by mixing cardiac 
myocytes from neonatal Fischer 344 rats with liquid type I collagen (component 
of the interstitial stroma), Matrigel (basement membrane-like component), and 
serum (to enable the normal protein adsorption) containing culture medium 
(Zimmermann et al.  2002  ) .   

    2.11   Tumour Extracellular Matrix 

 Cancer cells    need to deal with extracellular matrix because they need space at 
the cost of the host tissue and without respect to normal tissue barriers pass them. 
At the same time, to be able to spread locally and to be able to form metastases 
after extravasation from blood or lymphatic vessels they need to be able to use host 
tissues as a platform for their integrin and non-integrin receptor-mediated or 
 ameboid motility. They do not only use their own proteolytic machineries but are 
able to trick the host cells to pave them the way through the interstitial tissues, 
basement membranes and cellular endothelial or lymphatic endothelial barriers. 
Generalized MMP inhibitors have been a failure and the modern view of the pro-
teinases regards them as often spatially strictly regulated signalling scissors, with 
important regulatory effects based on modulation of chemokines, cytokines, growth 
factors and their receptors. 

 In many cancers of epithelial origin epithelial mesenchymal transformation 
(EMT)    is a central event. This term refers to dedifferentiation and detachment of the 
epithelial cells from the cell collective so that the detached cells become able to 
invade their immediate pericellular matrix, intravasate into the vascular or lymphatic 
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circulation, only to later extravasate again at secondary metastatic tumour sites to 
establish a new tumour. This involves primarily cadherin    switch from the epithelial 
E-cadherin to the mesenchymal (and neuronal) N-cadherin, but also integrin-mediated 
cell-ECM events play a role. Engagement of  a  

1
  b  

1
  and  a  

2
  b  

1
  integrin receptors with 

collagen, typical for many connective tissue-embedded mesenchymal cells, down-
regulates E-cadherin (Koenig et al.  2006  ) . If at the same time discoidin domain 
receptor-1 for collagen is engaged, N-cadherin is simultaneously up-regulated 
(Shintani et al.  2008  ) . This cadherin switch and epithelial-mesenchymal transfor-
mation can via E-cadherin repressor Snail1 increase expression of  a  

v
  b  

3
  integrin, 

which we already know from above for its presence in activated endothelial cells 
and for its engagement in angiogenesis. This integrin is able to bind and focalize 
MMP-2 to the advancing edge of the cancer cells (Yilmaz and Christofori  2009  ) , 
where also MT1-MMP is located. MT1-MMP can further focalize MMP-2 by using 
TIMP-2 as a bridge in ternary cell membrane-associated complexes. Integrins  a  

v
  b  

3
  

and  a  
v
  b  

8
  bind pre-TGF- b  

1
  (LAP-TGF- b  

1
 ) released from degrading matrix depots, 

which TGF- b  
1
  upon local activation further contributes to cancer progression. 

 Both integrins, growth factor receptors and their ligands and membrane- or inte-
grin-bound MMPs, which tend to act together, can be rapidly regulated via clathrin-
mediated endocytosis    (CME), raft/caveolar endocytosis    (RCE) and macropinocytosis   , 
which can rapidly transfer such factors to strategic locations or remove them to 
lysosomal degradation or recycle them back to cell membrane to regulate anchorage 
dependent growth, growth factor sensitivity and effects, and invasion into matrix 
(Ramsay et al.  2007  ) . The balance between different endocytosis pathways is deli-
cate: engagement of the CME can promote the above mentioned TGF- b  

1
  signalling, 

whereas endocytosis via RCE guides the same receptor-ligand complex towards 
lysosomal degradation (Di Guglielmo et al.  2003  ) . 

 One key concept in modern cancer biology is the concept of cancer stem cells   . 
Cancers have been treated and prognoses assessed based on the TNM classi fi cation, 
where the size of the tumour (T), growth in the regional lymph nodes (N) and tumour 
metastases (M) play an important role. In some forms of cancer it has been noticed 
that most of the tumour cells actually represent relatively well differentiated tumour 
cells, which to a large extent have lost their “malignant stemness”: these tumour 
daughter cells can not easily form metastasis and can not be used to transfer cancer 
to cancer free animals. Among this multitude of cells reside a few cancer stem or 
parent cells, which maintain the tumour and send metastasis as described above. 
Because the immediate treatment responses and prognosis have been evaluated in 
terms of the size of the tumour and its regress upon treatment, drugs with a cytotoxic 
effect on the relatively “benign” and almost terminally differentiated cancer have 
been positively selected even though they would have little effect on the cancer stem 
cells  per se . This can form a serious bias for the drug screening and selection pro-
cess between various singular or combination treatments. Drugs with a predominant 
effect on the relatively benign tumour cells lead to a promising initial response but 
recurrence occurs upon longer follow up because the cancer stem cells soon pro-
duce more cancer cells, increase the tumour size by rapid division and aggressively 
send metastasis. In contrast, attention should be paid to the control of the cancer 
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stem cells: the initial response would be very modest, but gradually when the more 
differentiated cancer cells die of apoptosis or ischemic necrosis, the cancer would 
regress because the tumour can not now be maintained by asymmetric divisions of 
the cancer stem cells. 

 Degradation of ECM is normally tightly controlled because insuf fi cient degrada-
tion would prevent normal cell migration and tissue remodelling, whereas excessive 
degradation would result in loss of attachment and anoikis and pathological destruction 
of connective tissue. MMPs    are usually produced, stored, secreted, focalized (com-
partmentalized) and  fi nally secreted as latent pro-enzymes, the activation of which 
is tightly regulated. Pro-MMP activation often involves plasminogen-plasmin con-
version, which is regulated by tissue (tPA) and urokinase (uPA) type plasminogen 
activators as well as plasminogen activator inhibitors PAI-1 and -2 (Massova et al. 
 1998  )  in a number of pathological processes. MMPs can be activated via other 
MMPs, e.g. MMP-3 activates pro-MMP-1. Active site zinc can be released via oxy-
gen radicals and some MMPs are activated by furins prior to secretion. Finally, the 
activity of MMPs is regulated by the availability of and avidity for different sub-
strates and inhibitors and the stability of the enzyme. 

 To be able to move around, cells focus integrin receptors and MMPs at the lead-
ing edge of the cell in broad and  fl at actin-organized lamellipodia, which can send 
long, stiff and rod-like actin bundle-rich sensory  fi lopodia as sensing cellular organs 
ahead of the main front. Much of currently available information on the motility of 
the cells has been obtained from 2D cell cultures, but  in vivo  cells usually reside in 
a 3D surrounding and produce instead podosomes or, in case of cancer cells, some-
what homologous invadopodia. These cellular extensions combine integrin- and 
non-integrin mediated adhesion to the surrounding matrix and highly organized 
proteolytic machinery with an actin-rich cytoskeletal core as the driving dynamic 
force. Invadopodia-associated integrin receptors  a  

3
  b  

1
 ,  a  

5
  b  

1
 ,  a  

6
  b  

1
  and  a  

V
  b  

3
  are suit-

able for attachment to laminin,  fi bronectin and vitronectin containing provisional 
matrix, focalization of the proteolytic, matrix degrading enzymes and signal trans-
duction promoting the formation of invadopodia. 

 A key step in the regulation of MMPs    is the conversion of the zymogen into the 
active proteinase. Because MMPs have the ability to act on extracellular matrix 
proteins, MMPs have been often implicated in tumour progression and metastasis 
as substances able to break down tissue barriers that otherwise restrain invasion 
(Coussens et al.  2002 ; Egeblad and Werb  2002  ) . In cancer tissue several cell types, 
namely resident, in fl ammatory and tumour cells, express and regulate several dif-
ferent MMPs, which can either promote or restrain tissue destruction (Coussens 
et al.  2002 ; Egeblad and Werb  2002 ; Parks et al.  2004  ) . Consequently, many phar-
maceutical companies developed programs to target MMPs in cancer. Several 
drugs, designed to directly block the catalytic activity of MMPs, were tested even 
in phase III clinical trials, but none was effective (Coussens et al.  2002  ) . The key 
shortcoming of the MMP inhibitor trials seems to be that they target the catalytic 
mechanism and lack MMP speci fi city (Coussens et al.  2002 ; Parks et al.  2004  ) . 
They block the activity of all now known 24 MMPs (Table  2.6  “Matrix metallo-
proteinases”), but also the activity of the related ADAMs (a disintegrin and a 
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metalloproteinase) and ADAMTSs (a disintegrin and a metalloproteinase with a 
thrombospondin domain) as well as that of many other metalloenzymes. This is 
not an intelligent strategy because it is likely that the cells use several distinct 
mechanisms to balance and compartmentalize their metalloenzymes for remodel-
ling, directed movement, pathological tissue destruction, including misguided 
pavement for invasion and metastasis for cancer cells. Further, MMPs play impor-
tant roles as signalling scissors, anti-in fl ammatory and tissue protective roles 
because they can solubilise cell surface-bound cytokines, receptors, proteinases 
etc. More insight in the proMMPs activation and focalizaton is needed for selected 
blocking of the deleterious MMP-mediated processes at the same time when nor-
mal remodelling is retained.  

    2.12   Conclusion 

 It is concluded that ECM, although produced and degraded by cells, provides an 
important reference frame for cellular function as to structure and function. In par-
ticular, “immaterial” stimuli in form of biomechanical in fl uences are mediated to 
cells via their matrix. Further, ECM it not a passive partner in cellular life. Part of 
its importance lies in the fact that the cells that produced it can die but the matrix 
script still stays after their apoptotic or necrotic death and disappearance from the 
scene. This is of particular importance in small and continuous scale in tissue 
remodelling and correction of the script and more drastically in tissue regeneration 
and particularly in repair when probably totally new textural information is pro-
duced: the progenitor and stem cells in particular can  fi nd important information 
from their predecessors and earlier cellular inhabitants of the matrix niche, from this 
rich source of information and growth factors so that the structures can be born and 
reborn over and over again, often in different and dynamic production-degradation 
phases in a process with a certain predetermined direction.      
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  Abstract   The adult stem cells, or tissue-speci fi c stem cells, are essential for 
 maintaining tissue homeostasis and commonly reside in speci fi c local microenvi-
ronment named niche. The niche keeps stem cells in multipotent/unipotent state 
and prevents them from precocious differentiation, and in some cases, aligns them 
and promotes asymmetric division to produce differentiated progenies for tissue 
regeneration. The niches employ a variety of factors including cell adhesion mol-
ecules, extra cellular matrix, growth factors and cytokines in a tissue-speci fi c man-
ner to regulate the resident stem cells. Stem cells in turn may also contribute to 
niche integrity and function. Continuous elucidation of stem cell niche regulation 
at the cellular and molecular level would help understanding tissue homeostasis 
and disease mechanisms, and may also provide useful strategies for therapeutic 
application of stem cells.      

    3.1   Introduction 

 Unlike embryonic stem cells, which possess the innate self-replicating capacity 
(Ying et al.  2008 ), the maintenance of most adult stem cells, if not all, requires 
stimuli from specialized local microenvironment, or niche. Dynamic interactions 
between niches and stem cells govern tissue homeostasis and repair under physio-
logical and pathological conditions throughout life. Deregulation of the stem cell 
niches has been implicated in many diseases, including aging, cancer and degenera-
tive diseases (Voog and Jones  2010 ). 

 The stem cell niche hypothesis was initially put forward by Scho fi eld, who 
 proposed that the maintenance of stem cells requires association with a complement 
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of cells, a ‘niche’ (Scho fi eld  1978 ). However, it was not fully appreciated until studies 
in the model organisms,  Caenorhabditis elegans  and  Drosophila melanoganster , 
demonstrated that the supporting stromal cells are important for the maintenance 
and self-renewal of germline stem cells. Subsequently, as new techniques and tools 
for charactering stem cells in vivo are accessible, the stem cell niches are accompa-
nyingly identi fi ed and characterized in many mammalian tissues. Because stem 
cells are usually regulated by both cellular niche cells and non-cellular components, 
the stem cell niche is currently de fi ned as the local tissue microenvironment that 
houses and maintains stem cells (Morrison and Spradling  2008 ). 

 Studies on both invertebrate and vertebrate stem cell niches in a variety of tissues 
revealed some principles of their functions. The stem niche controls stem cell self-
renewal and prevent their precocious differentiation by secreting signaling mole-
cules or cell-surface ligands, and anchors stem cells in place by utilizing cell 
adhesion molecules or the extracellular matrix. The niche also frequently positions 
stem cells in a way facilitating their asymmetric cell divisions, so that after each cell 
division, one daughter will remain aside the niche to continue self-renewing, while 
the other daughter will leave the niche and differentiate. Because of the intimate 
relationships between stem cells and their niches, mimicking the in vivo microenvi-
ronment could also help stem cell with in vitro expansion and functional integration 
into damaged tissues for future stem cell-based therapies. Thus, a comprehensive 
understanding of the molecular mechanism underlying the niche function not only 
contributes to our understanding of tissue homeostasis control and diseases, but also 
helps to put a step forward for the clinical application of stem cells. 

 Owing to advantages in simple tissue structure and availability of sophisticated 
genetic tools, studies in simple model organisms such as  Drosophila melanoganster  
have pioneered our understanding of the niche, with clear demonstration of cellular 
composition and molecular basis of physical interaction and signaling regulation in 
the stem niches. Although adult stem cells in mammals are usually dif fi cult to iden-
tify due to tissue complexity, with the identi fi cation of more reliable stem cell mark-
ers and endeavors of many researchers, tremendous progresses have also been made 
for adult stem cell niches in mammals. In the following parts, some examples of the 
best studied stem cell niches from invertebrates to mammals are introduced, with 
emphases on the structural composition and molecular functions. Subsequently we 
summarize the general features of the stem cell niche and discuss future challenges 
and clinical perspective on the stem cell niche.  

    3.2    C. elegans  Germline Stem Cell Niche 

 The principle of cell-cell interaction in controlling stem cell behavior was  fi rst 
described in the worm gonad in early 1980s. In the  C. elegans  hermaphrodite gonad, 
there is one somatic cell at the distal end known as the distal tip cell (DTC). Germline 
stem cells (GSCs) are localized within the mitotic germ cell region close to the DTC 
tip (Fig.  3.1a ). Moving along the distal-proximal axis, germ cells gradually switch 
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from mitosis to meiosis and subsequently develop into functional gametes (Kimble 
and Crittenden  2007 ). DTC is crucial for maintaining GSCs, because laser ablation 
of DTC causes GSC elimination, as GSCs are switched from mitosis to meiosis and 
subsequently differentiate. Also, when the location of male DTC was genetically 
manipulated, the axis of the gonad was disrupted and ectopic mitotic germ cells 
were formed around the mislocalized DTC (Kimble and White  1981 ). These data 
demonstrate that DTC is both necessary and suf fi cient for the maintenance of GSCs. 
Interestingly, the DTC sends short processes to encapsulate distal-most germ cells 
and long processes extending as many as 30 germ cells (Crittenden et al.  2006 ), 
which might provide a unique physical environment to support a pool of stem cells 
by a single niche cell.  

Mitotic region

a b

c d
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  Fig. 3.1    The anatomy of  C. elegans  and  Drosophila  stem cell niches. ( a )  C. elegans  germline stem 
cell (GSC) niche. GSCs are located in the mitotic region ( red ). The distal tip cell (DTC) ( green ) 
provides both physical support and signaling instructions to maintain GSCs. ( b )  Drosophila  ovar-
ian GSC and follicle stem cell (FSC) niches. Cap cells together with terminal  fi lament and escort 
cells constitute the ovarian GSC niche. Cap cells anchor the GSCs by forming adherens junctions, 
and produce instructive signals to maintain GSCs. Daughter cells of GSCs positioned outside the 
GSC niche are differentiating cystoblasts. Two FSCs at the mid region of the germarium are 
responsible for the generation of the follicle cells that encapsulating the developing germline cysts. 
FSCs are in contact with the neighboring posterior escort cells and underlying basal lamina. 
( c )  Drosophila  male GSC niche. The male GSC niche is composed of hub cells and cyst stem cells. 
Similar with the ovarian counterparts, male GSC daughter cells positioned outside the niche 
become differentiating gonialblasts, which subsequently undergo four rounds of transit amplifying 
divisions with incomplete cytokinesis, generating 16-cell spermatogonial clusters. ( d )  Drosophila  
intestinal stem cell (ISC) niche. ISCs in the midgut are directly associated with a thin layer of base-
ment membrane. The underlying visceral muscle secretes multiple signaling molecules to regulate 
ISC maintenance. The dying ECs may produce mitogens to stimulate ISC proliferation in response 
to various damage.  EB  enteroblast,  EC  enterocyte,  ee  enteroendocrine cell. Art works in this and 
subsequent  fi gures are provided by Ning Yang       
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 The DTC controls GSC self-renewal via GLP-1/Notch signaling pathway 
(Crittenden et al.  1994 ; Henderson et al.  1994 ). The two DSL ligands LAG-2 and 
APX-1 are expressed in the DTC (Nadarajan et al.  2009 ), while the Notch-like recep-
tor GLP-1 is expressed in germ cells in the mitotic region. Disruption of GLP-1/
Notch signaling results in stem cell loss, whereas GLP-1 gain-of-function mutation 
leads to GSC overproliferation (Austin and Kimble  1987 ; Berry et al.  1997 ; Lambie 
and Kimble  1991 ). Activation of GLP-1/Notch signaling in GSC leads to the expres-
sion of downstream target fbf-2, which in turn represses the expression of differenti-
ation-promoting genes including GLD-1, 2 and 3 (Byrd and Kimble  2009 ; Crittenden 
et al.  2002 ; Eckmann et al.  2004 ; Kimble and Crittenden  2007 ; Suh et al.  2009 ). 

 A body of knowledge has been acquired regarding the mechanisms regulating 
the DTC formation and maintenance. Brie fl y, the DTC is descended from somatic 
gonadal progenitor cell (SGP) through asymmetric division. The Wnt/ b -catenin 
asymmetric (W b A) pathway plays central role in DTC speci fi cation. Activation of 
W b A pathway promotes the DTC fate through upregulating the expression of its 
direct target  ceh-22  (Lam et al.  2006 ). By contrast, NHR-25 represses the DTC fate 
by antagonizing W b A pathway (Asahina et al.  2006 ). In addition, the HLH-2/
daughterless transcription factor is implicated in the DTC speci fi cation as well as 
maintenance (Chesney et al.  2009 ; Karp and Greenwald  2004 ). Of note, both W b A 
pathway and  ceh-22  are required and suf fi cient to specify the DTC fate. Loss of 
W b A pathway or  ceh-22  results in loss of the DTC, while over-activation of W b A 
pathway or  ceh-22  produces extra DTCs (Kidd et al.  2005 ; Lam et al.  2006 ; Siegfried 
et al.  2004 ; Siegfried and Kimble  2002 ).  

    3.3   Stem Cell Niches in  Drosophila  

    3.3.1   Germline Stem Cell Niche in the  Drosophila  Ovary 

 The anatomic structure of the  Drosophila  gonad is well de fi ned. The female and 
male GSCs can be reliably identi fi ed in vivo by their localization and by speci fi c 
cellular markers, and remain accessible to sophisticated genetic manipulations. 
Consequently, they serve as excellent model systems to study niche regulation of 
stem cells. In fact, the molecular mechanisms of  Drosophila  GSC-niche regulation 
are among the best studied and have provided a conceptual framework for the niche 
study in mammalian systems. 

 In the Drosophila ovary, GSCs can be identi fi ed by their anterior-most location 
in the germarium and the presence of a unique organelle named spectrosome. In 
each germarium,  fi ve to ten terminal  fi lament (TF) cells, four to six cap cells and 
GSC-contacting escort cells constitute the female GSC niche that houses two or 
three GSCs (Fig.  3.1b ). Normally, GSCs undergo asymmetric divisions. Upon each 
division, one daughter remains within the niche and adopts the GSC fate, while the 
other daughter is positioned outside the niche and invariably differentiates into a 
cystoblast (CB), which will commit four rounds of incomplete mitosis to generate a 
16-cell cyst and ultimately a new oocyte. 
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 The cap cells are the principal component of the GSC niche (Xie and Spradling 
 2000 ), which anchor GSCs by forming DE-cadherin-mediated adherens junctions 
between the GSCs and the cap cells (Song et al.  2002 ). Loss of this adhesion would 
cause GSCs to leave their niche and differentiate. In addition to the role in physical 
support, the cap cells also provide signals that are essential for GSC maintenance. 
They secrete BMP family ligands Dpp and Gbb, which locally activate receptors on 
GSCs and suppress the expression of a differentiation-promoting gene,  bag of mar-
bles  ( bam ). In cystoblasts, the BMP signaling activity diminishes, which results in 
the release of  bam  repression and the initiation of differentiation. BMP signaling is 
required for GSC maintenance, as compromised BMP signaling pathway transduc-
tion in GSCs causes their precocious differentiation. Dpp overexpression is also 
suf fi cient to stimulate GSC self-renewal and block GSC differentiation, leading to 
the accumulation of GSC-like cells in the ovariole (Chen and McKearin  2003 ; Song 
et al.  2004 ; Xie and Spradling  1998 ). GSC-contacting escort cells are also an impor-
tant component of GSC niche, as blockade of JAK/STAT signaling in escort cells 
results in loss of GSCs (Decotto and Spradling  2005 ). In addition, unpaired (Upd) 
produced from TF cells activates JAK/STAT signaling in cap cells and escort cells, 
leading to augmented expression of Dpp (   Lopez-Onieva et al.  2008 ; Wang et al. 
 2008  ) . Therefore, TF cells also contribute to the niche. 

 Much progress has been made in understanding how niche controlled BMP sig-
naling activity is restricted to GSCs. That has been reviewed somewhere else (Chen 
et al.  2011 ; Losick et al.  2011 ). Brie fl y, JAK/STAT signaling seems to be necessary 
and suf fi cient for dpp expression in cap cells, while Lsd1 inhibits dpp expression in 
escort cells, as knockdown of Lsd1 in escort cells augments dpp transcription 
(Eliazer et al.  2011 ). In addition, the heparin sulfate glycoprotein Dally, and the type 
IV collagen Viking are required to restrict diffusion of Dpp outside the niche (Guo 
and Wang  2009 ; Hayashi et al.  2009 ; Wang et al.  2008 ). Moreover, the serine/threo-
nine kinase Fused, together with the E3 ligase Smurf direct the degradation of BMP 
receptor Thickvein (Tkv) in CBs, allowing for CB differentiation (Xia et al.  2010 ). 

 The niche function also requires Yb and Piwi, which are required in the somatic 
niche cells to maintain GSCs (Cox et al.  1998 ; King and Lin  1999 ). GSCs also send 
signals to the niche to regulate niche function. Delta, the ligand for the Notch path-
way, is speci fi cally expressed in the germ cells, and activates Notch in the niche 
cells for their speci fi cation during the development for their maintenance during 
adulthood (Song et al.  2007 ; Ward et al.  2006 ).  

    3.3.2   Follicle Stem Cell Niche in the  Drosophila  Ovary 

 In each germarium, two follicle stem cells (FSCs), which generate follicle cells to 
envelop the developing germ cells, are located near the boundary between the 2A 
and 2B regions (Nystul and Spradling  2007 ) (Fig.  3.1b ). So far there is no reliable 
cellular marker to identify FSCs. It has been suggested multiple signal molecules 
produced from the TF/cap cells, including Hedgehog (Hh), Wingless (Wg) and 
Dpp, are all required for the long-term maintenance of FSCs, indicating that these 
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signaling pathways function cooperatively to regulate FSC behavior (Forbes et al. 
 1996 ; Kirilly et al.  2005 ; Song and Xie  2003 ; Zhang and Kalderon  2001 ). Therefore, 
the GSC niche also functions as a part of the niche for FSCs. 

 Apart from that, FSC-contacting posterior escort cells located near the region 
2A/2B border could be an essential component of the FSC niche as well. Escort cells 
do not turn over regularly and do not move along with cysts at the junction of 2A and 
2B region (Morris and Spradling  2011 ). In addition, E-cad and Armadillo/ b -catenin 
enriched at the  junctions between FSCs and its adjacent cells are required for the 
maintenance of FSCs (Song and Xie  2002 ), suggesting adherens junctions anchor 
FSCs to the escort niche cell. Besides, integrin-mediated FSC anchoring to the basal 
lamina is also required for the long-term maintenance of FSCs (O’Reilly et al.  2008 ), 
suggesting that extracellular matrix is a critical component of the FSC niche. 

 Although it is poorly understood how these extrinsic niche signals act on FSCs to 
regulate their self-renewal, some intrinsic factors have been identi fi ed to be involved 
in this process. The ATP-dependent remodeling factor Domino (DOM) is required for 
FSC self-renewal (Xi and Xie  2005 ), while two polycomb genes Psc and Su(z)2 func-
tion redundantly and necessarily in FSCs for their differentiation. Loss of Psc and 
Su(z)2 ultimately leads to neoplastic tumor (Li et al.  2010 ). Further studies would 
provide more profound insights into the fundamental yet intricate mechanisms by 
which the niche signals link to intrinsic factors for the control of FSC self-renewal.  

    3.3.3   Germline Stem Cell Niche in the  Drosophila  Testis 

 The male GSC niche is also well-studied in Drosophila. A cluster of somatic cells 
(which form a hub) are located at the anterior tip of the testis and serve as the niche 
for both GSCs and the cyst stem cells (CySCs, or cyst progenitor cells) (Fig.  3.1c ). 
About 8–10 GSCs reside around each hub, and each GSC is encapsulated by two 
CySCs. After each asymmetric division, the GSC produces a new GSC that remains 
in contact with the hub and a differentiating daughter namely gonialblast, which is 
positioned outside the niche and subsequently undergoes four rounds of transit 
amplifying divisions with incomplete cytokinesis, generating a 16-cell spermatogo-
nial cluster. Spermatogonia further differentiate into spermatocytes which undergo 
meiosis and ultimately produce sperms. GSCs and gonialblasts contain a spec-
trosome as their counterparts in the ovary, while differentiated germ cell clusters 
have a branched fusome. The CySC divides coordinately with GSC division to 
produce a pair of cyst cells which enclose the differentiating gonialblast. 

 The activation of JAK/STAT signaling by the hub cells secreted ligand Upd was 
initially suggested to be necessary and suf fi cient for both GSCs and CySCs self-
renewal (Kiger et al.  2001 ; Tulina and Matunis  2001 ). However, intrinsic activation 
of JAK/STAT signaling pathway in GSC alone stimulates the expression of 
DE-cadherin, which mediates GSC adhesion to hub cells, but is not suf fi cient to 
promote GSC self-renewal (Leatherman and Dinardo  2010 ). It turns out that activa-
tion of JAK/STAT signaling in CySCs induces the expression of zfh-1, which 
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 stimulates the expression of BMP ligands Dpp and Gbb. BMP signaling activation 
in GSCs represses the transcription of differentiation-promoting factor  bam  and 
ultimately leads to GSCs self-renewal away from the hub cells (Kawase et al.  2004 ; 
Leatherman and Dinardo  2008 ). Therefore, in addition to the hub, CySCs may also 
be important components of the male GSC niche. 

 Like the ovarian counterpart cap cells, hub cells also express BMP ligand Gbb and 
Dpp. In addition, the male GSC niche also utilizes ECM to restrict BMP ligands dif-
fusion. Dally-like instead of Dally is involved in this process (Hayashi et al.  2009 ). 

 The hub is derived from somatic gonadal precursors (SGPs) in the embryonic 
gonad. Notch and EGFR signaling have been implicated in hub cell speci fi cation. 
Notch signaling promotes hub speci fi cation, while EGFR signaling acts antagonis-
tically with Notch to suppress hub differentiation (Kitadate and Kobayashi  2010 ). 
Interestingly, CySCs shares a common precursor with hub cells and can contribute 
to hub replenishment under certain circumstances, highlighting the dynamic nature 
of stem cell-niche relationship (Dinardo et al.  2011 ; Voog et al.  2008 ). 

 Studies in the male GSC niche also provide insights into the mechanisms of spin-
dle orientation for asymmetric division of stem cells. The centrosome is replicated 
during interphase, and during mitosis, the mitotic spindle is mostly perpendicular to 
the hub-GSC interface. DE-cadherins could act through membrane-bound  b -catenin 
and adenomatous polyposis coli (APC) to anchor the spindle pole (Yamashita et al. 
 2003 ). Interestingly, the mother and daughter centrosomes are asymmetrically inher-
ited after mitosis by the two daughters of one stem cell, as the mother centrosome is 
always inherited by the daughter retaining stem cell fate (Yamashita et al.  2007 ).  

    3.3.4   Intestinal Stem Cell Niche in the  Drosophila  Midgut 

 The  Drosophila  gastrointestinal tract shows a high similarity to the mammalian 
intestine in development, cell composition and physiological function. In addition, 
the  Drosophila  intestinal epithelium is also maintained by multipotent intestinal 
stem cells (ISCs) (Micchelli and Perrimon  2006 ; Ohlstein and Spradling  2006 ). The 
epithelium is composed of a layer of cells projecting to the gut lumen, with highly 
organized apical-basal polarity. The ISCs, the only epithelial cells that are compe-
tent to undergo mitosis, reside at the basal surface of the epithelium and directly 
contact with the basement membrane (BM) composed of ECM, which separates the 
gut epithelium with the surrounding visceral muscles. An ISC undergoes asymmet-
ric division to produce two daughters with one retaining ISC fate and the other 
undergoing differentiation. The differentiated daughter, named enteroblast (EB) 
will differentiate into either an absorptive enterocyte (EC) or a secretory enteroen-
docrine (ee) cell (Fig.  3.1d ). Notch signaling plays a critical role in the cell fate 
determination of intestinal cell linage (Micchelli and Perrimon  2006 ; Ohlstein and 
Spradling  2006 ). ISCs speci fi cally express a Notch ligand Delta (Dl), which actives 
Notch in the EBs and promotes them to differentiate into ECs or ee cells. The 
expression level of Dl in the ISCs is variable from one ISC to another. It is believed 
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that the high Dl level activates Notch at a high level in EB to promote its differentia-
tion towards EC fate, whereas the low Dl level activates Notch at a low level to 
allow EB to differentiate toward ee fate (Ohlstein and Spradling  2007 ). 

 ISCs do not directly contact with any  fi xed stromal cells. The underlying visceral 
muscle is proposed to be a major component of the ISC niche. Wingless is the  fi rst 
identi fi ed molecule produced by the niche, which is able to traverse through the BM 
and activates the canonical Wnt signaling pathway in ISCs to regulate their long-
term maintenance and proliferation (Lin et al.  2008 ). The visceral muscle also 
expresses Unpaired (Lin et al.  2009  ) , the ligand of JAK/STAT pathway, and Vein 
(Biteau and Jasper  2011 ; Buchon et al.  2010 ; Jiang et al.  2010 ; Xu et al.  2011 ), the 
ligand for EGFR, which respectively activate JAK/STAT and EGFR/Ras  signaling in 
ISCs to regulate ISC maintenance and proliferation. Recently, the Drosophila insu-
lin-like peptides, dILP3, was found to be produced by the visceral muscle cells as 
well, which activates ISCs and expands ISC population to promote adaptive growth 
of intestine in response to nutrition availability (O’Brien et al.  2011 ). It is noteworthy 
that activation of any one of Wingless, JAK/STAT or EGFR signaling pathway alone 
in ISCs is not suf fi cient to completely block ISC differentiation (Lee et al.  2009 ; 
Lin et al.  2009 ; Xu et al.  2011 ). Therefore, the self-renewal of ISCs is likely con-
trolled by a cooperative action of multiple signaling pathways. Several JAK/STAT 
and EGFR ligands, such as Upd3, Spitz and Karen, could also be detected in epithe-
lial cells, including ISCs, progenitor cells and ECs (Beebe et al.  2009 ; Biteau and 
Jasper  2011 ; Jiang et al.  2009 ,  2010 ; Lin et al.  2009 ; Liu et al.  2010 ; Xu et al.  2011 ), 
especially under stress conditions (Buchon et al.  2009 ,  2010 ; Jiang et al.  2010 ), sug-
gesting that non-stem cells in the intestinal epithelium could also contribute to niche 
function. The diverse and dynamic expression of those maintenance signals suggest 
that the niche function can be dynamically regulated in co-ordinance with environ-
mental changes.   

    3.4   Stem Cell Niches in Mammals 

 Increasing evidence suggests that adult stem cells in mammals are also housed and 
maintained by the niches, although most of the tissue-speci fi c stem cell niches 
have not been rigorously veri fi ed largely due to their associated tissue complexity. 
In addition to the common scenarios regarding the functional relationships between 
the stem cells and the stem cell niches, there could be distinct mechanisms uniquely 
exploited in mammalian stem cells but not stem cells in invertebrate. For example, 
the invertebrate stem cells are usually mitotically active. In contrast, the mamma-
lian adult stem cells are often in a relatively quiescent state. In many cases, there 
seems to be two populations of stem cells with distinct niche locations: quiescent 
and active stem cells. In the following parts, some examples of the best studied 
mammalian stem cells and their associated niches are described and discussed, 
focusing on the physical composition and signaling interactions within the stem 
cell niches. 
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    3.4.1   The Hematopoietic Stem Cell Niche 

 As mentioned before, the niche hypothesis was  fi rst proposed based on studies on 
the rodent hematopoietic stem cell (HSC) system several decades ago, although the 
exact location of the HSCs in the bone marrow (BM) had been a mystery. Until 
recent years, considerable progresses have been made to understand the HSC niche 
in the BM. The current view is that there are two HSC niches within the BM, the 
osteoblastic niche on the endosteal surface and the vascular niche of sinusoid 
endothelial cells (Fig.  3.2a ).  

    3.4.1.1   The Osteoblastic Niche 

 Before the in vivo HSC niche was characterized, a series of in vitro studies showed 
that osteoblastic cell lines were capable of supporting primitive hematopoietic 
cells for a long term in ex vivo culture systems (Taichman et al.  1996 ). These 
observations provided an important hint for  fi nding the HSCs niche in the BM. 
Osteoblastic cells were  fi rst demonstrated to participate in HSC regulation in vivo 
by two simultaneous studies working with different engineered mouse models 
(Calvi  2003 ; Zhang  2003 ). Both cases of genetic manipulation of the mouse mod-
els induced an increase in the number of osteoblasts and trabecular bone, and the 
number of HSCs increased accompanyingly. Consistently, ablation of osteoblasts 
by expression thymidine kinase speci fi c in the osteoblasts leads to a decrease of 
primitive hematopoietic cells in the BM and an increase of extrameduallary 
hematopoiesis (Visnjic et al.  2004 ). It is noteworthy that only N-cadherin+ osteo-
blasts are associated with HSCs (Zhang  2003 ). However, N-cadherin is not required 
for HSC maintenance as loss of N-cadherin does not lead to HSC depletion or 
defective hematopoiesis (Kiel et al.  2009 ). 

 There are additional molecules produced by the osteoblasts that have been impli-
cated in the regulation of HSCs, such as Angiopoietin-1, Thrombopoietin, 
Osteopontin (Opn), and CXCL12 (also called SDF-1). Angiopoietin-1 and 
Thrombopoietin interact with their receptors (Tie-2 and MP1 respectively) expressed 
on the HSCs to maintain HSC quiescence (Arai et al.  2004 ; Yoshihara et al.  2007 ). 
Opn, a glycoprotein, negatively regulate HSC proliferation and the size of the HSC 
pool, perhaps via interaction with integrins and CD44 (Nilsson et al.  2005 ; Stier 
et al.  2005 ). CXCL12, a chemokine that activates the receptor CXCR4 in HSCs, is 
also important for HSC quiescence and maintenance in the BM (Nie et al.  2008 ; 
Sugiyama et al.  2006a ). CXCL12 is also expressed in other non-osteoblast cells, 
including endothelial cells, and a subset of reticular cells scattered in the BM. Thus, 
these cells may also play a role in the BM niche (Sugiyama et al.  2006a ). The Wnt 
signaling may also regulate HSC quiescence, as osteoblast-speci fi c overexpression 
of the canonical Wnt inhibitor Dikkopf1 (Dkk1) results in HSC activation (Fleming 
et al.  2008 ), although the requirement of Wnt signaling has not been directly 
demonstrated.  
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  Fig. 3.2    The anatomy of mammalian stem cell niches. ( a ) Hematopoietic stem cell (HSC) niche. 
HSCs in the bone marrow reside in two niche locations: at the endosteal surface associate with 
spindle-shaped N-cadherin + CD45 −  osteoblastic (SNO) cells, and at the microvasculature associ-
ated with sinusoid endothelial cells and mesenchymal stem cells (MSCs) expressing Nestin. HSCs 
at both regions are frequently associated with CXCL12-abundent reticular (CAR) cells. ( b ) Stem 
cell niches in skin. A diagram of hair follicle (HF) in telogen. In the epidermis, stem/progenitor 
cells are located in the basal layer and differentiate into suprabasal cells. The basement membrane 
separates basal layer from the underlying dermis. The HFSCs reside in the bulge region below the 
sebaceous gland (SG). The mesenchymal dermal papilla (DP) and adipocyte lineages are crucial 
for follicle stem cells maintenance and activation. The upper bulge is wrapped by sensory nerve 
 fi bers, which release Sonic hedgehog (Shh) to induce Gli1 expression in adjacent upper stem cells. 
The activation of Hh pathway is essential for the upper stem cells to gain the potential to become 
epidermal stem cells during wound healing. ( c ) Intestinal stem cell (ISC) niche in the small intes-
tine. Bmi1 hi  ISCs are located at the +4 position from the crypt bottom and contact with paneth cells 
and transit amplifying cells. Lgr5 hi  ISCs are located at the crypt bottom and surrounded by paneth 
cells which form the niche for Lgr5 hi  ISCs. A hierarchy between Bmi1 hi  ISCs and Lgr5 hi  ISCs has 
been suggested recently. ( d ) Muscle stem cell niche. Two types of muscle-resident stem cells have 
been described. Satellite cells are located beneath the basal lamina and are in contact with 
myo fi bers. They could undergo planar symmetric divisions and apical-basal asymmetric divisions. 
The recently identi fi ed muscle stem cells – PW1+Pax7- interstitial cells (PICs) are located between 
myo fi bers. Both PICs and bone marrow-derived cells are able to generate functional satellite cells 
during regeneration       
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    3.4.1.2   The Vascular Niche 

 Increasing evidence indicates that the vasculature in the BM may also serve as the 
HSC niche. Multiple cell types have been reported to make up the HSC vascular 
niche. A simple combination of three SLAM family receptors is found to be able 
to speci fi cally distinguish the stem and progenitor cells and thus make it possible 
to detect the HSC niche in tissue section (Kiel et al.  2005 ). With the help of these 
new markers, many of the hematopoietic stem/progenitor cells (HSPCs) were 
found to be mainly located in the perivascular region. Consistently, an in vivo 
imaging study revealed that after transplantation, the labeled primitive hematopoi-
etic cells could home to SDF-1–rich subdomains of microvessels in the bone mar-
row, where they persisted and increased in number over time (Sipkins et al.  2005 ). 
These studies suggest the perivascular region could serve as the HSC niche. 
VEGFR2 and VEGFR3 are expressed in sinusoidal endothelial cells (SECs), but 
not smooth-muscle-invested arterioles or osteoblasts. VEGFR2 is not required for 
normal HSC homeostasis. However, upon severe myelosuppressive damage, 
VEGFR2-mediated SEC regeneration is critical for HSC engraftment and reconsti-
tution (Hooper et al.  2009 ). 

 Recently, a population of nestin-expressing (NES+) mesenchymal stem cells 
(MSCs), which are exclusively distributed in perivascular region, has been 
identi fi ed to act as an unique niche of bone marrow HSC. NES+ cells are physi-
cally associated with HSCs and express multiple HSC maintenance genes 
including CXCL12 and Angiopoietin-1. In vivo ablation of NES+ MSC cells 
leads to signi fi cant reduction of long term HSCs (LT-HSCs) number (Mendez-
Ferrer et al.  2010 ). 

 Additionally, CXCL12-abundant reticular (CAR) cells are the major source of 
CXCL12. And most HSCs near endosteum or the sinusoidal endothelium, if not all, 
are in contact with CAR cells (Sugiyama et al. 2006b). Selective ablation of CAR 
cells cause reduction of HSCs number by approximately 50% and HSCs become 
more quiescent, suggestive of CAR cells as an essential HSC niche component 
(Omatsu et al.  2010 ). Both CAR cells and NES+ MSCs are competent to differenti-
ate into adipocytes and osteoblasts, suggesting that there may be some overlap 
between these two cell types. 

 Therefore, the HSC pool in the BM could be divided into two subpopulations or 
states: the quiescent population, which is inactive and functions as a potent reser-
voir for the long-term maintenance of HSCs, and the active population, which is 
highly proliferative and responsible for the daily regeneration. The HSCs in the 
osteoblastic niche are BrdU retaining cells, and the signals from the osteoblastic 
niche usually regulate the quiescence of the HSCs. In contrast, the majority of 
HSCs identi fi ed by the SLAM markers are mitotically active (Kiel et al.  2005 ). 
These observations lead to a proposal that the osteoblastic niche and the vascular 
niche could function to support quiescent (reserved) and activated HSCs, respec-
tively (Zhang and Li  2008 ).   
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    3.4.2   Skin Stem Cell Niche 

 The mammalian skin, which is under constant turnover, serves as a physical barrier 
to protect the body from many environmental stresses such as bacteria infection, 
dehydration and UV-irradiation. The epidermis appendages such as hair follicles, 
nail, oil and sweat glands endow additional sophisticated functions to the body. The 
epidermis is comprised of strati fi ed layers of progenitors and differentiated cells, 
and the stem cells or progenitors are believed to reside in the basal layer above the 
dermis (Fuchs  2009 ; Watt  1998 ) (Fig.  3.2b ). Attached to the BM that separates epi-
dermis from dermis, the basal cells can undergo asymmetric division to generate 
suprabasal spinous cells, which subsequently move upward and became enucleated 
and  fi nally shed from the body. Notch signaling, p63 and microRNAs are important 
for the basal-to-suprabasal switch of the progenitor cell (Blanpain and Fuchs  2006 ; 
Moriyama et al.  2008 ; Yi et al.  2008 ). 

 The skin with hair can be divided into the following structural units: each with a 
hair follicle (HF), sebaceous gland (SG) and interfollicular epidermis (IFE). 
Sequentially down from the SG is the bulge where stem cells reside, outer root sheath, 
inner root sheath, hair shaft, transit amplifying matrix cells that envelop a group of 
mesenchymal cells, and dermal papilla (DP) (Fig.  3.2b ). The adult HF constantly 
undergoes rounds of degeneration (catagen), rest (telogen) and growth (anagen), 
known as hair cycle. HF stem cells (HFSCs) provide the source of proliferation during 
anagen. In the destructive catagen phase, the matrix cells undergo programmed cell 
death and bring up the DP to the position that is underneath the (secondary) hair germ, 
the early progenies of bulge stem cells. The DP plays an inductive role in maintaining 
HFSCs in quiescent state and competent for the next cycle of growth (Blanpain and 
Fuchs  2006 ) (Fig.  3.2b ). Normally, HFSCs do not contribute to the maintenance of SG 
and IFE. However, during the repairing process after wounding, they can regenerate 
the damaged epidermis and SG. HFSCs can be divided into two  populations based on 
their location with the basal lamina: basal and supra-basal populations. These cells 
differ in their expression signatures, but both populations are able to self-renew in vitro 
and share the same differentiation potential (Blanpain et al.  2004 ). 

 The epithelial-mesenchymal interactions are important to regulate HFSCs 
(Blanpain and Fuchs  2009 ). Among the signaling pathways, Wnt and BMP are the 
most intensively studied. From embryonic HF initiation to adult stem cell self-
renewal and differentiation, Wnt signaling plays multiple important roles during 
these processes. Loss of  b -catenin, which complexes with TCF/LEF transcription 
factors to activate Wnt-response genes, completely blocks HF formation, while over-
expression of an activated form leads to de novo HF morphogenesis (Gat et al.  1998 ; 
Huelsken et al.  2001 ). Elegant genetic and mathematical modeling show that Wnt 
ligands and the inhibitor Dkks pattern the HF spacing by a reaction–diffusion mecha-
nism (Sick et al.  2006 ). In adult HF,  b -catenin nuclear accumulation correlates with 
the transition from telogen to anagen, indicating the important roles of Wnt signaling 
in regulating stem cell self-renewal (Lowry et al.  2005 ). Wnt/beta-catenin signaling 
activities are also detected during matrix cell differentiation towards hair shaft 
(DasGupta and Fuchs  1999 ), and LEF1 rather than TCF3 in the bulge are required 
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for matrix cell differentiation. Despite these prominent roles, the source of Wnt 
ligands is dif fi cult to probe, as there are dozens of Wnts in mammals with some 
expressed in the epithelium, yet others in the mesenchyme (Reddy et al.  2001 ). The 
BMP pathway has long been known for its inhibitory effects on HF morphogenesis 
and adult HFSC proliferation (Blessing et al.  1993 ; Botchkarev et al.  1999 ). The 
mesenchyme produces a balanced level of BMP ligands and the antagonist noggin 
(Blanpain and Fuchs  2009 ). In activating the BMP receptor BMPR1a in HF epithe-
lium leads to enhanced cycling of HFSCs and impaired differentiation (Kobielak 
et al.  2007 ). Other signaling pathways such as hedgehog and Notch are also involved 
in either regulating HF proliferation or differentiation (Blanpain and Fuchs  2009 ). 

 Recently, it has been found that sensory nerves regulate stem cell function in the 
upper bulge by producing Sonic hedgehog (Shh), which induces expression of Gli1 
expression in adjacent stem cells. Gli1+ cells have the potential to become epider-
mal stem cells during wound healing. And the activity of these cells depends on Shh 
released from the perineural niche (Brownell et al.  2011 ). It is also worth additional 
attention that adipocyte precursor cells positively regulate follicle stem cell activity 
by producing platelet-derived growth factors (PDGFs). Lack of adipocyte precursor 
cells due to the inhibition of adipogenesis at early developmental phase in Efb1 
knockout mice leads to defects in stem cell activation. And injection of WT adipo-
cyte precursor cells into Efb1 −/−  skin at P21 is able to activate stem cell and rescue 
the hair cycling defects. A recent study further demonstrate that adipocyte precursor 
cells are suf fi cient to activate follicle stem cells (Festa et al.  2011 ).  

    3.4.3   Intestinal Stem Cell Niche 

 The mammalian intestinal epithelium turns over every 3–5 days, making it one of the 
most rapid self-renewing tissues in adult. In the small intestine of mouse, the gut 
epithelium is organized into numerous crypt/villi units, with the invaginations known 
as crypts and protrusions termed villi, surrounded by pericryptal  fi broblasts and mes-
enchyme. The intestinal stem cells (ISCs) reside in the crypt and give rise to transit 
amplifying cells, which move upward and differentiate into absorptive enterocytes, 
mucos-secreting goblet cells and hormone-secretive enteroendocrine cells in the 
villi. Upon reaching the tip of villi, these cells undergo programmed cell death before 
shedding into the lumen. The ISCs also generate bactericidal Paneth cells, which are 
located in the bottom of the crypt (van der Flier and Clevers  2009 ) (Fig.  3.2c ). 

 Two populations of stem cells have been identi fi ed with compelling evidence. 
Conventional long-term BrdU label retaining assay based on the “immortal strand” 
hypothesis suggests that ISCs are located just above the paneth cells at the +4 posi-
tion from the crypt bottom. The polycomb group gene  Bmi1  is found to be speci fi cally 
expressed in the cells located at the +4 position. Genetic lineage tracing mediated 
by Bmi1-CreER demonstrates that the  Bmi -1 expressing cells can populate the 
whole epithelium 12 months after tamoxifen induction, further supporting that the 
 Bmi1  +  cells at the +4 position behave as intestinal stem cells (Sangiorgi and Capecchi 
 2008 ). +4 position ISCs can be marked by mouse telomerase reverse transcriptase 
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( mTert )-GFP as well. Similar lineage tracing mediated by  mTert  -CreER further 
con fi rms that cells at +4 position give rise to all differentiated intestinal cell types 
(Breault  2008 ; Montgomery  2011 ). 

 Similar genetic tracing studies done by the Clevers group identify the crypt base 
columnar (CBC) cells which express a Wnt target gene Lgr5 and are interspersed 
among the paneth cells as bona  fi de ISCs. The Lgr5-expressing cells can regenerate 
the vili-crypt unit within 2 months after induction (Barker  2007 ). Interestingly, a 
single isolated Lgr5 +  stem cell could regenerate the intact crypt-villus organoid 
in vitro without the long postulated mesenchymal niche, suggesting that ISCs have 
an innate and robust self-organizing ability to direct the formation of a functional 
epithelium (Sato  2009 ). The identi fi cation of CBC as intestinal stem cells is further 
sustained by lineage tracing studies conducted with  Prominin 1  (Zhu  2009 ). Most 
recently, Clevers and colleges have shown that paneth cells constitute the niche for 
Lgr5 +  stem cells. Co-culture of sorted Lgr5 +  cells with paneth cells signi fi cantly 
promote the crypt-villus organoid formation. Additionally, selective ablation of 
paneth cells in vivo leads to loss of Lgr5 +  stem cells coincidently (Sato et al.  2011 ). 
Notably, Lgr5 +  stem cells divide symmetrically in their niche. They undergo “neu-
tral competition” for niche occupation and the loser is expelled from the niche to 
undergo differentiation (Lopez-Garcia et al.  2010 ; Snippert et al.  2010 ). 

 Until most recently, the relationship between +4 position ISCs and Lgr5 +  ISCs 
was unclear. Interestingly, mTert-expressing ISCs have been reported to be able to 
give rise to Lgr5 +  ISCs, suggestive of a hierarchy between the slow-cycling and fast-
cycling ISCs (Montgomery  2011 ). However, the Lgr5 +  ISCs also display signi fi cant 
telomerase activity (Schepers et al.  2011 ). Therefore it requires reconsideration 
whether mTert-expressing ISCs overlap with Lgr5 +  ISCs. Interestingly, a recent 
study shows that complete loss of Lgr5 +  ISCs by genetic ablation does not perturb 
the architecture and homeostasis of the intestinal epithelium, suggesting other stem 
cell pools can compensate for the loss of Lgr5 +  ISCs. Lineage tracing studies sug-
gest that  Bmi1   +   ISCs can replenish the fast-cycling Lgr5 +  ISCs both under normal 
condition and after injury (Tian et al.  2011 ), further supporting the existence of 
slow-cycling and fast-cycling ISCs, which can be marked by Bmi1 and Lgr5, 
respectively. 

 Multiple signaling pathways participate in the regulation of the gut homeostasis, 
including Wnt, BMP, Notch, Hedgehog, EphB and Ras pathways, and each of them 
have different roles in regulating cell proliferation, differentiation and migration. 
The Wnt/ b -catenin pathway is the major pathway controlling ISC maintenance and 
self-renewal. High levels of nuclear  b -catenin are found in the epithelial cells at the 
crypt bottom, but not in the epithelial cells in the villus. Disrupting Wnt pathway 
activity causes crypt loss, indicating that Wnt signaling is essential for ISC mainte-
nance (Korinek et al.  1998 ). On the other hand, Wnt pathway activation by the loss 
of APC, a negative regulator of Wnt signaling, produces giant crypts because of 
hyperproliferation of intestinal progenitor cells (Andreu et al.  2005 ; Sansom et al. 
 2004 ). The source of the active Wnt ligand remains elusive. In situ results show that 
several Wnts are expressed in the crypt bottom, while several other Wnts are 
expressed in the mesenchymal cells (Girgenrath et al.  2006 ). BMP signaling 
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 activated by the BMP ligands produced from the mesenchymal cells functions to 
restrict ISC proliferation and facilitate differentiation, as loss of Bmpr1a or expres-
sion of noggin inhibitor in intestine epithelium leads to intestinal polyposis (Haramis 
et al.  2004 ; He et al.  2004 ). Hedgehog signaling inhibits ISC proliferation and pro-
motes their differentiation by inducing the expression of BMP ligands in the mesen-
chymal cells (Madison et al.  2005 ; van den Brink et al.  2004 ). These observations 
also indicate that the mesenchyme beneath the crypt has important role in regulating 
ISC behavior and could be an important constitute of the ISC niche.  

    3.4.4   Muscle Stem Cell Niche 

 Satellite cells, the best understood muscle-resident stem cells, are believed to be 
crucial for postnatal skeletal muscle growth and regeneration after injury. They 
are located between the plasma membrane of muscle  fi ber and basement mem-
brane surrounding the muscle  fi ber (Fig.  3.1d ). After injury, satellite cells are acti-
vated to generate myogenic precursor cells, which undergo transit ampli fi cation 
and differentiation before  fi nally fuse to form multinucleated myo fi bers. Recent 
studies demonstrate that satellite cells are heterogeneous populations consisting 
of slow-cycling stem cells and fast-cycling progenitor cells. Both stem cells and 
progenitor cells express Pax7, but only progenitor cells express Myf5. Pax7 +  
Myf5 −  satellite cells can undergo planar division (usually symmetric) and apical-
basal division (usually asymmetric). There is a strong correlation between the fate 
and location of their daughter cells upon division. The daughter cell attached to 
basement membrane remains a self-renewing stem cell, and the other daughter 
positioned away from basement membrane becomes a committed myogenic cell 
(Kuang et al.  2007 ). 

 The host muscle  fi ber, extracellular matrix, microvasculature and interstitial 
cells constitute the niche for satellite cells (Kuang et al.  2008 ). Mice lacking the 
ECM component Laminin- a 2 show defects in muscle growth and regeneration 
(Miyagoe et al.  1997 ), indicating a critical role of ECM in satellite cell function. 
Injured muscles could release HGF to activate the quiescent satellite cells, and the 
macrophage could release the TNF ligand TWEAK to promote muscle progenitors 
regeneration (Girgenrath et al.  2006 ; Tatsumi et al.  1998 ). Other growth factors and 
cytokines such as bFGF, IGF, BNDF, VEGF, PDGF, IL-6 and LIF could also regu-
late satellite cell proliferation and differentiation (Kuang et al.  2008 ). The Delta/
Notch signaling pathway plays an important role for maintaining muscle stem cells 
(Conboy and Rando  2002 ). The ligand Delta-1 enriched in Pax7 + Myf5 +  progenitor 
cell is assumed to activate Notch signaling to promote self-renewal of the adjoin-
ing Pax7 + Myf5 −  stem cell. Blockage of Notch signaling leads to reduced stem cell 
self-renewal and regeneration ability (Conboy et al.  2003 ; Kuang et al.  2007 ). 
Intriguingly, crosstalk between Wnt and Notch signaling via GSK3 b  has been 
shown to be involved in the cell fate choices of activated satellite cells. 



94 C. Wang et al.

 Over-activation of Wnt signaling pathway leads to premature muscle differentia-
tion while its inactivation prevents muscle differentiation. The defects in muscle 
differentiation caused by enhancement of Notch signaling can be rescued by 
enhancement of Wnt signaling (Brack et al.  2008 ). 

 Emerging evidence suggest that non-satellite cells may contribute to myogenesis 
in response to injury. Transplanted adult bone marrow-derived cells (BMDC) can be 
converted to functional satellite cells following irradiation-induced damage 
(LaBarge and Blau  2002 ). Recently, a population of PW1 + Pax7 −  interstitial cells 
(PICs) have been identi fi ed to be able to generate satellite cells during regeneration, 
suggesting a hierarchy between these two muscle stem cell populations (Mitchell 
et al.  2010 ). The potential niche for PICs remains to be de fi ned.   

    3.5   Key Components of the Stem Cell Niche 

 As described above, niche structure varies greatly from tissues to tissues and in dif-
ferent organisms. In terms of physical composition, some niches are relatively sim-
ple, composed of a single type of stromal cell, but some are rather complex, 
composed of multiple types of stromal cells and also non-cellular components. 
In terms of the stem cell types they host, some niches speci fi cally host a single 
type of stem cells, and some rather simultaneously control more than one type of 
stem cells. However, all of these relatively well-characterized niches share certain 
 common components, which are summarized as the following.

    1.    Physical support. The residence of stem cells within speci fi c anatomic loca-
tions requires particular physical support including association with support-
ive stromal cells or basement membrane or both. The physical support keeps 
stem cells from being exposed to detrimental environment and prevents them 
from undergoing precocious differentiation. On the basis of physical associa-
tion between stem cells and niches, two general types of niche -stromal 
niches and epithelial niches have been proposed (see below) (Morrison and 
Spradling  2008 ).  

    2.    Secreted signals. The stromal cells in the niche commonly produce secreted 
 signal molecules to directly regulate stem cell maintenance and self-renewal. 
Some niches require one principal signal for this function, whereas some niches 
require the cooperative function of multiple signals. These signaling activities 
often function to prevent the initiation of differentiation programs, thereby keep-
ing stem cells in the undifferentiated states. The niche signaling also frequently 
regulates stem cell activity by promoting or inhibiting their division, therefore 
controls stem cell quiescence and activation.  

    3.    Cell adhesion molecules. Stem cells commonly produce cell adhesion molecules 
for their anchorage to the niche. Cadherin-mediated cell-to-cell adhesion between 
the stem cells and the niche cells and integrin-mediated cell-to-ECM adhesion 
between the stem cells and the basement membrane are two general types of cell 
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adhesion utilized in the stem cell niches. In addition to the role of adhesion 
 molecules in anchoring stem cells, they also participate in regulating stem cell 
division by anchoring and orientating mitotic spindles and regulating signaling 
cascades (Marthiens et al.  2010 ; Xi  2009 ).      

    3.6   Classi fi cation of Stem Cell Niches: Stromal Versus 
Epidermal 

 Based on the comparison of physical structures among these well-characterized 
stem cell niches in simple organisms, the niche can be categorized into two general 
types, stromal niche and epidermal niche (Morrison and Spradling  2008 ), which 
may also be applicable to the stem cell niches in mammals. 

 The stromal niche is best exempli fi ed by the GSC niches in  Drosophila . The 
stromal niche is constituted of  fi xed stromal cells. For example, cap cells or hub cells 
constitute the female and male GSC niches, respectively. In the stromal niche, the 
stem cells are usually anchored to the niche cells by forming cadherin-mediated adhe-
rens junctions. The junctional structure at the stem cell-niche interface may be utilized 
for spindle pole anchorage for asymmetric stem cell division. In the stromal niche, 
short range self-renewal signals from the niche cells are critical for stem cell self-
renewal, such that stem cells that are out of the niche could not receive self-renewal 
signals and will commit differentiation. On the other hand, stem cells could also send 
signals back to the niche cells to maintain their fate and function (Fig.  3.3a ).  

 In the epidermal niche, exempli fi ed by the FSC niche in the  Drosophila  ovary 
and the ISC niche in the  Drosophila  midgut, stem cells do not directly contact any 
 fi xed stromal cells but are constantly associated with the basement membrane com-
posed of ECM. In addition, both stem cells and their differentiating daughter cells 
are exposed to seemingly similar surrounding environments without apparently dis-
tinctive compartalization. Stem cell anchorage and self-renewal mechanisms are 
different from that utilized in the stromal niche, and may be diverse from one sys-
tem to another (Fig.  3.3b ). In the FSC niche, stem cells are anchored in a  fi xed loca-
tion by integrin-mediated cell adhesion between the stem cell and the ECM. Stem 
cells receive multiple signals produced from a relative distant source at the anterior 
tip for their self-renewal. There is no evidence for a speci fi c composition of ECM at 
the stem cell location and the location of the FSC is probably controlled by both the 
levels of self-renewal signaling activity and communications between the stem cells 
and nearby non-stem cells and ECM. In the single-layered  Drosophila  midgut epi-
thelium, ISCs are lining along the basement membrane that separates the epithelial 
layer with the muscular niche. The non-stem epithelial cells including enterocytes 
and enteroendocrine cells are also in direct contact with the basement membrane, 
and Wingless and Unpaired self-renewal signals are expressed in the muscle cells 
along the length of the midgut. Thus, it seems that in addition to ISCs, non-stem 
epithelial cells are also exposed to the niche microenvironment. It is therefore 
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 possible that stem cell self-renewal could be controlled by additional mechanisms 
in addition to the instructive signals from the muscular niche. Delta expressing ISC 
could direct daughter cell fate by activation of Notch in the differentiating daughter 
cells, and Delta-Notch mediated lateral inhibition may further reinforce each other’s 
cell fate. Thus, stem cell self-renewal in the epidermal niche is possibly controlled 
by both the instructive communications between the stem cells and the niche, and 
the instructive communications between the stem cells and neighboring differenti-
ated cells, including the differentiating daughter cells (Fig.  3.3b ).  

    3.7   Stem Cell Self-renewal in the Niche: Division Asymmetry 
Versus Population Asymmetry 

 As the ultimate defense for tissue homeostasis, stem cells have to accomplish two tasks 
throughout adult life: one is to generate more stem cells (self-renewal), the other is to 
produce committed cells (differentiation). And these two tasks must be tightly coordi-
nated. Accumulating data from studies in invertebrates together with vertebrates point 
out two plausible strategies used by stem cells to interpret how the balance between 

  Fig. 3.3    Classi fi cation of stem cell niches based on cellular and structural composition. ( a ) A 
stromal niche. In the stromal niche, stem cells are anchored in the niche cells by forming cadherin-
mediated cell-to-cell adhesion between the stem cells and the niche cells. Signaling between the 
niche cells and the stem cells is critical for stem cell maintenance and self-renewal. ( b ) An epider-
mal niche. In the epidermal niche, stem cells are anchored in the niche by forming integrin-medi-
ated cell-to-ECM adhesion between the stem cells and the basement membrane. Signaling 
interactions between the stem cells and the niche environment, including the ECM, the neighbor-
ing cells and the immediate daughters may cooperatively regulate stem cell fate or symmetric or 
asymmetric segregation of cell fate determinants       

 



973 Stem Cell Niche

self-renewal and differentiation is achieved. Stem cells can adopt either division asym-
metry or population asymmetry strategy to maintain tissue homeostasis (Morrison and 
Kimble  2006 ; Simons and Clevers  2011 ; Watt and Hogan  2000 ). 

 Division asymmetry refers to that each individual stem cell divides to produce 
two daughters with distinct fates: one remains as a new stem cell and the other com-
mits differentiation. Asymmetric division can be achieved either through asymmet-
ric segregation of cell fate determinants, such as for Drosophila neuroblasts 
(Knoblich  2008 ), or through cues from the niche. The well-characterized  Drosophila  
GSCs in the ovary and testis use the latter strategy. In this scenario, the highly asym-
metric niche architecture directs and facilitates the outcome of stem cell division: 
the daughter cell remained in the niche will self-renewal, while the daughter cell 
positioned away from the niche will differentiate. 

 In population asymmetry, each stem cell gives rise to two daughter cells upon divi-
sion, the fate of which is unpredictable and depends on the extrinsic input. Some stem 
cells may be lost through differentiation and some stem cells can expand to replace the 
lost stem cells. And the replacement rate is comparable to the loss rate. Therefore, the 
net effect of population asymmetry is the same as division asymmetry. The total num-
ber of stem cells remains constant at the level of stem cell population. Stem cells in 
many mammalian tissues adopt this strategy to achieve homeostasis. For instance, the 
Lgr5 hi  ISCs in mouse intestine divide symmetrically to generate two daughter cells, 
which subsequently undergo “neutral competition” for contact with Paneth cells with 
the neighboring stem cells. And the loser cells in the competition are squeezed out of 
the niche to initiate the differentiation program (Lopez-Garcia et al.  2010 ; Snippert 
et al.  2010 ). Besides, the GSCs in mammalian testis and epidermal stem cells in mouse 
interfollicle epithelium might fall into this category as well.  

    3.8   Stem Cell Behavior Within the Niche 

 Studies on the  Drosophila  GSC niche have also revealed several interesting stem 
cell behaviors that may be important for stem cell long-term maintenance and func-
tion, and those phenomena have enriched our understanding of the stem cell niche 
concept. Here are some examples.

    1.    Stem cell replacement. It is evident that adult stem cells have limited half-life. 
They turn over regularly, but the stem cell number within each niche could 
remain relatively constant. This is probably due to a phenomenon named stem 
cell replacement. One example is the GSC in the  Drosophila  ovary. When one 
GSC is depleted from the niche, the other GSCs could undergo symmetric divi-
sion to supplement the lost GSC (Xie and Spradling  2000 ). This indicates that 
the niche has the capability to sustain a stable number of GSCs by controlling 
symmetric and asymmetric division of GSCs.  

    2.    Stem cell dedifferentiation in the niche. This represents another potentially 
important mechanism for maintaining constant stem cell number in the niche. 
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When GSCs in the  Drosophila  ovary and testis are forced to differentiate, the 
early differentiating germ cells could be dedifferentiated into functional GSCs 
and reoccupy the niche, if they again receive the niche signaling. This reveals the 
plasticity of progenitor cells and a dominant role of niche in determining stem 
cell fate (Brawley and Matunis  2004 ; Kai and Spradling  2004 ).  

    3.    Stem cell competition. The regular turn-over of stem cells and replacement by the 
neighboring stem cells may also indicate that these stem cells within the same 
niche may constantly compete with each other for niche occupation. Studies of 
GSCs with different genetic background in the same niche have shown that cell 
adhesion molecules are involved in stem cell competition (Jin et al.  2008 ). Stem 
cell competition may be important for the quality control of stem cells, and for 
coordinating the functions of different types of stem cells that share a single niche 
(Rhiner et al.  2009 ). It is also possible that cancer stem cells could potentially 
make more devastating damages by utilizing this mechanism to hijack the niche 
and eliminate the normal stem cells.      

    3.9   Future Perspective 

 The study of the stem cells and their niches has provided important implications on 
the relationships between dysregulation of the stem cell niche and human diseases 
and aging, and may provide useful strategies for clinical applications. Increasing 
evidence suggests that many cancers are stem cell diseases, in which a rare popula-
tion of cancer stem cells is responsible for the initiation and recurrence of cancers 
(Clarke and Fuller  2006 ). Understanding stem cell self-renewal mechanisms could 
help to provide novel therapeutic strategy to treat cancers. For example, the CD44 
adhesion receptor, which is known to mediate Osteopontin signaling from the niche, 
could be a therapeutic target of acute myeloid leukemia (AML) cancer stem cells, 
as administration of CD44 antibody ef fi ciently eliminates leukemia stem cells in the 
mouse model of human AML (Jin et al.  2006 ). In addition, abnormalities in the 
niche, rather than stem cells themselves, may also lead to the development of can-
cers. For example, increasing evidence suggests that leukemia could be contributed 
by both cell autonomous abnormalities and dysfunction of the microenvironment in 
the bone marrow (Lane et al.  2009 ). Microenvironmental deletion of retinoic acid 
gamma receptor (RAR g ) or retinoblastoma leads to a phenotype reminiscent of 
myeloproliferative disease in mouse, which raises the possibility that some leuke-
mia may result from disorder of the microenvironment (Walkley et al.  2007 ). 
Therefore, targeting abnormal niche function could be another therapeutic strategy 
to treat cancers. 

 Understanding of the stem cell and niche regulation may also lead to improved 
methods for stem cell manipulation in vivo and in vitro to facilitate replacement 
therapies in the future. For example, osteoblastic cells, the niche cells for HSCs, can 
be manipulated by PTH in mouse models of clinical use of HSCs. PTH  administration 
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can increase stem cell harvest, protect HSC from chemotherapy and promote HSC 
function in transplant recipients (Adams et al.  2007 ). 

 The ability of adult stem cells to regenerate tissue declines with age and this 
phenomenon, regarded as stem cell aging, is contributed by the changes in the niche 
microenvironment, systemic environment and intrinsically within the stem cells, 
although the contribution of each factor could vary greatly in different tissues and 
organisms. For example, in the  Drosophila  testis and ovary, the GSC activity 
declines greatly with age, largely due to the functional decay of niche signaling 
(Boyle et al.  2007 ; Pan et al.  2007 ; Zhao et al.  2008 ). In mouse satellite stem cell 
niche, systemic change-induced Wnt signaling activation has been linked to the 
decline of regeneration potential in aged satellite stem cells (Brack et al.  2007 ; 
Carlson et al.  2008 ). Therefore, modulating stem cell niche function could also be a 
useful strategy to delay the development of aging and promote tissue regeneration 
and damage repair. 

 Aside from these promising clinical prospective, there are still a lot of mysteries 
about the stem cells and their associated niches. The identi fi cation and characteriza-
tion of these less understood mammalian stem cell niches would be an urgent task. 
How the extrinsic signals integrate with intrinsic circuitries to maintain the  stemness 
and how stem cell self-renewal and differentiation are precisely balanced only 
begins to be understood. Again, studies on simpler genetic model systems would 
certainly continue to pioneer our understanding of stem cells and their niches.      
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  Abstract   Asymmetric stem cell division is a fundamental process used to generate 
cellular diversity and to provide a source of new cells in developing and adult 
 organisms. Asymmetric stem cell division leads to another stem cell via  self-renewal, 
and a second cell type which can be either a differentiating progenitor or a  postmitotic 
cell. Experimental studies in model organisms including the nematode  Caenorhabditis 
elegans , the fruit fl y  Drosophila melanogaster  and the laboratory mouse,  Mus 
 musculus , have identi fi ed interrelated mechanisms that regulate  asymmetric stem 
cell division from polarity formation and mitotic spindle orientation to asymmetric 
segregation of cell fate determinants and growth control. These mechanisms are 
mediated by evolutionary conserved molecules including Aurora-A, aPKC, Mud/
NuMa, Lgl, Numb and Brat/TRIM-NHL, which in turn regulate a binary switch 
between stem cell self-renewal and differentiation. The mechanistic insights into 
asymmetric cell division have enhanced our understanding of stem cell biology and 
are of major therapeutic interest for regenerative medicine as  asymmetrically divid-
ing stem cells provide a powerful source for targeted cell replacement and tissue 
regeneration.  
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   Cdc2     Cell division cycle 2   
   Cdc42     Cell division cycle 42   
   Cdc25     Cell division cycle 25   
   Cdk     cyclin dependent kinase   
   Cnn     centrosomin   
   CNS     Central Nervous System   
   c-Myc     cellular myelocytomatosis oncogene   
   DaPKC     Drosophila atypical protein kinase C   
   Dctn1     dynactin   
   Dlg     Discs large   
   DmPar6     Drosophila melanogaster Partitioning defective 6   
   ESC     embryonic stem cell   
   ECT-2     epithelial cell transforming gene 2   
   Galphai     G-protein alpha, subunit i   
   GMC     Ganglion Mother Cell   
   GoLoco     G-protein 0, Locomotion defects domain   
   GDPase     guanosine diphosphatase   
   GTPase     guanosine triphosphatase   
   Insc     Inscuteable   
   Khc-73     Kinesin heavy chain 73   
   Lgl     Lethal (2) giant larvae   
   Mira     Miranda   
   Mud     Mushroom body defect   
   NB     Neuroblast   
   NHL     NCL-1, HT2A, and LIN-41 domain   
   NuMa     Nuclear Mitotic apparatus   
   PAR     partitioning defective   
   Par-3     partitioning defective 3   
   Par-6     partitioning defective 6   
   PDZ     Post synaptic density 95, Discs large, and Zonula occludens-1 domain   
   Pins     Partner of Inscuteable   
   Pon     Partner of Numb   
   Pros     Prospero   
   RNA     Ribonucleic Acid   
   Sqh     Spaghetti squash   
   TRIM 3      tripartite motif protein 3   
   TRIM 32     tripartite motif protein 32   
   VNC     Ventral Nerve Cord         

    4.1   Introduction 

 Stem cells are characterised by their potential to self-renew and to differentiate 
into every cell type of the organism. Stem cells are found in developing and 
adult tissue, starting with the totipotent zygote which subsequently leads to 
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pluripotent stem cells of the early embryo. Later during germ layer formation 
and  organogenesis, stem cells become increasingly restricted in their lineage 
potential and give rise to progeny that contribute to mature tissue (Eckfeldt et al. 
 2005 ; Slack  2008 ; Murry and Keller  2008 ; Metallo et al.  2008 ; Mitalipov and 
Wolf  2009  ) . Because of their origin and pluripotency, stem cells are of major 
therapeutic interest in regenerative medicine as they provide a powerful source 
for cell replacement and tissue regeneration. This is evident in cases of dam-
age-, disease and age-related cellular degeneration, such as spinal cord injury 
(Nandoe Tewarie et al.  2009 ; Kim and de Vellis  2009  )  or age-related neurode-
generation seen for example in Alzheimer’s and Parkinson’s disease (Daniela 
et al.  2007 ; Li et al.  2008  ) , where stem cell therapy may become one way of 
replacing lost cells (Rosser et al.  2007 ; Ormerod et al.  2008  ) . 

 However, there are several obstacles that need to be resolved before stem cell 
based therapies can be translated clinically. These obstacles include the unlimited 
proliferation potential of stem cells as well as our incomplete knowledge about the 
molecular machinery underlying cellular differentiation programs. Thus, a major 
challenge is the identi fi cation of stem cell-derived molecular determinants inherited 
by differentiating progenitor cells that are required for the speci fi cation of the vari-
ety of different cell types in the adult organism. Successful cell replacement and 
tissue regeneration is only achieved once the new cells differentiate into the desired 
cell type and integrate into existing cell clusters, tissues and organs. This is particu-
larly evident for the nervous system, where the majority of cells are post-mitotic and 
integrated into elaborate neural circuits underlying complex behaviour. For exam-
ple, a major challenge will be to induce effective functional integration of stem 
cell-derived neurons into existing neural circuits with the ultimate goal to restore 
behavioural de fi cits caused by progressive neurodegeneration (Lindvall and Kokaia 
 2006 ; Ormerod et al.  2008  ) . 

 Equally important is the need to understand how growth and proliferation of 
stem cells is regulated at the molecular level in order to regenerate tissue without 
unwanted over-proliferation that may lead to cancer formation, but also to control 
undesired growth that may jeopardize  fi nal tissue and organ size. Here, regenerative 
medicine faces two challenges at the same time. First, stem cell proliferation needs 
to be restricted to a certain number of mitotic divisions until a de fi ned and limited 
amount of differentiating progeny is generated. Second, and at the same time, the 
size of each individual differentiating cell needs to be regulated in the context of its 
neighbours so that a cell cluster, tissue or organ reaches an appropriate  fi nal and 
functional size. It is obvious from these obstacles that a solid and comprehensive 
understanding of the molecular mechanisms underlying stem cell proliferation and 
differentiation are fundamental prerequisites for the successful application of stem 
cells in regenerative medicine. 

 The majority of our current understanding comes from studies investigating 
asymmetric stem cell division in model organisms such as the nematode 
 Caenorhabditis elegans  ( C. elegans ), the insect  Drosophila melanogaster  and the 
laboratory mouse,  Mus musculus . These animals are seemingly very different to 
humans and the ancestors of worms and  fl ies already separated from the vertebrate 
lineage more than 600 Ma ago during the course of evolution (Adoutte et al.  2000 ; 
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Peterson et al.  2004  ) . However, worms,  fl ies and mice share several key features 
relevant to human stem cell biology and tissue regeneration. Whole genome 
sequencing revealed striking similarities in the structural composition of individual 
genes of  Homo sapiens , mouse,  Drosophila  and  C. elegans . For example, the nucle-
otide sequence of the gene encoding actin is almost similar in all four species, pro-
viding compelling evidence for structural conservation due to common origin 
(homology). Moreover, the molecules and mechanisms underlying core modules of 
cell biology are conserved as well: homologous genes mediate homologous mecha-
nisms such as cyclin/cdk modules regulating the eukaryotic cell cycle (Edgar and 
Lehner  1996 ; Bähler  2005 ; Sánchez and Dynlacht  2005  ) , or insulin signalling regu-
lating metazoan cell growth (Stocker and Hafen  2000 ; Hietakangas and Cohen 
 2009  ) . These data provide compelling evidence for a deep homology underlying 
cell biological mechanisms. This notion is further supported by experiments dem-
onstrating that  Drosophila  and human genes can substitute each other in species-
speci fi c but evolutionary conserved mechanisms underlying embryonic brain 
development in insects and mammals (Leuzinger et al.  1998 ; Nagao et al.  1998 ; 
Hanks et al.  1998  ) . 

 These principles of homology seem to apply to stem cell biology as well. There is 
mounting evidence that the mechanisms underlying asymmetric stem cell division 
are conserved across species. Therefore, knowledge gained in model organisms is 
invaluable to enhance our understanding of stem cell biology for its successful appli-
cation in regenerative medicine. Experimental studies in  C. elegans ,  Drosophila  and 
mice have identi fi ed molecules involved in cell-intrinsic and cell-extrinsic mecha-
nisms underlying asymmetric stem cell division which are outlined in this article.  

    4.2   Classi fi cations and De fi nitions 

 Stem cells are classi fi ed by the range of commitment options and thus their lineage 
potential available to them (Smith  2006  ) .  Totipotent  stem cells are suf fi cient to form 
an entire organism, whereas  pluripotent  stem cells are able to form all the body’s 
cell lineages, including germ cells; a typical example for the latter is an embryonic 
stem cell (ESC).  Multipotent  stem cells can form multiple lineages that constitute an 
entire tissue or tissues, such as hematopoietic stem cells, whereas  unipotent  and 
 oligopotent  stem cells are able to form one (uni-), two or more (oligo-) lineages 
within a tissue. 

 Stem cells can continuously produce daughter cells that are either similar result-
ing from  symmetric  stem cell division, or they generate different daughter cells by 
 asymmetric  stem cell division (Fig.  4.1a ). Asymmetric division leads to two distinct 
daughter cells from a single mitosis, usually a self-renewing stem cell, and a pro-
genitor cell that has the capacity to differentiate.  Self-renewal  is a de fi ning property 
of stem cells and the term  commitment  characterises their exit from self-renewal 
leading to differentiation. Self-renewal and asymmetry can be established and main-
tained by intrinsic and extrinsic signals.  
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  Extrinsic  mechanisms are usually summarised by the term “ niche ” which 
 characterises a cellular micro-environment that provides stimuli and support neces-
sary to maintain self-renewal to the stem cell located adjacent to the niche (Fig.  4.1b ). 
At the same time, the niche can generate asymmetry provided that the plane of cell 
division is parallel to the signals of the niche, resulting in only one daughter cell (the 
self-renewing stem cell) that retains contact to the niche (Fig.  4.1b ). The sibling 
daughter cell does no longer receive niche signals, and hence can no longer main-
tain a self-renewing mode of division and is forced into cell cycle exit and differen-
tiation (for review see, Li and Xie  2005 ; Roeder and Lorenz  2006 ; Martinez-Agosto 
et al.  2007 ; Mitsiadis et al.  2007 ; Morrison and Spradling  2008 ; Kuang et al.  2008 ; 
Losick et al.  2011  ) . 

  Intrinsic  signals refer to mechanisms and molecules acting within a dividing 
stem cell; they regulate the mode of division and hence the fate and commitment of 
its daughter cells (Fig.  4.1b ). The majority of our knowledge about stem cells and 
asymmetric cell division come from insights into cell-intrinsic mechanisms which 
are outlined below.  

  Fig. 4.1     Regulation of stem cell division . ( a ) Different modes of stem cell division. Stem cells 
(  fi lled circles ) show different modes of divisions, which can be either symmetric or asymmetric 
thereby regulating the number of stem cells and differentiating progeny ( open circles ) in develop-
ing and adult organisms. Symmetric, proliferative stem cell division expands the stem cell pool, 
whereas symmetric, differentiative stem cell division depletes the stem cell pool by generating 
differentiating progenitor and/or postmitotic cells. Asymmetric stem cell division can be regarded 
as a mixture of both proliferative and differentiative stem cell division, as it results in a self-
renewing stem cell and a differentiating progenitor and/or postmitotic cells. Thus, asymmetric 
stem cell division maintains the stem cell pool while at the same time generates differentiating 
progeny. ( b ) Asymmetric stem cell division can be regulated by extrinsic or intrinsic mechanisms. 
Extrinsic regulation relies on asymmetric contact of the stem cell (  fi lled circles ) with a “niche” 
( grey crescent  adjacent to stem cell) that provides support and stimuli necessary for self-renewal 
and to prevent differentiation. Following cell division, the cell adjacent to the niche remains a self-
renewing stem cell, whereas the second daughter cell lacking contact to the niche is committed to 
differentiate. Intrinsic mechanisms regulate the exclusive segregation of cell fate determinants into 
daughter cells, with apical polarity cues ( grey crescent  within the stem cell) required for stem cell 
maintenance, and basal cell fate determinants ( grey circle ) required for terminal differentiation 
(Modi fi ed after Caussinus and Hirth  2007  )        
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    4.3   Principles and Mechanisms 

 In general, four interrelated mechanisms underlie the molecular machinery 
 regulating intrinsic asymmetric cell division: symmetry break, polarity forma-
tion, mitotic spindle orientation and segregation of cell fate determinants (see 
Fig.  4.2 ). Asymmetric stem cell division usually results in two cells that differ in 
fate but sometimes also in size: a self-renewing stem cell and a differentiating 
 daughter cell.  

    4.3.1   Generating Asymmetry 

 Initially, stem cell symmetry is broken by signals from the niche or by an overlaying 
polarity inherited from the tissue of origin from where the stem cell derives, as in 
the case of epithelial cells (Fig.  4.2a ). For example, in the  Drosophila  embryonic 
nervous system, a symmetry break already occurs in the polarised neuroectodermal 
epithelium from which neural stem cells, termed neuroblasts delaminate. In the 
 C. elegans  zygote, symmetry is broken by an actomyosin network present on the cell 
cortex of newly fertilized embryos. This actomysoin network drives surface con-
tractions around the circumference which requires activity of the small GTPase Rho 
and its activator, the Rho guanine nucleotide exchange factor ECT-2 (for review, 
see Gönzy  2008  ) . At the end of the  fi rst cell cycle the contractile cortex covers the 
anterior half of the embryo and the non-contractile cortex covers the posterior half, 
resulting in broken symmetry and initial polarity formation. 

 The activity of Rho GTPases is highly conserved and plays a key role in the ini-
tial steps of polarity formation in various tissues and cell types, including T-cells 
and epithelial cells of the lung, gut and skin (for review, see Iden and Collard  2008  ) . 
Rho GTPases function as molecular switches and cycle between an active, 
 GTP-bound state predominantly associated with membranes, and an inactive, GDP- 
bound state that is present in the cytoplasm. In all cases, Rho GTPases regulate and 
coordinate cytoskeleton remodelling, thereby providing a scaffold for symmetry 
break.  

    4.3.2   Polarity Formation 

 As soon as symmetry is broken, the emerging cell polarity becomes stabilized by 
evolutionary conserved  partitioning defective  (PAR) proteins and associated com-
ponents (Fig.  4.2b ). This is the case in  C. elegans  and  Drosophila , but also for stem 
cells in other organisms including mammals (for review, see Schneider and 
Bowerman  2003 ; Cowan and Hyman  2004 ; Wodarz  2005 ; Suzuki and Ohno  2006 ; 
Goldstein and Macara  2007 ; Johnson  2009 ; Knoblich  2010  ) . 



1134 Stem Cells and Asymmetric Cell Division

 In  Drosophila  (see Fig.  4.3 ), delaminating neuroblasts inherit the PDZ domain 
proteins Par-3 (Bazooka) (Wodarz et al.  1999 ; Schober et al.  1999  ) , Par-6 (DmPar6) 
(Petronczki and Knoblich  2001     )  and the  Drosophila  atypical protein kinase C 
(DaPKC) (Betschinger et al.  2003 ; Rolls et al.  2003 ; Izumi et al.  2004  ) . Once the 
neuroblast has delaminated from the neuroectoderm, mitotic spindle align perpen-
dicular to the epithelial plane (Kaltschmidt et al.  2000  )  and the adaptor protein 
Inscuteable (Insc) (Kraut et al.  1996  )  binds to the apical protein complex through 
Bazooka. Inscuteable, in turn, recruits another adaptor protein, Partner of Inscuteable 

  Fig. 4.2     Intrinsic asymmetric cell division . Four consecutive steps underlie intrinsic asymmetric 
cell division. ( a ) Symmetry break occurs in the parental stem cell either by external signals coming 
from the “niche” ( grey crescent  adjacent to stem cell) or from signals that have been inherited from 
the place of stem cell origin, such as epithelia. ( b ) Broken symmetry in turn is used to establish 
polarity formation, which usually involves reorganization of the actomyosin network and segrega-
tion of polarity cues along the new symmetry axis. ( c ) Subsequently, mitotic spindles are aligned 
perpendicular to the axis of polarity and the future cleavage plane. ( d ) Cell fate determinants are 
segregated along the axis of polarity and determine the fate of the future daughter cells. ( e ) 
Asymmetric stem cell division takes place along the axis of polarity, resulting in the unequal dis-
tribution of cell fate determinants; these in turn implement the fate of the two resulting daughter 
cells: a self-renewing stem cell and a differentiating progenitor/postmitotic cell (Modi fi ed after 
Gönzy  2008  )        
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(Pins) which together bind the heterotrimeric G-protein  a -subunit G a i into the 
complex to form an apical crescent at late interphase/early prophase (Yu et al.  2005 ; 
Nipper et al.  2007  ) .  

 Binding of G a i to Insc enables Pins to recruit an additional protein called 
Mushroom body defect (Mud) (Izumi et al.  2006 ; Siller et al.  2006 ; Bowman et al. 
 2006  )  which is the  Drosophila  homolog of the microtubule and dynein binding 
protein NuMA (Zheng  2000 ; Sun and Schatten  2006  ) . Mud is thought to interact 
with the astral microtubules to ‘ fi x’ one of the spindle poles on the apical cortex of 
the neuroblast, thus contributing to the orientation of the mitotic spindle. Pins also 
binds to a membrane associated guanylyl kinase protein called Discs large (Dlg), 
that is known to interact with Kinesin heavy chain 73 (Khc-73), localised at the plus 
ends of astral microtubules. These interactions polarise the complex of proteins 
localised at the apical cortex of  Drosophila  neuroblasts in the direction of the mitotic 
spindle, which aligns perpendicular to the overlying epithelial plane (Yu et al.  2005 ; 
Wang et al.  2006a ; Siegrist and Doe  2007  ) . Thus, molecules of the apical complex 
direct apical-basal spindle orientation in dividing neuroblasts, and thereby establish 
an axis of polarity along which cytokinesis takes place. 

 Comparable mechanisms have been found in  C. elegans  and mammals (Gönzy 
 2008 ; Siller and Doe  2009 ; Knoblich  2010  ) , suggesting that interactions between 

  Fig. 4.3     Asymmetric stem cell division in the nervous system of   Drosophila . ( a ) Asymmetric 
neuroblast division in  Drosophila . In the developing nervous system of  Drosophila , neural stem 
cells called neuroblasts divide asymmetrically along their apical-basal axis to give rise to another, 
self-renewing neuroblast and an intermediate progenitor cell, called ganglion mother cell (GMC). 
The GMC in turn exits the cell cycle and differentiates into neurons (or glial cells) by one terminal 
division. ( b ) Molecular machinery underlying asymmetric neuroblast division in  Drosophila . 
Dividing neuroblasts are polarized along the apical-basal axis: Apical polarity cues include Lgl, 
DaPKC, Baz, Par6, Insc, Pins, Dlg, Mud, G a i and AurA; spindle orientation is directed by Mud, 
dynactin and Khc73. Basal cell fate determinants and their adaptor proteins include Mira, Pros, 
Brat, Polo, Pon and Numb. During asymmetric neuroblast division, apical complex formation and 
basal targeting simultaneously ensure stem cell self-renewal (apical) and the formation of a dif-
ferentiating GMC (basal). See text for details (Modi fi ed after Kim and Hirth  2009  )        
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the PAR complex, heterotrimeric G-proteins and mitotic spindle orientation 
 represent a highly conserved mechanism underlying polarity formation. As a result 
of polarity formation, cell fate determinants are distributed unequally along the axis 
of polarity, which is usually the apical-basal axis and the future axis of division 
(Fig.  4.2c ). Importantly, as the name states, these cell fate determinants prede fi ne 
the destiny of the resulting daughter cells and their unequal segregation implements 
proper asymmetric cell division.  

    4.3.3   Apical Polarity and Mitotic Spindle Orientation 

 As soon as an axis of polarity is established, asymmetric cell division secures the 
segregation cell fate determinants into only one of the resulting daughter cells, 
thereby regulating a binary switch between stem cell self-renewal and  differentiation. 
This is achieved by asymmetric localisation and subsequent unequal segregation of 
fate determinants that promote either stem cell identity or intermediate progenitor 
cell identity (Fig.  4.2d ). In dividing  Drosophila  neuroblasts this results in apically 
localised proteins being maintained in self-renewing neuroblasts, whereas basally 
localised proteins are segregated into differentiating progenitor cells, termed gan-
glion mother cells (GMCs) (for review, see Kim and Hirth  2009  ) . 

 In  Drosophila  neuroblasts (Fig.  4.3a ), asymmetric segregation of cell fate deter-
minants requires key substrates including the cortically localised tumour suppressor 
proteins Discs large (Dlg) and Lethal (2) giant larvae (Lgl) (Ohshiro et al.  2000 ; 
Peng et al.  2000 ; Albertson and Doe  2003 ; Betschinger et al.  2003  ) . DaPKC and Lgl 
are key players in the establishment and maintenance of apical polarity, thereby 
providing neuroblasts with the capacity to self-renew. Lgl is a cytoskeletal protein 
known to specify the basolateral domain and to restrict DaPKC, Bazooka, and 
DmPar6 to the apical cortex (Wirtz-Peitz and Knoblich  2006  ) . Lgl does not directly 
in fl uence spindle orientation and apical localisation of the PAR complex. However, 
phosphorylation of Lgl by DaPKC leads to Lgl inactivation, or exclusion of Lgl 
from the apical cortex (Betschinger et al.  2003  ) , thereby restricting cortical recruit-
ment of basal cell fate determinants (Fig.  4.3b ). 

 These observations have been substantiated by mutant studies, showing that 
neural lineages mutant for Lgl lead to supernumerary postembryonic neuroblasts 
due to occasional ectopic self-renewal (Rolls et al.  2003 ; Lee et al.  2006a  ) . 
Furthermore, overexpression of a membrane-targeted DaPKC, but not a kinase-
dead mutant isoform leads to a similar phenotype, whereas a decrease in DaPKC 
expression reduces neuroblast numbers. Genetic interaction experiments showed 
that Lgl, DaPKC double mutants have normal numbers of neuroblasts and that 
DaPKC is fully epistatic to Lgl, suggesting that DaPKC directly promotes neuro-
blast self-renewal (Lee et al.  2006a  ) . 

 How are DaPKC and Lgl directed to the apical cortex? A partial answer to that 
comes from recent data suggesting that the mitotic kinase Aurora-A (AurA) is 
required for the asymmetric localisation of DaPKC (Lee et al.  2006b ; Wang et al. 
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 2006b ; Wirtz-Peitz et al.  2008  ) . AurA phosphorylates DmPar6, a member of the 
PAR complex, which in turn prevents an interaction between DmPar6 and DaPKC 
(Fig.  4.3b ). Subsequently, phosphorylated DaPKC can act independently of 
DmPar6 and is able to phosphorylate Lgl, leading to Lgl inactivation/exclusion of 
Lgl from the apical cortex (Betschinger et al.  2003 ; Lee et al.  2006a  ) . Within the 
PAR complex, this sequence of events leads to the exchange of Lgl for Bazooka, 
which in turn enables phosphorylation of the cell fate determinant Numb and its 
subsequent segregation into the differentiating daughter cell, the GMC (Wirtz-
Peitz et al.  2008  ) . 

 These data from  Drosophila  provide a direct link between asymmetric protein 
localisation and mitotic spindle orientation. A linkage between apical cortex and 
mitotic spindle was previously identi fi ed with the Mud/NuMa protein and its role in 
regulating neuroblast self-renewal via proper spindle-orientation. However, previ-
ous mutant studies showed that Mud does not alter cortical polarity (Izumi et al. 
 2006 ; Siller et al.  2006 ; Bowman et al.  2006  ) , whereas mutant AurA does (Lee et al. 
 2006b ; Wang et al.  2006b ; Wirtz-Peitz et al.  2008  ) ; yet, both proteins localise to the 
centrosomes and tissue mutant for AurA and Mud exhibits similar defects in spindle 
orientation (Berdnik and Knoblich  2002 ;    Giet et al.  2002 ; Izumi et al.  2006 ; Siller 
et al.  2006 ; Bowman et al.  2006 ; Lee et al.  2006b ; Wang et al.  2006b ; Wirtz-Peitz 
et al.  2008  ) . Genetic interaction data in dividing neuroblasts indicate that AurA 
controls mitotic spindle orientation by regulating the asymmetric localisation of 
Mud (Wang et al.  2006b  ) . Moreover, AurA seems not only to act on Mud and 
DmPar6, but also on Notch signalling. Mutational inactivation of AurA leads to 
ectopic activation of Notch (Wang et al.  2006b  ) , which in its cleaved, intracellular 
form is able to promote self-renewal and to suppress differentiation of neural stem 
cells in the larval central brain of  Drosophila . 

 In addition to the Mud/NuMA and AurA axis involved in mitotic spindle ori-
entation and asymmetric stem cell division, recent studies have identi fi ed a com-
plementary role of the centrosome and centrioles in the regulation of stemness. 
These data suggest that the centrosome and centrioles of the dividing “mother 
stem cell” are inherited by the differentiating daughter cell (Januschke et al. 
 2011  ) , whereas the newly formed centrosome and centrioles are retained by the 
self-renewed stem cell, a process which requires centrosomin (Cnn) function    
(Conduit and Raff  2010  ) . 

 Taken together, data from  Drosophila  suggest that AurA acts via Mud to orient 
mitotic spindles required for the establishment of a proper division plane (Fig.  4.3 ), 
which is a prerequisite for the unequal segregation of cell fate determinants during 
neural stem cell cytokinesis (Fig.  4.3b ). Simultaneously, asymmetric protein locali-
sation is achieved, at least in part by AurA acting on DmPar6 and in turn via phos-
phorylation of DaPKC followed by that of Lgl. Such a dual role of AurA linking 
asymmetric protein localisation and mitotic spindle orientation may explain to some 
extend why in AurA and Mud, but also in DaPKC and Lgl mutants, the net result is 
the same: supernumerary neural stem cells at the expense of differentiating neurons. 
Moreover, recent results suggest that AurA also links Pins and Dlg to the mitotic 
spindle orientation pathway (Jonhston et al.  2009  ) . 
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 In mammals, comparable mechanisms have been observed that are involved in 
the establishment of apical cell polarity and mitotic spindle orientation. The mam-
malian cerebral cortex and retina contain multipotent neuroepithelial progenitor 
cells with pronounced apical/basal polarity. Their apical domain or “apical endfoot” 
contains a complex of Cdc42 – Par-3 – aPKC – mPar-6, similar to  Drosophila , as 
well as the transmembrane protein Prominin/CD133 (for review, see Götz and 
Huttner  2005 ; Farkas and Huttner  2008 ; see also Chap.   12     by Huttner). Moreover, a 
mammalian homologue of Pins, termed LGN, can bind NuMA and links NuMa to 
heterotrimeric G-proteins, thereby regulating mitotic spindle orientation (Du et al. 
 2001 ; Du and Macara  2004  ) . Mouse Inscuteable (mInsc) has been shown to play a 
critical role in spindle reorientation in cortical progenitors of the mouse neocortex: 
both loss and gain of mInsc mutations affect correct mitotic spindle positioning, 
which in the wildtype appears to be essential for generating the correct numbers of 
neurons in all cortical layers (Postiglione et al.  2011  ) . In addition, mammalian Par-3 
(mPar-3) speci fi es the polarity of dividing radial glial cells in the developing mouse 
neocortex and differentially regulates Notch signalling activity in the resulting 
daughter cells (Bultje et al.  2009  ) . In mouse skin progenitor cells, recent data pro-
vide evidence that the switch from symmetric to asymmetric divisions concomitant 
with strati fi cation relies on LGN, NuMA and dynactin (Dctn1) activity (Williams 
et al.  2011  ) . These data suggest that at least some of the mechanisms underlying 
apical polarity formation and mitotic spindle alignment are evolutionary conserved 
and essential prerequisites for asymmetric stem cell division.  

    4.3.4   Basal Polarity and Cell Fate Determinants 

 As a result of polarity formation, two opposite sides within a stem cell are gener-
ated: an apical side and a basal side. In conjunction with polarity formation (see 
above), mitotic spindles are aligned and a future axis of division is established, 
along which apical and basal cell fate determinants are segregated during cell divi-
sion (Fig.  4.2d, e ). Apical cell fate determinants are involved in stem cell self-
renewal, whereas basal cell fate determinants are involved in differentiation 
processes. This dichotomy is most obvious in the developing nervous system of 
 Drosophila  where self-renewal and differentiation is not only regulated in prolifer-
ating neuroblasts but also in the intermediate progenitor cells, the GMCs. 

 In  Drosophila , GMCs usually are destined to exit the cell cycle by terminal, sym-
metric division, thereby generating the majority of neurons that constitute the adult 
CNS. The destiny of GMCs is determined by the exclusive inheritance of key dif-
ferentiation factors such as the Notch repressor Numb (Uemura et al.  1989  ) , the 
NHL-domain protein Brain tumour (Brat) (Arama et al.  2000  )  and the homeodo-
main transcription factor Prospero (Vaessin et al.  1991 ; Doe et al.  1991 ; Matsuzaki 
et al.  1992  )  (see Fig.  4.3 ). Basal targeting of these cell fate determinants in dividing 
neuroblasts is achieved via their adaptor proteins, Partner of Numb (Pon) (Lu et al. 
 1998  )  and Miranda (Shen et al.  1997 ; Ikeshima-Kataoka et al.  1997  ) . Previous 
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experiments in  Drosophila  showed that segregation of Numb into GMCs is  regulated 
by Pon in a cell-cycle-dependent manner, and recent data provide evidence that 
Polo, a key cell cycle regulator itself, is critically required for this event by direct 
phosphorylation of Pon (Wang et al.  2007  ) . Accordingly, mutant polo affects the 
asymmetric localization of Pon, Numb and DaPKC and supernumerary neuroblast-
like cells are produced at the expense of neurons. Over-expression of Numb in polo 
mutant lineages is able to suppress over-proliferation, indicating that Polo inhibits 
progenitor cell self-renewal by regulating the localization and function of Numb. As 
is the case for AurA, polo function therefore provides another link between cell 
cycle regulation and asymmetric protein localization. However, the mechanism by 
which Numb directly or indirectly regulates cell cycle activity and proliferation is 
poorly understood. 

 Ganglion mother cell fate is also determined by Prospero (Pros). Pros mRNA 
and protein is already detectable in dividing neuroblasts where it is transported 
via its adaptor Miranda to the basal side (Shen et al.  1998 ; Schuldt et al.  1998 ; 
Broadus et al.  1998 ; Matsuzaki et al.  1998  ) . Cytokinesis segregates Prospero 
solely into the GMC where Mira degrades, thereby releasing Prospero from the 
cortex, which then translocates into the nucleus (Hirata et al.  1995 ; Spana and 
Doe  1995  ) . Prospero acts as a transcription factor in the GMC nucleus, where it 
has a dual role. Pros inhibits cell cycle progression by repressing cell cycle 
 regulators such as cyclin A, cyclin E and the  Drosophila  cdc25 homologue, string, 
as well as by activating the expression of dacapo, a cyclin-dependent kinase inhib-
itor, ultimately leading to terminal differentiation of the GMC into two post-
mitotic neurons/or glial cells (Li and Vaessin  2000 ; Liu et al.  2002  ) . Moreover, 
genome-wide expression pro fi ling using  prospero  loss and gain-of function 
embryos as a template indicate that Prospero represses neuroblast-speci fi c apical 
polarity genes like inscuteable, bazooka and DaPKC, and activates expression of 
neural differentiation genes such as fushi tarazu and even skipped (Choksi et al. 
 2006  ) . In addition, mutant analyses provide in vivo evidence that loss of  pros  
results in enlarged neuroblast lineages essentially devoid of differentiating, post-
mitotic neurons (Bello et al.  2006 ; Lee et al.  2006c ; Betschinger et al.  2006  ) . 
Instead, the vast majority of cells within these mutant clones show sustained 
expression of stem cell markers and increased mitotic activity, eventually leading 
to neoplastic tumor formation (Bello et al.  2006  ) . These data indicate that loss of 
 pros  causes a transformation of GMCs into stem-like cells that are unable to exit 
the cell cycle and continue to proliferate. Based on these experimental observa-
tions, it is    reasonable to consider Prospero as a gate-keeper in regulating self-
renewal and differentiation in GMCs. 

 Another recently identi fi ed cell fate determinant is Brain Tumor (Brat).  brat  
encodes a member of the conserved NHL family of proteins (Arama et al.  2000 ; 
Reymond et al.  2001 ; Sardiello et al.  2008  ) . Similar to  pros ,  brat  mutation results 
in over-proliferating neuroblast lineages at the expense of differentiating neurons 
(Bowman et al.  2008 ; Bello et al.  2006 ; Lee et al.  2006c ; Betschinger et al.  2006  ) . 
Brat mutant neuroblast clones show cortical mis-localisation of Miranda and the 
loss of nuclear  pros  (Lee et al.  2006c  ) , suggesting that these proteins may play a 
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role in the same molecular pathway. This is supported by genetic experiments 
showing that ectopic expression of Pros can rescue the tumour formation in Brat 
mutants in the larval central brain (Bello et al.  2006  ) . However, Brat localisation 
remains unaffected in Pros mutants, whereas in Mira mutants Brat and Pros are 
mislocalised. 

 These results indicate that Mira is essential for the asymmetric localisation of 
the cell fate determinants Brat and Pros. This is in line with the fact that Pros can 
bind to the central Pros-binding domain of Miranda (Fuerstenberg et al.  1998  ) , and 
Brat binds to the coiled-coil cargo binding domain of Miranda (Betschinger et al. 
 2006  ) . Moreover, the interaction between the NHL domain of Brat and the 
C-terminal domain of Mira (Lee et al.  2006c  )  appears to be essential for promoting 
asymmetric localisation of Pros to the GMC, where it is required for cell cycle exit 
and neuronal fate determination. Thus, it is conceivable that Mira and its cargo 
proteins Brat and Pros maybe transported across the dividing NB as a complex. But 
what drives basal protein targeting of adaptor proteins and their respective cell fate 
determinants? 

 Previous studies suggested that the localisation of Mira and Pros appear to be 
dependent on actin (Broadus and Doe  1997  ) , as well as on motor proteins, Myosins 
in particular (Ohshiro et al.  2000 ; Petritsch et al.  2003  ) . These studies indicated 
an interaction between Lgl with a plus-end directed motor, myosin II (Ohshiro 
et al.  2000  ) . Subsequent experiments showed that Spaghetti Squash (Sqh), the 
regulatory light chain of Myosin II, is required in embryonic neuroblasts both, to 
 organize the actin cytoskeleton, thereby enabling determinants to localize to the 
cortex, and to con fi ne determinants to the basal side (Barros et al.  2003  ) . These 
data suggested that Myosin II is one of the motor proteins involved in basal 
 localisation of the cell fate determinants. In line with this, Mira was also found to 
physically interact with Zipper, the heavy chain of myosin II (Ohshiro et al.  2000  ) . 
Thus,  non-phosphorylated Lgl can negatively regulate Myosin II in embryonic 
NBs by directly binding to it. 

 In Myosin II mutant studies, cell fate determinants failed to form a basal crescent 
in embryonic neuroblasts (Ohshiro et al.  2000  ) , notably Mira is mis-localised 
 uniformly around the cortex (Erben et al.  2008  ) . Similarly, reduced Myosin VI 
(Jaguar) activity in embryos, leads to a failure in basal crescent formation as well, 
with Mira mis-localising to the cytoplasm in patches (Petritsch et al.  2003  ) . Myosin 
VI transiently accumulates in the basal cortex, partially co-localises with Mira dur-
ing metaphase, and in vitro studies using  Drosophila  embryonic extracts also 
showed physical interaction with Mira. The distinct phenotype, mode of action, and 
sub-cellular localisation of Myosin II and Myosin VI suggests that they may act at 
consecutive steps in a single pathway to localise Mira and its cargo proteins to the 
basal side of dividing NBs. However, it is currently not know how exactly Mira is 
transported to the basal side of a dividing neural stem cell. Yet, recent experimental 
 evidence suggests that direct phosphorylation of Mira by aPKC leads to exclusion 
of Mira from the apical cortex (Atwood and Prehoda  2009  ) , which is a prerequisite 
for its basal targeting, and in turn the unequal segregation of cell fate determinants 
that are transported by Mira.  
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    4.3.5   Cell Cycle Progression and Growth Control 

 These data coming from studies of the developing CNS of  Drosophila  provide 
 compelling evidence that one strategy to regulate stem cell-self-renewal and differen-
tiation is asymmetric segregation of cell fate determinants in a dividing cell. This is 
achieved, in part, by asymmetric protein localisation and related mitotic spindle orien-
tation, thereby providing a template for unequal distribution of key regulators such as 
AurA, DaPKC, Numb and Pros (Fig.  4.3b ). Interestingly, however, such a cascade of 
events does not explain why mutant stem cells continue to proliferate, thereby self-
renewing for an extended period of time without progressive volume decline. This is 
particularly evident in the case of continued proliferation in  pros  mutant neuroblast 
clones in  Drosophila . There, continued cell division cycles appear to be accompanied 
by compensatory cell growth. Thus,  pros  mutant cells display sustained symmetric 
divisions without shrinkage in cell size (Bello et al.  2006  ) , a phenomenon that is usu-
ally accompanied with neuroblast division in the embryonic CNS. Thus, in  pros  mutant 
clones, a constant cell size appears to be maintained over many rounds of self-renewing 
divisions, indicating that Pros may also act as a transcriptional repressor on genes 
involved in growth control. However, genome-wide expression pro fi ling did not iden-
tify growth control genes as potential targets of  pros , maybe because embryos had been 
used as a template (Choksi et al.  2006  ) . A possible link between asymmetric protein 
localisation, cell cycle progression and growth control may be provided by Brat. 

 Previous studies in  Drosophila  had shown that  brat  is a translational repressor 
(Sonoda and Wharton  2001  )  which also functions in the regulation of cell growth 
and ribosomal RNA synthesis (Frank et al.  2002  ) . Growth and proliferation of  brat  
mutant cells might be perpetuated by dis-inhibited dMyc activity (Betschinger et al. 
 2006  ) , a transcription factor regulating cell growth and proliferation (Eilers and 
Eisenman  2008  ) . The available data however suggest that Brat activity regulates a 
large number of direct and indirect targets involved in cell cycle progression and 
growth control. This notion is supported by genome-wide expression studies using 
adult wildtype and  brat  mutant brain tissue as a template (Loop et al.  2004  ) . These 
studies identi fi ed several potential target genes of Brat, most prominent among them 
genes involved in cell cycle regulation and translation control, as well as RNA bind-
ing/processing, all being up-regulated in  brat  mutant tissue (Loop et al.  2004  ) . In 
addition,  brat  gain of function can inhibit cell growth and ribosomal RNA accumu-
lation, and slowdown cell division cycles (Frank et al.  2002  ) . Considering its mutant 
lineage phenotype, these data suggest that  brat  may inhibit cell growth by limiting 
the rate of ribosome biogenesis and protein synthesis. 

 Comparable data have been found in  C. elegans  where Brat homologues regulate 
PAR protein-dependent polarity and asymmetric cell division (Hyenne et al.  2008  ) . 
In addition, homologues of Brat have been identi fi ed in mammals where they are 
also involved in progenitor cell proliferation control. Recent genetic evidence in 
mice suggests that the Brat homolog TRIM32 can bind Ago1, a protein involved in 
microRNA processing. TRIM32 functions both by degrading c-Myc as well as by 
activating certain microRNAs, among them the stem cell regulator Let-7a (Gangaraju 
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and Lin  2009  ) . TRIM32 activity thereby suppresses self-renewal in dividing cortical 
progenitor cells, and induces neuronal differentiation (Schwamborn et al.  2009  ) . 
These  fi ndings indicate that Brat/TRIM-NHL proteins regulate self-renewal and dif-
ferentiation of stem/progenitor cells by modulating microRNA activity as well as 
ribosome biogenesis and protein synthesis. 

 These data also suggest that deregulated stem/progenitor cell division can lead to 
uncontrolled cell growth and tumor formation (Caussinus and Hirth  2007  ) . Indeed, 
recent experimental evidence suggests that so-called cancer stem cells drive the 
growth and metastasis of human tumors and cancer stem cells have already been 
identi fi ed in leukemia, and in solid tumors of the breast and brain (for review, see 
Reya et al.  2001 ; Pardal et al.  2003 ; Al-Hajj and Clarke  2004 ; Fomchenko and 
Holland  2005 ; Stiles and Rowitch  2008 ; Visvader and Lindeman  2008 ; Schatton 
et al.  2009  ) . Moreover, inappropriate activation of the WNT, sonic hedgehog (SHH), 
Notch, PTEN, and BMI1 pathways have all been shown to promote the self-renewal 
of somatic stem cells, and their dysregulation can lead to neoplastic tissue formation 
(for review, see Pardal et al.  2003 ; Jiang and Hui  2008  ) . 

 Based on these observations, it is conceivable that similar to the situation in 
 Drosophila , the machinery promoting asymmetric cell division may play an 
 evolutionary conserved role in cell cycle control and tumor suppression. Indeed, 
mammalian homologues of Baz, Par6, DaPKC, Lgl, Numb and Brat have been 
shown to regulate asymmetric cell fate determination and tumor suppression. Thus, 
mammalian aPKC, Par3, and LGN are involved in asymmetric division of basal 
epidermal progenitor cells of the skin and their dysregulation can lead to skin cancer 
(Lechler and Fuchs  2005  ) . The Brat homologue TRIM3 has been identi fi ed as a 
candidate brain tumor suppressor gene (Boulay et al.  2009  ) , indicating that Brat/
TRIM-NHL proteins act in a conserved genetic pathway regulating stem/progenitor 
cell self-renewal and differentiation. Moreover, there is evidence for the asymmetric 
segregation of vertebrate NUMB homologues (Wodarz and Huttner  2003  )  that seem 
to act as asymmetric cell fate determinants. Double knockouts of Numb and Numb-
like in the mouse dorsal forebrain have been found to lead to impaired neuronal 
differentiation, hyper-proliferation of neural progenitors, and delayed cell-cycle 
exit (Petersen et al.  2002,   2004 ; Li et al.  2003  ) . In addition, loss of Lgl1/Mlgl/Hugl, 
one of the two Lgl homologues in mice, results in failure to asymmetrically localize 
the fate determinant Numb and leads to severe brain dysplasia as neural progenitor 
cells fail to exit the cell cycle (Klezovitch et al.  2004  ) . Reciprocally, a 
 well-characterized human tumor suppressor, the kinase Lkb1, whose  loss-of-function 
phenotype results in Peutz-Jeghers syndrome, regulates cell polarity in worms,  fl ies 
and humans and might be involved in asymmetric cell division as well (Marignani 
 2005  ) . In addition, recent data provide compelling evidence that also mammalian 
homologues of Notch, NuMa and dynactin (Williams et al.  2011  )  as well as 
Inscuteable (Postiglione et al.  2011  )  contribute to maintain a proper balance between 
neuronal proliferation and differentiation in the developing mouse neocortex. Thus, 
similar to the situation in  Drosophila , asymmetric cell division in mammals appears 
to be involved in the regulation of stem and progenitor cell self-renewal, and the 
regulation of cell cycle progression and growth control.   
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    4.4   Conclusions and Perspectives 

 Studies using model organisms, including the  C. elegans ,  Drosophila melanogaster , 
and mice have revealed insights into the molecular mechanisms underlying asym-
metric stem cell division. These studies identi fi ed key essential, consecutive steps of 
asymmetric cell division that are characterised by symmetry break, polarity forma-
tion, mitotic spindle orientation and segregation of cell fate determinants; these 
processes are mediated by evolutionary conserved molecules, including Aurora-A, 
aPKC, Mud/NuMa, Lgl, Numb and Brat/TRIM-NHL proteins. Asymmetric stem 
cell division lies at the interface of stem cell self-renewal and differentiation and 
therefore regulates the number and identity of differentiating progeny. Therefore, 
asymmetric cell division is of major therapeutic interest in regenerative medicine as 
asymmetrically dividing stem cells provide a powerful source for targeted cell 
replacement and tissue regeneration. For therapeutic applications, it will now be 
important to determine further details of the machinery involved, in order to be able 
to manipulate asymmetric stem cell division in vitro for the unlimited generation of 
differentiated cells at will. Several key questions need to be addressed and answered 
in order to achieve these goals. These include elucidation of the mechanisms and 
molecules that de fi ne and maintain stemness; to identify molecules that regulate the 
binary switch between self-renewal and differentiation; to determine the mecha-
nisms that direct cell type speci fi c differentiation; and to determine ways how an 
in vitro generated cell can integrate into an existing cellular context while remaining 
differentiated. Elucidating the molecular mechanisms regulating asymmetric stem 
cell division will signi fi cantly contribute to the successful application of stem cells 
in regenerative medicine.      
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  Abstract   The fertilized egg is a totipotent stem cell that can produce all cell types 
of the organism, including the embryonic and the extraembryonic tissues. As devel-
opment proceeds, cells lose their capacity to proliferate and differentiate into differ-
ent cell types, and gain specialization. However, advances in stem cell biology have 
provided new insights into development and regenerative medicine. For example, 
neural stem/progenitor cells have been found to exist not only during embryonic 
development, but also in the adult nervous system of mammals. Newborn neurons 
in the adult brain integrate into pre-existing neural circuits and exhibit functional 
similarity to neurons born during development. Moreover, although development of 
an organism proceeds irreversibly from embryo to adult with cells differentiating 
progressively toward specialized cell types, somatic cells can be arti fi cially repro-
grammed to adopt a different cell fate, as exempli fi ed by induced pluripotent stem 
cells (iPS cells) and induced neuronal cells (iN cells). Here, we summarize the cur-
rent views of stem cell biology during embryogenesis and adult neurogenesis. We 
also discuss therapeutic potential of stem cells, focusing on retinal development and 
regeneration.      
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    5.1   Stem Cell Hierarchy    

 Stem cells    and progenitor cells possess the remarkable ability to give rise to multiple 
cell types while maintaining their capacity to self-renew, or produce more stem or 
progenitor cells (Gotz and Huttner  2005 ; Morrison and Kimble  2006  ) . This is accom-
plished in part through different types of cell division   . Symmetric divisions of stem 
cells increase the stem cell population, whereas asymmetric divisions produce 
another stem cell and a progenitor cell that is more restricted in its differentiation 
capacity (Fig.  5.1a, b ). In contrast, symmetric    divisions of progenitor cells, which are 
generally thought to be in a slightly more differentiated state than stem cells, gener-
ate two daughter cells that are identical to each other but different from the mother 
cell (Fig.  5.1c ). Asymmetric    divisions of progenitor cells generate two types of dif-
ferentiated daughter cells that are different from the mother cell (Fig.  5.1d ).  

 During development, cells differ in their ability to differentiate into other cell 
types. The fertilized egg is totipotent   , meaning that it can develop into every cell 
type in an organism (Fig.  5.2 ). However, with successive divisions, cells in the 
embryo lose their potential and progressively become more and more specialized. 
For example, the pluripotent inner cell mass (ICM) of the mammalian blastocyst 
stage embryo gives rise to cells in all three embryonic germ layers, but not to the 
extraembryonic trophoblast lineage (Niwa  2007  ) . Embryonic stem    (ES) cells, which 
are cell lines derived from the ICM that can grow inde fi nitely  in vitro  (Evans and 

  Fig. 5.1    Symmetric and 
asymmetric divisions of stem cells. 
( a ) Symmetric division of stem 
cells generates two identical copies 
of the mother cell. ( b ) Asymmetric 
division of stem cells produces one 
new stem cell that is identical to 
the mother cell and another cell 
that is destined to differentiate 
along a particular lineage. ( c ) 
Symmetric division of progenitor 
cells generates two daughter cells 
that are identical to each other but 
different from the mother cell. ( d ) 
Asymmetric division of progenitor 
cells generates two types of 
differentiated daughter cells.  Gray : 
stem cell,  Blue : progenitor cell, 
 Red  or  green : differentiated cell       
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Kaufman  1981  ) , are also pluripotent. Within each germ layer, multipotent stem cells 
or progenitor cells are able to develop into several different cell types, but are more 
restricted in potential than ICM or ES cells. For example, a cell in the ectoderm 
gives rise to neural stem cells or progenitor cells, which divide to produce three 
types of terminally differentiated cells: neurons, astrocytes, and oligodendrocytes. 
Within tissues and organs, bipotent cells are able to develop into two cell types. 
Finally, when a cell’s potential has been completely restricted, it is committed to 
undergo terminal differentiation into only a single cell type.  

 Although the development of an embryo into an adult normally entails progres-
sive and irreversible differentiation of cells into their  fi nal, specialized fates, adult 
somatic cells    can be arti fi cially reprogrammed and returned to the naive state of 
pluripotency found in the early embryo (Fig.  5.2 ). Over 50 years ago, Dr. J. Gurdon 
and his colleagues showed that frog somatic cells can be reprogrammed after fusion 
with an enucleated oocyte, and that they can develop into a tadpole (Gurdon  1962  ) . 
Reprogramming in vertebrates was also demonstrated by the creation of cloned 
animals from sheep (Campbell et al.  1996  )  and mouse (Wakayama et al.  1998  )  
somatic cells fused with enucleated oocytes. Human and mouse ES cells can also 
reprogram somatic cells by cell fusion or treatment with cell extracts (Tada et al. 
 2001  ) . These results indicate that somatic cells can become pluripotent following 
exposure to certain reprogramming factors    present within oocytes and ES cells. 

 In 2006, Dr. S. Yamanaka and his colleagues identi fi ed these reprogramming fac-
tors (Takahashi and Yamanaka  2006  ) . Forced expression of four transcription fac-
tors, Oct3/4, Sox2, Klf4, and cMyc, into mouse embryonic and adult  fi broblasts was 

  Fig. 5.2    Stem cell hierarchy during development and reprogramming. As development proceeds, 
cells lose their capacity to proliferate and differentiate into different cell types, and gain specializa-
tion. Normally, cells undergo progressive and irreversible differentiation into specialized cell types 
( white arrow ). However, differentiated cells can be arti fi cially reprogrammed and returned to the 
naive state of pluripotency found in the early embryo, as exempli fi ed by iPS cells ( black arrow )       
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able to return somatic cells to a pluripotent state. They named these cells induced 
pluripotent stem    (iPS) cells. The  fi rst generation of iPS cells resembled ES cells in 
terms of morphology, proliferation, expression of some ES cell marker genes, and 
formation of teratomas. However, the global gene expression pattern of iPS cells 
differed from that of ES cells, and these iPS cells failed to produce adult chimeric 
mice. In 2007, germline transmission was achieved with mouse iPS cells (Maherali 
et al.  2007 ; Okita et al.  2007 ; Wernig et al.  2007  ) . The current generation of iPS 
cells has been shown to be functionally equivalent to ES cells; they express ES cell 
markers, have similar gene expression pro fi les, form teratomas, and contribute to all 
cell types in chimeric animals, including the germline. Of note, recent evidence has 
demonstrated small but reproducible differences between ES cells and iPS cells, 
including differentiation potential, tumorigenic potential, gene expression pro fi les, 
epigenetic modi fi cation, expression of imprinted genes, copy number variation, pro-
teomes and phosphoproteomes (Gore et al.  2011 ; Hussein et al.  2011 ; Kim et al. 
 2010 ; Lister et al.  2011 ; Phanstiel et al.  2011 ; Polo et al.  2010  ) . The molecular 
mechanisms underlying the reprogramming process are poorly understood 
(Hochedlinger and Plath  2009 ; Yamanaka  2009  ) . 

 iPS cell technology has opened up the possibility of directly reprogramming 
somatic cells to adopt a different cell fate. In 2010, nuclear reprogramming allowed 
direct conversion of somatic cells into neurons, cardiomyocytes, and blood cell pro-
genitors without  fi rst passing through a pluripotent state (Ieda et al.  2010 ; Szabo 
et al.  2010 ; Vierbuchen et al.  2010  ) . This concept, however, was not new. A pioneer-
ing study performed in 1898 by Weintraub et al. demonstrated that the expression of 
a single transcription factor, MyoD, is suf fi cient to convert  fi broblasts and numerous 
other cell types into skeletal muscle cells (Weintraub et al.  1989  ) . Based on these 
 fi ndings, it is likely that the key reprogramming factors are developmental regula-
tors of the target cell lineage. For example, a combination of neural lineage – speci fi c 
transcription factors, Ascl1, Brn2, and Myt1l, was used to convert mouse  fi broblasts 
directly into functional neurons, known as induced neuronal (iN) cells (Vierbuchen 
et al.  2010  ) . Moreover, the combination of Ascl1, Brn2, Myt1l, Lmx1a, and FoxA2 
or of Ascl1, Nurr1, and Lmx1a can induce midbrain dopaminergic neurons (Caiazzo 
et al.  2011 ; P fi sterer et al.  2011  ) . Future studies will focus on identifying the mini-
mal set of factors suf fi cient for reprogramming for each cell type, particularly thera-
peutically signi fi cant cell types (Osakada  2011  ) .  

    5.2   Neural Development    

 The construction of the central nervous system    (CNS) is an integrated series of 
developmental steps, beginning with the decision of a few early embryonic cells to 
adopt a neural fate. Following fertilization, multiple cell divisions generate a large 
number of cells from the fertilized oocyte. The three germ layers, the ectoderm   , 
endoderm   , and mesoderm   , arise through complex movements during gastrulation. 
Ectodermal cells give rise to different tissue derivatives, depending on the axial 
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position. The dorsal-most ectoderm thickens to form the neural plate, which through 
a morphogenetic process gives rise  fi rst to the neural tube and subsequently to the 
CNS. Ectodermal cells at the ventral edges of the neural plate, the neural folds, 
come to lie at the dorsal surface of the neural tube during neurulation. Neural crest 
cells delaminate from this population of cells and migrate out to give rise to most 
of the peripheral nervous system. The ectodermal cells lying more ventral to the 
cranial neural plate form the placodes from which the sensory ganglia will arise. 
Finally, ectodermal cells on the extreme ventral side of the embryo give rise to the 
epidermis. 

 The ventral ectoderm undergoes epidermal differentiation in response to bone 
morphogenetic protein (BMP) ligands    (Fig.  5.3 ). BMPs activate intracellular pro-
teins, such as Smads, that regulate the transcription of  Gata  and  Msx  genes, which 
encode transcription factors. Gata and Msx proteins then inhibit  Sox  transcription to 
promote epidermal fate. The dorsal mesoderm, known as Spemann’s organizer, 
expresses multiple BMP antagonists, such as Chordin, Noggin, and Follistatin, that 
induce neural tissue by inactivating Smad signaling (Hemmati-Brivanlou et al. 
 1994 ; Hemmati-Brivanlou and Melton  1994 ; Lamb et al.  1993 ; Sasai et al.  1994 ; 
 1995  ) . This results in Sox protein expression, which directly activates proneural 
gene transcription.  

 After neural induction, the embryonic CNS is patterned along its anterior–posterior, 
dorsal–ventral, and left–right axes. The neural tube       is regionalized along the antero-
posterior axis, with most of the neural tube giving rise to the spinal cord and the 
rostral end enlarging to form the three primary brain vesicles: the prosencephalon, 

  Fig. 5.3    BMP signaling and the speci fi cation of ectodermal cell fates. Ectodermal cells exposed 
to BMP4 differentiate into epidermal ectoderm cells. Blockade of BMP4 signaling by Chordin, 
Noggin, or Follistatin induces the formation of anterior neural plate tissue. Exposure of this tissue 
to Wnt, retinoic acid (RA), or FGF leads to the generation of posterior neural plate tissue       
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mesencephalon, and rhombenchephalon. These become further subdivided into  fi ve 
vesicles. The prosencephalon       gives rise to both the telencephalon and diencephalon. 
The diencephalon eventually produces the thalamus, hypothalamus, and retina 
(the neural retina and retinal pigmented epithelium). The mesencephalon       gives rise 
to the midbrain, and the rhombencephalon       divides into the metencephalon and 
myelencephalon, which form the cerebellum and medulla, respectively. 

 Neural induction causes the early neural plate    to adopt an anterior neural fate 
bias. The presumptive neural plate is then patterned by caudalizing signals to generate 
different brain regions (Fig.  5.3 ). Diffusible morphogens secreted from a localized 
source establish concentration and activity gradients that act as a positional code to 
generate distinct progenitor domains, and ultimately to specify subtype identity. 
These signaling molecules restrict the expression of speci fi c transcriptional factors, 
which go on to regulate the expression of downstream target genes that de fi ne 
regional identity within the nervous system. 

 The Wnt, retinoic acid, and FGF signaling pathways play a major role in specifying 
the anterior–posterior axis (Fig.  5.4a ). Concomitant with anteroposterior extension 
and patterning of the neural plate, the dorsoventral axis is also patterned. Cell fate 
determination along the dorsal–ventral axis involves the action of two opposing 
signaling molecules: Sonic hedgehog, which originates from the notochord and 
later from the  fl oor plate, and TGF- b  proteins, especially BMP4, BMP7, and Activin, 

  Fig. 5.4    Patterning of the nervous system. ( a ) Gradients of Wnt and retinoic acid (RA) specify the 
anterior–posterior axis of the neural tube. Wnt and RA posteriorize the neural tube. Suppression of 
Wnt and RA causes anteriorization of the neural tube. ( b ) Gradients of BMP and Shh specify the 
dorsal–ventral axis of the neural tube. Shh is expressed  fi rst in the notochord and later in the 
 fl oorplate, and induces ventral differentiation in the neural tube. BMP is expressed in the ectoderm 
overlying the neural tube and then in the dorsal neural tube cells, and induces dorsal differentiation 
of the neural tube       
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which originate from the dorsal ectoderm and later from the roof plate (Fig.  5.4b ). 
Patterning along the left–right axis also occurs during gastrulation, at the same time 
as anterior–posterior and dorsal–ventral axis patterning. A leading candidate for 
initiating asymmetry is Activin, which acts through Nodal and Lefty before any 
morphological differences are evident.  

 Stem cells    are de fi ned by their ability both to self-renew and to produce diverse 
cell types. During development, neural stem cells that arise from the neuroectoderm 
proliferate throughout the induction and patterning of the neural primordium. Stem 
cells in the early embryonic nervous system undergo many symmetric    cell divisions 
to generate more stem cells, while those in the late embryo undergo asymmetric    
divisions to generate progenitor cells    that are more restricted in their differentiation 
capacity (Fig.  5.1a, b ). These progenitor cells eventually exit the cell cycle and differ-
entiate into neurons, astrocytes, and oligodendrocytes (Fig.  5.1c, d ). 

 The fates of neural stem/progenitor cells are restricted temporally, with early 
neural progenitors generating neurons but not glia, and later embryonic and adult 
neural progenitors generating both neurons and glia. However, these late neural 
progenitors do not produce early-born neurons, such as forebrain cholinergic neu-
rons, midbrain dopaminergic neurons, and spinal motor neurons. In addition, neural 
progenitor cells maintain the regional identity of their origin; for example, it is 
dif fi cult to transform telencephalon-derived neural progenitors into retinal neurons 
and midbrain dopaminergic neurons.  

    5.3   Retinal Development    

 The eye primordium can be identi fi ed as early as the neural plate stage. As the neural 
plate rolls into a tube, the lateral aspects of the anterior neural tube evaginate to 
form paired optic vesicles, which then fold inward to form bilayered optic cups 
(Fig.  5.5a–d ). The inner layer of the optic cup develops into the neural retina, while 
the outer layer develops into the retinal pigmented epithelium (RPE) (Fig.  5.5e–i ).  

 Eye  fi eld speci fi cation in the neural plate is regulated by a set of transcription fac-
tors, Pax6, Rx/Rax, Six3, Six6/Optx2, and Lhx2. Functional inactivation of these eye 
 fi eld transcription factors    (EFTFs) in frogs,  fi sh, rodents, and humans results in loss 
or abnormalities of the eye. Conversely, overexpression of  Pax6, Rx/Rax, Six3,  and 
 Six6/Optx2  expands or induces ectopic eye tissues in the vertebrate nervous system. 
For example,  Pax6  is expressed in the anterior neural plate at the end of gastrulation 
and is then restricted to the optic vesicle and lens ectoderm. Injection of  Pax6  mRNA 
into  Xenopus  embryos induces ectopic eyes, indicating that  Pax6     is suf fi cient for eye 
formation (Chow et al.  1999  ) . In addition, mutations in  Pax6  result in eye malforma-
tions and reduced eye size.  Rx/Rax  is expressed in the presumptive eye  fi eld as well 
as the ventral diencephalon (Furukawa et al.  1997a  ) .  Rx  −/−  mice completely lack eyes, 
whereas overexpression of Rx in  Xenopus  and zebra fi sh embryos results in the for-
mation of ectopic retinal tissue and hyperproliferation of the neural retina and the 
RPE (Andreazzoli et al.  1999 ; Chuang et al.  1999 ; Mathers et al.  1997  ) .  Six3     is 
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expressed in the anterior neural plate and in the presumptive eye  fi eld (Lagutin et al. 
 2001 ; Oliver et al.  1995  ) .  Six3  plays a critical role in the formation of the forebrain, 
as mouse embryos lacking Six3 function lack most of the head structures anterior to 
the midbrain (Lagutin et al.  2003  ) . The speci fi c role of  Six3  in eye development, 
however, remains unknown due to the early head truncation phenotype of  Six3  
mutants. In addition,  Six6/Optx2  plays a role in proliferation of retinal progenitors. 
These EFTFs interact directly with one another and form a self-regulating feedback 
network, though it remains unclear how this coordinated expression is established. 

  Fig. 5.5    Development of the eye. ( a – f ) Mouse embryos at embryonic days (E)9.5 ( a ), E10.0 
( b ), E10.5 ( c ), E11.5 ( d ), E13.5 ( e ) and E18.5 ( f ). ( g ) Adult eyes. ( h ,  i ) Magni fi ed views of  boxed 
region  in panel ( g ). ( h ) Ciliary body and iris. ( i ) Cell types and layers in the adult retina.  RPE  retinal 
pigmented epithelium,  ONL  outer nuclear layer,  INL  inner nuclear layer,  GCL  ganglion cell layer 
(Figures from Experimental Medicine,  2006  by    Osakada and Takahashi)       
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 Little is known about the extracellular signaling molecules that regulate the 
EFTFs. Wnt1 and Wnt8b activate a Wnt/ß-catenin pathway, and cause reduction of 
the eye  fi eld by suppressing Rx and Six3 expression when overexpressed in  Xenopus  
embryos. Wnt11 activates the non-canonical Wnt pathway and causes enlarged eyes 
when overexpressed in  Xenopus  (Cavodeassi et al.  2005  ) . Overexpression of 
Frizzled-3, a Wnt receptor, also results in formation of multiple ectopic eyes in 
 Xenopus.  In mutants lacking the function of Dickkopf-1 (Dkk-1), an inhibitor of 
canonical Wnt signaling, cranial structures anterior to the midbrain are lost, includ-
ing the eye (Mukhopadhyay et al.  2001  ) . In  Xenopus , the BMP inhibitor Noggin 
induces the expression of EFTFs, including Pax6, Rx, Six3, Six6, and Lhx2 (Zuber 
et al.  2003  ) . In addition, overexpression of ectonucleoside triphosphate diphospho-
hydrolase 2 (E-NTPDase2), an ectoenzyme that converts ATP to ADP, causes ecto-
pic eye-like structures in  Xenopus , while downregulation of endogenous  E-NTPDase2  
decreases  Rx1  and  Pax6  expression (Masse et al.  2007  ) . Alterations to the 
 E-NTPDase2  locus on human chromosome 9 cause severe head and eye defects. 
Finally, Notch    signaling in retinal speci fi cation has been also reported. Overexpression 
of a constitutively active Notch internal cytoplasmic domain (NICD) induces 
expression of  Pax6  and the formation of ectopic eyes in  Xenopus  (Onuma et al. 
 2002  ) . Hes1, a component of the Notch signaling pathway, is expressed in the ante-
rior neural plate and subsequently in the optic cup (Lee et al.  2005  ) . Loss of  Hes1  
alone results in reduced eye size, while combined loss of  Hes1  and  Pax6  or  Hes1  
and  Hes5  prevents optic cup formation (Hatakeyama et al.  2004 ; Lee et al.  2005  ) . 

 During retinal development, stem cells proliferate extensively to increase their 
cell number and give rise to distinct subtypes of cells over time by changing their 
competency. The seven cell types in the retina are born from retinal stem cells in the 
following temporal sequence: retinal ganglion cells, cone photoreceptors, amacrine 
cells, and horizontal cells, followed by rod photoreceptors, bipolar cells, and Müller 
glia. These cells are organized into three cell layers: rod and cone photoreceptors in 
the outer nuclear layer (ONL), Müller glia, horizontal, bipolar, and amacrine cells 
in the inner nuclear layer (INL), and ganglion and displaced amacrine cells in the 
ganglion cell layer (GCL) (Fig.  5.5i ). 

 The differentiation of each retinal cell type is a highly complex process requir-
ing both extrinsic and intrinsic factors. Intrinsic factors    include combinations of 
bHLH and homeodomain transcription factors (Table  5.1 ) that work together to 
specify retinal cell subtype. It is likely that homeodomain factors    regulate layer 
speci fi city but not neuronal fate, while bHLH proteins determine neuronal fate 
within the homedomain factor–speci fi ed layers. For example, the generation of 

   Table 5.1    Intrinsic factors regulating retinal cell differentiation   

 Cell type  Homeobox genes  bHLH genes 

 Photoreceptor cells  Crx/Otx2  NeuroD/Mash1 
 Horizontal cells  Pax6/Six3/Prox1  Math3 
 Bipolar cells  Chx10  Mash1/Math3 
 Amacrine cells  Pax6/Six3  NeuroD/Math3 
 Ganglion cells  Pax6  Math5 
 Müller glia  Rx  Hes1/Hes5 
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photoreceptors is regulated by Crx, Otx2 (homeobox gene products), and NeuroD 
(basic helix-loop-helix proteins). Mice lacking  Crx  function exhibit de fi cits in 
outer segment formation in their photoreceptors (Chen et al.  1997 ; Furukawa et al. 
 1997b  ) . On the other hand, overexpression of Crx in P0 progenitors promotes the 
photoreceptor formation and inhibits amacrine fate  in vivo . Conditional  Otx2  
knockout mice lack photoreceptor differentiation (Nishida et al.  2003  ) , while loss 
of NeuroD, which is expressed in photoreceptors and amacrine cells (Morrow et al. 
 1999  ) , results in moderately decreased photoreceptor number.  

 Extrinsic factors    regulating retinal differentiation have also been identi fi ed 
(Table  5.2 ). For example, retinoic acid    promotes photoreceptor differentiation, and 
inhibition of endogenous retinoic acid synthesis results in a reduction in rod differ-
entiation (Hyatt et al.  1996  ) . The amino acid taurine    promotes rod differentiation 
via the  a 2 glycine receptor and the GABA 

A
  receptor (Altshuler and Cepko  1992 ; 

Young and Cepko  2004  ) .  
 Once cells are committed to a particular fate, they migrate to stereotyped posi-

tions throughout the laminated retina and establish synaptic connections to other 
neurons. Synapse formation proceeds centrifugally from the inner to the outer retina, 
 fi rst among the horizontal connections within the plexiform layers, followed by 
vertical connections between layers.  

    5.4   Adult Neurogenesis    

 For many decades, it was believed that neurons in the adult mammalian CNS could 
not regenerate after injury, as postulated by Ramón y Cajal in 1913. However, recent 
evidence has overturned this long-held dogma. Neural stem cells    are present not 
only during embryonic development, but also in the adult brains of mammals, 
including humans (Eriksson et al.  1998 ; Reynolds et al.  1992 ; Reynolds and Weiss 

   Table 5.2    Extrinsic factors regulating retinal cell differentiation   

 Cell type  Soluble factor 

 Photoreceptor cells  (+) Retinoic acid 
 (+) Taurine, 
 (+) Thyroid hormone 
 (+) Shh 
 (+) FGF 
 (−) CNTF 

 Horizontal cells 
 Bipolar cells  (+) CNTF 
 Amacrine cells 
 Ganglion cells  (−) Shh 
 Müller glia  (−) Retinoic acid 

 (−) FGF 

  (+) promotes differentiation, (−) inhibits differentiation  
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 1992 ; Sanai et al.  2004  ) . The production of neurons occurs primarily during nervous 
system development, but throughout adulthood, new neurons are generated in two 
locations of the brain under normal conditions: the subventricular zone    (SVZ) of the 
lateral ventricles and the subgranular zone    (SGZ) of the dentate gyrus in the 
hippocampus. 

 Adult neural stem cells can self-renew and are multipotent, differentiating into 
three types of neural cells: neurons, astrocytes, and oligodendrocytes. Neurons born 
in the adult SVZ migrate over a great distance through the rostral migratory stream 
and become granule neurons and periglomerular neurons in the olfactory bulb (Lois 
and Alvarez-Buylla  1994 ; Lois et al.  1996  ) . Neurons born in the adult SGZ migrate 
into the granule cell layer of the dentate gyrus and become dentate granule cells. 
These newborn neurons    in the adult brain integrate into the existing circuitry, and 
are able to receive and send functional signals similar to neurons born during 
embryogenesis. Increasing evidence suggests that adult neural stem cells signi fi cantly 
contribute to specialized neural functions under physiological and pathological con-
ditions, such as learning, memory, olfaction, depression, epilepsy, and stroke. Adult 
neurogenesis    can be divided into three major steps: proliferation, neuronal determi-
nation, and maturation. These different developmental stages are regulated by dis-
tinct processes. 

 Though the existence of neural stem cells in the adult brain has been established, 
their precise identity remains controversial, because the SVZ and SGZ are hetero-
geneous in terms of cell morphology and marker expression (Chojnacki et al.  2009  ) . 
In the adult SVZ, neural stem cells correspond to SVZ astrocytes (type B cells), 
which are derived from radial glia, the neural stem cells of the embryonic and early 
postnatal brain (Doetsch et al.  1997,   1999  ) . Type B cells    generate transit amplifying 
cells (type C cells) that give rise to young neurons or neuroblasts (type A cells). 
Type B cells express GFAP, and are quiescent and less susceptible to anti-mitotic 
treatment (Doetsch et al.  1999  ) , while type C cells    are most frequently labeled with 
BrdU. Type A cells    express PSA-NCAM and doublecortin, both of which are asso-
ciated with neuronal migration. On the other hand, in the adult SGZ, radial glia-like 
cells, whose cell bodies are located in the SGZ and whose long processes extend 
through the granule cell layer into the inner molecular layer, are neural stem cells 
(type 1 cells) (Fig.  5.6 ). Type 1 cells    are infrequently labeled by BrdU and generate 
type 2 cells   , which possess short processes and high proliferative activity. Type 1 
cells express GFAP, while type 2 cells express Nestin but not GFAP.  

 Neuroblasts    originating from SVZ progenitors migrate tangentially toward the 
olfactory bulb along the rostral migratory stream    (Lois and Alvarez-Buylla  1994 ; 
Lois et al.  1996  ) . Once they arrive in the olfactory bulb, migrating neuroblasts 
detach from the chain and migrate radially into the granule and glomerular cell lay-
ers of the olfactory bulb. Newborn neurons go through morphological and physio-
logical development, and integrate as granule neurons in the granule cell layer and 
as periglomerular neurons in the glomerular layer. Interestingly, recent evidence has 
demonstrated that SVZ type B cells are heterogeneous and predetermined to gener-
ate speci fi c types of neurons in the olfactory bulb (Merkle et al.  2007  ) . SVZ type B 
cells in different locations within the germinal region generate different types of 
interneurons. 
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 During the maturation process in adult neurogenesis   , the  fi rst functional synaptic 
innervation of progenitor cells by hippocampal circuitry is GABAergic (Fig.  5.6 ). 
Similar to immature neurons in the developing brain, newborn granule cells initially 
become depolarized in response to GABA    because of their higher intracellular con-
centration of chloride ions (Ben-Ari  2002 ; Ge et al.  2006  ) . The response to GABA 
switches from depolarization to hyperpolarization at 2–4 weeks after neuronal birth, 
which coincides with the growth of dendritic spines and the onset of glutamatergic 
responses. Within this time window, new neurons have lower thresholds for long-
term potentiation (Ge et al.  2007 ; Schmidt-Hieber et al.  2004  ) . Newborn neurons    in 
the dentate gyrus display typical features of mature granule cells at 4 weeks of age, 
but they continue to change both physiologically and morphologically. They have 
round cell bodies in the GCL, complex spiny dendrites reaching the hippocampal 
 fi ssure, and an axon that projects through the hilus toward CA3. The amplitude of 
long-term potentiation is greater in new neurons 4–6 weeks after birth. This may be 
mediated by the NR2B subunit of the NMDA receptor. Once they mature, newborn 
granule cells receive glutamatergic (excitatory) and GABAergic (inhibitory) inputs, 
send functional synaptic projections to CA3 pyramidal cells and hilar interneurons 
by releasing the neurotransmitter glutamate, and become completely integrated into 
the hippocampal circuitry in the dentate gyrus. 

 Adult neurogenesis contributes to both the plasticity    and regenerative capacity    of 
the adult brain, and opens the possibility for potential future therapeutic applica-
tions based on the manipulation of this regenerative capacity. In particular, a better 
understanding of the basic mechanisms regulating adult neurogenesis may provide 

  Fig. 5.6    Developmental stages in adult hippocampal neurogenesis. Development of newly gener-
ated neurons in the dentate gyrus proceeds through a series of stages characterized by expression 
of speci fi c markers, morphogenesis, synapse formation, acquisition of electrophysiological prop-
erties, and functional integration into neural circuits.  LTP  long-term potentiation       
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the foundation for treating neurodegenerative diseases, since adult neurogenesis in 
both the SVZ and SGZ declines during aging. Many lines of evidence indicate that 
neurotransmitters (GABA, glutamate, dopamine, acetylcholine and serotonin) 
(Cameron et al.  1995 ; Hoglinger et al.  2004 ; Liu et al.  2005  ) , hormones (corticos-
teroids and prolactin), growth factors (FGF, EGF, BDNF, CNTF, IGF, VEGF, Shh, 
and Wnt) (Lai et al.  2003 ; Lie et al.  2005  ) , and physiological and pathological stimuli 
(environmental enrichment, electroconvulsive shock stimulation, stress and seizures) 
(Kempermann et al.  1997 ; Mirescu and Gould  2006 ; van Praag et al.  1999 ; Warner-
Schmidt and Duman  2006  )  affect adult neurogenesis.  

    5.5   Retinal Regeneration    

 Regeneration in the CNS necessitates the reacquisition of pre-existing neural struc-
tures and function following injury and disease. The strategies for regeneration can 
be classi fi ed into two approaches: (i) activation of endogenous neural stem cells and 
(ii) transplantation of lost cell types (Goldman  2005 ; Osakada et al.  2010 ; Osakada 
and Takahashi  2009  ) . 

 Visual impairment is usually caused by speci fi c loss of different cell populations 
within the retina (Osakada et al.  2010 ; Osakada and Takahashi  2009  ) . For example, 
glaucoma    is a retinal degenerative disease in which the retinal ganglion cells (RGCs) 
forming the optic nerve are selectively lost. In retinitis pigmentosa   , photoreceptors    
are lost due to genetic mutation (Hartong et al.  2006 ; Wright et al.  2010  ) . In age-
related macular degeneration    (AMD), degeneration of the retinal pigmented epithe-
lium    (RPE) is followed by loss of photoreceptors (Rattner and Nathans  2006  ) . Since 
 fi rst order neurons are selectively affected in retinitis pigmentosa and AMD, the 
neural circuitry mediating higher order visual processing is maintained in the early 
phase of degeneration (Bi et al.  2006 ; Busskamp et al.  2010 ; Humayun et al.  2003 ; 
Lagali et al.  2008 ; Mazzoni et al.  2008  ) . Thus, repair of photoreceptor or RPE cells 
may permit recovery of visual function. It should be noted that retinal regeneration    
differs from regeneration of the optic nerve. Retinal regeneration aims to replace 
photoreceptors and reconstruct their synapses with proximal secondary neurons 
(bipolar cells and horizontal cells) within the retina. In contrast, optic nerve regen-
eration    to treat glaucoma and other diseases requires replacement of RGCs and 
reconstruction of distant synaptic connections to the brain. 

 The capacity for adult neurogenesis in the retina is greatest in  fi sh and amphibians. 
The ciliary margin zone (CMZ) of  fi sh and amphibians contributes to retinal growth 
throughout the animal’s life. In response to damage, retinal progenitors       in the CMZ 
generate new retinal neurons in amphibians,  fi sh, and birds. Thus, the CMZ resem-
bles other regions containing neural stem cells, like the SVZ and the SGZ. 
Interestingly, sphere culture methods have shown that retinal stem cells persist in 
the mammalian ciliary epithelium (Ahmad et al.  2000 ; Tropepe et al.  2000  ) . 
Moreover, iris cells from birds and mammals can generate retinal neurons  in vitro  
(Haruta et al.  2001 ; Sun  2006  ) . In amphibians, the RPE is the primary source of new 
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retinal progenitors (Reh et al.  1987  ) . After removal of the retina, the RPE loses 
pigmentation and proliferates to generate two new epithelial layers, a pigmented 
layer and a non-pigmented layer. The non-pigmented layer begins to express genes 
typical of retinal progenitors and undergoes extensive cell division to produce neu-
rons for the new retina (Reh and Nagy  1987  ) . In  fi sh, birds, and mammals, Müller 
glia act as endogenous progenitors and generate new neurons in response to damage 
(Fischer and Reh  2001 ; Ooto et al.  2004  ) . 

 In adult mammals, Müller glia       have the potential to generate retinal neurons after 
injury  in vivo  (Karl et al.  2008 ; Ooto et al.  2004  ) . The neural stem cell properties of 
Müller glia have been also veri fi ed  in vitro . Dissociated Müller glia derived from 
injured retinas form neurospheres  in vitro , which can differentiate into neurons and 
glia (Das et al.  2006  ) . In addition, Müller glia–derived progenitors can be identi fi ed 
and puri fi ed as a side population of cells by the Hoechst dye ef fl ux, another charac-
teristic of progenitor cells (Das et al.  2006  ) . After transplantation into the retina, 
these Müller glia – derived neurosphere cells can differentiate into retinal neurons. 

 Several lines of evidence support a close relationship between Müller glia and 
retinal progenitors. Recent gene expression pro fi ling studies have demonstrated a 
large degree of overlap in the genes expressed in the Müller glia and late retinal 
progenitors. Moreover, the proliferation and differentiation of Müller glia–derived 
progenitors can be regulated by both intrinsic (homeobox and basic helix-loop-helix 
genes) and extrinsic (Wnt, Notch, Shh, FGF, EGF and BDNF) factors, similar to 
what has been observed in retinal progenitors during eye development (Das et al. 
 2006 ; Harada et al.  2011 ; Osakada et al.  2007 ; Wan et al.  2007  ) . However, how 
Müller glia in the mammal reacquire neurogenic potential is still unknown. Several 
lines of evidence have demonstrated that activation of Shh, Wnt and Notch is 
suf fi cient to stimulate Müller glia to enter a neurogenic mode in the absence of 
injury (Del Debbio et al.  2010 ; Wan et al.  2007  ) . Epigenetic modi fi cations in Müller 
glia might be also involved in reacquisition of neurogenic potential. Since Müller 
glia are a potential source of regenerating cells in the adult mammalian retina, 
developing drugs that target these cells is a promising approach that may lead to 
new retinal regeneration therapies (Osakada and Takahashi  2009  ) . 

 For photoreceptor transplantation   , cells from the developing retina can be used 
as a donor source for transplantation. Importantly, integration of donor rod photore-
ceptors in the host retina requires rod photoreceptors corresponding to postnatal 
days 3–6 (MacLaren et al.  2006  ) . However, use of human fetal tissue presents ethi-
cal problems, and the quantity of available fetal retinal cells is limited. Thus,  in vitro  
expansion of retinal cells derived from stem/progenitor cells, if possible, would be 
ideal. When adult stem cells from the SGZ are transplanted into the developing eye, 
they integrate into the retina and exhibit morphologies and positions characteristic 
of Müller, amacrine, bipolar, horizontal, and photoreceptor cells (Takahashi et al. 
 1998  ) . However, none acquire end-stage markers unique to retinal neurons. Thus, 
adult brain–derived stem cells    cannot adopt retinal fates even when exposed to the 
cues present during retinal development. Although the brain and the retina are both 
generated from the ectodermally-derived neural tube, neural progenitors in different 
CNS regions differ in their competence to generate speci fi c types of mature neurons. 
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Alternatively, retinal progenitors in the embryonic retina can be expanded  in vitro  
and can differentiate into various types of retinal neurons; however, they lose their 
ability to differentiate into photoreceptors following massive expansion (Akagi 
et al.  2003  ) . 

 The somatic progenitors    in adult eye tissue are another potential source of donor 
cells. The ciliary marginal zone has been reported to contain stem cells even in 
adults (Ahmad et al.  2000 ; Tropepe et al.  2000  ) . When cultured  in vitro , these cells 
give rise to retinal neurons, including photoreceptors. Iris-derived cells    have also 
been reported to generate retinal neurons (Haruta et al.  2001  ) . Adult tissues offer the 
advantage that they can be used as autografts, which do not cause immune rejection. 
Autologous iris tissue can be feasibly obtained by peripheral iridectomy. Unlike the 
hippocampus, both the ciliary margin and the iris derive from the optic vesicle and 
optic cup, suggesting that they may be more competent than brain stem cells to 
generate retinal neurons. However, cells differentiated from adult somatic progeni-
tors in the eye express several photoreceptor marker proteins, but not all the genes 
responsible for photoreceptor function. Thus, it is likely that the generation of func-
tional photoreceptors requires a recapitulation    of the normal process of retinal 
development. 

 ES cells are another potential source of donor cells for retinal transplantation   . 
Based on our knowledge of embryonic development, we have developed methods of 
inducing stepwise differentiation of ES cells into retinal progenitors (Rx + , Mitf + , 
Pax6 + , Chx10 + ), photoreceptors (Crx + , Nrl + , rhodopsin + , recoverin + ) and RPE (Mitf + , 
ZO1 + , RPE65 + ). (Ikeda et al.  2005 ; Osakada et al.  2008,   2009a,   b  )  (Fig.  5.7a, b ). 
Surprisingly, optic cup structure can be induced from three-dimension culture of 
mouse ES cells, indicating some self-organizing capacity that might be harnessed 
(Eiraku et al.  2011  ) . Transplantation of ES cell–derived photoreceptor sheets might 
also be an effective approach (Aramant and Seiler  2004  ) . While somatic progenitors 
derived from the ciliary body or iris are limited in both differentiation potential and 
proliferation capacity, human ES cells can generate a large number of retinal cells. 
Indeed, transplantation of photoreceptors or RPE derived from human ES cells has 
been reported to restore some visual function (Lamba et al.  2009  ) . Regeneration of 
the RPE is also important because it is essential for photoreceptor function; indeed, 
RPE degeneration causes secondary photoreceptor degeneration. Several promising 
lines of evidence indicate that transplantation of ES cell–derived RPE can prevent 
photoreceptor degeneration in an RPE degeneration model, RCS rats (Haruta et al. 
 2004 ; Idelson et al.  2009 ; Lund et al.  2006  ) .  

 iPS cell technology provided a paradigm shift not only in our understanding of 
cell biology, but also in regenerative medicine approaches (Takahashi et al.  2007 ; 
Takahashi and Yamanaka  2006 ; Yu et al.  2007  ) . iPS cells are functionally equivalent 
to ES cells and therefore share the same advantages as ES cells: pluripotency and 
proliferation capacity. However, for clinical applications, they offer the additional 
bene fi ts of avoiding problems faced by human ES cell technology: the ethical prob-
lems surrounding the use of human embryos and the biological problem of tissue 
rejection (Takahashi et al.  2007 ; Yu et al.  2007  ) . Thus, patient-speci fi c, customized 
cell therapy might be possible. The retinal differentiation methods for ES cells are 
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applicable to iPS cells (Hirami et al.  2009 ; Osakada et al.  2009b  )  (Fig.  5.7c, d ). 
Transplantation of human iPS cell–derived RPE can rescue photoreceptors in an 
animal model of RPE degeneration and has a therapeutic potential (Carr et al.  2009  ) . 
By contrast, FACS-sorted photoreceptor cells from human iPS cells cannot inte-
grate into the normal mouse retina and are inef fi cient for functional restoration, 
although unsorted iPS cell–derived cells can be transplanted and survive in the ret-
ina (Lamba et al.  2010  ) . 

 Nuclear reprogramming of somatic cells directly to retinal neurons and RPE 
could be also a promising approach to obtain retinal cells more quickly and more 
safely (Osakada  2011  ) . One key issue in autologous transplantation for genetic dis-
orders is that genetic defects due to mutations or deletion need to be repaired before 
transplantation. Gene correction by homologous recombination or zinc  fi nger nuclease 
technology is feasible in mouse iPS cells and human iPS cells (Hanna et al.  2007 ; 
Liu et al.  2011 ; Yusa et al.  2011  ) . For successful retinal regeneration, methods of 

  Fig. 5.7    Differentiation of retinal cells from human ES and iPS cells. ( a ) Electron micrograph of 
human ES cell–derived RPE cells. ( b ) Human ES cell–derived rod photoreceptor cells express 
both rhodopsin and recoverin. ( c ,  d ) Generation of RPE ( c ) and photoreceptors ( d ) from human 
iPS cells (Figures from Nature Biotechnology,  2008  by Osakada et al.)       

 



1455 Stem Cells in the Developing and Adult Nervous System

purifying donor retinal cells and optimizing host conditions, as well as use of animal 
models of human diseases to determine the ef fi cacy and safety of treatments, will be 
crucial.  

    5.6   Conclusions and Perspectives 

 Over the past decade, signi fi cant progress has been made in stem cell biology. 
A better understanding of stem cells has shed light on the processes involved in 
embryonic development, adult neurogenesis, and regeneration. In particular, the dis-
coveries of adult neural stem cells, ES cells, and iPS cells will stimulate both basic 
research and applied biomedical study. 

 It has been established that neurogenesis and neural regeneration take place even 
in the mammalian adult CNS, but many questions must still be resolved. For exam-
ple, what are the physiological roles of neural stem cells in the adult brain? Why do 
only two regions generate new neurons in the intact adult brain? What is the differ-
ence between neurogenic and non-neurogenic regions? Can neurogenesis or neural 
regeneration be induced in non-neurogenic regions? How are new neurons inte-
grated into preexisting neural circuits? How did the difference in regeneration 
capacity among species arise through evolution? A detailed understanding of stem/
progenitor cells in the adult CNS will be important for therapeutic applications for 
CNS repair. 

 Despite tremendous progress in stem cell biology, there is still a large gap 
between the cellular and behavioral approaches towards understanding the 
pathophysiological roles of new neurons in the adult CNS (Aimone et al.  2010 ; 
Lledo et al.  2006  ) . A straightforward way to study their functional contribution is to 
eliminate new neurons in the adult CNS by irradiation or administration of anti-
mitotic drugs such as methylazoxymethanol acetate and temozolomide, which kill 
dividing cells in the adult brain (Madsen et al.  2003 ; Shors et al.  2001  ) . However, 
these approaches cannot uncover the properties of newly generated neuronal con-
nections. Methods to analyze the integration of newly generated neurons or trans-
planted cells into existing neural networks are not well established at present. 
Addressing these questions at the circuit level will require visualizing newly formed 
connections, monitoring and manipulating the activity of these connections, and 
assessing the behavioral outcome. Recombinant viral vectors will be powerful tools 
for these purposes (Luo et al.  2008 ; Osakada et al.  2011  ) . 

 During vertebrate embryogenesis, the nervous system primordium arises from 
uncommitted ectoderm during gastrulation. While much is known about the mecha-
nism of neural induction in amphibians, comparatively little is known about this 
process in mammals, in part because good experimental systems for  in vitro  neural 
differentiation comparable to the animal cap assay commonly used in  Xenopus  
studies are still lacking in mice. Unlike the amphibian animal cap, which is large 
and easy to prepare in large quantities, the mammalian ICM and epiblast are tiny 
and technically demanding to handle. However,  in vitro  differentiation of ES cells 
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recapitulates many aspects of embryonic development  in vivo  (Hansen et al.  2011 ; 
Osakada and Takahashi  2011  ) . Indeed, the spatial and temporal aspects of neuro-
genesis can be recapitulated and manipulated in response to morphogens in ES cell 
culture (Gaspard et al.  2008 ; Mizuseki et al.  2003 ; Watanabe et al.  2005 ; Wichterle 
et al.  2002  ) . Intriguingly, ES cells can generate the self-organized laminar structure 
of the cortex, including four distinct zones (ventricular, early and late cortical-plate, 
and Cajal–Retzius cell zones) along the apico–basal axis (Eiraku et al.  2008  ) , and 
the optic cup structure in three dimension culture of ES cells (Eiraku et al.  2011  ) . 
Differentiation culture of ES cells and iPS cells provides a versatile and powerful 
 in vitro  tool complementary to  in vivo  approaches. Such studies will provide an 
improved understanding of the mechanisms of mammalian development. 

 In addition to providing a promising approach towards cell transplantation ther-
apy to treat disease or injury, stem cell technology has the potential to revolutionize 
drug discovery, making models available for primary screening, toxicity evaluation, 
and metabolic pro fi ling. Mouse ES cells are already in use in drug discovery, and 
high-throughput screening is currently being developed. Since human models for 
disease are highly desirable, human ES cells and iPS cells will be powerful tools for 
drug discovery. In particular, the generation of patient-speci fi c or disease-speci fi c 
human iPS cells will be a strong tool for studying disease mechanisms, screening 
drugs, and developing new therapies (Brennand et al.  2011 ; Jin et al.  2011  ) . For 
genetic diseases, iPS cells provide a new opportunity to analyze the molecular path-
ways that lead to disease pathogenesis at the cellular level (Jin et al.  2011  ) . Moreover, 
drug effects during clinical treatment might be predicted and analyzed using iPS 
cells from patients, permitting personalized optimization of drug treatment.      
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  Abstract   Starting from a zygote, an organism is made up of thousands, highly 
organised stem cells, progenitor cells and postmitotic cells which are generated in 
spatio-temporally coordinated proliferation and differentiation steps. The ongoing 
advancements in cell culture, isolation techniques, and molecular analyses have 
driven our basic understanding of different cell types and led to a broad classi fi cation 
of stem cells. This chapter outlines the most prominent techniques used for the 
characterization and classi fi cation of stem cells and provides an overview of many 
different stem cells, their function and their mRNA, miRNA and protein content.  

  Abbreviations  

  ESC    embryonic stem cell   
  iPSC    induced pluripotent stem cell   
  HSC    hematopoietic stem cell   
  TSC    tissue stem cell   
  CSC    cancer stem cell   
  EPC    endothelial progenitor cell   
  SPC    spermtogonial progenitor cell   
  HpSC    hepatic stem cell   
  NSC    neural stem cell   
  BTSC    brain tumor stem cell   
  MSC    mesenchymal stem cell   
  LT-HSC    long-term hematopoietic stem cell   
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  ST-HSC    short-term hematopoietic stem cell   
  MP    multipotent progenitors   
  CMP    common myeloid progenitor   
  CLP    common lymphoid progenitor   
  MEP    megakaryocyte-erythroid progenitor   
  GMP    granulocyte-macrophage progenitor   
  ErP    erythroid progenitor   
  MkP    megakaryocyte progenitor   
  RBC    red blood cells   
  NK    natural killer         

    6.1   Introduction 

 The characterization of stem cells helps us to shed light into general cellular processes 
and to understand the development and senescence of organs and organisms. It is also 
a prerequisite to use stem cells as tools for drug target discovery, predictive toxicol-
ogy, or for cellular therapies including tissue regeneration. A classi fi cation of    stem 
cells can be done by measuring and quantifying distinct functional properties and/or 
molecular markers. While the function of self renewal de fi nes stem cells in general, 
the degree of “potency” i.e. the range of differentiation options to generate different 
cell types is commonly used for a rough hierarchical classi fi cation of cells into:

   totipotent cells: generate all cells including extraembryonic cell types, e.g.  –
zygote  
  pluripotent cells: generate all body cells including germ cells, e.g. embryonic  –
stem cells (ESCs), induced pluripotent stem cells (iPSCs), inner cell mass of the 
blastocyst-stage embryo  
  multipotent cells: generate all tissues cells, e.g. tissue stem cells like hematopoietic  –
stem cells (HSCs)  
  unipotent cells: generate a single cell type, e.g. spermatogonial stem cells  –
(SPCs)    

 The hierarchy is not unidirectional as in certain circumstances a cell can dedif-
ferentiate to form cells with a higher potency. 

 A further classi fi cation subdivides the different multipotent stem cells according 
to the tissue cells they can generate. It is assumed that almost every tissue has stem 
cells which are responsible to keep tissue homeostasis and to regenerate or limit 
injuries. Most prominent multipotent or tissue stem/progenitor cells are those form-
ing the blood (hematopoietic stem cells, HSCs)   , endothelium (endothelial progeni-
tor cells, EPCs)   , mesenchyme (mesenchymal stem/stroma cells, MSCs)   , muscles 
(satellite stem cells)   , heart (cardiac stem/progenitor cells)   , sperm (spermatogonial 
stem cells)   , intestine (intestinal stem cells)   , pancreas (pancreas derived multipotent 
precursors)   , lung (lung stem cells)   , liver (hepatic stem cells)   , brain (neural stem cells, 
NSC)   , skin and hair (skin stem cells)   , and mammary glands (mammary stem cells)   . 
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The borders are not strict as, although rare in vertebrates, a transdifferentiation of 
one tissue stem cell into another tissue lineage has been reported in vitro and 
in vivo. 

 As a certain function of a cell is usually made up by a complex and time depen-
dent interplay of different molecule classes it is occasionally dif fi cult to measure or 
even to quantify it. That’s why a purely functional classi fi cation of stem cells is 
sometimes not of practical help and molecular markers come into play. Technical 
limitations in terms of sensitivity, speci fi city and ease of (parallelized) measuring 
further de fi ne which markers or class of markers are eventually used for a certain 
cell type. Let us take for example the de fi nition of embryonic stem cells, or in gen-
eral pluripotent stem cells. The term “pluripotent cell” has mainly been derived 
from the properties of an embryonic stem cell. An embryonic stem cell can give rise 
to all the cells and tissues of an organism with the exception of the extra embryonic 
tissue. With this de fi nition it is clear that in order to proof a cell of being pluripotent 
one has to show that this cell when injected into a blastocyst stage embryo is able to 
generate a whole organism including the germ cells. This is almost only possible 
with mice, certainly not with human cells. That is why teratoma formation has been 
introduced as a surrogate test. Here, the potential of a cell to differentiate into any 
of the three germ layers: endoderm (interior stomach lining, gastrointestinal tract, 
the lungs), mesoderm (muscle, bone, blood, urogenital), or ectoderm (epidermal 
tissues and nervous system) is interrogated. But even this is very time consuming, 
not really quanti fi able and can not be used as a prospective de fi nition but only as a 
retrograde proof. Therefore, molecular markers have been de fi ned which are corre-
lated with pluripotency like certain proteins expressed on the surface of pluripotent 
cells, transcription factors, microRNAs (miRNAs), messenger RNAs (mRNAs) or 
the methylation status of genomic sequences. Still, after many years, it is hotly 
debated which are the right pluripotency markers and whether it is acceptable at all 
to rely only on makers when referring to pluripotency. In conclusion, a classi fi cation 
of stem cells is based on both, molecular markers for practical reasons and their 
function for reasons of clarity.  

    6.2   Methods for the Characterization and Classi fi cation 
of Stem Cells 

 From a biochemical point of view stem cells do not differ from other cells and thus 
all known methods which allow to measure the status and interaction of biomole-
cules can be used to characterize stem cells. However, for stem cells the description 
of some biomolecules using certain techniques has been found to be more instru-
mental than others.

   DNA methylation   : It stably alters the gene expression pattern in cells resembling  –
if a gene is likely to be transcribed (active) or not (silenced). It is measured for 
instance by Methylation Speci fi c PCR (MSP), or ChIP-on-chip assays.  



158 U. Bissels et al.

  mRNA status or transcriptome: It tells which genes are transcribed and are therefore  –
active. As all transcripts in a cell can be measured in parallel using microarrays or 
library sequencing, a good estimation of all active genomic pathways can be drawn.  
  miRNAs: they are analysed like mRNAs using PCR, blotting techniques, microarrays,  –
sequencing, and in situ hybridisation and are a relatively young class of molecules 
which help to understand if corresponding mRNAs are translated to proteins or not. 
Their expression has been found to be quite robustly correlated to some cell types.  
  Cell surface molecules: They can be identi fi ed mainly by their reaction with  –
speci fi c antibodies using techniques like  fl ow cytometry, immunohistochemistry, 
immunocytochemistry, or different sorts of gel electrophoresis and blotting. 
In addition mass spectrometry is used to analyse the cell surface proteome with-
out antibodies. Also, raising new antibodies by immunisation of rats and mice 
with cells has led to the identi fi cation of many new markers. Especially adhesion 
molecules and receptors can also be analysed using the respective interaction 
partners and give insights into the “communication status” of a cell. The massive 
advantage of surface proteins or molecules in general is that they can be used to 
sort cells very easily e.g. by using  fl ow cytometry based sorting, immunopan-
ning, or magnetic cell sorting. In order to standardize the annotation of surface 
molecules a CD (cluster of differentiation) nomenclature was established in 1982 
at the 1st International Workshop and Conference on Human Leukocyte 
Differentiation Antigens (HLDA). The CD system originally classi fi es monoclonal 
antibodies (mAbs) generated against epitopes on the surface of leukocytes and 
has then been expanded to many other cell types.  
  Transcription factors: They are very indicative for some cell types as they resem- –
ble which pathways of a cell are activated and which not. Many of them are a 
master switch deciding which lineage a cell is following. Their importance has 
been proofed by the fact that the ectopic expression of single transcription fac-
tors can redirect (or reprogram) the differentiation fate of a cell.  
  Cell surface membrane transporter: At least some stem cells differ from non-stem  –
cells in their ability to transport Hoechst stains (Hoechst 33342)    out of the cell. 
Hoechst 33342 is a DNA-binding  fl uorescent dye, excitable by ultraviolet light at 
350 nm and emitting at 461 nm. A multidrug-like transporter in stem cells causes 
an increased ef fl ux of Hoechst 33342 by an active biological process. This can be 
used to identify stem cells by  fl ow cytometry as a “side population”  (  1996  ) .  
  Enzymes: Stem and progenitor cells also possess a different aldehyde dehydro- –
genase    (ALDH) activity compared to other cells. This enzyme converts a 
non- fl uorescent substrate (an aminoacetaldehyde) into a  fl uorescent product (an 
aminoacetate) that is retained within living cells with an intact membrane. Cells 
with different ALDH enzyme activity can thus be differentially stained with the 
 fl uorescent product, and stem cells can be isolated by  fl ow cytometry based on 
their enzyme activity (Jones et al.  1995 ; Storms et al.  1999  ) .    

 The analysis of most of the above mentioned molecules is optimally done on 
highly puri fi ed stem cells rather than mixtures of different cell types. A detailed 
description of techniques for the enrichment of stem cells has recently been reviewed 
(Bosio et al.  2009  ) . 
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 Interestingly, although it is an absolute prerequisite for single cell-based isolation 
and characterization of stem cells, we noticed a lack in standardized protocols for 
proper dissociation of tissues. Solid organs consist of a mixture of cell types which 
are interconnected in multiple ways. Speci fi c transport proteins as well as gap junc-
tions connect cells and allow for the transport of molecules, whereas tight junctions 
build up a barrier to avoid free transport across cell layers. In addition, cell adhesion 
molecules like cadherins are important for stability of the tissue and localization of 
the cells. All cells in these tissues are surrounded by a complex extracellular matrix 
composed of a variety of proteins and polysaccharides. The most important compo-
nents are collagens, hyaluronan, and glycosaminoglycan (Iozzo  1998  ) . The major 
goal of tissue dissociation    is to disrupt the extracellular matrix and cell adhesion 
components without harming the integrity of the cell membrane and the surface 
epitopes. We have established automated procedures for the enzymatic and mechan-
ical dissociation of solid tissues and optimized them according to the speci fi c needs 
of a given tissue or cell type (Jungblut et al.  2008,   2009 ; Pennartz et al.  2009  ) . 

 An interesting approach combining the knowledge of stem cell type speci fi c 
gene expression with the convenience of surface markers is the use of genetically 
modi fi ed stem cells to label or enrich these cells. Here, the promoter of a gene 
speci fi cally expressed in a cell type is used to drive the expression of a selection 
marker such as the green  fl uorescence protein (GFP), an antibiotic resistance gene 
or an arti fi cial surface epitope like the human CD4 molecule lacking its intracellular 
domain. 

 In vitro and in vivo assays to functionally characterize stem cells are partially 
dependent on the respective stem cell, but some assays are used for multiple stem cell 
types. For example, measuring the replication of cells by incorporating detectable 
molecules like BrdU into the DNA, or proliferation of cells by CFSE via staining of 
intracellular proteins. This allows to distinguish non dividing (postmitotic) cells from 
proliferating or differentiating ones. In vitro culturing and differentiation of cells as 
well as the transplantation of cells into animal models are methods used to track the 
differentiation potential, the regenerative power or malignancy of stem cells. 
Culturing of stem cells in semi-solid media (colony forming unit (CFU) assays) 
offers the opportunity to analyse the lineages and to quantify the number of colonies 
derived from stem cells and is especially used for hematopoietic stem cells.  

    6.3   Protein Markers of Stem Cells 

 Protein markers are widely used for classi fi cation of stem cells. This is due to the 
fact that the expression of proteins is less variable than for example mRNA expres-
sion and that, especially for proteins expressed on the cell surface, it is possible to 
use them for the isolation of the respective cells by e.g. immunopanning,  fl ow cyto-
metric sorting, or magnetic sorting. Once the cells are isolated they can be further 
analysed which allows a clear decision to which extend a protein marker is re fl ecting 
a stem cell function. Figures  6.1  and  6.2  summarize the most commonly used markers 



160 U. Bissels et al.

H
u

m
an

 s
te

m
 c

el
ls

Germ layers Tissue stem cell Cancer stem cellTissue/Organs

P
lu

ri
p

o
te

n
t 

st
em

 c
el

l

M
es

o
d

er
m

P
ri

m
o

rd
ia

l g
er

m
 c

el
l

D
ef

in
it

iv
e 

en
d

o
d

er
m

E
ct

o
d

er
m

B
lo

o
d

E
n

d
o

th
el

ia
l

p
ro

g
en

it
o

r 
ce

ll

M
es

en
ch

ym
e

B
lo

o
d

ve
ss

el
s

M
u

sc
le

H
ea

rt

F
em

al
e

g
er

m
 c

el
l

M
al

e
g

er
m

 c
el

l
L

u
n

g
s

In
te

st
in

e
P

an
cr

ea
s

L
iv

er

N
eu

ra
l

st
em

 c
el

l
In

te
st

in
al

st
em

 c
el

l
S

p
er

m
at

o
g

o
n

ia
l

st
em

 c
el

l
S

at
el

lit
e

st
em

 c
el

l
C

ar
d

ia
c

st
em

 c
el

l
M

es
en

ch
ym

al
st

em
 c

el
l

H
em

at
o

p
o

ie
ti

c
st

em
 c

el
l

H
ep

at
ic

st
em

 c
el

l
L

u
n

g
st

em
 c

el
l

P
an

cr
ea

s-
d

er
iv

ed
m

u
lt

ip
o

te
n

t
p

re
cu

rs
o

r

S
ki

n
 s

te
m

 c
el

l
M

am
m

ar
y

st
em

 c
el

l

B
ra

in
S

ki
n

 a
n

d
h

ai
r

M
am

m
ar

y
g

la
n

d

B
re

as
t

C
S

C
M

el
an

o
m

a
C

S
C

B
ra

in
 t

u
m

o
r

st
em

 c
el

l
L

iv
er

C
S

C
L

u
n

g
C

S
C

P
an

cr
ea

s
C

S
C

In
te

st
in

al
C

S
C

C
o

lo
n

C
S

C
L

eu
ke

m
ia

C
S

C

C
op

yr
ig

ht
 ©

 2
01

2 
M

ilt
en

yi
 B

io
te

c 
G

m
bH

. A
ll 

rig
ht

s 
re

se
rv

ed
.

C
D

32
6+

(E
pC

A
M

)
C

D
90

+

(T
hy

-1
)

T
ra

-1
-6

0+

T
ra

-1
-8

1+

S
S

E
A

3+

S
S

E
A

4+

S
S

E
A

5+

C
D

9+

C
D

30
+

C
D

20
0+

C
D

49
f+

C
D

29
+

C
D

24
–

Li
n–

C
D

13
3+

C
D

15
+

(N
es

tin
+
)

G
LA

S
T

+

E
G

F
R

+

C
D

32
6+

C
D

13
3+

IC
A

M
–

(C
K

19
+
)

S
S

E
A

-1
+

S
ca

-1
+

C
C

S
P

+

C
D

49
f+

C
D

13
3+

C
D

90
+

C
D

13
3+

C
D

18
4+

C
D

10
5+

C
D

34
+

C
D

30
9+

C
D

34
+

C
D

13
3+

C
D

38
–

Li
n 

-
C

D
11

7+

(c
-k

it)
IS

L1
+

M
S

C
A

-1
+

C
D

27
1+

C
D

11
7+

C
D

10
5+

S
tr

o-
1+

C
D

14
6+

C
D

13
3+

C
D

56
+

C
D

32
5+

C
D

34
+

(C
K

19
+
)

Lg
r5

+

Lg
r5

+

Lg
r6

+

N
G

2+

C
D

20
0+

C
D

34
+

C
D

32
6+

C
D

24
–

C
D

44
+

A
B

C
B

5+

C
D

90
+

C
D

45
–

C
D

20
+

A
B

C
B

5+
C

D
13

3+

C
D

15
+

C
D

13
3+

C
D

32
6+

C
D

44
+

C
D

16
6+

C
D

26
+

C
D

34
+

C
D

38
–

C
D

13
3+

C
D

34
+

S
ca

-1
+

C
D

44
+

C
D

24
+

C
D

32
6+

  F
ig

. 6
.1

  
  H

ie
ra

rc
hi

ca
l i

llu
st

ra
tio

n 
of

 h
um

an
 s

te
m

 c
el

ls
 a

nd
 th

ei
r 

ce
ll 

su
rf

ac
e 

m
ar

ke
rs

       

 



1616 Characterization and Classi fi cation of Stem Cells

  Fig. 6.2    Prominent miRNAs, transcription factors and cell surface markers in hematopoiesis. 
The miRNAs that regulate the different steps of hematopoiesis are shown in  red . The depicted 
miRNAs were mainly identi fi ed in in vitro assays with human cells. The role of the miRNAs 
labelled with ‡, e.g. miR-181 ‡  that drives differentiation towards CLPs, were identi fi ed in mouse 
experiments. The transcription factors are selected according to Orkin and Zon  (  2008  ) . 
Abbreviations:  LT-HSC  long-term hematopoietic stem cell,  ST-HSC  short-term hematopoietic 
stem cell,  MP  multipotent progenitors,  CMP  common myeloid progenitor,  CLP  common lymphoid 
progenitor,  MEP  megakaryocyte-erythroid progenitor,  GMP  granulocyte-macrophage progenitor, 
 ErP  erythroid progenitor,  MkP  megakaryocyte progenitor,  RBC  red blood cells,  NK  natural killer       
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for the different types of human stem/progenitor and cancer stem cells. Like the 
cells which make up a tissue, tumor cells are functionally heterogeneous. They are 
organized in a hierarchy of cell populations with different biological properties. 
Only a minority of tumor cells have the capacity to regenerate a tumor and sustain 
its growth when injected into an immune-compromised mouse model which is the 
functional de fi nition of a cancer stem cell (Tang et al.  2007  ) .   

 For mouse  pluripotent cells     such as ESCs    and iPSCs   , mainly E-cadherin (CD324), 
EpCAM (CD326) and SSEA-1 (CD15) have been used as surface marker. Different 
proteomic strategies like mass spectrometry of mouse ESCs revealed further details 
about the cell surface signature of pluripotent mouse stem cells (Nunomura et al. 
 2005 ; Wollscheid et al.  2009  ) . Mostly EpCAM (CD326), E-cadherin (CD324), 
CD90, SSEA-3, SSEA-4, SSEA-5, CD9, TRA-1-60, and TRA-1-81 have been used 
to characterize human ESCs and iPSCs (Adewumi et al.  2007 ; Tang et al.  2007  ) . 
Interestingly, the carbohydrate SSEA-1 is a pluripotency marker in case of mouse 
pluripotent stem cells, in the human system, SSEA-1 is indicative of pluripotent stem 
cell differentiation. More than 200 cell surface proteins of the human embryonic 
stem cell line HUES-7 have been identi fi ed by Dormeyer et al.  (  2008  ) . 

 Murine  hematopoietic stem and progenitor cells    , HSCs, have been de fi ned by 
absence of lineage commitment markers such as CD5, CD45R (B220), CD11b, 
Gr-1 (Ly-6G/C), and Ter-119, and high expression of CD117 (c-kit/SCFR) and 
Sca-1 (Hubin et al.  2005 ; Schiedlmeier et al.  2007  ) . CD34 is expressed on HSCs of 
the murine fetus and neonate, but decreases with age (Ogawa  2002  ) . Another way 
of de fi ning hematopoietic stem and progenitor cells is the use of SLAM markers 
(Kiel et al.  2005  ) . Accordingly, multipotent HSCs are CD150+    CD48 − CD244−, 
multipotent progenitor cells (MPPs) are CD150− CD48− CD244+, and lineage-
restricted progenitor cells (LRPs) are CD150− CD48+ CD244+. CD34 and CD133 
label human HSCs with long-term engraftment in NOD/SCID mice. However, about 
95% of the CD34+ cells and 70% of the CD133+ cells have a progenitor status, 
identi fi ed by co-expression of CD38. Therefore, CD34+CD38−CD133+ is mostly 
used as the surface signature of human HSCs (Buhring et al.  1999 ; Copland et al. 
 2006 ; Giebel et al.  2006  ) . John Dick and colleagues isolated and identi fi ed 
CD34+ CD38−  leukemic stem cells     (LSCs) from human AML by FACS and dem-
onstrated that these cells initiated leukemia in NOD-SCID mice compared with the 
CD34+ CD38+ and CD34− fractions (Bonnet and Dick  1997  ) . An engrafted leuke-
mia could be serially transplanted into secondary recipients, providing functional 
evidence for self-renewal. Xenotransplantation, followed by serial transplantation, 
is now regarded as an essential criterion in de fi ning cancer stem cells. The ability to 
recapture tumor pathophysiology is also an important de fi ning functional criterion 
of cancer stem cells prospectively isolated (Tang et al.  2007  ) . 

 Another stem cell type which is found in the bone marrow and mobilized to the 
blood stream by environmental stimuli for physiological and pathological tissue 
regeneration are the  endothelial progenitor cells  (EPCs)    which form new blood 
vessels and contribute to vascular repair (Asahara et al.  2011  ) . In humans, these 
cells have been de fi ned by the expression of the markers CD34, CD133, CD309 
(VEGFR2/KDR/Flk-1), CD184 (CXCR4), CD105 (Endoglin), and in the mouse by 
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Lin− Sca-1+ c-kit+ CD34+ CD309+ (VEGFR-2/KDR/Flk-1) (Ra fi i and Lyden  2003 ; 
Timmermans et al.  2009  ) . Nevertheless, the identi fi cation of a unique combination 
of receptors speci fi c and selective for primary EPCs, enabling an unambiguous 
distinction between EPCs and HSCs is still missing. 

 Several cell surface antigens have been suggested for the isolation of  mesenchymal 
stem/stromal cells , MSCs, such as anti fi broblast antigen (Jones et al.  2002  ) , CD117 
(Huss and Moosmann  2002  ) , CD105 (Majumdar et al.  2003 ; Aslan et al.  2006  ) , 
Stro-1 and CD146 (Shi and Gronthos  2003  ) , CD133 (Tondreau et al.  2005  ) , CD271 
(Quirici et al.  2002  )  and MSCA-1 (W8B2) (Buhring et al.  2007  ) . A comprehensive 
cell surface proteome analysis of human plastic adherent MSCs has been published 
recently by Niehage et al.  (  2011  ) , describing even among the 41 identi fi ed CD 
markers, 5 epitopes previously not linked to the MSC cell surface. MSCs expanded 
from mouse bone marrow culture are described to be positive for Sca-1, CD117 
(c-kit), and CD105 (Sun et al.  2003  ) . 

  Neural stem cells  (NSCs) share many characteristics with astrocytes and show 
expression of typical astrocyte proteins, like GFAP, or GLAST (Mori et al.  2005 ; 
Merkle and Alvarez-Buylla  2006  ) . Furthermore, CD133/Prominin, EGF receptor, 
CD15, and Nestin have been described as markers for neural stem cells (Conti and 
Cattaneo  2010  ) , but isolation of these cells from primary neural tissue with high 
purity has been dif fi cult. Therefore, a combination of markers has been used to 
increase the purity. Beckervordersandforth et al.  (  2011  )  followed a dual labeling 
strategy to isolate GFAP/prominin1 double positive self-renewing multipotent 
stem cells from adult hGFAP-GFP mice in combination with prominin labeling. 
In another approach GFAP/EGFR+ cells were successfully isolated and identi fi ed as 
activated stem cell astrocytes (Pastrana et al.  2009  ) . Many more cell surface pro-
teins have been described and used for sorting of  neural progenitor cells  like PSA-
NCAM (neuronal precursors) (Boutin et al.  2010 ; Pennartz et al.  2004  ) , and A2B5 
(glial precursors) (Seidenfaden et al.  2006  ) . Singh et al.  (  2003,   2004a  )  reported the 
identi fi cation and puri fi cation of  cancer stem cells  from human brain tumors of 
different phenotypes that possess a marked capacity for proliferation, self-renewal, 
and differentiation. 

 The increased self-renewal capacity of the  brain tumor stem cell     (BTSC) was 
highest among the most aggressive clinical samples of medulloblastoma compared 
with low-grade gliomas. Several other reports demonstrated that isolation of cells 
expressing the surface marker CD133 leads to enrichment of the BTSC population 
(Singh et al.  2004b ; Bao et al.  2006 ; Piccirillo and Vescovi  2006  ) , whereas Son et al. 
 (  2009  )  showed that SSEA-1 (CD15) enriches for tumorigenic subpopulations in 
human Glioblastoma. 

 Existence of various resident populations of  cardiac progenitor/stem cells  in 
postnatal hearts has been claimed (Sturzu and Wu  2011  ) . CD117 (c-kit)+/lin– cells 
isolated from the adult mouse heart appeared to be clonogenic and self-renewing, 
capable of differentiating into cardiomyocytes, vascular smooth muscle cells, and 
endothelial cells (Beltrami et al.  2003  ) . Nevertheless, this population only heterog-
enously expresses early cardiac transcription factors such as GATA4, Mef2c, and 
Nkx2.5. Two other publications (Oh et al.  2003 ; P fi ster et al.  2005  )  referred to the 
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Sca-1+ population as putative adult cardiac progenitors. Expression of early cardiac 
transcription factors GATA4 and Mef2c, as well as telomerase activity, associated 
with self renewal potential, were detected in Sca-1+ cells. However, in contrast to 
data from transplanted CD117+ cells, fusion between Sca-1+ cells and host cardio-
myocytes was frequently detected, leaving some uncertainty about the true  in vivo  
differentiation potential of Sca-1+ progenitors (Oh et al.  2003  ) . Expression of the 
transcription factor Isl-1 in multipotent heart progenitors found in fetal mouse and 
human heart has not yet been correlated with a distinct surface marker which would 
allow for antibody-based enrichment (Bu et al.  2009  ) . As described in mice, a 
CD117+ population of cardiac cells has been found in the human heart exhibiting 
key characteristics of stem cells: self-renewal, clonogenicity, and multipotency 
 in vitro  and  in vivo  (Bearzi et al.  2007  ) . In addition, several groups have described 
 in vitro  cardiomyogenic potential of cardiac cells reactive to an antibody against the 
mouse Sca-1 epitope. Lastly, a heterogenous cell population isolated from human 
heart biopsies forms so called cardiospheres in suspension culture. Cardiosphere 
containing CD117+, CD133+, CD105+ and CD90+ cells have as well been ascribed 
stem cell characteristics (Smith et al.  2007  ) . To date there is no consensus on the 
best marker (set) for unambiguous identi fi cation of cardiac stem cells. 

 Several surface markers have been described and used for isolation of mouse 
 spermatogonial stem cells  (SSC). In 2004 Kubota (Kubota et al.  2004  )  described a 
Thy-1 (CD90) antibody-based enrichment of mouse SSCs, further expansion on 
STO feeder cells in serum-free medium and  in vivo  proof of an SSC phenotype after 
transplantation. Seandel et al.  (  2007  )  showed that SPCs express GPR125, an orphan 
adhesion-type G-protein-coupled receptor, and can be ef fi ciently obtained by culti-
vation on mitotically inactivated testicular feeders containing CD34+ stromal cells. 
Recently, Kanatsu-Shinohara et al.  (  2011  )  showed that SSCs have an unstable side 
population phenotype and provide evidence that SSCs change their phenotype char-
acteristics in response to their microenvironment. A study by Conrad et al.  (  2008  )  
described the isolation and characterization of human germline stem cells (GSCs) 
using de fi ned cultivation techniques, SPC adhesion properties and a positive selec-
tion using CD49f, CD133, or CD90. 

 According to Schmelzer et al.,  human hepatic stem cells     (hHpSCs) (Schmelzer 
et al.  2007 ; Schmelzer and Reid  2008  )  can be isolated by positive immunoselection 
for the epithelial cell adhesion molecule CD326 (EpCAM+). The hHpSCs express 
cytokeratins 7 and 19, CD133, telomerase, CD44H, claudin 3, and albumin (weakly). 
They are negative for alpha-fetoprotein (AFP), intercellular adhesion molecule 1 
(ICAM-1), and for markers of adult liver cells (cytochrome P450s) and hematopoi-
etic (progenitor) cells (CD45, CD34, CD14, CD38, CD90 (Thy-1), CD235a 
(Glycophorin A)). As for rodent HpSCs, Yovchev et al. compared hepatic cells iso-
lated by two surface markers, EpCAM and Thy-1 (CD90). It was shown that Thy-1+ cells 
are mesenchymal cells with characteristics of myo fi broblasts/activated stellate 
cells while transplantation experiments revealed that EpCAM+ cells are true pro-
genitors capable of repopulating injured rat liver (Yovchev et al.  2007,   2008  ) . 

 Yang    et al. ( 2008 ) have delineated  liver cancer stem cells     serially from HCC cell 
lines, human liver cancer specimens, and blood samples, using CD90 as a marker. 
CD45− CD90+ cells were detected in all the tumor specimens, but not in the normal, 
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cirrhotic, and parallel non-tumorous livers. Cheung et al.  (  2011  )  have shown that 
expression of ABCB5 (ATP-dependent binding cassette B5) in liver cancer stem 
cells is associated with chemoresistance and reduced survival times of patients with 
hepatocellular carcinoma.  Mammary stem cells     have been characterized by the 
markers CD49f, CD29 (also known as  a 6 and  b 1 integrins) and CD24 when show-
ing a CD24lowCD49f high or CD24lowCD29high molecular signature (Shackleton 
et al.  2006 ; Stingl et al.  2006  ) . In contrast to their differentiated progeny, mammary 
stem cells are negative for estrogen receptor (ER a ), progesterone receptor (PR) and 
the tyrosine kinase receptor HER2 – three molecular markers that de fi ne different 
populations of differentiated luminal epithelial cells – but are highly positive for the 
transcription factor p63, the epidermal growth factor receptor (EGFR) and cytok-
eratin 14 (CK14), con fi rming their basal origin (Asselin-Labat et al.  2006 ; Pontier 
and Muller  2009  ) .  Breast cancer stem cells     have been reported to be 
ESA+ CD44+ CD24−Lineage– (Al-Hajj et al.  2003  ) . ESA (epithelial speci fi c anti-
gen) is also known as EpCAM (CD326). O’Brien et al.  (  2007  )  and Ricci-Vitiani 
et al.  (  2007  )  showed that the tumorigenic population in  colon cancer     is restricted to 
CD133+ cells, which are able to reproduce the original tumor in permissive recipi-
ents. Additionally, the surface marker pattern CD326 (EpCAM)+ CD44+ CD166+ 
has been described by Du et al.  (  2008  )  and Dalerba et al.  (  2007  ) . Pang et al.  (  2010  )  
have described CD26 as marker for the tumorigenic population in colon cancer. 

 Li et al.  (  2007  )  identi fi ed a highly tumorigenic subpopulation of  pancreatic cancer 
cells     expressing the cell surface markers CD44, CD24, and epithelial- speci fi c antigen 
(ESA; EpCAM; CD326). Pancreatic cancer cells with the CD44+ CD24+ ESA+ phe-
notype (0.2–0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic 
potential compared with non-tumorigenic cancer cells, with 50% of animals injected 
with as few as 100 CD44+ CD24+ ESA+ cells forming tumors that were histologically 
indistinguishable from the human tumors from which they originated. 

 As a conclusion, protein markers correlated to functional properties of the respec-
tive stem/progenitor cell types have been de fi ned for most tissues and pluripotent 
cells. However, some of the markers have only recently been reported and are still 
intensively debated. It can be estimated that sorting of pluripotent and tissue stem 
cells will increase in the future as it offers the option for a detailed analysis and 
understanding of malignant and disease-causing cells, as well as of cell types 
urgently needed for tissue regeneration and tissue engineering approaches.  

    6.4   miRNAs in Stem Cells 

 MicroRNAs (miRNAs)   , short noncoding RNAs of 21–23-nucleotides (nt) in length, 
regulate target mRNAs post-transcriptionally. miRNAs in stem cells are not as well 
characterized as proteins. However, they have been shown to play an important 
role in many different cellular, developmental, and physiological processes as 
divergent as cell lineage decisions, cell proliferation, apoptosis, morphogenesis, fat 
metabolism, hormone secretion, neuronal synaptic plasticity, and long-term memory 
(Aravin and Tuschl  2005  ) . 
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 In 2004, it was shown for the  fi rst time that miRNAs are involved in hematopoietic 
lineage differentiation (Chen et al.  2004  )    . For example, ectopic expression of miR-
181 in lineage negative (Lin-) hematopoietic progenitor cells from mouse bone marrow 
increased the fraction of B-lineage cells (CD19+) in vitro and in vivo. As summa-
rized in Fig.  6.2 , further analysis showed that miRNAs  fi ne tune essentially each 
step in hematopoiesis. It was demonstrated, for instance, that miR-150 drives mega-
karyocyte-erythrocyte progenitor (MEP) differentiation towards megakaryocytes at 
the expense of erythroid cells (Lu et al.  2008  ) . Erythropoiesis was reported to be 
promoted by miR-451, miR-16 and miR-144 and negatively regulated by miR-150, 
miR-155, miR-221, miR-222 and miR-223 (Felli et al.  2005 ; Bruchova et al.  2007 ; 
Zhan et al.  2007 ; Dore et al.  2008  ) . Furthermore, it was shown that the miRNA 
cluster miR-17-5p-92 controls monocytopoiesis (Fontana et al.  2007  )  and that miR-
424 is upregulated during monocyte/macrophage differentiation. Within the lym-
phoid lineage, the decision between T cells and B cells is regulated by miR-150 
(Xiao et al.  2007 ; Zhou et al.  2007  ) . 

 The early steps of HSC differentiation, e.g. the role of miRNAs in self-renewal of 
the LT-HSCs and ST-HSC as well as the function of miRNAs in mulipotent progeni-
tors, are currently mostly unknown due to the dif fi culty to perform whole genome 
miRNA screens of small numbers of cells. Up to now, expression of miRNAs was 
analysed in human primitive Lin-CD34+ CD38-CD90+ CD45RA- cells (Han et al. 
 2010 ; Ooi et al.  2010  ) , CD34+ CD38– cells (Liao et al.  2008  ) , CD133+ cells (Jin et al. 
 2008 ; Bissels et al.  2011b  )  and murine HSCs (Guo et al.  2010 ; O’Connell et al.  2010 ; 
Petriv et al.  2010  ) . Liao and coworkers found miR-520h to be overexpressed in 
CD34+CD38– cells compared to more commited CD34+ cells. Ooi et al.  (  2010  )  
 compared HSCs (Lin−CD34+CD38−CD90+CD45RA−) and MPPs (Lin−CD34+
CD38−CD90−CD45RA−) to more committed progenitor populations and found miR-
125b to be highly expressed in the stem cell fractions. Recently, we presented the  fi rst 
relative and absolute miRNA copy number pro fi le of CD133+ bone marrow cells and 
directly compared donor-matched CD133+ cells with the more differentiated 
CD34+ CD133- and CD34-CD133- cells on miRNA and mRNA level (Bissels et al. 
 2009,   2011b  ) . 18 miRNAs were signi fi cantly differentially expressed between CD133+ 
and CD34+ CD133- cells. These differentially expressed miRNAs are involved in 
 inhibition of differentiation, prevention of apoptosis, and cytoskeletal remodelling. 
miRNA expression pro fi les are further available for CD34+ progenitor cells from bone 
marrow and mobilized peripheral blood (Georgantas et al.  2007  )  as well as from cord 
blood (Merkerova et al.  2009  ) . A recent study by Arnold et al.  (  2011  )  identi fi ed 
 miRNAs shared by multiple tissue-speci fi c stem cells and miRNAs unique to various 
tissue-speci fi c murine stem cells. miR-192 was identi fi ed as speci fi c for LT-HSCs 
(Endoglin + Rho low Sca-1 + Lin − ) and absent from all other analysed cell types. 

 While the different cell types of the hematopoietic system express a multitude of 
miRNAs,  fi ve were reported to be common hematopoietic miRNAs, namely miR-
142, miR-144, miR-150, miR-155 and miR-223. Those miRNAs were identi fi ed as 
highly speci fi c for hematopoietic cells within a large-scale study to identify miR-
NAs and to assess their expression patterns in >250 small RNA libraries from >26 
different organ systems (Landgraf et al.  2007  ) . 
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 Speci fi cally expressed miRNAs are also known for other types of stem cells e.g. 
cancer stem cells (CSCs) and human embryonic stem cells (hESCs)   . Breast cancer 
stem cells (BCSCs) are characterized among others by downregulation of miR-
200c. Importantly, miR-200c suppresses tumorigenicity of BCSCs (Shimono et al. 
 2009  ) . In hESCs the miR-302~367 cluster is speci fi cally expressed (Suh et al.  2004 ; 
Landgraf et al.  2007  )  and may therefore serve as a marker for hES cells. The  fi rst 
miRNA pro fi le of induced pluripotent stem cells (iPSC)    revealed that the miR-
302~367 cluster is also highly expressed in the reprogrammed cells (Wilson et al. 
 2009  ) . Recently, it has been shown that expression of the miR302/367 cluster can 
directly reprogram mouse and human somatic cells to a pluripotent stem cell state 
in the absence of the commonly used transcription factors Oct4, Sox2, Klf4 and 
Myc (Anokye-Danso et al.  2011  ) . This miRNA-based reprogramming approach is 
two orders of magnitude more ef fi cient than standard methods. Miyoshi et al.  (  2011  )  
showed that reprogramming of murine and human cells is even feasible by direct 
transfection of mature miRNAs with a non-viral approach. Taken together, the char-
acterization of stem cells with respect to miRNAs is well advanced for some stem 
cell types and has almost not been addressed for some other stem cell and progeni-
tor cell types. This is partly due to dif fi culties to isolate enough stem cells for a 
proper miRNA analyses and it is likely to be solved in the next years. Only then it 
will, if at all, be possible to speculate on common miRNA signatures of stem cells 
and to shed light into the miRNA based regulation of stem cell related cellular func-
tions. For further reading about the role of miRNAs in stem cells, we recommend 
the following reviews: Hat fi eld and Ruohola-Baker  (  2008  ) , Gangaraju and Lin 
 (  2009  ) , Mallanna and Rizzino  (  2010  ) , Bissels et al.  (  2011a  ) .  

    6.5   The mRNA of Stem Cells 

 In 2002, two independent studies (Ivanova et al.  2002 ; Ramalho-Santos et al.  2002  )  
tried to identify a general stem cell signatures by comparing the expression pro fi les 
of embryonic, hematopoietic and neural stem cells. The two lists of “stemness” 
enriched transcripts however yielded only 15 common genes (Burns and Zon  2002  )  
which was kind of disappointing. Later on, a third independent expression pro fi ling 
study (Fortunel et al.  2003  )  reduced the list of commonly expressed genes to just 
one: integrin alpha-6. Thus, a universal stem cell signature may not exist, but each 
stem cell type may have its own transcriptional network responsible for certain 
unique stem cell properties (Gerrits et al.  2008  ) . A comprehensive transcriptome 
analysis of human hematopoiesis was recently carried out by Novershtern et al. 
 (  2011  )  and revealed dense transcriptional circuits in HSCs, that gradually disappear 
during differentiation, while new but less intricate circuits emerge. 

 With respect to hematopoietic stem cells, a lot of gene expression pro fi ling 
studies have been carried out. Most of them compared either CD34+ CD38– Lin– 
cells with CD34+ CD38+ Lin+ cells (Ivanova et al.  2002 ; Georgantas et al.  2004  )  
or CD133+ with CD133– cells (He et al.  2005 ; Toren et al.  2005 ; Hemmoranta 
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et al.  2006 ; Jaatinen et al.  2006  ) . Theses studies revealed a number of transcripts 
overexpressed in HSCs, such as CD133, CD34, the RNA processing protein 
RBPMS and the receptor tyrosine kinase c-kit. Furthermore, transcription factors 
as Gata-2, Gata-3, ERG and HLF are overrepresented in HSCs. The transcript 
BAALC, whose function is unknown, is highly enriched in CD133+ cells (Baldus 
et al.  2003 ; Jaatinen et al.  2006  ) . The homolog of the  Drosophila  Dlg1 tumor 
suppressor gene Dlg7 was identi fi ed as a potential stem cell gene by Gudmundsson 
et al.  (  2007  ) . However, although the described transcripts have been found as 
overrepresented in HSCs in most of the studies, it is dif fi cult to name speci fi c 
mRNA markers for HCSs. The reasons are among others the variability of gene 
expression pro fi les due to varying stem cell sources, e.g. BM, CB, and PB (Steidl 
et al.  2002 ; Ng et al.  2004  ) , and donor age (Rossi et al.  2005 ; Nijnik et al.  2007  ) . 
Table  6.1  summarizes the mRNAs found in hematopoietic stem and progenitor 
cells.   

    6.6   Conclusion and Future Developments 

 The characterization of stem cells is currently rapidly moving forward. While some 
stem cells like HSCs are already routinely used in clinical settings, many new stem 
cells have just been described in the last years and many more will be de fi ned in the 
near future. 

 Although molecular markers have been named for most of the stem cells, it is 
also true that many of these markers are not exclusive and certainly not highly 
speci fi c with respect to a distinct function. This points to essentially three major 
tasks which need to be addressed: First, a better classi fi cation of stem cells with 
respect to robust molecular markers and especially those markers which can be used 
for puri fi cation of cells. This goes along with technical improvements of sorting 
techniques, culturing protocols and, moreover, highly sensitive molecular analysis 
tools. It is challenging as the nature of stem cells includes that they are proliferating 
slowly and that the cell numbers are small. 

 Second, a harmonisation of markers and isolation procedures, following the 
example of the CD nomenclature in the  fi eld of immunology. This should 
improve the exchange and gathering of data about stem cells, which is needed 
before more stem cell types are entering clinical applications. Third, we need a 
better understanding of stem cells with respect to their regenerative potential. 
The reports about reprogramming, dedifferentiation and transdifferentiation of 
cells and stem cells have raised the notion that essentially all cells can be engi-
neered to generate every type of tissue. This is appealing from a research point 
of view but raises also some concerns about the predictability of stem cell dif-
ferentiation when used for tissue regeneration or cellular therapies in general. 
Solving these issues will broaden our understanding in the exciting  fi eld of stem 
cell biology.      
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  Abstract   Stem cells can be isolated from a variety of sources and they are typically 
classi fi ed based on their tissue of origin. Embryonic stem cells are, as the name 
indicates, derived from the inner cell mass of pre-implantation stage blastocysts at day 
5–7 post fertilisation. These cells possess qualities such as pluripotency and a seem-
ingly limitless capacity to proliferate  in vitro  in their undifferentiated state. Embryonic 
stem cells were  fi rst derived from mouse embryos in the early 1980s but have now been 
derived from a number of different species including rat, rabbit, sheep, horse and 
human. This chapter focuses on human embryonic stem cells and describes techniques 
used for their derivation and culture. In addition, the basic properties of these cells are 
illustrated, including some examples of their capacity to differentiate to various precur-
sors and functional cell types. Finally, some areas of applications for these cells are 
discussed with emphasis on their possible future use in regenerative medicine.      

    7.1   Introduction 

 The developments in the human pluripotent stem cells  fi eld during the last decade 
are remarkable, and the scienti fi c achievements made have substantially furthered 
our understanding of the opportunities that these cells provide for basic and applied 
research as well as for future regenerative medicine applications. There has been 
rapid progress in the development of improved derivation and culture technologies 
for human embryonic stem (hES) cells since the initial derivation of stable cell lines 
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in 1998 (Thomson et al.  1998  ) . One of the main driving forces behind this is the aim 
to generate high quality, clinically compliant, hES cell lines which can be used for 
future cell therapy in humans. As such, the cell lines need to be manufactured 
according to good manufacturing practice (GMP) in order to comply with good 
clinical practice (GCP) which is a set of internationally recognised ethical and 
scienti fi c quality requirements that must be observed for designing, conducting, 
recording and reporting clinical trials that involve the participation of human sub-
jects  (  2001 /20/EC 2001;  2005 /28/EC 2005). In addition, there are more immediate 
opportunities to use hES cells and their derivatives as  in vitro  tools to study for 
example human development and genetic diseases. Furthermore, the cells are also 
expected to contribute to improvements of the models currently used in drug discov-
ery and by providing a source of a variety of human specialised cells which then can 
be manufactured under standardised conditions. However, in order to realise the 
opportunities that human pluripotent stem cells provide, there are a number of chal-
lenges that need to be addressed. Cost-ef fi cient culture conditions which allow large 
scale production of the undifferentiated cells is one, ef fi cient and robust protocols 
for the process of differentiation of the pluripotent cells to the desired end point is 
another. Characterisation and quality control also require speci fi c attention and 
monitoring the phenotype and genomic stability of the cells during expansion and 
propagation is critical. For any kind of therapeutic applications, regulatory compli-
ance needs to be factored in as well. Ideally culture systems would be based around 
fully de fi ned components, using small molecules with a decreased dependency of 
biologics. There is a lot of effort spent on genetically modifying the cells, e.g. to 
make cells overexpress genes linked to desirable functionality such as metabolising 
enzymes and also to generate reporter lines. With the last years’ advancements in 
the generation of induced pluripotent stem (iPS) cells, the technologies used for 
genetically modifying cells has certainly fuelled further research in this area of 
engineering stem cells. Further details on the iPS cells and the opportunities and 
challenges they provide are reviewed in a separate chapter of this book and will not 
be discussed further here. Below, we will cover basic aspects on the derivation pro-
cess of hES cells and highlight different culture conditions for maintenance of the 
undifferentiated cells. We will also describe various ways to characterise hES cells 
in order to verify their unique properties. The pluripotency of the cells will be illus-
trated with some examples of differentiated cell types which can be generated from 
the hES cells, and applications in regenerative medicine will be discussed.  

    7.2   Derivation/Classi fi cation 

    7.2.1   Derivation 

 The different sources of human embryos which have been successfully used for 
derivation of new hES cell lines are blastocysts (Thomson et al.  1998  ) , morulae 
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(Strelchenko et al.  2004  ) , late-arrested embryo (Feki et al.  2008 ; Gavrilov et al.  2009 ; 
Zhang et al.  2006    ) or blastomere (Geens et al.  2009 ; Klimanskaya et al.  2006  ) . 

 Initially, the method was adapted from the previously developed protocol for 
mouse ES cells (Evans and Kaufman  1981 ; Martin  1981  ) . The substantial species 
differences and the lack of appropriate culture medium for human embryos were 
probably part of reason why it was not until the late 1990s the  fi rst human embryonic 
stem cell line was isolated. Discrepancies in intracellular pathway signalling between 
mice and man have been demonstrated as one explanation to the differences in cul-
ture requirements (Brandenberger et al.  2004 ; Rho et al.  2006 ; Xu et al.  2002  ) . 
In 1994, Bongso and co-workers managed to isolate and to some extent propagate 
inner cell masses (ICMs) from human blastocysts and these cells displayed stem-cell 
like properties (Bongso et al.  1994  ) . This achievement in concert with the successful 
derivation of non-human primate ES cell lines in the mid 1990s (Thomson et al. 
 1995,   1996  )  paved the way for the subsequent derivation of stable hES cell lines in 
1998 (Thomson et al.  1998  ) . After this, the generation of a large number of hES cell 
lines have been reported, exceeding well over 1,000 different lines (Loser et al.  2010  ).  

 The majority of hES cell lines derived thus far have utilised donated surplus 
embryos from assisted conception laboratories, i.e. from the procedure of  in vitro  
fertilisation (IVF). Both fresh and previously frozen material can be used for stem 
cell derivation. The embryos are cultured to the blastocyst stage before measures are 
taken to isolate the ICM cells. In order to accomplish this, the expanded blastocyst 
is initially treated with pronase to digest the surrounding zona pellucida. Alternatives 
to the use of pronase for removing the zona are Tyrode’s acid solution or mechanical 
opening, which circumvents the use of xeno-derived pronase. Spontaneously 
hatched blastocysts can also be processed further without the need for zona pellucida 
removal (Heins et al.  2004  ) . Subsequently, the blastocyst is treated with mouse anti-
bodies directed against human trophoectoderm cells and guinea pig complement 
components. This process, called immunosurgery, lyses the cells by an antibody/
complement reaction leaving the inner cell mass cell mostly intact, and these cells 
can then be sub-cultured further on a layer of mitotically inactivated mouse embry-
onic  fi broblasts feeder cells (mEF cells). The initial outgrowth from the inner cell 
mass cells is usually dissected mechanically under the microscope and transferred 
to new culture dishes after 1–2 weeks. An established hES cell line is typically pas-
saged every 5–10 days, depending on culture method and population doubling time. 
As soon as the hES cells are growing in a way allowing culture expansion, low 
 passage samples should be cryopreserved as a seed bank, and also as larger well 
characterised Master Cell Banks (MCB). From these MCBs, Working Cell Banks 
(WCB) can be established, for further expansion and various endpoint applications. 
If the aim is to derive hES cells for downstream clinical use, i.e. to generate thera-
peutic cells, then the whole procedure needs to comply with regulatory demands, 
such as current Good Manufacturing Practice (cGMP), but also comply with ethical 
regulations (Crook et al.  2007 ; Murdoch et al.  2012  ) . 

 The methodology for ICM isolation brie fl y described here is depending on 
 careful monitoring and execution for successful results since the viability of the 
resulting ICM isolate is fragile. A success rate in hES cell line generation of at least 
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5–10 % is reasonable to expect and up to more than 30 % success rate has been 
reported (Chen et al.  2009 ; Sjogren et al.  2004  ) . Negative results could be related to 
sub optimal culture conditions or other technical issues. Blastocyst quality is also an 
in fl uencing factor for successful derivation of hES cell lines, and the use of higher 
quality embryos leads to a greater success rate (Lerou et al.  2008b  ) . However hES 
cell lines have been established from blastocysts graded as of low quality (Dokras 
et al.  1993 ; Heins et al.  2004 ; Lerou et al.  2008a  )  and even from non-viable embryos, 
albeit with questionable quality (Feki et al.  2008  ) . Assuming embryo culture is well 
conducted it appears that derivation from previously cryopreserved embryos or 
blastocysts should be as successful as derivation from fresh material (Sjogren et al. 
 2004  ) . Far from all cryopreserved embryos are eligible and donated for research 
activities. However, there seems to be a positive correlation between the level of 
information and support from the IVF clinic staff and the treated patient’s willing-
ness to donate surplus material for research (Brett et al.  2009  ) .  

    7.2.2   Classi fi cation 

 The essence of a hES cell is its ability to differentiate into other, more specialised 
cell types, such as muscle cells, neurons, connective tissue and epithelial cells, to 
mention a few. The hES cells are pluripotent, i.e. they can form cells representing 
the three germ layers endoderm, ectoderm, and mesoderm. To assess the quality of 
a recently derived hES cell line, the expression or selective absence of various sur-
face markers, transcription factors, and other properties of the assumed pluripotent 
hES cells are monitored. Several of these markers have been found closely associ-
ated to the pluripotent state of hES cells and researchers normally apply a panel of 
several markers for the characterisation procedure (Heins et al.  2004 ; Thomson 
et al.  1998  ) . Brie fl y, they include

   Cell membrane bound surface markers like the glycol lipids SSEA-1,-3, -4; and • 
the keratin sulphate molecules TRA-1-60, -1-81.  
  Transcription factors such as Oct-4, Sox2, and Nanog.  • 
  Telomerase activity, as a measure of the hES cells ability to continuously go • 
through mitosis.  
  Alkaline phosphatase activity.  • 
   • In vitro  pluripotency, assayed for by using markers for endo-, ecto-, and meso-
derm on spontaneously differentiated cell material. Commonly used markers are 
the transcription factor forkhead box A2 (Foxa2) transcription factor for endo-
derm,  b -III-tubulin for ectoderm and Arterial Smooth Muscle Actin (ASMA) as 
a marker for Mesoderm.  
   • In vivo  pluripotency, assayed for by xenografting hES cells into an immuno-
de fi cient mouse and consequently analysing the resulting teratoma for endo-, 
ecto-, and mesoderm derivatives. Typically, the cells are placed under the kidney 
capsule but other areas have also been used such as testis and skeletal muscle.    

 In Fig.  7.1a , the nuclei of a con fl uent layer of hES cells have been stained with an 
antibody for the transcription factor Nanog to illustrate its presence. Nanog was 
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simultaneously discovered in 2003 as a pluripotency sustaining factor by Chambers 
and Mitsui (Chambers et al.  2003 ; Mitsui et al.  2003  ) . Flow Cytometry (FC) allows a 
more exact quanti fi cation of markers than microscopic observations of immunostain-
ings, and several markers could be analysed simultaneously, e.g. to asses co- expression 
of more than marker. In Fig.  7.1b , an FC graph illustrates a population of Oct-4 positive 
cells as an indication of pluripotency, with Fig.  7.1c  illustrating the isotype negative 
control for the assay as a comparison . In addition to the above examples of properties 
linked to pluripotency, the genomic stability of the hES cells is normally assessed, 

  Fig. 7.1    ( a ) Nanog    nuclear staining of a con fl uent layer of hES cells. This methodology, known 
as immunocytochemistry, is commonly used to illustrate the presence of various factors and mark-
ers linked to certain properties of cells, e.g. pluripotency of hES cells. ( b ) Flow Cytometry ( FC ) 
diagram of hES cells positive to 99.2 % for Oct-4 transcription factor. By using quantitative meth-
ods like FC a more exact determination of the characteristics of stem cells is possible, compared to 
qualitative methods. ( c ) FC isotype negative control. This illustrates how cells negative for the 
marker appear in the FC analysis       
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employing standard G-banding karyotyping or more high resolution techniques such 
as high density array based SNP analysis. The absence of pathogens is also normally 
con fi rmed as well as the thawing recovery rate after cryo-preservation.  

 The International Stem Cell Forum (ISCF) launched a characterisation initiative 
few years ago  ( The International Stem Cell Initiative or ISCI )  as a global collabora-
tive effort to conclude and harmonise basic methodology and criteria for the deriva-
tion, characterisation and maintenances of hES cells (Adewumi et al.  2007  ) , also 
discussed by Stephenson et al.  (  2007  ) . The consensus of the scienti fi c community in 
concert with the regulatory bodies for the major markets will be central to the even-
tual development of medical applications of hES cells.   

    7.3   Culture Conditions 

    7.3.1   General 

 It is anticipated that hES cells are more sensitive to sub optimal culture conditions 
than common somatic cell lines, hence demanding a more stable and controlled 
environment and a precise culture medium formulation to maintain the undifferenti-
ated and pluripotent state during long term culture. A number of critical parameters 
should be accounted for when setting up a hES cell culture laboratory, including:

   Laboratory facilities-there should be a dedicated  fi t for purpose built and secluded • 
cell culture area with

   Clean  fi ltered air and stable temperature, preferable positive pressure.   –
  A minimum of consumables storage in the direct cell culture area.   –
  Good cleaning routines and easily cleaned equipment and surfaces.   –
  High quality equipment that is regularly serviced and calibrated where appro- –
priate, cell culture incubators maintaining a stable climate to avoid changes in 
pH, temperature and osmolality of the culture medium.  
  Heated stages  fi tted to the microscopes to avoid a decrease in culture tempera- –
ture when outside of the incubator for inspection or manipulation.     

  Aseptic handling-especially important if cultures are not supplemented with • 
antibiotics. The staff should be trained and audited accordingly.  
  Contact materials-all materials should preferable be tested for embryotoxicity or • 
be of IVF grade. Surface cleaning detergents should be non abrasive, non volatile 
and non toxic.  
  High quality culture reagents, such as medium, growth factors and other reagents • 
and solutions.  
  Good cell culture laboratory routines in general, regular testing for mycoplasma, • 
quarantine routines and preferable a quality system in place that regulates  version 
control of protocols and non conformances.     
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    7.3.2   Culture Propagation Techniques-Cut and Paste 

 The classic method for culture of hES cells is in co-cultures with supporting feeder 
cells, typically mitotically inactivated mouse embryonic  fi broblasts, that provide 
support in terms of conditioning of the culture medium, surface matrix components 
and other direct cell-cell interactions (Ellerstrom et al.  2007 ; Heins et al.  2004 ; 
Thomson et al.  1998  ) . Critical parameters for high quality hES cell colonies are the 
quality of the feeder cells, as well as their density and capacity to condition the 
culture medium. As further discussed below, other hES cell culture systems free of 
a feeder layer per se could still rely on medium being conditioned by feeder cells, 
thus the medium contain factors favourable for maintaining the hES cells in a pluri-
potent state (Prowse et al.  2005 ; Lim and Bodnar  2002  ) , The hES cell culture 
medium could also be totally free of feeder cell in fl uence and have more or less 
de fi ned components as discussed below. The original method for propagation of 
hES cell cultures on feeder cells is by mechanical dissection. A  fi ne sharp object, 
like a capillary drawn out over a  fl ame, micro scalpels or other bespoke stem cell 
cutting tools are used for slicing up a mature colony of hES cells into smaller pieces 
that is subsequently transferred to a new culture vessel with feeder cells. In Fig.  7.2 , 
a hES cell colony has been sectioned and some pieces removed to illustrate the 
technique. hES Cell colonies typically grow to rounded  fl at and homogenous 

  Fig. 7.2    Manually dissected hES cell colony, demonstrating the principles of this propagation 
method. The mature hES cell colony is sliced up in small fragments using a  fi ne sharp object like 
a pulled-out glass capillary or a micro scalpel. The colony fragments are subsequently detached 
from the culture dish and transferred to a new dish with a fresh feeder cell layer. This procedure is 
typically repeated every 5–7 days, and culture medium is refreshed in between       
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 colonies, a layer just a single, or a few cells thick. The colonies are clearly visible 
by eye and can be sizeable, in the millimetre scale. The culture schedules for indi-
vidual hES cell line often have to be titrated, however, the colonies generally need 
to be passaged every 5–7 days. If not, the hES cell colony will eventually start to 
show signs of differentiation, with random 3D structures appearing, migration of 
 fi broblast-like cells and even formation of spontaneously beating cells and neural-
likeoutgrowths. In addition, the feeder layer will deteriorate as well. Typically, the 
culture vessels with the feeder layer are prepared some time in advance, allowing 
conditioning of the culture medium. During the course of culture, a fraction or the 
whole of the culture medium is normally replaced at intervals. Centre well dishes 
like the ones used for IVF are commonly used since they are designed to allow 
manipulation of their content, have a rim compartment that should contain culture 
medium or sterile buffered solution in order to minimise changes in osmolality of 
the centre well, and not the least, they are subjected to a rigorous quality control. 
Nevertheless, a number of different culture vessels can be used. When simultane-
ously maintaining more than one hES cell line in culture, routines should be estab-
lished so the risk of cross contamination between lines is eliminated.   

    7.3.3   Enzyme Mediated Passage 

 The cut and paste method for hES cell passage described above is very labour inten-
sive and requires staff skilled in micro dissection. It is also practically impossible to 
acquire enough cells for large scale experiments, not to mention suf fi cient number 
of cells for use in compound screening or future regenerative medicine applications. 
As a consequence, protocols for enzymatic digestion of hES cell colonies have been 
developed and reported by several groups and there are several commercially avail-
able culture systems allowing feeder cell independent stem cell culture in con fl uent 
monolayers with enzyme mediated passage, with more or less de fi ned components. 
The important aspect of these culture system is their ability to support hES cell 
growth on either a biologic or synthetic matrix without involvement of feeder cells 
and the unknown parameters that would add. The advantages are apparent; it is less 
time consuming to passage the hES cells and a larger number of cells can be cul-
tured by a single person. After establishment and initial mechanical passage, the 
hES cells have been made progressively tolerant to enzymatic digestion, eventually 
allowing the cell colonies to be dissociated from old culture vessels and transferred 
into new ones with maintained viability. The cell colonies can be dissociated by 
enzymes, such as trypsin and collagenase IV, and also by treatment with EDTA. 
Needless to say, a system based on enzymatic digestion and large scale cultures 
need to be robust and validated to support long term pluripotency. Such a system is 
also ideal for automation of stem cell cultures. What is lost by simultaneously 
digesting all hES cell colonies in a culture vessel is the high level of control that the 
mechanical approach offers, i.e. the selection of morphologically perfect specimens 
over differentiated, or partly differentiated cells. Therefore, it is not unlikely that, to 
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some extent, the cut and paste method will be kept on the back burner in many labo-
ratories as a mean to go back to selective high quality cultures as starting material 
for transfer to other culture systems. 

 When hES cell colonies or con fl uent layers are enzymatically digested, two prin-
ciples of passage can be applied. Either the cells can be dissociated to clusters of a 
few hundred cells or to a single cell suspension. Cell viability is largely preserved 
in the former procedure, however, the stress in fl icted on the hES cells in the latter 
will lead to apoptosis (Watanabe et al.  2007  ) . Watanabe and co-workers made a 
signi fi cant  fi nding of a rho-kinase inhibitor that prevents apoptosis, thus allowing 
single cell suspensions of hES cell to maintain viability. The substance also improved 
cell survival after cryopreservation (Li et al.  2009  ) . This means that it is feasible to 
propagate hES cells in a highly reproducible manner and importantly, to seed them 
into culture vessels at exact numbers, which is a prerequisite for e.g. compound 
screening campaigns or other applications that require absolute control over seeding 
densities. Processing hES cells in quanti fi ed single cell suspensions also realises the 
possibility to, by automated means, propagate the cells in a programmed way, with 
exact concentrations of cells seeded as desired. Figure  7.3  illustrates a con fl uent 
layer of hES cells in a feeder-free culture system.  

 Concerns were raised in 2004 by Draper and co-workers, demonstrating that 
prolonged exposure of hES cell cultures to enzymes would cause chromosomal 
aberrations (Draper et al.  2004  ) , however other studies have later demonstrated that 
hES cells can be enzymatically propagated over longer periods of time with stable 
characteristics (Sjogren-Jansson et al.  2005 ; Suemori et al.  2006  ) . As Catalina and 
colleagues suggest, the individual hES cell lines may have different pre dispositions 

  Fig. 7.3    A con fl uent monolayer of hES cells cultured without the presence of feeder cells. This 
technique allows scaled up, and also automated hES cell culture       
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to chromosomal instability as well (Catalina et al.  2008  ) . To avoid suspicions of 
chromosomal changes, all hES cell cultures should either be regularly karyotyped 
or only cultured in a passage window that is unlikely to allow chromosomal devia-
tions to appear and propagate. hES cells not regularly subjected to enzymatic diges-
tion, such as cut and paste cultures, have been shown to sustain a stable karyotype 
for up to almost 2 years in continuous culture (Caisander et al.  2006  ) .   

    7.4   Scaling Up Cultures 

 For any clinical or industrial application of either undifferentiated hES cells or 
derivatives thereof, a scaled up production is required, possibly automated as well. 
Protocols for directed differentiation of naïve hES cells to a specialised cell fate 
often includes selection in some way, hence the cell population will be decimated. 
It has been estimated that for a hES cell based repair of a heart damaged by isch-
emia, hES cells in the range of billions would be required (Passier and Mummery 
 2005  ) . Clearly, the volume of the starting material is depending on the procedure of 
differentiation the cells to the desired end point and it is very dif fi cult to today pre-
dict the demands for starting material for a future cell-based therapy . Ef fi cacy is 
one challenge as well as ef fi ciency, the cost of the process and purity of cell 
 populations are two examples. To achieve billions of stem cells as a starting point is 
not realistic to achieve with the old traditional ways of hES cell culture, i.e. manual 
dissection in single culture dishes, so the need for massive amounts of starting mate-
rial has been a clear driver for the development of scalable culture systems, such as 
these discussed in the previous section. The scaled up culture process for hES cells 
need to be as robust and simplistic as possible, to generate the necessary reproduc-
ibility and to be cost effective. Thus, the number of unknowns in the process should 
be kept to a minimum and ideally a hES cell culture system should be feeder inde-
pendent and based on de fi ned media and matrix, synthetic or recombinant. The 
culture procedure must also be subjected to quality control, and preferable GLP 
procedures should apply. The application of MCBs and WCBs will contribute to 
reproducibility and robustness in the culture system. 

 Recent progress have been reported where hES cells successfully have been cul-
tured in amounts required for conducting compound screening campaigns in multiwell 
plate formats (Desbordes et al.  2008 ; Thomas et al.  2009 ; Andrews et al.  2010  ) . These 
achievements are essential for the use of hES cells in for example drug discovery. 

 The de fi nition and development of industrial cell production standards needs to be 
addressed, since scaled up hES cell culture is still a relatively new technology,. the 
ability to manipulate hES cell cultures as single cell suspensions is a  fi rst critical step 
towards reproducible scaled up culture, and not the least, distribution of even cell 
numbers in multiwell plates for screening. The possibility of adding wholly or partly 
automated cell culture technology will further strengthen the capability to supply a 
consistent quality of cells (Thomas et al.  2009  ) . Future widespread use of hES cell 
derivatives in bio reactors will also demand cell numbers of an industrial scale.  
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    7.5   Deriving Xeno Free hES Cells and hES Cells 
for Clinical Use 

 Routinely, all mammalian cell culture rely heavily on reagents sources from ani-
mals, e.g. serum, amino acids, albumin, various matrices like collagen and other 
factors. This is cost effective and gives enough consistency for the majority of 
applications. On the other hand, the unde fi ned culture condition that is a conse-
quence of the common use of bovine serum as a source of growth factors may be 
of concern for different reasons. One apprehension is from the aspect of reproduc-
ibility and possible batch-to-batch variation. Maybe of more interest in the context 
of the stem cell therapy area, is the risk of contamination by prions, viruses or other 
zoonoses of the cells cultured in contact with the animal material. Concerns were 
raised when it was observed that hES cells cultured in contact with animal material 
incorporated and expressed animal sialic acid, however, this has also been demon-
strated to be reversible (Heiskanen et al.  2007 ; Martin et al.  2005 ; Nasonkin and 
Koliatsos  2006  ) . To address this potential problem, derivation, propagation and 
banking of hES cell lines strictly without any contact with animal-sourced mate-
rial, i.e. under “xeno-free” conditions, have been reported by several groups 
(Ellerstrom et al.  2006 ; Ludwig et al.  2006 ; Rajala et al.  2007 ; Richards et al.  2004 ; 
Ilic et al.  2012  ) . 

 This is still substantially more expensive than regular hES cell culture due to the 
high costs of the reagents, but also the need for hardware as well as routines sepa-
rated from the non-xeno free cell cultures. The International Stem Cell Banking 
Initiative is a group of stake holders striving to harmonise guidelines for stem cell 
banking worldwide, with the goal of delivering the best practice for clinical grade 
stem cell delivery (Crook et al.  2010  ) . 

 One of the great hopes of hES cells are to utilise them as raw materials for tissue 
engineering and replacement for damaged organs or tissues. A number of clinical 
situations have been addressed as potential targets for this kind of approach. 
A therapy where insulin-dependent type-1 diabetics could receive functional beta 
cells that would integrate and normalise blood glucose levels would revolutionise 
thousands of lives of those affected by this auto immune disease that targets and 
destroys the endogenous insulin producing cells. Replacing damaged neurons in 
patients suffering from spinal cord injuries could mean the difference between 
con fi nement to a wheel chair and normal mobility. The examples are plenty and 
great hopes are put to this future development by many patient groups and 
clinicians. 

 Since the above described scenarios include the transplantation of living cells 
into patients, the regulatory framework is elaborate. For any future cell-based ther-
apy, Good Clinical Practice (GCP) is a requirement for clinical trials, and this 
includes that the cells have been sourced and produced according to cGMP. This is 
a regulatory framework ensuring that an end product meets pre-set speci fi cations. 
For a putative therapy based on hES cell derived functional cells, it includes the 
regulation of processes for
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   Donation and procurement of the starting materials, e.g. blastocysts and feeder • 
cells  
  Testing and quality control  • 
  Processing and manufacturing of the undifferentiated cells as well as all the pro-• 
cedure of generation differentiated cells.  
  Traceability of all reagents and materials as well as release criteria.    • 

 In 2007, Crook and co-workers published the  fi rst six hES cell lines derived and 
further processed in line with GMP regulations (Crook et al.  2007  )  and the most 
recent efforts in this area was published in 2012 (Ilic et al.  2012  ) . These are an 
important steps towards the clinic; however, there are still a big challenges to over-
come; to develop differentiated functional cells, veri fi ed and validated, of clinical 
value. Also, the six GMP compliant hES cell lines derived by Crook and co workers 
were not derived in absence of animal material, i.e., they cannot be de fi ned as xeno-
free. However, from a GMP perspective, the use of reagents sourced from animals, 
like serum, is acceptable, although it has been argued that clinical grade hES cells, 
or hES cell derived cells need to be derived xeno-free (Unger et al.  2008  ) . 
Nevertheless, in 2009, Geron Corporation was granted permission from the US 
Food and Drug Administration (FDA) to initiate the  fi rst phase 1 clinical trials for a 
spinal cord injury therapy, based on specialised cells derived from the hES cell line 
H1 (Alper  2009 ; Barde  2009  ) . This hES cell line was originally cultured in contact 
with animal components and without all the intricate documentation and assurance 
that GMP compliance gives (Geron  2009 ; Thomson et al.  1998  ) . As of late 2011, 
the Geron clinical trials have been stopped. As this chapters is written, the company 
Advanced Cell Technology are pursuing clinical trials for two conditions affecting 
the eye; Stargardt’s macular dystrophy and dry age-related macular degeneration 
(  http://www.advancedcell.com/patients/clinical-trial-information/    ). 

 In order to minimise the dependency on unde fi ned contributions from feeder 
cells, serum and complex culture matrices like Matrigel (BD Biosciences), efforts 
have been made to map the hES cell culture requirements for de fi ned culture sys-
tems, resulting in commercially available de fi ned culture systems for hES cells and 
iPS cells. For clinical use of hES cell or hES cell derived cells, cultures free of any 
animal components would desirably decrease the number of unknowns in the equa-
tion as would replacing biologics with small molecules. In addition to the biological 
and regulatory challenges, the industry and institutions need to generate enough 
cells suitable for therapeutic use and at the same time make it  fi nancially sound.  

    7.6   Differentiation Capacity and Their Precursors 

 The ability of hES cells to differentiate into virtually any specialised cell type 
 present in the adult body is one of the key features of these cells. Spontaneous dif-
ferentiation occurs  in vitro  when the cells are cultured in conditions lacking the 
appropriate components that sustain pluripotency. In addition, several protocols for 

http://www.advancedcell.com/patients/clinical-trial-information/


1897 Human Embryonic Stem Cells

directed differentiation of hES cells into various specialised cell types have been 
reported in which the cells are guided along lineage restricted pathways to generate 
relatively pure populations of cells. A detailed review on this topic is beyond the 
scope of the present chapter and here we only exemplify the differentiation capacity 
of hES cells using two brief examples; cardiomyocytes and hepatocytes. 

 The differentiation of hES cells towards the cardiac lineage can be observed 
through the appearance of clusters of spontaneously contracting cells, as originally 
reported in 2000 (Itskovitz-Eldor et al.  2000  ) . Different approaches have been 
developed to induce hES cells to differentiate to cardiomyocytes in culture. One is 
based on the formation of embryoid body-like structures under the in fl uence of vari-
ous cocktails of growth factors or small molecules in attempts to recapitulate heart 
development  in vivo  (Kehat et al.  2001 ; Yang et al.  2008  ) . Another method is to 
utilise a co-culture system with hES cells and END-2 cells (a visceral endoderm 
mouse cell line), in which the pluripotent stem cells are directly exposed to cell-cell 
interactions as well as the secretome of the END-2 cells (Mummery et al.  2003  ) . 
More recently, deriving cardiomyocytes from monolayers of hES and iPS cells have 
been demonstrated (La fl amme et al.  2007 ; Uosaki et al.  2011  )  and from hES cells 
cultured under de fi ned conditions using a directed differentiation approach using 
small molecules (Parsons et al.  2011  ) . Molecular, pharmacological, and electro-
physiological studies have characterised hES cell-derived cardiomyocytes to vari-
ous extents and these cells express many cardiac markers, including transcription 
factors, structural proteins, ion-channels, and different junction proteins (Beqqali 
et al.  2006 ; Synnergren et al.  2008  ) . Despite the similarities with their adult coun-
terparts, hES cell-derived cardiomyocytes still seem to mainly display a foetal car-
diac phenotype, and future research is needed to develop protocols which can sustain 
 in vitro  maturation of the cells towards a phenotype more close to the adult human 
cardiomyocyte. For drug discovery applications it would be desirable to generate 
pure populations of e.g. ventricular cardiomyocytes, to study speci fi c targets. 

 In 2003, the  fi rst report appeared which described the generation of hepatic-lineage 
cells from hES cells, with several publications following (Agarwal et al.  2008 ; 
Baharvand et al.  2008 ; Cai et al.  2007 ; Rambhatla et al.  2003  )  and more recently by 
Medine and co-workers (Medine et al.  2011  ) . It is however a major impediment to 
generate truly metabolically competent cells, i.e., cells expressing relevant enzymatic 
activities. No studies to date have shown activity levels of different Cytochrome P450 
enzymes that resembles those of freshly isolated human primary hepatocytes. Rather, 
the accumulated published work implicates that obtaining fully functional cells from 
hES cells is a major challenge (D’Amour et al.  2006 ; Guguen-Guillouzo et al.  2010  ) .  

    7.7   Potential Applications for Therapies 

 Therapeutic applications based on hES cells add several dimensions to the chal-
lenges regarding hES cells culture, differentiation, and puri fi cation as discussed 
above. In addition, critical aspects such as safety and ef fi cacy needs to be clari fi ed 
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in detail before such cells can progress to clinical trials. Indeed, much advancement 
has been made towards these ends and there are many diseases that are envisioned 
as suitable for targeting with stem cell therapies. For example, despite important 
advances in pharmacological therapies and organ transplantation, heart failure rep-
resents an enormous clinical problem. The limitations of the current interventions 
have driven the search for stem cell-based techniques to repair and regenerate heart 
muscle. The opportunity to create the major cell types present in the human heart 
(i.e., cardiomyocytes, smooth muscle cells, and endothelial cells) from pluripotent 
stem cells and subsequently transplanting these into the site of injury is an appealing 
strategy. Pre-clinical studies have begun to investigate hES cell-based heart regen-
eration, and initial studies provided positive encouragement and demonstrated short 
term (4 weeks) functional improvement following transplantation of hES cell-
derived cardiomyocytes to injured myocardium (Caspi et al.  2007 ; La fl amme et al. 
 2007 ; Leor et al.  2007  ) . However, it was later demonstrated that the functional 
improvement was transient and no differences were observed between the cardio-
myocyte transplanted group and the control animals at 12 weeks post-myocardial 
infarction (van Laake et al.  2007  ) . Also, formation of  fi brous tissue around the graft 
has been observed, hampering electrophysiological integration. However when hES 
cell derived cardiomyocytes were co-transplanted with hES cell derived endothelial 
cells and/or cardiac progenitor cells into mouse hearts, functional capillaries were 
formed and the cardiomyocytes were found to survive for up to 24 weeks. The for-
mation of capillaries suggests the possibility of an increased blood supply to the 
graft area. Although the understanding of the mechanism of action is limited at 
present, it appears that transplantation of cells to the injured heart has some bene fi cial 
effects but there are other possibly prohibitive mechanisms that need to be eluci-
dated further (van Laake et al.  2009,   2010  ) . 

 The possibility of generating relevant numbers and quality of hepatocytes for 
bio-arti fi cial liver support technology and possibly also for  in vivo  liver regeneration 
is a thrilling prospective (Dalgetty et al.  2009 ; Medine et al.  2011  ) . In addition, get-
ting an unlimited access to competent liver cells would be of exceptional use for 
studying drug targets, metabolism and toxicity (Jensen et al.  2009  ) . On the other 
hand,  in vitro  differentiation of hES cells towards the hepatic lineage clearly is a 
challenging task (Snykers et al.  2009  ) .  In vivo , the insulin producing beta cells are 
partly developed along the same pathway as liver cells, and these cells are also of 
great interest as a potential cure for insulin dependent type 1 diabetes (Borowiak 
and Melton  2009  ) . 

 Finally, there are a number of neurological disorders, such as Alzheimer and 
Parkinson’s diseases, amyotrophic lateral sclerosis and multiple sclerosis (ALS 
and MS respectively) as well as spinal cord injury that have been put as targets for 
hES cell derived therapies, and the urgency in the  fi eld of regenerative medicine 
is illustrated by the aforementioned clinical trials by Geron and Advanced Cell 
Technology as well as for neurological diseases as previously discussed by (Alper 
 2009 ; Kim and de Vellis  2009  ) . Needless to say, the promises hES cells hold for 
the generation of any cell type in the human body, has spawned research efforts in 
many disease areas.  
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    7.8   Conclusions and Future Development in Research 

 We have now had access to hES cells for more than a decade, and the progress of 
the scienti fi c  fi eld has been spectacular. One could only speculate about what the 
next decade will generate in terms of greater understanding of human developmen-
tal biology, and all aspects of the generation of functional cells from hES cells for 
therapy as well as drug discovery applications. The  fi eld has started to transform 
from research and development phase into a state where therapeutic and industrial 
applications begin to be tangible. In terms of the therapeutic area, the regulatory 
bodies are fundamental in developing and harmonising the legal framework for the 
use of stem cells in the clinic, and also when it comes to drug safety assessment 
legislation. 

 The hES cell  fi eld has largely been directed by scienti fi c drivers, however it 
becomes more obvious that the  fi nancial drivers become more imminent the closer 
to mature products we approach. Any application based on hES cells or their deriva-
tives needs to be proven biologically effective, safe where applicable, but also eco-
nomically justi fi ed, compare to the alternatives. More ef fi cient ways of producing 
the appropriate qualities of cells needs to be further addressed, including de fi ned 
and/or xeno-free conditions, GMP compliant,, and with the possibilities of auto-
mated production. Modi fi ed hES cells or derivatives thereof are important tools for 
further research and development, for example reporter gene containing hES cell 
lines, immortalised precursors and cells modi fi ed to overexpress genes of interest, 
e.g. ion channels or metabolising enzymes. 

 In terms of the generation of novel hES cell lines, it has been argued that there is 
a continued need for this. Reasons in favour for this is the technical development, 
that the absolute majority of the older lines are not derived under acceptable condi-
tions for many applications, albeit the hES cell that the therapeutic cells originated 
from in the Geron trials were originally derived as research grade and retrospec-
tively quali fi ed. In order to address patient groups with various putative therapies, 
one can also argue that there might not be enough diversity among the existing hES 
cell lines to cover the needs for future cell-based therapies as well as for the devel-
opment of novel drugs for treatment of disease (Civin and Rao  2006  ) . However, 
studies of renal allograft donor-recipient relations give fuel for speculation that a 
relatively low number of hES cell lines, in the range of low hundreds or ever less, 
would cover the larger proportion of the population for future therapies (Nakajima 
et al.  2007 ; Taylor et al.  2005  ) , as discussed by Daley and Scadden  (  2008  ) . Some 
compounds are known to be metabolised differently between individuals within 
various ethnic backgrounds as well as between ethnic groups, one example is the 
well known genetic diversity of the alcohol dehydrogenase. 

 Arguments against further establishment of hES cell lines also include advocat-
ing alternative novel technologies such as iPS cells and genetic manipulation of 
major histocompatibility genes to avoid graft-host responses. Using hES cell derived 
cells as replacement therapy will certainly raise these issues, a potential major prob-
lem that needs to be overcome (Lui et al.  2009  ) . From a functional perspective, 
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In order to develop safer and more accurate assays for drug discovery and toxicity 
testing there is a need of multiplicity among the hES cell lines used for the develop-
ment and veri fi cation and validation of novel test systems. It has also been argued 
that only a few existing cell lines as well as somatic stem cells should be enough for 
therapeutic purposes, drug discovery research and basic science. The methods for 
modifying existing cell lines are developing however the concept of transplanting 
genetically manipulated cells spawns further regulatory questions. It is safe to say 
that by the date this is published, it is too early to rule out one technology on favour 
of another. Only time together with high quality peer reviewed research and devel-
opment will contribute to the future directions of stem cells in general and hES cells 
in particular.      
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  Abstract   Nearly 50 years have passed since the concept of nuclear reprogramming 
proposed for the  fi rst time. Since then, several approaches have been developed to 
convert somatic cells to a pluripotent state. Direct reprogramming with de fi ned factors, 
is the newest of these approaches. This method requires just a few genes, and it also 
has a great reproducibility. Applying this method to humans seems to open the door 
to cell transplantation therapy without immune rejection, drug discovery, and eluci-
dation of the pathogenesis of intractable diseases. 

 However, this concept still faces some issues which must be overcome before 
application due to a shortage of experience. This chapter introduces an overview of 
direct reprogramming as well as a special focus on its potentials and challenges.      

    8.1   Introduction 

 Pluripotent stem cells such as embryonic stem (ES) cells may be a hopeful resource 
for regenerative medicine to repair degenerative or damaged tissues. ES cells have the 
potential to differentiate into all cell types in the body including germ cells. Not only 
pluripotency but also their growth properties are substantially superior. In  conventional 
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conditions, ES cells can grow in fi nitely while maintaining an undifferentiated state. 
Combined with the techniques of gene targeting and transgenes, these characters have 
allowed the generation of genetically modi fi ed animals (Robertson et al.  1986 ; Thomas 
and Capecchi  1987 ; Doetschman et al.  1987  ) . To this end, the mechanisms or causes 
of many diseases have been elucidated. Reports on the establishment of human ES 
cells brought great expectations to regenerative medicine of various diseases (Thomson 
et al.  1998  ) . In the last decade, scientists have established appropriate culture condi-
tions, differentiation protocols and guidelines for users. 

 On the other hand, human ES cells face two big issues that need to be overcome 
before successful medical application can be achieved. One is immune rejection 
caused by the mismatch in human leukocyte antigen (HLA) haplotypes between ES 
cells and patient. Another is the usage of human embryos. Although the response to 
ethical issues may vary depending on regions and civilizations, it should be ear-
nestly addressed in any case. 

 One of the solutions to overcome these issues is to reprogram patient’s own 
somatic cells directly to pluripotent stem cells. The reprogramming of the somatic 
nucleus was  fi rstly demonstrated by Sir John Gurdon in 1958 (Gurdon et al.  1958  ) . 
He developed cloned frogs by injecting the nucleus of a tadpole somatic cell into an 
egg. This report suggested that frog eggs have some reprogramming factor(s) that 
could initialize somatic state back to totipotency. In 1997, the group of Sir Ian Wilmut 
and Dr. Keith Campbell with their famous sheep, Dolly, showed that not only  fl exible 
species such as amphibians but also mammals have the reprogramming factor(s) in 
their eggs by using nuclear transfer technology (Wilmut et al.  1997  ) . In the last year 
of the 20th century, Dr. Takashi Tada and his colleagues showed that the nucleus of 
somatic cell also could be reset to the pluripotent state by electrical-fusion with 
mouse ES cells (Tada et al.  2001  ) . All these  fi ndings and following associated reports 
suggested that ES cells as well as eggs have such reprogramming factor(s). At a later 
date, the same phenomenon was con fi rmed in human cells (Cowan et al.  2005  ) . 

 What is the reprogramming factor? People have hypothesized that factors playing 
important roles in ES cell identities, such as differentiation potentials and tumor-
like growth properties, play a crucial role in the induction of pluripotency in somatic 
cells. The concept that the genes expressed speci fi cally in stem cells provided 
multipotency to the cells has been established and called stemness (Ramalho-Santos 
et al.  2002  ) . Therefore, the genes expressed predominantly in eggs and/or ES cells, 
and some non-ES cell speci fi c genes which are important for the character of pluri-
potent cells can be candidates of reprogramming factor(s). 

 The importance of pluripotent cell-associated genes has been proposed in several 
studies (Boiani and Schöler  2005 ; Niwa  2007  ) . 

 Oct3/4 (also known as Pou5f1) one of the most famous ES cell-speci fi c genes, is 
an octamer sequence binding transcription factor (Okamoto et al.  1990 ; Schöler 
et al.  1990  ) . Deletion of  Oct3/4  gene caused the loss of pluripotency in both ES cells 
and early embryos (Nichols et al.  1998  ) .  Oct3/4 -null embryos die at around the 
implantation stage. The inner cell mass (ICM) of  Oct3/4 -de fi cient embryo can no 
longer outgrow. Detailed analyses have shown that Oct3/4 prevents the differentia-
tion into trophectoderm by suppressing the function of Cdx2 which plays essential 
role in trophectoderm development (Niwa et al.  2005  ) . On the other hand, only a 
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1.5-fold increase of Oct3/4 expression in ES cells is suf fi cient to trigger differentiation 
into either mesoderm or primitive endoderm (Niwa et al.  2000  ) . These data indi-
cated that Oct3/4 is one of the most important regulators to prevent differentiation 
into speci fi c lineages and maintain ES cells in a pluripotent state. 

 The other important player is Sox2. The expression of Sox2 is restricted in nerve 
tissue and pluripotent cells including germ cells (Kamachi et al.  2000  ) . Structural 
and biochemical analyses demonstrated that Sox2 binds directly to Oct3/4 and acts 
as a regulator of ES cell-speci fi c gene expression such as  Utf1 ,  Fgf4  and  Lefty1  
(Ambrosetti et al.  1997 ; Reményi et al.  2003 ; Nishimoto et al.  1999  ) . Homozygous 
deletion of  Sox2  gene leads to embryo death immediate after implantation with the 
lack of epiblast formation (Avilion et al.  2003  ) . Blastocysts carrying a null mutation 
of  Sox2  gene looked normal, but the ICM could not expand  in vitro  whereas tropho-
blasts and primitive endoderm cells can continue to proliferate. In addition, Sox2-
de fi cient ES cells cannot maintain an undifferentiated state in conventional 
conditions (Masui et al.  2007  ) . Taken together, Sox2 is crucial for the maintenance 
of pluripotent cells in both ES cells and early embryos. 

 However, the functions of Oct3/4 and Sox2 are not suf fi cient to explain the 
molecular mechanisms underlying pluripotent stem cell identity. The presence of 
other co-factors has been speculated. Many exhaustive analyses were performed in 
the early 2000s, and databases of gene expression pro fi les were advanced rapidly 
such as expressed sequence tags (ESTs) and microarray technology (Kawai et al. 
 2001  ) . To this end, hundreds of stemness-relating genes were found as candidates to 
de fi ne the stem cell phenotype (Tokuzawa et al.  2003 ; Takahashi et al.  2003  ) . An  in 
silico  analysis and functional screening identi fi ed a novel stemness gene, designated 
Nanog at the same time (Mitsui et al.  2003  ) . Nanog is a transcription factor which 
contains a paired-like homeobox. The expression pattern of Nanog in early develop-
ment is more restricted than that of Oct3/4 or Sox2. Embryos carrying a null-muta-
tion of Nanog gene die during the post-implantation period lacking epiblasts (Mitsui 
et al.  2003  ) . Outgrowth of Nanog-de fi cient ICM is also defective, although primi-
tive endoderm-like cells can proliferate. On the other hand, ES cells carrying 
homozygous deletion of the Nanog gene can proliferate in vitro although morpholo-
gies and gene expression patterns were changed to primitive endoderm-like state 
(Mitsui et al.  2003  ) . In addition, forced expression of the Nanog gene allows cells 
to maintain pluripotency even without leukemia inhibitory factor (LIF) which is an 
essential component for self-renewal of mouse ES cells in serum-containing medium 
(Chambers et al.  2003 ; Mitsui et al.  2003  ) . Therefore, these data suggested that 
Nanog acts as a switch between the pluripotent state and primitive endoderm. 

 ChIP on chip analyses, which combine chromatin immunoprecipitation, microar-
ray, and a transcriptome, revealed global target genes of Oct3/4, Sox2 and Nanog in 
ES cells (Chew et al.  2005 ; Loh et al.  2006 ; Boyer et al.  2005  ) . More than 300 genes 
were categorized as common targets of these three transcription factors, including 
both expressed (Oct3/4, Sox2, Nanog, Stat3, Zic3) and not expressed genes (Hoxb1, 
Pax6, Lhx5, Myf5) in ES cells. These data suggested that a circuit consisting of 
Oct3/4, Sox2 and Nanog promotes the expression of genes supporting the self-
renewal of ES cells, suppresses those genes required for differentiation into three 
germ layers such as homeobox genes, and thus maintains pluripotency. 
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 On the other hand, several studies reported that some oncogenes also played 
important roles in ES cell identity (Chambers and Smith  2004 ; Cheng et al. 
 1998  ) . The most famous oncogene related to self-renewal of mouse ES cells is 
Stat3. LIF-mediated Stat3 activation is essential and suf fi cient for the mainte-
nance of pluripotency (Niwa et al.  1998  ) . One of its downstream targets in LIF/
Stat3 signaling pathway is c-Myc (Cartwright et al.  2005  ) . An overexpression of 
c-Myc in mouse ES cells allows LIF-independent self-renewal. On the other 
hand, another well known oncogenic pathway, Ras/MAPK, negatively regulates 
the maintenance of pluripotency. Inhibition of the Ras/MAPK pathway by a 
small molecule or gene targeting blocks differentiation (Cheng et al.  1998 ; 
Burdon et al.  1999  ) . It is not always true that these factors are expressed 
speci fi cally in pluripotent cells. ES cells display tumor-like properties with 
regard to their growth including anchorage independence, in fi nite expansion and 
tumorigenicity. As a result, it is no wonder that tumor-related genes join the net-
work of pluripotency. 

 In 2006, direct reprogramming of mouse somatic cells was accomplished by 
introducing the combination of just four transcription factors; Oct3/4, Sox2, 
Klf4 and c-Myc (Takahashi and Yamanaka  2006  ) . These reprogrammed cells 
arti fi cially induced by the de fi ned factors were named induced Pluripotent Stem 
(iPS) cells. In 1 year, human iPS cells were also generated from adult dermal 
 fi broblasts (Fig.  8.1 ) (Takahashi et al.  2007 ; Yu et al.  2007  ) . Since the  fi rst 
announcement of these  fi ndings, this  fi eld has rapidly expanded and developed 
in various directions.  

 In this chapter, I will introduce the expected potential and possible problems of 
iPS cells based on the latest  fi ndings.  

  Fig. 8.1    iPS cells derived from adult human dermal  fi broblasts       
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    8.2   Derivation 

    8.2.1   Cell Sources 

 In mouse, MEFs and TTFs are commonly used as sources of iPS cells in many 
reports. Various other cell types were demonstrated to be sources of iPS cells, such 
as neural progenitors, adrenal glands, keratinocytes, muscular cells, intestinal epi-
thelium cells, mesenchymal stem cells and hematopoietic cells (Aoi et al.  2008 ; 
Wernig    et al.  2008a ; Silva et al.  2008 ; Kim et al.  2008 ; Eminli et al.  2008,   2009  ) . In 
addition, terminally differentiated cells such as mature B cells, T cells and pancre-
atic    b   -cells can also be reprogrammed into iPS cells (Hong et al.  2009 ; Hanna et al. 
 2008 ; Stadtfeld    et al.  2008a  ) . 

 In human,  fi broblasts derived from a fetus, neonatal foreskin, oral mucosa, and 
adult dermis are widely used (Takahashi et al.  2007 ; Yu et al.  2007  ) . Human iPS 
cells were also generated from keratinocytes, mesenchymal stroma cells and less 
invasive cells, such as amnion cells, umbilical cord blood cells, dental pulp stem 
cells, and peripheral blood mononuclear cells (Aasen et al.  2008 ; Loh et al.  2009 ; 
Ye et al.  2009 ; Giorgetti et al.  2009 ; Haase et al.  2009 ; Yan et al.  2010  ) . The 
ef fi ciency of iPS cell generation and methods to deliver reprogramming factors are 
largely dependent on the cell types.

  iPS cell inductions were also reported from rat, dog, rabbit, pig, horse, sheep, cattle 
and monkey (Liao et al.  2009 ; Shimada et al.  2010 ; Esteban et al.  2009 ; Honda et al. 
 2010 ; Liu et al.  2008 ; Nagy et al.  2011 ; Sumer et al.  2011 ; Li et al.  2011  ) . The tech-
nique also applied for the generation of iPS cells from endangered species: the drill, 
 Mandrillus leucophaeus  and the northern white rhinoceros,  Ceratotherium simum 
cottoni . These iPS cells might be helpful to save species (Ben-Nun et al.  2011  ) .    

    8.2.2   Reprogramming Factors and Substitutes 

 Mouse iPS cells were initially established by forced-expression of Oct3/4, Sox2, 
Klf4 and c-Myc in mouse embryonic  fi broblasts (MEFs) or tail-tip  fi broblasts 
(TTFs) from adult mice (Takahashi and Yamanaka  2006  ) . Some of these factors 
can be replaced with related genes. For example, Klf2 or Klf5 can mimic Klf4 
functions, and Sox1, Sox3, Sox15, Sox17 and Sox18 are also able to substitute 
for Sox2 (Nakagawa et al.  2008  ) . Estrogen-related receptor, beta (Esrrb), can 
contribute to direct reprogramming with Oct3/4 and Sox2 (Feng et al.  2009  ) . In 
addition, treatment with a chemical drug, kenpaullone, along with transduction 
of Oct3/4 and Sox2 also can produce ES-like colonies from MEFs (Lyssiotis 
et al.  2009  ) . 

 All of the Myc family genes in mammals, c-Myc, N-Myc and L-Myc, dramatically 
enhance the ef fi ciency of iPS cell generation (Nakagawa et al.  2008  ) . Although Myc 
is dispensable for direct reprogramming, the number of iPS cell colonies generally 
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diminishes to approximately 150 without Myc (Nakagawa et al.  2008 ; Wernig et al. 
 2008b  ) . These data suggest that Myc acts as a booster of direct reprogramming. The 
effects of Myc on iPS cell generation can be replaced by the activation of the canon-
ical Wnt pathway (Marson et al.  2008  ) . 

 In addition to the above, some other factors which can improve the reprogram-
ming ef fi ciency were identi fi ed. The transduction of microRNAs such as miR-
291-3p, miR-294, miR-295 elevates the number of iPS cell colonies by about tenfold 
(Judson et al.  2009  ) . In addition, RNA-related protein LIN28 enhances the ef fi ciency 
of human iPS cells generation (Yu et al.  2007 ; Liao et al.  2008  ) . The inhibition of 
both Mitogen-Activated Protein Kinase Kinase (MEK) and Glycogen synthase 
kinase (GSK) 3, which is generally called 2i, increases the reprogramming ef fi ciency 
(Silva et al.  2008  ) . The overexpression of Spalt-like 4 (Sall4) or the suppression of 
transformation related protein 53 (Trp53) increase the reprogramming ef fi ciency in 
both mouse and human (Tsubooka et al.  2009 ; Hong et al.  2009 ; Kawamura et al. 
 2009 ; Li et al.  2009 ; Marión et al.  2009 ; Utikal et al.  2009 ; Banito et al.  2009  ) . In 
the case of human cells, telomerase reverse transcriptase (TERT) and Simian virus 
40 large T (SV40LT) antigen that promote the immortalization of human primary 
 fi broblasts, can enhance the reprogramming ef fi ciency (Park et al.  2008b ; Mali et al. 
 2008  ) . Accumulating evidences have revealed many additional reprogramming fac-
tors, such as GLIS1, UTF1, NR5A2, and RARG (Maekawa et al.  2011 ; Wang et al. 
 2011 ; Zhao et al.  2008  ) . 

 The expression balance and timing of the reprogramming factors is also impor-
tant for iPS cell generation. Increment of exogenous OCT3/4 enhanced reprogram-
ming frequency whereas relatively higher expression of SOX2, KLF4 or C-MYC 
inhibited the ef fi ciency (Papapetrou et al.  2009  ) . The balance of transgene expres-
sion would also affect the quality of iPS cells (Carey et al.  2011  ) .  

    8.2.3   Reprogramming Methods 

 First iPS cells were generated by transduction with four reprogramming factors 
with retroviral vectors (Takahashi and Yamanaka  2006  ) . This method has proven to 
be an effective one. However, viral integration into the genome should be avoided 
for clinical applications, because of unexpected activation of oncogenic adjacent 
genes and/or transgenes or destruction of genome, which may result in tumor for-
mation (Hacein-Bey-Abina et al.  2003 ; Okita et al.  2007  ) . Many attempts have been 
reported to overcome the issue. Soldner and colleagues used lentiviral vectors 
including the loxP sequence in their 3   ¢    long terminal repeat (LTR) (Soldner et al. 
 2009  ) . When lentiviruses integrated into the genome, most of the expression units 
are  fl anked by two loxP. After isolation of iPS cell clones, the sequence  fl anked by 
loxP can be removed by Cre recombinase. Only a ~100 bp sequence, which is a part 
of the LTR, should be left due to the limitations of this concept. 

 The reported approach to make integration-free iPS cells can be divided into 
four categories based on their vector types; virus, DNA, RNA, and protein. The 
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generation of iPS cells using an integration-free method was initially reported 
in mice. Stadtfeld et al. and Okita et al. used adenoviruses and plasmids to 
deliver the reprogramming factors, respectively (Stadtfeld et al.  2008b ; Okita 
et al.  2008  ) . Both adenoviruses and plasmids are diluted by cell division and 
 fi nally disappear. Yu et al. showed that integration-free human iPS cells could 
be established by plasmid vectors containing Epstein-Barr virus (EBV) 
sequences (Yu et al.  2009  ) . The EBV vectors encodes EBV nuclear antigen 1 
(EBNA1) which enable to replicate the vector in human cells and to maintain 
them episomally. Therefore, the long-term expression of transgenes is guaran-
teed. On the other hand, the replication ef fi ciency is not 100%. Therefore the 
vectors are gradually lost after iPS cell generation. They con fi rmed that no 
transgenes were inserted in the genome of iPS clones by Southern blotting and 
PCR. However, small pieces of exogenous DNA may slip away in the genome. 
This must be further analyzed in detail by next-generation sequencing. In addi-
tion, the low ef fi ciency of reprogramming with transient expression is another 
serious problem. This could be overcome by improvement of the vector and 
optimization of reprogramming factors (Okita et al.  2011  ) . The ef fi ciencies are 
around 0.1%, which is less than those of virus-mediated methods (1%), but 
would be enough for many purposes. 

 Kaji et al., Woltjen et al. and Yusa et al. pursued another path to generate 
 integration-free iPS cells. They chose the transposon system,  piggybac , to introduce 
a set of reprogramming factors into the genome (Kaji et al.  2009 ; Woltjen et al. 
 2009 ; Yusa et al.  2009  ) . It is particularly noteworthy that  piggybac  can be removed 
from the genome in a seamless manner by transposase when the reprogramming 
events are over. This system includes the forthcoming ablation of transgenes unlike 
other methods with transient expression of transposase. On the other hand, because 
 piggybac  has to insert once into the genome of somatic cells, it is necessary to 
con fi rm that there is no footprint in the integration sites after excision. Moreover, no 
clinical trials using transposon have so far been conducted. 

 All of these methods are based on the expression units of reprogramming factors. 
In contrast, recombinant protein fused with poly-arginine, which permeates into the 
target cells could achieve generation of mouse iPS cells (Zhou et al.  2009  ) . They 
performed the forced expression of poly-arginine tagged Oct3/4, Sox2, Klf4 and 
c-Myc in  E. coli , and then puri fi ed them. They transduced these proteins to MEF for 
four times every other day. ES-like colonies appeared after 30 days incubation, and 
grew into transgene-free iPS cells. They demonstrated these protein-induced pluri-
potent cell lines could not only differentiate into three germ layers  in vitro  but also 
contribute to germ cells of chimeric mice. Human  fi broblasts were also repro-
grammed by protein transduction (   Kim et al.  2009  ) . They used crude extracts of the 
cells expressing poly-arginine tagged reprogramming factors. Its ef fi ciency, how-
ever, seemed to be very low. 

 Generation of iPS cells with RNA virus vectors is also reported. Fusaki et al. and 
Nishimura et al. constructed Sendai virus vector which encode reprogramming factors, 
and generated iPS cells from human  fi broblasts and peripheral T cells (Fusaki, et al. 
 2009 ; Nishimura et al.  2011 ; Seki et al.  2010  ) . As the RNA genome of the Sendai virus 
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is maintained only in cytoplasm, they do not have chance to integrate into host genome. 
Sendai virus is not pathogenic to human and has relatively broad host range. 

 Direct induction of synthesized RNA is also available to make iPS cells. Warren 
et al. prepared synthesized mRNAs encoding  fi ve reprogramming factors (Oct3/4, 
Sox2, Klf4, c-Myc, and LIN28) with modi fi ed residues of 5-methylcytidine triphos-
phate and pseudouridine triphosphate to suppress the activation of the cellular anti-
viral response (Warren et al.  2010  ) . In addition, a 5   ¢    guanine cap was incorporated 
by inclusion of a synthetic cap analog to increase the RNA half-life in the cytoplasm. 
After puri fi cation, the RNAs were daily transfected into human  fi broblasts and 
induced iPS cells. On the other hand, Miyoshi et al. established iPS cells from 
mouse and human somatic cells with the combination of mature microRNAs, 
mir-200c and families of mir-302s and mir-369s (Miyoshi et al.  2011  ) . These RNA-
based methods would provide non-integrated iPS cells.  

    8.2.4   Selection of Reprogrammed Cells 

 Generally, mice carrying a reporter system of  fl uorescent proteins and/or drug resistance 
genes driven by the promoters of pluripotent cell-associated genes are used for the 
establishment of mouse iPS cells. First, iPS cells are generated from MEFs or TTFs 
carrying     b   geo , which is a beta-galactosidase and neomycin resistance fusion gene 
knocked into the  Fbx15  locus (Takahashi and Yamanaka  2006  ) . Thereafter, other 
reporter systems have been designed for this purpose. Nanog or Oct3/4 can also 
work as selection markers of reprogramming (Okita et al.  2007 ; Wernig et al.  2007 ; 
Maherali et al.  2007  ) . The other indicator of reprogramming is the silencing of the 
retrovirus promoter (Nakagawa et al.  2008  ) . The long terminal repeat (LTR) of 
mouse molony-leukemia virus (MMLV) can act as a strong promoter in mouse 
 fi broblasts. In contrast, the activity of MMLV LTR is effectively silenced in pluripo-
tent cells such as ES cells and iPS cells. Although this phenomenon would involved 
in epigenetic modi fi cation of histone and DNA, the precise underlying mechanisms 
still remain unclear (Wolf and Goff  2007,   2009 ; Matsui et al.  2010  ) . Nevertheless, 
when a retrovirus encoding  fl uorescent protein is transduced along with the repro-
gramming factors into somatic cells, the disappearance of the  fl uorescence suggests 
that reprogramming has been completed. 

 These reporters are employed because it is quite hard to distinguish repro-
grammed cells from the non-reprogrammed cells just by morphology in mice. In 
contrast, there is little unrest for human cells. Human iPS cells form distinctive  fl at, 
tightly packed and clear edged colonies like human ES cells, whereas non-repro-
grammed cells show granular morphologies and tend to form rough colonies 
(Takahashi et al.  2007 ; Lowry et al.  2008  ) . Most human iPS cells have been estab-
lished based on only their morphology. However, there are several attempts to use 
reporter system to select better iPS cells. For example, transduction of EGFP 
reporter with tandem repeat sequence responsible for OCT3/4 or NANOG was 
accomplished by lentivirus vector (Hotta et al.  2009  ) .   



2058 Induced Pluripotent Stem Cells

    8.3   Epigenetics 

 Some reports have shown that treatment with histone deacetylase (HDAC) inhibitors, 
such as Trichostatin A (TSA) and valproic acid (VPA), and DNA methyltransferase 
(DNMT) inhibitor, 5-Aza-2   ¢   -deoxycytidine, can improve the frequency of iPS cell 
establishment (Huangfu et al.  2008a,   b ; Mikkelsen et al.  2008  ) . Inhibition of histone 
methyltransferase G9a by treatment with a small molecule, BIX-01294, is also 
effective. These data suggest that epigenetic modi fi cations are closely linked to 
nuclear reprogramming (Shi et al.  2008  ) . 

 Several studies have suggested that the process of iPS cell generation contains 
stochastic events, and it results in the variation of epigenetic modi fi cation, espe-
cially when they are not directly correlated with the maintenance of iPS cell state. 
In mouse studies, Kim et al. reported that iPS cells in early passage remains inher-
ited epigenetic status of their cell source, and have high differentiation potential into 
their original cell linage (Kim et al.  2010  ) . Some of the persisted status, however, 
seemed to be gradually erased during cultivation. Epigenetic inheritance is also 
observed in human cells (Bar-Nur et al.  2011  ) . Global epigenetic survey found 
genomic regions which showed high variation among iPS clones (Lister et al.  2011  ) . 
These differences would in fl uence the character of iPS cells, in terms of differentia-
tion potential and safety aspect.  

    8.4   Properties 

 The characteristics of mouse iPS cells are almost completely equivalent to those of 
mouse ES cells. The morphology of both mouse ES cells and iPS cells is identical. 
Those two cell types can grow in serum-containing medium in the presence of 
leukemia inhibitory factor (LIF) and/or feeder cells (Okita et al.  2007  ) . They can 
also be maintained in serum-free medium supplemented 2i (Silva et al.  2008  ) . In 
addition, iPS cells also have the potential to undergo homologous recombination 
that is a useful property of ES cells in biology (Hanna et al.  2007  ) . 

 The expression levels of pluripotent cell marker genes such as  ERas ,  Rex1  and 
 Esg1  are indistinguishable between ES cells and iPS cells. Microarray analyses 
have also shown the global gene expression patterns of mouse iPS cells to be very 
similar to those of mouse ES cells (Okita et al.  2007 ; Wernig et al.  2007 ; Maherali 
et al.  2007  ) . 

 Not only the transcripts but the epigenetic status of iPS cells and ES cells, includ-
ing DNA methylation and histone modi fi cation, are quite similar (Meissner et al. 
 2008  ) . CpG methylation in the promoter regions of pluripotent cell marker genes 
such as  Oct3/4 ,  Rex1  and  Nanog  are highly unmethylated in iPS cells, whereas 
those of MEFs or TTFs were steadily methylated. Previous reports demonstrated 
that both the 4th (K4) and 27th (K27) lysine residues of histone H3 are methylated 
around the locus of differentiation-associated genes such as  Gata4 ,  Pax6  and  Msx2  
in mouse ES cells (Bernstein et al.  2006  ) . Generally, K4 is methylated in the regions 
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transcriptionally activated. In contrast, methylation of K27 re fl ects silencing in the 
vicinity. These bivalent patterns of histone methylation may imply that ES cells are 
always ready and waiting to initiate differentiation. In addition, mouse iPS cells also 
show bivalent patterns of histone methylation in differentiation marker genes as 
similar to mouse ES cells (Maherali et al.  2007  ) . Therefore, in the broad view of 
both external and inner aspects, it seems that iPS and ES cells have a striking resem-
blance. However, detailed analyses suggest that the epigenetic patterns are not 
completely identical between ES cells and iPS cells (Mikkelsen et al.  2008  ) . 

 These similarities and differences are also found in human cells. In particular, the 
patterns of global DNA methylation differ between human iPS cells and human ES 
cells (Chin et al.  2009  ) . On the other hand, various differences such as gene expression 
patterns, statuses of X-chromosome inactivation and differentiation capacities have 
been reported even among human ES clones (International Stem Cell Initiative 
 2007  ) . One of the conceivable reasons for this is the variety of genetic backgrounds 
among humans, unlike the situation regarding experimental animals. In fact, ES 
clones derived from different blastocysts provided by the same couple have been 
shown to have a strong resemblance to each other (Chen et al.  2009  ) .  

    8.5   Differentiation Capacity and Their Precursors 

 Many protocols for  in vitro  differentiation of mouse ES cells have been established. 
Most of them can be applied to mouse iPS cells. The traditional method with 
embryoid body formation allows iPS cells to differentiate into all three germ layers 
of endoderm, mesoderm and ectoderm (Takahashi and Yamanaka  2006 ; Wernig 
et al.  2007 ; Maherali et al.  2007  ) .  In vitro  differentiations of iPS cells into speci fi c 
cell types such as cardiac cells, bloods, adipocytes and retinal epitheliums has also 
been achieved (Schenke-Layland et al.  2008 ; Narazaki et al.  2008 ; Tashiro et al. 
 2009 ; Senju et al.  2009  ) . The gold standard to test the pluripotency is the generation 
of chimeric mice and the subsequent germ-line transmission. Similar to ES cells, 
mouse iPS cells are able to contribute to the development of chimeric mice includ-
ing germ cells (Okita et al.  2007 ; Wernig et al.  2007 ; Maherali et al.  2007  ) . The 
successful rate of germ-line transmission for iPS cells is no less than that for ES 
cells. In addition, mouse iPS cells have hurdled the stricter challenge of tetraploid 
complementation (Kang et al.  2009 ; Zhao et al.  2009 ; Boland et al.  2009  ) . The tet-
raploid embryos generated by the fusion of two blastomeres can contribute only to 
extra embryonic tissues instead of pup body. When iPS cells are injected into a tet-
raploid blastocyst, the entire body of the pup should be derived from the injected 
iPS cells. The pups only from iPS cells are then successfully born. These results 
suggest that mouse iPS cells have already reached the pluripotency of ES cells. 

 Most of the protocols for human ES cell differentiation are also applicable to 
human iPS cells. Random differentiation of human iPS cells can be achieved by 
embryoid body formation  in vitro  or teratoma experiments  in vivo  (Takahashi et al. 
 2007 ; Yu et al.  2007  ) . Directed differentiation into speci fi c cell lineages has also 
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succeeded, such as differentiation into retinal cells, vascular cells, pancreatic 
insulin-producing cells, hepatocyte-like cells, functional cardiomyocytes, platelets 
and neuronal cells (Osakada et al.  2009 ; Viczian et al.  2009 ; Taura et al.  2009 ; 
Zhang et al.  2009a,   b ; Song et al.  2009 ; Gai et al.  2009 ; Karumbayaram et al.  2009 ; 
Chambers et al.  2009 ; Takayama et al.  2010  ) .  

    8.6   Potential Applications for Therapies 

 One of the potentially useful applications of iPS cell technology is that the source 
of regenerative medicine using a patient’s own pluripotent stem cells (Yamanaka 
 2009  ) . These taylor-made iPS cells would thus make it possible to achieve autol-
ogous transplantation. The  fi rst study for therapeutic application of iPS cells was 
reported with the mouse model of sickle-cell anemia, a blood disease caused by 
a defect in the    b   -globin gene (Hanna et al.  2007  ) . They established iPS cells from 
the diseased mouse, and then repaired their genetic defects by homologous 
recombination. The injection of hematopoietic progenitors derived from geneti-
cally-corrected iPS cells could cure the diseased donor mouse. Another report 
showed the injection of iPS-derived cells directly into the liver of irradiated 
hemophilia A mice to improve their phenotypes (Xu et al.  2009  ) . These are 
examples of ideal models for regenerative medicine. In human case, the idea of 
iPS cell therapy was also brought up by Raya and colleagues (Raya et al.  2009  ) . 
At  fi rst, they corrected genes by introducing a lentiviral vector encoding  FANCA  
or  FANCD2  in keratinocytes derived from Fonconi anemia patients. iPS cells 
derived from the patients with genetic correction can be differentiated into the 
hematopoietic lineage. 

 Moreover, dopaminergic neurons differentiated from iPS cells were able to 
improve the behavior of a Parkinson’s disease model rat through transplantation 
into the brain (Wernig et al.  2008c  ) . On the other hand, however, they found that 
residual undifferentiated iPS cells included in the cells for transplantation caused a 
teratoma. Undifferentiated cells and the subsequent tumor formation after trans-
plantation remain to be a major complication of pluripotent cell therapies, not only 
with iPS cells, but also with ES cells. 

 The depletion of SSEA-1 positive cells, which means undifferentiated cells, from 
the cultures by  fl uorescence-activated cell sorter (FACS) can reduce the risk of tera-
toma formation after cell transplantation (Wernig et al.  2008c  ) . This issue was ana-
lyzed with a different point of view in the work of Miura and colleagues (Miura 
et al.  2009  ) . They differentiated 36 mouse iPS cell lines derived from embryonic 
or adult cells as well as ES cells into neural progenitor cells using the sphere 
 culture method (Miura et al.  2009  ) . They found that residual undifferentiated cells 
existed in less than 0.5% of ES cells or MEF-derived iPS cell lines. In contrast, 
TTF-derived iPS cell lines reproducibly showed a signi fi cantly higher ratio of undif-
ferentiated cells. Interestingly, such differences did not provide clear relationship 
with the presence or absence of Myc transgenes. 
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 Clinical trials using human ES cells have been carried out in the US, Korea, and 
UK. According to the preliminary report published in 2012, retinal pigment epithe-
lium derived from human ES cells were transplanted into patients with Stargardt’s 
macular dystrophy and dry age-related macular degeneration (Schwartz et al.  2012  ) . 
The transplanted cells showed no signs of hyperproliferation, tumorigenicity, ectopic 
tissue formation, or apparent rejection after 4 months. Moreover vision seemed to 
improve in one patient. The ES cells studies would encourage future iPS cell trials.  

    8.7   Conclusion and Perspective 

 Human iPS cells have another potential utility as a tool for drug discovery or under-
standing the pathogenesis of diseases. Over the last couple of years, iPS cells were 
established from somatic cells of patients with refractory diseases such as 
Amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy, Down syndrome 
and Parkinson’s disease, familial dysautonomia, type I diabetes, beta-thalassemia, 
Rett syndrome, LEOPARD syndrome and Fanconi anemia (Park et al.  2008a ; Maehr 
et al.  2009 ; Lee et al.  2009 ; Ye et al.  2009 ; Soldner et al.  2009 ; Raya et al.  2009 ; 
Carvajal-Vergara et al.  2010 ; Hotta et al.  2009  ) . Heretofore, it was dif fi cult to ana-
lyze the pathogenesis of speci fi c diseases  in vitro  because large amount of the 
patient’s cells are needed. iPS cells established from the patients may overcome the 
issue with their inde fi nite self-renewal ability. Combining the proliferation of undif-
ferentiated iPS cells and the differentiation of speci fi c cell types can yield an enormous 
amount of cells carrying the causal factors of diseases as associated with genetic 
mutations can be obtained, and used for large-scale screening or analyses. 

 If pathological conditions can be recapitulated  in vitro  using iPS cells from the 
patients, they could be used for screening therapeutically-effective molecules, and/
or for the evaluation of medicine side-effects for each individual patient. For example, 
Long-QT syndromes (LQTS) are congenital or acquired types of diseases with 
delayed repolarization and subsequent depolarization of the heart. This can lead to 
a risk of ventricular  fi brillation and unexpected death. A mutation in one of several 
disease-causing genes can bring on LQTS, and the effective medication is different 
among each type of LQTS. An epinephrine-loading test seems to be effective to 
determine if a patient has LQTS. However, this test may carry a certain degree of 
risk. Functional cardiomyocytes derived from patient’s iPS cells can be used for the 
 in vitro  diagnosis of LQTS, thus reducing the burden and risk for the patient. 

 However, recapitulation pathogenesis with disease-speci fi c iPS cells does not 
always work well. Dimos et al. established iPS cells derived from an ALS patient 
(Dimos et al.  2008  ) . They successfully differentiated ALS-iPS cells into both glial 
cells and motor neurons. However, although the glial cells of ALS patient produce 
toxins and result in destroying motor neurons, they failed to show the phenomenon 
 in vitro  with iPS cells. In contrast, Ebert and colleagues generated iPS cells carrying 
spinal muscular atrophy (SMA) which is a neurological disorder developed during 
infancy and causes death. Motor neurons derived from SMA patient’s iPS cells 
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showed a defect in the maturation of motor neurons (Ebert et al.  2009  ) . Another 
paper also reported the success of reproducing a pathological condition. They 
choose Familial dysautonomia (FD) as a model of pathogenesis, which shows 
peripheral neuropathy induced by a reduction in the expression of the  IKBKAP  
gene. They developed neural crest precursor cells from FD-iPS cells. As result, they 
observed a defect of cell migration and spontaneous differentiation into TuJ1 or 
ASCL1 positive neurons. In addition, they treated the cells with kinetin which could 
correct the expression of  IKBKAP  in mutant cells, and it markedly improved the 
phenotypes required for cell migration. Therefore, although not in all cases, these 
data indicate that the recapitulation of the pathogenesis and subsequent tests for 
drug effects are feasible. 

 At this time, the overriding issue remains the quality of iPS cells. It is not always 
true that integration-free and/or virus-free methods are the best methods for clinical 
application because insuf fi cient reprogramming carries higher risks than transgenes. 
A direct comparison of iPS cells established with various techniques must be con-
ducted by the same experimenter with a set of evaluation standards. Of course, 
human ES cells must be the benchmark for the evaluation of iPS cell quality. 
However, many differences are found among human ES cell clones with regard to 
differentiation potentials, gene expression patterns and the status of X-chromosome 
because of a variety of races (International Stem Cell Initiative  2007  ) . This issue also 
applies to iPS cells. In addition, not only genetic backgrounds, but also the age of 
donors, cell types as sources of iPS cells and freshness such as passage number will 
be different in individual cases. The effects of these factors on the characteristics of 
iPS cells should therefore also be further investigated. One advantage of iPS cells 
is the potential usage of autologous and HLA-matched transplantation. A study 
raised question about this point as Zhao et al. showed immunogenicity of mouse iPS 
cells (Zhao et al.  2011  ) . However they used undifferentiated iPS cells for transplantation 
which would never happen in medical transplantation. Nevertheless, immuno-
genicity of iPS cells should be carefully examined. 

 The continuing rapid progress in iPS cell research, as well as in direct reprogram-
ming, is therefore expected to elucidate over time various new treatment strategies for 
intractable diseases.      
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  Abstract   Spermatogonial stem cells (SSCs) constitute one of the most important 
stem cell systems in the adult body. SSCs are unipotent and respond for spermato-
genesis in the male as they can only differentiate into sperms within the testicular 
niche. The long-term culture of SSCs without loss of their properties provides the 
opportunity to develop therapeutic strategies and re-initiate spermatogenesis for the 
patients who become infertile after cancer therapy. Moreover, SSCs can be sponta-
neously reprogrammed into pluripotent germline stem cells (GSCs) similar to 
embryonic stem cells (ESCs) when they are removed from their  in vivo  niche and 
cultured  in vitro  under speci fi c conditions. The advantage of pluripotent GSCs over 
induced pluripotent stem cells is that conversion of SSCs into pluripotent GSCs 
does not require addition of genes using the virus system, which may avoid unpre-
dictable genetic dysfunction. In addition, this may also circumvent ethical problems 
associated with human ESCs. The ability to generate patient-speci fi c pluripotent 
GSCs for autologous transplantation provides the opportunity for cell replacement 
therapy without the need for immunosuppressant. In this review, we discuss the 
origin, properties and regenerative potential of SSCs. We summarize recent research 
 fi ndings regarding the mechanisms that regulate the self-renewal of SSCs. We 
believe that studying the biology of SSCs provides us important information to bet-
ter understand male fertility. Furthermore, we address the contribution of SSCs and 
pluripotent GSCs to stem cell-based therapy for infertility treatment as well as for 
organ regeneration in the future.      
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    9.1   Introduction 

 In sexually reproducing animals the function of germ cells is to bring the genetic 
information from one generation to the next. In females oocytes provide one part of 
the genetic information, whereas in males spermatozoa own the other part. After 
fertilization both haploid genomes come together and a new offspring is able to 
grow up. The unique capacity of germ cells to transmit information from parent to 
offspring has interested scientists for many years. 

 In the adult testis, the seminiferous epithelium is mainly composed of somatic 
cells and spermatogenic cells (Fig.  9.1a, c ). Sertoli cells, the somatic cells in the 
seminiferous epithelium are crucial for the coordination of spermatogenic events, 
thereby contributing to the well-organized structural and functional construction of 
the seminiferous epithelium (Jegou  1992  ) . Spermatogenic cells are made of several 
generations of dividing and differentiating cells, which are involved in the produc-
tion of spermatozoa. Spermatogenic cells (spermatogonia, spermatocytes, and sper-
matids) are organized in layers. Spermatogonia reside at the  basement membrane of 

  Fig. 9.1    Proposed models of spermatogonial subpopulations in mouse and human testes. 
( a ) Cross section of mouse seminiferous tubule with spermatogonial subpopulations and somatic 
cells. ( b ) Model of self-renewal within the spermatogonial stem cell compartment and spermato-
genesis in the mouse suggested by Nakagawa et al.  2010 . According to this model spermatogonia 
type A 

pr
  and A 

al
  can dedifferentiate into SSCs (A 

s
  spermatogonia). ( c ) Cross section of human 

seminiferous tubule with spermatogonial subpopulations and somatic cells. ( d ) Scheme for human 
spermatogonial stem cell renewal and spermatogenesis proposed by Clermont in the 1960s.  A  

 s 
  

single type A spermatogonium,  A  
 pr 

  paired type A spermatogonium,  A  
 al 
  aligned type A spermatogo-

nium,  In  intermediate spermatogonium,  SPC1  primary spermatocyte,  SPC2  secondary spermato-
cyte,  SPT  spermatid,  SPZ  spermatozoon       

 



2219 Spermatogonial Stem Cells

seminiferous tubules. Spermatocytes are generally located in the middle of the sem-
iniferous epithelium and spermatids (round and elongated) are located in the adlu-
minal region. Spermatogenesis is a well-organized and complex process, which 
starts with a small number of spermatogonial stem cells (SSCs), the male germline 
stem cells (GSCs), and can generate 100 million spermatozoa each day in adult 
males (de Rooij  1998  ) . Spermatogenesis begins at 5–7 days after birth in rodents 
and 10–13 years after birth in men. The time from SSC differentiation to production 
of mature spermatozoa is about 35 days in the mouse and 64 days in the human 
(Brinster  2007  ) . Spermatogenesis can be divided into three distinct phases: sper-
matogonial, spermatocyte and spermatid phases. In the spermatogonial phase (also 
known as mitotic phase or premeiosis), primary spermatocytes are generated as a 
result of proliferation and differentiation of spermatogonia. In the spermatocyte 
phase (meiosis I/II), each primary spermatocyte divides into two secondary sperma-
tocytes during meiosis I, and each secondary spermatocyte into two spermatids dur-
ing meiosis II. In the spermatid phase (also called as spermiogenesis), spermatozoa, 
also known as sperm cells are formed as a result of the metamorphosis of spermatids 
(Clermont  1972  )  (Fig.  9.1b, d ). The timing of sequential steps in spermatogenesis is 
tightly regulated by genes of the germ cell, and Sertoli cells support the differentia-
tion process.  

 SSCs, the undifferentiated spermatogonia constitute a small population of cells 
(2–3 × 10 4  per adult mouse testis). Similar to other adult stem cells, SSCs have the 
capability to self-renew while remaining capable of generating numerous differenti-
ated daughter cells. The small number of SSCs in the adult testis and the complexity 
of the microenvironment are the main dif fi culties in SSC research. Studies with 
transplantation in the adult mouse demonstrate the potential of SSCs in clinical 
application for the treatment of male infertility (Brinster and Zimmermann  1994 ; 
Kanatsu-Shinohara et al.  2006 ; Kubota et al.  2004b ; Kubota and Brinster  2006  ) . 
Previous studies show that using cryopreservation and SSC transplantation, cancer 
patients undergoing chemotherapy or radiotherapy can retain their fertility to safe-
guard their germline (Brinster  2007 ; Ryu et al.  2006  ) . 

 Furthermore, recent research shows that under appropriate culture conditions, 
both neonatal and adult SSCs in the mouse are able to convert into pluripotent 
embryonic stem (ES)-like cells which can differentiate into derivatives of all three 
germ layers (Guan et al.  2006 ; Kanatsu-Shinohara et al.  2004  ) . Similar results have 
also been reported with adult human SSCs (Conrad et al.  2008 ; He et al.  2010,   2012 ; 
Kossack et al.  2009  ) . However, the pluripotent character of those human cells with 
respect to gene expression pro fi le and ability to generate teratomas has been called 
into question (Ko et al.  2010 ; Tapia et al.  2011  ) . The derivation of pluripotent stem 
cells from human testicular tissue may lead to a new source of autologous cells in 
regeneration of damaged organs. A thorough understanding of the molecular mech-
anisms, especially growth factors and signaling pathways, regulating the fate deter-
mination of SSCs has important implications for basic research and for their 
potential therapeutic application in patients. 

 In the present review, we focus on summarizing the origin and characteristics/
properties of male GSCs, on understanding growth factors and signaling pathways 
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that regulate proliferation, differentiation, and fate decisions of SSCs, as well as on 
discussing their implications for basic research and for therapeutic application, with 
special focus on organ regeneration and infertility.  

    9.2   Derivation and Classi fi cation 

    9.2.1   Origin of SSCs 

 In many animal phyla, including insects, roundworms, and vertebrates, the distinc-
tion between somatic and germ cells occurs at the very early stage of embryonic 
development. All gametes arise from so-called primordial germ cells (PGCs), the 
embryonic precursors of the male and female germline. In insects and amphibians, 
there is a zone found in the cytoplasm of an egg cell, which contains determinants 
(RNA and protein components) that play an important role in PGC speci fi cation. 
This zone is called germ plasm or pole plasm. Only blastomeres incorporating the 
germ plasm develop into PGCs. The components of germ plasm prevent PGCs 
from differentiating into somatic cells by repression of the global transcriptional 
machinery (Strome and Lehmann  2007  ) . Therefore, the germ plasm or pole plasm 
is often used as a convenient marker to trace the early ontogeny of germ cells in 
insects and amphibians (Eddy  1975 ; Eddy and Hahnel  1983 ; Mahowald and 
Hennen  1971  ) . 

 In mammals such cytoplasmic determinants specifying PGCs are not detected. In 
early mammalian embryogenesis, the zygote divides three times resulting in a mass 
of eight cells having equal totipotency. At the 16-cell stage, the morula consists of a 
small group of internal cells, which remain pluripotent and give rise to the inner cell 
mass (ICM), and a larger group of external cells at the periphery, which become the 
trophectoderm cells, the  fi rst differentiated embryonic cell types. In the blastocyst, 
the ICM and the trophoblast cells become separate cell layers, neither of which 
contributes cells to the other group. Subsequently, a part of ICM differentiates into 
the primitive endoderm, and the remaining part of the ICM cells develops into the 
amniotic ectoderm and the embryonic epiblast. The embryonic epiblast is believed 
to be pluripotent and able to give rise to all cells of the three embryonic germ layers, 
as well as germ cells. PGCs are derived from the epiblast during gastrulation in 
rodents and humans (McLaren  2003  ) . 

 In the mouse, the bone morphogenetic proteins (BMPs) produced by the extrae-
mbryonic ectoderm induce a small number of epiblast cells to become PGC precur-
sors (Lawson et al.  1999  ) . A group of about 50–100 cells are  fi rst distinguishable at 
embryonic day 7.25–7.5 within the extraembryonic mesoderm in the distal portion 
of the primitive streak and at the base of allantoic buds. In humans, at about 21–22 
days of gestation PGCs are  fi rst recognizable at the same region as that in the mouse, 
the wall of yolk sac near the developing allantois (De Felici et al.  2004  ) . Both mouse 
and human PGCs are recognized by their alkaline phosphatase activity (McLaren 
 2003  ) . One reason that PGCs evolve outside the actual embryo in extraembryonic 
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tissues might be that here somatic paracrine factors cannot reach these cells and 
therefore they escape from a somatic cell fate. The precise molecular mechanism to 
establish the germline is not yet clear, but there are evidences pointing out an impor-
tant role of transcription inhibitor B lymphocyte-induced maturation protein 1 
(Blimp1, also Prdm1) (Ohinata et al.  2005  ) . In addition, the expression of homeotic 
genes ( Hox -genes) commonly present in somatic cells is downregulated in develop-
ing PGCs (Saitou et al.  2002  ) . PGCs express germline-speci fi c transcriptional fac-
tors and genes, such as  Oct4 ,  Stella  (also known as  PGC7  and  Dppa3 ),  Nanos3 , 
 Dead end ,  Blimp1  and  Vasa  (McLaren  2003 ; Saitou et al.  2002 ; Sato et al.  2002 ; 
Yabuta et al.  2006  ) . After collecting at the allantois, the PGCs propagate and at the 
same time move from the adjacent yolk sac through the hind gut and dorsal mesen-
tery into the genital ridges. 

 This process of division and migration of PGCs is strictly dependent on c-Kit/
stem cell factor (SCF) signal transduction pathway. Mouse embryos homozygous 
for mutation in  c - Kit  gene ( W ) are de fi cient in germ cells (Buehr et al.  1993  ) . In the 
absence of SCF, the c-Kit ligand, the motility of PGCs is dramatically decreased 
(Gu et al.  2009  ) . The migration of PGCs is critically dependent on the interaction 
with extracellular matrix proteins, especially, with laminin (García-Castro et al. 
 1997  ) , and cell surface receptor subunit  b 1-integrin plays an important role in col-
onization of the genital ridges, as in   b 1 - integrin  knockouts PGCs did not enter the 
embryonic gonads as ef fi ciently as in wild type mice (Anderson et al.  1999  ) . 
Initially PGCs proliferate after colonization and then enter the mitotic arrest in 
males (McLaren  2003  ) . 

 At mouse embryonic day 12.5, the gonad of males becomes morphologically 
different from females. In human, the  fi rst signs of sexual differentiation appear at 
the end of week 7. In the male genital ridge, PGCs become enclosed by the somatic 
supporting cells, the differentiating Sertoli cells, and seminiferous cords are formed. 
The germ cells residing within seminiferous cords are called gonocytes and differ 
morphologically from PGCs. At embryonic day 13.5 in mice and at 18–20 weeks in 
humans, gonocytes arrest in the G0/G1 phase of the cell cycle and cease mitosis. 
The halt of proliferation is characteristic for the transition from PGCs to gonocytes, 
and the level of c-Kit receptor tyrosine kinase expression is decreased (Donovan 
and de Miguel  2007  ) . Gonocytes lose expression of SSEA-1, which is expressed by 
PGCs and begin to express the germ cell nuclear antigen 1 (GCNA-1), an antigen of 
unknown function, recognized by a rat monoclonal antibody. The gonocytes also 
lose adhesiveness to  fi bronectin and laminin (De Felici and Dolci  1989 ; Donovan 
and de Miguel  2007  ) , and at the same time increase in cell size more than fourfold. 
In the fetus, gonocytes are located in the center of the tubules. Following birth in 
mammals, gonocytes migrate to the seminiferous tubule basement membrane and 
reenter the cell cycle. At day 1 after birth in the mouse testis, the  3  H Thymidine 
labeling index of gonocytes is 10.4%, 20.1% at day 2, and 24.1% at day 3 (Donovan 
and de Miguel  2007 ; Vergouwen et al.  1991  ) , at which time the  fi rst A spermatogo-
nia (also known as SSCs) are identi fi ed (de Rooij  1998 ; Spradling et al.  2001  ) . 
In mice, the SSC pool arises from gonocytes approximately 6 days after birth. 
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From the puberty on the task of SSCs in the male is to provide an unlimited supply 
of progenitor cells for the differentiation into mature spermatozoa. 

 Germ cell development involves epigenetic regulation of chromatin 
modi fi cations and DNA methylation (Guan et al.  2012  ) . The inheritance of the 
epigenetic modi fi cations is reprogrammed in germ cells, but is relatively faithful 
in somatic cells. In mice, at embryonic day 7 when PGC speci fi cation occurs, 
level of genome wide DNA methylation, histone H3 lysine-9 di-methylation 
(H3K9me2) and lysine-27 tri-methylation (H3K27me3) are similar to those in 
surrounding somatic cells (Seki et al.  2007  ) . Immediately after fate determination, 
the genome wide methylation patterns are erased and re-established during migra-
tion of PGCs to genital ridges (Schaefer et al.  2007  ) . Once arriving at the genital 
ridge at embryonic day 11.5 in mice and by the  fi fth week of human development, 
PGCs undergo erasure and re-establishment of parental imprints during male and 
female gametogenesis before being passed to the next generation. Re-establishment 
occurs only after sex determination has been initiated, for review see (Saitou et al. 
 2012  ) . This is a critical point, where the development of male and female germ 
cells goes differently. Under the in fl uence of retinoic acid, produced by develop-
ing mesonephros, female germ cells enter meiosis. However, in developing testis 
Cyp26b1, a retinoic acid-degrading enzyme expressed by Sertoli cells prevents 
the meiosis in germ cells. As found in  cyp26b1  knockout mouse embryos, germ 
cells enter meiosis  precociously (Bowles et al.  2006  ) . Methylation of paternally 
imprinted genes is established in gonocytes up to the newborn. The newly estab-
lished methylation imprints in gonocytes are then maintained through meiosis and 
passed to mature spermatozoa (Kato et al.  2007  ) .  

    9.2.2   Classi fi cation of SSCs 

 In the mature testis, different germ cell types can be discriminated  in vivo . Today 
scientists classify spermatogonia into different subtypes based on different mor-
phologies. In the mature mouse testis, single type A spermatogonia are denoted as 
A 

single
  (A 

s
 ), the most primitive cells located directly at the basal membrane of 

seminiferous tubules. Their percentage of all germ cells in the testes amounts to 
about 0.02–0.03% (Tegelenbosch and de Rooij  1993  ) . Through symmetrical divi-
sion either two daughter A 

s
  cells or two A 

paired
  (A 

pr
 , two cell cysts) spermatogonia 

arise out of one mother A 
s
  cell (Dym and Fawcett  1971 ; Greenbaum et al.  2006  ) . 

A 
pr
  spermatogonia are connected through a cytoplasmic bridge. They can divide 

furthermore and generate up to 32 jointly connected spermatogonia of the subtype 
A 

aligned
  (A 

al
 , 4, 8, or 16 cell clusters) (de Rooij  2001  ) . Further differentiation is 

orientated from the basal membrane of the seminiferous tubule towards the lumen. 
A 

al
  spermatogonia differentiate into A 

1
 , which subsequently go through six syn-

chronous mitoses generating A 
2
 , A 

3
 , A 

4
 , intermediate (IN) and B spermatogonia 

and spermatocytes which undergo meiosis and continue differentiation into sper-
matids and mature spermatozoa (de Rooij  2001  ) . This linear model proposed in 
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1971 by Huckins  (  1971  )  and Oakberg  (  1971  )  suggests that stem cell capacity 
resides within A 

s
  cells, whereas other A-type spermatogonia represent 

 transit-amplifying progenitors, which divide uni-directionally to generate longer 
cysts (Fig.  9.1b ). The simplicity of the linear model has led it to be widely 
accepted, despite claims that early cysts could reverse their paths and even replen-
ish stem cells after tissue damage (Dym and Clermont  1970  ) . However, the trans-
plant assay demonstrate that A type spermatogonia, including the A 

s
 , A 

pr
 , and A 

al
  

spermatogonia have stem cell potential (Orwig et al.  2008  ) . Recently, Nakagawa 
et al. evaluated this straight-forward linear model by applying the combination of 
lineage tracing and live imaging system and demonstrated that A 

pr
  and A 

al
  sper-

matogonia were not committed uni-directionally to differentiation but capable of 
reverting to A 

s
  by fragmentation, and that the fate of individual spermatogonial 

populations was markedly altered during regeneration after damage (Fig.  9.1b ) 
(Nakagawa et al.  2010  ) . 

 In the adult human testis, there is still very little known about spermatogonial self-
renewal. Clermont identi fi ed and characterized two spermatogonial subtypes of type 
A spermatogonia according to the staining pattern and the morphological character-
istics of their nucleus nearly 50 years ago (Clermont  1963,   1966  ) . They are referred 
to as dark type A spermatogonia (A 

dark
 ) and pale type A spermatogonia (A 

pale
 ). The 

A 
dark

  spermatogonia have a discoid nucleus containing a deeply stained dust-like 
chromatin and a cavity with a pale stained material in the central part of the nucleus. 
Very often one or more nucleoli closely to the nuclear membrane are visible. The 
A 

pale
  spermatogonia have an ovoid or discoid nucleus containing a pale staining gran-

ulated chromatin and showing one or two nulceoli attached to the nuclear envelope. 
In the human testis, beginning at approximately 2 months of age, gonocytes are 
replaced by A 

dark
  and A 

pale
  spermatogonia. According to Clermont’s model both A 

dark
  

and A 
pale

  spermatogonia are the stem cells. Speci fi cally, A 
dark

  spermatogonia are the 
presumptive reserve stem cells which represent a back-up of SSCs in the human 
testis and divide rarely but can be triggered to self-renew in case of injury or disease. 
In contrast, the A 

pale
  spermatogonia represent the active stem cell pool which can 

self-renew and differentiate continuously to yield type B spermatogonia, which fur-
ther differentiate into spermatocytes (Fig.  9.1d ) (Clermont  1963,   1966,   1972  ) . 
Therefore, in humans fewer mitotic steps are required to obtain spermatocytes and 
the ef fi ciency of clonal expansion is very low in comparison to rodents (Bustos-
Obregon et al.  1975 ; Johnson  1994 ; Johnson et al.  1999,   2001  ) . Although this 
classi fi cation for human spermatogonia has been adopted by most researchers, the 
described model is challenged recently by Ehmcke and Schlatt, who suggested that 
A 

pale
  spermatogonia underwent additional mitotic divisions (Ehmcke and Schlatt 

 2006  ) . It has been demonstrated that in primates, a higher mitotic turnover is required 
from A 

pale
  spermatogonia whose proliferation increases the total number of germ 

cells (Ehmcke et al.  2006  ) . The role of stem cells is therefore limited to A 
dark

  sper-
matogonia, which will replenish the progenitor compartment (A 

pale
  spermatogonia) 

in case of cytotoxic or natural depletion (Ehmcke et al.  2006  ) . Nevertheless, up to 
now, very little new information is available on the true identity of human SSCs and 
on the process of their self-renewal and differentiation (Dym et al.  2009  ) .   
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    9.3   Characteristics and Properties 

    9.3.1   Characteristics of Mouse SSCs 

 SSCs in rodents have been extensively characterized regarding the expression of 
marker genes and cell surface molecules. The surface phenotype of mouse undif-
ferentiated spermatogonia, including SSCs is major histocompatibility complex 
(MHC) class 1 (MHC-1) −  thymus cell antigen 1 (Thy-1) low/+  c-Kit receptor tryrosine 
kinase (c-Kit) −   b 1-integrin (ITGB1) +   a 6-integrin (ITGA6) +   a v-integrin (ITGAV) −  /dim  
at all postnatal ages (Kubota et al.  2003,   2004a ; Shinohara et al.  1999  ) . SSCs are 
also positive for cell surface markers, such as Ep-CAM, CD9, glial cell-derived 
neurotrophic factor (GDNF) receptor (GFR) a 1 and c-Ret receptor tyrosine kinase 
(RET), and an orphan adhesion-type G-protein-coupled receptor (GPR125) 
(Buageaw et al.  2005 ; Kubota et al.  2003 ; Naughton et al.  2006 ; Ryu et al.  2004 ; 
Seandel et al.  2007  ) . Antibodies speci fi c to the listed antigens allow enriching of 
SSCs by  fl uorescence-activated cell sorting (FACS) or magnetic-activated cell sort-
ing (MACS). Recently, a well-known cell adhesion molecule E-cadherin has been 
found to be a marker of mouse SSCs. E-cadherin appearance coincided with expres-
sion of another SSC marker promyelocytic leukemia zinc  fi nger (PLZF), and its 
expression was decreased in c-Kit positive differentiating spermatogonia (Tokuda 
et al.  2007 ; Tolkunova et al.  2009  ) . C-Kit is a hallmark for the more differentiated 
spermatogonia, including type A 

1–4
  spermatogonia (Yoshinaga et al.  1991  ) . 

 SSCs have a common feature with other adult stem cells (for example, from the 
bone marrow or skeletal muscle), such as the ability to exclude DNA binding dye 
Hoechst. Therefore, SSCs can be identi fi ed by FACS after staining with Hoechst 
as so-called side population (Falciatori et al.  2004 ; Lassalle et al.  2004  ) . RNA 
expression analysis demonstrated that the side population in testicular cells con-
tains spermatogonial cells expressing germline stem cell markers  a 6-integrin and 
Stra8 (Lassalle et al.  2004  ) . Hoechst ef fl ux can be prevented by a speci fi c ATP-
binding cassette subfamily G member 2 (Abcg2 or Bcrp) inhibitor Ko143, sug-
gesting that the ‘side population’ phenotype of SSCs is dependent on Abcg2 
activity. The side population phenotype is also conferred by Abcg2 expression 
(Falciatori et al.  2004  ) . 

 Recently, Nakagawa et al. propose that gene expression appears to be the better 
indicator of the fate of individual cells over the morphological criteria. PLZF and 
E-cadherin have essentially identical expression patterns and are found in all A 

s
 , A 

pr
  

and A 
al
  spermatogonia (Nakagawa et al.  2010  )  whereas GFR a 1 mostly marks A 

s
  or 

A 
pr
  spermatogonia and neurogenin (NGN)3-positive cells are mainly A 

al
  (Nakagawa 

et al.  2010 ; Yoshida et al.  2007a  ) . A cytoplasmic protein encoded by the retinoic 
acid-responsive gene  Stra8 , is a speci fi c marker for premeiotic spermatogonia and 
their progenitors (Giuili et al.  2002 ; Guan et al.  2006  ) . Additionally, the pluripo-
tency factor Lin28 marks also all the A 

s
 , A 

pr
  and A 

al
  spermatogonia, and Lin28-

positive cells exist as two subpopulations: NGN3-negative (high stem cell potential) 
and NGN3-positive (high differentiation commitment) cells (Zheng et al.  2009  ) . 
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Another pluripotency factor Oct4 (POU5F1), a germline-speci fi c transcriptional 
factor, is also expressed in mouse SSCs (Ko et al.  2009 ; Ohbo et al.  2003 ; Ohmura 
et al.  2004  ) . Knockouts for several transcription factors, such as TAF4b (Falender 
et al.  2005  ) , Ets variant gene 5 (Etv5) (Tyagi et al.  2009  )  and PLZF (Buaas et al. 
 2004 ; Costoya et al.  2004  )  resulted in impairment of spermatogonial compartment 
and therefore appear to be crucial for spermatogenesis. Mice with targeted disrup-
tion of  Etv5  showed total loss of undifferentiated spermatogonia resulting in a 
Sertoli cell-only phenotype and aspermia. Sertoli cells from Etv5 knockout mice 
revealed a signi fi cant decrease in expression of several chemokines. Chemotaxis 
assays demonstrated that migration of SSCs towards Sertoli cells from Etv5 knock-
out mice was signi fi cantly decreased in comparison to migration toward wild-type 
Sertoli cells. Rescue assays using recombinant chemokines indicated that C-C-
motif ligand 9 (CCL9) facilitated Sertoli cell chemoattraction of SSCs, which 
express C-C-receptor type 1 (CCR1). This study also revealed that there was a pro-
tein-DNA interaction between Etv5 and CCL9, suggesting that Etv5 might be a 
direct regulator of CCL9 expression (Simon et al.  2010  ) . 

 During last 10 years many labs performed transcriptome pro fi ling studies in 
order to identify gene signatures characteristic for germ cells at different stages of 
development. These studies include time course of testis development during 
embryogenesis (Shima et al.  2004 ; Small et al.  2005  ) , SSCs derived from neonatal 
testis (Hofmann et al.  2005  )  as well as studies of SSCs culture  in vitro  (Carlomagno 
et al.  2010 ; Hamra et al.  2004 ; Oatley et al.  2006  ) . These studies describe new genes 
expressed in the SSCs as well as operating molecular pathways. For instance, Oatley 
et al. and Hoffmann et al. have discovered genes upregulated after stimulation of 
SSCs with GDNF (see below). Interestingly, genes with maximal change in expres-
sion are largely not coincident in these two studies. The reason could be the use of 
freshly isolated GFR a 1 selected spermatogonia in one study (Hofmann et al.  2005  )  
and long-term cultured SSCs in another (Oatley et al.  2006  ) . Another reason could 
be different culture conditions, and conditions of GDNF stimulation (Caires et al. 
 2010  ) . Therefore, new high-throughput screenings, especially employing combina-
tion of enriched SSCs and long-term cultured germ cells from the same origin would 
help to identify new SSC genes and signaling pathways involved in propagation and 
differentiation of these cells.  

    9.3.2   Characteristics of Human SSCs 

 Studies related to the fundamental questions of SSC biology have been mostly per-
formed with mice and to a less extent with rats and pigs and very few with primates 
including humans. Interesting and challenging question is to what extent the discov-
ered mechanisms are relevant for human SSCs. In the last 10 years, many studies 
showed that human and rodent spermatogonia shared many but not all phenotypic 
markers (Dym et al.  2009  ) . Similar to mouse SSCs, human SSCs are positive for 
CD49f ( a 6-integrin), GPR125, CD9, CD90 (Thy-1), GFR a 1, MAGE-4, and VASA, 
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and negative for CD117 (c-Kit) (Conrad et al.  2008 ; He et al.  2010,   2012 ; Izadyar 
et al.  2011 ; Sadri-Ardekani et al.  2009  ) . PLZF, a crucial self-renewal factor of rodent 
SSCs was found in monkey A 

dark
 / A 

pale
  (Hermann et al.  2007  )  and presumably human 

SSCs (Dym et al.  2009  ) . It might be that function of PLZF is conserved between 
rodents and primates. For the enrichment of human SSCs, strategies developed for 
mouse SSCs including morphology-based selection, laminin selection and MACS 
using cell surface markers such as CD49f, GPR125, CD9 and SSEA4 have been 
applied in many studies (Conrad et al.  2008 ; Golestaneh et al.  2009b ; He et al.  2010, 
  2012 ; Izadyar et al.  2011 ; Kossack et al.  2009 ; Lim et al.  2010 ; Mizrak et al.  2010 ; 
Sadri-Ardekani et al.  2009  ) . 

 In contrast to mouse SSCs, human SSCs do not express CD29 ( b 1-integrin) 
(Izadyar et al.  2011  ) . The mouse germline transcriptional factor Oct4 is not detected 
in adult human spermatogonia (Looijenga et al.  2003  ) . In addition, other rodent 
markers, including NGN3, RET and Stra8 have not been studied in human sper-
matogonia. Further investigations to uncover the similarities and/or differences in 
spermatogonial phenotypes between humans and rodents are necessary. This will 
help us to understand molecular mechanisms controlling self-renewal and differen-
tiation of SSCs.  

    9.3.3   SSC Niche 

 The term “stem cell niche” is used to describe the microenvironment in which stem 
cells are found. It, interacts with stem cells to regulate stem cell fate, and comprises 
cells, extracellular matrix components, and local soluble factors. The maintenance 
and differentiation of SSCs in adult mammalian testis take place in the seminiferous 
epithelium. Peritubular myoid cells and Sertoli cells are the structural basis for the 
SSC niche. Peritubular myoid cells form the outer layer of seminiferous tubules, 
whereas Sertoli cells encompass and nourish the germ cells forming the scaffolding 
structure of the seminiferous tubules. Peritubular myoid cells contribute to the con-
tractile activity of testicular tubules and maintain mesenchymal-epithelial interac-
tions with Sertoli cells both by cooperation in the deposition of extracellular matrix 
elements and by secretion of paracrine agonists, for example, PModS (Peritubular 
factor that Modulates Sertoli cell function) (Verhoeven et al.  2000  ) . It has been 
reported that  fi broblast growth factor (FGF) 2 and FGF9 can mediate mesenchymal-
epithelial interactions of peritubular and Sertoli cells in the rat testis (El Ramy et al. 
 2005  ) . However, peritubular myoid cells are present in all areas of the tubule basal 
membrane, and do not likely determine the location of the SSC niche (de Rooij 
 2009  ) . 

 Sertoli cells play a key role in the formation of the niche for SSCs. Tight junc-
tions formed between neighboring Sertoli cells constitute a protective blood-testis 
barrier, which separates seminiferous epithelium into basal and adluminal compart-
ments. All the stages of spermatogonia before meiosis including SSCs reside in the 
basal compartment (de Rooij and Russell  2000 ; Fijak et al.  2011  ) . Advanced  meiotic 
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spermatocytes and all post-meiotic germ cells are located in the immune privileged 
adluminal compartment (de Rooij and Russell  2000 ; Fijak et al.  2011  ) . In the 
absence of Sertoli cells, successful and complete spermatogenesis resulting in 
mature sperm has not been demonstrated in mammals. Accumulating data have 
shown that Sertoli cells provide the necessary ligands to spermatogonia, such as 
GDNF (Meng et al.  2000  ) , SCF (Feng et al.  2000  ) , FGF2 (Oatley and Brinster 
 2008  ) , and the ligand of non-canonical Wnt pathway, Wnt5a (Yeh et al.  2011  ) . 
These factors mediate external signals that de fi ne the proliferation rate and survival 
of spermatogonia and control spermatogenesis (see below). 

 The rate of spermatogenesis is controlled by sex hormones, but it appears that 
germ cells are affected by this regulation indirectly. Interestingly, transplantation 
experiments revealed that rat SSCs supported by mouse Sertoli cells were differen-
tiating with the timing characteristic of the rat, and generated the spermatogenic 
structural pattern of the rat, demonstrating that the timing of the cell differentiation 
process of spermatogenesis was regulated by germ cells alone (França et al.  1998 ; 
Griswold  2007  ) . However, somatic cells of the seminiferous epithelium de fi ne the 
ef fi ciency of spermatogenesis and connect the process to the hormonal regulation. 
It is known that peritubular and Sertoli cells, but not germ cells are affected by 
androgens produced by Leydig cells, which reside in the interstitial tissue of the 
testis (Fijak et al.  2011  ) . Previous studies showed enhanced colonization of SSCs in 
the testes of recipient mice treated with leuprolide which lowers testosterone levels 
(Ogawa et al.  1998  ) . 

 Interestingly, small blood vessels running near the tubule wall or patches of 
Leydig cells determine the size of the niche (de Rooij  2009  ) . Recently, Yoshida and 
colleagues performed imaging experiments analyzing the distribution of SSCs 
expressing GFP under the control of  NGN3  promoter in the basal compartment of 
seminiferous epithelium. They found that undifferentiated spermatogonia (A 

s
 , A 

pr
 , 

and A 
al
 ) clustered along blood vessels and interstitium, whereas the later A 

1
  and A 

2
  

divisions occurred away of this original position. Within the zone facing the inter-
stitium and blood vessels, stem cells exhibited a further preference for the branch 
points of the blood vessels (Yoshida et al.  2007b  ) . It remains to be determined on 
what this SSC localization is dependent. It may be the components of the interstitial 
tissue that determine whether Sertoli cells produce factors to induce self-renewal 
and differentiation of SSCs. Furthermore, peritubular myoid cells and interstitial 
cell types and blood-born factors may also have direct effects on maintenance and/
or differentiation of SSCs.  

    9.3.4   Signaling Pathways Involved in Self-Renewal of SSCs 

 The continual production of mature spermatozoa throughout the whole lifespan of 
the organism requires the maintenance of stem cells capable of self-renewal and 
differentiation. In the next part of the review we would like to focus on the most 
recent  fi ndings regarding signaling events controlling self-renewal of SSCs. 
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    9.3.4.1   Self-Renewal of SSCs Regulated by GDNF 

 GDNF is provided to SSCs by Sertoli cells and acts through a receptor heterodimer 
of RET and GFR a 1 (Fig.  9.2 ) (Naughton et al.  2006  ) . Intracellular events stimu-
lated by GDNF in SSCs are the main focus of investigations in the area of SSCs, and 
multiple signaling pathways are induced by GDNF via its interaction with RET (for 
interests, please also see review (Caires et al.  2010  ) ). Signaling initiated by GDNF 
is necessary for the maintenance of stem cells in the testis. Mutant mice with one 
null  GDNF  allele underwent SSC depletion, whereas transgenic males overexpress-
ing GDNF accumulated undifferentiated spermatogonia in the testes (Meng et al. 
 2000  ) . GDNF is shown to activate both Akt and Src family kinases (SFK). Cultivation 
of SSCs with pharmacological inhibitors of these kinases followed by transplanta-
tion analysis shows impairment of SSCs maintenance  in vitro  (Oatley et al.  2007  ) . 

  Fig. 9.2    GDNF mediated signaling pathways involved in self-renewal of SSCs. Brie fl y: GDNF is 
the most important factor for self-renewal of SSCs. It operates mainly through SFK and PI3K/Akt 
pathways controlling the expression of essential SSC genes (such as Etv5, Bcl6b, and Lhx1). In 
addition, GDNF can activate the canonical RAS/ERK1/2 pathway, which results in phosphoryla-
tion and activation of transcription factors such as CREB and c-Fos. Akt plays a controversial role 
in self-renewal of SSCs: on one hand it promotes self-renewal and inhibits apoptosis, on the other 
hand it phosphorylates and inactivates another important SSC factor, FOXO1. Additionally, PI3K-
Akt might be also involved in activation of mTORC1 complex. PLZF counteracts excessive 
mTORC1 activity by controlling the expression of mTORC1 inhibitor Redd1. It is suggested that 
PI3K-Akt signaling must be carefully titrated in vivo to maintain SSC self-renewal and differentia-
tion and that the Foxos and mTORC1 are pivotal intermediaries of this balance       
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It has been shown that, through the SFK signaling pathway, stimulation of SSCs 
with GDNF results in upregulation of  Bcl6b ,  Etv5  and  Lhx1  gene transcription 
whereas the expression of these genes is decreased in the absence of GDNF (Oatley 
et al.  2007  ) . The expression of  Bcl6b ,  Etv5  and  Lhx1  is also identi fi ed in undifferen-
tiated spermatogonia  in vivo , and knockdown of these genes by small interfering 
RNAs reveals that all of them are essential for SSC maintenance  in vitro  (Oatley 
et al.  2007  ) .  

 In another study, Akt kinase is rapidly phosphorylated in SSCs when GDNF is 
added to the medium, and the small-molecule inhibitor of Phosphoinositide 
3-Kinase (PI3K) prevents SSC self-renewal. Furthermore, conditional activation 
of the myristoylated form of Akt in SSCs promotes their proliferation in the 
absence of GDNF (Lee et al.  2007  ) . Later studies point to a strictly controlled 
activity of PI3K/Akt pathway in spermatogonia, which is in part explained by the 
function of downstream targets, such as FOXO family of transcription factors 
(Goertz et al.  2011 ; Salih and Brunet  2008  ) . FOXO proteins are well known to 
regulate cellular growth and organismal longevity inducing a variety of cellular 
responses including cell-cycle arrest and cell death. FOXO1, FOXO3 and FOXO4 
may be regulated by Akt-dependent phosphorylation, leading to their functional 
inactivation by the export from the nucleus (Salih and Brunet  2008  ) . Recently, it 
was found that FOXO1 was expressed in gonocytes and spermatogonia. During 
 fi rst week of postnatal development FOXO1 changed the subcellular localization 
from cytoplasmic in gonocytes to nuclear in spermatogonia. Conditional ablation 
of FOXO1 in germ cells did not affect the formation of gonocytes, whereas the 
amount of spermatogonia and more differentiated male germ cells was dimin-
ished. The triple knockout of FOXOs 1, 3, and 4 resulted in even fewer germ cells 
suggesting a partial functional redundancy in the FOXO family. Microarray anal-
ysis revealed that expression of  RET  gene was diminished after Cre-mediated 
ablation of  FOXO1  in germ cells, thereby explaining, in part, the role of FOXO1 
factor in spermatogonia (Goertz et al.  2011  ) . Taken together, the data suggest that 
PI3K-Akt signaling must be carefully titrated  in vivo  to maintain SSC self-renewal 
and differentiation and argue that the Foxos are pivotal intermediaries of this bal-
ance (Fig.  9.2 ). 

 It was recently found that functional inactivation of PI3K catalytic subunit in 
mice was detrimental for expansion of differentiating spermatogonia. Knock-in 
mice bearing a catalytically inactive subunit of p110 b  K805R demonstrated a 
decreased amount of differentiated germ cells in the male. These knock-in mice did 
not reveal any impairment in the development of SSCs during postnatal develop-
ment, and SSCs were also unaffected in adult animals. Moreover, GDNF induced 
Akt phosphorylation and proliferation in cultured SSCs was not affected by 
TGX221, a speci fi c pharmacological inhibitor of p110 b  PI3K subunit, but decreased 
after the treatment with a less selective PI3K inhibitor PIK75 (mainly inhibiting 
p110 a  subunit). Thus, presumably p110 a  is the main PI3K isoform activated by 
GDNF. Most strikingly, spermatogonia derived from testis of knockout mice failed 
to respond to SCF stimulation. Therefore, it appears that PI3K subunit p110 b  is 
necessary for c-Kit-mediated induction of proliferation and differentiation of sper-
matogonia (Ciraolo et al.  2010  ) . 
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 In addition, GDNF can activate the canonical RAS/ERK1/2 pathway, which 
results in phosphorylation and activation of transcription factors such as CREB1, 
ATF1, CREM and c-FOS (He et al.  2008  ) . He and colleagues also demonstrated that 
 ERK 1 / 2  ( MAPK 1 / 3 ) was up-regulated in isolated human SSCs when cultured for 
2 weeks in media containing GDNF, and phosphorylated ERK1/2 was increased in 
cultured cells compared to freshly isolated cells (Fig.  9.2 ) (He et al.  2010  ) . It appears 
that GDNF role is conserved between rodents and humans since GDNF allowed to 
obtain a short-term culture of presumable human SSCs (He et al.  2012  ) .  

    9.3.4.2   Self-Renewal of SSCs Regulated by the mTORC1-PLZF Interaction 

 As discussed above, the PLZF protein expression was observed in both human and 
mouse undifferentiated spermatogonia (Hermann et al.  2007 ; Nakagawa et al.  2010  ) , 
morphological types believed to be  in vivo  counterparts of SSCs  in vitro  (Buaas 
et al.  2004  ) . A nonsense mutation in PLZF encoded by  Zfp145  gene has been deter-
mined in luxoid mutant mouse strain, which was previously found to be male infer-
tile. Luxoid mice demonstrate a progressive loss of germ cells in the seminiferous 
tubules with the age. Phenotype similar to luxoid has been found in mice after tar-
geting in the  Zfp145  gene locus, the gonocyte numbers were not decreased but germ 
cells were eliminating with age and amount of sperm was decreased dramatically 
(Costoya et al.  2004  ) . These papers suggest that although dispensable for germ cell 
development in embryogenesis and postnatal period, PLZF becomes important for 
the maintenance of SSC population in testis. A recent work uncovered one of the 
functions of PLZF in SSCs. It turns out that SSCs lacking PLZF have enhanced 
activity of molecular target of rapamycin complex 1 (mTORC1), a key mediator of 
cell growth. PLZF opposes mTORC1 activity by inducing expression of the 
mTORC1 inhibitor Redd1 (Fig.  9.2 ). Increased mTORC1 activation in  PLZF  −/−  
SSCs inhibits their response to GDNF via negative feedback at the level of the 
GDNF receptors, GFR a 1 and c-RET. The data also show that P LZF  −/−  SSCs have 
increased cell size compared to control, however this change can be prevented by 
rapamycin, a small molecule inhibitor of mTORC1 complex. Furthermore, inhibi-
tion of mTORC1 via rapamycin attenuates  PLZF  −/−  SSC defects and enhances wild-
type SSC activity. The authors suggest that the mTORC1-PLZF functional interaction 
is a critical rheostat for the maintenance of the spermatogonial pool and negative 
feedback from mTORC1 to the GDNF receptor balances SSC growth with self-
renewal (Fig.  9.2 ) (Hobbs et al.  2010  ) .  

    9.3.4.3   SSC Self-Renewal Controlled by Wnt Signaling 

 It is known that Wnt signaling promotes self-renewal of various stem cell types 
(Reya and Clevers  2005  ) . Wnts and their receptors Frizzleds (Fzds) are expressed in 
mouse spermatogonia (Golestaneh et al.  2009a  ) . High expression of  Fzd3  was found 
in GFR a 1-positive SSCs while only a very low expression of  Fzd  was found in the 
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c-Kit-positive differentiating spermatogonial cells. Wnt3a and Wnt10b, both activa-
tors of canonical Wnt signaling, increased cell proliferation in primary mouse SSC 
culture (Golestaneh et al.  2009a  ) . However, study of Yeh and co-authors suggest 
that canonical Wnt signaling would rather promote differentiating spermatogonia 
than true SSCs. They showed that non-canonical Wnt5a supported self-renewal of 
mouse SSCs in a  b -catenin-independent manner (Yeh et al.  2011  ) . Wnt5a expres-
sion was restricted to Sertoli cells in mouse testes and potential Wnt5a receptors 
Fzd5, Fzd7 and ROR2 were detected at the cell surface of SSCs. It was shown that 
the inhibition of  b -catenin signaling via application of Dickkopf-1 (Dkk1), which 
speci fi cally blocks  b -catenin signaling by binding to LRP5/6, did not affect SSC 
activity. However, secreted frizzled-related protein 1 (sFRP1), which inhibits both 
 b -catenin-dependent and -independent signaling by binding Wnt ligands led to a 
dose-dependent reduction of SSC activity. They found out that Wnt5a promoted 
SSC maintenance by supporting cell survival, and this pro-survival effect of Wnt5a 
was abolished by the inhibition of c-Jun N-terminal kinase (JNK) signaling. In addi-
tion, Wnt5a signi fi cantly increased JNK- P  levels. Moreover, it was found that cells 
with activated  b -catenin signaling had lost SSC function suggesting that canonical 
Wnt pathway might be activated during early differentiation of SSCs. Therefore 
Wnt5a can be considered as a new member besides other SSC niche factors, such as 
GDNF and FGF2 (Yeh et al.  2011  ) .  

    9.3.4.4   Integrins 

 Integrin-mediated cell adhesion to extracellular matrix plays an important role in 
regulating stem cell function and maintenance. In particular, integrins help to de fi ne 
and shape the stem cell niche (Ellis and Tanentzapf  2010  ) . SSCs reside at the basal 
membrane of seminiferous tubules, and are capable to bind to laminin. This feature 
is used for isolation of SSCs from testes of mice (Guan et al.  2009  )  and rats (Hamra 
et al.  2008  )  suggesting that SSCs have a set of receptors for extracellular matrix. As 
discussed above, expression of certain integrin subunits is characteristic of SSCs. 
 a 6-integrin has been identi fi ed as cell surface marker of both rodent (Kubota et al. 
 2003 ; Ryu et al.  2004  )  and human SSCs (He et al.  2012  ) .  b 1-integrin was discov-
ered to be important for a proper homing of SSCs to the basal membrane of the 
seminiferous tubules after SSC transplantation (de Rooij et al.  2008 ; Kanatsu-
Shinohara et al.  2008  ) . Ablation of  b 1-integrin in SSCs in fl uences their ability to 
colonize the recipient testis  in vivo  and to bind to laminin  in vitro  indicating that 
 b 1-integrin plays an important role in SSC function.   

    9.3.5   SSC Culture Conditions 

 Development of conditions for long-term cultivation of SSCs  in vitro  is important to 
study the fundamental questions concerning spermatogonial lineage and to make 
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the use of these cells a valid clinical option. The establishment of SSC culutre 
requires the layer of feeder cells and appropriate medium containing all necessary 
supplements and growth factors. Initially, there were studies using Sertoli cell lines 
as feeder cells (Hamra et al.  2004  ) . However, the best self-renewal of mouse SSCs 
was achieved with mouse embryonic  fi broblasts (MEFs) primarily derived from day 
13.5 embryos (Guan et al.  2009  ) . The concentration of feeder cells on the plate is an 
important point for successful establishment of SSC cultures. The optimal concen-
tration of feeder cells is estimated with 20–50 × 10 3  cells per cm 2 . Whereas mouse 
SSCs can be cultured in the presence of fetal calf serum, the establishment of long-
term culture of rat SSCs requires serum-free chemically de fi ned culture medium 
(Wu et al.  2009b  ) . Presumably this protocol with slight modi fi cations might be used 
for cultivation of SSCs from other species. Previous studies show that SSCs culti-
vated in this serum-free medium allows propagation of rat SSCs  in vitro  and ensures 
the maintenance of potential of cultured SSCs to restore spermatogenesis after 
transplantation (Wu et al.  2009b  ) . SSCs after  in vitro  propagation may be frozen in 
a usual freezing solution, and the freezing and thawing procedure is simple and does 
not differ from other routine cell lines. After thawing, the SSCs maintain their char-
acteristics. This allows the use of cultured SSCs for the infertile treatment of patients 
after cancer therapy. 

 Although intense interest and subsequent research surrounds the regenerative 
potential of human SSCs, only until recently two studies report the  in vitro  long-
term propagation of human SSCs isolated from patients undergoing orchiectomy 
for treatment of prostate cancer for up to 15 weeks (Sadri-Ardekani et al.  2009  ) , and 
from testicular tissues of patients with obstructive or non-obstructive azoospermia 
for more than 6 months (Lim et al.  2010  ) . However, both studies demonstrate that 
human SSCs proliferate rather slowly, which may limit their clinical applications. 
Of note, human and rodent spermatogonia share many but not all phenotypic mark-
ers, and cultivation of SSCs from both species needs application of GDNF and 
FGF2. This indicates that some common molecular mechanisms controlling self-
renewal of SSCs may exist in both rodents and humans. Future research on optimi-
zation of culture conditions for human SSCs needs to test new factors known for 
regulating self-renewal of mouse SSCs. For example, inhibition of mTORC1 might 
be useful in order to get a stable human SSC culture. Wnt signaling molecules need 
to be tested in human SSC culture. However, one needs to keep in mind that charac-
teristics of human SSCs also differ from rodent SSCs  in vivo  in some extent sug-
gesting that the establishment of human SSC culture might also need additional 
factors, which are not essential for rodent SSCs.  

    9.3.6   Pluripotency and SSCs 

 It is well accepted that SSCs are unipotent when they are located within the testis. 
However, in the last couple of years many studies demonstrate that mouse SSCs 
cultured  in vitro  acquire a remarkable potential plasticity once they are removed 
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from their  in vivo  niche and can be reprogrammed by culture conditions alone into 
pluripotent stem cells (Guan et al.  2006 ; Kanatsu-Shinohara et al.  2004 ; Ko et al. 
 2009 ; Seandel et al.  2007  )  suggesting that pluripotency is kept in the adult male 
germline. 

 The  fi rst report on generation of germline cell-derived pluripotent stem cells can 
be traced back to 1992. When PGCs are cultured in the presence of SCF, leukemia 
inhibitory factors (LIF) and FGF2, they can become pluripotent stem cells, so called 
embryonic germ cells (EGCs) (Matsui et al.  1992 ; Resnick et al.  1992  ) . They show 
similar characteristics as embryonic stem cells (ESCs), which are derived from 
inner cell mass of the early blastocyst, can spontaneously differentiate into multiple 
cell phenotypes  in vitro , and form teratomas in nude mice (Matsui et al.  1992  ) . In 
1998, human EGCs were obtained from human PGCs of 5- to 11-week embryos 
exposed to the same growth factors (Shamblott et al.  1998  ) . In 2004, Shinohara and 
colleagues showed that SSCs isolated from mouse neonatal testis could be repro-
grammed to pluripotent GSCs by culture conditions. These pluripotent germline 
stem cells show a morphological phenotype similar to ESCs, and can be maintained 
 in vitro  for a long time period and differentiated into various cell types both  in vivo  
and  in vitro . However, Shinohara and colleagues could not derive ES-like cells from 
SSCs of adult mice (Kanatsu-Shinohara et al.  2004  ) . Two years later, we for the  fi rst 
time demonstrated that mouse adult spermatogonia were able to be reprogrammed 
into ES-like pluripotent GSCs (Guan et al.  2006  ) . Similar to mouse ESCs, the gen-
erated pluripotent GSCs express the cell surface marker SSEA-1, and transcription 
factors Oct4, Sox2, Nanog and Rex-1 and are also positive for alkaline phosphatase 
(Guan et al.  2006  ) . It is worthy to mention that reprogramming of adult spermatogo-
nia into pluripotent GSCs takes place spontaneously in culture. There is neither the 
addition of oncogenes nor the use of virus systems as described for generation of 
induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka  2006  ) . Our study 
was then con fi rmed by several groups showing that adult mouse spermatogonia and/
or their progenitors could indeed form pluripotent ES-like cells  in vitro  (Izadyar 
et al.  2008 ; Ko et al.  2009 ; Seandel et al.  2007  ) . Seandel et al. generated pluripotent 
GSCs from GPR125 positive spermatogonia (Seandel et al.  2007  )  whereas two 
other studies established pluripotent GSC cultures from Oct-EGFP positive SSCs 
(Izadyar et al.  2008 ; Ko et al.  2009  ) . Although isolation methods of SSCs differ 
among these studies, the generated pluripotent GSCs exhibit similar characteristics 
as ESCs. 

 Following these mouse studies, many efforts have been put in the human SSC 
research. Recently, several studies reported the generation of pluripotent GSCs from 
human testis, and showed that the cultured human GSCs can differentiate into deriv-
atives of all three germ layers  in vitro  (Conrad et al.  2008 ; Golestaneh et al.  2009b ; 
Kossack et al.  2009 ; Mizrak et al.  2010  ) . However, in comparison to human ESCs, 
these cells do not ful fi ll all criteria for pluripotency: (1) they show a limited poten-
tial for teratoma formation; (2) expression levels of pluripotency-speci fi c genes 
such as  OCT4 ,  NANOG  and  SOX2  in generated pluripotent GSCs are much lower 
than that in human ESCs; and (3) the promoters of  OCT4  and  NANOG  genes are 
only partially demethylated compared to human ESCs. The possible explanation 
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could be that the cells have not been completely reprogrammed to the pluripotent 
state under the conditions used in those studies. Moreover, the cellular origin of 
these GSC cultures has been questioned. In all of these studies, the isolated cells 
were not analyzed for the expression of testicular somatic cell-speci fi c genes to rule 
out the presence of other cell types, and the markers used for characterization of the 
isolated cells are not speci fi c for human SSCs (Dym et al.  2009  ) . It was demon-
strated that the global gene expression pro fi le in one of the reported human pluripo-
tent GSC cultures was similar to that of human testicular  fi broblast cells but not to 
human SSCs (Ko et al.  2010  ) . Notably, GPR125 was also used for isolation of 
human SSCs (He et al.  2010  ) . However, conversion of human GPR125-postive cells 
into pluripotent GSCs has not been reported, thus, further investigations are 
necessary.   

    9.4   Differentiation Capacities and Their Progenitors 

    9.4.1   Differentiation Capacities of SSCs In Vivo and In Vitro 

 Differentiation potential of  in vitro  cultured SSCs can be proved by their potential 
to restore the spermatogenesis after transplantation of these cells into the seminifer-
ous tubules of infertile recipient mice. Previous studies showed that mouse SSCs 
were able to repopulate the seminiferous tubules 2 months after they were injected 
into the germ cell-depleted testis (Brinster and Zimmermann  1994  ) . In this study, 
male mice were treated with the alkylating antineoplastic agent busulfan, which 
destroys SSCs and thus leads to a disruption of spermatogenesis. Testes of busulfan 
treated mice usually do not contain mature spermatozoa or even spermatogonia. 
After injection of SSCs from transgene  lacZ  (  b  - Galactosidase gene ) donor mice 
into busulfan treated recipient mice functional spermatogenesis could be observed. 
Because the donor cells carried a transgene that produced  b -Galactosidase in sper-
matids, these cells were identi fi ed by a blue staining after X-Gal (5-bromo-4-chloro-
indolyl- b -D-galactopyranoside) treatment. The organization of the spermatogenic 
stages within the seminiferous tubules was normal and mature spermatozoa were 
produced. These data suggest that the transferred SSCs are able to colonize the 
seminiferous tubules of infertile mice and subsequently undergo self-renewal divi-
sion to support spermatogenesis. The repopulation capacity was also proved for 
SSCs derived from the rat (Hamra et al.  2002  ) . Human SSCs were found as singlets 
or doublets on the seminiferous tubule basement membrane 3–6 months after trans-
plantation of human SSCs to testes of immunode fi cient mice. These results indicate 
that human spermatogonia home to the basement membrane of the mouse recipient 
seminiferous tubule and are maintained as germ cells, but are unable to differentiate 
(Nagano et al.  2002 ; Wu et al.  2009a  ) . Interestingly, when human spermatogonia 
were injected together with human testicular somatic cells, the greater number of 
singlets and doublets, the larger groups of human germ cells, and particularly the 
presence of dividing germ cells could be observed in mouse seminiferous tubules. 
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These data indicate that human testicular somatic cells enhance the ability of human 
spermatogonia to colonize the mouse seminiferous tubule (Wu et al.  2009a  ) . The 
ability of human SSCs to restore spermatogenesis would be the foundation for the 
treatment of men infertility. 

 In spite of the ability to differentiate  in vivo  in the testis, the complete process 
of spermatogenesis has not been achieved from SSCs under  in vitro  cell culture 
conditions.  In vitro  differentiation of SSCs and the use of  in vitro  derived male 
haploid gametes for intracytoplasmic sperm injection could be an option to 
restore fertility. The most advanced differentiation has been achieved using 
mouse SSCs. Treatment of mouse SSCs with SCF induced the formation of sper-
matocytes after 1 week. The latest differentiation stage observed was round sper-
matids, which appeared in culture after 3 weeks of SCF treatment (Feng et al. 
 2002  ) . However, the study has not been repeated by another group or used to 
study signaling during differentiation of germ cells. One reason might be that 
cells used in this study were immortalized by overexpression of TERT (telom-
erase reverse transcriptase) and could be therefore different from primary SSCs 
(Feng et al.  2002  ) . 

 It is worth to mention that there is only a minor percent of SSCs bearing self-
renewal and capable of testis colonization under  in vitro  optimal culture conditions. 
Under the established culture conditions, SSCs consistently give rise to both new 
SSCs and differentiating progeny. The differentiating progeny have lost stemness 
and unlimited self-renewal capacity, but have developed functional intercellular 
bridges. Twin daughter cells of single SSCs often undergo self-renewal and differ-
entiation side by side even though they have been exposed to virtually identical 
microenvironments. Moreover, quantitative experimental measurements and math-
ematical modeling indicates that fate decision is stochastic, with constant probabil-
ity (Wu et al.  2009c  ) . Therefore, SSCs seem to have an in-built program of 
self-renewal and differentiation, and probably the extent of survival of differentiat-
ing cells might be affected by external factors. 

 A recent paper showed that BMP4 induced the expression of early differentia-
tion factor c-Kit in a rat SSC-like cell line (Carlomagno et al.  2010  ) . In addition, 
vitamin A derivatives, such as retinoic acid are absolutely essential for the initia-
tion of meiosis in germ cells in the testis. Mice and rats, subjected to vitamin A 
de fi cient diet for several weeks become infertile and contain no mature germ cells 
in testis. The injection of retinol induced the synchronous onset of spermatogenesis 
(Van Pelt and De Rooij  1990a,   b  ) .  Stra8  gene is one of the targets of retinoic acid 
signaling, and is essential for meiosis in male and female germ cells (Anderson 
et al.  2008 ; Mark et al.  2008  ) . Expression of Stra8 and c-Kit was induced in sper-
matogonia both  in vivo  and  in vitro  (Zhou et al.  2008a,   b  ) . Therefore, retinoic acid 
might be an essential component for  in vitro  differentiation of SSCs. Future works 
should test whether treatment of SSCs with retinoic acid and other factors men-
tioned above can induce the initiation of meiosis  in vitro , and should identify the 
speci fi c factors required for a more ef fi cient and complete  in vitro  spermatogene-
sis. Moreover, culture medium supporting the survival of spermatocytes and sper-
matids needs to be developed.  
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    9.4.2   Differentiation of Pluripotent GSCs In Vitro 

 As we know, pluripotent GSCs, similar to ESCs are able to spontaneously dif-
ferentiate into derivatives of all three embryonic germ layers when they are 
removed from feeder cells (Cheng et al.  2012 ; Fagoonee et al.  2010 ; Guan et al. 
 2006,   2007 ; Streckfuss-Bomeke et al.  2009  ) . We show that cardiomyocytes 
derived from pluripotent GSCs express cardiac-speci fi c L-type Ca 2+  channels and 
respond to Ca 2+  channel-modulating drugs. Four different types of action poten-
tials characteristic of pacemaker-, ventricle-, atrial- and Purkinje-like cardio-
myocytes are observed. The cardiomyocytes derived from pluripotent GSCs also 
exhibit functional gap junctions as well as an intact calcium cycling (Guan et al. 
 2007  ) . We also demonstrate that pluripotent GSCs can be differentiated into 
Flk1 +  cells with an ef fi ciency of 35% when co-cultured with OP9 stromal cells 
(Cheng et al.  2012  ) . Flk1 +  cells are multipotent cardiovascular progenitors which 
can contribute to the cardiomyocyte, endothelial, and vascular smooth muscle 
lineages (Kattman et al.  2006 ; Yang et al.  2008  ) . Flk1 +  cells derived from pluri-
potent GSCs express cardiovascular progenitor markers Isl-1, Nkx2.5 and 
brachyury, and are able to further differentiate into functional cardiomyocytes as 
well as functional endothelial cells. In addition, the differentiated contractile 
cells express sodium, potassium and calcium channels (Baba et al.  2007  ) . These 
data indicate that GSC-derived cardiovascular progenitors as well as functional 
cardiomyocytes and endothelial cells may provide a useful source of cardiovas-
cular cells for studying basic mechanisms of cardiogenesis and vasculogenesis 
and for cardiovascular regeneration. 

 Besides functional cardiomyocytes, mouse pluripotent GSCs can differentiate 
into neural progenitors under speci fi c culture conditions, which can further differ-
entiate into functional neurons (GABAergic, glutamatergic, serotonergic, and dop-
aminergic neurons) and glial cells (astrocytes and oligodendrocytes). 
Electrophysiological recordings of passive and active membrane properties and 
postsynaptic currents demonstrate the maturation of neural precursor cells into 
functional neurons and glial cells (Streckfuss-Bomeke et al.  2009  ) . Therefore, pluri-
potent GSC-derived neural precursors and functional neurons and glial cells consti-
tute a promising cell source for the treatment of many different nervous system 
disorders. 

 Several groups have reported the expression of the early hepatic marker, 
  a -fetoprotein, in embryoid bodies generated from mouse pluripotent GSCs 
(Fagoonee et al.  2010 ; Guan et al.  2006  ) . Furthermore, metabolically active hepa-
tocytes can be derived from pluripotent GSCs  in vitro , which are capable of albu-
min and haptoglobin secretion, urea synthesis, glycogen storage, and indocyanine 
green uptake (Fagoonee et al.  2010  ) . The pluripotent GSC-derived hepatocytes 
were found to be closer to fetal hepatocytes than adult hepatocytes (Fagoonee 
et al.  2010  ) . The functional hepatocytes may be a useful cell source for liver 
regeneration.   
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    9.5   Potential Applications for Therapies 

    9.5.1   Therapeutic Application of SSCs in Male Infertility 

 Male infertility can be caused by genetic defects of the endocrine system, by defects 
in the development of the urogenital system or by defects in gametogenesis, cryp-
torchidism or erectile dysfunction. In addition, there are also secondary or acquired 
causes of infertility due to tubal disease or exposure to gonadotoxins from the envi-
ronment (Matzuk and Lamb  2008  ) . Among these causes, testicular cancer as well as 
the effect of radiotherapy or chemotherapy used in cancer treatment can also result 
in male infertility. In testes, SSCs and differentiating spermatogonia divide most 
actively and are therefore extremely sensitive towards cytotoxic agents (Meistrich 
 1993  ) . In contrast, Leydig and Sertoli cells can survive most cytotoxic therapies and 
may sustain a functional damage because of lower proliferation rate in adults. After 
cytotoxic therapies, seminiferous tubules contain only Sertoli cells, whereas germ 
cells appear to be absent (Shetty and Meistrich  2005  ) . This could be the result of the 
deletion of SSCs and/or the loss of the ability of the remaining Sertoli cells to sup-
port the self-renewal and differentiation of a few surviving SSCs. At lower doses of 
cytotoxic agents recovery of spermatogenesis can be observed several months after 
termination of the treatment. At higher doses, however, azoospermia can be pro-
longed or even permanent. Adult male cancer patients have the ability of cryo-
preservation of their semen prior to chemo- or radiotherapy. This allows them to 
have children by arti fi cial insemination after successful cancer treatment. However, 
prepubertal boys treated with high-dose chemotherapy, total body irradiation and/or 
irradiation involving the genital region cannot bene fi t from this approach since sper-
matogenesis at that age is not yet completed. At present, the only option for fertility 
preservation could be SSC preservation. Therefore, it is necessary to take a biopsy 
of testis tissue before chemo- or radiotherapy (Fig.  9.3 ). The establishment of isola-
tion and long-term cultivation of human SSCs  in vitro , as well as cryopreservation 
of these cells provides the opportunity for clinical applications with regard to the 
treatment of male infertility. After successful cancer treatment the cultivated SSCs 
could be transplanted back into the seminiferous tubules of the patient (Geens et al. 
 2008  ) . Autologous intra-testicular transplantation of SSCs is a hypothetical option 
that is currently thoroughly studied by a few research groups, mainly in rodent mod-
els. Already in 1994, Brinster and Zimmermann  (  1994  )  could show that successful 
restoration of spermatogenesis occurs in infertile mice after injection of SSCs into 
seminiferous tubules. The transplantation of SSCs has been shown to produce live 
offspring in mice (Goossens et al.  2003,   2006  ) . The success of these transplantation 
experiments in rodents suggests therapeutic potential for the patients. However, 
some safety concerns related to this technique should be taken into consideration, 
the risk of transmitting tumor cells back to the patient and other aspects of the 
 procedure, like germ cell retrieval, cell sorting and preservation, still need to be 
optimized prior to clinical applications in men.   
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    9.5.2   Therapeutic Applications of Pluripotent GSCs 

 As mentioned above (see Sects.  9.3.6  and  9.4.2 ), mouse SSCs can be converted into 
pluripotent GSCs  in vitro  under de fi ned culture conditions without addition of genes. 
Two characteristics of pluripotent stem cells make them interesting for regenerative 
medicine: their high proliferation rate and their ability to differentiate into all different 
cell types of the body. The establishment of protocols for a directed differentiation of 
pluripotent stem cells allows the production of any somatic cell type which is needed. 
The main focus of stem cell research has been on cell therapy for pathological condi-
tions with no current methods of treatment, such as neurodegenerative diseases, heart 
attacks, retinal dysfunction and lung and liver disease. The idea is to replace diseased or 
damaged tissue by using somatic cells derived from pluripotent stem cells. The overall 
aim is to develop methods of application either of pure cell populations or of whole tis-
sue parts to the diseased organ. Transplantation of Flk1 +  cardiovascular progenitor cells 
derived from mouse pluripotent GSCs directly into the ischemic heart of mouse resulted 
in the improvement of cardiac function by promoting angiogenesis as well as postpon-
ing host cell death (Iwasa et al.  2010  ) . Although mouse pluripotent GSCs can differenti-
ate into functional neurons, glial cells as well as hepatocytes, the  in vivo  colonization 

  Fig. 9.3    Potential application of SSCs in treatment of infertility after chemo-/radiotherapy in 
patients with testicular cancer and potential application of SSC-derived pluripotent GSCs in regen-
erative medicinen.  SSCs  spermatogonial stem cells,  GSCs  germline stem cells       
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capacity of hepatocytes in mouse models of liver diseases, or regeneration potential of 
functional neurons in the damaged brain remains to be demonstrated. These mouse 
 in vitro  and  in vivo  studies pave the way for therapeutic application of pluripotent GSCs; 
however, up to now there are no evidences showing that so far generated human pluri-
potent GSCs are able to differentiate into functional cardiomyocytes, neurons, or hepa-
tocytes. The drawback of so far generated human pluripotent GSCs is that they may be 
not truly pluripotent and thus their differentiation potential is limited. Therefore, devel-
opment of a culture system for establishing truly pluripotent human GSCs is of para-
mount importance. Optimizing culture conditions by application of small molecules 
may facilitate the generation of pluripotent GSCs (Zhu et al.  2011  ) . 

 With regard to clinical applications, the use of patient-speci fi c stem cells, such as 
human pluripotent GSCs, for autologous stem cell-based therapies avoids immuno-
logical and ethical problems related to human ESCs. SSCs could be obtained from 
testis biopsies, cultivated  in vitro  and converted into pluripotent stem cells (Fig.  9.3 ). 
These cells can then be differentiated into somatic cells and transplanted back into the 
patient. Thus, the risk of immunological rejection is reduced onto a minimum and the 
patient is not dependent on immune suppressant drugs. Furthermore, patient-speci fi c 
pluripotent GSCs could be used for somatic gene therapy. Cells from a patient with a 
genetic defect could be repaired  in vitro  and transplanted back into the patient. In a 
mouse model, it has been shown that one of the mutated alleles could be repaired by 
homologous recombination in ESCs coming from the immune-de fi cient mice. 
Hematopoietic precursor cells were derived by  in vitro  differentiation from the repaired 
ESCs and transplanted into the mutant mice. Mature myeloid and lymphoid cells as 
well as immunoglobulins became detectable several weeks after transplantation. The 
immune system of immunode fi cient mice was re-established (Rideout et al.  2002  ) . 

 Pluripotent GSCs similar to ESCs are pluripotent and are able to differentiate into 
derivatives of all three germ layers. So far, many studies using human pluripotent ESCs 
in organ regeneration have been performed and discussed, for interests and more details, 
please see reviews (Kung and Forbes  2009 ; Ronaghi et al.  2010 ; Shiba et al.  2009 ; 
Varanou et al.  2008  ) . The  fi rst FDA approval (  http://www.fda.gov    ) for the preclinical 
usage of differentiated human ESCs for the treatment of spinal cord injury makes human 
ESCs a very attractive source for clinical applications. However, in August 2009, the 
FDA put a clinical hold on human ESC clinical trials because further characterization of 
differentiated cells and more nonclinical trials/applications of human ESC-derived neu-
ral cells into animal models have been requested (Ronaghi et al.  2010  ) .   

    9.6   Conclusions and Future Development in Research 

 SSCs constitute one of the most important stem cell systems in the adult body. SSCs 
are unipotent and respond for spermatogenesis in the male as they can only differen-
tiate into sperms within the testicular niche. Methods for isolation and cultivation of 
SSCs from the rodent testis have been well established. Rodent SSCs can be expanded 
 in vitro  for a long term without loss of their properties. Only recently some studies 

http://www.fda.gov
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report that human SSCs can be isolated from adult testis biopsies and propagated 
 in vitro . This provides the opportunity to develop therapeutic strategies and re-initiate 
spermatogenesis for the patients who become infertile after cancer therapy. 

 Since pluripotent stem cells can be generated from PGCs, neonatal and adult 
SSCs, we believe that the pluripotency is maintained in the male germline. The 
SSCs can be spontaneously reprogrammed into pluripotent GSCs when they are 
removed from their  in vivo  niche and cultured  in vitro  under speci fi c conditions. The 
advantage of pluripotent GSCs over iPSCs is that conversion of SSCs into pluripo-
tent GSCs does not require addition of genes using virus system, which may avoid 
unpredictable genetic dysfunction. This makes them a safer cell source for autolo-
gous transplantation than iPSCs. In addition, this may also circumvent the ethical 
and immunological problems associated with human ESCs. Future works should 
focus on optimizing protocols for isolation and long-term culture of human SSCs as 
well as establishing culture conditions for generation of pluripotent GSCs ful fi lling 
all criteria for pluripotency. In addition, it is of paramount importance to identify the 
cell type in the testis that is capable of the conversion into the pluripotent stem cells, 
presumably it is the human SSCs, but this needs to be determined. Xenotransplantation 
studies might be used to con fi rm the function of human SSCs (Hermann et al.  2010  ) . 
This will bring the realization of personalized regenerative medicines closer. 
However, this approach is suitable only for men, the half of the world’s population. 
For women, derivation of parthenogenetic stem cells from the woman whose unfer-
tilized eggs are arti fi cially activated may provide another potential source for cell-
based autologous transplantation therapy (Turovets et al.  2011  ) . 

 Finally, successful development of pluripotent stem cell-based replacement strat-
egies for various diseases needs to address three important questions: (1) how to 
generate an adequate number of cells suf fi cient for active improvement of organ 
function? More intensive work to obtain a better understanding of stem cell differ-
entiation pathways and to improve differentiation protocols of pluripotent stem cells 
may help to  fi nd out a solution for it. (2) How to improve the survival of trans-
planted cells in the damaged organ upon transplantation? (3) How to eliminate 
residual undifferentiated cells from differentiated cells which are destined for  in vivo  
transplantation, as these undifferentiated cells may form tumors? Moreover, the 
ideal source of stem cells for ef fi cient and safe cell replacement has remained a 
challenging issue that requires more investigation.      
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  Abstract   Hematopoietic stem cells represent the most studied and understood 
adult stem cell, and have consequently set the trends for the investigation of a wide 
array of stem cells, while their clinical use for over half a century and ever improv-
ing ef fi cacy encourages the view that stem cell therapy will one day be useful in the 
treatment of a whole host of diseases that involve cellular loss. In this chapter we 
describe how hematopoietic stem cells can be identi fi ed, isolated and characterized, 
and how important it is to be able to conduct experiments on animal models as well 
as humans, especially as studies in animals can provide the best, sometimes only, 
way to test stem cell potential and new protocols for their therapeutic use. The 
increasing possibilities for bone marrow regenerative medicine raised by the rapid 
developments in our ability to derive pluripotent stem cells from any individual are 
discussed, in particular because these are likely to be a very effective source of 
hematopoietic stem cells for all people requiring them to be replaced, as well as the 
exciting prospect that they can provide a route for the correction of inherited dis-
eases affecting the blood system.      

    10.1   Introduction 

 The hematopoietic stem cell (HSC) represents a paradigm for much of present day 
stem cell biology and regenerative medicine, the  fi rst therapeutic application, predat-
ing any knowledge of its characterization or even of its actual existence, being the pio-
neering development by E. Donnall Thomas in 1957 of bone marrow transplantation 
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(BMT) as a therapy to alleviate the consequences of radiation and chemotherapy 
(Thomas et al.  1957  ) . This groundbreaking therapy formed the dogma that tissue 
stem cells held the future promise for regenerative medicine for numerous diseases. 
The strategies for characterization, puri fi cation and bioassay of HSCs have there-
fore been adapted for many other tissue-speci fi c stem cells, while the drive to under-
stand the cellular and molecular properties of HSCs has provided a framework for 
comparison to both embryonic and adult stem cell types. Studies on HSCs and com-
parison to the behaviour of leukemia cells was also highly in fl uential in the origin 
of the concept of the cancer stem cell as the underlying component of many, perhaps 
all, tumors, and an exciting target for novel therapies that may succeed in achieving 
life-long remission where traditional treatments often fail. 

 Given the extensive history in the use of HSCs in therapeutic practice, it would 
be easy to assume that these cells are well understood, however HSC research is a 
dynamic area, continually being revolutionized. Once believed to be a homogenous 
population, it has since emerged that the HSCs are actually not a single entity, but 
rather a collection of cell subtypes with largely pre-programmed differentiation 
and self-renewal behaviours, both of which will be discussed in detail below. The 
nature of HSCs also varies throughout development, distinct cell types arising to 
provide a transient source of hematopoietic cells. Since it is beyond the scope of 
this chapter, the reader is referred to one of the many excellent reviews that discuss 
the developmental aspects of HSC biology (Dzierzak et al.  1998 ; Mikkola and 
Orkin  2006 ; Cumano and Godin  2007 ; Dzierzak and Speck  2008  ) , and here we 
will concentrate on those HSCs that have the most relevance to regenerative medi-
cine, namely adult bone marrow derived cells and those HSCs that can be isolated 
from umbilical cord blood. 

 The necessity for continual regeneration of the various lymphoid (B-cells, T-cells, 
natural killer cells, dendritic cells) and myeloid (red cells, platelets, monocytes/mac-
rophage, dendritic cells, granulocytes) cells that constitute the hematopoietic system 
is emphasized when we consider the vast number of cells, approximately 10 12 , aris-
ing in human bone marrow on a daily basis (Doulatov et al.  2012  ) . These mature 
adult hematopoietic cells are generated through a succession of hierarchical steps 
initiating at the apex of the hematopoietic system with the HSC. The HSC gives rise 
to a series of transient amplifying progenitor cell populations with a gradual decrease 
in proliferative potential and an increase in cellular specialization, resulting ulti-
mately in the supply of terminally differentiated functional blood cell types that make 
up the lymphoid and myeloid compartments. Although the hematopoietic system has 
been extensively studied for several decades, it is only recently that we have begun to 
understand some of the mechanisms by which HSCs are able to so pro fi ciently play 
their role. These developments have been made with the help of improving technol-
ogy, allowing complex cell sorting strategies to isolate rare HSCs to high purity and 
viability in order to further quantify and characterise them. 

 Parallel studies are now being done with human HSCs but the advancement of 
our knowledge of these cells is trailing behind that of the mouse. The primary indi-
cator of stem cell activity being their ability to function in repopulation assays poses 
an obvious dif fi culty in human stem cell research. Secondly, a major obstacle in 
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human HSC research is that the cells are incredibly rare, with only 1 in 10 6  cells in 
human bone marrow being a functional transplantable stem cell (Wang et al.  1997  )  
and the availability of novel markers of these cells for puri fi cation from the bulk of 
differentiated cells hinders progress further. 

 In addition to increasingly re fi ned de fi nition of HSCs, especially those that have 
the greatest potential for application in a therapeutic context, key areas of investiga-
tion that will impinge heavily on the success or otherwise of advances in regenera-
tive medicine include  fi nding ways to expand HSCs in vitro without loss of any 
aspect of their functional potential, and improving upon the ef fi ciency with which 
transplanted cells integrate into the hematopoietic system. However, perhaps the 
most exciting challenge, which could 1 day lead to an unlimited ability to provide 
replacement HSCs personalised for the patient, is their derivation from pluripotent 
stem cells, and this will be discussed with respect to advances that have been made 
using embryonic stem (ES) cells and more recently with the discovery of methods 
to produce so called induced pluripotent stem (iPS) cells from any cell in the body.  

    10.2   Derivation/Classi fi cation 

 Although the  fi rst application of bone marrow derived stem cells in a therapeutic 
context occurred over  fi ve decades ago, the vast majority of our understanding of 
the nature of HSCs has come from studies on mouse bone marrow. The single big-
gest hurdle in the identi fi cation and puri fi cation of HSCs from mouse bone marrow 
is their very low abundance; depending on the precise criteria applied this is only 
0.05% or less of the nucleated cells, resulting in the isolation of around 5,000 HSCs 
per mouse. Modern day laboratories utilize two main methods for isolating HSCs 
from bone marrow. First is an enrichment method (MACS) employing magnetic 
beads conjugated to antibodies against a speci fi c surface marker. The second, and 
notably more precise separation technique, utilizes  fl uorescence activated cell sort-
ing (FACS), which is based on immuno fl uorescent labeling of surface antigens as an 
analytical tool to achieve cell sorting (Challen et al.  2009  ) . Modern cell sorters are 
now equipped to analyse up to 18  fl uorochrome-labeled antibodies directed against 
multiple markers (usually designated as ‘Cluster of Differentiation’ or CD markers) 
enabling prospective isolation of more infrequent cells, which can then be subjected 
to bioassay to assess their stem cell potency. 

    10.2.1   Bioassays of HSCs 

 In the strictest sense, the HSC is de fi ned by its functional capacity to reconstitute 
the entire hematopoietic system for the lifetime of the individual or animal; how-
ever, a number of less stringent bioassays are also widely used, often as a prelimi-
nary guide because the de fi nitive in vivo bone marrow transplantation assay is both 
time-consuming and costly. 
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 The  fi rst assays of hematopoietic progenitor cell potential in vivo can be attributed 
to James Till and Ernest McCulloch, who famously demonstrated that colonies of 
myeloid cells developing in the spleen following transplantation of bone marrow 
into lethally irradiated mice were clonal (Till and McCulloch  1961  ) . However, the 
existence of long-lived stem cells in the bone marrow was deduced from subsequent 
experiments involving clonal tracking of serial transplantations (Dick et al.  1985 ; 
Lemischka et al.  1986  ) . Arising out of these studies, the current gold standard assay 
is generally accepted to be long-term repopulation of lethally irradiated mice in a 
situation in which the cells being tested are compared to a reference wild type popu-
lation (Harrison et al.  1993  ) , most often using test and reference strains that are 
congenic for allelic variants of CD45 (previously known as Ly5), which can easily 
be distinguished by immuno fl uorescent  fl ow cytometry. ‘Long-term’ is taken to 
mean a sustained output from the graft of at least 1% of all circulating white blood 
cells for at least 4 months (Purton and Scadden  2007  ) , but the most rigorous test of 
HSC potential involves assessment of their ability to be serially transplanted from 
the primary reconstituted recipient to a secondary irradiated host, thereby demon-
strating that engrafting cells are undergoing self-renewal. Competitive repopulation 
assays performed this way are at best semi-quantitative, and a more re fi ned method, 
involving limiting dilution, allows determination of the frequency of HSCs. In this 
assay, a series of dilutions of the test population are competed against reference wild 
type bone marrow cells. The number of mice negative for reconstitution in each cell 
dose is measured and the frequency of HSCs (‘competitive repopulating units’ or 
CRU) is estimated using Poisson statistics (Szilvassy et al.  1990  ) . Purton and 
Scadden  (  2007  )  discuss the  fi ner details of repopulation assays, how they are best 
interpreted, and their possible limitations. 

 Although in vivo assays are essential in order to fully de fi ne and quantify stem 
cell potential, they have some limitations that can be complemented by a range of 
assays that can be performed in vitro. First, and rather obviously, in vivo assays can 
take many months to complete and require extensive and costly facilities, so it is 
often useful to have a more simple assay that can be used to make an initial assess-
ment of the likely HSC content, for example while developing a strategy for prospec-
tive cell sorting or following some experimental manipulation that is expected to 
have a signi fi cant effect on HSC function. Second, the output from an in vivo assay 
is the consequence of many biological events following transplantation, including 
homing, self-renewal, HSC commitment and the behaviour of downstream progeni-
tors and differentiated cells, and it is often important to be able to determine cellular 
properties at a single cell level immediately following isolation of putative HSCs. 
Several distinct in vitro assays are used that measure the frequency of progenitors 
(colony-forming unit in culture; CFU-C), stem cells (long-term culture-initiating 
cell; LTC-IC), or both (cobblestone area-forming cell assay; CAFC), the latter two 
correlating at least to some extent with in vivo activity (van Os et al.  2004  ) . 

 CFU-C assays, pioneered by the work of Don Metcalf and colleagues (Bradley 
and Metcalf  1966 ; Moore et al.  1973  ) , allow detection and quanti fi cation of myeloid 
progenitors present in the population of cells being analyzed or that could have arisen 
in vitro from more immature cells, including the HSC. The culture conditions rely on 
the presence of growth factors and nutrients that will permit complete differentiation 
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along one or more of the pathways of differentiation that a particular cell is expected 
to be capable of adopting. CFU-C assays have been essential for determining the 
speci fi c growth factors necessary for HSC maintenance, proliferation and differen-
tiation. They have also been crucial in the characterisation of leukemic stem cells 
(LSCs). The assessment of lymphoid CFU potential in vitro has in the past been 
more dif fi cult, requiring co-culture systems such as that of OP9-DL1 cells, a mouse 
stromal cell line that ecotropically expresses the Notch ligand Delta-like 1 (DL1) for 
establishing T-cell differentiation (Whitlock and Witte  1982 ; Schmitt and Zúñiga-
P fl ücker  2002  ) . However, recent demand for improved mouse B-cell differentiation 
has led to the development of media capable of supporting such speci fi cation, similar 
to that already used for myeloid lineages. The progress for human lymphoid cell dif-
ferentiation is, however, still somewhat marred due to the insuf fi cient knowledge of 
the cytokines responsible for this (Doulatov et al.  2012  ) . Human B-cell differentia-
tion is feasible when HSCs are co-cultured for 2–4 weeks upon the stromal cell lines 
MS-5 or S17 in the presence of SCF, TPO, IL-7 and IL-2. 

 The basic principle of such in vitro assays is to determine what a stem cell or 
progenitor is capable of giving rise to and their proliferative abilities following gene 
manipulation, as can be recognized after a number of days by the speci fi c features 
of the differentiated cells (for example surface marker expression, cell morphology 
and the presence of characteristic cytoplasmic enzyme activities, etc). In the right 
conditions, a HSC can give rise to multiple cell lineages, whereas a more mature 
hematopoietic progenitor cell will have a more restricted capability. Since it would 
not be possible to discriminate from whence the individual differentiated cells origi-
nated if such assays were performed in a liquid culture of the whole sorted popula-
tion, these assays are generally carried out in one of two ways so that the potential 
of individual cells can be observed. Most commonly, a cell population is seeded into 
the appropriate growth conditions in media that also contain a substance that is like 
a soft gel (usually methycellulose). This prevents the cells from moving around 
extensively, and if seeded at the correct density means that the differentiated deriva-
tives from each cell are clearly separated and can eventually be collected for pheno-
typic analysis. Alternatively, sorted stem cells can be deposited as single cells into 
tiny individual wells in a plastic dish where they then can be allowed to grow and 
differentiate in liquid conditions (Ema et al.  2000 ; Takano et al.  2004  ) . 

 The CAFC and LTC-IC assays, based on the original studies by Dexter and col-
leagues (Dexter et al.  1977  ) , involve culture of stem cell populations with adherent 
cells that mimic the normal HSC microenvironment. The CAFC assay measures the 
frequency of cells that are capable of growing under the stromal layer, and by enu-
merating so-called ‘cobblestone’ areas at various times it is possible to assess mature 
progenitors back to repopulating HSCs (Ploemacher et al.  1989,   1991  ) . The LTC-IC 
assay is similar to the CAFC assay except that the readout is the presence of pro-
genitors that can themselves be assayed for CFU-C capability (Sutherland et al. 
 1989 ; Lemieux et al.  1995  ) . 

 Just as many of the in vitro assays are adaptable for the measurement of both 
murine and human stem cells and progenitors, there is an equal and ever growing 
need in the context both of regenerative medicine and for therapeutic targeting of 
diseased cells to be able to test in vivo potential of human HSCs. Since this is clearly 
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not feasible in humans a number of approaches have been developed over the last 30 
years that rely on the generation of in vivo chimeras of human cells, or ‘xenografts’, 
in animals. Although not ideal from the perspective of logistics, cost, and time, 
several investigators have shown that human HSCs can be engrafted in sheep by 
direct introduction of cells into the early gestational age fetus. By in utero injection 
of human fetal liver HSCs, Esmail Zanjani and colleagues were able to demonstrate 
long-term (greater than 2 years) engraftment in sheep (Zanjani et al.  1992  ) . 
Subsequently, this approach was used to prove for the  fi rst time that human adult 
bone marrow cells could elicit long-term chimerism and sustain human hematopoi-
esis (Srour et al.  1993  ) , and has been further developed (Zanjani et al.  1995,   1998  ) , 
enabling most recently the demonstration that engrafted human cells can be mobi-
lized in the sheep model in the same way that they would normally be in human 
donors (Almeida-Porada et al.  2007  ) . 

 By far the majority of xenograft experiments of human HSCs have been per-
formed in mice, but unlike the experiments involving sheep, the human cells are 
injected into adults, thereby requiring that the hosts are immunologically de fi cient 
so that they will not bring about rejection of the xenogenic cells. Two strategies for 
human-into-mouse engraftment were developed originally by the work of McCune 
and Dick. In the  fi rst approach, human cells within a fragment of hematopoietic tis-
sue are grafted under the kidney capsule, which provides a permissive environment 
for the donor cells (McCune et al.  1988 ; Namikawa et al.  1990 ; Chen et al.  1994  ) . 
However, the much more widely utilized method involves adaptation of the usual 
protocol for transplantation of mouse HSCs into host animals, the main difference 
being that the mice are subjected to sub-lethal irradiation to pre-condition the bone 
marrow by increasing the opportunity for HSCs to occupy vacant niches (Kamel-
Reid and Dick  1988  ) . 

 To minimize the possibility of the human cells being rejected, several immuno-
compromised mouse models have been developed, in particular relying upon the 
Severe Combined Immunode fi ciency (SCID) mutant strain (for reviews see Greiner 
et al.  1998 ; Pearson et al.  2008  ) . As for mouse-into-mouse repopulation assays, 
xenografts of human cells can be made quantitative through a limiting dilution 
approach, the term SCID Repopulating Unit (SRU) usually being adopted to de fi ne 
the numbers of functional long-term HSCs. SCID mice are de fi cient in both B- and 
T-cell mediated immunity, and their usefulness has been enhanced in various ways 
through combination with other spontaneous or engineered mutations. The strain 
that has been most commonly used for xenografting is a combination of the Non-
Obese Diabetic (NOD) mutation with SCID, usually referred to as NOD/SCID, 
which lacks not only functional B and T lymphocytes, but also has low levels of 
natural killer (NK) cell activity (Shultz et al.  1995  ) . A reduced overall cellularity of 
the bone marrow in NOD/SCID mice may also facilitate engraftment of HSCs 
because of the availability of suitable niches for stem cells. The NOD/SCID mouse 
exhibits some features that partially limits its usefulness, especially for long-term 
xenograft models, such as shortened lifespan due to high incidence of thymic lym-
phoma, some spontaneous production of functional lymphocytes with aging, and 
residual innate immunity. Further incorporation of the  b 2 microglobulin knockout 
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into the NOD/SCID background increased the ef fi ciency of repopulation by umbilical 
cord blood cells by over tenfold (Kollet et al.  2000  ) . 

 To circumvent the problems associated with NOD/SCID mice as models for xeno-
grafts, NOD/SCID mice with a truncation or a deletion of the IL-2R common  g  chain, 
which is a critical component for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 signaling, 
were developed (the so-called ‘NSG’ strain, Ito et al.  2002  ) . The deletion of the IL-2R 
common  g  chain gene in mice results in a complete loss of B, T and NK cells. The NSG 
strain was shown to support a  fi vefold higher CD34 +  cell engraftment compared with 
NOD/SCID mice (Goldman et al.  1998 ). The second bene fi t of these mice is that the 
de fi ciency in cytokine signaling prevented the formation of lymphomas, permitting 
long-term studies (Ito et al.  2002 ; Ishikawa et al.  2005 ; reviewed by Ito et al.  2008  ) . 

 As hematopoietic research progresses and the importance of speci fi c growth fac-
tors are determined, many investigators have found that the ef fi ciency of engraftment 
of human HSCs can be enhanced by co-transplantation of accessory cells or treat-
ment of the host with cytokines. For example, Bonnet et al.  (  1999  )  demonstrated that 
low numbers of puri fi ed cord blood-derived immature cells would engraft NOD/
SCID mice effectively if co-transplanted with more mature cell populations that had 
been irradiated to prevent cell division or by short-term in vivo treatment with the 
growth factors and cytokines stem cell factor (SCF), interleukin 3 (IL3) and granulo-
cyte macrophage colony stimulating factor (GM-CSF). Similarly, bone marrow chi-
merism in the SCID or Rag2/IL2R g  double knockout models could be facilitated by 
administration of IL3, GM-CSF and erythropoietin (Lapidot et al.  1992  )  or IL3, 
GM-CSF and erythropoietin (Mazurier et al.  1999  ) , respectively. Co-transplantation 
of stromal cells has also been shown to have some bene fi t in establishing HSC xeno-
grafts in mice. Hence, primary bone marrow stroma modi fi ed to express IL3 was able 
to enhance HSC engraftment (Nolta et al.  1994  ) , while unmodi fi ed mesenchymal 
stem cells (MSCs) derived from the fetal lung or bone marrow increased HSC 
engraftment, but in the latter case it appeared that the effect might not to require hom-
ing of MSC to the bone marrow (Noort et al.  2002 ; in ‘t Anker et al.  2003 ; Bensidhoum 
et al.  2004  ) . Advances in the last year in strains for xenografting have seen the gen-
eration of mice with cytokine-expressing transgene knock-ins, encoding for example 
TPO, IL-3, and GM-CSF, all of which have exhibited augmented engraftment of the 
human cells following transplantation (Rongvaux et al.  2011 ; Willinger et al.  2011  ) . 

 This xenograft method has also been adopted to assess LSC behaviour from 
human patient samples and can hence act as a model for therapeutic approaches. 

 The protocols for engraftment of HSCs have undergone a number of modi fi cations 
over the years, including additional preconditioning of mice by treatment with clo-
dronate-containing liposomes in order to delete macrophage (Fraser et al.  1995 ; van 
Rijn et al.  2003  )  or with an antibody against the surface antigen CD122 in order to 
target NK cells and macrophage that act as a barrier to stem cell engraftment 
(McKenzie et al.  2005  ) . Furthermore, to overcome the limitations of homing and 
cellular loss in the lungs that is inherent in intravenous injection of cells via the tail 
vein, a number of investigators have achieved much improved rates of engraftment 
by direct injection of HSCs into the bone marrow cavities of either the femur or tibia 
(Kushida et al.  2001 ; Wang et al.  2003 ; Yahata et al.  2003 ; McKenzie et al.  2006  ) .  
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    10.2.2   HSC Antigenic Phenotype and Puri fi cation Schemes 

 Over the last quarter of a century the combined power of  fl ow cytometry and the 
availability of monoclonal antibodies raised against a vast array of hematopoietic 
cell surface molecules, together with the various bioassays described above, has 
enabled an incredibly detailed de fi nition of the heterogenous population of cells 
with stem cell activity in the hematopoietic hierarchy. With perhaps one exception 
that will be described later, no single surface molecule has yet been found that 
enables identi fi cation of HSCs; however, a number of markers have been described 
that can be used in combination to very precisely de fi ne stem cells, the particular 
drive being to isolate the rare cells with the highest potential for long-term reconsti-
tution. The advances in this area have been most successful in the case of mouse 
bone marrow, and the current state of play will be elaborated before considering 
what we know about the phenotype of human HSCs derived from the bone marrow 
or umbilical cord blood. 

    10.2.2.1   Mouse HSCs 

 Most sorting strategies rely upon negative selection for markers of the differenti-
ated hematopoietic lineages (Lin), which usually include B220, CD4 (sometimes 
CD3 or CD5 instead), CD8, Gr1, CD11b (Mac-1) and Ter119, in combination with 
positive selection for c-Kit (the receptor for SCF) and Sca-1 (stem cell antigen-1) 
(Okada et al.  1992  ) , giving rise to the acronym LSK (or KSL, depending on labora-
tory preference). Historically, the Weissman group has been the driving force for 
the puri fi cation of HSCs and their favoured protocol incorporates staining for the 
Thy1.1 antigen and selection of cells that express only low levels together with an 
absence of lineage markers and the presence of Sca-1 (Thy1.1 lo  Lin -  Sca-1 +  or TLS 
cells; Spangrude et al.  1988  ) , although this precise strategy has not been widely 
adopted because the Thy1.1 antigen is not expressed on many of the most com-
monly used laboratory strains of mice. Both LSK and TLS populations contain 
long-term repopulating cells (LT-HSCs), but these represent less than 10% of the 
LSK cells, the remains of which have only short-term activity (ST-HSCs) or are 
multipotent progenitors (MPPs) with no capacity for self-renewal. Following these 
early studies, there has been an ever-driving urge to discover a unique marker of 
the mouse LT-HSC that truly distinguishes it from the heterogeneous population of 
stem cells. A number of investigators have identi fi ed additional markers that can be 
used to resolve the stem cell and progenitor components within the LSK popula-
tion, and to this day improvements are still being published on a fairly regular 
basis. The Nakauchi laboratory were  fi rst to show that the expression of CD34 
could be used to discriminate LT-HSCs, in that single LSK CD34 +  cells were 
able to bring about long-term reconstitution (Osawa et al.  1996  ) . The subsequent 
addition of Flt-3 (also known as Flk-2 and CD135) into the mix allowed pro-
spective puri fi cation of not only LT-HSCs (LSK CD34 −  Flt3 − ), but also ST-HSCs 
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(LSK CD34 +  Flt3 − ) and MPPs (LSK CD34 +  Flt3 + ) (Christensen and Weissman 
 2001 ; Adolfsson et al.  2001 ; Yang et al.  2005  ) . More recently, due to the adoption 
of more precise cell sorting strategies, it has become possible to fractionate these 
stem cell populations further into more discrete fractions with more speci fi c prop-
erties. Hence, data suggests that the MPP initially differentiates into lymphoid-
primed multipotential progenitors (LMPPs), which retain the potential to give rise 
to lymphoid and granulocyte-macrophage cells but which lack megakaryocyte-
erythroid potential (Adolfsson et al.  2005 ; Lai and Kondo  2006  ) , while more com-
mitted myeloid and lymphoid progenitors lie downstream of these LMPP cells 
(Akashi et al.  2000 ; Pronk et al.  2007  ) . These latter publications led to a redrawing 
of the accepted hematopoietic hierarchy model, and as further work elucidates 
more and more discrete sub-populations within the HSC compartment, it is likely 
that the hematopoietic hierarchy as it is currently understood will undergo yet more 
restructuring in the future. 

 In addition to surface marker expression, there are other characteristics of HSCs 
that can be employed for their identi fi cation and isolation using  fl ow cytometry, 
often most effective when used in combination with strategies such as those employ-
ing LSK or related staining protocols. The most widely used characteristic relies on 
the ability of HSCs to actively expel small molecules from their cytoplasm, a mech-
anism of cytotoxic evasion. A family of transmembrane proteins known as ABC 
transporters are involved in a wide variety of normal cells and stem cells with the 
purpose of removing diverse chemicals. One family member, ABC-G2, is often 
expressed by stem cells and has the ability to export certain chemical dyes that have 
entered the cytoplasm by passive diffusion. Empirically, it was found that one such 
DNA binding supravital dye, Hoechst 33342, is removed by ABC-G2 and that this 
can be visualized with a  fl ow cytometer by measuring red and blue  fl uorescent light 
emissions upon stimulating with a UV laser. In the complex pattern of light emitted 
by a mixture of cells treated with Hoechst 33342, many stem cells appear as a popu-
lation, usually called the ‘side population’, which exhibits low red and blue 
 fl uorescence because the dye has been largely removed by the transporter (Goodell 
et al.  1996  ) . The drawbacks of the Hoechst 33342 exclusion method are that the 
staining method is highly sensitive to slight changes in protocol, producing incon-
sistencies between HSC isolations. Unfortunately, side population characteristics 
are not restricted to stem cells, with approximately 15% of whole bone marrow side 
population being negative for the stem cell markers c-Kit and Sca-1 (Challen et al. 
 2009  ) . Also, not all stem cells exhibit the property, and therefore the technique is 
best utilized in combination with other methods, especially surface marker staining, 
as a means to re fi ne stem cell identi fi cation and isolation (Challen et al.  2009  ) . The 
other major  fl ow cytometry method not involving speci fi c antibodies makes use of 
the  fl uorescent vital dye rhodamine 123 (Rh-123), which preferentially accumulates 
in mitochondrial membranes and acts as an indicator of mitochondrial, and hence 
cellular, activity. Since the more immature HSCs tend to be quiescent, sorting for 
cells exhibiting a low degree of  fl uorescence in the presence of Rh-123 enriches for 
long-term repopulating cells (Spangrude and Johnson  1990  ) . 
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 The most recent and highly resolved strategies for the isolation of long-term 
repopulating HSCs have largely built upon the basis of one or more of the LSK, side 
population and Rh-123 staining methods. Chen et al.  (  2003  )  found that 
immuno fl uorescent staining for the ancillary TGF b  receptor endoglin (CD105) in 
combination with Sca-1 expression and low staining for Rh-123 de fi nes a nearly 
homogenous population of LT-HSCs without the use of CD34, c-Kit or Lin markers. 
As discussed later in this chapter, another feature of immature HSCs is their ten-
dency to be niche-associated and a marker linked to this property, namely the angio-
poietin-2 receptor Tie2, has been used to select a subpopulation of LSK cells that 
are enriched in LT-HSCs (Arai et al.  2004  ) . Two advances based on RNA microar-
ray screening for genes expressed exclusively in subfractions of HSCs have proba-
bly made the most signi fi cant contribution to the robust isolation of highly enriched 
long-term repopulating cells. First, following initial identi fi cation from expression 
screening, antibodies against cell surface receptors of the SLAM family, including 
CD48, CD150 and CD244, were shown to discriminate HSCs (CD48 −  CD150 +  
CD244 − ), MPPs (CD48 −  CD150 −  CD244 + ) and the most restricted progenitors 
(CD48 +  CD150 −  CD244 + ) (Kiel et al.  2005  ) . This is the  fi rst family of receptors 
whose combinatorial expression can be used to precisely distinguish stem and pro-
genitor cells in the mouse. Similarly, microarray technology led to the identi fi cation 
of murine endothelial protein C receptor (EPCR, CD201) as a marker to sort cells, 
especially when used in combination with positivity for the antigen Sca-1, as it is 
expressed at high levels in HSCs with a high reconstitution activity, and probably 
represents the  fi rst known marker that ‘explicitly’ identi fi es HSCs within murine 
bone marrow (Balazs et al.  2006  ) . Most recently, the group of Conny Eaves has 
combined these two latter approaches and shown that LT-HSCs with the most dura-
ble self-renewal potential, as demonstrated following serial transplantation, are 
selectively and highly enriched in the CD150 +  subset of the EPCR +  CD48 −  CD45 +  
fraction of bone marrow cells (Kent et al.  2009  ) .  

    10.2.2.2   Human HSCs 

 The ability to identify and purify long-term reconstituting human HSCs are at present 
somewhat less sophisticated compared to the situation with the mouse due to the 
lack of adequate methods to segregate HSCs from MPPs. Similar to the mouse, 
puri fi cation of human HSCs requires simultaneous detection of several cell surface 
markers, and although informative, the speci fi c strategies for isolating mouse HSCs 
cannot be duplicated for human HSC. This is due to differences in characteristic 
marker expression between the two species, the most prominent difference residing 
in their expression of CD34. The two principal sources of human HSCs for thera-
peutic application, namely bone marrow and umbilical cord blood, also demonstrate 
some differences in the precise pattern of markers, raising extra dif fi culties in deter-
mining the best strategies for cell puri fi cation in the clinic. Nevertheless, human 
HSCs capable of multilineage engraftment in animal models can now be resolved 
with a reasonably high degree of enrichment. 
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 The majority of human HSCs are CD34 +  in contrast to mouse, as was  fi rst 
demonstrated during the 1990s when human Lin − CD34 +  fetal bone marrow cells 
were shown to be able to engraft in SCID mice (Baum et al.  1992  ) . However, 
although capable of engrafting in SCID mice, most CD34 +  cells were subsequently 
shown to be lineage-restricted progenitors and the true HSC remained elusive. 
Enrichment of human HSCs can be achieved further on the basis of expression of 
CD45RA (Mayani et al.  1993  ) , Thy-1 (Baum et al.  1992 ; Craig et al.  1993 ; Majeti 
et al.  2007  )  and CD38 (Hao et al.  1995 ; Bhatia et al.  1997  ) . The recognized pattern 
of expression that segregates human HSCs from MPPs is that of CD34 +  
CD38 − CD45RA −  and loss of Thy1 expression (Majeti et al.  2007  ) . 

 In contrast to CD34 +  subfractions, Lin −  CD34 −  CD38 −  cells have low clonogenicity 
in short-and long-term in vitro assays. However, the number of CD34 −  SRUs 
increased in short-term suspension cultures in conditions that did not maintain SRU 
derived from CD34 +  populations (Bhatia et al.  1998  ) . 

 Based on its association with colony-forming potential and repopulation capacity, 
CD34 expression has, until recently, remained as a convenient marker for human 
HSCs. However, it has since been postulated that there is in fact a human CD34 −  
HSC that is analogous to that of the mouse (Bhatia et al.  1998 ; Ando  2002 ; Engelhardt 
et al.  2002 ; Guo et al.  2003 ; Ishii et al.  2011  ) , adding an increased complexity to the 
organisation of the human hematopoietic stem cell compartment. 

 Chimeras generated in either sheep or immunocompromised mice have shown 
that CD34 −  cells from cord blood, bone marrow, and granulocyte colony stimulating 
factor (G-CSF)-mobilized peripheral blood do have in vivo HSC activity in spite of 
failing to exhibit signi fi cant clonogenic activity in vitro. Further de fi ning the pheno-
type of cord blood-derived CD34 −  SRUs, Kimura et al.  (  2007  )  proposed that the 
immunophenotype of very primitive long-term repopulating human HSCs is Lin −  
CD34 −  c-Kit −  Flt3 − . Paralleling studies on mouse HSCs, Goodell et al.  (  1997  )  
showed that human bone marrow contains side population cells and, interestingly, 
that these too are CD34 − . As in the mouse, Rh-123 staining can be employed in 
de fi ning human HSCs, low dye retention being associated closely with the Lin −  
CD34 +  CD38 −  population (McKenzie et al.  2007  ) . However, taking all of this knowl-
edge into account and using simple calculations of reported HSC frequencies, it can 
be established that more than 99% of human HSCs must be CD34 + . 

 The differences between antigen expression on mouse and human HSCs is not 
unique to CD34, and other distinctive variations can be seen in the expression of the 
Flt-3 receptor, which is expressed on the surface of human HSCs but not on the 
mouse (Sitnicka et al.  2003  ) , and the SLAM marker CD150, which unlike in the 
mouse is absent on human HSCs (Sintes et al.  2008 ; Larochelle et al.  2011  ) . 

 Due to the discrepancies in the expression of CD34 and its relationship to stem 
cell activity, research continues to de fi ne better markers of human HSCs. A recent 
publication from the laboratory of John Dick revealed a novel human HSC marker, 
namely CD49f ( a 6 integrin). Single CD49f +  cells were shown to be capable of gen-
erating highly ef fi cient long-term multilineage grafts and that loss of CD49f expres-
sion coincided with transient engrafting MPPs (Notta et al.  2011  ) . Such markers 
could pave the way for the isolation of pure populations of human HSCs for thera-
peutic use and further research into HSC properties. 
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 A number of additional discriminators of human HSC subpopulations have been 
investigated. Two features of human HSCs that have proven useful for the isolation 
of the most immature cells are worthy of mention. First, is the relative high expres-
sion of aldehyde dehydrogenase (ALDH) in hematopoietic progenitor cells (Kastan 
et al.  1990  ) . Cord blood cells stained for ALDH activity using the substrate BODIPY-
aminoacetaldehyde (‘Alde fl uor’) and depleted for Lin +  cells are enriched for CD34 +  
CD38 −  cells (Storms et al.  1999  ) . Second, and perhaps the more useful property of 
long-term repopulating human HSCs, is their expression of CD133, an antigen that 
characterizes several types of adult stem cells. For example, a rare population of cord 
blood cells expressing CD133 and negative for CD7 were found to be highly enriched 
for progenitor activity at a frequency equivalent to puri fi ed fractions of CD34 +  stem 
cells, and they were the only subset among the Lin −  CD34 −  CD38 −  population capa-
ble of giving rise to CD34 +  cells in de fi ned liquid cultures and of engrafting in NOD/
SCID mice (Yin et al.  1997 ; Gallacher et al.  2000  ) . Cell selection combining Lin 
antigen depletion together with staining for ALDH activity and CD133 expression 
provides a puri fi cation of HSCs with long-term repopulating function that has been 
considered to be an alternative to CD34 cell selection for stem cell therapies. Hence, 
limiting dilution analysis demonstrates a tenfold increase in the frequency of repopu-
lating cells compared with Lin −  CD133 +  cells, with maintenance of immature 
hematopoietic phenotypes (CD34 +  CD38 − ) and enhanced repopulating function in 
recipients of serial, secondary transplants (Hess et al.  2006  ) .    

    10.3   Characteristics/Properties 

 Like other adult stem cells, HSCs are regulated and supported by the surrounding 
tissue microenvironment, generally referred to as the stem cell ‘niche’. As already 
discussed in detail in Chap.   3    , the niche includes all cellular and non-cellular com-
ponents that interact in order to control the adult stem cell, and the reader is also 
referred to a number of excellent recent reviews that speci fi cally discuss the nature 
of these in relation to the HSC in the bone marrow (Taichman  2005 ; Wilson and 
Trumpp  2006 ; Li and Li  2006 ; Kiel and Morrison  2008 ; Raaijmakers and Scadden 
 2008 ; Mercier et al.  2011  ) . 

 In brief, the current perception of HSCs in the bone marrow is that they reside at 
the interface of bone and the bone marrow (the endosteum), but it remains uncertain 
whether this interface itself is a niche, or whether endosteal cells secrete factors that 
diffuse to nearby niches. Indeed, recent work from the laboratory of David Scadden 
has shown that HSCs can reside in a niche that appears to involve a very close jux-
taposition of both osteoblasts and microvessel endothelial cells (Lo Celso et al. 
 2009  ) . Vascular or perivascular cells may also create niches as many HSCs are 
observed around sinusoidal blood vessels, and perivascular cells secrete factors that 
regulate HSC maintenance. 

 It is important that the bone marrow niche should not be viewed as a static envi-
ronment, since both the hematopoietic and immune systems are required to respond 
rapidly and adapt to the needs of the individual, it should therefore be regarded as a 
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 fl uid system that continually processes information from the organism as a whole 
(Mercier et al.  2011  ) . Much of the knowledge that we have obtained from studies of 
the normal bone marrow microenvironment is leading us to a better understanding 
of the ways in which leukemic stem cells (LSCs) can manipulate the niche to 
enhance their survival and proliferation. Due to this adaptable nature of the bone 
marrow niche it is becoming clear that it represents a novel therapeutic target, its 
manipulation, for example by pharmacological enhancement of the number and 
function of osteoblasts, being a potential way to augment the effectiveness of stem 
cell therapies (Adams and Scadden  2008  ) . 

 Much of the life of a HSC within its niche is one of inactivity in which it repli-
cates only relatively infrequently. This state of ‘quiescence’ is thought to be an 
indispensable property for the maintenance of HSCs, protecting them from stress 
and hence the accumulation of DNA mutations and enabling them to sustain life-
long hematopoiesis. The molecular mechanisms through which the niche controls 
the HSC cell cycle to establish quiescence are beginning to be elucidated. For example, 
it has been shown that the interaction of the Tie2 receptor tyrosine kinase with its 
ligand Angiopoietin-1 leads to tight adhesion of HSCs to stromal cells, and mainte-
nance of their long-term repopulating activity (Arai et al.  2004  ) . In spite of their 
generally quiescent state, the normal homeostatic balance in the hematopoietic sys-
tem requires HSCs to be able to exit the niche and then achieve several transits 
through vascular endothelium to be able to migrate through the blood, enter differ-
ent organs and then return back to the bone marrow. These processes of migration 
and speci fi c homing need to be ampli fi ed during stress-induced recruitment of leu-
kocytes from the bone marrow reservoir and during stem cell mobilization as part of 
defense and repair. Both HSC mobilization (reviewed by Pelus and Fukuda  2008  )  
and homing (reviewed by Lapidot et al.  2005 ; Chute  2006  )  are also crucially impor-
tant in the context of clinical stem cell transplantation. 

 HSCs induced to exit the bone marrow and mobilize to the peripheral blood fol-
lowing treatment with granulocyte-colony stimulating factor (G-CSF) have become 
the most widely used source of HSCs for engraftment and show signi fi cant superi-
ority to cells obtained directly from the bone marrow. In addition to G-CSF, the 
growth factor SCF, adhesion molecules such as VLA-4 and P- and E-selectins, 
chemokines, proteolytic enzymes such as elastase and cathepsin G, and various 
matrix metalloproteinases (MMPs) have all been shown to have a role in stem cell 
mobilization. The chemokine stromal-derived factor 1 (SDF-1 or CXCL12) and its 
receptor CXCR4 are major players involved in the regulation of HSC mobilization 
and homing. During steady-state homeostasis, CXCR4 is expressed by HSCs and 
also by stromal cells, which are the main source for SDF-1 in the bone marrow. 
Stress-induced modulations in SDF-1 and CXCR4 levels participate in recruitment 
of immature and maturing leukocytes from the bone marrow reservoir to damaged 
organs as part of host defense and repair mechanisms. The recent  fi nding that murine 
HSCs rapidly mobilized by the CXCR2 receptor agonist GRO b  show superior 
repopulation kinetics and more competitive engraftment than the equivalent cells 
mobilized by G-CSF demonstrates that the chemokine/chemokine receptor axis has 
potentially superior therapeutic potential compared to the use of G-SCF (Fukuda 
et al.  2007  ) . 
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 In addition to the complex interplay with niche cells and diffusible mediators, 
it has emerged recently that there is an element of dynamic regulation via neu-
rotransmitter signaling. Hence, ablation by genetic or chemical means of adrenergic 
neurotransmission or administration of a  b 2 adrenergic agonist results, respectively, 
in decreased or enhanced HSC mobilization indicating the involvement of norepi-
nephrine signaling in the process (Katayama et al.  2006 ; Spiegel et al.  2008  ) . 

 HSC homing involves rolling and  fi rm adhesion to endothelial cells in small mar-
row sinusoids under blood  fl ow, followed by trans-endothelial migration across the 
physical endothelium/extracellular matrix barrier, ultimately leading to access and 
anchorage to their specialized niches. Like mobilization, this coordinated, multistep 
process also involves signaling by SDF-1 and SCF, and activation of LFA-1, VLA-
4/5 and CD44 and a role for MMPs. 

 Although HSCs and their niche clearly have to persist throughout life, a number 
of studies have shown that there are age-related changes in HSCs that have func-
tional consequences for the hematopoietic system and are likely the result of a com-
bination of cell-intrinsic and microenvironmental in fl uences (for a review see 
Dykstra and de Haan  2008  ) . Studies of X-chromosome inactivation in elderly 
females have suggested that the pool of HSCs normally diminishes with age, result-
ing in oligoclonal or even monoclonal hematopoiesis; however, by analyzing the 
pattern of allele-speci fi c gene expression, Swierczek et al.  (  2008  )  have provided 
convincing evidence against this hypothesis and suggest that clonal hematopoiesis 
is not a normal consequence of aging. Nevertheless, consideration of HSC differen-
tiation potential suggests that a degree of selection can operate. HSCs isolated from 
young and aged donors have been reported to differ in functional capacity, the 
 complement of proteins on the cell surface, transcriptional activity, and genome 
integrity (reviewed by Woolthuis et al.  2011  ) . In the mouse, several hallmark 
 age-dependent changes in the HSC compartment have been identi fi ed, including an 
increase in HSC numbers and a decrease in homing ef fi ciency. Increased prolifera-
tion and decreased function with age can be correlated with dramatic alterations in 
gene expression; one analysis of HSCs from mice aged 2–21 months identi fi ed 
approximately 1,500 genes that were age-induced and 1,600 that were age-repressed 
(   Chambers and Goodell  2007  ) . Genes associated with the stress response, 
in fl ammation, and protein aggregation dominated the up-regulated expression 
pro fi le, while the down-regulated pro fi le was marked by genes involved in the pres-
ervation of genomic integrity and chromatin remodeling. One gene in particular that 
has attracted attention in this context, and may have implications for treatment strat-
egies, is the cyclin-dependent kinase inhibitor p16INK4a, the level of which accu-
mulates and modulates speci fi c age-associated HSC functions (Janzen et al.  2006  ) . 
Notably, in the absence of p16INK4a, HSC repopulating defects and apoptosis were 
mitigated, improving the stress tolerance of cells and the survival of animals in suc-
cessive transplants, suggesting that therapeutic inhibition of genes such as p16INK4a 
may ameliorate the physiological impact of ageing on stem cells. The differences in 
‘aged’ behavior of HSCs were later explained by an accumulation of myeloid-biased 
HSCs with age in both mice (Challen et al.  2010  )  and humans (Pang et al.  2011  )  at 
the expense of lymphoid-biased cells (Cho et al.  2008  ) . The fact that myeloid-biased 
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HSCs from young and aged sources behave similarly in all aspects tested might 
suggest that aging does not change individual HSCs. 

 There has been a growing appreciation over the last 15 years of the role that reactive 
oxygen species (ROS) play in a variety of cellular processes. ROS are formed by the 
partial reduction of oxygen and include superoxide (O 

2
  − ), hydrogen peroxide (H 

2
 O 

2
 ) 

and the hydroxyl radical (OH − ) (Turrens  2003  ) . ROS have been shown to regulate 
cell cycle progression, cell motility and growth factor signaling in a variety of nor-
mal cell types (Valko et al.  2007  ) . ROS production and consequent oxidative stress 
has been linked to aging and degenerative disease (Sardina et al.  2012  ) , although 
bene fi cial effects of moderate levels of ROS have been noted (Goldstone et al.  1996 ; 
Tatla et al.  1999  ) . The importance of ROS in HSCs was made evident from studies 
on mouse models in which genes involved in the regulation of ROS levels were 
genetically reduced. For example, reduction of FOXO transcription factor function 
leads to loss of HSC quiescence and self-renewal capacity (Jang and Sharkis  2007  ) . 
In the absence of external stimuli, FOXO proteins normally reside in the nucleus in 
an active state, promoting cell cycle arrest, resistance to stress, apoptosis and ROS 
detoxi fi cation (Coffer and Burgering  2007  ) . Although it is evident that ROS levels 
are crucial to the function of HSCs, the precise mechanisms affected are not clear. 
There are actually distinct HSC niches in the bone marrow depending on oxygen 
availability and the consequent levels of ROS. Hence, ROS low  and ROS high  HSCs 
exhibit the same surface phenotype, but differ in that the population with lower ROS 
levels displays higher self-renewal (Jang and Sharkis  2007  ) . The association between 
the oxidative state and HSC self-renewal capacity has led to interest in the manipu-
lation of ROS levels as a way to enhance BMT and to delay the aging of HSCs.  

    10.4   Differentiation Capacity and Their Precursors 

 What happens downstream of the HSC in the hematopoietic hierarchy is important 
in a therapeutic context when considering the speci fi c requirements for progenitors 
and differentiated progeny to regenerate the normal homeostatic state. Work largely 
emanating from the laboratory of Irving Weissman has de fi ned committed progeni-
tors in the mouse that are immediately downstream of the most mature component 
of the LSK compartment. These cells mark the  fi rst distinction between the lym-
phoid and myeloid lineages. The existence of a common lymphoid progenitor (CLP) 
that can only give rise to T cells, B cells, and NK cells was  fi rst reported by Kondo 
et al.  (  1997  ) , who described a bone marrow Lin −  IL-7R +  Thy-1 −  Sca-1 lo  c-Kit lo  popu-
lation with these characteristics. A complementary clonogenic common myeloid 
progenitor (CMP) that gives rise to all myeloid lineages was similarly de fi ned by 
Akashi et al.  (  2000  )  who also demonstrated that this cell can give rise to either 
megakaryocyte/erythrocyte progenitors (MEPs) or granulocyte/macrophage pro-
genitors (GMPs). The resulting model, which proposes that the  fi rst lineage com-
mitment step of HSCs results in a strict separation into CLPs and CMPs, has been 
challenged by the identi fi cation of a population of cells with lympho-myeloid 
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differentiation potential, but that have lost the ability to adopt erythroid and 
megakaryocyte lineage fates (Adolfsson et al.  2005  ) . Hence, LSK HSCs that co-
express high levels of the tyrosine kinase receptor Flt3 were shown to sustain granu-
locyte, monocyte, and B and T cell potentials, but in contrast to LSK Flt3 −  HSCs 
failed to produce signi fi cant erythroid and megakaryocytic progeny. These cells 
were termed lymphoid-primed multipotent progenitor (LMPP) cells. The equivalent 
details of the hierarchy downstream of the HSC are yet to be fully elucidated in 
humans, and it cannot be assumed that these will be comparable between species. 
Using similar strategies for the identi fi cation of down-stream human progenitors, 
populations corresponding to the mouse LMPP were also de fi ned in humans (MLPs) 
that sustained both lymphoid and myeloid lineages but excluded megakaryocytic/
erythroid potential (Hoebeke et al.  2007 ; Six et al.  2007 ; Goardon et al.  2011  ) . 

 Such details of the pathways of commitment and differentiation of HSCs as 
described above, and how these may differ during development, are becoming ever 
more important in attempts to optimize the production of replacement hematopoi-
etic cells from ES cells. As for the de fi nition of the HSC phenotype and functional 
testing of HSCs in vivo, attempts to elucidate protocols for the induction of 
hematopoietic differentiation from ES cells have been led by work in the mouse. 
Although conditions have been worked out to enable the derivation of most mature 
hematopoietic cell types from both mouse and human ES cells, it is important to be 
aware of the developmental stage that these cells represent and the extent to which 
it is possible to generate adult HSCs with repopulation potential (for reviews on the 
derivation of hematopoietic cells from human ES cells see Bhatia  (  2007  ) , Tian and 
Kaufman  (  2008  )  and Moreno-Gimeno et al.  (  2010  ) ). Following on from extensive 
studies on the differentiation of hematopoietic cells from murine ES cells (reviewed 
in Olsen et al.  2006  ) , production from human ES cells was  fi rst described by 
Kaufman et al.  (  2001  )  who employed co-culture with murine bone marrow stromal 
or yolk sac endothelial cell lines. Amongst a number of subsequent modi fi cations to 
this strategy, Vodyanik et al.  (  2005  )  were able to obtain large numbers of CD34 +  
cells at greater than 95% purity using co-culture with the mouse stromal line OP9. 
Although the latter ES cell-derived CD34 +  cells contained ALDH +  Rh-123 lo  cells 
and were highly enriched in colony-forming cells, even after in vitro expansion, 
they displayed a phenotype of primitive hematopoietic progenitors. A potential 
solution to the problem of the stage of developmental maturity was found in the case 
of mouse ES cell differentiation in that expression of HoxB4 in primitive progeni-
tors combined with culture on hematopoietic stroma induced a switch to the 
de fi nitive HSC phenotype capable of engrafting primary and secondary recipients 
(Kyba et al.  2002  ) . 

 Encouragingly, since the  fi rst successes with human ES cell differentiation into 
HSC-like cells, conditions have been improved considerably leading ultimately to 
the in vitro generation of HSCs with repopulation activity. For example, Narayan 
et al.  (  2006  )  were able to engraft sheep using Lin −  CD34 +  or CD34 +  CD38 −  obtained 
by culturing human ES cells on stromal feeders, their long-term engrafting potential 
being con fi rmed by successful transplantation into secondary recipients. Similarly, using 
co-culture with stromal cells, this time derived from mouse aorta-gonad-mesonephros 



26710 Hematopoietic Stem Cells

(AGM) and fetal liver, Ledran et al.  (  2008  )  obtained cells expressing CD34 at day 
18–21 of differentiation that were capable of primary and secondary hematopoietic 
engraftment into immunocompromised mice at substantially higher levels than 
described previously.  

    10.5   Potential Applications for Therapies 

 The utilization of stem cells in the clinic has already met with great success and 
remains one of the most appealing prospects in regenerative medicine today. The 
therapeutic use of HSCs pioneered in the 1950s through the development of BMT, 
initially used matched siblings as donors but has subsequently come to involve the 
use of partially matched or mismatched donors that although deemed necessary in 
most situations can result in problems arising from immunogenic matching, result-
ing in rejection or graft-versus host disease (reviewed by Copelan  2006  ) . A range of 
diseases have been successfully treated by BMT, including principally cancers of 
blood cells, but also other hematological disorders such as myeloproliferation, anemia 
and genetic defects that cause immunode fi ciency. BMT is also an option for treat-
ment of some inherited metabolic disorders that result from an enzyme de fi ciency 
affecting cells in addition to, or other than, blood cells, but which can be amelio-
rated through the production of the de fi cient protein from engrafted donor blood 
cells. The applications of BMT will be considered in much more detail in Chap.   26    , 
and here the discussion will focus on factors that might improve the prospects for 
the therapeutic application of HSCs. 

 Possible improvements in HSC therapies can essentially be broken down into those 
that increase the availability of suitable, preferably autologous cells in large numbers, 
and those that maximize the ef fi ciency of engraftment of the transplanted cells. The 
latter prospect relates to understanding of the mechanisms of homing and the factors 
that control niche occupancy as discussed above, and it is likely that this knowledge 
will have a signi fi cant impact in the years to come. To date, means to improve the 
availability of HSCs for BMT have received far more attention. Roughly 30% of 
patients requiring BMT have a matched sibling, while another 50% potentially have a 
good match to an individual amongst the nine million registered donors worldwide, 
although less than half of these will actually receive a donation. Although cord blood 
is a viable alternative source of HSCs it is not ideal because it only contains a limited 
number of HSCs, so that ex vivo expansion is almost certainly necessary. Ex vivo 
expansion of HSCs in combinations of cytokines and other soluble factors, designed 
to mimic the signals provided within the niche, has met with mixed success, although 
more recently quite signi fi cant degrees of ampli fi cation in the numbers of cells retain-
ing engraftment potential have been achieved. For example, using a combination of 
SCF, Flt3 ligand (FL), thrombopoietin (Tpo) and IL6, two independent groups 
achieved signi fi cant expansion of CD34 +  cord blood cells that retained the capacity to 
repopulate NOD/SCID mice (Kusadasi et al.  2000 ; Ueda et al.  2000  ) . Direct manipu-
lation of molecular mechanisms that are linked to proliferation and self-renewal is 

http://dx.doi.org/10.1007/978-94-007-5690-8_26


268 M.L. Clarke and J. Frampton

another potential way to expand stem cells and ectopic over-expression of the 
transcriptional regulator HoxB4 has proved to be effective at inducing rapid, exten-
sive, and highly polyclonal expansions of murine HSCs that retained full lympho-
myeloid repopulating potential and enhanced in vivo regenerative potential (Antonchuk 
et al.  2002  ) . Other approaches that have been investigated include the use of  fi broblast 
growth factors (FGFs), in particular FGF 1 and 2, which can maintain long-term 
repopulating activity of mouse bone marrow HSCs in vitro (de Haan et al.  2003 ; Yeoh 
et al.  2006  ) , while the Notch ligand Delta 1 has a moderate effect in enhancing the 
expansion of SRUs in cultures of cord blood CD133 +  cells employing the SCF, FL, 
Tpo, IL-6 cocktail of factors described above (Suzuki et al.  2006  ) . Perhaps the greatest 
success has come from the laboratory of Harvey Lodish who identi fi ed angiopoietin-
like 2 and angiopoietin-like 3 proteins as factors produced by HSC-supportive mouse 
fetal liver CD3 +  cells (Zhang et al.  2006  ) . These produced a roughly 30-fold expan-
sion of long-term HSCs in culture, which has subsequently been applied to human 
cord blood cells by developing a serum-free culture containing SCF, TPO, FGF-1, 
angiopoietin-like 5, and IGFBP2 (Zhang et al.  2008  ) . 

 Many believe that the solution to producing more cells for transplantation lies in 
the derivation of HSCs from alternative sources, and a number of options have been 
considered in order to achieve this goal. The prospect of in vitro production of HSCs 
as a futuristic potential supply for BMT derived from ES cells is an exciting oppor-
tunity for regenerative medicine as they represent a theoretically unlimited source 
of HSCs. Nevertheless as for cord blood-derived HSCs there are at present signi fi cant 
limitations to the number of appropriate cells that may be obtained. 

 As discussed already, ES cells can be differentiated into HSCs with repopulating 
capability and it may soon be possible to produce these in quantities that are 
suf fi cient for clinical application. However, the use of ES cell-derived HSCs is ulti-
mately limited because they are unlikely to be perfectly matched to the donor and 
ethical consequences of the generation of human embryos for therapeutic applica-
tions must be considered. Alternatively, what if ES cells could be made that match 
every individual so that truly personalized stem cell transplantations would become 
a reality? Efforts have been made to do just this with ES-like cells being generated 
through processes such as nuclear transfer, involving either the fusion of ES cells 
with somatic cell or the transfer of somatic nuclear contents into an oocyte (Wilmut 
et al.  1997  ) . 

 The real breakthrough came in 2006 when the Japanese researcher Shinya 
Yamanaka showed that it is possible to convert normal differentiated adult cells, 
 fi rstly from the mouse (Takahashi and Yamanaka  2006 ; Okita et al.  2007  )  and then 
from humans (Takahashi et al.  2007  ) , to become like ES cells by forced expression 
of speci fi c pluripotent genes; namely OCT4, SOX2, KLF4 and c-MYC. These cells, 
which are usually referred to as induced pluripotent stem (iPS) cells, have the addi-
tional advantage that their generation does not involve the use of an embryo bypass-
ing many ethical concerns. The subsequent demonstration that iPS cells can be, like 
ES cells, differentiated into HSCs (Hanna et al.  2007 ; Schenke-Layland et al.  2008 ; 
Niwa et al.  2009  )  means that they offer the real prospect of limitless autologous 
HSCs for all. Of course there are many details yet to be ironed out, but the progress 
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in this area of stem cell science is nothing if not meteoric (see Hochedlinger and 
Plath  (  2009  )  and Robinton and Daley  (  2012  )  for reviews). Interestingly, a recent 
study has shown that immature hematopoietic cells derived from human iPS cells 
are more permissive to engraft the bone marrow of xenotransplantation recipients 
compared to phenotypically identical cells obtained from ES cells, although these 
HSCs failed to demonstrate multilineage differentiation unless they were removed 
from the animal, a phenomenon that could be attributed to their inability to down 
regulate key micro RNAs involved in hematopoiesis (Risueño et al.  2012  ) . 

 The considerable recent effort in reprogramming cell phenotype towards a pluri-
potent state has also led to renewed interest in trans-differentiation directly from 
one cell type to another, without progressing through an iPS cell stage. This has 
been achieved, with varying degrees of success, for a number of cell types, includ-
ing neural cells, cardiomyocytes and hepatocytes. One potentially exciting advan-
tage of a trans-differentiation approach is that it may be possible more easily 
to produce mature cells with an adult rather than embryonic or fetal phenotype. 
To date, this approach has achieved only limited success with respect to hematopoi-
etic cells, although the laboratory of Mickie Bhatia has been able to demonstrate 
direct conversion of human  fi broblasts to multilineage blood progenitors through 
ectopic expression of Oct4 (Szabo et al.  2010  ) . 

 The ability to produce iPS cells, and consequently patient-speci fi c HSCs, also 
offers the exciting prospect that inherited blood-related disorders might be cor-
rected. Proof-of-principle for this concept was  fi rst provided by the laboratory of 
Rudi Jaenisch who created a humanized sickle cell anemia mouse model, which 
was then rescued after transplantation with HSCs obtained in vitro from autologous 
iPS cells in which the mutant hemoglobin allele had been reverted to the normal 
sequence by gene-speci fi c targeting (Hanna et al.  2007  ) . A second important proof-
of-principle, this time with human cells, has been the demonstration that somatic 
cells from Fanconi anemia patients can be used to generate iPS cells in which the 
Fanconi-anemia defect could be corrected by over expression of the normal version 
of the affected protein and then used to give rise to hematopoietic progenitors of the 
myeloid and erythroid lineages that are disease-free (Raya et al.  2009  ) . 

 Although these exciting advances in iPS cell technology generate the prospect of 
patient-speci fi c stem cell therapies, the transition from the bench to the patient bed-
side is still some distance into the future. Numerous obstacles must be overcome 
before these therapies are put into routine practice. Firstly, the original methods of 
iPS cell generation utilized retroviruses as the vectors to infect cells to initiate the 
expression of the pluripotent genes. This process would be entirely unacceptable in 
the clinic since retroviruses are known cancer-causing agents (Okita et al.  2007  ) . 
New methods of generation of iPS cells have evolved with the means to remove the 
oncogenes after the induction of pluripotency reducing the risk of tumorigenesis 
(Yu et al.  2009  ) . 

 Although it is some distance into the future before these techniques are put into 
clinical practice, the generation of HSCs from iPS cells from patients can be used in 
the present for phenotypic based drug screens in complex diseases for which the 
under-lying genetic mechanism is unknown.  
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    10.6   Conclusions and Future Development in Research 

 Research into the nature and application of HSCs has come a long way since the 
earliest forays into transplantation of bone marrow into patients. Apart from the 
highly detailed understanding that we now have of the molecular and cellular char-
acteristics of HSCs and ways in which they can be manipulated and used for clinical 
bene fi t, research in this area has provided the guiding light for the whole  fi eld of 
stem cell biology. The means of identifying and purifying HSCs and the sophisti-
cated in vitro and in vivo tests that have been developed to assay their potential have 
been adopted and modi fi ed for the investigation of the now burgeoning array of 
stem cells that play roles in both development and the maintenance of adult tissues. 
The study of HSCs illustrates so well how investigations in animal models, in par-
ticular the mouse, can inform studies in man and how they can provide important 
pre-clinical information on the potency and behaviour of stem cells following ex 
vivo expansion or on ways in which to improve the ef fi ciency of engraftment once 
cells are introduced into the recipient. 

 The improvements in the ability of clinicians to treat patients more effectively 
with transplantations as a result of the increasing knowledge of HSCs are likely to 
be given an even greater boost as a result of the astonishing developments in the 
ability to generate pluripotent stem cells and to then use these to produce HSCs with 
long-term engraftment potential. Apart from the chance to treat more people suc-
cessfully, there has now opened up the real prospect that individuals born with 
genetic defects that affect blood cell production or function, as well as some other 
inherited disorders such as those affecting aspects of metabolism, can expect to 
have their de fi ciencies corrected by gene targeting in iPS cells generated from noth-
ing more than a few skins cells. 

 For sure there are many hurdles yet to be overcome, but the future looks very 
exciting.      

      References 

    Adams GB, Scadden DT (2008) A niche opportunity for stem cell therapeutics. Gene Ther 
15:96–99  

    Adolfsson J, Borge OJ, Bryder D et al (2001) Upregulation of Flt3 expression within the bone 
marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal 
capacity. Immunity 15:659–669  

    Adolfsson J, Månsson R, Buza-Vidas N et al (2005) Identi fi cation of Flt3+ lympho-myeloid stem 
cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage com-
mitment. Cell 121:295–306  

    Akashi K, Traver D, Miyamoto T et al (2000) A clonogenic common myeloid progenitor that gives 
rise to all myeloid lineages. Nature 404:193–197  

    Almeida-Porada G, Porada C, Gupta N et al (2007) The human-sheep chimeras as a model for 
human stem cell mobilization and evaluation of hematopoietic grafts’ potential. Exp Hematol 
35:1594–1600  



27110 Hematopoietic Stem Cells

    Ando K (2002) Human CD34- hematopoietic stem cells: basic features and clinical relevance. 
Int J Hematol 75:370–375  

    in ‘t Anker PS, Noort WA, Kruisselbrink AB et al (2003) Nonexpanded primary lung and bone 
marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived 
CD34(+) cells in NOD/SCID mice. Exp Hematol 31:881–889  

    Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic 
stem cells ex vivo. Cell 109:39–45  

    Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic 
stem cell quiescence in the bone marrow niche. Cell 118:149–161  

    Balazs AB, Fabian AJ, Esmon CT et al (2006) Endothelial protein C receptor (CD201) explicitly 
identi fi es hematopoietic stem cells in murine bone marrow. Blood 107:2317–2321  

    Baum CM, Weissman IL, Tsukamoto AS et al (1992) Isolation of a candidate human hematopoi-
etic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808  

    Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1− or Stro-1+ 
mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 
cell engraftment. Blood 103:3313–3319  

    Bhatia M (2007) Hematopoietic development from human embryonic stem cells. Hematol Am Soc 
Hematol Educ Progr 2007:11–16  

    Bhatia M, Wang JC, Kapp U et al (1997) Puri fi cation of primitive human hematopoietic cells 
capable of repopulating immune-de fi cient mice. Proc Natl Acad Sci USA 94:5320–5325  

    Bhatia M, Bonnet D, Murdoch B et al (1998) A newly discovered class of human hematopoietic 
cells with SCID-repopulating activity. Nat Med 4:1038–1045  

    Bonnet D, Bhatia M, Wang JC et al (1999) Cytokine treatment or accessory cells are required to 
initiate engraftment of puri fi ed primitive hematopoietic cells transplanted at limiting doses into 
NOD/SCID mice. Bone Marrow Transplant 23:203–209  

    Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol 
Med Sci 44:287–299  

    Challen GA, Boles NC, Lin KK et al (2009) Mouse hematopoietic stem cell identi fi cation and 
analysis. Cytometry A 75:14–24  

    Challen GA, Boles NC, Chambers SM et al (2010) Distinct hematopoietic stem cell subtypes are 
differentially regulated by TGF-beta1. Cell Stem Cell 6:265–278  

    Chambers SM, Goodell MA (2007) Hematopoietic stem cell aging: wrinkles in stem cell potential. 
Stem Cell Rev 3:201–211  

    Chen BP, Galy A, Kyoizumi S et al (1994) Engraftment of human hematopoietic precursor cells 
with secondary transfer potential in SCID-hu mice. Blood 84:2497–2505  

    Chen CZ, Li L, Li M et al (2003) The endoglin(positive) sca-1(positive) rhodamine(low) pheno-
type de fi nes a near-homogeneous population of long-term repopulating hematopoietic stem 
cells. Immunity 19:525–533  

    Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic 
stem cells: aging changes the clonal composition of the stem cell compartment but not indi-
vidual stem cells. Blood 111:5553–5561  

    Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: 
a simple model to isolate long-term stem cells. Proc Natl Acad Sci USA 98:14541–14546  

    Chute JP (2006) Stem cell homing. Curr Opin Hematol 13:399–406  
    Coffer PJ, Burgering BM (2007) Stressed marrow: FoxOs stem tumour growth. Nat Cell Biol 

9:251–253  
    Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826  
    Craig W, Kay R, Cutler RL et al (1993) Expression of Thy-1 on human hematopoietic progenitor 

cells. J Exp Med 177:1331–1342  
    Cumano A, Godin I (2007) Ontogeny of the hematopoietic system. Annu Rev Immunol 

25:745–785  
    de Haan G, Weersing E, Dontje B et al (2003) In vitro generation of long-term repopulating 

hematopoietic stem cells by  fi broblast growth factor-1. Dev Cell 4:241–251  



272 M.L. Clarke and J. Frampton

    Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of hematopoietic 
stem cells in vitro. J Cell Physiol 91:335–344  

    Dick JE, Magli MC, Huszar D et al (1985) Introduction of a selectable gene into primitive stem 
cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 
42:71–79  

    Doulatov S, Notta F, Laurenti E et al (2012) Hematopoiesis: a human perspective. Cell Stem Cell 
10:120–136  

    Dykstra B, de Haan G (2008) Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 
331:91–101  

    Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic 
stem cells. Nat Immunol 9:129–136  

    Dzierzak E, Medvinsky A, de Bruijn M (1998) Qualitative and quantitative aspects of haematopoietic 
cell development in the mammalian embryo. Immunol Today 19:228–236  

    Ema H, Takano H, Sudo K et al (2000) In vitro self-renewal division of hematopoietic stem cells. 
J Exp Med 192:1281–1288  

    Engelhardt M, Lübbert M, Guo Y (2002) CD34(+) or CD34(−): which is the more primitive? 
Leukemia 16:1603–1608  

    Fraser CC, Chen BP, Webb S et al (1995) Circulation of human hematopoietic cells in severe com-
bined immunode fi cient mice after Cl2MDP-liposome-mediated macrophage depletion. Blood 
86:183–192  

    Fukuda S, Bian H, King AG et al (2007) The chemokine GRObeta mobilizes early hematopoietic 
stem cells characterized by enhanced homing and engraftment. Blood 110:860–869  

    Gallacher L, Murdoch B, Wu DM et al (2000) Isolation and characterization of human CD34(−)
Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and 
CD7. Blood 95:2813–2820  

    Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leuke-
mia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152  

    Goldman JP, Blundell MP, Lopes L et al (1998) Enhanced human cell engraftment in mice de fi cient 
in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103:335–342  

    Goldstone SD, Milligan AD, Hunt NH (1996) Oxidative signalling and gene expression during 
lymphocyte activation. Biochim Biophys Acta 1314:175–182  

    Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine 
hemopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806  

    Goodell MA, Rosenzweig M, Kim H et al (1997) Dye ef fl ux studies suggest that hematopoietic 
stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat 
Med 3:1337–1345  

    Greiner DL, Hesselton RA, Shultz LD (1998) SCID mouse models of human stem cell engraft-
ment. Stem Cells 16:166–177  

    Guo Y, Lübbert M, Engelhardt M (2003) CD34- hematopoietic stem cells: current concepts and 
controversies. Stem Cells 21:15–20  

    Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with 
iPS cells generated from autologous skin. Science 318:1920–1923  

    Hao QL, Shah AJ, Thiemann FT et al (1995) A functional comparison of CD34+ CD38− cells in 
cord blood and bone marrow. Blood 86:3745–3753  

    Harrison DE, Jordan CT, Zhong RK et al (1993) Primitive hemopoietic stem cells: direct assay of 
most productive populations by competitive repopulation with simple bionomial, correlation 
and covariance calculations. Exp Hematol 21:206–219  

    Hess DA, Wirthlin L, Craft TP et al (2006) Selection based on CD133 and high aldehyde dehydrogenase 
activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169  

    Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 
136:509–523  

    Hoebeke I, De Smedt M, Stolz F et al (2007) T-, B- and NK-lymphoid, but not myeloid cells arise 
from human CD34(+)CD38(−)CD7(+) common lymphoid progenitors expressing lymphoid-
speci fi c genes. Leukemia 21:311–319  



27310 Hematopoietic Stem Cells

    Ishii M, Matsuoka Y, Sasaki Y et al (2011) Development of a high-resolution puri fi cation method 
for precise functional characterization of primitive human cord blood-derived CD34-negative 
SCID-repopulating cells. Exp Hematol 39:203–213  

    Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and 
immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573  

    Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCIDgamma(c) (null) mouse: an excellent 
recipient mouse model for engraftment of human cells. Blood 100:3175–3182  

    Ito M, Kobayashi K, Nakahata T (2008) NOD/Shi-scid IL2rgamma(null) (NOG) mice are more 
appropriate for humanized mouse models. Curr Top Microbiol Immunol 324:53–76  

    Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoi-
etic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063  

    Janzen V, Forkert R, Fleming HE et al (2006) Stem cell ageing modi fi ed by the cyclin-dependent 
kinase inhibitor p16INK4a. Nature 443:42142–42146  

    Kamel-Reid S, Dick JE (1988) Engraftment of immune-de fi cient mice with human hematopoietic 
stem cells. Science 242:1706–1709  

    Kastan MB, Schlaffer E, Russo JE et al (1990) Direct demonstration of elevated aldehyde dehydro-
genase in human hematopoietic progenitor cells. Blood 75:1947–1950  

    Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regu-
late hematopoietic stem cell egress from bone marrow. Cell 124:407–421  

    Kaufman DS, Hanson ET, Lewis RL et al (2001) Hematopoietic colony-forming cells derived from 
human embryonic stem cells. Proc Natl Acad Sci USA 98:10716–10721  

    Kent DG, Copley MR, Benz C et al (2009) Prospective isolation and molecular characterization of 
hematopoietic stem cells with durable self-renewal potential. Blood 113:6342–63450  

    Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. 
Nat Rev Immunol 8:290–301  

    Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic 
stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121  

    Kimura T, Asada R, Wang J et al (2007) Identi fi cation of long-term repopulating potential of 
human cord blood-derived CD34- fl t3- severe combined immunode fi ciency-repopulating cells 
by intra-bone marrow injection. Stem Cells 25:1348–1355  

    Kollet O, Peled A, Byk TB et al (2000) Beta2 microglobulin-de fi cient (B2m(null)) NOD/SCID 
mice are excellent recipients for studying human stem cell function. Blood 95:3102–3105  

    Kondo M, Weissman IL, Akashi K (1997) Identi fi cation of clonogenic common lymphoid progeni-
tors in mouse bone marrow. Cell 91:661–672  

    Kusadasi N, van Soest PL, Mayen AE et al (2000) Successful short-term ex vivo expansion of 
NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood. Leukemia 
14:1944–1953  

    Kushida T, Inaba M, Hisha H et al (2001) Intra-bone marrow injection of allogeneic bone marrow 
cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr 
mice. Blood 97:3292–3299  

    Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers de fi nitive lymphoid-myeloid engraft-
ment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37  

    Lai AY, Kondo M (2006) Asymmetrical lymphoid and myeloid lineage commitment in multipotent 
hematopoietic progenitors. J Exp Med 203:1867–1873  

    Lapidot T, P fl umio F, Doedens M et al (1992) Cytokine stimulation of multilineage hematopoiesis 
from immature human cells engrafted in SCID mice. Science 255:1137–1141  

    Lapidot T, Dar A, Kollet O (2005) How do stem cells  fi nd their way home? Blood 106:1901–1910  
    Larochelle A, Savora M, Wiggins M et al (2011) Human and rhesus macaque hematopoietic stem 

cells cannot be puri fi ed based only on SLAM family markers. Blood 117:1550–1554  
    Ledran MH, Krassowska A, Armstrong L et al (2008) Ef fi cient hematopoietic differentiation of human 

embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3:85–98  
    Lemieux ME, Rebel VI, Lansdorp PM et al (1995) Characterization and puri fi cation of a primitive 

hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in 
long-term marrow “switch” cultures. Blood 86:1339–1347  



274 M.L. Clarke and J. Frampton

    Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of 
hematopoietic stem cells. Cell 45:917–927  

    Li Z, Li L (2006) Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 
31:589–595  

    Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic 
stem/progenitor cells in their niche. Nature 457:92–96  

    Majeti R, Park CY, Weissman IL (2007) Identi fi cation of a hierarchy of multipotent hematopoietic 
progenitors in human cord blood. Cell Stem Cell 1:635–645  

    Mayani H, Dragowska W, Lansdorp PM (1993) Cytokine-induced selective expansion and matura-
tion of erythroid versus myeloid progenitors from puri fi ed cord blood precursor cells. Blood 
81:3252–3258  

    Mazurier F, Fontanellas A, Salesse S et al (1999) A novel immunode fi cient mouse model RAG2 x 
common cytokine receptor gamma chain double mutants requiring exogenous cytokine adminis-
tration for human hematopoietic stem cell engraftment. J Interferon Cytokine Res 19:533–541  

    McCune JM, Namikawa R, Kaneshima H et al (1988) The SCID-hu mouse: murine model for the 
analysis of human hematoplymphoid differentiation and function. Science 241:1632–1639  

    McKenzie JL, Gan OI, Doedens M et al (2005) Human short-term repopulating stem cells are 
ef fi ciently detected following intrafemoral transplantation into NOD/SCID recipients depleted 
of CD122+ cells. Blood 106:1259–1261  

    McKenzie JL, Gan OI, Doedens M et al (2006) Individual stem cells with highly variable prolifera-
tion and self-renewal properties comprise the human hematopoietic stem cell compartment. 
Nat Immunol 7:1225–1233  

    McKenzie JL, Takenaka K, Gan OI et al (2007) Low rhodamine 123 retention identi fi es long-term 
human hematopoietic stem cells within the Lin-CD34+ CD38− population. Blood 
109:543–545  

    Mercier FE, Ragu C, Scadden DT (2011) The bone marrow at the crossroads of blood and immu-
nity. Nat Rev Immunol 12:49–60  

    Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 
133:3733–3744  

    Moore MA, Williams N, Metcalf D (1973) In vitro colony formation by normal and leukemic 
human hematopoitic cells: characterization of the colony-forming cells. J Natl Cancer Inst 
50:603–623  

    Moreno-Gimeno I, Ledran MH, Lako M (2010) Hematopoietic differentiation from human ESCs 
as a model for developmental studies and future clinical translations. Invited review following 
the FEBS anniversary prize received on 5 July 2009 at the 34th FEBS congress in Prague. 
FEBS J 277:5014–5025  

    Namikawa R, Weilbaecher KN, Kaneshima H et al (1990) Long-term human hematopoiesis in the 
SCID-hu mouse. J Exp Med 172:1055–1063  

    Narayan AD, Chase JL, Lewis RL et al (2006) Human embryonic stem cell-derived hematopoietic 
cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 
107:2180–2183  

    Niwa A, Umeda K, Chang H et al (2009) Orderly hematopoietic development of induced pluripo-
tent stem cells via Flk-1(+) hemangiogenic progenitors. J Cell Physiol 221:367–377  

    Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunode fi cient mice 
by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene trans-
duction of long-lived progenitors. Blood 83:3041–3051  

    Noort WA, Kruisselbrink AB, in ‘t Anker PS et al (2002) Mesenchymal stem cells promote engraft-
ment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 
30:870–878  

    Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells 
capable of long-term multilineage engraftment. Science 333:218–221  

    Okada S, Nakauchi H, Nagayoshi K et al (1992) In vivo and in vitro stem cell function of c-kit and 
Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050  



27510 Hematopoietic Stem Cells

    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent 
stem cells. Nature 448:313–317  

    Olsen AL, Stachura DL, Weiss MJ (2006) Designer blood: creating hematopoietic lineages from 
embryonic stem cells. Blood 107:1265–1275  

    Osawa M, Hanada K, Hamada H et al (1996) Long-term lymphohematopoietic reconstitution by a 
single CD34-low/negative hematopoietic stem cell. Science 273:242–245  

    Pang WW, Price EA, Sahoo D et al (2011) Human bone marrow hematopoietic stem cells are increased 
in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 108:20012–20017  

    Pearson T, Greiner DL, Shultz LD (2008) Humanized SCID mouse models for biomedical research. 
Curr Top Microbiol Immunol 324:25–51  

    Pelus LM, Fukuda S (2008) Chemokine mobilized adult stem cells: de fi ning a better hematopoietic 
graft. Leukemia 22:466–473  

    Ploemacher RE, van der Sluijs JP, Voerman JS et al (1989) An in vitro limiting-dilution assay of 
long-term repopulating hematopoietic stem cells in the mouse. Blood 74:2755–2763  

    Ploemacher RE, van der Sluijs JP, van Beurden CA et al (1991) Use of limiting-dilution type long-
term marrow cultures in frequency analysis of marrow-repopulation and spleen colony-forming 
hematopoietic stem cells in the mouse. Blood 78:2527–2533  

    Pronk CJ, Rossi DJ, Mansson R et al (2007) Elucidation of the phenotypic, functional, and molec-
ular topography of a myeloerythroid progenitor hierarchy. Cell Stem Cell 1:428–442  

    Purton LE, Scadden DT (2007) Limiting factors in murine hematopoietic stem cell assays. Cell 
Stem Cell 1:263–270  

    Raaijmakers MH, Scadden DT (2008) Evolving concepts on the microenvironmental niche for 
hematopoietic stem cells. Curr Opin Hematol 15:301–306  

    Raya A, Rodríguez-Pizà I, Guenechea G et al (2009) Disease-corrected haematopoietic progeni-
tors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59  

    Risueño RM, Sachlos E, Lee JH et al (2012) Inability of human induced pluripotent stem cell-
hematopoietic derivatives to downregulate micro RNAs in vivo reveals a block in xenograft 
hematopoietic regeneration. Stem Cells 30:131–139  

    Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and 
therapy. Nature 481:295–305  

    Rongvaux A, Willinger T, Takizawa H et al (2011) Human thrombopoietin knockin mice ef fi ciently 
support human hematopoiesis in vivo. Proc Natl Acad Sci USA 108:2378–2383  

    Sardina JL, López-Ruano G, Sánchez-Sánchez B et al (2012) Reactive oxygen species: are they 
important for hematopoiesis? Crit Rev Oncol Hematol 81:257–274  

    Schenke-Layland K, Rhodes KE, Angelis E et al (2008) Reprogrammed mouse  fi broblasts differ-
entiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26:1537–1546  

    Schmitt TM, Zúñiga-P fl ücker JC (2002) Induction of T cell development from hematopoietic pro-
genitor cells by delta-like-1 in vitro. Immunity 17:749–756  

    Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive 
immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191  

    Sintes J, Romero X, Marin P et al (2008) Differential expression of CD150 (SLAM) family recep-
tors by human hematopoietic stem and progenitor cells. Exp Hematol 36:1199–1204  

    Sitnicka E, Buza-Vidas N, Larsson S et al (2003) Human CD34+ hematopoietic stem cells capable 
of multilineage engrafting NOD/SCID mice express  fl t3: distinct  fl t3 and c-kit expression and 
response patterns on mouse and candidate human hematopoietic stem cells. Blood 102:881–886  

    Six EM, Bonhomme D, Monteiro M et al (2007) A human postnatal lymphoid progenitor capable 
of circulating and seeding the thymus. J Exp Med 204:3085–3093  

    Spangrude GJ, Johnson GR (1990) Resting and activated subsets of mouse multipotent hematopoi-
etic stem cells. Proc Natl Acad Sci USA 87:7433–7437  

    Spangrude GJ, Heimfeld S, Weissman IL (1988) Puri fi cation and characterization of mouse 
hematopoietic stem cells. Science 241:58–62  

    Spiegel A, Kalinkovich A, Shivtiel S et al (2008) Stem cell regulation via dynamic interactions of 
the nervous and immune systems with the microenvironment. Cell Stem Cell 3:484–492  



276 M.L. Clarke and J. Frampton

    Srour EF, Zanjani ED, Cornetta K et al (1993) Persistence of human multilineage, self-renewing 
lymphohematopoietic stem cells in chimeric sheep. Blood 82:3333–3342  

    Storms RW, Trujillo AP, Springer JB et al (1999) Isolation of primitive human hematopoietic progenitors 
on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123  

    Sutherland HJ, Eaves CJ, Eaves AC et al (1989) Characterization and partial puri fi cation of human 
marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570  

    Suzuki T, Yokoyama Y, Kumano K et al (2006) Highly ef fi cient ex vivo expansion of human 
hematopoietic stem cells using Delta1-Fc chimeric protein. Stem Cells 24:245624–245665  

    Swierczek SI, Agarwal N, Nussenzveig RH et al (2008) Hematopoiesis is not clonal in healthy 
elderly women. Blood 112:3186–3193  

    Szabo E, Rampalli S, Risueño RM et al (2010) Direct conversion of human  fi broblasts to multilin-
eage blood progenitors. Nature 468:521–526  

    Szilvassy SJ, Humphries RK, Lansdorp PM et al (1990) Quantitative assay for totipotent reconsti-
tuting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci 
USA 87:8736–8740  

    Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the 
hematopoietic stem-cell niche. Blood 105:2631–2639  

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and 
adult  fi broblast cultures by de fi ned factors. Cell 126:663–676  

    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult 
human  fi broblasts by de fi ned factors. Cell 131:861–872  

    Takano H, Ema H, Sudo K et al (2004) Asymmetric division and lineage commitment at the level 
of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter 
cell pairs. J Exp Med 199:295–302  

    Tatla S, Woodhead F et al (1999) The role of reactive oxygen species in triggering proliferation and 
IL-2 secretion in T cells. Free Radic Biol Med 26:14–24  

    Thomas ED, Lochte HL Jr, Lu WC et al (1957) Intravenous infusion of bone marrow in patients 
receiving radiation and chemotherapy. N Engl J Med 257:491–496  

    Tian X, Kaufman DS (2008) Differentiation of embryonic stem cells towards hematopoietic cells: 
progress and pitfalls. Curr Opin Hematol 15:312–318  

    Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse 
bone marrow cells. Radiat Res 14:213–222  

    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344  
    Ueda T, Tsuji K, Yoshino H et al (2000) Expansion of human NOD/SCID-repopulating cells by 

stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest 
105:1013–1021  

    Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological 
functions and human disease. Int J Biochem Cell Biol 39:44–84  

    van Os R, Kamminga LM, de Haan G (2004) Stem cell assays: something old, something new, 
something borrowed. Stem Cells 22:118111–118190  

    van Rijn RS, Simonetti ER, Hagenbeek A et al (2003) A new xenograft model for graft-versus-host 
disease by intravenous transfer of human peripheral blood mononuclear cells in RAG-/- gam-
mac-/- double-mutant mice. Blood 102:2522–2531  

    Vodyanik MA, Bork JA, Thomson JA et al (2005) Human embryonic stem cell-derived CD34+ 
cells: ef fi cient production in coculture with OP9 stromal cells and analysis of lymphohe-
matopoietic potential. Blood 105:617–626  

    Wang JC, Doedens M, Dick JE (1997) Primitive human hematopoietic cells are enriched in cord 
blood compared with adult bone marrow or mobilized peripheral blood as measured by the 
quantitative in vivo SCID-repopulating assay. Blood 89:3919–3924  

    Wang J, Kimura T, Asada R et al (2003) SCID-repopulating cell activity of human cord blood-
derived CD34- cells assured by intra-bone marrow injection. Blood 101:2924–2931  

    Whitlock CA, Witte ON (1982) Long-term culture of B lymphocytes and their precursors from 
murine bone marrow. Proc Natl Acad Sci USA 79:3608–3612  



27710 Hematopoietic Stem Cells

    Willinger T, Rongvaux A, Stowig T et al (2011) Improving human hemato-lymphoid-system mice 
by cytokine knock-in gene replacement. Trends Immunol 32:321–327  

    Wilmut I, Schnieke AF, McWhir J et al (1997) Viable offspring derived from fetal and adult mam-
malian cells. Nature 385:810–813  

    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 
6:93–106  

    Woolthuis CM, de Haan G, Huls G (2011) Aging of hematopoietic stem cells: Intrinsic changes or 
micro-environmental effects? Curr Opin Immunol 23:512–517  

    Yahata T, Ando K, Sato T et al (2003) A highly sensitive strategy for SCID-repopulating cell assay 
by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. 
Blood 101:2905–2913  

    Yang L, Bryder D, Adolfsson J et al (2005) Identi fi cation of Lin(−)Sca1(+)kit(+)CD34(+)Flt3- 
short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloab-
lated transplant recipients. Blood 105:2717–2723  

    Yeoh JS, van Os R, Weersing E et al (2006) Fibroblast growth factor-1 and -2 preserve long-term 
repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cells 
24:1564–1572  

    Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic 
stem and progenitor cells. Blood 90:5002–5012  

    Yu J, Hu K, Smugga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and 
transgene sequences. Science 324:797–801  

    Zanjani ED, Pallavicini MG, Ascensao JL et al (1992) Engraftment and long-term expression of 
human fetal hematopoietic stem cells in sheep following transplantation in utero. J Clin Invest 
89:1178–1188  

    Zanjani ED, Srour EF, Hoffman R (1995) Retention of long-term repopulating ability of xenoge-
neic transplanted puri fi ed adult human bone marrow hematopoietic stem cells in sheep. J Lab 
Clin Med 126:24–28  

    Zanjani ED, Almeida-Porada G, Livingston AG et al (1998) Human bone marrow CD34− cells 
engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. 
Exp Hematol 26:353–360  

    Zhang CC, Kaba M, Ge G et al (2006) Angiopoietin-like proteins stimulate ex vivo expansion of 
hematopoietic stem cells. Nat Med 12:240–245  

    Zhang CC, Kaba M, Iizuka S et al (2008) Angiopoietin-like 5 and IGFBP2 stimulate ex vivo 
expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplan-
tation. Blood 111:3415–3423      



279G. Steinhoff (ed.), Regenerative Medicine: From Protocol to Patient,
DOI 10.1007/978-94-007-5690-8_11, © Springer Science+Business Media Dordrecht 2013

  Abstract   Ischemic disorders are the main cause of death in the Western world. 
With more patients surviving their acute myocardial infarction and an aging population, 
congestive heart failure is the rising health problem. At present, heart transplantation 
remains the only curative treatment for end stage heart failure. The discrepancy 
between demand and supply of donor organs does not  fi ll the clinical need. This 
explains the huge effort made in the  fi eld of stem cell research trying to establish 
alternative resources for tissue replacement. In contrast to adult stem cells mainly 
acting in a paracrine fashion pluripotent stem cells have the potential to generate 
transplantable myocardial and vascular tissue. 

 Due to the low percentage of cardiovascular progenitor cells in pluripotent stem 
cell cultures, various approaches using exogenous factors aim for their ampli fi cation 
and puri fi cation in vitro. However, one future key technology may be genetic 
forward programming based on profound understanding of differentiation pathways 
in order to direct stem cell differentiation towards cardiovascular fates. In this 
regard, subtype speci fi c programming has already been achieved by overexpression 
of distinct early cardiovascular transcription factors leading to populations of either 
predominantly early/intermediate type cardiomyocytes or differentiated ventricular 
myocardial cells, respectively. 

 In addition, techniques for gentle puri fi cation of myocardial and vascular 
progenitor cells will have to be further re fi ned in order to enable the generation 
of highly speci fi c, pure and safe cell populations for transplantations and for tissue 

engineering.      
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     11.1   Introduction 

 Cardiovascular diseases    are the leading cause of death in the Western world. 
For instance, in the year 2009 a 42% mortality was related to chronic ischemic 
cardiomyopathy, myocardial infarction or progressive congestive heart failure in 
Germany. And this trend is even likely to climb in the foreseeable future (DESTATIS 
 2010  ) . The loss    of cardiomyocytes irreversibly leads to adverse remodeling of the 
myocardium and chamber dilatation associated with a decreased ejection fraction 
and heart insuf fi ciency. And with more patients surviving their acute myocardial 
infarction and a senescent population, congestive heart failure has already become 
a major health concern. Today, one of the main obstacles responsible for the high 
mortality of cardiovascular diseases are the limited therapeutical options available 
re fl ected by a 1-year-mortality of 50% for patients suffering from end-stage heart 
failure (NYHA stage III or IV) (Kessler and Byrne  1999  ) . Furthermore, the lack of 
donor organs for heart transplantations   , which is the only causal therapy available, 
aggravates this shortage of therapeutical options. And in case of successful transplanta-
tion allograft vasculopathy and chronic heart transplant rejection are the causes 
for a poor clinical outcome (Boyle and Colvin-Adams  2004 ; Hunt  1998 ; Neumayer 
 2005  ) . The direct medical costs for treatment of cardiovascular diseases within the 
EU are estimated at more than 100 billion Euros per year (Leal et al.  2006  ) . 

 Thus, scientists are encouraged to seek for new therapeutic options. Currently, 
the main objective is to  fi nd a way increasing the regeneration capacity of a diseased 
organ instead of “simply” replacing it. Therefore, several types of stem or progenitor 
cells have been introduced, characterized and tested in animal models. The trans-
plantation of skeletal myoblasts    in ischemic cardiomyopathy was a promising 
approach as these autologous cells are easily accessible and available in a suf fi cient 
quantity (Menasche et al.  2003  ) . Unfortunately, this non-cardiac muscular tissue did 
not electrically couple to the working myocardium (Menasche  2005  ) . After 
transplantation of fetal cardiomyocytes    in a mouse model the formation of interca-
lated discs and long term survival postengraftment could be documented (Soonpaa 
et al.  1994  )  so that this cell type could be regarded as a possible source for cell 
therapy. Merely the clinical use of these cells is hampered by the lacking availability, 
at least for ethical reasons. Only the use of autologous bone-marrow-derived stem 
cells is not impaired by the problems mentioned above. Both the surgical implantation 
of these cells as well as the mobilization in combination with improved homing or 
the direct cell-application via heart catheter into the ischemic myocardium appeared 
to be feasible, save and ethically inoffensive (Engelmann et al.  2009 ; Orlic et al. 
 2001 ; Schachinger et al.  2006 ; Theiss et al.  2010 ; Zaruba et al.  2009  ) . Furthermore, 
encouraging results could be generated in the animal models and the clinical trials 
performed so far (Schachinger et al.  2006 ; Strauer et al.  2002 ; Wollert et al.  2004  ) . 
However, the underlying mechanisms still remain unclear. At least, it appears to be 
more than unlikely that bone-marrow-derived stem cells can transdifferentiate into 
a myocardial cell line even though  fi rst observations claimed to demonstrate that 
(Balsam et al.  2004 ; Orlic et al.  2001  ) . It rather seems that the bene fi cial effects 
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caused by these adult stem cells are based on paracrine in fl uence on the surrounding 
tissue resulting in neo-angiogenesis, anti-apoptosis and probably stimulated 
proliferation of resident progenitor cells (Deindl et al.  2006 ; Murry et al.  2004  ) . 
In summary, bone-marrow-derived stem cells seem to have a positive effect on the 
healing process of the damaged myocardium but are not a potential source for 
cardiovascular tissue engineering    as this would require the formation of cardiomyo-
cytes, smooth muscle and endothelial cells. 

 This is the reason why the best source for the generation of myocardial replacement 
tissue    at present are pluripotent stem cells. These cells, depending on their deriva-
tion, have the ability to form all different cell types required to form myocardial 
(atria, ventricle and stroma) and vascular tissue (endothelial and smooth muscle 
cells) or specialized cardiac cells (e.g. pacemaker, conduction-system) and can be 
generated as autologous, i.e. genetically compatible to the recipient, stem cells in a 
theoretically in fi nite amount (Maltsev et al.  1993  ) . Since the technique of tissue 
engineering, i.e. the formation of transplantable three-dimensional constructions 
from beating cardiomyocytes, e.g. by  biological assembly     (Akins et al.  1999  )  or the 
 cell sheet approach     (Okano et al.  1995  ) , is already well established and has been 
re fi ned over the past 15 years (see Chaps.   20     and   21    ), it is now time to focus on the 
identi fi cation of the appropriate cell types from the pluripotent stem cell culture. 
Possible applications among others are infarct repair    (Bel et al.  2010 ; Kraehenbuehl 
et al.  2011 ; Singla et al.  2011  )  or the generation of biological pacemakers    (Kleger 
et al.  2010 ; Shiba et al.  2009  ) . While the use of autologous and patient-speci fi c 
inducible pluripotent stem cells (iPS-cells, see Chap.   8    ) will most likely solve the 
problem of immunological tolerance of the transplanted tissue there still exist some 
more hurdles that have to be overcome. The generation of suf fi cient amounts of trans-
plantable cells is one main goal as cardiomyocytes make up less than 10% of all 
cells in the murine embryonic stem cell culture (Yuasa et al.  2005  )  and even less in 
the human ES cell system (Xu et al.  2008  ) . Furthermore, the identi fi cation of the 
appropriate subtypes within the vast diversity of developing cardiovascular cells 
and their developmental stages within the pluripotent stem cell culture is crucial to 
achieve the best functional results after transplantation. And last but not least the 
isolation methods have to be further improved to guarantee the generation of pure 
and distinct graft cells for transplantation to minimize the risk for cardiac arrhythmias 
or even teratoma formation (see Chap.   7    ) (Liao et al.  2010 ; Lin et al.  2010  ) . 

 With the identi fi cation of stage   - and lineage-speci fi c markers    and progressing 
decipherment of the molecular cardiovascular development various opportunities 
for meeting the challenges mentioned above will appear.  

    11.2   Characteristics and Classi fi cation 

 The development of the cardiovascular system   , i.e. the  fi rst organ system to develop 
in vertebrate embryos, begins with the gastrulation in the third week of human 
embryonic development. Due to its considerable size at this point in time the embryo 

http://dx.doi.org/10.1007/978-94-007-5690-8_20
http://dx.doi.org/10.1007/978-94-007-5690-8_21
http://dx.doi.org/10.1007/978-94-007-5690-8_8
http://dx.doi.org/10.1007/978-94-007-5690-8_7
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is not able to nourish itself by diffusion alone any more but needs circulating blood 
for the supply of the highly proliferative tissues (Eisenberg and Eisenberg  2006  ) . 
While the heart itself represents the  fi rst functioning organ in the mammalian 
body its development begins at day 19 in the cardiac neural crest and the bilateral 
cardiogenic zones in the anterior visceral mesoderm with the induction of angio-
blasts by the endoderm (Buckingham et al.  2005 ; Sadler  1998  ) . At the beginning 
of the fourth week of embryonic development forming endothelial cell clusters    
connect to endocardial tubes   , translocate into the thoracic region and form the primitive 
heart tube with an inner endocardial layer and a surrounding myocard (Gerecht-Nir 
et al.  2003 ; Sadler  1998  ) . During weeks 5–7 the four chambered heart develops by 
folding and septum formation and starts beating after connection to the  fi rst vascular 
loops (Larsen  1998  ) . The myocardial derivation from angioblasts and endothelial 
cell clusters thereby clearly shows that heart and vessels arise from the same original 
cardiovascular progenitor cells. 

 However, regarding the cardiovascular development from a molecular point of 
view is even more complicated. It is well-known that the common cardiovascular 
stem cells    can be derived in various developmental stages from all available pluripotent 
cell lines like embryonic (see Chap.   7    ), induced pluripotent (see Chap.   8    ), spermatogo-
nial (see Chap.   9    ) or parthenogenetic stem cells (Yamanaka  2007  ) . These pluripotent 
stem cells show an in vitro differentiation roughly comparable even though not 
identical to the embryonic development in vivo. And as these cells in the native 
state express the pluripotency markers    Oct3/4, Nanog, Sox etc. (Srivastava and 
Ivey  2006 ; Takahashi and Yamanaka  2006  )  they are all able to form early cardiac 
mesoderm    which is the prerequisite for the development of cardiovascular organs and 
the production of cardiovascular stem cells (see Fig.  11.1 ).  

 While forming the cardiogenic regions in the lateral-plate mesoderm the cardio-
vascular precursors downregulate the earliest pan-mesodermal marker Brachyury    
(Bra) and start expressing the transcription factor mesoderm posterior 1    (MesP1) 
which is highly speci fi c for all cardiogenic and several vasculogenic regions giving 
rise to the dorsal aorta, intersomitic and cranial vessels (Kitajima et al.  2000 ; Saga 
et al.  1999,   2000  ) . Interestingly, Brachyury directly mediates the expression of 
MesP1 in the cardiovascular progenitor cells by binding to the MesP1 promotor 
region (David et al.  2011  ) . This explains why MesP1 can serve as a  fi rst target gene 

Fig. 11.1 (continued) helix-loop-helix transcription factor  mesoderm posterior 1  (MesP1), which 
is expressed in early cardiovascular progenitor cells determined to form myocardium or blood 
vessels. ( d ) Whereas vascular progenitors are further characterized by the expression of Islet1 
(Isl1), HOXB5 and the VEGF-receptor 2 (Flk-1), myocardial precursors follow a genetic program 
determined by the cardiac transcriptional key factor Nkx2.5. The further development of the 
heart can be distinguished between the  fi rst and the second heart  fi eld, which are characterized 
by the expression of Tbx20, Tbx5, Nkx2.5, Hand1 and Isl1, FGF8, Mef2c and Tbx1, respectively. 
Fully differentiated vascular structures express the structural proteins SM-actin and SM-MHC in 
the smooth muscle cells and CD31 and VE-Cadherin in endothelial cells. Typical cardiac structural 
proteins are myosin heavy chain ( a MHC), ventricular myosin light chain (MLC2v), Troponin and 
Connexin40 for electrical coupling       

http://dx.doi.org/10.1007/978-94-007-5690-8_7
http://dx.doi.org/10.1007/978-94-007-5690-8_8
http://dx.doi.org/10.1007/978-94-007-5690-8_9
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  Fig. 11.1    Cardiovascular progenitors: Expression of marker genes during development from 
pluripotent stem cells to complete organs. ( a ) Pluripotent stem cells express the pluripotency markers 
Oct3/4, Sox, Nanog, E-Ras and FGF4 and can be derived from embryonic stem cells, induced 
pluripotent stem cells, spermatogonial stem cells or parthenogenetic stem cells. ( b ) All of the cell 
lines mentioned above are able to form a mesodermal cell lineage during stem cell differentiation. 
During this stage the pluripotency markers are downregulated and the  fi rst mesodermal transcrip-
tion factor Brachyury ( Bra ) is expressed and again downregulated during further speci fi cation into 
the cardiovascular lineage. ( c ) The earliest marker of cardiovascular progenitor cells is the basic 
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for reprogramming or puri fi cation assays next to the markers described in the 
following sentences. MesP1 expressing cells therefore represent the  fi rst largely 
speci fi c population of multipotent cardiovascular progenitor cells during embryo-
genesis that is able to form all components required to build up the heart. After 
creation of the cardiac crescent the cardiovascular stem cells get further specialized. 
Heart progenitors get committed irreversibly to a cardiac fate expressing the 
homeodomain transcription factors Islet1    (Isl1) and Nkx2.5    whereas the vascular 
progenitor cells are marked mainly by the expression of the homeobox transcription 
factor HOXB5    and the VEGF-receptor 2 (Flk1)    (see Fig.  11.1 ) (Srivastava and Ivey 
 2006  ) . Flk1 as well as the cell surface markers CD31 and VE-Cadherin expressed 
by fully differentiated endothelial cells can easily be used for antibody-based 
puri fi cation of vascular cells for further use in the means of therapeutical utilization 
by the methods described below. Moreover, an ES-cell derived cell population 
expressing Flk1 in a second wave and Brachyury was shown to have the ability 
not only to form endothelial cells but to work also as multipotent cardiovascular 
progenitors comparable to the MesP1 expressing cell line described above. This cell 
population showed cardiomyocytic, endothelial and vascular smooth muscular 
potential under cardiac cytokine stimulation (Kattman et al.  2006  )  and therefore 
could also be a suitable cell-source for transplantation. 

 Further cardiac development    is based on two myocardial cell lineages that 
form the various regions of the heart. In particular, the cell lines can be roughly 
distinguished by their contribution to the formation of the left ventricle  ( fi rst heart 
 fi eld)  and the out fl ow tract  (second heart  fi eld) , respectively (Kelly et al.  2001 ; 
Zaffran et al.  2004  ) . The progenitor cells of the  fi rst heart  fi eld are mainly characterized 
by the expression of Nkx2.5, Tbx5 and Hand1 whereas this list seems not to be 
exhaustive at present. First heart  fi eld progenitors form both ventricles, atria and 
the atrioventricular canal. Cells expressing Isl1, FGF8, FGF10, Tbx1 and Mef2c 
originate from the mesodermal core of the pharyngeal arches and are attributed to 
the second heart  fi eld. They colonize the out fl ow tract and all other heart regions 
except of the left ventricle (see Fig.  11.1 ) (Buckingham et al.  2005 ; Kelly et al. 
 2001  ) . The markers of the second heart  fi eld are explored quite well in contrast to 
those speci fi c for the  fi rst heart  fi eld, but further investigation is required. For 
instance, Isl1 expressing cells can be used to generate smooth muscle, endothelial 
cells and cardiomyocytes but its knockout leads to a de fi cient development which is 
restricted to the out fl ow tract and right ventricle (Meilhac et al.  2004  ) . In contrast, 
Nkx2.5    is expressed in both the  fi rst and second heart  fi eld but the Nkx2.5 knockout 
model lacks only the formation of Hand1 expressing cells which corresponds merely 
to the  fi rst heart  fi eld structures (Lyons et al.  1995  ) . The Tbx5-knockout mouse 
shows quite similar defects even though not as pronounced. 

 It becomes clear that many overlapping expression patterns exist in parallel to 
each other and depending on the stage of development. And, without a doubt, not 
all (especially transient) expressions of certain cardiovascular markers have been 
detected, yet. Furthermore, till today it was not possible to isolate a speci fi c progenitor 
cell for neither the  fi rst nor the second heart  fi eld as the markers mentioned above 
are preferably but not exclusively expressed in the respective precursor  fi eld 
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(Lam et al.  2009  ) . The knowledge about the presently known speci fi c markers 
expressed by the respective multipotent cardiovascular progenitor cells during the 
distinctive differentiation stages (in particular the Flk1 + Bra +  (Kattman et al.  2006  ) , 
the MesP1 +  (David    et al.  2008a  )  and the Isl1 +  (Laugwitz et al.  2008  )  cell population) 
and the information about their developmental relevance is far from being complete 
today but nevertheless can already be used to identify, amplify and isolate the 
desired cell types in vitro from a pluripotent stem cell culture for generation of new 
cardiac tissue (David et al.  2009 ; Kattman et al.  2006 ; Müller et al.  2000 ; Wobus 
et al.  1997  ) . To support this challenge various techniques have been introduced in 
recent years. These will be described in the following passages.  

    11.3   Derivation 

 The isolation of multipotent cardiovascular progenitor cells    from a pluripotent stem 
cell culture has to face several obstacles. As described above, all conceivable types 
of precursor cells develop during the differentiation in vitro and can be identi fi ed 
by their speci fi c gene expression program. Before being able to use these cells, e.g. 
for tissue engineering, they have to be cultured in a suf fi cient quantity and puri fi ed 
to avoid adverse reactions like teratoma formation (see Chap.   7    ) or malicious cardiac 
arrhythmias (Lee and Makkar  2004  )  after transplantation. 

 The differentiating ES cell culture only contains a few percent of beating cardio-
myocytes (Xu et al.  2008  )  and therefore various attempts for increasing this number 
have been performed. The  fi rst approaches succeeded in stimulating the cardiogenesis    
by using exogenous stimulation methods (see Fig.  11.2  and Table  11.1 ). The addition 
of retinoic acid to the murine embryonic stem cell culture enhances the development 
of ventricular cardiomyocytes shown by increased expression of the  a MHC and 
MLC2v genes (Wobus et al.  1997  ) . A comparable effect can be reached by stimulation 
with ascorbic acid (Takahashi et al.  2003  )  or cultivation of ES cells under in fl uence 
of a low frequency magnetic  fi eld (Ventura et al.  2005  ) . A guided differentiation 
via pacemaker-like cardiomyocytes with expression of Cx40, Cx45 and typical 
transmembranous action potential can be attained by exposure of murine ES cells 
to endothelin-1. Regarding the human embryonic stem cell culture the increase 
of beating cardiomyocytes can be facilitated by coculturing of ES cells with endo-
dermal END2 cells (Mummery et al.  2007  )  via yet unde fi ned excreted serum factors 
or the addition of SB203580, a speci fi c p38 MAP kinase inhibitor (Graichen et al. 
 2008  ) . A complete review over the latest approaches for stimulating cardiogenesis 
with the help of external factors can be found in Table  11.1 . These attempts all 
provided promising results but lacked the detailed analysis of an underlying signaling 
pathway and therefore await further investigation (see Fig.  11.2 ).   

 A more elegant way for generating increased numbers of cardiovascular progenitors 
in the pluripotent stem cell culture is  genetic forward programming     (see Fig.  11.2 ). 
Recently, David et al. have shown proof of principle for cardiovascular subtype speci fi c 
programming of pluripotent stem cells. Via overexpression of early cardiovascular 

http://dx.doi.org/10.1007/978-94-007-5690-8_7
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transcription factors like Nkx2.5 (under control of the cytomegalovirus (CMV) 
promoter) the process of cardiogenesis could be induced in murine ES cells (David 
et al.  2009  ) . Forced expression of this cardiac key gene leads to increased numbers 
of differentiated beating ventricular cardiomyocytes without affecting vascular pro-
genitors in vitro whereas MesP1    overexpression causes an enhancement of vascular 
development shown by an increased number of electrophysiologically detectable early/
intermediate type cardiomyocytes and spontaneously sprouting endothelial struc-
tures in the culture dish (David et al.  2008a,   2009  ) . This is a strong sign for MesP1 

  Fig. 11.2    Ampli fi cation and isolation of cardiovascular progenitor cells.  Exogenous stimulation : 
The cardiovasculogenic program can be induced by addition of various agents (ascorbic and retinoic 
acid or hepatocyte growth factor) or the cultivation of the pluripotent stem cell culture in a low-
frequency magnetic  fi eld. The underlying mechanisms are largely unknown here.  Genetic forward 
programming : The differentiation process of pluripotent stem cells can be driven towards a 
cardiovascular fate via overexpression of selected cardiac (Nkx2.5) and cardiovascular (MesP1) 
transcription factors under control of the cytomegalovirus promotor.  Immunologic puri fi cation : 
Cardiovascular progenitor cells can be puri fi ed from the differentiating stem cell culture via 
antibody-based  fl uorescence-activated or magnetic cell sorting. Antibodies can either bind to 
cardiovascular-speci fi c endogenously expressed (Flk1) or transgenetically (promotor-based) expressed 
cell surface markers ( D CD4).  Promotor-based puri fi cation:  The expression of structural proteins 
under control of speci fi c cardiac and cardiovascular gene promotors facilitates the puri fi cation 
of cardiac or cardiovascular (progenitor) cells via magnetic cell sorting ( D CD4),  fl uorescence 
activated cell sorting (EGFP) or antibiotic selection (G418-resistance)       
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lying upstream of Nkx2.5 in the molecular hierarchy for cardiovascular speci fi cation 
as the  fi rst-mentioned is acting on the level of cardiovascular progenitor cells whereas 
the in fl uence of Nkx2.5 is restricted to the more speci fi ed ventricular cardiomyocyte 
progenitors (see Fig.  11.1 ). David et al. could detect a stimulation of cardiovascular 
development via MesP1-overexpression not only in early vertebrates but also in 
murine embryonic stem cells (David et al.  2008a  ) . Subsequently, this key  fi nding was 
con fi rmed by several other groups (Bondue et al.  2008 ; Lindsley et al.  2008  ) . In the 
work of David et al. the underlying signaling pathway of MesP1 has been deciphered 
in detail. MesP1-overexpression and -knockdown experiments revealed a prominent 
function of MesP1 within a gene regulatory cascade causing Dkk1 mediated block-
ade of canonical Wnt-signalling. Independent evidence from chromatin immunopre-
cipitation, in vitro DNA binding studies, expression analysis in wild-type and 
MesP1/2 double knock-out mice and reporter gene assays con fi rmed the Dkk1 pro-
moter as a direct target, activated by MesP1 protein (David et al.  2008a  ) . This mecha-
nism is supported by  fi ndings published by Lindsley et al. and Bondue et al. that 
detected a 50-fold and 1.5-fold upregulation of Dkk1-expression, respectively, caused by 
overexpression of MesP1 (Bondue et al.  2008 ; Lindsley et al.  2008  ) . 

 Thus, it is evident that MesP1 is located at the top of the transcriptional network 
that controls cardiovascular differentiation by directly regulating the spatial and 
temporal expression of key cardiac transcription factors    such as Nkx2.5, Tbx20, 
Hand2, Mef2c and indirectly by enhancing the transcription of Dkk1 (Bondue et al. 
 2008 ; David et al.  2008a ; Lindsley et al.  2008 ; Wu  2008  ) . Further attempts for 
genetic forward programming even though without a detailed related signaling 
pathway are summarized in Table  11.2 .  

 Despite the progressing decryption of the molecular development of the heart 
and vessel formation, methods are not yet re fi ned enough for scientists being able to 
direct pluripotent stem cell differentiation exclusively in the direction of cardiovascular 
development not to mention to generate pure cultures of speci fi c differentiated 
myocardial, endothelial or smooth muscle cells with the help of gene technology 
methods. Therefore, to minimize the hazard of undifferentiated stem cells or 
improper cell types within the transplantable cell mass various puri fi cation methods 
have been introduced. The best established ways of isolating speci fi c cells from a 
differentiating pluripotent stem cell culture are using the  fl uorescence activated    or 
the magnetic cell sorting    (FACS, MACS) (David et al.  2005 ; Kanno et al.  2004 ; 
Kattman et al.  2006 ; Müller et al.  2000  ) . After labeling of the desired cells by anti-
bodies binding to stage and cell type speci fi c surface antigens the antibody-coupled 
cells can be detected and isolated by their  fl uorescence and magnetic properties, 
respectively (see Fig.  11.2 ). A suitable cell population for this approach are the 
Flk1 + Bra +  cardiovascular progenitors described by Kattman et al. (Kattman et al. 
 2006  )  as Flk1 is endogenously expressed on the surface of these cells and therefore 
can be used for the methods described above. Merely the parallel expression of Flk1 
in speci fi ed vascular progenitor cells (see Fig.  11.1 ) makes this marker less speci fi c 
and thus can decrease the purity of the desired cardiovascular progenitor cell popu-
lation. Possibly, the co-staining with Flk1- and CXCR4-antibodies may reduce this 
contamination (see Table  11.3 ) (Nelson et al.  2008  ) . Unlike early cardiovascular or 
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especially hematopoietic stem cells speci fi ed cardiac progenitors and differentiated 
cardiomyocytes do not express any known exclusive surface proteins that are acces-
sible for antibody-based puri fi cation methods in their native state (Müller et al. 
 2000  ) . For this reason the  promotor-based labeling     of cardiomyocytes was introduced 
(David et al.  2005 ; Kolossov et al.  2005  ) . The transfection of a gene vector including 
a reporter gene (eGFP,  D CD4 or Neomycin(G418)-Resistance) expressed under 
the control of a cardiac speci fi c genetic promotor like MLC2v,  a MHC (both speci fi c 
for ventricular cardiomyocytes, (Kolossov et al.  2005 ; Müller et al.  2000 ; Zweigerdt 
et al.  2003  ) ), Cx40 (cardiovascular progenitors, (David et al.  2008b  ) ), or ANP 
(pacemaker cells, (Gassanov et al.  2004  ) ) or the targeted knock-in of a reporter gene 
into the respective gene locus thereby facilitates the stable labeling of the desired 
cell type during a speci fi c differentiation stage (see Fig.  11.2  and Table  11.4 ). The 
puri fi cation method is dependent on the used reporter gene. The intracellular expres-
sion of enhanced green  fl uorescent protein (EGFP) is only suitable for  fl uorescence 
activated cell sorting (FACS) whereas the intracellularly deleted (i.e. lacking 
any intracellular signal transduction) cluster of differentiation 4 ( D CD4) can be 

   Table 11.2    Induction of cardiovascular differentiation via genetical reprogramming   

 Authors  Genetic modi fi cation  Main affected signaling  Effect 

 Grepin et al.  (  1997  )   GATA-4 
overexpression 

 Nuclear target of 
inductive factors for 
precardiac cells 

 Accelerated cardiogenesis, 
increased number of 
terminally differentiated 
beating cardiomyocytes 

 Kanno et al.  (  2004  )   NO overexpression  Not known  Accelerated cardiomyocyte 
differentiation, 
apoptosis of cells not 
committed to 
Cardiomyocyte-
differentiation 

 Singh et al.  (  2007  )   Chibby 
overexpression 

 Wnt/ b -Catenin-
pathway 

 Increased cardiac 
differentiation 

 David et al.  (  2009  )   Nkx2.5 
overexpression 

 Not known  Increased number of 
ventricular 
cardiomyocytes 

 David et al.  (  2009  )   MesP1 
overexpression 

 Wnt/ b -Catenin-
pathway 

 Increased number of early/
intermediate type 
cardiomyocytes 

   Table 11.3    Puri fi cation of cardiovascular and cardiac progenitors by speci fi c cell surface 
markers   

 Authors 
 Endogenous surface 
marker  Method  Cell type 

 Kattman et al.  (  2006  )   Flk-1  FACS  Cardiovascular progenitor cells 
from murine ES cell culture 

 Nelson et al.  (  2008  )   Flk-1, CXCR-4  FACS  Cardiopoietic lineage from murine 
ES cell culture 
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stained by FITC- (for FACS) or magnetic beat-coupled (for MACS) antibodies (see 
Fig.  11.2 ). A contrarian and not less elegant method is the negative selection    with 
help of the neomycin-resistance gene. While the desired cells survive the treatment 
with the antibiotic G418 all needless cells are eradicated by this toxin (Zandstra 
et al.  2003 ; Zweigerdt et al.  2003  ) .   

 Yet not all of the puri fi cation methods mentioned above are potentially suitable 
for the isolation of cells destined for the use in human beings. Using the antibiotic 
selection    for example, it is not possible to gain stage-speci fi c cardiovascular 
progenitor cells from the pluripotent stem cell culture as cardiovascular develop-
ment is fast and the selection period in general takes several weeks (with the hazard 
of resistance and possible harmful effects of the antibiotic on terminally differenti-
ated cells themselves) to guarantee a reliable purity of the desired cells (Klug et al. 
 1996 ; Zandstra et al.  2003 ; Zweigerdt et al.  2003  ) . But also cytometry (FACS) 
cannot be seen as the gold standard of cell sorting as the cells get highly accelerated 
and irradiated by laser light as a side effect of the underlying method, which is likely 
to harm the puri fi ed cardiovascular cell types. Moreover, the green  fl uorescent pro-
tein EGFP used for labeling of the cells has been reported to bear pro-apoptotic 
properties (Liu et al.  1999  )  which would be a major hindrance for transplantation of 
such  fl uorescent cells into damaged myocardium. Therefore, magnetic cell sorting 
is currently regarded as the best method for a mild and time sparing cell puri fi cation. 
Using MACS up to 10 11  cells can be analysed in about 1 h making it possible 
to separate large cell numbers and to identify even rare populations of cells. 
As described above, the use of transgenic cells expressing an intracellular truncated 

   Table 11.4    Promotor-based puri fi cation methods of cardiac and cardiovascular cells from the 
embryonic stem cell culture   

 Authors 
 Promoter-based 
construct  Method  Cell type 

 Müller et al.
 (  2000  )  

 MLC2v-eGFP, 
CMV-enhancer 

 Percoll-gradient, 
FACS 

 Ventricular-like cardiomyocytes 
from murine ES cell culture 

 Zweigerdt et al. 
 (  2003  )  and 
Zandstra et al. 
 (  2003  )  

  a MHC-Neomycin-
resistance 

 Antibiotic 
selection 

 Beating cardiomyocytes 

 Gassanov et al. 
 (  2004  )  

 ANP-eGFP  Suitable 
for FACS 

 Pacemaker-like cardiomyocytes 
from murine ES cell culture 

 David et al.
 (  2005  )  

 PGK- D CD4  MACS  Suitable for all cardiac-speci fi c 
 D CD4 expression constructs 

 Kolossov et al. 
 (  2005  )  

  a MHC-eGFP  FACS  Atrial and pacemaker cardio-
myocytes from murin ES 
cell culture 

 David et al.
 (  2008b  )  

 Cx40-eGFP  FACS  Cardiovascular progenitor cells 
from murine ES cell culture 

 Potta et al.
 (  2010  )  

 Acta3-PuroIRES2-
EGFP 

 Antibiotic 
selection 

 Pacemaker-, atrial- and 
ventricular-like cardiomyo-
cytes from murine ES cell 
culture 
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human CD4 surface antigen thereby makes an immunogenic potential unlikely 
(David et al.  2005  ) . But nevertheless it still has to be discussed whether the use of 
genetically modi fi ed cells in human beings can be performed at all, as transfected 
cells can carry the risk of malignant deterioration caused by the incidental integra-
tion of the transgene into the genome. Therefore, yet more efforts have to be made 
in future for further improvement of the compatibility associated with the puri fi cation 
methods.  

    11.4   Potential Applications for Therapies 

 Various applications for cardiac repair    via pluripotent stem cell-derived cardiovascular 
progenitors have been proposed within recent years. With ischemic and dilative 
cardiomyopathy    being on the list of the top cardiovascular diseases the generation of 
contractile myocardium presently is the main goal of current tissue engineering 
approaches (Tulloch et al.  2011 ; Zimmermann and Cesnjevar  2009  ) . The trans-
plantation of genetically and physiologically compatible myocardial tissue    with an 
included and appropriate blood vessel supply will allow to compensate lost myocar-
dial tissue – largely independent from its underlying prior injuring mechanism. 

 A further important application of cardiovascular tissue engineering    is the 
generation of biological pacemaker and conducting cells (Gassanov et al.  2004 ; 
Shiba et al.  2009 ; Wiese et al.  2011  )  for patients suffering from sick-sinus-syndrome 
or disturbances of the conduction system like atrioventricular or bundle branch 
block. The implementation of those speci fi ed cells could prevent the necessity of 
electronic pacemaker implantations. 

 Minor possible employments for cardiovascular stem cells could be the generation 
of large vessels for use as vascular bypass grafts    and heart valves    as spare part for 
inoperative native cardiac valves (Srivastava and Ivey  2006  ) . Presently, acceptable 
alternatives for both applications exist with the internal mammarian or radial arteries as 
bypass grafts and porcine or bovine pericardial valves for the respective use. Thus, 
the generation of these tissues currently is only a secondary goal. 

 However, comparable to other organ systems the ultimate object while working 
with pluripotent stem cell-derived progenitor cells will be the generation of a whole 
working organ system, i.e. in this case the arti fi cial engineering of a working 
transplantable heart. But until this goal will be reached plenty of work still has 
to be done.  

    11.5   Conclusions and Future Development in Research 

 Till today a decent part of cardiovascular development has already been investigated. 
It is possible to generate, multiply, purify and maintain cardiovascular progenitors 
and their derivatives from pluripotent stem cells in vitro for further utilization, i.e. 



292 C. Brenner et al.

to generate clinically applicable cardiac and cardiovascular replacement tissue. The 
knowledge and technology available today thereby provide the prerequisites 
necessary to let the vision of cardiac tissue engineering appear feasible within the 
next decades. For the remaining obstacles still lying in the way various approaches 
are already at least being investigated at the moment. Thus, the problem of immu-
nologic rejection of graft tissue is most likely to be solved by the use of induced 
pluripotent stem cells. Furthermore, for the future development in research it can be 
expected that the ongoing decryption of the cellular signal transduction system in 
developing pluripotent stem cells will  fi nally lead to the ability to exclusively direct 
stem cell differentiation into the cardiovascular fate. Ideally, the control of the 
molecular development should then be able by exogenous stimulation without using 
transgenic cells any more. This will then facilitate the generation of highly speci fi c, 
pure and riskless transplantable cell populations.      
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  Abstract   Neural stem cells are the source of all neurons, astrocytes and oligodendrocytes 
of the central nervous system. While the vast majority of neural stem cells are con-
sumed during embryonic development, a subpopulation persists in specialized 
regions of the adult mammalian brain where addition of cells, notably neurons, 
continues throughout life. The signi fi cance and physiological role of adult neuro-
genesis are still debated but it is generally believed that neural stem cells may be 
used to establish novel therapies for certain neural pathologies. In this chapter we 
describe the main features of neural stem cells during embryonic development and 
adulthood as well as the key mechanisms known to in fl uence their proliferation 
versus differentiation. We then discuss the current views on the function of adult 
neurogenesis and the  fi rst attempts to use neural stem cells in therapy. Since the 
focus of this book is on regenerative medicine, we will mainly describe neural stem 
cells of mammalian organisms and brie fl y mention studies on other phyla only if 
particularly relevant.  
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  Abbreviations  

  GABA     g -aminobutyric acid   
  AP    anterior-posterior   
  AraC    arabinosyde-C   
  bHLH    basic helix-loop-helix   
  BMP    bone morphogenic protein   
  BrdU    bromodeoxyuridine   
  CSL    CBF1/RBPJk/ Supplessor of hairless /Lag1   
  CNS    central nervous system   
  CDK    cyclin-dependent kinase   
  Dnmts    DNA methyltransferases   
  DV    dorso-ventral   
  EGF    epidermal growth factor   
  FGF2     fi broblast growth factor 2   
  HATs    histone acetylases   
  HDACs    histone deacetylases   
  HIF-Ia    hypoxia-inducible factor I a    
  INM    interkinetic nuclear migration   
  miRNAs    microRNAs   
  NSC    Neural stem cells   
  Ngn    neurogenin   
  NICD    notch receptor   
  RA    retinoic acid   
  Shh    sonic hedgehog   
  SGZ    subgranular zone   
  SVZ    sub-ventricular zone   
  VZ    ventricular zone         

    12.1   Embryonic Neural Stem Cells, Their Lineage 
and Characteristics 

 Regenerative medicine for intractable brain disease bene fi ts from the remarkable 
progress of neuroscience research. The aim and hope of regenerative medicine is the 
recovery or replacement of diseased cells and tissue in patients by application of 
 in vitro  developed cells or tissue recapitulating  in vivo  brain development (Ringe 
et al.  2002 ; Shastri  2006  ) . Advantages of therapies using neural stem cells    (NSC) 
are to regenerate organs without rejection by implanting regenerated cells into dam-
aged organs and to supply nerve nutrition factors to support unhealthy brain cells 
(Okano  2002  ) . These therapies are actively progressing together with the accumula-
tion of results on the properties of NSC obtained by more fundamental neuroscience 
research (Okano and Sawamoto  2008  ) . Therefore, it is important to understand the 
basic process of brain development. In this chapter, as a foundation for regenerative 
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therapy, the development of the mammalian central nervous system (CNS) is 
described, particularly how multipotency of NSC is maintained and speci fi cation of 
differentiated cells is acquired. From a developmental point of view, embryonic 
NSC will form all neural cell types of the adult brain including the adult NSC. 

    12.1.1   Stem Cell Niche 

 NSC, collectively, can be regarded as multipotent progenitor cells and have (1) self-
renewal capacity and (2) the potential to give rise to all neural cell types: neurons, 
astrocytes and oligodendrocytes. NSC are highly polarized epithelial cells, that is, 
the neuroepithelial cells that form the neural tube upon invagination of the neural 
plate during the process of neurulation (Fig.  12.1a ). Neuroepithelial cells    are 
arranged in a single layer of cells that forms the ventricular zone (VZ) (BoulderComm 
 1970  ) . The VZ, whose apical side faces the ventricles and whose basal side faces the 
basal lamina, is colonized by blood vessels (Bautch and James  2009 ; Götz and 
Huttner  2005  ) . This environment provides “stem cell niche”–like features to the 
neuroepithelial cells during development. Speci fi cally, the ventricles are  fi lled with 
lipoprotein- and membrane particle-rich cerebrospinal  fl uid, and the basal lamina is 

  Fig. 12.1     Neural tube formation  ( a )  and cell division of neuroepithelial progenitors  ( radial 
glial cells ) ( b ). ( a ) At the neural plate stage, ectoderm overlying the notochord at the midline 
thickens to form the neural plate. At the neural fold stage, the neural plate invaginates to form the 
neural tube. At the neural tube stage,  fl oor plate and roof plate cells become evident ( red ). ( b ) Interkinetic 
nuclear migration ( INM ) during the different phases of the cell cycle and symmetric  versus  asym-
metric division of neuroepithelial cells. During M phase, the cleavage plane ( dotted line ) of apical 
progenitors bisects the apical domain for symmetric/proliferative division, whereas it bypasses this 
domain for asymmetric/neurogenic division, which generates a neuron (not illustrated) or a neu-
ronally committed basal progenitor ( BP ).  ap  apical surface,  b  basal lamina       
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a rich source of extracellular molecules including morphogens and growth factors 
(Raballo et al.  2000 ; Vaccarino et al.  1999a  )  (for more details, see Sect.  12.3 ). NSC 
are exposed to this environment through receptor interactions and endocytosis 
(Logan and Nusse  2004  ) . In addition, the neurovascular communication    is an impor-
tant factor for the stem cell niche (Bautch and James  2009  ) . Many molecules are 
supplied to NSC  via  blood vessels. At early stages of embryogenesis, endothelial 
cells, surrounding perivascular cells and neural cells interact and form “neurovascu-
lar units”, which will be a basic unit of the future blood-brain barrier (Lok et al. 
 2007  ) . Oxygen (O 

2
 ) is one of the important chemicals in the regulation of the NSC 

fate (Panchision  2009  ) . In the mammalian CNS, the O 
2
  partial pressure (pO 

2
 ) is 

much lower than in air (20.8%) (Erecińska and Silver  2001 ; Panchision  2009  ) . At 
such low pO 

2
 , hypoxia-inducible factor I a  (HIF-Ia) facilitates signal transduction 

pathways stimulating self-renewal of NSC, whereas high pO 
2
  degrades HIF-Ia to 

promote neurogenesis (Gustafsson et al.  2005  )  and gliogenesis (Pistollato et al. 
 2007  ) . Taken together, the ventricular  fl uid–, basal lamina– and blood vessel–based 
microenvironment of NSC provides important signals for the proliferation  versus  
differentiation of these cells, and thus in the development of the CNS.   

    12.1.2   Characteristics of NSC In Vivo and In Vitro 

  In vivo , hallmarks of neuroepithelial cells in the CNS are (1) interkinetic nuclear 
migration (INM), the movement of cell nuclei from the apical luminal side (apical 
surface) to the basal side of the VZ (basal lamina) in concert with the progression of 
the cell cycle, and (2) cell polarity, with the plasma membrane of neuroepithelial 
cells being divided into two principal domains, an apical domain (apical plasma 
membrane) facing the ventricles and a basolateral domain which are separated from 
each other by junctional complexes (Fig.  12.1b ). These characteristics have been 
well studied in the developing vertebrate CNS (Farkas and Huttner  2008 ; Götz and 
Huttner  2005 ; Kriegstein and Alvarez-Buylla  2009  ) . At the beginning of brain devel-
opment   , neuroepithelial cells proliferate, generating two equivalent daughter cells in 
the VZ and increasing exponentially in number (Kageyama et al.  2008  ) . At the onset 
of neurogenesis, intrinsic and extrinsic factors acting in concert control the produc-
tion of neurons from neuroepithelial cells in a stepwise manner (Kriegstein and Götz 
 2003  ) . Neuroepithelial cells transform into radial glial cells, collectively referred to 
as apical progenitors, that will progressively engage in differentiation. Apical pro-
genitors change their division mode from a proliferative to a differentiative mode that 
leads to the production of neurons through the formation of so-called basal (or inter-
mediate) neural progenitors    (Götz and Huttner  2005 ; Haubensak et al.  2004 ; Hevner 
 2006 ; Noctor et al.  2004  ) . In the developing cerebral cortex, basal progenitors form 
a second progenitor layer located basal to the VZ, the sub-ventricular zone (SVZ). In 
rodents, basal progenitors typically undergo one cell cycle and then generate two 
post-mitotic neurons which migrate out from the SVZ to appropriate neuronal layers 
(Hevner  2006  ) . The sequential production of various types of neurons (neurogenesis) 
is then followed by gliogenesis (the birth of astrocytes and oligodendrocytes). 
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 Region–speci fi c  in vitro  NSC lines have been derived from fetal and adult CNS 
(Reynolds et al.  1992 ; Reynolds and Weiss  1992  ) . Cells isolated from adult germi-
nal regions are cultured in the presence of two growth factors, FGF2 (Fibroblast 
growth factor 2 or basic FGF) and EGF (epidermal growth factor) (see more detail 
in Sect.  12.3 ), and propagated in suspension culture as multicellular spherical aggre-
gates termed “neurospheres   ” (Pollard et al.  2008  ) . EGF, a known mitogen, and its 
receptors (EGFRs) are expressed in the CNS (Seroogy et al.  1995  ) . EGF induces the 
proliferation of stem cells, which gives rise to neurospheres of undifferentiated cells 
that can differentiate into neurons, astrocytes and oligodendrocytes (Reynolds and 
Weiss  1996  ) . Indeed, one NSC can expand more than 10 7  fold in the presence of 
EGF (Reynolds and Weiss  1996  ) , as determined from clonal population analyses of 
embryonic and adult NSC  in vitro . The simpli fi ed environment used in  in vitro  sys-
tems, though distinct from the physiological stimulation that NSC face in the niche, 
nonetheless provides an excellent tool to manipulate and dissect how cells undergo 
self-renewal and differentiation. In the following sections, mainly  in vivo  mecha-
nisms will be reviewed, as the insight gained here provides an important basis to the 
development of regenerative applications.  

    12.1.3   Cell Cycle and Division 

 Fundamental biological mechanisms such as cell cycle and division are tightly 
linked to cell fate changes of NSC. Cell cycle kinetics    of NSC are controlled by 
signaling pathways and cell-intrinsic determinants in order to obtain the appropriate 
balance between the growth of progenitors and their differentiation into neurons 
(Dehay and Kennedy  2007 ; Lukaszewicz et al.  2002 ; Ochiai et al.  2009 ; Ohnuma 
and Harris  2003 ; Ohnuma et al.  2001 ; Shimogori et al.  2004  ) . The transition from 
one cell cycle phase to the next is controlled by the activation, via phosphorylation, 
of CDKs (cyclin-dependent kinases) that ensure that all cell cycle phases are exe-
cuted in the correct order. Each CDK is dependent on a partner cyclin, which oscil-
lates during the cell cycle to control its progression. Cyclin-CDK complexes form a 
driving force for the cell cycle (Ekholm and Reed  2000  ) , which is inhibited by CKI 
(CDK inhibitor), a braking system in the cycle (Ohnuma et al.  2001  )  regulated by 
protein degradation (Nakayama and Nakayama  2006  ) . 

 During neurogenesis   , cell cycle progression of NSC is linked to INM (Fig.  12.1b ) 
(Hayes and Nowakowski  2000  ) . For M phase, the nucleus migrates to the apical 
side of the VZ where mitosis occurs, then the nucleus is translocated to the basal 
side during the G1 phase. DNA synthesis (S phase) occurs in the basal region of the 
VZ and is followed by the return of the nucleus to the apical side during the G2 
phase (Kriegstein and Alvarez-Buylla  2009  ) . Before overt neurogenesis in the cere-
bral cortex, NSC progression through the cell cycle is relatively fast, allowing self-
ampli fi cation of NSC (Takahashi et al.  1995  ) . During the progression of neurogenesis, 
the average cell cycle length increases, with lengthening notably in the G1 phase, as 
determined by cumulative BrdU labeling (Caviness et al.  1995 ; Takahashi et al.  1995  ) , 
suggesting that the control of the G1 phase is a key step for the neurogenesis. 
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Activation of cyclin D/cdk4 and cyclin E/cdk2 complexes is an important step for 
the transition from G1 to S phase (Ekholm and Reed  2000  ) , and accordingly the 
manipulation of G1/S transition by overexpression of cyclin D/cdk4 or cyclin E1 
changes the cell fate of neural progenitors by shortening the G1 phase and total cell 
cycle length (Lange et al.  2009 ; Pilaz et al.  2009  ) . 

 Before neurogenesis, NSC amplify their pool exponentially by symmetric prolif-
erative division to generate two equivalent, proliferating daughter cells. At the 
beginning of neurogenesis, neurons and basal progenitors arise from asymmetric 
division of apical progenitors (radial glial cells), which allows their self-renewal as 
the other daughter cell remains an apical progenitor (Haubensak et al.  2004 ; Miyata 
et al.  2004 ; Noctor et al.  2004,   2008  ) . Symmetric divisions of basal progenitors 
generate neurons (Götz and Huttner  2005 ; Kriegstein and Alvarez-Buylla  2009  ) . In 
the  Drosophila  CNS, asymmetric division is governed by various determinants, 
with notably the cleavage plane orientation during division being a critical fate 
determinant for the daughter cells (Doe and Skeath  1996  ) . Speci fi cally, a cleavage 
plane parallel to the apico-basal axis gives rise to symmetric division, while a cleav-
age plane perpendicular to this axis gives rise to asymmetric division (Doe and 
Skeath  1996  ) . This orientation of cleavage planes results in the equal or unequal 
distribution of polarized cell fate determinants. In the developing mammalian CNS 
(Chenn and McConnell  1995  ) , subtle variations in cleavage plane orientation are 
typically observed and the vast majority of cleavage planes are oriented parallel to 
the apico-basal axis, with an important feature being whether or not the tiny apical 
plasma membrane and the apical junctional complexes are bisected (Kosodo et al. 
 2004  ) . Symmetric proliferative divisions bisect, and asymmetric neurogenic divi-
sions bypass, this apical domain and thus have differential effects on its inheritance 
(Huttner and Brand  1997 ; Kosodo et al.  2004  )  (Fig.  12.1b ). Lack of a precise orien-
tation of the mitotic spindle perpendicular to, and of the cleavage plane parallel to, the 
apico-basal axis upon knock-down of Aspm (abnormal spindle-like microcephaly-
associated) causes precocious neurogenesis (Fish et al.  2006,   2008  ) . In contrast, 
deletion of the spindle regulator LGN results in the delamination and somal translocation 
of neural progenitors without signi fi cant consequences for neurogenesis (Konno 
et al.  2008 ; Morin et al.  2007  ) . These  fi ndings indicate that precise control of spin-
dle/cleavage orientation appears to be important for cell fate determination in a 
context-dependent manner. 

 Neuronal differentiation    involves the speci fi cation of neural progenitors and 
neurons, and hence the appropriate alterations in gene expression controlled by 
cell-intrinsic and -extrinsic cues (Kriegstein and Götz  2003  ) . After production of 
neurons, radial glial cells  fi nally differentiate into glial cells such as astrocytes and 
oligodendrocytes. Therefore, in the rodent CNS, the following three steps occur 
sequentially; (1) expansion and self-renewal: symmetric proliferative and asymmetric 
divisions, respectively, of apical progenitors, (2) neurogenesis: differentiative divisions 
of apical and basal progenitors, (3) gliogenesis: differentiative divisions of neural 
progenitors (Qian et al.  2000  ) . These aspects will be discussed in the following 
sections. First, the major intracellular players, complex intrinsic regulations involved 
in the determination of neural progenitors, will be discussed. Then, important 
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extracellular factors that in fl uence neurogenesis and their respective signaling 
pathways will be reviewed. In the adult neurogenesis section, the generic aspects of 
gliogenesis will be addressed and regenerative applications will be discussed.   

    12.2   Cell-Intrinsic Factors in Neural Stem Cell Differentiation 

 To generate the variety of brain cells, NSC collectively have to be multipotent and 
provide the proper cell type at the proper time. The processes by which NSC gener-
ate a variety of functionally integrated neural progenitors and then neurons during 
embryonic development have been intensively studied, and the variety of neural 
progenitors is established by combinations of various cell-intrinsic factors   : several 
types of transcription factors, receptors, ligands, cell cycle modulators and polarity 
proteins, etc (Kriegstein and Alvarez-Buylla  2009  ) . A platform for neurogenesis is 
established by the coordinated functions of these players through signal transduc-
tion pathways. 

    12.2.1   Transcriptional Regulators    

 The major cell-intrinsic regulators are the basic helix-loop-helix (bHLH) transcrip-
tion factors, which contribute to changing the characteristics of NSC over time dur-
ing brain development: the self-renewal capacity, neurogenesis and gliogenesis 
(Kageyama and Nakanishi  1997  ) . There are two types of bHLH genes: (1) the 
repressor-type bHLH genes,  Hes  genes, are mammalian homologues of  Drosophila 
hairy  and  Enhancer of split , and (2) the activator-type bHLH genes,  Neurogenin  
( Ngn ),  Mash1  and  Math  genes, are mammalian homologues of  Drosophila  proneu-
ral genes  achaete – scute  complex and  atonal  (Kageyama et al.  2008  ) .  Hes  genes not 
only regulate the maintenance of NSC but also promote gliogenesis in cooperation 
with Notch signaling (Lathia et al.  2008  )  (discussed below), while proneural genes 
including  Neurogenin  ( Ngn ),  Mash1  and  Math  are responsible for promoting neuro-
genesis (Ross et al.  2003  ) . 

    12.2.1.1   Regulators of Maintenance    and Proliferation    

 There are seven members in the  Hes  family (Kageyama et al.  2008  ) . Among them, 
 Hes1 ,  Hes3  and  Hes5  genes are highly expressed in the early stage of embryonic 
brain development to maintain NSC in an undifferentiated state and to inhibit their 
differentiation. Functional studies of  Hes  genes have been done using gene knock-
out strategies. In  Hes1 : Hes3 : Hes5  triple knock-out mice, neuroepithelial cells pre-
maturely differentiate into neurons as early as embryonic day (E) 8.5 when 
neuroepithelial cells in the wild-type are extensively self-renewing (Hatakeyama 
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et al.  2004  ) . Importantly, in the triple knock-out mice, premature neurogenesis is 
already completed by E10 without generation of later-born cells, glia and ependy-
mal cells, demonstrating that  Hes1 ,  Hes3  and  Hes5  are also essential for fate deter-
mination of neural progenitors (Hatakeyama et al.  2004  ) . Furthermore,  Hes1 : Hes5  
double knock-out neurospheres do not expand properly in contrast to wild-type 
(Ohtsuka et al.  1999  ) . Hes genes are therefore important to regulate not only self-
renewal and differentiation but also the multipotency of NSC for formation of neu-
ral tissue. 

 Interestingly,  Hes  genes    also seem to have a role in tissue architecture, an impor-
tant aspect with regard to tissue engineering. In  Hes1 : Hes3 : Hes5  triple knock-out 
embryos at E8.5, intracellular apical junctional complexes (adherens and tight junc-
tions) and the basal lamina are disrupted and premature neurons scattered into the 
lumen and surrounding tissues (Hatakeyama et al.  2004  ) . Therefore,  Hes  genes are 
essential for the structural integrity of the CNS.  

    12.2.1.2   Regulators of Differentiation    

 The activator-type bHLH genes,  Neurogenin 2  ( Ngn2 ),  Mash1  and  Math  are 
expressed in neural progenitors that have a limited potential for proliferation (Fode 
et al.  2000  ) . Upon expression of these bHLH genes, differentiation into neurons 
after repeated asymmetric cell division occurs as represented in Fig.  12.1b . 
Overexpression of the activator-type bHLH genes in NSC induces neuron-speci fi c 
genes, and therefore these genes are known as proneural genes (Parras et al.  2002  ) . 
Proneural genes also specify the neuronal subtypes. For example, in the dorsal part 
of cerebral cortex,  Ngn2  promotes generation of neurons and speci fi es glutamater-
gic pyramidal identity. In the ventral telencephalon,  Mash1  speci fi es  g -aminobutyric 
acid (GABA) –ergic inhibitory interneurons. Upon a change in progenitor identity 
as observed in  Ngn2  knock-out embryos, dorsal progenitors generate GABAergic 
instead of glutamatergic neurons, demonstrating the role of  Ngn2  in neuronal sub-
type speci fi cation (Parras et al.  2002 ; Perez et al.  1999  ) . Thus, proneural genes are 
not only crucial for the generation of neurons but also for the acquisition of their 
proper identity.  

    12.2.1.3   Notch Signaling: Control Between Proliferation and Differentiation 

 Notch    is a transmembrane receptor expressed by neural progenitors. Notch binds to 
its ligands Delta and Jagged, which are also transmembrane proteins and are also 
expressed by neural progenitors (Lathia et al.  2008  ) . Once the Notch signaling path-
way is activated, NSC maintain the proliferative and undifferentiated properties by 
induction of  Hes1  and  Hes5  genes which inhibit proneural gene expression. After 
receptor-ligand binding, the intracellular domain of the Notch receptor (NICD) is 
enzymatically cleaved by presenilin-1/ g -secretase and translocates to the nucleus 
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where the transcriptional repressor complex CSL (CBF1/RBPJk/ Suppressor of 
hairless /Lag1) downregulates the transcription of  Hes  genes (Lathia et al.  2008  ) . 
Nuclear NICD binds to CSL, which turns it into a transcription activator complex 
acting on chromatin remodeling factors to transcribe  Hes1  and  Hes5  genes 
(Artavanis-Tsakonas et al.  1999 ; Honjo  1996  ) . Hes proteins in turn repress the tran-
scription of proneural genes ( Ngn2 ,  Mash1  and  Math3 ), and their targets Delta and 
neuron-speci fi c genes are not transcribed (Artavanis-Tsakonas et al.  1999  ) . 
Conversely, in neuronally committed progenitors, expression of bHLH proneural 
genes promotes the transcription of neuron-speci fi c genes and of  Delta  (Castro et al. 
 2006  ) . Delta expressed from the committed progenitor activates Notch in the neigh-
bouring cells to keep them in the undifferentiated state (Castro et al.  2006  ) . This 
process is called “lateral inhibition   ” (Artavanis-Tsakonas et al.  1999  ) . Therefore, 
Notch-Delta binding is the initial event for neuronal differentiation and a paradig-
matic example of the crosstalk between neighboring cells.  

    12.2.1.4   Regulators of Regional Speci fi city 

 Higher brain functions rely on complex neuronal circuit formation between func-
tionally speci fi ed regions. The fundamental regional organization of the brain is 
speci fi ed during early embryonic development by region-speci fi c expression of 
transcription factors (Kriegstein and Götz  2003 ; Osumi et al.  2008  ) . The transcrip-
tion factor Pax6    is a key molecule to de fi ne the regional speci fi city of the CNS (Götz 
et al.  1998  ) . Pax6 is speci fi cally expressed in the dorsal telencephalon that gives rise 
to the neocortex (glutamatergic pyramidal neurons), the dorsal diencephalon that 
gives rise to the thalamus (thalamic neurons), the hindbrain which gives rise to the 
cerebellum (Purkinje neurons), and the dorsal brainstem (motor and sensory neu-
rons) and spinal cord (motor and somatic neurons) (Simpson and Price  2002  ) . In 
 Pax6  mutant animals,  Dlx1  and  Gsh2 , two genes identifying the ventral part of the 
telencephalon giving rise to basal ganglia (GABAergic neurons), are misexpressed 
in the dorsal cortex leading to a ventralization of the dorsal cortex (Stoykova et al. 
 1996 ; Toresson et al.  2000  ) . 

 Pax6 is also important to control self-renewal (Arai et al.  2005  )  and differentia-
tion (Götz et al.  1998  )  to generate neural progenitors (Estivill-Torrus et al.  2002 ; 
Warren et al.  1999  ) . In the dorsal cortex, gain- and loss-of-function studies of Pax6 
identi fi ed regulatory networks that control these processes. Pax6 acts by changing 
the combination of co-binding transcription factors in a dose-dependent manner 
(Sansom et al.  2009  ) , which allows the regulation of expression of various down-
stream genes. Examples include (Sansom et al.  2009  )  (1) neural stem and progeni-
tor maintenance of self-renewal capacity – Emx2, Sox9 and Hmga2, (2) cell cycle 
progression – G1 cyclin-dependent kinase (Cdk4) and Pten1, (3) neurogenesis – 
Ngn2 (bHLH) and Eomes/Tbr2, (4) chromatin binding –Cbx1 and Rnf2. Thus, 
Pax6 allows the integration of many biological pathways together with regional 
speci fi city cues.   



306 Y. Arai et al.

    12.2.2   Epigenetic Control in the Course of Differentiation 

 Other mechanisms that also contribute to cellular differentiation are epigenetic 
modi fi cations. While the DNA sequence itself is generally conserved in somatic 
cells throughout the life of an organism, speci fi c transcriptional regulation can be 
maintained by epigenetic mechanisms in individual progenitor cells and inherited 
by their differentiating progeny. Epigenetic modi fi cations    of cell type-speci fi c genes 
contribute to cell-autonomous changes in NSC that regulate both neurogenic and 
gliogenic differentiation processes. Neurons, astrocytes and oligodendrocytes 
differentiate sequentially from NSC, and these programs can be recapitulated 
 in vitro . NSC isolated form early embryonic stages generate, in terms of differentiated 
cells, predominantly neurons, while seemingly identical NSC isolated form later 
developmental stages generate predominantly astrocytes under the same culture 
conditions (Qian et al.  2000  ) , suggesting that epigenetic mechanisms contribute to 
this change in the potential of NSC. 

    12.2.2.1   Histone Modi fi cations and DNA Methylation 

 NSC fate is profoundly controlled by the spatiotemporal pattern of expression of 
transcription factors in concert with epigenetic modi fi cations of their genome, 
including (1) histone modi fi cations (acetylation, methylation, phosphorylation, 
ubiquitination and sumoylation) and (2) DNA methylation (Vincent and Van 
Seuningen  2009  ) . When NSC self-renew, expression of lineage-speci fi c genes is 
turned off and their chromatin is found in a “repressed” status as indicated by chem-
ical modi fi cations (deacetylation and methylation) of histones (Shi et al.  2008  ) . 
These histone modi fi cations occur most commonly on amino-terminal histone tails 
and provide a “histone code” that can be read by nuclear proteins to in fl uence a 
multitude of cellular activities (Turner  2002  ) . 

 The level of histone acetylation is regulated by the activity of histone acetylases 
(HATs) and histone deacetylases (HDACs) (Shi et al.  2008  ) . It has been reported 
that HDAC-mediated transcriptional repression is essential for the maintenance and 
self-renewal of NSC (Sun et al.  2007  ) . HDACs deacetylate lysine residues of his-
tones resulting in chromatin condensation, which was shown to block access of 
transcription factors involved in neuronal differentiation (Shi et al.  2008  ) . Tlx, a 
transcription factor essential for NSC proliferation, recruits HDACs onto  p21  
(a CDK inhibitor) and  Pten  (a phosphatase and tumor suppressor gene) promoter 
regions to repress their expression, resulting in inhibition of neuronal differentiation 
(Sun et al.  2007  ) , indicating that histone deacetylation by HDACs is a key step for 
gene silencing in NSC. 

 More recently, the potential role of histone methylation in CNS development    has 
gained attention. Methylation of lysine residues of histone H3 and histone H4 has 
been observed in neuroepithelial cells, and variations in the degree of histone meth-
ylation (mono-, di- or trimethyl histones) has been implicated in neuronal differentiation 
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(Biron et al.  2004  ) . Trimethyl histone H3 and monomethyl histone H4 have been 
found to be elevated in proliferating neural progenitors, while trimethyl histone H4 
is enriched in differentiating neurons (Biron et al.  2004  ) . Thus, an epigenetic pro-
gram based on a highly dynamic regulation of histone lysine methylation seems to 
participate in the neural differentiation process. 

 The epigenetic status is also regulated by DNA methylation. The level of DNA 
methylation    of the promoter region of a gene often re fl ects its state of repression. 
DNA methylation is a post-replicative modi fi cation of cytosine (C) that occurs pre-
dominantly within CpG dinucleotides (Rottach et al.  2009  )  and is catalyzed by DNA 
methyltransferases (Dnmts) (Robertson and Wolffe  2000  ) . Dnmt1 null embryos 
show embryonic lethality (Li et al.  1992  ) , and conditional Dnmt1 depletion in neu-
ral progenitors results in DNA hypomethylation and precocious astroglial differen-
tiation (Fan et al.  2005  ) , suggesting that the maintenance of DNA methylation is 
important for normal development and controls the timing of gliogenesis. Another 
two independently encoded DNA methyltransferase genes,  Dnmt3a  and  Dnmt3b , 
are expressed in the CNS (Okano et al.  1999 ; Watanabe et al.  2002,   2006  ) . While 
 Dnmt3b  is speci fi cally expressed in neural progenitors,  Dnmt3a  is expressed in 
postmitotic neurons (Watanabe et al.  2006  ) .  Dnmt3b  null embryos have multiple 
developmental defects, indicating an important role of DNA methylation in the ini-
tial steps of differentiation.  Dnmt3a  null embryos develop until 4 weeks after birth 
(Okano et al.  1999  ) , and it has been suggested that Dnmt3a is required for the estab-
lishment of proper tissue-speci fi c DNA methylation patterns. 

 Recently, a link between DNA methylation and cell type-speci fi c gene expression 
was reported. DNA methylation itself is involved in the repression of  GFAP , which 
is expressed in astrocytes (Takizawa et al.  2001  ) . Interestingly, DNA methylation 
coupled to chromatin remodeling also plays a crucial role in regulating neuronal 
activity-dependent genes like  BDNF  (brain derived neurotrophic factor) 
(Martinowich et al.  2003  ) . Demethylation of the  BDNF  promoter region was 
observed upon depolarization, releasing its repression and therefore allowing its 
expression in active neuronal networks. This again puts emphasis on the crucial role 
of epigenetic mechanisms for the regulation of factors involved in neuronal function, 
in this case plasticity (Martinowich et al.  2003  ) .  

    12.2.2.2   Chromatin Remodeling 

 A role of chromatin-based epigenetic mechanisms in early neural development has 
been reported (Aigner et al.  2007 ; Lessard et al.  2007  ) . Chromatin remodeling    
involves the effective shifting of nucleosome cores along the length of the DNA 
molecule, a process known as “nucleosome sliding”. Chromatin remodeling is 
accomplished, at least in part, by ATPase-containing complexes, referred to as 
ATP-dependent SWI/SNF-like chromatin remodeling complexes (Cheng et al. 
 2005 ; Strahl and Allis  2000  ) . Mammalian NSC and proliferating progenitor cells 
express the complexes SWI2/SNF2-like ATPases together with BAF45a, a Krüppel/
PHD domain protein, and BAF53a (Lessard et al.  2007  ) . Conversely, when NSC 
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exit the cell cycle, the homologues BAF45b, BAF45c and BAF53b replace the 
respective subunits speci fi c of proliferating NSC (Lessard et al.  2007  ) . The combi-
nation of chromatin remodeling factors therefore seems to add another degree of 
complexity to the regulation of factors involved in the proliferation/differentiation 
fate choice of NSC.   

    12.2.3   MicroRNAs 

 MicroRNAs    (miRNAs) are 20–25 nucleotide-long non-coding RNAs that nega-
tively regulate the stability and translation of target mRNA (Ambros  2004 ; Bartel 
 2009  ) . Approximately 70% of the known miRNAs are found in the brain (Du and 
Zamore  2005  ) . miRNAs are expressed in a tissue-speci fi c and developmentally 
regulated manner (Ambros  2004 ; Bartel  2009  ) . A large fraction of miRNA genes 
are found within introns of transcripts generated by RNA polymerase II (Kim  2005  ) . 
These primary transcripts of miRNAs (pri-miRNA) are  fi rst processed into 60–75 
nucleotide-long hairpin-like precursors (pre-miRNAs) by the RNase III endonu-
clease. They are then exported to the cytoplasm where they are cleaved into mature 
miRNAs by Dicer, a cytoplasmic RNase III -type endonuclease. miRNA recogni-
tion of a target mRNA results in its decreased stability and translation and hence in 
reduced expression of the respective gene (Klein et al.  2005  ) . 

 The deletion of Dicer1 causes embryonic lethality and loss of stem cell pools 
(Bernstein et al.  2003  ) . However, conditional Dicer knock-out in the developing 
cerebral cortex does not impair the early expansion of NSC and the generation of 
basal progenitors but does result in a dramatic size reduction of the cerebral cortex 
and in a disruption of its neuronal layering (De Pietri Tonelli et al.  2008  ) , indicating 
that miRNAs control, in particular, neuronal differentiation. 

 miRNAs are key regulators of stem cell biology in general, and of neural devel-
opment    in particular, and have been implicated in cell fate decisions based on their 
expression patterns, computationally predicted targets and overexpression analyses 
(Cao et al.  2006 ; Houbaviy et al.  2003 ; Smirnova et al.  2005 ; Suh et al.  2004  ) . 
During neurogenesis, several neuronal miRNAs show linage-speci fi c expression 
(Smirnova et al.  2005  ) . miR9 and miR125 are expressed in the neural tube and 
found in both the germinal and the neuronal layers, whereas miR124 expression is 
predominantly observed in neurons, miR23 in astrocytes and miR26 and miR29 in 
both neurons and astrocytes (Cao et al.  2006 ; Smirnova et al.  2005  ) . Overexpression 
of miR9 and miR124 in neuronal progenitors decreases astrocyte differentiation, 
while inhibition of miR9 alone or together with miR124 reduces the number of 
neurons (Smirnova et al.  2005  ) , consistent with a role of neural miRNAs (miR9 and 
miR124) in neurogenesis (Cheng et al.  2009  ) . Recently,  laminin  g 1  and  integrin  b 1 , 
which are highly expressed in neural progenitors and repressed during neuronal 
differentiation, have been reported to be target genes of miR124 (Cao et al.  2007  ) , 
thereby providing a possible mechanism for the miR124-induced alteration in neural 
progenitor proliferation. In addition, miR124 binds to the 3’UTR of SCP1 to antagonize 
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its anti-neural function (Visvanathan et al.  2007  ) , thus acting on broader signal 
transduction pathways which may affect various cellular functions. Clearly, a com-
prehensive identi fi cation of miRNAs and their targets genes will provide important 
insight into the regulation of NSC proliferation  versus  differentiation.   

    12.3   Cell-Extrinsic Factors in Neural Stem Cell Differentiation    

 Neurogenesis is highly dependent on the proper environment, which affects cell 
behavior and identity. In other words, NSC proliferation and differentiation will be 
in fl uenced by extracellular signals that convey information about growth conditions 
as well as positional information (Cayuso and Martí  2005  ) . Extracellular signaling 
molecules, notably growth factors and morphogens, are key factors of the microen-
vironment in which NSC reside, the stem cell niche, and are crucial for coordinating 
CNS development. “Pattern formation is the mechanism by which initially equipo-
tent embryonic cells proliferate and organize into an intricate spatial arrangement of 
diverse cell types” (Wolpert  1969  ) . 

    12.3.1   Morphogens and Identity 

 In the developing brain, positional information along the anterior-posterior (AP) 
and dorso-ventral (DV) body axes is encoded by morphogens. Morphogens    are 
secreted molecules that in fl uence gene expression in a concentration-dependent 
manner. Morphogens are produced from sources called signal-organizing centers 
and diffuse to form a concentration gradient, which is then integrated by the receiv-
ing cells and will affect various cellular aspects including cell migration, organiza-
tion and identity. 

 Shh (sonic hedgehog   ), a major morphogen, is a member of the Hh (hedgehog) 
family and the best studied ligand of this signaling pathway. Shh is produced in two 
ventral midline signaling centers, the  fl oor plate of the neural tube and the underly-
ing notochord, an axial mesodermal structure (Martí et al.  1995  ) . To travel far (long-
range activity) from its source along the DV axis, Shh requires an auto-processing 
event that releases an active, cholesterol-modi fi ed, N-terminal fragment (N-Shh) 
(Ingham and McMahon  2001  ) . Graded Shh concentration along the DV axis in a 
ventral-high, dorsal-low pro fi le allows the initial patterning of the progenitor 
domains within the ventral neural tube (Briscoe et al.  2000 ; Jessell  2000 ; Pierani 
et al.  1999  ) . This gradient is converted into the intracellular expression of various 
homeodomain transcription factors that de fi ne progenitor domain identity (Briscoe 
et al.  2000  ) . In the developing ventral spinal cord,  fi ve different types of post-mitotic 
neurons (four interneurons and one motor neuron) are generated from these pro-
genitor domains (Briscoe et al.  2000 ; Pierani et al.  1999,   2001  ) . Thus, Shh controls 
the generation of distinct post-mitotic neurons along the DV axis. With regard to the 
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 fi eld of regenerative medicine, for example spinal cord injury which typically is 
localized to a speci fi c area and hence to neuronal subgroups, these  fi ndings provide 
crucial basic knowledge for designing appropriate therapeutic approaches. 

 BMPs (bone morphogenetic proteins   ), belong to the transforming growth factor 
 b  (TGF- b ) family, and multiple BMPs are secreted from the roof plate and the dor-
sal neural tube (Liem et al.  1997  ) . Several studies indicate that BMPs function in 
dorsal patterning of the spinal cord to antagonize the ventral patterning effect by 
Shh (Chesnutt et al.  2004 ; Liem et al.  1997 ; McMahon et al.  1998 ; Wine-Lee et al. 
 2004  ) . BMPs bind to two families of receptor serine/threonine kinases, type I and 
II, and propagate the signal by phosphorylation of Smad proteins (Shi and Massagué 
 2003  ) . Disrupting BMP signaling with the BMP antagonist Noggin affects particu-
larly the dorsal neuron identity in the spinal cord where BMP acts as morphogen, 
and can be rescued by BMP4 exposure (Liem et al.  1997  ) . The double knock-out of 
BMP receptors (BMPRIa and Ib) and knock-down of Smad4 by RNA interference 
result in loss of the dorsal-most phenotype (Chesnutt et al.  2004 ; Wine-Lee et al. 
 2004  ) , thus adding further evidence for the role of BMPs in the establishment of the 
dorsal progenitor domain identity in the spinal cord. 

 The proper development of the CNS requires differentiation to proceed not only 
along the DV, but also the AP, body axis. FGFs ( fi broblast growth factors), which 
have various functions in the cell biology of the NSCs (Mason  2007  ) , are also 
involved in the AP “body plan” formation process. FGFs are monomeric ligands 
and activate FGF receptor (FGFR) tyrosine kinase (Mason  2007  ) . FGF8 from the 
presomitic mesoderm is known to be important for the caudal body axis extension 
by controlling the proliferation in a “stem cell zone”, composed of self-renewing 
progenitors, in the ridge of the caudal neural tube (Diez del Corral et al.  2002  ) . 
FGF8-exposed progenitors differentiate into neurons only after neural tube closure 
and following exposure to retinoic acid (RA), produced from the somitic mesoderm 
surrounding the neural tube (Diez del Corral et al.  2003  ) . Thus, FGF signaling is 
involved the maintenance of self-renewal and an undifferentiated state of progeni-
tors, whereas RA promotes neurogenesis, with the interplay between these two fac-
tors governing the progression of neurogenesis along the AP axis.  

    12.3.2   Morphogens and Growth 

 Morphogens    such as Shh and BMPs are not only involved in patterning but also 
in fl uence the proliferation and survival of progenitors. Shh has a known mitogenic 
function (Dahmane et al.  2001 ; Ulloa and Briscoe  2007  )  as shown by gain- and loss-
of-function studies analyzing the proliferation of neural progenitors in the CNS 
(Cayuso et al.  2006 ; Chiang et al.  1996 ; Ishibashi and McMahon  2002  )  including the 
cerebral cortex (Komada et al.  2008  ) . In Shh signal-receiving cells, binding to 
Patched (Ptc) receptors (Ingham and McMahon  2001  )  releases the inhibition of the 
receptor Smoothened and activates downstream target genes involved in cell prolif-
eration like Cyclin D and N-Myc through Gli activation (Jacob and Briscoe  2003 ; 
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Kenney et al.  2003 ; Kenney and Rowitch  2000 ; Ulloa and Briscoe  2007  ) . Proliferation 
and cell cycle kinetics are affected in  Shh  conditional knock-out mice, which show 
an increase in cell cycle length (Komada et al.  2008  ) . BMPs also control proliferation 
of NSC and progenitors either through their downstream targets (cyclin D1 and cdk4) 
(Hu et al.  2001  )  or Wnt canonical signaling pathways (Nusse et al.  2008  ) . Transgenic 
embryos with a constitutively active BMPRIa (caBMPR1a) (see also Sect.  12.2.1 ) 
show a robust proliferation of neural progenitors at early stages, and the morphology 
of the neuroepithelium is severely altered, with the appearance of gyrus-like struc-
tures (Panchision et al.  2001  ) , whereas constitutively active BMPRIb (caBMPR1b) 
promotes neurogenesis (Panchision et al.  2001  ) . Furthermore, caBMPR1a induces 
expression of  Wnt1  and  Wnt3 , two mitogenic  Wnt  genes, indicating that the mito-
genic effects of BMPs may depend on the mitogenic activity of Wnt. Induction by 
the BMP pathway of  Msx1 , a known inhibitor of proneural genes (see Sect.  12.2.1.2 ), 
could also contribute to the mitogenic activity of BMPs (Liu et al.  2004  ) . 

 Wnt ligands    form a family of secreted glycoproteins related to  Drosophila  
Wingless and participate in multiple developmental events during embryogenesis 
(Logan and Nusse  2004  ) . Wnt effects are pleiotropic and include mitogenic stimula-
tion, cell fate speci fi cation and differentiation. Wnt signaling through its receptors 
(Frizzled) leads to the translocation of   b  -catenin to the nucleus to form a transcrip-
tional complex with TCFs (T-cell factor), a pathway called canonical Wnt pathway    
(Logan and Nusse  2004  ) . Evidence for the control of proliferation by the canonical 
Wnt pathway has been obtained by gain- and loss-of-function approaches for Wnts 
(Lange et al.  2006  )  and   b  -catenin (Chenn and Walsh  2003 ; Machon et al.  2003 ; 
Megason and McMahon  2002  ) . In the developing CNS, the most prominent mem-
ber of the Wnt family, Wnt1, is expressed at the dorsal midline along the entire AP 
axis (Gavin et al.  1990 ; Parr et al.  1993  ) , whereas   b  -catenin is expressed ubiqui-
tously in the VZ, with relatively strong immunoreactivity at the apical, luminal side 
of the VZ (Chenn and Walsh  2003 ; Megason and McMahon  2002  ) . Ectopic expres-
sion of Wnt1 and Wnt3a in transgenic mice causes overgrowth of the neural tube at 
the dorsal midline (Dickinson et al.  1994 ; Megason and McMahon  2002  ) . Wnt7a 
and 7b are also important for cell proliferation in the VZ and SVZ of the cerebral 
cortex (Viti et al.  2003  ) . Consistent with the role of Wnts in stimulating prolifera-
tion, expression of constitutively active   b  -catenin increases progenitor proliferation 
and decreases neurogenesis (Megason and McMahon  2002 ; Zechner et al.  2003  )  
(Chenn and Walsh  2003  ) . In contrast, ablation of   b  -catenin causes a reduction of 
tissue mass (Zechner et al.  2003  ) . These Wnt/  b  -catenin-mediated mitogenic effects 
occur through downstream target genes (cyclin D, c-Myc and connexin43) which 
regulate G1/S transition of the cell cycle (He et al.  1998 ; Lange et al.  2006 ; Logan 
and Nusse  2004 ; Shtutman et al.  1999 ; Tetsu and McCormick  1999  ) . 

 FGF2 (basic FGF) is also known to stimulate the proliferation of progenitors in 
primary cultures isolated from embryonic cerebral cortex by shortening cell cycle 
length (speci fi cally G1) (Lukaszewicz et al.  2002  ) . FGF2 is highly expressed in the 
developing VZ and SVZ, and knock-out mice show a reduction in proliferation, VZ 
volume and total cell number during development. Furthermore, in adult knock-out 
mice, the numbers of pyramidal neurons and glial cells are equally reduced (Korada 
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  Fig. 12.2     Cross - talk between cell - intrinsic and  - extrinsic factors in neural progenitors . 
Schematic representation of the various signaling pathways that affect the fate of NSC; ( a ) main-
tenance of NSC proliferation and an undifferentiated state, ( b ) differentiation of progenitors       
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et al.  2002 ; Raballo et al.  2000 ; Vaccarino et al.  1999b  ) , consistent with FGF2 being 
a potent mitogen  in vivo . Interactions between FGFs and the Notch signaling path-
way have been described (Yoon et al.  2004  ) . Progenitors isolated from the VZ in the 
presence of FGF2 increase  Notch1  and decrease  Delta1  expression (Yoon et al. 
 2004  ) , suggesting that at least part of the FGF activity is mediated through the 
Notch pathway   . 

 Some FGFs are produced locally by signal-organizing centers, in particular in 
the anterior medial part of the cerebral cortex. Conditional inactivation of FGF8 in the 
cortex results in a signi fi cant reduction of cortical size and mitotic index, and in 
robust apoptosis (Storm et al.  2006  ) . In contrast to FGF2, FGF8 promotes differen-
tiation and cell cycle exit (Borello et al.  2008  ) . The various FGFs and their receptors 
play pivotal roles in the regulation of proliferation and the genesis of cortical neu-
rons and glia. EGF, often used as a supplement in cell culture to sustain prolifera-
tion, behaves like a mitogen for late embryonic and adult NSC (Reynolds et al. 
 1992 ; Reynolds and Weiss  1992  ) . 

 To conclude, many extrinsic factors are required, in appropriate spatio-temporal 
patterns, for proper CNS development. Most of them act as either mitogens or mor-
phogens involved in proliferation control and providing positional cues to neural 
progenitors, which will affect the timing of neurogenesis and neuronal identity. 

 Many factors, some extrinsic other intrinsic, orchestrate the proliferation  versus  
differentiation fate choice of NSC (Fig.  12.2a, b ). The underlying integration of 
information is amazingly complex and occurs at various regulatory levels. 
Understanding normal development and neural stem cell biology will bring us 
closer to designing the future tools for regenerative medicine.    

    12.4   Adult Neural Stem Cells 

    12.4.1   Introduction: A Historical Perspective 

 It was 1906 when for the  fi rst time two scientists shared the Nobel award. These 
were Bartolomeo Camillo Golgi for developing the silver impregnation reaction 
( la reazione nera ) and Santiago Ramon y Cajal for the demonstration, using Golgi’s 
method, that the brain is made of contiguous, individual nerve cells ( the neuron 
theory    ) (Lopez-Munoz et al.  2006  ) . 

 The works of Golgi and Cajal represented a fundamental leap to start revealing 
the extraordinary complex cytoarchitecture of the adult brain, which, on the other 
hand, made it dif fi cult to consider that this organ may undergo remodeling during 
adult life. The vision of the adult brain as a static and unmodi fi able structure was 
also corroborated by clinical and functional observations, at least those that could 
be made with the tools available at the time. For example, it was known that patients 
with injuries to the central nervous system (CNS) or neurological pathologies had 
very little, if any, possibility of recovery and that even a minor lesion to the CNS 
may lead to major de fi cits in its function. Therefore, the scienti fi c community was 
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con fi dent that CNS plasticity must be terminated after development, as summarized 
by Cajal himself in an often-cited statement: “ Once development was ended ,  the 
fonts of growth and regeneration of the axons and dendrites dried up irrevocably .  
In adult centres ,  the nerve paths are something  fi xed and immutable :  everything 
may die ,  nothing may be regenerated .  It is for the science of the future to change ,  if 
possible ,  this harsh decree ” (Ramon y Cajal  1913  )  

 And indeed, science has changed this view. The  fi rst evidence of adult neuro-
genesis came nearly 50 years later, after the characterization of tritiated thymidine 
and autoradiography as a system to identify newly synthesized DNA and, thus, 
cells undergoing S phase in living tissues (Firket and Verly  1958  ) . To appreciate 
the impact of this revolutionary approach, it should be considered that this was the 
 fi rst time that scientists had the opportunity to retrospectively analyze the time of 
origin, lineage and migration of cells in living organisms. This was due to the fact 
that the radiolabeled compound (1) is rapidly metabolized after administration, 
which allows pulse-chase labeling of cells, and (2) is irreversibly incorporated in 
the DNA allowing the identi fi cation of daughter cells long after their mother had 
concluded S phase. 

 It was Joseph Altman to  fi rst use this approach to investigate the possibility of 
adult neurogenesis by administering the radiolabeled compound to the injured 
brain followed, 1 month later, by its detection in cells that were morphologically 
classi fi ed as neurons (Altman  1962  ) . Interestingly for stem cell biologists today, 
Altman did not interpret this  fi nding as to indicate that neurons may be activated to 
enter S phase and, eventually, divide. Rather, he correctly concluded that “… new 
neurons may arise from non differentiated precursors ,  such as ependymal cells . 
 After multiplication ,  such embryonic cells could differentiate and thus add new 
neurons to the existing population .” (Altman  1962  ) . Notably, the identity of 
ependymal cells    as true neural stem cells is still debated at the time of writing 
(Chojnacki et al.  2009  ) . 

 Altman also made similar observations in other brain regions. However, since the 
neurons observed were, admittedly, very few and no technique was yet available to 
ascertain their identity, the scienti fi c community tended to consider adult neuro-
genesis unconvincing or, in the most benevolent cases, negligible and unimportant. 
This view did not change even after the advent of electron microscopy and a more 
reliable identi fi cation of newborn adult neurons by ultrastructural analysis, as  fi rst 
established by Michael Kaplan (Kaplan and Hinds  1977  ) . 

 Only the combination of S phase radiolabeling, ultrastructural analyses and elec-
trophysiology undertaken by Fernando Nottebohm in the 1980s could  fi nally pro-
vide proof of adult neurogenesis (Nottebohm  1985  ) . This is not to say that adult 
neurogenesis was accepted as a reality for Nottebohm’s studies were limited to 
canaries, a species of songbirds known to undergo seasonal brain remodeling, which 
suggested that adult neurogenesis was, if at all, limited to few and rare species. 
Nevertheless, Nottebohm’s work acted as a catalyzer for new investigations in mam-
mals, which were gaining momentum also due to the use of the thymidine-analogue 
bromodeoxyuridine (BrdU), which, in contrast to radio-labeling, allowed immuno-
detection together with established molecular markers of neurons. 
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 This lead in the 1980s and 1990s to a series of studies that (re-) discovered adult 
neurogenesis in a variety of species including rat, mouse, rabbit, macaque and 
human and showed that newborn functional neurons can integrate into preexisting 
neuronal networks (Doetsch et al.  1997,   1999a ; Eriksson et al.  1998 ; Gould et al. 
 1999a ; Gueneau et al.  1982 ; Kempermann et al.  1997 ; Kornack and Rakic  1999 ; 
Kuhn et al.  1996 ; Stan fi eld and Trice  1988 ; van Praag et al.  2002  ) . In addition, and 
equally important, systems started to be established to obtain cells from the adult 
brain that could generate neurons and glia in vitro (Lois and Alvarez-Buylla  1993 ; 
Reynolds and Weiss  1992  ) . 

 These works, and several others,  fi nally led to the acceptance of adult mamma-
lian neurogenesis and to the following boost in neural stem cell research   . It should 
be said, however, that this period of great discoveries was, and somehow still is, a 
period of confusion too. For example, while adult neurogenesis in the hippocampus 
and subventricular zone is  fi rmly established, adult neurogenesis in the cortex has 
been  proven  (Dayer et al.  2005 ; Gould et al.  1999b,   2001  )  and  disproven  (Ackman 
et al.  2006 ; Frielingsdorf et al.  2004 ; Koketsu et al.  2003 ; Kornack and Rakic  2001  )  
various times and certain observations on adult neurogenesis in humans (Curtis 
et al.  2007  )  have been openly challenged (Sanai et al.  2007  ) . These con fl icting 
reports, in part explained by an inappropriate use of recent technologies (Breunig 
et al.  2007a  ) , re fl ect the novelty and dynamism of the  fi eld and should be kept in 
mind while studying adult neurogenesis. 

 Nevertheless, it took science nearly a century to change the “ harsh decree ” and 
view the adult brain as a dynamic and plastic organ where newborn neurons are 
integrated into existing circuits each day (Gross  2000  ) . Adapting Cajal’s statement 
one century later, we may now conclude that  it is for the science of the future to 
manipulate ,  if possible ,  brain plasticity for therapeutic intervention .  

    12.4.2   Derivation/Classi fi cation 

    12.4.2.1   Origin 

 At the end of mammalian embryonic development, radial glial cells are believed to 
undergo a series of morphological and molecular changes that progressively trans-
form them into astrocytes of the adult brain (Barry and McDermott  2005 ; Kriegstein 
and Alvarez-Buylla  2009 ; Mission et al.  1991 ; Voigt  1989  ) . In particular, bipolar 
radial glia cells were recently observed by time-lapse microscopy on embryonic 
brain cultures to lose apical contact, migrate to the cortical plate and assume a stel-
late morphology characteristic of mature astrocytes (Noctor et al.  2008  ) . This pro-
cess is accompanied at neonatal stages by a reduction in the proliferative potential 
of newborn astrocytes as they progressively slow their rate of division to become 
quiescent (Ichikawa et al.  1983  ) . Alternatively, some radial glial cells    of speci fi c 
brain regions escape this fate and, while keeping astrocytic features, become adult 
neural stem cells (Kriegstein and Alvarez-Buylla  2009  ) . 



316 Y. Arai et al.

 Unfortunately, the terminology    in the  fi eld may lead to confusion as radial glial 
cells of the developing CNS are neural stem cells but it would be inappropriate to 
call adult neural stem cells radial glia. Moreover, while adult neural stem cells have 
astrocytic features, not all astrocytes are neural stem cells. Nevertheless, the two 
regions of the adult brain in which neural stem cells have been more consistently 
reported and rigorously studied are the subgranular zone (SGZ)    of the hippocampus 
and the subventricular zone (SVZ)    of the lateral ventricle (Fig.  12.3 ) (Doetsch et al. 
 1997,   1999a ; Eriksson et al.  1998 ; Gould et al.  1999a ; Gueneau et al.  1982 ; 
Kempermann et al.  1997 ; Kornack and Rakic  1999 ; Kuhn et al.  1996 ; Stan fi eld and 
Trice  1988 ; van Praag et al.  2002  ) . In these two neurogenic niches different stem 
and progenitor cells coexist that are reminiscent of embryonic precursors, as we 
shall see later.   

    12.4.2.2   Identi fi cation and Nomenclature 

 The terminology used to identify the various precursors of the SGZ    differs from that 
of the SVZ    because the two neurogenic niches have been independently character-
ized by different groups. This may seem unfortunate because neural stem and pro-
genitor cells in these two areas are similar with regard to their origin, morphology 

  Fig. 12.3     The adult neurogenic niche . ( top ) Coronal ( left ) and sagittal ( right ) sections of the adult 
mouse brain ( center ; P-A-L-R = posterior-anterior-left-right, respectively) showing the sites of adult 
neurogeneis. ( bottom ) Cytoarchitecture of the SGZ ( left ) and SVZ ( right ). Type 1/B, 2/C, 3/A cells 
and neurons are depicted.  Arrows  indicate their lineage.  DG  dentate gyrus,  LV  lateral ventricle,  EC  
entorhinal cortex,  RMS  rostral migratory stream,  OB  olfactory bulb,  SGZ  subgranular zone       
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and function, which would call for a consistent terminology. However, important 
differences exist, in particular with regard to the expression of certain molecular 
markers and the neuronal subtypes generated, making it convenient to keep a differ-
ent nomenclature for a more rigorous classi fi cation. 

 The main approach currently used to identify precursor subtypes in vivo is by 
performing immunohistochemistry with antibodies against speci fi c molecular mark-
ers (Fig.  12.4 ). In essence, the detection of immunolabeling, or lack thereof, is taken 
as an evidence of cell identity. Though technically very practicable, the problemat-
ics inherent in such an approach are several such as that (1) no single individual 
marker has yet been described to selectively label an entire precursor subpopula-
tion, (2) certain cell types are identi fi ed based on quantitative assessment of labeling 
intensity, which is often problematic, (3) immunolabeling does not necessarily indi-
cate gene expression as synthesized proteins may be inherited from mother to 
daughter cell, and lastly, (4) cells may change expression levels of certain genes 
while progressing through the cell cycle and, thus, a different expression level of a 
marker may not necessarily indicate different cell identity. Due to these limitations, 
immunolabeling for molecular markers, or the use of transgenic reporter mouse 
lines for that particular marker, is typically combined with BrdU labeling and esti-
mation of cell cycle parameters, which provides further evidence of cell identity 
because of the different cell cycle kinetics characteristic of precursor subtypes. 

  Fig. 12.4    Molecular markers commonly used to identify neural precursors in adult neurogenesis 
(Adapted from Attardo et al.  (  2008  ) , Breunig et al.  (  2007b  )  and Zhao et al.  (  2008  ) )       
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Finally, but certainly more dif fi cult, cell identity could be ascertained by electron 
microscopy and ultrastructural analyses, which, together with advanced light 
microscopy, has been critical to 3D-reconstruct the cytoarchitecture of the neuro-
genic niches (Mirzadeh et al.  2008 ; Shen et al.  2008 ; Tavazoie et al.  2008  ) . The 
combination of these techniques has led to the identi fi cation of three main precur-
sors types in the SGZ and SVZ.  

 In the SGZ, neural precursors have been de fi ned to as type 1, 2 and 3 with an 
additional subdivision of type 2 cells in 2a and 2b (Kempermann et al.  2004  ) . 
Similarly, in the SVZ neural precursors have been de fi ned to as type B, C and A cells, 
with the subdivision of B cells in type B1 and B2 as original proposed (Doetsch 
et al.  1997  )  being later abandoned (Doetsch et al.  1999a  ) . The morphological and 
functional features of these precursor subtypes and their lineage will be more thor-
oughly described later; it suf fi ces here to say that the type 1/B cells are thought to 
generate type 2/C cells, and these then generate type 3/A cells, also referred to as 
neuroblasts of newborn neurons. 

 Finally, a fourth cell type is present speci fi cally in the periventricular area. These 
are ependymal cells    forming a single-cell layer that delimits the boundary between the 
SVZ (also called subependymal zone) and the lumen of the ventricle. Ependymal cells 
were also proposed to be neural stem cells (Johansson et al.  1999  )  but this view was 
later disputed (Capela and Temple  2002 ; Chiasson et al.  1999 ; Doetsch et al.  1999a  )  
leading to a long controversy in the  fi eld (Chojnacki et al.  2009  ) . Recently, the neuro-
genic capacity of ependymal cells was shown to occur only during certain neurologi-
cal disorders (Carlen et al.  2009  )  and, thus, the consensus at the time of writing is that 
ependymal cells are not neural stem cells under physiological conditions.   

    12.4.3   Characteristics/Properties 

    12.4.3.1   Anatomy and Cytoarchitecture of the Neurogenic Niches    

 The hippocampus    lies within the temporal lobes of the telencephalic hemispheres 
and is more generally subdivided into CA1, CA3 and dentate gyrus, which form the 
trisynaptic circuit of this brain area. A high nuclear density in the three regions 
makes the hippocampus easy to identify on cross-sections. Speci fi cally, CA1 (dor-
sally) and CA3 (ventrally) fuse to form the characteristic shape of a C (with its 
concavity oriented medially) while the dentate gyrus, resembling a V (with its con-
cavity oriented laterally), is adjacent to CA3 (Fig.  12.3 ) (see the Allan Brain Atlas 
for 3D-reconstructions of brain anatomy:   http://www.brain-map.org    ). 

 Simplifying a complex neuronal circuit, inputs to the hippocampus are transmit-
ted from the entorhinal cortex to the dentate gyrus, which is connected to CA3 
through the mossy  fi bers. Signals from pyramidal neurons in CA3 are then sent via 
the Schaffer collateral to CA1, which  fi nally project outside the hippocampus back 
to the entorhinal cortex. 

 The only region of the hippocampus where neural stem cells are known to reside 
is the SGZ of the dentate gyrus, a particularly vascularized region with a diverse 

http://www.brain-map.org
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population of highly packed cells, including type 1, 2 and 3 precursors. Advanced 
light microscopy has shown that bipolar, type 1 cells are oriented perpendicularly to 
the SGZ, have their nuclei towards the concavity of the V and span with their pro-
cess the entire thickness of the SGZ until branching into several smaller processes 
at the level of the inner molecular layer, where they contact blood vessels. In con-
trast, type 2 and 3 cells lose radial morphology and assume a more rounded shape. 
Newborn neurons remain in the SGZ and extend axon and dendrites to integrate into 
the circuitry of the hippocampus (Fig.  12.3 ) (Alvarez-Buylla and Lim  2004 ; 
Kempermann et al.  2004 ; Kriegstein and Alvarez-Buylla  2009  ) . 

 The anatomy and cytoarchitecture of the SVZ    is very different from the hip-
pocampus   . With the end of embryonic development, the cavity of the neural tube 
collapses and is reduced to minimal proportions. Delimiting and in direct contact 
with the cerebrospinal  fl uid lies a single cell layer of ciliated ependymal cells, sup-
posedly derived from radial glial cells (Kriegstein and Alvarez-Buylla  2009  ) . In 
contrast to the hippocampus, which is both a neuronal network in itself and a neu-
rogenic niche, the SVZ serves only the latter function. In fact, neurons derived 
from the SVZ migrate through the rostral migratory stream toward the rostral-most 
region of the brain, the olfactory bulbs, where they integrate into the networks 
mediating olfaction. 

 The olfactory bulbs receive information from the adjacent olfactory epithelium, 
laying the nasal cavity. In this context, it should be mentioned that the olfactory 
epithelium is yet another site of adult neurogenesis, though in this case neurons are 
part of the peripheral, rather than central, nervous system (Martinez-Marcos et al. 
 2000  ) , which makes them somehow less attractive for therapy. 

 Advanced light microscopy and 3D-reconstruction by electron microscopy 
allowed to de fi ne the cytoarchitecture of the adult SVZ (Mirzadeh et al.  2008 ; Shen 
et al.  2008 ; Tavazoie et al.  2008  ) . Relatively  fl at ependymal cells surround type B 
cells in a pin-wheel arrangement, which allows B cells to extend their primary cil-
ium into the lumenal  fl uid. Nuclei of B cells are located underneath ependymal cells 
(Mirzadeh et al.  2008  )  and extend a basal process to surround C cells, which lack 
lumenal contact and themselves surround A cells. Finally, in the center of this 
B-C-A layering, type A cells form chains of migrating neuroblasts/newborn neu-
rons forming the rostral migratory stream connecting the neurogenic niche with the 
 fi nal destination of the newborn neurons, the olfactory bulb.  

    12.4.3.2   Cell Biological Features of Adult Neural Stem Cells 

 It is interesting to observe that, despite many differences, adult neural stem and 
progenitor cells retain certain features of their functionally equivalent embryonic 
counterparts, i.e. radial glial cells and basal progenitors, respectively. 

 For example, adult type 1/B cells, like radial glia, are bipolar and highly elongated, 
and are characterized by the expression of astrocytic markers and the contact of their 
terminal process with blood vessels (Filippov et al.  2003 ; Fukuda et al.  2003 ; Shen 
et al.  2008 ; Tavazoie et al.  2008  ) . In addition, they retain a primary cilium, an organelle 
long neglected through which important signaling pathways act (Doetsch et al.  1999b ; 
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Mirzadeh et al.  2008  ) . In contrast to type 1/B cells, and similar to basal progenitors, 
type 2/C progenitors assume a rounded morphology and, in the SVZ, lose contact with 
the lumen of the ventricle (Doetsch et al.  1999b ; Mirzadeh et al.  2008  ) . An important 
feature distinguishing adult neural stem cells from radial glia, besides the lack of 
interkinetic nuclear migration, concerns their cell cycle kinetics. 

 As already described, the developing cortex is a highly proliferative tissue with 
a cell cycle length of 10–20 h (Calegari et al.  2005 ; Takahashi et al.  1995  ) , which is 
similar to type 2/C progenitors (Cameron and McKay  2001 ; Hayes and Nowakowski 
 2002 ; Morshead and van der Kooy  1992 ; Zhang et al.  2006  ) . In contrast, the rate of 
division of type 1/B cells is extremely slow, which has earned them the epithet of 
slowly-dividing or label-retaining cells as S-phase tracers are less frequently diluted 
by cell division and, thus, can be detected in daughter stem cells a long time after 
incorporation into their mothers. The slow division rate of type 1/B cells has been 
demonstrated after administration of cytostatic agents that kill cells undergoing 
mitosis (in particular, arabinosyde-C (AraC))(Doetsch et al.  1999b ; Morshead et al. 
 1994 ; Seri et al.  2001  ) . First, AraC treatment depletes type 2/C and 3/A cells, but 
not type 1/B cells. Second, removal of AraC allows the repopulation of all cell 
types. Thus, type 1/B cells are mostly quiescent and are true stem cells as they alone 
can regenerate the entire neurogenic niche (Doetsch et al.  1999b ; Morshead et al. 
 1994 ; Seri et al.  2001  ) . Calculation upon different times of AraC treatment allowed 
to estimate cell cycle length of adult type 1/B neural stem cells that divide, on aver-
age every 2–4 weeks (Doetsch et al.  1999b ; Morshead et al.  1994  ) . This, however, 
should not be interpreted as to indicate that the cell cycle of neural stem cells 
requires several weeks to be completed; rather it suggests quiescence for most of 
this time, with the cell cycle length proper being a small fraction of it. 

 Finally, type 3/A cells, the third precursor type with no counterpart in the devel-
oping cortex, are also considered proliferating precursors, hence their name neuro-
blasts    (Doetsch et al.  1999a  ) , which implies that they undergo cell division. In fact, 
AraC treatment also depletes type 3/A cells, and a relatively short BrdU exposure is 
suf fi cient to label a proportion of them. The view that type 3/A cells progress 
through the cell cycle is supported by the expression, in a subpopulation of them, of 
markers of proliferation (Doetsch et al.  1999a  ) . However, considering (1) the limita-
tions in assessing cell identity by immunohistochemistry, (2) that depletion of type 
2/C cells would alone be suf fi cient to deplete also their progeny, and (3) that BrdU 
is inherited from a proliferating mother to a postmitotic daughter, these experiments 
cannot exclude the possibility that a proportion of type 3/A cells are postmitotic 
neurons rather than proliferating precursors.   

    12.4.4   Differentiation Capacity and Their Precursors 

    12.4.4.1   Lineage and Mode of Division 

 As already mentioned, the exact lineage and mode of division of adult neural pre-
cursors    is much less de fi ned than those during embryonic development, which is 
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due to intrinsic dif fi culties in performing lineage tracing experiments in the adult 
brain. For example, contrary to the developing cortex, adult neural stem and pro-
genitor cells constitute a particularly small population distributed within postmi-
totic neurons and glia. In addition, no individual marker for speci fi c progenitor 
subtypes has yet been found and, thus, transgenic reporter mouse lines cannot be 
effectively used to identify the relevant cell type to image, which is very important 
for lineage tracing experiments in tissue. Finally, neural stem cells are mostly qui-
escent requiring very long culture experiments, which may be unphysiological or 
harmful to the tissue. Nevertheless, various morphological, functional and molecu-
lar studies suggest that type 1/B cells generate type 2/C cells while the latter gener-
ate type 3/A cells. No direct evidence is available to suggest that any given precursor 
undergoes symmetric or asymmetric cell division.  

    12.4.4.2   Factors In fl uencing Differentiation 

 For many decades, morphogens, transcription and trophic factors that in fl uence 
neural differentiation have been almost exclusively studied during embryonic devel-
opment. Not surprisingly, however, the same factors are now shown to have similar 
effects on adult neural stem cells   . We will here only brie fl y summarize the most 
important examples of these signaling pathways and refer the reader to comprehen-
sive reviews for more information (Ever and Gaiano  2005 ; Guillemot  2007 ; Ninkovic 
and Gotz  2007 ; Suh et al.  2009  ) . 

  The vascular niche    : Adult neurogenesis occurs is a highly vascularized environment, 
which suggests that signals may be transmitted from the blood to neural precursors in 
order to control their activity. The concept of a vascular niche (Palmer et al.  2000  )  (see 
also Chap.   5    ) was somehow present three decades ago from studies on seasonal song-
birds as, in fact, adult neurogenesis was known to be triggered by hormones released 
into the blood (Nottebohm  1985  ) . More recently, a direct link between testosterone, 
angiogenesis and adult neurogenesis has been established in birds (Louissaint et al. 
 2002  )  while neural precursors in mammals have been found to cluster around blood 
vessels (Shen et al.  2008 ; Tavazoie et al.  2008  ) . The cross-talk between angiogenesis 
and neurogenesis is attracting now more attention (Alvarez-Buylla and Lim  2004 ; Suh 
et al.  2009  ) , and it is presumably not a coincidence that factors promoting angiogen-
esis, most notably VEGF, also promote neurogenesis (Cao et al.  2004 ; Jin et al.  2002  )  
while their inhibition has the opposite effect (Cao et al.  2004 ; Fabel et al.  2003  ) . 
Finally, it is worth noting that increased angiogenesis is the primary response in many 
models of neurodegenerative disease and that treatments that improve angiogenesis 
also improve brain recovery after injury (Zhang and Chopp  2009  ) . 

  Notch : Both Notch and its ligands Jagged1 and Dll1 are expressed in the adult neuro-
genic niche (Givogri et al.  2006 ; Nyfeler et al.  2005  ) , and activation of the Notch 
pathway in adult neural stem cells    promotes their expansion and inhibits differentia-
tion (Androutsellis-Theotokis et al.  2006 ; Nyfeler et al.  2005  ) . Interestingly, Notch 
activity, and thus neural precursor self-renewal, seems to be mediated by an autoregu-
latory loop between Notch and Shh signaling (Androutsellis-Theotokis et al.  2006  ) , 

http://dx.doi.org/10.1007/978-94-007-5690-8_5
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which is also implicated in controlling quiescence of ependymal cells (Carlen et al. 
 2009  ) . In addition, certain neurodegenerative diseases, such as stroke, induce Notch 
signaling (Carlen et al.  2009  ) , and administration of Notch-ligands can be used to bet-
ter restore brain function upon stroke (Androutsellis-Theotokis et al.  2006  ) . 

  Shh : Similar to the effects observed during corticogenesis, activation of Shh signal-
ing in adult neural precursors    induces a strong, dose-dependent increase in prolif-
eration while its inhibition has the opposite effect (Breunig et al.  2008 ; Lai et al. 
 2003 ; Machold et al.  2003  ) . Interestingly, key mediators of the Shh pathway in adult 
neural stem cells are localized on the primary cilium (Breunig et al.  2008 ; Han et al. 
 2008  ) , an organelle recognized to play important functions during development 
(Gerdes et al.  2009  ) . Finally, transgenic mouse lines to genetically monitor Shh 
activity have allowed to fate-map neural precursors, providing the  fi rst evidence that 
quiescent neural stem cells can self-renew for over 1 year (Ahn and Joyner  2005  ) . 

  Wnt : Again similar to the effects during corticogenesis, increasing Wnt signaling in 
the adult hippocampus promotes cell cycle progression and increases neuronal out-
put while, conversely, inhibiting Wnt has the opposite effects (Lie et al.  2005  ) . Wnt 
function in adult neural stem cells    has recently been proposed to act through a 
sophisticated crosstalk between the transcription factor Sox2 and the proneural gene 
NeuroD1 (Kuwabara et al.  2009  ) .   

    12.4.5   Function and Potential Application for Therapies 

    12.4.5.1   Role of Adult Neurogenesis 

 One of the most challenging goals in neuroscience    is to understand the molecular and 
cellular mechanisms underlying elaborate cognitive functions. It is a fact, however, that 
this is one of the  fi elds in life science where we still know relatively little. The physio-
logical processes that allow learning, memory, feeling emotions and elaborate func-
tions that are emphasized in humans, such as self-consciousness, are even dif fi cult to 
conceptualize, but the recognition of adult neurogenesis has led scientists to investigate 
whether neural stem cells may be involved in any of these functions (Abrous et al. 
 2005 ; Imayoshi et al.  2009 ; Kempermann  2008 ; Lledo et al.  2006 ; Zhao et al.  2008  ) . 

 A striking  fi nding in this context is that external physiological stimuli have an 
effect on neurogenesis (Kempermann et al.  1997 ; Leuner et al.  2004  ) . In the SGZ, 
genetic differences in various mouse strains have been correlated to the extent of 
precursors proliferation, neurogenesis and mouse performance in learning and 
memory tasks (Kempermann and Gage  2002  ) . Moreover, voluntary exercise, such 
as allowing mice to train on a running wheel, or an enriched environment, such as 
larger housing conditions with toys and other mice for stimulating social behavior, 
increases neurogenesis and neuronal survival, respectively (Olson et al.  2006 ; Zhao 
et al.  2008  ) . Interestingly, these stimuli also increase the mouse performance in 
learning and memory tasks (Olson et al.  2006 ; Zhao et al.  2008  ) . 
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 While these experiments could show a direct correlation between adult neurogenesis 
and learning and memory, other experiments aimed to manipulate adult neurogen-
esis failed to report consistent effects. For example, inhibiting adult hippocampal 
neurogenesis by depletion of precursors by means of X-ray irradiation did not pre-
vent the bene fi cial effects on learning and memory that was induced by the subse-
quent exposure to an enriched environment. This suggests that factors other than 
neurogenesis, such as an increased angiogenesis or hormone activity, may be 
responsible for the improved behavioral response (Meshi et al.  2006  ) . 

 In addition to radiation, cytostatic drugs or genetic manipulations are also used 
to investigate the behavioral effects upon inhibition of neurogenesis. Yet, alternative 
approaches have shown opposite outcomes (Olson et al.  2006 ; Saxe et al.  2006 ; 
Zhang et al.  2008a ; Zhao et al.  2008  ) . Thus, although adult hippocampal neurogen-
esis has been suggested to play a role in learning, memory, fear conditioning, 
depression and other elaborate brain functions, none of these effects are  fi rmly 
established (Abrous et al.  2005 ; Imayoshi et al.  2009 ; Kempermann  2008 ; Lledo 
et al.  2006 ; Zhao et al.  2008  ) . 

 The role of adult neurogenesis    in olfaction is certainly less controversial. In this 
context, neurogenesis in the SVZ is essential to preserve cell homeostasis of the 
olfactory bulb as newborn neurons are needed to replace old, dying ones (Imayoshi 
et al.  2008  ) . This is in contrast to the SGZ in which addition of newborn neurons is 
cumulative, leading to an increase, though extremely modest, in neuron number 
over time (Imayoshi et al.  2008  ) . It is important to mention, however, that in both 
cases the vast majority of newborn neurons will not integrate into preexisting cir-
cuits but will undergo cell death. Nevertheless, the fact that neurogenesis is needed 
to preserve cell number in the olfactory bulb has corroborated the previous hypoth-
esis that SVZ neurogenesis is essential for acquisition and memory of olfactory 
stimuli, which in rodents is of paramount importance for interacting with the envi-
ronment and for social behavior (Alonso et al.  2006 ; Lledo et al.  2006  ) .  

    12.4.5.2   Use of Neural Stem Cells in Therapy    

 A justi fi cation for the great efforts and huge investments in neural stem cell research 
is its possible application in therapies for neurodegenerative diseases or CNS inju-
ries (Okano et al.  2007 ; Steiner et al.  2006 ; Zhang and Chopp  2009 ; Zuccato and 
Cattaneo  2009  ) . As we shall see in this book, however, cell-based treatments of 
neural pathologies are at the moment the least developed and effective when com-
pared to similar treatments in other tissues, such as in the bone marrow, skin, pan-
creas or bone (part IV of this book). 

 This gap is easily explained by the many dif fi culties inherent in the study and 
manipulation of the CNS in human patients and by the limited knowledge, relative 
to other organs, of its physiology. Moreover, adult neurogenesis in rodents, the main 
animal model for experimental research, greatly differs from neurogenesis in 
humans, and very few neural pathologies are faithfully reproduced in the laboratory, 
which makes it even harder to test novel strategies for therapy. Nevertheless, the 
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price at stake for developing effective therapies for neural disorders, a main cause 
of disease in rich countries, is great and  fi rst attempts in this direction have already 
been undertaken. In most cases, however, their ef fi cacy is dif fi cult to evaluate for it 
is unfeasible to “use” patients as negative control. 

 Admittedly, even if based on circumstantial evidence and a relatively scarce 
knowledge of human CNS physiology and pathology, the  fi rst attempts in this 
direction are promising as they, in some cases, have lead to major improvement 
of clinical conditions (see also Chaps.   29    ,   30    , and   31    ). For example, transplanta-
tion of human embryonic brain tissue into patients with Parkinson Disease 
allowed one of six patients to suspend medical treatment for more than a year 
(Wenning et al.  1997  ) . Others works, though also in principle successful, have 
instead raised more controversy. For example, neural cells have been cultured for 
several passages in vitro and then transplanted into brains of patients with stroke 
(Kondziolka et al.  2000  ) . More recently, a similar approach has been used to treat 
patients with open brain injury (Zhu et al.  2006  ) . The fact that cells passaged for 
several weeks, if not months, in culture may undergo transformation and lead to 
cancer after transplantation makes these attempts hazardous, if not ethically 
questionable. 

 Thanks to the revolutionary advent of induced pluripotency (Takahashi and 
Yamanaka  2006  )  we can now envision safer and more ef fi cient systems to generate 
 patient - customized  stem cells for therapy (see also Chap.   8    ). Clearly, more work 
needs to be done to be able to control their differentiation into the desired cell type 
and to explore their use in therapy. This is the reason why experiments on animal 
models of neural disorders, including Alzheimer (Brinton and Wang  2006  ) , 
Parkinson (Arias-Carrion and Yuan  2009  ) , stroke (Zhang et al.  2008b  )  and spinal 
cord lesions (Okano and Sawamoto  2008  )  are so important. 

 Finally, it should be mentioned that certain brain tumors have now been shown 
to originate from an altered proliferation of neural precursors (Alcantara Llaguno 
et al.  2009 ; Wang et al.  2009  )  and, thus, studying neural stem cells may open up 
possibilities for understanding cancer and, perhaps, design new therapies for it 
(Colleoni and Torrente  2008  ) .   

    12.4.6   Conclusions and Future Development in Research 

 It should be evident from this chapter that understanding the mechanisms underly-
ing adult neurogenesis and its physiological function and manipulating this process 
for therapeutic purposes are all in a very preliminary phase. However, the momen-
tum created by recent breakthroughs in the  fi eld and the great hopes that somatic 
stem cells carry for future therapies largely justify the huge investments devoted to 
it. While it is too early to predict the real usefulness of neural stem cell in therapy, 
there is little doubt that future basic research in this  fi eld will be crucial to better 
understand brain development and evolution.       
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  Abstract   The liver is an essential organ for life, serving as the center for metabolism 
and playing various critical functions in controling systemic homeostasis. Among 
multiple types of cells comprising the liver, hepatocytes and cholangiocytes are 
the two epithelial cell lineages in the organ and commonly originate from hepato-
blasts during organogenesis in the developing embryos. Thus, hepatoblasts possess 
bi-lineage differentiation potential into hepatocytes and cholangiocytes, a pheno-
typic feature that can best distinguish and de fi ne liver stem cells. Although the liver 
is considered not to rely on any resident stem cell population for their homeostatic 
maintenance, facultative stem/progenitor cells with the bi-lineage differentiation 
potential, referred to as oval cells in rodents, do emerge under severe damage condi-
tions and contribute to the regenerative processes. Identi fi cation of speci fi c markers 
has enabled researchers to isolate and characterize these fetal and adult stem/
progenitor cell populations.  In vitro  culture systems as well as  in vivo  studies using 
animal models have been elucidating detailed molecular mechanisms, including 
intercellular signaling webs and intracellular transcriptional regulatory networks, 
that coordinately regulate development, differentiation and behavior of these cells. 
Understanding the cellular and molecular basis of liver development and regenera-
tion from the perspective of the embryonic and adult stem/progenitor cells should 
make invaluable contributions to future development of technologies to produce 
fully functional hepatocytes  in vitro  that are applicable for cell therapy and pharma-
ceutical screening.      
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    13.1   Introduction 

 In the adult human, the liver is the largest organ in the body, accounting for around 
one  fi ftieth of the body weight. The mammalian liver plays multiple critical roles 
in maintaining vital activity of the organisms, including metabolism of amino 
acids, lipids, and carbohydrates, serum protein synthesis, detoxi fi cation of xeno-
biotic compounds, production and secretion of bile, immune regulation, and so 
forth. To achieve these complex biological functions, the liver possesses a charac-
teristic and sophisticated structure composed of several different types of cells 
(Fig.  13.1 ). Hepatocytes, also known as the liver parenchymal cells, account for 
80% of the total volume of the organ and serve as the principal cell type to execute 
the majority of the organ’s functions. The other cell types, collectively termed as 
non-parenchymal cells (NPCs), include cholangiocytes (bile duct epithelial cells), 
Kupffer cells, hepatic stellate cells, endothelial cells, coelomic epithelial cells 
(mesothelial cells), and several kinds of immune cells. While each of these cell 
types has its own embryonic origin (Asahina et al.  2011  ) , hepatocytes and cholan-
giocytes, the two epithelial lineages in the organ, derive from a common precursor 
cell population, so-called hepatoblasts, in the developing liver (Lemaigre  2009 ; 
Tanaka et al.  2011 ; Tanimizu and Miyajima  2007 ; Zhao and Duncan  2005  )  
(Fig.  13.2a ). Thus, the term “liver stem cell” (or “hepatic stem cell”) is most gen-
erally applied to represent this type of bi-potential progenitor cells that can dif-
ferentiate to both hepatocytes and cholangiocytes. Hepatoblasts, however, are 
usually considered a cell population found only during the fetal period, and it is 
not clear whether and how these cells are related to the putative stem/progenitor 
cell populations in the adult liver. In other words, the self-renewal capacity of 
hepatoblasts  in vivo  remains undetermined. Thus, it would be safer to denote these 
cells as the fetal liver “stem/progenitor” cells, and we would like to adopt this 
description in this chapter.   

 In contrast to the situation in the developing liver, where hepatoblasts are 
fairly well established as the bipotential liver stem/progenitor cell, the one 
regarding the adult liver still has considerable controversy. In many other organs, 
such as the hematopoietic and epidermal systems and the small intestine, the tis-
sue stem cells can be de fi ned, and have indeed been isolated and/or anatomically 
located, as the cells that are responsible for normal tissue turnover. Thus, those 
stem cells, under the physiological condition, continue self-renewal while pro-
ducing the progenies that give rise to the mature cell types and eventually replace 
the expired cells in the organ to maintain homeostasis. In the liver, hepatocyte 
turnover occurs very slowly, and it is still unclear and under debate whether such 
a kind of “stem cell” also exists and is actively involved in homeostatic mainte-
nance of the organ. 

 Nevertheless, apart from this relatively complicated situation regarding the  bona 
 fi de  stem cell in the adult liver, researchers in this  fi eld have been quite successful in 
identifying and characterizing several different classes of putative adult liver stem 
cells, which should be of signi fi cant importance particularly in view of therapeutic 
applications. Classi fi cation of these different adult liver stem cells will be brie fl y 
described in Sect.  13.2.2 .  
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     Fig. 13.1    Architecture of the liver. The liver has a dual blood supply via the portal vein and the 
hepatic artery. The portal vein delivers the venous blood  fl owing from the intestines, pancreas and 
spleen, while the hepatic artery supplies oxygen to the liver ( a ). The liver is composed of multiple 
functional units, called liver lobules, and at each of their corners there is a portal triad of vessels 
consisting or the portal vein, the hepatic artery, and the bile duct ( b ). The liver lobule consists of 
plates of hepatocytes lined by sinusoidal capillaries that radiate towards the central vein ( c ). The 
bile produced in hepatocytes is collected in bile canaliculi, which connect to bile ducts. Bile ducts 
leads to the gallbladder and eventually to the duodenum, where the bile is excreted. The liver is 
composed of several different types of cells, among which hepatocytes and cholangiocytes are the 
epithelial lineages       
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    13.2   Derivation/Classi fi cation 

    13.2.1   Hepatoblasts 

 Among the three germ layers generated during gastrulation (i.e., ectoderm,  mesoderm, 
and endoderm), the liver derives principally from the endoderm. The endoderm 
 differentiates into the primitive gut, which in turn gives rise to the gastrointestinal tract 
as well as various associated organs, including the thyroid, lung, pancreas, as well as 
liver. During the early stage of the liver development, interaction between the endoderm 
and the adjacent mesoderm plays a key role in induction of the organ (Fig.  13.3 ).  

 The processes and mechanisms of mammalian liver development have been most 
extensively studied in the mouse embryos. Liver organogenesis starts at embryonic day 

  Fig. 13.2    Stem/progenitor cell populations in the fetal and adult livers. In the course of fetal 
liver development ( a ), hepatoblasts are derived from foregut endodermal cells, proliferate, and 
then undergo differentiation into two epithelial cell lineages, hepatocytes and cholangiocytes (bile 
duct epithelial cells). This bi-lineage differentiation potential is regarded as the hallmark of liver 
stem/progenitor cells. In the adult liver, regeneration can usually be achieved by replication of dif-
ferentiated, mature cell populations (not shown here). Under severe/chronic liver damage condi-
tions ( b ), however, facultative stem/progenitor cells, called oval cells in rodents, emerge from 
hitherto unidenti fi ed precursor cells and expand. These cells also possess bi-lineage differentiation 
potential and are considered to contribute to the regeneration process       
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(E) 8.0–8.5 in mice, which corresponds to about 3 weeks of gestation in humans. At this 
stage, the ventral foregut endoderm, a part of the endoderm from which the liver forms, 
faces the developing heart and receives inductive signals for the hepatic fate from the 
cardiac mesoderm. The  fi broblast growth factor (FGF) family of secreted proteins has 
been shown to mediate the inductive signals (Jung et al.  1999  ) . In addition, septum 
transversum mesenchyme (STM), a mesodermal tissue locating adjacently to both of 
these organ primordia, also contributes to hepatic fate induction by providing another 
soluble factor, bone morphogenetic protein (BMP) (Rossi et al.  2001  ) . Coordinated 
action of both FGF and BMP drives the liver developmental program with concomitant 
induction of several hepatic lineage-speci fi c genes, such as  Albumin  and  Transthyretin . 
This process is called “hepatic speci fi cation” and leads to generation of hepato-
blasts, the fetal liver stem cells, initially lining up to form the hepatic endoderm. 

 Soon after the hepatic endoderm formation, hepatoblasts undergo dynamic 
changes in their morphology and localization, the process that can be divided into 
three stages (Bort et al.  2006  ) . In stage I (E8.5), along with the expression of 
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  Fig. 13.3    Origin and early development of the liver. In the developing mouse embryo, the liver 
starts to form from the ventral foregut endoderm ( a ). Inductive paracrine signals from the adjacent 
cardiac mesoderm and the septum transversum mesenchyme (STM) together drive hepatic fate 
speci fi cation in a part of the ventral foregut endoderm ( b ), leading to generation of hepatoblasts, 
the fetal liver stem/progenitor cells. Hepatoblasts undergo dynamic morphological changes, and 
then delaminate and migrate into the STM to form the liver bud ( c )       

 



342 T. Itoh et al.

 liver-speci fi c genes, the initially cuboidal hepatoblasts become columnar in shape, 
leading to the formation of a thickened epithelium. In stage II (E9.0–E9.5), the 
hepatoblasts further change their morphology to become a pseudo-strati fi ed epithe-
lium. A study using mice de fi cient of the hematopoietically expressed homeobox 
(Hhex, or Hex) gene has shown that this transcription factor is critical for this stage 
(Bort et al.  2006  ) . In stage III (E9.5+), the basal lamina that has covered the epithe-
lium breaks down and the hepatoblasts start to delaminate and then migrate into the 
surrounding stroma, the STM, to form the liver bud. This step is also controlled by 
the functions of homeobox transcription factors, prospero-related homeobox 1 
(Prox1), hepatocyte nuclear factor (HNF) 6 (HNF6; also known as Onecut-1 or 
Oc1) and Onecut2 (Oc2) (Margagliotti et al.  2007 ; Sosa-Pineda et al.  2000  ) . 

 After the liver bud formation, hepatoblasts continuously proliferate throughout 
the embryonic days. Proliferation and survival of hepatoblasts is known to be regu-
lated by various extracellular signals, such as hepatocyte growth factor (HGF), trans-
forming growth factor beta (TGFbeta), Wnt/beta-catenin, and Sonic hedgehog 
(Hirose et al.  2009 ; Micsenyi et al.  2004 ; Schmidt et al.  1995 ; Tanimizu and Miyajima 
 2007 ; Weinstein et al.  2001  ) . These signals may act on hepatoblasts either in an auto-
crine fashion, or by being supplied from the surrounding mesenchymal cells. 
Endothelial cells also play a critical role in hepatoblast regulation, as mice lacking 
endothelial cells show a defect in liver bud outgrowth (Matsumoto et al.  2001  ) . The 
molecular nature of the signal provided by endothelial cells still remains elusive.  

    13.2.2   Adult Liver Stem/Progenitor Cells 

 In the  fi eld of liver biology, the term “liver stem cells” (or “hepatic stem cells”) have 
been de fi ned and used by researchers in several different ways. As exempli fi ed by 
Grompe  (  2003  ) , the de fi nitions can include, but may not be limited to, the 
following:

    (a)    Cells responsible for normal tissue turnover  
    (b)    Cells which give rise to regeneration after partial hepatectomy (PH)  
    (c)    Cells responsible for progenitor-dependent regeneration  
    (d)    Transplantable liver repopulating cells  
    (e)    Cells which result in hepatocyte and bile duct phenotype  in vitro      

 As is the case with stem cells in several other tissues/organs, clonogenic poten-
tial (colony forming activity)  in vitro  and long-term label-retaining activity  in vivo  
have also been utilized as hallmarks to identify putative liver stem cells. Notably, 
these de fi nitions are not mutually exclusive, and a given “liver stem cell” population 
may ful fi ll some of them simultaneously. For each de fi nition, stem cells are accred-
ited according to different and speci fi c types of assays, either  in vitro  or  in vivo . 

 Hepatocyte turnover under the physiological condition is relatively slow, which 
makes it quite dif fi cult to investigate the cellular behavior in the course of homeo-
static maintenance of the liver. Nevertheless, hepatocyte replacement does occur, 
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and there must be some mechanism that ensures this tissue turnover. One of the 
long-standing model is the so-called “streaming liver hypothesis”, where a “ fl ow” 
of hepatocytes is assumed, just analogous to the well-appreciated crypt-to-villi 
movement of the intestinal epithelial cells. In this model, hepatocytes are newly 
formed in the periportal region and then gradually move, while undergoing lineage 
maturation, toward the central vein (Zajicek et al.  1985  ) . Although appealing, much 
of the evidence accumulated so far argues against this hypothesis, and it is more 
favorably considered that the liver maintenance is rather achieved by simple divi-
sion of the preexisting hepatocytes. Interestingly, a study in the human liver using 
mitochondrial mutations as a genetic marker identi fi ed that clonal patches of hepa-
tocytes did emerge from the periportal regions and extended toward the central 
veins, supporting the presence of the hepatocyte  fl ow as assumed by the streaming 
liver hypothesis (Fellous et al.  2009  ) . Moreover, a recent genetic lineage-tracing 
study in mice has provided striking evidence supporting the hypothesis. In those 
experiments, SRY-box containing gene 9 (Sox9)-CreERT2 knock-in mice was 
crossed with a reporter strain where Cre-mediated recombination enables perma-
nent cell labeling and subsequent fate tracking, and cholangiocytes were speci fi cally 
pulse-labeled in adulthood by tamoxifen-dependent transient Cre activation. While 
lineage-labeled cells were initially con fi ned to bile ducts, they gradually spread out 
to hepatocytes from the periportal toward pericentral regions as time proceeded and, 
after around 1 year, occupied the whole parenchyma nearly completely. The labeled 
cells also remained present in bile ducts, thereby indicating that the Sox9-expressing 
biliary cells can continuously supply mature hepatocytes for normal tissue turnover 
while  possessing self-renewing activity as well (Furuyama et al.  2011  ) . However, 
genetic  lineage-tracing studies in mice by other groups, using a different Sox9-
CreERT2 strain to label biliary cells or a Cre-expressing adeno-associated viral vec-
tor to speci fi cally label hepatocytes, have both provided rather con fl icting results 
with the above study and thus strongly argue against the streaming liver hypothesis 
(Carpentier et al.  2011 ; Malato et al.  2011  ) . Further studies are needed to solve this 
seeming discrepancy and elucidate the exact nature and the underlying mechanisms 
for physiological maintenance of the liver. 

 The characteristic feature of the liver is its unique and remarkably high capacity 
to regenerate upon various injuries, such as those caused by partial hepatectomy 
or toxic insults. In rodent models, for example, after 70% partial hepatectomy, the 
liver can completely recover its initial volume and function within a week or so. 
During this recovery process, hepatocytes, as well as cholangiocytes, in the remain-
ing liver undergo a few cycles of cell division to suf fi ciently restore the lost tissue 
(Michalopoulos and DeFrances  1997  ) . Thus, the liver regeneration can usually be 
achieved by proliferation of the differentiated, postmitotic hepatocytes that remain 
intact, without necessitating an involvement of stem/progenitor cell populations. 
When the liver suffers from severe and/or chronic damages, however, hepatocyte 
proliferation is suppressed. It is under this condition when the facultative stem/
progenitor cells are known to emerge and contribute to the liver regeneration pro-
cess. Those stem/progenitor cells, referred to as oval cells in rodent models, are 
characterized by their potentials to proliferate as well as to differentiate into both 
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hepatocytes and cholangiocytes, the two epithelial lineages in the liver (Duncan 
et al.  2009 ; Grompe  2003 ; Matthews and Yeoh  2005 ; Newsome et al.  2004 ; Tanaka 
et al.  2011 ; Tanimizu and Miyajima  2007  )  (Fig.  13.2b ). The most popular model to 
induce oval cells is the 2-acetylamino fl uorene (2-AAF)/PH system in rats, where 
hepatocyte proliferation is blocked by 2-AAF prior to PH. This model, however, is 
not applicable to induce oval cells in mice. Other procedures, such as the adminis-
tration of a 3,5-diethoxycarbonyl-1,4-dihidro-collidine (DDC)-containing diet 
(Preisegger et al.  1999  )  and a choline-de fi cient ethionine-supplemented diet (CDE) 
(Akhurst et al.  2001  )  have been established and used in mice, as well as in rats 
(Fig.  13.4 ). Notably, most of the experimental procedures used to induce oval cell 
emergence and proliferation in the rodent liver eventually lead to tumorigenesis.  

 Although the term “oval cells” are used speci fi cally in rodents, cells with similar 
characteristics have also been reported in various human liver diseases, such as 
chronic viral hepatitis, alcoholic liver disease (ALD), and nonalcoholic fatty liver 
disease (NAFLD), and are also implicated in tumorigenesis (Fausto  2004 ; Lee et al. 
 2006 ; Roskams et al.  2003  ) . In humans, these cells are usually referred to as “hepatic 
progenitor cells” or “intermediate hepatobiliary cells”. 

 While oval cells are well known to emerge always from the periportal area, the 
cellular origin of oval cells is still not clari fi ed (Fig.  13.5 ). Ever since their initial 
characterization, phenotypic resemblance between oval cells and bile duct epithelial 
cells has suggested that they presumably originate from the biliary tree. The fact 
that most of the molecular markers for oval cells are also expressed in cholangio-
cytes supports this notion. It is not clear, however, whether most if not all 
 cholangiocytes can equally or similarly behave as progenitors for oval cells, or there 
is a certain type of specialized “cell-of-origin for oval cells” located somewhere 
among cholangiocytes. Potentially lying on an extension of the latter possibility is 
the model that the canal of Hering, a structure where interlobular bile ducts and 

  Fig. 13.4    Emergence of oval cells in a mouse model of chronic liver injury. Sections of the 
liver prepared from a normal mouse ( a ) and a mouse fed DDC diet for 8 weeks ( b ) were immunos-
tained with anti-CK19 antibody. In the liver of the mouse fed DDC diet, CK19+ oval cells emerge 
from the periportal area, forming duct-llike structures (b; brown signals). Note that CK19 marks 
cholangiocytes comprising bile ducts in the normal liver (a; arrowheads). PV, portal vein       
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hepatocytes are connected, is the origin of oval cells (Paku et al.  2001  ) . Given its 
anatomical location in between cholangiocytes and hepatocytes, it appears reason-
able to assume that this structure may serve as a niche for putative stem cells for 
these two cell lineages. Unfortunately, a direct proof for this model is hampered by 
lack of any speci fi c marker for cells constituting the canal of Hering. Identi fi cation 
of such a molecule and a subsequent genetic lineage-tracing study should help clari-
fying this issue. Although a possible contribution of hepatocytes as an origin of oval 
cells can also be considered, a study using mice with chimeric livers have suggested 
that this is not likely the case (Wang et al.  2003  ) .  

 As a matter of course, emergence and expansion of oval cells upon liver injury is 
not an autonomous process within these cells but involves various other types of 
cells, which interact either directly or indirectly with oval cells, and also possibly 
with their putative precursor cells. Thus, they together shape the entire phenomenon 

  Fig. 13.5    Relationship among cells involved in oval cell response. Upon severe/chronic liver 
damages, oval cells emerge from the periportal region. The exact origin of oval cells has not yet 
been identi fi ed, but is supposed to be the canals of Hering, cholangiocytes, or heptocytes. Together 
with oval cells, several types of mesenchymal cells as well as immune cells accumulate in the 
injured liver and are often observed surrounding oval cells. These cells are likely to modulate 
induction, proliferation, migration, and/or differentiation of oval cells by means of various signal-
ing mechanisms including direct cell-cell interaction, secretion of soluble factors (cytokines), and 
deposition of extracellular matrices, thereby playing key roles in regulation of oval cell response       
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often termed as “oval cell response”. Mesenchymal cells such as stellate cells 
have long been suggested to physically interact with oval cells and exert some 
signals on them. A recent study has highlighted that a population of mesenchymal 
cells expressing thymus cell antigen 1 (Thy-1), which is distinct from stellate 
cells or myo fi broblasts, reside in close proximity to oval cells in rat liver (Yovchev 
et al.  2009  ) . Further characterization of this unique population may provide a clue 
to understand the nature of signals controlling oval cell behaviors. Chronic injury 
conditions in the liver are usually associated with induction of in fl ammation, and 
the role of lymphocytes and in fl ammatory responses have also been suggested 
(Knight et al.  2007 ; Strick-Marchand et al.  2008  ) . In accord with this notion, 
several in fl ammatory cytokines, such as tumor necrosis factor (TNF)-alpha and 
interferon-gamma, have been shown to modulate oval cell response, although 
their modes of action remain not fully clari fi ed. A cytokine well appreciated to be 
involved in oval cell regulation is TNF-like weak inducer of apoptosis (TWEAK); 
transgenic mice overexpressing TWEAK in the liver exhibit periportal oval cell 
hyperplasia, while DDC diet-induced oval cell expansion was signi fi cantly 
reduced in mice lacking the Tweak receptor Fn14 as well as in wild-type mice 
administrated with a blocking anti-TWEAK monoclonal antibody (Jakubowski 
et al.  2005  ) . As a signal related to oval cell response, several studies have identi fi ed 
activation of the canonical Wnt/beta-catenin pathway in oval cells (Apte et al. 
 2008 ; Hu et al.  2007 ; Itoh et al.  2009 ; Yang et al.  2008  ) . The Wnt/beta-catenin 
pathway is well known to be involved in stem cell regulation in various organs and 
tissues, and further characterization of the role of this pathway in oval cells, 
including its relevant target genes and interaction with other signaling pathways, 
is awaited.   

    13.3   Characteristics/Properties 

    13.3.1   Hepatoblasts 

 In order to characterize a particular cell population, the cell sorting method using 
antibodies against speci fi c surface markers expressed on that population is a power-
ful tool, as the cells can be viably isolated and thus can be subjected to  in vitro  
culture and/or  in vivo  transplantation experiments. In the last decade, much effort 
has been made to identify such speci fi c cell surface antigens expressed on fetal 
hepatoblasts, leading to successful identi fi cation of several markers as well as estab-
lishment of protocols to isolate and culture these cells. 

 Delta-like 1 homolog (Dlk1; also known as Pref-1 or fetal antigen 1) was ini-
tially identi fi ed as a marker for mouse hepatoblasts, and has later been shown to 
be useful to enrich and purify rat fetal liver progenitor cells with the liver repopu-
lating activity (Oertel et al.  2008 ; Tanimizu et al.  2004  ) . DLK1 is also known to 
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be expressed in human fetal liver (Floridon et al.  2000  ) . In mouse embryos, Dlk1 
expression in the liver is initially observed around E9.0 in the developing liver 
bud and is maintained at a high level until E16, which then declines signi fi cantly 
and disappears at the neonatal and adult stages. Dlk1 +  cells isolated from E14.5 
livers expressed albumin and formed colonies composed of hetpatocyte 
(Albumin + ) and cholangiocyte (Cytokeratin [CK] 19 + ) lineages  in vitro . Moreover, 
7% of the colony-forming Dlk1 +  cells formed large colonies containing more 
than 100 cells during 5 days of culture, thus indicating that Dlk1 serves as a use-
ful marker to enrich highly proliferative, bipotential hepatoblasts from fetal 
liver. 

 E-cadherin is also widely used as a fetal hepatoblast marker (Nitou et al.  2002  ) , 
although its expression is not necessarily limited in these cells but persists even in 
the differentiated epithelial lineages. Using a speci fi c monoclonal antibody against 
E-cadherin, hepatoblasts could be isolated form E12.5 mouse liver with 90% purity 
and 40% yield. Other hepatoblast markers include Liv-2 in the mouse, whose anti-
gen has not yet been molecularly identi fi ed (Watanabe et al.  2002  ) . 

 In addition to these relatively simple isolation of hepatoblasts based on the 
expression of single positive selection markers, several other groups have established 
well elaborated protocols employing combinations of multiple markers, sometimes 
including those for negative selection. In the rat system, the RT1A1 -  OX18 low  
ICAM1 +  fraction of E13 fetal liver has been shown to contain hepatoblasts (Kubota 
and Reid  2000  ) . Suzuki et al. designated as “hepatic colony-forming unit in culture 
(H-CFU-C)” a putative self-renewing stem cell population in the developing liver. 
Thus, based on an  in vitro  single cell-based assay of sorted cells, clonogenic cells 
capable of both self-renewal and multilineage differentiation were sought to be 
identi fi ed. They separated fetal liver cells based on expression of several markers 
including alpha6- and beta1-integrin subunits (CD49f and CD29, respectively) and 
demonstrated that the CD45- Ter119 -  c-Kit -  CD29 +  CD49f +  and CD45 -  Ter119 -  c-Kit -  
c-Met +   CD49f +/low  fractions of E13.5 mouse liver contained the H-CFU-C activity 
(Suzuki et al.  2000,   2002  ) . Recently, CD13 (aminopeptidase N) has been identi fi ed 
as a surface marker expressed on a subset of the Dlk1+ hepatoblasts. Colony forma-
tion assays has revealed that clonogenic liver stem/progenitor cell activity can be 
enriched in the CD13+ fraction, compared with the Dlk1+ one (Kakinuma et al. 
 2009  ) . 

 Using a combination of surface markers, a recent study has elucidated the phe-
notypic transition of hepatoblasts in the course of mouse fetal liver development 
(Tanaka et al.  2009  ) . Thus, upon liver bud formation at around E9, hepatoblasts 
expressing both Dlk1 and epithelial cell adhesion molecule (EpCAM; also known 
as CD326, Tacstd1, or Trop1), a known marker for cholangiocytes and oval cells 
(see below), emerge from EpCAM +  Dlk1 -  foregut endodermal cells. The 
EpCAM +  Dlk1 +  cells contain highly proliferative hepatoblasts at E11.5, and thereaf-
ter undergo dramatic reduction in expression of EpCAM concomitantly with losing 
proliferative potential. At around E16.5, EpCAM expression is upregulated in duc-
tal plates around the portal vein, while absent in immature hepatocytes.  



348 T. Itoh et al.

    13.3.2   Adult Liver Stem/Progenitor Cells 

 Oval cells were initially described by Farber, using a rat model of liver carcinogen-
esis, as “small oval cells about the ducts and vessels in the portal areas” having 
“scanty, lightly basophilic cytoplasm and pale blue-staining nuclei (by hematoxylin 
and eosin stain)” (Farber  1956  ) . Since then, many studies have further characterized 
these cells and have established them as facultative liver stem/progenitor cells that 
are likely to play a relevant role in liver regeneration from various types of injuries 
(Duncan et al.  2009 ; Grompe  2003 ; Matthews and Yeoh  2005 ; Newsome et al.  2004 ; 
Tanaka et al.  2011 ; Tanimizu and Miyajima  2007  ) . Thus, oval cells are considered to 
be capable of differentiating into two hepatic epithelial lineages, i.e., hepatocyte and 
cholangiocyte. In possible relation to this notion, oval cells express both hepatocyte 
(Albumin) and cholangocyte (CK19) markers. The immature hepatocyte marker 
alpha-fetoprotein (Afp) is known to be expressed in oval cells in rats, but not in mice 
(Jelnes et al.  2007  ) . Similarly, expression of the hepatoblast marker Dlk1 has been 
shown in a subpopulation of rat oval cells, but is not found in mouse oval cells (Jelnes 
et al.  2007 ; Jensen et al.  2004 ; Tanimizu et al.  2004  ) . There are several monoclonal 
antibodies that have long been used as “golden standards” to recognize oval cell 
markers, such as OV-1 and OV-6 in rats (Dunsford and Sell  1989  )  and A6 in mice 
(Engelhardt et al.  1990  ) . OV-1 antibody reacts with an unknown antigen expressed 
on the surface of oval cells and thus can be used to isolate these cells, while OV-6 
antibody recognizes a common epitope in the cytoskeleton components CK14 and 
CK19 (Bisgaard et al.  1993  ) . Unfortunately, the A6 antibody used for mouse studies 
recognizes some intracellular antigen and thus is not suitable to be used for sorting 
of viable oval cells. 

 Similar to the situation with fetal liver hepatoblasts, much effort has been made 
in recent years to explore cell surface molecules that can be used to identify and 
isolate oval cells. This has led to the identi fi cation of EpCAM and CD133 (also 
known as prominin 1) as novel oval cell markers in both mice and rats (Okabe 
et al.  2009 ; Rountree et al.  2007 ; Suzuki et al.  2008b ; Yovchev et al.  2007  ) . The 
oncofetal protein glypican-3 has also been documented as a rat oval cell marker 
(Grozdanov et al.  2006  ) . Notably, however, these molecules, as well as the OC-1/
OC-6 and A6 antigens, are all expressed also in cholangiocytes in the normal 
liver. This fact strongly implies a close relationship between cholangiocytes and 
oval cells as mentioned earlier, with the former possibly being an origin of the 
latter. 

 Interestingly, Trop2 (Tacstd2), a transmembrane molecule that is structurally 
related to EpCAM, has been found to be expressed exclusively in oval cells in the 
injured liver, but not in cholangiocytes in the normal liver (Okabe et al.  2009  ) . Thus, 
Trop2 may serve as a genuine “oval cell marker” and would be advantageous for 
further characterization of oval cells. Similarly, the transcription factor Foxl1 has 
been identi fi ed as another potential oval cell-speci fi c marker (Sackett et al.  2009  ) . 
Although this molecule is not a cell-surface antigen, a transgenic (Tg) mouse line 
expressing the Cre recombinase under the control of the Foxl1 promoter has been 
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made and proven to be quite useful. Thus, a lineage tracing study using this Foxl1-
Cre Tg mice demonstrated that both hepatocytes and cholangiocytes were found 
as descendants of Foxl1+ oval cells. This does not necessarily indicate that single 
oval cells can clonally differentiate into these two lineages, but strongly supports 
the notion that oval cells are bipotential progenitors for hepatocytes and 
cholangiocytes. 

 A recent study has established a panel of surface reactive monoclonal antibod-
ies, including MIC1-1C3, that can each detect different populations of ductal and 
periductal cells in the mouse oval cell response (Dorrell et al.  2008  ) . Intriguingly, 
some of them seem to label cell populations that are apparently enriched or reside 
speci fi cally in the oval cell-induced livers, with little or no reactivity shown in the 
normal liver. Identi fi cation of the corresponding antigen molecules, as well as 
further characterization of these cell populations, should expedite our understand-
ing of the mechanisms of the oval cell response at the cellular and molecular 
levels. 

 Using  fl ow cytometry-based cell separation methods in combination with the 
aforementioned cell surface markers, oval cells can be viably isolated and sub-
jected to  in vitro  culture to evaluate their proliferation and differentiation poten-
tials. Studies based on the expression of EpCAM or CD133, and more recently of 
MIC1-1C3 or Foxl1-Cre-mediated  fl uorescent reporter, have consistently demon-
strated that oval cells isolated from injured livers proliferate to form colonies 
 in vitro  in the presence of certain combinations of growth factors, and the clonally 
expanded cells are capable of differentiating into both hepatocyte and cholangio-
cyte lineages under appropriate culture conditions (Dorrell et al.  2011 ; Okabe et al. 
 2009 ; Shin et al.  2011 ; Suzuki et al.  2008b  ) . These results strongly suggest that 
oval cells indeed possess clonal bi-lineage differentiation potential, at least  in vitro , 
a notion which needs to be evaluated using  in vivo  experimental systems as well. 
As most of the oval cell antigens including EpCAM and CD133 are also expressed 
in cholangiocytes under uninjured conditions, the cells positive for these markers 
were also isolated from normal adult livers and similarly subjected to  in vitro  cul-
ture experiments (Kamiya et al.  2009 ; Okabe et al.  2009 ; Suzuki et al.  2008b  ) . 
Interestingly, both EpCAM+ cells and CD133+ cells isolated from the normal liver 
also formed colonies as well as underwent differentiation into hepatocytes and 
cholangiocytes. Essentially the same results were also obtained with MIC1-1C3 
(Dorrell et al.  2011  ) . Thus, the normal adult liver harbors “potential hepatic stem 
cells”, which can be de fi ned as those with clonogenicity and bi-lineage differentia-
tion potential  in vitro , similar to H-CFU-C in the embryonic liver. Notably, 
EpCAM+ cells isolated from human postnatal livers, as well as fetal livers, have 
also been found to contain closely related hepatic stem cells (hHpSCs) that can be 
de fi ned  in vitro  (Schmelzer et al.  2007  ) . The exact location and character of these 
potential hepatic stem cell populations  in vivo , as well as their possible contribu-
tion to homeostasis and/or regenerative process of the liver, remain to be eluci-
dated. In particular, it is tempting to speculate that these cells may serve as the 
precursors for oval cells, which needs to be addressed in future studies.   
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    13.4   Differentiation Capacity and Their Precursors 

 As has been mentioned repeatedly in the preceding sections, the characteristic fea-
ture of the liver stem/progenitor cells is their potential to differentiate into two lin-
eages, i.e., hepatocytes and cholangiocytes. In addition to these two hepatic cell 
lineages, much evidence has been accumulated supporting that the liver stem/pro-
genitor cells are also capable of differentiating into pancreatic and other cell lin-
eages both  in vitro  and  in vivo  under appropriate experimental settings. So far, 
circumstantial understanding of the mechanisms of liver stem/progenitor cell dif-
ferentiation have been accomplished with regard to hepatoblasts in the developing 
liver, and herein we will focus mostly on this issue. Although oval cells have been 
shown to possess differentiation capacity to hepatocytes, cholangiocytes and other 
cell types, the underlying mechanisms have little been addressed. 

    13.4.1   Differentiation into Hepatocytes 

 By de fi nition, hepatoblasts undergo during their development a fate decision 
between the hepatocyte and cholangiocyte lineages. The molecular basis of this 
hepato-biliary lineage decision still remains largely unknown. Several molecules 
have been implicated in differentiation of hepatoblasts into the cholangiocyte lin-
eage, which will be discussed in the next section. 

 While the adult liver exerts various metabolic functions, the fetal liver lacks such 
functions and instead serves as a hematopoietic organ. Around E10 in the mouse 
embryo, hematopoietic stem cells immigrate into the fetal liver from the aorta-
gonad-mesonephros region and the placenta, and expand their population tremen-
dously in the microenvironment provided by the fetal liver till birth. During this 
period of time, hematopoietic cells enhance differentiation of hepatoblasts into 
hepatocytes by producing cytokines (Kinoshita et al.  1999  ) . As hematopoiesis 
switches from the fetal liver to the bone marrow, liver organogenesis progresses to 
become a center for metabolism. 

 Several  in vitro  primary culture systems for fetal liver cells, and more speci fi cally 
for sorted hepatoblasts, have been established and extensively used to characterize 
the cellular and molecular mechanisms of hepatocyte differentiation. In many cases, 
oncostatin M (OSM), one of the interleukin 6-famiy cytokines, shows potent activ-
ity to induce differentiation of hepatoblasts and immature hepatocytes to functional 
hepatocytes, as evidenced by expression of various hepatocyte-speci fi c marker genes 
and acquisition of metabolic functions such as cytosolic glycogen  accumulation and 
ammonia clearance from the culture medium (Kamiya et al.  1999  ) . OSM transduces 
signals through a speci fi c receptor complex containing the gp130 subunit, and the 
liver of mice lacking gp130 show defects in functional differentiation of hepato-
cytes (Kamiya et al.  1999  ) . As OSM receptor-de fi cient mice exhibit no obvious 
anomaly in the liver development, other cytokines may play a similar or redundant 
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role (Tanaka et al.  2003  ) . In addition to the OSM signals, HGF, extracellular matri-
ces (ECMs), and cell-to-cell contacts have also been implicated in stimulating hepa-
tocyte differentiation (Kamiya et al.  2002 ; Kojima et al.  2000 ; Suzuki et al.  2003  ) . 
On the other hand, TNF-alpha has been shown to antagonize the differentiation-
promoting activities of OSM and control the timing of hepatocyte maturation 
(Kamiya and Gonzalez  2004  ) . Thus, TNF-alpha expression is detected in the liver 
until perinatal stages, and then decreases after birth. Concomitantly with this transi-
tion, hepatocytes are relieved from inhibitory effect of TNF-alpha and then strongly 
promoted to acquire mature metabolic functions. 

 In addition to these extracellular signals, hepatocyte differentiation and matura-
tion are regulated by cell-intrinsic machineries involving various transcription fac-
tors. A set of transcription factors, such as HNF1alpha, HNF4, and CCAAT/
enhancer binding protein (C/EBP) alpha, are known to be abundantly and character-
istically expressed in hepatocytes and thus are collectively termed as “liver-enriched 
transcription factors”. While studies using gene knockout mice have elucidated that 
each of these molecules has its own unique functions as manifested by observed 
speci fi c phenotypes (Costa et al.  2003 ; Schrem et al.  2002,   2004  ) , it has become 
evident that they function cooperatively to form a dynamic transcriptional network 
of autoregulatory and cross-regulatory loops (Kyrmizi et al.  2006 ; Lemaigre  2009  ) . 
In addition, these liver-enriched transcription factors also interact with various other 
transcription factors and/or regulatory molecules in a context-dependent manner to 
achieve speci fi c target gene expression. For example, C/EBPalpha is an essential 
factor for glucose metabolism during the perinatal stage, and mice lacking this tran-
scription factor die soon after birth due to hypoglycemia caused by defective gluco-
neogenic gene expression (Wang et al.  1995  ) . Despite of this speci fi c functional 
requirement at the perinatal stage, C/EBPalpha is already expressed in E14.5 fetal 
liver, suggesting that an additional factor may function cooperatively to ensure its 
temporally-regulated activity. Indeed, the forkhead family transcription factor 
Foxo1 has been found to be inducibly expressed in the perinatal liver, physically 
interact with C/EBPalpha, and augment C/EBPalpha-dependent transcription of a 
gluconeogenic gene, phosphoenolpyruvate carboxykinase (PEPCK) (Sekine et al. 
 2007  ) . On the other hand, C/EBPalpha is also critical for ammonia detoxi fi cation 
activity of hepatocytes, as the knockout mice lack expression of carbamoyl phos-
phate synthetase-I (CPS1), a key enzyme in the urea cycle, leading to hyperam-
monemia (Kimura et al.  1998  ) . Again, CPS1 is expressed only after the neonatal 
stage, and hence an involvement of some regulatory factor for C/EBPalpha-
dependent CPS1 expression was suspected. In this case, Y-box binding protein-1 
(YB-1) has been identi fi ed to be a molecule that suppresses C/EBPalpha function 
and negatively regulates CPS1 expression in the fetal liver (Chen et al.  2009  ) . YB-1 
is highly expressed in E14.5 fetal liver, and the expression signi fi cantly declines 
before birth. This results in the release of C/EBPalpha from YB-1-mediated sup-
pression on the CPS1 promoter, leading to expression of CPS1 and ammonia clear-
ance activity. Taken together, transcriptional activities of C/EBPalpha are differently 
controlled by expression and cooperative function of specialized “gatekeeper” mol-
ecules, Foxo1 and YB-1, for gluconeogenic and urea cycle enzymes, respectively. 
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 As hepatocytes acquire mature metabolic functions, they also undergo structural 
maturation and establish specialized tissue architectures that are associated with their 
functions (Tanimizu and Miyajima  2007  ) . They construct so-called “hepatocyte-type” 
epithelial polarity, where the apical surface, termed the bile canaliculus, is formed 
between neighboring hepatocytes, and the polarized hepatocytes are organized to 
form a cord-like structure. A study using gene knockout mice has suggested that the 
small GTPase ARF6 plays a critical role in the latter process (Suzuki et al.  2006  ) .  

    13.4.2   Differentiation into Cholangiocytes 

 Cholangiocytes are epithelial cells that line the biliary tract. The biliary tract can be 
separated ontogenetically into two parts, that is, the extrahepatic bile duct and the 
intrahepatic bile duct (IHBD). The extrahepatic bile duct is comprised of the hepatic 
ducts, the cystic duct, the common bile duct, and the gallbladder, and develops from 
the endoderm independently of the hepatoblast formation. On the other hand, cho-
langiocytes forming the intrahepatic bile ducts derive from hepatoblasts, as men-
tioned earlier. It is not clear how the extrahepatic and intrahepatic biliary tracts, 
developing separately, eventually anastomose. 

 The process of IHBD formation from hepatoblasts involves cholangiocyte dif-
ferentiation (lineage speci fi cation) and morphogenesis of ductal structures. In 
mouse embryos, the initial sign of cholangiocyte speci fi cation can be recognized 
at E11.5, when the cholangiocyte marker Sox9 is expressed in liver cells that are 
located a short distance from the branches of the portal vein (Antoniou et al. 
 2009  ) . These cells align around the portal vein to form a single-layered structure, 
called the ductal plate (Fig.  13.6 ). At E15.5, the ductal plate becomes focally 
bilayered to form the primitive ductal structures (PDS), and lumens can be 
detected between the two layers. A recent study has suggested that the PDS are 
transiently asymmetrical, in that the cells on the portal-side layer express Sox9 
but not the hepatoblast marker HNF4, while that those on the parenchymal-side 
layer express HNF4 but not Sox9 (Antoniou et al.  2009  ) . By E18.5, the hepato-
blasts lining the parenchymal side of the PDS differentiate to cholangiocytes, 
leading to formation of radially symmetrical duct structures entirely delineated by 
cholangiocytes. During this process, the ductal plate cells that are not involved in 
tubulogenesis regress and eventually disappear, and the remaining ducts become 
surrounded by periportal mesenchymal cells. Although it has long been consid-
ered that this regression of ductal plate cells that do not contribute to the mature 
bile duct  structure is mediated by apoptosis, a recent study has shown that they 
undergo not apoptosis but rather differentiation to a subset of hepatocytes in the 
periportal region (Carpentier et al.  2011  ) .  

 With regard to the molecular mechanisms involved in cholangiocyte differentia-
tion, the roles of several transcription factors have been implicated, such as Sal-like 4 
(Sall4), T-box transcription factor 3 (Tbx3), the Onecut transcription factors HNF6 
and OC2, and HNF1beta. Based on gene expression pro fi le as well as overexpression 
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and knockdown experiments in puri fi ed fetal mouse hepatoblasts, Sall4 has been 
shown to play a role in regulating the lineage commitment of hepatoblasts by inhibit-
ing their differentiation into hepatocytes while driving the one toward cholangiocytes 
(Oikawa et al.  2009  ) . In Tbx3 knockout mouse embryos, hepatoblast proliferation is 
severely impaired and biliary differentiation is promoted at the expense of hepatocyte 
differentiation, suggesting that Tbx3 plays a role in hepato-biliary lineage decision 
(Ludtke et al.  2009 ; Suzuki et al.  2008a  ) . Gene expression analyses have shown that 
Tbx3 functions to maintain expression of hepatocyte transcription factors, HNF4alpha 
and C/EBPalpha, while suppressing that of cholangiocyte transcription factors, HNF6 
and HNF1beta (Ludtke et al.  2009  ) . Mice de fi cient of HNF6 shows bile duct malfor-
mation, and this phenotype is further enhanced by combined knockout of HNF6 and 
OC2 (Clotman et al.  2002,   2002  ) . A direct and critical target of HNF6 is HNF1beta, 
and mice with liver-speci fi c inactivation of HNF1beta shows defect in bile duct devel-
opment (Cof fi nier et al.  2002  ) . The Onecut transcription factors also regulate hepato-
biliary lineage decision of hepatoblasts by modulating transforming growth factor 
(TGF) beta signaling. In the normal liver, TGFbeta signaling is found to be strongly 
activated near the portal veins but weakly in the rest of the parenchyma. In the liver of 
HNF6 and OC2 double knockout mice, increased TGFbeta signaling is observed in 
the parenchymal region, where “hybrid” hepatic cells that display characteristics of 
both hepatocytes and cholangiocytes are generated (Clotman et al.  2005  ) . Thus, the 
Oncecut transcription factors play a role in shaping the proper gradient of TGFbeta 
signaling activity to ensure induction of cholangiocytes only in the periportal region. 

 Another molecular mechanism well known to be involved in bile duct formation 
is the Notch signaling pathway. In humans, mutations in JAGGED 1 (JAG1), a ligand 
for the Notch receptors, are associated with Alagille syndrome (ALGS or ALGS1; 
Online Mendelian Inheritance in Man #118450), an autosomal dominant disorder 
characterized by multiple developmental defects including neonatal cholestasis 
caused by a paucity of IHBD (Li et al.  1997 ; Oda et al.  1997  ) . In addition, another 

  Fig. 13.6    Development of intrahepatic bile ducts in the fetal mouse liver. In the midgestation 
mouse liver, some hepatoblasts start to express biliary markers and these biliary precursor cells 
form a contiguous single-layered structure, called the ductal plate, around the portal vein. The 
ductal plate becomes focally bilayered to generate asymmetric primitive ductal structures (PDS), 
where the cells only on the portal-side layer express biliary markers. At around the perinatal stage, 
the hepatoblasts lining the parenchymal side of the PDS differentiate to cholangiocytes and sym-
metrical bile ducts are formed       
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form of Alagille syndrome has been found to be caused by mutations in the NOTCH2 
gene (ALGS2; Online Mendelian Inheritance in Man #610205) (McDaniell et al. 
 2006  ) . In accord with these notions, mice doubly heterozygous for a Jag1 null allele 
and a Notch2 hypomorphic allele recapitulate most of the human syndrome pheno-
types, including the bile duct paucity (McCright et al.  2002  ) . A study using an  in vitro  
culture of mouse hepatoblasts has shown that activation of the Notch signaling path-
way promotes differentiation of hepatoblasts into the cholangiocyte lineage by coor-
dinating a network of liver-enriched transcription factors including HNF1alpha and 
beta, HNF4, and C/EBPalpha (Tanimizu and Miyajima  2004  ) . Indeed, conditional 
knockout of RBP-Jkappa, an essential downstream signal component of the Notch 
receptor, results in a reduced number of cholangiocytes at E16.5, con fi rming a role 
of this signaling pathway in cholangiocyte cell fate speci fi cation (Zong et al.  2009  ) . 
In contrast, studies using the aforementioned compound (doubly heterozygous) 
mouse mutant for Jag1 and Notch2, or the liver-speci fi c Notch2 knockout mice, have 
shown that the Notch2 signaling is rather required for bile duct morphogenesis, but 
is likely dispensable for biliary speci fi cation (Geisler et al.  2008 ; Lozier et al.  2008  ) . 
Similarly, in fetal livers of mice lacking hairy and enhancer of split 1 (Hes1), a target 
of the Notch signaling, the ductal plate formation occurs normally but the subsequent 
remodeling and tubular structure formation is completely blocked (Kodama et al. 
 2004  ) . The discrepancy may result from the presence of multiple Notch signaling 
components, including the ligands, receptors and targets, that can play redundant and 
compensatory roles in biliary differentiation. It is also possible that conditional dele-
tion of Notch2 in the developing liver was not complete or early enough. In the 
periportal region of the developing liver, the ligand Jag1 is expressed in portal 
 fi broblasts and the endothelium of the portal vein, as well as in cholangiocytes at 
later stages (Geisler et al.  2008 ; Kodama et al.  2004 ; Loomes et al.  2007 ; Lozier et al. 
 2008 ; Suzuki et al.  2008c ; Zong et al.  2009  ) . A recent study employing cell type-
speci fi c knockout mouse models has clearly demonstrated that deletion of Jag1 
speci fi cally in SM22alpha-expressing portal vein mesenchyme, but not in the 
endothelium, leads to the hepatic defects reminiscent of Alagille syndrome. In those 
mice lacking Jag1 in the SM22alpha-positive cells, the initial formation of the ductal 
plate occurs normally, yet those biliary-speci fi ed cells are unable to undergo subse-
quent morphological changes, leading to paucity of bile duct formation (Hofmann 
et al.  2010  ) . Although the nature of the SM22alpha-expressing cells is not fully char-
acterized, it is considered most plausible that portal  fi broblasts stimulate cholangio-
cytes lining the ductal plate via the Jag1/Notch2 interaction and the downstream 
Hes1 expression, which leads to induction of ductal morphogenesis.  

    13.4.3   Differentiation into Non-hepatic Lineages 

 The liver and the pancreas share a common developmental origin, and a bipotential 
precursor cell population for these organs has been identi fi ed within the embryonic 
endoderm (Deutsch et al.  2001  ) . In addition, hepatocytes and pancreatic beta-cells 
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are known to have similarities in gene expression pro fi les and possess similar 
 inherent glucose sensing systems, thereby being capable of responding to changes 
in blood glucose concentrations. Consistent with these facts, many studies have 
demonstrated that liver stem/progenitor cells from both embryonic and adult origins 
as well as hepatocytes can be converted to insulin-producing cells, functional pan-
creatic beta-cell-like cells, and/or to islet-like cell clusters containing other pancre-
atic lineages under certain conditions. 

 Clonally expanded H-CFU-C derived from fetal mouse liver show expression of 
pancreatic endocrine and exocrine lineage markers in culture, and can be integrated 
into and form pancreatic ducts and acinar cells when transplanted into pancreas of 
recipient mice (Suzuki et al.  2002  ) . Notably, H-CFU-C is also shown to be capable 
of differentiating into gastric and intestinal cells  in vivo . Puri fi ed adult rat hepatic 
oval cells can be differentiated into pancreatic endocrine hormone-producing cells 
when cultured in a high-glucose environment (Yang et al.  2002  ) . Rat liver epithelial 
WB cells, which represent the cultured counterpart of stem-like cells derived from 
normal adult liver, can be reprogrammed into functional insulin-producing cells by 
stable expression of pancreatic duodenal homeobox 1 (Pdx1) or its super-active 
form (Pdx1-VP16) (Tang et al.  2006  ) . Epithelial progenitor cells derived from 
human fetal liver (FH cells) can also be induced to differentiate into insulin- 
producing cells after expression of the PDX1 gene (Zalzman et al.  2003  ) . 

 In addition to these  in vitro  experiments, several studies employing  in vivo  gene 
delivery systems have shown that adenoviral vector-mediated transduction of pan-
creatic transcription factors, such as Pdx1, Neurogenin3 (Ngn3), NeuroD, and 
MafA, can induce formation of ectopic islet-like cells and production of insulin in 
the adult liver (Ferber et al.  2000 ; Kojima et al.  2003 ; Song et al.  2007 ; Wang et al. 
 2007  ) . Although these phenomena have been considered to represent trans-differen-
tiation of mature hepatocytes into pancreatic cells, a recent study employing Ngn3 
gene transfer in combination with a genetic lineage tracing have suggested an alter-
native possibility. Thus, introduction of this transcription factor can suf fi ciently 
induce emergence of ectopic, periportal islet-like cell clusters in streptozotocin 
(STZ)-induced diabetic model mice, and these clusters do not originate from dif-
ferentiated hepatocytes but are rather likely produced by “trans-determination” of 
oval cell-like progenitor cells, which are lineage-determined but not terminally dif-
ferentiated (Yechoor et al.  2009  ) . In view of this, it is noteworthy that DDC-induced 
activation of hepatic oval cells  in vivo  has been reported to ameliorate STZ-induced 
diabetes in mice (Kim et al.  2007  ) .   

    13.5   Potential Application for Therapies 

 At present, orthotopic liver transplantation is the most commonly used procedure to 
treat various liver diseases. This, however, has always been hampered by persistent 
shortage of donor organs. Although isolated mature hepatocytes when transplanted 
have been shown to successfully repopulate the recipient liver with considerably high 
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ef fi ciency at least in rodent models, the rates of engraftment and survival of trans-
planted hepatocytes in human liver is often very limited. Furthermore, despite that 
mature hepatocytes show tremendous proliferative activity in response to regenerative 
stimuli  in vivo , they usually lose this capacity immediately once isolated and sub-
jected for  in vitro  cultures. Thus, the ability to obtain an unlimited supply of human 
hepatocytes from any expandable source should signi fi cantly improve the develop-
ment and clinical application of hepatocyte transplantation. In addition, it will also 
facilitate the studies on the basic mechanisms of human liver diseases, as well as 
evaluation of drugs for their actions and toxicities due to the metabolism of xenobiot-
ics in hepatocytes. Considering the strong proliferative potential and amenability for 
 in vitro  manipulation, the liver stem/progenitor cells may be attractive candidates for 
these applications. These cells may also be useful for cell therapy to treat diabetic 
patients, given their potential to be effectively reprogrammed toward pancreatic lin-
eages. However, isolation of fetal hepatoblasts and adult hepatic stem/progenitor cells 
from human liver for therapeutic use should be practically quite dif fi cult. 

 In the last decade, much effort and concomitant progress have been made in 
establishing the protocols to generate various types of functionally differentiated 
cells, including mature hepatocytes,  in vitro  from pluripotent or multipotent stem 
cells (Snykers et al.  2009  ) , particularly from embryonic stem (ES) cells (Agarwal 
et al.  2008 ; Basma et al.  2009 ; Cai et al.  2007  )  and more recently from induced 
pluripotent stem (iPS) cells (Gai et al.  2010 ; Si-Tayeb et al.  2010 ; Song et al.  2009 ; 
Sullivan et al.  2010  ) . This has led to the notion that application of the precise condi-
tions that recapitulate the normal developmental process within the embryo is gen-
erally the best way to achieve highly functional derivatives. Thus, to produce 
hepatocytes for example, these pluripotent stem cells can be sequentially induced to 
differentiate to the de fi nitive endoderm, then the hepatic lineage cells with the char-
acter of hepatoblasts, and  fi nally to functional hepatocytes, directed by the timed 
use of appropriate amounts and combinations of cytokines (Gouon-Evans et al. 
 2006  ) . In view of this, studies elucidating the mechanisms of the normal liver 
organogenesis, and particularly of hepatoblast development and differentiation, 
should provide an important clue to future development of a better protocol to 
induce functional hepatocytes  in vitro . In the opposite way,  in vitro  differentiation 
system from human ES or iPS cells to hepatocytes can offer a means of elucidating 
the mechanisms of human liver development  ex vivo  (DeLaForest et al.  2011  ) . 
Notably, use of speci fi c surface markers for hepatoblasts or other hepatic cells to 
enrich particular cell lineages in the course of induced differentiation should be 
advantageous to obtain hepatocytes with better quality and quantity. Moreover, this 
will also bene fi cial to eliminate undifferentiated stem cells that remain contami-
nated, as these cells may potentially cause tumors such as teratoma upon transplan-
tation into recipients. 

 Upon the emergence of the iPS cell technology, the fact that terminally differen-
tiated somatic cells can be suf fi ciently converted to a totally different, pluripotent 
state by a relatively small number of de fi ned factors urged many researchers to test 
the possibility that they could also be reprogrammed directly to different cell 
 lineages without going through a pluripotent intermediate. This approach, so-called 
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direct reprogramming, has indeed been shown to be quite promising with various 
target cell lineages, including hepatocytes. By forcedly introducing a few endoder-
mal and hepatic transcription factors, two groups have independently demonstrated 
that mouse  fi broblasts can be converted to hepatocyte-like cells (Huang et al.  2011 ; 
Sekiya and Suzuki  2011  ) . Functionally, they are still not fully mature hepatocytes, 
yet are able to repopulate  in vivo  when transplanted into a mouse model. These 
“induced hepatocytes (iHep)” may provide an alternative, relatively simple platform 
to realize gene and cell therapy to treat liver diseases.  

    13.6   Conclusion and Future Development in Research 

 In recent years, considerable progress has been made in our understanding of the 
mechanisms of liver development at the cellular and molecular levels. Establishment 
of methods for  in vitro  culture of fetal liver cells, in particular the isolated hepato-
blasts, as well as various mouse models with genetic modi fi cations have invaluably 
contributed to identify and elucidate the role of genes involved in fetal liver devel-
opment. Although characterization of adult liver stem/progenitor cells represented 
by oval cells has been less achieved up to the present compared to that of hepato-
blasts, it has become much accelerated by the  fi nding and availability of useful 
marker molecules. Further analysis on the extrinsic signals and the intrinsic genetic 
and epigenetic programs regulating these cell populations should lead to clarifying 
the molecular basis of liver regeneration, as well as its similarities and differences 
with that of liver development. In-depth understanding of the mechanisms govern-
ing these complicated and elaborated processes should de fi nitely help establish a 
better protocol to generate functional hepatic cells amenable to therapeutic cell 
transplantation and pharmaceutical drug development.      
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  Abstract   Gastro intestinal epithelium (GI) is a rapidly proliferating tissue and is a 
suitable model for study of stem cell biology. GI stem cells are mainly identi fi ed as 
esophageal, gastric, intestinal, hepatic and pancreatic stem cells. Intestinal stem 
cells are most extensively studied in mouse models. In the small intestine stem cells 
reside at the base of the crypt at the 4th position and give rise to all cell lineages of 
the crypt, while in the large intestine stem cells are located in the mid crypt region 
and do not undergo apoptosis. Gastric stem cells in the pyloric antrum give rise to 
pit cell, parietal cell and zymogenic cell lineages and those in the small and large 
intestine differentiate into absorptive goblet, paneth, columnar cells, and deep cell 
secretory cell lineages. Wnt signaling plays a major role controlling cell prolifera-
tion, differentiation and apoptosis in the crypt-villus axis along with coordinated 
notch signaling in the gastro intestinal tract. The importance of cancer stem cells is 
being evaluated in colorectal cancers in the recent years. Understanding the basic 
mechanisms of differentiation of GI stem cells and establishing in vitro models sys-
tems to culture and propogate the GI stem cells is of utmost importance before they 
are put to therapeutic use in clinical applications.  
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  Abbreviations  

  GI    Gastro intestinal.   
  GIT    Gastro intestinal tract.   
  GLS    Gastric luminal surface.   
  GTP    Guanosine-5 ¢ -triphosphate.   
  DCS    Deep crypt secretory cell   
  TGF b     Transforming growth factor  beta.    
  TCF4    Transcription factor 4.   
  BMP    Bone morphogenetic proteins.   
   SHH      Sonic hedgehog homolog.    
  IHH    Indian hedgehog.   
  DHH    Desert hedgehog.   
   SFRP1      Secreted frizzled-related protein 1.    
  CSCs    Cancer Stem Cells.   
  ESA    Epithelial-speci fi c antigen.   
  HCC    Hepatocellular carcinoma.   
  Mtor    Mammalian target of rapamycin.   
  HSCT    Hematopoietic stem cells transplantation.   
  MSCs    Mesenchymal stem cells.   
  BM-SC    Bone marrow derived stem cells.   
  G-CSF    Granulocyte colony-stimulating factor.         

    14.1   Introduction 

 The identi fi cation of undifferentiated cells (stem cells) among differentiated cells in 
adult tissues offers enormous scope for regenerative medicine. In adults, stem cells and 
progenitor cells act as repair systems to replenish cell loss that occurs due to injury, damage 
or disease. Stem cells are known to reside in speci fi c areas (niches) within different 
tissues including the gastrointestinal tract. Since the use of adult stem cells is not contro-
versial from an ethical perspective, concerned research has generated a lot of excitement 
among the scienti fi c community. The present review attempts to summarize recent 
knowledge on gastro intestinal stem cells since the gastrointestinal tract represents the 
largest reservoir of stem cells and offers signi fi cant opportunities in regenerative medicine 
as also in understanding development, homeostasis and carcinogenesis. 

    14.1.1   Gastrointestinal Epithelium 

 Gastro intestinal tract (GIT) is lined by single layer of epithelial cells representing a 
dynamic barrier for the facilitated entry of food materials and drugs. GIT experiences 
continuous cell loss through high rates of mechanical attrition. The intestinal epithelium 
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has to be continually replenished by striking a balance between epithelial cell apoptosis 
and regeneration in order to maintain structural integrity which is essential for maintain-
ing cellular homeostasis and functional ef fi ciency. Unlike gastric glands made of parietal 
cells, chief cells, mucus-secreting cells and hormone-secreting cells (endocrine 
cells), the intestinal epithelium is a simple columnar epithelial lining made of crypts 
and villi. The villus is composed of three main differentiated cell types namely absorp-
tive enterocyte lineages, mucus secreting goblet cells, Paneth cells and entero endo-
crine cells. The maintenance of the intestinal epithelium is secured by rapid renewal in 
3–5 days (Moore and Lemischka  2006  ) , by local stem cells, resulting in near complete 
tissue turnover approximately every 7 days. This robust and dynamic process is tightly 
regulated by a small group of intestinal stem cells residing in the crypts of the intestinal 
villi. Because, these stem cells are responsible for the continual generation of all intes-
tinal epithelial lineages (secretory goblet, and the entero endocrine cells), the intestine 
thus serves as one of the most powerful systems for the study of stem cell biology.  

    14.1.2   Stem Cells in Gastro Intestinal Tract 

 The presence of adult stem cell like cells in gastrointestinal (GI) tract was postu-
lated 60 years ago (Leblond et al.  1948  )  and were identi fi ed mainly as intestinal, 
esophageal, hepatic and pancreatic stem cells (Quante and Wang  2009  ) . Gastro 
intestinal stem cells can be considered as mutipotent cells capable of self renewal 
because of their ability to differentiate into different kinds of cells characteristic of 
the gastric and intestinal epithelium. These GI stem cells could provide promising 
sources for cellular therapies in the treatment of gastrointestinal diseases. Progress 
in the GI stem cell biology could be achieved with the advent of putative stem cell 
markers that distinguished quiescent and active stem cell populations. While base 
line regeneration of intestinal stem cells is accomplished by active stem cell popula-
tion, quiescent cells respond to injury (Li and Clevers  2010 ; Scoville et al.  2008  ) .   

    14.2   Classi fi cation and Derivation of Gastro 
Intestinal Stem Cells 

 Based on the location of stem cells in the GI tract they can be classi fi ed mainly into 
gastric and intestinal stem cells. 

    14.2.1   Classi fi cation 

  Gastric stem cells : It was demonstrated that oxyntic epithelium of the gastric glands 
contains the progenitors in the isthmus region of the pit gland and the cells lining the 
pit gland unit of the oxyntic epithelium originating from stem cells give rise to the 
three main cell lineages of the stomach (Karam and Leblond  1993a  ) . 
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  Intestinal stem cells : The functional unit of small intestine is the crypt-villus axis 
and production and delivery of cells to the villus is the primary function of crypt 
(Bjerknes and Cheng  2005  ) . Stem cells in the small intestine were found to be situ-
ated above the paneth cell in the crypt forming the stem cell niche in the intestine 
(Potten et al.  1997,   2002 ; Batlle  2008  ) . It is now con fi rmed and precisely de fi ned in 
the 4th cell at the bottom of the crypt (Potten et al.  2002  ) . 

 Hepatic and Pancreatic stem cells are not in the purview     of this review.  

    14.2.2   Derivation of Stem Cells 

 GI tract is endodermal in origin and is a single layer of proliferative endodermal 
cells which increases its surface area by production of various cell lineages of 
gastrointestinal system (Maunoury et al.  1992  ) . 

 In general, mature GI epithelial cells are formed through  fi ve main stages as 
shown below. 

  General      schematic representation of Gastro intestinal stem cell differentiation   

 Stem Cells 
 (stage1) 

 ↓ 
 Uncommitted precursor cells 

 (stage2: exhibit dual lineage features) 
 (Lee and Leebond, Karam and Leblond) 

 ↓ 
 Committed precursor cells 

 (stage3: Transit cells) 
 ↓ 

 Mature cells 
 (stage4: differentiated functional cells) 

 ↓ 
 Terminal cells 
 (Karam et al.) 

 (Stage5: death and elimination) 

    14.3   Characteristics of Gastrointestinal Stem Cells 

 Intestinal stem cells have been extensively studied in mouse models. In small intes-
tine the stem cells are demonstrated to be located at about the fourth position from 
the bottom of the crypt and in large intestine (colon) they are located at the base of 
the crypt. Stem cells in the crypt are organized in three different tiers (Potten and 
Hendry  1995  ) . At the base of the hierarchy are the ancestral stem cells; four to six 
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in number. When they undergo apoptosis, second tier of stem cells, six in number 
take over the function of ancestral cells. A third tier of 24 stem cells with greater 
resistance and repair strength regenerate the earlier tiers of stem cells. Therefore 
there are about 36 stem cells in the crypt. Cell proliferation studies and mathemati-
cal modeling studies indicated that the each crypt containing 250 cells in a  fl ask 
shaped structure with 150–160 rapidly proliferating cells and 30 differentiated 
functional paneth cells is maintained by the three tiers of stem cells at the base of 
the crypt. Most of these cells divide once a day at the base of the crypt. It was noted 
that some cells at the base speci fi cally involved in regeneration after injury undergo 
low level of spontaneous apoptosis and represent the origin of migration (Potten 
 1998  ) . Approximately 1–10% of the cells at stem cell position undergo apoptosis 
at any time in small intestine where as spontaneous apoptosis is rare in large intes-
tine. Spontaneous apoptosis is induced in GI stem cell population in about 3–6 h 
by chemical mutagens and cytotoxic drugs which is totally p53 independent 
(Merritt et al.  1977  ) .  

    14.4   Differentiation of Stem Cells 

    14.4.1   Gastric Epithelial Cell Lineage 

 The cells lining the pit gland unit differentiate into gastric epithelial cells and have 
a turn over time of 2.5 days (Karam and Leblond  1993a  ) . Stem cells in the body of 
the stomach differentiate into Pit cell lineage, parietal cell lineage and zymogen cell 
lineage as shown in Fig.  14.1 . It was shown that duration of cell cycle in pyloric 
antrum is about 8.4 h (El-Alfy and Leblond  1987a  ) .  

    14.4.1.1   Pit Cell Lineage 

 About 67% of the progeny of the stem cells in the isthmus region become pre pit 
cell precursors that are characterized by small Golgi apparatus and are partially 
committed. About 99% of the progeny cells become pre-pit cells and 1% 
becomes pre-parietal cells by maturation of Golgi vesicles into dense secretory 
granules (Karam and Leblond  1993a  ) . Pre pit cells (~10 in each isthmus) are 
located in the upper region containing 200 nm wide secretory granules. Fifty 
seven percent of these cells arise from pre-pit cell precursors while the remain-
ing 43% arise from their own mitosis. The activity of pre-pit cells increases and 
increasing number of secretory granules are produced at the apex to become pit 
cells. The pit cells thus formed are characterized by dense apical group of mucus 
granules and migrate to reach gastric luminal surface (Karam and Leblond 
 1993b  ) . The time taken for pre pit cell to become pit cell is 3 days (Karam and 
Leblond  1993b  ) .  



370 M. Sasikala et al.

    14.4.1.2   Parietal Cell Lineage 

 Pre-parietal cell precursors that arise from the stem cells in GI epithelium are 
characterized by embryonic cell like features in addition to numerous apical villi 
(   Li et al.  1995  )  and differentiate to form pre-parietal cells. These precursors are 
divided into three groups based on the presence or absence of secretory granules; 
these are pre-parietal cells with no secretory granules, those with small dense gran-

  Fig. 14.1     Pit gland unit of stomach . Stem cells in the isthmus region of the gastric epithelium 
initially differentiate into precursor cells and later evolve into mature pit cells, parietal cells and 
zymogenic cells       
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ules and those with cored granules. Pre-parietal cells differentiate into parietal 
cells in four stages characterized by increase in the surface area of apical plasma 
membrane, appearance of tubules and vesicles, increase in the number of mito-
chondria, and overall increase in cell size leading to formation of fully mature 
parietal cell (Karam and Leblond  1993a  ) . Maturation of pre parietal cell takes 
about 1 day while that of parietal cell takes 2 days (Karam et al.  1997  ) . 
Autoradiography studies revealed that they migrate bi directionally along the pit 
gland axis and their turnaround time is around 54 days. Parietal cells were shown 
to produce regulatory factors required for terminal differentiation of zymogenic 
cells (Mills et al.  2001  ) .  

    14.4.1.3   Zymogenic Cell Lineage 

 Stem cells that are committed to zymogenic cell lineage (24%) become pre neck 
cells. These precursors are characterized by pro secretory granules, 98% of which 
becomes pre neck cells and 2% becomes pre parietal cells. Pre neck cells are located 
in the lower portion of isthmus (1.8 cells/isthmus with 400 nm wide secretory gran-
ules) and develop into neck cells in a turnaround time of 3 days (Karam and Leblond 
 1993a  )  and transform into neck cells located in the neck region characterized by 
dense mucus granules (Sato and Spicer  1980  ) . Such transformed cells migrate while 
completing their differentiation into mucus producing cells. After 7–14 days in the 
neck, they slowly get converted to serous cells. Cells at the base region of the pit 
gland are the pre zymogenic cells that produce secretory granules which contain 
mucus and pepsinogenic granules. These cells gradually transform into pepsino-
genic granule containing cells rather than dense mucus containing cells. These 
zymogenic cells are pepsinogen secreting cells with 700–1,070 nm wide secretory 
granules and a turn over time of 194 days (Karam and Leblond  1993c  )  and degener-
ate at the bottom of the pit gland. The cell lineages in the pyloric antrum are almost 
similar to those in the body of the stomach except immediate descendents are called 
as mottled granular cells with embryonic cell like features (Lee    and Leblond  1985a  ) . 
These precursor cells undergo clonal expansion and become pre pit cells and pre 
gland cells. Transformation of pre pit cells is similar to that of oxyntic epithelium 
(Lee  1985  ) . Pre gland cells arising from the stem cells are poorly differentiated cells 
representing 28%of the isthmus cells, duplicate, migrate and differentiate to form 
gland cells (Lee and Leblond  1985b  ) .   

    14.4.2   Small Intestinal Cell Lineage 

 Small intestinal epithelial stem cells have been extensively studied in mice models. 
Epithelium in the small intestine undergoes invagination to form small crypts and 
evagination to form large villi. The crypts contain both immediate precursors and 
proliferative stem cells (Potten and Loef fl er  1990  )  that give rise to GI epithelial 
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cells. It is estimated that each crypt contains 250 cells (Li et al.  1994  )  and 2/3 of 
these cells undergo cell cycle every 12 h producing 13–16 cells/h which differentiate 
to give rise to cells of absorptive cell lineage, goblet cell lineage, and paneth cell 
lineage (Potten et al.  1997  )  (Fig   .  14.2 ).  

    14.4.2.1   Absorptive Cell Lineage 

  Pre - Absorptive cells : Stem cells at the base of the crypts proliferate to become pre 
absorptive cells which possess long microvilli with stem cell like features and are 
capable of mitotic division. These cells migrate to the middle of the crypt and gradually 

  Fig. 14.2     Intestinal crypt cell differentiation . Intestinal crypt cell located at the base (4th position) 
differentiates into precursor cells which later give rise to absorptive cell, goblet cell and paneth cell 
lineages       
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differentiate into brush border cells with elongated micro villi. Absorptive cells are 
completely differentiated from pre absorptive cells by the time they reach the top of 
the crypt. These absorptive cells are located at the top of the crypt and all along the 
villus are characterized by absence of secretory granules and prominent apical brush 
border with an average turnover time of 3 days (Cheng  1974a  ) . Certain adhesion mol-
ecules (Troughton and Trier  1969  ) , extra cellular matrix proteins (Lee and Leblond 
 1985a,   b  )  and Rac1 (member of family of GTP proteins) play an important role in the 
maintenance, differentiation and homeostasis of intestinal epithelium.  

    14.4.2.2   Goblet Cell Lineage 

  Pre - Goblet cells : Pre-goblet cells are found at the base of the crypt. They have 
stem cells features with limited mitotic capacity. Appearance of few small mucous 
granules within these cells denotes the sign of early differentiation of these cell 
types. Pre-goblet cells originate by their own mitosis and differentiation of stem 
cells. The outward migration of these cells towards mid crypt region in 12–24 h is 
characterized by accumulation of more supra nuclear cytoplasmic granules 
leading to the transformation of these cells to functional goblet cells (Cheng  1974a  ) . 
The turnover time of goblet cells is about 3 days. Such differentiated goblet cells 
migrate to the tip of the villus and are characterized by large group of mucus 
granules.  

    14.4.2.3   Paneth Cell Lineage 

 The number, morphology and presence of the paneth cells vary across different spe-
cies. They are present at the lower crypt region and constitute 3.3–7.5% of dueode-
nal, jejunal and ileal epithelium and arise from the pre paneth cells. 

  Pre - Paneth cells : These cells having stem cell like features are located at the base 
of the crypt adjacent to their ancestor stem cells. Upon migration towards the bot-
tom of the crypt, they differentiate to generate mature functional paneth cells (Cheng 
and Leblond  1974b  ) . Paneth cells are differentiated only from the stem cells and do 
not have mitotic activity (Troughton and Trier  1969  ) . They are characterized by 
secretory granules measuring 500 nm in the mid crypt and 3,000 nm in the bottom 
of the crypt. Turn over time of paneth cells is about 15 days and they migrate to the 
bottom of the crypt. 

  Cell lineages in colon : The ascending and descending portions of the colon show 
variations in the size of crypts, type of lining cells and dynamicity of the colonic stem 
cells (Chang and Nadler  1975  ) . In the ascending colon, stem cells are located in the mid 
crypt region migrating bidirectionally, while they are located at the base of the crypt in 
the descending colon with outward migration (Sato and Ahnen  1992  ) . More number of 
cells undergoes proliferation for a longer period in the ascending colon as compared to 
descending colon. which explains higher risk of colon cancer in the descending colon. 
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Colonic stem cells undergo differentiation to give rise to vacuolated columnar cell 
lineage, goblet cell lineage and deep crypt secretory (DCS) cell lineage (Fig.  14.3 ).    

    14.4.3   Ascending and Descending Colon Cell Lineage 

 These cells are located in the mid crypt region. They have an average cell cycle time 
of 19 h and the average number of proliferating cells are 90/crypt. A bidirectional 

  Fig. 14.3     Differentiation of crypt cells in ascending colon . Stem cells in the mid crypt region of 
ascending colon differentiate into precursors which mature to give rise to columnar cell, goblet cell 
and deep crypt secretory cell lineages       
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mode of migration is observed in the stem cells of ascending colon. Contrary to the 
ascending colon, stem cells of descending colon are localized at the base of the 
crypt. The average cell cycle time of these cells is 15 h (shorter than ascending 
colon) and the average number of proliferating cells are 190/crypt far exceeding the 
numbers in ascending colon. Due to the presence of much higher number of prolif-
erating cells, risk of colon cancer is much higher in the descending colon. 
Furthermore, in comparison to the cells of ascending colon, migration of stem cells 
of descending colon occurs in an outward direction (Sato and Ahnen  1992  ) . 

    14.4.3.1   Columnar Cell Lineage 

 Majority of the crypt base (80%) is constituted by vacuolated columnar cell lineage 
comprising of three types of cells namely pre vacuolated cells, vacuolated cells and 
columnar cells. Pre vacuolated cells develop from maturation of stem cells and 
accumulate granules to become vacuolated cells (Chang and Leblond  1971  ) . These 
are located upper and lower two thirds of crypts of ascending and descending colon. 
Gradually the vacuolated cells acquire striated border and differentiate into absorp-
tive columnar epithelium which takes about 3 days (Chang and Nadler  1975  ) . 
Columnar cells are found in the crypt top of both ascending and descending colon, 
and are less prominent than absorptive cells of small intestine.  

    14.4.3.2   Goblet Cell Lineage 

 Goblet cell lineage is characterized by mucous granules corresponding to 16% of 
crypt cell population (Chang and Leblond  1971  ) . Pre goblet cells are developed 
from maturation of stem cells and by their own mitosis. After they are formed, pre 
goblet cells move upward the crypt and acquire more number of granules to trans-
form into goblet cells in about 2 days (Chang and Nadler  1975  ) . Goblet cells are 
characterized by numerous large mucous granules.  

    14.4.3.3   Deep Crypt Secretory Cell Lineage 

 These cells are produced from stem cells located in mid crypt as pre deep crypt 
secretory cells. They differ from goblet cells in their ultra structure (Altmann  1983  )  
and undergo differentiation and maturation as they migrate to the bottom of the 
crypt which takes 14–21 days (Altmann  1990  ) .   

    14.4.4   Stem Cells Scattered Along GI Tract 

 The enteroendocrine cells that produce peptide or polypeptides are scattered in the 
gut epithelium throughout the intestinal tract. This cell types share a common stem 
cell origin with other GI stem cells (Karam and Leblond  1993d  ) . 
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  Pre - Enteroendocrine Cells : These are immature cells that originate mainly by self 
mitosis as well as by differentiation of stem cells and contain very few endocrine-
like secretory granules. They are located in the isthmus region of the gastric oxyntic 
glands (Karam and Leblond  1993d  )  and the base of the crypt in the epithelium of 
small intestine (Cheng and Leblond  1974b  )  and descending colon (Tsubouchi and 
Leblond  1979  ) . Differentiation and maturation of these cells occur during their 
migration and they are  fi nally transformed into mature enteroendocrine cells with 
the ability to produce more granules.  

    14.4.5   Stem Cells Associated to Lymphoid Follicles 

 These cells lack mitotic ability and originate from the stem cells located at the base 
of crypt in the small and large intestine. Upon generation, these cells undergo out-
ward migration, covering the lymphoid follicles as differentiated and matured anti-
gen-sampling M cells (Gebert and Posselt  1997  ).    

    14.5   Cell Signaling in Stem Cell Niche 

 The uniqueness of GI epithelium lies in the orderly maneuvering of cell prolifera-
tion, differentiation, and apoptosis along the crypt-villus axis. The intestinal crypt is 
maintained by stem cells and mainly acts as a proliferative compartment while the 
villus receives cells from multiple crypts to act as a differentiated compartment. In 
other words, intestinal crypt is monoclonal while the villus is polyclonal in nature. 
To maintain the integrity of the intestinal epithelium, stem cells require a protective 
niche to carry out their self renewal, proliferation and differentiation activities. This 
environment is maintained by the epithelial- mesenchymal crosstalk where prolifer-
ating and differentiating epithelial cells are surrounded by mesenchymal cells. 

 Since the GI tract is made up of an endodermally-derived epithelium surrounded 
by cells of mesoderm origin, cell signaling between these two tissue layers plays a 
critical role in coordinating the patterning and organogenesis of the gut and its 
derivatives. Over the years, although Wnt signaling appeared as a major force in 
controlling cell proliferation, differentiation and apoptosis along the crypt-villus 
axis, other factors like TGF-beta, homeobox, forkhead, hedgehog, homeodomain, 
and platelet-derived growth factor are also gaining importance contributing to stem 
cell signaling in the gastrointestinal tract (Yen and Wright  2006  ) . 

  Wnt signaling in GI stem cells : The highly conserved Wnt family of secreted mole-
cules constitutes Wnt signaling which is activated in the progenitor (transit-amplifying) 
region around the bottom of intestinal crypt and plays a key regulatory role for the main-
tenance of intestinal epithelium. Earlier studies indicate that stem cell proliferation in GI 
tract requires Wnt signaling but their survival and maintenance in the stem cell state, at 
least for short term seem to be Wnt independent (Pinto et al.  2003  ) . Gene expression 
pro fi ling of Wnt signaling pathway in the human colonic crypt demonstrated differential 
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expression of Wnt signaling molecules (Kosinki et al.  2007  )  (Fig.  14.4 ). Studies involving 
deletion of TCF4 (an end target of Wnt signaling), (Spradling et al.  2001  )  and/or a muta-
tion in the  b  catenin were shown to result in reduced proliferative capabilities of gastro 
intestinal stem cells and loss of entire crypts (Sancho et al.  2003  ) . While Wnt and Notch 
signaling were shown to coordinate GI epithelial cell homeostasis as shown in the 
Fig.  14.5 , Bmp signaling generated in the mesenchyme in turn was shown to inhibit 
stem cell self renewal through modulation of Wnt activity (He et al.  2004  ) .   

    14.5.1   The TGF- b  Signaling in GI Stem Cells 

 The TGF- b  superfamily signals are conveyed through serine/threonine kinase recep-
tors to speci fi c intracellular mediators known as the Smad proteins. It has been impli-
cated that TGF- b  pathway has a prominent role in GI progenitor cell formation and 
differentiation, disruptions of which leads to cancer. Studies have localized TGF- b  
type II receptors to both differentiated epithelial cells of the villi as well as undiffer-
entiated crypt cells. It is likely that TGF- b  signaling is important in transitioning of a 
stem cell into a proliferative progenitor phenotype in the crypts where as TGF- b  sig-
naling may be required for apoptosis at the villus tips to maintain the normal size, 
shape, and function of the polarized gut epithelium (Mishra et al.  2005  ) .  

    14.5.2   Hedgehog Signaling in GI Stem Cells 

 Hedgehog signaling, which occur in the differentiated region around the surface of 
intestinal villi, plays a key role in embryogenesis, maintenance of adult tissue 
homeostasis, tissue repair during chronic persistent in fl ammation, and carcinogenesis. 
Hedgehog family ligands (Sonic hedgehog [SHH], Indian hedgehog [IHH] and 

  Fig. 14.4     Wnt signaling . Binding of Wnt to its receptor results in activation of  b  catenin which 
enters the nucleus and combines with TCF/LEF transcription factors and induces transcription of 
genes involved in proliferation. APC protein complex inhibits  b  catenin activation causing its 
internalization and degradation       
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Desert hedgehog [DHH]), undergo auto processing and lipid modi fi cation to generate 
mature peptides (Katoh and Katoh  2005a  ) . SHH-dependent parietal cell prolifera-
tion is implicated in gastric mucosal repair during chronic  Helicobacter pylori  
infection (Katoh and Katoh  2005b  ) . Hedgehog signaling also promotes epithelial 
proliferation in the esophagus, stomach and pancreas, and is thus frequently acti-
vated in esophageal, gastric and pancreatic cancer due to transcriptional up regulation 
of Hedgehog ligands and epigenetic silencing of the  HHIP1  gene. Hedgehog signaling 
inhibits proliferation in the intestine and is rarely activated in colorectal cancer due 
to negative regulation by the canonical Wnt signaling pathway. 

 Constant proliferation of GI stem cells increase the chance of mutation driven 
expansion of the altered stem cells and tumor progression. This provides a ratio-
nale for targeting tumor stem cells as being the most effective way to treat cancers 
such as colon cancer. These ideas have drawn attention to pathways that control 

  Fig. 14.5     Wnt and Notch signaling cooperatively maintain homeostasis in GI epithelium . 
Wnt and Notch signalling cooperate to maintain GI stem cells. Controlled activation of Wnt and 
Notch signaling parways in a cooperative manner help to maintain normal GI stem cell homeosta-
sis, supplying progenitor/precursor cells which through further ampli fi cation can be terminally 
differentiated to absorptive and secretory cells       
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stem-cell proliferation as therapeutic targets. Among these, the TGF- b , Wnt, and 
Hedgehog pathways are of particular relevance to cancer. Recent data also suggest 
crosstalk between the Wnt and TGF- b  pathways. While the Wnt signaling imposes 
a proliferative phenotype in crypt stem cells, the linear migration, differentiation 
and compartmentalization of cells along the crypt–villus axis is controlled by 
TGF- b  and Wnt gradients. On the other hand, Hedgehog and Wnt counteract in the 
intestinal epithelium where Hedgehog inhibits Wnt signaling in intestinal stem or 
progenitor cells partly due to SFRP1 induction in mesenchymal cells. However, the 
mechanism of Wnt dependent Hedgehog signaling inhibition remains unclear 
(Katoh and Katoh  2006  ) .   

    14.6   Gastro Intestinal Cancer Stem Cells 

 Increasing evidence in the last 10 years, shows that Cancer Stem Cells (CSCs) 
may play a critical role in tumor development and progression. CSCs are de fi ned 
as a small subset of cancer cells that constitute a pool of self-sustaining cells 
with the exclusive ability to maintain the tumor. Currently, there are two hypo-
thetical explanations for the existence of CSCs suggesting that they may arise 
either from normal stem cells by mutation of genes that render the stem cells 
cancerous or from differentiated tumor cells that experience further genetic alter-
ations and, therefore, become dedifferentiated and acquire CSC-like features 
(Ariff and Eng  2005  ) . 

 In the last decade, evidence has become available to indicate that CSCs are not 
only involved in the maintenance of hematopoietic tumors, but also in various solid 
cancers, including those of the breast, brain, prostate, colon and liver (Burra et al. 
 2011  ) . CSCs have been identi fi ed based on the expression of various surface markers 
in different organs including CD 44 in stomach (Takaishi et al.  2008,   2009  ) , and 
CD44, EpCam, CD166 (ALCAM), Prominin-1 (CD133) in Colon (Dalerba et al. 
 2007 ; Ricci-Vitiani et al.  2007 ; O’Brien et al.  2007 ; Shmelkov et al.  2008 ; Vermeulen 
et al.  2008  ) .where as CD44, CD90, CD45, Prominin-1 in liver (Yang et al.  2008 ; 
Mishra et al.  2009  )  and CD44, CD24, antiepithelial-speci fi c antigen (ESA), 
Prominin-1 in pancreas (Li et al.  2007 ; Hermann et al.  2007  ) . In addition, it has been 
reported that intrahepatic stem cells, such as oval cells, can give rise to human hepa-
tocellular carcinoma (HCC) and cholangiocarcinoma (Alison  2005  ) . Recent litera-
ture also demonstrated presence of circulating cancer stem cells as diagnostic or 
prognostic markers (Nuh et al.  2010  ) . It is now thought that targeting cancer stem 
cells may permit effective therapy in the treatment of cancer. This view was sup-
ported by recent studies reporting that a combination of blocking both sonic hedgehog 
and mTOR (mammalian target of rapamycin) signaling and standard chemotherapy 
seemed to eliminate pancreatic cancer stem cells (Mueller et al.  2009  ) . However, 
much remains to be learned about these cancer stem cells and further research is 
needed to de fi ne the best markers and model systems used for studies of cancer stem 
cell populations in gastrointestinal tract.  
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    14.7   Potential Applications of Gastro Intestinal Stem Cells 

 Stem cells represent a potential source of gastro intestinal epithelial cells and 
hepatocytes for a wide range of applications such as therapeutic applications, under-
standing developmental biology, disease modeling and drug toxicity testing. The 
intestinal epithelium is continually replaced by local stem cells (MacDonald et al. 
 1964 ; Toner et al.  1971 ; Cao et al.  2011  ) . For the last 5 years, progress has been 
made in the identi fi cation and understanding GI stem cells, which have paved the 
way for exploring novel therapeutic approaches for gastrointestinal disease. 
However, further information regarding markers to assist in the identi fi cation and 
puri fi cation of stem cell populations and techniques to manipulate the cells both 
in vivo and in vitro is required. Because intestinal transplantation for patients still 
represents a signi fi cant challenge, it is hoped that in near future tissue-engineered 
intestine will provide a feasible option for patients with short bowel syndrome (Bitar 
and Raghavan  2012  ) . 

  Therapeutic application of stem cells in GI disease : Stem cells are gaining impor-
tance for the treatment of chronic liver diseases and in fl ammatory or immune-medi-
ated bowel diseases. Despite the fact that their self-renewing property is a high risk 
factor of carcinogenesis (Shackleton et al.  2009  ) , hematopoietic stem cells (HSCs) 
transplantation was demonstrated to result in the remission or reduction of the 
in fl ammatory bowel disease (Kountouras et al.  2011  ) , refractory Crohn’s disease 
(Cassinotti et al.  2008  )  and celiac disease (Al-toma et al.  2007  )  with negligible 
adverse effects. Another group suggested that hematopoietic stem cells transplantation 
(HSCT) can be considered a reasonable option for patients who have failed standard 
CD therapy (Atkins et al.  2012  ) . Recently the mesenchymal stem cell therapy is 
gaining importance in Crohn’s  fi stulas in humans and bene fi cial effects of mesen-
chymal stem cells (MSCs) was also demonstrated in animal models of gastric and 
colonic ulcers, and intestinal bowel disease (González et al.  2009  ) . Due to their lack 
of immunogenicity and ability to differentiate in to tissue speci fi c cell types, MSCs 
are being considered to have comparatively more potential for use in regenerative 
therapy in many GI diseases (Satija et al.  2009  ) . Similarly, autologous transplanta-
tion of bone marrow derived stem cells (BM-SC) improved liver function in patients 
with cirrhosis and hepatocellular carcinoma (HCC) after resection of liver prior to 
surgery (Ismail et al.  2010  ) . Treatment with G-CSF was found to induce the prolif-
eration of endogenous liver stem cells (Spahr et al.  2008  )  which can expedite the 
healing process. So far, most of the therapeutic trials in liver disease involving stem 
cells have limitations of small patient numbers and lack of controls. In liver 
diseases, the proof of ef fi cacy of stem cell based therapies requires well-designed 
and adequately powered clinical trials. Although induced pluripotent stem cells 
have the ability to differentiate into hepatocytes  in vitro  (Song et al.  2009  )  with 
demonstrated therapeutic ef fi cacy in animal models, their therapeutic application 
remains challenging. Another important observation with greater impact of GI stem 
cell therapy was in the area of gastrointestinal motility disorders, particularly those 
associated with the aganglionic gut (Metzger et al.  2009  ) . 



38114 Gastro    Intestinal Stem Cells

  Developmental Biology : Stem cells could be used to study early events in devel-
opment human gut epithelium. This may help researchers  fi nd out why some cells 
become cancerous and how some genetic diseases develop. This knowledge may 
indicate some clues about how these diseases may be prevented. Recently, mouse 
embryonic stem cells have been differentiated into gut-like structures which are 
useful to study the developmental mechanisms and diseases of the gastrointestinal 
tract (Torihashi et al.  2006  ) . 

  Drug Toxicity Screening : Stem cells grown in the laboratory may be useful for test-
ing drugs and chemicals before clinical trials. Stem cells could be directed to differen-
tiate into speci fi c cell types that are important for screening a speci fi c drug. In 
comparison to animal models, these cells may be more likely to mimic the response 
of human tissue to the drug being tested. This makes drug testing a more safer, cheaper 
and ethically more acceptable approach addressing the apprehension of those who 
oppose the use of animals in pharmaceutical testing. It has been reported that human 
pluripotent stem cells such as embryonic and induced pluripotent stem cells can be 
differentiated into intestinal tissue in vitro. These pluripotent derived human intestinal 
tissues could help in drug toxicity studies in gastro intestinal diseases  

    14.8   Future Perspectives 

 Over the recent past, remarkable progress has been made in understanding stem cell 
biology specially focusing on tissue-speci fi c adult stem cells. Although stem cells, 
have the regenerative potential for replacing cells lost in acute and chronic liver 
diseases and in fl ammatory or immune-mediated bowel diseases, the safety and 
ef fi cacy of stem cells in therapeutic applications needs careful evaluation. Long 
term follow up studies are required to rule out the risk of malignant transformation 
and/or pro- fi brogenic effects of stem cell based therapies for gastro intestinal disor-
ders. Future research may focus on

    (i)    identifying factors that control proliferation and differentiation of epithelial 
stem cells by establishing an in vitro model system  

    (ii)    replacement of degenerative human tissues by newly synthesized genetically 
identical equivalents eliminating the need for organ donation and implantation of 
prosthesis  

   (iii)    Major potential therapeutic bene fi t could arise from understanding mecha-
nisms underlying ordered cell proliferation and differentiation.  

   (iv)    Stem cell regeneration with respect to the complex environment of gut micro-
bial  fl ora.     

 Perhaps, insight into the protective mechanisms at play in the small bowel (which 
render it far less susceptible to tumorigenesis than the large bowel) will bring forth 
new therapeutics for gut cancers. Adopting scienti fi c methods based on randomized 
and controlled trials should produce the necessary results on the real therapeutic 
role of stem cells.      
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  Abstract   Our knowledge of carcinogenesis has tremendously improved through 
decades of research. However, till date the therapeutic refractoriness and tumor 
dormancy that leads to cancer recurrence after therapy presents formidable obsta-
cles through severely limiting the successful treatment outcomes for majority of 
cancers. Signi fi cant advances made recently in the cancer stem cell (CSC) biology 
 fi eld have provided new insights into cancer biology that are radically changing 
both our understanding of carcinogenesis and cancer treatment. The cancer stem 
cell hypothesis provides an attractive cellular mechanism to account for the thera-
peutic refractoriness and dormant behavior exhibited by many of these tumors. 
Direct evidence for the CSC hypothesis has recently emerged through their 
identi fi cation and isolation in diverse tumor types. These tumor types appeared to be 
hierarchically organized and sustained by a distinct fraction of self-renewing and 
tumor-initiating CSCs. Such illustration of the CSC paradigm in diverse tumor types 
necessitates reassessment and improvisation of the current therapeutic strategies 
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originally developed against the homogenous tumor mass; now to speci fi cally target 
the CSC population. Preliminary  fi ndings in the  fi eld indicate that such speci fi c 
targeting of CSCs may be possible.  

  Abbreviations  

  CSCs    Cancer stem cells   
  NSCs    Normal stem cells, HSCs, Hematopoetic stem cells   
  RB    Retinoblastoma   
  LRCs    Label retaining cells   
  EMT    Epithelial to mesenchymal transition   
  NOD/SCID    Non-obese diabetic/severe combined immunode fi cient   
  SP    Side population   
  MDR    Multidrug resistance         

    15.1   Introduction 

 Cancer pathogenesis has been recognized since a long time to be multi-step process 
at the phenotypic and genetic levels. Several factors including non-lethal triggers 
(chemical carcinogens, radiation and viral infections) or inherited/ de novo  genetic 
alterations in the form of mutations and other genetic rearrangements underlie this 
multi-step progression. Such changes drive carcinogenesis through activating 
growth promoting oncogenes, altering apoptosis regulating genes and/or inactivating 
tumor suppressor genes that culminate in a loss of cell cycle regulation and unregu-
lated clonal expansion of cells. Further additional and diverse mutation hits in such 
cell clones results in a malignant neoplasm characterized by functional heterogene-
ity (Cotran  1994  ) . Further the cellular content of tumors has also been speculated to 
be heterogeneous with only a small fraction of whole tumor driving its generation 
and disease progression. Supporting this hypothesis, the cancer stem cell    (CSC) 
model posits that many human malignancies consist of two functionally distinct cell 
types: (i) CSCs that are self-renewing cells with the capacity to initiate, sustain, and 
lead to disease progression; and (ii) non-self-renewing progeny cells, derived from 
CSCs through differentiation that make up the bulk of the tumor and account for 
disease symptomatology (Al-Hajj et al.  2003 ; Bonnet and Dick  1997 ; Cobaleda 
et al.  2000 ; Lapidot et al.  1994 ; Bapat  2009  ) . 

 Although the concept of CSCs was postulated decades ago, the  fi rst evidence for 
their existence was provided through clonal assays in acute myeloid leukemia    
(AML), wherein the similarity was extended to the hierarchical organization of 
leukemic cells in much the same manner as normal hematopoietic tissues (Lapidot 
et al.  1994  ) . CSCs are thought to sit at the apex of cellular hierarchy within a tumor 
and may be responsible for disease initiation and for relapse. By analogy with normal 
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hematopoietic stem cells (HSCs), they are predicted to be relatively quiescent and 
resistant to conventional chemotherapy. 

 The above study paved the path to further isolation of CSC fractions from solid 
tumors. Today compelling data support the CSC model in various human cancers 
including breast, brain, colon, pancreas, prostate and ovary (Bapat  2009 ; Li et al. 
 2007 ; O’Brien et al.  2007 ; Ricci-Vitiani et al.  2007 ; Singh et al.  2004 ; Yilmaz et al. 
 2006  ) . The main criteria that formed the basis of characterization of CSCs included 
immunophenotyping, clonal assays, tumor regeneration ability in animals and gene 
expression patterns. In each case, CSCs were identi fi ed as a rare cellular fraction 
within tumors, which on transplantation into immunocompromised mice generated 
new tumors with similar pathological features as that of the original tumor. 
Additional studies have also demonstrated the presence of minor population of 
‘stem-like’ cells in well-established cancer cell lines (Hirschmann et al.  2004 ; 
Setoguchi et al.  2004  ) . 

 Further characterization has also revealed CSCs to be therapeutic refractory and 
crucial determinants of tumor recurrences. Thus, for achieving long-term disease 
free survival ef fi cient cancer therapy should be able to eradicate CSC fraction. 
However targeting this CSC fraction requires their detailed characterization in terms 
of their genotype, phenotype, epigenetic and functionality. The current chapter pro-
vides an overview of the emerging evidences and concepts in CSC biology.  

    15.2   Concept of Carcinogenesis    Based on Cancer Stem Cells 

 Tumor formation is a complex multi-factorial process in fl uenced by myriad cues 
including host responses elicited on transformed cells or their products, doubling 
time of tumor cells, tumor – niche interactions, angiogenesis, etc. It is evident that 
by the time a tumor is detected, it has already undergone several events most 
signi fi cantly those in fl uencing the cell cycle. Thus, it is estimated at initial diagno-
sis, a tumor weighing around 1 g portion has probably undergone approximately 30 
population doublings that results in generation of 10 9  cells (Cotran  1994  ) . The cell 
cycle of tumors, like that of normal cells, has same  fi ve phases; G0, G1, S, G2, and 
M. With expanding cell populations during the disease progression a higher per-
centage of tumor cells either leave the proliferative/replicative pool by reversion to 
G0 phase or divide at very slow rate, while the remaining differentiate and latter 
perish (Cotran  1994  ) . 

 In the context of regenerative tumor hierarchies, the initial trigger/causative trans-
formation event could occur in a proliferation competent adult stem cell. Subsequent 
mutational hits in the same cells are necessary to make it competent enough to over-
come the natural tissue elimination process. Additionally, a differentiated cell through 
gain of self-renewal capacity as a consequence of mutation hits   , can also initiate 
neoplastic growth. In a majority of cases, tumors regenerated from such mutant cells 
through repetitive divisions, appear to be predominantly monoclonal (Cotran  1994  ) . 
During disease progression, additional mutations occur in the tumor cells, contributing 
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to poor prognostic features, as evident in the mutation screening studies of  RB1  in 
Indian patients at L.V. Prasad Research Institute (Kiran et al.  2003  ) . Distinct prolif-
erating and differentiated cellular compartments can be identi fi ed in majority of 
tumor types (Cotran  1994  ) . The proliferating fraction (cells in S, G2 and M phase) 
within tumors has a profound effect on their susceptibility to cancer chemotherapy as 
most anticancer drugs act only on proliferating pool. In this context, a tumor with a 
consistent cellular fraction that exit the cell cycle and are maintained in the G0 phase 
or are slowly growing will be relatively refractory to such treatments (Cotran  1994  ) . 
It is been demonstrated that CSCs occupy this quiescent cellular fraction that is 
maintained in the G0 phase (Kusumbe and Bapat  2009  ) . 

 Further series of investigations in the  fi eld identi fi ed phenotypic and functional 
similarities between normal stem cells    (NSCs) and CSCs. Since NSCs and CSCs 
share the ability to self-renew, the machinery for self-renewing cell division is also 
likely to be similar in these two cell types. Accordingly, evidence indicating that 
several pathways that are classically associated with NSCs including Sox2, Nanog, 
Oct4, Wnt, Notch, Sonic Hedgehog, BMI-1 and EZH2 (Duncan et al.  2005 ; Hopfer 
et al.  2005 ; Katano  2005 ; Kolligs et al.  2002 ; Rask et al.  2003 ; Reya et al.  2001 ; 
Sanchez et al.  2005 ; Wilson and Radtke  2006  )  also regulate self-renewal in CSCs. 
Akin to NSCs, CSCs possess elongated telomeres, increased telomerase activity, 
express ABC transporters which confers resistance to chemotherapeutic drugs, pro-
liferation capability in absence growth factors, trigger neo-angiogenesis by secret-
ing angiogenic factors and express receptors and adhesion molecules (such as 
CXCR4, LIF-R, c-met, c-kit) associated with homing and metastasis (   Duncan et al. 
 2005 ; Katano  2005 ; Kolligs et al.  2002 ;    Peeters et al.  2006 ; Zagzag et al.  2005  ) . 

 Cellular heterogeneity    within tumor tissues has been one of the initial observa-
tions in the study of cancer, and the cellular mechanisms underlying such tumor 
heterogeneity has remained a subject of intense research in the  fi eld. In such a het-
erogeneous tumor, mass identi fi cation of the cell type capable of sustaining the 
growth of neoplasm clone presents a major problem. Although there are enough 
evidences that indicate virtually all cancers are clonal in origin and represent the 
progeny of a single cell (Fialkow  1976 ; Fearon et al.  1987  )  what has remained a 
fundamental problem in cancer is which cells within the tumor have the ability to 
seed another tumor? The concept that not every cell within the tumor clone pos-
sesses ability to seed another tumor stems from the following observations. In 1973, 
McCulloch and colleagues observed that only 1 in 100 to 1 in 10,000 murine 
myeloma cells had the ability to form colonies  in vitro . Similarly, when several 
thousands of cells obtained from primary solid tumors were seeded in soft-agar, the 
colony forming ef fi ciency was found to be between 0.1 and 0.5 % (Hamburger and 
Salmon  1977  ) . Additionally, a series of transplantation experiments demonstrated 
that autologous injection of tumor cells subcutaneously requires at least 106 cells to 
initiate tumor formation (Southam and Brunschwig  1960  ) . Furthermore, pioneering 
studies of spontaneous mouse leukaemias and lymphomas revealed that the fre-
quency of tumour-propagating cells ranged from 1 % to the majority of cells (Hewitt 
 1958  ) . Thus, these observations raise a fundamental question: Why not every cell 
within a tumor mass is capable of initiating a new tumor? At least two models have 
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been proposed to account for the cellular heterogeneity and inherent differences in 
tumor-regenerating capacity: stochastic and hierarchy model (Fig.  15.1 ).  

    15.2.1   Stochastic    Model 

 The stochastic model postulates that the heterogeneous cellular content of tumors is 
equivalent at a biological level but differential at behavioral level. Since behavior is 
in fl uenced by extrinsic as well as intrinsic factors, it remains largely unpredictable. 
Consequently cells with clone/tumor initiating capability may not be enriched. 
Thereby, the stochastic model proposes that all the cells have equal but low propen-
sity of tumor formation (Nowell  1976 ; Kruh  2003  ) .  

    15.2.2   Hierarchy    Model 

 The hierarchy model on the other hand proposes that tumors are heterogeneous. 
Further only rare, limited number of cells within a tumor actually have the clono-
genic potential to inititate tumor regeneration. Thereby, while according to stochastic 

  Fig. 15.1    Schematic illustrating the two models: stochastic model and hierarchy model for 
accounting tumor cellular heterogeneity       

 



392 M.M.S. Balla et al.

model, the choice of cells initiating a new tumor is through chance, in the hierarchy 
model it is a pre-ordained event. As per the hierarchy model there exist a distinct 
functional heterogeneity among the cells that comprise a tumor – only few cells 
within the tumor are actually clonogenic and tumorigenic (now termed as CSCs), 
while the bulk majority is the non-tumorigenic fraction. Current emerging evidence 
strongly supports the hierarchy model (Lapidot et al.  1994 ; Bapat  2009  ) . 

 Although the CSC hypothesis provides an attractive model to account for the 
cellular heterogeneity within tumors it does not identify the cellular origin of CSCs. 
Three possible origins of CSCs as listed below have been suggested (Box.  15.1 ); 
however till date their exact cellular origin remain unproved. 

    Box 15.1 Cellular Origin of CSCs 

     Mutations in stem cells leading to uncontrolled self-renewal  
 Adult stem cells initially seemed to be the most probable origin for CSCs 

due to following reasons:

   (i)     These are the only cells that persist for long periods upto several decades 
within a tissue thereby allowing the accumulation of series of mutations;  

   (ii)    Since stem cells have indigenous machinery for maintaining the self-renewal 
state, it is simpler to continue with an ongoing program than turning it on in 
more mature cell types. Consequently fewer mutational hits would be 
required transform stem cells compared to their mature counterparts.      

   Mutations in early progenitors leading to acquisition of a dysregulated self-
renewal state  

 Although stem cells seem to be the most probable candidates for CSC 
origin, it has been shown that CSC can also arise from early progenitors. The 
latter are derived from original stem cells that have undergone minimal num-
ber of divisions, and hence they have a high possibility of acquiring stem cell 
properties with minimal transformations. The early progenitor cell may be 
transformed either by acquiring mutations that leads to self renewal like stem 
cells or by inheritance of existing mutations in stem cells such that minimum 
(one or two) mutation event/s are required to mediate their transformation.  

   De-differentiation of late transit amplifying or differentiated somatic cells 
into immortal stem cells  

 Committed progenitors and differentiated cells would necessitate several 
mutational hits for the achievement of self-renewal and immortal state as 
compared to other cells in the hierarchy hence remained the least speculated 
origin for CSCs. However, recent evidences suggest that even committed pro-
genitors can undergo de-differentiation and reacquire the property of self-
renewal to give rise to stem like cells.    
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       15.3   Isolation and Characterization of CSCs 

 Characterization of CSCs from tumor tissue can be viewed as the  fi rst step on a 
roadmap leading to identi fi cation of therapeutic targets against these cellular entities 
towards facilitating their eradication. Therefore all efforts should now be focused on 
their appropriate identi fi cation and isolation of CSCs from tumor tissue. However, as 
tumor tissues are heterogeneous containing mixture of self renewing CSCs, tran-
siently amplifying progenitors and proliferative cells that can undergo differentiation 
resulting in various cell types (Jordan et al.  2006 ; Krivtsov et al.  2006  )  identi fi cation 
and isolation of CSCs is a challenging problem in cancer biology. 

    15.3.1   Surface Marker Expression Analysis 

 Stem cells from somatic tissue have been best characterized in the hematopoietic 
system, based upon the cluster of differentiation (CD) cell surface marker expres-
sion. Further easy accessibility of blood forming cells and availability of wide range 
of well-characterized  in vitro  and  in vivo  functional assays provides additional tech-
nical advantages. Thus it is not surprising that  fi rst experimental characterization of 
CSCs came from acute myeloid leukemia. Speci fi cally this study demonstrated that 
a rare subset of cells expressing a similar surface marker expression (CD34 + /CD38 − ) 
as of primitive bone marrow cells was the only subset endowed with clonogenic 
potential within total AML population (Bonnet and Dick  1997 ; Cobaleda et al. 
 2000 ; Lapidot et al.  1994  ) . This approach was further extended to solid tumors such 
as breast, brain, prostrate lung, pancreas, liver and colorectal tumors (Li et al.  2007 ; 
Ricci-Vitiani et al.  2007 ; Singh et al.  2004 ; Al-Hajj et al.  2003  )  where cell surface 
markers    of normal stem cells formed the basis of CSCs identi fi cation and character-
ization (Table  15.1 ).  

 Such phenotypic identi fi cation of CSCs from diverse tumor types through 
exploiting NSC markers suggests that current strategy for CSC identi fi cation from 
its respective cancer tissue mainly relies on surface marker expression analysis. 
However, applicability of this strategy in tumors from organs such as ovary where 
NSCs remain elusive and their markers as yet unidenti fi ed demands an alternative 
strategy to identify appropriate CSC markers. Thus several classical generic stem 
cell markers including CD133, c-kit, CD44, CD24, etc. have been proposed as 
markers for ovarian CSCs. 

 The validity of such an approach however is not certain in all the cases. Several 
CSC markers being applied currently for isolation of CSCs are not known to be 
expressed in the corresponding normal tissue, but may be present in other tissues. 
In a recent study, we analyzed expression of several such surface markers including 
CD133    which currently represents the most widely reported CSC marker. However, 
in our study, characterization of CD133 expressing cells from ovarian tumors 
revealed their identity as non-tumorigenic endothelial precursors (Kusumbe et al. 
 2009  ) . Moreover, existence of phenotypic heterogeneity within CSC population has 
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also been documented (Visvader and Lindeman  2008  ) . Thus, although application 
of surface markers provides an important and convenient tool for CSC identi fi cation, 
these drawbacks demand switching to functional de fi nitions in CSC identi fi cation 
schemes.  

    15.3.2   Clonogenic Assays 

 These assays were  fi rst carried out by Puck and Marcus  (  1956  )  for NSCs; the  fi rst 
attempt of agar assay on primary tumor cells were done with mouse myeloma (Puck 
et al.  1956 ; Ogawa et al.  1973  )  following which human myeloma and other tumor 
cells were also culture (Park et al.  1980 ; Courtenay and Mills  1978 ; Courtenay et al. 
 1978 ; Hamburger and Salmon  1977  ) . These clonal assays    paved the path towards 
establishment of a stem cell model of human tumor growth. The read-out is number 
of clone forming cells within a population of tumor cells thus providing the evi-
dence of CSCs in the heterogeneous population of tumors. A long-term culture 
assay (where self renewal and clonogenic capacity forms the basis of assay) denotes 
the classical approach for HSC identi fi cation (Moore  1991  ) . Eventually, clonogenic 
assays were used for clinical drug testing and pre clinical drug screening (Park et al. 
 1980 ; Courtenay and Mills  1978 ; Courtenay et al.  1978  ) . 

   Table 15.1    Surface markers identi fi ed in various tumors   

 Tumors/cell lines  Markers/stem cell like properties characterized  Ref. 

 Acute myeloid 
leukaemia 

 CD34  +   / CD38  −  , CD90  −  , ckit  −   ; 
Tumorogenic  in vivo  

 Lapidot et al.  (  1994  )  

 Multiple myeloma  CD138  −  ; Tumorogenic  in vivo   Matsui et al.  (  2004  )  
 Brain tumors  CD133  +  /Nestin  +  ; Neurosphere 

forming capability, 
Tumorogenic  in vivo  

 Singh et al.  (  2004  )  

 Prostrate  CD133  +  , CD44  +  ,  a 2 b 1 integrin  high , spheres 
formed, SMO  +  ; Tumorogenic  in vivo  

 Collins et al.  (  2005  )  

 Breast  CD44  +  /CD24  −  , Oct4 ; Mammospheres 
formation observed, Tumorogenic 
 in vivo  

 Al-Hajj et al.  (  2003  )  

 Hepatocellular  CD133  +    Suetsugu et al.  (  2006  )  
 Lung  Sca1  +  , CD45  −  , CD31  −,   CD34  +    Kim et al.  (  2005  )  
 Pancreas  CD44  +  /CD24  +  /ESA  +  , CD133  +  /ABCG2; 

Tumorigenic  in vivo  
 Li et al. ( 2007 ) 

 Colorectal  CD133  +   ; Colon spheres, 
Tumorogenic  in vivo  

 O’Brien et al.  (  2007  )  

 Melanoma  CD20  +  ; Spheroid formation is observed  Grichnik et al.  (  2006  )  
 Ovarian cancer  CD44  +  , Oct3/4, Nanog, EGFR, Vimentin/

Snail; Tumorogenic in vivo 
 Bapat et al.  (  2005  )  

 Head and neck cancer  CD44  +  ; Tumorogenic  in vivo   Prince et al.  (  2007  )  
 Retinoblastoma  ABCG2, MCM2, CD44  +  , CD133  −  ,CD90  −  , 

Oct4, Nanog 
 Balla et al.  (  2009  )  
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 Adaptation of a similar approach should also enable identi fi cation and isolation 
CSCs from tumor tissue, as this is the only fraction endowed with self-renewal and 
inde fi nite proliferation potential. Such LTSC based existence of CSCs was  fi rst 
demonstrated in ovarian cancer (Bapat et al.  2005  )  in which, from a single multilay-
ered layered spheroid derived from ascites of a Grade IV ovarian serous adenocar-
cinoma patient several single cell clones were isolated and subjected to long-term 
culture assay. Subsequently 19 cell clones formed proliferative colonies in this assay 
thereby claiming their CSC identity. Detailed marker analysis and functional assays 
con fi rmed this identity in two cell clones; later other three cell clones were demar-
cated as pre-tumorigenic CSCs (Wani et al.  2006  )  while remaining 14 were charac-
terized to be non-tumorigenic endothelial stem cells (Kusumbe et al.  2009  ) .  

    15.3.3   Side Population    Analysis 

 An elegant strategy to isolate stem cells has been designed based on their ability to 
ef fl ux dyes such as Hoechst 33342 and Rhodamine 123 from their cytoplasm 
(Decraene et al.  2005 ; Larderet et al.  2006 ; Challen and Little  2006  ) . The isolation 
and characterization of cells by this method was initially described by Goodell et al. 
using mouse bone marrow (Goodell et al.  1996  ) . When entire bone marrow popula-
tions were stained using Hoechst 33342 and observed simultaneously for  fl uorescence 
at two emission wavelengths (blue 450 nm and red 675 nm), cells with maximum 
ef fl ux capability segregated as a side-population (SP) next to Hoechst bright popu-
lation (Fig.  15.2 ). This SP fraction expressed stem cell markers (Sca1 +  Lin −/low ) and 
was capable of reconstituting the bone marrow of irradiated mice upon transplanta-
tion (Challen and Little  2006  ) . Further the degree of ef fl ux correlated well with the 
stemness state. Cells exhibiting the highest ef fl ux are more primitive than cells that 
exhibit dye uptake and more differentiated (Goodell et al.  1996  ) .  

 Hoechst 33342 is known to bind to the A-T-rich regions of the minor DNA groove, 
and the intensity of its  fl uorescence is a measure of DNA content, chromatin struc-
ture and cell cycle (Goodell et al.  1996  ) . This ef fl uxing mechanism demonstrated by 
SP has been proposed to result from expression of multidrug resistance    (MDR) pro-
teins, such as ABC transporters, that can actively pump several drugs out of a cell. 
This hypothesis was elucidated by using ATP-binding cassette inhibitor verapamil 
which showed that Hoechst 33342 exclusion by SP cells decreases on blockage of 
ATP-binding cassette transmembrane protein. However, MDR1 is found to be 
expressed by 65 % of bone marrow cells while the SP fraction represents only 0.1 % 
of total bone marrow population (Goodell et al.  1996  ) . Thus the MDR expression 
alone cannot identify and distinguish SP cells. Further studies demonstrated breast 
cancer resistance protein to be a more speci fi c marker for SP cells from breast tumors; 
in addition also the integrin  b  

3
  expression correlated well with SP phenotype 

(Umemoto et al.  2006 ). The dye ef fl ux strategy was  fi rst used to isolate the HSCs and 
latter was extended identi fi cation NSCs from various organs. SP has also been 
identi fi ed in cancer cell lines and diverse tumor types including neuroblastoma, 



396 M.M.S. Balla et al.

Spheroid formation
assay

Surface Marker
based sorting

Side population
sorting

Tumor formation

UV blue

Hoechst 33342
staining

Soft agar assay or colony formation in
adherent surface

E
x 

vi
vo

 a
n

d
 in

 v
iv

o
 a

ss
ay

s 
fo

r 
ch

ar
ac

te
ri

za
ti

o
n

 o
f 

C
S

C
s

Culture under non-adherent and growth
factor reduced conditions

Staining for CSC marker

SP

U
V

 r
ed

Injection

CSC

1° 2° 3°

Tumor

non-CSC

Colony formation
assay

  Fig. 15.2    Schematic representing the current ex vivo and in vivo strategies adapted for character-
ization of CSCs from blood cancers and diverse solid tumors. Cell surface marker expression 
based FACS sorting provides the most convenient tool for CSC isolation. However recent studies 
illustrating existence of phonotypical heterogeneity demands further validation of this approach. 
The non-adherent sphere assay predicts that CSC can be serially passaged for many cycles and that 
it generates a tumor sphere resembling the primary sphere in each case. Colony formation assays 
are also the readout of CSC activity. However CSCs and progenitors cannot be distinguished in 
these clonal assays. Side population assessment of the is based on the stemness speci fi c functional 
ability of CSCs to actively ef fl ux dyes such as Hoechst 33342 out of their cytoplasm due to the 
expression of MDR proteins, such as ABC transporters. The gold-standard functional assay for 
evaluating the presence of CSCs is transplantation of sorted subpopulations into immunocompro-
mised mice models       
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melanoma, retinoblastoma, ovarian, hepatocellular carcinoma, and glioma (Chiba 
et al.  2006 ; Grichnik et al.  2006 ; Kondo et al.  2004 ; Szotek et al.  2006  ) .  

    15.3.4   Tumor Forming Ability in Animals 

 The most convincing demonstration of CSC identity comes from serial transplanta-
tion of cellular populations into animal models, necessitating development of ortho-
topic transplantation assays   . CSC-containing population is recognized from their 
capability to re-establish the phenotypic heterogeneity evident in primary tumours, 
and exhibit self-renewing capability on serial passaging. Even in the  fi rst studies 
with leukemia in 1997, the  fi nal validation of CSCs came from transplantation of a 
minority of undifferentiated cells isolated based on surface expression from AML 
patients into NOD/SCID (non-obese diabetic/severe combined immunode fi cient) 
mice. This transplantation proved these cells to be the only subset within the total 
population capable of reconstituting tumors. Moreover, the resulting tumors included 
a range of more differentiated cell types as in the original human disease (Bonnet 
and Dick  1997  ) . The same model CSCs were further used for characterization of 
several solid cancers. The  fi rst report for identi fi cation of CSCs in solid tumors 
came in breast cancer in which human breast cancer cells were transplanted in Non 
Obese Diabetic/Severe Combined Immunode fi ciency (NOD/SCID) mice. It was 
found that as few as 100 CD44 high  CD24 −/low  cells were able to form tumors in mice, 
whereas 10,000 of cells with alternate phenotypes failed to form tumors (Al-Hajj 
2003). The tumorigenic subpopulation could be serially passaged; each time cells 
within this phenotype generated new tumors with additional CD44 high /CD24 −/low  
tumorigenic cells as well as the phenotypically diverse mixed populations of nontu-
morigenic cells present in the original tumor. However recently there have been 
signi fi cant technical issues with this assay system mainly due incomplete immu-
nosuppression   . Additionally, species-speci fi c differences in cytokines or growth 
factors present a confounding issue. Even in syngeneic models, implantation of 
tumor cells into a normal niche does not precisely recapitulate the tumor microen-
vironment itself (Visvader and Lindeman  2008  ) .   

    15.4   Cancer Stem Cells in Retinoblastoma    

    15.4.1   Introduction 

 RB is the most common intraocular tumor of childhood. It occurs both in genetic 
(40 %) and sporadic forms (60 %). Advances in treatment, which includes recent 
adjuvant chemotherapy improved mortality of 100–90 % survival. There are reports 
showing 50 % cellular viability with retinocytoma like areas post chemotherapeutic 
regime (unpublished data). These features have raised questions about persistence 
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or propagation of CSCs in RB tumors. It is very useful to have better information of 
the heterogeneity of the tumor, in order to understand tumor progression, metastasis 
and this will be helpful in designing better therapy for future treatments.  

    15.4.2   Phenotypic Characteristics    

  RB  is a tumor suppressor gene that regulates cell cycle progression and prolifera-
tion. If both alleles of the  RB  on chromosome 13 are mutated in a single retinal cell 
it results in retinoblastoma (Knudson  1971 ; Kyritsis et al.  1984  ) .  

    15.4.3   Cell of Origin 

 In order to study the cell of origin, previously many investigators have explored the 
expression of neuronal, glial and other differentiated cell markers through immuno-
histochemical studies. 

    15.4.3.1   Neuronal Cell Markers    

 Neuron Speci fi c Enolase ( g - g  NSE) a neuronal cell lineage marker is expressed in 
the normal retina in neurons, Muller cells, inner segments of cone cells, bipolar 
cells, outer and inner nuclear layers (Terenghi et al.  1984  ) . NSE was also shown to 
be expressed in aqueous humor of retinoblastoma cases and the levels of expression 
range from 619 to 60,000 ng/ml (Kyritsis et al.  1984  ) . In retinoblastoma eye balls, 
most of the small round tumor cells express NSE and the expression in rosettes is 
contradictory as some reports have shown to be weakly expressed, but others have 
shown strong expression (Molnar et al.  1984 ; Craft et al.  1985 ; Messmer et al. 
 1985  ) . In tumors of neuro ectodermal origin like retinoblastoma, neuroblastoma and 
medulloblastoma expression of various enolases (i.e.  a -  a ,  a - g  and  g -  g ) is seen. 
Based upon this and other markers investigators hypothesized that these all tumors 
have similar origin (Terenghi et al.  1984  ) . N-CAM a neural cell adhesion molecule 
that appears to be involved in the regulation of adhesive interaction during neuronal 
differentiation was also shown to be expressed in all tumors (Antunez et al.  1991  ) .  

    15.4.3.2   Glial Cell Markers 

 The mature glial cell markers    glial  fi brillary acidic protein and S-100 are frequently 
associated with retinoblastomas. Kivela et al reported that all undifferentiated cells 
contain both NSE and GFAP, where as differentiating neuronal and glial-like cells 
gradually lose one marker and selectively express a marker that correlates with their 
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morphology (Kivela and Virtanen  1986  ) . In the normal retina, most of the glial cells 
in the ganglion cell layer and Muller cells express GFAP, S-100 and vimentin 
(Kivela  1986  ) . It was reported that tumors with choroidal invasion lack expression 
of GFAP (Kivela  1986  ) . In most of the reports it was shown that GFAP and S-100 
was expressed in perivascular glial cells that were interpreted as reactive astrocytes. 
In Flexener – Wintersteiner rosettes and in the areas of photoreceptor like differen-
tiation, glial cells reactive for LN-1, S-100, A 

2
 B 

5
  and GFAP were demonstrated 

indicating differentiation along a glial direction in the more mature parts of retino-
blastoma. GFAP and rhodopsin expression was negative in each of the ocular and 
pineal tumor in trilateral retinoblastoma. In one of six retinoblastoma tumors, 
rhodopsin is expressed in rosettes (Rodrigues et al.  1986  ) .  

    15.4.3.3   Other Cell Markers 

  S-antigen     expressed in normal photoreceptors shows several different patterns of 
S-antigen immunoreactivity in retinoblastomas indicating normal photoreceptor 
elements being incorporated into the growing tumor. In some cases this marker was 
associated with  fl eurettes and also isolated tumor cells and in ocular and pineal 
tumors of trilateral retinoblastoma (Nakajima et al.  1986  ) . This marker is absent in 
undifferentiated retinoblastomas (Molnar et al.  1984  ) . Expression of this antigen in 
retinoblastoma may be used to assess the degree of tumor differentiation. Another 
marker expressed in outer segments of photoreceptor elements is  Opsin . This 
marker was shown to express in the  fl eurettes and rosettes of differentiated tumor. 
 Lactate dehydrogenase  is the isoenzyme which mostly concentrates in those 
regions where there is relatively high rate of metabolism. In the retinoblastoma 
tumors well differentiated areas was shown to be highly expressing this marker than 
undifferentiated tumors (Schroder  1987  ) .  Vimentin  is expressed on muller cells in 
normal human retina, and on stromal cells, near the perivascular glial cells and reac-
tive glial cells or muller cells in retinoblastomas.  Neuro fi lament protein  was shown 
to be expressed in axons of ganglion cells and in tumor-associated Flexener and 
Wintersteiner rosettes. Among the neuro fi lament triplet proteins NF68 and NF160, 
but not NF210 was expressed (Sawa et al.  1987  ) .  Inter photoreceptor retinoid 
binding protein  was shown to be expressed in retinoblastoma tumors suggesting 
that the tumor also contains partial photoreceptor like differentiation.  Leu – 7  is a 
marker for neural bipolar cells and was normally expressed in well differentiated 
glial cells that were interpreted as reactive and not neoplastic cells (Perentes et al. 
 1987  ) . If this marker is expressed, it was shown to be expressed in perivascular glial 
cells along with GFAP. Scattered cytoplasmic staining of  cGMP  and  cyclic GMP 
phosphodiesterase  was expressed in tumor cells of retinoblastoma. Certain  lectins  
were shown to be expressed in retina and retinoblastoma tumor; this homology sug-
gests biochemical as well as structural similarities between these tissues (Rodrigues 
et al.  1986  ) . Onco foetal proteins like   a -Feto protein  and  carcino embryogenic 
protein  were shown to be present in the serum of retinoblastoma patients, but these 
proteins were not detected in the tumor cells. 
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 The diversity of expression of several markers has, not surprisingly, led to disparate 
opinions regarding RB’s cell of origin. Many believe it is a primitive multipotential    
cell, others suggest it is a cell capable of only bipotential differentiation (Photoreceptor 
and glial differentiation). Some investigators propose the tumor to be of strictly 
neuronal origin. Still others have proposed that the cell of origin is a differentiated 
photoreceptor or more speci fi cally, a cone cell. 

 In the early days, Flexner and Wintersteiner hypothesized that photoreceptors 
might give rise to retinal tumors. This assumption was based on the morphology of 
rosettes observed in tumor samples (Cotran  1994  ) . Early diagnosis of this tumor and 
availability of human samples is very rare; investigators have concentrated in creating 
animal models to study this disease. In the 1960s intraocular injection of adenovirus 
12 produced retinal tumors in young rats, mice and baboons. These studies revealed 
that viral oncoproteins    blocked Rb and its family members p107, p130 and many 
other proteins (Mukai and Kobayashi  1973 ; Ogawa et al.  1966,   1969  ) . Later heri-
table retinal tumor mouse models were generated (LH-beta TAG mice) by expres-
sion of a viral oncogene simian virus 40 T-antigen. The tumors that were resulted by 
this method were comparable to human tumors in histological, ultra structural and 
immunohistochemical characteristics (Windle et al.  1990  ) . Recently conditional 
knockout mouse models (Rb (−/−); p107 (+/−); p130 (−/−)) were generated and in 
these models differentiated horizontal interneurons re-entered the cell cycle, clon-
ally expanded and formed metastatic retinoblastoma. In these models all the tumors 
formed were resembling differentiated and not showing the undifferentiated and 
moderately differentiated form of retinoblastoma in humans (Ajioka et al.  2007  ) . 
In contrast to this study it was shown that human cone-speci fi c signaling circuitry 
sensitizes to the oncogenic effects of  RB  mutations (Xu et al.  2009  ) . It was also 
reported that p53 pathway was inactivated in retinoblastoma because of over expres-
sion of MDMX gene in this tumor and if this MDMX gene is targeted using nutlin-b 
it resulted in the death of tumor cells (Laurie et al.  2006  ) . 

 In addition to the mouse models of retinoblastoma there are two very well char-
acterized human retinoblastoma cell lines (Y79 and WERI-RB27) obtained from 
the patients diagnosed for retinoblastoma (Reid et al.  1974 ; Sery et al.  1990  ) . These 
cell lines provide close models to the human cases for experimentation. Main differ-
ence between human and mouse models    of RB is that mouse RB requires inactivation 
of  RB  product and also its family members but it is not the case for humans where 
RB inactivation is suf fi cient to produce tumors (Pacal and Bremner  2006  ) .   

    15.4.4   Evidences of Stem Cells in Retinoblastoma 

 The study on retinoblastoma has changed fundamentally the understanding of tumor 
biology, primarily genetics, mode of inheritance and the means to survival. Recent 
studies have shown the expression of drug resistance markers like multi drug resis-
tant p-glycoprotein and lung resistance protein has provided the evidence of stem 
cells in RB (Krishnakumar et al.  2004  ) . ABCG2 a cell surface marker has been used 
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to characterize stem cells. It has been shown that cells expressing this marker are 
present within a pool of Hoechst 33342 low cells and it was shown for the  fi rst time 
in hematopoietic populations, and latter in skeletal muscle, mammary gland, lung 
and developing retina etc. (Bhattacharya et al.  2003 ; Scharenberg et al.  2002 ; 
Summer et al.  2003 ; Welm et al.  2002  ) . Recent studies have shown the presence of 
cells expressing ABCG2    positive and Hoechst33342 low cells in mouse RB and 
human RB cell lines ranging from 0.1 to 0.4 % of the total population (Setoguchi 
et al.  2004  ) . In addition to these markers immunoreactivity to other markers like 
ALDH1, oct3/4, Nanog, MCM2 and sca-1 was detected in mouse models (Seigel 
et al.  2007  ) . Expression of MCM2 (mini chromosome maintenance gene) have 
reported in large number of retrospective samples in which Mohan et al. have shown 
MCM2 and ABCG2 in more than 50 % of RB tumor samples examined (Mohan 
et al.  2006  ) . The expression of these markers has correlated with highly invasive 
tumors. Recently it was shown in human tumors that retinoblastoma cell MDM2 
expression was regulated by the cone-speci fi c RXR gamma transcription factor, 
human RXR gamma consensus binding site and cone speci fi c thyroid hormone 
receptor-beta 

2
 . It was also shown that CRX +  cells are Rb −  and were the neoplastic 

components. Results of this study provided support for a cone precursor cell of 
origin in retinoblastoma (Xu et al.  2009  ) . Another recent study have shown that Wnt 
signaling activator LiCl increased the number of stem-like cells in retinoblastoma 
(Silva et al.  2010  ) .  

    15.4.5   Hierarchy of Stem Cells in Retinoblastoma Tumors 

 Recent report of ours has shown evidence towards hierarchical model of origin in 
retinoblastoma (Balla et al.  2009  ) . We found two different subpopulations based on 
scatter properties and marker expression. FSC lo /SSC lo  subpopulation appeared to be 
more primitive, since they expressed stem cell (CD44) and retinal progenitor markers 
(PROX 

1
 , SYX 

1
 a) in addition to the lower percentage of differentiated markers 

(CD90, CD133, NSE). The other subpopulation FSC hi /SSC lo  showed a higher per-
centage of differentiated markers and low expression of retinal progenitor cell markers 
(Figs.  15.3  and  15.4 ). These results have suggested the hierarchy and heterogeneity 
of cells in retinoblastoma tumors.     

    15.5   Treatment Implications: Understanding the Mechanisms 
of Resistance    

 Illustration of the CSC hypothesis in diverse solid tumors has provided new insights 
into new generation therapies for cancer. The main obstacle towards effective treat-
ment remains the failure of current therapy in eradicating all tumor cells to prevent 
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disease recurrence, thereby affecting long-term survival. Traditionally, drug therapies 
have been developed based on the ability of these agents to cause tumor regression 
in animal models. Since it has now been shown that a majority of the cancer cells 
within the tumor are non-tumorigenic, therapies directed against these cells would 
initially cause tumor regression, followed by recurrence as a consequence of per-
sisting CSCs. Thus the goal of cancer therapy should be to generate drugs that target 
CSCs .  However, such therapeutic strategies against CSC fractions require elucida-
tion of key mechanisms by which these cells resists existing therapies. 

    15.5.1   Quiescence    

 In view of the fact that majority of cancer therapies are designed against rapidly 
proliferating cells, quiescent populations would automatically be shielded from 
therapeutic attack. Thereby quiescence, a de fi ning trait for stem cells has been 
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  Fig. 15.3    Differential expression of stem and differentiated cell markers in Rb cells.  Panel a , – the 
P1 gate in this plot shows cells which were negative for 7-AAD stain.  Panel b , shows P1 selected 
cells in FSC vs SSC plot. P2 gate shows the FSC lo  SSC lo  sub-population (shown in  green ) and P3 
gate shows the sub-population FSC hi  SSC lo  (shown in  blue ). Population shown in red was elimi-
nated from analysis.  Panels c–e  show the population of cells which were CD44 positive and negative 
for CXCR4, CD133 and CD90 (represented in Q4 quadrant)       
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speculated extensively as mechanism of therapeutic resistance since the origin of 
CSC paradigm. However, experimental proof for the same was lacking until 
recently, when through long-term label retention potential, we demonstrated CSCs 
to remain quiescent within tumor niche. Long-term label retention that exploits 
relatively quiescent nature of stem cells is a classical approach for identi fi cation of 
tissue speci fi c stem cells (Blanpain et al.  2004 ; Tumbar et al.  2004 ; Yue et al. 
 2005  ) . Using the membrane labeling vital dyes PKH26/67, we identi fi ed CSCs in 
experimentally generated ovarian tumors as marked,  in vivo  residing label retain-
ing cells    (LRCs) within the tumor niche (Fig.  15.5 ). Therapeutic refractoriness 
demonstrated by the long-term label retaining CSCs coupled with the potential to 
regenerate the tumors post therapeutic regression substantiated their role in tumor 
dormancy (Kusumbe and Bapat  2009  )  In corroboration with our results, a recent 
study has demonstrated the label retention potential of CSCs from breast cancer 
(Pece et al.  2010  ) . These initial studies exploiting label retention for claiming CSC 
quiescence provide robust models for further investigations to identify mechanisms 
involved in maintenance of quiescent state.   
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  Fig. 15.4    Total RNA was extracted from the cell populations in the Q2 and Q4 quadrants after 
FACS sorting of Rb cells from the tumor of case 6.  Panel a , shows the presort analysis of CD44 
and CXCR4 expression  Panel b , shows the post sort ef fi ciency of Q4 (97 %)  Panel c , shows the 
post sort ef fi ciency of Q2 (61 %)  Panel d , shows the RT-PCR analysis for human Syntaxin1A, 
PROX1, CD133, NSE and GAPDH       

 



404 M.M.S. Balla et al.

    15.5.2   Niche 

 Successful  in situ  identi fi cation of CSCs as LRCs prompted us to identify LRCs 
within the cell lines. However in contrast to developing tumors, cell lines seemed 
to be devoid of LRCs (Kusumbe and Bapat  2009  ) . Such failure to identify quies-
cent cells in culture suggests that analogous to the NSCs, maintenance of CSCs 
apart from intrinsic factors also substantially depends on external signals. These 
external signals collectively make up the microenvironment or niche (classically 
de fi ned as an interactive structural unit, organized to facilitate cell-fate decisions 
in a proper spatiotemporal manner) that has been implicated to play a crucial role 
in maintenance of the CSC compartment (Moore and Lemischka  2006  ) . Evidence 
for this notion came from a recent study that suggests involvement of vascular 
niches in maintenance of brain CSC compartment. Speci fi cally, the study illus-
trates vascular niches within the brain tumors are aberrant and drives CSC 
 self-renewal and proliferation that is in contrast to the niches found in the normal 
tissue that usually control the stem cell function (Calabrese et al.  2007  ) . 
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  Fig. 15.5    Schematic representing the label retention based approach for the identi fi cation of the 
cell types contributing to the tumor dormancy. CSCs demonstrated long-term label retention and 
could be isolated as LRCs. At the same time aneuploid cells had low levels of the label intensity 
and were trapped within the PKH lo  compartment as a consequence of their quiescence/proliferation 
arrest while the bulk tumor cells constituted the PKH neg  compartment due to the proliferation 
directed complete loss of the label       
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Microenvironment mediated drug resistance envisaged and studied since a long 
time is a form of  de novo  resistance that protects the tumor cells from the affects 
of therapies (Mark et al.  2009  ) . Above preliminary investigations in  fi eld imply 
that even CSCs may depend on their microenvironment/niche    to resist the thera-
peutic regimes. 

 If indeed vascular niches are required for self-renewal and proliferation of 
CSCs as discussed above then development of such niches within tumor tissue 
would not only contribute tumor vasculature but also ensure long-term mainte-
nance of CSCs in these protective niches thereby augmenting disease progres-
sion. Support for this notion comes from our  fi nding that CSCs demonstrate an 
active recruitment of primitive endothelial stem cells that are capable of estab-
lishing an entire tumor endothelial hierarchy. Further the recruited endothelial 
stem cells also demonstrate an intimate physical association with CSCs; thereby 
claiming the instructive role of niche in CSC maintenance (Kusumbe et al.  2009  ) . 
These recruited endothelial stem cells initiated and established the entire endothe-
lial hierarchy thus contributing to tumor vasculature which augmented tumor 
growth and progression. These  fi ndings also support the previous studies propos-
ing that the reciprocal interaction between the tumor cells and microenvironment 
controls the switch between proliferation and quiescence (Aguirre-Ghiso  2007 ; 
White et al.  2004  ) .  

    15.5.3   Stress Induced CSC Enrichment    

 Above evidences suggest that oncogenic signaling might not always be dominant 
and that other programs (such as stem cell quiescence and microenvironment/
niche restrictions) might overcome oncogenic signals, thereby governing CSC 
function and behavior. Application of treatment regime has been known to gener-
ate stress within the local tumor environment that leads to activation of stress 
pathways in CSCs enabling their persistence and accumulation (White et al. 
 2004  ) . One such example is stress induced up-regulation of transcription factors 
Snail and Slug that not only aids cell survival but also leads to acquisition of 
chemoresistance and radioresistance (Kurrey et al.  2009  ) . The fact that CSCs 
speci fi cally exploit such pathways is af fi rmed by frequent documentation of their 
enrichment under various stress conditions including chemotherapy, radiotherapy, 
hypoxia, serum depletion etc. Further stress induced disease progression that 
mainly involves metastasis is also a frequent observation in cancer biology. To 
metastasize, cancer cells must detach from neighboring epithelial cells and adopt 
a mesenchymal phenotype i.e. cells must undergo epithelial to mesenchymal tran-
sition (EMT). Research in the  fi eld has revealed a number of pleiotropically act-
ing transcription factors including Snail, Slug and Twist that play critical roles in 
EMTs not only during embryogenesis but also during tumorigenesis. Recent 
investigations illustrates that these transcription factors on upregulation under 
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stress, besides orchestrating EMT and aiding therapeutic resistance also mediate 
acquisition of stem cell characteristics (Kurrey et al.  2009 ; Mani et al.  2008  ) . 
Thus orchestration of transcription machinery leading to cooperative modulation 
of gene expression seems to be an important mechanism for achieving therapeutic 
resistance through enrichment of CSC under stress.  

    15.5.4   Genetic Instability    

 Cancer is classically recognized as a disease of clonal evolution. Aneuploid cells, 
due to their genetic instability, possess adaptive growth advantages and hence are 
thought to be crucial determinants of caner recalcitrance (Sieber et al.  2003 ; 
Weaver and Cleveland  2007  )  Consistent with this, we identi fi ed that apart from 
CSCs that contribute to tumor dormancy, aneuploid population too constitute 
major determinants of cancer dormancy. Aneuploid cells that are proliferation 
arrested/quiescent under steady state undergo selective pressure/stress acquired 
proliferation potency induced by chemotherapeutic exposure. These  fi ndings 
suggests that the existing pool of CSCs constantly generates a highly aneuploid 
progeny that stays proliferation arrested under the no/minimal stress condi-
tions hence constituting just a dormant subset within the tumors. However on 
exposure to a stress condition or selective pressure (e.g. drug shock) these cells 
are recruited into cell cycle. Persistence of such genetically unstable dormant 
aneuploid cells packaged with remarkable adaptive and selective capacities has 
profound clinical implications for neoplastic progression and cancer therapy. 
Such stress induced acquisition of proliferation potency along with additional 
adaptive capacities inherent to these cells would lead to an emergence of a new 
CSC pool. The new CSC pool may dominate and take over the existing CSC pool 
or both of them may be retained concurrently thereby accounting for the CSC 
heterogeneity    that has been documented in many recent reports (Visvader and 
Lindeman  2008  ) . This genetic instability leading to CSC evolution further 
explains the inef fi cacy in obtaining complete eradication of these cells during the 
treatment regimes.   

    15.6   Future Directions and Perspectives 

 All efforts towards identi fi cation and characterization of the CSCs should be 
ultimately focused to create a conducive framework that facilitates designing of 
targeted therapeutic strategies against CSC population. This is particularly essen-
tial as the CSC paradigm implicates that for long-term disease-free survival, 
CSC population should be completely eradicated. Since CSCs share several 
characteristics with NSCs most critical aspect underlying the development of 
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ef fi cient therapies would be selective targeting of the CSCs sparing their normal 
counterparts. A recent study demonstrating successful speci fi c depletion of only 
leukemia-initiating cells has provided an initial support for this notion (Yilmaz 
et al.  2006  ) . Such investigation could be achieved in the hematopoietic system 
due to the availability of established xenotransplant systems in which the poten-
tial of NSCs for self-renewal, multi-lineage differentiation, and proliferation can 
be evaluated. This allowed  in vivo  assessment of the toxicity of drug treatment to 
HSCs apart from the CSCs. However such characterization assays for normal 
stem/progenitor population from most of the non-hematopoetic tissues are lack-
ing. Second major obstacle towards development of targeted therapy is the over-
lap between the currently used NSC and CSC markers. Identi fi cation of the 
markers exclusively expressed by CSCs which would be absent on their normal 
counterparts, will enable speci fi c tracking of CSCs within the bulk tumor on a 
background of normal cells following a therapeutic exposure. Such an experi-
mental set up is not only imperative to analyze toxicity of drug speci fi cally on 
the NSC population but can also be exploited for developing speci fi c targeting 
strategies. 

 Apart from the technical drawbacks several intrinsic peculiarities of CSCs pres-
ents a major challenge in designing effective therapeutic strategies. Such intrinsic 
factors include:

   (i)      Drug resistance    driven by several differential mechanisms acting as a cohort 
(Kurrey et al.  2009 ; Eylerand and Rich  2008  ) ;  

   (ii)     Stemness features like quiescence and self-renewal contributing to tumor 
 dormancy    and subsequent relapse (Reya et al.  2001 ; Kurrey et al.  2009  ) ;  

   (iii)    Genetic instability and epigenetic variability (Visvader and Lindeman  2008  )  
ultimately thriving CSC heterogeneity and evolution that along with providing 
enormous survival bene fi ts to this population, also makes the system complex 
for therapeutic targeting.     

 On this background, recent studies illustrating dependency of CSCs for their 
maintenance on the external signals (niche) suggests niche ablation as a powerful 
therapeutic strategy (Sneddon and Werb  2007  ) . Again feasibility of this approach 
depends to a large extent on degree of similarity between normal and CSC niches. 
If identical factors/signals drive survival and proliferation in both the niches, 
then niche ablation    will also distress NSC pools. Recent observations illustrating 
the existence of a modi fi ed and aberrant niche to support the brain CSC compart-
ment, strengthens the applicability of niche ablation as a therapeutic approach to 
ultimately bring about complete exhaustion of CSC compartment. However, such 
investigations detailing the CSC niche are still at the stage of infancy (Fig.  15.6 ). 
A continuing identi fi cation of additional mechanisms and signals underlying the 
phenomenon, speci fi cally key distinguishing features between normal and CSC 
niches will be critical for developing therapeutic strategies    adept for direct and 
speci fi c abolishment of only CSC niche without or with minimal toxicity to NSC 
niche.       



408 M.M.S. Balla et al.

  Acknowledgements      We thank Dr. G.C. Mishra, Director, National Center for Cell Science (Pune, 
India) for encouragement and support. We thank Dr. Santosh Honavar and team for providing clinical 
samples for Retinoblastoma work .  We also acknowledge the Association for Research in Vision and 
Ophthalmology, the copyright holder of Figs.  15.3  and  15.4  for permitting use of these  fi gures  

   References    

    Aguirre-Ghiso J (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev 
Cancer 7:834–846  

    Ajioka I, Martins R, Bayazitov I et al (2007) Differentiated horizontal interneurons clonally expand 
to form metastatic retinoblastoma in mice. Cell 131:378–390  

    Al-Hajj M, Wicha M, Benito-Hernandez A et al (2003) Prospective identi fi cation of tumorigenic 
breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988  

    Antunez J, Couce M, Fraga M et al (1991) Immunohistochemical demonstration of neuronal and 
astrocytic markers and oncofoetal antigens in retinoblastomas. Histol Histopathol 6:241–246  

    Balla M, Vemuganti G, Kannabiran C et al (2009) Phenotypic characterization of retinoblastoma 
for the presence of putative cancer stem-like cell markers by  fl ow cytometry. Invest Ophthalmol 
Vis Sci 50:1506–1514  

  Fig. 15.6    Schematic illustrating the speci fi c targeting of the CSCs may be possible through niche 
ablation       

 



40915 Cancer Stem Cells

    Bapat S (ed) (2009) Cancer stem cells. Wiley, Hoboken  
    Bapat S, Mali A, Koppikar C et al (2005) Stem and progenitor-like cells contribute to the aggres-

sive behavior of human epithelial ovarian cancer. Cancer Res 65:3025–3029  
    Bhattacharya S, Jackson J, Das A et al (2003) Direct identi fi cation and enrichment of retinal stem 

cells/progenitors by hoechst dye ef fl ux assay. Invest Ophthalmol Vis Sci 44:2764–2773  
    Blanpain C, Lowry W, Geoghegan A et al (2004) Self-renewal, multipotency, and the existence of 

two cell populations within an epithelial stem cell niche. Cell 118:635–648  
    Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates 

from a primitive hematopoietic cell. Nat Med 3:730–737  
    Calabrese C, Poppleton H, Twala K (2007) Perivascular niche for brain tumor stem cells. Cancer 

Cell 11:69–82  
    Challen G, Little M (2006) A side order of stem cells: the sp phenotype. Stem Cells 24:3–12  
    Chiba T, Kita K, Zheng Y et al (2006) Side population puri fi ed from hepatocellular carcinoma 

cells harbors cancer stem cell-like properties. Hepatology 44:240–251  
    Cobaleda C, Gutierrez-Cianca N, Perez-Losada J et al (2000) A primitive hematopoietic cell is the 

target for the leukemic transformation in human philadelphia-positive acute lymphoblastic 
leukemia. Blood 95:1007–1013  

    Collins A, Berry P, Hyde C, Stower M et al (2005) Prospective identi fi cation of tumorigenic prostate 
cancer stem cells. Cancer Res 65:10946–10951  

       Cotran SR (1994) Pathologic basis of disease, 5th edn. WB Saunders Company, Philadelphia  
    Courtenay V, Mills J (1978) An in vitro colony assay for human tumours grown in immune-

suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer 37:261–268  
    Courtenay V, Selby P, Smith I (1978) Growth of human tumor cell colonies from biopsies using 

two soft-agar techniques. Br J Cancer 38:77–81  
    Craft J, Sang D, Dryja T et al (1985) Glial cell component in retinoblastoma. Exp Eye Res 

40:647–659  
    Decraene C, Benchaouir R, Dillies M et al (2005) Global transcriptional characterization of sp and 

mp cells from the myogenic c2c12 cell line: effect of fgf6. Physiol Genomics 23:132–149  
    Duncan A, Rattis F, DiMascio L et al (2005) Integration of notch and wnt signaling in hematopoi-

etic stem cell maintenance. Nat Immunol 6:314–322  
    Eylerand C, Rich J (2008) Survival of the  fi ttest: cancer stem cells in therapeutic resistance and 

angiogenesis. J Clin Oncol 26(17):2839–2845  
    Fearon E, Hamilton S, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 

238:193–197  
    Fialkow P (1976) Clonal origin of human tumors. Biochim Biophys Acta 458:283–321  
    Goodell M, Brose K, Paradis G et al (1996) Isolation and functional properties of murine 

hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806  
    Grichnik J, Burch J, Schulteis R et al (2006) Melanoma, a tumor based on a mutant stem cell? J 

Invest Dermatol 126:142–153  
    Hamburger A, Salmon S (1977) Primary bioassay of human tumor stem cells. Science 197:461  
    Hewitt H (1958) Studies of the dissemination and quantitative transplantation of a lymphocytic 

leukaemia of CBA mice. Br J Cancer 12(3):378–401  
    Hirschmann-Jax C, Foster A, Wulf G et al (2004) A distinct “Side population” of cells with high 

drug ef fl ux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233  
    Hopfer O, Zwahlen D, Fey M et al (2005) The notch pathway in ovarian carcinomas and adenomas. 

Br J Cancer 93:709–718  
    Jordan C, Guzman M, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261  
    Katano M (2005) Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett 

227:99–104  
    Kim C, Jackson E, Woolfenden A et al (2005) Identi fi cation of bronchioalveolar stem cells in 

normal lung and lung cancer. Cell 121:823–835  
    Kiran V, Kannabiran C, Chakravarthi K et al (2003) Mutational screening of the rb1 gene in indian 

patients with retinoblastoma reveals eight novel and several recurrent mutations. Hum Mutat 
22:339  



410 M.M.S. Balla et al.

    Kivela T (1986) S-100 protein in retinoblastoma revisited. An immunohistochemical study. Acta 
Ophthalmol (Copenh) 64:664–673  

    Kivela T, Virtanen I (1986) Intermediate  fi laments in the human retina and retinoblastoma. An 
immunohistochemical study of vimentin, glial  fi brillary acidic protein, and neuro fi laments. 
Invest Ophthalmol Vis Sci 27:1075–1084  

    Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci 
USA 68:820–823  

    Kolligs F, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in 
gastrointestinal tumorigenesis. Digestion 66:131–144  

    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like 
cells in the c6 glioma cell line. Proc Natl Acad Sci USA 101:781–786  

    Krishnakumar S, Mallikarjuna K, Desai N et al (2004) Multidrug resistant proteins: P-glycoprotein 
and lung resistance protein expression in retinoblastoma. Br J Ophthalmol 88:1521–1526  

    Krivtsov A, Twomey D, Feng Z (2006) Transformation from committed progenitor to leukaemia 
stem cell initiated by mll-af9. Nature 442:818–822  

    Kruh G (2003) Introduction to resistance to anticancer agents. Oncogene 22:7262–7264  
    Kurrey N, Jalgaonkar S, Joglekar A et al (2009) Snail and slug mediate radio- and chemo-resistance 

by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer 
cells. Stem Cells 27(9):2059–2068  

    Kusumbe A, Bapat S (2009) Cancer stem cells and aneuploid populations within developing 
tumors are the major determinants of tumor dormancy. Cancer Res 69(24):9245–9253  

    Kusumbe A, Mali A, Bapat S (2009) CD133-expressing stem cells associated with ovarian metas-
tases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells 
27:498–508  

    Kyritsis A, Tsokos M, Triche T et al (1984) Retinoblastoma – origin from a primitive neuroecto-
dermal cell? Nature 307:471–473  

    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after 
transplantation into scid mice. Nature 367:645–648  

    Larderet G, Fortunel N, Vaigot P et al (2006) Human side population keratinocytes exhibit long-
term proliferative potential and a speci fi c gene expression pro fi le and can form a pluristrati fi ed 
epidermis. Stem Cells 24:965–974  

    Laurie N, Donovan S, Shih C et al (2006) Inactivation of the p53 pathway in retinoblastoma. 
Nature 444:61–66  

    Li C, Heidt D, Dalerba P et al (2007) Identi fi cation of pancreatic cancer stem cells. Cancer Res 
67:1030–1037  

    Mani S, Guo W, Liao M et al (2008) The epithelialmesenchymal transition generates cells with 
properties of stem cells. Cell 133:704–715  

    Mark B, Meads R, Dalton G (2009) Environment-mediated drug resistance: a major contributor to 
minimal residual disease. Nat Rev Cancer 9:665–667  

    Matsui W, Huff C, Wang Q et al (2004) Characterization of clonogenic multiple myeloma cells. 
Blood 103:2332–2336  

    Messmer E, Font R, Kirkpatrick J et al (1985) Immunohistochemical demonstration of neuronal 
and astrocytic differentiation in retinoblastoma. Ophthalmology 92:167–173  

    Mohan A, Kandalam M, Ramkumar H et al (2006) Stem cell markers: Abcg2 and mcm2 expression 
in retinoblastoma. Br J Ophthalmol 90:889–893  

    Molnar M, Stefansson K, Marton L et al (1984) Immunohistochemistry of retinoblastomas in 
humans. Am J Ophthalmol 97:301–307  

    Moore M (1991) Clinical implications of positive and negative hematopoietic stem cell regulators. 
Blood 78:1–19  

    Moore K, Lemischka I (2006) Stem cells and their niches. Science 311:1880–1885  
    Mukai N, Kobayashi S (1973) Human adenovirus-induced medulloepitheliomatous neoplasms in 

Sprague–Dawley rats. Am J Pathol 73:671–690  
    Nakajima T, Kato K, Kaneko A et al (1986) High concentrations of enolase, alpha- and gamma-

subunits, in the aqueous humor in cases of retinoblastoma. Am J Ophthalmol 101:102–106  



41115 Cancer Stem Cells

    Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28  
    O’Brien C, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating 

tumour growth in immunode fi cient mice. Nature 445:106–110  
    Ogawa K, Tsutsumi A, Iwata K et al (1966) Histogenesis of malignant neoplasm induced by 

adenovirus type 12. Gann 57:43–52  
    Ogawa K, Hamaya K, Fujii Y et al (1969) Tumor induction by adenovirus type 12 and its target 

cells in the central nervous system. Gann 60:383–392  
    Ogawa M, Bergsagel D, McCulloch E (1973) Chemotherapy of mouse myeloma: quantitative cell 

cultures predictive of response in vivo. Blood 41:7–15  
    Pacal M, Bremner R (2006) Insights from animal models on the origins and progression of retino-

blastoma. Curr Mol Med 6:759–781  
    Park C, Amare M, Savin M (1980) Prediction of chemotherapy response in human leukemia using an 

in vitro chemotherapy sensitivity test on the leukemic colony-forming cells. Blood 55:595–601  
    Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast 

cancers correlates with their cancer stem cell content. Cell 140(1):62–73  
    Peeters S, van der Kolk D, de Haan G et al (2006) Selective expression of cholesterol metabolism 

genes in normal CD34 + CD38 −  cells with a heterogeneous expression pattern in aml cells. Exp 
Hematol 34:622–630  

    Perentes E, Herbort C, Rubinstein L et al (1987) Immunohistochemical characterization of human 
retinoblastomas in situ with multiple markers. Am J Ophthalmol 103:647–658  

    Prince M, Sivanandan R, Kaczorowski A et al (2007) Identi fi cation of a subpopulation of cells 
with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci 
USA 104:973–978  

    Puck T, Marcus P (1956) Action of x-rays on mammalian cells. J Exp Med 103:653–666  
    Puck T, Marcus P, Cieciura S (1956) Clonal growth of mammalian cells in vitro; growth charac-

teristics of colonies from single Hela cells with and without a feeder layer. J Exp Med 
103:273–283  

    Rask K, Nilsson A, Brannstrom M et al (2003) Wnt-signalling pathway in ovarian epithelial 
tumours: increased expression of beta-catenin and gsk3beta. Br J Cancer 89:1298–1304  

    Reid T, Albert D, Rabson A et al (1974) Characteristics of an established cell line of retinoblas-
toma. J Natl Cancer Inst 53:347–360  

    Reya T, Morrison S, Clarke M et al (2001) Stem cells, cancer, and cancer stem cells. Nature 
414:105–111  

    Ricci-Vitiani L, Lombardi D, Pilozzi E et al (2007) Identi fi cation and expansion of human colon-
cancer-initiating cells. Nature 445:111–115  

    Rodrigues M, Wilson M, Wiggert B et al (1986) Retinoblastoma. A clinical, immunohistochemi-
cal, and electron microscopic case report. Ophthalmology 93:1010–1015  

    Sanchez P, Clement V, Ruizi Altaba A (2005) Therapeutic targeting of the hedgehog-gli pathway 
in prostate cancer. Cancer Res 65:2990–2992  

    Sawa H, Takeshita I, Kuramitsu M et al (1987) Immunohistochemistry of retinoblastomas. 
J Neurooncol 5:351–355  

    Scharenberg C, Harkey M, Torok-Storb B (2002) The abcg2 transporter is an ef fi cient hoechst 33342 
ef fl ux pump and is preferentially expressed by immature human hematopoietic progenitors. 
Blood 99:507–512  

    Schroder H (1987) Immunohistochemical demonstration of glial markers in retinoblastomas. 
Virchows Arch A Pathol Anat Histopathol 411:67–72  

    Seigel G, Hackam A, Ganguly A et al (2007) Human embryonic and neuronal stem cell markers 
in retinoblastoma. Mol Vis 13:823–832  

    Sery T, Lee E, Lee W et al (1990) Characteristics of two new retinoblastoma cell lines: Weri-rb24 
and weri-rb27. J Pediatr Ophthalmol Strabismus 27:212–217  

    Setoguchi T, Taga T, Kondo T et al (2004) Cancer stem cells persist in many cancer cell lines. Cell 
Cycle 3:414–415  

    Sieber O, Heinimann K, Tomlinson I (2003) Genomic instability – the engine of tumorigenesis? 
Nat Rev Cancer 3:701–708  



412 M.M.S. Balla et al.

    Silva A, Yi H, Hayes S et al (2010) Lithium chloride regulates the proliferation of stem-like cells 
in retinoblastoma cell lines: a potential role for the canonical wnt signaling pathway. Mol Vis 
16:36–45  

    Singh S, Hawkins C, Clarke I et al (2004) Identi fi cation of human brain tumour initiating cells. 
Nature 432:396–401  

    Sneddon J, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 
1:607–611  

    Southam C, Brunschwig A (1960) A quantitative studies of autotransplantation of human cancer. 
Cancer 14:971–978  

    Suetsugu A, Nagaki M, Aoki H et al (2006) Characterization of CD133+ hepatocellular carcinoma 
cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824  

    Summer R, Kotton D, Sun X et al (2003) Side population cells and bcrp1 expression in lung. Am 
J Physiol Lung Cell Mol Physiol 285:L97–L104  

    Szotek P, Pieretti-Vanmarcke R, Masiakos P et al (2006) Ovarian cancer side population de fi nes 
cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness. Proc 
Natl Acad Sci USA 103:11154–11159  

    Terenghi G, Polak J, Ballesta J et al (1984) Immunocytochemistry of neuronal and glial markers in 
retinoblastoma. Virchows Arch A Pathol Anat Histopathol 404:61–73  

    Tumbar T, Guasch G, Greco V et al (2004) De fi ning the epithelial stem cell niche in skin. Science 
303:359–363  

    Umemoto T, Yamato M, Shiratsuchi Y et al (2006) Expression of integrin beta3 is correlated to 
the properties of quiescent hemopoietic stem cells possessing the side population phenotype. 
J Immunol 177:7733–7739  

    Visvader J, Lindeman G (2008) Cancer stem cells in solid tumours: accumulating evidence and 
unresolved questions. Nat Rev Cancer 8:755–768  

    Wani A, Sharma N, Shouche Y et al (2006) Nuclear-mitochondrial genomic pro fi ling reveals a 
pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25:6336–6344  

    Weaver B, Cleveland D (2007) Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 
67:10103–10105  

    Welm B, Tepera S, Venezia T et al (2002) Sca-1(pos) cells in the mouse mammary gland represent 
an enriched progenitor cell population. Dev Biol 245:42–56  

    White D, Kurpios N, Zuo D et al (2004) Targeted disruption of beta1-integrin in a transgenic 
mouse model of human breast cancer reveals an essential role in mammary tumor induction. 
Cancer Cell 6:159–170  

    Wilson A, Radtke F (2006) Multiple functions of notch signaling in self-renewing organs and 
cancer. FEBS Lett 580:2860–2868  

    Windle J, Albert D, O’Brien J et al (1990) Retinoblastoma in transgenic mice. Nature 343:665–669  
    Xu X, Fang Y, Lee T et al (2009) Retinoblastoma has properties of a cone precursor tumor and 

depends upon cone-speci fi c mdm2 signaling. Cell 137:1018–1031  
    Yilmaz O, Valdez R, Theisen B et al (2006) Pten dependence distinguishes haematopoietic stem 

cells from leukaemia-initiating cells. Nature 441:475–482  
    Yue Z, Jiang T, Widelitz R et al (2005) Mapping stem cell activities in the feather follicle. Nature 

438:1026–1029  
    Zagzag D, Krishnamachary B, Yee H et al (2005) Stromal cell-derived factor-1alpha and cxcr4 

expression in hemangioblastoma and clear cell-renal cell carcinoma: Von hippel-lindau loss-
of-function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188      



413G. Steinhoff (ed.), Regenerative Medicine: From Protocol to Patient,
DOI 10.1007/978-94-007-5690-8_16, © Springer Science+Business Media Dordrecht 2013

  Abstract   Mesenchymal stem cells (MSC) are plastic-adherent  fi broblast-like cells 
that can readily be isolated from various tissues and expanded in vitro.  Per 
de fi nitionem , they are able to differentiate into bone, cartilage and adipose tissue. 
In the last 15 years, a huge number of different preparative protocols have been devel-
oped to yield MSC-like cell lines from starting materials as diverse as bone marrow, 
fat tissue, umbilical cord blood and peripheral blood. However, these protocols as well 
as the resulting cell populations are heterogeneous. Furthermore, the composition of 
the cell products and their differentiation potential changes in the course of long-term 
culture expansion. There is an urgent need for the development of molecular markers 
and universal criteria for quality control of the starting cell populations as well as for 
the cell products after expansion. Nevertheless, MSC have already found their way 
into a huge number of clinical studies addressing a broad variety of diseases. Even 
though there is no convincing evidence that MSC are involved in the process of tissue 
repair by transdifferentiation, they probably contribute to the repair process by immu-
nomodulatory effects and interaction with other cell types.      

    16.1   Introduction 

 Almost 40 years ago, in the early 1970s, Friedenstein et al. described discrete 
 fi broblast-like colonies in monolayer cultures of bone marrow, spleen and thymus 
that could be easily maintained under culture conditions and that demonstrated 
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 differentiation characteristics in vitro as well as in vivo upon their re-transplantation 
(Friedenstein et al.  1968,   1974  ) . The term “mesenchymal stem cells” (MSC) how-
ever, has been made popular in the early 1990s by Caplan  (  1991  ) . Caplan and others 
used periosteal cells from young chicken, which were transplanted into athymic 
mice and demonstrated their osteo-chondrogenic differentiation potential (Horwitz 
and Keating  2000 ; Nakahara et al.  1990  ) . Today, the term “MSC” is commonly 
applied to plastic-adherent cell preparations isolated from bone marrow or other 
tissues that are able to differentiate into bone, cartilage and adipose tissue under 
speci fi c conditions (see Fig.  16.1 ). Although there exist no speci fi c markers for 
these cells, they are usually positive for several antigens such as CD73, CD90, 
CD105 and lack expression of hematopoietic antigens (Dominici et al.  2006 ; Wagner 
et al.  2005a  ) .  

 The multilineage differentiation potential of MSC is still under debate. It is com-
monly accepted that a rare mesenchymal progenitor cell population is present in 
bone marrow, that possesses differentiation potential towards different cell lineages. 
However, mounting evidence indicates that the described adherent cell populations 
are highly heterogeneous and actually consist of several subpopulations, which 
gradually overgrow under certain culture conditions and might mimick the phenom-
enon of differentiation. Therefore, these cells might not ful fi ll all the criteria to be 
named “stem cells” and should therefore be named “mesenchymal stromal cells” 
(Horwitz and Keating  2000  ) . Consequently, the acronym “MSC” stays the same, 
whereas the term “mesenchymal stem cells” should only be reserved for cells that 
meet speci fi ed criteria for stem cells, i.e. unlimited self-renewal capacity. 
Alternatively they have been named “multipotent mesenchymal stromal cells” or 
“multipotent stromal cells” to indicate the multipotent differentiation capacity of 
these cell preparations (Horwitz et al.  2005  ) . The term “mesenchymal progenitor 
cell” (MPC) has also been used in analogy to the hematopoietic system where 
hematopoietic stem cells (HSC) are comprised within the CD34-positive cell frac-
tion of hematopoietic progenitor cells (HPC) (Johnstone et al.  1998  ) . Numerous 

  Fig. 16.1    MSC express vimentin, an intermediate  fi lament typical for cells of mesenchymal ori-
gin. The cells are showing a  fi broblastoid morphology. Immuno fl uorescent staining ( left ) and 
phase contrast ( right ) (scale bar 150  m m)       
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authors have described protocols for the isolation and cultivation of MSC from 
 tissues other than the bone marrow, mainly from umbilical cord blood and adipose 
tissue. Beyond that, several subsets of MSC with possibly higher differentiation 
potential have been described. The terms “multipotent adult progenitor cells” 
(MAPC) (Jiang et al.  2002a  ) , “unrestricted somatic stem cells” (USSC) (Kogler 
et al.  2004  )  and “very small embryonic-like” (VSEL) stem cells (Kucia et al.  2006a  )  
have been applied to these subsets.  

    16.2   Derivation of MSC 

 The source and the property of MSC preparations from different laboratories vary 
signi fi cantly and the resulting cell products are highly heterogeneous. The lack of 
standardization considerably hampers the comparability of results among different 
research groups (Wagner and Ho  2007 ; Bieback et al.  2012  ) . 

 We and others have demonstrated that slight differences of the culture conditions 
could favor the expansion of certain subsets and might contribute to genetic instabil-
ity. Based on the morphology of MSC preparations, three distinct cell types could 
be distinguished: spindle-shaped cells, large  fl at cells and small round-cell sub-
populations (Colter et al.  2001 ; Horn et al.  2008 ; Schallmoser et al.  2009  ) . MSC 
cultures are continuously unstable and can give rise to individual cells – and subse-
quently cell colonies – producing, for example, smooth muscle-typical  a -actin 
 fi laments and myo fi laments containing cardiac  a -actin (Ho et al.  2008  ) . Even other 
cells in the culture start to form sub-lines positive for cytokeratin  fi laments. 
An entirely different program may be characteristic for other MSC, which begin to 
synthesize special types of fat storage such as adipophilin-positive fat droplets in 
adipocytes (Heid et al.  1998  ) . 

 Altogether, these results again emphasize the importance of standardizing the 
isolation of the initial cell material, culture media and methods. At the same time it 
is of utmost importance to develop quality control systems for MSC preparations 
for clinical applications and guidelines for “Good Manufacturing Practice” (GMP) 
have to be ful fi lled. To this end, the following variables have to be taken into 
consideration. 

    16.2.1   Species 

 MSC have been isolated from many different species such as mouse, guinea pig, 
chick, rabbit, dog, pigs and human. Knowledge gained from animal models cannot 
always be extrapolated for human cells. It seems as if there existed many similari-
ties with human MSC, but a systematic comparison of MSC from different species 
is yet elusive. Experimental data of MSC from animal models have to be validated 
in the human system prior to clinical application. In this chapter we will focus on 
human MSC.  
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    16.2.2   Isolation of MSC from Different Sources 

 MSC were originally isolated from bone marrow (Friedenstein et al.  1966 ; Pittenger 
et al.  1999  ) . In the last decade however, MSC-like cell lines could be derived from 
various other tissues such as umbilical cord blood (Bieback et al.  2004 ; Erices et al. 
 2000  ) , umbilical cord matrix (Secco et al.  2008a,   b ; Zeddou et al.  2010  ) , adipose 
tissue (Baptista et al.  2009 ; de Girolamo et al.  2007 ; Lee et al.  2004 ; Zuk et al. 
 2001  ) , peripheral blood (Kuznetsov et al.  2001 ; Zvai fl er et al.  2000  )  and skeletal 
muscle (Jiang et al.  2002b  ) . Furthermore, cell preparations that ful fi ll the minimal 
criteria for MSC have also been isolated from other tissue of adult mice such as 
brain, liver, kidney, lung, thymus and pancreas (da Silva Meirelles et al.  2006  ) . 
There is little doubt that multipotent cell populations of mesenchymal derivation 
reside in many tissues. Our gene expression analysis has provided clear evidence 
that a signi fi cant number of genes is differentially expressed in MSC isolated from 
speci fi c tissue (Wagner et al.  2005a  ) . Correspondingly, the differentiation potentials 
and functional implications varied widely among MSC preparations derived from 
different origins (Kern et al.  2006 ; Wagner et al.  2007a  ) . This fact has to be taken 
into account when comparing results from different research groups.  

    16.2.3   Isolation/Depletion Using Surface Markers 

 Various surface markers such as STRO-1, CD73, CD105 and CD271 have been 
used for positive selection of MSC. Alternatively, negative selection was performed 
using hematopoietic surface markers such as CD34, CD45, Ter119 and glycophorin. 
These markers have been used alone or in combination for enrichment of  fi broblast 
colony forming units (CFU-F). However, they do not allow direct isolation of mul-
tipotent MSC. A sophisticated comparison of the molecular features of MSC that 
were isolated with different enrichment methods is elusive, but it is likely that the 
composition of heterogenic cell preparations is signi fi cantly affected by these sepa-
ration steps (Horn et al.  2008 ; Wagner and Ho  2007  ) .  

    16.2.4   Coating of Surface and Biomaterials 

 Adherence to the surface of culture dishes is the most prominent feature of MSC. 
Properties of the surface (e.g. roughness, hydrophobicity and elasticity) signi fi cantly 
affect selection or differentiation potential of cell preparations (Anderson et al.  2004 ; 
Engler et al.  2006  ) . Many protocols have applied additional protein coating of the 
surface (e.g.  fi bronectin, gelatin or collagen) to enhance cell adhesion and to mimic 
certain aspects of the natural extracellular microenvironment. Culture on either 
 fi bronectin or gelatin affects the morphology of the cell products after culture. 

 Recent studies investigate the ability of MSC to form three-dimensional mesh 
under specialized culture conditions. In our own hands, we observed the capacity of 
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bone marrow derived MSC to form round-shaped spheroid-like structures. We 
developed two different methods for spheroid forming: MSC were cultured as 
“hanging drops” with initially around 500–1,000 cells. After 24–48 h forming of 
spheroid-like cell aggregations could be observed. Alternatively, spheroids could be 
generated by culturing MSC on agarose-gel (Wuchter et al.  2009  ) .  

    16.2.5   Culture Media and Serum Supplements 

 Culture media have a tremendous impact on gene expression and proteome of MSC 
(Wagner et al.  2005a,   2006  ) . A huge arsenal of basal culture media is available and 
many different media have successfully been used for isolation of MSC in different 
laboratories. Furthermore, there is evidence that oxygen tension plays an important 
role and that hypoxia accelerates MSC differentiation (Ren et al.  2006  ) . 

 So far most culture protocols for MSC preparation contain serum additives. 
Serum concentrations usually vary between 2 and 20%. Most studies have used fetal 
calf serum (FCS). Concerns regarding BSE, other infectious complications and host 
immune reactions have fueled investigation of alternative culture supplements. 
Recently, several groups developed alternative culture protocols for the expansion 
of MSC based on reagents of human origin (i.e. serum, plasma, platelet lysate etc.) 
that replaced fetal bovine serum (Bieback et al.  2009 ; Kocaoemer et al.  2007 ; Lange 
et al.  2007 ; Müller et al.  2006 ; Schallmoser et al.  2007 ; Stute et al.  2004  ) . The 
impact of these supplements on the composition of cell preparations is yet unknown 
but different growth kinetics and cell morphology indicate their relevance. The 
development of a chemically de fi ned and serum free growth medium would there-
fore substantially contribute to standardized MSC preparations.  

    16.2.6   In Vitro Cultivation (Passage, Density 
and Cryopreservation) 

 MSC can be passaged in vitro for a limited number of times before they become 
senescent and stop proliferation. As a matter of fact, molecular pro fi les and func-
tional features of MSC are signi fi cantly affected by this process of cellular aging 
(DiGirolamo et al.  1999 ; Fehrer et al.  2006 ; Javazon et al.  2004 ; Wagner et al. 
 2008,   2009  ) . Cell density of cultures seems to be crucial, too. Once grown to 
con fl uence, MSC have been shown to lose some of their differentiation potential 
(Colter et al.  2001 ; Sotiropoulou et al.  2006  ) . Furthermore, MSC are often cryopre-
served with DMSO in liquid nitrogen. There is evidence that cryopreserved and 
non-cryopreserved MSC possess the same differentiation potential, but an effect 
on their  biological properties cannot be excluded (Kotobuki et al.  2005 ; Wang and 
Scott  1993  ) .   
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    16.3   Characteristics and Properties of MSC 

    16.3.1   Cellular Markers 

 MSC are often isolated from the marrow as plastic-adherent cell fraction without 
speci fi c enrichment. Some groups however described markers for the isolation of 
MSC from primary human and murine tissues, such as STRO-1 (Simmons and 
Torok-Storb  1991  ) , CD271 (low-af fi nity nerve growth factor receptor) (Quirici et al. 
 2002  ) , CD73 (SH3, SH4) and CD105 (endoglin, SH2) (Sabatini et al.  2005  ) , whereas 
CD45, Ter119 and glycophorin A (CD 235) are used for negative selections of MSC 
(Jiang et al.  2002a  ) . Buhring et al. described another panel of surface markers, 
including platelet-derived growth factor receptor-D (CD140b), HER-2/erbB2 
(CD340) and frizzled-9 (CD349), within the CD271-bright population (Buhring 
et al.  2007  ) . All these markers might lead to an enrichment of MSC, but the result-
ing cell populations are still heterogeneous and the majority of isolated cells will not 
give rise to  fi broblast colony-forming units (CFU-F). So far, there is no commonly 
accepted set of markers that distinctively describes MSC. 

 To address this problem the International Society for Cellular Therapy (ISCT) 
proposed three minimal criteria to de fi ne MSC (Dominici et al.  2006  ) :

    1.    MSC must be plastic-adherent if maintained in standard culture conditions,  
    2.    MSC must express CD73, CD90 and CD105, and lack expression of hematopoietic 

markers such as CD14 or CD11b, CD19 or CD79a, CD34, CD45, HLA-DR and  
    3.    MSC must be capable of differentiation into osteoblasts, adipocytes and chond-

roblasts under in vitro differentiating conditions.     

 Neither morphologic characteristics nor speci fi c surface markers can reliably dis-
cern the multipotent subset in MSC preparations. Using a panel of 22 surface markers 
including the above mentioned, there was no signi fi cant phenotypic difference between 
MSC and human  fi broblast cell lines (HS68 and NHDF) detectable (Wagner et al. 
 2005a  ) . Osteogenic, adipogenic and chondrogenic differentiation was exclusively 
observed in MSC preparations, but not in differentiated  fi broblasts (Wagner et al.  2006  ) . 
Thus, MSC-populations cannot be identi fi ed by these surface markers. Taken together, 
there remains an urgent need for the standardization of isolation- and culture-protocols 
in order to gain comparable results among different laboratories. Hence, the above 
mentioned minimal criteria of the ISCT are necessary and helpful, but not suf fi cient.  

    16.3.2   Gene Expression Pro fi ling and Proteomics 

 Gene expression analysis has provided another dimension for the molecular character-
ization of cell preparations. We have compared gene expression pro fi les of MSC 
derived from bone marrow, adipose tissue and cord blood (Wagner et al.  2006,   2007a  ) . 
Initial analysis demonstrated a consistent up-regulation of at least 25 well- characterized 
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genes in all MSC preparations, irrespective of origin and culture conditions. These 
genes included  fi bronectin 1 (FN1) and other extracellular matrix proteins (GPC4, 
LTBP1, ECM2, CSPG2) as well as transcription factors (nuclear factor I/B [NFIB]), 
homeo box genes (HOXA5 and HOXB6) and inhibitor of differentiation/DNA binding 
(ID1). However, none of these genes alone was speci fi c for MSC and we have not been 
able to de fi ne a unique marker or marker constellation for MSC. Furthermore, we ana-
lyzed the proteome of MSC. One hundred thirty-six protein-spots were unambiguously 
identi fi ed by MALDI-TOF-MS. Most of the identi fi ed proteins up-regulated in MSC 
play a role in cytoskeleton, protein folding and metabolism. Candidate genes should be 
highly expressed and localized on the cell surface. In contrast, transcription factors and 
regulators of signal transduction are often scarcely expressed and the use of extracel-
lular proteins is unfavourable for quality control purposes. 

 These results indicate that a single genomic or proteomic marker is not suf fi cient 
to de fi ne multipotent cell populations. It seems more likely, that it takes a combina-
tion of markers to reliably de fi ne MSC.  

    16.3.3   A Novel Type of Cell-Junctions Between MSC 

 We demonstrated that bone marrow derived MSC under in vitro conditions are inter-
connected by special villiform-to-vermiform cytoplasmatic protrusions and invagi-
nations, termed  processus adhaerentes , which tight- fi ttingly insert into deep plasma 
membrane invaginations, often forming batteries of interdigitating cell-cell connec-
tions with long cuff-like junctions (Wuchter et al.  2007  ) . Cell junctions connect MSC 
in the intercellular space with small puncta adhaerentia. Tentacle-like cell processes 
could be observed that made junctional contacts with up to eight other MSC, and 
over distances exceeding 400  m m. Alternatively, they can also form deep plasma 
membrane invaginations in neighbouring cells ( recessus adhaerentes ) (Fig.  16.2 ). 
This novel type of cell junctions is characterized by a molecular complement com-
prising N-cadherin and cadherin-11, in combination with the cytoplasmic plaque 
proteins  a - and  b -catenin, together with p120ctn and plakoglobin. The long  proces-
sus adhaerentes  interconnect several distant MSC to formations of a closer packed 
cell assembly. The frequency and morphology of these junctional complexes are 
greatly affected by culture conditions (unpublished observation). A similar type of 
homotypic cell–cell interaction has previously been described by Werner W. Franke 
and co-workers in studies of primary mesenchymal cells of the mouse embryo 
(Franke et al.  1983  ) . These  fi ndings indicate that this novel type of cell junctions is 
more wide spread in embryonal and other tissues and might be relevant for the primi-
tive function of MSC and heterotypic interaction with other cell types.   

    16.3.4   Co-culture of MSC and Hematopoietic Stem Cells 

 The interaction between human hematopoietic stem cells (HSC) and their niche 
plays a key role in regulating maintenance of “stemness” and differentiation. MSC 
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feeder-layer can serve as surrogate model for the hematopoietic stem cell (HSC) 
niche in vitro (Wagner et al.  2005b,   2007a,   c ; Walenda et al.  2010  ) . We further ana-
lyzed the intercellular junctional complexes between HSC from umbilical cord 
blood and MSC. Using confocal laser scanning in combination with deconvolution 
and volume rendering software, we were able to produce 3D-images of intercellular 
junctions between HSC and MSC. We used a panel of antibodies speci fi c for vari-
ous components of tight, gap and adherens junctions and could show that intercel-
lular connections between HSC and MSC are mainly realized by podia formation of 
the HSC linking to the adjacent MSC. These podia vary greatly in length and shape 
(uropodia,  fi lopodia). Along these podia and especially at the contact zone to the 
MSC, we have identi fi ed the cytoplasmic plaque proteins alpha- and beta-catenin 
and protein p120 ctn , as well as the transmembrane glycoprotein N-cadherin (Wuchter 
et al.  2008  ) . Cell division kinetic of HSC was increased when cocultured with MSC 
and the rate of CD34+ cells remained higher compared to monoculturing of HSC in 
the same culture-medium (Wagner et al.  2007b  ) . These results underline that direct 
cellular contact is essential for homing and adhesion of HSC to the cellular niche 
and subsequently for the regulation of self-renewal versus differentiation in HSC.   

    16.4   Differentiation Capacity 

 “Pluripotent” stem cells give rise to diverse cell types of all three germ layers. 
In contrast, “multipotent” stem cells can only produce related cell types of the same 
germinal layer. 

  Fig. 16.2    MSC are 
interconnected by junctional 
complexes. 
Immuno fl uorescent staining 
of ß-catenin ( red ), nuclei are 
stained in  blue  (scale bar 
100  m m).       
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 A subtype of bone marrow derived    cells, called “multipotent adult progenitor 
cells” (MAPC) has been suggested by the group of Verfaillie to be able to generate 
cells with characteristics of visceral mesoderm, neuro-ectoderm and endoderm 
(Jiang et al.  2002b,   2003 ; Zeng et al.  2006  ) . However, the validity and reproduc-
ibility of these data has been discussed controversely (Check  2007  ) . It cannot be 
excluded, that the pluripotency in these cell preparations resembles some kind of 
“culture artefact” that occurs under long-term culture expansion. 

 Kogler et al. described another subset of MSC derived from human cord blood 
that they called “unrestricted somatic stem cells” (USSC) (Kogler et al.  2004  ) . 
These cells were able to differentiate into many cell types, even hepatocytes and 
cardiomyocytes. These experiments suggest that culture conditions and speci fi c 
modi fi cations of the isolation protocols have a tremendous impact on the develop-
mental potential of the populations generated, albeit the starting cell populations 
could be phenotypically identical. Ratajczak and coworkers recently identi fi ed a 
population of CXCR4(+) “very small embryonic like stem cells” (VSEL) in murine 
bone marrow and human cord blood (Halasa et al.  2008 ; Kucia et al.  2006a  ) . They 
hypothesized that these cells are deposited during development in BM as a mobile 
pool of circulating pluripotent stem cells that play a pivotal role in postnatal tissue 
turnover, both of non-hematopoietic and hematopoietic tissues (Kucia et al.  2008a  ) . 
These cells could be mobilized from BM and circulate in peripheral blood during 
tissue/organ injury in an attempt to regenerate damaged organs (Kucia et al.  2008b  ) . 
However, if these cells are mobilized at the wrong time and migrate to the wrong 
place they may contribute to the development of several pathologies, including 
tumor formation (Kucia et al.  2006b  ) . 

 On the other hand, the validity of all the initial experiments on transdifferentia-
tion potentials of other adult stem cells, for example hematopoietic stem cells 
(HSC), has been severely challenged in the last few years. Some of the experiments 
could not be reproduced by other groups (Check  2007 ; Morshead et al.  2002 ; Raedt 
et al.  2007 ; Ying et al.  2002  ) . In other cases, the assumed process of transdifferentia-
tion under closer examination  fi nally turned out to be a product of spontaneous cell 
fusion (Terada et al.  2002  ) . 

 Taken together, it is commonly accepted, that MSC are multipotent with differ-
entiation potential towards bone, cartilage and adipose lineage. Nevertheless, this 
does not rule out the possibility that scarce mesenchymal progenitor cell popula-
tions in bone marrow may exist, that truly possess further differentiation potential.  

    16.5   Replicative Senescence and Aging of MSC 

 Culture expansion of MSC is limited as well as for any other normal, somatic cell. 
After a certain number of cell divisions they enter a senescent state and ultimately 
stop proliferation. These cells are not dead and can be maintained in this non-prolif-
erative state for months. This phenomenon was  fi rst described in the 1960s by 
Leonard Hay fl ick  (  1965  ) . Cellular senescence is accompanied by morphologic 
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changes: cell enlargement and a  fl at “fried egg morphology”. Notably, the in vitro 
differentiation potential also decays after long-term culture expansion. Furthermore, 
replicative senescence of MSC is accompanied by various gene expression changes 
that are even consitent under different culture conditions (Schallmoser et al.  2009 ; 
Wagner et al.  2008  )  

 Various molecular pathways have been implicated in senescence such as DNA 
damage, accumulation of the cyclin-dependent kinase inhibitor p16INK4a and oxi-
dative stress (Ho et al.  2005 ; Janzen et al.  2006 ; Kiyono et al.  1998  ) . Progressive 
shortening of the telomeres or modi fi ed telomeric structures have been proposed to 
be the main trigger for replicative senescence - with every cell division the number 
of telomere repeats decreases and this has been suggested as a kind of internal clock 
(Bonab et al.  2006 ; Fehrer and Lepperdinger  2005 ; Lansdorp  2008  ) . It is however 
still controversially discussed if telomere shortening is the only initiating mecha-
nism for replicative senescence or if it rather resembles an effect of senescence (Di 
Donna et al.  2003 ; Kiyono et al.  1998 ; Masutomi et al.  2003 ; Zimmermann et al. 
 2004  ) . Alternatively, it has been proposed that molecular switches such as epige-
netic modi fi cations might play a central role for regulation of cellular aging (Bork 
et al.  2010 ; Chambers et al.  2007 ; Nilsson et al.  2005 ; Shibata et al.  2007 ; Suzuki 
et al.  2008 ; Wilson and Jones  1983 ; Young and Smith  2001  ) . 

 Since the  fi rst discovery of the Hay fl ick limit it has been speculated if replicative 
senescence is involved in aging of the whole organism. Indeed, several authors have 
shown an inverse relationship between donor age and the replicative life span  in vitro  
for  fi broblasts as well as for MSC (Mareschi et al.  2006 ; Schneider and Mitsui  1976 ; 
Stenderup et al.  2003  ) . These studies are hampered by large inter-individual differ-
ences and MSC content and therefore necessitate high numbers of donor samples 
(Bonab et al.  2006 ; Cristofalo et al.  1998 ; Wagner et al.  2009  ) . Overall, MSC from 
elderly people seem to have a slower proliferation rate already at the initial cell pas-
sage and that they contain larger and  fl atter cells in comparison to cells from younger 
donors (Roobrouck et al.  2008  ) . Zhou and co-workers demonstrated that the num-
ber of cells that staining positive for senescence-associated beta-galactosidase is 
signi fi cantly higher in samples from elderly donors in comparison to younger donors 
(Zhou et al.  2008  ) . Another observation, which supports age-related effects on rep-
licative senescence is that the frequency of cells with colony forming potential 
declines at higher ages (Baxter et al.  2004 ; Stolzing et al.  2008  ) . The two processes 
are also related on a molecular basis: genes which are up-regulated in long-term 
culture are also up-regulated in elderly people (Wagner et al.  2008,   2009  ) . 

 We have recently analyzed DNA methylation pro fi les of MSC using the 
HumanMethylation27 BeadChip (Bork et al.  2010  ) . This platform represents 27,578 
CpG sites that are associated with promoter regions of more than 13,500 annotated 
genes. Our results revealed that overall the methylation remained rather constant 
throughout long-term culture for 2–3 month. However, speci fi c CpG islands were 
either hyper-methylated or hypo-methylated and the same changes were also veri fi ed 
in independent donor samples. Differentially methylated regions correlated with 
various developmental genes and there was an association with differential methy-
lation between samples from young and elderly donors. These results support the 
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notion, that replicative senescence and aging represent developmental processes 
that are regulated by similar epigenetic modi fi cations. 

 Despite such molecular insights it is still only scarcely understood how long-
term culture affects the composition of MSC preparations and  fi ve processes seem 
to be involved (Wagner et al.  2010a,   b  ) : (1) MSC are composed of sub-populations 
with different proliferation rates and therefore the heterogeneity notoriously changes 
in the course of  in vitro  culture; (2) cells in culture acquire mutations and other 
stochastic cellular defects; (3) self-renewal of MSC may be impaired in the arti fi cial 
environment of a culture dish leading to gradual differentiation; (4) the number of 
cell divisions might be restricted – for example by telomere loss under culture con-
ditions or (5) replicative senescence might be associated with the aging process of 
the organism as mentioned above. 

 Due to the functional implications of long-term culture there is a growing per-
ception that this process has to be taken into account – especially for clinical appli-
cations. On the other hand the state of replicative senescence is poorly de fi ned by 
the number of population doublings or even by the number of passages. Reliable 
markers for cellular aging are urgently needed.  

    16.6   Potential Applications for Therapies 

 Theoretically, MSC can be isolated from a small aspirate of BM or tissue samples 
and expanded in vitro. Preliminary studies suggest that MSC preferentially home to 
damaged tissue and therefore have therapeutic potential (LeBlanc  2006  ) . The web-
site   www.ClinicalTrials.gov     of the National Institutes of Health (Bethesda, MD, 
USA) is currently listing more than 100 active clinical trials in which MSC are 
involved. Clinical applications include treatment of such different entities as steroid 
refractory graft versus host disease (GvHD), osteonecrosis, articular cartilage 
defects, severe chronic myocardial ischemia, decompensated liver cirrhosis, multi-
ple sclerosis, Type I and II diabetes mellitus, Lupus nephritis, Crohn’s disease and 
more. So far the studies revealed no serious side effects upon transplantation of 
MSC. However, it is unclear if the bene fi cial effects that have been observed in 
some studies are really due to true transdifferentiation of MSC into the damaged 
tissue cells. For example, clinical trials using MSC for myocardial infarction have 
proceeded rapidly, but there is little or no evidence for the differentiation of MSC to 
coupled cardiomyocytes (Caplan and Dennis  2006 ; Grinnemo et al.  2006 ; Stamm 
et al.  2006  ) . The bene fi cial effects shown in some of these studies might be attribut-
able to paracrine anti-in fl ammatory signalling or stimulation of endogenous repair 
processes by the injected cells (Mazhari and Hare  2007  ) . The precise underlying 
mechanisms are yet unknown. This lack of knowledge might not prevent applica-
tion of MSC in clinical settings if there are bene fi ts for the patient and if there are 
no or minimal side effects. 

 At present, the most promising clinical studies make use of the immunomodula-
tory effects of MSC. In vitro data suggest that MSCs have low inherent 
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 immunogenicity as they induce little, if any, proliferation of allogeneic lympho-
cytes. Instead, MSCs appear to be immunosuppressive in vitro (   Le Blanc and 
Ringdén  2007  ) . A recent multicenter, phase II experimental study enrolled 55 
patients with steroid-resistant, severe, acute GvHD. Patients were treated with mes-
enchymal stem cells, derived with the European Group for Blood and Marrow 
Transplantation ex-vivo expansion procedure. Thirty patients had a complete 
response and nine showed improvement. Complete responders had lower transplan-
tation-related mortality 1 year after infusion than did patients with partial or no 
response (37% vs. 72%; p = 0.002) and higher overall survival 2 years after hae-
matopoietic stem-cell transplantation (53% vs. 16%; p = 0.018) (Le Blanc et al. 
 2008  ) . In a pilote study LeBlanc et al. could furthermore demonstrate, that trans-
plantation of mesenchymal stem cells enhanced the engraftment of hematopoietic 
stem cells: seven patients underwent treatment with mesenchymal stem cells 
together with allogeneic hematopoietic stem cell transplantation, resulting in fast 
engraftment of absolute neutrophil count and platelets and 100% donor chimerism, 
even in three patients regrafted for graft failure/rejection (Le Blanc et al.  2007  ) . 

 However, recent data indicated that MSC may undergo spontaneous transforma-
tion following long-term culture (Meza-Zepeda et al.  2008 ; Rosland et al.  2009 ; 
Rubio et al.  2005  ) . Recent reports indicate that sarcoma can evolve from murine 
MSC cultures (Li et al.  2010 ; Tolar et al.  2007  ) . Karnoub and coworkers demon-
strated that bone-marrow-derived human mesenchymal stem cells, when mixed 
with otherwise weakly metastatic human breast carcinoma cells, cause the cancer 
cells to increase their metastatic potency greatly when this cell mixture is intro-
duced into a subcutaneous site and allowed to form a tumour xenograft (Karnoub 
et al.  2007  ) . Therefore, malignant transformation of therapeutic cell preparations is 
like the “Sword of Damocles” and may jeopardize the use of MSC as therapeutic 
tools. Further studies need to address and clarify this issue, before MSC can be used 
as a standard-option for clinical use.  

    16.7   Conclusions and Future Development in Research 

 The lack of common standards and universal guidelines for the preparation of MSC 
has greatly hampered further progress. The quality of preparations from different 
laboratories varies signi fi cantly and the cell products are notoriously heterogeneous 
regarding the source and freshness of starting material, isolation protocols, culture-
conditions, number of passages upon culture, etc. There is an urgent need for the 
development of molecular markers and universal criteria for quality control of the 
starting cell populations as well as for the cell products after expansion. Such a 
comprehensive approach might also be helpful to clear the role of the above men-
tioned subpopulations, i.e. MAPC, USSC and VSEL. For clinical use, a clear 
de fi nition of the transplanted cell populations in conjunction with serum-free cul-
ture media and close quality controls throughout the whole production-process is 
essential. 
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 Even though there is so far no convincing evidence that MSC themselves are 
involved in the process of tissue repair by transdifferentiation, they probably con-
tribute to this process by providing a supportive microenvironment for other cell 
types that are directly involved, including other types of adult stem cells. At present, 
three major  fi elds can be identi fi ed, in which MSC can and will be used for thera-
peutic purposes: (I) tissue repair (Le Blanc  2006 ; Mazhari and Hare  2007 ; Müller 
et al.  2008b  ) ; (II) therapy of chronic graft vs. host disease (GvHD) (Aksu et al. 
 2008 ; Le Blanc et al.  2008 ; Tian et al.  2008  ) , and (III) enhancement of hematopoi-
etic stem cell engraftment in an allogeneic transplant setting (Le Blanc et al.  2007 ; 
Müller et al.  2008a  ) . The underlying key mechanism in all the three  fi elds is not 
completely understood, but probably a result of MSC-induced immunosuppression. 
We therefore need aggressive attempts to better understand the immunomodulatory 
mechanisms of MSC.      
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  Abstract   Probably the most striking example of musculoskeletal regeneration is 
the growing of an entire limb by a salamander, after it is traumatically amputated. 
This classic example unfortunately doesn’t apply to humans, but (local) stem cells 
are indispensable in providing a renewable cell source for physiological tissue 
homeostasis and regeneration after musculoskeletal tissue injury. Stem cells have 
been isolated from the following musculoskeletal tissues: bone marrow, adipose 
tissue, periosteum, perichondrium, tendons, ligaments, muscle, cartilage, bone and 
synovial membrane or - fl uid. We chose to refer to these cells as mesenchymal 
progenitor cells (MPCs). Cells from these different tissues are generally isolated by 
mincing the tissue followed by enzymatic digestion. Overall, the cells are positive 
for CD44, CD90, CD105, (CD146), CD166 and STRO-1 and negative for CD31, 
CD34, CD45 and CD117. On the whole, cell yields from these tissues and prolifera-
tion capacities of these cells appear to be within the same order of magnitude. Cells 
derived from the various musculoskeletal tissues have all been shown to have a 
multi-lineage differentiation potential, although they do show differentiation prefer-
ences, in general for differentiating towards the tissue they were originally derived 
from. Regenerative capacities of local stem cells are based on two characteristics. 
In the  fi rst place, they have the ability to differentiate into mature tissue cells, thereby 
contributing to new tissue formation. As a second quality, local stem cells secrete 
trophic factors that may be responsible for another mechanism of stem cell-mediated 
tissue repair. These trophic factors are capable of attracting (more) stem cells to the 
damaged area and they can play an immunomodulatory role. Musculoskeletal stem 
cells posses a huge capacity for application in regenerative medicine.      

    G.  M.   van   Buul ,  M.D.    •    G.  J.  V.  M.   van   Osch ,  Ph.D.   (*)
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    17.1   Introduction 

 Regeneration of tissues happens on a daily basis throughout our lives. For many 
years scientist have been trying to elucidate this process, which is delicately regu-
lated by molecular and cellular events. The growing of an entire limb by a salaman-
der after its traumatic amputation is one of the most remarkable examples of 
musculoskeletal regeneration   . This process is called epimorphosis   , and is character-
ised by cellular dedifferentiation and proliferation at the wound site (Brockes and 
Kumar  2002  ) ; Local mesenchymal cells    lose their phenotype, start proliferating as 
blastemal cells followed by redifferentiation in order to form the tissues required for 
the newly formed limb (Brockes and Kumar  2002  ) . This example, which is very 
appealing to one’s imagination, regrettably doesn’t relate to humans. Still, (local) 
stem cells are indispensable in providing a renewable cell source for physiological 
tissue homeostasis and regeneration after tissue injury (Lin et al.  2008  ) . In the 
1960s, the work of Alexander Friedenstein demonstrated that mesenchymal stem 
cells    (MSCs) are locally present in the bone marrow of adults (Friedenstein et al. 
 1966  ) . More recently, it became clear that most specialized tissues in the body con-
tain a local pool of stem- or progenitor cells. Local stem- or progenitor cells can be 
derived from all musculoskeletal tissues and show quite some resemblances to bone 
marrow derived MSCs (BMSCs) (Sakaguchi et al.  2005 ; Yoshimura et al.  2007 ; 
Segawa et al.  2009  ) . A multitude of nomenclature to denote these cells is being used 
in literature. For this chapter we will refer to them as local Mesenchymal Progenitor 
Cells    (MPCs) that are present in the tissues of the musculoskeletal system. 

 Different properties and functions can be appointed to MPCs. To review them we 
will subsequently describe the following aspects:

   Derivation: overview of MPCs derived from various musculoskeletal tissues.   –
  Characteristics and properties: markers, yield and proliferation, ageing and  –
senescence.  
  Regenerative capacity: differentiation of MPCs and the secretion of trophic  –
factors that can in fl uence tissue regeneration.  
  Potential applications: in vivo animal and clinical results regarding tissue regen- –
eration and other applications.     

    17.2   Derivation 

 The musculoskeletal system    consists of many different tissues. MPCs have been 
isolated from the following mesenchymal tissues: bone marrow (Pittenger et al. 
 1999  ) , adipose tissue (Zuk et al.  2002  ) , muscle (Burdzinska et al.  2008  ) , cartilage 
(Tallheden et al.  2006  ) , synovial membrane or - fl uid (Morito et al.  2008 ; Fan et al. 
 2009  ) , periosteum/perichondrium (Upton et al.  1981 ; Hutmacher and Sittinger 
 2003  ) , tendons/ligaments (Bi et al.  2007 ; Singhatanadgit et al.  2009  )  and bone 



43517 Musculoskeletal Stem Cells

(Sakaguchi et al.  2004  )  (Fig.  17.1 ). Cells derived from these various tissues have 
different speci fi c characteristics and capacities, but they also display many similarities. 
The main common feature of these various cell populations is that they all have the 
potential to differentiate into multiple mesodermal lineages. A brief description of 
the various tissue sources for MPCs is given below.  

    17.2.1   Bone Marrow    

 BMSCs are the most extensively studied musculoskeletal MPCs. BMSCs are non-
hematopoietic cells that reside in the bone marrow. They were  fi rst described by 
Friedenstein et al., as clonal, plastic adherent cells, functioning as a source of the osteo-
blastic, adipogenic and chondrogenic cell lineages (Friedenstein et al.  1976  ) . BMSCs 
play an important role in the bone marrow’s microenvironment (Bobis et al.  2006  ) . The 
main function of MSCs in the bone marrow is to create a tissue framework, serving as 
mechanical support for the hematopoietic cell system. For further speci fi cs on BMSCs 
we refer to the previous chapter where BMSCs are extensively discussed.  

  Fig. 17.1    Local 
mesenchymal progenitor cells 
(MPCs) can be derived from 
all these musculoskeltal 
tissues. Ligaments and 
perichondrium are not shown 
in this image, but contain 
MPCs as well       
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    17.2.2   Adipose Tissue 

 Adipose tissue    is derived from the mesenchyme and contains a supportive stroma. 
Zuk et al. were the  fi rst to report the isolation of multi-potent stem cells from this 
stromal fraction of adipose tissue (Zuk et al.  2001  ) . We would like to mention 
speci fi cally the possibility to harvest local fat from fatpads in the joint. These struc-
tures have been demonstrated to contain MPCs (Dragoo et al.  2003 ; Wickham et al. 
 2003  ) . A clear advantage of this cell population is their ready accessibility and the 
excellent availability of large quantities of tissue that can be harvested. Also for 
further speci fi cs of this cell population we refer to the previous chapter.  

    17.2.3   Muscle 

 Roughly two MPC groups can be found in adult muscle tissue   : satellite cells    
(which are considered uni-potent stem cells) and multi-potent muscle-derived 
stem cells   . Satellite cells were  fi rst described in 1963. Satellite cells comprise a 
heterogenous cell population that resides under the basal lamina which surrounds 
muscle  fi bres (Mauro  1961  ) . Within this heterogenous cell population a Pax7 pos-
itive sub-population can be identi fi ed which is called the “typical” satellite cell 
(Seale et al.  2000  ) . Adult muscle satellite cells can give rise to transient amplify-
ing cells (progenitors) and myoblasts. These myoblasts fuse with myo fi bres and 
play a principal role in postnatal skeletal muscle growth and regeneration (Sacco 
et al.  2008  ) . The multi-potent muscle-derived stem cells (also referred to as skel-
etal muscle side population) have been discovered more recently. These cells 
comprise a more homogenous cell population that is less abundant in adult muscle 
(Qu-Petersen et al.  2002  ) . These cells play a role during muscle homeostasis and 
regeneration. While they do posses multi-lineage differentiation potential, these 
skeletal muscle side population cells display a distinct preference for myogenic 
differentiation.  

    17.2.4   Cartilage 

 Articular cartilage    is an avascular, aneural tissue of a stiff but compressible nature. 
The density of cells present in cartilage is very low, and cell mobility is limited 
through the surrounding matrix. The lack of vascularisation and innervation together 
with a low cell density and the relative immobility of the cells in cartilage, are the 
reasons why cartilage has a very low capacity for self-repair (Tallheden et al.  2006  ) . 
In general, cartilage defects caused by trauma or mechanical wear, tend to further 
degenerate instead of regenerate. Various studies have shown that the super fi cial zone 
of articular cartilage regulates cartilage development and growth (Hayes et al.  2001 ; 
Hunziker et al.  2007  ) . The  fi rst report describing isolation of a population of stem/
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progenitor cells from the super fi cial zone dates from 2004 (Dowthwaite et al.  2004  ) . 
Recently, Koelling et al. reported on the isolation of a population of progenitor cells 
from repair tissue of late stage human osteoarthritic cartilage which could not be 
isolated from healthy cartilage (Koelling et al.  2009  ) . These cells possessed charac-
teristics of clonogenicity, multipotency and migratory activity. Although most studies 
regarding cartilage derived progenitor cells comprise articular cartilage, other carti-
lage types such as meniscus (Segawa et al.  2009  )  and intervertebral discs (Risbud 
et al.  2007 ; Feng et al.  2010  )  contain progenitor cells as well.  

    17.2.5   Synovium and Synovial Fluid 

 Cells present in the synovium    produce synovial  fl uid that functions as a joint lubri-
cant. The synovium is a thin (two to three cell layers thick) membrane lining the 
non-articular joint surfaces, thereby providing a synovial  fl uid- fi lled cavity around 
the cartilage (Fan et al.  2009  ) . De Bari et al. were the  fi rst to report successful iso-
lation of stem cells from synovial membrane in 2001 (De Bari et al.  2001  ) . Various 
names have been used for describing stem- or progenitor cells derived from the 
synovium, including synovium-derived stem cells, synovium-derived MSCs, 
and synovial progenitor cells. Interestingly, synovial    MPCs can be generated 
from healthy synovium but also from rheumatoid- and osteoarthritis patients 
(Zimmermann et al.  2001 ; Nagase et al.  2008  ) . 

 The number of MPC/stem cells in synovial  fl uid increases after trauma and these 
cells have been hypothesized to be important in repair of intra-articular structures 
after injury. For instance, the number of colony forming cells in synovial  fl uid was 
reported to be a 100-fold higher in knees several weeks after injury of the anterior 
cruciate ligament than in knees from healthy volunteers (Morito et al.  2008  ) . These 
cells are likely to originate from the synovial membrane, since there is a positive 
correlation between intra-articular synovial fragments and the number of MPCs in 
synovial  fl uid (Jones et al.  2008  ) . Moreover, MPCs locally present in the synovium 
were found to proliferate in response to damage in an animal OA model (Kurth et al. 
 2011  ) . The injured tissues can attract MSC from this source to the synovial  fl uid by 
the secretion of cytokines and chemokines such as stromal cell-derived facor-1 
(SDF-1), CXCR4 or VEGF (Spaeth et al.  2008  ) .  

    17.2.6   Periosteum and Perichondrium 

 These cells are amongst the  fi rst musculoskeletal tissues that have been used to 
regenerate bone and cartilage. The  fi rst report describing the osteogenic function of 
periosteum    dates from 1742 (Gysel  1983  )  and Fell et al. were the  fi rst to describe 
culturing and isolation of periosteum cells in 1932 (Fell  1932  ) . Periosteum as 
well as perichondrium    contains a so-called cambium layer, which is attached to 
the bone and cartilage respectively. This cambium layer    contains cells, capable of 
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proliferating in order to form new tissue. The periosteum and perichondrium plays 
a role in cartilage or bone remodelling during the skeletal growth period and during 
repair after wounding.  

    17.2.7   Tendon and Ligament 

 In their biological function, tendons    and ligaments    mainly transmit tensile forces. 
Per de fi nition, tendons form the link between a muscle belly and a bone, while liga-
ments attach bone to bone (Rumian et al.  2007  ) . Ligaments are composed of the 
same basic components as tendons, although differences do exist to provide the 
speci fi c mechanical properties needed for their tasks. For instance, the collagen 
 fi brils in ligaments are not uniformly parallel oriented, in order to allow for multi-
axial loading patterns (Rumian et al.  2007  ) . The primary unit of a tendon or a liga-
ment is the collagen  fi ber   . This extracellular matrix is produced by the tissue cells 
that lie between the collagen  fi bers (Kannus  2000  ) . An intriguing feature of tendon 
is its possible plasticity. Conversion of tendon into cartilage has been observed as a 
consequence of (non)surgical trauma (Rooney et al.  1993 ; McClure  1983  ) . Various 
tendons and ligaments, including cruciate ligaments, periodontal ligaments and 
patellar- and hamstring tendons, have been demonstrated to contain stem/progenitor 
cells (de Mos et al.  2007 ; Scutt et al.  2008 ; Singhatanadgit et al.  2009  ) .  

    17.2.8   Bone 

 Bone    and bone marrow    are physically virtually co-localized. Local MPCs have been 
demonstrated to grow out of trabecular bone fragments, either with or without enzy-
matically digesting the fragments (Noth et al.  2002 ; Sanchez-Guijo et al.  2009  ) . 
Since the close anatomical relationship between these cells and BMSCs, a de fi nitive 
statement about whether these cells arise from a different source is dif fi cult to make. 
Furthermore, MPCs derived from trabecular bone become virtually identical to bone 
marrow derived MSCs upon subcultivation for approximately two passages 
(Sakaguchi et al.  2004  ) . Therefore, these cells will not be discussed separately here.   

    17.3   Characteristics and Properties 

    17.3.1   Cell Markers    

 Today it is unavoidable to characterize the obtained cells by  fl uorescence activated cell 
sorting    (FACS) analyses. This technique is introduced from the  fi eld of haematology 
where research on stem and progenitor cells is further advanced. In contrast to the 
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haematology, unique markers for mesenchymal and progenitor cells are not yet 
available (Jones and McGonagle  2008  ) . Therefore a large set of different markers is 
used. Virtually all described MPC populations used in research are heterogeneous 
groups of cells, attributing to different characterisations by different investigators. 
According to the International Society for Cellular Therapy (Alessandri et al.  2004  ) , 
a multipotent stromal cell    is de fi ned by the following criteria (a) its property of 
adherence to plastic; (b) its phenotype: negative for: CD14 or CD11b, CD19 or 
CD79a, CD34, CD45, HLA-DR, and positive for CD73, CD90, CD105; and (c) its 
capacity to be differentiated into three lineages, chondrocyte, osteoblast, and adipo-
cyte. Criteria (a) and (c) are met by MPCs derived from all tissues discussed in this 
chapter. These topics will be further dealt with later in this section. Regarding cell 
phenotype, our literature review showed that MPCs derived from the previously 
mentioned tissues are negative for CD31, CD34, CD45 and CD117. They are 
reported to be positive for CD44, CD90, CD105, CD146, CD166 and STRO-1 
(Young et al.  2001 ; Fickert et al.  2003,   2004 ; Alessandri et al.  2004 ; Sakaguchi et al. 
 2005 ; Giurea et al.  2006 ; Shirasawa et al.  2006 ; Bi et al.  2007 ; de Mos et al.  2007 ; 
Burdzinska et al.  2008 ; Jones et al.  2008 ; Nesti et al.  2008 ; Sacco et al.  2008 ; Scutt 
et al.  2008 ; Fan et al.  2009 ; Grogan et al.  2009 ; Wada et al.  2009  ) . Although this 
combination of positive and negative markers is quite comparable for markers 
generally accepted for bone marrow- and adipose tissue derived MSCs, differences 
between the two latter cell populations and MPCs derived from other mesenchymal 
tissues have been reported (Sakaguchi et al.  2005 ; Shirasawa et al.  2006 ; Yoshimura 
et al.  2007 ; Koga et al.  2008 ; Segawa et al.  2009  ) . Most frequently reported differ-
ence between these cells is differentiation capacity, which will be discussed later in 
this chapter. Some groups have described a so-called “side population    (SP)” of pro-
genitor cells. These cells, originally described as hematopoietic stem cells, have a 
unique FACS pro fi le after staining with Hoechst 33342 dye. They can not only be 
obtained from bone marrow but from other tissues as well, including synovium and 
muscle (Liadaki et al.  2005 ; Teramura et al.  2008  ) . Transcriptional pro fi les for SP 
and the more differentiated non-SP cells appear to be different. Amongst the genes 
upregulated in SP cells are genes that implicate the quiescent status of the cells, 
maintenance pluripotency and the capacity to undergo asymmetric division (Rochon 
et al.  2006  ) . Some groups claim that these cells have superior properties in compari-
son to the remaining “main population” of cells, but this topic is too speci fi c to 
include in this chapter.  

    17.3.2   Cell Yield: Isolation and Proliferation 

 The common protocol for isolation    of MPCs, irrespective of tissue source, is mincing 
the tissue followed by enzymatic digestion   . The enzyme collagenase is mostly used 
for this purpose, sometimes in combination with other enzymes like dispase. The 
duration of digestion and enzyme dose is variable, but in general lower collagen 
content of tissues results in a shorter isolation protocol. After tissue digestion, MPCs 
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are in general selected upon plastic adherence, which is in accordance to BMSC 
isolation (Dominici et al.  2006  ) . This doesn’t hold true for muscle satellite cells or 
cartilage derived MPCs. These cells are selected using vitrogen gel or  fi bronectin 
adherence respectively (Yablonka-Reuveni et al.  1999 ; Dowthwaite et al.  2004  ) . 
However, it is to be expected that these generally applied MPC isolation protocols 
are merely empirically based and not necessarily optimized. Changing concentra-
tion, duration and composition of enzymes might further increase cell yields as well 
as their viability. 

 Occasionally, cells are isolated by cutting the tissue in small pieces for cells to 
grow out. This is often done if the amount of tissue is too limited to obtain suf fi cient 
cell number after enzymatic digestion. Results of these studies demonstrate that for 
bone, perichondrium and tendon it is indeed possible to obtain cells with multilin-
eage capacity this way (Van Osch et al.  2000 ; Noth et al.  2002 ; de Mos et al.  2007  ) . 

 For isolation of MPC from bone marrow aspirates a different protocol is fol-
lowed. These cells are not isolated enzymatically but solely selected by adherence 
to tissue culture plastic after plating the biopsy. Sometimes, this is preceded by lyses 
of the red blood cells and/or a density gradient centrifugation to select the mononu-
clear fraction. 

 Cell yields from different tissues vary per isolation source and also depend on the 
original cellularity of the tissue. Sakaguchi et al. found comparable colony forming 
units (CFU) per 10 3  nucleated cells for adipose, synovium-, periosteum- and muscle 
derived MPCs (Sakaguchi et al.  2005  ) . Bone marrow showed less CFU per 10 3  
nucleated cells, but this was compensated by a higher number of nucleated cells per 
tissue volume. Others report roughly comparable results with a tendency towards 
higher colony forming units per nucleated cells obtained from synovium compared 
to periosteum, muscle and cruciate ligaments (Yoshimura et al.  2007 ; Segawa et al. 
 2009  ) . No unambiguous differences regarding the proliferation of the isolated cell 
populations could be observed up to passage eight, although synovial derived cells 
showed a trend towards higher proliferation (Sakaguchi et al.  2005 ; Yoshimura et al. 
 2007  ) . Overall, cell yields from these tissues and proliferation capacities of the 
isolated cells appear to be within the same order of magnitude. Therefore, the ease 
of harvesting suf fi cient amounts of tissue might become of more importance for 
selection of the most suitable cell source in future clinical practice.  

    17.3.3   Ageing    and Senescence    

 To evaluate the possibilities to prevent or treat musculoskeletal disorders using 
autologous cell-based therapies   , it is important to know how the number and func-
tion of MPC in musculoskeletal tissues are affected by age and/or disease. In the 
ageing organism, regenerative capacities    of tissues tend to decrease (Brooks and 
Faulkner  1990 ; Kasper et al.  2009  ) . Possible explanations for this declining regen-
erative capacity could be an age-related change in numbers or features of MPCs 
(cell intrinsic factors   ) or modi fi cations in the surrounding environment (cell extrinsic 
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factors   ) (Burdzinska et al.  2008  ) . These alterations have not been fully elucidated 
yet, and literature about this subject is sometimes contradictory. 

 In bone marrow for instance, a reduction of colony-forming ef fi ciency was found 
with increasing age using donors ranging from infants to the age of 60 years (Caplan 
et al.  1998  ) . Scharstuhl et al. on the other hand, found no correlation between age and 
the number of mononuclear cells in bone marrow, BMSC yield, cell size, prolifera-
tive capacity or cellular spectrum of the harvested cells from adult human donors 
(Scharstuhl et al.  2007  ) . Similarly, for periosteum derived MPCs opposing results 
have been published regarding the in fl uence of age. Both donor age dependent 
(Nakase et al.  1993  )  and independent (Koshihara et al.  1989  )  effects on osteochon-
drogenic potential of periosteum MPCs have been reported. Periosteal cells    are 
reported to maintain osteochondrogenic potential up to ten population doublings. 
This potential eventually diminishes upon further passaging (Nakahara et al.  1991  ) . 

 Muscle tissue is the last tissue for which inconsistencies are described regarding 
age-related  fi ndings. The number of progenitor cells in muscles has been reported to 
decrease, remain constant or increase with rising age (Brack and Rando  2007  ) . 
Other cell intrinsic factors    like telomere shortening and increased tendency to 
undergo apoptosis play a role in declining muscle regeneration upon ageing too 
(Brack and Rando  2007  ) . Cell extrinsic factors    that determine appropriate activation 
and ef fi cient proliferation before terminal differentiation, are also proposed to play 
a key role in regenerating capacities of ageing muscle tissue. This is explained here 
with some examples. In aged muscle, progenitor cells prematurely shift from a pro-
liferation phase to a differentiated state due to alterations of Wnt and Notch signal-
ing (Conboy et al.  2003 ; Brack et al.  2007  ) . This leads to less regeneration capability 
in aging organisms. Interestingly, this trend appears to be reversible. When aged 
satellite cells    are exposed to a young systemic environment, Notch activation is re-
established again (Conboy et al.  2005  ) . Another known feature of satellite cells is 
the tendency to convert to  fi broblasts  in vitro  upon increasing age. Exposure of aged 
cells to serum derived from young animals reduces this tendency, further emphasiz-
ing the role of extrinsic factors in (aged) tissue regeneration (Conboy et al.  2005  ) . 

 Cartilage derived chondroprogenitor cells       are described to have a relative high 
telomerase activity (Khan et al.  2009  ) . Telomerase      ,  fi rst described by Greider et al., 
prevents telomere shortening during cell division (Greider and Blackburn  1985  ) . By 
doing so, this enzyme postpones cell senescence and increases the maximum amount 
of cell doublings a cell can undergo. Cartilage derived progenitors undergo a high 
number of initial population doublings before a plateau is reached upon approxi-
mately 50 population doublings. After approximately 25 population doublings 
telomerase activity appears to decrease, leading to morphological and functional 
cell senescence (Khan et al.  2009  ) . 

 Synovium    MPCs have also been described to have limited senescence and can be 
expanded  in vitro  to large numbers. Their proliferative capacity doesn’t appear to be 
affected by donor age. However, despite their high proliferative capacity, synovium 
MPCs have undetectable telomerase activity (De Bari et al.  2001  ) . Their multipotent 
capacity is not in fl uenced by donor age, cell passages or cryopreservation (De Bari 
et al.  2001  ) . 
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 In summary, the fact that regenerative capacities of ageing tissues tend to decrease 
is not entirely understood. However, it is clear that both cell intrinsic and cell extrin-
sic properties play a role in this process. In order to evaluate the applicability of 
cell-based therapies in musculoskeletal disorders, animal and clinical studies are a 
prerequisite. Results regarding this topic are mentioned in the “Potential applica-
tions for therapies” section.   

    17.4   Regenerative Capacity 

    17.4.1   Differentiation 

 MPCs derived from the various described musculoskeletal tissues have all been 
shown to have a multilineage differentiation    potential (Sakaguchi et al.  2005 ; 
Thornemo et al.  2005 ; Segawa et al.  2009  ) . This means they all have been shown to 
be able to differentiate into multiple mesodermal lineages including the osteogenic, 
adipogenic and chondrogenic lineage. The only exception is the “typical” satellite 
cell   , which is generally considered a unipotent myogenic stem cell (Burdzinska 
et al.  2008  ) . Although the latter may be regarded as a myoprogenitor cell, it does 
have true stem cell properties including self-renewal by asymmetric division (Kuang 
et al.  2007  ) . Although cells derived from these previously mentioned tissues have 
the capacity to differentiate into different lineages, they all show a preference, in 
general for differentiating towards the tissue they were originally derived from. So, 
cartilage derived MPCs show a tendency towards chondrogenic differentiation 
(Hattori et al.  2007  )  and muscle derived MPCs towards the myogenic lineage 
(Muskiewicz et al.  2005  ) . Since no differentiation protocols are available for dif-
ferentiating cells in vitro towards a tendon, synovial or periosteal lineage for 
instance, cells derived from these tissues commonly are differentiated into adipo-
cytes, osteocytes and chondrocytes as well to prove multilineage differentiation 
potential. Periosteal    MPCs have great osteogenic potential (Hutmacher and Sittinger 
 2003  )  whereas synovium    derived MPCs have a preference for the chondrogenic 
lineage (Mochizuki et al.  2006  ) . Nevertheless, it is very dif fi cult to state that local 
progenitors from one type of tissue are more suitable to form a certain tissue than 
other MPCs. Due to the fact that virtually all cells discussed in this chapter comprise 
heterogeneous groups of cells, it is hard to tell whether differentiation preferences 
arise from speci fi c stem cell related features or are simply a consequence of differ-
ences in the presence of local (further differentiated) progenitors. Furthermore, dif-
ferentiation studies  in vitro  are not directly translatable to an  in vivo  situation. MPCs 
are exposed to speci fi c local (micro)environments during tissue development as 
well as during the mature stage. When  in vivo  applied, it seems logical that these 
cells can respond different to tissue speci fi c growth factors or other stimuli. More 
information about the microenvironments of the various MPCs is necessary, together 
with knowledge about the heterogeneity of cell populations. An increasing number 
of clonal studies using single cells to show true multilineage differentiation and/or 
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self-renewal of different MPCs are reported (Barbero et al.  2003 ; Fujii et al.  2008 ; 
Sacco et al.  2008 ; Singhatanadgit et al.  2009  ) . Direct comparison of clonal cells 
derived from different musculoskeletal tissues should be a focus of future research 
in order to form a founded opinion about optimal cell sources. 

 Besides differentiating into mesodermal lineages, bone marrow stromal derived 
cells have been shown to be able to give rise to hepatic cells (endodermal lineage) 
and mature astrocytes and neurons (ectodermal lineage) as well (Tomita et al.  2006 ; 
Oh et al.  2007  ) . This process, where a stem cell differentiates into cell types from a 
different germ layer than the one it originally resided in, is termed transdifferentia-
tion   . Although this has not been extensively investigated for the MPCs discussed in 
this chapter, muscle derived MPCs for example have been demonstrated to be able 
to transdifferentiate into endo- and ectodermal lineages as well (Schultz et al.  2006  ) . 
This might suggest that MPCs from other sources might also have transdifferentia-
tion capacity, which has to be shown in future investigations.  

    17.4.2   Trophic Factors 

 MPCs can contribute to tissue repair by differentiating into a mature tissue cell and 
forming extracellular matrix to repair damaged tissue. In addition these cells con-
tribute to tissue repair: by the production of trophic factors. These trophic factors    
are capable of attracting (more) stem cells to the damaged area and they can have an 
immunomodulatory effect (Caplan and Dennis  2006  ) . For bone marrow and adipose 
derived cells there is a fast increasing amount of information on trophic factors 
(Jones and McTaggart  2008 ; Siegel et al.  2009  ) . MPCs derived from bone marrow 
and adipose tissue, but also MPCs from periodontal ligament, have been shown to 
have a suppressive effect upon peripheral blood mononuclear cell proliferation 
(Wada et al.  2009  ) . This suppressive effect was found both in mixed lymphocyte 
reactions (allowing cell-cell contact) and in transwell co-cultures (avoiding direct 
contact). The latter emphasizes the paracrine effects    of these cells.   

    17.5   Potential Applications for Therapies 

 Huge potential resides in the MPCs discussed in this chapter regarding musculosk-
eletal tissue regeneration   , either by differentiating into more mature tissue cells or 
by their modulatory properties. The potential of MPCs for tissue regeneration or 
immune modulation is demonstrated by the huge amount of clinical trials that are 
already performed or are still ongoing, using bone marrow derived MSCs (Bobis 
et al.  2006 ; Giordano et al.  2007  ) . The application of these cells encompasses various 
 fi elds, including cardiovascular diseases, osteogenesis imperfecta, graft versus host 
disease and neurological disorders like amyotrophic lateral sclerosis, etc. (Giordano 
et al.  2007 ; Jones and McGonagle  2008  ) . 
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 Clinical studies    or applications with musculoskeletal stem cells generated from 
other tissues than bone marrow have been performed with muscle derived MPCs, 
periosteum and perichondrium. Muscle MPCs have been used in clinical trials for 
treating myocardial ischemia (Joggerst and Hatzopoulos  2009  ) . Periosteum has 
proven it’s added value in treating bone defects (Schmelzeisen et al.  2003 ; Yamamiya 
et al.  2008  )  and has been used as a therapy for local cartilage defects for more than two 
decades (Niedermann et al.  1985 ; Alfredson et al.  1999  ) . Perichondrium has been 
applied as a graft to treat isolated chondral defects (Homminga et al.  1990 ; Bouwmeester 
et al.  2002  ) . Although MPCs likely play a role in these studies, tissue transplants were 
used rather than isolated cells. Therefore, we cannot state that the positive results were 
solely based on the regenerative capacities of transplanted MPCs. Furthermore, 
although promising results were obtained using periosteum for treating bone defects, 
golden standard still is the use of autologous bone grafts   . Regarding local cartilage 
defects, subchondral drilling and autologous chondrocyte implantation    (see later) 
have become the main therapies. Animal experiments with MPCs of other musculo-
skeletal tissues show hopeful results. Muscle MPCs have been reported to contribute 
to up to 94 % of myo fi bers after intramuscular injection into dystrophic mice (Cerletti 
et al.  2008  ) . Furthermore, satellite cells have been shown to be able to undergo 
approximately 14–17 cell doublings after single cell transplantation in vivo (Sacco 
et al.  2008  ) . A possible drawback of muscle MPCs is their low migrating capacities 
requiring local delivery, although homing of these cells into damaged muscle after 
intravenous injection has been reported (Muskiewicz et al.  2005  ) . Synovial MPCs in 
their turn have proven in vivo to contribute to cartilage repair (Pei et al.  2009  ) , menis-
cal regeneration (Horie et al.  2009  ) , muscle repair (De Bari et al.  2003  )  and to acceler-
ate remodeling of tendon to bone healing in a bone tunnel model (Ju et al.  2008  ) . 
Lastly, tendon- and ligament derived MPCs can play a role in regenerating damaged 
tendon and ligament respectively (Gronthos et al.  2006 ; Kryger et al.  2007  ) . Although 
cartilage has been shown to contain progenitor cells, applications using only these 
MPCs do not yet exist. In the  fi eld of cartilage repair, autologous chondrocyte implan-
tation is a well established, cell-based    and clinically applied cartilage repair technique 
(Brittberg et al.  1994  ) . This technique however uses predominantly differentiated 
chondrocytes to  fi ll the cartilage defect, thereby not meeting the de fi nition of stem cell 
therapy. The contribution of cartilage MPC to the outcome of ACI is not known and 
would be an interesting research question. 

 In summary, the applicability of MPCs of a certain tissue for an application will 
depend on ease of harvesting and the ability to control function. At the moment, 
further evidence has to come from properly organized and controlled animal as well 
as clinical studies. 

 The variability of the outcome of different studies where MPCs are used is of 
great concern. Part of the variation might be due to variation in MPC characteristics 
between donors. Better characterisation of the cells or selection of cells before use 
can improve outcome. The  fi rst study with cell selection (although this did not 
involve MPCs), for regenerative medicine of the musculoskeletal system has been 
performed in cartilage repair (Saris et al.  2008  ) . In addition to the variation in MPC 
characteristics, variability in outcome of clinical studies will also be caused by the 
differences in the host environment where the cells are introduced. Stage of disease, 
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but also general patient characteristics like BMI, age and gender will determine 
MPC fate and function (Caplan et al.  1998  ) . How these factors in fl uence MPCs is 
largely unknown at the moment. It is important to take this into account when 
designing clinical studies. 

 Instead of actually applying or injecting MPCs for musculoskeletal disorders, 
some therapies aim at stimulating or attracting stem cells to the damaged tissue. 
Some examples of this approach are shockwave therapy   , pulsed electromagnetic 
 fi elds    (PEMF) or the use of cell attracting growth factors. These strategies are being 
investigated as possible therapies for osteoporosis, bone non-unions, osteochondral 
defects and cartilage regeneration (Wang et al.  2009 ; van Bergen et al.  2009 ; van der 
Jagt et al.  2009 ; Lee et al.  2010  ) . 

    17.5.1   Tumour Formation    

 Although formation of tumours after the use of adult MPCs have never been reported, 
the capacities of MPC are not yet fully investigated and understood. The role of 
BMSCs in carcinogenesis is a relative new feature. BMSCs have a distinct homing 
potential to a wide range of organs after systemic administration (Koc et al.  2000 ; 
Gao et al.  2001 ; Devine et al.  2003  ) . The ability of BMSCs to home to primary 
tumour sites and metastases has been demonstrated by several studies (Nakamura 
et al.  2004 ; Khakoo et al.  2006 ; Kucerova et al.  2007  ) . Their role at these tumour sites 
and their potential effect on tumour development can be bivalent. Both pro- and anti-
proliferative effects of BMSCs have been reported regarding this aspect (reviewed in 
Lazennec and Jorgensen  2008  ) . Possible explanations for these contradictory  fi ndings 
might be the immunomodulatory effects of BMSCs, which can be both in favour and 
to the detriment of tumour development. Another factor might be the excretion of 
VEGF by BMSCs, which plays a role in (neo)vascularisation. 

 The effect or role of the MPCs in tumour formation or -growth has not been 
investigated so far. It is a known fact that cells can undergo karyotypic changes upon 
(long-term) culturing in vitro (Wahrman et al.  1984 ; Bochkov et al.  2007  ) . Cell 
based regenerative therapies have to be proceeded cautiously, and these aspects cer-
tainly have to be investigated before proceeding to large-scale clinical translation.   

    17.6   Conclusions, Discussion and Future Development 
in Research 

 It is clear that local progenitor cells can be isolated from various tissues in the 
musculoskeletal system and that these cells can play a role in tissue repair. Overall, 
cell yields from the different tissues, proliferation capacities and cell membrane 
markers of the isolated cells appear to be similar. Cells derived from the various 
musculoskeletal tissues have all been shown to have a multilineage differentiation 
potential. Besides differentiating into a mature tissue cell, secretion of trophic factors 
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is assigned a possible function of stem cell that might be important in tissue repair. 
Musculoskeletal progenitor cells posses a huge capacity for application in regen-
erative medicine. Table  17.1  summarizes various features of MPCs derived from 
the tissues discussed in this chapter.  

 It is not always straightforward to determine whether the isolated MPCs are 
really local cells, especially in damaged tissues. Tissue damage has been demon-
strated to attract stem cells from the circulation. These cells are recruited from the 
bone marrow and home in the damaged tissue to support repair (Sordi  2009  ) . These 
recruited cells, once isolated from damaged tissue, might therefore be mistaken for 
local MPCs. Furthermore, the tissues of the musculoskeletal system, with exception 
of cartilage and tendon, are well vascularised. These small vessels contain pericytes   . 
A pericyte is a relatively undifferentiated cell, which serves to support small ves-
sels. They were  fi rst described in the nineteenth century as cells located between the 
endothelial cells and the parenchymal cells in capillaries and post capillary venules. 
Apart from their role in blood vessel formation, pericytes were recognized to con-
tribute to bone formation (Schor et al.  1995  )  and they might play an important role 
in tissue repair and regeneration in many musculoskeletal tissues. Pericytes have 
multilineage differentiation capacity too, and there could be a chance that these 
cells are very closely related to the local progenitors described in this chapter. 
However, only recently they regained a lot of interest as adult progenitor cells with 
multilineage capacity and methods to isolate and purify these cells are being devel-
oped (Crisan et al.  2008  ) . Especially in well vascularised tissues, such as bone mar-
row, adipose tissue and muscle, the perivascular cells might be regarded as local 
MPC. Further research will have to elucidate the role of local stem cells as well as 
pericytes and systemic stem cells present in the circulation, in intrinsic tissue repair 
capacity as well as their use in cell therapy. 

 For cell therapeutic application optimal isolation and culture conditions for each 
cell type has to be found and tailored for every speci fi c application. Choice for opti-
mal cell type to regenerate a tissue might very likely depend on criteria related to 
ease of harvesting. In this respect, bone marrow and adipose tissue are attractive 
candidates for harvesting large amounts of cells in a relatively easy procedure. 

 The various musculoskeletal stem cells all have multilineage differentiation 
capacity. Although this offers interesting opportunities, it also emphasizes the 
importance of learning to control and direct differentiation and tissue formation by 
these cells to prevent undesired tissue- or tumour formation. Better characterisation 
of musculoskeletal stem cells and more knowledge about lineage differentiation is 
required to fully understand the potential of each individual source of cells for each 
of the different applications. In this respect, not only differentiation into mature 
tissue cells, but also the secretion of trophic factors deserves more study. Furthermore 
the fate of the cells after application in-vivo has to be studied with modern imaging 
techniques both in animal and in human patients (Srinivas et al.  2010  )  to be able to 
answer the questions: Where do they home?; How long do they stay viable?; What 
is their activity? Finally there is a need for more understanding of how characteristics 
of host microenvironment in fl uence fate and function of the cells in order to optimize 
the results of cell therapy in musculoskeletal disorders.      
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  Abstract   The generation of bioarti fi cial tissues using patient-derived or allogenic 
cells, has become a clinically relevant opportunity for translation in various branches 
of medicine, e.g. dermatology, ophthalmology and diabetes care. By contrast, 
despite the huge number of patients with cardiovascular diseases and the high 
economic burden, no feasible options exist to produce biomimetic engineered 
tissues that could be employed as de fi nitive substitutes in cardiovascular medicine. 
In fact, while stem cells with cardiovascular competence have been identi fi ed and 
characterized, their employment has remained mainly con fi ned to regenerative 
medicine, with insuf fi cient translation into effective tissue engineering strategies. 
As a result, the devices presently available to replace diseased myocardium, occluded 
vessels and failing valves is limited to materials with tensile resistance (patches for 
ventricular reconstruction), autologous vessels (mammary/radial arteries and 
saphenous vein for aorto-coronary bypass grafts) and mechanical/bio-prosthetic 
valves, all of which have major limitations such as insuf fi cient mechanical integration, 
post-engraftment patency reduction and calci fi cation, respectively. Merging stem 
cell biology with recent bio-engineering techniques will be of great help in the pro-
duction of new bio-synthetic cardiovascular medical devices. In fact, the ability to 
design complex biomaterial patterning in microscale or nanoscale dimensions and the 
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ability to perform material-cell interaction analysis with a “high throughput” 
discovery power, can be exploited to obtain stem cell structuring in a similar fashion 
to natural “niche” conditions. In this way, the unique ability of stem cells to divide 
“asymmetrically” may be preserved, thus ensuring, at the same time, maintenance 
of an immature cell pool while enabling constant production of committed progenitors 
necessary for cellular renewal and tissue homeostasis.      

    18.1   Introduction. The Current Technical Limitations 
of Cardiovascular Regenerative Medicine 

 The ability to produce differentiated progenies maintaining tissue homeostasis and 
undifferentiated cellular pools, is a unique feature of stem cells that makes them an 
ideal resource for cell replacement strategies in organs with major insults. 
Transplanted cells, regardless of whether or not they strictly adhere to “stem” cell 
de fi nitions, are expected to engraft into ischemic tissues, proliferate and differenti-
ate into myocytes or vascular cells. Outstanding results obtained in animal models 
of human cardiovascular disease have shown that adult-derived stem cells (e.g. bone 
marrow-derived cells), contribute to myocardial regeneration through direct differ-
entiation into cardiac myocyte-like derivatives (Orlic et al.  2001  ) . However, it has 
been suggested that stem cell engraftment and cardiac differentiation have low 
ef fi ciency and that cell therapy acts mainly  via  paracrine effects (Gnecchi et al. 
 2008  ) . Despite encouraging results obtained in animal models, the real ef fi cacy of 
cell therapy clinical translation is still controversial. In fact, meta-analysis studies 
have highlighted that ef fi cacy of autologous-derived progenitors on recovery of 
heart function (i.e. ejection fraction, end diastolic/systolic volumes), remains lim-
ited (Abdel-Latif et al.  2007 ; Kang et al.  2008 ; Lipinski et al.  2007 ; Martin-Rendon 
et al.  2008a,   b  ) . The limited repair ef fi ciency in the clinical setting may depend on 
inadequate progenitor cells preparation and/or delivery procedures (Seeger et al. 
 2007a,   b  ) , on poor progenitor cell survival in the recipient environment, or on an 
intrinsic reduction of their regeneration/repair ability, due to patients age and/or 
combined cardiovascular risk factors (Pesce et al.  2011a  ) . 

 While signi fi cant advancements have been made toward the development of 
clinically approved stem cell preparation protocols with the introduction of “good 
manufacturing practice” (GMP) criteria (Dellatore et al.  2008 ; Gaipa et al.  2010  ) , or 
the use of “cell enhancement strategies” to recover innate functions (Seeger et al. 
 2007b  ) , “bulk” expansion using conventional methods appears insuf fi cient to maintain 
“stemness” characteristics. In fact, exposure of stem cells to soluble cytokines or 
adhesion onto plastic-made rigid surfaces with stiffness of several orders or magni-
tude higher than tissue environment, does not preserve the innate ability of stem 
cells to asymmetrically divide and self renew (Dellatore et al.  2008  )  and may even 
promote aberrant differentiation. For example, expansion of high throughput  fl ow 
sorted c-kit +  CSCs from the human heart, even in the presence of supporting cells 
from the heart itself, did not prevent loss of stem cell properties and downregulation 
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of c-kit marker even after few passages (Gambini et al.  2011  ) , while appropriate 
maintenance of stem cell self renewal ability in human cord blood derived CD34 +  
cells culture was only in part ensured by use of epigenetic active drugs balancing the 
potent differentiation induction by cytokines supplemented in the culture medium 
to expand these cells (Burba et al.  2011  ) .  

    18.2   What Is the “Necessity” for a Niche 
in Adult Tissues Organization? 

 Ever since the concept was proposed by Sho fi eld in 1978 for describing the environ-
ment where primitive hematopoietic stem cells are allocated in the bone marrow, the 
term “niche” has been a source of confusion, controversy and intrigue. In fact, 
con fi nement of stem cells into special “enclaves”, where they are protected from 
inductive signals coming from surrounding differentiated cells, may have been 
under-appreciated. 

 But what is a stem cell niche? This “home place” for stem cells (Jones and 
Wagers  2008  )  is, historically, very familiar to developmental biologists for descrip-
tion of the transient locations where primitive stem cells primary differentiation (or 
escape from differentiation) occurs during ontogenesis. A striking example is repre-
sented by the mammalian germline, which is speci fi ed by allocation of totipotent 
cells groups in the extra-embryonic mesoderm at speci fi c stages of gastrulation to 
protect them from primary differentiation events (Pesce et al.  1998  ) . Several niches 
contributing to cardiovascular differentiation of pluripotent cells have been recog-
nized during vertebrate, mammalian and human embryogenesis and adulthood. For 
example, ( 1 ) the para-aortic mesenchyme, whence primitive hematopoietic cells 
emerge from an “hemogenic endothelium” through a novel type of cell division, 
named Endothelial-Hematopoietic transition (EHT) (Boisset et al.  2010 ; Kissa and 
Herbomel  2010 ; Lancrin et al.  2009 ; Tavian et al.  1999  ) , or ( 2 ) the location where 
“clonal” expansion of multipotent progenitors occurs in the cardiac mesoderm, pre-
ceding speci fi cation of the two heart  fi elds (Meilhac et al.  2004  ) . From these basic 
examples it appears that niche “topology” is essential to sustain appropriate 
speci fi cation of stem cells, ful fi lling their tissue organization role and functional 
development, in a tight equilibrium with the surrounding environment. 

 The function of the niches in adult tissues is different from that reported in the 
embryos. In fact, in the absence of tissue damage, the niche enables the replacement 
of differentiated cells, lost as a consequence of normal cellular turnover. This 
ensures tissue integrity and function over the life time. Under these conditions, the 
principal regulatory role of the niche is to maintain stem cells “asymmetric” division, 
a stem cell-speci fi c cell division modality which maintains constant the number of 
primitive cells, while producing suf fi cient numbers of rapidly expanding progeni-
tors necessary for tissue cellular turnover (Gonczy  2008  ) . In case of tissue damage, 
or during pathologic progression, the niche is able to switch to a symmetric division 
modality. This change is necessary to produce high numbers of progenitors contributing 
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to tissue healing and repair. Reversibility between symmetric and asymmetric division, 
is a general and crucial mechanism ensuring a rapid response to damages and return 
to steady conditions. In fact, unnecessary overgrowth of undifferentiated cells after 
the end of the repair process may lead to immature cells accumulation (a condition 
often observed in cancer), while an excess of progenitors production in response to 
damage may cause stem cell exhaustion and premature tissue senescence (Tajbakhsh 
et al.  2009  ) . From these concepts it is clear why stem cells and their niches have 
been recently described as “dynamic duos” (Voog and Jones  2010  ) , whose compo-
nents cannot be really taken apart. In fact, stem cells could not survive with a full 
potency, if it were not for their niches where their division modalities are  fi nely 
tuned, while the niches themselves would be irreversibly fated to disappearance 
without the presence of stem cells.  

    18.3   A Bioengineering Conception of the Cardiovascular 
Niche. Is It Possible? 

 A major question arising in modern stem cell science is whether the niche environ-
ment is “computable” using quantitative methods, and whether this modeling 
activity may be eventually turned into experimental models, to be used for expand-
ing stem cells with niche-like modalities (Dellatore et al.  2008 ; Kirouac and 
Zandstra  2008 ; Peerani et al.  2009  ) . The adoption of a bioengineering vision of the 
stem cell niche might help overcome the current limitations imposed by stem cells 
“bulk” expansion resulting from translation of routinely used cell ampli fi cation 
procedures, and spark the devise of enhanced protocols to “fabricate” arti fi cial 
niches (Becerra et al.  2011  ) . These may be then used as “functional units” for 
populating cell-free arti fi cial or natural scaffolds for the large scale production of 
biosynthetic tissues. This issue is particularly relevant for the recent devise of 
methodologies for decellularizing entire organs such as the liver, the lung and the 
heart, and seeding-back cultured cells into the resulting scaffolds (Ott et al.  2008, 
  2010 ; Uygun et al.  2010  ) . 

 Considering its complexity, this endpoint is no simple matter for biologists alone. 
In fact, in addition to performing basic cell biology studies to identify extracellular 
signals, (epi)genetic factors and biochemical cues linked to basic stem cell differen-
tiation and self renewal, other crucial components in this approach are: ( 1 ) the ability 
to manipulate biomaterials using combinatorial chemistry (Anderson et al.  2004 ; 
Tourniaire et al.  2006  ) ; ( 2 ) to reproduce compliant matrix stiffness and natural 
biomechanical forces/geometric constraints (Brown and Discher  2009 ; Discher 
et al.  2009  ) ; ( 3 ) to perform bio-computing to identify principal “nodes” in gene 
regulatory networks involved in cellular phenotype (Kirouac et al.  2009,   2010  )  and, 
 fi nally, ( 4 ) to have access to “micro-fabrication” techniques to culture stem cells in 
complex microenvironments (microwells, micropatterned surfaces) (Kilian et al. 
 2010 ; Kurth et al.  2011 ; Wan et al.  2010,   2011  ) , where to analyze cell phenotype 
with high throughput discovery potential. 
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    18.3.1   Cardiovascular Niches 

 Like almost every specialized tissue in multicellular organisms, blood vessels, 
myocardium and heart valves undergo cellular turnover and repair, ensured by a 
coordinated activity of endothelial (Asahara et al.  1997  ) , vascular- (Campagnolo 
et al.  2010 ; Crisan et al.  2008  ) , myocardial- (Bearzi et al.  2007 ; Beltrami et al.  2003  )  
and valve-resident (Taylor et al.  2003  )  stem cells. While all these stem cell types 
have been extensively characterized for their molecular characteristics and repair 
potency in experimental models and clinical trials, the intrinsic regulation of their 
homeostatic function has not been clari fi ed. 

 Figures show, respectively, the structure of the supposed myocardial (Fig.  18.1 ) 
and vascular niches (Fig.  18.2 ), and the distribution of the cells inside the aortic 
valve lea fl ets (Fig.  18.3 ). From these images it is apparent that despite these struc-
tures contain cells with high degree of immaturity, they are structured and regulated 
in different fashions. In fact, they have various three-dimensional organization, 
different tissue homeostatic functions and are likely under the control of different 
biomolecular signalling. From a structural point of view, for example, the  myocardial 

  Fig. 18.1    Confocal microscopy high power view of a stem cell cluster located in the right atrium 
auricle appendage (Gambini et al.  2011  ) . The picture shows staining for stem cell marker c-kit 
( green  fl uorescence ) and alpha-Sarcomeric Actin ( a -SA,  red  fl uorescence ).  Asterisks  show two 
cells expressing c-kit at high levels, in concert with  a -SA, while  arrowheads  indicate cells express-
ing lower c-kit levels and  a -SA. These cells represent cardiac-committed progenitors       
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  Fig. 18.2    Confocal 
microscopy image showing 
staining of a vessel present in 
the adventitia layer of human 
saphenous vein.  Green 
 fl uorescence  shows the 
expression of CD34, a marker 
expressed in endothelial cells 
and SVPs (Campagnolo et al. 
 2010  ) , while  light blue 
 fl uorescence  indicates 
expression of von 
Willenbrand Factor, 
expressed in endothelial cells, 
but not SVPs.  Asterisks  
indicate endothelial cells 
lining the lumen of the blood 
vessel (BV),  arrowheads  the 
location of CD34 + /vWF −  
SVPs surrounding the vessel       

  Fig. 18.3    Histology image of an aortic valve lea fl et transversally cut. The presence of VICs 
( arrows ) is evident in the intermediate layer of the lea fl et, the so called  spongiosa  (Sp). The layer 
of the lea fl et facing the ventricle cavity is shown (V)       
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niche is described spherical in shape, and composed of clusters of multipotent cells 
expressing the c-kit antigen (CD117) in the core, surrounded by accessory cells, 
likely originating from stem cells asymmetric own divisions (Gambini et al.  2011 ; 
Leri et al.  2005  ) . By contrast, the vascular-resident niche has more of a ring-shaped 
structure containing pericyte-like mesenchymal stem cells surrounding the so called 
 vasa vasorum  (Majesky et al.  2011  ) , located in the  adventitia  layer of large vessels, 
e.g. the saphenous vein (Campagnolo et al.  2010 ; Katare et al.  2011  ) . Finally, in the 
aortic valves, the so called “valve interstitial cells” (VICs) closely resemble mesen-
chymal-like progenitors, are mostly localised in the inner lea fl ets layer called  spon-
giosa , and do not appear to follow a speci fi c pattern. This is likely due to the need 
for continuous extracellular matrix remodelling by these cells, which maintain cor-
rect lea fl et stiffness and mechanical resistance (Chen et al.  2009  ) . The structural and 
chemical heterogeneity of the cardiovascular niches makes their arti fi cial concep-
tion and design an outstanding problem. In fact, these microenvironments not only 
differ for the geometric arrangement, but also for the chemical composition, the 
nature of supporting cells, and biochemical/biophysical extrinsic factors.     

    18.3.2   The Role of Mechanical Stress and Geometric 
Constraints in Phenotypic Control of Stem Cell Fate 

 Important components regulating the cardiovascular niche homeostasis are expected 
to be tissue-speci fi c physical/chemical conditions. In fact, con fi nement of stem cells 
into environments with variable stiffness and mechanical strain, or with  fi nely regu-
lated geometries have been associated with activation of intracellular pathways 
“forcing” stem cells differentiation programs (Brown and Discher  2009 ; Discher 
et al.  2009 ; Mohyeldin et al.  2010  ) . 

    18.3.2.1   Geometric Cues That Govern (Stem) Cell Programming 

 A striking example of  fi nely tuned correlation between cellular phenotype and sub-
strate mechanical compliance has been provided in a study where the expression 
level of gene sets related to neurogenic, myogenic and osteogenic phenotypes were 
 fi nely controlled by culturing human-derived mesenchymal stem cells (MSCs) onto 
poly-acrylamide gels casted into culture wells with variable stiffness (Engler et al. 
 2006  ) . Interestingly, progressive increase in the expression of osteogenic  vs.  neuro-
genic markers paralleled discrete increases in the gel “elastic modulus”, as revealed 
by atomic force microscopy (AFM), while intermediate substrate stiffness corre-
sponded to upregulation of myogenic markers and under-expression of the other 
two markers sets. In addition, plating the cells in the presence of media containing 
growth factors inducing MSCs differentiation failed to override the stiffness-related 
commitment, thus suggesting that environmental mechanical sensing is more potent 
than treatment with commonly used growth factors to direct MSCs differentiation 
(Engler et al.  2006  ) . Other examples of controlled cell stimulation systems for 
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assessment of stem cells mechanobiology, were the recent creation of stiffness 
gradients by use of photo-polymerizable polyacrylamide gels placed onto glass 
slides over differential illumination by ultraviolet (UV) light (Tse and Engler  2011  )  
or the functionalization of stretching membranes present in commercially available 
systems (e.g. Flex Cell™) with gels of controlled, tunable, stiffness (Throm Quinlan 
et al.  2011  ) . Using these systems it was possible to assess the durotaxis ability (ability 
to migrate toward areas of stiffer matrix) of mesenchymal cells and to decipher 
phenotypic changes of mesenchymal stem cells and aortic VICs under dynamic 
strain. Importantly, from these reports, it emerged that migratory behavior, differen-
tial commitment, as well as cell shape and alignment to stretch direction are  fi nely 
tuned by stiffness mechanosensing, likely involving transmembrane receptors such 
as integrins, connected to the surrounding matrix, and components of the cytoskeleton 
such as stress  fi bers. 

 What is the biological relevance of these  fi ndings? Recent work has suggested 
that biomechanics is in striking relationship with normally occurring pathophysio-
logic processes in the cardiovascular system. For example, it was shown that sub-
strate stiffness is inversely correlated to expression of osteogenic differentiation 
markers in aortic VICs, even if calcium deposition by these cells was higher on 
stiffer substrates, due to enhanced VIC apoptosis-related calci fi cation and stiffness-
dependent responsiveness to TGF- b 1, a potent inducer of calci fi cation abundantly 
expressed in pathologic valve lea fl ets (Yip et al.  2009  ) . This identi fi es changes in 
matrix elasticity occurring in the AoV inner layer, as a potent  primus movens  of 
valve calci fi cation by promoting durotaxis and calcium deposition by locally 
recruited VICs, and suggests that VIC-mediated engineering of arti fi cial valve 
lea fl ets will have to be performed with a tight control of material stiffness, to pre-
vent accelerated calci fi cation. Whether VICs are permanently modi fi ed at an (epi)
genetic level by differential exposure to mechanic stimuli and local modi fi cation of 
the extracellular matrix, is still matter for speculation, and is currently addressed in 
our Laboratory. An example that clari fi es how stem cells differentiation may 
in fl uence the biomechanics of recipient tissues with consequences for tissue remod-
eling and function is relative to the change in mechanical compliance of ischemic 
areas, receiving injection of mesenchymal cells in the left ventricle (LV) following 
myocardial infarction (MI). In a study performed using AFM to quantify elastic 
modulus of the myocardial wall following MI, Berry et al. found an increasing stiff-
ness likely due to collagen deposition (Berry et al.  2006  ) . Interestingly, MSCs 
administration in the border zone of the infarct areas improved mechanical compli-
ance (decrease in elastic modulus), possibly by attenuating in fi ltration by 
myo fi broblasts, the cells responsible for collagen-I deposition and myocardial scar-
ring following MI (Frangogiannis  2008  ) . This suggests that an important outcome, 
even in the clinical setting, of (stem) cell injection in the ischemic heart, may be 
to attenuate the increase in myocardial compliance; this may account for the 
improvement in cardiac performance even in the absence of differentiation of the 
injected cells into myocytes. Whether and how exogenous stem cells injected into 
the infarcted myocardium cross-talk with the innate immunity  pathways leading to 
myocardial scarring is still debated. On the other hand, as shown in a recent 
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 contribution by our Laboratory (Burba et al.  2011  ) , injection of stem cells can 
 modify the interplay between different immunomodulatory cellular components, 
resulting into reduced recruitment of myo fi broblasts, the cells involved in collagen 
deposition in the scarred myocardium (Carlson et al.  2011  ) . 

 Elastomeric forces and geometric cues play important roles in cell programming 
and differentiation, with consequences for adoption of physiologic versus pathologic 
phenotypes. Several examples have been provided in the recent literature, which 
have made use of bioengineering approaches to dissect the impact of the forces 
generated by individual cells and to correlate them with the phenotype. In a  fi rst 
application, the use of elastomeric micro-needles allowed the measurement of 
cytoskeletal traction forces between adjacent cells as a function of the size of the so 
called “adherent” junctions (Liu et al.  2010  ) . Interestingly, pharmacologic modula-
tion of the force generated by cytoskeleton “engines”, such as acto-myosin  fi laments 
regulated the size of the junctions, thus suggesting an environmental control of 
intercellular communication, and potentially, cell fate. A second example of a tight 
correlation between mechanical sensing and cell fate is witnessed by a series of 
studies, where cells were forced to stay in de fi ned shapes by adhesion to geometri-
cally de fi ned surfaces built by the use of micro-contact printing ( m CP) (Qian and 
Wang  2010  ) , a gold standard technology for producing micro-shaped adhesion 
patterns. With this approach, it was found that MSCs have a preferential commitment 
into osteogenic cells when they are plated onto structures (i.e. star and wide rectangle 
shapes) forcing them to expose more extended perimeters; by contrast they had an 
adipogenic fate when plated onto surfaces maintaining them in less extended shapes, 
such as round or square adhesive patterns (McBeath et al.  2004 ; Peng et al.  2011  ) . 

 How do cells sense geometry? Cell biology studies have highlighted that ten-
sion transmitted through cytoskeletal components such as acto-myosin (stress) 
 fi bers is likely implicated in geometric sensing through the differential activity of 
the RhoA small GTPase and its downstream target RhoA-associated kinase ROCK 
(Bhadriraju et al.  2007  ) . Interestingly, ROCK activity was elevated by a more 
spread shape, priming cells into osteogenic lineage, while round or loosely 
attached cell con fi gurations were associated to higher RhoA-GTP level, lower 
ROCK activity and adipogenic phenotype (McBeath et al.  2004  ) . In a recent study, 
the concept of geometric priming of MSCs adipogenic  vs.  osteogenic phenotypes 
has been further elucidated. By comparing cells which were forced to acquire a 
“ fl ower” (less spread)  vs.  a “star” (more spread) shape, it was found that cells with 
more spread phenotype showed higher expression of genes encoding for mecha-
nosensing, actomyosin contractility and receptors for canonical/non canonical 
Wnt pathway, in addition to genes directly implicated in osteogenesis (Kilian 
et al.  2010  ) . Again, the cytoskeleton integrity, and in particular the actomyosin 
 fi bers and ROCK downstream activity, were crucial in this; in fact, disruption of 
these  fi laments by Cytochalasin-D (an inhibitor of F-actin polymerization), bleb-
bistatin (an inhibitor of the light myosin contractility), or the use of Y-27632 (a 
ROCK inhibitor), reduced MSCs osteogenic commitment irrespective of cell 
shape and differentiation treatment. The involvement of small GTPases on shape-
induced MSCs commitment appears of more  general importance than for the sole 
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adipogenic  vs.  osteogenic differentiation. In fact, in another recent study, it was 
found that Rac-1, another RhoA small GTPase family member, has a role in TGF-
 b 3-mediated commitment of spread MSCs into smooth muscle cells, and it is 
suf fi cient to repress chondrogenic commitment (Gao et al.  2010  ) . Importantly, in 
this report, it was shown that upregulation of Rac-1 was also related to elevation 
of N-Cadherin expression, thereby highlighting the role of intercellular communi-
cation for smooth muscle cells commitment. 

 Cell differentiation is likely not the unique cell response modulated by shape. 
In fact, using a combination of  m CP technology and electric  fi eld-assisted cell 
entrapment (dielectrophoresis), it was possible to place cells in discrete shapes 
and regulate the amount of intercellular communications (Gray et al.  2008  ) . By 
this approach it was found that endothelial cells have a biphasic DNA synthesis 
pattern, which depends on the amount of the cell surface occupied by contacts 
with other cells and that engagement of intercellular adhesion molecule 
VE-Cadherin, rather than stress  fi bers tension modulated by RhoA, is crucial to 
activate a proliferation program. 

 Taken together, these results suggest that geometric arrangement, dictated by 
extracellular environment architecture and composition is a potent morphogenetic 
cue involved in various cell commitment programs during morphogenesis. Future 
bioengineering modeling of cell shape will be needed to address the role of these 
cues for (epi)genetic control of cell-autonomous cardiovascular stem cells develop-
ment and pathologic differentiation.  

    18.3.2.2   Application of Geometric Constraints to Stem Cell Colonies: 
A Way to Simulate and Stimulate the Niche? 

 The application of  m CP technology to con fi ne cells in de fi ned shapes has not been 
only used to assess the response of individual cells to physical constraints. In fact, 
“micro-patterned” bi-dimensional (2D) or, even three-dimensional (3D) structures 
have be adapted to culture stem cells colonies into environments that can be of help 
to study the “topology” of stem cell dynamics. 

 A  fi rst example of the application of this strategy to niche-like modelling of stem 
cells growth was described in a report from CM Nelson and colleagues (Nelson et al. 
 2005  ) , showing the use of micro-patterned culture surfaces to study endothelial cell 
proliferation. By measuring the level of BrdU uptake in cells adherent to different geo-
metric patterns (square, rectangle, annulus) by conventional immuno fl uorescence fol-
lowed by data digitalization, the Authors were able to create “heatmaps” describing the 
geometric distribution of the cellular proliferation probability into the micro-pattern. 
Interestingly, they found that at the edges of the patterns, where mechanical stress was 
predicted to be higher, cell proliferation was more intense, while at the centre it was null 
of absent. By inhibiting the function of proteins involved in mechanical sensing, they 
were able to dysregulate cell proliferation inside the colony, thus showing an important 
relationship between mechanosensing and modulation of cellular proliferation. 
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 A second example is the recent  fi nding that (stem) cells have a lineage-dictated 
ability to orient their major axes with a preferential angle when plated onto micro-
patterns. By fabricating annulus-shaped surfaces for culturing these cells, and using 
a software platform making possible automatic cell shape recognition and orienta-
tion in the 2D space, it was shown that different cell lines have a recurrent position-
ing of their major axis relative to the micropattern radius, which is dictated by their 
phenotype (Wan et al.  2011  ) . The probability of creating patterns with cells oriented 
in clockwise (CW)  vs.  counter clockwise (CCW) directions relative to the pattern 
radius reached, in some cell lines, exhibited extremely high signi fi cance ( P  = 10 −186 ), 
showing that the alignment preference of the cells was not stochastic. Furthermore, 
the lineage-speci fi c orientation was conserved among species. In fact mouse and 
human-derived myoblasts showed CCW orientation, while mouse, human and rat-
derived  fi broblasts acquired a CW orientation. This suggests an (epi)genetic com-
mitment of cellular left-right asymmetry (chirality), which may be involved in 
fundamental morphogenetic events, such as organ looping, or important regulatory 
components of stem cell asymmetric division. 

 As described for single cells cultured onto micropatterns, geometric cues also 
direct stem cell spatial commitment when plated into colonies of de fi ned shapes. 
For example, by placing scalable amounts of MSCs onto circular micro-patterns of 
increasing radius, it was found that osteogenic and adipogenic commitments were 
spatially organized depending on the position of the cells in the micropattern, while 
the ratio between osteogenesis and adipogenesis was correlated to the dimension of 
the cellular aggregates (Ruiz and Chen  2008 ; Wan et al.  2010  ) . Interestingly, in all 
patterns that were used, adipogenesis occurred principally in the centre of round-
shaped, or at the concave surface of offset annulus or sinusoidal-shaped colonies, 
indicating that topology of the cellular aggregates, probably related to gradients of 
mechanical stress (Nelson et al.  2005  ) , is crucial to direct selective commitment of 
progenitors endowed with multilineage potential. 

 These results suggest that the ability to discriminate between different geomet-
ric arrangements is an intrinsic regulatory feature of stem cells inside the niche. 
Thus, the ability to quantify cellular responses to colony geometries, might be a 
powerful method for quantifying the niche by arti fi cial trapping stem cells into 
de fi ned micropatterns and screening changes in (epi)genetic signatures associated 
to, e.g. symmetric  vs.  asymmetric division modality, or to differentiation. This 
computing ability is today possible by use of automated high content microscopy, 
programmable to obtain quantitative phenotypic analysis of cells con fi ned into 
microenvironments, and high-end translation of data generated by cell-cell/cell-
substrate interactions into microarray-like numeric data, enabling to perform mul-
tiple comparisons, clusterization, and network-level analysis of intercellular 
cross-talk by suitable bioinformatics platforms. As already performed in pioneer-
ing investigations performed using hematopoietic stem cells or embryonic stem 
cells in geometric-independent environments (Kirouac et al.  2009,   2010 ; Peerani 
et al.  2009  ) , these approaches will be crucial to make future  in silico  predictions of 
stem cell dynamics inside the natural niches, and to reproduce them arti fi cially 
(Lutolf et al.  2009  ) .    
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    18.4   Reproducing the “Combinatorial Chemistry” of the Stem 
Cell Niche with High Throughput Discovery Power 

 The maintenance of appropriate functional appearance of stem cells in the niche, the 
so-called “functiotype”, is the result of  “complex interactions integrating molecular, 
extracellular, biomechanical and spatio-dimensional effects”  (Roeder et al.  2011  ) , 
whose microscale/nanoscale arrangements are necessary for instructing coherent 
stem cells differentiation, or for reversibly shifting niches from “dormant” to “active” 
stages in case of tissue damage. The chemistry of the microenvironment, in addition 
to spatial cues, is particularly relevant for this reversible dynamics. In fact, multiple 
paracrine signals expressed in normal tissues or up/down-modulated as a result of 
tissue damage or pathology may control stem cells dynamics in living conditions. 
This regulation may also involve other factors such as, for example, oxygen tissue 
availability or extracellular matrix composition. It is beyond the scope of the present 
article to describe in details these pathways, already treated by us and by others in 
various contributions (Keung et al.  2010 ; Mohyeldin et al.  2010 ; Pesce et al.  2011a, 
  b  ) . On the other hand, experimental modelling of the complex niche chemistry 
appears crucial to correctly reproduce stem cells functiotype in the niche. 

 Recent re fi nement in biocompatible polymer generation and screening have 
opened new avenues in the screening of cell/material interactions. These systems 
are based on “combinatorial” organic chemistry, and exploit an “inkjet” printing-
derived technology to create microarrays of up to 7,000 micrometric spots containing 
different polymeric blends onto a single glass slide. While providing a miniaturiza-
tion of the cell culture areas, these systems, similar to  m CP, allow a rapid and ef fi cient 
identi fi cation of culture substrates maximizing cell attachment, proliferation, 
spreading and, potentially several other responses. As in the case of stem cells 
colonies geometric modelling onto micropatterns (Nelson et al.  2005  ) , screening of 
cellular behaviour in response to polymeric blends is performed by automated high 
content microscopy, which allows interrogation of cells cultured onto the microar-
rays, followed by computer-assisted results digitalization. By this approach, various 
libraries of materials such as acrylate-based polymers (Anderson et al.  2004  ) , 
polyurethanes (Tourniaire et al.  2006  )  and synthetic/natural hydrogels mixtures 
(Khan et al.  2009 ; Zhang et al.  2009  )  have been screened to identify the best bioma-
terials promoting adhesion and proliferation of various (stem) cell types such as 
embryonic stem cells (Anderson et al.  2004  ) ,  fi broblasts (Pernagallo et al.  2008  )  and 
hepatocytes (Hay et al.  2011  ) . 

 The versatility offered by the “high throughput” design of this polymer screening 
system offers a tremendous potential in terms of stem cell niche modelling. In fact, 
materials to be used for growing stem cells can be screened directly “on array” for 
several characteristics such as surface roughness, wettability or elastic modulus. 
Data obtained from cells interrogations onto these materials may be then converted 
into “association maps” which describe complex cell behaviour in response to mul-
tiple material characteristics (Mei et al.  2010  ) . In addition, the possibility of 
 performing association between material composition, as detected by analytical 
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chemistry methods, such as Time-Of-Flight/Secondary-Ion-Mass-Spectrometry 
(TOF-SIMS), and cellular responses by Partial Least-Square (PLS) chemometric 
method, makes possible to perform statistically validated predictions of the cell 
behaviour in response to material chemistry, and thus design stem cell type-tailored 
materials by  in silico  simulation (Davies et al.  2010  ) . 

 Another advantage offered by material screening with a high throughput experi-
mental design is related to the variety of biological functionalization of synthetic 
materials, which may be produced onto single arrays and screened in the same 
experiments, with the aim of re fi ning the chemistry in stem cells cultured colonies. 
In fact, starting from the natural composition and the geometric arrangement of 
tissues-speci fi c niches, such as in the myocardium, the vessels and the heart valves, 
 bio -functionalization of the synthetic materials might be performed by covalent 
binding of extracellular matrix components, peptides mimicking matrix binding 
motifs, or even niche speci fi c growth factors involved in stem cell regulation in 
given geometric arrangements (Dellatore et al.  2008 ; von der Mark et al.  2010  ) . In 
this way, secondary  bio -functionalized material arrays might be generated and again 
interrogated for stem cell regulation, thus identifying re fi ned chemistry conditions 
for instructing niche auto assembly in de fi ned geometric arrangements. De fi nition 
and release of these “smart” materials might lead,  fi nally, to the generation of novel 
approaches, based on the natural ability of niches to (re)populate diseased tissues or 
natural decellularized/arti fi cial scaffolds for the generation of novel implant devices 
such as arti fi cial myocardium patches, biologically compatible valve lea fl ets or 
engineered vessels.  

    18.5   A Glimpse to the Future 

 The  fi eld of tissue engineering has taken great strides in the previous two decades, so 
as to develop biological solutions to repair damaged organs and tissues within the 
body. For example, the recent development of protocols to remove endogenous cells 
and re-seed, using  ex vivo  cultured cells, organs such as the liver, the lung and the 
heart (Ott et al.  2008,   2010 ; Uygun et al.  2010  ) , have provided proof of principle that 
generation of living and fully functioning arti fi cial organs might be realistic. 
In our view, a major limit in the generation of bioarti fi cial organs is the lack of a 
suf fi cient vision to the need for generating organs with self-renewing characteristics. 
In fact, the use of differentiated cells (e.g. cardiomyocytes, endothelial cells, smooth 
muscle cells) may have the advantage to exploit already available “bulk” expansion 
protocols, which can be easily adapted to comply with good manufacturing practice 
(GMP) standards, required for clinical use of stem cells (Burba et al.  2010  ) . On the 
other hand, the failure to include self-renewing stem cells in arti fi cial or decellular-
ized natural scaffolds might lead to rapid failure of bioarti fi cial implants due to 
cellular exhaustion. 

 As discussed in the present contribution, the rapid development of miniaturized 
devices, the so called lab-on-chips, to perform cell biology experiments with high 
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throughput discovery potential (Ghafar-Zadeh et al.  2011  )  will provide growing 
teams of basic biologists, biotechnologists, chemists, engineers and bio-computing 
scientists with extremely powerful methods to assess global changes in stem cells 
regulation in a relatively unexpensive manner. It is possible that these methods, 
helped by novel technologies to produce micro-encapsulated cells to be “printed” 
into tissues (Hernandez et al.  2010 ; Kachouie et al.  2010  ) , are eventually converted 
into procedures for generating next generation implants, having structures and 
functions more closely related to those in their target organs.      
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  Abstract   A pre-requisite for ef fi cient and successful treatment of diseases con-
sists in the development of technologies which yield the transfer of therapeutic 
genes and drugs exclusively to target cells and avoid therapy related effects or toxic-
ity in normal cells. Targeted gene therapy is emerging as a powerful approach to 
enhance the ef fi cacy, selectivity and safety of gene delivery. Currently, the most 
ef fi cient and popular way of introducing genes into cells is by means of viral vec-
tors. Attractive targeting strategies of viruses are either by regulation of transgene 
expression through tissue speci fi c promoters and integration of transcriptionally 
active elements (molecular targeting), or by selective recognition of individual cel-
lular receptors (physical or transductional targeting). The latter can be achieved by 
alteration of the native viral tropism in conjunction with redirection of binding to 
target cell receptors. Receptor-targeting will be performed by linking or integra-
tion of adapter molecules to the viral surface (genetic modi fi cation). On the basis of 
recent knowledge and different limitations in practice, our focus is concentrated on 
the improvement of adenoviral vector systems for selective transduction of differ-
ent cell types by directing adenovirus (Ad) to speci fi c ligands. Those peptide-
tagged Ad vectors have shown impressive tumor and stem cell speci fi c gene 
transfer activity in vitro and after systemic administration in several in vivo models. 
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They not only offer new opportunities to further delineate stem cell properties in 
their natural environment but may also enable more effective cancer therapies for 
patients with metastatic disease.      

    19.1   Introduction: A Historical Perspective 

    19.1.1   Gene Therapy and Delivery Vehicles 

 Gene therapy is based on the delivery of genes containing information for correction of 
either monogenetic disorders or treatment of more complex diseases such as cancer. 
One of the major hurdles towards successful gene therapy of inherited or acquired 
diseases is the ef fi cient and safe selective introduction of the desired gene into the 
cells of interest under in vivo conditions. In addition, in order to ameliorate genetic 
diseases, long-term expression of the transgene is another prerequisite. In contrast 
to inherited monogenetic diseases, where only a certain proportion of cells can be 
targeted with a vector carrying a single corrective gene, cancer treatment usually 
involves ef fi cient transduction of all neoplastic cells with the ultimate aim of killing 
rather than correcting them. Progress in the identi fi cation of molecular and genetic 
defects and high throughput screening technologies that accelerated the discovery of 
cell speci fi c surface markers have made gene therapy an attractive treatment option 
and led to the development of selective and effective vehicles for transferring genes 
into cells. As a basis for clinical applications, technical advances have been made with 
a huge number of non-viral or viral gene delivery systems. However, most delivery 
methods to physically introduce non-viral plasmid DNA vectors are not very ef fi cient 
and result in short duration of transgene expression especially in vivo (Patil et al. 
 2005 ; Preuss and Curiel  2007 ; Witlox et al.  2007 ; Alvarez-Erviti et al.  2011  ) . Biological 
transfer particles beyond viral vectors and the strategies, advantages and limitations of 
established delivery techniques for gene therapy applications have been reviewed in 
detail by several authors (Seow and Wood  2009 ;    Guo and Huang  2012 ; Koynova and 
Tenchov  2011 ; Duan  2011 ; Jafari et al.  2012  ) . In comparison to DNA transfer using 
bacteria, bacteriophages, virus-like particles or exosomes, genetically modi fi ed viral 
vectors serve as more powerful tools for targeted gene therapy. They include integrating 
retroviral (lentiviral) and adeno-associated viruses (AAV) as well as non-integrating 
lentiviral, herpes simplex virus (HSV) or adenoviral (Ad) vectors. 

 AAV based vectors are used for gene therapy (Ortolano et al.  2012  )  because of 
several advantages: they infect both, dividing and non-dividing cells, induce moderate 
immune-responses and integrate for stable and long-term expression of therapeutic 
drugs. Drawbacks of AAV vectors are their restricted packaging capacity and the 
helper virus requirement for vector production which can result in low titer and purity 
(Bjorklund et al.  2000 ; Zhang and Godbey  2006 ; Witlox et al.  2007  ) . However, sev-
eral clinical trials with AAV are on-going or in preparation, trying to treat the inher-
ited de fi ciency in clotting factor VIII (Hu et al.  2011  )  or the eye disease so called 
Leber’s congenital amaurosis (Simonelli et al.  2010 ; Stein et al.  2011  ) . The latter 
is an inherited disease of the retina and was treated successfully by AAV type 2 virus 
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vectors (AAV2) carrying the RPE65 gene (Bennett et al.  2012  ) . Other approaches 
have been initiated to deliver genes into the brain (Morgenstern et al.  2011  ) . In recent 
trials, AAV infected cells were recognized as compromised by the immune system 
and were, accordingly, killed by CD8 positive cells (Mingozzi and High  2011  ) . This 
reaction appears to be triggered in part by capsid or outer coat proteins of AAV2 vec-
tors (Bartel et al.  2011 ). AAV serotypes can differ with respect to the receptors they 
recognize. AAV2 for instance, binds to heparan sulfate proteoglycan,  a  

V
  b  

5
  integrin 

and  fi broblast growth factor receptor 1 (Qiu et al.  2000 ; Pajusola et al.  2002  ) . 
 Most herpes simplex virus based vectors are mainly derived from the neurotropic 

human HSV-1 and are broadly used for treatment of neurodegenerative diseases (Casper 
et al.  2002 ; Zhang and Godbey  2006  ) . Two approaches have been applied to construct 
recombinant HSV vectors for use in gene transfer. One class of vectors is made de fi cient 
for accessory viral functions important for virus replication in neurons and thereby, 
contributing to neurovirulence such as the thymidine kinase gene (TK). Another class 
is rendered defective in essential virus genes and thus fails to replicate in all cell types 
(Glorioso and Fink  2009  ) . The combination of AAV, Ad vectors and HSV-based sys-
tems allows large-scale vector production for clinical studies (Clement et al.  2009  ) . 

 Permanent transgene expression and easy handling made retroviral vectors the  fi rst 
ef fi cient and most popular gene transfer system for disease treatment. However, the 
oncovirus subfamily of retroviruses infects only dividing cells and they are associated 
with malignancy or immune defects (Cof fi n  2000 ; Geraerts et al.  2006  ) . Moreover, the 
chief concerns about this approach are frequent transgene silencing in vivo and poten-
tial activation of oncogenes after nearby virus integration (Vroemen et al.  2005  ) . The 
lentivirus subfamily of retroviruses is a class of highly pathogenic viruses that are able 
to infect both, non-dividing and dividing cells. This feature has rendered human 
immunode fi ciency virus (HIV) based gene delivery vehicles the frontrunners in the 
 fi eld. Expanding the HIV host range or speci fi c targeting can be achieved by pseudo-
typing the lentiviral particles (Cronin et al.  2005 ; Schambach et al.  2006 ; Carpentier 
et al.  2012  ) . These vectors show a long-term expression after chromosomal integra-
tion of large inserts, which makes them highly suitable for applications in the adult 
central nervous system (CNS) (Bjorklund et al.  2000 ; Witlox et al.  2007  ) . Moreover, 
modi fi cations of lentiviruses such as the replacement of long terminal repeats with 
cell speci fi c transcription-regulatory sequences, promoters and enhancers have been 
made to allow an endothelial speci fi c expression (Trono  2000 ; Shichinohe et al.  2001 ; 
Lotti et al.  2002 ; Dong and Nor  2009  ) . Severe combined immunode fi ciency (SCID) 
due to adenosine deaminase (ADA) de fi ciency was the  fi rst genetic disease treated by 
gene therapy. The obstacle with oncogene activation (Hacein-Bey-Abina et al.  2003  )  
has recently been addressed by utilizing zinc  fi nger nucleases or by including certain 
sequences such as the beta globin locus control region, to direct the site of integration 
towards speci fi c chromosomal sites. Gene therapy trials in the USA to treat SCID 
were, however, interrupted after 3 out of 11 patients treated developed leukemia 
(Check  2002 ; Huston et al.  2011  )  while ten SCID patients treated in England did to 
date not present with leukemia and experienced suf fi cient immune recovery to enable 
a normal development (Baum  2011  ) . No adverse leukemic side effects were seen 
using human leukocyte antigen-matched allogeneic hematopoietic stem cell trans-
plantation as an enzyme replacement therapy for SCID (Gaspar et al.  2011  ) . 
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 Apart from the above described vectors, adenoviruses are attractive tools to 
construct gene delivery vehicles (Armendariz-Borunda et al.  2011  ) . Wild-type 
adenoviruses are common pathogens in humans with a non-enveloped capsid 
containing a continuous double stranded DNA. All adenovirus serotypes display a 
broad tropism and infect a wide spectrum of cells (Arnberg  2009 ; Chailertvanitkul 
and Pouton  2010  ) . Ad-based vectors grow to high titers and, after administration, do 
not integrate into the host genome. Most of the therapeutically used so-called  fi rst 
generation Ad vectors are replication-de fi cient after substitution of the E1 and E3 
regions with foreign genes (Mizuguchi et al.  2001  ) . Advanced third generation Ads 
brought considerable progress on issues like gene delivery capacity and long-term 
expression of the transgene (Viru et al.  2011  )  as well as low in vivo toxicity and 
immunogenicity. These high-capacity (HC) vectors also called gutless or helper-
dependent (HD) Ad vectors lack all viral coding sequences resulting in a high packaging 
capacity of up to 36 kilobases. HD vectors allow the simultaneous expression of 
several therapeutic and/or marker genes (Dormond and Kamen  2011  )  and stable 
transgene expression. They have preferences over  fi rst generation vectors whenever 
long-lasting gene expression is required to correct genetic diseases (Brunetti-Pierri 
and Ng  2008,   2011  ) . In a monogenic hyperlipidemia mouse model, a single injection 
of an HD-Ad vector expressing the missing protein resulted in lifelong protection 
of the animals from the respective condition (Kim et al.  2001  ) . An ef fi cient and 
scalable procedure for HC Ad vector production in a L3 bioreactor was developed 
using polyethylenimine-adenofection (Dormond et al.  2009 ; Dormond and Kamen 
 2011 ; Galvez et al.  2012  ) . Adenovirus serotype 5 that has largely been used in clinical 
trials causes mild upper respiratory infections (Kajon and Erdman  2007 ; Kajon et al. 
 2007  )  but until now, no human neoplastic disease associates with Ad vectors. Altogether 
this suggests that different generations of Ad vectors will suit best compared to other 
viral or non-viral vector systems to transfer genes into target cells (Parks  2000 ; van 
Beusechem et al.  2002 ; Wickham  2003 ; Volpers and Kochanek  2004  ) .   

    19.2   Background/Principles 

    19.2.1   Strategies for Targeting Adenoviral Vectors 

 The ef fi ciency of adenovirus as gene delivery system (Coughlan et al.  2010  )  is 
limited by its native tropism that allows the virus to infect a broad range of cells 
and tissues, thereby preventing selective gene transfer. This property imposes an 
increased risk of toxicity due to vector dissemination to non-targeted cells that 
occurs even when Ad vectors are locally administered to the tissue of interest. 
Another hurdle is that several cell types are refractory to adenoviral infection mainly 
due to the lack of suf fi cient expression of the coxsackie-adenovirus receptor (CAR). 
Such cells include for example advanced cancer cells and hematopoietic or neural 
stem cells, where extremely high vector doses are required to achieve ef fi cient gene 
transfer to these cell types. This in turn increases unwanted side effects, such as 
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vector-associated immunogenic toxicities. These restrictions can be circumvented 
through cell directed (tropism-modifying) strategies (Douglas et al.  1996 ; Alemany 
and Curiel  2001 ; Dorer and Nettelbeck  2009  ) . To understand the biotechnological 
processes required to generate Ad vectors with selective tropism, the principle 
mechanism of adenovirus uptake as a two-stage process with two major subsequent 
interactions between capsid proteins and cell surface receptors needs to be addressed. 
Initially, the trimeric carboxy terminal knob domain of the viral  fi ber protein 
interacts with CAR (Bergelson et al.  1997 ; Miller et al.  1998 ; Roelvink et al.  1998 ; 
Myhre et al.  2007  ) . After  fi ber-cell attachment the RGD-motif in the penton base 
interacts directly with cellular  a  

v
  b  

3
  and  a  

v
  b  

5
  integrins, thereby triggering internaliza-

tion of the virus (Wickham et al.  1993  ) . Native entry mechanisms and key features 
of unmodi fi ed viral vectors are summarized by Waehler and colleagues  (  2007  ) . 
In contrast, the transduction ef fi ciency of Ad is substantially diminished when CAR 
and  a  n  integrin is absent on target cells (Wickham et al.  1993,   1995  ) . 

 Targeting Ad vector-mediated gene transfer to a cell type or tissue of interest can 
be achieved by modifying the virus tropism in several ways (Kreppel et al.  2005 ; 
Kreppel and Kochanek  2008  ) . One approach is based on coupling peptide sequences 
to the virus surface aiming at widening its tropism (Wickham  2000  ) . This is extremely 
considerable in cancer therapy since many tumor cells do not express CAR and thus 
are resistant to Ad gene therapy (Miller et al.  1998  ) . Another example are neural 
stem cells where analysis of Ad receptor expression revealed a complete lack 
of CAR and no or low expression of  a  n - and  b  

5
 -integrins (Schmidt et al.  2005  ) . 

A second way for widening the viral tropism is the use of bispeci fi c antibodies or 
bifunctional adaptor molecules composed of an anti- fi ber antibody fragment and a 
binding component for a cell speci fi c receptor or second antibody conjugated with 
speci fi c cell surface antigens. In a  fi rst demonstration of a CAR-independent targeting, 
Fab-folate conjugate was attached to the  fi ber knob of Ad and shown to ef fi ciently 
direct Ad infection of target cells via the folate receptor (Douglas et al.  1999  ) . In a 
similar strategy, a conjugated  fi broblast growth factor (FGF) was used to target 
ovarian carcinoma cells (Rancourt et al.  1998  ) , which yielded a clinical trial where 
FGF2-conjugated Ad vector expressing human herpes simplex virus TK was applied 
in patients (Bauerschmitz et al.  2002a  ) . Reynolds et al.  (  2000  )  succeeded in targeting 
pulmonary endothelial cells in vivo by intravenous injection of Ad vectors complexed 
with bispeci fi c antibody against the Ad  fi ber knob and angiotensin-converting 
enzyme. Another approach was developed by Watkins and colleagues  (  1997  )  with a 
construct that encodes a fusion protein composed of a neutralizing anti-adenovirus 
 fi ber single-chain antibody (scFv S11) fused to a speci fi c ligand directed against 
cellular receptors, termed “adenobody”. Coating virus with this adenobody ablates 
CAR binding and directs the particle to the desired cellular receptor. ScFvS11 can 
be produced in eukaryotic as well as prokaryotic cells. Due to a 6-His-tag sequence, 
puri fi cation and concentration of the fusion protein can be easily performed by 
nickel-af fi nity chromatography. This procedure ensures high yields of pure protein 
without loss of activity for in vivo and in vitro studies. Bispeci fi c constructs directing 
Ad  fi bers to cells were developed for epidermal growth factor receptor (van Beusechem 
et al.  2002 ; Haisma et al.  2000  ) , human endoglin (Nettelbeck et al.  2001  ) , a speci fi c 
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melanoma cell line receptor (Nettelbeck et al.  2004  ) , endothelial receptors (Haisma 
et al.  2010  )  and the lymphocyte antigen six complex (van Zeeburg et al.  2010  ) . The 
S11 approach should ultimately lead to successful systemic applications although 
results in animal models are still limited. A rather elegant approach uses a soluble 
truncated form of CAR as the virus attachment site fused to human epidermal 
growth factor (EGF) to direct the vector against cancer cells that express the EGF-
receptor (Dmitriev et al.  2000 ; Hemminki et al.  2001 ; Kashentseva et al.  2002  ) . 
Disadvantages of pure adaptor based systems in vivo are an exclusive expansion 
of the viral tropism leading to unspeci fi c binding to different organs or tissues via 
its natural tropism. In particular, vector accumulation in the liver is unavoidable. 
After systemic administration normally more than 80% of circulating Ad vectors 
are sequestered in the liver because of a marked hepatotropism and therefore, do 
not reach their target (Huard et al.  1995 ; Reynolds et al.  2001a ; Shayakhmetov et al. 
 2004  ) . 

 An alternative strategy to develop strictly targeted adenovirus vectors is by genetic 
modi fi cation of the viral capsid, especially of the  fi ber-knob-domain by deleting the 
natural binding sites (Einfeld et al.  2001  ) . In recent years, different Ad vectors were 
manipulated by altering the CAR attachment motif in the  fi ber protein as well as the 
RGD internalization motif in the penton base (Alemany and Curiel  2001 ; Leissner 
et al.  2001 ; Mizuguchi et al.  2002 ; Smith et al.  2002 ; Glasgow et al.  2006  ) . These 
combined mutations almost completely eliminated vector transduction of speci fi c 
neural cell types (Thomas et al.  2002  ) . A further step of development in the application 
of vectors depleted for their native tropism was the identi fi cation and integration of 
a new tropism for instance a peptide ligand with high af fi nity for a speci fi c cellular 
receptor at suitable insertion site of the Ad vector capsid, which does not impair 
virion assembly (Michael et al.  1995 ; Wickham et al.  1996,   1997 ; Hidaka et al. 
 1999  ) . In this regard, integration of foreign short sequences like RGD or heparinsulfat-
binding polylysine has shown great promise, whereas genetic modi fi cation by 
longer sequences led to inef fi cient packaging and waste of the viral trimerisation 
signal (Wickham et al.  1997  ) . The HI-loop in the  fi ber knob domain was identi fi ed 
as a suitable integration site for new cell receptor ligands (Dmitriev et al.  1998 ; 
Krasnykh et al.  1998 ; Mizuguchi et al.  2001 ; Belousova et al.  2002 ; Bilbao et al. 
 2002 ; Nettelbeck et al.  2004 ; Rein et al.  2004  ) . On that score, Nicklin and 
colleagues reported successful incorporation of a short peptide sequence in the 
HI-loop, which binds selectively to endothelial cells and led to an increase in trans-
duction of endothelia (Nicklin et al.  2001a  ) . For this purpose, the importance of the 
insertion site of the ligand was demonstrated when introducing the model peptide 
CDCRGDCFC into the knob (Hesse et al.  2007  ) . Substitution of  fi ber knob tropism 
can be driven by introducing shaft domains of other adenovirus serotypes as well as 
integration of an appropriate target sequence and trimerization signal (Magnusson 
et al.  2001 ; von Seggern et al.  1999 ; Kanerva et al.  2002 ; Nakamura et al.  2003 ; 
Vigne et al.  2003  ) . Vectors entirely based on the Ad35 serotype will be useful for 
selective gene transfer via CD46, which is often upregulated in tumors. Vectors 
chimeric for  fi ber and/or penton proteins such as Ad5/f35, Ad5/p35/f35 ef fi ciently 
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accumulate in the lung instead of the liver (Shayakhmetov and Lieber  2000 ; Mercier 
et al.  2004 ; Hedley et al.  2006 ; Greig et al.  2009  ) . 

 Myhre and colleagues used a  fi ber-deleted adenovirus carrying a so called 
“af fi body” molecule, based on the B domain of Staphylococcal protein A, to selec-
tively transduce the desired cells. This vector is constructed by replacing the knob 
by an extrinsic trimerization signal and the af fi body (Myhre et al.  2007,   2009  ) . 
In many anti-cancer approaches af fi bodies were speci fi cally designed against the 
epidermal growth factor receptor type 2, a major molecular marker of human tumors 
(Belousova et al.  2008 ; Magnusson et al.  2012  ) .  

    19.2.2   Selective Expression Using Adenoviral Vectors 

 Besides the above described vector shell manipulations, other possibilities exist for 
genetic cell targeting. One of the most versatile approaches is transcriptional targeting, 
which refers to the usage of tissue-speci fi c promoters that restrict therapeutic gene 
expression to speci fi c cell types. Transcriptional targeting, for example endothelial 
cells in neoplasm, involves the application of tumor-speci fi c promoters for selective 
expression of therapeutic genes (Nicklin et al.  2001b ; Reynolds et al.  2001b ; 
Bauerschmitz et al.  2002b ; Savontaus et al.  2002 ; Glasgow et al.  2006  ) . The 
promoters, vectors, and therapeutic genes that have been utilized for transcriptional 
targeting of tumor endothelial cells are summarized by Dong and Nor  (  2009  ) . As a 
further development, conditionally replicating adenoviruses (CRAds) are designed 
to selectively replicate in cancer cells and to subsequently lyse them. This approach 
is also known as virotherapy. A combination therapy with CRAds and cell speci fi c 
promoters can enhance a speci fi c transgene expression in target cell, showing a 
synergistic antitumor effect (Alemany et al.  2000 ; Haviv and Curiel  2003 ; Senac 
et al.  2010 ; Jiang et al.  2011 ; Kim et al.  2012  ) . Viral oncolysis represents a treatment 
modality that offers together with tumor speci fi c promoter driven transgene expres-
sion a unique tumor targeting opportunity (Dorer and Nettelbeck  2009  ) . The highest 
level of speci fi city, however, to concentrate transgene expression in target cells may 
certainly be accomplished by combining physical and transcriptional targeting 
strategies within a single vector. This has been demonstrated by the combination of 
 fi ber modi fi cation e.g. RGD insertion, or fusion of a chimeric  fi ber motif and the 
CD4 ligand with the cell speci fi c promoter VEGFR-1 (Izumi et al.  2005 ; Kaliberov 
et al.  2005 ; Dong and Nor  2009  )  or dual targeting of cancer with a tumor-speci fi c 
promoter (Barnett et al.  2002a  ) , where highly selective transgene expression was 
reached in the target cells. To target healthy cells, transcriptional targeting with 
different mammalian cellular promoters was used to restrict transgene expression to 
neurons, glia or undifferentiated cells (Boulaire et al.  2009  ) . In addition, conditional 
gene expression in the adult mouse brain has been achieved by a combination of 
viral and Cre/loxP technologies (Sinnayah et al.  2004  ) .   
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    19.3   Technological and Biological Opportunities 
for Therapeutic Devices 

    19.3.1   Screening of Cell-Speci fi c Peptides 

 Peptides possess appropriate properties to serve as cell targeting agents and are 
useful alternatives to antibody-based approaches since cell-speci fi c receptors are 
often unknown. The phage display technology has been used to identify tissue or cell 
speci fi c ligands in cell culture and in vivo (Fig.  19.1 ). As early as 1990, researchers 
constructed an epitope library where more than 10 9  peptides are expressed as a con-
glomerate of  fi lamentous phage clones, each displaying one peptide sequence on 
the virion surface. The amino acid sequences of the peptides exposed on the phage 
were de fi ned by sequencing the corresponding coding region in the phage DNA 
(Scott and Smith  1990  ) . The display of polypeptide repertoires on the surface of 

  Fig. 19.1    Identi fi cation of target cell speci fi c peptide ligands by phage display technique. A phage 
library of 2 × 10 9  peptide sequences is incubated with target cells (I). Bound phages are eluated and 
ampli fi ed in  E. coli . After several rounds of biopanning (II) best binding phages are sequenced and 
tested for their cell binding af fi nity and speci fi city in vitro and in vivo. Target cell selective peptides 
are subsequently linked to modi fi ed Ad vector (III) that can be utilized for targeted gene delivery 
following systemic injection (IV)       

 



48319 Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral…

phages, together with the ef fi cient selection and ampli fi cation of the desired binding 
speci fi cities was then shown to be an ef fi cient route towards isolation of speci fi c 
peptides that can act as vehicles for targeting applications (Nicklin et al.  2000 ; 
Essler and Ruoslahti  2002 ; Dias-Neto et al.  2009  ) . Phage display was performed to 
screen for speci fi c ligands on animal tissues (Pasqualini et al.  1997 ; Rajotte et al. 
 1998 ; Ruoslahti and Rajotte  2000 ; Spear et al.  2001 ; Joyce et al.  2003 ; Ra fi i et al. 
 2003 ; Lee et al.  2004 ; Nowakowski et al.  2004 ; Su et al.  2005 ; Di Niro et al.  2007 ; 
Giordano et al.  2009  ) . This technique was successfully employed to obtain peptides 
that speci fi cally recognize and bind normal and diseased tissue like vascular 
endothelium (Pasqualini and Ruoslahti  1996 ; Arap et al.  1998 ; Pasqualini et al. 
 2000 ; Arap and Pasqualini  2001 ; White et al.  2001 ; Tamm et al.  2003  ) , lymphatic 
vessels (Laakkonen et al.  2002  ) , kidney tubules (Odermatt et al.  2001  ) , and several 
others (Barry et al.  1996 ; Ravera et al.  1998 ; Ivanenkov et al.  1999 ; Mazzucchelli 
et al.  1999 ; Nicklin et al.  2000  ) . Many novel peptides homing to angiogenic vessels 
showed relatively speci fi c af fi nity with several tumor types (reviewed by Liu 
and Wu  2008  ) . Furthermore, the lack of gene transfer systems that are effective in 
selectively targeting cancer tissues prompted the search for tumor-speci fi c peptide 
molecules of unknown tumor-associated receptors. In this regard, we did biopanning 
on human medullary thyroid carcinoma (MTC) cells in vitro (Fig.  19.1 ) and of 
transplanted tumor xenografts in vivo. The selected phages showed highly speci fi c 
binding and internalization of tumor cells in culture and after systemic injection in 
nude mice (Böckmann et al.  2005a  ) . In addition, a complex phage display peptide 
library was intravenously injected into RET-C634R transgenic mice carrying 
orthotopic MTCs (Böckmann et al.  2005b  ) . Systemic administration of the identi fi ed 
phage resulted in a speci fi c binding to the tumor, whereas binding to other organs 
such as liver was considerably reduced (up to 90%). Notably, the peptide ligand 
identi fi ed in the murine MTC model also selectively targeted human MTC cells in 
culture and under in vivo conditions (Böckmann et al.  2005b  ) , suggesting abundant 
expression of its cognate receptor in murine and human medullary thyroid carcinoma. 
Beyond that, researchers did the  fi rst step in developing a molecular map of human 
vasculature by screening a peptide library in a patient (Arap et al.  2002 ; Chang et al. 
 2009 ; Seung-Min et al.  2009  ) .   

    19.3.2   Properties of Peptide Targeted Ad Vectors 

 A peptide-directed Ad vector tropism to a corresponding receptor on target cells can 
generally be achieved by genetic integration of the peptide sequence into the viral 
capsid. A disadvantage of peptides that are identi fi ed by phage display libraries 
is that they are often functionally inactive when integrated into the  fi ber knob of 
Ad vectors. Peptides inserted into the HI-loop of the  fi ber knob are constrained at 
both, the N- and C-termini, whereas peptides inserted at the C-terminus of the  fi ber 
knob are constrained only at the N-terminus. In contrast, peptides identi fi ed by 
 fi lamentous phage display libraries are constrained only at the C-terminus, when the 
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peptides are displayed as a fusion protein with the product of gene III of the phage. 
Furthermore, the lack of ef fi cacy would be dependent on conformational changes 
after insertion of the peptide into the  fi ber knob. 

 To overcome these limitations, optimized transduction by a targeted Ad vector 
can be achieved by linking cell speci fi c peptides to the surface of adenovirus, which 
is completely ablated of its native receptor interactions (Douglas et al.  1996 ; Peng 
and Russell  1999 ; van Beusechem et al.  2002  ) . Such vectors are internalized into 
target cells independently of the native viral tropism. Since the  fi ber knob binds to 
CAR, this interaction must be abolished  fi rst. Mutation of the AB, DE, or FG loop 
of the  fi ber knob has been reported to ablate the  fi ber-CAR interaction (Bewley 
et al.  1999 ; Kirby et al.  1999 ; Roelvink et al.  1999  ) . These mutations of the  fi ber 
knob greatly reduce the transduction ef fi ciency of Ad vectors to CAR-positive cells 
in vitro. In addition, the rather minor interaction of the RGD-motif of the penton 
base with the  a v-Intergrin receptor must be depleted as well (Mizuguchi et al. 
 2002  ) . Whereas the double mutation markedly reduces retention of the vector in the 
liver (Einfeld et al.  2001 ; Koizumi et al.  2003  ) , single mutations in the  fi ber knob or 
penton base do not change the biodistribution of Ad vectors in mice after injection 
(Nakamura et al.  2003 ; Smith et al.  2002,   2003a,   b ; Alemany and Curiel  2001 ; 
Leissner et al.  2001  )  

 A common strategy to couple cell speci fi c peptides to otherwise ablated Ad 
vectors is done by chemical conjugation with polyethylene glycol (PEG). Activated 
PEG reacts preferentially with free lysine residues on the viral surface of Ad capsid 
(O’Riordan et al.  1999 ; Romanczuk et al.  1999 ; Alemany et al.  2000 ; Croyle et al. 
 2002 ; Lanciotti et al.  2003 ; Eto et al.  2004 ; Ogawara et al.  2004 ; Hofherr et al.  2008 ; 
Wonganan and Croyle  2010  ) . In general, Ad vector PEGylation was shown to 
signi fi cantly reduce innate immune responses (Croyle et al.  2005 ; Mok et al.  2005  ) , 
hepatotoxic side effects (Gao et al.  2007  ) , cytokine secretion and toxicity, and 
prolongs the vectors plasma half-life (Wonganan et al.  2011  ) . On the other site, one 
hindrance of vector PEGylation is the decreased ef fi ciency of infection due to steric 
hindrance by PEG chains (O’Riordan et al.  1999 ; Alemany et al.  2000 ; Lanciotti 
et al.  2003 ; Eto et al.  2004,   2005,   2010 ; Ogawara et al.  2004 ; Croyle et al.  2005  ) . 
This can be overcome by the covalent binding of PEG to a peptide molecule. For 
instance, coupling of a short RGD motif on the tip of PEG has shown both high 
transduction ef fi ciency in vitro (Lanciotti et al.  2003 ; Eto et al.  2004,   2005 ; Ogawara 
et al.  2004  )  as well as improvement of systemic gene delivery (Xiong et al.  2006 ; 
Gao et al.  2007  ) . In a model of ovarian cancer, a PEGylated Ad vector was linked to 
 fi broblast growth factor 2. This vector mediated increased transgene expression in 
tumor tissue and reduced localization of adenovirus to non-target cells compared to 
unmodi fi ed Ad (Lanciotti et al.  2003  ) . Other studies used a multivalent hydrophilic 
polymer based on poly[N-(2-hydroxypropyl)methacrylamide] instead of PEG 
(Fisher et al.  2001 ; Green et al.  2004  ) . Although bifunctional polymers like PEG 
are highly suitable for coating peptides to the viral surface, the success of such 
approaches might depend on the length of peptides. Regarding gene therapy of 
metastatic cancer by Ad vectors, a dual cancer-speci fi c targeting vector system was 
used: PEGylation combined with the telomere reverse transcriptase promoter. The 
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aim was to treat experimental metastases through systemic administration of the 
vectors. The authors, however, summarized that the system is limited since systemic 
administration of Ad vectors yields low therapeutic but severe side effects (Yao 
et al.  2009  ) .  

    19.3.3   New Prospects of “Smart” Ad Vectors for Regenerative 
CNS Therapies 

 A main focus of attention lies in the development of therapies against degenerative 
disorders of the central nervous system (CNS) and neoplasms of the brain with viral 
vectors (Arnhold et al.  2002,   2003 ; Deglon and Hantraye  2005 ; Blurton-Jones et al. 
 2009  ) . The properties of neural stem/precursor cells (NSC) in the adult brain make 
them potentially suitable for restorative cell replacement strategies as well as delivery 
vehicles for gene therapy (Müller et al.  2006  ) . NSC are found throughout the entire 
adult brain (Palmer et al.  1999  )  but they generate neurons only in two specialized 
niches: the subgranular zone (SGZ) in the hippocampal dentate gyrus (Palmer et al. 
 1997 ; Filippov et al.  2003  )  and the side wall of the lateral ventricles, the subven-
tricular zone (SVZ) (Doetsch and Alvarez-Buylla  1996  ) . Due to their migratory 
properties, the cells are attracted to brain lesions including areas of neurodegeneration 
and brain malignancies. For example, they have shown tropism for gliomas and 
degenerating spinal cord motor neurons in amyotrophic lateral sclerosis transgenic 
mice (Glass et al.  2005 ; Chi et al.  2006  ) . Failing adult hippocampal neurogenesis 
has been brought into connection with the pathogenesis of disorders as diverse 
as dementia, major depression, and temporal lobe epilepsy (Parent et al.  2002 ; 
Kempermann et al.  2003 ; Steiner et al.  2006  ) . The potential for the treatment of CNS 
disorders including those affecting the hippocampus has tremendously advanced 
with the ability to identify speci fi c genes whose defect or absence is responsible 
for the particular pathological condition (Ryu et al.  2005  )  and genes that control 
precursor cell differentiation (Scheel et al.  2005  ) . Successful delivery of these thera-
peutic genes to stem/precursor cells will thus provide a signi fi cant advancement 
in therapy for certain brain disorders. So far, experimental cell therapy for CNS 
disorders has been based on the transplantation of ex vivo expanded and genetically 
engineered NSC. The normal course of NSC development and migration in vivo is, 
however, controlled by the microenvironment in the neurogenic regions of the brain. 
Because culture conditions strongly in fl uence the phenotype of cells, cultivation 
could markedly alter the cellular response to their environment once they are reintro-
duced into the organism. A promising option for utilizing the therapeutic potential 
of endogenous NSC in the brain, and most notably the hippocampus, is by application 
of a NSC-speci fi c gene delivery system. Currently, the most ef fi cient and popular 
way of introducing genes into NSC is by means of lentiviral vectors (Geraerts et al. 
 2006  ) . It should be noted however, that NSC transduced with oncolytic Ad virus in 
an orthotopic xenograft model of human glioma are able to inhibit tumor growth 
and increase median survival by 50 % (Ahmed et al.  2011  ) . On the basis of these 
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  Fig. 19.2    Administration of peptide-tagged Ad vectors into the brain of adult mice. Redirection 
of an Ad vector ablated of its native tropism (mutated CAR and RGD motif) to adult neural stem/
precursor cells was achieved by coupling of a cell speci fi c peptide via crosslinker (or PEG) to viral 
surface protein. After direct injection of the virus AdGFP.peptide (expressing green  fl uorescent 
protein) into the hippocampus, speci fi cally labeled type I and type II NSC ( green ) are visible in the 
dentate gyrus ( blue : DAPI staining)       
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previous studies, we focused on the establishment of stem cell speci fi c Ad vectors to 
genetically manipulate or reprogram neural stem cells in situ (Schmidt et al.  2007  ) . 

 Early stage cultures of primary neurospheres established from the hippocampal 
area of adult mice were incubated with a 7mer phage library that offers the possibility 
to identify small peptides. Neurospheres contain only a few true stem cells and show 
differentiation at the core, making them a heterogeneous cluster of cells (Reynolds 
and Rietze  2005 ; Siebzehnrubl et al.  2011  ) . To address this issue, we used neurospheres 
at an early stage, when a large proportion of the cells is proliferative and expresses 
precursor cell marker nestin. In addition, we designed a two-stage experiment: we 
 fi rst used cultured cells to identify peptides with presumed high speci fi city. We then 
tested these peptides in vivo to con fi rm their sensitivity with immunohistological 
tools and according to the criteria developed to identify precursor cells in the neuro-
genic regions of the adult hippocampus (Kempermann et al.  2004a,   b ; Steiner et al. 
 2006  ) . In vitro selected peptides showed ef fi cient and speci fi c binding and uptake to 
cultured hippocampal neurospheres. Analysis of adenoviral distribution after vector 
injection into the adult mouse brain revealed a highly speci fi c infection of type-1 
and type-2 precursors (Hildebrandt et al.  2010  )  in the granule cell layer of the 
hippocampal dentate gyrus when capsid-mutated Ad vectors displaying the speci fi c 
peptides were used (Fig.  19.2 ), whereas Ad with the wild-type capsid also transduced 
other differentiated brain cells. Apart from the notable target cell speci fi city of NSC-
peptide tagged Ad vectors, infection of stem/precursor cells was con fi ned to the brain 
region where NSC (used for phage display) were originally isolated from, suggesting 
that intrinsic differences in neural stem cells between different brain regions can 
translate into a diverse spectrum of cell surface receptors on these cells. Consequently, 
our  fi ndings imply that NSC-speci fi c Ad vectors are needed for individual neurogenic 
regions. Overall, our approach represents the  fi rst opportunity for speci fi c labeling 
and manipulation of NSC in the adult brain that may have major implications 
for monitoring stem cell development in the central nervous system and their 
use for cell and/or gene therapy of neurodegenerative diseases.    

    19.4   Applications for Therapeutic Devices 

    19.4.1   Adenoviral Interventions in Clinical Trials 

 Ad systems have remarkable advantages regarding safety issues for clinical application. 
In contrast to retroviral vectors, adenoviruses do not integrate into the host genome, 
and thereby avoid activation of oncogenes or potential elimination of tumor 
suppressor gene function. For many applications such as cancer gene therapy or 
regenerative medicine using strategies to promote stem cell differentiation or 
cellular proliferation, transient expression is much more desirable. Another reason 
for Ads being currently the most common and promising system for clinical gene 
therapy against cancer is due to the ef fi ciency of gene transfer in vivo (Thomas et al. 
 2003 ; Kuhlmann et al.  2008  ) . So far, over 400 clinical trials using Ad vectors have 
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been done worldwide. According to the Journal of Gene Medicine, in 2006 there 
were 27 studies applying Ad vectors against B-cell lymphomas, urinary bladder 
carcinoma, metastatic tumors, pancreatic adenocarcinoma, prostate and lung cancer. 
In 2011, 11 ongoing clinical phase I/II trials mainly focused on for malignant 
melanoma, adenocarcinoma of the lung, breast and brain cancer. 

 A recent phase I trial uses a tumor suppressor gene usually upregulated in prostate 
cancer cells which shows in vitro antitumor activity. An adenovirus expressing this 
gene was injected into the prostate and preliminary evidence of antitumor activity 
was documented (Sonpavde et al.  2011  ) . Another trial targeting advanced digestive 
malignancies consists of intratumoral injection of an adenovirus encoding interleu-
kin-12 (Mazzolini et al.  2005  ) . With this well-tolerated approach, mild anti-tumor 
effects were obtained (Sangro et al.  2004  ) . A phase I trial using an adenoviral vector 
containing the herpes simplex virus TK gene was applied to kill tumor cells in com-
bination with the prodrug valacyclovir and radiation and a phase II trial of this 
approach is ongoing (Chiocca et al.  2011  ) . The last described trial, a so called 
suicide-gene therapy (Parker et al.  2009 ; McBride  2012  ) , is as well used to treat 
brain tumors. Furthermore, intervention of Ad vectors combined with cytostatic 
drugs was shown in a phase I/II trial by endoscopic intratumoral injection (Hecht 
et al.  2003  ) . Moreover, intratumoral injection of an adenovirus selectively replicating 
in primary pancreatic tumors in a phase I trial was shown feasible and well-tolerated 
at doses up to 2 × 10 12  particles. Intratumoral replication of the virus, however, 
was not detectable (Mulvihill et al.  2001  ) . Another therapy approach used a 
replication-de fi cient adenoviral vector that expresses tumor-necrosis-factor- a  under 
the chemotherapy- and radiation-inducible Egr-1 promoter. This study was conducted 
to determine the maximum tolerated dose of Ad in combination with chemo-
radiotherapy to treat locally advanced pancreatic cancer. Patients treated with 
this approach, had a better clinical outcome (Senzer et al.  2004 ; Hecht et al.  2012  ) . 
A phase II clinical trial is focused on systemic administration of a non-replicating 
adenovirus vector with a pre-proendothelin-1 promoter. This promoter encodes an 
apoptotic receptor, which is limited to endothelial cells undergoing angiogenesis. 
This treatment selectively destroys tumor vascularization. Synergistic antitumor 
activity can be observed when combined with chemotherapy in patients with 
advanced solid tumors (Triozzi and Borden  2011  ) . Four open phase III trials against 
refractory squamous cell carcinoma and prostate cancer have been initiated in the 
U.S. between 1999 till 2007 (Shirakawa  2009 ; Yoo et al.  2009 ; Nemunaitis  2011  ) . 
Unresectable hepatocellular carcinoma (HCC) has unsatisfactory clinical outcomes 
of the patients, especially in those with recurrent HCC. H101, an E1B gene deleted 
adenovirus, is known to have a signi fi cant antitumor activity. H101 gene injection in 
combination with transarterial chemoembolization (TACE) led to a good clinical 
prognosis of the patient (He et al.  2011  ) . Subsequently, 68 patients with HCC treated 
with TACE in combination with adenovirus-expressing p53 showed a signi fi cantly 
higher survival. The rAd-p53 gene therapy in combination with TACE is a safe and 
effective treatment modality for advanced HCC (Guan et al.  2011  ) . Preclinical data 
of phase I and II trials indicate that combinations of oncolytic viruses and radiation 
therapy are promising tools against cancer, paving the way for several meanwhile 
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ongoing phase III studies (Parato et al.  2005 ; Wennier et al.  2011 ; Touchefeu et al. 
 2011 ; Hunter  2011 ; Hartkopf et al.  2011 ; Auer and Bell  2012  ) . An example is the 
oncolytic virus created by genetically engineering of adenovirus, so called “Onyx-015”, 
that allows the virus to selectively replicate in and lyse p53-de fi cient cancer cells. 

 In summary, the three main gene therapy strategies for cancer treatment are 
oncolytic viruses, suicide-gene therapy and gene-based immunotherapy. The  fi rst 
approved anticancer drug using gene therapeutic principle is the so called “Gendicine”, 
an Ad carrying p53 tumor suppressor genes into tumor cells (Pearson et al.  2004 ; 
Peng  2005 ; Tani et al.  2011  ) . Trials to correct inherited diseases such as SCID 
(Huston et al.  2011 ; Baum  2011  )  have achieved considerable success.  

    19.4.2   Barriers to Practice and Prospects 

 Despite the incredible progress in many aspects of Ad vector technology and the 
large spectrum of potential therapeutic approaches which are promising pre-clinical 
models, a breakthrough of Ad vector based gene therapy has not been achieved in 
clinical trials mainly because of several drawbacks. First generation Ad vectors 
activate the immune system and may evoke a strong immunological response that 
can potentially cause negative effects in patients (Hemminki and Alvarez  2002 ; 
Gregory et al.  2011  ) . After the  fi rst administration of adenovirus, antibodies are 
developed making further administrations impossible (Arnberg  2009  ) . Earlier 
generation vectors only exhibit a transient transgene expression and insuf fi cient 
therapeutic effects (Dong and Nor  2009  ) . Moreover, circulating virus primarily 
enters the liver, which may lead to toxic or lethal doses (Bruder and Kovesdi  1997 ; 
Lieber et al.  1997 ; Muruve et al.  1999 ; Shifrin et al.  2005  ) . Another problem for 
clinical application of un-modi fi ed gene transfer systems is the lack of selectivity. 
This results in gene delivery not only to target cells but also to healthy environment. 
By application of such vectors extremely large and potentially toxic amounts of the 
therapeutic particles need to be administered in vivo to achieve levels good enough 
for a curing effect in the target tissue. Combination of several targeting strategies to 
circumvent such limitations improved the safety and ef fi cacy of Ad based systems 
and has the potential to yield an increased therapeutic bene fi t in the human clinical 
context. Problems of in fl ammatory responses after Ad delivery in humans can be 
circumvented by immunosuppression and immunomodulation, serotype switching 
and microencapsulation (reviewed in detail by Bangari and Mittal  2006  ) . Furthermore, 
redirecting vectors from liver towards the tissues of interest with selective cell surface 
receptors, a new generation of Ad chimeras, and the use of non-human serotypes 
might be powerful alternatives in human therapy (Barnett et al.  2002b ; Di Paolo and 
Shayakhmetov  2009 ; Yao et al.  2011 ; Hogg et al.  2011 ; Schmidt et al.  2011  ) . Further 
development of adenoviral vehicles like use of helper-dependent Ad vectors could 
bring considerable progress in clinical approaches. In comparison to earlier generations, 
they have a long-term transgene expression although they do not integrate in the 
host chromosome. In general, Ads are versatile and  fl exible for in vivo application, 
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but moderate progress in ongoing work makes further intensive investigations on 
vector modi fi cation essential for human regenerative medicine.   

    19.5   Conclusions and Future Challenges 

 In the last three decades, gene therapy has permanently progressed in many aspects 
from bench to bedside and led to enormous enhancement of potential therapeutic 
approaches for humans. Preclinical investigations often highlight successful treat-
ment in animal models but so far there is a missing link to the treatment of humans 
in many  fi elds of practical medicine. In clinical trials, the future of gene therapeutic 
interventions critically depends on the selectivity and ef fi ciency of gene transfer to 
target tissues. Particularly, in vivo gene therapy of complex diseases like cancer is 
still problematic because of the lack of appropriate gene delivery systems (Jang 
et al.  2011  ) . Impressive work on this issue shows clearly that only combinations of 
different cell targeting strategies lead to a selective accumulation and activity 
of the therapeutic gene in the tissue of interest and will allow success in treatment 
of patients. The development of targeted delivery systems to reach higher levels of 
speci fi city can certainly be considered as an important step towards increased thera-
peutic bene fi ts for patients.      
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  Abstract   Regenerative medicine aims to restore damaged tissues in order to reverse 
disease progression and provide a sustainable solution that cures the root cause of 
the disease process. Although natural mechanisms of repair are ubiquitous, disrup-
tion of the homeostatic balance affects the equilibrium between health and disease 
due to insuf fi cient tissue renewal in chronic degenerative conditions. Augmentation 
of the diseased tissue repair capacity through chimerism offers a strategy that spans 
all  fi elds of medicine and surgery from natural chimerism for tissue rejuvenation, to 
surgical chimerism for organ replacement, to bioengineered chimerism for targeted 
regeneration. Technological breakthroughs in nuclear reprogramming now provide 
a platform to advance a broad range of solutions for regenerative medicine built on 
the foundation of pluripotent autologous stem cells. By optimizing the safety and 
effectiveness for stem cell production and ensuring tissue-speci fi c differentiation of 
progenitors, induced pluripotent stem cells (iPS) offer an unprecedented opportu-
nity to accelerate personalized applications with cell-based products to bioengineer 
health from disease.      

    20.1   Introduction: Regenerative Medicine    

 Regenerative medicine is primed by recent progress made in transplant medicine   , 
stem cell biology and biomedical engineering to expand the therapeutic armamen-
tarium available for the future of clinical practice. By providing patients with 
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tissue-based products or biologics, regenerative medicine aims to ameliorate 
disease outcome while reducing the dependency on long-term palliative options. 
Advances in the science of regenerative medicine offer a transformative paradigm 
with curative objectives to address patient management demands unmet by 
 non-curative approaches. Notably, the magnitude of chronic diseases increasingly 
challenges the sustainability of global health care systems (Cortese  2007 ;    
Waldman and Terzic  2007  ) . In part, the success of modern medical care has 
allowed patients to survive initial presentation of acute disease processes, such as 
the pandemic of myocardial infarction, giving way to a prolonged course of dis-
ease management that relies primarily on palliative strategies to mitigate overt 
symptoms. Furthermore, the aging population is increasingly susceptible to 
degenerative diseases, which additionally escalates the growing burden on the 
health care system (Jahangir et al.  2007  ) . Thus, the scope of chronic degenerative 
diseases will require interventions targeted towards the root cause of disease typi-
cally linked to progressive cellular destruction and irreversible loss of tissue 
function. 

 The concept of therapeutic repair    (Fig.  20.1 ) encompasses the converging triad 
of  rejuvenation ,  replacement ,  and regeneration  as an overall goal to provide a sus-
tainable cure (Nelson et al.  2008a  ) . Although frequently underappreciated, rejuve-
nation provides the basis for self-healing from simple injuries of the skin to complex 
disease within tissues of the heart, liver, kidney, or brain. The unreliability of innate 
healing and the limited ability to augment inherent stem cell pools required to pro-
mote tissue homeostasis de fi nes the unique challenges and opportunities of regen-
erative medicine. Likewise, transplant medicine exploits a replacement strategy as a 
valuable option to recycle used parts, and restore failing organ function by means of 
exogenous substitutes – it is however limited by donor shortage. Ultimately, stem 
cell-based regeneration has revealed the next frontier of medical therapy through 
delivery of essentially unlimited pools of autologous or allogeneic, naive or modi fi ed, 
natural or bioengineered progenitor cells to achieve structural and functional repair 
of all lineages. Collectively, stem cell-based regenerative medicine designed to sup-
plement natural progenitors and facilitate chimeric healing    of damaged tissues is 
poised to drive the evolution of medical sciences from traditional palliation towards 
curative therapy (Rosenthal  2003 ; Daley and Scadden  2008  ) .  

    20.1.1   Rejuvenation    

 The rejuvenation strategy refers to self-renewal of tissues from endogenous stem 
cells within the individual body to promote tissue healing. This innate process of 
tissue refreshing enables the body to heal itself with younger cells through  de novo  
biogenesis (Surani and McLaren  2006  ) . Daughter cells    can also be derived from 
reactivation of the cell cycle within mature cell types in response to stress or 
injury. This strategy replenishes tissue structure with endogenous stem cells, 
which generates natural chimeric tissue composed of cells distinguishable only by 
their birth dates. Although rejuvenation ensures continuous production of renewable 
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tissue required for long-term stress tolerance, most tissues are only partially able to 
self-renew. Moreover in the context of massive acute injury, such as myocardial infarc-
tion, inherent repair strategies are frequently inadequate (Anversa and Nadal-
Ginard  2002  ) . A boost in healing processes is likely required to stimulate adaptive 
response and promote adequate biogenesis of functional tissue to abrogate the 
progression of chronic heart diseases.  

    20.1.2   Replacement    

 The replacement strategy refers to transplantation of a donor tissue/organ that main-
tains functional integrity and re-establishes homeostasis within the host (Atala 

  Fig. 20.1    Heart repair is the central goal of cardiovascular regenerative medicine that encom-
passes the strategic triad: rejuvenation, replacement, and regeneration illustrated here in the con-
text of heart repair. Rejuvenation is de fi ned as the repair of damaged tissue through activation of 
endogenous mechanisms that can stimulate natural tissue turnover and wound healing in order to 
replenish tissue function through “natural chimerism”. Replacement is de fi ned as repair of dam-
aged tissue by recycling used parts through cardiac organ transplantation and now includes 
mechanical assist devices to achieve “surgical chimerism”. Regeneration is de fi ned as repair of 
damaged tissue through application of stem cells to generate new tissue and restore function 
following autologous or allogeneic cell-based “bioengineered chimerism”. Collectively, these 
therapeutic strategies are recognized as an integrated approach for heart repair and could be appli-
cable to damaged tissues and organs throughout the body       
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 2008  ) . The  fi eld of surgery pioneered the concept of total replacement with the 
advent of solid organ transplantation. If the heart was irreversibly damaged, then 
replacing the diseased tissue with a functioning donor organ has remained a viable 
option. Cell-based replacement is also exempli fi ed with routine use of donated red 
blood cells to replace circulating blood volume and treat life-threatening blood loss 
or anemia. This strategy recycles used cells, tissues, or organs to restore physiologic 
function for the recipient of the transplant upon establishment of a surgical chimera 
between donor tissue and host environment. A signi fi cant limitation of the replace-
ment strategy remains the shortage of appropriate donors, and the dif fi culty to match 
the immunological criteria for safe and effective clinical applications.  

    20.1.3   Regeneration    

 The regenerative strategy refers to engraftment of progenitor cells that require 
 in vivo  growth and differentiation to establish repair within the host environment. 
Advances in hematology gave rise to the concept of regenerative cytotherapy with 
the identi fi cation of bone marrow-derived stem cells that could be harvested and 
transplanted in small quantities in order to reconstitute the entire hematopoietic 
stem cell pool naturally residing within the bone marrow (Kørbling and Estrov 
 2003  ) . Success of stem cell transplantation was facilitated by engraftment into 
host bone marrow, which provides a protective environment to nurture the long-
term survival of self-renewing stem cell properties. This strategy replenishes 
functional progenitor cells to allow on-demand differentiation of all hematopoi-
etic lineages and sustained production of bioengineered chimeric tissue from 
donor stem cells within the host environment. Tissue-speci fi c, non-hematopoietic 
stem cells have, furthermore, the capacity to re-establish lost function when 
ectopically transplanted into a wide range of diseased tissues as evident in diabetes, 
heart disease, and degenerative neurological conditions expanding regenerative 
applications.   

    20.2   Natural Chimerism: Heart Rejuvenation    

 Endogenous stem cells and self-repair mechanisms have been increasingly recog-
nized as a natural process for tissue homeostasis (Laird et al.  2008  ) . Fundamental to 
cardiac tissue rejuvenation is cardiomyocyte renewal through recruitment of endog-
enous progenitor pools within the body (Anversa et al.  2006 ; Torella et al.  2006  ) . 
Notably, stem cell contribution to postnatal heart formation has been validated by 
the self/non-self chimerism characteristic of patients following allogeneic trans-
plantation    (Quaini et al.  2002 ; Kajstura et al.  2008a ; Deb et al.  2003  ) . Furthermore, 
innate stem cell loads increase in failing hearts and contribute to a regenerative 
response, involving ongoing derivation of cardiomyocytes from circulating or resident 
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progenitors (Kubo et al.  2008 ; Rupp et al.  2008  ) . However, in the context of large-
scale destruction following ischemic injury, the regenerative response required for 
tissue homeostasis is limited in its ability to salvage a deteriorating myocardium 
(Urbanek et al.  2005  ) . 

 The magnitude of the natural process of cardiac tissue self-renewal is likely 
dependent on multiple factors such as patient age, disease status, co-morbidities, 
patient-speci fi c medications, as well as genetic predispositions, epigenetics    or 
ecogenetic in fl uences. Utilizing quanti fi cation of radio-isotopes, introduced at high 
levels into the atmosphere during above ground nuclear bomb testing between the 
years 1955 and 1963 leading to subsequent DNA incorporation within living mate-
rial, the birth date of individual cardiomyocytes was recently calculated (Bergmann 
et al.  2009  ) . Based on these data, it has been estimated that cardiomyocytes can 
renew at <1% annually to achieve on average a renewal approaching up to 50% of 
the total heart mass over a lifespan (Bergmann et al.  2009  ) . Although the magnitude 
is generally thought to be insuf fi cient to compensate for severe tissue loss in acute 
disease states, the natural chimerism that is produced as a result of rejuvenation may 
gradually contribute to the prevention of heart disease and provide a signi fi cant 
protective mechanism of self-renewal    to the heart, as originally suggested in trans-
plant patients (Anversa et al.  2006 ; Torella et al.  2006  ) . The precise mechanism of 
autologous self-renewal remains only partially addressed, but mounting evidence 
con fi rms the presence of  in situ  cardiogenic differentiation (Kajstura et al.  2008b ; 
Hsieh et al.  2007  ) . Direct evidence of allogeneic circulating stem cell contribution 
to the heart has been demonstrated in multiple patient-derived samples (Anversa 
et al.  2006 ; Torella et al.  2006 ; Quaini et al.  2002 ; Kajstura et al.  2008a  ) . Importantly, 
this data from chromosomal mismatch does not preclude an active participation of 
resident stem cells in cardiac tissue renewal as calculated by the spectrum of 
de-identi fi ed cardiomyocyte birth dates. Therefore, based on the established para-
digm of heart rejuvenation it is appropriate to surmise that augmentation of natural 
chimerism   , either by reactivation of endogenous or transplantation of exogenous 
progenitor cells, offers a legitimate target to ameliorate the burden of chronic, 
degenerative heart disease presented herein as a disease paradigm (Fig.  20.1 ).  

    20.3   Surgical Chimerism: Heart Replacement    

 In response to end-stage heart failure in which the heart was damaged beyond 
reasonable probability for recovery, cardiac transplantation was pioneered over the 
past century to engineer a therapeutic option. Pre-clinical breakthroughs originated 
from the innovative efforts of Alexis Carrel along with Charles Guthrie who together 
succeeded to transplant the  fi rst heterotopic canine heart in 1905 (Carrel and Guthrie 
 1905  ) . Over the next 60 years, signi fi cant discoveries in cardiac transplant biology 
and surgical techniques laid the fundamental groundwork for clinical translation 
that resulted in the  fi rst successful human-to-human cardiac transplantation per-
formed by Christiaan Barnard (Lower and Shumway  1960 ; Hardy et al.  1964 ; 
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Barnard  1967  ) . The proceeding decade witnessed decreased enthusiasm for the 
experimental procedure with poor survival rates and inevitable post-procedural 
complication due to allogeneic immune status. However, with the introduction of 
effective immunosuppression in the early 1980s (Oyer et al.  1983  ) , technical 
improvements accelerated clinical practice of cardiac transplantation towards not 
only a viable strategy but into the standard of care for end-stage heart failure 
(Fig.  20.1 ). Today, there are more then 2,500 heart transplants    done annually in the 
United States (Hunt et al.  2009  ) ; however, the numbers have not changed in the past 
decade despite a focused effort to address the organ shortage (Taylor et al.  2008  ) . 
This has presented a signi fi cant clinical challenge for the estimated 100,000 patients 
in the United States alone that would be a potential candidate for this lifesaving 
procedure (Rosamond et al.  2008  ) . 

 Due to the magnitude of the unmet need, alternative strategies such as mechani-
cal assist devices    have gained signi fi cant attention throughout this period (Fig.  20.1 ). 
The use of mechanical circulatory assist devices in refractory heart failure has been 
investigated in clinical trials for more than a decade. Extracorporeal devices have 
been used for short-term circulatory support in selected patients who are expected 
to have a reversible pathology and a transient need. Of note, advances in mechani-
cal assist technology have produced devices that now offer remarkable hemody-
namic support and have been introduced for long-term support of patients even in 
the ambulatory setting (Goldstein et al.  1998  ) . Success of this technology has led 
to the concept of not only “bridging” to transplant    or recovery, but now is being 
offered in selected patients not eligible for transplant as a permanent or “destina-
tion” therapy   . The Randomized Evaluation of Mechanical Assistance for the 
Treatment of Congestive Heart Failure (REMATCH) trial enrolled 129 patients 
for a 2-year follow-up period that demonstrated a 23% survival in mechanical 
device treated versus 8% survival with medical therapy alone (Rose et al.  1999  ) . 
These data established the therapeutic value of mechanical support devices in the 
treatment algorithm of end-stage heart disease, and justi fi ed a role for patients that 
have a 1-year survival of less than 50%. Improved outcomes are likely to be 
reported as patient selection is re fi ned, surgical and post-surgical care evolves, and 
devices are re-engineered for long-term sustainability. However, these advance-
ments do little to prevent the pandemic of candidate patients with refractory heart 
failure and only expands palliative approaches that are largely limited to symptom-
atic management of a progressive disease.  

    20.4   Bioengineered Chimerism: Heart Regeneration    

    20.4.1   Recapitulating De Novo Cardiogenesis    

 Pluripotent stem cells have demonstrated the ability to contribute to chimeric tissues 
and illustrate the potential for exogenous stem cells to augment structure and func-
tion of host cardiac tissue. Chimeric offspring can be bioengineered through multiple 
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techniques that place competent stem cells in direct contact with early stage embryos 
(Wood et al.  1993b ; Wakayama et al.  2001 ; Nelson et al.  2009c ; Stillwell et al.  2009  ) . 
Two common methods of producing chimeric mice from pluripotent stem cells con-
sist of either microinjection into the blastocoel cavity of a blastocyst-stage host 
embryo or by the non-coerced aggregation with a morula-stage host embryo (Wood 
et al.  1993a ; Tam and Rossant  2003  ) . Aggregation techniques include diploid aggre-
gation in which host embryo is an 8-cell wild-type morula (Fig.  20.2 ) and tetraploid 
aggregation in which host embryo is the product of electrofusion of a two-cell embryo 
into a single cell containing two copies of the genome. In both diploid aggregation    
and blastocoel injections, the resulting fetus will be comprised of a mixture of stem 
cell-derived progeny along with lineages originating from the host embryo. Because 
host embryo has unaltered differentiation capacity, the transplanted pluripotent stem 
cells offer an equivalent source for the differentiating embryo and allow stochastic 
integration of the chimeric offspring. In contrast to the non-competitive combination 
of stem cells with similar differentiation capacity, tetraploid aggregation    utilizes a 
partially defective host embryo and requires the transplanted stem cells to compen-
sate for developmental de fi ciencies inherent within the host embryo (Nagy et al. 
 1993  ) . In this way, bioengineering has con fi rmed the ability of chimeric tissues to 
rescue genetic defects and provide viable offspring from otherwise lethal mutations 
innate to the host environment. Case in point, the deletion of vascular endothelial 
growth factor (VEGF) disrupts the vascular development in the placenta and results 
in a developmental arrest (Carmeliet et al.  1996  ) . However, chimeric complementa-
tion with pluripotent stem cells containing wild-type VEGF rescues the de fi nitive 
pre-natal defects and produces viable offspring (Hirashima et al.  2003  ) . Thus, chime-
ric tissue has provided a powerful platform for discovery sciences and establishes the 
potential therapeutic value of bioengineered chimerism.  

  Fig. 20.2    Bioengineered chimerism. Adult chimeric offspring can be generated from pluripotent 
stem cells by manipulation of the blastocyst prior to implantation within surrogate mother. By 
injecting 10–20 cells into the cavity of a developing blastocyst or aggregation between compact 
morula and pluripotent stem cell, the preimplantation blastocyst becomes a random mixture of 
original blastomeres and transplanted stem cells. The chimeric inner cell mass gives rise to a 
mosaic pattern of chimeric tissue throughout development and are suf fi cient to produce adult off-
spring with random distributions of tissues derived from the transplanted pluripotent stem cells. 
The bioengineered chimerism offers unique opportunities to study the cell-autonomous defects of 
stem cells throughout development and into pathophysiological homeostasis of the adult system       
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 Beyond cell-autonomous rescue    of defective tissues, chimeric tissue reconstruction 
has also been demonstrated to repair disease-causing mutations through neomor-
phic (non-cell autonomous or paracrine) mechanisms    (Fraidenraich et al.  2004  ) . 
Tissue formation is dependent on multiple cell types that develop together and rely 
on the cooperative microenvironment, exempli fi ed in cardiogenesis in which juxta-
position of de fi nitive endoderm to secrete growth factors guides pre-cardiac meso-
derm maturation (Lough and Sugi  2000 ; Foley et al.  2006  ) . Therefore, mapping of 
defective signaling pathways in individual cardiac disease conditions that depend 
on paracrine support has provided therapeutic targets for chimeric tissue reconstruc-
tion. The translational value of this approach was originally discovered according to 
dramatic rescue of the embryonic lethal phenotype in Id1/Id3 knockout embryo 
upon blastocoel injection of wild-type embryonic stem cells (Fraidenraich et al. 
 2004  ) . Repair of cardiogenesis in the defective embryos has been recapitulated with 
both indirect transplantation of embryonic stem cells into the peritoneal cavity of 
mother and the acellular delivery of insulin-like growth factor (IGF-1) as the prin-
ciple active ingredient (Fraidenraich et al.  2004  ) . 

 Extending the rational basis of chimeric tissue reconstruction for disease manage-
ment, preemptive cell-based intervention    has more recently been demonstrated for 
ischemic heart disease (Yamada et al.  2009  ) . Embryonic stem cells delivered into an 
early stage host embryo were tested to determine whether bioengineered chimeric tis-
sue could impact the tolerance of the adult to ischemic injury. Chimera offspring    were 
generated through microinjection of pluripotent stem cells into pre-implantation 
embryos, and then examined for cardiac stress tolerance in adulthood. Indeed, bioengi-
neered chimera demonstrated a functional and structural bene fi t compared to non-
chimeric counterparts in the setting of coronary artery occlusion. The proof-of-concept 
provided the initial evidence of preventive regenerative medicine in the setting of myo-
cardial infarction implemented through prenatal intervention (Yamada et al.  2009  ) . 
Thus, chimeric incorporation of healthy progenitor cells into host embryos, before and 
after disease onset, has provided mechanistic insight to a wide range of pathology and 
increasingly offers a novel therapeutic strategy (Schneider et al.  2009  ) .  

    20.4.2   Advancing Stem Cell-Based Cardiac Repair    

 Along with the paradigm shift that the heart is a self-healing organ came the design 
and implementation of clinical trials to test the hypothesis that additional stem cell 
load would lead to accelerated heart repair following ischemic injury (Leri et al. 
 2008  ) . Promising pre-clinical data documenting improvement in cardiac perfor-
mance following stem cell transplantation    provided the foundation to test in patients 
the safety and feasibility of stem cell therapy in cardiac disease (Dimmeler et al. 
 2005 ; Segers and Lee  2008  ) . 

 Autologous skeletal myoblasts were the initial cell type used in clinical trials 
(Menasché et al.  2001  ) . Approximately 9 × 10 8  myoblasts were obtained from muscle 
biopsy and transplanted into the myocardium during open-heart surgery. Ventricular 
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tachycardia was recognized as a possible side-effect of therapy. However, in 
individual cases patients reported improvement in symptoms signi fi cant enough to 
decrease their heart failure class score, and had improvement in left ventricular 
ejection fraction. Subsequent trials have used lower concentrations of myoblasts, 
and have demonstrated a lower incidence of ventricular arrhythmias (Opie and Dib 
 2006  ) . Long-term follow-up demonstrated improvement in clinical status and a 
decrease in hospitalizations for heart failure, while the risk of arrhythmia was appro-
priately controlled with medical therapy and/or device implantation (Hagège et al. 
 2006  ) . A placebo controlled, multicenter phase III clinical trial (MAGIC   ) demon-
strated signi fi cant decrease in left ventricular diameter after 6 months indicative of 
improved remodeling in patients with heart failure following myoblast injection 
directly into the myocardium, despite no signi fi cant change in systolic function of 
the treated heart muscle (Menasché et al.  2008  ) . 

 The TOPCARE-AMI    trial was designed to test the safety and feasibility of stem 
cell transplantation after acute myocardial infarction using circulating or bone mar-
row-derived progenitor cells (Schächinger et al.  2004  ) . Initial studies demonstrate a 
safe clinical pro fi le without ventricular arrhythmia, thrombus formation, distal 
embolization or dissection of coronary artery throughout a 1-year follow-up period. 
Furthermore, serial MRI imaging of the left ventricle demonstrated improved 
ejection fraction of ~8% as early as 4 months, and up to 12 months after transplanta-
tion. Safety and feasibility was independently con fi rmed using bone marrow cells 
transplanted into patients with a large ST-elevation myocardial infarction (Sánchez 
et al.  2006  ) . The  fi rst randomized clinical trial, BOOST, examined patients after 
having an ST-elevation myocardial infarction that involved successful treatment by 
percutaneous stent placement into a single coronary artery (Drexler et al.  2006  ) . 
Five days after optimal management according to standard medical practice, patients 
were treated with autologous bone marrow cell therapy and demonstrated a 6.7% 
improvement in ejection fraction compared to <1% improvement in the medically 
managed control cohort at 6-months follow-up. However, the signi fi cance of left 
ventricular function improvement in stem cell treated patients was not sustained at 
18-month follow-up. The ASTAMI    trial limited the inclusion criteria to acute myo-
cardial infarction involving the left anterior descending coronary artery and ran-
domized patients to receive bone marrow mononuclear cells via coronary artery 
delivery (Lunde et al.  2007  ) . After a 6-month follow-up period, no signi fi cant differ-
ence between groups was detected in global left ventricular function. This random-
ized open-labeled study involving 100 patients con fi rmed the low risk of cell 
transplantation without increased risk of thrombosis, re-stenosis, or arrhythmia, and 
importantly showed signi fi cant improvement in exercise time and heart rate 
responses (Schächinger et al.  2006  ) . Two phase II randomized clinical trials consist-
ing of 200 patients in a multi-institutional study, REPAIR-AMI    (Janssens et al. 
 2006  ) , and 67 patients in the STEMI    study (Perin et al.  2004  )  not only randomized 
patients, but also performed placebo injections in the control group via a similar 
coronary artery catheter approach. The primary outcome of functional improvement 
as measured by ejection fraction was signi fi cantly increased by 5.5% with cell 
transplantation in the REPAIR-AMI study compared to 3.0% in placebo group at 
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4 months. In a sub-group analysis it was surmised that initial ejection fraction of 
less than 49% had a signi fi cant bene fi t to cellular transplantation when compared to 
patients with baseline ejection fraction of greater than 49%. The STEMI study 
demonstrated signi fi cant decrease in left ventricular infarct size as measured by 
MRI but was unable to demonstrate any signi fi cant increase in left ventricular 
function between the placebo control and cell transplantation groups. Moreover, 
transendocardial injection of autologous bone marrow mononuclear cells in patients 
with end-stage ischemic heart disease has also been demonstrated to produce a 
durable therapeutic effect and improve myocardial perfusion and exercise capacity 
(Perin et al.  2004  ) . 

 To date, over 3,000 patients with ischemic heart disease have received stem cell 
therapy in a clinical trial setting worldwide (Bartunek et al.  2007  ) . Meta-analysis 
collectively indicates the safety pro fi le of stem cell-based therapy, with modest 
improvements in functional parameters and apparent bene fi t in structural remodeling 
(Abdel-Latif et al.  2007  ) . Ongoing optimization of the most appropriate cell type, 
selection of patient populations amenable to cell-based therapy, timing of interven-
tion, and route of administration are the areas of focus to determine the clinical 
utility of cell-based therapy in cardiovascular disease.   

    20.5   Induced Pluripotent Stem Cells: A Platform    for Unlimited 
Cardiac Repair    

 Beyond natural sources of stem cells that are limited by availability, immune intol-
erance, and lineage speci fi cation, bioengineered stem cell platforms are rapidly 
being developed for regenerative medicine applications. Converted from parental 
somatic cell types, bioengineered stem cells have acquired the ability to give rise to 
all cell types of the adult body, previously only possible from embryonic stem cells. 
Furthermore, recent studies have demonstrated that chimeric tissue from bioengi-
neered stem cells is able to produce signi fi cant functional and structural repair in 
disease models. 

    20.5.1   Principles of Nuclear Reprogramming    

 Bioengineered stem cells offer the ability to provide unlimited supply of progenitor 
cells at any time point for virtually all cell types and tissues of the adult body start-
ing from ordinary self-derived tissues (Fig.  20.3 ). By exploiting epigenetics and the 
microenvironment of somatic nuclei, reprogramming platforms aim to reverse cell 
fate of common cell types that are readily available in order to achieve conversion 
of a mature cell type back to the embryonic ground state (Jaenisch and Young  2008  ) . 
Advancement of bioengineered platforms was realized through the pioneering work of 
somatic cell nuclear transfer technology that demonstrated the ef fi cacy of transacting 
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factors present within the mammalian oocytes, conserved across species, to reprogram 
somatic cell nuclei to an undifferentiated state (Yang et al.  2007 ; Beyhan et al. 
 2007  ) . Thus, therapeutic cloning refers to somatic cell nuclear transfer (SCNT)    in 
which the nuclear content of a somatic cell from an individual is transferred into an 
enucleated donor egg to derive blastocysts that contain pluripotent embryonic-like 
stem cells. In this way, SCNT has produced cloned embryonic stem cells from mul-
tiple mammalian somatic cell biopsies (Hall and Stojkovic  2006 ; Sha et al.  2009 ; 
Byrne et al.  2007  ) . The pluripotency of derived cells has been con fi rmed through 
germline transmission and reproductive cloning. However, due to technological 
limitations, cloned human blastocytes have only recently been achieved albeit in 
low ef fi ciency (French et al.  2008  ) , and successful isolation of embryonic stem cells 
from the inner cell mass has yet to be demonstrated with human protocols.  

  Fig. 20.3    Strategies for nuclear reprogramming of induced pluripotent stem cells. Ordinary 
somatic cell types can provide the parental source for nuclear reprogramming, including patient-
speci fi c tissue samples. Integrative strategies based on both retrovirus and lentivirus provided the 
initial successful model system to reprogram ordinary cells into iPS cells. The next-generation of 
this platform included the second step of removing the ectopic transgenes with either Cre recom-
binase or transposon-transposase systems, thus allowing a truly traceless approach. Alternatively, 
non-integrative strategies became feasible with both viral transduction of adenovirus and episomal 
vectors or plasmid-based constructs. These strategies delivered the same ectopic stemness-related 
factors without the risk of insertional mutagenesis, although at lower overall ef fi ciency of nuclear 
reprogramming. Furthermore, non-integrative strategies also include protein-based bioengineer-
ing to deliver the transient levels of stemness-related factors needed for successful nuclear 
reprogramming       
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 Nuclear reprogramming of adult somatic cells    through ectopic introduction of a 
small number of pluripotency-associated transcription factors is a streamline 
approach to induce an embryonic stem cell-like phenotype (Takahashi and Yamanaka 
 2006 ; Yamanaka  2008,   2009a,   c  ) . Transcription factors sets, Oct4, Sox2, c-Myc and 
Klf4 or alternatively Oct4, Sox2, Nanog and Lin28 (Yu et al.  2007  ) , are suf fi cient to 
reprogram human somatic cells by inducing a sequential reversal into a pluripotent 
phenotype (Fig.  20.3 ). The process of nuclear reprogramming requires controlled 
expression of speci fi c stemness factors in the proper stoichiometry for a de fi ned 
period of time (Meissner et al.  2007 ; Maherali et al.  2007 ; Takahashi et al.  2007b ; 
Yamanaka  2007 ; Park et al.  2008a,   b ; Papapetrou et al.  2009  ) . Multiple source tissue 
has been successfully reprogrammed such as  fi broblasts (Takahashi et al.  2007a  ) , 
keratinocytes (Aasen et al.  2008  ) , blood (Loh et al.  2009  ) , or adipose tissue (Sun 
et al.  2009  ) . The balanced exposure of ectopic factors is suf fi cient to induce telom-
ere elongation (Marion et al.  2009b  ) , histone modi fi cations (Deng et al.  2009  ) , sec-
ondary gene expression pro fi les (Mikkelsen et al.  2008  ) , and cellular metamorphosis 
that collectively re-establish a self-stabilizing phenotype of pluripotency (Silva 
et al.  2009  ) . Reprogramming occurs typically within weeks of coerced equilibrium 
of the trans-acting factors that can be delivered to the nucleus either by plasmids, 
viruses, or recombinant proteins (Fig.  20.3 ). Thereby, ectopic transgene expression 
initiates a sequence of stochastic events that eventually transforms a small fraction 
of cells (<0.5%) to acquire this imposed pluripotent state characterized by a stable 
epigenetic environment indistinguishable from the blastocyst–derived natural stem 
cell  milieu . The acquired pluripotent ground state    culminates in the maintenance of 
the unique developmental potential to differentiate into all germ layers. In this way, 
induced pluripotent stem cells (iPS) with the ability to derive patient speci fi c pro-
genitor cells should largely eliminate the concern of stem cell shortage, immune 
rejection of non-autologous sources, and inadequate capacity for lineage speci fi cation    
(Nishikawa et al.  2008 ; Nakagawa et al.  2008 ; Park et al.  2008c  ) . Moreover, iPS 
based technology will facilitate the production of cell line panels that closely re fl ect 
the genetic diversity of a population enabling the discovery, development and vali-
dation of diagnostics and therapeutics tailored for each individual (Waldman and 
Terzic  2008  ) .  

    20.5.2   Autologous Pluripotent Stem Cells    

 Bioengineered platforms bypass the need for embryo extraction to generate true 
pluripotent stem cell phenotypes from autologous sources. In the mouse, bioengi-
neering has yielded iPS clones    suf fi cient for complete  de novo  embryogenesis as 
the highest evidence of pluripotent stringency (Zhao et al.  2009 ; Boland et al.  2009  )  
and in humans, by giving rise to all three germ layers, has ensured comprehensive 
multi-lineage tissue differentiation. Self-derived iPS cells will be recognized within 
the transplanted hosts as native tissue due to their autologous status, but will also 
require new level of protection from dysregulated growth. The next generation of 
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bioengineered stem cells will likely include specialized properties to improve 
stress tolerance, streamline differentiation capacity, and increase engraftment/sur-
vival to improve regenerative potential. 

    20.5.2.1   First-Generation Technology    

 Retroviral and lentiviral approaches       offered the initial methodology that launched 
the  fi eld, and established the technological basis of nuclear reprogramming with 
rapid con fi rmation across integrating vector systems (Takahashi and Yamanaka 
 2006 ; Yu et al.  2007 ; Meissner et al.  2007 ; Aasen et al.  2008 ; Okita et al.  2007 ; Aoi 
et al.  2008 ; Huangfu et al.  2008 ; Eminli et al.  2008 ; Kim et al.  2008 ; Hanna et al. 
 2008 ; Feng et al.  2009  ) . The risk of oncogenic genes and insertional mutagenesis 
inherent to stable genomic integration has been recognized as potential limitations 
from the onset of this technology. However, distinct advantages of the retroviral-
based vector systems enabled critical insight to the mechanisms of reprogramming. 
Retroviral and lentiviral systems have built-in sequences that silence the process of 
transcription upon pluripotent induction, thus persistent exposure to ectopic gene 
expression was temporally restricted at the time of re-induction of pluripotency. 
This allows an essential observation to be made in that successful self-maintenance 
of the pluripotent state was possible without long-term transgene expression. 
Thereby, systems were envisioned for transient production of stemness-related 
genes without integration into the genome to improve the safety and ef fi cacy of 
nuclear reprogramming. The  fi rst proof-of-principle was achieved by non-integrat-
ing viral vector systems, such as adenovirus    (Stadtfeld et al.  2008  ) , and con fi rmed 
by repeated exposure to extra-chromosomal plasmid-based transgenes (Okita et al. 
 2008  ) . Importantly, these reports demonstrated that expression of stemness-related 
factors was required for only a limited timeframe until progeny developed autono-
mous self-renewal, establishing nuclear reprogramming as a bioengineered process 
that resets a sustainable pluripotent cell fate independent of permanent genomic 
modi fi cations. The inherent inef fi ciency of non-integrated technologies has how-
ever hindered broader applicability and stimulated the search for more ef fi cient 
methodology.  

    20.5.2.2   Second-Generation Technology    

 The latest innovation that advances iPS-based technology    towards clinical applica-
tions has most recently been reported in which non-viral approaches are capable of 
high-ef fi ciency production (Kaji et al.  2009 ; Woltjen et al.  2009  ) . These approaches 
are dependent on short sequences of mobile genetic elements that can be used to 
integrate transgenes into host cell genomes and provide a genetic tag to “cut and 
paste”  fl anked genomic DNA sequences (Nelson and Terzic  2009  ) . The piggyBac 
(PB   ) system couples enzymatic cleavage with sequence speci fi c recognition using 
a transposon/transposase interaction to ensure high ef fi ciency removal of  fl anked 
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DNA without residual footprint. Importantly, this technology achieves a traceless 
transgenic approach in which non-native genomic sequences that are transiently 
required for nuclear reprogramming can be removed upon induction of pluripo-
tency. Speci fi cally, using the PB transposition system with randomly integrated 
stemness-related transgenes, recent studies have demonstrated that disposal of ecto-
pic genes could be ef fi ciently regulated upon induction of self-maintaining pluripo-
tency according to expression of the transposase enzyme without infringement on 
genomic stability (Woltjen et al.  2009  ) . This state-of-the-art system is quali fi ed to 
allow safe integration and removal of ectopic transgenes, improving the ef fi ciency 
of iPS production and facilitating a minimally invasive methodology without per-
manent modi fi cations to the progeny. Alternatively, the security of unmodi fi ed 
genomic intervention can be achieved with non-integrating episomal vectors    (Yu 
et al.  2009  ) . Collectively, these recent strategies allow genetically unmodi fi ed pro-
genitor cells to acquire the capacity of pluripotency. 

 Alternatively, high-stringency    iPS cells have also been produced with proteins in 
the absence of genetic material (Zhou et al.  2009 ; Kim et al.  2009  ) . The protein-only 
approach has successfully induced reprogramming with either whole cell extract 
enriched in four stemness factors used in combination with pharmacological induc-
tion of cell permeability or with stemness factors modi fi ed by cell-permeating poly-
arginine tag    (Zhou et al.  2009  ) . Although the reprogramming ef fi ciency    compared 
to genetic methodology is reduced, there are emerging strategies that complement 
the in fl uence of stemness factors exposure within somatic cells. Namely, small mol-
ecules targeting histone modi fi cations have increased reprogramming ef fi ciencies 
(Shi et al.  2008  )  along with the latest discovery that tumor suppressor gene, p53, is 
responsible for inhibiting the reprogramming process (Banito et al.  2009 ; Hong 
et al.  2009 ; Utikal et al.  2009 ; Marion et al.  2009a ; Li et al.  2009 ; Kawamura et al. 
 2009  ) . Thereby, transient knockdown of p53 according to siRNA strategies target-
ing the breakdown of mRNA or overexpression of MDM-2 to increase p53 protein 
degradation has proven to successfully increase the overall ef fi ciency 1–2 orders of 
magnitude with up to 20% of selected cells undergoing  bona  fi de  reprogramming 
(Banito et al.  2009 ; Hong et al.  2009 ; Utikal et al.  2009 ; Marion et al.  2009a ; Li 
et al.  2009 ; Kawamura et al.  2009  ) . Together, the rapid advancements in nuclear 
reprogramming have accelerated bioengineered pluripotent stem cells closer to the 
milestones required for possible clinical translation.   

    20.5.3   Regeneration of Diseased Tissues    

 To date, therapeutic bene fi t of iPS-based technology has been tested in four disease 
models, namely sickle cell anemia    (Hanna et al.  2007  ) , Parkinson’s disease    (Wernig 
et al.  2008  ) , hemophilia A    (Xu et al.  2009  ) , and ischemic heart disease    (Nelson et al. 
 2009d  ) . As differentiation protocols are re fi ned to produce “on-demand” tissue-
speci fi c progeny, additional pre-clinical disease models will be screened to address 
the full regenerative value of iPS technology. 
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 In regards to cardiogenesis, embryonic stem cells have a spontaneous propensity 
for cardiac differentiation that ful fi lls an early requirement for heart formation dur-
ing embryonic development. Compared to the gold standard of embryonic stem 
cells, iPS have demonstrated a similar capacity for  in vitro  cardiac differentiation. 
Using methodology established for embryonic stem cell-derived cardiogenesis, 
iPS differentiating in embryoid bodies or aggregates of tissue starting with 400–
500 cells systematically produce mesoderm lineages and pre-cardiac cytotypes 
according to established gene expression pro fi les (Schenke-Layland et al.  2008  ) . 
Within appropriate time frames, mouse and human tissue give rise to early car-
diomyocytes with spontaneous beating activity (Fig.  20.4 ). This tissue expresses 

  Fig. 20.4    Induced pluripotent stem cell-based repair of heart disease. ( a ) Patients with heart failure 
develop progressive disease that results in weakened and dilated heart muscle, unable to function 
normally. ( b ) Direct intramyocardial delivery of stem cells leads to iPS engraftment within diseased 
heart. ( c ) Bioengineered chimerism according to iPS-based therapy has demonstrated functional 
bene fi t to the diseased heart muscle with direct evidence for stable engraftment and  in vivo  
cardiovascular regeneration of new tissue       
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contractile proteins, such as troponin and actinin. Furthermore, the cardiac-like 
tissue is regulated according to excitable inputs through gap junctions and calcium 
from extracellular and intracellular sources. As the cardiac tissue matures  in vitro , 
specialized heart muscle cells become evident with assembly of characteristic ion 
channel sets responsible for physiological regulation of cardiac contraction and 
electrical conductance within ventricular, atrial, and pacemaker cell types (Schenke-
Layland et al.  2008 ; Narazaki et al.  2008 ; Mauritz et al.  2008 ; Zhang et al.  2009 ; 
Yokoo et al.  2009  ) .  

 The therapeutic value    of iPS in cardiovascular medicine was recently docu-
mented in a model of acute myocardial infarction (Nelson et al.  2009d ). Post-
ischemic cardiac performance was compared in randomized cohorts transplanted 
with parental  fi broblasts versus bioengineered iPS (Nelson et al.  2009d  ) . As 
quanti fi ed by echocardiography, occlusion of anterior epicardial coronary blood 
 fl ow permanently impaired regional wall motion and cardiac function. Treatment 
with parental  fi broblasts was unable to improve performance of post-ischemic 
hearts (Fig.  20.4 ). Yet, iPS intervention    in the acute stages of myocardial infarction 
improved cardiac contractility by 4 weeks post-transplantation. Functional bene fi t 
in response to iPS therapy was veri fi ed by the improvement in fractional shorten-
ing and regional septal wall thickness during contraction that demonstrate coordi-
nated concentric contractions visualized by long-axis and short-axis 2-D imaging 
(Nelson et al.  2009d  ) . Beyond functional deterioration, maladaptive remodeling 
with detrimental structural changes prognosticates poor outcome following isch-
emic injury to the heart. In contrast to non-reparative  fi broblasts, iPS-based inter-
vention attenuated global left ventricular diastolic diameter predictive of 
decompensated heart disease. A consequence of pathologic structural remodeling 
is evident by prolongation of the QT interval, which increases risk of life-threaten-
ing arrhythmias (Nelson et al.  2009d  ) . Successful iPS treatment prevented struc-
tural remodeling to avoid deleterious effects on electrical conductivity. 

 These real-time surrogates for tissue remodeling have been con fi rmed by gross 
inspection of specimens. Autopsy allowed histological analysis to determine the 
extent of scar tissue formation within the post-ischemic region of the anterior circu-
lation distal to the coronary ligation (Nelson et al.  2009d  ) . In contrast to parental 
 fi broblasts, iPS treatment    halted structural deterioration with decreased  fi brotic 
scarring and induction of remuscularization with  de novo  heart muscle tissue along 
with evidence for angiogenesis according to vascular endothelial markers. Surgical 
dissection veri fi ed absence of tumor in fi ltration or dysregulated cell expansion 
following iPS transplantation in the myocardium itself, as well as in organs with 
high metastatic risk such as the liver, lung and spleen. Collectively, iPS-derived 
regeneration    of the ischemic heart has been demonstrated at multiple levels of strin-
gency that include cellular, tissue, structural, functional, and metabolic levels, provid-
ing a foundation for development of this novel platform towards clinical applicability 
(Nelson et al.  2009d  ) . 

 With ongoing understanding of principles of myocardial regeneration    (Srinivas 
et al.  2009  ) , clinical translation of iPS technology faces similar challenges that have 
in part been addressed by natural stem cell applications, including embryonic stem 



52120 Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming

cells approved early in 2009 by the Food and Drug Administration in the United 
States for trials involving patients with incurable spinal cord injuries. The  fi rst 
universal obstacle for clinical translation    of pluripotent stem cell technology is 
unregulated tumor formation (Li et al.  2008  ) . Even a limited contamination of undif-
ferentiated cells can, in theory, result in the formation of dysregulated tumors. 
Therefore, a critical milestone is to secure differentiation of iPS into the required 
cell type, purifying them away from residual undifferentiated precursors prior to 
transplantation (Yamanaka  2009a ; Li et al.  2008  ) . This becomes a unique challenge 
for iPS technology when the immune system is no longer involved in the elimination 
process of dysregulated foreign tissue, active with embryonic stem cell applications. 
The second issue that is unique to iPS is the accuracy of complete reprogramming 
of ordinary cells into pluripotent progeny. Inadequate conversion    according to 
nuclear reprogramming strategies could result in impaired differentiation of iPS 
cells into target tissues required for speci fi c applications (Yamanaka  2009a  ) . Third, 
the issue of persistent transgene expression in iPS progeny requires careful consid-
eration. Generally, iPS cells have been produced by transduction    of ordinary cells 
with retroviruses or lentiviruses carrying ectopic transgenes in order to ef fi ciently 
transfer stable expression into the host nucleus. This creates the risk of not only 
continuous expression of transgenes that are known to promote dysregulated tumor 
growth, but also involves permanent genomic modi fi cations that raise the concern 
for insertion mutagenesis of endogenous loci. 

 Cardiac tissue speci fi city from stem cells has been investigated for more than a 
decade and as of yet no single gene or cluster of genes has been identi fi ed to secure 
cardiac differentiation. However, recent studies have signi fi cantly enriched the 
cardiac propensity with either exogenous growth factors (Behfar et al.  2008  ) , cell 
sorting of cardiac progenitors (Nelson et al.  2008c ; Moretti et al.  2006 ; Kattman 
et al.  2006 ; Yang et al.  2008  ) , or genetically engineering pre-cardiac pathways    all to 
encourage cardiogenesis from primitive stem cell pools (Takeuchi and Bruneau 
 2009  ) . Collectively, these technologies offer the rational basis to design strategies to 
ensure cardiogenic speci fi cation and avoidance of undifferentiated subpopulations 
prior to transplantation. The crucial balance between lineage speci fi cation and pro-
genitor cell proliferation (Martinez-Fernandez et al.  2009  )  will be essential to 
develop a robust manufacturing process that can be scaled and applied to clinical 
grade production of a cardiac stem cell-based product. 

 In order to translate iPS technology into clinical reality for heart disease, addi-
tional milestones will need to be considered. First, the target patient population    will 
need to be identi fi ed based on disease-severity and lack of alternative options to jus-
tify inclusion into a  fi rst-in-man study. Many patients are too severely deconditioned 
or have signi fi cant co-morbidities to allow consideration for heart transplant, thus 
limiting treatment strategies to palliative medicines and procedures. This category 
of patients needs to be considered a priority in terms of experimental cell-based 
interventions. An advantage with autologous iPS technology is that no toxic immu-
nosuppression is required, yet provides a unique strategy to overcome poor natural 
stem cell pools in elderly patients, limiting more traditional regenerative approaches. 
Thus, iPS-based products    should be considered in patients with no other options to 
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decrease not only symptoms but also the need for hospitalization along with expen-
sive yet invasive palliative management strategies such as destination left ventricu-
lar assist devices. Next, a good-manufacturing-practice    production process and 
facility will need to be developed and implemented to ensure clinical-grade produc-
tion of patient-derived iPS cells, as well as tissue-speci fi c differentiation for tar-
geted applications. Finally, regulatory agencies will require evidence of proper 
engraftment, survival, and safety of transplanted iPS-derived progeny (Nelson et al. 
 2008b  ) . This will require proof-of-principle studies using clinical grade cell prod-
ucts in disease model systems encompassing comparative effectiveness for opti-
mized outcomes (Nelson et al.  2008b,   2009b  ) .   

    20.6   Clinical Perspective 

 Built on emerging discoveries in stem cell biology    (Nelson et al.  2008a  ) , regenera-
tive medicine has begun to de fi ne the scope of future clinical practice (Nelson et al. 
 2009b ; Waldman et al.  2007  ) . Regenerative medicine and stem cell biology cross all 
disciplines of medicine/surgery, and provide a universal paradigm of curative goals 
based on scienti fi c discovery and clinical translation. The challenges to realize the 
full potential of stem cell biology remain substantial, and thus requires integration 
of multidisciplinary teams with expertise to form a dedicated regenerative medicine 
community of practice (Nelson et al.  2009a  ) . Building on the foundation of trans-
plant medicine, regenerative medicine will continue to expand and implement tech-
nologies to treat new diseases at earlier stages with safer and more effective 
outcomes, not achievable with current standards of care. Individualized treatment 
algorithms    for regenerative medicine will require quanti fi cation of the inherent 
reparative potential to determine patients that would bene fi t from stem cell therapy 
in order to target personalized regenerative medicine solutions. 

 Induced nuclear reprogramming through ectopic transgene expression of stem-
ness factors offers a revolutionary strategy for embryo-independent derivation of 
autologous pluripotent stem cells from an ordinary adult source (Yamanaka  2009b  ) . 
In such, iPS have attained functions previously demonstrated only by natural embry-
onic stem cells    to independently produce all tissues types and develop the complete 
organism within an embryonic environment. To date with regard to cardiovascular 
applications, the reprogrammed iPS progeny have established the therapeutic value 
for cardiac tissue regeneration in a setting of experimental ischemic heart disease 
(Nelson et al.  2009d  ) . Speci fi cally, transplantation of iPS in the acutely ischemic 
myocardium yielded structural and functional repair to secure performance recovery 
as quali fi ed clones contributed to  in vivo  tissue reconstruction with “on-demand” 
cardiovasculogenesis. Moreover, Parkinson’s disease, sickle cell anemia, and hemo-
philia A are early examples of successful iPS applications in disease models    (Nelson 
et al.  2010  ) . Furthermore, patient-speci fi c iPS cells    have been generated from indi-
viduals with diabetes, amyotrophic lateral sclerosis, Fanconi anemia, and myelo-
proliferative disorders (Yamanaka  2007 ; Park et al.  2008a ; Maehr et al.  2009 ; Dimos 
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et al.  2008 ; Ye et al.  2009 ; Raya et al.  2009  ) . Therefore, converting self-derived 
 fi broblasts into reparative progenitors can now be considered as a goal of regenera-
tive medicine to individualize treatment algorithms for multi-lineage repair. In this 
way, clinical-grade, pluripotent, autologous stem cells offer a unique bioengineered 
tool to repair disease tissue through chimeric integration.      
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  Abstract   The ability of polymers to be degraded in physiological environments 
makes them interesting candidates for various medical applications. Degradation 
and metabolisation or excretion of polymeric implants can avoid a second surgery 
for the removal of an implant. Biodegradable materials can serve as a temporary 
substitute of the extracellular matrix or as matrix in controlled drug release systems, 
which both can be utilized in Regenerative Therapies. 

 This chapter gives an overview about polymeric materials established in clinical 
use such as polyesters, polyurethanes, polyanhydrides, or carbohydrates. It describes 
further their synthesis and exemplary applications such as surgical sutures. Finally 
the importance of a continuing development of novel materials for future applica-
tions is pointed out, since the number of potential applications in the medical  fi eld 
is expanding rapidly.     
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     21.1   Introduction 

 Many people experience biomaterials in the form of dental  fi llings, contact lenses 
or suture materials. Further applications are arti fi cial joints, blood vessel substitutes 
or drug delivery systems. A biomaterial is de fi ned as any material intended to inter-
act with biological systems to evaluate, treat, augment or replace any tissue, organ 
or function of the body (The European Society for Biomaterials  1991  ) . Biomaterials 
can be inorganic materials like bioactive glasses, ceramics or metal alloys as well as 
polymers including natural polymers (e.g. collagen), synthetic polymers and 
 combinations of both. Biomaterials can be applied in permanent or temporary 
implants, depending on the particular indication. While all biomaterials must be 
biocompatible their permanent application requires long term stability in physiolog-
ical environments. An example for long term application is the acetabular cup in 
arti fi cial hip joints. These materials need to be integrated into the surrounding tissue 
after implantation and retain their function for a long time. For temporary applica-
tions, biodegradable materials are demanded, being degraded and eliminated or 
metabolished by the organism in the course of time (Lendlein  1999  ) . Biodegradation 
is de fi ned as the gradual breakdown of a material mediated in or by a biological 
 system. The advantage of the bodies’ capability for self healing can be utilized by 
the use of degradable materials. A temporary implant is completely substituted 
by natural tissue in the best case. An overview about biodegradable polymers and 
natural materials, their synthesis and approved clinical applications will be given in 
this chapter. 

 Degradable biomaterials must include linkages, cleavable under physiological 
conditions. One possibility is the incorporation of hydrolytically degradable bonds 
(see Fig.  21.1 ).  

 Hydrolytic degradation has the advantage that water is generally available in the 
body. Therefore degradation should occur at different locations of application / 
implantation. In contrast, concentrations of enzymes can differ locally. As the deg-
radation rate of hydrolytically cleavable bonds can be increased by enzymes sub-
stantially, degradation rate can differ signi fi cantly in different body parts or 
individuals. Chemical bonds whose cleavage is accelerated by enzymes can be used 
for the generation of local effects, such as the speci fi c targeting of drugs or organ-
speci fi c processes. In general the advantage of devices made from degradable poly-
mers is that a second surgery for explantation can be avoided. 

  Fig. 21.1    Hydrolytically cleavable bonds in comparison to a carbon–carbon bond in order of their 
hydrolytic stability       
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 Two mechanisms for the hydrolytic biodegradation of polymers are discussed (i) 
bulk degradation and (ii) surface erosion. In case of bulk degradation the diffusion 
of water into a polymer matrix is faster than the hydrolysis rate. The hydrolytically 
cleavable bonds in the amorphous parts of the matrix can be degraded as water 
 molecules are available because of fast diffusion (Brannon-Peppas  1997  ) . Therefore, 
the average molecular weight of the matrix polymers decreases. In case of surface 
erosion the diffusion of water into the polymer is (much) slower than the  degradation 
rate of the macromolecule. Hydrolysis is limited to a thin layer on the surface, while 
the molecular weight of the polymer in the bulk remains unchanged. In surface ero-
sion the velocity of degradation depends on the shape of the sample. The higher the 
surface area is the higher is the rate of degradation. The number of hydrolytically 
cleavable bonds in a macromolecule affects the hydrolysis rate (see Fig.  21.1 ). 
Macromolecules containing orthoester or anhydride bonds as examples for easily 
hydrolysable bonds show a high tendency for surface erosion (Wu  1995  ) . Many 
other parameters related to the polymer, the device (shaped body) or the environmen-
tal conditions can in fl uence the degradation behavior of polymers (see Table  21.1 ).  

 The biodegradability of polymers can be determined  in vitro  and  in vivo . For 
 in vitro  experiments the materials are exposed to an aqueous (buffer) solution, which 
may contain ions or to cell culture medium, which may contain amino acids, sugar 
as well as serum. Temperature and pH value can be varied to mimic speci fi c situa-
tions and environments. The partially degraded materials as well as the degradation 
products can be isolated and characterized. The addition of speci fi c enzymes is also 
possible (Kulkarni et al.  2007  ) .  In vivo  experiments are performed with different 
species e.g. mice or rats to investigate the biodegradation and biocompatibility. 

 Standards exist for biocompatibility testing of materials used in the human body. 
The American Food and Drug Administration (FDA), the Health and Welfare 
Canada, and Health and Social Services UK introduced 1986 the “Tripartite 
Biocompatibility Guidance for Medical Devices”. The guidance was developed to 

   Table 21.1    Parameters in fl uencing the degradation rate of polymers   

 Structural parameters 
of macromolecules  Shaped body (device)  Environmental in fl uence 

 Chemical composition  Processing conditions  location of implantation 
 Sequence structure in copolymers  Shape of the sample  Adsorbed or absorbed 

molecules 
 Presence of ionic groups  Sterilization  Ion exchange, -strength, 

pH-value 
 Branches/ chain defects  Thermomechanical “history” 

of the polymer 
 Changes of diffusion 

coef fi cient 
 Average molecular weight and 

distribution 
 Material inhomogenities and 

internal stress 
 Mechanism of hydrolytic 

degradation (H 
2
 O, 

Enzymes) 
 Surface roughness  Cracks due to hydrolytic 

degradation or 
mechanical tension 
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help FDA reviewers, but also manufacturers of medical devices, in judging and 
selecting appropriate tests to evaluate the biological responses to medical devices. 
Four different device categories of biomaterials were de fi ned: Non-Contact Devices, 
External Devices, Externally Communicating Devices, Internal Devices. The bio-
logical test of the materials include: Sensitization Assay, Irritation Tests, Cytotoxicity 
Tests, Acute Systemic Toxicity Tests, Hemocompatibility Tests, Hemolysis Tests, 
Implantation Tests, Mutagenicity (Genotoxicity)Tests, Chronic Toxicity Tests, 
Carcinogenesis Bioassay, Pharmacokinetics, Reproductive and Developmental 
Toxicity Tests. To harmonize the biocompatibility testing, the International Standards 
Organization (ISO) developed a standard for biological evaluation of medical 
devices (ISO 10993). Until today, this standard consists of 20 parts and the  fi rst part 
“Biological Evaluation of Medical Devices: Part 1: Evaluation and Testing” pro-
vides guidance for selecting the tests to evaluate the biological response to medical 
devices. The appropriate methods to conduct the biological tests are described in 
most of the other parts. The ISO 10993 is under permanent actualization and covers 
aspects of biomaterial testing.  

    21.2   Polymer-Based Biomaterials 

 Biodegradable polymers can be divided in two main groups: materials based on natu-
ral polymers, and purely synthetic polymers, designed to meet different demands. 

 Important groups of degradable polymers used in medical applications are: 
Polyesters, Polyesteramides, Poly(ortho ester)s, Polyurethanes, Polyanhydrides, 
Cyanoacrylates, Hydrogels (e.g. based on poly(ethylene glycol)). 

 Carbohydrates and proteins form the basis for many biomaterials based on natu-
ral polymers. Synthesis or isolation and exemplary applications of such materials 
are presented in the following. 

    21.2.1   Polyesters 

 An important group of biodegradable biomaterials are (co)-polyesters used in surgi-
cal sutures. The degradation of ester bonds occurs under hydrolysis of the bond, 
forming a carboxylic acid and an alcohol. The rate of hydrolysis depends on the 
neighboring groups to the ester. Polyester are typically prepared by ring-opening 
polymerization of lactones or cyclic diesters (Deasy et al.  1989 ; Piskin  1995 ; Vert 
 1986  ) . A ring-opening polymerization proceeds in an anionic, cationic or coordina-
tion polymerization mechanism in the presence of catalysts and is started by initia-
tors. Monomers like the cyclic diesters digylolide  1,  and dilactide  2 , as well as the 
lactones   e  -caprolactone  3,  and   b  -butyrolactone  4  are frequently used. Further cyclic 
compounds, which can be polymerized in an analogue way, are cyclic carbonates 
(e.g. trimetylene carbonate, TMC  6 ) dioxanone-compounds (e.g.  p -dioxanone  7 ), 



53321 Biodegradable Materials

and compounds based on morpholino-2,5-dione  5  (see Fig.  21.2 ). As lactide pro-
vides two stereo centres three different isomers exist:  L,L -dilactide,  D,D -dilactide 
and  meso -dilactide.  

 Cyclic diesters are generated from the corresponding hydroxyl carboxylic acids 
(Scheme  21.1 ). Oligoesters are formed by elimination of water in the presence of 
catalysts (e.g. Sb 

2
 O 

3
 ). However, high molecular weight products can not be obtained 

by this process as the required high conversion rates were not reached.  
 The ring-opening polymerization of cyclic diesters can be performed as 

anionic polymerization or as coordination polymerization (Scheme  21.2 ). Sn (II) 
compounds like dibutyl-Sn-dilaurate are used as coordinative catalysts for the 
bulk polymerization (Leenslag and Pennings  1987  ) . It has to be considered that 
such compounds catalyze transesteri fi cation reactions as well. Therefore, side 
reactions like inter- and intramolecular transesteri fi cation as well as depolymer-
ization may occur. Heating of a mixture of two polyesters at 140°C will change 
the sequence structure of both polymers (Kricheldorf and Serra  1985 ; 
Nieuwenhuis  1992  ) . As alternative catalysts Zn (II) ethylhexanoate (Leenslag 
et al.  1984  ) , and Zn-powder (Chabot et al.  1983  )  have been studied. The applica-
tion of these catalysts lead to polyesters of high molecular weight. Catalysts 
based on Magnesium and other metals are under development with the aim to 
decrease toxicity of the catalyst or facilitate its removal from the reaction mix-
ture (Kricheldorf and Stricker  2000  ) .  

 In addition to bulk polymerization polymerization processes in solution and in 
suspension are possible. The lower viscosity of the reaction mixture compared to a 
bulk process enables a better heat transfer and by that a better control of the reaction 
temperature. 

  Fig. 21.2    Chemical structures of cyclic diesters and lactones used as (co)-monomers in the syn-
thesis of degradable (co)-poly(ether)esters.  1 : diglycolide,  2 : dilactide,  3 :   e  -caprolactone,  4 :   b  -
butyrolactone,  5 : morpholino-2,5-dione,  6 : trimetylene carbonate,  7 : p-dioxanone       
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 Homopolymers like poly(glycolic acid) (PGA), or poly( L -lactic acid) (PLLA), 
as well as copolymers of them with different comonomer ratios such as poly[( rac -
lactid)- co -glycolide] (PLGA) were prepared by ring-opening polymerization. PGA 
and PLLA are semicrystalline polymers, whereas poly( D,L -lactic acid) (PDLLA) is 
amorphous. PLGA has a glass transition temperature ( T  

g
 ) close to body temperature 

( T  
g
  = 36°C), whereas PLLA and PDLLA have  T  

g
  values between 57 and 60°C and 

50–54°C respectively (Vert  1989  ) . PLLA has been studied as degradable biomate-
rial extensively (Tsuji et al.  2003 ; Ye et al.  2008  ) . 

 Poly(  e  -caprolactone) (PCL), prepared from   e  -caprolactone  3 , is a semi- crystalline 
degradable polymer with suf fi cient mechanical strength and thermal stability 
for application as scaffold material or matrix material for drug delivery. The 
melting point of PCL is in the range of 59–64°C and its  T  

g
  is around −60°C. 

  Scheme 21.1    Synthesis of cyclic diesters by depolymerization of oligoesters at elevated 
temperatures       

  Scheme 21.2    Mechanism of anionic polymerization of   e  -caprolactone       
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The  homopolymer is slowly degradable, due to high hydrophobicity and relatively 
low hydrolysis rate (Little et al.  2009  ) . 

 Poly( p -dioxanone) (PPDO), synthesized from  p -dioxanone  7  (Fig.  21.2 ), is a 
semi-crystalline degradable polymer with a melting point of 115°C and a  T  

g
  in the 

range between −10 and 0°C. Above its melting point this polymer depolymerizes to 
 p -dioxanone  7  (Shalaby and Johnson  1994  ) . 

 Several medical devices based on (co)-polyesters are applied in the clinic. The 
main products made out of polyester are sutures, orthopaedic implants and scaffolds 
(Nair and Laurencin  2007 ; Weigel et al.  2006  ) . The FDA approved a suture called 
DEXON®, based on polyglycolide (Table  21.2 ) in 1969. Glycolide was further (co)-
polymerized with TMC (PGATMC) and is on the market as a suture material 
(Maxon®).  

 (Co)-polyesters degrade mainly by bulk erosion. Due to water uptake random 
scission of polymer chains occurs in the amorphous domains. Oligomers and 
hydroxy acids are obtained as water soluble degradation products. The generated 
carboxy groups induce a autocatalytic process. 

 Despite the good results of the resorbable suture materials, concerns exist regard-
ing the use of (co)-polyesters in ligament reconstruction surgery. A review article 
published in 2009 by Konan and Haddad summarized adverse reactions due to the 
use of resorbable screws in anterior cruciate ligament reconstruction surgery (Konan 
and Haddad  2009  ) . They concluded that the resorbable materials offer advantages 
compared to metal screws, but also possible disadvantages, such as potential adverse 
biological responses resulting in the worst scenario, in a failure of the surgery. 
Further long term studies and the improvement of the material are necessary. 

 If polyesters are used as matrix material for drug delivery, the bulk erosion must 
also be considered (Li and Jastri  2006  ) . The water uptake into the bulk material and 
the acidi fi cation might potentially interact with the drug. Several drug releasing 
implants have been developed (Table  21.2 ). 

 An injectable local drug delivery system was developed based on  in situ  form-
ing implants. For this method a biodegradable, water insoluble polymer and the 
drug are solved in a non-toxic organic solvent. After injection the solvent dissi-
pates into the tissue and water permeates into the polymer solution resulting in a 
precipitation and consequently the polymer forms an implant with the enclosed 
drug (Li and Jastri  2006  ) . This principle was used for Atrigel and two products are 
already FDA approved: Eligard® (leuprolide acetate for injectable suspension) as a 
prostate  cancer product that provide systemic release of leuprolide acetate for 1–4 
month, and the Atridox® (8.5% doxycyline) for localized subgingival delivery of 
doxycycline. 

 Comparative clinical data about the performance of degradable materials versus 
materials not intended to degrade are rare. Dorri et al. performed a database search 
to analyze studies comparing the use of degradable versus titanium plates for facial 
surgery. They received 53 potentially eligible studies. However, none of the studies 
met the inclusion criteria. Based on these  fi ndings they concluded that the use of the 
plates should be based on the clinical experience and individual circumstances and 
those methodological sound trials are necessary (Dorri et al.  2009  ) . 
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 Very successful are degradable synthetic suture materials, which are in clinical 
use since 1969 with a huge market exceeding 1.3 billion dollar annually (Pillai and 
Sharma  2010  ) . In general, degradable suture materials should be easy to handle, 
evoke only minimal tissue reaction, must not support bacterial growth, degrade after 
serving its function, and have an appropriate mechanical strength also during the 
degradation time period to support wound healing. A challenge in the development 
of suture materials is tailoring of the degradation time period and the change of the 
mechanical strength as well as suture elasticity during degradation, which needs to 
be adjusted to the clinical needs. Recently, developments of suture materials 
are focusing on self-knotting actions by usage of shape memory polymers, SMP 
   (Lendlein and Langer  2002 ) and integration of bioactive compounds into the suture 
material, which have e.g. an antimicrobial activity (Vicryl ® Plus, approved material) 
or inhibit matrix degradation (Pasternak et al.  2008  ) .  

    21.2.2   Poly(ester amide)s 

 Poly(ester amides) (PEAs) can be prepared by different synthetic routes, which 
yield polymers with segmented, statistical distribution of chain segments. A random 
copolymer can be derived from 1,4-butanediol, adipic acid and   e  -caprolactame 
(Grigat et al.  1998  ) . The mechanical properties of segmented PEAs (and also of 
polyurethanes) are interesting because of the microphase separation of their hard 
and soft segments. In PEA soft domains were formed by the ester-rich domains, and 
hard domains are formed by the amide-rich domains acting as physical crosslinkers 
determining the shape of a sample body. A segmented PEA could be synthesized by 
reaction of an alternating ester-amide oligomer, obtained from the reaction of adipic 
acid with a bisamide diol derived from 1,6-diaminohexane ( 16  with Y 2  = C6) and 
  g  -butyrolactone  15 , with an oligoester prepared from 1,2-ethanediol and dimethyl 
adipate (Bera and Jedlinski  1993 , Scheme  21.3 ).  

 There are four types of biodegradable PEAs: (a) Polydepsipeptides, which com-
bine properties of poly(  a  -hydroxy acids) and poly(  a  -amino acids). These polymers 
can be prepared by ring-opening polymerization of morpholine-2,5-diones (see  5  in 
Fig.  21.2 ) (Feng and Guo  2009  ) . (b) Derivatives of  a -hydroxy acids obtained by 
reaction of an acid dichloride with a bisamide diol prepared from glycolic acid and 
diaminoalkanes. The polymers showed promising results in mechanical properties, 
degradability, and biocompatibility (Horton et al.  1988  ) ; (c) Derivatives from   a  -amino 
acids: Poly(ester amides) containing  a -amino acid units have been developed 
and extensively studied (Guo and Chu  2007  ) . These polymers can be obtained by 
polymerization of an acid dichloride and the p-toluenesulfonic salt of a bis (  a  -amino 
acid)   a  ,  w  -alkylene diester (Paredes et al.  1998  ) . This polymer type has the disad-
vantage of relatively high production costs, insolubility in common organic sol-
vents, and thermal instability (Vera et al.  2006  ) ; (d) Polymers made from carbohydrate 
derivatives: carbohydrates like arabinose, xylose and tartaric acid have been used 
for the formation of polymers by reaction with amins and esters and their  degradation 
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properties were investigated (Martinez et al.  1997  ) . The degradation is strongly 
in fl uenced by the chain microstructure of the resulting polymer. The ester moieties 
degrade faster than the amide moieties, so that the degradation rate can be adjusted 
by the amount of ester moieties in the copolymer.  

    21.2.3   Poly(ortho ester)s 

 Poly(ortho ester)s (POEs) were developed for drug delivery applications. Four types 
of POEs have been developed, which are shown in Fig.  21.3 .  

 POE II is prepared by reaction of diketene acetal  20  (DETOSU) with an appro-
priate diol  21  (see Scheme  21.4 ) (Heller et al.  1992  ) . DETOSU was synthesized 
from the corresponding diallyl pentaerytritol (Crivello et al.  1996  ) .  

 This type of poly(ortho ester) was investigated as a drug delivery system for 
Ivermectin containing strands to prevent heartworm infestation in dogs using a 
cross-linked matrix containing a trivalent alcohol as cross-linker (Shih et al.  1993  ) . 
The degradation behavior was not suf fi ciently predictable. 

  Scheme 21.3    Synthesis of a PEA       
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 POE IV is prepared by the reaction of DETOSU, a mixture of diols and an acid 
diol as shown in Scheme  21.5  (Ng et al.  1997  ) . Here, concentration of the 
  a  -hydroxy acid segments in the polymer chains controls the degradation rate 
(Y = alkyl).  

 The mechanical properties of the polymers (POE II and IV) can be in fl uenced by 
using rigid diols such as  trans -cyclohexandimethanol and  fl exible diols like 1,6 
hexanediol (Y ¢  = C6). The  T  

g
  is determined by the ratio of such diols in the polymer 

(Heller et al.  1983,   1995  ) . For drug delivery systems the drug has to be uniformly 
distributed over the polymer matrix. POE IV can be processed by melt extrusion at 
100°C without signi fi cant change in molecular weight. POE II and IV are soluble in 
solvents like methylene chloride, ethyl acetate, or THF, enabling formation of 
microspheres by conventional procedures. 

 Poly(ortho ester)s are stable when stored under water-free conditions at room 
temperature and can be sterilized (Heller et al.  2002  ) . 

 The hydrolysis of the POE IV proceeds in three consecutive steps (see 
Scheme  21.6 ).  

 The weight loss during degradation is linear for POE Type IV. First the ester 
bonds were cleaved in the polylactide moiety of the polymer (leads to  25 ,  26 ) and as 
a second step the orthoester moiety degraded. This resulted  fi nally in the release of 
lactic acid  28 , propionic acid  31 , pentaerytritol  32  and decandiol  29 . The process is 
predominantly con fi ned to the surface layers of the polymer matrix (surface erosion). 
Only a small amount of bulk erosion occurs, which is in contrast to the poly(lactide-
 co -glycolide) copolymers or poly(lactic acids) (Vaccaro et al.  2002  ) . 

  Fig. 21.3    Chemical structures of the four types of poly(ortho ester)s       

  Scheme 21.4    Synthesis of POE Type II       
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  Scheme 21.5    Synthesis of POE Type IV       

  Scheme 21.6    Degradation mechanism of POE type IV in the presence of water       
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 Hydrolytically labile poly(ortho ester amide) (POEA) copolymers were  developed 
to overcome the drawbacks of the traditional methods of POE synthesis by solution 
polycondensation between an acid labile diamine with a build-in ortho ester bond 
and fatty diacid esters of different chain-length (Tang et al.  2009  ) .  

    21.2.4   Polyurethanes 

 Polyurethanes (PURs) are used for industrial applications since the 1940s, but 
development of biocompatible polymers based on urethanes started in the 1960s. 
These polymers are often used for long-term applications because of their bene fi cial 
characteristics like toughness, durability and biostability. Also polyurethanes with a 
controlled degradation rate have been developed due to a high demand on degrad-
able biomaterials (Lendlein et al.  1998  ) . 

 PURs are basically synthesized using a diisocyanate, a diol and a chain-extender 
as main components (Syzcher  1999  ) . In these cases aromatic diisocyanates were 
substituted by an aliphatic compound such as 1,6-hexamethylene diisocyanate 
(HDI), 1,4-butylene diisocyanate (BDI), lysine methylester diisocyanate (LDI), or 
trimethyl hexamethylene diisocyanate (TMDI) (Cardy  1979 , Scheme  21.7 ).  

 The diol in degradable PURs is commonly an oligomer with hydroxyl end 
groups, so called macrodiol, with a backbone corresponding to polyester or polycar-
bonate. Polyester urethanes are the most common degradable polymers of this type. 
The macrodiols can be prepared by ring-opening polymerization of a cyclic lactone 
(see Sect.  21.2.1 ). The reaction between the diol and the isocyanate is carried out 
with an excess of diisocyanate to obtain a reactive prepolymer with isocyanate end 
groups. To obtain a thermoplastic PUR with a segmented architecture the prepoly-
mer is further reacted with a chain extender, which is a short chain diol. 

 PURs are multi-block copolymers, which show microphase separation. This 
phase separation comparable to PEAs allows another functionality beside degrad-
ability in the materials: these polymers show shape-memory properties. Using poly 
(  e     -caprolactone)diol and poly( p -dioxanone) together with TMDI a degradable SMP 
can be generated (Lendlein and Kelch  2002 ; Lendlein and Langer  2002 ; Spaans 
et al.  1998  ) . SMP are materials, which can be deformed and  fi xed in a temporary 
shape, from which they recover their original shape only when exposed to an appro-
priate stimulus (Behl and Lendlein  2007  ) . They show at least two separated phases. 
The phase with the highest thermal transition acts as a physical cross-link and is 
responsible for the so called permanent shape of the polymer. A second phase serves 
as a molecular switch and enables the  fi xation of a temporary shape. The transition 
temperature  T  

trans
  for the  fi xation of the switching segments can either be a  T  

g
  or a 

 T  
m
 . After forming the material above the switching temperature, the temporary 

shape can be  fi xed by cooling the polymer below the switching temperature. Heating 
the material above  T  

trans
  cleaves again the physical crosslinks in the switching phase. 

As a result of its entropy elasticity the material is forced back to its permanent 
shape. Potential applications are intelligent degradable sutures and degradable 
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shape-memory-stents. Degradation is controlled by the amount of degradable bonds 
(e.g. ester bonds) in the used macrodiols for synthesis. 

 Degradable PURs are of interest in the design of scaffolds for in vivo tissue engi-
neering as well as for cardiovascular applications. Elastic materials are required for 
soft tissue engineering due to mechanical conditions during the development of the 
new tissue. For cardiovascular tissue engineering the material should have suf fi cient 
elasticity and high tensile strength.  

    21.2.5   Polyanhydrides 

 A group of polymers showing surface erosion are the polyanhydrides (Bucher and 
Slade  1909 ; Hill and Carothers  1932 ; Domb et al.  1994 ; Laurencin et al.  1995  ) . 
Since beginning of the 1980s polyanhydrides are developed for biomedical applica-
tions. The easily cleavable anhydride bond is introduced into a hydrophobic poly-
mer, such as aliphatic long chain diacids (such as  34 ). For variation of the mechanical 
properties by adjusting the crystallinity, sebacinic acid is often used as a 
comonomer. 

 Aliphatic diacids can be polycondensated to polyanhydrides by reaction with 
acetic acid anhydride  35  (Scheme  21.8 ). The reaction proceeds in two steps. First 

  Scheme 21.7    Synthesis of a polyurethane using a macrodiol, a diisocyanate and a short chain diol 
as a chain extender       
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oligomeric polyanhydrides with terminal acetate groups are received ( 36 ), further 
reaction to high molecular product occurs at elevated temperatures under vacuum. 
When glutaric acid (Y = C10) and succinic acid instead of sebacic acid are used 
under the same conditions, they form cyclic compounds. The reaction between 
dicarboxylic acids and dicarboxylic diacidchlorides results in low molecular weight 
products. To gain higher molecular weight products phosgene ( 38 ) is used as con-
densation agent. Et 

3
 N is used as a proton acceptor and precipitates the evolving 

hydrochloride.  
 While polysebacinic acid is semi-crystalline ( T  

m
  = 82°C) the homopolymer of the 

oleic acid dimer  40  is liquid. Copolymers of them are partly crystalline with  T  
m
  

between 30 and 78°C having average molecular weights between 24.000 and 
280.000 g mol −1 . Sebacinic acid  41  can be condensed with benzoic acid derivative 
 42  to form the drug delivery matrix Septacin ®  for curing chronic bone infections 
(Fig.  21.4 , see applications).  

 It is assumed that polyanhydrides degrade by surface erosion mainly driven 
by two processes: (a) the easily hydrolysable anhydride bonds at the surface, and 
(b) the restriction of water permeability into the bulk due to hydrophobicity (Jain 
et al.  2005  ) . These two processes allow a control of the release and a protection 
of the drug within the bulk material until release. In addition, the release of the 
drug is timely correlated to the material degradation. The duration of the poly-
mer degradation can be controlled by varying the type of monomer and the 
comonomer ratio. Various polyanhydrides have been used experimentally as 
drug delivery systems (Table  21.3 ). As a localized drug delivery system for che-
motherapeutic agents GLIADEL ®  is used in brain cancer treatment. The  fi rst 
approval in 1996 was for its limited use as an additive therapy in patient with 

  Scheme 21.8    Synthetic routes for the synthesis of polyanhydrides       

 



  Fig. 21.4    Different diacids used as monomers in the preparation of polyanhydrides       

   Table 21.3    Experimentally used polyanhydrides for drug delivery (taken from Jain et al.  (  2005  ) )   

 Delivery System  Polyanhydride  Drug  Disease 

 Matrix  Ricinoleic acid 
based 

 Methotrexate  Cancer 

 P(RA- SA)  Cisplatinum  Cancer 
 P(FAD-SA)  Cisplatin, 5-FU, methotrex-

ate, paclitaxel 
 Cancer 

 P(FAD-SA)  Bupivacaine HCL  Local anesthesia 
 P(OA/LAD-SA)  Gentamicin  Osteomyelits 
 P(DDDA-TA)  Cipro fl oxacine hydrochloride  Local infection 

 Implant  P(CPP-SA)  BrdU & N-(phosphonacetyl)-
l-aspartic acid; 
5- fl uorouracil or 
Camptothecin 

 Cancer 

 P(CPP-SA)  Dibucaine, bupivacaine  Local anaesthesia 
 P(CPP-SA)  Etoposide  Glaucoma 
 P(FAD-SA)  Taxol  Cancer 
 P(EAD-SA)  Heparin  Restenosis 

 Injectable paste  P(RA-SA)  Paclitaxel  Cancer 
 Microspheres  Poly(anhydride-

esters) 
 Aminosalicylates  In fl ammatory bowel 

disease 
 PLA-PSA-PLA  Triamcinolone  In fl ammation 
 P(FAD-SA)  GnRHa  Hormone therapy 
 SA copolymers  Bethanechol  Alzheimer disease 

   P(BA-PA)  Poly(brassylic acidpentadecandioic acid),  P(CPP-SA)  Poly[1,3-bis( p -carboxyphenoxy)
propane- co -sebacic anhydride],  P(DDDA-TA)  Poly(dodecane dioic acid- co -tetradecanedioic acid), 
 P(EAD-SA)  Poly(erucic acid- co -dimersebacic acid),  P(FAD-SA)  Poly(fatty acid dimer- co -sebacic 
acid),  PLA-PSA-PLA  Poly(lactic acid)-poly(sebacic acid)-poly(lactic acid),  P(OA/LAD-SA)  
Poly(oleic acid/linoleic acid dimer- co -sebacic acid),  P(RA-SA)  Poly(ricinoleic acid- co -sebacic 
acid),  SA  Sebacic acid  
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recurrent Glioblastoma multiforme (GBM) for whom surgical resection is 
 indicated. In 2003, the approval was expanded for use of Gliadel ®  in patients 
with newly diagnosed high-grade malignant gliomas, as an adjunct to surgery 
and radiation. SEPTACIN ®  is a Gentamicin delivering product for osteomyelitis 
treatment (Li et al.  2002  ) .   

    21.2.6   Polycyanoacrylates 

 Cyanoacrylate is a generic name for fast acting glues based on various cyanoacry-
lates such as methyl-2-cyanoacrylate, ethyl-2-cyanoacrylate, n-butyl-2-cyanoacry-
late, and octyl-2-cyanoacrylate (see  44 , Fig.  21.5 ). These polymers are suitable for 
bonding tissue, and have been exploited for the bene fi t of suture-less surgery 
(Scheme  21.9 ).   

 Cyanoacrylates rapidly polymerize in the presence of traces of water (speci fi cally 
hydroxyl ions), forming polymers with chain length suf fi cient for the demanded 
physical properties. Such polymers are able to join surfaces of different roughness. 

  N -butyl, isobutyl, and octyl ester derivatives of the cyanoacrylates were used 
in medical and veterinary applications. They are considered bacteriostatic. Polymers 
made from  n -butyl monomers are rigid; octyl ester containing polymers  provide 
more  fl exible materials. The polymer generated from octyl-2-cyanoacrylate 
degrades more slowly compared to formulations from shorter alkyl ester chains. 
Degradation products remain below the threshold of tissue toxicity, if the polymers 
degrade slowly. The degradation of the cyanoacrylates happens via an unzipping 
mechanism of the polymer, which proceeds by a retro-Knoevenagel reaction after 
elimination of the hydroxyl group. The ester bonds in the structure can be cleaved 
by acetic or basic pH (Han et al.  2008  ) . 

 Cyanoacrylates based products are: Dermabond ® , LiquiBand ® , SurgiSeal™, 
or Nexaband ®  (all 2-octyl cyanoacrylate) and Indermil ®  and Histoacryl® (both 
are  n -butyl-cyanoacrylates). All products are approved for topical use only. 
They serve as adjuncts to closure of skin incisions and Dermabond ®  and 
Indermil ®  are also applied as barrier to bacterial skin penetration (Spotnitz and 
Burks  2008  ) .  

  Fig. 21.5    Chemical structure 
of cyanoacrylates       
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    21.2.7   Polyphosphazenes 

 Polyphosphazenes are a class of biocompatible polymers (Andrianov  2009  ) , which 
are prepared by reaction of phosphorus pentachloride with ammonium chloride in 
tetrachloroethane forming Hexachlorocyclotriphosphazene  45  in a  fi rst step. After 
heating to 210–250°C the chlorine substituted polymer  46  forms by thermal ring-
opening polymerization (Allen  1981  ) . In a second step the polymer is functional-
ized by nucleophilic attack on the phosphor (see Scheme  21.10 ) in solutions with 
benzene, toluene or tetrahydrofurane. A high variety of functional groups can be 
introduced such as amines, amino acids, poly(ethylene glycol)s or aliphatic and 
aromatic chains. The hydrophilic substituted polymers are able to degrade to phos-
phate, ammonia and an organic residue depending on the functionalization of the 
backbone. Phosphate and ammonia create a pH buffer system during degradation. 
Aromatic or aliphatic substitution leads to durable polymers.  

 The properties of the polymers depend on the nature of the side groups. With side 
groups derived from tri fl uoroethanol (−O-CH 

2
 -CF 

3
 ) the polymers show high 

 fl exibility and a low  T  
g
 . In this respect the polymers resemble the commercial 

signi fi cant siloxanes. 
 Polyphosphazenes are explored as degradable scaffolds for bone regeneration in 

tissue engineering (Lakshmi et al.  2003  ) . Here the polymers are functionalized with 
amino acid ethyl esters and can be electrospun to generate a non-woven scaffold. 
The degradation products are aside of phosphate and ammonia the amino acid ethyl 
esters. Introduction of carboxylic groups enable ionic crosslinking with calcium 
ions. Also an interconnected 3D porous scaffold for TE applications was generated 
by blending polyphosphazene with a hydrophilic glycylglycine dipeptide and a 

  Scheme 21.9    Polymerization mechanism of cyanoacrylates in the presence of water       
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hydrophobic 4-phenylphenoxy substituent in the backbone together with PLGA. 
The polyphosphazene self-assembles to microspheres of 10–100  m m (Deng et al. 
 2010  ) . Furthermore further bioerodable blends of the polyphosphazenes with e.g. 
PLGA have been developed (Krogman et al.  2006  ) . 

 The same type of polyphosphazene can be used as a drug delivery device in the 
form of nano- or microparticles (Sethuraman et al.  2011  ) . They show a long blood 
circulating life time and are PEG coated.  

    21.2.8   Hydrogels 

 Hydrogels are three dimensional networks from hydrophilic polymer chains, which 
are able to take up high amounts of water under retention of their shape. The net-
works can be based on physical or covalent cross-links. Potential applications 
include matrices for cell culturing or drug delivery systems (Hoffman  2002 ; Peppas 
 1987  ) . Hydrogels suitable for long term application are approved as soft contact 
lenses, made from 2-hydroxyethylmethacrylate and a cross-linker of PEG with 
reactive end groups. Hydrogels can be designed to be stimuli-sensitive by introduc-
tion of speci fi c functional groups or segments (Qiu and Park  2001  ) . 

 Degradability can be established by introduction of degradable blocks like PLA 
in the main chain of the hydrogel. 

 Examples for approved products are CoSeal TM  (for vascular sealing) and DuraSeal TM , 
(for dural sealing). Both of these sealants are synthetic and form hydrogels that seal 
tissues. CoSeal TM  is indicated as an adjunct to blood vessel hemostasis by mechanically 

  Scheme 21.10    Synthesis and chemical functionalization of polyphosphazenes       
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sealing areas of leakage. DuraSeal TM  consists of two solutions. The  fi rst is a PEG ester 
and the second contains trilisine amine with a blue dye for visualization. Following 
normal dura suturing the use of DuraSeal TM  allows a true watertight closure.   

    21.3   Biomaterials Based on Natural Products 

 Carbohydrates are isolated from different natural sources. Hyaluronic acid, a non-
sulfated glycosaminoglycan and one of the main components of the extracellular 
matrix, was isolated e.g. from cock’s combs (Boas  1949  ) , or isolated by gel  fi ltration 
on agarose together with the protein complex (Barker and Young  1966  )  and is now-
adays isolated from various sources. The repeating unit is a disaccharide composed 
of D-glucuronic acid and D- N -acetylglucosamine, linked together via alternating 
  b  -1,4 and   b  -1,3 glycosidic bonds (4GlcUA b 1-3GlcNAc b 1) (see Fig.  21.6 ). 
Hyaluronic acid is degraded enzymatically by hyaluronidases. In humans, there are 
at least seven types of hyaluronidase-like enzymes.  

 In the human body the polysaccharide hyaluronic acid (HA) is found in almost 
every tissue and half of the total HA content in the body is present in the skin. The 
main clinical application is the use of esteri fi ed HA as a wound dressing (HYAFF ® ) 
(Nair and Laurencin  2007 ). In orthopaedic surgery, hyaluronic acid scaffolds are 
used experimentally and in clinical trials as carrier for stimulating factors and cells 
(HYAFF ® 11, HYALOGRAFT C ® ). Viscous HA is used as a synovial substitute in 
osteoarthritis patient for pain relief and to improve joint mobility (SYNVISC ®  
ORTHOVISC ® ). 

 Chitin and Chitosan are carbohydrates, which are FDA approved as food addi-
tives. Two other products are approved as medical device: CHITOSKIN ®  is a wound 
dressing and CHITOSTYPE ®  is used to reduce bleeding. 

 Polysaccharide spheres are the basis of the absorbable hemostat Vitasure ® . 
Natural hemostasis is enhanced by the spheres that act as hydrophilic molecular 
sieves concentrating blood solids (platelets, red blood cells, and blood proteins) on 
the particle surfaces to form a gelled matrix. This gel matrix reduces further blood 
loss and is formed regardless of the patient’s coagulation status. 

 Alginic acid is a polysaccharide of brown algae. As an alternative bone grafting 
material, ALGISORB™ is available. After cleaning and manufacturing the algae is 
transformed into calcium phosphate a major inorganic component of bone. 

n
  Fig. 21.6    Chemical structure 
of hyaluronic acid       
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    21.3.1   Other Natural Materials 

 Natural materials have been used for centuries and have a broad range of applica-
tions in human medicine. In addition to autologous (patient’s own) material, allo-
genic (human donor) and xenogenic (animal donor) transplant material, including 
various collagen products are currently used (Table  21.4 ). Furthermore non-animal 
materials, for example from algae, are also approved for human application (see 
carbohydrates).   

    21.3.2   Examples for Natural Materials 

 Collagen is the main protein of connective tissue and the most abundant protein in 
mammals (Di Lullo et al.  2002  ) . Twenty nine types of collagen have thus far been 
identi fi ed and described in literature. Over 90% if the collagens in the body are of 
so called type I, II, III, and IV. Different methods are used to isolate collagen from 
tissues [for example see (Xiong et al.  2007  ) ]. 

 A large number of collagen products are on the marked. Collagen is clinically 
used, for example as a nerve conduit NeuraGen® and NeuroMatrix™ (bovine) and 
received FDA approval in 2001 (Meek and Coert  2008  ) . 

 In combinations with osteoinductive growth factors (BMP-2 or BMP-7), bovine 
collagen is used as a carrier in the form of a sponge (InductOs ® ) or as granules with 
a particle size of 75–425  m m (Osigraft®) (Friedlaender et al.  2001 ; Govender et al. 
 2002  ) . 

 KOLLAGEN-resorb®, GENTA-COLL resorb®, GentaFleece® and Septocoll® 
for example have several indications in surgery and are used for hemostasis, as a 
wound dressing, defect  fi ller, and for bone regeneration. The supplementation of 
the collagen by adding gentamicin allows for protection against infections. 

 A product group based on natural porcine small intestinal submucosa (SIS) 
is marketed under the name Surgisis (SIS®) (Hodde  2006  )  for the treatment 
in: congenial diaphragmatic hernias (CDH), colon and rectal surgery, gastroen-
terology, general surgery, obstetrics & gynaecology, otolaryngology, plastic 
 surgery, thoracic surgery, urology, vascular surgery. Surgisis is an acellular-
ized matrix mesh composed of collagen, proteins, glycosaminoglycans, and 
proteoglycans. 

 A gelatinous protein mixture secreted by Engelbreth-Holm-Swarm sarcomosa 
cells (EHS) is commercialized under the name BD Matrigel™. This mixture 
resembles the complex extra cellular environment found in many tissues and con-
tains laminin, entactin, and collagen. These proteins self assemble to a structure, 
which enables coating of glassware and 3D scaffolds for tissue engineering (Hughes 
et al.  2010  ) . 

 Open porous collagen scaffolds under the name Optimax® are available for a 
drop in or drop on cell seeding. They are stable in cell culture for several weeks and 
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are used for drug production in bioreactors, cell expansion, and tissue engineering 
application in preclinical development. The oriented pore structure in the scaffold 
enables directed growth of e.g. muscle cells in cell cultures (Kroehne et al.  2008  ) . 
The pores are generated from controlled freezing of a water suspension of collagen, 
where the collagen molecules orient on the surface of  fi nger like ice crystals. In the 
 fi nal step the ice is removed by freeze drying. Furthermore a resorbable dental bar-
rier membrane (Remaix®) for applications in guided bone regeneration (GBR) and 
guided tissue regeneration (GTR) prepared from highly puri fi ed porcine collagen 
 fi bers intermingled with highly puri fi ed elastin  fi bers is available. The membrane is 
used to cover the space  fi lled with bone graft material and assists the regeneration 
by protecting the slowly growing bone from in fi ltration with cells from the sur-
rounding soft tissue. 

   Table 21.4    Overview on tissue grafts   

 Source/Organ  Application 

 Autograft  Bone  Defect  fi lling  For detailed 
information see 
Part II 

 Mesenchymal stem cells  Various applications 
 Tendon  Tendon repair 
 Skin  Wound repair 
 Cartilage  Cartilage repair 
 Vessels aorta; coronary artery  Vessel replacement 

 Allograft  Bone: spinal fusion grafts, 
cortical and dense 
cancellous bone, deminer-
alized bone matrix 

 Defect  fi lling, Spinal 
fusion, 
Periodontal 
Surgery 

 From tissue banks, 
processed 
materials 

 Tendon  Tendon repair 
 Split Thickness Skin  Wound repair 
 Acellular dermis  Hernia repair and 

abdominal wall 
reconstruction. 

 Liver  Liver transplantation 
(TX) 

 Live donations, 
unprocessed 

 Kidney  TX 
 Heart  TX 
 Lung  TX 
 Pancreas  TX 
 Skin, cornea  TX 
 Bone Marrow, stem cells  Leukemia 

 Xenograft  Cardiac valve  Heart surgery  Mainly porcine, 
processed 

 Collagen  Various applications  Bovine, porcine, 
equine, processed 

 Bone  Defect  fi lling  Mainly bovine, 
processed 

 Mixed  Fibrin human  fi brinogen and 
human thrombin 

 Tissue sealant 

 Gelatine  Hemostatic 
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 Several materials of natural origin are available as hemostats to reduce or 
stop bleeding due to surgery. Sponges or meshes made from porcine gelatine 
(Gelfoam sponge®, Surgifoam sponge/powder®) or bovine collagen (Avitine 
sponge/ fl our®, Helistat® & Helitene®, Instat®) function as a mechanical barrier. 
To actively stop bleeding, active substances based on thrombin are approved. 
These materials can be of bovine origin (Thrombin JMI®), made from human 
thrombin (Evithorm®) or be recombinant (Recothrom®) (Spotnitz and Burks 
 2008  ) . 

 Fibrin is also used as a hemostat and sealant (Tisseel®, Evicel®). It is a combi-
nation of plasma  fi brinogen and thrombin from human or bovine origin. A dual 
chamber syringe separates the thrombin and the  fi brinogen and after mixture of 
thrombin with the  fi brinogen, a  fi brin clot forms. Cryoseal® Fibrin Sealant System 
is a semi-automated product designed to produce an autologous  fi brin sealant 
during surgery. Vitagel® is a combination product of micro fi brillar collagen and 
thrombin in combination with the autologous plasma ( fi brinogen and platelets).   

    21.4   Conclusion and Outlook 

 For each application of degradable polymers a speci fi c set of properties e.g. mechan-
ical properties such as degradability or a certain modulus is demanded. With increas-
ing number of potential applications a greater extend of various materials with 
different property combinations is required. It is still only a limited amount of mate-
rials in clinical application, which are not able to ful fi l all the new requirements. 
Therefore a substantial need of novel degradable biomaterials with tailored proper-
ties exists. Additional to the purely synthetic materials biomimetic approaches are 
integrated into material design. 

 Emerging  fi elds of modern medicine, e.g. regenerative medicine require materi-
als with a variety of several functionalities (e.g. shape-memory effect or other stim-
uli sensitive functions) combined in one material. Hence multifunctional materials 
are an important research topic. One example is a degradable shape-memory poly-
mer with the additional ability of controlled drug release. 

 Multifunctional materials will be designed for the microenvironment of cells, 
e.g. mesenchymal stem cells. The fate of stem cells could be potentially controlled 
by generation of a functional mimic of this environment, which would be of high 
signi fi cance for Regenerative Therapies. 

 For a successful development of new materials a solid knowledge of existing 
applied polymers in clinical use is necessary to avoid old pitfalls and enable new 
combinations.      
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  Abstract   The human cornea is the transparent outermost surface of the eye and the 
major refractive element of the visual system; its function depends on its optical 
clarity. Irreversible loss of optical quality of the cornea due to disease or damage 
results in permanent vision loss or blindness, necessitating a surgical replacement of 
the cornea (keratoplasty) in entirety or in part. While keratoplasty is considered one 
of the most successful forms of transplantation, lack of availability of donor tissues 
and rejection are major limiting factors. Advances in knowledge of biomaterials and 
stem cell biology have paved the way for tissue engineering of various organs 
including cornea. An ideal biomimetic for corneal tissue replacement would be the 
one which is transparent, provides mechanical support, promotes epithelial resur-
facing, corneal innervation, and integrates into the surrounding corneo-scleral tis-
sues and combats infection when challenged. This chapter reviews the advances 
made in developing various biomaterials for ocular application with or without 
cells.      
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    22.1   Introduction 

    22.1.1   The Cornea 

 The cornea is the transparent, dome-shape front surface of the eye, and the main 
structure that focuses light entering the eye to the retina for vision. Hence, its trans-
parency is critical. It is comprised of  fi ve layers, three cellular (epithelium, stroma, 
and endothelium), and two acellular (Bowman’s layer or membrane, and Descemet’s 
membrane) (Fig.  22.1a ).  

 The outermost epithelial layer consists of 5–6 layers of strati fi ed, non-keratinizing 
cells, representing about 10% of the total corneal thickness. It is responsible for 
protecting the eye against foreign material, including pathogens, as well as absorb-
ing oxygen and nutrients from the tear  fi lm. Corneal integrity and function are 
dependent upon the self-renewing properties of the corneal epithelium, which is 
maintained by the presence of stem cells located in the limbus region, at the cornea-
conjunctiva interface (Fig.  22.1b ). These stem cells, known as limbal stem cells 
(LSC) or limbal epithelial stem cells (LESC) can divide both symmetrically to self-
renew, and asymmetrically to produce daughter transiently amplifying cells (TAC) 
that migrate centripetally to populate the basal layer of the corneal epithelium 
(Kinoshita et al.  1981  ) . The TAC divides and migrates super fi cially, progressively 
becoming more differentiated, and eventually becoming post-mitotic terminally 
 differentiated cells. 

  Fig. 22.1    ( a ) Cross-section through the human cornea. The outer surface comprises an epithelial 
layer that rests on a basement membrane, which in turn overlies a cell-free layer: Bowman’s mem-
brane. The middle cellular stromal layer contains a mainly collagenous extracellular matrix sparsely 
populated with keratocytes. The innermost layer consists of a single sheet of endothelial cells, which 
is physically separated from the stroma by the acellular Descemet’s membrane. ( b ) Diagram of the 
human limbus. Limbal epithelial stem cells reside in the basal layer of the epithelium ( Ep ), at the 
limbus where the peripheral cornea meets the conjunctivum. Daughter transient amplifying cells 
divide and migrate towards the central cornea ( arrows ) to replenish the epithelium, which rests on 
Bowman’s layer ( BL ). The stroma ( St ), of the limbal epithelial stem cell niche is vascularized and, 
is populated with  fi broblasts and melanocytes (From: Secker and Daniels  2009  )        
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 Underlying the epithelium is the stroma. In adults, the stroma is approximately 
500  m m thick and is composed of  fl atterned, interconnected cells called keratocytes 
embedded in an extracellular matrix (ECM) (Poole et al.  1996  )  of hydrated type 
I/V heterotypic collagen  fi brils (15% wet weight) of uniform diameter (32 nm) in 
humans (Meek and Leonard  1993  ) . Interspersed amongst the  fi brillar collagens 
glycosoaminoglycans (GAGs) and proteoglycans (Axelsson and Heinegard  1975  ) , 
such as keratin sulfate and dermatan sulfate (1% wet weight Anseth  1961  ) ; and 
other protein constituents including  fi bronectin, laminin, and type VI collagen. The 
collagen  fi brils are packed in 300–500 parallel arrays (lamellae) tangential to the 
corneal surface (Hamada et al.  1972  ) , that are principally responsible for the ten-
sile mechanical properties of the cornea. The proteoglycans and their associated 
GAGs contribute to the corneas compressive and swelling material properties 
(Hedblom  1961  ) , and to the uniform spacing of the collagen  fi brils. The stromal 
cells or keratocytes are relatively quiescent in the healthy, uninjured cornea. 

 The innermost layer comprises a single layered endothelium, which is essential 
for the maintenance of appropriate stromal hydration for corneal transparency. 
Corneal endothelial cells contain Na + /K +  ATPase pumps that circulate aqueous 
humor between the anterior chamber and stroma (Nishida et al.  1997 ). 

 Bowman’s layer (BL) is a cell-free, non-regenerating layer located between the 
epithelial basement membrane and the anterior corneal stroma of human corneas 
(Kenyon  1983 ). It is approximately 8–14  m m thick, and is comprised mainly of 
randomly oriented type I and V collagen  fi brils (Hogan et al.  1971 ). It has a smooth 
anterior surface that underlies the epithelial basement membrane, and a posterior 
surface that merges with the less dense, but ordered, collagen lamellae of the cor-
neal stroma proper. Unmyelinated nerve axons penetrate BL to terminate within the 
epithelium (Klyce and Beuerman  1988 ). The functional role of BL is unknown, but 
it has been suggested that it may be super fl uous to human corneal function (Wilson 
and Hong  2000 ). 

 Descemet’s membrane is the second acellular layer, and is essentially a thick-
ened basement membrane, with a unique structure that lies between stroma and the 
endothelial layer of cornea. It contains Type IV collagen and a signi fi cant amount of 
Type VIII collagen.  

    22.1.2   The Need for Alternatives to Donated Corneas 
for Transplantation 

 Diseases affecting the cornea are a major cause of blindness all over the world, 
second only to cataracts in overall importance (Whitcher et al.  2001  ) . Using the 
World Health Organizations (WHO; Geneva, Switzerland) de fi nition of blindness, 
it is estimated that number of people with visual impairment is 285 million, with 
65% of individuals aged over 50 years. Of these, 246 million have low vision (63% 
over 50 years old) and 39 million are estimated to be blind (82% over 50 years old). 
Infectious conditions, trachoma and corneal ulcer, are common causes of vision loss 
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in the developing world, whereas non-infectious entities like corneal dystrophies 
and pseudophakic bullous keratopathy are more common in developed countries 
(Cosar et al.  2002 ; Edwards et al.  2002 ; Dada et al.  1999 ; Gupta et al.  2001  ) . 

 Many corneal diseases are treatable by transplantation with donated corneal tissue, 
by penetrating keratoplasty, lamellar keratoplasty or endothelial keratoplasty. 
Corneal transplants are not always possible in many parts of the world including 
some developed countries (Muraine et al.  2002  ) , due to limitations in the storage 
and distribution of corneal tissue, or because of cultural or religious barriers. Even 
with available donor tissues, the success rate for transplantation beyond the  fi rst few 
years is moderately low. For example, long term survival is about 60% at 10 years 
(Coster and Williams  2005  ) . Moreover, the supply of human corneal tissue is 
expected to diminish further due to an aging population and corresponding need for 
transplantation, and the increasing popularity of refractive surgery such as laser-
assisted in situ keratomileusis (LASIK), which renders these corneas unacceptable 
for donation and with the increasing incidence of infectious diseases, including 
Acquired Immunode fi ciency Syndrome (AIDS), hepatitis and Herpes Simplex 
Keratitis (Trinkaus-Randall  2000 ; Khan et al.  2001  ) . 

 In addition to the short supply of donor corneas, an additional serious disadvan-
tage of cornea allograft transplantation is the potential possibility for transmission 
of infection, as mentioned above. Hence, all donated corneas are screened at very 
high costs, as person-to-person transmission of the rabies virus (Houff et al.  1979  )  
and at least one case of Creutzfeldt-Jakob disease (Duffy et al.  1974  )  have been 
reported. Even though very rare another concern is that transmission of as yet 
unknown pathogens could also occur. 

 There are also conditions that are not amenable to donor allograft transplanta-
tion. These include autoimmune conditions or cases where the ocular surface is 
badly damaged by disease or injury. For example, pathologies that chronically 
disrupt the ocular surface mucosa (ocular cicatricial pemphigoid, Stevens-Johnson 
syndrome, etc.) or disrupt tear production (Sjogren’s) or injuries (severe chemical or 
alkali burns) that destroy the limbal stem cell niches (Limbal Stem Cell De fi ciency; 
LSCD) are contraindications for donor grafts because the ocular surface will not 
re-epithelize properly and is prone to continuous de-epithelization. 

 Hence, there have been signi fi cant efforts in the development of both biomaterials 
and stem cell based methods and combinations of both, to replace part or the full 
thickness of damaged or diseased corneas. The best known alternatives to human 
allograft tissue are the “Arti fi cial Corneas” which refer to corneal prostheses or 
keratoprostheses (KPro’s). The classical KPro’s were developed using plastic-based 
materials and were designed to restore minimal light transmission and protective 
functions of the cornea (Wilhelmus et al.  1995 ; Carlsson et al.  2003  ) . These devices 
have now been used clinically but only as last resorts to save corneal vision, as 
they are still associated with  in vivo  complications like retroprosthetic membrane 
formation, infection and glaucoma. 

 There are a several reviews that cover the traditional KPro’s (Myung et al.  2008 ; 
Gomaa et al.  2010 ; Rafat et al.  2010  ) . Hence, in this chapter, we focus on biomaterials-
enabled corneal regeneration and the various technologies developed in this area. 
These include the newer KPro’s that have biointeractive functionality to enable 
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overgrowth of corneal epithelial cells for better integration, to the use of biointeractive, 
biodegradable implants that induce regeneration of corneal tissues and those used in 
stem cell delivery in cell based therapies for corneal diseases.   

    22.2   Keratoprostheses Enhanced for Biointeraction 
and Regeneration 

 KPro’s epithelization has been argued to be important for the reduction of post- 
operative complications-infection in particular by restoring the eyes natural cellular 
barrier to external contaminants. Therefore, biointeractive capability is now being 
incorporated into new KPro’s design that will support for epithelial cell growth on 
the anterior surface of the device. 

 For epithelization to occur, two innovations are required: (1) a surface that supports 
the adhesion of cells, and (2) suf fi cient capacity for transporting solutes by bulk diffu-
sion to adherent cells. It is not suf fi cient to have a surface that is just adhesive to cells; 
permeability to nutrients, primarily glucose, is required to maintain the health of an 
overlying epithelium. Permeability has been made possible by development materials 
include ionic copolymers of poly(2-hydroxyethyl methacrylate) (PHEMA), intrinsi-
cally higher water content homopolymers like poly(vinyl alcohol) (PVA) (Miyashita 
et al.  2006 ; Shimmura et al.  2003 ; Uchino et al.  2007 ) and hydrophilic double polymer 
networks of polyethylene glycol (PEG) and poly(acrylic acid) (PAA) (Myung et al. 
 2007 ,  2008 ). Myung and coworkers reported collagen-coupled poly(ethylene gly-
col)/poly (acrylic acid) (PEG/PAA) interpenetrating polymer networks allowed for 
epithelial coverage in wound healing models both  in vitro  and  in vivo  in rabbits 
(Myung et al.  2009  ) . Recently, Karkhaneh and coworkers reported 2-hydroxy meth-
acrylate acid polydimethylsiloxane (PDMS)  fi lms that were modi fi ed by oxygen 
plasma treatment, after which type I collagen was immobilized onto this modi fi ed 
surface (Karkhaneh et al.  2011  ) . The authors showed the attachment and proliferation 
of epithelial cells onto the modi fi ed PDMS. Wang and coworkers reported that coating 
polymethyl methacrylate (PMMA) discs, the principal component of Boston KPro’s, 
with hydroxyapatite greatly improved cell viability, implant adhesion to tissue, and 
biocompatibility compared with unmodi fi ed PMMA (Wang et al.  2011  ) . 

 The adhesion of epithelial cells to KPro’s can therefore be enhanced by modifying 
these materials using extracellular matrix proteins, cell adhesion peptides and various 
growth factors. 

    22.2.1   Extracellular Matrix Proteins and Cell 
Adhesion Peptides 

 Various investigators report improved epithelialization of polymers by coating with 
extracellular matrix (ECM) proteins, including collagen, laminin, and  fi bronectin, 
which mimic the epithelial basement membrane and promote cell  adhesion and 
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migration such as in the wound healing process (Grif fi th et al.  2002 ; Sweeney et al. 
 2003 ; Evans et al.  2000  ) . It is thought that matrix proteins present on an implant 
surface may trigger migrating cells to reform a basement membrane by ECM pro-
tein secretion and formation of adhesion complexes at the surfaces (Sweeney et al. 
 2003  ) . Other studies have reported the covalent tethering of cell adhesion peptides 
such as IKVAV, YIGSR & RGD, (Kobayashi and Ikada  1991 ; Merrett et al.  2001 ; 
Aucoin et al.  2002 ; Wallace et al.  2005 ; Jacob et al.  2005  )  to the surface may further 
improve the epithelial cell adhesion versus simple adsorption of ECM proteins. 
Tanihara group have shown using collagen-like polypeptide poly(Pro-Hyp-Gly) 
conjugated with GRGDS and PHSRN peptides enhances cell adhesion, migration, 
strati fi cation and proposed that these may be useful scaffold for tissue regeneration 
(Shibasaki et al.  2011  ) .  

    22.2.2   Growth Factors 

 Using of growth factors is another strategy to improve epithelialization. Epidermal 
growth factor (EGF) is a potent stimulator of corneal epithelial cell proliferation, 
migration, and is active in the wound healing process. Covalent grafting of EGF 
onto various supports such as glass (Kuhl and Grif fi th-Cima  1996  )  or PDMS (Klenkler 
et al.  2005  )  substrates through the use of PEG linkers has been reported to have 
clear effects on cell growth, while adsorbed EGF showed no biological activity 
(Kuhl and Grif fi th-Cima  1996  ) . Nontheless, covalent grafting combined with the 
use of PEG linker presents several ceveats. Boucher and coworkers tethered EGF 
via coiled coil interactions and showed enhanced adhesion, spreading and prolifera-
tion of human corneal epithelial cells compared to EGF that was either physically 
adsorbed or present in solution (Boucher et al.  2010  ) .  

    22.2.3   Biomaterials with Anti-microbial Properties 

 Along with biocompatibility and biointegration, there is also a great need for ker-
atoprostheses and other implantable medical devices that inherently resist bacterial 
infections long-term. Recently, non-leaching, long chained hydrophobic polyca-
tions that can be attached covalently to the material surface and render them strongly 
antimicrobial have been developed (Lewis and Klibanov  2005 ; Klibanov  2007  ) . 
Speci fi cally, immobilized N,N-hexyl, methyl-polyethylenimine (HMPEI) has broad 
antibacterial, antifungal, and antiviral properties (Milovic et al.  2005 ; Lin et al.  2002 ; 
Haldar et al.  2006  ) . Behlau and coworkers covalently attached HMPEI to Boston 
KPros and showed an inhibitory effect on bio fi lm formation by  Staphylococcus 
aureu s clinical isolates (Behlau et al.  2011  ) . They have also showed that there was 
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no toxicity or adverse effect with HMPEI-derivatized materials after intrastromal or 
anterior chamber implantation in rabbits  in vivo .   

    22.3   Biointeractive Implants with Regenerative Functions 

    22.3.1   Biopolymeric and Biomimetic Scaffolds for Promoting 
Regeneration 

 Two dimensional growth of cells has been demonstrated on the surfaces of many 
synthetic polymers, but three-dimensional growth (ingrowth or encapsulation) of 
living cells has only been demonstrated in a few, fully synthetic polymers, particu-
larly poly(ethylene) oxide, poly(propylene) oxide, and poly(N-isopropyl acrylam-
ide) (PNiPAAm) (Lee and Mooney  2001 ; Hoffman  2002  ) . For encapsulation of 
cells, many natural biopolymer hydrogels such as those based on alginate,  fi brinogen-
 fi brin, chitosan, agarose, albumin, collagens, and their derivatives, are widely used. 
Of these, hydrogels of collagen type I, the predominant biopolymer in the human 
cornea, are particularly attractive as matrix replacement scaffolds, partially because 
of their strength at relatively low concentrations, resulting from the virtually rigid 
rod properties of the collagen type I triple helix (Amis et al.  1985  ) . In addition, col-
lagen brings the cell attachment motif arginine-glycine-glutamic acid (RGD) 
(Pierschbacher and Ruoslahti  1987  ) . However, both the biodegradation resistance 
of collagen type I and the strength of hydrogels in general at low concentrations 
(10% wt/vol) need to be enhanced by chemical crosslinking (Hoffman  2002  ) . 

 The authors have tested a range of biomaterials as corneal substitutes. We found 
that hybrid bio-synthetic hydrogels based on collagen, NIPAAm, acrylic acid and 
N-acryloxysuccinimide grafted with YIGSR peptide induced epithelial, stromal and 
nerve regeneration (Li et al.  2003  ) . These implants emulated the corneal extracel-
lular matrix by allowing for cell-matrix interaction in the restoration of functional 
structures including the generation of a basement membrane between the implant 
and overlying epithelium, stromal cell, and nerve axon ingrowth; potentiating 
differentiated cell state; and integration into the host tissue. 

 A more robust implant comprises interpenetrating networks of collagen and 
2-methaacryloyloxyethyl phosphorylcholine (MPC) was also implanted into eyes in 
animal models (Liu et al.  2009 ; McLaughlin et al.  2010  ) . They remain anchored 
within the host corneas and permitted regeneration of functional corneal neves as 
different, active nerve sub-types were recorded within the implant (Mclaughlin 
et al.  2010  ) . Unlike, purely collagen implants, which enabled cell and nerve regen-
eration in human clinical trials (Fagerholm et al.  2009  ) , the MPC –reinforced 
implants also show enzyme resistance  in vitro  (Liu et al.  2009  ) . When implanted 
into alkali burnt rabbit corneas, the collagen-MPC implants, compared to collagen-
only implants, were able to prevent neovascularization (Hackett et al .   2011  ) .  
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    22.3.2   Biomimetic Tissue Engineered Corneal Substitute: 
First Clinical Study 

 In 2010, members of our current team tested ethyl(dimethylaminopropyl) carbodi-
imide (EDC) and N-Hydroxysuccinimide (NHS) crosslinked recombinant human 
collagen corneal substitutes (Fig.  22.2 ) in humans in a phase I clinical study as 
lamellar grafts in ten patients (Fagerholm et al.  2009 ). At two years post implanta-
tion, clinical results showed that implants are stably retained without adverse 
immune reactions. Six of the ten patients had improved vision (Fagerholm et al.  
 2010 ). Nine of the ten experienced corneal tissue, nerve and tear  fi lm regeneration, 
meaning that corneal epithelial cells grew over the implant, while stromal cell and 
nerves grew into the implant (Fig.  22.3 ), allowing for a tear  fi lm to form over the 
corneal surface. The tear  fi lm formation may have allowed the patients who were 
not able to tolerate contact lenses before to the surgery to be able to now wear con-
tact lenses to improve their eyesight. However, long term monitoring and more 
extensive testing is needed to determine whether or not they will be useful as sub-
stitutes for donor corneal allograft tissue. In addition, further modi fi cations, such as 
the use of interpenetrating networks, are likely needed to address the needs of a 
wider range of clinical indications such as full thickness implantation.     

  Fig. 22.2    Fabricated cornea and implantation method. ( a ) An example of optically clear, biosyn-
thetic corneal substitutes used in these studies. ( b ) These were trephined to prepare a button for 
corneal implantation. Damaged host tissue was removed to a similar depth and diameter and 
replaced by this buttor. ( c ) After implantation, the button was held in place with three overlying 
10–0 mattress sutures (Reproduced from: Fagerholm et al .   2010  )        

Fig. 22.3 (continued) of the unoperated cornea ( a ), regenerated corneal epithelial cells on the 
implant surface ( b ), and regenerated epithelium of the penetrating graft ( c ). Regenerated subbasal 
nerves ( e ) in an implanted cornea were parallel and morphologically similar to the normal cornea 
( d ), whereas regenerated subbasal nerves were also observed in a cornea transplanted with human 
donor tissue ( f ). Anterior stromal cell (keratocyte) nuclei ( g – i ) and posterior keratocytes ( j – l ) were 
present, with varying density, in all corneas. The endothelium ( m – o ) in all corneas exhibited a 
characteristic mosaic pattern. Scale bars, 2 mm (OCT), 100 mm (IVCM) (Reproduced from: 
Fagerholm et al .   2010  )        

 



Normal Biosynthetic Human donor

  Fig. 22.3    Corneal features in a healthy, unoperated subject, alongside those of operated patients, 
at 24 months after implantation of a biosynthetic cornea or a human donor cornea. ( Top row ) 
Optical coherence tomography (OCT) images of a healthy cornea, biosynthetic implant, and 
human donor transplant by lamellar keratoplasty. Areas of wound-healing activity exhibit high 
re fl ectivity ( white areas ). ( a – o )  In vivo  confocal microscopy (IVCM) images. Intact epithelium 
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    22.4   Decellularized Corneas as Scaffolds 

 A recent development for preparing a corneal scaffold is to use decellularized 
tissue, from which the cells and antigen molecules are removed to diminish the 
host immune reaction. It has the same structure and composition as the natural 
tissue and it is thought that regeneration within the scaffold is regulated by donor 
cells. For decellularization of tissues, several groups have used detergents and 
enzymes and reported that the matrix structure of decellularized corneal stroma was 
preserved compared with that of native cornea (Ponce Marqvez et al.  2009 ; Choi et al. 
 2010 ; Gonzalez-Andrades et al.  2011 ). 

 To decellularize the cornea and to eliminate the toxic effect of chemicals, 
Hashimoto and coworkers ( 2010 ) have used high-hydrostatic pressurization (HHP) 
to decellularize porcine corneas and later transplanted these into rabbit corneas 
(Hashimoto et al.  2010 ). In the transplanted animals, no immune reaction occurred 
and turbid corneas became clear, showing that corneas obtained through HHP could 
be useful as scaffolds for tissue regeneration. Lee and coworkers ( 2011 ) demon-
strated another method for decellularization of porcine cornea by freeze/thaw cen-
trifugation with preservation of the corneal stroma (Lee et al.  2011 ) 

 Gonzalez-Andrades and coworkers ( 2011 ) showed that treatment of porcine cor-
neas with 1.5 M sodium chloride treatment was able to generate an acellular corneal 
stroma with adequate histologic and optical properties. Human keratocytes were 
able to penetrate and spread within this scaffold with proper levels of cell differen-
tiation (Gonzalez-Andrades et al.  2011 ). While these are promising results, the use 
of xenogeneic transplantation or use of poor quality cadaveric human corneas that 
cannot be used as living allografts will still require con fi rmation of safety, as 
immunogenicity and risk of disease transmissions are considerations that remain.  

    22.5   Biomaterials as Scaffolds in Cell-Based Therapies 

    22.5.1   Corneal Limbal Stem Cell Transplantation 

    22.5.1.1   Limbal Stem Cell De fi ciency 

 In the previous section, regeneration of one or more corneal components such as the 
epithelium relied on the host or patient having a population of stem cells that enabled 
the reparative process. In several conditions, the patient’s stem cell supply is 
depleted. This condition is referred as limbal epithelial stem cell de fi ciency 
(LSCD). Limbal stem cell de fi ciency can be primary, related to an insuf fi cient 
stromal microenvironment to support stem cell function, such as aniridia, congen-
tial erythrokerato-dermia, keratitis associated with multiple endocrine de fi ciencies, 
neurotropic (neural and sichaemic) keratopathy and chronic limbitis; or secondary 
(more common) related to external factors that destroy limbal stem cells such as 
chemical (most common) or thermal injuries, Stevens-Johnson syndrome, pterygium 
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or severe microbial infections (Burman and Sangwan  2008  ) . In these situations, 
persistent ulceration could occur, or, the conjunctival epithelial cells could move 
centrally to cover the depleted corneal surface. The re-epithelialization of the corneal 
surface by the conjunctival epithelium is accompanied with chronic in fl ammation, 
stromal scarring, neovascularization and persistent epithelial defects. Limbal stem 
cell de fi ciency can be diffuse (total) or sectoral (partial). In the latter case conjunc-
tivalization of the corneal epithelium affects only part of the corneal surface.  

    22.5.1.2   Management of LSCD 

 There are various strategies for treating limbal stem cell de fi ciency. Partial limbal 
stem cells de fi ciency can be treated by mechanical debridment, and amniotic 
membrane transplantation (Tseng et al.  1998  ) . In patients with total limbal stem 
cell de fi ciency, limbal auto-or allo- transplantation is indicated for corneal surface 
reconstruction. This may be combined with or followed by keratoplasty. 

 Drs. Kenneth Kenyon and Scheffer Tseng in  (  1989  )  were the  fi rst individuals to 
pioneer the use of human corneal limbal epithelial stem cells for treatment of ocular 
surface disorders (Tseng  1989 ; Kenyon and Tseng  1989 ). Several modi fi cations 
have been described for this technique. In 1997, Pelligrini and co-workers pro-
duced cultured sheets of epithelium from a 1 mm 2  biopsy of healthy autologous 
limbal tissue and was transplanted onto the patient’s limbal de fi cient eye. Two years 
post treatment, both patients still possessed stable corneal epithelium, an absence of 
vascularization, improved visual acuity and improvements in the subjective param-
eters of pain and photophobia (Pellegrini et al.  1997 ). Since then, many other groups 
have reported transplantation of corneal limbal epithelial stem cells to treat ocular 
surface disorders (Schwab et al.  2000 ; Tsai et al.  2000 ; Nakamura et al.  2004a ). 

 Although all the techniques used in stem cell transplantation are similar in princi-
ple, the source of donor stem cells can be varying. Donor tissue can be obtained from 
the contralateral eye (limbal autograft) in cases of unilateral disease, or from consan-
guineous living donor (living HLA-matched donor) or from a cadaver donor (limbal 
allograft) when both eyes are affected (in bilateral conditions). The results (Shortt et al. 
 2007 ) have been quite promising in terms of improvement in vision. However, the 
mechanism of therapy ef fi cacy remains unknown as there is no evidence of long-term 
donor allograft tissue survival. The disadvantage of this technique is that the patient is 
required to undergo systemic immunosuppression, and even then, the donor cells do 
not survive over the long term. This has led to the search of other autologous, non-
corneal cell sources (Daya et al.  2005 ) 

 Several studies (Nakamura et al.  2004b,   2007 ; Inatomi et al.  2006a,   b ; Ang et al. 
 2006  )  demonstrated the ef fi cacy of autologous cultivated oral mucosal epithelial 
transplantation (COMET) for the treatment of severe ocular surface disorders. Even 
though initial clinical results of COMET have been reported from several groups 
worldwide (Nishida et al.  2004b ; Satake et al.  2008  )  the long-term clinical assess-
ments of COMET are entirely unknown and feasibility of this technique still requires 
detailed investigation. A recent study by the Nakamura group have shown long term 
clinical results of COMET study are promising with improved visual acuity in ten 
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eyes (53%) at postoperative 36 month (Nakamura et al.  2011  ) . Other proposed 
sources of stem cells include buccal epithelial stem cells (Priya et al.  2011  ) , hair 
follicle bulge derived stem cells (Meyer-Blazejewska et al.  2010 ) and umbilical 
mesenchymal cells (Liu et al.  2010 ). 

 Carrier tissue is needed in limbal transplants because it is not possible to transfer 
limbal stem cells alone. A range of substrates or biomaterials have been tested 
(Table  22.1 ) and several of these are described in more detail below.  

      Human Amniotic Membrane 

 The amniotic membrane is the innermost avascular layer of placenta and protects 
the embryo during gestation (Shrott et al.  2009 ). The  fi rst application of human 
amniotic membrane (HAM) in ophthalmology was in the successful treatment of a 
chemical burn of the ocular surface (de Roth  1940  ) . After that, there are various 
reports for the ocular use of HAM highlighting an increasing number of new clinical 
indications and therapeutic applications. The structural integrity, transparency and 
elasticity of basement membrane of HAM make it the most widely accepted substrate 
for ocular surface reconstruction. Essentially, when stripped of its cell population, 

   Table 22.1    Examples of different substrates used as carriers for expansion and transplantation of 
corneal limbal epithelial stem cells   

 Substrate  Reference  Application 

 1  Human amniotic membrane     Schwab et al. ( 2000 )  Clinical 
 Tsai et al.  (  2000  )   Clinical 
 Sangwan et al.  (  2003  )   Clinical 
 Wang et al.  (  2003  )   Research 

 2  Fibrin  Rama et al.  (  2001  )   Clinical 
 Talbot et al.  (  2006  )   Research 

 3  Myogel  Francis et al.  (  2009  )   Research 
 4  Soft contact lens  Deshpande et al.  (  2009  )   Research 

 Di Girolamo et al.  (  2009  )   Clinical 
 5  Recombinant human collagen hydrogel  Dravida et al.  (  2008  )   Research 
 6  Corneal stroma  Espana et al.  (  2003  )   Research 
 7  Culture inserts  Koizumi et al.  (  2002  )   Research 
 9  Silk  fi broin  Lawrence et al.  (  2009  )   Research 

 Gil et al.  (  2010  )   Research 
 Chirila et al.  (  2008  )   Research 

 10  Coated plates (Collagen IV, 
laminin,  fi bronectin) 

 Nakagawa et al.  (  1990  )   Research 
 Schwab et al.  (  2000  )   Clinical 
 Li et al.  (  2005  )   Research 

 11  Collagne vitrigel membrane  Levis et al.  (  2010  )   Research 
 Takezawa et al.  (  2011  )   Research 
 McIntosh Ambrose 

et al.  (  2009  )  
 Research 

 12  Temperature responsive polymers – Poly 
(N-Isopropylacrylamide) 

 Nishida et al.  (  2004a  )   Research 
 Sitalakshmi et al.  (  2009  )   Research 
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that HAM acts as a decellularized scaffold. Various groups have shown that HAM 
has additional anti-in fl ammatory, anti-scarring and anti-angiogenic properties 
(Gomes et al.  2005 ; Hao et al.  2000 ; Tseng et al.  1999 ). HAM also produces 
growth factors such as epidermal growth factor (EGF), transforming growth factor 
 a  (TGF  a ), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), basic 
 fi broblast growth factor (bFGF) and TGF- b  that can stimulates epithelialization 
(Tosi et al.  2005 ; Koizumi et al.  2000 ). HAM can also act as a basement membrane 
that enables the migration of cells through the presence of laminin isoforms (Dua et al. 
 2004 ) and is therefore extensively used in ophthalmic surgery for corneal and con-
junctival reconstruction (Fig.  22.4 ) (Dua et al.  2004 ).  

 Despite the successful use of HAM, however, caution is required as there is 
always an associated risk of disease transmission through the use of donated 
human tissue.  

      Temperature Responsive Corneal Cell Sheets 

 Okano and coworkers (Nishida et al.  2004a ) developed an ingenious culture system 
based on a synthetic polymer surface that allows for carrier-free sheets of corneal epi-
thelium to be cultured for transplantation. Temperature-responsive polymers chemi-
cally immobilized as thin  fi lms on cell culture surfaces facilitate cell adhesion and 
growth of cells in normal culture conditions at 37° C. They can reversibly alter their 
hydration properties with temperature change (hydrate and swell below 30° C) pro-
moting complete detachment of adherent cells without the use of proteolytic enzymes 
or treatment with EDTA. They have developed human or rabbit corneal epithelial cell 
sheets using a novel temperature –responsive culture surface (Nishida et al.  2004a  ) . 

 Mebiol gel, a copolymer comprised of thermoresponsive polymer poly(N-isopro-
pylacrylamide-co-n-butyl methacrylate) (poly-NIPAAm-co- BMA) and hydrophilic 
polymer polyethylene glycol (PEG), is hydrophilic below 20 °C and hydrophobic 
above 20° C forming cross-linking points and a homogenous three-dimensional 
network in water (Vemuganti et al.  2009  ) . This hydrogel has increased transparency 
compared to HAM (Vemuganti et al.  2009  ) . Various studies on Mebiol gel shown, 
good proliferative capacity and exhibiting limbal and epithelial phenotype (Sudha 
et al.  2006  )  without any cytotoxicity (Madhavan et al.  2004  ) . Transplantation of LSCs 
cultured on Mebiol gel showed that these cells may restore a nearly normal ocular 
epithelial surface in rabbit eyes with unilateral LSCD (Sitalakshmi et al.  2009  ) . 

 The Cultured Autologous Oral Mucosal Epithelial Cell-Sheet (CAOMECS) is 
manufactured using a novel temperature-responsive culture well, UpCell ® -Insert 
(Cellseed Inc, Tokyo, Japan) (Yamato et al.  2001  ) , and is harvested without prote-
olytic processing retaining cell to cell junctions as well as deposited extra-cellular 
matrix of the basal membrane of the sheet (Burillon et al.  2011  ) . The transplanta-
tion of CAOMECS is proposed for the treatment of total bilateral LSCD patients 
with moderate or severe symptoms, for whom any other treatments are not appli-
cable. The ef fi cacy of CAOMECS transplantation has been suggested by the pres-
ence of epithelium replacement in a clinical study including four patients suffering 
from total bilateral LSCD with severe loss of vision (<1/10) in Japan (Nishida 
et al.  2004b  ) . A recent study considered CAOMECS transplantation a successful 
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  Fig. 22.4    Example of a limbal explant culture technique is used in clinical practice for treating 
patients with limbal stem cell de fi ciency       
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procedure, based on a composite criterion in 16 out of 25 patients assessed at 
360 days post-graft (64%) (Burillon et al.  2011  ) .  

      Soft Contact Lens 

 To develop an improved cell transfer system for delivering laboratory-cultured human 
limbal epithelial cells to the cornea, which would be low risk for the patient and con-
venient to use for the surgeons, researchers used contact lenses. In 2009, Deshpande 
and co-workers used acrylic acid polymers to coat the inner  surface of a bandage 
contact lens for the delivery of limbal epithelial cells to patients. This methodology 
provides a culture surface, a transport vehicle and a method to immobilize the cells on 
the eye while protecting them when in position (Deshpande et al.  2009  ) . Di Girolamo 
and coworkers cultured successfully human epithelial cells from a tissue explant on a 
non-coated contact lens and then transfer the cells onto the eye of three patients with 
LSCD to restore a transparent corneal epithelium (Di Girolamo et al.  2009  ) .  

      Fibrin Sealant 

 A  fi brin sealant or  fi brin glue, used to create a  fi brin clot, can be produced by combin-
ing  fi brinogen and thrombin. Various groups have also used  fi brin sealant as a substrate 
for LESC growth. It is particularly useful, as it is a readily biodegradable, natural sub-
strate (Higa et al.  2007 ; Rama et al.  2001 ; Han et al.  2002 ). However, the use of  fi brin 
gels may not be appropriate when a population of stem cells must be maintained, as it 
has been shown to affect cells by causing differentiation (Han et al.  2002 ).  

      Silk Fibroin 

 Silk  fi broin membranes can be prepared from  fi broin, a protein isolated from the 
domesticated silkworm (Bombyx mori) silk. It is a particularly useful material in 
corneal bioengineering as it is non-immunogenic while mechanically robust, trans-
parent, easy to handle and has controlled degradation rates. Lawrence and cowork-
ers have demonstrated that porous ultrathin  fi broin  fi lms support the growth of 
primary rabbit corneal  fi broblasts (Lawrence et al.  2009  ) . Fibroblast growth on 
 fi broin was slower than observed on tissue culture plastic, but the cells retained 
production of ECM molecules associated with a normal corneal phenotype. 
Nanopatterning technology allows surface modi fi cation of the silk  fi broin with RGD 
peptide and this improved the alignment of corneal stromal cells and their growth 
(Gil et al.  2010  ) .  

      Collagen 

 The major constituent of corneal stroma is collagen; therefore the use of collagen as 
substrate for corneal repair would be a good choice. Carbodiimide-crosslinked 
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recombinant human collagen type III has been tested as substrates and potential 
carriers for LESCs (Dravida et al.  2008  ) . The thin hydrogels had a refractive index, 
transmission and backscatter properties that were similar to that of native cornea 
and LESCs were able to stratify and express putative stem cell and differentiated 
cell type markers in a similar fashion to cells on HAM. While crosslinking enhances 
the mechanical properties of collagen, major drawbacks could include the cytotox-
icity of the crosslinker, reduced biomimetic qualities of the scaffold and prevention 
of cell based surface remodeling (Neel et al.  2006  ) . Hence, crosslinker selection is 
important. 

 Collagen Vitrigel™ membrane has been reported to have superior optical proper-
ties as substrates. A vitrigel can be formed by three stage sequence: gelation, 
vitri fi cation, and rehydration. Collagen vitrigel membrane composed of high density 
collagen  fi brils equivalent to connective tissue in vivo and it possesses excellent trans-
parency and permeability of protein with high molecular weight and consequently the 
various researchers utilizing it as a cell culture substratum (Takezawa et al.  2004  ) . 
Takezawa and coworkers established an in vitro rabbit corneal epithelium model by 
culturing normal rabbit corneal epithelial cells on collagen vitrigel membranes and 
inducing differentiation to form a strati fi ed epithelium (Takezawa et al.  2008  ) . Cultured 
human limbal epithelial, bovine  fi broblast and fabricated rabbit endothelial cells on 
vitri fi ed collagen membranes showed both stem and differentiated phenotypes 
(McIntosh Ambrose et al.  2009  ) . A recent study by the Takezawa group has used col-
lagen vitrigel membrane for creating a corneal epithelial model for an ocular irritancy 
evaluation as an alternative to the Draize eye irritation test (Takezawa et al.  2011  ) . 
LESCs grown on a plastic compressed collagen scaffolds showed a phenotype similar 
to that of central corneal cells (Levis et al.  2010  )  .  

 Various groups have produced electrospun collagen  fi bres from solutions that 
were combined with synthetic polymers (Buttafoco et al.  2006 ; Casper et al.  2007 ; 
Matthews et al.  2002 ; Zhong et al.  2006  ) , but many of the polymers or solvents are 
cytotoxic and so not appropriate for use in cellular applications. Wray and Orwin 
group have produced collagen type I  fi bres using a less toxic solvent (Wray and 
Orwin  2009  ) . They showed that corneal  fi broblasts elongated along the axis of  fi bre 
alignment, responding changes in microstructure and organization of the matrix 
environment. This method appears to provide a viable scaffold material for corneal 
stroma replacement but again, further testing is needed to determine how LESCs 
would react to this material.    

    22.5.2   Corneal Endothelial Reconstruction 

 The use of cultured human corneal endothelial cells (HCECs) as an alternative to 
full thickness keratoplasty in the replacement of defective corneal endothelium 
was conceptualized over three decades ago (Jumblatt et al.  1978 ; Gospodarowicz 
et al.  1979  ) . The  in vitro  proliferation capacity of HCECs is well established 
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(Joyce  2003 ; Baum et al.  1979 ; Koizumi et al.  2008 ; Proulx et al.  2009a  )  and their 
growth dynamics are now better understood (Joyce et al.  1996 ; Engelmann et al. 
 2004 ; Zhu and Joyce  2004  ) . Various reports have shown the ef fi cacy of vitrigel 
membrane (Takezawa et al.  2004 ; Koizumi et al.  2007,   2008  ) ,  fi brin-agarose scaf-
folds (Alaminos et al.  2006  ) , collagen chondroitin sulfate foams (Vrana et al. 
 2008  ) , amniotic membrane (Ishino et al.  2004  ) , gelatinious membranes (Lai et al. 
 2007 ; Hsiue et al.  2006 ; Sumide et al.  2006  )  as potential carrier systems for 
endothelial cells for  transplantation purposes. The lifting of con fl uent HCECs 
cultured on a thermoresponsive polymeric culture surface as an intact HCEC sheet 
without the use of enzymatic dissociation has also been shown (Ide et al.  2006 ; 
Sumide et al.  2006  ) . 

 Endothelium denuded corneal buttons have also been tested as carriers for cor-
neal endothelial cells in  in vivo  models (Proulx et al.  2009a,   b ; Honda et al.  2009  ) . 
The advantage of using such a carrier is that both normal corneal shape and corneal 
transparency is maintained. Tissue-engineered feline corneal endothelium using 
cultured feline CECs seeded onto devitalized cadaveric human stromal cornea 
achieved a cell density of 2,272 ± 344 cells/mm 2  and expressed characteristic func-
tion-related markers such as Na + K + -ATPase and ZO-1 (Proulx et al.  2009a  ) . A sub-
sequent report showed functional success when the tissue-engineered feline corneal 
endothelium, reconstructed on a devitalized human stromal carrier, was trans-
planted into a feline model (Proulx et al.  2009b  ) . Promising results were obtained 
when HCECs-populated stromal discs was transplanted into rabbit models (Honda 
et al.  2009  ) . Although promising, further re fi nement is needed prior to routined use 
of human corneal stromal buttons as a carriers in achieving clinically relevant 
endothelial cell density for transplantation. In addition, long-term functional 
assessment is needed. Furthermore, development of a de fi ned serum free, xeno-
free culture system for the expansion of HCECs will be required for future clinical 
trials (Peh et al.  2011  ) .   

    22.6   Conclusion 

 There have been signi fi cant developments in regenerative medicine-based approaches 
to replace partial or the full thickness of damaged or diseased corneas. Biomaterials 
have been developed to assist in these reparative procedures. They have been designed 
as interactive scaffolds to promote endogenous stem cell repair and regeneration, and 
they have also been used as substrates for the implantation of exogenous stem cells. 
These different approaches in the near future be able to supplement the supply of 
human donor corneas harvested for transplantation. They may also be further 
developed to some day treat, diseased or damaged corneas that cannot be treated 
using currently available techniques. It should be noted that purely cell based tech-
niques of injecting stem cells into damaged corneas are also being tested, but are not 
within the scope of this chapter.      
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  Abstract   Regenerative medicine aims to repair tissues or organs for restoring normal 
functions, which represents one of the greatest challenges in modern day science and 
medicine. Diverse techniques and materials are required to truly understand the pro-
cess of tissue repairing and build a proper scaffold for cells attachment, proliferation 
and differentiation. Functionalized nanomaterials with nanotechnologies are the ideal 
to solve most of the problems of regenerative medicine. Multifunctionalized nanopar-
ticles and nanostructured biomaterials can be powerful tools for cell tracking and 
matrix-like scaffold rebuilding      

    23.1   Introduction 

 Regenerative medicine is an interdisciplinary  fi eld of research and clinical applica-
tions focused on the repair, replacement or regeneracy of cells, tissues or organs to 
restore impaired function resulting from any cause (Daar and Greenwood  2007  ) , 
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which combines diverse techniques to stimulate or support the body’s own self-healing 
capacity. Though numerous implants and engineered tissues have been developed 
which are based on the current knowledge of the superstructure and the micro-
structure of tissue in last several decades, the truly regenerative therapies require 
signi fi cant understanding and controlling the underlying nanostructures in cells, the 
extracellular matrix (ECM) and also the cell behaviors during the tissue regeneracy 
(Harrison  2008 ; Zhang and Webster  2009  ) . 

 In order to truly understand of the regenerative process during the tissue recon-
struction, the knowledge of cell migration, proliferation and/or differentiation after 
the regenerative therapies is critical. Cell imaging    and cell tracking    as one of these 
methods is used to investigate the detail process during tissue regeneracy   . The knowl-
edge from cell tracking helps to advance new technologies for improving regenera-
tive medicine in vice versa (Solanki et al.  2008 ; Vaccaro et al.  2008  ) . An ideal cell 
tracking technology should be multifunctional (able to be both imaged and quanti fi ed), 
high sensitive, nontoxic, have long life time after labeling, and label cells with high 
ef fi ciency (Vaccaro et al.  2008  ) . 

 Furthermore, in a regenerative strategy, a scaffold is normally required for pro-
moting new tissue formation by providing adequate space (porosity) and appropri-
ate surface to foster and direct cellular attachment, migration, proliferation, desired 
differentiation of speci fi c cell phenotypes throughout the scaffold where new tissue 
formation is needed (Chaikof et al.  2002 ; Wei and Ma  2008  ) . 

 Nanomaterial    is a prosperous  fi eld in materials science based on the nanotech-
nology which was  fi rst de fi ned by Taniguchi  (  1974  ) . Nanotechnology   , as a tool for 
fabricating nanomaterials, is the study of the control of matter on an atomic and 
molecular scale, which has the potential to create many new materials and devices 
with wide-ranging applications, such as in medicine, electronics, and energy pro-
duction. The scale of nanomaterials made by nanotechnology is usually smaller 
than 100 nm meter in at least one dimension (Buzea et al.  2007  ) , though sometimes 
also smaller than 1  m m, especially in the biological area. 

 Nanotechnology or the use of nanomaterials may have the answers since only these 
materials can be a powerful tool to track cell and mimic surface properties (including 
topography, composite, etc.) of natural tissues or delivery growth factors for tissue 
regeneracy. Nanomaterials are the materials with complex nanostructures, normally 
are fabricated by bottom-up or top-down methods. At the nanometer scale, where 
many biological processes operate, for example, the functional structures on the cell 
membrane, enzyme reactions, protein dynamics and DNA, all possess some aspect of 
nanodimensionality (Harrison  2008  ) . With signi fi cant advancements in synthetic and 
modi fi cation methodologies, nanomaterials can be modi fi ed to desired sizes, shapes, 
compositions and properties, which can be used as an ideal cell tracking label the cells 
without toxicity (Solanki et al.  2008  ) . Furthermore, the ECM that the cells interact 
with also abounds with nanosized features which does not only adjust the behaviors 
of the cells contacted with, but also in fl uences the other cells and even tissues. These 
nanosized features, such as the size of  fi bers, the pores of matrix, and the chemical 
composition, control the mechanical properties, the cell adhesion, proliferation and 
even differentiation on the matrix (Harrison  2008  ) .  
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    23.2   Principles 

 Since tissue regeneracy is a complex and precise process, in which cell behaviors, 
nanosized structures, chemical components of ECM and cytokines play critical 
roles. Understanding these critical aspects in the tissue repairing process helps 
to develop new techniques for fabricating proper materials in the regenerative 
medicine. 

    23.2.1   Nanoparticles    for Cell Tracking 

 The importance of tracking cells in regenerative medicine is increasing because of 
the developing of basic cell therapy science, which is critical for cell delivery 
optimization and for accurate biodistribution studies (Solanki et al.  2008 ; Vaccaro 
et al.  2008  ) . 

 In general, there are little cells retained in the target site after cell injection, 
which is found by cell tracking method. Wentworth et al.  (  2007  )  labeled skeletal 
myoblasts, and bone marrow stromal cells with Europium nanoparticles in advance, 
then the labeled cells were injected in vivo into the rat heart. The results showed that 
only approximately 15% of the delivered cells were retained shortly after cell injec-
tion and the cells kept losing during the following 5 days. Other groups have reported 
similar cell retention numbers at the therapeutic site after injection, ranging from 5 
to 15% (Freyman et al.  2006 ; Wentworth et al.  2007  ) . By immunohistochemical 
detection, the author found that the macrophage in fi ltrate contribute to losses of 
both cell types (Wentworth et al.  2007  ) . 

 Nanoparticles   , especially iron oxide nanoparticles and quantum dots (QDs), are 
one of exciting materials for cell labeling, cell tracking and in vivo imaging, because 
of ease to synthesize in large quantities from various materials using relatively sim-
ple methods. The diameter of the nanoparticles can be tuned from several to a few 
hundred nanometers with controlled size distribution. Among them, QDs are con-
sidered as the ideal tool to label cells for tracking the cells, because of broad adsorp-
tion spectra, narrow emission spectra, high  fl uorescent intensity and long  fl uorescence 
lifetime (Solanki et al.  2008  ) .  

    23.2.2   Scaffold    for Tissue Regeneracy 

 As mentioned above, cell lost is a big problem for the cells injection method for 
tissue repair. It’s a really necessary requirement to make cells adhere to the surface 
of a scaffold which can prevent cell losing, support three-dimensional tissue forma-
tion. Furthermore, depending upon the setting, progenitor cells may need to mature 
into a tissue-speci fi c phenotype, and fully differentiated cells will need to operate 
with appropriate functional responses (Chaikof et al.  2002  ) . 
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 Actually, the ECM   , which is the natural environment for cells growing, is full of 
nanosized structure. Bone, as an example, is a nanocomposite that consists of a 
protein network (i.e., collagen, laminin,  fi bronectin, and vitronectin) and hard inor-
ganic components (hydroxyapatite (HA), Ca 

10
 (PO 

4
 ) 

6
 (OH) 

2
 ) (Webster  2001 ; Zhang 

and Webster  2009  ) . Speci fi cally, 70% of the bone matrix is composed of nanocrys-
talline HA which is typically 20–80 nm long and 2–5 nm thick (Simon  1994  ) . Other 
protein components in the bone ECM    same with the other tissues are also nanome-
ter in dimension. This self-assembled nanostructured ECM in all tissues closely 
surrounds and affects these cell behaviors, for example, cell adhesion, proliferation 
and differentiation. Apparently, the design of novel nanomaterials which possess 
not only excellent mechanical properties but that are also biomimetic in terms of 
their nanostructure, has become quite popular in order to improve the functions of 
cells in regenerative medicine (Zhang and Webster  2009  ) . 

 In 2004, Miller et al.  (  2004  )  reported endothelial and vascular smooth muscle 
cells adhesion and proliferation were enhanced comparing a nanostructured PLGA 
surfaces with smooth one. Later, a series of PLGA    surfaces were fabricated by com-
posing of submicron scale spheres on them. The results revealed that surfaces with 
200 nm lateral diameter spherical features exhibited highest  fi bronectin and colla-
gen type IV adsorption comparing the 100 or 500 nm lateral diameter spherical 
surface features. Furthermore, the higher  fi bronectin and collagen IV adsorption, 
the more endothelial and vascular smooth muscle cell adhesion was found as well 
(Miller et al.  2007  ) . Since chemistry was similar between all PLGA surfaces inves-
tigated, this study provided strong evidence of the in fl uence of nanometer features 
on optimizing  fi bronectin interactions and subsequently vascular cell adhesion. 
Similar results were also found that nanostructured titanium implant surfaces    pro-
mote bone cell responses leading to accelerated calcium deposition improving inte-
gration with surrounding bone compared to conventional titanium surfaces (Ergun 
et al.  2008 ; Webster et al.  1999 ; Yao et al.  2008  ) . 

 Collagen, the major ECM component of most of these tissues, has been proved 
as a substrate or scaffold for cell attachment, proliferation, and differentiation 
(Elsdale and Bard  1972 ; Strom and Michalopoulos  1982  ) . Moreover, the nanosized 
collagen  fi brillar structure    (50–500 nm in diameter) has been demonstrated to 
enhance cell/matrix interactions (Grinnell and Bennett  1982 ; Kuntz and Saltzman 
 1997  ) . For serving as a scaffold for regenerative cells, the nanosized  fi bers like col-
lagen may be help to improve the cell/scaffold interactions and to be a better envi-
ronment for cell growing. Several techniques, for example, self-assembly, phase 
separation, and electrospinning are developed to fabricate porous scaffolds com-
posed with nanosized  fi bers (Wei and Ma  2008  ) . 

 For example, electrospun poly(L-lactide- co - e -caprolactone) (PLCL)  fi brous 
scaffolds    of varying  fi ber diameters (ranging from 300 nm to 7 mm) were used as 
scaffolds for culturing human umbilical vein endothelial cells (HUVECs). A higher 
cell adhesion and proliferation potential was found cultured with nanosized PLCL 
scaffolds (Kwon et al.  2005  ) . Ma’s group developed a thermally induced phase sep-
aration method to fabricate nano fi brous scaffold (Zhang and Ma  1999  ) . With this 
method, nano fi brous poly(L-lactide) (PLLA) scaffolds    with diameters ranging from 
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50 to 500 nm has been prepared using tetrahydrofuran (THF) as solvent (Zhang and 
Ma  1999,   2000  ) . Nano fi brous scaffolds of PLLA prepared from this technique have 
demonstrated to adsorb/absorb cell adhesive proteins ( fi bronectin and vitronectin) 
two to four times higher and an almost twofold increased osteoblast attachment in 
comparison to solid walled PLLA scaffolds (Yang et al.  2004a  ) . 

 So, an ideal 3D-scaffold for tissue regeneracy should have similarity to native 
ECM in terms of both chemical composition and physical nanostructure. Nanostructured 
biomaterials having physical features in the nanometer range, such as nanocrystals, 
nano fi bers, nanosurfaces and nanocomposites, have gained much interest recently in 
regenerative medicine (Layrolle and Daculsi  2006 ; Thomas et al.  2006a  ) . 

 Furthermore, except ECMs, intrinsic regulators (e.g., growth factors and signal-
ing molecules) are another prime factors that have critical roles in the regulation of 
cell behaviors during the tissue reparation (Kiritsy and Lynch  1993 ; Solanki et al. 
 2008  ) . For example, during the cutaneous wound repair process, the growth factors 
(platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF- b ), 
epidermal growth factor (EGF), and  fi broblast growth factor (FGF) et al) play 
important roles in all of three repair phases (hemostasis and in fl ammation, granula-
tion tissue formation, and matrix formation and remodeling) (Kiritsy and Lynch 
 1993  ) . However, direct injection of growth factors solution into a regeneracy site is 
generally not effective because of its rapid diffusion and short lifetime. To enable 
growth factors to ef fi ciently exert their biological effects during the tissue regener-
acy process, a drug delivery system should be used (Tabata  2003  ) .   

    23.3   Technological and Biological Opportunities 
for Therapeutic Devices 

    23.3.1   Functionalized Nanoparticles    for Cell Tracking 

 Over the past decade, cell tracking is becoming more and more important for opti-
mizing cell delivery or accurate biodistribution studies in regenerative medicine as 
mentioned above. 

 Nanoparticles, because of the size-dependent properties and dimensional similari-
ties to biomacromolecules, are suitable as contrast agents (Bruchez-Jr. et al.  1998 ; 
Chan and Nie  1998 ; Chan et al.  2002 ; Dahan et al.  2003 ; Dubertret et al.  2002 ; Ishii 
et al.  2003 ; Jaiswal et al.  2002 ; Lidke et al.  2004  )  or probes for biomedical imaging 
(Bulte et al.  2001 ; Josephson et al.  1999  ) . 

 Magnetic nanoparticles in magnetic resonance imaging (MRI), QDs and other 
bioengineered nanoparticles are the commonly used for cell labeling and tracking 
which provide several unique features and capabilities. Firstly, the size-dependent 
optical and electronic properties can be tuned continuously by changing the par-
ticles size (Alivisatos  1996  ) . Secondly, nanoparticles have big speci fi c surface 
which can be useful for surface modi fi cation in order to target a speci fi c organ or 
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tissue in human body (Rhyner et al.  2006  ) . These nanoparticles are functionalized 
by diverse techniques in order to meet the requirements for cell imaging and cell 
tracking. 

    23.3.1.1   Magnetic Nanoparticles 

 Magnetic nanoparticles   , especially superparamagnetic iron oxide particles (SPIO)   , 
have a variety of applications on molecular and cellular imaging for enhancing 
magnetic resonance contrast. The popularity of SPIO particle is mainly because of 
these following several properties: (1) they provide the most change in signal (albeit 
hypointensity) per unit of metal which can obtain sharp images with different iron 
concentration; (2) they are composed of biodegradable iron, which is biocompatible 
and can thus be reused/recycled by cells using normal biochemical pathways for 
iron metabolism; (3) they can be magnetically manipulated and change their mag-
netic properties according to size (Bulte and Kraitchman  2004  ) . 

 Normally, SPIO consist of two components, an iron oxide core and a hydro-
philic coating. Typically, the core is magnetite (Fe 

3
 O 

4
 ) and/or maghemite ( g  Fe 

2
 O 

3
 ) 

which plays important role in the MRI. In some case, SPIO nanoparticles can be 
functionalized simply by doping some other metal ions during the preparation pro-
cess. Groman et al.  (  2007  )  fabricated one new mixed ferrite colloidal magnetic iron 
oxides by adding informational atoms (Lanthanide) during formation of the iron 
oxides core. The new functionalized nanoparticles, not only can be visualized by 
iron-based MRI, but also can be quantized by neutron activation (Eu, Sm, La, Tb 
add) and even visualized histologically using time resolved  fl uorescence (Eu, Tb 
added). 

 The SPIO nanoparticles must be functionalized by hydrophilic coating in order 
to stabilize iron oxide crystals in aqueous colloidal solutions or in vivo, reduce 
unspeci fi c protein adsorption or cell interactions in vitro or in vivo. Most com-
monly, surface molecules are biocompatible hydrophilic polymers, for example 
polysaccharides-dextran (Weissleder and Papisov  1992  ) . A rich dextran density can 
also enhance circulation time because of the  fl exible dextran layer forming a 
“molecular brush” (Papisov et al.  1993  )  because of the low protein adsorption in 
plasma. As a fact, long circulation time is critically necessary for better targeting 
and tracking cells. For this purpose, other biological macromolecules have been 
investigated for functionalizing iron nanoparticles, e.g. poly(sialic acid), heparin 
etc., but because of their high cost, efforts have been directed to the design of syn-
thetic hydrophilic macromolecules. 

 Among these synthetic macromolecules   , block-copolymers such as poloxamers and 
poloxamines has been widely used for enhancing circulation time in vivo because of the 
effect from poly(ethylene glycol) (PEG) molecules extended in the solution (Moghimi 
and Hunter  2000  ) . To achieve coupling PEG on iron oxide particles, associated dextran 
on particles was oxidized and poly-L-lysine (PLL) were attached to the surface by elec-
trostatic force. Finally, methoxy(polyethylene glycol)-O-succinyl succinate was immo-
bilized on PLL covered particles (Weissleder et al.  1995  ) . Then, Butterworth et al.  (  2001  )  
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developed a new method for the grafting of PEG onto magnetite particles by the use of 
trimethoxysilane-PEG which is more convenient for controlling the grafting process. 
The PEG immobilized iron oxide particles produced showed greatly enhanced colloidal 
stability with respect to uncoated particles. 

 Targeting speci fi c tissue, organ, or cells precisely are necessary for cellular imag-
ing and tracking. Passive targeting is easier to achieve in application which can make 
nanoparticles accumulate in a speci fi c tissue or organ (liver, spleen, cancer et al.) by 
simply controlling the particles size (Thorek et al.  2006  ) . But passive targeting is not 
a universal method for targeting because of its limitation. In order to achieve active 
targeting of SPIO against speci fi c tissue, organ or cells, it is necessary to  fi rst conju-
gate targeting agents onto the SPIO surface directly or onto its hydrophilic coating. 
In this case, reactive moieties (i.e., amines, sulfhydryls, carboxyls, etc.) are needed in 
order to immobilize targeting moieties (i.e., antibodies, folic acid, galactose etc.). 
Take dextran coated SPIO particles as an example, these hydroxyl groups on dextran 
molecules were oxidized by sodium metaperiodate (Weissleder et al.  1995  ) , then 
further modi fi cation can be applied. Josephson et al.  (  1999  )  crosslinked dextran with 
epichlorohydrin, then amination was used to induce amino groups on SPIO particles. 
Finally, particles were functionalized by tat peptide and  fl uorochrome for imaging 
cells (Groman et al.  2007 ; Josephson et al.  1999 ; Koch et al.  2003  ) . 

 In order to improve speci fi c interactions with certain kind of cell, targeting moi-
eties, for example peptides, antibodies, small molecule (folic acid, galactose etc.) 
are normally immobilized on SPIO particles. HIV tat peptide, which contains a 
membrane translocating signal, was immobilized on surface for ef fi ciently trans-
porting the iron oxides into cells (Josephson et al.  1999 ; Koch et al.  2003 ; Lewin 
et al.  2000  ) . Monoclonal antibodies (mABs) are the proteins which can only interact 
with a speci fi c substance, and achieve precisely targeting for one kind of cell. Bulte 
et al. coupled mouse anti-transferrin receptor mAB OX-26 with magnetic nanopar-
ticles and then magnetically labeled oligodendrocyte progenitors    (Bulte et al.  1999  )  
and neural precursor cells    (Bulte et al.  2003  )  by receptor-mediated endocytosis for 
monitoring cell migration. Schellenberger et al.  (  2002,   2004  )  found that Annexin V 
conjugated nanoparticles could detect apoptotic cells at nanoparticle concentrations 
as low as 0.1  m g Fe/ml in vitro. Targeting moieties are immobilized with PEG as 
space, for reducing unspeci fi c interactions and increasing speci fi c interactions. Iron 
oxide nanoparticle surface was modi fi ed by folic acid (FA) with PEG as spacer suc-
cessfully (Kohler et al.  2004 ; Sun et al.  2006  ) . Then the cell uptake properties were 
obviously increased after FA immobilized on particles. The speci fi c interactions 
was found with FA receptor overexpressed cell line—HeLa, but not with non FA 
receptor overexpressed cells—MG-63 (Sun et al.  2006  ) . 

 Moreover, Fe 2+  released from iron oxide nanoparticles may have potential toxic 
effects on the cells. In order to prevent Fe 2+  toxic effects of SPIONs, the gold-coated 
shell was combined on the surface, which is well know as a stable metal. More 
importantly, gold has well-de fi ned surface chemistry with thiol or amine moieties. 
This offers an attractive and convenient route for further functionalization of the 
SPIONs with biomolecules through thiol- or amine-coupling chemistry (Niemeyer 
and Ceyhan  2001  ) . 
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 Magnetic nanoparticles labeled cell not only make cell visible in the regenerative 
medicine, but also may be helpful for guiding cells into usable tissues for transplan-
tation with the help of magnetic  fi elds. Sasaki et al.  (  2008  )  fabricated novel mag-
netic nanoparticles coated with chitosan. When bound to  fi broblasts and exposed to 
an external magnetic  fi eld, these magnetic nanoparticles improved cell seeding into 
the center of a 3D scaffold.  

    23.3.1.2   Quantum Dots    

 QDs are crystalline semiconductors typically less than 10 nm in diameter that have 
been studied for over 20 years. Recently, more and more applications are developed 
in biomedicine including regenerative medicine  fi eld (Bruchez-Jr. et al.  1998 ; Chan 
and Nie  1998  ) . In the past decades, several production methods are available, from 
photolithography to wet chemical synthesis. The QDs produced in colloidal solu-
tions are the most useful for biomedical applications since high-quality nanocrystals 
can be prepared in large quantities at low costs (Rhyner et al.  2006  ) . 

 QDs have unique optical and electronic properties comparing with organic 
dyes and  fl uorescent proteins because of higher molar extinction coef fi cients, 
emission wavelengths size tunable and long term photostability (Cui et al.  2007 ; 
Maysinger et al.  2007 ; Yu et al.  2003  ) . These properties have made QDs a topic 
of intensive research in tracking cell migration, differentiation and metastasis 
(Rhyner et al.  2006  ) . 

 The highest quality QDs are composed of II–VI, IV–VI or III–V semiconductors 
(Lemon and Crooks  2000 ; Rogach et al.  1999  ) . The most common QD structure is 
a CdSe core functionalized with a thin shell of ZnS in order to reduce potential 
toxicity of core (Rhyner et al.  2006  ) . No acute and obvious CdSe QD toxicity has 
been detected in studies of cell proliferation and viability in live cells (Derfus et al. 
 2004 ; Jaiswal et al.  2002 ; Parak et al.  2002 ; Winter et al.  2001  )  and animal models 
(Akerman et al.  2002 ; Larson et al.  2003  ) . However, cytotoxicity was observed 
when Cd 2+  was released by oxidization the CdSe in air or UV. This happened when 
the QD surface coating was not stable enough. But after larger molecules, such 
as proteins (e.g., streptavidin and bovine serum albumin) are used to functionalize 
on the surface, slower oxidation is found of the core (Alivisatos et al.  2005  ) . 
Bioconjugation of QDs with biomolecules, such as arginine-glycine-aspartic acid, 
did not show any toxic effect on hMSCs as compared with unlabeled human umbilical 
vein endothelial cells (hMSCs) (Shah et al.  2007  ) . 

 In general, surface modi fi cations or functionalization must be taken place after 
the QDs are synthesized in order to transfer to an aqueous phase for medical appli-
cations. To accomplish this, the hydrophobic surface ligands can either be exchanged 
with bifunctional ligands or the entire QD can be coated with an amphiphilic poly-
mer layer. In recent work, Gao and colleagues  (  2004  )  encapsulated luminescent 
QDs    with a biocompatible copolymer and linked this amphiphilic polymer to tumor-
targeting ligands. Using either subcutaneous injection of QD-tagged cells or sys-
temic injection of multifunctional QD probes, sensitive and multicolor  fl uorescence 
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imaging of cells can be achieved under in vivo conditions which may be quite useful 
for regenerative medicine applications (Rhyner et al.  2006  ) . 

 Although optical imaging with QDs is highly sensitive, a limitation in depth is 
a major disadvantage. Other imaging techniques, such as MRI, are more suited for 
tomography and 3D imaging. By functionalizing on QDs, dual imaging can be 
achieved. For example, gadolinium, which is visible by MRI, was used to link on 
the surface of QDs by polymer conjugated lipids (Mulder et al.  2006  ) . These func-
tionalized QDs can be easily detected both by  fl uorescence imaging and MRI 
in vitro (Mulder et al.  2006  ) . Furthermore, these Gd-based dual-modality nanopar-
ticle probes are promising for in vivo apoptosis after immobilized Annexin A5 on 
the surface through a PEG spacer (van-Tilborg et al.  2006  ) . The dual imaging 
nanoparticle probes can be achieved by linking QDs with Fe 

2
 O 

3
  or FePt as well 

(Gu et al.  2004  ) . 
 Normally,  fl uorescent QDs require excitation from external illumination sources 

to  fl uoresce, which limits their application for imaging living opaque subjects 
because of the resultant strong auto fl uorescence background and a paucity of exci-
tation light at non-super fi cial locations. So et al.  (  2006  )  reported self-illuminating 
quantum dot    conjugates designed by mimicking a natural bioluminescence reso-
nance energy transfer (BRET) system, with a mutant of R. reniformis luciferase as 
the energy donor and quantum dots as the acceptor, and have demonstrated that 
BRET emission can be imaged in cells and small animals. These self-illuminating 
QD conjugates can emit long-wavelength (from red to near-infrared) biolumines-
cent light in living cells and in living animals, even in deep tissues, and can be 
applied for multiplex in vivo imaging (So et al.  2006  ) .  

    23.3.1.3   Other Nanoparticles 

 Except wildly used magnetic nanoparticles and QDs, diverse nanoparticles made by 
either organic or inorganic are applied as cell tracking or imaging probes. 

 For the speci fi c application, bioactive inorganic particles, for example hydroxy-
apatite (HA) particles, were functionalized by  fl uorescence molecules. Zaheer et al. 
 (  2001  )  synthesized a near-infrared (NIR)  fl uorescent bisphosphonate derivative that 
exhibits rapid and speci fi c binding to hydroxyapatite (HA). They demonstrate NIR 
light–based detection of osteoblastic activity in the living animal, and discuss how 
this technology can be used to study skeletal development. Fluorescence imaging of 
osteoblastic activity in living animals has also met with success using an active 
probe: a tetrasulfonated heptamethine indocyanine conjugated to the hydroxyapa-
tite-binding ligand pamidronate (Rao et al.  2007  ) . 

 A large group of organic nanoparticles    such as liposomes, dendrimers and poly-
mersomes have not only been developed for drug delivery, but can also be applied 
to in vivo optical imaging. Therien and colleagues (Ghoroghchian et al.  2005  )  
reported the synthesis of NIR-emissive polymersomes (polymer vesicles with a 
diameter of 50 nm–50 mm) through the cooperative self-assembly of amphiphilic 
diblock copolymers and conjugated multi(porphyrin)-based NIR  fl uorophores. 
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Dendrimers were previously used as carriers for magnetic resonance imaging (MRI) 
contrast reagents and, recently, McIntyre et al.  (  2004  )  designed a polyamidoamine 
dendrimer-based  fl uorogenic substrate to image tumorassociated matrix metallo-
proteinase-7 in vivo. A boronated dendrimer labeled with a vascular endothelial 
growth factor (VEGF) and an NIR dye Cy5 has been shown to selectively bind 
upregulated VEGF receptors in mouse breast carcinoma (Backer et al.  2005  ) . 

 When multiple  fl uorescent dyes are attached to the same molecule, such as an 
antibody, the  fl uorescent intensity can decrease instead of increase owing to dye–
dye quenching. However, when a viral capsid is used as the scaffold for labeling, 
more than 40 Cy5 dyes can be loaded onto a single virus particle via speci fi c 
chemical coupling and no  fl uorescence quenching is observed due to the large 
intermolecular distances (Soto et al.  2006  ) . This approach has resulted in the syn-
thesis of highly  fl uorescent viral nanoparticles    with a de fi ned structure and a size 
of 30 nm in diameter. The local dye concentration was reported to be as high as 
1.8 mM without signi fi cant quenching (Wu et al.  2005  ) . Cowpea mosaic virus 
nanoparticles    labeled with Alexa dyes have been used successfully to visualize 
the vasculature and blood  fl ow and for imaging human  fi brosarcoma-mediated 
tumor angiogenesis in living mouse and chick embryos (Lewis et al.  2006  ) .   

    23.3.2   Functionalized Nanomaterials    for Tissue Regeneracy 

 Besides multifunctionalized nanoparticles for better understanding tissue regener-
ative process through cell tracking and cell imaging, arti fi cial tissues could become 
important for tissue regeneracy. The principles of the design of an ideal 3D scaf-
fold for tissue engineering remain unclear. The scaffolds should mimic the struc-
ture, composition and biological functions of native extracellular matrix    (ECM) as 
much as possible. Moreover, most of the scaffold fabrication strategies have not 
given importance to mimic the nanoscale physical features of the natural ECM. 
It is well known that cells and proteins interact at the nanoscale (Cao  2008 ; Thomas 
et al.  2006a  ) . For instance, researchers have engineered a variety of scaffolds made 
from nanotubes, nano fi bers, and nano composites that can be used to grow lifelike 
networks of cells from the liver, bladder, kidney, bones and cardiovascular system. 
These arti fi cial tissues could be developed into new therapies for patients with 
diseased or damaged organs. 

 It is still early, but many laboratories are experimenting with a wide variety of 
nanomaterial scaffolds that can be infused with cells to form arti fi cial tissues, such 
as bone and liver. It appears possible to repair damaged nerves by injecting them 
with nanomaterials that form bridge-like lattices. Other nanostructures show prom-
ise as foundations for growing three-dimensional networks of blood vessels. 

 Considerable efforts have been made to develop ideal scaffolds for tissue engi-
neering so far. Various techniques such as solvent casting/particulate leaching 
(Mikos et al.  1994  ) , gas foaming (Mooney et al.  1996 ; Nam et al.  2000  ) , and phase 
separation/emulsi fi cation (Nam and Park  1999a,   b  )  have been employed to fabricate 
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conventional porous polymeric foams. Peptide self-assembling, phase separation, 
and electrospinning are normally techniques used for fabricating nanostructured 
scaffold materials. 

    23.3.2.1   Self-Assembly 

 Self-assembly    is a process in which molecules and supramolecular aggregates orga-
nize and arrange themselves into an ordered structure through weak and non-covalent 
bonds (Murugan and Ramakrishna  2007 ; Whitesides and Grzybowski  2002  ) . It is a 
common process in nature, for example, collagen has a triple helix secondary struc-
ture, which consists of three polypeptide chains in an extended left handed helix 
(Ramachandran  1988  ) . Self-assembly could be used to produce natural or synthetic 
polymers into nanoscale structures including nano fi bers (Chiti et al.  2003 ; Hartgerink 
et al.  2001 ; Zhang  2003  ) , especially scaffolds based on peptides and proteins. The 
biological ECMs made by this technique are able to interact with cells at the molecu-
lar level to control the processes of tissue regeneracy effectively. 

 Several studies report promising results of this strategy. For example, a peptide 
amphiphile (chemical compound possessing both hydrophilic and hydrophobic 
properties) nano fi ber network could be mineralized with hydroxyapatite to recreate 
the nanoscale structure of bone (Hartgerink et al.  2001  ) . Certain peptide amphiphiles 
can be designed in order to get functionalized nanomaterials for speci fi c applica-
tions. For example, these amphiphile nano fi bers have been designed to mimic the 
collagen structure-building protein-like structural motifs that incorporate sequences 
of biological interest (Berndt et al.  1995 ; Fields et al.  1998 ; Yu et al.  1998,   1999  ) . 
These nano fi bers have been also applied to promote rapid and selective differentia-
tion of neural progenitor cells into neurons (Silva et al.  2004  ) . Self-assembly was 
also used successfully to encapsulate chondrocytes within a self-assembled peptide 
hydrogel scaffold for cartilage repair (Engel et al.  2008 ; Kisiday et al.  2002  ) . Self-
assembly of PAs can be promoted by various factors such as pH change, presence 
of Ca 2+  ions, and drying on surface. Hong et al.  (  2003  )  developed another kind of 
peptide containing 16 alternating hydrophobic and hydrophilic amino acids and 
studies the effect of amino acid sequence and pH on self-assembly into nano fi bers 
(Thomas et al.  2006a  ) .  

    23.3.2.2   Phase Separation 

 Phase separation techniques    have been used to prepare porous polymer membranes 
for puri fi cation and separation purposes. In last two decades, it is becoming a fre-
quently used and convenient method to prepare porous tissue regenerative scaffolds. 
A variety of biodegradable polymers have been fabricated into three-dimensional 
porous scaffolds using phase separation techniques (Gong et al.  2006 ; Ma et al.  2003 ; 
Zhang and Ma  1999  ) . In order to meet the requirement of nanoscaled scaffold for 
tissue regenerative process, a novel phase separation technique has been developed 
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to generate nano fi brous structures by manipulating the phase separation process 
(Chen and Ma  2006 ; Zhang and Ma  2000  ) . The poly(L-lactic acid) (PLLA)  fi brous 
scaffold contains nano fi bers ranging from 50 to 500 nm in diameter (Chen and Ma 
 2006  ) , which is similar to natural collagen  fi bers in size (Elsdale and Bard  1972 ; Hay 
 1991  ) . Nano fi brous scaffolds of PLLA    prepared from this technique have demon-
strated to adsorb/absorb cell adhesive proteins ( fi bronectin and vitronectin) two to 
four times higher and an almost twofold increased osteoblast attachment in compari-
son to solid walled PLLA scaffolds (Zhang and Ma  2000  ) . Due to the substantial 
surface area difference, degradation is much more rapid in such nano fi brous scaf-
folds, in which the overall mass loss is 51% while mass loss in solid-walled non fi brous 
foams is only 6% after 15 months (Chen and Ma  2006  ) . 

 One limitation of the early nano fi brous materials generated using the phase-sep-
aration technique is the lack of interconnected macropores, which are critical for 
cell seeding and recruiting, mass transfer, vascularization, and tissue organization. 
To overcome this problem, phase separation techniques are used in combination 
with other scaffold fabrication techniques such as porogen leaching. The combined 
technique provides broader control over porous architectures from macro-, micro- to 
nanoscales (Chen and Ma  2004 ; Gong et al.  2008 ; Ma et al.  2005c ; Wei and Ma 
 2006 ; Zhou et al.  2005  ) . Gong et al.  (  2008 ; Zhou et al.  2005  )  fabricated well con-
nected PLLA scaffolds via porogen leaching with phase separation technique in 
which gelatin particles was used as porogens. The biological performance of the 
scaffold was evaluated by in vitro chondrocyte culture and in vivo implantation. 
In comparison with the control scaffold fabricated with NaC1 particles as porogen 
under the same conditions, the experimental scaffold had better biological perfor-
mance because the gelatin molecules were stably entrapped onto the pore surfaces 
(Gong et al.  2008  ) . Surface modi fi cation was also taken place in order to improve 
the biocompatibility of these PLLA scaffolds. Ma et al.  (  2005c  )  immobilized col-
lagen and introduced basic  fi broblast growth factor (bFGF) on PLLA scaffold. 
Chondrocyte culturing on the collagen immobilized PLLA surfaces showed 
signi fi cantly improved cell spreading and growth. Incorporation of  fi broblast growth 
factors in the collagen layer further enhanced the cell growth (Ma et al.  2005c  ) .  

    23.3.2.3   Electrospinning 

 Electrospinning   , as another method to produce nanoscale  fi bers, is a simple and 
cost-effective fabrication process that uses an electric  fi eld to control the deposition 
of polymer  fi bers onto a target substrate (Engel et al.  2008  ) . The generated  fi bers 
can mimic the structural pro fi le of the proteins found in the native ECM. The use of 
electrospinning process in biomaterials  fi eld was  fi rst reported by Martin and 
Cockshott  (  1977  )  as early as 1977. Since then, electrospinning process has been 
continuously investigated for the fabrication of nano fi brous matrices for divers 
applications (Chiu et al.  2005 ; Fong et al.  1999 ; Kim and Reneker  1999 ; Li et al. 
 2002 ; Ma et al.  2005b ; Reneker and Chun  1996 ; Yoshimoto et al.  2003  ) . Various 
synthetic polymer, PLA (Zeng et al.  2003 ; Zong et al.  2002  ) , PLGA (Li et al.  2002  ) , 
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PCL (Gong et al.  2006 ; Boland et al.  2005  ) , poly(dioxanone) (PDS) (Boland et al. 
 2005  )  and synthetic polypeptide (Huang et al.  2000  ) , natural proteins such as collagen 
(Huang et al.  2001 ; Matthews et al.  2002,   2003  ) , silk protein (Li et al.  2005  ) , elastin 
 fi brinogen (Wnek et al.  2003  )  etc., are used for fabricating biodegradable scaffold. 
Electrospun nano fi bers    have been shown to support cell attachment and prolifera-
tion of a variety of cells as they have large surface area and well-interconnectivity 
of inter- fi ber spaces, in addition to the nano sized diameters mimicking the physical 
nanoscaled dimensions of native ECM (Thomas et al.  2006a  ) . 

 Biomolecules such as growth factors, drugs, and genes can be directly mixed into 
the polymer solution and electrospun to prepare functionalized polymer nano fi bers. 
These functionalized bioactive nano fi bers have potential applications in both tissue 
regeneracy and drug delivery systems. Co-spinning of growth factors for cells in 
future may enable to fabricate scaffolds with controlled release of cellular nutrients. 
Luu et al.  (  2003  )  and Liang et al. (Ye and Huang  2005  )  have encapsulated plasmid 
DNA in PLA-PEG and co-electrospun with PLGA in DMF and electrospun the 
mixture into nano fi bers. Release of plasmid DNA from the scaffolds was studied for 
20 days and found that the release of DNA sustained over 20 day period with a 
maximum release occurring at 2 h. Verreck et al.  (  2003  )  prepared polyurethane 
nano fi bers containing model drugs itraconazole and ketanserin to study the pattern 
of drug release. Co-spinning of growth factors for cells in future may enable to fab-
ricate scaffolds with controlled release of cellular nutrients (Thomas et al.  2006a  ) . 

 Bioactive nanoscale  fi llers   , e.g. hydroxyapatite (HA), tricalcium phosphate (TCP) 
et al., are incorporated into polymer solution to electrospun nanocomposite nano fi bers 
for better interactions with cells. Thomas et al.  (  2006b  )  examined the physical prop-
erty changes after nanoHA incorporated into PCL nano fi bers. They demonstrated 
that it is possible to tailor subtle mechanical properties in a nano fi brous matrix by 
incorporating nano fi llers of desired amount. Higher percentage loadings of nanoHA 
resulted in poor dispersion of the nanoHA powder as particle size of nanoHA used 
was ~100 nm. If the particle size of HA is small enough (~20–40 nm), PCL/nanoHA 
composite with more than 20-wt% produces  fi bers with well dispersed nanoHA 
(Thomas et al.  2006b  ) . It has been reported that chondrocyte adhesion and prolifera-
tion on polymer/nanoHA composite materials are better than the pure polymer (Hong 
et al.  2005  ) . MSCs seeded onto nanocomposite scaffolds exhibited well cell spread-
ing and growth on PCL/nanoHA nanocomposites, revealing favorable cell-matrix 
interactions (Thomas et al.  2006a  ) . 

 As mentioned earlier, electrospinning of collagen into nano fi bers have opened 
the door to make nano fi brous matrices mimicking nano structures of bone for bone 
tissue engineering. However an ideal scaffold for bone tissue engineering should 
mimic not only the nano fi brous physical structure but also the chemical composi-
tion. Electrospun nano fi brous nanobiocomposite scaffolds based on Type I collagen 
and nanoHA have been prepared as biologically inspired scaffolds mimicking the 
chemical and morphological features of natural ECM (Thomas et al.  2007  ) . 

 Very recently, Badami et al.  (  2006  )  have electrospun PLA as well as PEG-PLA 
di-block copolymers of PEG-PLA into  fi bers with diameters ranging from 140 nm to 
2.1 mm and cultured MC3T3-E1 mouse calvaria-derived osteoprogenitor cells on the 
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scaffolds up to 14 days. The results of study focussed on the effect of  fi ber diameter 
on spreading, proliferation and differentiation of osteoblastic cells on  fi brous scaf-
folds with and without osteogenic factors. The authors concluded that in the absence 
of osteogenic factors such as  b    -glycerophosphate and L-ascorbat-2-phosphate, cell 
growth (cell density) was lower on polymer  fi bers than smooth polymer surfaces, 
while in the presence of osteogenic factors cell density on  fi bers was equal or greater 
than that on smooth surfaces (Thomas et al.  2006a  ) . 

 Venugopal et al.  (  2005  )  have coated collagen over electrospun PCL by soak-
ing the PCL matrix in collagen solution (10 mg/mL) and cultured human coro-
nary artery smooth muscle cells. It was observed that SMCs migrated towards 
inside the nano fi brous matrices and formed smooth muscle tissue in 72 h. 
According to the authors, PCL scaffold supporting the cell growth needs colla-
gen support for migration of cells inside the nano fi brous matrices. In another 
study He et al.  (  2005  )  showed that collagen coated PLLA-CL nano fi bers exhib-
ited enhanced cell attachment, spreading and viability of human coronary artery 
endothelial cells. It was found that coating of collagen on PCL scaffold de fi nitely 
favored cell proliferation. 

 The co-use of these adhesion proteins and biodegradable synthetic polymers 
enables the construction of cell-adhesive scaffolds for vitally functioning engi-
neered tissues (Almany and Seliktar  2005 ; Chen et al.  2000 ; Kwon et al.  2001 ; 
Kwon and Matsuda  2005 ; Zhang et al.  2005a  ) . Co-electrospinning is a feasible 
approach to provide a compromise solution for overcoming the shortcomings of 
synthetic and natural polymers that is producing new porous nano fi brous biomateri-
als with good biocompatibility and improved mechanical, physical and chemical 
properties and biological performance. 

 Stitzel et al.  (  2006  )  have recently fabricated a vascular graft scaffold    from elec-
trospun polymer blends of Type I collagen (45 wt%), elastin (15 wt%) and PLGA 
(45 wt%). They found that by controlling the compositional ratio of collagen, elas-
tin, and PLGA have resulted in improved electrospun  fi ber characteristics and phys-
ical strength of the vascular graft. 

 Core-shell types of multi component nano fi bers by co-axial electrospinning are 
of another interesting mixed polymer system in tissue engineering for bioactive 
scaffolds. Functionalization of  fi bers without affect the core is desirable in tissue 
engineering and in controlled drug delivery for preserving an unstable biological 
agent from an aggressive environment and delivering a biomolecular drug in a sus-
tained way. Co-axial electrospinning    is a method for incorporation of water-soluble 
macromolecules as the core of nano fi bers during electrospinning. The production of 
core-shell nano fi bers    from co axial electrospinning was  fi rst demonstrated by Sun 
et al.  (  2003  ) . Zhang et al.  (  2004  )  fabricated bi-component nano fi bers of PCL and 
gelatin in the form of a core-shell structure by coaxial electrospinning. A quantita-
tive analysis of the effect of gelatin concentration on the diameters of core and shell 
of nano fi bers was carried out that when the concentration of gelatin was below 
12.5 w/v% the diameter of core and shell were, respectively, less than 200 and 
400 nm. Zhang et al.  (  2005b  )  have fabricated collagen-PCL nano fi brous scaffold 
(collagen-r-PCL) by coaxial electrospinning and compared the surface biocompatibility 
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with electrospun neat PCL, electrospun neat collagen scaffold and collagen coated 
PCL scaffolds by culturing human dermal  fi broblasts. As compared to neat PCL 
scaffold and collagen coated PCL, scaffold human dermal  fi broblasts cell density on 
collagen-r-PCL linearly increased over period. However, cell proliferations data of 
collagen-r-PCL are not signi fi cantly differ from those of electrospun neat collagen. 
In another study Jiang et al.  (  2005  )  fabricated biodegradable core-shell nano fi bers 
with PCL as shell and protein containing PEG as core for controlled release of 
incorporated proteins such as lysozyme and BSA. 

 Recently, a group based in Singapore developed an alternative approach to wound 
healing, which they termed autologous layered dermal reconstitution (ALDR)    
(Chong et al.  2007  ) . This technique relies upon novel TE scaffolds which consist of 
electrospun  fi bers made of PCL and gelatin, between 300 and 600 nm in diameter, 
with a total thickness of only 28  m m. The scaffolds were seeded with human dermal 
 fi broblasts, which remained viable in the scaffold for all time points tested (up to 2 
weeks) and doubled in population approximately every 3 days. Although no in vivo 
results are currently available, ALDR using electrospun scaffolds should offer a 
distinct advantage over traditional techniques. Namely, ALDR will allow for a rapid, 
layer-by-layer buildup of tissue in deep wounds, with dermal  fi broblasts distributed 
throughout. This can occur because the electrospinning process takes place on top 
of a commercially available polyurethane wound dressing. As little as 48–72 h after 
implantation, the wound dressing can be removed, and another scaffold/wound 
dressing construct placed in the wound site. This is repeated until the wound area is 
fully repaired. Since each scaffold will be individually seeded with dermal  fi broblasts 
prior to implantation, this layer by layer technique eliminates the long in vitro cul-
ture times otherwise needed for cellular in fi ltration and growth within larger, single-
layer scaffolds. The end result is a continuous layer of tissue, wherein the use of a 
porous, nanostructured scaffolds allows for rapid cellular proliferation and integra-
tion between layers (Khang et al.  2010  ) .  

    23.3.2.4   Nanocomposite Scaffold 

 For successful cell-based therapy, one major obstacle is the low cell engraftment 
and viability after transplantation (Li et al.  2007a  ) . Cellular microenvironment 
especially extracellular matrix (ECM) is one of the essential factors for cell local 
activity, such as adhesion, differentiation and proliferation. Many functional mole-
cules contained in ECM and their interaction with cells are crucial to regulate cell 
survival, renewal and maintaining of cell capacity. Tissue engineered matrices for 
the homing and support of transplanted cells is of great interests recent years 
(Bonadio et al.  1999 ; Wang et al.  2009  ) . Hence a wide range of natural and synthetic 
extracellular matrices with good biocompatibility are selected for tissue engineer-
ing purposes. 

 Nanocomposite scaffold    are made of regenerative scaffold with certain nano-
structure system, for example, bioactive molecules and particles. Nanocomposites 
can be reinforced polymers or ceramics with low quantities of nanometric-sized 
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particles (silicate, carbon nanotubes (CNT)) which give them improved properties. 
The properties of nano-composite materials depend not only on the properties of 
their individual parents but also on their morphology and interfacial characteris-
tics. This rapidly expanding  fi eld is generating many exciting new materials with 
novel properties. Nanocomposites have attracted a great deal of attention in bio-
medical applications also. Many natural tissues such as bone possess a composite 
micro/nano structure. These complex composite structures play roles for the physi-
cal and biological properties of the tissues. To mimic the natural tissue structure, 
biomedical polymers, bioceramics and other organic/inorganic materials are to be 
combined for superior properties. Composite materials often show an excellent 
balance between strength and toughness and usually improved characteristics com-
pared to their separate components. Recently, Kothapalli et al. have shown that by 
incorporation of 50 wt% nanoHA into PLA scaffold, the yield strength increased 
150% and compression modulus almost doubled in comparison to pure PLA. 
Addition of nanoHA can improve osteoconductivity to the polymer scaffolds 
(Kothapalli et al.  2005  ) . 

 One of the most interested nanocomposite biomaterials    for bone regeneracy is 
comprised of biodegradable polymers with nanoHA or other calcium phosphate 
bioceramic composition. Experiments prove that nanometer features on biomaterial 
surfaces can be used to guide cell behavior along a desired biological response 
(Liu and Webster  2007 ; Webster et al.  1999  ) . In bone-regeneracy applications, 
promising results have been obtained with the nanophase materials ceramics and 
metals, with which increased osteoblast adhesion, proliferation and calcium deposi-
tion have been observed compared with conventional materials (i.e. with microme-
ter-scaled grains) (Webster and Ejiofor  2004  ) . 

 Synthetic extracellular matrix could be easily prepared and owns good biocom-
patibility for cell tissue engineering purposes. However, synthetic materials have 
been inferior to natural extracellular matrix scaffolds that allow regeneration to 
occur. Also synthetic materials could be rigid, elicit a mechanical or frictional irrita-
tion, limit cell mobility and vascularization; whereas collagen scaffold    offers good 
cytocompatibility and known structural physical and chemical properties. In addi-
tion it offers several advantages for stem cell homing and migration. First, collagen 
gels as scaffold could provide a three-dimensional microenvironment in which cells 
can grow which mimic the cells’ natural in vivo environment. Second, as a natural 
material, it minimizes the foreign body in fl ammatory response to the surrounding 
tissue and favors cell engraftment. Third, the degradation rate of collagen could be 
easily controlled with noncytotoxic cross-linking agents such as carbodiimide 
(van Wachem et al.  2001  ) . Furthermore, collagen is also chemotactic to home mes-
enchymal stem cells (Lewus and Nauman  2005  ) ,  fi broblast (Gentleman et al.  2004  )  
and other cell types (Gentleman et al.  2006  )  for tissue regeneration. 

 Biologically inspired nanobiocomposites of collagen and nanoHA for bone sub-
stitute have a long history in biomedical  fi eld (Clarke et al.  1993 ; Itoh et al.  2001 ; 
Rovira et al.  1993 ; TenHuisen et al.  1995  ) . There is possibility of enhancing the 
functionalities of collagen by incorporating other bone materials such as HA, bone 
morphogenic proteins (BMP) etc. A combination of collagen and nanoHA materials 
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is bioactive, osteoconductive and osteoinductive and seems to be a natural choice 
for bone grafting, i.e., it mimics the bone components. The unique characteristics of 
this biocomposite is the spatial orientation between HA and collagen macromole-
cules, which seems to be the source of the mechanical strength of the composite. 
Conventionally, collagen/HA nanocomposites    can be made by blending or mixing 
the collagen and HA or by biomimetic methods (Du et al.  1999 ; Itoh et al.  2004 ; 
Liao et al.  2004 ; Tampieri et al.  2003 ; Yang et al.  2004b  ) . However most of the 
collagen/HA composites are conventionally processed by anchoring microHA 
particles into the matrix of collagen, which makes it quite dif fi cult to obtain a 
uniform to a homogeneous composite graft. Further, large size crystalline microHA, 
which is in contrast to natural bone apatite, may take a longer time to remodel into 
bone tissue up on implantation. In addition some of the composites exhibit very 
poor mechanical properties, probably due to the lack of strong interfacial bonding 
between constituents. There is a chance for improving osteointegration by reducing 
the grain size HA particles by activating the nucleation of ultra  fi ne apatite growth 
into the matrix. This may lead to enhance mechanical properties and osteointegra-
tion with improved biological and biochemical af fi nity to the host bone (Thomas 
et al.  2006a  ) . 

 Nanoparticle within regenerative medicine has been addressed mainly towards 
the development of entrapment and delivery systems for genetic material, biomol-
ecules, such as growth and differentiation factors, and bone morphogenetic proteins 
and also as reinforcing- or bioactivity-enhancement phase for polymeric matrices in 
3D scaffolds for tissue regeneracy (Engel et al.  2008  ) . 

 Controlled delivery of biomolecules is crucial in the support and enhancement of 
tissue growth in tissue regeneracy applications. Nanotechnology approaches in 
delivery systems can enhance the success of speci fi c therapeutic agents, such as 
growth factors and DNA among others, which are of paramount importance for tis-
sue regeneracy (Reddy et al.  2006  ) . Carriers in the nanoscale enable the intracellular 
delivery of molecules and the possibility of reaching targets that are inaccessible 
normally, such as the blood–brain barrier, tight junctions and capillaries, whereas 
the control over biomolecule dosage and delivery period are increased. The ultimate 
challenge is to develop arti fi cial nanocarriers    that can target cells with ef fi ciency 
and speci fi city similar to that of viruses (Mastrobattista et al.  2006  ) . 

 Examples of nanoparticles for delivery systems include currently microspheres, 
microcapsules, liposomes, micelles and also dendrimers. The different types of 
nanoparticles have been developed as solid, hollow or porous. The most common 
development methods are molecular self-assembly, nanomanipulation, bioaggrega-
tion and photochemical patterning (Allemann et al.  1993 ; Cade et al.  2004  ) . 

 Biodegradable polymers    are the most commonly used materials in drug delivery   . 
Polylactic acid (PLA), polyglycolic acid (PGA), polyethylene glycol (PEG) and its 
copolymers have been used widely in combination with hydrogels to attain nanocarri-
ers that exhibit different release properties. Particularly important for the development 
of nanoparticles for delivery purposes are ‘smart’ or ‘stimuli-responsive’ polymers that 
can undergo conformational changes, such as swelling or shrinkage, on variations in 
temperature, pH and magnetic  fi eld (Engel et al.  2008  ) . 
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 In sophisticated tissue-engineering strategies, the biodegradable scaffold    is 
preferred to serve as both a 3D substrate and a growth factor delivery vehicle to 
promote cellular activity and enhance tissue neogenesis (Jain  2008  ) . A novel 
approach has been described for fabrication of tissue-engineering scaffolds capable 
of controlled growth factor delivery whereby growth factor containing microspheres 
are incorporated into 3D scaffolds with good mechanical properties, well-interconnected 
macroporous and nano fi brous structures (Wei et al.  2006  ) . 

 Incorporation of microspheres into scaffolds signi fi cantly reduced the initial burst 
release. Sustained release from several days to months was achieved through differ-
ent microspheres in scaffolds. Released platelet derived growth factor (PDGF) 
was demonstrated to possess biological activity as evidenced by stimulation of 
human gingival  fi broblast DNA synthesis in vitro. The successful generation of 3D 
nano fi brous scaffold incorporating controlled-release factors indicates signi fi cant 
potential for more complex tissue regeneracy (Jain  2008  ) . Growth factors are able to 
be incorporated on regenerative scaffold by other techniques, e.g. layer-by-layer self 
assembly. Collagen scaffolds    functionalized with acid  fi broblast growth factor 
(aFGF) or basic  fi broblast growth factor (bFGF) via assembly with heparin/PEI or 
chondroitin sulfate (Ma et al.  2007 ; Mao et al.  2005  ) . The results prove that both 
aFGF and bFGF can be successfully deposited onto the scaffold. The FGFs in the 
multilayers obviously enhances  fi broblast proliferation and viability (Ma et al.  2007 ; 
Mao et al.  2005  ) . We show here that the bioactive aFGF has been successfully depos-
ited onto the TCPS sheet surface in the presence of heparin via a layer-by-layer 
manner. The aFGF built in the multilayers obviously enhances  fi broblast prolifera-
tion and viability. 

 The aim of stem cell tissue engineering    is generating new tissue to repair damaged 
tissues or organs by combining biofunctional materials with stem cells which could be 
administrated by direct transplantation or stimulating stem cell homing to the injured 
site. SDF-1 a     is one of the pivotal signals which can guide mature and immature stem/
progenitor directional migration towards the high SDF-1 a  gradient and protect the 
stem cell from apoptosis (Jaleel et al.  2004  ) . The transient up-regulation of SDF-1 a  
level in damaged organ after injury were identi fi ed and it could stimulate stem cell 
mobilization from bone marrow to the injured area (Klopsch et al.  2009 ; Ma et al. 
 2005a  ) . However, SDF-1 a  could be inactivated and cleaved in a very short half-life 
(<15 min) by both matrix metalloproteinase-2 (MMP-2) and CD26/dipeptidyl pepti-
dase IV, which are two abundant proteases under in fl ammatory conditions (De La Luz 
Sierra et al.  2004 ; McQuibban et al.  2001 ; Peterson et al.  2000  ) . Therefore, it is impor-
tant to sustained release active SDF-1 a  with a controlled manner. Wang et al.  (  2010  )  
immobilized the SDF-1 a  /PEI complexes into a collagen scaffold forming a collagen-
based gene activated substrate to provide the localized release of homing signals SDF-
1 a  protein which promoted stem cell homing and recruitment. They optimized 
transfection ef fi ciency with a high speci fi city based on the collagen amount, N/P ratio 
and DNA dosage. They demonstrated SDF-1 a  secreted by the transfected cells 
enhanced stem cell recruitment in  fl ow chamber. In vivo, the SDF-1 a  gene activated 
matrix could recruit CD117 +  stem cells after hind limb implantation. More importantly 
no evidence of in fl ammation associated with gene activated substrate implantation was 
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detected, suggesting the gene activated substrate implantation would not increase the 
in fl ammation-induced matrix metalloproteinases and other proteinases, consequently 
the localized released SDF-1 a  from transfected cells on the gene activated substrate 
could home the stem cells to the substrate for stem cell adhesion and proliferation on 
the surface of the matrices. 

 For the skin tissue engineering   , Chung et al.  (  2006  )  explored the use of poly
( e -caprolactone) (PCL) grafted with nanostructured chitosan    (CS) as a regenerative 
scaffold for the growth of human dermal  fi broblasts. Resultant nano-CS/PCL sur-
faces exhibited signi fi cantly higher surface roughness values as compared to smooth 
CS/PCL surfaces: 106.0 nm compared to 3.6 nm, respectively. Furthermore, these 
nano-CS/PCL constructs exhibited signi fi cantly (p < 0.001) higher rates of  fi broblast 
proliferation and viability as compared to smooth CS/PCL surfaces or nano-rough 
PCL surfaces. As such, the technique of solvent spin-etching for polymers may 
represent an inexpensive means to prepare nanoscale TE scaffolds as improved 
arti fi cial skin grafts (Khang et al.  2010  ) .    

    23.4   Applications for Therapeutic Devices 

 After several decades development, dextran and other polymer-coated SPIONs    are 
currently used in a number of biomedical applications; for example, Endorem® 
(Geurbet, France) is a commercially available contrast agent based on SPIONs sur-
face coated with dextran (Corot et al.  2006  ) . It is a suitable contrast agent for labeling 
human MSCs (hMSCs) and human ESCs (hESCs) as it does not need a transfection 
agent (which may damage the stem cells) to facilitate its cellular uptake. Feridex ® 
and Sinerem® are other commercially available dextran-coated SPIONs    that are 
combined with commercially available transfection agents, such as Fungene™, 
Superfect™ or Lipofectamine (Bulte and Kraitchman  2004 ; Corot et al.  2006  ) . 
The use of transfection agents at higher concentrations may increase toxicity and, at 
lower concentrations, may not lead to suf fi cient cellular uptake (Bulte and Kraitchman 
 2004  ) . Thus, the amount of transfection agent needed to enhance internalization is 
optimized carefully before combining it with SPIONs. The amount also depends on 
the stem cell type to be labeled. Li et al. optimized the conjugation of PEI onto 
the surface of the magnetic nanoparticles. The magnetic nanoparticles could enhance 
the transfection ef fi ciency and effectively deliver genes to the left side of the mouse 
thorax underexternal magnetic guidance (Li et al.  2007b,   2008  ) . 

 With the further development and investigation, more and more products will be 
commercially available.  

    23.5   Barriers to Practice and Prospects 

 Although research on nanoparticles for non-invasive detecting is developing con-
tinually, there are still a lot of barriers which should be overcome. 
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 Every technique and or application has it limitations, and the use of iron oxides 
or quantum dots for molecular and cellular imaging is no exception. (1) Resolution of 
MRI and  fl uorescence imaging is not good enough. For better understanding of 
cell behaviors, high resolution is required to investigate one single cell’s migra-
tion, proliferation, and differentiation. (2) Better targeting and lower dose for 
imaging. Highly speci fi c targeting is necessary for labeling interested cells only 
in order to reduce dose and get higher resolution. (3) For cellular imaging, as 
labeling is not permanent and self-replicable like reporter genes, with dilution of 
label upon cell division, iron oxide detection may rapidly become impossible, 
both in vitro (Bulte et al.  2001 ; Schaffer et al.  1993  )  and in vivo. (4) Finally, 
careful iron oxide titration and cellular differentiation studies need to be per-
formed, as labeling may lead to inhibition of differentiation into certain cell 
types, without affecting cell viability or proliferation (Kostura et al.  2004  ) . 
Standardized protocol for phenotypic and genotypic characterization of mesen-
chymal stem cells could be a reference for the ef fi cacy and safety considerations 
of nanoparticles in clinical applications to ensure the cells could be sustainable 
propagation without alterations in their genetic traits and functional capabilities 
(Furlani et al.  2009  ) . 

 For the scaffold for tissue regeneracy, they have not been used extensively but 
major contributions are expected in two areas. The  fi rst is growth of complex tis-
sue, where micro fl uidic structures ensure a steady blood supply, thereby circum-
venting the well-known problem of providing larger tissue structures with a 
continuous  fl ow of oxygen as well as nutrition and removal of waste products. The 
second, and probably more important function of micro fl uidics, combined with 
micro/nanotechnology, lies in the development of in vitro physiological systems 
for studying fundamental biological phenomena (Jain  2008  ) .  

    23.6   Conclusions and Future Challenges 

 Nanomaterials are considered as a new class of materials possessing superior prop-
erties over its microscale counterparts. Nanostructured biomaterials having physical 
nanofeatures such as nanocrystals, nano fi bers nanosurfaces, nanocomposites, etc. 
have gained much interest in regenerative medicine. 

 The coregistration of in vivo  fl uorescence imaging with anatomical imaging 
modalities such as MRI helps traverse the shortcomings of  fl uorescence imaging, 
such as limited tissue penetration of photons and low three-dimensional spatial 
resolution, and provides complementary information. The development of multi-
functional probes is attracting increasing attention and several studies have already 
appeared – from iron-oxide- and dendrimer-based dual MRI– fl uorescence imaging 
contrast agents. 

 Effective and innovative imaging approaches are in great demand as new proteins 
and genes, particularly within the  fi eld of oncology, are being discovered at an ever-
increasing pace. This provides a constantly multiplying library of molecules and 
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pathways to be studied for prevention, diagnosis, and treatment of diseases. The full 
potential of new discoveries is however limited by the void between the advances in 
bioscience and the means to accurately, effectively and – critically – non-invasively 
image the molecular interactions in biological systems. Many challenges clearly 
remain in the pursuit of ideal SPIO probes for molecular imaging; increased target 
af fi nity, less complex conjugation schemes, reduction of cost, a means for MRS to 
avoid sequestration in lysosomes and more effective activatable probes. With persis-
tent advances, this system continues to demonstrate its potential as a means to probe 
deeper into our biological universe. 

 Nanostructured scaffolds are interested in regenerative medicine, mainly 
because of their resemblance of nanomorphology and physical nanofeatures to 
natural extra cellular matrices. The nanoscaled features such as surface roughness 
and topography of nanocrystalline bioceramics and nano fi brous scaffolds promote 
the cell behavior such as adhesion, proliferation and migration and differentiated 
functions. Polymeric nano fi ber based nonwoven matrix is among the most prom-
ising nanostructured biomaterials for native ECM analogs. Electrospinning is a 
versatile technique to fabricate nano fi brous matrices of polymers for tissue engi-
neering scaffold applications. One of the particular advantages of electrospinning 
in regenerative medicine is the ability to co-spin various components such as cell 
adhesive proteins and other cell-growth factors along with biodegradable syn-
thetic or biopolymers. An ideal 3D-scaffold for tissue engineering should have 
similarity to native ECM in terms of both chemistry and physical nanostructure. 
Electrostatic co-spinning of nanocomposite  fi bers of polymers with nanoHA to 
fabricate hybrid scaffolds of improved mechanical properties and cellular behav-
iors has been established in our group. The unique characteristics of collagen/
nanoHA composite system in native bone is the special orientation between HA 
and collagen molecules. Therefore, future efforts in nano fi brous collagen/nanoHA 
composite are required mimicking exactly the complex nano structured architec-
ture of collagen matrix with the c-axis orientation of nanoHA particles (Thomas 
et al.  2006a  ) . 

 Regenerative medicine aspects that focus on TE have evolved into two main 
strategies. The  fi rst strategy consists of an elegant approach in which stem cells 
harvested from the patient are expanded and seeded on 3D scaffolds within a 
bioreactor. The resulting hybrid construct is then implanted into the patient 
(together with growth factors) as a tissue matrix. However, the need to harvest 
and expand stem cells poses great ef fi cacy and ef fi ciency problems that de fi ne 
the success of the entire process. The second strategy relies on the development 
of intelligent materials that would be able to send signals to the stem cells already 
present in the diseased or damaged tissue niches that would then trigger the 
regeneracy process. Nanotechnology is a powerful tool for creating these ‘smart’ 
materials. This approach is challenging and is still far from being achieved. 
Among other advantages, it would raise the possibility to have such cell-free 
materials ready ‘off the shelf’ and to be able to use them as and when required 
(Engel et al.  2008  ) .      
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  Abstract   The application of biomaterials to regenerate tissues requires research of 
the interface between the synthetic material and the living tissue. Because biomaterials 
represent a synthetic extracellular matrix that controls the cell biology by mechanism 
of cell adhesion, basic mechanisms of cell adhesion are addressed. The technology 
of designing instructive materials involves chemical modi fi cations by grafting of 
chemical groups, adhesion ligands and growth factors. Physical characteristics 
of the materials are created by modi fi cations of the surfaces structure and stiffness of 
the material. Because stem cells have emerged as promising cells to address the challenge 
of tissue regeneration the control of stem cells by the characteristic of materials 
is discussed. Insights into the mechanism at the biointerface that are involved in 
the regulation of stem cells by materials will advance the development of innovative 
biomaterials in regenerative medicine.      

    24.1   Introduction: An Historical Perspective 

 The biointerface is the interface between a nonviable material and the biological 
tissue or a cell. Mechanisms of the interaction between a material and the biological 
tissue control the reaction of the tissue and may also determine the fate of the material. 
The application of materials as medical implants or prostheses has a more than 
2,000 years history. To replace limbs, eyes, teeth, part of the skull or bone, beside 
wood or ivory the ancient cultures used mostly different metals. The  fi rst polymer 
as an implant was introduced by the British ophthalmologist Harold Ridley in 1949, 
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when he used poly (methyl methacrylate) to replace a cataracted lens of a patient 
(Ridley  1952  ) . He made the observation that the eyes of pilots who had shards of 
canopy plastic in their eyes due to enemy machine gun  fi re, tolerated this material, 
without ongoing reactions. In addition to implants, also ex vivo devices, like dialysis 
equipments or heart lung machines form a biointerface, in that case mostly with 
cells of the blood. 

 With the introduction of hip implants, vascular grafts or the kidney dialysis  fi rst 
principles of application of medical materials were given by the late 1960s. The 
principal demand for a medical material was that the interaction of the material with 
the biological system should not provoke harmful reactions. The term “biocompat-
ibility” originally refers to material characteristics of having no toxic effects or 
inducing mutagenesis and in fl ammation. The goal of the early biomaterials was to 
achieve a biological “inertness”. The challenge of the new generation of materials is 
to create bioactive surfaces that are suitable to speci fi cally control the biology of the 
tissue. In the  fi eld of regenerative medicine the control of stem cell plays a principal 
role. Therefore, the designing of implant materials is focussed on the question how 
characteristics of the materials are able to steer all the biological functions of a 
stem cell, which include self-renewal, differentiation to a speci fi c cellular phenotype, 
secretion of bioactive factors, or migration. The development of such bioactive 
material surfaces requires the interdisciplinary collaboration between disciplines of 
engineering and the life sciences. The progress in this  fi eld depends on both the 
understanding of the biological mechanisms and the development of technological 
methods. The driving force for the design of bioactive material surfaces is the 
understanding of the complex mechanisms on the cellular level that determine 
the regenerative processes in the different tissues of the organism. Therefore, in this 
chapter  fi rst a review of cell biological mechanisms will be given with a focus on 
the adhesive interactions of cells with the extracellular matrix. These interactions 
play a key role at the cell-material interface and basically, the aim of material design 
is to control the cell biology by modi fi cations of the chemical and physical properties 
of the material surfaces.  

    24.2   Background/Principles 

    24.2.1    Mechanisms of Cell Adhesion 

 Cells are regulated by different signals induced by soluble factors, cell-cell contacts 
and the interaction of cells with the extracellular matrix. Proteins of the extracellular 
matrix, like collagens,  fi bronectin, laminin, elastin are secreted by cells and differ in 
their composition depending on the type of tissue. For example, collagen I is a 
characteristic matrix component for bone, collagen II for cartilage or laminin for the 
basal membrane of the epithelium and endothelium. The composition and structure 
of the extracellular matrix is dynamic and vary which determine its function. This is 
obvious during processes of the development and tissue differentiation. For example, 
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during the development of branched organs like mammary gland, kidney, gut and 
lung the branched units are surrounded by a microenvironment that change in 
composition and spatial distribution over the time (Rozario and Desimone  2010  ) . 
The spatio-temporal expression and deposition of extracellular matrix provides 
instructive differentiation signals. In the mouse development, myogenic differentiation 
occurs as laminin, collagen IV and entactin expression increases, whereas  fi bronectin 
expression decreases (Godfrey and Gradall  1998  ) . Although the control of stem cell 
differentiation by the extracellullar matrix appears complex, de fi ned matrix molecules 
induced speci fi c differentiation of stem cells. Embryonic stem cells are normally 
not competent to differentiate to trophoblastic cells, however on collagen IV but not 
on laminin,  fi bronectin or collagen I the cells developed to a trophoblastic lineage 
(Schenke-Layland et al.  2007  ) . Also directed differentiation of multipotent adult 
stem cells was dependent on the type of matrix protein. Neural stem cells developed 
to neurons, astrocytes and glia cells on laminin but not on  fi bronectin (Flanagan 
et al.  2006  ) . Osteogenic differentiation of human mesenchymal stem cells was 
induced on laminin-5, collagen I and vitronectin (Klees et al.  2005 ; Kundu and 
Putnam  2006 ; Salasznyk et al.  2004  ) . The studies also revealed that differentiation 
to the same phenotype might be differentially regulated by different matrix proteins 
(Kundu and Putnam  2006  ) . As already mentioned, the extracellular matrix is a 
highly dynamic structure, which is constantly undergoing remodelling, i.e. assembly 
and degradation. Experiments using  fl uorescence time lapse-imaging demonstrated 
that in a cell culture individual  fi brils of  fi bronectin were stretched and displaced 
(Sivakumar et al.  2006  ) . Motile osteoblasts actively mediated  fi bronectin assembly 
by adding globules of matrix molecules to existing  fi bronectin  fi brils and reorganized 
the extracellular matrix by shunting matrix material from one location to another or 
exchanged  fi brillar material between  fi brils. Remodelling of the extracellular matrix 
is the result of multiple processes, which requires at least two events: synthesis and 
proteolytic degradation of the components (Daley et al.  2008  ) . Among the proteolytic 
enzymes, matrix metalloproteinases (MMPs) play a dominant role in the degradation 
of the extracellular matrix. Although matrix protein degradation remains a principal 
physiological function of MMPs, there is evidence that also other substrates, like 
peptide growth factors, tyrosine kinase receptors, chemokines are a target of MMPs, 
which indicates a more extensive involvement of MMPs in a variety of physiological 
processes (Page-McCaw et al.  2007 ; Stamenkovic  2003  ) . The interaction of cells 
with the extracellular matrix is mediated by receptors of the integrin family which 
enable a bidirectional signal transduction (Hynes  2002 ; Takada et al.  2007  ) . Integrins 
function as heterodimeric transmembrane receptors consisting of one ß and one 
 a -subunit. In human, 18  a -subunits and 8 ß-subunits are described, which form at 
least 24 different receptors (van der Flier and Sonnenberg  2001 ; Wehrle-Haller and 
Imhof  2003  ) . The combination of the ß with the  a -subunit determines the binding 
speci fi city for the ECM ligand and a simpli fi ed classi fi cation into three classes 
yields a group of integrins, which binds to the RGD sequence (amino acids Arg-Gly-
Asp) of  fi bronectin or vitronectin, receptors which bind to laminin and integrins that 
bind to collagens (Wiesner et al.  2005  ) . Activation of integrins which induces signal 
transduction involves conformational changes in the extracellular domain to expose 
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the ligand-binding site (Luo et al.  2007  ) . The conformational changes also enable 
an increased binding avidity which leads to a clustering of hundreds or thousands 
integrin interactions with matrix ligands into tightly bound adhesive units (Legate 
et al.  2009  ) . To connect integrins with the actin cytoskeleton in integrin mediated 
signal transduction, the formation of adhesion complexes at the interface between 
cell and substrate plays a dominant role. In these focal adhesions 157 molecules 
have been identi fi ed that are assembled in a “integrin adhesome” and enables signal 
transduction (Zaidel-Bar et al.  2007  ) . Upon integrin binding to a ligand focal 
adhesions mature. First nascent adhesions are organized within the lamellipodium. 
During maturation the adhesions grow into dot-like structures, which then become 
elongated to form  fi brillar adhesions (Geiger et al.  2001 ; Wehrle-Haller and Imhof 
 2002 ; Zaidel-Bar et al.  2003  ) . This process is facilitated by the  a -actinin-actin 
structures and requires myosin II (Choi et al.  2008  ) . The functions of some of the 
numerous proteins assembled in focal adhesions have been elucidated. For example, 
talin facilitates the interaction of integrins with the cytoskeleton by direct binding 
to the integrin tail, or vinculin plays a role in the formation and growth of focal 
adhesions (Gallant et al.  2005 ; Humphries et al.  2007 ; Zhang et al.  2008  ) . FAK 
appears to be responsible for turnover of focal adhesions and actin polymerization 
and is a major component in further downstream signalling events (Zhao and Guan 
 2009  ) . Downstream, integrin signalling shares common pathways of growth factor 
receptors, like activation of MAP-kinases (Miyamoto et al.  1996 ; Moro et al.  1998  ) . 
Beside the cross-talk between integrins and growth factor receptor pathways, 
also the physical proximity and lateral collaboration at the cell membrane between 
integrins and growth factor receptors are important to induce signaling and in con-
sequence a biological function (Schneller et al.  1997  ) .  

    24.2.2   Cellular Mechanotransduction 

 Cells are able to sense mechanical forces, which control their physiological functions. 
Physical forces act or are generated at the interface between the cell and the extra-
cellular matrix (Geiger et al.  2009 ; Mammoto and Ingber  2009 ; Puklin-Faucher and 
Sheetz  2009  ) . Therefore, the cellular components that facilitate cell adhesion to the 
extracellular matrix have a primary role in the cellular sensory machinery and are 
able to integrate and transduce mechanical signals. Transduction of mechanical 
forces is bidirectional. While cells are able to sense forces from outside they also 
generate forces to the extracellular matrix, which is facilitated by the cytoskeleton 
and regulated for example by actin polymerization (Galbraith et al.  2007 ; Giannone 
et al.  2007 ; Ingber  2006 ; Kumar et al.  2006  ) . Myosin II is responsible for the 
contractile nature of the stress  fi bres to exert forces to the extracellular matrix 
(Katoh et al.  2001 ; Peterson et al.  2004  ) . Integrins function as primary sensor and 
mechanotransducers and facilitate the mechanical coupling between inside and 
outside the cell (Schober et al.  2007 ; Wang et al.  1993  ) . Transition of the  b  integrin 
subunit from an inactive state to an active conformation can be induced by mechanical 



61524 Biointerface Technology

forces (Cluzel et al.  2005 ; Kim et al.  2004 ; Puklin-Faucher et al.  2006  ) . Mechanical 
forces directly applied to integrins induce an accumulation of focal adhesion 
molecules and a direct physical link to the cytoskeleton by immobilizing of signalling 
proteins, like FAK to the actin cytoskeleton (Cox et al.  2006 ; Michael et al.  2009 ; 
Riveline et al.  2001 ; Schmidt et al.  1998  ) . To convert mechanical forces into bio-
chemical signalling events, proteins at the adhesive interface are stretched and 
expose binding sites (Vogel and Sheetz  2009  ) . Vinculin binds to talin rod due to 
mechanically stretching of the talin molecule (del Rio et al.  2009  ) . Recently,  fi lamin 
A has been identi fi ed as a mechanotransductive substrate within the cytoskeleton. 
When strain is applied,  b  integrin binding to  fi lamin A increased which enables 
its cytoskeletal anchorage, whereas the protein FilGAP dissociates from  fi lamin A 
(Ehrlicher et al.  2011  ) . Detailed studies revealed that  fi brillar  fi bronectin can be 
extended by stretch more than eight-fold and the mechanically induced unfolding of 
 fi brillar  fi bronectin alter the displayed binding sites (Klotzsch et al.  2009 ; Vogel 
 2006  ) . Fibronectin contains different recognition sites for binding of serum proteins, 
other matrix proteins, cell adhesion proteins distributed over more than 54 domains 
that can be switched on and off be mechanical forces (Vogel and Sheetz  2009  ) . 
Interestingly, the mechanical properties of the  fi bronectin  fi bres are regulated, old 
 fi bres become more unfolded with age than newly deposited  fi bres. Further, due to 
differences in the mechanical strain,  fi brillar  fi bronectin is more unfolded on rigid 
than on soft substrates (Antia et al.  2008  ) . In addition to a mechano-biochemical 
conversion near the adhesion site, there is evidence that cells are able to transduce 
mechanical signals directly to the nucleus because of a structural connectivity 
between extracellular matrix and cell nucleus (Maniotis et al.  1997 ; Wang et al. 
 2009  ) . In this model, the cell is a “hard wired” tensegrity network which refers to a 
stable interconnected cytoskeleton that resists mechanical stresses and maintain 
shape stability (Ingber  1997 ; Stamenovic et al.  1996  ) . The connection between 
cytoskeletal  fi laments and the nuclear membrane is facilitated by a LINC complex 
(linker of nucleoskeleton and cytoskeleton) containing nesprins, sun and lamin 
proteins (Crisp et al.  2006 ; Haque et al.  2006  ) . Through lamin A, which binds 
transcription factors, mechanical forces could directly alter gene expression in 
the nucleus (Dechat et al.  2008  ) . In addition, mechanically induced expansion or 
contraction of nuclear pores may alter transport processes into the nucleus (Feldherr 
and Akin  1990  ) . Such direct force transmission between cell membrane and nucleus 
may induce a fast induction of gene expression and may explain a rapid increase of 
calcium in the nucleus (Pommerenke et al.  2002  ) .  

    24.2.3   Interaction with the Extracellular Matrix 
in the Stem Cell Niche 

 The stem cell niche is a specialized microenvironment in various organs which 
provides an anatomical compartment to maintain a pool of stem cells (Jones and 
Wagers  2008  ) . The microenvironment, which involves soluble factors, the interaction 
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with other cells and an extracellular matrix, regulate stemness, survival and migration 
out of the niche (Kolf et al.  2007  ) . To mimic the mechanisms in a niche by bioactive 
material surfaces, the extracellular matrix is of primary interest. Evidence exists that 
the composition and mechanical properties of extracellular matrix determines the 
fate of stem cells in a niche (Daley et al.  2008  ) . It became further obvious that 
the dynamic remodelling of the extracellular matrix at a speci fi c time and in a tissue-
speci fi c manner within a niche function as important switch to trigger stem cell 
differentiation or mobilization. However, detailed information about a precise role 
of the extracellular matrix in a niche are rare. Differential expression of integrin- b 1 
has been observed to regulate cell restriction and mobility of stem cells in the epi-
dermal stem cell niche (Jensen et al.  1999  ) . The fate of neuronal stem cells appeared 
to be dependent on the expression of  b 1-integrin (Yoshida et al.  2003  ) . Neuronal 
stem cell differentiation was accompanied by a decrease in  a 5 b 1-Integrin. In a 
hematopoietic stem cell niche, the matrix glycoptrotein osteopontin plays a role for 
the hematopoietic stem cells to localize at the endosteal bone surface (Nilsson et al. 
 2005  ) . In addition, osteopontin was found to suppress hematopoietic stem cell 
proliferation. Recent studies stressed the assumption that the type of extracellular 
matrix may determine the direction of stem cell differentiation. Mesenchymal stem 
cells are localized in a perivascular niche and are exposed to signals from vascular 
cells (Crisan et al.  2008  ) . On extracellular matrix derived from endothelial cells, 
mesenchymal stem cells developed markers of endothelial or smooth muscle cells 
(Lozito et al.  2009  ) .   

    24.3   Technological and Biological Opportunities 
for Therapeutic Devices 

    24.3.1   Chemical Modi fi cation to Control the Biointerface 

    24.3.1.1   Modi fi cation of Chemical Groups 

 Chemical as well as physical characteristics of a material control the biological 
response of the tissue. For tissue regeneration, the key question is that, how the 
properties of a biomaterial speci fi cally control the different biological functions of 
stem cells. Different steps of surface designing can generate a bioactive chemistry 
of a material. First, the chemistry is determined by the pure uncoated material. Next, 
the chemistry can be modi fi ed by grafting chemical groups on the surface, which 
alter the surface charge and the wettability. More speci fi cally, molecules of the 
extracellular matrix or peptides which are characteristic of matrix domains and 
function as binding sites may be immobilized. Last, soluble factors, like growth 
factor may be incorporated into the material surface, which might by active as solid-
phase ligand or which could released by various mechanisms. 
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 Dependent on the application regarding the tissue and function, materials for 
implants reach from metals to synthetic polymers and natural materials. All these 
materials differ in the chemistry of the surface. At the interface to a material surface 
the interaction of the cell is mediated by extracellular matrix proteins. However, 
prior to a matrix production of the cell, a  fi rst adhesive contact of the cell to the 
substrate can be mediated by a hyaluronan coat of the cell (Cohen et al.  2006 ; 
Evanko et al.  2007  ) . The strength of this interaction differs in dependence on 
the material to which the cell does adhere (Finke et al.  2007  ) . For the subsequent 
integrin mediated adhesion, adsorption and organization of the extracellular matrix 
proteins to a material are required. The role of chemical variations of the surface to 
mediate adhesion dependent stimulation of biological functions of stem cells can be 
evaluated by generating polymers with different combinations of monomers. 
Combining 25 different monomers of acrylates to generate 576 polymers allowed a 
screening to identify materials with the ability to stimulate proliferation and differen-
tiation of human embryonic stem cells (Anderson et al.  2004  ) . Some of the 
polymers allowed for a high level of cytokeratin positive cells, indicating differen-
tiation to epithelial cells. Interestingly, for some materials proliferation was observed 
only in the absence of retinoic acid as a soluble factor. This indicates an interaction 
of signals from soluble factors and the adhesive substrate. A relationship was 
also established between the ability of the polymers to adsorb  fi bronectin and cell 
adhesion (Keselowsky et al.  2003 ; Mei et al.  2009  ) . Polymers are not only capable 
to generate different amounts of adsorbed  fi bronectin, but also induce different 
activities of  fi bronectin (Mei et al.  2009  ) . Different techniques have been used to 
modify the chemistry of a material surface, which involved the use of self assembled 
monolayers of alkanethiols, silanisation, plasma treatment, radiation grafting 
(Curran et al.  2005 ; Keselowsky et al.  2005 ; Ratner  1995  ) . Grafting of functional 
groups using glow discharge plasma deposition was also successfully applied to 
modify titanium surfaces (Nebe et al.  2007  ) . A major challenge of these modi fi cations 
is the precise control of functional groups. The spectrum of functional groups com-
prises amino, methyl, hydroxyl, ether, carbonyl, carboxyl and carbonate. Speci fi c 
alterations of the chemistry were found to guide differentiation and proliferation of 
mesenchymal stem cells (Curran et al.  2006 ; Phillips et al.  2010  ) . –NH 

2
  and –SH 

modi fi ed surfaces stimulated osteogenic differentiation, whereas –OH and –COOH 
modi fi ed surfaces promoted chondrogenesis. Under speci fi c culture conditions, 
-NH 

2
  surfaces enhanced the formation of adipogenic cells (Phillips et al.  2010  ) . 

Generation of –CH 
3
  groups maintained the phenotype of mesenchymal stem cells 

(Curran et al.  2006  ) . These biological responses of the cells depend on mechanisms 
related to changes in the cell-extracellular matrix interaction. Surface chemistry of 
a material can induce changes in the conformation of  fi bronectin, which modi fi es 
binding of integrins and induces short-term changes in focal adhesion formation 
(Keselowsky et al.  2004  ) . Generation of –NH 

2
  groups on titanium surfaces using 

plasma polymerized allyl amine promoted the spreading of osteoblasts (Nebe et al. 
 2007  ) . Titanium implants are widely used as bone substitutes, e. g. for arti fi cial hip 
or knee joints. To stimulate bone regeneration at the interface to the bone tissue, 
titanium coating with calcium phosphate is a suitable approach because of the 
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similarity with the mineral phase present in bone (de Groot et al.  1998 ; de Jonge 
et al.  2008  ) . Similarly, calcium phosphate composites are applied as degradable 
scaffolds to heal bone defects (El-Ghannam  2005  ) . The most successful technique 
to coat metallic implant with calcium phosphate has been the plasma-spray 
technique. Because coating must be at least 50  m m thick to completely cover 
the surface other methods including sol-gel deposition, electrospray deposition, 
electrolytic deposition have been applied and each has its advantages and disadvan-
tages (de Jonge et al.  2008  ) . Calcium phosphate coatings are described to induce an 
increased bone-to-implant contact and therefore are regarded as osteoconductive 
(Barrere et al.  2003 ; Leeuwenburgh et al.  2006  ) . To see, whether calcium phosphate 
surfaces may affect bone regeneration, a number of in vitro studies demonstrated 
that calcium phosphate promote the osteogenic differentiation of mesenchymal 
stem cells (Cordonnier et al.  2010 ; Moreau and Xu  2009 ; Muller et al.  2008 ; Sun 
et al.  2008  ) . Although the mechanisms are not known, the observed strong adsorption 
of  fi bronectin and vitronectin, as well as a very  fl at morphology of stem cells on a 
calcium phosphate surface (Fig.  24.1 ) could support an osteogenic differentiation 
(Kilpadi et al.  2001 ; Walschus et al.  2009  ) .   

  Fig. 24.1    Mesenchymal stem cells adhere, spread and form a  fl at morphology on hydroxyapatite 
coated surfaces       
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    24.3.1.2   Grafting of Cell Adhesion Ligands 

 To further speci fi cally control cell adhesion, material surfaces can be grafted with 
complete molecules of the extracellular matrix or synthetic peptide sequences which 
represent binding sites of matrix proteins. The best known of these is the RGD 
peptide containing the amino acids arginine, glycine, aspartic acid which is found in 
 fi bronectin, laminin, collagen type IV, tenascin and thrombospondin (Benoit and 
Anseth  2005 ; Comisar et al.  2007  )  and several other adhesion molecules. Structural 
modi fi cations of the peptides from linear to cyclic RGD peptides are potent alterna-
tives and can enhance af fi nity towards a receptor or stimulate cell adhesion (Durrieu 
et al.  2004 ; Maeda et al.  1994  ) . In most cases RGD peptides are linked to polymers 
via stable covalent amide bonds. In this case an activated surface carboxylic acid 
group reacts with the nucleophilic N-terminus of the peptide (Lin et al.  1994  ) . 
Alternatively, a coupling is possible in a two step protocol. First, the surface carboxyl 
group is activated as an ester and followed by coupling the peptide in water (Jo et al. 
 2000  ) . Beside synthetic polymers, other materials, including natural polymers, 
starch, dextran and inorganic materials have been coated with RGD peptides (Hersel 
et al.  2003  ) . Among the inorganic materials, titanium and hydroxylapatite were 
successfully coated with RGD peptides (Fujisawa et al.  1997 ; Itoh et al.  2002 ; 
Rezania et al.  1999  ) . On hydroxylapatite, RGD-peptides were immobilized via 
negatively charged anchoring groups, like glutamic acid, phosphonates or natural 
HA-binding amino acid sequences (Gilbert et al.  2000 ; Hersel et al.  2003 ; Itoh et al. 
 2002  ) . To prevent unspeci fi c protein adsorption, grafting of RGD peptides can be 
combined with passivation of the material surface using e.g. poly(ethylene glycol) 
(Banerjee et al.  2000 ; Drumheller and Hubbell  1995  ) . Star-shaped poly (ethylene 
glycol) prepolymers were used to prevent unspeci fi c protein adsorption and allowed 
the binding of RGD peptides for speci fi c adhesion of mesenchymal stem cells (Groll 
et al.  2005  ) . Cell experiments on materials coated with matrix proteins or peptides 
revealed that integrin mediated interactions with the substrate are complex and 
require  fl exible and dynamic mechanisms. Therefore, the introduction of a spacer to 
bind RGD peptides or matrix proteins improved cell attachment (Craig et al.  1995 ; 
Kantlehner et al.  2000  ) . When collagen was immobilized to a polyether ether ketone 
via glutardialdehyde, osteoblasts did adhere but spread only when polyethylene 
glycol as spacer was introduced (Fig.  24.2 ). To further enable a dynamic interaction 
of cells with the adhesive substrate and remodel the extracellular matrix, materials 
were crosslinked by enzyme-degradable peptide sequences. The combination of 
integrin binding and matrix degradation by cellular metalloproteinases allowed the 
cells to migrate through a gel, which mimics tissue remodelling (Lutolf et al.  2003a  ) . 
Enzymatically mediated cell migration has been provided using materials from 
chemically cross-linked hyaluronic acid (Bulpitt and Aeschlimann  1999 ; Park et al. 
 2003  ) . Further, elastase-sensitive sequences were generated by crosslinking elastin-
like units which contained the adhesion motif REDV (Girotti et al.  2004  ) . Cleavage 
of the polymer yielded a bioactive VGVAPG fragment which stimulated cell 
proliferation. This functionality mimics dynamic processes of the extracellular matrix 
in vivo, whereby enzymic activities can liberate cryptic binding sites. Although 
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immobilization of matrix-derived peptides demonstrated support of cell adhesion, 
data of the biological speci fi city of such approaches are rare (Carson and Barker 
 2009  ) . When titanium was passivated and grafted with the  fi bronectin fragment 
FNIII 

7–10
 , this surface enhanced the osteogenic differentiation of mesenchymal stem 

cells relative to RGD immobilized surfaces (Petrie et al.  2008  ) . This appeared to 
result from the speci fi c targeting of the  b 1 a 5-integrin. The presentation of adhesion 
peptides in a structural organization that mimic  fi brils of the extracellular matrix 
could further contribute to the biological outcome. RGD peptides in 3D-network 
of nano fi bers promoted the osteogenic differentiation of mesenchymal stem cells 
(Hosseinkhani et al.  2006  ) . In a three dimensional network of nano fi bers the 
immobilization of the laminin epitope IKVAV induced the differentiation of neural 
progenitor cells into neurons (Silva et al.  2004  ) .   

    24.3.1.3   Immobilization of Soluble Factors 

 The extracellular matrix provides a reservoir for growth factors, which can be 
released and act as soluble ligands (Hynes  2009  ) . Evidence exists that also matrix-
bound growth factors stimulate cell functions via solid-phase signals (Wijelath et al. 
 2006  ) . Speci fi c binding sites have been detected in the extracellular matrix which 
can regulate the function of growth factors (Hynes  2009  ) . Therefore, the immobili-
zation of growth factors and other bioactive molecules plays a role in the strategies 
of designing the surface of implant materials for tissue regeneration (Cartmell  2009 ; 
Lee and Shin  2007 ; Silva et al.  2009  ) . Growth factors bound to biomaterial surfaces 
may have enhanced activities compared with a soluble form of the factor, as it has 
been shown for TGF- b 1 covalently linked to a polymer and stimulating matrix 
production (Mann et al.  2001  ) . Different techniques have been applied to tether and 
control the release of bioactive factors (Place et al.  2009  ) . The easiest way to add 

25µm

10µm 10µm

  Fig. 24.2    The mode of collagen immobilization determines the spreading of osteoblasts:  Left : On 
cover glass, which was coated by collagen adsorption, cells spread and form actin  fi bres;  middle : 
Cells spread and form actin  fi bres on a polyether ether ketone (PEEK) surface coated with collagen, 
which was immobilized by glutardialdehyde (GDA) and polyethylenglycol was introduced as a 
spacer;  right : Cells adhere but remain round without formation of actin  fi bres on PEEK, coated 
with collagen, immobilized via GDA alone       
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soluble factors is to load them into polymer matrix or to adsorb onto a composite 
(Soriano and Evora  2000 ; Ziegler et al.  2002  ) . A variety of growth factors have been 
incorporated into hydrogels during the formation of the material in aqueous solution 
(Kanematsu et al.  2004  ) . To tune the release of soluble proteins, the cross-linking 
density of the polymer can be modi fi ed (Hiemstra et al.  2007  ) . bFGF could be 
released quantitatively from such hydrogels in 28 days. These techniques basically 
rely on the passive diffusion of growth factors from the matrix. Another strategy for 
protein release relies on a mechanical-responsive system (Augst et al.  2006 ; Lee and 
Mooney  2001  ) . Many tissues, such as vasculature and musculature are mechanically 
dynamic. Mechanical compression could release factors from a material. Using a 
VEGF-containing alginate-hydrogel, it was shown that exposing mechanical strain 
to the hydrogel increased the release of VEGF (Lee et al.  2000  ) . After implantation 
in mice, this mechanically induced release increased collateral vessel formation. 
Adding growth factors to ceramic materials is very convenient, because ceramics 
have a high af fi nity for proteins (Ziegler et al.  2002  ) . Growth factors, such as TGF, 
FGF and VEGF were loaded to ceramics just by adsorption. The release patterns of 
most loaded ceramics seem to consist of an initial burst release of not bound protein 
followed by a second release dependent on the material/protein interaction (Habraken 
et al.  2007  ) . Loading of calcium phosphate cements with growth factors was 
performed just by adding the protein to the liquid hardener, thereby distributing it 
equally through the cement. Bovine serum albumin can be used as carrier solution 
for growth factors to control the release of factors from the cement (Blom et al.  2002 ; 
Ruhe et al.  2006  ) . Several in vivo studies proved the bene fi cial effects of growth 
factor loaded calcium phosphate scaffolds (Jansen et al.  2005 ; Kroese-Deutman 
et al.  2005 ; Ruhe et al.  2004 ; Seeherman and Wozney  2005  ) . 

 More precise, growth factors can be immobilized to a material surface by covalent 
binding. This can be achieved by reacting of the side chains of polymers with amino 
acids of a growth factor. Several growth factors have been covalently linked to 
polyethylene glycol, including TGF, EGF, bFGF (Bentz et al.  1998 ; DeLong et al. 
 2005 ; Kuhl and Grif fi th-Cima  1996  ) . To control the release of covalently attached 
growth factors by the cells, synthetic hydrogels have been generated which 
contained protease sensitive binding sites (Lutolf et al.  2003a ; Zisch et al.  2003b  ) . 
In this case the hydrogels are prepared with functionalities of natural extracellular 
matrix, i.e. the ability to mediate adhesion and to respond to proteolytic degradation 
by enzymes, such as metalloproteinases which are secreted by cells. As structural 
building blocks, end-functionalized polyethylene vinylsulfone chains were used 
with thiol-bearing peptides. Cross-linking occurred by incorporation of bis-cysteine 
peptides, which can be cleaved by proteases. Growth factors, like VEGF and BMP 
were bound to these structures and could be delivered on cell demand (Lutolf et al. 
 2003b ; Zisch et al.  2003a  ) . Using this approach, an active liberation of VEGF was 
con fi rmed which resulted in a remodelled vascularized tissue, when the matrix was 
implanted subcutaneously in rats (Zisch et al.  2003a  ) . Similarly, bone regeneration 
was demonstrated in a critical size defect by cell-mediated proteolytic release 
of BMP from a matrix (Lutolf et al.  2003b  ) . A further more natural mechanism of 
the control of growth factor binding, modulation and release is the attachment 
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of glycosaminoglycans to a material surface. These complex molecules have a tissue 
speci fi c distribution and multiple physiological functions (Raman et al.  2005  ) . Their 
sulphation patterns determine the speci fi c interaction with proteins. One example 
is the binding of bFGF to heparin. Heparin has been widely incorporated into 
scaffolds to bind and release bFGF (Sakiyama-Elbert and Hubbell  2000 ; Zhang 
et al.  2006  ) . 

 As demonstrated recently, the physiological effect of growth factors can be mimicked 
by designing of a modular peptide (Lee and Murphy  2010  ) . This peptide contained 
a BMP-2 derived peptide sequence and hydroxyapatite-binding sequences inspired 
by the N-terminal alpha-helix of osteocalcin. The multifunctional fusion protein can 
bind to hydroxapatite coated surfaces or bone structures and exert BMP activity. 
When this peptide was presented to mesenchymal stem cells, both immobililized 
or in solution, the construct was capable to promote the osteogenic differentiation 
of the cells (Lee and Murphy  2010  ) . 

 Microspheres with encapsulated or surface bound growth factors present a system 
to persist and deliver growth factors at the target site (Arras et al.  1998 ; Cleland 
et al.  2001 ; Park et al.  2009  ) . For the fabrication of biodegradable polymer micro-
spheres polyester like polylactide (PLA) and poly(lactic-co-glycolic acid) have 
been used. Applying a double emulsion technique, growth factors, such as bFGF, 
VEGF have been mixed into the particles (Perets et al.  2003  ) . The loaded microspheres 
were incorporated into an alginate matrix or hydrogel. This approach enables the 
delivery of two or more growth factors with distinct kinetics. Microspheres containing 
PDGF were mixed with VEFG prior to processing into scaffolds, which resulted 
in a rapid release of VEGF and a slower, more even distribution of PDGF. When the 
scaffolds were implanted into rats, the distinct release kinetics of the growth factors 
stimulated the formation of a mature vasculature (Richardson et al.  2001  ) .   

    24.3.2   Physical Modi fi cation to Control the Biointerface 

    24.3.2.1   Structural Organization of the Surface 

 The structure of a material surface can be categorized into topography and chemical 
patterning. The topography re fl ects the roughness of a surface which can be designed 
by ridges and grooves or by evenly or randomly distributed pits or protrusions. 
Chemical patterning is achieved by the spatial organization and immobilization 
of molecules in controllably size and position, mostly to control cell adhesion 
(Lim and Donahue  2007  ) . 

 For clinical application of titanium implants different techniques have been used 
to roughen the surface, which include blasting, etching, and oxidation. A huge number 
of experimental data demonstrate that a rough implant surface has a bene fi cial effect 
on the bone response (Wennerberg and Albrektsson  2009  ) . This concerns roughness 
in the micrometre level, whereas little is known about the effects of topographies in 
the nanometre level in vivo (Wennerberg and Albrektsson  2009  ) . When testing the 



62324 Biointerface Technology

cell behaviour on topographies the scale plays an important role. It became obvious 
that cells are able to sense the micro- and nanoscale topography and react with bridg-
ing of grooves or conforming the surface structure (Millette et al.  1987 ; Teixeira 
et al.  2003 ; Walboomers et al.  1999  ) . The behaviour of the whole cell due to a 
topography was correlated with an orientation of the cytoskeleton and the alignment 
of focal adhesions (Dalby et al.  2002,   2003  ) . In addition to structural changes in the 
organization of cellular components, functional consequences have been observed. 
Osteoblastic cells expressed a higher RNA level of osteopontin and osteocalcin 
when cultured on a surface with grooves than on a  fl at surface (Matsuzaka et al. 
 2004  ) . Apparently, a de fi ned size of pits or grooves is important on a structured 
surface. As shown, osteoblastic differentiation measured by the activity of alkaline 
phosphatase was stimulated more on 11 nm islands than on 85 nm islands (Lim 
et al.  2005  ) . Similarly, also cell proliferation depends on de fi ned surface structures. 
Progenitor cells displayed a higher proliferation rate on 5–40  m m diameter posts 
compared with cells on a smooth surface (Mata et al.  2002  ) . In addition to the size 
of posts created on a surface the organization of a pattern controls the function of 
cells. When mesenchymal stem cells were cultured on disordered dots with nano-
size the cells were induced to express osteocalcin and osteopontin in the absence of 
osteogenic supplements, demonstrating the stimulation of osteogenic differentiation 
(Dalby et al.  2007  ) . In comparison, when the same nanofeatures were symmetrically 
organized, the cells did not express osteogenic proteins. 

 Although experiments are rare which demonstrate that a de fi ned topography, 
regarding topographic size, shape or uniformity control a speci fi c function of stem 
cells, it is obvious that micro- and nanostructured surfaces stimulate various collec-
tive cell functions (Lim and Donahue  2007  ) . 

 Chemical patterning which generates precisely de fi ned micro- or nanometer-areas 
for cell adhesion can be achieved by lithographic techniques (Nie and Kumacheva 
 2008  ) . These techniques involve photolithography and printing techniques. Printing 
methods can be classi fi ed into techniques which involve the contact of a stamp 
with the substrate and methods which directly transfer “ink” to the substrate. 
Dip-pen nanolithography represents a relatively new direct writing technique, using 
the tip of an atomic force microscope to form a liquid meniscus between tip and 
substrate, and as a result of this procedure the ink molecules are transferred to the 
underlying substrate by chemical or physical adsorption (Piner et al.  1999  ) . 
Micropatterning allows the spatial control of adhesion of the whole cell. By restriction 
of cell spreading the shape of cells can be controlled. Using mesenchymal stem 
cells, it was demonstrated that cell shape commits the direction of differentiation 
(McBeath et al.  2004  ) . More rounded cells differentiated to adipocytes, whereas 
 fl at cells became osteocytes. The authors revealed that induction of mechanical 
tension of the cytoskeleton, which correlates with stress  fi bre formation and is 
mediated by the activities of RhoA and Rho kinase (ROCK) induces osteogenic 
differentiation. Blocking of RhoA and ROCK activities stimulated the adipogenic dif-
ferentiation. By generating  fi bronectin lines in the nanoscale which altered the 
cell morphology, the proliferation of embryonic stem cells was stimulated, which 
depended on an altered organization of the cytoskeleton (Gerecht et al.  2007  ) . 
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 In addition to control of the entire cell shape by adhesion patterns, the sensing of 
nanoscale adhesion sites by cells controls integrin mediated signal transduction 
and in consequence in fl uences differentiation and proliferation. For example, the 
precise spacing between nanotopographic features of RGD-peptides for cell 
adhesion can modulate the clustering of integrins. A minimal distance of 58 nm 
between adhesive dots was required for integrin clustering, formation of stable focal 
adhesions and cell spreading (Arnold et al.  2004 ; Cavalcanti-Adam et al.  2007  ) . The 
formation of a molecular gradient of the ligand spacing from 50 to 80 nm revealed 
that cells are able to sense the small differences in ligand spacing (Arnold et al. 
 2008  ) . Differences which are little as 1 nm seem to affect cell polarization and 
migration.  

    24.3.2.2   Mechanical Characteristics of the Surface 

 Mechanical stimuli represent regulators of development and function in many 
tissues. It is generally accepted that the structure of the various tissues re fl ect the 
acting forces, which speci fi cally control the physiological processes. In some cases, 
tissues are heterogeneously organized into mechanically distinct zones, for example 
the super fi cial, radial and tight zones of cartilage. Therefore, implant materials must 
provide some level of physical support to assist tissue function. Engineering 
strategies have been developed to steer the viscoelastic properties of implant mate-
rials, for example by cross-linking of polymers. Highly elastic gels of cross-linked 
hyaluronic acid with controllable viscoelasticity were generated for tissue engineering 
of vocal folds (Sahiner et al.  2008  ) . For tendon repair, gels were combined with a 
type I collagen sponge to optimize the stiffness of the material, which was successfully 
applied in a patellar tendon model (Butler et al.  2008  ) . Findings in several cell types 
provide evidence for the importance of the substrate stiffness as a physical signal 
for cells (Georges and Janmey  2005  ) . Early experiments demonstrated that differ-
entiation of mammary epithelial cells increased when grown on soft collagen gel 
substrate, as opposed to tissue culture plastic (Emerman et al.  1979  ) . Neurons pref-
erentially branched on soft tissues compared to stiff surfaces (Flanagan et al.  2002  ) . 
Although in most of these studies, the in fl uence of different mechanical properties 
is dif fi cult to separate from the type and density of the chemical ligand, it is obvious 
that stiffness of the substrate plays a role in tissue development. The role of substrate 
stiffness in the context with regenerative processes was emphasised by the funda-
mental  fi nding that stem cell lineage speci fi cation can be determined by mechanical 
properties of the substrate (Engler et al.  2006  ) . Mesenchymal stem cells were grown 
on polyacrylamide gels with varying compliance. These experiments convincingly 
demonstrated that the stiffness of the material de fi nes the differentiation lineage 
(Discher et al.  2009 ; Zajac and Discher  2008  ) . Soft substrates which mimic the 
mechanical properties of brain stimulated the neurogenic differentiation, intermedi-
ate stiffness leads to muscle cell differentiation and stiff substrates where found to 
be osteogenic. Similar experiments using adult neural stem cells have shown that 
softer substrates provoked neuronal differentiation, whereas stiffer materials induced 
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the formation of glial cells (Saha et al.  2008  ) . The mechanical properties of the 
substrates were also found to control the self-renewal of stem cells. Adult stem cells 
from skeletal muscle tissue revealed increased cell proliferation with rising stiffness 
of the matrix (Boonen et al.  2009  ) . Mesenchymal stem cells were kept quiescent on 
a gel that mimicked the softness of bone marrow. In contrast stiffer substrates 
induced the entry of these cells into the cell cycle (Winer et al.  2009  ) . The cells 
maintained the multilineage potential and could be differentiated both to adipocytes 
and osteocytes. These experiments provided evidence of mimicking the functional 
capacity of a bone marrow niche by tuning the mechanical properties of an arti fi cial 
substrate. In addition to the control of proliferation and multipotential differen-
tiation, sensing of substrate stiffnesses enables cells to migrate from soft to stiffer 
matrices, which appears of importance for stem cell translocation to sites of tissue 
regeneration (Gray et al.  2003 ; Kidoaki and Matsuda  2008  ) . This phenomenon was 
termed “durotaxis” (Lo et al.  2000  ) .    

    24.4   Applications for Therapeutic Devices 

 Progress in biomaterials design and engineering are converging to enable a new 
generation of instructive materials to emerge as candidates for regenerative medi-
cine. The aim of the design of current biomaterials is to regulate tissue regeneration 
by modulating direct or indirect chemical and physical control over transplanted 
or host cells. The dilemma is that to in fl uence cell behaviour, biomaterials must 
provide complex information (Place et al.  2009  ) . Tissue engineered skin equivalents 
have been introduced into clinical practice in 1997. Since then tissue engineered 
devices have been in clinical trials or already approved as therapies for tissues 
including cartilage, bone, blood vessel and pancreas. However, over-engineered 
devices make their translation to clinical use unlikely. The reconstruction of entire 
organs has largely given up and changed to smaller goals. For example, clinical 
advance in cardiac repair focus on coronar arteries, valves and regeneration of the 
myocardium. In principle, the aim is to develop synthetic materials that establish key 
interaction with cells that stimulate the innate organization and self-repair of the body.  

    24.5    Barriers to Practice and Prospects 

 A major hurdle for the progress in the application of biomaterials in the  fi eld of 
regenerative medicine lies not in the biomaterials but in stem-cell biology. The 
advancement of basic research in stem cell biology represents the driving factor for 
the development of biomaterials to regenerate a speci fi c tissue. Current trends 
suggest that biomaterial development will continue to create more life-like multi-
functional materials that are able to simultaneously provide complex biological 
signals (Chan and Mooney  2008 ; Howard et al.  2008  ) . Much can be learned from 
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the mechanisms that regulate cell fate in the stem cell niche. For example, the 
adhesion molecules that contribute to asymmetric stem cell division have begun 
to identi fi ed within the niche environment of hair follicle, intestinal epithelial, 
spermatogonial stem cells (Kanatsu-Shinohara et al.  2008 ; Ohyama et al.  2006 ; 
Tanentzapf et al.  2007  ) . In addition to the general control of stem cell function, there 
is growing interest in the dynamic nature of stem cell niches which can change 
properties under certain conditions (Adams and Scadden  2008  ) .  

    24.6   Conclusions and Future Challenges 

 Chemical and physical characteristics of biomaterials are able to control the biology 
of stem cells and signi fi cant advances have been gained in in vitro studies. By 
controlling the properties of biomaterials we may further improve the regulation of 
stem cell in a bioarti fi cial system. Although stem cell function is regulated by a set 
of different signals from the environment, the control of the extracellular matrix has 
proven a valuable tool to guide the development and commitment of stem cells. The 
challenge is to engineer an arti fi cial extracellular matrix, which is capable to directly 
control the behaviour of stem cells. In addition, the outcome of growth factors 
administration can be improved enormously with the use of slow-release constructs. 
A further step in the generation of bioactive materials will be the design of het-
erogeneous constructs and even complex organs, which will require both more 
insights the mechanisms of cell and developmental biology as well as innovation in 
biomaterial research.      
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  Abstract   Novel pharmacological approaches addressing the underlying problem 
of heart failure development, namely progressive cardiomyocyte loss, are emerging. 
The main therapeutic aims are to either protect cardiomyocytes from ischemia- 
associated stressors or to facilitate endogenous regeneration. The latter may be 
achieved by (1) induction of cardiomyocyte proliferation or (2) activation of recently 
identi fi ed dormant resident cardiac progenitor cell pools. The development of 
 pharmacological approaches to enhance these under normal circumstances ineffec-
tive self-repair mechanisms would be highly exciting and set the stage for the new 
therapeutic concept of “myocardial pharmacoregeneration”. This chapter will  fi rst 
delineate the phenotype of resident cardiac progenitor cells and then summarize 
growth factors/peptides as well as small molecules presently under investigation as 
candidates for pharmacoregeneration of the heart.      

    25.1   Introduction 

 The assumption that bone marrow contains progenitor or stem cell populations with 
cardio-regenerative potential (   Orlic et al.  2001a,   b  )  has prompted several stem cell-
base clinical trials in the last years (La fl amme and Murry  2011  ) . Most of these trials 
showed no or only modest bene fi ts (Segers and Lee  2008  ) . Although underlying 
mechanisms of the therapeutic effect of cell-based therapies observed in some stud-
ies remain speculative, evidence for paracrine mechanisms rather than functional 
integration of exogenous stem cells and derivatives is accumulating (Mirotsou et al. 
 2011  ) . Deciphering the therapeutic potential of cell-mediated paracrine mechanisms 
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and enhancing them pharmacologically would be clinically extremely attractive; 
especially considering the insuf fi cient available pharmacological treatment, which 
delays but does not prevent the onset of end-stage heart failure. 

 The investigation of the regenerative capacity of the adult mammalian heart has 
generated ambiguous results (Soonpaa and Field  1998 ; Anversa et al.  2007 ; 
Bergmann et al.  2009 ; Kajstura et al.  2010  ) . Despite the contention in the  fi eld, there 
is agreement that endogenous myocardial regeneration is insuf fi cient to stop disease 
progression into end-stage heart failure. Guideline-based drug therapy can reduce 
symptoms, shield the heart from neurohumoral overstimulation, and control patho-
logical remodeling, but it fails to regenerate the heart. Insuf fi cient myocardial 
regeneration in the mammalian heart is in clear contrast to the remarkable regenera-
tion capacity in lower vertebrates, such as zebra fi sh and newts. Here little residual 
injury can be observed after removal of up to 20% of the heart (Poss et al.  2002 ; 
Lepilina et al.  2006  ) . The phylogenetic distance between  fi sh and men has appar-
ently been a barrier for translating mechanistic insight from lower vertebrates into 
clinical therapy. However, recent observations that neonatal mice can regenerate 
their heart similarly as zebra fi sh (Porrello et al.  2011  )  have reactivated the search for 
signals that may also control myocardial regeneration in the adult mammalian heart. 
Clinical data from intrauterine surgery con fi rms that the human heart is essentially 
capable of regeneration (Herdrich et al.  2010  ) . However, limited access to fetal and 
early postnatal human myocardium restricts studies aiming at the identi fi cation of 
mechanisms underlying human heart regeneration. Whether the observed regenera-
tion is the consequence of cardiomyocyte proliferation or activation of cardiac pro-
genitors and why it cannot be ef fi ciently activated in the adult heart remains 
unknown. 

 Cardiac stem or progenitor cells (the term cardiac progenitor cells or CPCs will 
be used to describe this cell population along the whole chapter) have recently been 
identi fi ed in the mouse and human heart (Beltrami et al.  2003  ) . CPCs may represent 
remnants of embryonic heart development, but their origin and postnatal relevance 
remain a matter of debate (Sussman and Murry  2008  ) . When isolated from the heart, 
these cells appear to exhibit the potential to differentiate into most cellular compo-
nents of the heart, including endothelial cells, smooth muscle cells, and cardiomyo-
cytes. Using  in vivo  genetic lineage tracing, Hsieh et al. reported the generation of 
new cardiomyocytes after adult heart injury potentially from a progenitor cell pool 
(Hsieh et al.  2007  ) . However, further studies are necessary to better de fi ne the elu-
sive nature of resident CPCs in the heart and identify the reason for their insuf fi cient 
functionality especially in the injured postnatal human heart. To de fi ne unique CPC 
properties,  in vitro  studies may be particularly useful as they may help to identify 
distinct paracrine factors secreted from CPCs or in response to CPC activity under 
controlled conditions (Amado et al.  2005 ; Urbich et al.  2005 ; Psaltis et al.  2010 ; 
Tang et al.  2010  ) . This would help to delineate components of signaling pathways 
as potential drug targets for the induction of cardiomyocyte regeneration (Mirotsou 
et al.  2007 ; Zelarayan et al.  2008 ; Oerlemans et al.  2010 ; Oikonomopoulos et al. 
 2011  ) , and to effectively screen small molecules for their capacity to regulate CPC 
activity (Sadek et al.  2008 ; Russell et al.  2012  ) . Collectively, there are encouraging 
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data that provide a solid rationale for the further development of the concept of 
myocardial pharmacoregeneration (Kanashiro-Takeuchi et al.  2011  ) . 

 Coming from the “historical” perspective of bone marrow cell activation as 
means to regenerate the heart, this chapter will (1) provide an overview of the bio-
markers that de fi ne resident CPCs and (2) summarize available data on pharmaco-
logical activation of endogenous cellular repair mechanisms.  

    25.2   Cell-Based Heart Repair 

    25.2.1   Bone-Marrow Derived Cells 

 The bone marrow is a reservoir for hematopoietic (HSCs), mesenchymal (MSCs), 
and endothelial (EPCs) stem/progenitor cells. These progenitors can be readily iso-
lated from the bone marrow’s mononuclear cell (MNC) fraction (Fernandez-Aviles 
et al.  2004  ) . MSCs appear particularly interesting given their documented multi-
lineage potential with an  in vitro  and/or  in vivo  capacity to differentiate into osteo-
blasts, chondrocytes, myocytes, adipocytes, beta-pancreatic islets, and neuronal 
cells (Pittenger et al.  1999  ) . Initial efforts to move animal experiments into the clinic 
using bone marrow-derived cells for cardiac repair were triggered by the observa-
tion of their regenerative capacity in small animal models (Orlic et al.  2001a,   b ; 
Yoon et al.  2005  ) . However, several other studies failed to replicate these  fi ndings 
and showed that bone marrow-derived stem cells do not form cardiomyocytes, but 
instead adopt characteristic haematopoietic fates after transplantation in  ischemic 
hearts (Balsam et al.  2004 ; Murry et al.  2004 ; La fl amme and Murry  2011  ) . 
Nevertheless, multiple clinical trials have now provided hints that bone marrow-
derived mononuclear cells have the capacity to improve myocardial performance 
post-myocardial infarction, likely via paracrine mechanisms (Abdel-Latif et al. 
 2007 ; Dawn et al.  2009 ; Wei et al.  2009  ) . A large multicenter phase III trial, the 
Bone Marrow Therapy for Acute Myocardial Infarction (BAMI) trial (ClinicalTrials.
gov Identi fi er: NCT01569178 ) , will provide hopefully unambiguous insight into the 
clinical utility of bone marrow stem cells. Whether more speci fi c subsets of bone 
marrow stem cells, such as MSCs (Hare et al.  2009  ) , will be less, equally or more 
effective remains to be demonstrated. In addition, mechanisms of bone marrow cell-
based cardiac repair remain to be de fi ned. 

 Mouse studies have demonstrated that bone marrow-derived cells have the capac-
ity to stimulate endogenous repair via CPC activation (Loffredo et al.  2011  ) . Using 
a genetic approach, this study showed activation of pro-regenerative processes in 
resident CPCs after bone marrow-derived c-kit cell application. This effect was not 
observed when bone marrow-derived MSCs (c-kit negative) were employed. 
Notably, transdifferentiation of exogenously delivered cell was not detected, indi-
cating that the c-kit cells elicited a regenerative response via the release of so far 
unde fi ned factors. Other studies identi fi ed putative bone marrow-derived factors 
regulating myocardial regeneration from endogenous progenitor cells such as 
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 fi broblast growth factors, stromal cell-derived factor 1 (Urbich et al.  2005  ) , 
 hepatocyte growth factor and insulin-like growth factor-1 (Gnecchi et al.  2006  ) . 
Collectively, these data provide compelling evidence for the paracrine hypothesis of 
cell-based heart repair (Steinhauser and Lee  2011  )  and suggest that cell-free 
 pharmacological interventions simulating cell-based paracrine effects may render 
pharmacoregeneration of the heart an attractive therapeutic option.  

    25.2.2   Endogenous Regenerative Capacity of the Heart 

 Two different mechanisms of endogenous cardiomyocyte generation have been 
 suggested. These include (1) proliferation of pre-existing cardiomyocytes, which 
may necessitate initial cardiomyocyte dedifferentiation, and (2) provision of new 
cardiomyocytes from endogenous progenitor cell pools (Steinhauser and Lee  2011  ) . 

 Diverse experimental evidence concerning cell cycle activity of cardiomyocytes 
in the adult heart has been reported (Soonpaa et al.  1996 ; Kajstura et al.  1998,   2010 ; 
Bergmann et al.  2009  ) , ranging from annual proliferation rates of 0–20%. The 
 quantitative disagreement could at least in part be attributed to the dif fi culty to 
unambiguously distinguish cardiomyocyte from non-myocyte nuclei and karyoki-
nesis from cytokinesis. Despite this discrepancy, there is clear evidence that cardio-
myocytes can in principle be coaxed into cell cycle progression for example by 
overexpression of large T antigen (Field  1988  )  and cyclin D2 (Pasumarthi et al. 
 2005  ) . The latter study is particularly interesting because it demonstrated that 
 cardiomyocyte restricted cyclin D2 overexpression would only enhance cardiomyo-
cyte proliferation after infarction in the infarct border zone. This disease speci fi c 
and spatially restricted activity of the cell cycle regulator cyclin D2 suggests that 
myocardial infarction and/or post-infarct remodeling create a unique myocyte 
growth supporting environment. 

 Recent experimental studies suggest that cardiomyocyte proliferation is preceded 
by cardiomyocyte dedifferentiation. For example, in zebra fi sh resection of cardiac 
tissue caused sarcomere disassembly and re-expression of so called fetal genes, fol-
lowed by DNA synthesis leading to cytokinesis and re-differentiation toward mature 
cardiomyocyte (Jopling et al.  2010 ; Kikuchi et al.  2010  ) . Interestingly, similar 
observations were made in the early neonatal mouse heart (Porrello et al.  2011  ) . In 
agreement with the data mentioned above, these  fi ndings suggest that cardiomyo-
cytes can undergo division under de fi ned circumstances. Oncostatin M has recently 
been suggested as a speci fi c paracrine mediator of cardiomyocyte dedifferentiation 
post myocardial injury (Kubin et al.  2011  ) . Collectively, these data suggest that car-
diomyocyte dedifferentiation and proliferation are closely interrelated. A better 
mechanistic understanding of these processes may offer novel approaches for phar-
macoregeneration of the heart. 

 The identi fi cation of cells with progenitor cell properties in the heart raises the 
possibility that these cells can in principle be activated under speci fi c post-injury 
cardiac milieu conditions to regenerate lost myocardium. However, quantity and 
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functionality of CPCs appears to decrease with age (Bergmann et al.  2009 ; Zaruba 
et al.  2010  ) . The age associated de fi cit in cardiac regeneration capacity may contrib-
ute to heart failure progression in aging individuals. Amplifying and rejuvenating 
CPC niches in the heart are presently attempted by autologous CPC implantation 
(Bolli et al.  2011 ; Makkar et al.  2012  ) . Direct pharmacological reactivation and 
ampli fi cation of endogenous CPC function appear equally attractive, and thus phar-
macological means to achieve this are emerging. The following sections summarize 
the so far identi fi ed cardiac progenitor cell types in the heart. It is important to note 
that it cannot be excluded that these cell types are subsets of the same cell pool or 
derivatives from a common precursor.  

    25.2.3   Resident Cardiac Progenitor Cells 

 A number of cells with progenitor cell characteristics have been identi fi ed in the 
adult mature heart (Dimmeler et al.  2005 ; La fl amme and Murry  2011  ) . Unlike in 
pre-natal progenitor cells, there is no consensus on the molecular identity of these 
populations (Steinhauser and Lee  2011  )  and moreover, there are no speci fi c markers 
for selecting the different cell pools. The most common isolation protocols involve 
depletion of “contaminating” myocytes, smooth muscle, and endothelial cells 
 followed by subsequent surface marker selection. The selection is typically based on 
expression of developmentally important genes such as islet1 (Laugwitz et al.  2005  ) , 
speci fi c cell surface receptors such as c-kit and Sca1 (Beltrami et al.  2003 ; Oh et al. 
 2003  ) , the ability to form cell clusters termed “cardiospheres” (analogue to 
 neurospheres) (Messina et al.  2004  ) , or the property to ef fl ux Hoechst dye via the 
transport protein Abcg2 (so called side population (SP) cells; (Martin et al.  2004  ) ). 
Recently, additional cell populations were identi fi ed including the cardiac neural 
crest-derived cells (Tomita et al.  2005  ) , epicardial cells expressing the Wilm’s tumor 
1 (Wt1) protein, and a population of adult cardiac-resident colony-forming unit – 
 fi broblasts (cCFU-Fs) of epicardial origin (Chong et al.  2011  ) . Although it has been 
proposed that these cells constitute distinct entities, there is the possibility that these 
populations overlap and that marker expression may differ in the same cell lineage 
during different stages of maturation (La fl amme and Murry  2011  ) . Moreover, the 
origin of these cells remains still unclear and several hypotheses have been pro-
posed including derivation from bone marrow or early hematopoietic cells, remnant 
cells from embryonic heart development, or derivation by endothelial-to-mesenchy-
mal transformation (Dimmeler et al.  2005 ; Zeisberg et al.  2007  ) . The following 
paragraphs summarize the to our knowledge most prominent CPC phenotypes: 

    25.2.3.1   Stem Cell Antigen 1 (Sca1 or Ly-6A/E) Positive Cells 

 Sca1 is a glycosylphosphatidylinositol-anchored membrane protein, which is 
expressed by immature hematopoietic progenitor cells and also found in a small 
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number of cardiac cells (Oh et al.  2003  ) . Sca1 cells are negative for c-kit and do not 
express hematopoietic or stem or endothelial progenitor cell markers, but they 
exhibit high telomerase activity and express cardiogenic factors suggesting a car-
diac pre-determination. Accordingly,  in vitro  differentiation of Sca1 cells towards 
cardiomyocyte-like cells has been documented upon treatment with 5 ¢ azacytidine 
(5aza), an inhibitor of DNA methyltransferase causing chromatin relaxation (Oh 
et al.  2003  ) . Cardiac differentiation of Sca1 cells depends at least in part on bone 
morphogenetic proteins receptor ( Bmpr)1a , which is a known regulator of heart 
development (Oh et al.  2003  ) .  In vivo  these cells home to injured myocardium, inte-
grate and differentiate when administered intravenously following ischemia-reper-
fusion injury (Oh et al.  2003  ) . In this model, differentiation was found to be a result 
of two events: direct donor differentiation and cell fusion with the host tissue. 
Notably, the Sca1 epitope does not exist in the human. Despite this, Sca1-antibody 
selection has been successfully employed to isolate a cardiogenic cell type from 
fetal and adult human heart with similar cardiogenic properties as mouse Sca1 cells 
(Smits et al.  2005 ; van Vliet et al.  2008  ) . Moreover, these cells also differentiate into 
functional cardiomyocytes  in vitro  in response to 5aza-mediated DNA demethyla-
tion and TGFbeta1 supplementation (Smits et al.  2005 ; Goumans et al.  2007  ) . 
Further characterization of the biological properties of these Sca1 and Sca1-like cell 
populations is warranted to establish their therapeutic capacity in mice and men.  

    25.2.3.2   Tyrosine-Protein Kinase Kit (c-kit or CD117) Positive Cells 

 c-Kit is a tyrosine-kinase receptor found in circulating hematopoietic progenitors as 
well as in the bone marrow, telocytes, thymic epithelium, mast cells, and embryonic 
stem cells (Yasuda et al.  1993 ; Reber et al.  2006  ) . c-Kit is also expressed in the CPC 
pool from the adult heart. Similar to Sca1-CPCs, c-kit-CPCs do not co-express 
hematopoietic markers; they are moreover clonogenic, self-renewing, and multipo-
tent (Beltrami et al.  2003 ; Tallini et al.  2009  ) . The cardiomyogenic capacity of c-kit 
cells is however highly disputed. Some groups reported the ability of c-kit cells to 
regenerate adult myocardium and vessels along with functional improvement after 
cardiac infarction of the adult heart (Beltrami et al.  2003 ; Bearzi et al.  2007  ) ; others 
report poor cardiomyogenic differentiation only in neonatal c-kit cells and no trans-
differentiation in adult cardiac c-kit cells (Zaruba et al.  2010  ) . Data from a BAC 
transgenic mouse model, which expressed GFP under the transcriptional control of 
the endogenous genomic c-kit locus, con fi rmed that cardiac c-kit cells can be 
identi fi ed in a mixed developmental state in the developing as well as the neonatal 
heart and observed a transcriptional c-kit reactivation in adult cardiomyocytes fol-
lowing injury. This study also showed the potential role of c-kit in vascular repair 
(Tallini et al.  2009  )  and is in agreement with studies showing the involvement of 
 in vitro  activated cardiac c-kit cell primarily in vasculogenesis post-infarction, but 
not in the absence of tissue damage (Tillmanns et al.  2008  ) . Collectively, the com-
prehensive data in support of the utility of c-kit CPCs in heart regeneration has 
prompted the initiation of the SCIPIO trial to investigate the safety of intracoronary 
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autologous cardiac stem cell therapy as an adjunct treatment for patients with 
 ischemic cardiomyopathy (Bolli et al.  2011  ) . Early data from this phase I trial 
con fi rmed feasibility and safety of the stem cell approach. In addition, hints for 
improvement of left ventricular systolic function and reduction in infarct size could 
be attained. Larger clinical trials are necessary to ultimately de fi ne the therapeutic 
value of autologous c-kit CPCs.  

    25.2.3.3   Islet1-Positive Cells 

 Islet-1 is a transcription factor of the LIM-homeodomain family, which was  fi rst 
identi fi ed in cells of the pancreas as an enhancer of the insulin gene (Karlsson et al. 
 1990  ) . Islet-1 raised interest in the  fi eld of cardiovascular research after the discov-
ery that Islet-1 marks a cell population that makes a substantial contribution to the 
embryonic heart, i.e. mainly to the right ventricle, atria, the out fl ow tract, most of 
the conduction system, and also speci fi c regions of the left ventricle (Cai et al.  2003 ; 
Laugwitz et al.  2005  ) . Detailed  in vitro  studies demonstrated that Islet-1 positive 
cells from the heart can give rise to cardiomyocyte, endothelial cells, and smooth 
muscle cells (Laugwitz et al.  2005 ; Moretti et al.  2006  ) . These observations posi-
tioned Islet-1 as a putative marker for resident CPCs. However, only few Islet-1 
cells persist in the adult heart (Genead et al.  2010 ; Khattar et al.  2011  ) . Using a 
genetic approach clusters composed of Islet-1 positive cells were con fi ned to the 
sinoatrial node, cardiac ganglia, proximal aspects of the aorta, the pulmonary artery, 
and the out fl ow tract area (Weinberger et al.  2012  ) . Given these data, and despite 
unequivocal evidence for the role of Islet-1 in prenatal mouse heart development 
(Cai et al.  2003  ) , there is little evidence that Islet-1 is a unique marker for CPCs in 
the adult human heart.  

    25.2.3.4   Cardiosphere-Derived Cells (CDCs) 

 From myocardial biopsies, cells with the capacity to form spherical aggregates, also 
known as cardiospheres, can be derived (Messina et al.  2004  ) . Cardiospheres can be 
generated from embryo, fetal, and postnatal mouse as well as explanted human 
atrial or ventricular biopsy specimens (Messina et al.  2004 ; Johnston et al.  2009  ) . 
From cardiospheres self-renewing and clonogenic cells can be derived. Cardiosphere 
derived cells (CDCs) are Flk-1 positive, which is expressed in early cardiac meso-
dermal cells and hemangioblasts, along with the endothelial markers CD31 and 
CD34 as well as c-kit and Sca1. The origin of CDCs, i.e. either from dedifferenti-
ated proliferative cardiomyocytes or CPCs, is unclear (Rasmussen et al.  2011  ) . 
CDCs injected into the adult injured pig heart induced tissue repair and regeneration 
attenuating adverse remodeling post-infarction. This effect was attributed to the 
ability of CDCs to engraft and form mature cardiac cells (Barile et al.  2007 ; Johnston 
et al.  2009  ) . In addition, CDCs appear to exhibit a unique paracrine activity, with the 
capacity to produce for example  fi broblast and hepatocyte growth factors (Barile 
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et al.  2007  ) . This may have contributed to their greater bene fi t on cardiac function 
when compared to bone-marrow derived cell grafts (Li et al.  2012  ) . These results 
led to the initiation of a clinical study (CADUCEUS trial) to test the feasibility and 
safety of intracoronary injection of these cells after myocardial infarction (Makkar 
et al.  2012  ) . Preliminary data from this study provided hints for therapeutic ef fi cacy 
with smaller infarct size after CDC treatment. Also here larger clinical studies are 
necessary to unequivocally de fi ne the therapeutic potential of CDCs and underlying 
mechanisms for myocardial regeneration.  

    25.2.3.5   Side Population (SP) Cells 

 A subgroup of cells within the Sca1 cell fraction, also known as side population 
(SP), can be de fi ned by their propensity to actively export Hoechst 3342 via vera-
pamil sensitive Abcg2 ef fl ux pumps (Zhou et al.  2001 ; Bunting  2002  ) . SP cells can 
be isolated from multiple adult tissues including skeletal muscle, bone marrow, 
liver, lung, kidney, and brain. SP cells could also be identi fi ed in the early develop-
ing and adult heart tissue where they appear to contribute to organogenesis and 
 tissue maintenance, respectively (Martin et al.  2004  ) . A Sca1 positive SP subpopu-
lation, being negative for the endothelial marker CD31, was identi fi ed to have a 
unique potential to differentiate into functional cardiomyocytes (P fi ster et al.  2005, 
  2010  ) . This appeared to depend on direct coupling with adult cardiomyocytes, 
although the exact mechanism requires further elucidation. Characterization of the 
SP cell population demonstrated their capacity to form aggregates resembling 
 cardiospheres and differentiate into neurons, glia as well as smooth muscle cells 
(Tomita et al.  2005  ) . It appeared that the cardiosphere forming cells exhibit charac-
teristics of embryonic neural crest-derived cells.  

    25.2.3.6   Epicardial-Derived Cells (EPDCs) 

 The epicardium has recently moved into the focus of myocardial regeneration as a 
putative source for multiple cell types in the developing and adult heart (Smart et al. 
 2007,   2011  ) . Its embryonic origin is the proepicardial organ (PEO) or proepicar-
dium primordium. The PEO is a transient mesothelial cell cluster located near the 
venous pole of the embryonic heart that migrates and expands onto the myocardium 
to cover almost the whole surface of the ventricle (Ratajska et al.  2008  ) . It is marked 
by the expression of the Wilm’s tumor (WT-1) suppressor gene (Perez-Pomares 
et al.  2002  ) . The epicardium provides epicardial cells that proliferate, undergo epi-
thelial-to-mesenchymal transformation, and differentiate into endothelial and 
smooth muscle cells that constitute the coronary vasculature, interstitial  fi broblast 
as well as the Purkinje  fi ber network (Winter and Gittenberger-de Groot  2007 ; 
Ratajska et al.  2008  ) . Using reporter mice, WT-1 cells were found to contribute to 
cardiomyocyte formation during normal heart development (Zhou et al.  2008  ) . 
Collectively, these studies showed the high plasticity of EPDCs, making them an 
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attractive population for cell-based cardiac repair. Moreover, the epicardium is also 
a source of diffusible factors required for development (Limana et al.  2011  ) . 
Interestingly, epicardium-based myocardial repair activity in the mouse appears to 
be present only after preconditioning with thymosin beta 4 (Smart et al.  2011  )  and 
absent under “normal” pathological conditions (Zhou et al.  2012  ) . Whether the 
human epicardium contains a pathophysiologically relevant reservoir of repair cells 
or exhibits paracrine regeneration-inducing activity remains to be demonstrated. 

 Taken together, experimental and clinical evidence suggests that the heart has an 
intrinsic, but dormant regenerative capacity. Especially in the aging heart endoge-
nous repair appears to be lost. Reactivation of embryonic mechanisms controlling 
cardiomyocyte proliferation or CPC niche activity by cell-based or even better phar-
macologically de fi ned means would be highly attractive given the scarcity of alter-
natives in end-stage heart failure treatment.    

    25.3   Pharmacological Activation of Endogenous Cardiac 
Regeneration 

 Numerous studies have pointed to a prominent role of paracrine factors in cell-
based cardiac regeneration. In fact, cardiomyocyte proliferation and endogenous 
CPC activity may be fully controlled by a regeneration supportive (typically present 
during prenatal development) or restrictive (typically present during postnatal 
development) paracrine milieu. Overcoming the restrictions in the adult heart by 
making use of pharmacological principles would be highly desirable and clearly 
preferred over the use of dif fi cult to standardize cell therapy. Figure  25.1  summa-
rizes potential pharmacological interventions discussed below in more detail. We 
would like to emphasize that the mechanisms of the regenerative action of the 
 discussed growth factors/peptides and small molecules are only incompletely under-
stood. The  fi eld is advancing rapidly to address the prevailing uncertainties.  

    25.3.1   Growth Factors/Peptides 

    25.3.1.1   Granulocyte and Macrophage Colony Stimulating Factor 
(GM-CSF) 

 GM-CSF is a cytokine responsible for the mobilization of hematopoietic stem cells. 
GM-CSF is produced by a variety of tissues and its well known function is to drive 
the proliferation of BMCs via activation of its canonical receptor (GM-CSFR). This 
is followed by activation of JAK/STAT, Ras/MAPK, and PI3K/AKT signaling cas-
cades. GM-CSFR has also been detected in adult cardiomyocytes and its activation 
under stress seems to promote cell survival (Harada et al.  2005  ) . Early studies by 
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Orlic at al. explored the systemic application of GM-CSF after myocardial  infarction 
in a mouse model (Orlic et al.  2001a,   b  ) . They found recruitment of c-kit-BMCs and 
attributed the observed reduction in infarct size in the GM-CSF treated group to stem 
cell transdifferentiation into myocytes and endothelial cells. This mechanism of 
action has been clearly refuted by a number of elegant studies (Balsam et al.  2004 ; 
Murry et al.  2004  ) , but the therapeutic potential of GM-CSF (not its originally pos-
tulated mechanism) has been further substantiated (Sugano et al.  2005 ; Hasegawa 
et al.  2006  ) . In line with these data, the  fi rst clinical trial using GM-CSF in combina-
tion with intracoronary infusion of peripheral blood stem cells (PBMCs; MAGIC 
trial) showed an improvement in cardiac function and promotion of angiogenesis 
post-infarction (Kang et al.  2004  ) . However, aggravated coronary restenosis observed 
in the patients receiving GM-CSF raised serious safety concerns and the patient 
enrollment was consequently terminated. In contrast to MAGIC, no coronary rest-
enosis was observed in a follow-up trial (FIRSTLINE-AMI), where GM-CSF alone 
was administered to patients with myocardial infarction (Ince et al.  2005  ) . Analyses 
revealed mobilization of CD34-BMCs along with signi fi cant improvement in cardiac 
contractility. The results from FIRSTLINE-AMI encouraged subsequent trials with 
a higher number of patients as well as placebo controls (STEMMI, REVIVAL-2, 
G-CSF-STEMI). These trials, however, did not show any bene fi cial effect of GM-CSF 
post infarction (Engelmann et al.  2006 ; Ripa et al.  2006 ; Zohlnhofer et al.  2006  ) . 
Nevertheless it should be noted that in these studies GM-CSF did not elicit adverse 
effects such as coronary restenosis, aggravation of in fl ammation or ischemia. 
Moreover, a recent meta-analysis of these trials revealed a signi fi cant amelioration in 
cardiac function (increase in left ventricular ejection fraction [LVEF] by 4.7%) when 
GM-CSF was administered within 37 h post ischemia (Abdel-Latif et al.  2008  ) . In 
conclusion, regardless of the diverse experimental and clinical results, GM-CSF 
seems to exert a modest therapeutic effect if administered shortly after acute isch-
emia. The GM-CSF effect in acute phases of myocardial injury argues for a cell 
protective effect, which could be mediated via anti-apoptotic AKT-signaling. 
However, activation of myocardial regeneration by induction of cardiomyocyte pro-
liferation and/or CPC activation may also have contributed to the observed effects.  

    25.3.1.2   Stromal Cell-Derived Factor 1 (SDF-1) 

 SDF-1 is a small chemokine of 8 kDa that by binding to C-X-C chemokine receptor 
type 4 (CXCR4) has originally been identi fi ed to chemoattract CD34-BMCs (Aiuti 
et al.  1997  ) . Embryos lacking either SDF-1 or its receptor die due to impaired 
myelopoiesis (Zou et al.  1998  ) . In addition, SDF-1 null embryos show cardiac ven-
tricular septum defects suggesting that SDF-1/CXCR4 may play a distinct role dur-
ing cardiogenesis (Nagasawa et al.  1996  ) . In line with this, gene knock down of 
CXCR4 in pluripotent stem cells abrogated their spontaneous differentiation into 
functional cardiomyocytes (Chiriac et al.  2010  ) . Together, these data suggest that the 
SDF-1/CXCR4 axis does not only induce progenitor cell migration in the heart, but 
also promotes lineage-speci fi c differentiation. Under the hypothesis that SDF-1 
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could promote cardiogenesis after myocardial infarction in a similar way as in devel-
opment, Askari et al. transplanted stably over-expressing SDF-1  fi broblasts in the 
ischemic rat heart (Askari et al.  2003  ) . Here, high levels of SDF-1 resulted in a higher 
vessel density and improved cardiac function. Moreover, SDF-1 was shown to be 
expressed by endothelial cells in the ischemic heart under the control of hypoxia-
inducible factor-1 (Ceradini et al.  2004  ) . SDF-1 expression increased migration and 
homing of circulating CXCR4-positive progenitor cells to ischemic tissue whereas in 
the absence of SDF-1 or CXCR4 no progenitor cell recruitment was observed. 
Although, SDF-1 is activated under hypoxia, its clinical potential against cardiac 
remodeling is limited by its rapid degradation by proteases present in the ischemic 
heart such as matrix metalloproteinase MMP-2 (McQuibban et al.  2001  )  and dipep-
tidylpeptidase IV (DPP IV/CD26) (De La Luz Sierra et al.  2004  ) . In an initial 
approach to overcome this problem, a cleavage protected variant of SDF-1, called 
SSDF-1(S4V), was designed. Delivery of SSDF-1(S4V) with self-assembling pep-
tide nano fi bers achieved high and locally sustained concentrations; attributed to this 
was increased cardiac function and vessel density in a rat model of cardiac ischemia 
(Segers et al.  2007  ) . An alternative approach to increase SDF-1 is by DPP IV inhibi-
tion. This resulted in CD34-BMCs recruitment to the infarct border zone and 
enhanced micro-vascularization; both may have contributed to the observed reduc-
tion in infarct scar size (Zaruba et al.  2009  ) . A combination with GM-CSF-based 
stem cell mobilization further enhanced survival and cardiac function (Zaruba et al. 
 2009  ) . Non-viral gene transfer of naked plasmid DNA encoding for human SDF-1 
promoted angiogenesis and improved cardiac function in rats with ischemic heart 
failure (Sundararaman et al.  2011  ) . These studies demonstrated collectively that 
SDF-1 attenuates the progression of chronic ischemic heart failure primarily by 
increasing vasculogenesis, reducing scar formation and  fi brosis. A clinical trial which 
investigates the effects of SDF-1 in myocardial ischemia has been initiated 
(ClinicalTrials.gov Identi fi er: NCT01082094). This trial evaluates the safety of a 
single escalating dose of SDF-1 plasmid administered by endomyocardial injection. 
Taken together, SDF-1 appears as a promising therapeutic agent to minimize post 
infarct injury and may thereby prevent progression into heart failure. Similar as for 
GM-CSF it remains to be established whether protection from ischemia in fl icted 
damage or true regeneration are the underlying therapeutic mechanisms.  

    25.3.1.3   Hepatocyte Growth Factor (HGF) 

 HGF was originally identi fi ed as a cytokine acting in hepatocytes (Nakamura et al. 
 1989  )  by binding with high af fi nity to its receptor c-met. c-Met is expressed in a vari-
ety of cells, which upon HGF challenge can proliferate, migrate, and form tubules 
(Derman et al.  1995  ) . Interestingly, c-met is expressed on different populations of 
progenitor cells including c-kit-cells (Beltrami et al.  2003 ; Miyazaki et al.  2004  ) , 
Sca1-cells (Iwasaki et al.  2005  )  and mesenchymal stem cells (MSCs) (Forte et al. 
 2006  ) . Following ischemia/reperfusion, c-met expression is induced in the ischemic 
rat heart (Nakamura et al.  2000  ) . Recombinant HGF has been shown to reduce scar 
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size by protecting myocytes from apoptosis whereas HGF neutralization did the oppo-
site. Besides its anti-apoptotic role, HGF in combination with insulin like growth 
factor-1 (IGF-1) has been shown to recruit c-kit-positive CPCs in the ischemic heart 
(Urbanek et al.  2005  ) . The in this study observed amelioration in cardiac function was 
attributed to the differentiation of c-kit-positive cells into cardiomyocytes as well as 
endothelial cells in the infarct border zone and epicardium (Wang et al.  2004  ) . The 
anti-apoptotic properties of HGF seem to be mediated via the activation of PI3-kinase/
Akt pathway. A similar property is attributed to IGF-1 and PDGF-BB (Vantler et al. 
 2010  ) . Although HGF administration in preclinical trials provided promising results, 
we are not aware of a clinical study that assesses the effect of HGF against ischemia.  

    25.3.1.4   Insulin-Like Growth Factor-1 (IGF-1) 

 IGF-1 is typically released from a variety of cells after growth hormone stimulation. 
A surplus in IGF-1 is associated with acromegaly, which may cause cardiac hyper-
trophy (Bogazzi et al.  2008  ) . Approximately 98% of IGF-1 is bound to one of the 
seven binding proteins (IGF-BP). IGF-1 binds to its tyrosine kinase receptor, the 
insulin like growth factor 1 receptor (IGF1R), and thereby triggers PI3K/AKT acti-
vation with its well known supportive effects on cell growth, i.e. hyperplasia and 
hypertrophy, and cell survival. The hypertrophy inducing effects of IGF-1 formed 
the rationale for clinical trials testing IGF-1 administration in patients with dilated 
cardiomyopathy (Fazio et al.  1996  ) . However, these early trials had a neutral out-
come, and thus further testing was abandoned. Additional academic interest was 
raised by the  in vivo  evidence of the IGF1/IGF1R system being activated in cardio-
myocytes shortly after myocardial infarction (Anversa et al.  1995  ) . Moreover, con-
stitutive overexpression of IGF-1 reduced apoptosis at the infarct border zone while 
limiting adverse cardiac remodeling (Li et al.  1997  ) . Aside from its anti-apoptotic 
effects, IGF-1 was also implicated in angiomyogenic regeneration (Hynes et al. 
 2011  ) . More recently, IGF-1 was identi fi ed as a key regulator of cellular senescence 
(Torella et al.  2004  ) . Accordingly, in IGF-1 overexpressing mice transcription of 
senescence genes p27Kip1, p53, p16INK4a, and p19ARF was repressed. Moreover, 
IGF-1 overexpressing mice exhibited high nuclear phospho-Akt and telomerase 
activity particularly in cardiomyocytes and c-kit-positive cells in the heart, favoring 
cardiac regeneration (Torella et al.  2004  ) . Interestingly, also in humans an age-
related inverse relationship between senescence and IGF could be identi fi ed (Reeves 
et al.  2000  ) . It is consequently intriguing to speculate that there is a causal link 
between loss of IGF-1 and CPC quantity as well as activity during aging and that 
reintroduction of “juvenile” IGF-1 levels would have the capacity to antagonize 
age-associated myocardial deterioration. The link between IGF-1 and CPCs was 
further substantiated by studies showing that c-kit-positive CPCs express IGF-1R 
and also synthesize IGF-1, suggesting an autocrine mechanism (D’Amario et al. 
 2011  ) . Full activity of this putative positive feedback mechanism may however 
depend on the  availability of HGF (Rota et al.  2008 ; Padin-Iruegas et al.  2009  ) . In 
addition to its direct effects on CPC fate, IGF-1 may also protect/regenerate the 
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heart by inducing the secretion of other protective or regenerative factors such as 
SDF-1 (Haider et al.  2008  )  or modulation of micro RNA processing (e.g. miR-34a), 
which can confer anti-apoptotic effects (Iekushi et al.  2012  ) . Very recently, a clini-
cal trial (RESUS-AMI; ClinicalTrials.gov Identi fi er: NCT01438086) has been initi-
ated to test safety and preliminary ef fi cacy of IGFR activation in the heart by 
applying a synthetic IGF-1 analog (i.e. mescasermin) in acute ischemia.  

    25.3.1.5   Fibroblast Growth Factor (FGF)/Vascular Endothelial Growth 
Factor (VEGF) 

 Angiogenesis is closely linked to myocardial repair or regeneration. Growth factors 
with well documented angiogenic activity include  fi broblast growth factor (FGF) 
and vascular endothelial growth factor (VEGF). Their role in direct cardiomyocyte 
regeneration is less well de fi ned. In embryonic development, FGFs have a pivotal 
role in the control of early cardiogenesis (Watanabe et al.  2006 ; Grego-Bessa et al. 
 2007  ) . Similarly, VEGF is essential for embryonic vessel formation, stabilization, 
and remodeling via regulation of NOTCH signaling (Lin et al.  2007  ) . Also in the 
adult heart, a combination of FGF-2 and VEGF induced endothelial cell prolifera-
tion and angiogenesis, resulting in attenuation of post infarction injury (Yanagisawa-
Miwa et al.  1992 ; Pearlman et al.  1995 ; Watanabe et al.  1998  ) . Despite the promising 
results of the preclinical animal studies, safety concerns about the mitogenicity of 
these factors and the broad expression of their receptors restricted their systemic 
administration in humans. To circumvent systemic delivery of angiogenic growth 
factors, which would facilitate the risk of tumor formation, a mutated non- angiogenic 
form of FGF-2 (S117A-FGF-2 (Jiang et al.  2004  ) ) and targeted VEGF delivery via 
P-selectin coated liopsomes (Scott et al.  2009  )  were tested and demonstrated pro-
tection of infarcted myocardium from myocyte loss and adverse remodeling. Despite 
these encouraging data, it has become apparent that for functional vascularization 
not only endothelial cells, but also smooth muscle cells or pericytes are required. 
Thus, additional growth factors may have to be administered to ensure proper vessel 
formation. Despite these caveats, clinical tests with combined VEGF/FGF adminis-
tration via intramyocardial injection of plasmid-DNA (pVIF) in patients with refrac-
tory cardiac ischemia (VIF-CAD) have been performed (Kukula et al.  2011  ) . 
Although the primary study endpoint, i.e. enhancement of myocardial perfusion, 
was not reached, patients did show better exercise  tolerance. Using an alternative 
approach, the ALCADIA study is recruiting to evaluate the safety and ef fi cacy of 
autologous human CPCs transplantation in combination with controlled release of 
FGF-2 in a gelatin hydrogel sheet in patients with chronic ischemic cardiomyopathy 
(ClinicalTrials.gov Identi fi er: NCT00981006).  

    25.3.1.6   Erythropoietin (Epo) 

 Epo is a 34 kDa growth hormone, widely known for its role in erythropoiesis. It was 
originally identi fi ed to enhance survival and induce proliferation of the late  erythroid 
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progenitors, colony forming unit-erythroid (CFU-E) (Gregory and Eaves  1978 ; 
Komatsu et al.  1991  ) . However, recent data on the broad expression of erythropoietin 
receptor (EpoR) in adult organs (Suzuki et al.  2002  )  suggested a comprehensive role 
for Epo beyond erythropoiesis. Speci fi cally in the heart, EpoR is detected around 
embryonic stage E10 and although signi fi cantly lower it persists through adulthood. 
Erythroid rescued EpoR knock-out mice appear to have less immature proliferating 
myocytes during embryogenesis, but reach adulthood without apparent morphologi-
cal defects (Suzuki et al.  2002  ) . However, upon ischemia reperfusion, these animals 
show a greater infarct size suggesting that a de fi cient Epo/EpoR system in the non-
hematopoietic lineage may deteriorate left ventricular remodeling (Tada et al.  2006  ) . 
Epo expression is controlled by HIF-1alpha, suggesting a central role in ischemic 
tissue (Makita et al.  2005  ) . In agreement with this, several preclinical studies showed 
that Epo administration post infarction improves cardiac function mainly via neo-
angiogenesis and anti-apoptotic mechanisms (Calvillo et al.  2003 ; Moon et al.  2003 ; 
Hirata et al.  2005 ; Xu et al.  2005 ; Ye et al.  2005  ) . Owing to its approved availability 
for anemia therapy, Epo was quickly tested clinically for its utility in post myocardial 
infarction repair. In the  fi rst pilot study, a high i.v. single dose Epo regimen was able 
to induce endothelial cell proliferation, but had no effect on cardiac function (Lipsic 
et al.  2006  ) . Subsequent studies with larger numbers of patients also failed to show a 
signi fi cant amelioration in cardiac function (Ott et al.  2010  ) . Nevertheless, a smaller 
pilot study where small amounts of Epo were administered subcutaneously once a 
week in patients for a prolonged period of time demonstrated that Epo had a bene fi cial 
effect on cardiac remodeling and function (Bergmann et al.  2011  ) . These data sug-
gest that the discrepancy between the promising pre-clinical results of Epo and the 
human trials may be due to differences in dosing and mode of delivery (intravenously 
vs. subcutaneously). In this line of thought, a novel clinical trial (EPAMINONDAS; 
EudraCTno. 200500485386) is about to establish the optimum concentration of 
intravenous Epo injection in a large cohort of patients with myocardial infarction. In 
another study, biological half-life of Epo was found to be markedly different if the 
same dose of Epo was administered intravenously and subcutaneously, i.e. ~5 vs. 
~25 h, respectively (Salmonson et al.  1990  ) . Collectively, these data suggest that a 
slow release application of Epo could be advantageous. The high receptor af fi nity 
(Kd 160 pM) would moreover only necessitate low doses to activate the EpoR effec-
tively (Syed et al.  1998  ) . Thus, it appears timely to test the potential role of subcuta-
neous low dose of Epo in ischemia and de fi ne in more detail its role not only in 
angiogenesis, but also in CPC activation or cardiomyocyte proliferation.  

    25.3.1.7   Thymosin Beta 4 (Tbeta4) 

 Tbeta4 is a highly conserved 5 kDa peptide initially isolated from bovine thymus 
(Low et al.  1981  )  that forms a complex with muscle G-actin and inhibits its 
 polymerization (Safer et al.  1991  ) . Tbeta4 ability to induce both ectoderm and 
mesoderm commitment of P19 embryonic cells and its localization in blood vessels 
and heart of developing embryos, suggested a role in stem cell biology and poten-
tially angiogenesis (Gomez-Marquez et al.  1996  ) . Indeed, TBeta4, which is also a 
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direct downstream target of Hand 1 (Smart et al.  2010  ) , was shown to promote 
 myocardial and endothelial cell migration in the embryonic and early postnatal 
heart (Bock-Marquette et al.  2004  ) . In the  fi rst preclinical trial, Tbeta4 treatment of 
infarcted mice led to an improvement in cardiac function as well as cardiomyocyte 
survival; this action was mediated by integrin-linked kinase (ILK) and subsequent 
Akt activation (Bock-Marquette et al.  2004  ) . Further studies revealed that Tbeta4 is 
a prerequisite for coronary vessel development in mice and that upon injury it may 
partially restore the lost vasculature not only by activating quiescent epicardial 
 progenitor cells, but also by inducing their differentiation into  fi broblasts, smooth 
muscle, and endothelial cells (Smart et al.  2007  ) . In a large study, Tbeta4 was 
identi fi ed as a paracrine factor that mediated cardioprotection when embryonic 
endothelial cells where injected into porcine infarcted myocardium (Hinkel et al. 
 2010  ) . Finally, a recent study showed that upon myocardial injury WT1-positive 
EPDCs primed with Tbeta4 were able to transdifferentiate into and integrate with 
functional cardiomyocytes (Smart et al.  2011  ) . However, being an apparently mito-
genic peptide Tbeta4 administration in humans needs to be carefully performed to 
not cause tumor formation or unknown tumor aggravation (Jo et al.  2011  ) . Therefore 
novel injectable hydrogels are being designed that are able not only to target Tbeta4 
to the heart, but also ensure its sustained delivery (Chiu and Radisic  2011 ; 
Kraehenbuehl et al.  2011  ) . Collectively, these promising results about Tbeta4-based 
cardioprotection led to the  fi rst placebo controlled clinical trial, testing intravenous 
administration of Tbeta4 in patients with acute myocardial infarction. Phase I test-
ing has recently been completed with encouraging results and phase II clinical trials 
are under preparation (Crockford  2007  ) .  

    25.3.1.8   Emerging Myocyte Mitogens – Periostin and Neuregulin 

 One of the  fi rst exogenous proteins used to mitotically activate myocytes was 
 periostin  (Pn). Pn is a 90 kDa protein that typically controls cellular and extracel-
lular matrix organization during cardiac development (Butcher et al.  2007  ) . Pn 
 levels decrease substantially during aging and are up-regulated upon injury (Stanton 
et al.  2000  ) . Pn knockout mice are more sensitive to cardiac rapture and  fi brosis, but 
in the long-term exhibit hypertrophy and a better cardiac function (Oka et al.  2007  ) . 
 In vitro , Pn could be employed to stimulate mononucleated cardiomyocytes to pro-
liferate, and in a rat model of myocardial ischemia delivery of a Pn foamgel resulted 
in neoangiogenesis, reduced infarct size and  fi brosis, and improved cardiac function 
(Kuhn et al.  2007  ) . However, later studies where Pn was transgenically overex-
pressed in mouse myocytes failed to validate these results (Fuller et al.  2008 ; Lorts 
et al.  2009  ) . Whether the discrepancies between these studies can be explained by 
the different species used (mouse vs. rat), the mode of delivery of Pn, or the differ-
ent experimental protocol remains to be clari fi ed. 

  Neuregulin 1  (NRG) is another “myocyte mitogen” that has raised a lot of atten-
tion. The importance of NRG for proper cardiac development is demonstrated in mice 
with a NRG null mutation, which display heart malformations (Meyer and Birchmeier 
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 1995  ) . Alternative splicing of NRG1 results in a number of different isoforms, including 
heregulins (HRGs), glial growth factors (GGFs), and sensory and motor neuron-
derived factors (SMDF). Most of these isoforms have been con fi rmed as inductors of 
proliferation and/or differentiation of cells expressing members of the epidermal 
growth factor receptor family ErbB1-4, including myocytes (Peles et al.  1992 ; Zhao 
et al.  1998 ; Fuller et al.  2008  ) . NRG1- or ErbB-2 and -4 knockout mice die at mid-
gestation due to myocardial hypotrophy (Gassmann et al.  1995 ; Lee et al.  1995 ; Meyer 
and Birchmeier  1995  ) , depicting the signi fi cance of this gene in cardiac development. 
Postnatally, both ErbB2 and ErbB4 receptors were found in neonatal and adult ven-
tricular myocytes (Fuller et al.  2008  ) . They could be activated with recombinant 
human GGF 2 (Zhao et al.  1998  ) . This activation promoted the survival of stressed 
myocytes and further led to their hypertrophy. Finally, the same authors revealed that 
the source of NRG1 in the rat ventricle are endothelial cells of the coronary microvas-
culature. Recently, NRG1 was shown to play a mitogenic role in adult mononucleated 
cardiomyocytes  in vitro  and  in vivo , which apparently contributed to improved cardiac 
function post myocardial infarction (Bersell et al.  2009  ) . Clinical trials to evaluate the 
safety and ef fi cacy of NRG-1 have shown improved cardiac function and reversed 
remodeling in chronic heart failure (Xu et al.  2010  ) . There are now several follow-up 
clinical trials recruiting patients to test safety and ef fi cacy of NRG1 (or GGF2) in 
heart failure patients (NCT01439789, NCT01541202, NCT01251406, NCT01439893). 
Other trials are however on hold because of concerns related to unwanted cell growth 
(NCT01214096, NCT01131637).   

    25.3.2   Small Molecules 

 The introduction of small molecules with regeneration inducing activity would be 
highly advantageous over peptide based therapeutics, because of their de fi ned chem-
istry and thus producibility under highly de fi ned conditions. Moreover, small mole-
cules are cheaper to produce in bulk quantities and require less regulatory 
considerations. Small molecules are usually developed based on identi fi ed therapeu-
tic targets. This is followed by compound screens and chemical engineering based on 
for example the crystal structure of a putative therapeutic target. Especially, in com-
pound screens it is essential to use adequate model systems, which simulate as closely 
as possible the target organ physiology and pathology. Here compromises are often 
made to achieve high throughput at low costs, e.g. by making use of transformed cell 
lines (P19CL6, HL-1) with little resemblance to  bona  fi de  cardiomyocytes. More 
recently human embryonic stem cell or induced pluripotent stem cell based models 
have been introduced to provide more realistic models (Davis et al.  2011  ) . However, 
the validity of stem cell-based assays still needs to be con fi rmed. Despite these limi-
tations, there is some evidence for the capacity of speci fi c small molecules to facili-
tate cardiac regeneration. These compounds typically modulate signaling pathways 
involved in embryonic cardiogenesis, cell cycle control,  myocardial remodeling, and 
survival. Some examples are described in the following paragraphs: 
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    25.3.2.1   Sufonylhydrazone (Shz) 

 The  fi rst small molecule activating the early cardiac progenitor cardiac gene Nkx2.5 
was found by Sadek et al.  (  2008  ) . They designed a small-molecule library screen for 
chemical activators of Nkx2.5 driving the  fi re fl y luciferase in P19CL6 embryonic car-
cinoma cells and identi fi ed the molecule sufonylhydrazone (Shz). Shz was able to 
speci fi cally activate expression of the pan-mesodermal marker brachyury-T along with 
a cardiac muscle- and smooth muscle- transcriptional activator, myocardin, in pluripo-
tent stem cells. They tested the effect of Shz in PBMCs and found that attachment and 
survival of these cells was enhanced  in vitro . Moreover, human PBMCs isolated from 
healthy patients and treated for 3 days with Shz were injected in the border zone of a 
cryo-injured rat heart. This resulted in normalization of contractile function 21 days 
after “Shz-enhanced PBMC” administration. The mechanism through which Shz regu-
lated activation of a cardiac regeneration remains so far undiscovered. Contribution of 
Wnt, BMP, and FGF signaling was excluded, indicating that a non-redundant, but com-
plementary regenerative pathway may have been activated by Shz.  

    25.3.2.2    3,5 -Disubstituted Isoxazoles (Isx) 

 Using the same high-throughput screening system as described above, the cyclopropyl-
amide analogue called Isx1, which belongs to the 3,5-disubstituted isoxazoles, was 
identi fi ed as “cardiogenic” (Russell et al.  2012  ) . The effect of Isx1 was tested in a mul-
tipotent stromal cell population that dynamically responds to injury and participates in 
 fi brosis repair of the adult heart. These cells are identi fi ed as a non-hematopoietic 
(CD45 − ) and non-endothelial (CD31 − ) Notch-activated epicardial-derived cells (NECs) 
(Russell et al.  2011  ) . Daily intraperitoneal administration of Isx1 in mice resulted in 
robust activation of cardiac gene programs in multipotent NECs and cell cycle activity 
in myocardial cells. After myocardial ischemia, Isx1 administration initially improved 
ventricular function, but this effect was not anymore signi fi cant 21 days after injury. In 
this model Isx1 induced a distinct transcriptional program in NEC- fi broblasts, which 
included activation of genes implicated in angiogenesis, but excluded muscle gene 
activation. The authors of this study argued, that very strong  fi brosis induced upon 
cardiac remodeling may have acted as a barrier for the Isx1-based cardiogenic effect. 
Further validation of the speci fi c activity of Isx1 and optimization of its bioavailability 
are essential for its further exploitation in pharmacoregeneration.  

    25.3.2.3   Wnt/ b -Catenin and BMP Signaling Inhibitors 

 Regulation of Wnts and BMPs in a highly temporally controlled manner is essential 
for proper speci fi cation and differentiation of cardiogenic cells during embryogen-
esis (Mercola et al.  2011  ) . Wnts promote cardiogenesis during mesoderm induction, 
but act as inhibitors of committed cardiac progenitors (Schultheiss et al.  1997 ; 
Gessert and Kuhl  2010  ) . In contrast, BMP2 and BMP4 inhibit cardiogenesis during 
mesoderm formation while reduced BMP signaling enhances dorsal cardiogenic 
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mesoderm (Yuasa et al.  2005 ; Hao et al.  2008  ) . Given this background, Wnt and 
BMP modulation may turn out to be an attractive approach to promote tissue regen-
eration via cell cycle control or activation of resident CPCs. 

 Using high-throughput screening the small molecule, pyrvinium (FDA-approved 
as an anthelmintic drug), was classi fi ed as a Wnt signaling inhibitor. This inhibition 
is achieved by directly acting on a downstream casein kinase-1, which phophory-
lates  b -catenin to target it for ubiquitination and subsequent degradation (Saraswati 
et al.  2010  ) . The therapeutic effect of pyrvinium was tested in a mouse model of 
cardiac ischemia. A single intracardiac injection of pyrvinium reduced adverse car-
diac remodeling along with stimulation of proliferation of pre-existing cardiomyo-
cytes in peri-infarct and distal myocardium. Follow-up studies are needed to advance 
this innovative concept and address potential caveats associated with the unspeci fi c 
modulation of Wnt signaling (i.e. mainly tumor formation). 

 Using a chemical screen, the small molecule  XAV939  was identi fi ed as a selec-
tive inhibitor of  b -catenin-mediated transcription. XAV939 stimulates  b -catenin 
degradation by stabilizing axin, which is part of the  b -catenin destruction complex. 
This stabilization occurs via inhibition of the enzymes tankyrase 1 and 2 (Huang 
et al.  2009  ) . The potential of this molecule to in fl uence cardiogenesis was tested in 
mouse embryonic stem cells (mESCs). Application of XAV939 in mESCs resulted 
in robust stimulation of cardiomyogenesis in a time window coinciding with the 
initiation of mesoderm formation and speci fi cation (Wang et al.  2011  ) . This stimu-
lation occurred at the expense of other mesoderm derived lineages, including 
endothelial, smooth muscle, and hematopoietic lineages. The bioavailability of 
XAV939 or its structural analogous are expected to facilitate the exploration of its 
regenerative capacity also  in vivo  (Wang et al.  2011  ) . 

 Dorsomorphin was identi fi ed as the  fi rst known small-molecule selectively inhib-
iting BMP type I receptors and therefore, blocking BMP-mediated SMAD1/5/8 
phosphorylation (Yu et al.  2008  ) . Similar to XAV939, pharmacological inhibition of 
BMP signaling during the initial stages of ESC differentiation appears to stimulate 
pre-cardiac mesodermal cells at the expense of endothelial, smooth muscle, and 
hematopoietic lineages (Hao et al.  2008  ) . Dorsomorphin treatment in the initial 24 h 
of cell differentiation was suf fi cient to signi fi cantly boost cardiac induction, indicat-
ing its role on very primitive pluripotent cells. 

 Pyrvinium, XAV939, and dorsomorphin are just some examples for compounds 
that modulate the developmentally extremely important Wnt/ b -catenin and BMP 
signaling pathways. The main challenge is to better understand the activity of these 
pathways in the adult heart and re fi ne compounds as highly speci fi c, ef fi cient, and 
safe modulators of Wnt/ b -catenin and BMP signaling in a relevant patient cohort.    

    25.4   Conclusion 

 Progenitor cells have been identi fi ed in various organs of the body, but vary in num-
ber and potential. The bone marrow is the classical source for circulating stem cells, 
which are typically attracted to tissue damage by cytokine signals released in 
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response to cell death, hypoxia, and/or in fl ammation. Resident CPCs are distinct 
from bone marrow cells and appear to occupy dormant niches with regenerative 
capacity in the heart. Number and reparative potential of resident CPCs are nega-
tively correlated with age and disease. Unlocking their capacity to regenerate the 
heart by pharmacological means would be highly attractive in light of the limited 
therapeutic options in end-stage heart failure treatment. Increasing knowledge in 
cell fate control, cell proliferation, and differentiation in the mature heart will facili-
tate the identi fi cation of druggable targets in the failing heart. Early animal studies 
and clinical trials have tested emerging peptide and small molecule based approaches 
and provided compelling evidence for the novel concept of cardiac pharmacoregen-
eration. Further re fi nement of ideally chemical compounds and identi fi cation of 
their mechanism of action remain absolutely necessary to not only raise academic 
interest, but also excite the pharmaceutical industry to start to (re-)invest in the 
development of the next generation cardiovascular therapeutics.      
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  Abstract   The transplantation of stem cells from the bone marrow, peripheral blood 
or cord blood has become a clinical procedure since the 1980s and is now annually 
performed in ten thousands of patients in the autologous and allogeneic setting 
world-wide. Re fi nement of human leukocyte antigen typing as well as recent 
advances in immunosuppression, anti-infective prophylaxis and therapy as well in 
supportive care have much improved the outcome of patients with leukemia and 
lymphoma, aplastic anemia, as well as hereditary diseases of the hematopoietic sys-
tem. This is still an experimental therapy and patient subgroups that pro fi t most 
from hematopoietic stem cell transplantation need to be de fi ned. Consideration and 
classi fi cation of co-morbidity indices as well as cytogenetic risk factors are pivotal 
for making decisions on transplantation modalities. Modern conditioning regimens 
allow balancing of allo-effects against malignant cells versus normal tissue even in 
elderly patients. Recent innovations in cellular therapy combine allogeneic stem 
cell transplantation with genetically engineered or speci fi cally selected T cells and 
potentially natural killer (NK) cells. Depletion of regulatory T cells and vaccination 
after allogeneic stem cell transplantation constitute further approaches to improve 
the long-term outcome of transplanted patients.      
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    26.1   Blood: A Long Way from Replacement to Regeneration 

 Have you ever asked yourself why the red lights at the crossing are red? It is the 
color of blood that warns for danger. Blood has ever fascinated man. It is the topic 
of myths and rites. The shedding of blood initiates deeply rooted fears. 

 The  fi rst documented attempt to replace this essence of life and to cure deadly 
disease has been performed in Paris on the 15th of June 1667 by Jean-Baptiste Denis. 
Blood from a lamb was transfused to a 15 year old boy who survived. More than 300 
years later Landsteiner discovered the A, B, O blood group system. He received the 
Noble Prize for his research in 1930. He laid the fundament for the  fi rst successful 
blood transfusion 1907 in New York by Reuben. 1915 it became possible to conserve 
blood for transfusion by the addition of citrate. Blood group testing was re fi ned with 
the discovery of the N, M, and P system and  fi nally in 1939 by the discovery of the 
Rh system. Blood transfusions increasingly became an essential treatment on the 
battle  fi elds of the Second World War and later in the Korean War. 

 As spontaneous recovery from blood loss is evident in healthy subjects and as 
there are blood diseases in which lifelong blood replacement would be needed the 
need to advance from replacement to regeneration was obvious. An era of intensive 
research on bone marrow and its stem cells began in the 1950s. 

 It was discovered that the infusion of spleen cells promoted blood regeneration 
and led to survival of supralethal total body irradiation (Barnes and Loutin  1953 ; 
Ford et al.  1956 ; Nowell et al.  1956 ; Vos et al.  1956  ) . However in 1957  fi rst attempts 
of clinical bone marrow transplantation in man were unsuccessful in the majority of 
cases. The reasons were allograft failure and progressive disease (Thomas et al. 
 1957  ) . Two years later Thomas reported the  fi rst successful allogeneic bone marrow 
transplants from identical twins in two patients with acute lymphoblastic leukemia. 

 It is remarkable that this program had been started by E.D. Thomas in 1955. It was 
years before stem cell assays were developed by Donald Metcalf (Bradley and Metcalf 
 1966  )  and Leo Sachs (Ginsburg and Sachs  1963  ) . The theoretical and experimental 
basis of stem cell transplantation had been left behind by clinical application. 

 Although many human blood stem cell transplantations were carried out between 
1958 and 1968, the outcome had not been encouraging. Out of 203 patients trans-
planted in these times, 125 experienced graft failure, 49 developed lethal graft- 
versus-host disease (GvHD), and only 11 achieved long-term engraftment. Only 
three patients were alive when Bortin reported these results in 1970 (Bortin  1970  ) . 
Many researches left the  fi eld and some voices declared hematopoietic stem cell 
transplantation as dead. 

 Those who were not discouraged returned to the laboratory and animal models. 
After progress in the understanding of the HLA-system and the development of 
GvHD prophylaxis by immunosuppression transplantation went back to the clinics. 
The Seattle group realized that patients with far advanced malignant disease and 
poor general status had a dismal outcome in contrast too patients in the earlier stages 
(Thomas et al.  1975  ) . It was an enormous venture at that time to transform this 
 fi nding into a clinical consequence: to recommend the dangerous procedure to 
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patients in remission, to patients with non malignant or low malignant but long-term 
dismal disease, and children. 

 This courage of the early clinical researches and the following developments in 
high resolution HLA typing, worldwide donor programs, the improvement of the 
conditioning regimen and supportive care have established hematopoietic stem cell 
transplantation as the  fi rst true regenerative therapy. We can learn from that develop-
ment for other areas of regenerative medicine. 

 Yet the  fi eld of hematopoietic stem cell transplantation is still dynamic. New 
indications emerge as the procedure is improved. Other indications vanish as their 
conservative treatment advances. It is the venue of this chapter to give an insight 
into the actual status of this treatment option.  

    26.2   Hematopoietic Stem Cells 

    26.2.1   Basic Properties 

 Hematopoietic stem cells have the capacity to self-renew and to differentiate in all 
mature blood lineages (Fig.  26.1 ). They have been  fi rst identi fi ed in the mid 1950s 
by their capability to rescue lethally irradiated mice by reconstituting the entire 
repertoire of hematopoietic cells. Hematopoietic stem cells are scarce with a fre-
quency of 1:10,000 to 1,000,000 bone marrow cells. Without stress the majority of 
stem cells rest in a quiescent state while only a small fraction enters the cell cycle 
and proliferates to give rise to differentiated progenitors. During infections, acute 
bleeding, or chemotherapy a large fraction of the stem cells may proliferate.  

 The regenerative capacity of the stem cells has its evidence in the fact that despite 
the short lived nature of blood cells a continuous supply of these cells is given even 
in very long living persons without clinical signs of insuf fi ciency. The self renewal 
potential of the hematopoietic stem cells is associated with the activity of telom-
erase. The telomeres at the end of the chromosomes shorten during cell division. 
This process is reduced by telomerase, a reverse transcriptase which synthesizes 
new telomeric DNA (Morrison et al.  1996  ) . Telomere shortening is associated with 
cell cycle arrest, replicative senescence and chromosomal instability. It might be an 
inhibitory mechanism against the evolution of malignant cell clones. 

 Despite the activity of telomerase in hematopoietic stem cells, their replication 
capacity is limited. Serial stem cell transplantations in mice can be done with mini-
mal stem cell numbers for  fi ve to seven times until hematopoietic insuf fi ciency 
occurs (Harrison and Astle  1982  ) . On the other hand it should be noted that trans-
plantation is a severe stress for stem cells. The regenerative potential of stem cells 
under normal conditions is enormous. It has been concluded from these mouse 
experiments that hematopoietic stem cells should be able to function normally 
through at least 15–50 life spans. Therefore hematopoietic insuf fi ciency should not 
be expected in even very old subjects.  
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    26.2.2   Characterization of Hematopoietic Stem Cells 

 The study of hematopoietic stem cells is dif fi cult because of their low frequency in 
the bone marrow. Speci fi c markers or tests for a de fi nitive identi fi cation of stem 
cells are lacking. So in most instances methods have to be combined for the charac-
terisation of stem cells. 

    26.2.2.1   Surface Markers 

 In mice hematopoietic stem cells are fairly well characterized by surface markers. 
A single murine bone marrow cell which is CD34-/lo, CD117+ Sca1+ (stem cell  antigen) 
and negative for lineage-speci fi c antigens is capable of self renewal and multi- lineage 
differentiation when transplanted into a recipient mouse (Ema et al.  2000  ) . In humans 
the phenotypic properties of hematopoietic stem cells are far less well de fi ned.  

    26.2.2.2   Stem Cells and the Concept of “Niches” 

 There exists a more than 30 year old concept that the number and behavior of hematopoi-
etic stem cells (HSCs) is regulated by physically discrete locations within the bone 
marrow for which the French term “niches” was coined. Despite the fact that the  precise 
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  Fig. 26.1    Pedigree of the normal hematopoiesis through the in fl uence of cytokines and growth 
factors like interleukin 3 (IL-3), stem cells differentiate into mature cells of the peripheral blood. 
Partially differentiated progenitor cells are characterized by surface markers, so called “clusters of 
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identities of the niche cells are not yet well de fi ned and controversial, there is an increas-
ing body of evidence that HSCs are retained within the niches by speci fi c adhesion 
molecules and chemokine gradients (Papayannopoulou and Scadden  2008  ) . By these 
interactions, HSCs can be assured that they receive appropriate supportive signals that 
allow them to retain their stem cell identity. In contrast to this concept, there are data 
suggesting that recipient bone marrow can be readily displaced by transplanted marrow 
in an ef fi cient and linear dose-dependent manner, even in the absence of conditioning 
(Colvin et al.  2004  ) . These authors have described a model where HSCs do not reside 
locked into  fi xed positions in the bone marrow, but instead they would receive their 
regulatory signals through limiting quantities of freely diffusible factors. 

 Work by Irvin Weissman and co-workers (Bhattacharya et al.  2009 ; Czechowicz 
et al.  2007  )  clearly demonstrated that a certain degree of HSC replacement occurs 
even in the absence of conditioning. Recent studies could demonstrate that egress of 
HSCs can be stimulated pharmacologically through administration of plerixafor 
(AMD3100), an inhibitor of CXCR4. This resulted in the clearance of niches from 
HSCs. As HSCs and progenitors have been demonstrated to circulate under physi-
ological conditions, a steady-state HSC egress from niches might also allow the 
engraftment of donor HSCs. One to  fi ve percent of HSCs in the murine model enter 
into the circulating pool every day. 

 Weissman’s group fed their mice with bromodeoxyuridine and found out that 
HSCs in the circulating pool incorporate the dye at the same rate as bone marrow 
HSCs (Fig.  26.2 ). This suggests that HSCs egress from the bone marrow to the 
blood without cell division and can leave behind them vacant HSC niches 
(Bhattacharya et al.  2009  ) .    

    26.2.3   Stem Cell Sources 

 Initially, bone marrow was obtained from healthy HLA-matched sibling donors of 
the patients. Donors were subjected to intubation and anesthesia. In a prostate posi-
tion bone marrow was aspirated from the upper posterior iliac crest and transferred 
into a transfusion bag. After stem cell counting and microbiological and virological 
evaluation of the bone marrow blood preparation the stem cell containing bone mar-
row is transfused into the patients by the way of a central venous catheter. 

 Bone marrow aspiration under sterile conditions in the operation theater is costly 
and cumbersome. Moreover, stem cells mobilized from the bone marrow niches into 
the peripheral blood by subcutaneous administration of granulocyte-colony stimula-
tion factor (G-CSF) or plerixafor to the donor will result in a 1 week earlier engraft-
ment when compared with bone marrow. Therefore most of the stem cell preparations 
given nowadays to adult patients are peripheral blood stem cells collected by leuka-
pheresis (Fig.  26.3 ). Through magnetic cell separation using anti-CD34 monoclonal 
antibodies labeled with magnetic beads (Fig.  26.4 ) a highly puri fi ed fraction of CD34+ 
stem cells can be prepared. Only for younger patients with e.g. aplastic  anemia 
(see below), bone marrow stem cells are preferred due to the better reconstitution of 
the bone marrow with all its components (Schrezenmeier et al.  2007  ) .   
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  Fig. 26.2    HSC egress is either division dependent or independent (From Bhattacharya et al.  2009  ) . 
HSCs can either undergo an extrinsically asymmetric division, in which one daughter cell is posi-
tioned away from a supportive niche and can thus intravasate to the blood ( a ) or can exit the sup-
portive niche in the absence of cellular division ( b ). In the former model, all HSCs in the blood 
would be expected to have incorporated BrdU ( gray shaded cells ) after an appropriate feeding 
period, while the latter model would predict similar low BrdU incorporation rates between bone 
marrow and blood HSCs       

  Fig. 26.3    Stem cell donor during leukapheresis. A leukapheresis device is put into a circuit 
between the  left  and the  right  cubital veins. It separates white blood cells containing stem cells by 
a density gradient method       
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 A novel source for hematopoietic stem cell is cord blood. Its application has been 
initiated by Eliane Gluckman at the Hôpital Saint Louis, Sorbonne VII Paris 
(Czechowicz et al.  2007  )  and has been practiced in more than 4,000 patients in Japan 
(Kodera  2008  ) . Hitherto, the transplantation of cord blood derived stem cells is restricted 
by the number of stem cells from this source when put into relation with the average 
body weight of a European patient undergoing HSCT. Application of several cord 
blood preparations as “dual” or even “triple” cord blood transplantation gets into prac-
tice (Arachchillage et al.  2010  ) . While the extended time of engraftment make the 
patient even more prone to opportunistic infections, cord blood stem cells do obviously 
not have to be HLA-identical Mismatches cause less GvHD in the cord blood setting 
than in the setting of PBSCT or bone marrow transplantation (Barker et al.  2009  ) .  

    26.2.4   Stem Cell Doses for Transplantation 

 Different sources of stem cells like bone marrow, peripheral blood and cord blood 
can yield different amounts of stem cells with various pros and cons (Table  26.1 ).  

 For autologous transplantation one would like to administer 2 × 10 6 /kg body 
weight (BW) of the recipient. In the case of allogeneic HSCT the desirable CD34+ 

  Fig. 26.4    Puri fi cation of 
stem cells through a magnetic 
cell separation device 
(CliniMACS® by Miltenyi, 
Bergisch Gladbach/Teterow, 
Germany). Cells (in the  red 
bag  above the device) are 
labeled by monoclonal 
antibodies (moAbs) against 
the stem cell marker CD34. 
These moAbs are coupled 
with magnetic beads. The 
beads stick to a magnet 
during the 1st run of a buffer 
(the bag with a clear solution 
on the  right side ) though the 
column. When the column is 
detached from the magnet, a 
second eluate containing the 
marker-positive (stem) cells 
can be obtained       
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stem cell count would be at least >2.5 × 10 6 /kg BW, better >5.0 × 10 6 /kg BW for 
peripheral blood stem cells, and at least >1.0 × 10 6 /kg BW, better >2.5 × 10 6 /kg BW 
for bone marrow blood stem cells.   

    26.3   Principles of Hematopoietic Transplantation 
for Regeneration in Blood Diseases 

 Hematopoietic stem cell transplantation can be performed in two principally differ-
ent situations: (1) Stem cells can be harvested in a patient with malignant disease 
and can be used to induce and/or accelerate hematopoietic regeneration after myelo-
suppressive or myeloablative treatment procedures. (2) Stem cells from a healthy 
volunteer donor can be transplanted for hematopoietic recovery of patients with 
non-malignant and malignant blood disorders. 

    26.3.1   Autologous Transplantation 

 The rationale in the autologous setting is to deliver as intensive cytotoxic treatment 
to the patient as possible. The basis of this concept is the  fi nding that in a certain 
dose range of irradiation or cytotoxic treatment, the effect on the tumor increases in 
a steep linear relationship (Fig.  26.5 ). However this dose range is not equal in all 
tumors and with increasing doses there is increasing damage to hematopoiesis and 
organs. As organ damage may occur later in some agents an autologous transplanta-
tion of hematopoietic stem cells might open a therapeutic window for dose 
intensi fi cation.  

 This concept (Fig.  26.6 ) has been proven most convincingly in lymphomas, 
Hodgkin’s disease and multiple myeloma. Attempts to apply high dose chemother-
apy in other diseases as sarcomas or some other solid tumors have not been as suc-
cessful, probably due to the fact that chemotherapies active in these diseases are 
very toxic to the organs so that the window opened by autologous hematopoietic 
transplantation is small or non-existing. Although autologous transplantation is 
given even in disseminated hematologic disease as the acute leukemias, this 

   Table 26.1    Stem cell sources and stem cell doses   

 Source  Pro’s/Con’s  CD34+ stem cell count 

 Bone marrow  Aspiration requires general anesthesia  Median of 2.8 × 10 6 /kg body 
weight (BW) 

 Peripheral blood  Easy collection, but G-CSF side effects  Median of 7.0 × 10 6 /kg BW 
 Cord blood  Easy, immediately available, partial HLA 

mismatches acceptable 
 Median of 0.2 × 10 6 /kg BW 
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 treatment principle is not convincing in these entities as potentially tumor stem cells 
are also re-infused with the graft. Puri fi cation of grafts by chemical of immunologic 
methods have not yielded better results and are hampered by side effect e.g. immu-
nosuppression by T-cell depletion in CD34+ selected grafts.   
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  Fig. 26.5     Dose of cytotoxic 
treatment and toxic effects on 
tumor ,  hematopoiesis and 
organs . The higher the dose, 
the myelotoxicity or even 
organ toxicity       
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  Fig. 26.6    Schema of autologous transplantation. Stem cells are collected from a hematological 
patient by leukapheresis after mobilization with e.g. cyclophosphamide and granulocyte-colony 
stimulating factor (G-CSF). Stem cells are stored in liquid nitrogen. The patient undergoes a con-
ditioning regimen with e.g. total body irradiation (TBI) and cyclophosphamide. Thereafter the 
autologous stem cells are given back to the patient. The blood counts drop under a conditioning 
regimen of TBI and chemotherapy. Regeneration of hematopoiesis starts by day 10 after 
transplantation       
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    26.3.2   Allogeneic Transplantation 

 The basic concept of allogeneic transplantation is to replace malignant or de fi cient 
hematopoiesis by transplantation from another individual (Fig.  26.7 ). Consequently 
allogeneic transplantation has been  fi rst applied in irradiation injuries and aplastic 
anemia.  

 As immunocompetent cells are normally transferred with the graft and as minor 
immunologic disparancies might lead to a graft-versus-host reaction concomitant 
immunosuppressive prophylaxis has to be given in the allogeneic setting. However 
in contrast to organ transplantation the immunosuppression can be omitted in most 
patients after immunologic reconstitution. 

 Allogeneic transplantation is widely applied in children and adult patients with 
genetic diseases, immunode fi ciency syndromes, aplastic anemia, leukemias and 
lymphomas.   

    26.4   Diagnostics and Indications of “ Blood ” Regenerative 
Therapies 

 Histocompatibility is a basic prerequisite for allogeneic transplantation. Future con-
cepts of allogeneic transplantation might overcome this principle to some extent. 
Another very important limitation for the application of allogeneic transplantation 
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(Immunosuppression)
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  Fig. 26.7    Schema of allogeneic transplantation with the treosulfan- fl udarabine conditioning regi-
men. After a conditioning with a treosulfane and  fl udarabine containing chemotherapy regimen the 
patient obtains stem cells from the bone marrow or peripheral blood of a healthy donor. To avoid 
graft rejection immunosuppression with e.g. methotrexate (MTX) or cyclosporine A is adminis-
tered. As early as by day 12 reconstitution of the hematopoietic system is effective       
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is the presence of comorbidities of the patients which become more prevalent with 
increasing age. A third overwhelming important factor for the outcome after autolo-
gous and allogeneic transplantation is the disease status and risk group. The latter is 
discussed later. 

    26.4.1   HLA Compatibility 

 The human leukocyte antigen (HLA) system is the human equivalent of the major 
histocompatibility complex. T cell recognition of peptide epitopes derived from 
functional or structural proteins is essential for the engraftment or rejection of the 
transplant and directly linked to GVHD and GVL reactions. Two classes of HLA 
molecules can be distinguished: HLA-A,-B and -Cw are class I molecules with 
three alpha subunits and a beta-2 microglobulin molecule, while class II molecules 
such as HLA-DR,-DQ and -DP are composed of two alpha and two beta subunits 
(see Fig.  26.8 ) (Klein and Sato  2000a,   b  ) . In their groove, HLA-ABC molecules 
present 9–11 amino acid residues long peptides to the T cell receptor of CD8+ T 
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HLA-DRCD40
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APC

CD28/CTLA

CD80/CD86

Th CTL
IL-2, 
IL-12, 
IL-23

  Fig. 26.8    Recognition of antigen epitopes by CD4+ and CD8+ T lymphocytes. Peptides derived 
from antigens are presented on HLA-molecules class I and II. A second signal is effective by bind-
ing of costimulatory molecules with their ligands. Interaction of T helper cells and cytotoxic T 
cells occurs through interleukines.  CTL  CD8+ cytotoxic T lymphocytes,  Th  CD4+ T helper cells, 
 TCR  T cell receptor,  IL  Interleukin,  CD  clusters of differentiation,  DC40, CD80, CD86  
Co-stimulatory moleculars,  HLA  human leukocytes antigen       

 



676 M. Schmitt and M. Freund

lymphocytes while class II HLA-D molecules present 15-20mer peptides to CD4+ 
T lymphocytes (Rammensee et al.  1993  ) .  

 All HLA molecules are encoded by the short arm of chromosome 6. The DNA 
encoding class I and II molecules is separated by the DNA encoding hydroxylase 21 
(C21) and tumor necrosis factor (TNF) (Trowsdale and Campbell  1988  ) . The 
de fi nition of ten parameters, i.e. the maternal and paternal HLA- A ,-B,-C, DR and 
–DQ in both donor and recipient of an allograft is of crucial importance for stem cell 
transplantation, and to a lesser extent for solid organ transplantation (SOT). A so 
called two-digit typing is possible through serological assays employing anti-sera of 
de fi ned speci fi city. Antigen-subtypes are called “splits”. HLA subtypes are classi fi ed 
in International Workshops; “w” in the classi fi cation of HLA subtypes stands for 
“workshop” which means that subtypes will be further classi fi ed in future work-
shops, e.g. HLA-Cw4 etc. The HLA subtypes are differentially expressed in various 
ethnic groups such as Caucasians, African Black, Hispanics, Han Chinese, and 
Japanese (Table  26.2 ).  

 Minor histocompatibility antigens (miHAgs) such as HA-1 (den Haan et al. 
 1998  )  can both elict GVHD (Mutis et al.  1999  )  but can also contribute to the recog-
nition of leukemic blast i.e. to the GVL (Goulmy et al.  1996  )  effect. Moreover natu-
ral killer cells, their surface molecules and killer cell inhibitory (KIR) molecules 
contribute GVHD and GVL, and are of pivotal importance for allogeneic stem cell 
transplantations in the haploidentical setting (Moretta et al.  2009  ) .  

    26.4.2   EBMT Comorbidity Score 

 Previously, Alois Gratwohl and his working party established the European Group 
for Blood and Marrow Transplantation (EBMT) risk score for allogeneic transplan-
tation in chronic myeloid leukemia (CML). Recently, it was questioned whether this 
score could be also used to predict outcome after allogeneic hematopoietic stem cell 
transplantation (HSCT) for hematological disease in general (Fig.  26.9 ). Age of 

   Table 26.2    Difference    in HLA frequencies in different ethnical groups   

 African 
Americans 447 

 USA Caucasians 
246 

 Japanese 
1023 

 No. American 
Amerindians 51 

 Amerindians 
Chile-Colombia 72 

 A1  5.3   16 . 9   0.7  4.9  6.9 
 A2  16.7   28 . 3    24 . 4    25 . 5    37 . 1  
 A24   4 . 7   9.6  35.1  19.6   33 . 7  
 A26   1 . 6    3 . 9    10 . 9    2    0 . 7  
 B35  7.7  8.5  8.1   18 . 6    29 . 8  
 B39  0.8  1.8  4.5   17 . 4    17 . 9  
 Cw7   15 . 6    21 . 5    15 . 3    30 . 7    26 . 9  
 DR3   14 . 7    10 . 1   0.2  2.3 
 DR7  9.5   15 . 1   0.4  0.8 

  Data from the 11th International Histocompatibility Workshop (1991)  
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patient, disease stage, time interval from diagnosis to transplant, donor type, and 
donor-recipient sex combination were used to establish a score from 0 to 7 points. 
Its validity was tested in 56,505 patients, 33,113 (58%) male, 23,392 female, median 
age 33 years (range, 0.5–77 years), with an allogeneic HSCT for a hematological 
disorder between 1980 and 2005. The risk score was predictive in all disease cate-
gories, over all time periods, and was not altered by transplant techniques. Five 
well-de fi ned pre-transplant patient and donor characteristics give a reasonable risk 
estimate of allogeneic HSCT. This risk score can provide a basis for the decision 
between transplant and non-transplant strategies.    

    26.5   Standardized Treatment, Technologies 

    26.5.1   Autologous Hematopoietic Stem Cell Transplantation 
(HSCT) 

    26.5.1.1   Conditioning Regimens 

 Stem cell transplantation requires always the preparation of the bone marrow com-
partment in particular but also the whole patient to receive the graft. The term “con-
ditioning” has been coined for this central process of the stem cell transplantation 
which constitutes an integral part of the HSCT. However, there is an ongoing debate 
on how to bring the patient in the best condition possible to accept the graft. 
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  Fig. 26.9     The EBMT risk score . One can stratify patients into several risk groups and employs 
only  fi ve parameters like age of the patient, disease stage, time interval from diagnosis to trans-
plant, donor type, and donor-recipient sex combination (Gratwohl et al.  2009  )        
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 The “creation of space” has been postulated as a major goal of conditioning. The 
original concept was that immature progenitor cells occupy circumscriptive bone 
marrow niches to gain the necessary support from feeder cells of the stroma for their 
proliferation and maturation. To this end the patient’s stem cells have to be eradi-
cated to provide the donor stem cells with access to these important niches so that 
engraftment might occur. The concept of reduced intensity conditioning (see below) 
with a fading in-fading out phenomena of donor stem cells versus host stem cells 
has at least to some extent relativated this concept. One might not necessarily have 
to eradicate the complete bone marrow to give a graft a realistic chance to engraft 
successfully. However, this depends on the underlying disease and the dynamic of 
the malignant clone. 

 In general the antitumor activity of the conditioning regimen is also needed 
to further reduce the tumor burden before transplantation. This is particularly 
true in autologous transplantation where no graft-versus-tumor effect is 
present. 

 For autologous HSCT standard conditioning regimens are in common practice 
according to the disease entity. For patients with multiple myeloma, 200 mg/m 2  
melphalan has shown the best survival. For patients older than 60 years this dose 
might be reduced to 140 mg/m 2 . Lymphoma patients (Hodgkin’s disease (HD) and 
Non-Hodgkin-Lymphoma (NHL)) obtain most commonly a combination of car-
mustine (bis-chloronitrosourea; BCNU), etoposide, cytarabine and melphalan 
(Mills et al.  1995  ) . Purging of transplants for lymphoma patients constitutes an 
interesting attempt, however it can be associated to hypoglobulinemia or second-
ary malignancies such as MDS or AML (Gyan et al.  2009  ) . For patients with 
acute myeloid leukemia (AML), autologous HSCT has become rather rare, even 
more in Europe than in the US. The reasons are multiplex. In the last decade there 
has been no major progress in that  fi eld. Some centers report higher survival of 
patients receiving a purged transplant. But this has never been proven in a ran-
domized trial. Most importantly, only half of the patients allocated to autologous 
HSCT for AML reach the transplantation because of relapse of the disease or a 
poor graft. For acute lymphoblastic leukemia the picture is even clearer. Several 
studies showed no difference for the comparison of chemotherapy versus autolo-
gous HSCT or even a signi fi cantly inferior outcome for auto-HSCT (Goldstone 
et al.  2008  ) .  

    26.5.1.2   Mobilization 

 A standard protocol for the mobilization of autologous stem cells requires 
cyclophosphamide 1.5 g/m 2  on day 1 followed by 10  m g/kg BW/day G-CSF on 
days 2–12. Stem cells can be collected on days 10–12 when the WBC count 
reaches 8 G/L post nadir. In the case of poor mobilizers plerixafor (AMD3100) 
might be given in concert with G-CSF: on day 4 give additionally plerixafor 
at a dose of 160–240  m g/kg BW i.v. or i.m. 6–12 h before the intended 
harvest.   
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    26.5.2   Allogeneic Hematopoietic Stem Cell Transplantation 
(HSCT) 

    26.5.2.1   Conditioning Regimens 

 The favorable results of allogeneic stem cell transplantation depend not only on 
chemotherapy and irradiation, but also on the allo-effect which is introduced by the 
graft from a family donor or unrelated donor. Therefore conditioning regimes for 
allogeneic HSCT must include immunosuppression to prevent a host-versus-graft 
reaction. Transplanted donor cells might be immediately attacked by immune cells 
of the host. Natural killer (NK) cells, T lymphocytes as well as dendritic cells (DCs) 
are involved in the complex interplay. There is a particular need for immunosup-
pression in the case of increasing human leukocyte antigen (HLA) disparities. The 
risk for graft rejection is also increased through pre-sensitization against minor his-
tocompatibility antigens (miHAgs), e.g. through multiple blood product transfu-
sions into the host preceding the allogeneic HSCT. 

 From the historical perspective, HSCT has been understood as a potential cure 
for patients irradiated through atomic bomb explosions or nuclear accidents. 
Therefore, total body irradiation (TBI; 12 Gray [Gy]) was tested  fi rst as condition-
ing method. TBI was ef fi cient in eliminating the hematopoietic system, but TBI 
alone could not eradicate the leukemic clone. Only by adding cyclophosphamide 
(Cy) to TBI in patients at early stage disease, the  fi rst successful allogeneic HSCTs 
could be performed in the 1970ies. In further studies TBI was replaced by the 
“radiomimetic” busulfan (Bu), i.e. Bu/Cy. Other alkylating drugs like melphalan 
(Mel) or carmustine (BCNU), as well as “leukemia-speci fi c” drugs like cytarabine 
(ARA-C), etoposide (ETO) and 6-thioguanine (6-TG) followed in a conditioning 
regimen termed BACT. As for TBI/Cy and Bu/Cy there are several differences in 
toxicities (more venous occlusive disease [VOD], more permanent alopecia with 
Bu/Cy), but both regimens are comparable in terms of long-term survival of the 
patients with the exception of ALL, where TBI/Cy is more effective. 

 With regard to the reduction of transplantation-related mortality (TRM) and the 
quality of life (QoL) the concept of “reduced intensity conditioning (RIC)” was 
born. In preclinical experiments the requirements for a stable engraftment were 
evaluated, and subsequently low and even lowest dose TBI (2–4 Gy) were used as 
well as conditioning regimens with  fl udarabine (Flu), Bu, Mel and Cy. RIC con-
cepts became particularly interesting in the context of donor lymphocyte infusions 
(DLIs) which where inaugurated at the begin of the 1990s as a tool to bring patients 
with myeloid disease back into remission.  

    26.5.2.2   Graft-Versus-Host Disease (GvHD) 

 Graft-versus-host disease (GvHD) constitutes one of the most serious complica-
tions after allogeneic stem cell transplantation. The underlying pathomechanism is 
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the recognition of host-speci fi c proteins by T cells of the donor which were 
 transferred together with the donor stem cells or maturated thereof. Moreover den-
dritic cells of the host are involved in this complex interaction of the immune system 
depicted schematically in Fig.  26.10 .  

 Clinical manifestations of GvHD can be detected on skin, liver, and GI tract. 
A macula-papular rash can develop on the upper part of chest and back as well as a 

  Fig. 26.10     GvHD  –  Mechanism of injury by tissue - in fi ltrating alloreactive T cells . Activated 
alloreactive CD8+ T cells require direct cognate interactions with MHC-class-I-expressing paren-
chymal targets (non-haematopoietic tissues such as skin, liver or intestine) to induce injury through 
the expression of CD95 ligand (CD95L) and the production of cytolytic granules. By contrast, 
in fi ltrating CD4+ T cells can mediate graft-versus-host disease (GVHD) without directly contacting 
MHC-class-II-expressing non-haematopoietic tissues. CD4+ T cells could be activated locally 
by tissue macrophages and dendritic cells (DCs) to release in fl ammatory mediators, such as 
tumour-necrosis factor (TNF), interleukin-1 (IL-1) and interferon (IFN), or alternatively may activate 
recipient antigen-bearing macrophages which induce tissue injury.  APC  antigen-presenting cell, 
 TCR  T-cell receptor {Shlomchik  2007 }       
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palmo-plantar exanthema. It might involve the entire integument and might lead to 
desquamation or even the development of bullae. Cholestatic hepatopathy with clas-
sical jaundice, increased serum levels of bilirubin as well as of cholestatic enzyme 
(whereas transaminases rather show no speci fi c changes) are signs of GvDH of the 
liver. This needs to be differentiated from the veno-occlusive disease (VOD) which 
occurs rather early after allogeneic HSCT even before immunoreconstitution and 
subsequently the basis for a GvHD occurs. VOD is characterized by liver pain, 
ascites, impaired  fl ow of intrahepatic veins and elevated serum levels of bilirubin 
and cytokeratin 17. 

 GvHD of the GI tract manifests as nausea, vomitus, loss of appetite, diarrhea and 
consequently weight. 

 The classical grading system inaugurated by Glucksberg et al. in 1974 stages 
four grades for each organ system according to the percent of integument with mac-
ulo-papular rash, the serum level of bilirubin and the quantity of diarrhea (Glucksberg 
et al.  1974  ) . 

 Besides the acute type of GvHD described above which is de fi ned as a GvHD 
starting within the  fi rst 100 days from the day of allogeneic HSCT, there 
exists also a chronic form of the disease. Chronic GvHD is characterized by the 
clinical feature of sclerodermia, Sjögren’s syndrome, primary biliary cirrhosis, 
 wasting syndrome, bronchiolitis obliterans (BO), as well as chronic cellular 
immunode fi ciency. 

 Of note, the desirable Graft-versus-leukemia (GVL) effect seems to be interwo-
ven with the noxious GvHD which can be explained by the fact that a general T cell 
activation can always results in an activation of an anti-leukemic T cell clone. 
Therefore, patients with a grade I to II GvHD show a better overall survival as the 
anti-leukemia/-lymphoma effect overweighs the immune aggression of the graft 
towards the recipient’s organs.  

    26.5.2.3   Immunosuppressive Agents Against GvHD 

 In an attempt to alleviate the immune attack of the graft, an appropriate immunosup-
pressive prophylaxis as well as in the case of occurrence of GvHD an intensi fi ed 
immunosuppressive therapy is mandatory. 

 Standard drugs for GvHD prophylaxis include anti-thymoglobuline (ATG), 
 campath (a monoclonal antibody against CD52, a pan-lymphocyte marker), metho-
trexate (MTX), cyclosporine A (CSA/CyA), mycophenolate mofetil (MMF) or its 
pro-drug MPA. Therapy of GVHD consist primarily of (methyl-) prednisolone, 
 tacrolimus, sirolimus, everolimus, basiliximab/anti-interleukin-2, rituximab, 
 blockers of tumor necrosis factor alpha (anti-TNFa), pentostatin. Extracorporeal 
photopheresis (ECP) can often cause tremendous improvement of GvHD without 
putting the patient at an increased risk for infectious disease. Mesenchymal stem 
cells (MCSs) are under current investigation for the treatment of GvHD and hold 
promise.    
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    26.6   Clinical Experiences with Stem Cell Transplantation 
as a Paradigm of Regenerative Medicine 

    26.6.1   Genetic Diseases 

    26.6.1.1   Hemoglobinopathies (Thalassemia and Sickle Cell Disease [SCD]) 

 Stem cell transplantation constitutes the only curative therapy for patients with 
 thalassemia or sickle cell disease, although signi fi cant progress has been made in 
the  fi eld of supportive care such as oral therapy with iron chelators. Particularly in 
adulthood, severe affection of parenchymal organs by hemoglobinopathies is obvi-
ous and lifethreatening. According to the recommendations of the EBMT (Apperley 
et al.  2012  )  (  http://www.ebmt.org/EBMT_Handbook.html    ), de fi nite indications for 
HSCT constitute transfusion-dependent alpha- or beta-thalassemia major, transfu-
sion-dependent HbE/beat-thalassemia when the patient is not older than 16 years 
and has a HLA-identical family donor. In special circumstances thalassemia in adult 
patients between 17 and 35 years might be considered. 

 De fi nite indications for HSCT in patients with sickle cell disease (SCD) depend on 
the existence of one or more of the following clinical complications: (1) SCD-related 
neurological de fi cit, stroke or subarachnoid hemorrhage. (2) Recurrent sickle chest 
syndrome or failure of response to therapy with hydroxyurea (HU) or contraindication 
of HU. (3) Recurrent and severe debilitating pain due to vaso-occlusice crises despite 
therapy with HU or contraindication of the drug (Amrolia et al.  2003a,   b  ) . 

 Conditioning regimens for hemoglobinopathies include Bu/Cy or Treosulfan/Cy 
in concert with campath/alemtuzumab or ATG. The transplantation-related mortal-
ity is very low with 2–5% and the risk of graft failure less than 5%. Three indepen-
dent factors for the outcome of HSCT for thalassemia in children have been 
established by the Pesaro classi fi cation: hepatomegaly, portal  fi brosis as diagnosed 
by liver biopsy and lack of compliance with iron chelation. By positive selection of 
CD34+ stem cells with a minimal contamination of T cells HSCT was also possible 
in the haploidentical setting from mother to child in the absence of a HLA-matched 
donor (   Sodani et al.  2009  ) . 

 For SCD there is no good score, however SCD patients who suffer from impaired 
quality of life (QoL) as stated above pro fi t most from HSCT. The results of HCST 
for SCD are enchanting with an overall survival is very favorable with about 90%, 
a disease free survival about 85%, and both TRM and graft rejection <10% (Bhatia 
and Walters  2008  ) .  

    26.6.1.2   Severe Combined Immunode fi ciency (SCID) 

 SCID usually manifests as opportunistic infections in early childhood such as cyto-
megalovirus or fungal infections, or as absence of thymic shadow on chest X-ray 
 fi lms lymphocytopenia. Allogeneic HSCT constitutes the sole cure for these young 

http://www.ebmt.org/EBMT_Handbook.html
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children and procures a survival rate of more than 90%. In the absence of an 
 appropriate donor, MUD or haploidentical family donors are also acceptable. 
The usual conditioning regimen consists of Bu/Cy with the addition of ATG in the 
case of a MUD. As GvHD caused by the patients inability to reject the allogeneic 
cells, usually the graft is CD34-positive selected. However, the patients require a 
protective environment and anti-infective prophylaxis as well as intravenous substi-
tution with immunoglobulins over at least 3 months. Due to the absence of B-cell 
engraftment in about 40% of the patients, these SCID patients require life-long 
immunoglobulin replacement therapy. In the meantime tremendous progress has 
been made and the results for haploidentical donors are as good as for HLA-
genoidentical donor (Antoine et al.  2003  ) . 

 Gene therapy for SCID-X1 patients has been undertaken with success (Hacein-
Bey-Abina et al.  2003  )  as well as for SCID-ADA (Aiuti et al.  2009  ) . Nevertheless 
many points regarding infectious complications and secondary neoplasia through vec-
tor integration are still poorly understood and need elucidation (Neven et al.  2009  ) .   

    26.6.2   Aplastic Anemia 

 Aplastic anemia (AA) is a life-threatening disorder of the hematopoietic system 
characterized of bi- or pancytopenia. Severe AA (SAA) is de fi ned by insuf fi cient 
marrow production in at least two hematopoetic cell lines, and very severe AA 
(VSAA) if the neutrophil count is less than 0.2 G/l. Differential diagnosis of AA 
comprises paroxysmal nocturnal hemoglobinopathy (PNH), congenital dysplastic 
anemia (CDA), hypoplastic myelodysplastic syndrome (MDS). The ultimate goal 
of therapy for AA is freedom from transfusions. This can be achieve either by 
immunosuppressive therapy including CSA, ATG and prednisolone, or HSCT. The 
5-year survival data are with 70–80% similar for both treatment options (Bacigalupo 
and Passweg  2009  ) . 

 BMT is superior over peripheral blood HSCT in AA (Schrezenmeier et al.  2007  ) . 
A survival bene fi t of BMT over mere immunosuppressive therapy (IS) has been 
established for patients younger than 40 years with VSAA and in patients in whom 
ISA failed. 

 The standard regimen for conditioning comprises Cy 200 mg/kg BW with or 
without ATG. With ATG less chronic GvHD and a better survival has been observed 
than with Cy alone (Storb et al.  1994  ) . For patients older than 30 years, also non-
myeloablative conditioning regimens with  fl udarabine have been successfully estab-
lished (Piccin et al.  2009  ) . There is rather limited information on the use of 
haploidentical donors and cord blood in patients with AA to make a de fi nite state-
ment at that time. The right immunosuppressive treatment after HSCT for AA is an 
ongoing debate. ATG, CSA and steroids are the standards. Some favor the addition 
of G-CSF to CSA and ATG. Recently, the supplier withdrew the equine ATG from 
the market and replaced it by rabbit ATG which is produced in the same manner, i.e. 
by stimulation with human thymocytes.  
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    26.6.3   Myeloproliferative Neoplasias 
(MPN) of the Hematopoiesis 

 Chronic myeloid leukemia (CML) as one type of MPN is classically characterized 
by the translocation t(9;22) resulting in the Philadelphia chromosome has been con-
sidered as the paradigm of diseases which can be cured by HSCT. Through the 
advent of the tyrosinase kinase inhibitors (TKIs) such as imatinib mesylate (IM), 
dastinib and nilotinib, this feature has completely changed (Deininger  2008  ) . IM 
has replaced interferon-alpha as  fi rst line therapy for CML. From the IRIS study the 
following results were reported: The cumulative best complete cytogenetic response 
(CCyR) rate was 82%; 63% of all patients randomized to receive imatinib and still 
on study treatment showed CCyR at last assessment. The estimated event-free sur-
vival at 6 years was 83%, and the estimated rate of freedom from progression to AP 
and BC was 93%. The estimated overall survival was 88% – or 95% when only 
CML-related deaths were considered. This 6-year update of IRIS underscores the 
ef fi cacy and safety of imatinib as  fi rst-line therapy for patients with CML. 

 Therefore any decision on HSCT for CML has to take into account the following 
aspects: age of the patient, disease phase, duration of disease, nature of stem cell 
donor and the genders of recipient and donor, as well as the response of the patient 
to TKIs. As more and more TKIs like e.g. DCC-2036 targeting the dif fi cult-to-treat 
mutation T315I (Chan et al.  2011  )  are available on the market one might suggest 
patients to use one TKI after the others as patients with HIV infection take different 
combinations of highly active anti-retroviral therapy (HAART) after the other, thus 
living with their disease for decades without dying from the disease. These consid-
erations have been implemented in an EBMT risk factor score. 

 The role of allogeneic stem cell transplantation in chronic myeloid leukemia is 
being reevaluated. Whereas drug treatment has been shown to be superior in  fi rst line 
treatment, data on allo SCT as second line therapy after imatinib failure are scarce. 
Three year survival after transplantation of 56 patients in chronic phase was 91% 
(median follow-up 30 months). Transplantation related mortality was 8%. In a matched 
pair comparison of transplanted and non-transplanted patients, survival was not differ-
ent. Three year survival after transplantation of 28 patients in advanced phase was 
59%. Eighty eight percent of transplanted patients achieved complete molecular 
remissions. We conclude that allo SCT could become the preferred second line option 
after imatinib failure for suitable patients with a donor (Saussele et al.  2009  ) . 

 Allogeneic HSCT is certainly not an option for CML patients in full manifest 
blast crisis; here newer TKIs are anyway more successful. After achieving a second 
chronic phase allogeneic HSCT is feasible. 

 Standard conditioning for HSCT in CML patients are Bu/Cy or TBI/Cy. An 
interesting aspect is that non-myeloablative HSCT followed by donor lymphocyte 
infusions (DLIs) for female patients with CML in fertile age open them a therapeu-
tic option to bear a child after HSCT (Ringhoffer et al.  2007  ) . This might require 
asservation of oocytes prior to HSCT. In contrast TKIs constitute an absolute con-
traindication to pregnancy because of their high teratogenic potential.  



68526 Blood

    26.6.4   Acute Myeloid Leukemia (AML) 

 Acute myeloid leukemia (AML) constitutes a clonal disorder of the myeloid lineage 
which is associated with unlimited proliferation and loss of differentiation. AML is 
the most common adult leukemia with an incidence of about 3 per 100,000 inhabit-
ants. Several characteristic chromosomal aberrations such as translocations t(8;21), 
t(15;17), t(9;11) and others can be detected in half of the patients. The majority of 
the remaining AML patients can be characterized by different mutations of genes 
like the  FMS-like tyrosine kinase type 3  gene ( FLT3 ), the  mixed lineage leukemia  
( MLL ) gene,  the nucleophosmin 1  ( NPM1 ) gene, the gene encoding  runt-related 
transcription factor 1  ( RUNX1 ), the  tet oncogene family member 2  ( TET2 ), and oth-
ers (Dohner and Gaidzik  2011  ) . 

 Several systems have been established to stratify AML patients according to 
these genetic abnormalities for their relapse risk. This risk strati fi cation has led to 
treatment schedules with a different intensity of polychemotherapy to counterbal-
ance the effects and side effects of cytostatic drugs used in these treatment algo-
rithms (Dohner et al.  2010  ) . To achieve a high rate of complete remissions (CR) in 
patients younger than 60 years old, the application of four chemotherapy cycles 
with cytarabine is considered to be essential (Dohner et al.  2010  ) . Elderly patients 
with AML might be better treated by daunorubicin (Lowenberg et al.  2009  ) . 
However, there is a big difference between CR which can be achieved in 60–80% of 
adults younger than 60 years on one hand, and the 25–30% 5-year survival rate of 
all AML patients. This clearly indicates that despite hematological CR, a suf fi cient 
number of leukemic cells can hibernate in their bone marrow niches to survive con-
ventional chemotherapy. Here HSCT which combines chemotherapy, irradiation as 
well as the allo-effect can eradicate such hibernating leukemic (stem) cells (Koreth 
et al.  2009  ) . 

 However, there is a transplantation-associated mortality (TAM) of 20–25% 
which is made up by opportunistic infections, by GvHD as well as by relapse of the 
disease. Standard conditioning consists of busulfan and cyclophosphamide or TBI, 
but phase III trials including  fl udarabine and treosulfane are also underway at our 
institution and others (Casper et al.  2010 ; Beelen et al.  2008  ) . 

 In AML patients at relapse or with refractory disease, a conditioning regimen 
inaugurated by the group around Hans-Jochem Kolb has proven great ef fi cacy with 
even up to 30% long-term survivors in this deleterious situation: after a block of 
 fl udarabine, amsacrine and cytarabine, the patient in aplasia receives a “non-
myeloablative” conditioning with only 2 × 2 Gy TBI and standard dose of cyclo-
phosphamide. The acronym FLAMSA has been coined for this particular 
conditioning approach (Schmid et al.  2006  ) . Donor lymphocyte infusion might even 
improve the outcome of this approach if given at day +100 or later in the absence of 
GVHD (Schmid et al.  2007  ) . 

 The data of the Acute Leukemia Working Party (ALWP) of the European Bone 
Marrow Transplantation (EBMT) Society demonstrate in a large cohort of 2,100 
patients that autologous HSCT in patients with AML in 1st remission can result in 
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an outcome at 5 years with an overall survival of 51%, a relapse rate of 53% and a 
TAM of only 9% (Breems and Lowenberg  2007  ) . The relapse rate is too high in this 
autologous setting. Moreover, it is not possible to collect enough stem cells in more 
than half of the AML patients and early relapse of the disease might even prevent 
autologous transplantation. 

 Therefore, the autologous approach has been given up in many centers and has 
been clearly surpassed by allogeneic HSCT. Patients at low cytogenetic risk and 
with a certain mutation status (NPM1pos. while FLT3-ITDneg.) might be suf fi ciently 
treated by chemotherapy. The majority of AML patients with intermediate cytoge-
netic risk allogeneic HSCT should be performed if a HLA-matched sibling is avail-
able for transplantation. Patient with high cytogenetic risk and a low or moderate 
co-morbidity score will pro fi t from early transplantation in 1st CR. Patients at 
relapse of the disease will also pro fi t from allogeneic HSCT. A special type of AML, 
the acute promyelocytic leukemia (APL; former AML FAB M3) characterized by 
the translocation t(15;17) is never recommended for HSCT.  

    26.6.5   Acute Lymphoblastic Leukemia (ALL) 

 Treatment results in adult acute lymphoblastic leukemia (ALL) have improved 
considerably in the past decade, with an increase of complete remission rates to 
85–90% and overall survival rates to 40–50%. Superior chemotherapy and sup-
portive care, the integration of hematopoietic stem cell transplantation (HSCT) 
into frontline therapy, and optimized risk strati fi cation were important develop-
ments. Even more impressive is the success of targeted therapies in subgroups of 
ALL. In the formerly most unfavorable subgroup, Philadelphia chromosome (Ph)/
BCR-ABL-positive ALL, survival now ranges from 40 to 50% after incorporating 
imatinib in combination chemotherapy. In mature B-ALL, survival rates increased 
above 80% with the combination of short intensive chemotherapy and rituximab. 
The prerequisite for comprehensive therapy is standardized and rapid diagnosis 
and classi fi cation as the basis for treatment strati fi cation (Gokbuget and Hoelzer 
 2009  ) . 

 Allogeneic hematopoietic stem cell transplantation as part of post-remission 
therapy improves survival for adult patients with high-risk acute lymphoblastic leu-
kemia. A meta-analysis of seven studies including almost 1,300 patients demon-
strated that patients in the donor groups had signi fi cantly better survival than patients 
in the no-donor groups (hazard ratio [HR], 1.29; 95% con fi dence interval [95% CI], 
1.02–1.63 [P = .037]). In high-risk patients with Philadelphia-positive ALL, the 
superiority of the survival advantage was even greater (HR, 1.42; 95% CI, 1.06–1.90 
[P = .019]). A meta-regression analysis revealed that compliance with allogeneic 
HSCT showed a signi fi cant and positive correlation with survival (coef fi cient, 
0.022; P < .01). This suggests that allogeneic HSCT improves the outcome of adult 
patients with high-risk ALL. Allogeneic HSCT should be considered for such 
patients if a suitable donor is available (Yanada et al.  2006  ) .  
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    26.6.6   Chronic Lymphocytic Leukemia (CLL) 

 Chronic lymphocytic leukemia (CLL) constitutes the most common leukemia in 
 western industry countries. In recent years both autologous and allogeneic HSCT have 
been exploited to treat CLL patients. Peter Dreger and others de fi ned criteria for poor-
risk CLL patient according to the EBMT CLL transplant consensus (Dreger et al. 
 2007  ) : these are de fi ned as non-response or early relapse (within 12 months) after 
purine analogue-containing therapy, relapse with 24 months after purine analogue 
combination therapy or treatment of similar ef fi cacy (i.e. autologous HSCT) or p53 
deletion/mutation (del17p13) requiring treatment. There is now only limited hope 
that autologous HSCT could cure CLL. Rather there is cumulating evidence that the 
graft-versus-leukemia (GVL) effect is crucial for the therapy of CLL by allogeneic 
HSCT. 

 Several leukemia-associated antigens (LAAs) have been identi fi ed in CLL patients 
(Giannopoulos et al.  2009  ) . Allogeneic HSCT from matched related or unrelated 
donors can overcome the treatment resistance of poor-risk CLL as de fi ned above. 
Even with reduced-intensity conditioning, allogeneic HSCT in CLL is associated 
with signi fi cant mortality and morbidity due to (chronic) GVHD, which has to be 
weighed against the risk of the disease when de fi ning the indication for transplanta-
tion. Therefore, it can be regarded as a reasonable treatment option only for eligible 
patients who ful fi ll accepted criteria for poor-risk disease. If allogeneic HSCT is 
weighted, it should be performed before CLL has advanced to a status of complete 
refractoriness to assure an optimum chance for a successful outcome. Prospective 
trials are underway to prove whether allogeneic HSCT might indeed change the nat-
ural course of poor-risk CLL (Dreger  2009  ) , particularly del17 patients and patients 
after the use of the anti-CD52 monoclonal antibody alemtuzumab (Brown  2011  ) .   

    26.7   Conclusions and Future Perspectives on “ Blood”  
Regenerative Therapies 

 Autologous and allogeneic hematopoietic stem cell transplantation is well estab-
lished as a treatment modality to escalate antineoplastic therapy in some diseases 
and to replace de fi cient or neoplastic hematopoiesis in others. Alas, the results of 
autologous transplantation are hampered by a high incidence of relapses and the 
limiting barrier for the expansion of allogeneic transplantation is the increasing 
incidence of GvHD in older patients and with increasing HLA disparities. 

 In autologous transplantation the improvement of remission quality and the pro-
longation of remission duration by introduction of new anti-neoplastic agents into 
remission and maintenance is intensively studied. We will not extend on this per-
spective as it is not in the center of interest in regenerative medicine. 

 In allogeneic transplantation GvHD on one side and immune competence after 
transplant on the other side is correlated with the presence and absence of different 
immune cells in the graft. These cells become increasingly well de fi ned and  methods 
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are developed to isolate and manipulate them. Therefore much hope rests on 
 engineered grafts for the improvement of allogeneic transplantation. The result of 
this development might be the elimination of virus infections after allogeneic trans-
plantation and the enhancement of graft-versus-tumor effect. 

    26.7.1   Selective Donor Lymphocyte Infusions (sDLIs) 

 Multimers such as tetramers, pentamers, or streptamers, mimick the immunological 
synapses that naturally occur between T cells and antigen presenting cells (APC), through 
the T cell receptor (TCR) and major histocompatibility complex (MHC). Multimers 
are used to select either virus- or antigen-speci fi c T cells (Casalegno-Garduno et al. 
 2010  ) . However, only streptamers are currently available at GMP level. 

 Streptamer selection might facilitate the adoptive transfer of T cells, thus dissecting 
both GvHD from GVL effects. Streptamers can select either antigen- or virus-speci fi c 
CTLs from seropositive donors (Fig.  26.11 ). This multimer is reversible and the CTLs 
remain functionally active.  

  Fig. 26.11    GVL effect after HSCT and DLIs/Ag-speci fi c CTLs. After chemotherapy and irradia-
tion, HSC are infused for the re-population of the bone marrow. However, the graft exerts not only 
a GVL effect, but potentially also causes GvHD. In case of relapse, either DLIs or antigen-speci fi c 
CTLs are infused with a good outcome against leukemia cells due to the GVL reaction.  LAA  leu-
kemia associated antigen,  HD  healthy donor,  HSC  hematopoietic stem cell,  DLIs  donor lympho-
cyte infusions,  CR  complete remission,  MRD  minimal residual disease,  AML  acute myeloid 
leukemia (Taken from our recent publication Casalegno-Garduno et al.  2010  )        
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 We have own experience with the transfer of CMV-speci fi c T cells into patients 
after allogeneic stem cell transplantation who suffered from recurrent CMV anti-
genemia. In two patients, the course of CMV antigenemia was de fi nitively con-
trolled after a single DLI with CMVpp65 speci fi c CD8+ T cells (Schmitt et al. 
 2010  ) .  

    26.7.2   Translation Towards Leukemia 
Antigen-Speci fi c DLIs 

 In an ongoing study (Wang et al.  2010  ) , we observed a signi fi cant difference in the 
frequency of WT1-speci fi c CD8+ T cells in healthy donors and AML patients. It 
was possible to purify the WT1-speci fi c T cells labeled with speci fi c streptamers 
coupled with magnetic beads by MACS™ columns, and we achieved a purity of up 
to 90%. In our eyes this approach holds promise for clinical application in patients 
after allogeneic stem cell transplantation and detectable (minimal) residual disease 
to achieve a GVL effect without GvHD. This approach is currently extended to 
other LAAs.  

    26.7.3   Ways to Improve the Homeostatic Expansion 
of Antigen-Speci fi c CD8+T Cells 

 With the paradigm of CMV-speci fi c T cells we demonstrated that adoptively 
transferred antigen-speci fi c cells can expand by homeostatic expansion in the 
periphery bypassing thymic priming (Surh and Sprent  2005  ) . A similar homeo-
static expansion of leukemia antigen-speci fi c T cells is highly desirable. This 
might be facilitated by the depletion of CD4 + CD25hi regulatory T cells (Tregs), 
the shift in the balance of CD8 vs. CD4 + CD25hi Tregs. To this end several meth-
ods are under current investigation (Mielke et al.  2011  )  . Administration of T cells 
by cytostatic drugs like cyclophosphamide and  fl udarabin as well as total-body 
irradiation might cause at least to some extend lymphodepletion. Most impor-
tantly, vaccination against leukemia-antigens like WT1, PR1 or RHAMM (Schmitt 
et al.  2008  )  has been performed after chemotherapy and autologous stem cell 
transplantation. Now the challenge is to administer vaccines after allogeneic stem 
cell transplantation to booster the anti-leukemic GvL effect and to maintain this 
reaction for an extended time period. The format of post-transplantation vaccines 
(Rezvani  2011  )  might be a peptide (Rapoport et al.  2011  )  or a truncated protein. 
Dendritic cells transfected with RNA encoding the leukemia antigen (Van Tedeloo 
et al.  2010  )  constitute a further option as well as K562 cells transfected with the 
gene encoding granulocyte macrophage colony stimulating factor (GM-CSF), a 
vaccine designated GVAX.         
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  Abstract   Human neurological diseases such as Parkinson’s disease (PD), 
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Alzheimer’s dis-
ease (AD), multiple sclerosis (MS), stroke and spinal cord injury are caused by a 
loss of neurons and glial cells in the brain or spinal cord. Cell replacement therapy 
and gene transfer to the diseased or injured brain have provided the basis for the 
development of potentially powerful new therapeutic strategies for a broad spec-
trum of human neurological diseases. However, the paucity of suitable cell types for 
cell replacement therapy in patients suffering from neurological disorders has ham-
pered the development of this promising therapeutic approach. In recent years, neu-
rons and glial cells have successfully been generated from stem cells such as 
embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal 
stem cells (MSCs) and neural stem cells (NSCs), and extensive efforts by investiga-
tors to develop stem cell-based brain transplantation therapies have been carried 
out. I review here notable experimental and pre-clinical studies previously pub-
lished involving stem cell-based cell- and gene-therapies for PD, HD, ALS, AD, 
MS and stroke, and discuss for future prospect for the stem cell therapy of neuro-
logical disorders in clinical setting. There are still many obstacles to be overcome 
before clinical application of cell- and gene-therapy in neurological disease patients 
is adopted: (i) it is still uncertain how to generate speci fi c cell types of neurons or 
glia suitable for cellular grafts in great quantity, (ii) it is required to abate safety 
concern related to tumor formation following NSC transplantation, and (iii) it needs 
to be better understood by what mechanism transplantation of NSCs leads to an 
enhanced functional recovery. Steady and stepwise progress in stem cell research in 
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both basic and pre-clinical settings should support the hope for development of stem 
cell-based therapies for neurodegenerative diseases. This review focuses on the 
 utility of stem cells particularly NSCs as substrates for structural and functional 
repair of the diseased or injured brain.      

    27.1   Introduction 

 In adult mammalian central nervous system (CNS), injured neurons exhibit low 
spontaneous capacity for regeneration (Ramon y Cajal  1928  ) , although earlier stud-
ies have demonstrated regeneration in the injured adult CNS using fetal brain cells 
as transplants (Thompson     1890 ; Ransom  1909 ; Le Gros Clark  1940 ; cited by 
Kordower and Tuszinski  1999  ) . It is important to adopt fetal CNS tissues as doners 
to promote repair in adult CNS since adult CNS cells do not survive in the grafted 
site. However, little progress has been seen for a long time in investigation related 
to the CNS regeneration until late 1970s. In 1979 two Swedish research groups 
reported independently that embryonic rat mesencephalic cells transplanted in the 
brain of parkinsonian rats survived and induced functional recovery (Björklund and 
Stenevi  1979 ; Perlow et al.  1979  ) . This is the  fi rst time that fetal CNS cell trans-
plants replace lost cells and restore functional de fi cits in animal models of neuro-
logical diseases. Since then, fetal CNS-derived cells were grafted into the brain and 
spinal cord of animal models of neurological disorders including Parkinson’s dis-
ease (PD), Huntington’s disease (HD), stroke and spinal cord injury. Starting late 
1980s, transplantation of human fetal ventral mesencephalic tissues into the stria-
tum of PD patients has been adopted as a successful therapy for patients with 
advanced disease (Lindvall et al.  1990 ; Olanow et al.  1996 ; Kordower et al.  1997a ; 
Dunnett and Bjorklund  1999  ) . However, this fetal brain tissue transplantation has 
grave problems associated with ethical and religious questions and limited supply 
of fetal tissues. To circumvent these dif fi culties, utilization of neurons with dop-
amine (DA) phenotype generated from embryonic stem cells (ESCs), induced pluri-
potent stem cells (iPSCs), mesenchymal stem cells (MSCs) or neural stem cells 
(NSCs) could serve as a practical and effective alternative for the fetal brain tissues 
for brain transplantation. 

 Cell replacement therapy and gene transfer to the diseased or injured brain have 
provided the basis for the development of potentially powerful new therapeutic 
strategies for human neurological diseases. However, the paucity of suitable cell 
types for cell therapy in patients suffering from neurological disorders has  hampered 
the development of this promising therapeutic approach. In recent years, neurons 
and glial cells have successfully been generated from stem cells such as ESCs, 
iPSCs, MSCs and NSCs, and extensive efforts by investigators to develop stem 
 cell-based brain transplantation therapies have been carried out. 

 Stem cells are de fi ned as cells that have the ability to renew themselves con-
tinuously and possess pluripotent ability to differentiate into many cell types. Two 
types of mammalian pluripotent stem cells, ESCs derived from the inner cell mass 
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of blastocysts and embryonic germ cells (EGCs) obtained from post-implantation 
embryos, have been identi fi ed and these stem cells give rise to various organs and 
tissues (Thompson et al.  1998 ; Shamblott et al.  1998  ) . Recently there has been an 
exciting development in generation of a new class of pluripotent stem cells, 
induced pluripotent stem cells (iPSCs), from adult somatic cells such as skin 
 fi broblasts by introduction of embryogenesis-related genes (Takahashi et al.  2007 ; 
Yu et al.  2007 ; Park et al.  2008  ) . In addition to ESCs and iPS cells, tissue speci fi c 
stem cells could be isolated from various tissues of more advanced developmental 
stages such as hematopoietic stem cells (HSCs), bone marrow MSCs, adipose 
tissue-derived stem cells (ADSCs), amniotic  fl uid stem cells and NSCs. Among 
these, existence of multipotent NSCs has been known in developing or adult 
rodent brain with properties of inde fi nite growth and multipotent potential to dif-
ferentiate into three major cell types of CNS, neurons, astrocytes and oligoden-
drocytes (McKay  1997 ; Flax et al.  1998 ; Gage  2000 ; Temple  2001 ; Gottlieb  2002 ; 
Kim  2004 ; Kim and deVellis  2009 ). 

 In human, existence of NSCs with multipotent differentiation capability has also 
been reported in embryonic and adult human brain (Flax et al.  1998 ; Kim  2004 ; 
Brustle and McKay  1996 ; Sah et al.  1997  ) . In a group of cancer patients who had 
infusion of chemical bromodeoxyuridine (BrdU) for diagnostic purposes and later 
died, evidence that new neurons are continuously being generated in adult human 
CNS has been demonstrated (Eriksson et al.  1998  ) . Why then there is only limited 
capacity to repair in adult CNS suffering from injury or diseases? It appears that 
endogenous brain environment that is responsible for induction of NSC prolifera-
tion and consequent NSC differentiation into neurons is not adequate in most of 
diseased or injured brain. 

 Recently continuously dividing immortalized cell lines of NSCs have been gen-
erated by introduction of oncogenes and these immortalized NSC lines have advan-
tageous characteristics for basic studies on neural development and cell replacement 
therapy or gene therapy studies: (i) Stable immortalized NSC cells are homoge-
neous since they were generated from a single cell, i.e. a single clone; (ii) immortal 
NSC cells can be expanded readily in large numbers in short time; (iii) stable expres-
sion of therapeutic genes can be achieved readily (Flax et al.  1998 ; Kim  2004 ; 
Renfranz et al.  1991 ; Snyder et al.  1992 ; Lee et al.  2007a  ) . Immortalized NSCs have 
emerged as highly effective source for genetic manipulation and gene transfer into 
the CNS  ex vivo ; immortalized NSCs were genetically manipulated  in vitro , survive, 
integrate into host tissues and differentiate into both neurons and glial cells after 
transplantation to the intact or damaged brain. We have previously generated immor-
talized cell lines of human NSCs by infecting fetal human brain cells grown in pri-
mary culture with a retroviral vector carrying v-myc oncogene and selecting 
continuously dividing NSC clones. Both  in vivo  and  in vitro  these cells were able to 
differentiate into neurons and glial cells and populate the developing or degenerat-
ing CNS (Flax et al.  1998 ; Kim  2004 ; Lee et al.  2007a ; Kim and de Vellis  2009 ). 

 Stem cell-based cell and gene therapy could serve as potentially powerful new 
therapeutic strategies for a broad spectrum of human neurological diseases includ-
ing PD, HD, AD, ALS, MS, stroke, spinal cord injury and brain tumors (Brustle and 
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McKay  1996 ; Flax et al.  1998 ; Kim  2004 ; Lindvall et al.  2004 ; Goldman  2005 ; Kim 
and deVellis  2009 ). There are still many obstacles to be overcome before clinical 
application of cell therapy in neurological disease patients is adopted: (i) it is still 
uncertain how to generate speci fi c cell types of neurons or glia suitable for cellular 
grafts in great quantity, (ii) it is required to abate safety concern related to tumor 
formation following NSC transplantation, and (iii) it needs to be better understood 
by what mechanism transplantation of NSCs leads to an enhanced functional recov-
ery. Steady and stepwise progress in stem cell research in both basic and pre-clinical 
settings should support the hope for development of stem cell-based therapies for 
neurodegenerative diseases. This review focuses on the utility of stem cells particu-
larly NSCs and MSCs as substrates for structural and functional repair of the dis-
eased or injured CNS.  

    27.2   Parkinson Disease 

 Parkinson’s disease (PD) is characterized by an extensive loss of dopamine neurons 
(DA) in the substantia nigra pars compacta and their terminals in the striatum (Kish 
et al.  1988 ; Agid  1991  ) , and affects more than 500,000 people in the US. While the 
etiology of idiopathic PD is not known, several predisposing factors for the dop-
aminergic depletion associated with the disease have been suggested, including pro-
grammed cell death, viral infection, and environmental toxins. As an effective 
treatment for PD, patients have been given L-dihydroxyphenyl alanine (L-DOPA), 
a precursor of dopamine, but long-term administration of L-DOPA consequently 
produces grave side effects (Lang and Lozano  1998a,   b  ) . More recently surgical 
procedure of deep brain stimulation has been adopted as a successful treatment for 
PD patients (Lyons  2011  ) . 

 Since late 1980s, transplantation of human fetal ventral mesencephalic tissues 
into the striatum of PD patients has been adopted as a successful therapy for patients 
with advanced disease (Lindvall et al.  1990 ; OLanow et al.  1996 ; Kordower et al. 
 1997a ; Dunnett and Bjorklund  1999  ) . However, this fetal tissue transplantation has 
grave problems associated with ethical and religious questions and logistics of 
acquiring fetal tissues. In addition, recent reports have indicated that the survival of 
transplanted fetal mesencephalic cells in the patients’ brain was very low and it was 
dif fi cult to obtain enough fetal tissues needed for transplantation (Hagell et al. 
 1999  ) . To circumvent these dif fi culties, utilization of neurons with dopamine (DA) 
phenotype generated from ESCs, iPSCs, MSCs or NSCs could serve as a practical 
and effective alternative for the fetal brain tissues for transplantation (Lee et al.  2000 ). 
DA neurons were generated from mouse ESCs after treatment with  fi broblast growth 
factor 8 (FGF8) and sonic hedgehog (Hagell and Brundin  2002  ) , over-expression of 
Nurr1 (Wagner et al.  1999 ; Chung et al.  2002 ; Kim et al.  2003  )  or Bcl-XL (Shim 
et al.  2004  ) , or co-culture with a mouse bone marrow stromal cell line (Kawasaki 
et al.  2000  ) . Neurons with DA phenotype have been generated from monkey ESCs 
by co-culturing with mouse bone marrow stromal cells and behavioral improvement 
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was seen in MPTP-lesioned monkeys following intra-striatal transplantation of 
these cells (Takagi et al.  2005  ) . DA neurons were also generated from neural 
 progenitor cells derived from fetal brain and induced functional recovery following 
brain transplantation in parkinsoinian monkeys (Takagi et al.  2005  ) . 

 Transplantation of NSCs in the brain attenuates anatomic or functional de fi cits 
associated with injury or disease in the CNS via cell replacement, the release of 
speci fi c neurotransmitters, and the production of neurotrophic factors that protect 
injured neurons and promote neuronal growth. Recently we have generated continu-
ously dividing immortalized cell lines of human NSC from fetal human brain cell 
culture via a retroviral vector encoding v- myc  (Kim  2004 ; Lee et al.  2007a ; Kim 
et al.  2008c  )  and one of the immortalized NSC lines, HB1.F3, induced functional 
improvement in rat model of PD following transplantation into the striatum 
(Yasuhara et al.  2006  ) . 

 Earlier studies have used gene transfer technology to develop treatment for PD 
by transferring tyrosine hydroxylase (TH) gene, a rate-limiting step enzyme in cat-
echolamine biosynthesis process, into certain cell types and then implant these cells 
into the brain of PD animal models (Wolff et al.  1989 ; Fisher et al.  1991 ; Jiao et al. 
 1993 ; Anton et al.  1994 ; During et al.  1994  ) . However, gene transfer of TH using 
genetically modi fi ed cells produced only partial restoration of behavioral and bio-
chemical de fi cits in PD animal models, since the cells utilized did not carry suf fi cient 
amount of tetrahydrobiopterin (BH 

4
 ) 

,
  a cofactor to support TH activity (Kang et al. 

 1993  ) . Therefore, it is necessary to transfer additionally of GTP cyclohydrolase-1 
(GTPCH-1) gene that is the  fi rst and rate-limiting enzyme in the BH 

4
  biosynthetic 

pathway (Bencsics et al.  1996  ) . Immortalized CNS-derived mouse NSC line C17.2 
was transduced to carry tyrosine hydroxylase (TH) gene and GTP cyclohydrory-
lase-1 (GTPCH-1) gene for production of L-DOPA and following intra-striatal 
implantation behavioral improvement was seen in 6-hydroxydopamine-lesioned 
rats (Ryu et al.  2005  ) . We have similarly engineered HB1.F3 human NSC line to 
produce L-DOPA by double transduction with human TH and GTPCH-1 genes, and 
following transplantation of these cells in the brain of PD rat model led to enhanced 
L-DOPA production  in vivo  and induced functional recovery (Kim et al.  2006  ) . 

 Previous studies have reported that mouse ES cell-derived DA neurons have 
shown ef fi cacy in PD animal models, whereas DA neurons from human ES cells 
generally show poor performance. In addition, there are considerable safety con-
cerns for ES cells related to risk of tumor formation and neural overgrowth. More 
recent studies have indicated that functional human DA neurons could be generated 
ef fi ciently from human ES cells and upon transplantation in rat PD models ES cell-
derived DA neurons induced behavior recovery in the animals (Cho et al.  2008 ; 
Kirks et al.  2011  ) . These studies indicate that large scale generation of DA neurons 
is possible from human ES cells as cellular source for cell therapy in PD patients. 
Human DA neurons derived from iPS cells may provide an ideal cellular source for 
transplantation therapy for PD. However, developing effective cell therapy approach 
for PD using iPS cells relies on optimizing in vitro production of iPS cell-derived 
DA neurons and preventing potential risk of teratoma formation in vivo. A recent 
study has reported generation of DA neurons from iPS cells derived from  fi broblasts 
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and improved behavior following transplantation of the DA neurons in PD model 
rats (Werning et al.  2008  ) . Although further research is still required, cell therapy 
based on DA neurons derived from iPS cells will probably become a promising 
treatment technique in the coming days. 

 Summary of preclinical studies of stem cell transplantation in PD animal models 
in rat and monkey is shown in Table  27.1 .   

    27.3   Huntington Disease 

 Huntington disease (HD) is an autosomal dominant neurodegenerative disorder 
characterized by involuntary choreiformic movements, cognitive impairment, and 
emotional disturbances (Greenamyre and Shoulson  1994 ; Harper  1996  ) . Despite 
identi fi cation of the HD gene and associated protein, the mechanisms involved in 
the pathogenesis of HD remain largely unknown and thus hamper effective thera-
peutic interventions. Transplantation of fetal human brain tissue may serve as a 
useful strategy in reducing neuronal damage in HD brain and a recent study has 
documented improvements in motor and cognition performance in HD patients fol-
lowing fetal cell transplantation (Bachoud-Lévi et al.  2000  ) . This trial follows pre-
vious reports in experimental animals of HD that positive effects of fetal striatal cell 
transplantation to ameliorate neuronal dysfunction (Nakao and Itakura  2000  )  and 
that striatal graft tissue could integrate and survive within the progressively degen-
erated striatum in transgenic HD mouse model (Dunnett et al.  1998  ) . The latter 
study is consistent with results obtained from HD patients indicating survival and 
differentiation of implanted human fetal tissue in the affected regions (Freeman 
et al.  2000  ) . Cell replacement therapy using human fetal striatal grafts has shown 
clinical success in HD patients. However, a recent study has reported neural over-
growth of grafted tissue in a HD patient who survived 5 years post-transplantation 
(Keene et al.  2009  ) . Overgrown grafts were composed of neurons and glia embed-
ded in disorganized neuropil. This report recalls safety concerns for fetal cell grafts 
related to potential risk of neural overgrowth following transplantation in HD 
patients. 

 Transplantation of NSCs to replace degenerated neurons or genetically modi fi ed 
NSCs producing neurotrophic factors have been used to protect striatal neurons 
against excitotoxic insults (Bjorklund and Lindvall  2000  ) . At present, little is known 
regarding whether implantation of NSCs prior to neuropathological damage could 
alter the progressive degeneration of striatal neurons and motor de fi cits that occur in 
HD. This question is important since genetic study of Huntington disease gene 
mutation (Huntington’s Disease Collaborative Research Group  1993  )  and neuroim-
aging can provide details on factors involved in the progression of HD (Harris et al. 
 1999 ; Thieben et al.  2002  )  suggesting early intervention using brain transplantation 
could be effective in “pre-clinical” HD patients carrying mutant HD gene. We have 
investigated the effectiveness of proactive transplantation of human NSCs into rat 
striatum of an HD rat prior to lesion formation and demonstrated signi fi cantly 
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improved motor performance and increased resistance to striatal neuron damage 
compared with control sham injections (Ryu et al.  2004  ) . The neuroprotection 
 provided by the proactive transplantation of human NSCs in the rat model of HD 
appears to be contributed by brain-derived neurotrophic factor (BDNF) secreted by 
the transplanted human NSCs. 

 Rodents and primates with lesions of the striatum induced by excitotoxic kainic acid 
(KA), or quinolinic acid (QA) have been used to simulate HD in animals and to test 
ef fi cacy of experimental therapeutics experiments on neural transplantation (DiFiglia 
 1990  ) . Excitotoxic animal models induced by QA, which stimulates glutamate recep-
tors, resemble the histopathologic characteristics of HD patients, were utilized for cell 
therapy with mouse embryonic stem cells, mouse neural stem cells, mouse bone mar-
row mesenchymal stem cells and primary human neural precursor cells and resulted in 
varying degree of clinical improvement (Kordower et al.  1997  b ; Armstrong et al.  2000 ; 
McBride et al.  2004 ; Visnyei et al.  2006 ; Lee et al.  2005,   2006  ) . We have recently 
injected human NSCs intravenously in QA-HD model rats and demonstrated func-
tional recovery in HD animals (Lee et al.  2005,   2006  ) . The systemic transplantation of 
NSCs via intravascular route is probably the least invasive method of cell administra-
tion (Lee et al.  2006  ) . Neural cell transplantation into striatum requires an invasive 
surgical technique using a stereotaxic frame. Non-invasive transplantation via intrave-
nous routes, if it may be effective in human, is much more attractive. 

 Systemic administration of 3-nitropropionic acid (3-NP) in rodents leads to meta-
bolic impairment and gradual neurodegeneration of the basal ganglia with behavioral 
de fi cits similar to those associated with HD (Beal et al.  1993 ; Brouillet et al.  1995  ) , 
and murine and human NSCs have been transplanted in the brain of 3-NP-HD animal 
models (Ryu et al.  2004 ; Roberts et al.  2006  ) . The compound 3-NP is a toxin which 
inhibits the mitochondrial enzyme succinate dehydrogenase (SDH) and tricarboxylic 
acid (TCA) cycle thereby interfering with the synthesis of ATP (Alston et al.  1977  ) . 

 We have investigated the effectiveness of transplantation of human NSCs into 
adult rat striatum prior to striatal damage induced by 3-NP toxin (Ryu et al.  2004  ) . 
Animals receiving intrastriatal implantation of human NSCs 1 week prior to 3-NP 
treatments exhibited signi fi cantly improved motor performance and increased resis-
tance to striatal neuron damage compared with control sham injections. The neuro-
protection provided by the proactive transplantation of human NSCs in the rat model 
of HD appears to be contributed by brain-derived neurotrophic factor (BDNF) 
secreted by the transplanted human NSCs. Previous studies have also demonstrated 
that BDNF could block neuronal injury under pathological conditions in animal 
models of HD (Bemelmans et al.  1999 ; Pérez-Navarro et al.  2000  ) . These  fi ndings 
suggest that proactively transplanted human NSCs were well integrated in the stria-
tum and supported the survival of host striatal neurons against neuronal injury. 

 Human NSCs derived from ESCs could provide a viable cellular source for cell 
and therapy in HD, since they can be expanded inde fi nitely and differentiate into 
any cell type desired. Three previous studies have shown that neurons expressing 
striatal markers could be induced from ESCs and brain transplantation of these 
ESC-derived neurons in QA-lesioned rats leads to behavioral recovery in the animals 
(Song et al.  2007 ; Aubry et al.  2008 ; Vasey et al.  2010  ) . 



70327 Regenerative Medicine in the Central Nervous System…

 We have recently written a review that focuses on the stem cell-based therapy for 
HD and investigators who wish to learn more about the subject are referred to the 
review article (Kim et al.  2008a,   b,   c  ) . Summary of preclinical studies of stem cell 
transplantation in HD animal models is shown in Table  27.2 .   

    27.4   Amyotrophic Lateral Sclerosis 

 Amyotrophic lateral sclerosis (ALS), known as Lou Gehric disease, is a relentlessly 
progressive, adult onset neurodegenerative disorder characterized by degeneration 
and loss of motor neurons in the cerebral cortex, brain stem and spinal cord, leading 
to muscle wasting and weakness, and eventually to death within 5 years after the onset 
of its clinical symptoms (Hudson  1990 ; Rowland and Shneider  2001  ) . The proposed 
pathogenetic mechanisms of ALS, albeit not fully elucidated, include oxidative stress, 
protein aggregation, mitochondrial dysfunction, impaired axonal transport, glutamate-
mediated excitotoxicity, and insuf fi cient production of neurotrophic factors (Boillee 
et al.  2006  ) . To date there is no effective treatment for patients suffering from ALS. 

 Recent studies have indicated that it is possible to generate motor neurons in 
culture from stem cells that include ESCs and NSCs (Wichterle et al.  2002 ; Harper 
et al.  2004 ; Miles et al.  2004 ; Li et al.  2005  ) . Mouse ESC-derived motor neurons 
transplanted into motor neuron-injured rat spinal cord survived and extended axons 
into ventral root (Miles et al.  2004  ) , and human EGCs transplanted into cerebrospi-
nal  fl uid of rats with motor neuron injury migrated into spinal cord and led to 
improved motor function (Kerr et al.  2003  ) . Transplantation of NSCs isolated from 
fetal spinal cord (Xu et al.  2006  )  was also effective in delaying disease progression 
in mouse ALS model. These cell transplantation studies have shown functional 
improvement in animal models of ALS. 

 A recent study has reported that iPSCs isolated from an ALS patient were differen-
tiated into motoneurons (Dimos et al.  2008  )  and these patient-derived neurons could 
be an ideal cellular source for transplantation. Neurons and glia induced from patient-
derived iPSCs are ideal for cell therapy as the iPSC-derived neurons are autologous, 
easily accessible, without immune rejection and with no ethical problem although 
there is safety concern of tumor formation following the cell transplantation. 

 The systemic transplantation of NSCs via intravascular route is probably the 
least invasive method of cell administration in ALS. Non-invasive transplantation 
via intravenous routes is much more attractive than surgical technique. Recently rat 
NSCs labeled with green  fl uorescent protein were transplanted in rat ALS model via 
intravenous tail vein injection and 7 days later 13 % of injected cell were found in 
motor cortex, hippocampus and spinal cord. No improvement in clinical symptoms 
was reported (Miltrecic et al.  2010  ) . 

 It is unrealistic to expect the transplantation of stem cells or stem cell-derived 
motor neurons in ALS patients in a clinical setting replaces lost neurons, integrates 
into existing neural circuitry and restores motor function. Rather preventing cell death 
in host motor neurons via provision of neurotrophic factors by transplanted stem cells 
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or stem cell-derived motor neurons is more realistic and achievable approach (Lindvall 
and Kokaia  2006  ) . Recent studies have shown that the application of an adenoviral 
vector encoding glial cell line-derived growth factor (GDNF) into injured rat facial 
motor nucleus rescued motor neurons from cell death (Watabe et al.  2000  ) , and human 
cortical progenitor cells engineered to express GDNF and transplanted into the spinal 
cord of ALS rats survived and released the growth factor (Kerr et al.  2003  ) . Several 
recent studies have also demonstrated that delivery of vascular endothelial cell growth 
factor (VEGF) signi fi cantly delayed disease onset and prolonged the survival of ALS 
animal models (Klein et al.  2005 ; Azzouz et al.  2004 ; Zheng et al.  2004 ; Storkebaum 
et al.  2005  ) . VEGF is one of growth factors that can be used in combination with 
transplanted stem cells to improve therapeutic ef fi ciency of cellular transplantation. 
VEGF is an angiogenetic growth factor acting as a potent mitogen and survival factor 
speci fi c to endothelial cells, and also known for neurotrophic and neuroprotective 
effect against brain injury. Recently we have demonstrated that in transgenic SOD1/
G93A mouse model of ALS (Gurney et al.  1994  )  intrathecal transplantation of human 
NSCs over-expressing VEGF (HB1.F3.VEGF) induced functional improvement, 
delayed disease onset for 7 days and extended the survival of animals for 15 days 
(Hwang et al.  2009a  ) . Immunohistochemical investigation of SOD1/G93A mouse 
spinal cord demonstrated that the transplanted human NSCs migrated into spinal cord 
anterior horn and differentiated into motoneurons. 

 More recently, we generated motoneurons from human NSCs and transplanted 
these cells into spinal cord of SOD1G93A ALS mouse (Kim et al.  2011  ) . Motoneurons 
were generated by treatment of human NSCs encoding Olig2 bHLH transcription 
factor gene (HB1.F3.Olig2) with sonic hedgehog (Shh) protein. HB1.F3.Olig2 NSCs 
treated with Shh for 4–7 days differentiated not motoneurons expressing motoneuron-
speci fi c markers HB-9, Isl-1 and choline acetyltransferase (ChAT) but did not express 
OLG markers such as O4, galctocerebroside or CNPase. Control HB1.F3.Olig2 
NSCs grown in the absence of Shh did not express any of the motor neuron-speci fi c 
cell type markers. Intrathecal transplantation of motoneuron-committed HB1.F3.
Olig2 + Shh human NSCs into L5 of spinal cord signi fi cantly delayed disease onset 
(9 days) and expanded the life span (22 days) of SOD1 G93A ALS mice, with two 
out of six mice living up to 35 days. Grafted NSCs were found within grey matter and 
anterior horn of the spinal cord. These results suggest that this treatment modality 
using genetically modi fi ed human NSCs might be of value in the treatment of ALS 
patients without signi fi cant adverse effects (Kim et al.  2011  ) . 

 Summary of preclinical studies of stem cell transplantation in ALS animal 
models is shown in Table  27.3 .   

    27.5   Alzheimer Disease 

 Alzheimer disease is characterized by degeneration and loss of neurons and syn-
apses through out the brain particularly in basal fore brain, amygdala, hippocampus 
and cortical area. Memory and cognitive function of patients progressively decline, 
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patients become demented and die prematurely (Whitehouse et al.  1981 ; Bartus 
et al.  1982 ; Coyle et al.  1983  ) . No effective treatment is currently available except 
for acetylcholinesterase inhibitors which augment cholinergic function but is not 
curative and only a temporary measure. 

 As for the pathogenesis of AD, the amyloid cascade hypothesis postulates that 
memory de fi cits are caused by increased levels of both soluble and insoluble amy-
loid ß (Aß) peptides, which are derived from the larger amyloid precursor protein 
(APP) sequential proteolytic processing (Whitehouse et al.  1981 ; Bartus et al.  1982 ; 
Coyle et al.  1983 ; Hardy and Selkoe  2002  ) . Recent study has reported that treatment 
of PDAPP mice, a transgenic mouse model of AD, with anti-Aß antibody com-
pletely restored hippocampal acetylcholine release and high-af fi nity choline uptake 
and improved habituation learning (Bales et al.  2006  ) . Based on the study, a clinical 
trial in AD patients is underway in the US. 

 Chronically decreasing Aß levels in brain has been suggested as a possible thera-
peutic approach for AD, and several experimental evidence indicate that proteinases 
such as neprilysin (Iwata et al.  2001  ) , insulin degrading enzyme (Farris et al.  2003 ; 
Miller et al.  2003  ) , plasmin (Melchor et al.  2003  )  and cathepsin B (Mueller-Steiner 
et al.  2006  )  could be used as therapeutic agents to reduce Aß levels in AD brain. 
Recent studies have shown that intracerebral injection of a lentivirus vector express-
ing human neprilysin in transgenic mouse models of amyloidosis reduced Aß 
deposits in the brain and blocked neurodegeneration in the frontal cortex and hip-
pocampus (Marr et al.  2003  ) , and that intracerebrally injected  fi broblasts over-
expressing human neprilysin gene were found to signi fi cantly reduce amyloid 
plaque burden in the brain of Aß transgenic mice (Hemming et al.  2007  ) . These 
studies support the use of Aß-degrading proteases as a tool to therapeutically lower 
Aß levels and encourage further investigation of ex vivo delivery of protease genes 
using human NSCs for the treatment of AD. We have recently generated a human 
NSC line encoding human neprylysin gene, transplanted these cells in lateral ven-
tricle of AD transgenic mouse brain, and results are expected some time later. 

 Earlier studies have indicated that nerve growth factor (NGF) prevent neuronal 
death and improve memory in animal models of aging, excitotoxicity and amyloid 
toxicity (Hefti  1986 ; Fischer et al.  1987 ; Tuszynski et al.  1990 ; Emerich et al.  1994 ; 
Tuszynski  2002  ) , and could be used for treating neuronal degeneration and cell 
death in AD brain. However, delivery of NGF into the brain is not possible via 
peripheral administration. Because of its size and polarity NGF does not cross the 
blood brain barrier. In order to overcome this dif fi culty, gene therapy approach 
could be adopted. Using  ex vivo  gene therapy approach via NGF encoding cells, 
NGF can be administered directly to the brain and diffuse for distance of 2–5 mm 
(Tuszynski et al.  1990  ) . A phase 1 clinical trial of  ex vivo  NGF gene delivery was 
performed in eight mild AD patients by implanting autologous  fi broblasts geneti-
cally modi fi ed to express human NGF into the forebrain. After mean follow-up of 
22 months in 6 subjects, long-term adverse effects were not found. Evaluation by 
MMSE and AD A SCS suggested improvement in the rate of cognitive decline. 
Serial PET scans showed signi fi cant increases in cortical  fl uorodeoxyglucose after 
treatment (Tuszynski et al.  2005  ) . Since  fi broblasts are known for their immobility 
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following brain transplantation (Kang et al.  1993  ) , NSCs with high migratory 
 capacity and pathology-tropic property (Flax et al.  1998 ; Kim  2004 ; Lee et al. 
 2007a ; Kim and deVellis  2009 ) could be used in place of  fi broblasts to deliver NGF 
into the AD brain. In learning de fi cit AD model rats induced by okadaic acid injec-
tion, transplantation of rat NSCs infected with adenovirus-NGF produced improve-
ment in cognitive performance (Wu et al.  2008  ) . 

 In a recent study, we used human NSCs in place of rodent NSCs or human 
 fi broblasts to deliver NGF in ibotenic acid-induced learning de fi cit rats. 
Intrahippocampal injection of ibotenic acid caused severe neuronal loss, resulting in 
learning and memory de fi cit (Lee et al.  2012  ) . NGF protein released by HB1.F3.
NGF human NSCs in culture media is tenfold over the control F3 naive NSCs at 
1.2  m g/10 6  cells/day. Intra-hippocampal transplantation of HB1.F3.NGF cells was 
found to express NGF and fully improved the learning and memory function of 
ibotenic acid-challenged animals. Transplanted HB1.F3.NGF human NSCs were 
found all over the brain and differentiated into neurons and astrocytes (Lee et al. 
 2012  ) . In another study, brain derived neurotrophic factor (BDNF), a member of 
neurotrophin family, secreted by transplanted mouse NSCs was responsible in 
enhancing cognitive function in triple transgenic mice that express pathogenic forms 
of myloid precursor protein, presenilin and tau. In these animals cognition was 
improved without altering A b  or tau pathology (Blurton-Jones et al.  2009  ) . In other 
studies in experimental rats with nucleus basalis of meynert (NBM) lesion induced 
by ibotenic acid, transplantation of mouse or rat neural precursor cells (NPCs) pro-
moted behavioral recovery (Wang et al.  2006 ; Moghadam et al.  2009  ) . 

 In AD patients, dysfunction of the presynaptic cholinergic system is one of the 
causes of cognitive disorders where decreased activity of choline acetyltransferase 
(ChAT), which is responsible for acetylcholine (ACh) synthesis, is observed (Terry 
and Buccafusco  2003  ) . To date, AD therapy has largely been based on small mole-
cules designed to increase ACh concentration by inhibiting acetylcholinesterase 
(Musiał et al.  2007  ) . Since therapies with these drugs is only palliative without poten-
tial protection against progressive tissue destruction, there is a need for effective 
therapies for patients with AD, and stem cell-based therapeutic approaches targeting 
AD should ful fi ll this requirement. We have recently generated a human neural stem 
cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gens and 
these HB1.F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease 
(AD) model which was generated by intra-hippocampal injection of kainic acid (KA) 
in CA3 region which results in severe neuronal loss and profound learning and mem-
ory de fi cit. Intraventricular transplantation of HB1.F3.ChAT human NSCs fully 
restored learning and memory (Park et al.  2012a  ) . Similarly HB1.F3.ChAT human 
NSCs were transplanted in AD model rats generated by application of ethylcholine 
mustard aziridinium ion (AF64A) that speci fi cally denatures chOLinergic nerves and 
thereby leads to memory de fi cit as a salient feature of AD (Yamazaki et al.  1991  ) . 
Transplantation of HB1.F3.ChAT human NSCs in AF64A-treated mice fully restored 
the learning and memory function of AF64A animals (Park et al.  2012b  ) . 

 Summary of preclinical studies of stem cell-based cell therapy in AD animal 
models is shown in Table  27.4 .   
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    27.6   Multiple Sclerosis 

 In multiple sclerosis (MS), Oligodendrocytes (OLGs) and myelin are destroyed by 
in fl ammation-mediated mechanism (McFarlin and McFarland  1982 ; Ebers  1988  ) . 
Although recent advance in treatment using immune moderators such as interfer-
on- b  has improved clinical outcome in some patients, functional recovery in most 
of MS patients is not achieved (Paty and Ebers  1998  ) . Therefore, there is substantial 
need for effective therapies for MS patients. 

 Previous studies have reported that OLGs or OLG progenitor cells isolated from 
mouse or rat brain were transplanted in the brain of dysmyelination mutants or 
chemically induced demyelination lesions in rats and induced remyeliation in pre-
viously dysmyelinated or demyelinated lesion sites (Franklin and Blakemore  1997 ; 
Espinosa de los Monteros et al.  1997,   2001 ; Learish et al.  1999 ; Zhang et al.  1999 ; 
Ben-Hur et al.  2003  ) . Experimental animal models for MS used in transplantation 
studies include shiverer dymyelination mutant mouse, demyelination lesions 
induced by ethidium bromide, experimental allergic encephalitis (EAE) or mouse 
hepatitis virus. Therapeutic approach with myelinating glia could be applied in MS 
patients by transplantation of human OLGs into demylination lesions. Intact 
embryonic human brain fragments or OLG progenitors isolated from fetal human 
brain have been placed in shiverer mouse brain, a mouse neurological mutant with 
defect in myelin basic protein gene, and remyelination was con fi rmed (Lachapelle 
et al.  1983 ; Gumpel et al.  1987 ; Seilhean et al.  1996 ; Windrem et al.  2004  ) . 
Transplantation of human OLGs in MS patients to achieve remyelination of previ-
ously demyelinated axons, however, has not been undertaken to date. This thera-
peutic approach of transplantation of human OLGs or OLG progenitors derived 
from fetal brain is not widely acceptable because of moral, religious and logistic 
problems associated with tissue collection of human embryonic/fetal brain. In 
addition, the outcome of graft is not predictable since the implanted embryonic/
fetal tissues contain mixed population of neurons, glial cells and CNS progenitor 
cells, and less than 10 % of cell population for graft expressed O4, a marker for 
young OLG (Gumpel et al.  1987  ) . This dif fi culty can be circumvented by utiliza-
tion of OLGs or OLG progenitor cells derived from human ES cells or NSCs. 
Recent studies have reported that OLGs could be generated from mouse and human 
ES cells (Brüstle et al.  1999 ; Liu et al.  2000 ; Glaser et al.  2005 ; Nistor et al.  2005  ) , 
bone marrow mesenchymal stem cells (Akiyama et al.  2002  )  or immortalized 
mouse NSCs (Yandava et al.  1999  ) . In a mouse EAE, systemically injected mouse 
neural precursor cells (NPCs) selectively enter the in fl amed CNS in EAE model 
and induce apoptosis of blood-borne CNS-in fi ltrating encephalitogenic T cells, 
thus protecting against chronic neural tissue loss. NPCs display immune-like func-
tions that promote neuroprotection in the CN (Pluchino et al.  2005  ) . Similarly 
human ESC-derived NPCs transplanted into the brain ventricles of EAE mouse 
reduced clinical signs of EAE and transplanted NPCs were found in the white 
matter. These results indicate that NPCs act as immune-like cells in the CNS 
(Aharonowiz et al.  2008  ) . 
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 OLGs could also be generated from stable established cell lines of human NSC 
and used as cell source of transplantation. Previously we have produced immortalized 
cell lines of human NSC from human embryonic telencephalon using a retroviral 
vector encoding myc oncogene (Kim  2004 ; Lee et al.  2007a ; Kim et al.  2008c  ) . This 
human NSC line, HB1.F3 (F3), can be genetically engineered to express foreign 
transgenes, and following transplantation into brain of animal models of PD, HD 
and stroke, F3 NSCs survived, differentiate into neurons and astrocytes, and reversed 
functional de fi cits (Kim  2004 ; Lee et al.  2007a ; Kim and deVellis  2009 ). Most 
recently we were successful in producing a new F3.Olig2 human NSC line by trans-
duction of F3 with a retroviral vector encoding Olig2 bHLH transcription factor 
gene. Olig2 is a member of Olig bHLH transcription factor family and plays a 
 crucial role in generation of OLGs and ensueing myelination in the CNS, and also 
a key factor for generation of spinal motoneurons (Lu et al.  2000 ; Zhou et al.  2000 ; 
Takebayashi et al.  2000 ; Copray et al.  2006  ) . F3.Olig2 human NSCs, we have 
 generated, express cell type speci fi c markers for OLG progenitors (PDGFR a  
and NG2), and also cell type speci fi c markers for OLG (O4, galactocerebroside 
and CNP). F3.Olig2 NSCs were transplanted in contused rat spinal cord lesion site 
and at 7 weeks post-transplantation grafted NSCs were found in the white matter 
and differentiated into mature OLGs. Animals with F3.Olig2 grafts showed an 
improvement in hindlimbs locomotion (Hwang et al.  2009a,   b  ) . 

 Following transplantation into the shiverer mouse brain, a mouse neurological 
mutant with congenital dysmyelination, an extensive myelination was demonstrated 
(unpublished data). We expect this successful pre-clinical study could lead to cell-
based therapy in MS patients, with provision of unlimited number of human OLG/
OLG progenitor cells for transplantation from this human cell line. 

 No treatments are currently available that slow, stop, or reverse disease progres-
sion in established MS. Currently a phase II multicenter study of autologous MSC 
transplantation in secondary progressive MS is ongoing and the results of clinical 
outcome is expected 9n a year or two (Connick et al.  2011  ) . 

 Summary of preclinical studies of stem cell transplantation in MS animal models 
is shown in Table  27.5 .   

    27.7   Stroke 

 Stroke represents the second highest among the causes of death in East Asia includ-
ing China, Japan and Korea, and third highest in US. There are two major types pf 
stroke and they are ischemia and intracerebral hemorrhage (ICH). Ischemic stroke 
caused by abrupt and near-total interruption of cerebral blood  fl ow, produces isch-
emic changes in the striatum and cortex, leading to a long-term sensorimotor de fi cit. 
The major cause of ICH is hypertension and less common causes include trauma, 
infections, tumors, blood clotting de fi ciencies, and abnormalities in blood vessels 
such as arteriovenous malformations. Once damage from a stroke occurred, little 
can be done to restore premorbid functions, and although numerous neuroprotective 
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agents have been clinically tried, no speci fi c agents replaced the lost neurons, 
improved the deteriorated functions, and reduced the long-term sequelae (Marshall 
and Thomas  1988 , 130). There are numerous previous reports of stem cell trans-
plantation in the stroke animal models (Savitz et al.  2002 ), and various cellular 
sources such as rodent bone marrow MSCs (Sinden et al.  1997 ; Chen et al.  2001, 
  2003 ; Zhao et al.  2002 ; Modo et al.  2002  ) , mouse neural precursor cells (Veizovic 
et al.  2001  ) , human umbilical cord blood cells (Chen et al.  2001  ) , human bone mar-
row MSCs (Kim et al.  2008b ; Cho et al.  2010 ; Ding et al.  2011  ) , human teratocar-
cinoma-derived neurons (Borlongan et al.  1998 ; Saporta et al.  1999  )  and ESC- or 
iPSC-derived NSCs (Daadi et al.  2010 ; Jin et al.  2010 ; Kawai et al.  2010  )  were 
grafted into the ischemic rodent brain, and reduced the neurological de fi cits. An 
ealier study has reported that in human with ischemic infarct, intracerebral implan-
tation of human teratocarcinoma NT2-derived neurons has resulted in functional 
improvement (Kondziolka et al.  2000  ) . 

 Neural stem cells (NSCs) could be isolated from embryonic, fetal or adult CNS 
tissues of mammals including human. NSCs and neurons could also be derived from 
ESCs or iPSCs and transplanted in animal models of stroke inducing functional 
recovery in the animals (Daadi et al.  2010 ; Jin et al.  2010 ; Seminatore et al.  2010 ; 
Kawai et al.  2010  ) . However, risk of tumor formation is a major obstacle to cell 
therapy based on human ESC- or iPSC-derived cells. Human neural progenitor cells 
(NPCs) were isolated from four differentiation stage of ESCs and transplanted into 
rats with MCA lesions, and the tumorigenesis is linked to NPCs derived from later 
differentiation stages of ESCs (Seminatore et al.  2010  ) . In another study, transplan-
tation of iPS-derived cells into rat ischemic brain resulted in tumor formation at 4 
weeks pos-transplantation (Kawai et al.  2010  ) . ESC- and iPSC-derived cells have a 
promising potential to provide neurons and glia for the cell therapy in stroke. 
However proper and strict control of tumorigenesis has to be achieved before ESC- 
or iPSC-based cell therapy becomes a realistic clinical strategy. 

 We have previously investigated whether conditionally immortalized human NSCs 
could selectively migrate into lesioned brain sites, differentiate into new neurons and/
or glia, and improve the functional de fi cits in rat stroke models of focal ischemia (Chu 
et al.  2003,   2005  )  and cerebral hemorrhage (Jeong et al.  2003 ; Lee et al.  2007a,   b,  
 2008 ,  2009a,   b,   2010a,   b  ) . NSCs can circumvent blood-brain barrier and migrate to 
the speci fi c pathologic areas of brain with tropism. We introduced immortalized human 
NSCs intravenously via tail veins or into lesion site and NSCs migrated into the adult 
rat/mouse brain with transient focal cerebral ischemia or with cerebral hemorrhage. 
Transplanted human NSCs migrated to the lesion site, differentiated into neurons and 
astrocytes, and a large number of the grafted human NSCs survived in the lesion sites 
for up to 12 weeks. Functional improvement was observed in the transplanted animals 
compared with non-grafted controls on rotarod and turning-in-an-alley tests. 
Transplantation of NSCs overexpressing neurotrophic factors such as vascular 
endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF) 
or brain derived growth factor (BDNF) induced good survival and neuroprotection of 
both host neurons and grafted NSCs in the lesion site and promoted functional 
improvement in the ICH model animals (Lee et al.  2007a,   b,   2009a,   b,   2010a,   b  ) . 
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 Bone marrow-derived mesenchymal stem cells (MSCs) have been also engrafted 
in animal models of stroke and found to survive and ameliorate functional de fi cits 
in the animals (rodent MSCs – Zhao et al.  2002 ; Chen et al.  2003,   2009 ; Modo et al. 
 2002 ; Guzman et al.  2008 ; human MSCs – Kurozumi et al.  2004 ; Kim et al.  2008b ; 
Cho et al.  2010 ; Pendharkar et al.  2010 ; Ding et al.  2011  ) , raising the possibility of 
therapeutic potential of MSCs for repair of damaged brain following ischemic or 
hemorrhagic injury. It is worthy to note that transplantation of MSCs genetically 
modi fi ed to express neurotrophic molecules such as erythropoietin (Cho et al.  2010  ) , 
or NGF and Noggin (Ding et al.  2011  )  in stroke model animals induced higher 
number of surviving cells and improved function. In another study, transplantation 
of human MSCs expressing Neurogenin1 (Ngn1), a proneural gene that directs neu-
ronal differentiation of neural progenitor cells, in the rat ischemic stroke model 
improved motor functions as compared with control naive MSCs. This study indi-
cates that the neurons induced from MSCs are far better cell source for cell therapy 
in stroke (Kim et al.  2008b  ) . 

 We have previously generated a stably immortalized human MSC cell line 
derived from fetal bone marrow, and following brain transplantation in ICH mice, 
human MSCs were found to integrate into host brain, differentiate into neurons and 
astrocytes, and induce functional recovery in the animals (Nagai et al.  2007 ). 

 Only small number of clinical trials using MSCs were performed to date and one 
study on long-term safety and ef fi cacy of intravenous MSC transplantation in a 
large population of stroke patients (52 patients) reported that the MSC therapy 
improved clinical outcome in 16 patients who received autologous MSCs (Lee et al. 
2011). In another study, autologous MSCs derived from stroke patients were 
expanded in human serum and delivered intravenously in 12 patients. There were no 
CNS tumors, abnormal cell growths or neurological deterioration following MSC 
infusion. Mean lesion volume as assessed by MRI was reduced by >20 % at 1 week 
post-cell infusion. This study provides evidence indicating the feasibility and safety 
of delivery of a relatively large dose of autologous MSCs into stroke patients 
(Honmou et al.  2011  ) . 

 Summary of preclinical studies of stem cell transplantation in stroke animal 
models is shown in Table  27.6 .   

    27.8   Perspectives 

 There are a number of issues to be clari fi ed before adoption of stem cells for cell 
replacement therapy and gene therapy is widely accepted in clinical medicine such 
as which type of stem cells are most suitable for cell replacement therapy in patients 
with neurological disorders or brain injury, and safety issues related to the risk of 
tumorigenesis by grafted stem cells. Since neurons could be derived not only from 
NSCs, but also from ESCs, EGCs, bone marrow MSCs, umbilical cord blood 
hematopoietic stem cells and even from iPS cells generated from adult somatic 
cells, the most pressing question is which cells are best suited for cell replacement 
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therapy. Since the presence of NSCs in adult CNS is known, it is only a matter of 
time before neurons and glial cells are cultured from adult CNS tissue samples. 
There are ongoing debates as to why oocytes, embryonic or fetal materials should 
be used to generate stem cells when stem cells could be isolated from adult tissues. 
However, most of research up to now indicates that embryonic or fetal stem cells are 
signi fi cantly more versatile and plastic than adult counterparts. 

 Previous studies have demonstrated that ESC- or NSC-derived neurons or glial 
cells could be renewable cell source in cell based therapy for patients suffering from 
neurological diseases including PD, HD, ALS, AD, MS, stroke and spinal cord 
injury, however, there exist serious caveats that limit the use of stem cell-derived 
neurons or glial cells for the purpose. The considerations include (i) the long-term 
survival and phenotype stability of stem cell-derived neurons or glial cells in the 
graft following transplantation are not favorable as earlier studies have demon-
strated, (ii) highly puri fi ed populations of neuronal cell type derived from ESCs or 
NSCs may contain other neuronal or glial cell types that might produce unpredict-
able interactions among grafted cells or with host neurons, and (iii) a small number 
of ESCs or iPSCs that escaped differentiation and selection processes might expand 
and form tumor in the graft site following transplantation. 

 Continuously dividing immortalized cell lines of human NSCs as generated by 
introduction of oncogenes have advantageous features for cell replacement therapy 
and gene therapy and the features include that human NSCs are homogeneous since 
they were generated from a single clone, can be expanded to large numbers in vitro, 
and stable expression of therapeutic genes can be achieved readily. Immortalized 
human NSCs have emerged as highly effective source of cells for genetic manipula-
tion and gene transfer into the CNS ex vivo and once transplanted into damaged 
brain they survive well, integrate into host tissues and differentiate into both neu-
rons and glial cells. It is known that both extrinsic and heritable intrinsic signals 
play important roles in generating cellular diversity in the CNS. By introducing 
relevant signal molecules or regulatory genes into the human stem cell line, it is now 
possible to obtain a large number of selected populations of neurons or glial cells 
from continuously growing human NSCs. Further studies are needed in order to 
identify the signals for proliferation, differentiation and integration of NSCs and 
determine favorable conditions of host brain environment for implanted NSCs to 
survive, prosper and restore the damaged brain.      
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  Abstract   Functional regeneration and not merely structural restoration is  important 
in the central nervous system (CNS) following loss of tissue due to trauma. 
Spontaneous regeneration in the CNS is poor due to a number of reasons, mainly the 
presence of inhibitory factors. This chapter reviews some of the mechanism of this 
inhibition on which the strategies to promote regeneration in the CNS are based. 
These strategies are considered for application in traumatic brain injury (TBI) and 
spinal cord injury (SCI) separately. Degradation of inhibitors such as chondroitin 
sulfate proteoglycans in the glial scar at the site of SCI by application of chondroi-
tinase ABC promotes regeneration of corticospinal tract axons in experimental ani-
mals. Inhibitors of axonal regeneration in myelin include Nogo, myelin-associated 
glycoprotein, and oligodendrocyte myelin glycoprotein. These can be blocked with 
antibodies or peptides to facilitate regeneration after SCI. Apart from acute TBI, 
chronic traumatic encephalopathy is being increasingly recognized as a cause of 
cognitive impairment and strategies for regeneration are similar to those for neuro-
degenerative disorders. Cell and gene therapies are under investigation for CNS 
regeneration. Developments in nanobiotechnology also show potential for CNS 
repair. However, experimental work in CNS regeneration has not yet been translated 
into clinical use. Combination of approaches, including stem cell transplantation 
with nanoscaffolds, supplemented with pharmacological enhancement of regenera-
tion, hyperbaric oxygen, and physical therapies are promising for  functional regen-
eration of the CNS following trauma.      
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    28.1   Introduction 

 The term “regeneration” is used to describe the sum total of activities leading to 
 re-growth of cells and tissues of the body. It includes both anatomical and physiolog-
ical structures; however, structural regeneration does not necessarily lead to restora-
tion of function. The term “functional regeneration” implies recovery of the function 
that can occur without regeneration by compensatory mechanisms. Functional regen-
eration is important for recovery of the central nervous system (CNS) consisting of 
the brain and the spinal cord, following damage or loss of cells and tissues resulting 
from traumatic brain injury (TBI) and spinal cord injury (SCI).  

    28.2   Historical Background 

 Although regeneration was known to occurs to a variable degree in most body tissues, 
neural tissues (excepting peripheral nerves) were considered to be non-regenerative, 
an idea that was recognized as early as 1550 BC and well documented during the 
nineteenth century (Mitchell  1872  ) . In the earlier part of the twentieth century, Ramon 
y Cajal reached the following conclusion in his monumental work on degeneration 
and regeneration of the nervous system: Once the development has ended, the founts 
of growth and regeneration of the axons and dendrites dry up irrevocably. In adult 
centers the nerve paths are something  fi xed, ended, immutable (Ramon y Cajal  1959  ) . 
The view of axonal regeneration in the CNS as abortive or poor remained widely 
accepted for several decades. Evidence started to emerge during the last quarter of the 
twentieth century that, under certain circumstances, regeneration could occur success-
fully in the mammalian CNS. Discoveries in neurobiology have provided an insight 
into possible ways in which regeneration in the CNS may be encouraged. 

 Hughling Jackson, in his book “Principal of Compensation”, explained the func-
tional recovery that occurs following damage to the CNS, which was based on his 
theory of cerebral localization (York and Steinberg  1994  ) . Functional recovery is 
related to plasticity of the CNS, i.e. its ability to adapt its structural organization, both 
anatomically and functionally, to new situations emerging during its maturation, in 
addition to those resulting from injuries. The concept of neuroplasticity was devel-
oped during the early part of the twentieth century (Goldstein  1931  ) . Investigators in 
this  fi eld had already recognized the plasticity exhibited by brain microglia during 
development and under pathological conditions (del Rio-Hortega  1932  ) . A further 
advance is the concept of reactive synaptogenesis, whereby the neighboring neurons 
make new synaptic contacts to replace those lost and play a major role in the restora-
tion of function following brain damage (Cotman and Scheff  1979  ) . 

 Some of the basic concepts of regeneration and repair taking place after CNS injury 
have led to strategies for treatment and rehabilitation of patients with brain damage. 
Initial attempts to use neural grafts to repair the damage in experimental animals took 
place more than a century ago (Thompson  1890  ) . During the last  quarter of the twenti-
eth century, neural grafting techniques were re fi ned and investigated for TBI and SCI.  
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    28.3   Basics of CNS Regeneration 

 Primary sensory neurons with cell bodies in the dorsal root ganglia have two 
branches: (1) a peripheral axon that regenerates itself if injured; and (2) a central 
axon that enters the CNS and does not regenerate after injury. The local environ-
ment of these branches explains the difference in regeneration: The peripheral 
axon contains Schwann cells, whereas the central axon contains oligodendrocytes 
and astrocytes. In the peripheral nervous system, myelin debris is cleared promptly, 
and Schwann cells dedifferentiate and down-regulate expression of the myelin pro-
tein, thus facilitating regeneration. The composition and organization of extracel-
lular matrix in CNS lesions is a hindrance to regeneration. However, regeneration 
of CNS axons has been demonstrated in vivo after implantation of peripheral ner-
vous tissue. Furthermore, regeneration of dorsal column  fi bers has been demon-
strated beyond the lesion site in adult spinal cord injury by a preconditioning 
peripheral nerve lesion 1–2 weeks before the spinal cord lesion (Neumann and 
Woolf  2000  ) . 

    28.3.1   Factors that In fl uence Regeneration in the Central 
Nervous System 

 Intrinsic factors that in fl uence regeneration in the CNS. Various intrinsic factors that 
modulate regeneration in the CNS are listed in Table  28.1  and described in the fol-
lowing text. Neurotrophic factors are the most important of all the factors in fl uencing 
regeneration.   

    28.3.2   Causes of Lack of Regeneration in the CNS 

 The CNS regenerative process is unsuccessful for three reasons: (1) neurons are 
highly susceptible to death after CNS injury; (2) multiple inhibitory factors in the 
CNS environments hinder regeneration; and (3) the intrinsic growth capacity of 
postmitotic neurons is constitutively reduced. Research is providing an insight 
into these areas and will form the basis of strategies to promote regeneration of 
the CNS. 

    28.3.2.1   Factors Inhibiting Regeneration in the CNS 

  Glial scar . A glial scar containing extracellular matrix molecules including chon-
droitin sulfate proteoglycans develops at the site of injury and prevents 
regeneration. 



732 K.K. Jain

  Neurite outgrowth inhibitors . Various growth inhibitors are found in a glial scar. 
These include the following:

   Myelin-associated inhibitors of axonal regeneration.  • 
  Astrocytes produce tenascin, brevican, and neurocan.  • 
  Meningeal cells produce NG2 and other proteoglycans.  • 
  Activated microglia produce free radicals, nitric oxide, and arachidonic acid • 
derivatives.    

 Three inhibitors of axonal regeneration have been identi fi ed in myelin: Nogo, 
myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein. 
Postmortem histopathological studies on SCI patients have shown that NG2 and 
phosphacan are both present in the evolving astroglial scar and, therefore, might 
have played an important role in the blockade of successful CNS regeneration (Buss 
et al.  2009  ) . All of these proteins induce growth cone collapse and inhibit neurite 
outgrowth. Three of the four known myelin inhibitors, Nogo66, Myelin-associated 
glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp), although 
very different structurally, interact with the same receptor, NgR. They exert their 
inhibitory effects by binding the NgR receptor that transduces the inhibitory signal 
to the cell interior via transmembrane co-receptors LINGO-1 and p75(NTR) or 
TROY. Although the receptor(s) for amino-Nogo-A are unknown, amino-Nogo-A 
and NgR ligands mutually activate the small GTPase RhoA (Walmsley and Mir 
 2007  ) . However, the absence of NgR alone has no effect on inhibition of neurite 

   Table 28.1    Factors that in fl uence regeneration in the central nervous system   

 Factors  Role in regeneration and recovery 

 Neurotrophic factors  Cell survival, axon growth-cone stimulation, synapse 
regeneration 

 Neuroprotective gene expression  Expression of genes such as Bcl-2 and c-fos/jun may 
occur within minutes of an acute brain injury and 
are a determinant of eventual recovery 

 Neural stem cells  Neural stem cells can migrate to the site of injury in 
the brain and participate in regeneration 

 Cadherins  These are involved in synaptogenesis in the CNS 
 Intracellular levels of cyclic nucleotide 

in the neurons 
 These in fl uence the capacity of mature CNS neurons to 

initiate and maintain a regrowth response 
 Innate immune system, represented by 

activated macrophages 
 This can facilitate the processes of regeneration in the 

severed spinal cord 
 Inducible nitric oxide synthase  This is not usually present in the brain but can be 

detected in the brain following injury and may be 
required for adequate repair 

 Activin  Strong expression of activin is seen in repair processes 
of the brain and may have a role in neuroprotection. 
Although a transient overexpression of activin after 
tissue injury might be bene fi cial for the repair 
process, sustained expression of activin could be 
detrimental to regeneration 
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outgrowth in culture, and a second receptor, PirB, was described for these myelin 
inhibitors (Filbin  2008  ) . 

 In vitro neurite outgrowth studies have demonstrated that a signi fi cant part of 
myelin inhibition is mediated by Ephrin-B3, which remarkably equals the inhibi-
tory activity of Nogo, MAG and OMgp combined. Loss of EphA4, a receptor, leads 
to improved axon regeneration and functional recovery. Several other guidance cues 
are expressed by oligodendrocytes. Sema4D, a transmembrane class 4 Semaphorin, 
is transiently upregulated in oligodendrocytes that surround the lesion site after 
adult CNS injury and may inhibit CNS axonal regeneration. Another member of the 
Semaphorin family, Sema5A, has also been shown to be expressed by oligodendro-
cytes; it induces growth cone collapse and inhibits neurite growth. 

  Humoral autoantibodies . Autoimmune responses directed against the CNS are 
generally considered pathogenic in nature, but autoreactive antibodies can also 
enhance endogenous myelin repair.  

    28.3.2.2   Role of Glial Cells in CNS Injury and Regeneration 

 Glial cells consist of microglia, which have a phagocytic function, and macroglia 
(astrocytes and oligodendrocytes). Astrocytes provide structural, trophic, and meta-
bolic support to neurons and modulate synaptic activity. Therefore, impairment of 
astrocyte functions in TBI can compromise neuron survival. Functions of astrocytes 
that are known to in fl uence neuronal survival include glutamate metabolism, free-
radical scavenging, and the production of cytokines and nitric oxide. Neuron regen-
eration after TGI is in fl uenced by the release of neurotrophic factors by astrocytes. 
Therapeutic approaches to TBI should be aimed at restoring the functions of both 
neurons and glial cells. Glial cells may also contribute to scar formation. 

 A study has shown how astroglia can be directly converted into the two main 
classes of cortical neurons, excitatory as well as inhibitory, by the selective trans-
duction of transcription factors, speci fi c proteins that regulate the transcription of 
DNA (Heinrich et al.  2010  ) . This approach may provide new therapies for neurode-
generative diseases.  

    28.3.2.3   Role of Neurotrophic Factors in Neuronal Regeneration 

 The role of neurotrophic factors during neuronal regeneration differs little from 
their role during neuronal development in the expression of cytoskeletal genes or 
cellular protein synthesis, suggesting that regulatory events during regeneration 
recapitulate the patterns found during development. 

  Nerve growth factor . Within the central nervous system, the main neuronal  system 
regulated by nerve growth factor is that of basal forebrain cholinergic neurons, which 
send topographically organized projections to the hippocampus and cerebral neocor-
tex. Regeneration in the adult mammalian central nervous system has been viewed 
pessimistically in the past. Rapid progress of concepts and tools in developmental 
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biology has been applied to approach the questions of regeneration. Important aims 
are cell survival, re-initiation of axon growth, target  fi nding, and formation of func-
tional connections. Signi fi cant recent developments include the availability of recom-
binant neurotrophic factors and stem cells for repair of the nervous system. 

 Neurotrophic factors and synapse regeneration. Synapses are the  fi nal common 
pathway for information exchange in the nervous system. They mediate a wide 
range of activities from a simple re fl ex arc to learning and memory. Synapse forma-
tion plays an important role in neuronal regeneration and survival. The presynaptic 
and postsynaptic parts of the synapse are separated by a synaptic cleft. At the neu-
romuscular junction, a specialized extracellular matrix known as the synaptic basal 
lamina occupies this cleft. Neurotransmitters such as acetylcholine or glutamate are 
released from the presynaptic vesicles, traverse the cleft, and bind to their receptors 
on the postsynaptic membrane. The signal is terminated by the reuptake or enzy-
matic destruction of the neurotransmitters. Synapses are formed by the expression 
of speci fi c gene products such as synaptic vesicle proteins and neurotransmitter 
receptors. This process is regulated to some extent by a combination of neurotrophic 
factors and electrical activity.  

    28.3.2.4   Cadherins 

 These are found in the synaptic cleft near the transmitter release zone and may pro-
vide a molecular basis for the adhesive interactions between opposing synaptic 
membranes. Thus, they play a role in the formation and maintenance of synapses. 
Cadherins might directly regulate cell signaling to modulate synaptic connectivity. 

 Pan-cadherin is a good biomarker for neuronal recovery after cortical injury. 
Immunohistochemical staining of the injured cortex for pan-cadherin revealed a 
signi fi cant increase in staining in experimental animals treated with topical applica-
tion of NEP 1–4, an inhibitory peptide that neutralizes Nogo-A, and preserves neu-
ronal structures (Atalay et al.  2008  ) .  

    28.3.2.5   Various Factors that In fl uence Plasticity in the CNS 

 The adult cortex undergoes plastic changes that are dependent on neuronal activity. 
Plasticity in the CNS following injury is in fl uenced by several factors:

   The brain possesses a certain degree of biological plasticity that diminishes with • 
age.  
  Plasticity can be limited by a progressive neurodegenerative disease or severe • 
damage to the brain.  
  There is less room for plasticity in spinal cord lesions than in the cerebral • 
hemispheres.  
  Secondary damage that results from traumatic lesions of the CNS may reduce the • 
role of plasticity in recovery.  
  Neurotrophins and their receptors play a role in this plasticity.    • 
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 Rapid and opposing effects of brain-derived neurotrophic factor and nerve growth 
factor on the functional organization of the adult cortex in the rat indicate that neu-
rotrophins can modulate stimulus-dependent activity in the adult cortex. Such stud-
ies also suggest a role for neurotrophins in regulating adult cortical plasticity. 
Current knowledge enables some manipulation of plasticity and the induction of 
functional changes bene fi cial for vision. 

 GAP-43 plays an important role in axonal plasticity by guiding growth cones 
rather than supporting axonal elongation. The molecule GAP-43 is key to initiating 
axon growth, whereas other genes are necessary to develop a full regenerative pro-
gram. Addition of GAP-43 gene can induce the formation of branched plexuses 
typical of sprouting growth.    

    28.4   Approaches to Regeneration of the CNS 

 Several technologies are being used to facilitate regeneration and repair of the CNS. 
A classi fi cation of these technologies is shown in Table  28.2 .  

    28.4.1   Inhibiting the Factors that Impede Regeneration 
in the CNS 

 Various factors that inhibit regeneration following injury to the CNS have been 
identi fi ed in the earlier sections. In order to overcome the inhibitory environment of 
the glial scar, treatments should enhance the ability of neurons to elongate and 
manipulate the extrinsic inhibitors that block growth in the immediate environment 

   Table 28.2    A classi fi cation of approaches to regeneration of the CNS   

 Inhibiting the factors that impede regeneration in the CNS 
 Reducing or eliminating scar formation 
 Providing cues to axons for regeneration 
 Repair of the injured nerve  fi bers 
 Promoting growth of neural tissues to replace the loss 
  Use of stem cells 
  Use of neural as well as non-neural cells 
 Hyperbaric oxygen for neuroprotection and mobilization of intrinsic stem cells 
 Physical agents to accelerate growth of nerve cells 
 Pharmacological agents to promote growth of neural tissues 
 Restoration of neurotransmission 
 Struts for tissue engineering 
  Self degrading biomaterials 
  Nanomaterials 
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of the glial scar. This combined approach may induce functional regeneration after 
CNS injury. Various strategies for blocking the inhibitory factors in SCI are described 
later in this chapter. 

 Humoral antibodies that promote remyelination bind to antigens on the surfaces 
of oligodendrocytes, suggesting that these antibodies might function through direct 
stimulation of the myelin-producing cells. An understanding of these mechanisms 
should open up signi fi cant new areas for the development of antibody-based thera-
peutics and perhaps also for small-molecule-based therapeutics and vaccines for 
induction of the reparative response.  

    28.4.2   Guiding Axons in the CNS 

 Most of the currently used methods of axonal regeneration approaches limit 
 themselves to observe how axons elongate and migrate in response to signaling 
molecules presented on the substrate materials, or more recently, in response to 
 different chemical and mechanical substrate properties. Many of these studies are 
encouraging in the hope of regenerating axons after disease or injury; however, 
numerous barriers remain. There is a need to optimize a permissive heterogeneous 
environment for axon elongation using tissue engineering approaches and a thor-
ough understanding of the mechanical properties of the substrate, mechanotaxis, 
and both attractive and repulsive signaling mechanisms (Norman et al.  2009  ) .  

    28.4.3   Cells Therapy for Regenerating CNS 

 Cell therapy for CNS disorders involves the use of cells of neural or non-neural 
origin to replace, repair, or enhance the function of the damaged nervous system 
and is usually achieved by transplantation of the cells, which are isolated and may 
be modi fi ed, e.g. by genetic engineering, when it may be referred to as gene 
therapy. 

 The olfactory ensheathing cells play an important role in CNS regeneration. In 
clinical trials, olfactory ensheathing cells have produced some of the most promis-
ing results including a functional recovery in humans following CNS injury (King-
Robson  2011  ) . 

 Glial support cells play an important role in the CNS and attempts have been 
made to transplant astrocytes, the major support cells in the CNS system by generat-
ing them from embryonic human glial precursor cells. There are differences in 
effects depending on how the astrocytes are generated. One study has provided a 
speci fi c population of human astrocytes that appears to be particularly suitable for 
further development towards clinical application in treating the traumatically injured 
or diseased human CNS (Davies et al.  2011  ) . 



73728 Regenerative Therapy for Central Nervous System Trauma

 Neural stem cells migrate through the parenchyma along various routes in a 
 precise, directed manner across great distances to injury sites in the CNS, where 
they might engage niches harboring local transiently-expressed reparative signals. 
Activation of endogenous neural stem cells is being considered along with stem cell 
transplantation for regeneration of the injured spinal cord. 

 Transplanted cells can be tracked in the CNS by using special labels and MRI. 
Labeling of human neural stem cells grown as neurospheres with magnetic nano-
particles was shown to not adversely affect survival, migration, and differentiation 
or alter neuronal electrophysiological characteristics (Guzman et al.  2007  ) . 
Noninvasive cellular imaging has great potential for neurotransplantation as it 
enables real-time tracking of grafted cells as well as monitoring biodistribution and 
development (Walczak and Bulte  2007  ) . 

 With the exception of autologous transplants, rejection is the main adverse event 
with cell transplants. Implanted stem cells may be tumorigenic. Development of a 
donor stem cell-derived glioneural brain tumor has been reported in a patient 
affected by the ataxia telangiectasia 4 years following repeated transplantations of 
fetal neural stem cells (Amariglio et al.  2009  ) . Molecular and cytogenetic studies 
showed that the tumor was of non-host origin, suggesting it was derived from the 
transplanted cells.  

    28.4.4   Gene Therapy Approaches for Repair of CNS Injuries 

 Gene therapy has the potential to overcome many of the dif fi culties associated with 
the delivery of anti-scarring and neurotrophic substances to the site of an injury. 
Suitable and safe vectors for the delivery of genes need to be developed. Although 
there are several obstacles to making gene therapy practical and effective in 
humans, it has the potential to provide a new approach to the treatment of TBI 
(Shen et al.  2007  ) .  

    28.4.5   Vaccines for Neuroregeneration 

 Inability of neurons and axons to regenerate following injury to the nervous 
system is due mostly to the presence of myelin and oligodendrocyte-related 
inhibitors of neurite outgrowth. A vaccine-based approach can be used to cir-
cumvent this issue and promote axonal regeneration and repair following trau-
matic injury (Ang et al.  2006  ) . A vaccine against Nogo-66 (NgR), the common 
receptor for three myelin-associated inhibitors (Nogo-A, myelin-associated 
and oligodendrocyte myelin glycoprotein), has been shown to signi fi cantly 
improve functional recovery in rats subjected to spinal cord hemisection (Yu 
et al.  2008  ) .  
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    28.4.6   Role of Hyperbaric Oxygen in CNS Regeneration 

 Hyperbaric oxygen (HBO) therapy is therapeutic use of oxygen under greater than 
atmospheric pressure at sea level. Rationale for the neuroprotective effect of HBO 
in TBI is that it relieves hypoxia, improves the microcirculation, and relieves cere-
bral edema (Jain  2009a  ) . HBO also mobilizes instrinsic stem cells and can contrib-
ute to regeneration following TBI.  

    28.4.7   Biomaterials for CNS Regeneration 

 Biomaterials can facilitate regeneration of the CNS as part of devices for targeted 
delivery of drugs or therapeutic proteins to the brain, as scaffolds for cell or tissue 
transplants, and to facilitate repair damaged neuronal pathways (Orive et al.  2009  ) . 
Polyethylene glycol (PEG) and nanotechnology are providing the important meth-
ods for this regeneration and repair of the CNS. 

    28.4.7.1   Nanobiotechnology for Regeneration and Repair of the CNS 

 Nanotechnology is the creation and utilization of materials, devices, and systems 
through the control of matter on the nanometer (one billionth of a meter) scale. 
Nanobiotechnology is the application of nanotechnology in biotechnology leading 
to the development of nanomedicine (Jain  2012  ) . Various nanomaterials have been 
designed to self-assemble into nano fi bers and provide the framework for regenera-
tion of nerve  fi bers in experimental studies on animal models of SCI. This enables 
greater control over material-cell interactions, which induce speci fi c developmental 
processes and cellular responses, including differentiation, migration and outgrowth. 
In a nano fi ber network, progenitor cells develop into neurons rather than astrocytes 
thus hindering the formation of scar tissue that hinders regeneration.   

    28.4.8   Pharmaceuticals to Facilitate Regeneration of the CNS 

 Several Drugs are being investigated or in development to enhance regeneration and 
repair of CNS injuries (Ibarra and Martiñón  2009  ) . A classi fi cation of these is shown 
in Table  28.3 .  

    28.4.8.1   Assessment of Potential of Drugs for Regenerating of CNS 

 Role of nitric oxide (NO)-cyclic guanosine-monophosphate (cGMP) transduction 
pathway in regulating axonal growth and neural migration has been demonstrated in 
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an invertebrate locust embryo model, which lacks the growth-inhibiting factors 
found in the CNS of higher vertebrates (Stern and Bicker  2008  ) . Application of 
exogenous NO or cGMP promotes axonal regeneration, whereas scavenging NO or 
inhibition of soluble guanylyl cyclase delays regeneration, an effect that can be 
rescued by application of external cGMP. This embryo-culture system is a useful 
tool for studying effect of various drugs on CNS regeneration. 

 A model system of mouse entorhino-hippocampal slice cultures has been used to 
assess the potential of pharmacological treatments with compounds targeting signal 
transduction pathways to promote growth of entorhinal  fi bers after mechanical 
lesions across the lesion site to their target region in the dentate gyrus (Bonnici and 
Kapfhammer  2009  ) . This method can be used for selection of promising compounds 
for further development to promote regeneration of CNS.  

    28.4.8.2   Pharmaceutical Manipulation of Stem Cells 

 Pharmaceutical manipulation of stem cells has the following aims: (1) to increase 
the number of multipotential cells; (2) to enhance the survival of implanted cells; (3) 
to in fl uence the fate of speci fi c endogenous multipotential cell populations; and (4) 
to in fl uence the differentiation of stem cells.. Several biological and small molecules 
can enhance the in vivo and ex vivo regenerative properties of stem cells. Mozobil™ 
(Genzyme), a small molecule drug, increases the number of stem cells in the 

   Table 28.3    Pharmaceutical approaches to facilitate regeneration of the CNS.   

 Agents that counteract the action of factors inhibiting regeneration following trauma 
  Anti-Nogo-A antibodies 
  Rho-ROCK inhibitors 
 Glial scar inhibitors 
  Local application of chondroitinase at the site of injury 
 Axon guidance molecules 
 Pharmacological modulation of the signal transduction pathways 
  Cyclic AMP-enhancers 
  Inhibitors of the phosphoinositide 3-kinase pathway 
  Inhibitors of inositol triphosphate receptor 
  Nitric oxide-cyclic guanosine-monophosphate transduction pathway 
 Agents that promote regeneration 
  Bone morphogenetic protein 7 
  Immunophilin ligands 
  Neurotrophic factors 
  Retinoic acid 
 Agents that improve remyelination 
  Fampridine 
  Monoclonal antibodies 
 Drugs that mobilize intrinsic stem cells 
 Drug combinations with devices and biological therapies 
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 circulating blood in human volunteers and enhances the effect of granulocyte  colony 
stimulating factor. Lithium, a standard drug for manic depression with unknown 
mode of action, stimulates stem cells growing in culture to multiply faster, indicat-
ing that it could prompt stem cells in the brain to produce new cells to replace those 
that are damaged. The most important of the molecules for enhancing stem cells are 
neurotrophic factors.  

    28.4.8.3   Bone Morphogenetic Protein 7 

 Bone morphogenetic proteins (BMPs) are multifunctional growth factors that 
belong to the transforming growth factor-beta superfamily. BMPs regulate several 
crucial aspects of embryonic development and organogenesis. BMP-2/4 inhibits 
axonal regeneration and limits functional recovery following injury to the CNS, but 
BMP-2 is involved in the regeneration of peripheral nerves, and might function as a 
potential neurotrophic factor. BMP7, currently used in patients to treat non-neuro-
logical diseases, can induce neuroregeneration (Bani-Yaghoub et al.  2008  ) . BMP 
may provide axon guidance cues, which may be used to force axons to grow in 
planned directions or patterns (Yaron and Zheng  2007  ) .  

    28.4.8.4   Neurotrophic Factors 

 Neurotrophic factors (NTFs) are a class of naturally occurring protein growth fac-
tors that have multiple effects on the nervous system and potential therapeutic appli-
cations in neurological disorders. NTFs can be used for pharmacological control of 
endogenous neural stem cells (NSCs) to enhance brain repair and to improve inte-
gration of transplanted cells in the brain. 

 The most clinically advanced of NTFs, Glial Growth Factor 2 (GGF2), is a mem-
ber of the neuregulin family of growth factors related to epidermal growth factor. 
The neuregulins bind to erbB receptors, which translate the growth factor signal to 
the cell and cause changes in cell growth, protein production and gene expression. 
The molecule was shown in published studies to stimulate remyelination in preclini-
cal models of multiple sclerosis and to have a range of other effects in neural protec-
tion and repair. The neuroprotection and repair properties of neuregulins have led to 
promising results in a range of models of CNS injury. Research and development of 
neuregulin as a potential therapy in the treatment of TBI is in progress.  

    28.4.8.5   Retinoic Acid 

 Retinoic acid (RA) is involved in the induction of neural differentiation, motor axon 
outgrowth and neural patterning. Like other developmental molecules, RA contin-
ues to play a role after development has been completed. Elevated RA signaling in 
the adult triggers axon outgrowth with resulting nerve regeneration. RA is also 
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involved in the maintenance of the differentiated state of adult neurons, and 
 disruption of RA signaling in the adult leads to the degeneration of motor neurons. 
RA could be used as a therapeutic molecule for the induction of axon regeneration 
(Maden  2007  ) .   

    28.4.9   Role of Enriched Environments 

 Considerable published evidence shows that living in an enriched environment 
alters dendrites and synapses in the brains of adult rodents. A study on adult pri-
mates shows that the brain remains highly sensitive to experiential complexity, and 
living in standard laboratory housing may induce reversible dendritic spine and syn-
apse decreases in brain regions important for cognition (Kozorovitskiy et al.  2005  ) . 
Currently, enriched environment is considered to be the single most ef fi cient plas-
ticity and regeneration promoting paradigm (Nilsson and Pekny  2007  ) . This has 
important implications for neurorehabilitation.   

    28.5   Clinical Aspects of CNS Regeneration 

    28.5.1   Assessment of Regeneration and Plasticity 

 Various neurophysiological methods, clinical neuropsychological assessments, and 
brain imaging studies can be used for assessing regeneration, recovery, and plastic-
ity in the CNS. 

  Neurophysiological techniques . These techniques are useful for evaluating spon-
taneous recovery from damage and the therapeutic bene fi ts of training, as well as 
other therapies. Transcranial magnetic stimulation has been used for this purpose. 

  Brain imaging techniques . Positron emission tomography and functional mag-
netic resonance imaging can be used to monitor the recovery and plasticity of the 
brain following injury. PET has been used to demonstrate changes in the activation 
of cortical and subcortical brain areas in response to altered spinothalamic and spi-
nocerebellar input in paraplegic patients. These techniques have also been used to 
map clinically relevant plasticity after a stroke.  

    28.5.2   Neuroprotection and Neuroregeneration 

 It is generally believed that neuroprotection is required in the acute phase, and neu-
roregeneration is the long-term goal for restoring function following CNS injury, 
stroke, or neurodegenerative diseases. No clear-cut line of demarcation exists 
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between neuroprotection and neuroregeneration. The measures for achieving these 
overlap in accordance with the generally accepted concept that rehabilitation should 
start in the acute phase of neurologic disease. No acute phase is identi fi able in some 
chronic neurologic disorders. For example, chronic traumatic encephalopathy may 
be the cumulative result of repeated cerebral concussions in athletes or soldiers and 
may have an insidious onset. Neuroregeneration efforts may not be successful with-
out combination with neuroprotective strategies to counteract the progressive dete-
rioration of neurologic function (Jain  2011  ) . Cell transplants and gene therapy as 
methods for regeneration of the CNS may not be practical for application in the 
acute phase of injury, but both can have a long-term neuroprotective function.  

    28.5.3   Management of Spinal Cord Injury 

 Signi fi cant spontaneous functional recovery may occur over several years following 
incomplete SCI. Possible mechanisms involved are synaptic plasticity in pre-exist-
ing pathways and the formation of new circuits through collateral sprouting of 
lesioned and unlesioned  fi bers. Some evidence shows that plasticity can be facili-
tated by activity or experimental manipulations. These studies form a basis for the 
development of new rehabilitation approaches for SCI. 

 Several neuroregenerative approaches that are being pursued for acute SCI with 
complete functional transection are shown in Table  28.4 .  

    28.5.3.1   Antagonism of Inhibitors of Regeneration Following SCI 

 Several inhibitors of regeneration of spinal cord following SCI have been identi fi ed 
and strategies to counteract most of these factors have been developed. Chondroitin 
sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are 
up-regulated after SCI and contribute to regenerative failure. Degradation of CSPGs 
after SCI by application of chondroitinase at the site of injury may promote regen-
eration of corticospinal tract axons. This approach has been effective in animal 
models of SCI and has potential for the treatment of human SCI. Therapeutic strate-
gies aimed at inhibition of collagen matrix formation in brain and spinal cord lesions 
promote axonal regeneration and functional recovery (Klapka and Muller  2006  ) . 

 Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibi-
tors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative 
failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs 
and can counteract CSPG-mediated inhibition, but it loses its enzymatic activity rap-
idly at 37 °C, requiring the use of repeated injections or local infusions for prolonged 
periods. A thermostabilized chABC and a system for its sustained local delivery have 
been developed to overcome this problem (Lee et al.  2010  ) . Animals treated with sus-
tained delivery of thermostabilized chABC in  combination with neurotrophin-3 showed 
enhanced growth sensory axons and sprouting of serotonergic  fi bers. 
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 Knowledge of axon regeneration inhibitors provides new opportunities for thera-
peutic development of counteracting these inhibitors for spinal SCI (Xie and Zheng 
 2008  ) . Neurite outgrowth inhibitors and their receptors can be blocked with anti-
bodies or peptides to facilitate regeneration. Some of the speci fi c antagonists are 
commercially available for experimental investigations. Administration of an inhib-
itor of Sema3A, a guidance molecule that is expressed by the  fi broblast component 
of the scar tissue, and leads to multiple bene fi cial effects including enhanced regen-
erative response from axons (Kaneko et al.  2006  ) . 

   Table 28.4    Strategies for neuroregenerative in acute SCI   

 Strategy  Rationale 

 Neuroprotection  To counteract the progression of damage following 
initial injury in order to facilitate regeneration 

 Careful modulation of the 
in fl ammatory response following 
trauma 

 Usually bene fi cial to recovery of function but may be 
detrimental in some situations 

 Antagonists of inhibitors of 
regeneration 

 To facilitate regeneration (see text for details) 

 Restoration of neurotransmission  Based on the concept that the dysfunctions that occur 
after SCI are primarily due to damage to neurotrans-
mission (Xu and Onifer  2009  )  

 Cell transplantation  Replacement of damaged tissue 
 Neurotrophic factors  Enhance axonal plasticity and regeneration after SCI 

(Hollis and Tuszynski  2011  )  
 Peripheral nerve transplantation  Bridging the disrupted segment of spinal cord to provide 

a pathway for regenerating nerve  fi bers 
 Nano fi ber struts with or without stem 

cells 
 Scaffolds to promote regeneration 

 Manipulation of the extracellular 
matrix composition 

 To provide a supportive environment for sprouting and 
regenerating neurons and reduces glial scarring 

 Synthetic/biodegradable gel/polymer 
implants 

 To serve as substrates for neurite outgrowth and synapse 
formation 

 Transfer of acidic  fi broblast growth 
factor (aFGF) gene with adeno-
associated virus 

 aFGF was shown to improve functional recovery in 
spinal cord-contused rats (Huang et al.  2011  )  

 Vaccines  To stimulate nerve regeneration 
 Anti-Nogo-A antibodies for neutral-

izing the inhibitory effect of 
Nogo-A 

 These antibodies have been shown to enhance  fi ber 
growth, regeneration, and functional recovery in 
primate models of SCI (Buchli et al.  2007  )  

 Forced upregulation of mTOR 
(mammalian target of rapamycin) 
activity by deletion of PTEN 
(phosphatase and tensin homolog), 
a negative regulator of mTOR to 
enable successful regeneration of 
corticospinal axons past a spinal 
cord lesion. 

 An experimental study showed that the regrowth 
potential of corticospinal tract axons was lost in the 
fully grown mouse and this was accompanied by a 
downregulation of mTOR activity in corticospinal 
neurons, which further diminished following axonal 
injury (Liu et al.  2010    ) 
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 Rho-kinase (ROCK) is a serine/threonine kinase and one of the major down-
stream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in 
many aspects of neuronal functions including neurite outgrowth and retraction. The 
Rho-ROCK pathway is an attractive target for the development of drugs for treating 
CNS disorders, since it has been recently revealed that this pathway is closely 
related to the pathogenesis of several CNS disorders such as SCI. The effects of 
regeneration inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, 
and the inhibition of this pathway promotes axonal regeneration and functional 
recovery in the injured CNS in vivo (Kubo et al.  2008  ) . 

 Eph receptor tyrosine kinase family and their ligands inhibit axonal regeneration 
following CNS injury. Antagonism of one of these, EphA4 is a potential therapy to 
promote recovery from SCI based on the demonstration that axonal regeneration 
following SCI is promoted in an EphA4 knockout animal (Goldshmit et al.  2011  ) . 
Further studies by these authors in animal models of SCI provide de fi nite evidence 
that soluble inhibitors of EphA4 function offer considerable therapeutic potential 
for the treatment of SCI. 

 Cortical gene expression pro fi ling studies with microarrays in the rat have shown 
that anti-scarring treatment attenuates SCI-triggered transcriptional changes of 
genes related to inhibition of axon growth and impairment of cell survival, while 
upregulating the expression of genes associated with axon outgrowth, cell protec-
tion, and neural development (Kruse et al.  2011  ) . This treatment not only modi fi es 
the local environment impeding spinal cord regeneration by reduction of  fi brous 
scarring in the injured spinal cord, but, in addition, strikingly changes the activity of 
cortical neurons that is favorable for axonal regeneration.  

    28.5.3.2   Cell Transplantation for SCI 

 Considerable advances have been made during the past decade in devising and eval-
uating axon regeneration strategies based on cell transplants for SCI patients. 
Table  28.5  lists various types of cells used for this purpose.  

 Grafted cultured keratinocytes secrete growth factor scan induce growth of cell 
that have survived as well as neural differentiation of stem cells surrounding the 
injured spinal cord, leading to functional recovery (Inoue et al.  2011  ) . A chitosan 
conduit loaded with bone marrow stem cells (BMSCs) was shown to signi fi cantly 
reduce the spinal cord cavity volume at the injured site in adult rats and the results 
suggest that it may become a promising approach to the repair of SCI in humans 
(Chen et al.  2011  ) . In another study, Rats with thoracic SCI could walk with weight 
bearing and showed recovered motor evoked potentials following transplanted of 
neurospheres (NS) derived from BMSCs (Suzuki et al.  2011  ) . Histological analysis 
of spinal cords showed neuronal or axonal sproutings, which were replaced by host 
cells. Also, transplanted BMSCs-NS expressed neuronal lineage biomarkers. 

 A study has directed neural differentiation of murine iPS cells and examined 
their therapeutic potential in a mouse SCI model (Tsuji et al.  2010  ) . Safe iPS-derived 
neurospheres, which had been pre-evaluated as nontumorigenic, were transplanted 
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into the spinal cord after contusive injury. The neurospheres produced remyelina-
tion and induced axonal regrowth promoting locomotor function recovery. These 
results show that iPS clone-derived NSCs cells may be a promising cell source for 
transplantation therapy for SCI. 

 Progress in stem cell biology has made it feasible to induce the regeneration of 
injured axons after SCI in experimental animals by transplanting neural stem cells 
(NSCs) generated from the ESCs, which can be developed into motor neurons by 
using special techniques and culture media with growth factors. In an open trial, 
intravenous injection of autologous bone marrow cells in conjunction with the 
administration of granulocyte macrophage-colony stimulating factor led to improve-
ment in patients with complete spinal cord injury (Park et al.  2005  ) . Cell transplan-
tation alone may not suf fi ce for regeneration of the spinal cord and may need to be 
combined with other methods such as neurotrophic factors, blocking of inhibitors of 
neural regeneration, and modulation of in fl ammatory response following injury 
(Ronsyn et al.  2008  ) . 

 Transplantation of autologous bone marrow-derived mesenchymal stem cells 
(MSC), expanded ex vivo, has been tested in a clinical trial on SCI patients (Pal 
et al.  2009  ) . After quality control and characterization for cell surface markers, 
MSCs were administered to the patients via lumbar puncture. Safety of the proce-
dure was demonstrated by 1–3 years of follow-up. No recovery of neurological 
de fi cit was reported but further trials with higher doses and different routes of 
administration were suggested in order to demonstrate the recovery/ef fi cacy if any, 
in SCI patients. In addition to clinical trials, therapeutic use of stem cells in SCI 
with unveri fi ed claims of recovery of paraplegia is being reported from countries 
without strict regulatory controls. 

   Table 28.5    Types of cells used for transplantation in SCI   

 Cell type  Rationale for use 

 Autoimmune T cells against CNS myelin-
associated peptide 

 Neuroprotective effect in experimental models 
by reducing the spread of damage and 
promotion of recovery in injured rat spinal 
cord 

 Glial cells: progenitor-derived astrocytes or 
cultured 

 Glia-depleted areas of the CNS can be reconsti-
tuted by introducing glial cells 

 Olfactory ensheathing glial cells  Facilitate regeneration 
 Keratinocytes  Secrete growth factors 
 Embryonic stem cells (ESCs)  To replace the lost neurons and supporting cells 
 Autologous bone marrow stem cells  A clinical trial in patients with chronic complete 

SCI produced slight neurologic improvement 
(Deda et al.  2008  )  

 Neural stem cells (NSCs)  Generated from ESCs and can be developed into 
motor neurons 

 Induced pluripotent stem (iPS) cells  iPS clone-derived NSCs may be a promising cell 
source for transplantation therapy for SCI 

  © Jain PharmaBiotech  
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 Several studies have shown that transplantation of ESCs to replace the lost neu-
rons and other supporting cells into adult rats that were partially paralyzed through 
spinal cord damage led to some recovery of spinal cord function. Introduction of 
stem cells into the cerebrospinal  fl uid via lumbar puncture is as effective as direct 
injection into the spinal cord. A clinical trial showed that subarachnoid placement 
of stem cells is safe with no long-term adverse effects (Mehta et al.  2008  ) . 

 A spinal contusion injury model in the rat has been used to assess the ef fi cacy 
of hESC-derived oligodendrocyte progenitor cells (OPCs) for cervical SCI (Sharp 
et al.  2010  ) . hESC-derived OPC transplants attenuated lesion pathogenesis and 
improved recovery of forelimb function. Histological effects of transplantation 
included robust white and gray matter sparing at the injury epicenter, and in par-
ticular, preservation of motor neurons that correlated with movement recovery. 
These  fi ndings further an understanding of the histopathology and functional out-
comes of cervical SCI, de fi ne potential therapeutic targets, and support the use of 
these cells as a treatment for cervical SCI. Based on this, Geron Corporation’s 
GRNOPC1 started a clinical trial. A special device was used to inject hESCs into 
the spinal cords of patients with complete paraplegia due to SCI to determine if 
the procedure is safe and also if there will be any signs of recovery of function. 
Although safety was demonstrated, the company discontinued further develop-
ment due to economic reasons.  

    28.5.3.3   Polyethylene Glycol for Repair of Nerve Fibers in SCI 

 Polyethylene glycol (PEG) can reunite and fuse transected cell processes and seal 
anatomical disruptions in cell membranes produced by mechanical injury. Topical 
application of PEG has been used for repair of spinal axons after severe, standard-
ized SCI in experimental animals. PEG reduces both necrosis and apoptosis through 
two distinct yet synergistic pathways: repair of disrupted plasma membranes and 
protection of mitochondria through direct interaction (Luo and Shi  2007  ) . An intra-
venous preparation of PEG has been used safely in a trial on dogs with SCI with 
some recovery of paraplegia (Laverty et al.  2004  ) . Safety of PEG for human use is 
already established and it is feasible to translate this technique into application for 
human SCI. However, further studies have shown that although PEG protects key 
axonal cytoskeletal proteins after SCI along with axonal preservation, the modest 
extent of locomotor recovery after treatment with PEG may not be suf fi cient for 
clinical use as a single treatment (Baptiste et al.  2009  ) .  

    28.5.3.4   Fampridine for SCI 

 Fampridine-SR is a sustained-release tablet form of the K +  channel-blocking 
 compound 4-aminopyridine that has been shown to restore conduction in focally 
demyelinated axons, to enhance synaptic transmission in many types of neurons and 
to potentiate muscle contraction. Most of the clinical development is focused on 
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multiple sclerosis but it also includes trials on SCI. A phase II double-blind, 
 randomized, placebo-controlled, parallel-group clinical trial of sustained-release 
fampridine (25 mg twice daily) in chronic SCI showed signi fi cant improvement in 
Subject Global Impression, and potential bene fi t on spasticity (Cardenas et al. 
 2007  ) . Phase III clinical results of Fampridine were positive and the FDA accepted 
the Fampridine-SR New Drug Application (NDA) for  fi ling.  

    28.5.3.5   Monoclonal Antibodies for Repair in SCI 

 Natural autoreactive Ig monoclonal antibodies (MAbs) bind surface antigens on 
speci fi c CNS cells, activating intracellular repair-promoting signals. Ig MAbs that 
bind to neurons stimulate neurite outgrowth and prevent death of neurons and have 
potential application for repair in neuron-damaging diseases, such as SCI (Wright 
et al.  2009  ) . Recombinant remyelination-promoting Ig MAbs have been produced 
and undergone a phase 1 clinical trial after toxicology studies. Whereas 
Fampridine-SR (Accorda Therapeutics) may improve walking ability following SCI 
by pharmacologically compensating for myelin loss in some axons, MAbs may 
actually replace the lost myelin, which may provide additional bene fi t.  

    28.5.3.6   Role of RNAi and Other Knockdown Technologies 
in Regeneration Following SCI 

 Following SCI, there are numerous changes in gene expression that appear to  contribute 
to either neurodegeneration or reparative processes. RNAi, ribozymes, and antisense 
technologies are used to suppress these. In animal experimental studies, several genes 
including the small GTPase Rab13 and actin-binding protein Coronin 1b, show 
signi fi cantly increased mRNA expression after SCI and this enhances neurite out-
growth. RNAi gene silencing for Coronin 1b or Rab13 in NGF-treated PC-12 cells 
markedly reduces neurite outgrowth (Di Giovanni et al.  2005  ) . Modulation of these 
proteins may provide novel targets for facilitating restorative processes after SCI. 

 A target for preclinical drug development is the Nogo pathway, which plays a 
key role in preventing regeneration of nerves after injury, such as SCI. An RNAi 
therapeutic that inhibits this pathway could potentially reduce or prevent paralysis 
caused by such injuries. 

 Another knockdown technology uses deoxyribozymes, which are catalytic DNA 
molecules. Deoxyribozyme against xylosyltransferase (XT-1) mRNA not only pre-
vents glycosylation of proteoglycans but also avoids the assembly of their core pro-
tein into the extracellular matrix. Thus it alters the inhibitory nature of the scar and 
promotes axonal growth in the injured spinal cord (Grimpe  2011  ) . The immunologi-
cal status of deoxyribozyme is not known and it does not penetrate the blood-brain 
or blood-spinal cord barrier. If used cautiously with an appropriate delivery technol-
ogy, deoxyribozyme technology has the potential to become a major in CNS 
regeneration.  
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    28.5.3.7   Physical Methods for Promoting Regeneration in SCI Patients 

 Several physical methods have been applied to promote regeneration in SCI. One of 
these is functional electrical stimulation (FES). An electric  fi eld oriented in the 
direction of a damaged neural  fi ber can enhance axonal regrowth. The technique of 
oscillating  fi eld stimulation applied to SCI has been shown to promote bidirectional 
regeneration in the injured nerve  fi bers (Hamid and Hayek  2008  ) . 

 Neuroprostheses are machines designed to arti fi cially restore lost neurologic 
function. Recent emphasis is on development of neuroprosthetic devices that utilize 
the information recorded directly from the CNS. Development of neurorobots for 
simple walking movements may require elaborate systems for timed interaction 
between sensory input and rhythmic motor output programs. There is some evi-
dence that continuous CNS machine interaction and repeated activation facilities 
regeneration of the injured spinal cord and development of plasticity.  

    28.5.3.8   Combined Approaches to SCI 

 Following complete spinal cord transection that removes all supraspinal inputs in 
adult rats, spinal locomotion was shown to emerge from a combination of functional 
electrical stimulation and pharmacological approaches (Courtine et al.  2009  ) . The 
development of central pattern-generating capability and the ability of these spinal 
circuits to use sensory afferent input to control stepping provide a strategy by which 
individuals with SCI could regain substantial levels of motor control.   

    28.5.4   Management of Traumatic Brain Injury 

 TBI or neurosurgical procedures may cause extensive loss of cerebral parenchyma. 
Reconstruction and regeneration is desirable, not only to replace the lost brain sub-
stance, but also to restore lost function and prevent formation of scar tissue. However, 
no clinically effective method is available as yet. 

    28.5.4.1   Cell Therapy for TBI 

 Cell therapy is expected to play an important role in the repair of TBI (Jain  2009b  ) . 
It is important that cells are transplanted into an environment that is favorable for 
extended survival and integration within the host tissue (Tate et al.  2009  ) . 
Extracellular matrix proteins such as  fi bronectin and laminin are involved in neural 
development and may mediate subsequent cell signaling events. Enhanced cell sur-
vival was demonstrated following transplantation of a NSC construct containing 
laminin-based scaffold into the traumatically injured mouse brain. 
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 Stem cell-based cellular replacement strategies have a potential therapeutic role 
following TBI, but the mechanism by which stem cells produce their effect (e.g. via 
integration into surviving neuronal circuits, local neurotrophic support, or 
modi fi cation of the local microenvironment to enhance endogenous regeneration 
and neuroprotection) remains to be assessed further (Maegele and Schaefer  2008  ) . 
One of the functions of stem cells is to decrease in fl ammation whereby regeneration 
can be facilitated. 

 NSCs transplanted directly into the injured brain were shown to survive, differ-
entiate into neurons and promote functional recovery in a rat model of TBI (Ma 
et al.  2011a  ) . There was an increase in the expression of SYP and GAP43 in the 
injured brain of NSC-transplanted rats, suggesting it as one of the mechanisms 
underlying the improved functional recovery. 

 A clinical trial to gauge the safety and potential of treating children suffering 
from TBI using hematopoietic stem cells derived from their own bone marrow 
started in 2008 (Harting et al.  2008  ) . The clinical trial is based on laboratory and 
animal research indicating that HSCs can migrate to an injured area of the brain, 
differentiate into new neurons and support cells, and induce brain repair.  

    28.5.4.2   Gene Therapy for TBI 

 Currently available information from preclinical studies reveals that there are sev-
eral gene targets with therapeutic potentials in TBI and vectors that can be used to 
deliver the candidate genes. However, there are dif fi culties in translating these tech-
niques into effective gene therapy in humans. Examples of some of these studies are 
given in the following paragraphs. 

 NSCs genetically modi fi ed to encode BDNF gene (BDNF/NSCs) have been 
shown to signi fi cantly improve neurological motor function on selected behavioral 
tests following transplantation into brains of rats with TBI (Ma et al.  2011b  ) . The 
number of surviving engrafted cells and the proportion of engrafted cells with a 
neuronal phenotype were signi fi cantly greater in BDNF/NSCs than in naive NSCs-
transplanted rats that served as controls. 

 Neuronal regeneration can be induced by transgenic integrin expression. 
Integrins are nerve cell receptors that have been linked to the growth of nerve cells. 
Nerve cells taken from developing animals typically have high levels of integrins 
compared with those taken from adult animals. In experimental studies, the regen-
erative performance of adult neurons can be restored to that of young neurons by 
the gene transfer-mediated expression of a single alpha-integrin, which has the 
potential to be developed into a gene therapy approach to regeneration. The therapy 
would be based on the modi fi cation of integrin genes with a type of “switch” con-
trolled by a drug. Physicians would then inject the modi fi ed genes into damaged 
area of the brain. A recombinant adenovirus vector expressing Bcl-2 fusion protein 
can suppress apoptosis and promote cell survival in experimental TBI in rats (Yang 
et al.  2006  ) .  
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    28.5.4.3   Nanomaterial Scaffolds for Repair of TBI 

 The peptide nano fi ber scaffold is an effective technology for tissue repair and 
restoration and is a promising treatment for TBI. This peptide nano fi ber scaffold 
has several advantages over currently available polymer biomaterials. The net-
work of nano fi bers is similar in scale to the native extracellular matrix and, thus, 
provides an environment for cell growth, migration, and differentiation. This 
peptide disintegrates and is immunologically inert. Self-assembling peptide 
nano fi ber scaffold may help to reconstruct the acutely injured brain and reduce 
the glial reaction and in fl ammation in the surrounding brain tissue (Guo et al. 
 2009 ; Webber et al.  2010  ) . This creates a permissive environment for axons, not 
only to regenerate through the site of an acute injury, but also to knit the brain 
tissue together. 

 Challenges of using a tissue engineering approach for regeneration in TBI include 
a complex environment and variables that are dif fi cult to assess. For optimal bene fi t, 
the brain should be in a condition that minimizes immune response, in fl ammation 
and rejection of the grafted material. Tissue engineering, using a bioactive scaffold 
counters some of the hostile factors and facilitates integration of donor cells into the 
brain, but transplantation of a combination biologic construct to the brain has not 
yet been successfully translated into clinical use (Stabenfeldt et al.  2011  ) . 

 The next generation of tissue engineering scaffolds for TBI may incorporate 
nanoscale surface feature dimensions, which mimic natural neural tissue. 
Nanomaterials can enhance desirable neural cell activity while minimizing 
unwanted astrocyte reactivity. Composite materials with zinc oxide nanoparticles 
embedded into a polymer matrix can provide an electrical stimulus when mechani-
cally deformed through ultrasound, which can act as a cue for neural tissue 
 regeneration (Seil and Webster  2010  ) .  

    28.5.4.4   Neuroregeneration in Chronic Traumatic Encephalopathy 

 Chronic traumatic encephalopathy (CTE) is the term used for neuropathological 
changes consistent with long-term repetitive concussive brain injury traditionally 
seen in football players and boxers, but now in US soldiers returning from Iraq and 
Afghanistan wars. Clinical manifestations include cerebral dysfunction with cogni-
tive impairments and neurobehavioral disturbances, which may progress to demen-
tia as tearing of neuronal connections (axonal shearing) disconnects or impairs 
cortical and thalamic circuits. Neuropathological changes in the brain are those of 
a tauopathy with neuro fi brillary deposits. The cumulative effect of repeated 
 concussions is different from acute TBI and resembles more the course of a 
 neuro degenerative disease. Apart from avoidance of trauma, neuroprotective and 
neuroregenerative measures may be considered for CTE, which may be similar to 
those for neurodegenerative disorders. HBO has been found to be useful for treat-
ment of CTE due to blast injury (Harch et al.  2009  ) . Pharmacological strategies 
include development of anti-tau drugs to clear tau deposits.    
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    28.6   Concluding Remarks and Future Prospects 

 Considerable knowledge has been gained about regeneration in the CNS in 
 experimental animals by studying factors inhibiting neurite outgrowth and using sub-
stances to inhibit these. Worldwide, research on regeneration in SCI has historically 
preceded that in TBI and there has been more activity in the former. Currently TBI 
has gained priority in research in the US due to a large number of injured soldiers 
from various wars and greater recognition of CTE in soldiers and athletes. However, 
translation of these into application in human CNS injury has only limited success. 

 Although many strategies are being pursued currently, several challenges still 
remain. Areas that are promising for future research in regeneration following CNS 
trauma are:

   Cell therapies, particularly by use of stem cells.  • 
  Use of biodegradable materials such as polymer nano fi bers to provide support • 
and a favorable environment for CNS regeneration.  
  Strategies for inhibiting signaling mechanisms that hinder regeneration.  • 
  Efforts continue to develop more effective anti-scarring treatment to promote • 
regeneration in SCI.  
  Focus on functional recovery rather than mere structural restoration.  • 
  Combination of multiple methods such as use of biological therapies and • 
pharmaceuticals.         
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  Abstract   Integrity of ocular surface depends on adequate tear  fi lm and stability of 
the surface epithelium consisting of two specialized phenotypically different epithe-
lial cells – the central transparent corneal epithelium and the peripheral conjunctival 
cells, separated by a more specialized transition zone, called the limbus. Similar to 
the epithelial regeneration in other parts of the body, the corneal epithelium is regen-
erated from the stem cells located in limbus. Severe chemical burns and other dis-
eases can cause damage to the limbus, resulting in a condition called Limbal Stem 
Cell De fi ciency (LSCD). Effective therapeutic modalities for this vision-threatening 
condition include use of human amniotic membrane, replenishing the stores of limbal 
stem cells by limbal transplantation. However last decade has witnessed the use of 
ex-vivo expanded sheet of limbal epithelial cells for ocular surface reconstruction in 
such cases. Our group has established a simple, feeder-cell free, cost-effective way 
of culturing the corneal epithelium from limbal tissues within 2 weeks, using human 
amniotic membrane as a carrier. The interim results of a clinical trial involving 700 
patients with severe unilateral and bilateral LSCD revealed 70 and 50% success at 
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the end of 3 and 5 years respectively. For patients affected by bilateral condition, 
options include use of allogenic tissues with immunosuppressive therapy or use of 
autologous alternative sources of epithelium like oral mucosal epithelium, both of 
which show limited success. The pre-requisites for cell therapy are that the desired 
cells should be grown in suf fi cient amounts, should survive, integrate and network 
with the host tissues and cause no harm to the recipient. All these criteria are ful fi lled 
when limbal epithelial cell therapy is used for ocular surface reconstruction thus 
making it a successful model in the emerging  fi eld of regenerative medicine.      

    29.1   Introduction 

 The integrity of ocular surface    is a cumulative function achieved by the co-ordination 
and interdependence of the ocular surface elements (epithelia and adnexa of the eye) 
and the tear  fi lm. The cornea, the central transparent part of the eye that contributes 
signi fi cantly to normal vision, is made up of  fi ve layers; the epithelium, Bowman’s 
membrane, stroma, Descemet’s membrane, and the endothelium. The homeostasis of 
epithelium is maintained by stem cells located in the region know as the limbus    
(Thoft and Friend  1983  ) . In the normal uninjured state, LSC (limbal stem cells) are 
mitotically quiescent and maintained in a specialized limbal stromal microenviron-
ment or “niche”. However, on corneal epithelial wounding, stem cells located in the 
limbus (Hanna  1966 ; Davanger and Evensen  1971  )  proliferate to generate more stem 
cells and transient amplifying cells which then migrate centripetally so as to replace 
the damaged corneal epithelium. Any damage to this functional and physical interde-
pendent structures leads to vision threatening conditions ranging from decreased to 
complete loss of vision posing a challenge to the clinicians to reconstruct the ocular 
surface. The most important of such conditions is the Limbal Stem Cell De fi ciency    
(LSCD) caused by a number of individual or environmental or incident speci fi c fac-
tors. (Dua and Azuara-Blanco  2000 ; Chen and Tseng  1991 ; Kruse et al.  1990  ) . 
Limbal stem cell de fi ciency is a challenging clinical problem and the current treat-
ment involves replenishing the depleted limbal stem cell    (LSC) pool either by limbal 
tissue transplantation or by using cultivated limbal epithelial cells    (LEC).  

    29.2   Limbal Stem Cells   : Development, Stem Cell Function 

 Cornea is the transparent window on the ocular surface that allows light rays to 
pass through the anterior chamber and contributes to 60% of the total refractive 
power of an eye. Corneal surface consists of a 5–6 cell thickness strati fi ed epithe-
lial layer. The narrow zone of about 2 mm thickness between the cornea and the 
bulbar conjunctiva is known as the limbus and is widely accepted as the niche for 
the corneal epithelial stem cells    (Fig.  29.1  ) (Hanna  1966 ;    Srinivasan and Eakins 
 1979 ; Cotsarelis et al.  1989  ) . The limbal epithelium is 10–12 cell layers thick, and 
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contains melanocytes, Langerhan cells and an underlying network of blood vessels 
in the limbal stroma. The limbal stroma with its overlying epithelium is arranged 
in radial  fi brovascular elevations called the Palisades of Vogt   , which alternate with 
epithelial rete ridges (Van Buskirk  1989  ) . These palisades are present 360° all 
around the corneo-scleral rim but are most well de fi ned in the inferior and the 
superior zones.  

 The stem cells located at the limbal region play an important role in the normal 
maintenance of the corneal surface. The corneal epithelium is a highly dynamic 
structure and is constantly renewed all through the lifetime of the eye. The activated 
stem cells from the limbus migrate centripetally to the central cornea and helps in 
tissue homeostasis. As explained by XYZ theory (Thoft and Friend  1983  )  of corneal 
maintenance, the combined rate of cell proliferation and centripetal migration of the 
activated limbal stem cells (XY component) is equal to the rate of cell loss by 
desquamation (Z component). 

 Limbal epithelial stem cells    (LESC) share common features with other adult 
somatic stem cells including small size (Bickenbach  1981 ; Holbrook and Odland 
 1975  )  and high nuclear to cytoplasmic ratio (Epstein et al.  2005  ) . They also lack 
expression of differentiation markers such as cytokeratins 3 and 12 (Schermer et al. 
 1986 ; Fatima et al.  2006  ) . LESCs are slow cycling during homeostasis and therefore 
retain DNA labels for long time periods, however in the event of corneal injury they 
can become highly proliferative (Park et al.  2006 ; Cotsarelis et al.  1989 ; Haskjold 
et al.  1989 ; Thompson et al.  1991  )  and contribute actively to healing of the wound. 
These limbal stem cells divide asymmetrically to replenish and maintain the stem 
cell pool in the limbal niche   . The limbal location of corneal epithelial stem cells 

  Fig. 29.1    Schematic diagram showing location of cornea, limbus and corneal epithelia. During 
homoestasis as well as during wound healign, the limbal stem cells from limbal region, proliferate, 
form transient amplying cells that move centripetally into the cornea, mature and differentiate into 
the corneal epithelial cells.       
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provides a number of functional advantages. The basal cells of the cornea are devoid 
of any pigments and are highly susceptible to radiation induced damages. But the 
limbal region is pigmented and therefore the basal stem cells do not face this con-
straint. Also, the limbal epithelium has a highly undulating epithelial- stromal junc-
tions and therefore are resistant to the shearing forces and provides maximum 
protection to the corneal stem cells (Van Buskirk  1989  ) . It is important to note that 
while the cornea is avascular, the limbal epithelium has a vascular bed which pro-
vides for the nourishment and maintenance of the limbal stem cells. 

 During wound healing process, the stem cells get activated and the transiently 
amplifying cells migrate in a centripetal manner which is a unique characteristic of 
the limbal epithelium. They undergo cell division and migrate centripetally towards 
the central cornea and also show a basal to upward movement towards the corneal 
surface. Once the epithelial cells leave the limbal basal layer or the limbal niche, they 
gradually activate the differentiation programme and differentiate into transiently 
amplifying cells    (TAC) with lesser proliferative capacity and reduced stemness. Prior 
to or during the course of migration, these TAC become terminally differentiated and 
contribute to corneal wound healing    by establishing cell-cell contacts through the 
formation of desmosomes, hemidesmosomes and tight junctions (Chen and Tseng 
 1990  ) . Several reports in the past two decades have con fi rmed the limbal location of 
corneal epithelial stem cells and the role they play in regenerating the corneal epithe-
lium (Sangwan and Tseng  2001 ; Zieske et al.  1992 ;    Cotsarelis et al.  1989 ).  

    29.3    Ocular Surface  Diseases- Regenerative Principles 

 The mechanism by which ocular surface    health is ensured is built into the intimate 
relationship between ocular surface epithelium and the periocular tear  fi lm. Damage 
to the ocular surface caused by chemical, thermal, mechanical injuries, or immune-
mediated diseases may results in limbal stem cell de fi ciency   . LSCD is typically 
characterized by the invasion of conjunctival epithelium onto the corneal surface 
leading to conjunctivalization, neo-vascularization, subepithelial scarring and sym-
blepharon formation resulting in corneal opaci fi cation, persistent or recurrent cor-
neal epithelial defects and visual impairment apart from varying degrees of 
discomfort which includes redness, irritation, watering and light sensitivity in the 
affected eye (Vemuganti et al.  2009 ; Chen and Tseng  1990,   1991 ; Kruse et al.  1990  ) . 
There are a variety of causes for the development of limbal stem cell de fi ciency 
(LSCD) Table  29.1 . The de fi nitive treatment for LSCD is limbal transplantation 
using auto or allografts of limbal tissues, each of which are associated with different 
risks and bene fi ts. The success of limbal stem cell transplantation    is determined by 
a variety of factors and may be adversely affected by concomitant lid pathology, dry 
eye and uncontrolled systemic disorders. Hence, the management of associated 
adenexal conditions such as eyelid/eyelash disposition and management of dry eye 
is a pre-requisite for a successful ocular surface reconstruction and needs to precede 
stem cell transplantation. Increasing knowledge in the biology of limbal stem cells 
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have opened up new avenues of ocular surface regeneration using the principles of 
stem cells, regenerative medicine and tissue engineering (Sangwan and Tseng  2001 ; 
Tsubota et al.  1999 ; Sangwan et al.  2003  ) .   

    29.4   Clinical Principles, Diagnostics, Indications of Ocular 
Surface Regenerative Therapies 

 The clinical principle in treating severe Limbal Stem Cell De fi ciency is the 
replacement of depleted limbal stem cell stores by surgical intervention. Various 
surgical techniques of limbal transplantation using cadaveric (Tsubota et al.  1999  )  

   Table 29.1    Etiology of limbal stem cell de fi ciency (LSCD)   

  Primary LSCD  
  Hereditary aniridia 
  Ectodermal dysplasia or other congenital connective tissue disorders 
  Neurotrophic keratopathy 
  Sclerocornea 
  Secondary LSCD  
   Trauma  
   Chemical injuries 
    Acid injuries 
    Alkali injuries 
   Thermal injuries 
   Radiation injury 
    Ultraviolet radiation 
    Ionizing radiation 
   Systemic conditions  
   Steven Johnson Syndrome (SJS) 
   Ocular cicatricial pemphigoid (OCP)\Pseudopemphigoid 
   Multiple endocrine disorders 
   Vitamin A de fi ciency 
   Iatrogenic:  
   Multiple ocular surgeries, e.g.:-excision of pterygia, pseudopterygia, limbal neoplasm 
   Cyclocryotherapy 
   Antimetabolites (topical mitomycin C (MMC)) 
   Systemic chemotherapy 
   Contact lens wear 
   Severe ocular surface diseases:  
   Keratoconjunctivitis sicca 
   Post-infectious keratitis 
   Neurotrophic keratitis 
   Vernal/atopic keratoconjunctivitis 
   Rosacea blepharoconjunctivitis 
   Phlyctenular disease 
   Tumors 
   Pterygium 
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or live-related donor tissues have evolved for the treatment of bilateral limbal 
stem cell de fi ciency (LSCD) (Rao et al.  1999 ; Daya and Ilari  2001  ) . However, 
these methods have met with limited success as allografts require immunosup-
pression for inde fi nite period to avoid rejection problems (Solomon et al.  2002 ; 
Ilari and Daya  2002  ) . Long-term systemic immunosuppression involves the risk 
of serious eye and systemic complications, apart from being a signi fi cant eco-
nomic burden. For unilateral total or partial limbal stem cell de fi ciency (LSCD) 
direct or cultivated autologous limbal transplantation works very well. With direct 
limbal stem cell transplantation there is a need for transplanting 3–6 o’ clock 
hours of healthy limbus from the contralateral eye. This technique could potentially 
lead to limbal stem cell de fi ciency at the donor site. To overcome this, a novel way 
of expanding the stem cell population of limbal tissue has been adopted and has 
revolutionized the  fi eld of ocular surface reconstruction in the last decade. 

 In case of unilateral    LSCD, the treatment option includes transplantation of 
(i) human amniotic membrane (hAM) (Tseng et al.  1998  )  (ii) healthy limbal tissues 
or (ii) in vitro cultured limbal epithelial stem cells. Over the past decade, cultured 
limbal epithelial stem cell transplantation (CLET) has been widely accepted as a 
standard approach for the ocular surface reconstruction of patients with LSCD 
(Pellegrini et al.  1997 ; Schwab et al.  2000 ; Tsai et al.  2000a,   b ; Nakamura et al. 
 2003 ; Sangwan et al.  2005 ; Baradaran-Ra fi i et al.  2010 ; Kolli et al.  2010  ) . Cultured 
limbal epithelial transplantation (CLET) followed by penetrating keratoplasty 
(PKP) has resulted in long term graft survival and improved visual outcome 
(Sangwan et al.  2005  )  (Fig.  29.2 ). Another technique described for focal LSCD is 
ipsilateral translocation of healthy limbal tissue to an area of partial    LSCD. In a 
small series of patients, this has been shown to provide good outcomes (Nishiwaki-
Dantas et al.  2001  ) . However this approach is not well studied and understood for 
the management of partial LSCD. The visual acuity of a patient with ocular surface 
disease who has undergone limbal stem cell transplantation may improve without 
any further surgical intervention. However, in cases where the corneal stromal 
opaci fi cation hampers visual recovery, a penetrating keratoplasty (PK) may be nec-
essary. While some authors suggest PK and limbal stem cell transplantation to be 
done at one sitting (Rao et al.  1999 ; Theng and Tan  1997  ) , Croasdale et al.  (  1999  )  
recommends an interval of 3 months between the two and some others (Ilari and 
Daya  2002  )  recommend a deep lamellar keratoplasty 1 year post limbal stem cell 
transplantation, if the endothelium is healthy. In our experience, the latter approach 
of staged ocular surface reconstruction followed by subsequent corneal transplanta-
tion (lamellar in any situation where the endothelium is deemed healthy and pene-
trating in eyes with endothelial injury) is the preferred approach for visual 
rehabilitation of such eyes.  

 In case of bilateral    LSCD, allografting is done using limbal tissue from a live 
related donor or from cadaveric sources. However this involves the associated risk 
of graft rejection and therefore requires a long term administration of immune sup-
pressive drugs which becomes unaffordable for low income groups resulting in non-
compliance, graft rejection and are predisposed to opportunistic microbial infections 
as well. Therefore there exists a need for an alternative autologous tissue source that 
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can functionally replace the corneal epithelium. In order to address these issues, a 
few groups have attempted to use autologous conjunctival or oral mucosal epithelial 
cells as an alternative to limbal epithelium for corneal surface reconstruction. 
Cultivated oral mucosal epithelial transplantation (COMET) has been successfully 
used to treat patients with severe bilateral corneal defects with good clinical out-
come in terms of ocular surface stabilization and marginal improvement in terms of 
visual acuity (Ang et al.  2006 ; Hayashida et al.  2005 ; Nishida et al.  2004  ) . COMET 
followed optical PK has been reported by one group to achieve good improvement 
in the visual outcome with a stable corneal graft (Ma et al.  2009  ) . 

  Fig. 29.2    The  fi gure shows the chronological events for cultivated limbal epithelial transplantation. 
( 1 ) Identifying patients with clinical features of unilateral severe limbal stem cell de fi ciency. 
( 2 ) Harvest limbal biopsy from the healthy contralateral eye for ex-vivo expansion. ( 3 ) The harvested 
biopsy is fragmented into tiny explants for cultivation. ( 4 ) Ex-vivo expansion of cells: By a feeder cell 
free method of explant culture on denuded human amniotic membrane. ( 5 ) The cultures are incubated 
at 37°C with 5% CO2 and cultured for 2 weeks using human corneal epithelial medium. ( 6 ) The 
cultures are observed for growth of cells. Note the presence of cells arising from the edge of the 
explant by day 2–3. ( 7 ) Formation of a monolayer of epithelial cells by day 10–12. ( 8 ) Reconstruction 
of the epithelium of the diseased eye – By transplanting the epithelial sheet derived from autologus 
limbal tissue on hAM. ( 9 ) After stablization of the ocular surface by the transplanted cells, some of 
the patients may undergo penetrating keratoplasty for visual rehabilitation. ( 10 ) The study of the 
corneal button removed from the patient after cultivated limbal epithelial transplantation provides the 
objective proof of survival, maturation and integration of transplanted cells. ( 11 ) The corneal epithe-
lim is intact, strati fi ed and adherent to the corneal stroma. Note the formation of basement membrane 
as seen by immuno fl uorescence studies for Collagen IV- a basement membrane marker       
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 The technique of ex vivo expansion of limbal stem cells and their subsequent 
transplantation offers certain advantages. A small amount of tissue needs to be har-
vested – either from the healthy fellow eye of a patient with unilateral LSCD (contra 
lateral) or from the healthy limbus of a partially affected eye (ipsilateral) or from the 
other phthisical eye with a healthy limbus or from the healthy eye of the patient’s 
living related donor or from the cadaveric limbal rings in case of cultivated limbal 
allograft. This reduces the risk of an iatrogenic LSCD in the donor eye and allows 
the possibility of a second biopsy being taken, if required. Owing to the absence of 
the antigen-presenting Langerhans’ cells, these bioengineered sheets are less immu-
nogenic. In vitro culture also ensures that cells are viable and proliferating as 
opposed to the cadaveric limbal transplantation. We have shown in our laboratory 
that (Vemuganti et al.  2004  )  chances of cell growth from live limbal tissues is 100% 
while those from the cadaveric tisues showed only 51.6% cell growth. 

 LSCD may occur due to primary    or secondary    causes (Puangsricharern and 
Tseng  1995  ) . Primary LSCD is characterized by the absence of identi fi able 
external factors. In these cases, the dysfunction of stromal microenvironment of 
limbal epithelial stem cells results in gradual loss of stem cell population or 
generation and ampli fi cation of transient amplifying cells (Vemuganti et al. 
 2009  ) . Secondary LSCD occurs due to the destruction of LSCs by external factors 
as seen in trauma, systemic conditions, iatrogenic causes and severe ocular dis-
ease (Vemuganti et al.  2009  ) . 

 We have earlier reported our surgical techniques for cultivated limbal epithelium 
transplantation (Sangwan et al.  2005  ) . After obtaining informed consent from the 
patients or guardians, limbal biopsy is obtained from the healthy contralateral eye 
or from the healthy area of the same eye for autologus procedures. The procedure 
involves careful dissection of a 2 × 2 mm piece of limbal epithelium with 0.5 mm 
into clear corneal stromal tissue at the limbus under strict aseptic conditions using 
local or general anesthesia, depending on the patient’s preference and age. The lim-
bal tissue that contains limbal epithelial cells at the pigmented line (palisades of 
Vogt) and a part of the corneal stroma is excised. If limbal stem cell de fi ciency is 
bilateral, allografting is done using limbal tissues harvested from the live-related 
donor or from cadaveric limbal rings obtained from the eye bank. Earlier reports 
from our group (Vemuganti et al.  2004  )  have shown that fresh limbal tissue with 
100% viability is preferable to the preserved cadaveric limbal tissues with 51.6% 
viability for culture. 

 However the technique of culturing these cells has been varying with different 
investigators. The variations in the culture technique involves the preference for the 
type of biopsy (cadaveric or fresh), choice of substrate (human amniotic membrane 
or Fibrin or Collagen), presence or absence of feeder cells, type of culture medium 
(HEC or DMEM), use of culture inserts, use of autologous human serum or fetal 
calf serum, submerged or air-lift culture technique (Vemuganti et al.  2009  ) . Based 
on our experience from treating more than 700 cases, we believe that a feeder-cell 
free method of submerged explant culture technique on human amniotic membrane 
using the autologus serum is a cost effective and ef fi cient method of generating 
corneal epithelial monolayer for clinical transplantation.  
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    29.5   Standardized Treatment Technologies 

 An ideal substrate for cultivation of limbal epithelial cells    should have high optical 
clarity, appropriate refractive index, dimensions as that of cornea, toughness to 
withstand surgical procedure i.e., adequately robust for implantation, non-toxic, 
non-immunogenic, non-in fl ammatory and most importantly should promote cor-
neal epithelial cell proliferation and innervation. Human amniotic membrane has 
been extensively used for ocular surface reconstruction and has the required proper-
ties to facilitate epithelial cell growth, suppresses in fl ammation, and also possesses 
the anti-bacterial and anti-apoptotic properties, thus making it an ideal scaffold for 
clinical application. 

 We used the standard protocol proposed by Kim and Tseng  (  1995  )  to prepare the 
human amniotic membrane. In brief, the placenta (which has two layers called the 
amnion and chorion) obtained from the caesarian section delivery was used to pre-
pare human amniotic membrane (hAM). After screening the donor for HIV, HBs Ag 
and VDRL, the placenta was placed in a sterile pan and washed repeatedly with 
antibiotic containing ringer lactate/normal saline until water runs clear. The pla-
centa was then transferred aseptically to another sterile pan and carried to the lami-
nar  fl ow hood, which was pre-cleaned, and UV sterilized. AM was peeled, separating 
the amnion and chorion. The stretched membrane was cleaned using a cotton swab 
and intermittent wetting with ringer lactate/normal saline using wash bottle. Once a 
clean transparent approximately 2 × 2 cm area (7.5 × 7.5) became available, the 
nitrocellulose paper was attached on the chorion side keeping the epithelium side 
up. The hAM was cut around the paper while rolling the edges on the other side of 
the paper. (hAM should stick to the nitrocellulose paper perfectly without gaps or 
air-bubbles). The nitrocellulose paper was then cut to get small pieces of membrane 
as per requirement. The hAM pieces (2.5 × 2.5, 2.5 × 5, 5 × 5 cm) were then placed 
in vials containing Dulbecco’s Modi fi ed Eagles Medium (DMEM) and 50% glyc-
erol and stored at −70°C. Just before use, the hAM was thawed at 37°C for 30 min. 
The composition and instructions to prepare the Human Corneal Epithelial (HCE) 
medium used to culture these cells is described in Table  29.2 .  

 A careful clinical examination is required for all the potential patients of culti-
vated limbal epithelial transplantation    (CLET). Ocular adnexa should be examined 
for any defects, if found to have lid notch or defects, then it should be repaired 
prior to CLET. The patients should not have surface anesthesia as found in patients 
with herpes zoster ophthalmicus or due to seventh nerve paralysis. If there is under-
lying immune-mediated in fl ammation as seen in ocular cicatricial pemphigoid 
(OCP) or Stevens-Johnson syndrome (SJS), then it should be treated with appro-
priate therapy before doing CLET. If the limbal stem cell de fi ciency (LSCD) is due 
to chemical injury then enough time should be allowed before attempting ocular 
surface reconstruction so that in fl ammation subsides and chances of survival of 
transplanted epithelial cells improves. The visual potential of the eye should be 
carefully assessed before doing the surgery especially in children where there is a 
possibility of amblyopia. 
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 The surgery is performed under local or general anesthesia, based on patient’s 
choice as well as patient’s age. In younger children general anesthesia is preferred. 
A drop of epinephrine (1: 1,000) is instilled in the conjunctival cul-de-sac prior to 
pannus excision to decrease bleeding during the procedure. Dissection of ocular 
surface pannus is started 2–3 mm behind the limbus if this landmark is still visible. 
Blunt tip spring scissors or conjunctival scissors are used to initiate the dissection 
by lifting the pannus and dissection is continued all around the limbus with a # 15 
blade on Bard Parker handle. A combination of sharp and blunt dissection from the 
periphery towards the central area is carried out to clean the cornea. It is important 
to pay attention to the thickness of the corneal tissue, which may be variable due to 
the effects of chemical or disease process, and it is vital not to perforate the cornea. 
Any accidental perforation   , which can be identi fi ed by softening of the globe, should 
be repaired either by suturing or by application of  fi brin tissue sealant. If the perfo-
ration is too large to be repaired then lamellar or penetrating keratoplasty must be 
performed along with cultivated limbal stem cell transplantation. Perforation is 
uncommon if the tissue planes are respected by the surgeon. The ocular surface is 

   Table 29.2    Composition of Human Corneal Epithelial Medium (HCEM) for culture of limbal 
epithelial cells   

 S. No.  Ingredients  Quantity per liter  Company 

 1  Minimal Essential Medium  5.05 g  Sigma, Cat. No. M0644 
 2  Nutrient Mixture Ham’s F-12  5.30 g  Sigma, Cat. No. N6760 
 3  Sodium bicarbonate  1.688 g  Sigma, Cat. No. S5761 
 4  Penicillin G sodium salt 

(100 U/ml) 
 0.1 MU  Sigma, Cat No. P3032 

 5  Stereptomycin sulphate 
(100  m g/ml) 

 100 mg  Sigma, Cat No. S9137 

 6  Gentamicin sulfate 
(5  m g/ml) 

 5 mg  Sigma, Cat No. G1264 

 7  Amphoterecin B 
(2.5  m g/ml) 

 10 ml of 100X stock  Sigma, Cat No. A2942 

 6  Epidermal Growth Factor 
(10 ng/ml) 

 100  m l of 100  m g/ml stock  Sigma, Cat No. E9644 

 7  Insulin (5  m g/ml)  100  m l of 50 mg/ml stock  Sigma, Cat No. I0259 

   Method of Preparation : Add the  fi rst two ingredients in 500 ml of Milli Q water, in a sterile 1 l 
 fl ask/beaker, add sodium bicarbonate, add the antibiotics and stir to dissolve. Adjust the pH to 7.2 
with 1 N HCl or 1 N NaOH while stirring and make up the volume to 900 ml. Add the growth fac-
tors, mix well and  fi lter sterilize the medium by vacuum  fi ltration through a 0.22  m m membrane 
 fi lter. Perform sterility check by streaking on to chocolate agar and blood agar plates and by inocu-
lating into thioglycollate broth before use. The medium is then stored at 4°C. The shelf life of the 
medium is about 15 days as after that the pH of the medium increases as indicated by change in 
color (phenol red) towards more pinkish 
  Separation of autologous serum : About 10-ml blood is drawn from the patient in non-heparin, 
15 ml graduated falcon tubes. The blood is kept at room temperature undisturbed for a couple of 
hours to allow the settlement of cellular components. It is then centrifuged at 2,000 rpm for 10 min. 
The serum supernatant is pipetted out in a fresh falcon and  fi lter sterilized using 0.22  m m millipore 
syringe  fi lters, and used in the culture medium at 10% concentration  
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then cleared of the  fi brovascular pannus and hemostasis is achieved by judicious use 
of bipolar cautery. The adhesions between the eyeball and lids (symblephara) are 
released taking due care not to injure the extraocular muscles and other tissues. 
Fornix is reconstructed using amniotic membrane, and fornix-forming suture if 
indicated. At this stage the corneal thickness is assessed clinically and by pachym-
etry. If the recipient corneal thickness is less than 300  m m, then a lamellar corneal 
grafting    is done to restore the thickness of the cornea; this will help in supporting 
the epithelization of ocular surface following cultivated epithelial transplantation. 
At this stage, the cultivated limbal epithelium on human amniotic membrane is 
brought on to the ocular surface, cell side up, aseptically, and the membrane con-
taining the cultured cells is gently spread over the cornea as well as limbus without 
damaging or dislodging the cells. The area of maximum number of visible explants 
with surrounding cells is kept at the center of cornea and the peripheral part of mem-
brane is trimmed using blunt tipped scissors. There are two ways of anchoring the 
composite of membrane and cells on to the ocular surface. If sutures are used then, 
10-0 mono fi lament nylon material is preferred. The tissue should be anchored using 
circumferential, interrupted sutures at the limbus. Peripheral edge of the membrane 
is sutured to conjunctiva with 8-0 polyglactin (Vicryl TM ) sutures. Usually 6–8 inter-
rupted sutures are enough to secure the membrane and care should be taken to avoid 
any folds or wrinkles of the membrane. If they are present, then the tissue should be 
stretched and unfolded, holding the peripheral part of the membrane. The central 
part of the membrane, which has maximum cellular growth, is never touched 
because it is critical for re-epithelization. If there is inadvertent needle perforation, 
recognized by softening of the eye, then the suture should be taken at another loca-
tion. Needle perforations usually do not require repair. If sutureless surgery is 
planned, the  fi brin tissue sealant (Tissel™ Kit; Baxter AG, Vienna, Austria) is put 
on the ocular surface using a tuberculin syringe with 27 gauge needle. Both compo-
nents are put one after another and the membrane with grown cells is brought on the 
ocular surface and spread as explained above. Excess membrane is trimmed and 
peripheral part of the membrane is ironed out in order to avoid wrinkles or folds of 
the membrane. The membrane is touched with a surgical sponge in order to test if 
the adhesion is suf fi cient to hold the tissue in place. Sometime there may  fl uid accu-
mulation under the membrane during postoperative period. To avoid this complica-
tion two small holes are made in the membrane at limbus at 5 o’ clock and 7 o’ clock 
so the  fl uid is drained out. 

 At the conclusion of the surgery, one drop of 2.5% povidone iodine is instilled; 
use of a bandage contact lens is optional. Some surgeons recommend using a ban-
dage contact lens for the  fi rst few weeks, to avoid loss of cells due to blinking. For 
the same reason some surgeons prefer to induce ptosis by injecting botulinum toxin 
in orbicularis oculi. We do not use any of these techniques because we believe that 
there are  fi rm adhesions between the membrane and growing cells. The technique 
described above is for total limbal stem cell de fi ciency where  fi brovascular pannus 
covers the entire ocular surface. If there is focal or sectoral de fi ciency the surgical 
technique is tailored to cover the defect created by removal of abnormal tissue. 
Either sutures or  fi brin glue can be used to anchor the membrane with cultivated 
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cells to the ocular surface. Brie fl y, the procedure for the transplantation of cultivated 
limbal epithelial cells is represented in Fig.  29.2 . 

 Following the cultivated limbal epithelium transplantation, all the patients are treated 
with prednisolone acetate 1% eye drops or any other equivalent topical steroids drops, 
eight times a day, tapered to once a day in 5–6 weeks, and cipro fl oxacin hydrochloride 
0.3% eye drops, four times a day, for 1 week. Cipro fl oxacin hydrochloride 0.3% eye 
drops are continued if an epithelial defect is present or as long as the bandage contact 
lens is used. If a limbal allograft is done then the patient should be given systemic immu-
nosuppression, as has been reported earlier (Sangwan et al.  2005  ) . The patients are 
examined on postoperative day one, 1 week, 2 weeks, 5 weeks and monthly thereafter 
for 6 months. Thereafter, follow up is customized to success or failure of the procedure. 
If successful and does not require further interventions, then follow up is every 6 month 
for 3 years and thereafter annually. For failed surgeries process could be repeated or 
appropriate alternative therapy offered. Each examination includes a complete history, 
noting of new ocular or systemic symptoms, and complete evaluation of recipient as 
well as donor sites and any signs of neovascularization or surface instability. Sutures are 
removed when indicated (loose or vascularized). Epithelialized sutures are left 
inde fi nitely. Some of the patients with CLET may require penetrating keratoplasty or 
deep anterior lamellar keratoplasty if the vision does not improve with CLET alone. 

 Ocular surface reconstruction in limbal stem cell de fi ciency is a multi-staged 
procedure, with the patient often requiring several surgical interventions for visual 
rehabilitation. Some of these patients may require cataract extraction after success-
ful CLET which can be done in a standard way. If there is stromal scarring and 
CLET has been successful then penetrating keratoplasty (PKP) or deep anterior 
lamellar keratoplasty (DALK) can be done to improve the vision. 

 Sangwan et al.  (  2005  )  described the early results of penetrating keratoplasty    
(PKP) in patients who had previously undergone cultivated limbal epithelium trans-
plantation. Demographics, primary etiology, type of limbal transplantation, ocular 
surface stability, visual acuity, graft clarity, and complications were reviewed. 
Histopathologic features of the recipient corneal buttons were studied with special 
attention to epithelial status (Fig.  29.2 ). PKP was performed at a mean interval of 
7 months (range, 2–12 months) following cultivated limbal epithelium transplanta-
tion (autologous, n = 11; allogenic, n = 4). Fourteen (93%) of the 15 eyes had a suc-
cessful corneal graft with a stable corneal epithelium. Preoperative best-corrected 
visual acuity was less than 20/200 in 14 of the 15 eyes. At a mean follow- up of 
8.3 months after PKP, the best-corrected visual acuity was more than 20/60 in 8 
eyes, 20/200 to 20/60 in 5 eyes, and less than 20/200 in 2 eyes. Three of the 15 eyes 
experienced corneal allograft rejection, which was managed successfully. None of 
the limbal epithelial allografts showed signs of rejection. 

 These cases did not show a high rejection rate (overall rejection rate, 20%) 
despite the young age of the recipients and stromal vascularization or a high non–
rejection-related failure as expected in cases of chemical burns. This could be attrib-
uted to the cultivated limbal epithelium transplantation procedure preceding the 
PKP, which continued to supply healthy epithelium after PKP. Similarly, the fewer 
corneal graft rejection    episodes could be due to the stepwise, versus the simultaneous, 



76729 Regenerative Therapies for the Ocular Surface

approach, which included ocular surface reconstruction by cultivated limbal 
epithelium transplantation in the  fi rst step and PKP in the second. 

 The proponents of simultaneous limbal stem cell transplantation and penetrating 
keratoplasty highlight the potential of this approach to minimize recipient antigenic 
load by using the same donor tissue for both the limbal stem cells and the kerato-
plasty procedure. However, ex vivo expanded limbal epithelium transplantation 
requires a minimum period of 2 weeks for the expansion of limbal stem cells. A 
staged approach allows achievement of a stable ocular surface prior to the penetrat-
ing keratoplasty and allows suf fi cient time for in fl ammation to subside, thereby 
increasing the chances of a successful penetrating keratoplasty. The low rejection 
rate may also be ascribed to the fact that the cultivated limbal epithelium is devoid 
of Langerhans cells (Holland et al.  1987  )  and the anti-in fl ammatory role of the 
amniotic membrane carrier. 

 Since the patients have already undergone pannus resection with or without 
super fi cial keratectomy, the recipient corneal stromal bed is usually thin and irregu-
lar, which could result in postoperative astigmatism. In addition, associated condi-
tions, such as eyelid abnormalities, glaucoma, and dry eye syndrome, may affect the 
outcome and hence must be treated before PKP.  

    29.6   Clinical Studies   , Experience, Outcome/Side Effects 
of “Ocular Surface” Regenerative Therapies 

 While the literature has consistently seen reports on the short and intermediate term 
ef fi cacy of stem cell transplantation for ocular surface reconstruction, it must be 
mentioned that all of these studies are limited in that they are retrospective, non-
randomized, the number of eyes in the cohorts being small and relatively short dura-
tions of follow-up. It is clear from the literature that autograft transplantation is 
ef fi cacious for both transplanted limbal tissue (Kenyon and Tseng  1989 ; Rao et al. 
 1999 ; Shimazaki et al.  2006  )  as well as for cultivated limbal epithelial transplants 
(Tsai et al.  2000a,   b ; Rama et al.  2001 ; Sangwan et al.  2005 ,  2006 ), but is limited by 
relatively short follow-ups. 

 Ocular surface reconstruction by cell therapy provides a unique opportunity to 
document the survival, networking, and integration of transplanted cells, through 
various techniques. A thorough clinical evaluation for presence of epithelial integ-
rity, lack of staining by  fl uorescein dyes, absence of vascularization, and corneal 
clarity is indicative of successful transplantation. A novel form of non-invasive 
method of documenting the survival and strati fi cation of the transplanted cells is by 
clinical confocal microscopy which documents the multilayering of corneal epithe-
lial cells, and remnants of the degraded HAM (if any). A minimally invasive method 
of documenting the proof of survival of transplanted cells is by impression cytology 
of the ocular surface which provides information on the phenotype of the cells lin-
ing epithelium in the central corneal region. Presence of corneal phenotype (K3+, 
K19−) and the absence of goblet cells indicate suggest successful transplantation. 
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 A recent study by Pauklin et al.  (  2009  )  on pannus tissue excised from LSCD 
patients showed that the epithelial lineage marker expression (Keratins- K3, K12, 
K19 and MUC5AC) was seen only in the areas close to the conjunctiva instead of in 
the central cornea of LSCD cases, but were reverted to the normal central corneal 
phenotype with signi fi cant reduction in in fl ammatory markers (IL-1alpha, IL-1beta, 
ICAM-1, VCAM-1 and VEGEF) post-LSCT. 

 It is important to note that the transplantation of limbal tissue or cells is done to 
restore the surface epithelium and corneal clarity and visual acuity needs to be 
assessed and evaluated in due course of time. Patients who show surface stabiliza-
tion but lack corneal clarity may require corneal transplantation for visual rehabili-
tation. The corneal specimen received from patients undergoing PK following 
CLET for visual rehabilitation provide us the unique opportunity to objectively 
document the proof of surviving cells through histological studies. 

 Earlier results of PKP in these eyes was not very encouraging probably because of 
the limited life span and limited proliferative potential of the TACs from PKP speci-
men, was insuf fi cient to restore the ocular surface epithelium on a long-term basis. 
Our data (unpublished) showed the presence of strati fi ed corneal epithelium and the 
establishment of basement membrane (collagen IV staining) in about 75% of cases 
(Fig.  29.2 ). This proves the concept that the transplanted limbal stem cells repopulate 
the damaged host corneal tissue and becomes functional as evident by the formation 
of its own basement membrane and by the expression of cornea speci fi c markers. 

 If resources and facilities are available, the corneal epithelial cells from the PK 
tissues can be harvested to provide a molecular proof of cell survival through DNA 
 fi nger printing in allogenic CLET treated patients. Studies have shown that the sur-
viving donor limbal epithelial cells in allogenic transplantations are responsible for 
the long-term graft survival. The clinical ef fi cacy of limbal transplantation does not 
necessarily correlate with the survival of donor cells on the ocular surface. Some 
reports have shown the presence of a chimera, wherein the surviving corneal epithe-
lium constitutes both the donor and the recipient cells, probably indicating that the 
surviving donor cells have participated in tissue repair. The use of laser capture 
microdissection (Zhou et al.  2006  )  and corneal impression cytology (Nelson  1988 ; 
Tseng  1985 ; Williams et al.  1995  )  allows for a clean examination without involving 
the stroma or other contaminants. 

 Williams et al.  (  1995  )  have investigated the survival of donor-derived epithelial 
cells based on impression cytology after limbal stem cell transplantation (allograft), 
using short tandem-repeat DNA polymorphisms (microsatellites) to distinguish the 
donor and recipient cells and showed that cells of donor genotype were present over 
the grafted areas at the time of surgery but were not detected in the central cornea 
until 12 weeks postoperatively, indicating that repopulation of the epithelial surface 
from the transplanted limbal stem cells took considerable time while only the recip-
ient-type cells were detected in the grafted eye by 20th week. Henderson et al. 
 (  1997  )  attempted to investigate donor cell survival    following corneal limbal stem 
cell grafting using amelogenin gene probe (a Y-speci fi c DNA probe) with PCR. The 
same group later (Henderson et al.  2001  )  demonstrated that a combination of 
impression cytology and single cell DNA  fi ngerprinting is suitable for detecting 
transplanted cells after corneal limbal allografting. 
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 Although there are no known cases of limbal dysfunction after removal of donor 
tissue from a healthy eye, the effect of initial trauma of healthy eye cannot be ruled 
out. Irreversible damage caused by the removal of limbal tissue from a partially 
stem cell de fi cient eye may be reduced by cultivated limbal epithelial sheets limiting 
the amount of excised tissue.  

    29.7   Outcome of Cultivated Limbal Epithelium 
Transplantation 

 Clinical outcome    is determined by noting the improvement in ocular surface stabil-
ity, as judged by non-recurrence of conjunctivalization and the absence of epithelial 
defects. There are several case reports and small case series reported in the literature 
using this technique. Table  29.3  summarizes the clinical outcome of CLET. We have 
reported the largest series of autologous cultivated limbal epithelial transplantation 
(CLET) in 2006 (Sangwan et al.  2006  ) . Eighty-eight eyes of 86 patients underwent 
autologous CLET between 2001 and 2003, alkali burn was the most common cause 
of LSCD (n = 56), and 61 of these 88 eyes had total LSCD. Success was achieved in 
73.1% (95% CI 63.3–82.9) and BCVA on Snellen’s chart improved from 17/78 
(21.8%) eyes to 41/78 (52.6%) having functional ambulatory vision (>20/200) post-
operatively. We have reported early results of penetrating keratoplasty (PKP) fol-
lowing CLET. 15 of 125 patients underwent PKP following CLET at a mean interval 
of 7 months. Fourteen of the 15 eyes had a successful corneal graft with stable cor-
neal epithelium (Sangwan et al.  2005  ) .  

 Koizumi et al.  (  2001  )  reported transplantation of allogenic cultivated corneal limbal 
epithelium from donor corneas. The cells were cultivated on denuded amniotic mem-
brane with 3 T3  fi broblast feeder cell layer. Air-lifting technique was used to achieve 
strati fi cation of the epithelium. Thirteen eyes with total LSCD from 11 patients were 
selected for the procedure. The cultivated epithelium was transplanted to the diseased 
eye. Simultaneous lamellar keratoplasty was performed in 5 patients with associated 
stromal scarring. All the recipients were started on an immunosuppression regime. 
After 48 h all of the 13 eyes showed regained epithelial integrity. On follow-up for 
6 months, 10 of the 13 eyes (77%) showed improved BCVA, a gain of at least two lines 
in the Snellen’s chart. However, 3 eyes experienced epithelial rejection. This  fi nding 
underscores the importance of proper immunosuppression for the allograft technique.  

    29.8   Conclusions and Future Perspectives on “Ocular Surface ”  
Regenerative Therapies 

 Though severe limbal stem cell de fi ciency is a rare disease, it has a unique role in 
unraveling the mysteries of stem cell concept in the limbus, and has set precedence 
in the  fi eld of cell therapy. This also has the unique distinction of bringing together 
the clinicians, scientists and cell biologists together in taking the science from bench 
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to bedside, and from protocol to practice. Thus ocular surface reconstruction has 
served as a model system which ful fi lled the principles of successful cell therapy 
wherein the desirable cell source is available in adequate quantities, well character-
ized and the surviving transplanted cells were documented to survive, network, inte-
grate and restore the function of the target tissue. Though the clinical outcome is 
de fi nitely rewarding in most experienced hands, a few aspects that require further 
attention include objective quanti fi cation of transplanted cells, development of tis-
sue and cell banking facilities, and a non-invasive method of in-vivo cell tracking so 
as to understand the homing and survival of transplanted cells into the limbal 
niche.      
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  Abstract   The lacrimal gland is a tubuloacinar gland located in the groove of the 
frontal bone, which is involved in synthesis and secretion of major tear proteins and 
other aqueous components of the trilayered tear  fi lm. Any injury to the lacrimal gland, 
which may be age related, drug or radiation therapy induced leads to dysfunction of 
the gland with a resultant hyperosmolarity of the tear  fi lm and its subsequent insta-
bility. This tear  fi lm instability leads to destabilization of the ocular surface homeo-
stasis and to a number of morbid complications like the dry eye syndrome. 

 The current treatment modality for chronic dry eye remains palliative, which 
provides only temporary symptomatic relief. One of the modalities of providing 
long-term bene fi t to these patients would be cell therapy to restore or replenish the 
damaged gland. This review describes the progress and promise of cell therapy for 
lacrimal gland regeneration for potential clinical application.     

     30.1   Introduction 

 The human lacrimal gland is a tubuloacinar, almond shaped gland located superior 
and lateral to the eye in the shallow depression of the frontal bone. The lacrimal 
gland can be divided into the main lacrimal gland (orbital and palpebral portions) 
and the accessory lacrimal glands (Gland of Wolfring and Krauss). The lacrimal 
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gland forms an important entity of the lacrimal functional unit (LFU), which 
comprises of the lacrimal gland, the ocular surface (cornea, conjunctiva and the 
meibomian gland) and the sensory and motor nerves that connect them. The LFU 
controls the secretion of the major components of the tear  fi lm and is overall respon-
sible for maintaining the stability of the tear  fi lm, transparency of the cornea and the 
quality of the image projected onto the retina (The de fi nition and classi fi cation of 
dry eye disease: report of the De fi nition and Classi fi cation Subcommittee of the 
International Dry Eye WorkShop  2007  ) . 

 Tear  fi lm is constituted of the secretions of the lacrimal gland, meibomian gland 
and the conjunctival goblet cells. It has three basic layers: aqueous, which is 3–8  m m 
thick and is composed of the secretions of the lacrimal gland; lipid, which is 0.2  m m 
thick and is secreted by the meibomian gland; and the mucin layer, 1  m m thick, 
secreted mainly by the conjunctival goblet cells (Fig.  30.1 ). The important constituents 
of human tear are electrolytes like sodium, potassium, calcium, magnesium, bicar-
bonate and chloride; and major proteins like lysozyme, lipocalin, lactoferrin, scIgA, 
albumin and IgG (Table  30.1 ). Other components of tear  fi lm include lipids like 
phosphatidylcholine and phosphatidylethanolamine; mucins like MUC4, MUC5AC, 
MUC1. Minor components like defensins, catalase cytokines also form a part of the 
tear  fi lm composition (Tiffany  2008  ) .   

 The tear  fi lm also contributes to the transparency of the cornea and determines 
the quality of image projected on the retina for cortical sensing. The periocular tear 
 fi lm is also responsible for providing nutrition to the cornea by acting as a coupling 
medium for the environmental oxygen; protecting the ocular surface due to the 

  Fig. 30.1    Layers of tear  fi lm        
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antimicrobial properties of lysozyme, lactoferrin and lipocalin present; and also 
providing physical protection to the ocular surface against the shearing force of 
blinking due to the mucins present in it (Tiffany  2008  ) .  

    30.2   Embryology and Development 

 The development of the human lacrimal gland has been the subject of numerous 
studies since the early 1900s. Most of these studies, other than the one published by 
Tripathi and Tripathi  (  1990  ) , report that the gland develops from the ectoderm of the 
superior conjunctival fornix in human embryos with a crown to rump length of 
22–24 mm (de la Cuadra-Blanco et al.  2003  ) . 

 The two main lacrimal gland lobes – the orbital and the palpebral lobes – originate 
not simultaneously but one after the other. The orbital lobe originates from the 
proliferation of conjunctival fornix epithelial cells in the form of  fi ve or six 
epithelial buds and its formation concludes by the end of the second month. This is 
followed by initiation of the palpebral lobe formation. The orbital and the palpebral 
lobes are separated by the levator muscle tendon, which forms during the third week 
of development. 

 Epithelial-mesenchymal interaction, with its associated cell signaling, has been 
considered by a number of authors to be responsible for morphogenesis, organogene-
sis, cell differentiation and growth (Sanders  1988 ; Martin  1998 ; Makarenkova et al. 
 2000  ) . Lacrimal gland development is an example of such an interaction in which 
the bud-like invagination of conjunctival epithelium at the fornix is the process, 
which initiates lacrimal gland development (Kammandel et al.  1999  ) . The mesen-
chymal cells surrounding the point of epithelial budding are the periocular cells of 

   Table 30.1    Composition of normal human tears   

 Composition  Concentration 

  Electrolytes   mmol/l 
 Sodium  128.7 
 Potassium  17 
 Calcium  0.32 
 Magnesium  0.35 
 Bicarbonate  12.4 
 Chloride  141.3 
  Major proteins   mg/l 
 Lysozyme  2.07 
 Lactoferrin  1.65 
 scIgA  1.93 
 Lipocalin  1.55 
 Albumin  0.04 
 IgG  0.004 
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neural crest origin (Johnston et al.  1979  ) . The tubular invaginations of the lacrimal 
gland extends and branches multiple times to form the lobular structure of the 
mature lacrimal gland.  

    30.3   Histology, Anatomy and Physiology 

 The lacrimal gland is a tuboacinar gland that consists of secretory epithelium 
arranged in a lobular pattern. These secretory acinar cells empty their secretions 
into ducts that anastomose into a larger nasolacrimal (NLD) duct which drains onto 
the ocular surface. Enveloping the secretory acinar cells are myoepithelial cells that 
contract and squeeze them facilitating the draining of the secretory components into 
the ducts. Between the lacrimal lobes are  fi broblasts, which produce the collagen 
and matrix of interstitial regions, and mast cells, which secrete histamine and hepa-
rin (Fig.  30.2 ). In addition to this basic tissue architecture, the lacrimal gland is 
highly inundated with traf fi cking B and T lymphocytes as well as plasma cells 
(Walcott  1998  ) .  

 The secretory acinar cells of the gland are columnar epithelium with basally 
located nucleus and a large perinuclear Golgi body. The ductal cells are more cuboidal 
in shape. The apical portion of the acinar and ductal cells has a number of vesicles 
and the cell base has an associated basement membrane that imparts the cells their 
polarity. Large junctional complex is found near the luminal pole that couples these 
cells electrically and chemically as well as mechanically attaches them with each 
other. Gap junctions like connexin 26 and 32 are also found here. The presence of a 
large number of junctional complexes between the epithelial cells indicate that these 
cells are very closely associated with each other (Walcott  1998  ) . 

 The lacrimal gland is innervated by the sympathetic as well as the parasympathetic 
arms of the autonomic nervous system (Matsumoto et al.  1992  ) . These nerves have 
a large number of cholinergic  fi bers and fewer adrenergic  fi bers. The parasympathetic 

  Fig. 30.2    Histology of normal human lacrimal gland  1  Secretory epithelial/acinar cells that 
synthesize and secrete major tear proteins.  2  Myoepithelial cells that envelope the acinar cells.  3  
Interstitium that has  fi broblasts that secretes collagen and other extracellular matrix       
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postganglionic neural cell bodies are found in the pterygopalatine (sphenopalatine) 
ganglion as well as the ciliary ganglion. Sympathetic  fi bers arise in the superior 
cervical ganglion. There is also some amount of sensory innervation of the gland 
from the trigeminal ganglia (van der Werf et al.  1996  ) . Even though the innervation 
is similar across different species yet the nature and pattern of innervations as well 
as the pathway from these ganglia to the gland vary signi fi cantly from species to 
species. 

 The lacrimal gland secretes a number of proteins like lysozyme, lactoferrin, 
lipocalin, scIgA (Tiffany  2008  ) . The secretion of these proteins is regulated by the 
nerves that innervate the gland and their associated nurotransmitters/neuropeptides 
(Walcott  1998  ) . The important receptors present on the lacrimal gland are acetyl-
choline receptors like muscarinc M3 (Mauduit et al.  1993  ) , vasoactive intestinal 
peptide type I and II, norepinephrine like alpha 1 and beta. Other receptors present 
are for neuropeptide Y, adenocorticotrophic hormone (ACTH) and alpha-melanocyte 
stimulating hormone. Since the epithelial cells of the gland are extensively 
coupled by junctional complexes, secondary messengers like inositol triphophate 
can easily diffuse between cells and activate the unstimulated cells too (Walcott 
 1998  ) . 

 The muscarinic receptors in the gland are linked to G proteins, which are in turn 
linked to phospholipase C. This, on activation, releases inositol phosphate 3 (IP3) 
and diacyl glycerol (DAG) (Dartt  1989  ) . IP3 induces the release of intracellular 
stores of calcium and opens calcium channels. DAG, on the other hand, activates 
protein kinase C isoenzymes, which further stimulates secretion. VIP receptors 
activate protein kinase A, which in turn causes cAMP release stimulating protein 
secretion (Hodges et al.  1997  ) . Alpha adrenergic compounds cause protein secretion 
by activating protein kinase C (Walcott  1998  ) . 

 Protein secretion in the acinar cells involves the fusion of vesicles with the apical 
membrane. There is also a basolateral membrane traf fi cking that is seen in these 
cells. This is responsible for the entry of molecules like prolactin into the cells. 
In addition, this basolateral membrane traf fi cking has also been implicated in 
antigen presentation and secretion of autoantigens (Mircheff et al.  1994  )  which 
leads to immune mediated apoptosis of acinar cells and loss of physiological function 
as seen in conditions like Sjogren’s syndrome.  

    30.4   The Dry Eye Syndrome 

 The lacrimal gland forms an integral part of the lacrimal functional unit (LFU) due 
to its physiological function of secreting the aqueous component of the tear  fi lm. 
Any perturbation in the functioning of this gland, which may be age related, drug 
induced, autoimmune or due to orbital radiotherapy leads to destabilization of the 
tear  fi lm which in turn leads to a chronic debilating condition called the dry eye 
syndrome or keratoconjunctivitis sicca (KCS). 
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 The International Dry Eye Workshop, 2007 (DEWS  2007  )  de fi ned dry eye as:

  Dry eye is a multifactorial disease of the tears and ocular surface that results in symptoms 
of discomfort, visual disturbances and tears  fi lm instability with potential damage to the 
ocular surface. It is accompanied by increased osmolarity of tear  fi lm and in fl ammation of 
the ocular surface.   

 The most important causative/contributing factors for dry eye are (DEWS  2007  ) :

   Primary lacrimal gland dysfunction due to reduction in circulating androgens  • 
  Secondary lacrimal gland dysfunction due to sarcoidosis, lymphoma etc.  • 
  Autoimmune diseases like Sjogren’s syndrome  • 
  Re fl ex hyposecretion as in contact lens wear, diabetes, exposure to systemic • 
drugs like antihistamines, beta blockers etc.  
  Orbital radiotherapy for ocular malignancies  • 
  Meibomian gland dysfunction     • 

    30.5   Etiology of Dry Eye Syndrome 

 Dry eye may be classi fi ed as aqueous de fi cient dry eye, caused due to lacrimal gland 
dysfunction; or evaporative dry eye, caused due to meibomian gland dysfunction. 
In the former, there is a de fi ciency in tear production itself due to perturbations in 
lacrimal gland function; and in evaporative dry eye, the rate of evaporation of tear 
from the ocular surface increases due to an unstable lipid  fi lm secreted by the dam-
aged meibomian gland (DEWS  2007  ) . 

 There has been a considerable increase in knowledge about the etiopathogenesis 
of dry eye syndrome in the past few years. The pathologic features of this condition 
include increased epithelial proliferation, strati fi cation and abnormal differentiation 
with maintenance of a basal phenotype (Jones et al.  1998  ) . This is accompanied by 
reduced expression of secretory and membrane-bound mucins by the ocular surface 
conjunctival epithelial cells (Danjo et al.  1998  )  compounding the effects of existing 
lacrimal dysfunction. 

 The two most important factors that contribute to the initiation and progression 
of dry eye are  tear hyperosmolarity  and  tear  fi lm instability  that adversely affects 
the ocular surface epithelial function and differentiation (   Gilbard et al.  1989a,   b  ) . 
Trauma to a poorly lubricated and unprotected ocular surface due to blinking or 
environmental factors becomes a confounding factor, which worsens the condition 
(Lemp  1995 ; Danjo et al.  1998  ) . Tear  fi lm stability, which is important in maintain-
ing clear and sharp vision, is threatened when the interactions between stabilizing 
tear  fi lm constituents are compromised either by decreased tear secretion, delayed 
clearance, or altered tear composition as is seen in xerophthalmia and allergic 
eye diseases. Ocular surface in fl ammation is secondary consequence. Re fl ex tear 
secretion in response to ocular irritation is seen as the initial compensatory mecha-
nism, but, with time, due to severe in fl ammation and chronic secretory dysfunction 
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a decrease in corneal sensation occurs which compromises the re fl ex response 
and results in even greater tear  fi lm instability. Dysfunction of the LFU is consi-
dered to play an important role in the evolution of different forms of dry eye 
(DEWS  2007  ) . 

 Even though tear  fl uid is secreted as a hypotonic  fl uid, yet due to excessive evap-
oration from the exposed ocular surface or low rate of aqueous tear  fl ow (or a com-
bination of the two) tear hyperosmolarity may arise. This hyperosmolarity stimulates 
various in fl ammatory pathways involving the MAP kinases, in fl ammatory cytok-
ines (interleukins, tumor necrosis factor alpha) and matrix metalloproteinases 
(MMP9). This cascade of events attracts the circulating T cells within the lacrimal 
glands. Under physiological conditions, the traf fi cking lymphocytes,  fi nding no 
in fl ammation, would undergo apoptosis. However, in the presence of in fl ammatory 
signals, these lymphocytes become activated and secrete pro-in fl ammatory cytokines, 
which cause homing of additional T cells to the tissue and an increase in the level 
of in fl ammation thereby aggravating the existing condition and forming a vicious 
loop of in fl ammation (Fig.  30.3 ) (Gao et al.  1998  ) . Any condition that results in 
hyper activity of the functional unit can also initiate in fl ammatory response within 
the lacrimal glands resulting in antigen presentation and cytokine secretion by 
the epithelial cells of the gland (Meggs  1993 ; Mircheff et al.  1998  ) . These 
pro-in fl ammatory mediators cause epithelial cell death by apoptosis and also loss 
of conjunctival goblet cells – a combinatorial assault that leads to worsening of 
the existing condition.   

    30.6   Aqueous De fi cient Dry Eye 

 In addition to release of in fl ammatory mediators, the etiology of dry eye also 
involves the loss of anti-in fl ammatory environment within the lacrimal glands, 
which may occur due to a drop in the levels of circulating androgens (Sullivan et al. 
 1984 ; Azzarolo et al.  1997  ) . At the time of menopause in women, or due to various 
pathologic conditions, the level of circulating androgens may drop below a threshold 
level, thus making the tissues vulnerable for the initiation and progression of 
immune-based in fl ammation. A number of studies have shown a signi fi cant correla-
tion between the levels of these in fl ammatory cytokines and the severity of ocular 
surface irritation symptoms, corneal  fl uorescein staining and the severity of con-
junctival squamous metaplasia in patients (P fl ugfelder et al.  1999  ) . 

 Severe dry eye is also seen in patients of Sjogren’s syndrome, which is an 
autoimmune disorder. In Sjogren’s, autoantigens are expressed at the surface of the 
epithelial cells which causes homing and retention of tissue speci fi c CD4 and CD8 
cells. These lymphocytes cause loss of lacrimal acinar and ductal cells due to an 
immune mediated attack leading to tear hyposecretion and destruction of the gland. 
The precise trigger factors for Sjogren’s is not known but risk factors include genetic 
pro fi le, low androgen pool and certain viruses. 
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 Radiation therapy, which represents a commonly used modality in the treatment 
of ocular and oculoadenexal disorders including benign and malignant tumors, also 
contributes to the development of dry eye syndrome in patients. Despite a rapid 
evolution in the  fi eld of radiotherapy over the past years, a signi fi cant number of 
patients are still seen with acute and chronic ophthalmic complications including 
severe dry eye (Alberti  1997 ; Durkin et al.  2007  ) . Preliminary data from our institute 
indicates that chronic dry eye develops in over 49 % of the patients who undergo 
external beam radiation therapy for ocular malignancies (unpublished data). 

 The causes of dry eye post-radiotherapy are multifactorial: (a) decrease in the 
lacrimal secretion leading to loss of aqueous layer; (b) ocular surface damage with 
goblet cell loss leading to loss of mucin secretion; (c) meibomian gland atrophy 
with loss of lipid layer secretion. In the early post-radiotherapy phase, lacrimal 
gland loss has been shown to be due to in fl ammation mediated apoptotic loss of 
acinar cells. In contrast, stem cells becoming sterile is proposed to be the main 
cause in late phase resulting in insuf fi cient replacement of acinar cells with resultant 
decrease in tear secretion. This combined with the radiation induced  fi brosis leads 
to loss of lacrimal function with progressive decrease in tear volume and  fi nally 
dry eye (Stephens et al.  1991 ; Parsons et al.  1996 ; Barabino et al.  2005 ; Konings 
et al.  2005  ) . 
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  Fig. 30.3    Etiology of dry eye disease       
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 Contact lens wear is yet another condition that may lead to the development of 
severe dry eye in long-term users. The mechanism underlying the development of 
dry eye in these patients is probably the reduction in corneal sensitivity and an 
increase in tear  fi lm osmolarity due to chronic usage. Similar arguments have been 
proposed for the development of dry eye post-LASIK therapy.  

    30.7   Current Therapies for KCS 

 Even though there has been signi fi cant advancement in the knowledge about lacri-
mal gland dysfunction and development of dry eye syndrome, yet the same cannot 
be said for the management of the condition. Dry eye is still a chronic debilating 
condition, the treatment and management of which aims at palliation and improving 
the quality of life of the patient. The current treatment modalities available are 
lubricating agents like hydroxymethylcellulose, solutions containing bicarbonates 
and potassium, hyposmotic arti fi cial tears (Hypotears, Novartis Ophthalmics) and 
arti fi cial serum. In cases of severe dry eye, therapies such as anti-in fl ammatory 
medications (cyclosporins A, corticosteroids), pharmacological tear stimulants like 
diquafosol, rebamipide, ecabet sodium, pilocarpine etc. are employed. In certain 
instances, where the patient does not get any relief in symptoms by these, surgical 
interventions like punctal occlusion and salivary gland autotransplantation are done 
to slow down the progress of the condition (Management and therapy of dry eye 
disease: report of the Management and Therapy Subcommittee of the International 
Dry Eye WorkShop  2007  ) . 

 On recommendation of the sub-committee on the therapy and management of 
dry eye, DEWS 2007 (Management and therapy of dry eye disease: report of the 
Management and Therapy Subcommittee of the International Dry Eye WorkShop 
 2007  ) , the treatment/management protocol for this condition is now shifting towards 
employing strategies that would increase the natural production of tears, maintain 
ocular surface integrity and reduce/eliminate the levels of existing in fl ammation. 
With these objectives in mind various therapeutic avenues are being explored with 
the inclusion of cell therapy for restoring the damaged lacrimal gland.  

    30.8   Research on Lacrimal Gland 

 Given the sparsity of data on the etiopathogenesis and treatment of dry eye, it is still 
not clear how alteration in tear  fi lm composition can cause such a vicious cycle of 
tear  fi lm instability and chronic ocular in fl ammation. Even though a lot of research 
is being directed towards pro fi ling the proteins, lipids and other constituents present 
in human tear yet there is a glaring lack of comparative data between normal 
individuals and dry eye patients. 
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    30.8.1   Animal Studies 

    30.8.1.1    In-Vitro  Cultures 

 An important area of investigation in this  fi eld is to  fi nd a common link between tear 
 fi lm osmolarity, tear  fi lm break up response and the resultant in fl ammatory stress. 
In order to facilitate these studies, not just  in-vivo  but also  in-vitro  models are being 
developed that would greatly assist the investigation into the secretory repertoire of 
lacrimal gland epithelia, regulation of secretion and etiopathogenesis of lacrimal 
gland conditions like Sjogren’s syndrome. 

 Procedure for  in-vitro  culturing of lacrimal gland acinar cells has been evolv-
ing for nearly two decades now. Oliver et al. published one of the  fi rst reports on 
 in-vitro  culture of rat lacrimal gland acinar cells in 1987 wherein they described 
a method for culturing a dividing population of morphologically differentiated 
rat lacrimal acinar cells on a three-dimensional, reconstituted basement mem-
brane gel. The cultured acinar cells proliferated on the basement matrix and 
showed the presence of cytoplasmic secretory granules (Oliver et al.  1987  ) . 
However, their culture system could only maintain the epithelial cells for 6–7 
days after which  fi broblast overgrowth was observed. Successful  in-vitro  
culture of lacrimal acinar cells was  fi rst achieved and published by Meneray and 
Rismondo in two separate reports in 1994 (Meneray et al.  1994 ; Rismondo et al. 
 1994  ) . The importance of media formulation, supplement pro fi le and extra-
cellular matrix composition for optimal growth and functionality of these cells 
was  fi rst reported by Hann et al.  (  1991  )  and these  fi ndings were supported by a 
number of subsequent reports. 

 A major problem faced by all these investigators was that the lacrimal acinar 
cells could not be induced to proliferate signi fi cantly  in-vitro.  This issue was 
resolved by Schonthal et al. ,  who reported in 2000 that the i n-vitro  proliferation of 
lacrimal acinar cells could be improved signi fi cantly by the use of EGF, dihydrotes-
tosterone (DHT), Matrigel and HepatoStim culture medium (Schonthal et al.  2000  ) . 
Recent studies report the use of polyethersulfone dead-end tube (Long et al.  2006  ) , 
denuded amniotic membrane (Schrader et al.  2007  )  as scaffolds and rotary cell 
culture system (Schrader et al.  2009  )  for successful  in-vitro  culture of rat or rabbit 
lacrimal glands. 

 The effect of androgen on the control of secretory component output by the lac-
rimal gland has been well established. The effect of androgens and androgen 
analogues on  in-vitro  culture of lacrimal acinar cells has helped elucidate the control 
that the androgens exert on the synthesis and secretion of secretory component 
(Sullivan et al.  1984,   1990 ; Hann et al.  1991 ; Kelleher et al.  1991  )  as well as other 
biochemical parameters related to the lacrimal secretion including the basal tear 
 fl ow rate (Azzarolo et al.  1997  ) . 

 The culture systems developed for the lacrimal acinar cells have also been 
optimized to assess the functionality of these cells. The currently employed condi-
tions for the  in-vitro  culture of these secretory cells support the  in-viv o mimicry of 
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their secretion pattern as elucidated by the detection of scIgA, lactoferrin, lysozyme, 
lacritin and a number of other tear proteins in the culture supernatant. 

 The last couple of years have seen an increase in the knowledge about the pres-
ence of stem-like cells in the lacrimal gland of mice (You et al.  2011  ) , rat (Shatos 
et al.  2012  )  and humans (Tiwari et al.  2012  ) . These studies indicate the inherent 
potential of the gland to heal itself following an insult. The study published by You 
et al.  (  2011  )  showed that post injection of interleukin into the mouse lacrimal gland 
which destroys areas in the gland, stem-like cells migrate towards the site of injury 
and heal the wound. These cells can be harvested and grown under  in-vitro  condi-
tions too. However, the authors report minimum  in-vitro  growth from uninjured 
gland. In contrast, the recent study by Shatos et al. (  2012  )  on rat lacrimal gland and 
our own experience with human lacrimal gland showed that stem-like cells are pres-
ent in the native, uninjured gland too which can be maintained under appropriate 
 in-vitro  conditions. 

 The presence of stem cells in the lacrimal gland is an important  fi nding that leads 
us to believe that these cells can be recruited to salvage the damaged gland. However, 
before we take a leap of faith the viability, homing and functionality of these cells 
need to be established by more extensive  in-vitro  studies and independent animal 
experimentation.  

    30.8.1.2   Animal Models 

 In order to better understand this condition, animal models have been developed 
which mimic the features of human dry eye syndrome. The important animal models 
that have increased our knowledge of this condition are: 

  Mouse models  created using scopolamine and environmental dessicating stress 
show that osmolarity of tear as well as secretion of in fl ammatory cytokines is 
increased under such condition (Gilbard et al.  1989a,   b ; Stewart et al.  2005  ) . 

  Mouse model  of Sjogren syndrome dry eye have also been developed and it 
has been shown in these models that androgens have the potential to reduce the 
in fl ammatory response due to autoantigen presentation. 

  Neurturin de fi cient mice  that develop dry eye and show elevated levels of 
in fl ammatory mediators in their tears (Song et al.  2003  ) . 

  Rabbit model of KCS  created using the technique of ablation, which shows that 
steroids like dexamethasone can be used to reverse the ocular surface damage and 
also to increase the low tear  fi lm break up time (Nagelhout et al.  2005  ) . 

 Even though it is undeniable that these animal models have indeed increased our 
basic understanding behind the etiopathology of dry eye, yet the fact remains that 
the extent to which these animal models mimic the human condition is not clear. 
In order to bridge this gap in understanding the similarity/differences between the 
animal form and the human form of the dry eye condition, it is imperative that 



786 S. Tiwari and G.K. Vemuganti

studies be conducted on human tissue. Since it is unethical to undertake such studies 
without suf fi cient background information,  in-vitro  models of human lacrimal gland 
become very important tool for research.   

    30.8.2   Human Lacrimal Gland  In-Vitro  Cultures 

  In-vitro  work on human lacrimal gland cultures is scarce, possibly due to the 
dif fi culty in obtaining human tissue for research. To the best of our knowledge and 
literature search, there is just one report published by Yoshino in 2000 (Yoshino 
 2000  ) , which dealt with establishing human lacrimal cultures from cadaveric tissue. 
However, the study only reported the potential of these cells to secrete lactoferrin 
(Table     30.2 ).  

 Our group initiated work on human lacrimal gland cultures and reported the 
establishment of functionally viable human lacrimal gland  in-vitro  culture system 

   Table 30.2     In-vitro  lacrimal gland research: Information matrix   

 Year  Species   In-vitro  research  References 

 1987  Rat  Established culture  Oliver et al.  (  1987  )  
 1991  Rat  Importance of media & growth 

factors for in-vitro cultures 
 Hann et al.  (  1991  )  

 1994  Rabbit  Physiologically responsive  
in-vitro  cultures 

 Menerey et al.  (  1994  )  
 Rismondo et al.  (  1994  )  

 2000  Rabbit  Puri fi ed acinar cell preparation  Guo et al.  (  2000  )  
 2000  Rabbit  Use of EGF, DHT, Matrigel 

and HepatoSTIM for culture 
 Schonthal et al.  (  2000  )  

 2000  Human   In-vitro  culture from 
cadaveric tissue 

 Yoshino  (  2000  )  

 1984  Rat  Effect of androgen 
on synthesis and secretion 
by lacrimal gland 

 Sullivan et al.  (  1984,   1990  )  
 1990  Hann et al.  (  1991  )  
 1991  Kelleher et al.  (  1991  )  
 2006  Rat   In-vitro  culture in polyethersulfone 

dead end tube 
 Long et al.  (  2006  )  

 2007  Rabbit   In-vitro  culture on amniotic membrane  Schrader et al.  (  2007  )  
 2009  Rabbit  Rotary cell culture system  Schrader et al.  (  2009  )  
 2011  Mouse  Report of mesenchymal stem cells 

in lacrimal gland post injury 
 You et al.  (  2011  )  

 2012  Human  Established functionally viable 
cultures from fresh tissue, 

 Tiwari et al.  (  2012  )  

 Preliminary report on presence 
of stem cells in native 
human lacrimal gland 

 2012  Rat  Progenitor cells in uninjured 
rat lacrimal gland 

 Shatos et al.  (  2012  )  
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from fresh exenteration specimens (Tiwari et al.  2012  ) . The study also evaluated the 
growth of these cells on three matrices: Matrigel, collagen and denuded human 
amniotic membrane. The cultured cells showed three distinct morphologies: the 
cells with cobblestone epithelial morphology showed positivity for epithelial markers 
like CK3/12 and E-cadherin, the spindle shaped  fi broblasts were positive for CD90 
and vimentin; and cells with a ‘whorled’ epitheloid morphology were positive for 
myoepithelial markers GFAP and S-100. One of the important contributions of this 
paper is the evaluation of the conditioned media, which provides evidence that the 
cultured cells synthesize and secrete quanti fi able levels of major tear proteins 
(statistically signi fi cantly more than negative controls) like scIgA, lactoferrin and 
lysozyme into the culture supernatant (Fig.  30.4 ). These cells could be maintained 
 in-vitro,  with intact secretory function, for a minimum period of 21 days. The cells 
show maximum levels of protein secretion by day 14 and then a decline over a 
period of time as expected. In addition, by day 16–18, these  in-vitro  cultures show 
the appearance of spherules and structures that look like ductal connections between 
them. Though further studies are warranted, the preliminary evidence points towards 
 in-vitro  gland formation.  

 Towards the long-term goal of cell therapy in chronic dry eye condition, it 
would be important to evaluate if these cells could be sustained. Using FACS and 
immunocytochemistry, we observed presence of stem-like cells (ABCG2 positive, 
ALDH high) in the native human lacrimal gland as well as in our  in-vitro  cultures. 
The cell suspension obtained from native gland (prior to culturing) show 

  Fig. 30.4    Tear protein secretion by in-vitro human lacrimal gland cultures pre and post carbachol 
stimulation (Mean optical values can be correlated to protein levels)       
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3.1 ± 0.61% to be positive for the stem cell marker ABCG2. The number of cells 
that show ABCG2 positivity by day 14 is 0.3 ± 0.15%, which decreases slightly to 
0.2 ± 0.13% by day 21.   

    30.9   Conclusion 

 Dry eye can be an extremely debilitating condition with high incidence of associ-
ated morbidity. The current prevalence of dry eye in the world is estimated at around 
11–22% (Abelson et al.  2009  ) . In the Indian context, these numbers are estimated 
to be around 18.4–20% (Sahai and Malik  2005 ; Gupta et al.  2008  ) . These epide-
miological numbers are a good indicator of the need for research on dry eye 
syndrome. 

 Even though we have come a long way in managing the chronic dry eye patients 
and improving their quality of life, yet there are many existing gaps in literature and 
a lot more needs to be done for these patients therapeutically. Large, well-de fi ned, 
staged and age-matched studies that provide further insights into pathobiology of 
the disease progression and pinpoint to predictive biomarkers in tears would pave 
way for speci fi c treatment. 

 A lot of what we know of KCS today has been by correlating animal data to 
human scenario. In order to lend credibility to the accrued knowledge, it is essential 
that a comparative study be made between human and mouse/rabbit tears and 
ocular surface protein- lipid pro fi les. This would enable us to identify the common 
components and pathways involved in various forms of this disorder and would also 
give important clues about the treatment of this condition. 

 Finally, restoration of physiological function can possibly be achieved by replen-
ishing the stores of damaged tissue, hence cell therapy for chronic cases of dry eye 
appears a promising alternative.      
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  Abstract   Medicine is at the doorsteps of a phenomenal revolution, brought by the 
advances in the stem cell  fi eld and the development of new technologies to engi-
neer cells and tissues into more complex organs. The promise of a true regenerative 
approach to organ damage and loss of function is closer than ever of becoming 
a reality. The auditory  fi eld is participating of these developments with high 
 expectations. Since the cochlea is an organ of dif fi cult access and with very limited 
regenerative capacity, conventional therapeutic approaches have failed and, 
 currently, the only treatments available are in the form of hearing aids and cochlear 
implants. The potential restoration of hearing by the use of exogenous stem cells 
will offer a solution to a condition that has very limited options. In this chapter, 
we are reviewing the increasing volume of research on this emerging  fi eld and 
 discussing the key elements that need to be developed further, in order to translate 
the basic science into a clinical reality.      

    31.1   Introduction 

 Hearing, one of our primordial senses, is crucial for communication, pleasure and 
awareness. The impact of a hearing de fi cit, especially during childhood, is huge. 
It could lead to problems with the development of speech and language having 
implications for social integration and affecting quality of life as a whole. According 
to 2005 estimates by the World Health Organization (WHO), 278 million people 
worldwide have moderate to profound hearing loss in both ears (  www.who.int/
mediacentre/factsheets/fs300/en/index.html    ). 
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 Hearing impairment is most commonly caused by both inherited and acquired 
factors such as noise, prescription of ototoxic drugs or age (Holley  2005  ) . The 
pathological changes underpinning hearing loss are concentrated mainly to the 
inner ear, which is the primary centre for hearing. The process of sound perception 
begins at the  cochlea , a small organ situated within the temporal bone, which con-
verts the mechanical sound wave into an electrical, nerve-transmitted signal. The 
cochlea contains two major types of sensory receptor cells, the inner hair cells 
(IHCs) and the outer hair cells (OHCs). The IHCs are the primary transducers, 
translating the displacement of their apical hair bundles, induced by the sound 
wave, into a depolarizing signal. The OHCs, on the other hand, receive efferent 
stimulus from higher control centres to modulate the auditory signal and contribute 
to magnify the sensitivity of the system (Webster  1992  ) . The IHC signals are con-
veyed to higher auditory nuclei in the brainstem via the spiral ganglion neurons 
(SGNs), the primary order neuron of the auditory pathway (Fig.  31.1 ). There are 
several nuclei in the brainstem responsible for adjusting and tuning the signal from 
the cochlea before sending  fi bres for  fi nal interpretation of sound to the auditory 
cortex. The loss of sensory cells in the cochlea accounts for the majority of hearing 

  Fig. 31.1    Schematic illustration showing the anatomy of the cochlear duct. The cochlea comprises 
three  fl uid- fi lled chambers, separated in part by a bony structure, the osseous spiral lamina. The 
cochlear duct can be divided according to the type of  fl uid. The perilymph, contained in the Scala 
Vestibuli ( SV ) and Scala Tympani ( ST ) has an ionic composition similar to the extracellular 
medium, with high sodium concentration and low potassium. The Scala Media ( SM ) contains the 
endolymph, which in contrast to the perilymph, is high in potassium and low in sodium. The SM 
compartment harbours the organ of Corti, where the sensory hair cells play a crucial role in 
converting the mechanical sound wave into an electrical neural signal that is then sent to the audi-
tory neurons. These auditory neurons have a bipolar morphology, with a dendrite that receives 
information from hair cells in the organ of Corti and the axon, which resides in the auditory nerve. 
The cell bodies of these neurons form the spiral ganglion, located in a discrete compartment, the 
Rosenthal’s canal ( RC )       
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de fi cits (90%), and is classi fi ed as sensorineural hearing loss (SNHL). Such deafness 
can be caused by primary degeneration of the spiral ganglion neurons, in what is 
known as auditory neuropathy or by the primary loss of hair cells (Webster and 
Webster  1981 ; Hardie and Shepherd  1999  ) . Secondary degeneration of neurons 
commonly follows HC loss and cell death occurs due to lack of trophic support 
(Fritzsch et al.  1997  ) . However, in humans, this process is highly variable and 
depends on several factors (Nadol et al.  1989 ; Nadol  1997  ) .   

    31.2   The Adult Mammalian Cochlea Does Not Regenerate 
Its Hair Cells or Neurons 

 While non-mammalian species can repair and heal their damaged sensory epithelia, 
the mammalian cochlea does not have the potential to regenerate neither the hair 
cells nor the sensory neurons (Raphael  2002  ) . In avians and lower vertebrates, 
supporting cells (SCs) can be triggered by the signal of dying hair cells to replace 
them by either proliferating or transdifferentiating modes (Morest and Cotanche 
 2004  ) . Just like in birds, the mammalian supporting cell shares a common progeni-
tor with hair cells during development (Fekete et al.  1998  ) . However SCs of the 
mammalian organ of Corti fail to show any regenerative response to HC loss, via 
either direct transdifferentiation or mitosis (Forge et al.  1998  ) . The vestibular organ 
(including the utricle, the saccule and the cristae ampullaris) is also a mechanosen-
sory structure located in the inner ear that conveys information on position and 
gravitational acceleration. A mild regeneration of hair cells has been observed in the 
vestibular sensory epithelia in guinea pigs following ototoxic drug treatment at 
different time-points (Forge et al.  1993  ) . Recently, a study on the murine utricle has 
con fi rmed evidence that vestibular hair cells can spontaneously regenerate after 
exposure to the ototoxic drug gentamycin. Large number of immature hair cells 
could be seen as early as 2 weeks after the lesion. However, neither the regenerated 
cell numbers nor their appearance were normal (Kawamoto et al.  2009  ) . Population 
of stem cells can be isolated from the adult mouse utricle (Li et al.  2003a  ) , but the 
population virtually disappears from the mouse cochlea after the third week of age 
(Oshima et al.  2007  ) . The proliferation and differentiation of mouse inner ear stem 
cells in vitro seems to be regulated by Notch signalling, just as the progenitors 
in vivo. Inhibition of Notch signalling by  g -secretase enhances hair differentiation 
by upregulating the expression of Atoh1. On the other hand, activation of Notch 
signalling by its intracellular domain (NICD) increases proliferation but also dif-
ferentiation of neural phenotypes by upregulating Sox2 and the neuronal trancrip-
tion factor Ngn1 (Jeon et al.  2011  ) . 

 The mature vestibular and auditory organs differ greatly, not only in their 
ability to contain stem cells but also in their potential for regeneration. What is 
the underlying explanation for the differences of these two related, neighbour-
ing sense organs? Part of the answer may lie in the fact that cochlear supporting 
cells become terminally postmitotic during embryogenesis whereas supporting 
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cell in the vestibular organ show a lingering proliferative capacity (Rubel et al.  1995  ) . 
However, it is not clear whether the lack of mammalian hair cell regeneration 
could be due to an intrinsic loss of competence for SC to divide and differenti-
ate, to the absence of appropriate mitogenic signals, or to the presence of 
instructive signals that actively block the regenerative capacity. The fact that 
proliferative stem cells cannot be isolated from the murine cochlea after the 
third week of age, despite of the presence of mitogens in the media and the 
removal from any potential inhibition present in the tissue, would suggest that 
changes are more likely intrinsic and  fi xed. Cell cycle regulators are believed to 
be key factors in maintaining the post-mitotic state of SCs. Upregulation of 
p27 Kip1 , a cyclin-dependent kinase inhibitor (CDKI) is found in the cochlear 
epithelium at the same time that terminal mitosis begins during embryogenesis, 
and it remains in the SC till the adulthood (Chen and Segil  1999  ) . Evidence has 
been presented that a perinatal population of supporting cells can downregulate 
p27 Kip1   in vitro  and re-enter the cell cycle. This ability is severely reduced by the 
time they reach to P14. However, even at this stage, a small proportion of 
cochlear supporting cells can transdifferentiate in vitro into hair cells-like cells 
(White et al.  2006  ) . Supporting further the idea that the ability of these cells to 
proliferate is p27 Kip1 -dependant, cells taken from null animals had an enhanced 
proliferative capacity in culture when compared with wild type-ones (White 
et al.  2006  ) . The level of expression of p27 Kip1  protein remains robust in differ-
entiated cochlear SCs  in vivo , suggesting that p27 Kip1  imposes strong inhibition 
on cell mitosis in differentiated SCs and may prevent them from dividing after 
HC loss. The inhibition of SC proliferation seems to be a major factor that 
blocks the possibility of HC regeneration in the mammalian cochlea. Likewise, 
the SCs may loose their ability to convert directly into HCs over development. 
Experiments have shown that new HCs are generated when existing HCs are 
ablated in the mouse organ of Corti prior to E16, but this ability is lost after E16 
(Kelley et al.  1995  ) . Early postnatal rats treated with the ototoxic drug amikacin 
generated cells that had mixed features between hair and supporting cells. These 
cells have been interpreted as having attempted direct transdifferentiation but 
failing to achieve complete HC morphological characteristics (Daudet et al. 
 1998  ) . Together, these  fi ndings suggest that the ability of auditory SCs to 
undergo direct transdifferentiation is limited over the developmental process. 
Mature SCs may have differentiated too far for functional, direct transdifferen-
tiation to occur. 

 In contrast to cochlear HC, there is some evidence to suggest the presence of 
neural progenitor cells in the adult auditory nerve. Although Oshima et al. failed 
to isolate stem cells/progenitors from the spiral ganglion of adult mice (Oshima 
et al.  2007  ) , Rask-Anderson et al. isolated nestin-positive neural progenitor that 
also expressed TrkB and TrkC from adult human and guinea pig spiral ganglion 
tissues (Rask-Andersen et al.  2005  ) . Regeneration of SGN cannot be observed 
after degeneration; therefore damage to neurons can lead to permanent deafness 
(Sekiya et al.  2003  ) . Even when the cell body and central axon survive, deafness 
can still occur due to degeneration of peripheral processes (Nadol  1997  ) . SGN 
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degeneration has been described in a variety of pathologies. Exposure to sound 
pressure levels that do not harm HC and cause HC loss can still insult the SGN 
and trigger neuronal degeneration (Kujawa and Liberman  2006  ) . In humans, the 
regrowth of SGNs does not appear to be clinically signi fi cant (Nadol  1997  ) . In sum-
mary, although there are indications that some reparative potential is still present 
in the adult spiral ganglion, recovery does not seem to take place at any substan-
tial rate after damage to HCs or neurons in the adult mammalian cochlea.  

    31.3   Prevention of Damage by Neurotrophic Factors 

 There have been numerous attempts to protect and prevent HCs and SGNs from 
degeneration triggered by drugs, noise or age by treatment with neurotrophic 
factors (NTFs) or exogenous reagents. The major exogenous compounds that 
have been applied to the auditory system are neurotrophin-3 (NT-3) and brain 
derived neurotrophic factor (BDNF). Neurotrophin secretion is reciprocal among 
HCs and SGNs (Duan et al.  2004  ) . The production of NT-3 is crucial to the sur-
vival of type 1 SGNs during development of IHCs innervation whereas BDNF is 
required for SGN type 2 survival (Ernfors et al.  1995  ) . Degeneration of adult 
SGNs can be prevented by infusion of NT-3 (Ernfors et al.  1996 ; Duan et al. 
 2000  ) . These efforts have shown the bene fi t of NTFs supplementation in reduc-
ing the degeneration of SGNs secondary to HC loss, suggesting possible clinical 
improving for the cochlear implantation. It has been shown that infusion of a 
combination of BDNF and ciliary neurotrophic factor (CNTF) into the cochlea 
can enhance the survival of SGNs and also restore the evoked auditory brainstem 
response (eABRs) after chemically inducing deafness and mimicking the cochlear 
implantation by introducing a platinum-iridium electrode to deliver electrical 
stimulation (Shinohara et al.  2002  ) . Recently, Agterberg et al. have shown a 
signi fi cantly improvement of eABR thresholds after BDNF treatment via osmotic 
pump 2 weeks after cessation of treatment in the HCs degeneration model induced 
by kanamycin (Agterberg et al.  2009  ) . Other routes of administration (such as 
BDNF-embedded gelfoam applied to the round window) have been explored, 
with more modest sucess (Havenith et al.  2011  ) . A potentially interesting devel-
opment is the use of cells to deliver the necessary neurotrophins. This applica-
tion should bypass the limited delivery time associated with the use of osmotic 
pumps. When BDNF-expressing Schwann cells, encapsulated in an alginate 
matrix, were inserted in the cochlea of deaf guinea pigs it showed enhanced sur-
vival of auditory neurons (Pettingill et al.  2011  ) . Although NTFs increase the 
SGN survival after HC degeneration producing an enhancement of functional 
capability, they have not yet been tested in a real clinical condition and their 
application remains unproven. However, once their safety for human application 
is established, they would likely be of clinical utility as supportive treatment during 
cochlear implantation.  



798 N. Jongkamonwiwat and M.N. Rivolta

    31.4   A Therapeutic Solution for Deafness: The Cochlear 
Implant 

 Giving the lack of a regenerative response in the mammalian ear, the development 
of a surgically implanted prosthesis was seen as the only medical effective therapy 
for hearing loss. The  fi rst attempts for cochlear implantation were performed in the 
1950s by the collaboration between Djourno and Eryies, a French surgeon and an 
engineer, to place a coil of wire in the inner ear of two deaf patients. Although these 
trials failed after a short time, they kick-started an area of research that was going to 
deliver substantial advances (Eisen  2003  ) . A modern cochlear implant is an elec-
tronic device that can be divided into two major parts: the external head piece that 
includes a microphone and speech processor and is placed on the skin close to the 
temporal bone area, and the internal cochlear electrode. The external component 
functions as a transmitter to process sound signals and is connected to the receiving 
coil which, secured on the temporal bone beneath the skin, is responsible to convert 
the signals into electric impulses and deliver them through an internal cable to the 
implanted electrode in the cochlea. An array of up to 22 electrodes wound up 
through the scala tympani of the cochlea stimulates the SGNs, which in turn sends 
the information to the brain via the auditory nuclei. The cochlear implant can give a 
quality of sound discrimination  fi ne enough to understand speech but post-implan-
tation rehabilitation is critical for ensuring the effectiveness of treatment. Modern 
cochlear implants allow the typical patient to understand more than 90% of words 
in unfamiliar sentences when presented in quiet listening conditions (Spahr and 
Dorman  2004  ) . Normal criteria for implantation will require that the candidate be 
severe to profoundly deaf in both ears and SGNs will have to be preserved. In certain 
parts of the world, the high costs of the operation and prosthesis have a heavy 
in fl uence in their accessibility. Because many patients were unable to bene fi t from 
cochlear implantation due to an auditory nerve dysfunction, this led to the develop-
ment of the auditory brainstem implant (ABI). The principle of ABI is similar to 
cochlear implant but bypasses the function of SGNs by stimulating the cochlear 
nucleus (CN) directly via surface mounted ‘button’ electrodes (Moore and Shannon 
 2009  ) . This requires an electrode implanted directly into the brainstem, making this 
device more risky and still not widely used. The best performance of ABI is still 
poor when compared with cochlear implantation (Moore and Shannon  2009  ) .  

    31.5   Cellular Replacement: A Promising Therapeutic Strategy 

 Given the lack of endogenous regeneration and the limited therapeutic range 
available, the potential to develop a treatment based on the delivery of exogenous 
cells offers new hopes. Cell-based approaches have been proposed directed to the 
replacement or restoration of damaged HCs and/or SGNs. Stem cells are excellent 
candidates for biological implantation as they have the potential to proliferate 
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and differentiate, both required features for a regenerative strategy option. The 
optimisation of a cell transplantation strategy is a phenomenal task, since there 
are huge variables to consider in each experimental paradigm. The range of differ-
ent stem cells and cell lines of potential use, the state of the host tissue and the 
routes for delivery are all issues that could affect the ef fi ciency of transplantation. 
Stem cell transplantation experiments could also be excellent models in the context 
of drug discovery and development. They may be combined with supplemental 
treatments such as NTFs or exogenous compounds that could provide the niche 
for transplanted cell survival or, alternatively support differentiation into the target 
cell type. In the following sections, we will discuss the current evidence on the 
achievements and challenges lying ahead for stem cell-based therapeutic strate-
gies for hair cell and spiral ganglion cell loss, emphasising on the different cell 
types and delivery routes used in each experimental condition.  

    31.6   Cell Candidates for Transplantation 

 Several stem cell types and lines have been used in transplantation experiments, 
ranging from directly transplanting undifferentiated embryonic (ESCs) and mesen-
chymal stem cells (MSCs) to various kinds of chemically differentiated lineages, 
including some genetically modi fi ed cells. 

    31.6.1   Embryonic Stem Cells 

 Most of the stem cells used so far in transplantation studies have been from murine 
origin. Many ESCs have also been genetically modi fi ed by tagging them with green 
 fl uorescent protein (eGFP), a reporter gene used for tracing after transplantation. 
In a study performed in deafened guinea pigs, undifferentiated and partially differ-
entiated mouse embryonic stem (ES) cells were delivered into the cochleae 
(Hildebrand et al.  2005  ) . Cells survived in the site of transplantation and were also 
observed in the cochlear chambers, stria vascularis, endolymph  fl uid of the scala 
media and spiral ligament for a postoperative period of at least 9 weeks. However, 
cells failed to differentiate. There was no evidence of signi fi cant immunological 
rejection of the transplanted cells, this being quite relevant since no apparent immu-
nosuppressant treatment was provided. Sekiya et al. described extensive migration 
of mESCs in the cochlear modiolus after transplantation (Sekiya et al.  2006  ) . Cells 
were observed not only in the cochlear nerve but were also present in the Rosenthal’s 
canal and scala media. Although they appeared to migrate more extensively into the 
damaged auditory nerve than on undamaged ones, cells on intact nerves showed 
more signs of neuronal differentiation. In a different study, implanted ESCs done in 
parallel with embryonic dorsal root ganglion neurons have migrated to the area 
close to the ventral cochlear nucleus (Hu et al.  2004  ) . Genetically modi fi ed mESCs 
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to conditionally express neurog1, have also been implanted into deafened animals. 
After a short induction in vivo with doxycycline, to induced transient transgene 
expression of neurog1, a continuous supplement of glial derived neurotrophic factor 
(GDNF) was provided for over 3 weeks (Reyes et al.  2008  ) . The results showed the 
transplanted cells in several areas of the cochlea, cochlear modiolus, Rosenthal’s 
canal and the site of transplantation, scala tympani. Surviving cells were found 
mainly in the scala tympani, they had more of a neuronal -like appearance and 
expressed the neuronal maker TUJ1 than cells in cochlear modiolus. Moreover, the 
majority of TUJ1 positive cells were co-labelled with the vesicular glutamatergic 
neuron marker VGLUT (Altschuler et al.  2008  ) .  

    31.6.2   Neuroprogenitors Induced from Embryonic Stem Cells 

 Mouse ESCs were differentiated, before transplantation, into neuroectoderm-
containing embryoid bodies (EBs) by a combination of basic  fi broblast growth 
factor (bFGF) and insulin-transferrin-sodium selenite (ITSS). Unfortunately, low 
number of cells survived in both, the site of transplantation and the target area. 
Remaining cells showed the potential to undergo differentiation in the xenografted 
host by expressing both neuron and glia phenotypes (Coleman et al.  2006  ) . In an 
independent study, EYFP ESC-derived neuroprogenitor cells were used in the 
ouabain-induced model of SGN damage. ESCs were exposed to bFGF and enriched 
for neuroprogenitor cells. Transplanted cells at the cochlear nerve trunk showed 
strong evidence of neuronal differentiation by extending their perpheral processes 
toward the organ of Corti. Cells survived for more than 3 months and formed abun-
dant processes projecting through the Rosenthal’s canal (Corrales et al.  2006  ) . In a 
different approach, mESC-derived embryoid bodies were co-cultured with SGN or 
HC explants, isolated from P5 (postnatal day 5) rats. Hair cell explants co-cultured 
with embryoid bodies showed a signi fi cantly greater number of neuro fi lament-
positive and neural-like cells (Coleman et al.  2007  ) . More recently, mESCs induced 
into neural differentiation by retinoic acid (RA) were used to compare the effect of 
different periods of time between the onset of injury induction and transplantation 
(Lang et al.  2008  ) . This experiment showed a signi fi cant difference in the survival 
of transplanted cells, with greater survival rates obtained when transplantation 
occurred soon after injury (i.e., 1–3 days after induction of damage). The ability 
of RA to produce sensory neural differentiation from mESC can be enhaced when 
combined with BMP4. However, although these neurons are sensory in nature 
(as measured by the expression of peripherin and Brn3a) there is no evidence that 
they express otic–specifc markers (Nayagam and Minter  2011  ) .Most examples 
using mESC-derived cells aim to replace neurons. The replacement of HCs is still 
very dif fi cult due to the limitations in the surgical techniques for cell delivery. 
Nevertheless, mESC have been explored in vitro   with the aim to produce hair cell-
like cells. Sensory cells were derived from mESCs by culturing them ina chemical 
de fi ned media with several growth factors. The mESC-derived phenotypes expressed 
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HC markers, Atoh1, Brn3c and Myosin VIIa and a small proportion of them also 
showed HC morphology like stereocilia, which co-labelled with espin and phal-
loidin (Li et al.  2003b  ) . The same group has now published an improved protocol 
that produces otic progenitors and then hair cell-like cells from mESCs. By cultur-
ing the progenitors with chicken-derived stroma cells, a robust differentation of the 
apical bundle was obtained, and more importantly, the cells expressed mechano-
transduction currents (Oshima et al.  2010  ) . 

 Early attempts to produce sensory neurons from human embryonic stem cells 
are also producing encouraging results. Human embryonic stem cells (hESCs) 
were induced to form embryoid bodies and latter transferred to differentiation 
media in the presence of NT-3, BDNF, FGF or bone morphogenetic protein 4 
(BMP4) The hES derived neuroprogenitor cells showed projecting  fi bres to dener-
vated  ex vivo  sensory epithelia and expressed synaptic markers. Moreover, the neu-
roprogenitor cells were transplanted in the cochlear nerve trunk of deafened animal. 
The transplanted cells engrafted in the auditory nerve trunk and sent out processes 
which grew toward the auditory sensory epithelium (Shi et al.  2007  ) . Furthermore, 
functional and speci fi c auditory sensory neurons have been produced from hESCs 
using a step-wise protocol that generates otic progenitors. Restoration of auditory 
evoked responses by human ES-cell-derived otic progenitors (Chen et al.  2012 ). 
These cells survive, differentiated and grow neurite projections when transplanted 
into deafened cochleae (Chen et al.  2012  ) .  

    31.6.3   Neural Stem Cells (NSCs) 

 Neural stem/progenitor cells have also been used for otic transplantation. 
Neurospheres, obtained from adult mouse lateral ventricle, were introduced into 
either normal or deafened inner ears. These neural stem cells (NSCs) were trans-
duced with Neurogenin 2 by retroviral transfection. Survival rate of transplanted 
cells was relatively poor, even in the neurogenin-transduced group. There was no 
signi fi cant difference in survival rate between deafened and normal animals. The 
transplanted cells distributed in the perilymphatic chamber and in the Rosenthal’s 
canal (Hu et al.  2005b  ) . Interesting results were obtained from Parker et al. using 
the c17.2 cell line, a NSC line derived from immortalized male murine foetal cer-
ebellar cells and implanted into sound-damage model (Parker et al.  2007  ) . The 
transplanted cells were traced by Y-chromosome  fl uorescence in situ hybridization 
(Y-FISH). NSCs were found with characteristic of both neural tissues (satellite, 
spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells and 
supporting cells). Although still a single report that may need further con fi rmation 
this study shows that, potentially, several lineages could be obtained from neural 
stem cells, besides the expected neurons and glia. 

 Recent studies on transplantation using NSCs were done in undamaged animal 
model to observe their distribution and potential effect on auditory function (Fu et al. 
 2009  ) . NSCs were dissociated from hippocampal tissue of rat embryos and transferred 
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to neurophere culture media with the combination of bFGF and epidermal growth 
factor (EGF). Transplanted NSCs were able to survive in the perilymphatic space 
2 weeks after transplantation, some of them were also observed in the endolym-
phatic space and Rosenthal canal. Unfortunately, there was no report of differen-
tiation from this experiment. There was an experiment combining cell therapy 
with chronic electrical stimulation (CES) and exogenous neurotrophic growth 
factor (NGF) recently published by Hu et al.  (  2009  ) . Embryonic dorsal root 
ganglion neurons (DRG) were implanted into deafened animal. Implanted DRG 
cells were found close to Rosenthal canal in the adult cochlea for up to 4 weeks 
after transplantation. They also shown an extensive neurite projections penetra-
ting into the bony modiolus and reach the spiral ganglion region in animals supplied 
with CES and/or NGF.  

    31.6.4   Auditory Progenitor/Stem Cells 

 Tissue speci fi c stem/progenitor cells are probably the cell type that more accu-
rately resembles the process of normal differentiation that takes place in vivo. 
Although they may lack an extensive proliferative capacity, which could make 
dif fi cult the scaling up of their production for therapeutic applications, their 
cochlear origin validates them as important systems for development and analysis. 
Several papers have reported the isolation of progenitor cells from either develop-
ing or early postnatal mouse cochleae. However, the lineage potential for the 
majority of these systems has only been established for one given phenotype. Many 
of these cells have been shown to produce  in vitro , either HCs (Malgrange et al. 
 2002 ; Zhai et al.  2005 ; Oshima et al.  2007 ; Savary et al.  2007  )  or SGNs (Rask-
Andersen et al.  2005  ) , but rarely both. Interesting exceptions are the human foetal 
auditory stem cells (hFASCs), a population recently isolated from 9 to 11 week old 
human foetal cochleae and described below in detail (Chen et al.  2007,   2009a,   b  ) .  

    31.6.5   Mesenchymal Stem Cells 

 Only few studies have looked at mesenchymal stem cells (MSCs) transplanted into 
the cochlea. Mouse MSCs were delivered into the perilymphatic space in a xeno-
graph host. Seven days post-operation, most transplanted MSCs were found in the 
scala tympani and scala vestibule, and only a small number located in the scala 
media. No GFP-positive MSCs were found in the cochlear modiolus (Matsuoka 
et al.  2006  ) . In a later experiment, the same group compared a deafened model with 
a normal host. This experiment also studied the effect of different routes of trans-
plantation, comparing between intraperilymphatic and cochlear modiolar injection. 
Transplantation into the perilymphatic duct was unable to deliver cells into the 
Rosenthal’s canal. With the modiolar injection, undifferentiated MSCs were able to 
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survive both in the control and deafened cochlea. However, the average number of 
transplanted cells found in the modiolus was greater in the deafened ear than in 
control (Matsuoka et al.  2007  ) . Unfortunately, there was no indication of differen-
tiation of transplanted cells from either experiment. Although the replacement of 
sensory cells by MSCs remains to be demonstrated, they could be used to target 
different types of SNHL. In some cases, the original problem lies not with the sen-
sory cells but in the stria vascularis, a tissue in the lateral part of the cochlear duct 
responsible for the control of potassium homeostasis and for the generation of the 
endocochlear potential. A model for SNHL has been developed that generates dys-
function of the  fi brocytes critical for the normal  fl ow of potassium ions in the endo-
lymphatic compartment. The application of the mitochondrial toxin 3-nitropropionic 
acid (3NP) induces acute SNHL by selective degeneration of the  fi brocytes of the 
cochlear lateral wall, without inducing any signi fi cant damage to HCs or SGNs 
(Kamiya et al.  2007 ; Kada et al.  2009  ) . Using this model, bone marrow MSCs were 
allogeneic transplanted via the lateral semicircular canal. MSCs were observed to 
localize at the ampullary area close to the transplanted site and in the perilymphatic 
ducts. Transplanted MSCs cells were found to replace the  fi brocyte at the cochlear 
lateral wall con fi rmed by co-localization of BrdU and connexin 26 markers. 
Moreover, a recovery of hearing was detected by using ABR measurements. There 
was no report for the distribution in any others area of the cochlea and also no 
evidence to show differentiation of MSCs into another cell lineage (Kamiya 
et al.  2007  ) .  

    31.6.6   Induced Pluripotent Stem Cells 

 The generation of induced pluripotent stem cells (iPSCs) appears to hail a new era 
in stem cell research. The potential to produce patient-speci fi c stem cells with prop-
erties resembling those of hESCs should have huge impact in the development of 
cell-based therapies. Cells could be applied as autologous transplants, bypassing the 
need for immunosupression. Moreover, iPSCs are not surrounded by the ethical 
concerns associated with the use of hESCs. By using a relatively ‘simple’ protocol, 
that is the forced expression of four critical pluripotency factors ( Oct3 / 4 ,  Sox2 , 
 c - Myc , and  Klf4 ) under ESC culture conditions, differentiated cells such as 
 fi broblasts can be reprogrammed and turned into undifferentiated, ESC-like cells 
(Takahashi and Yamanaka  2006  ) . Moreover, a very recent report demonstrated 
that generation of human iPSCs requires only induction by the Oct4 gene (Kim 
et al.  2009  ) . 

 Although still a novel technique, an early report has started to explore its poten-
tial for the auditory system. Mouse iPSCs were neuralized by exposing them to 
stromal cell-derived inducing activity (SDIA), showing evidence of neuronal dif-
ferentiation  in vitro . Neuralized iPSCs were then transplanted into the cochlea. 
Differentiation was observed 1 week after transplantation. The iPS-derived neural 
progenitor cells survived and were able to project their neurites toward cochlear hair 
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cells. The marker for glutamatergic neuron was expressed in some of transplanted 
cells indicating the potential of differentiation in the host tissue (Nishimura et al. 
 2009  ) . But more interstingly, using a combination of growth factors, cell signalling 
inhibitors and growing them over chicken stromal  fi broblasts, Heller’s group showed 
that mouse iPSCs can generate hair cell-like cells with the ability to mechanotrans-
duce (Oshima et al.  2010  ) . 

 A key factor regarding the different types of cells for transplantation is their stage 
of differentiation. The more undifferentiated ESCs seem to have greater potential 
than progenitor cells in terms of migration and distribution in the cochlea. 
Neuroprogenitor cells are more committed to undergo differentiation and shown 
higher capacity to generate neuronal-like cells in the host tissues. The transplanta-
tion of neuroprogenitor cells into the cochlear nerve trunk has so far, provided the 
most convincing evidence that transplanted cells can integrate into the host tissue 
and project processes toward the organ of Corti. However, the transplanted cells are 
generally established as an ectopic ganglion, remaining at the site of transplantation 
rather than migrating into the Rosenthal’s canal. MSCs, on the other hand, show 
very strong propensity to differentiate into mesodermal cell types suggesting to be 
a promising therapy for patients with SNHL attributed to degeneration of cochlear 
 fi brocytes. Nevertheless, migration and differentiation are not just dependent on the 
characteristics of transplanted cell types. Of critical importance is the technique for 
delivering them to the right place within the cochlea.  

    31.6.7   Human Fetal Auditory Stem Cells: A Model for Cochlear 
Stem Cell Biology in Humans 

 Despite the advances obtained in rodents, until recently hearing research has suf-
fered from the lack of a suitable model to study stem cell biology of the auditory 
organ in humans. This started to change a couple of years ago when a population of 
stem cells was identi fi ed in the human fetal cochlea (Chen et al.  2007  )  and later, a 
protocol was developed that allowed their isolation and expansion in vitro (Chen 
et al.  2009a,   b  ) . By culturing dissociated cells from sensory epithelia from 9 to 
11 weeks-old foetuses in a serum-free media supplemented with EGF, IGF1 and 
bFGF (and referred as OSCFM,  Otic Stem Cell Full Media ), an homogenous popu-
lation that expressed stem cell markers such as NESTIN, SOX2, OCT4 and REX1, 
among others, was selectively expanded. 

 Several stem cell lines were established that retained expression of these stem 
cell markers and remained proliferative for several months. When cells were grown 
under de fi ned culture conditions and passaged using a non-enzymatic protocol, the 
cells remained undifferentiated, growing as an adherent monolayer and displaying 
an epithelial-like morphology. However, when they were passaged using trypsin, 
neuronal differentiation was readily induced. Cells grew processes and elongated. 
After 24–36 h they displayed the characteristic bipolar morphology of spiral gan-
glion neurons. The differentiation process was further supported by exogenous 
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factors such as Shh, NT3 and BDNF, as measured by the expression of the neuronal 
markers  NEUROGEN1 ,  BRN3A , b-TUBULIN III and NEUROFILAMENT 200. 
Moreover, 5–7 days after inducing differentiation bipolar cells displayed potas-
sium delayed recti fi ers and voltage-gated sodium currents. These  fi ndings are 
important as some neurons obtained from mouse embryonic stem cells have failed 
to express sodium channels (Balasubramaniyan et al.  2004  ) . On the other hand, 
culture in the presence of RA and EGF favoured the differentiation into hair cell-
like phenotypes by inducing the expression of  ATOH1  and  BRN3C  as well as 
MYOSIN VIIA and PARVALBUMIN. Furthermore, these cells showed a rear-
rangement of the actin cytoskeleton, resembling the cuticular plate, and expressed 
the inward recti fi er K +  current ( I  

K1
 ), whose slow decay and voltage activation range 

closely resembled those recorded in pre-hearing mouse cochlear hair cells (Marcotti 
et al.  1999  ) . Besides  I  

K1
 , hair cell-like cells also showed a small outward  I  

K
  and a 

sustained inward Ca 2+  current. This correlates with the expression of the Cav1.3 
subunit by cells under ‘hair cell conditions’, con fi rmed by RT-PCR. In summary, 
these cells are an excellent system to study human ear differentiation and, as a 
biotechnological tool, allowed to de fi ne the conditions needed to induce differen-
tiation into neurons and hair cells.   

    31.7   Critical Bottle Necks in the Large Scale Production 
of Clinical Grade Cells 

    31.7.1   Cell Isolation and Purity 

 The translation of any experimental stem cell approach into a real clinical therapy 
requires the development of standards and quality control (QC) processes that are 
suited to a very strict scrutiny by the regulatory bodies. Clinical production of cells 
will need to adhere to good manufacturing practices (GMP) to insure the delivery 
of a “cell drug” that is safe, reproducible and ef fi cient. For this, all parts of the 
process would have to be optimized and well de fi ned. To achieve this  fi nal goal, is 
necessary to develop the tools that will facilitate the scaling up of a controlled 
production process. 

 An early, important element to address is how to purify the relevant cells in an 
ef fi cient and non-invasive manner. To prospectively isolate cells from complex 
tissues or mixtures, being these the cochlea or a mix population induced from pluri-
potent cells, we need suitable markers. An ideal approach would be to use cell 
surface markers to allow their puri fi cation by Fluorescent Automated Cell Sorting 
(FACS). Other  fi elds, such as haematology, have developed quickly and haematopo-
etic stem cells advanced into clinical application because of the availability of well-
de fi ned surface markers. These have made possible the speci fi c isolation and 
puri fi cation of progenitors for different lineages and the monitoring of their differ-
entiation (Wognum et al.  2003  ) . In the auditory  fi eld, we completely lack these 
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tools. The use of cell-speci fi c regulatory elements driving reporter proteins such as 
GFP has been applied to the successful isolation of supporting cells from the 
postnatal mouse cochlea (White et al.  2006  ) . Although highly useful for research in 
animal models, this approach requires genetic modi fi cations of the target cell (or the 
generation of transgenic mutants in the case of animal models) that makes it either 
undesirable or totally unfeasible for clinical applications in humans. The elucida-
tion of the transcriptome of the human auditory stem cells should yield strong 
candidates of surface molecules to screen with antibodies, as is has been done with 
glial precursors (Campanelli et al.  2008  ) . This targeted, informed approach should 
be more advantageous than the random screening of available antibodies. 

 A potentially useful strategy for their puri fi cation could be the isolation, by  fl ow 
cytometry, of ‘side populations’ based on the ability of certain stem cell-like cells 
to exclude Hoechst dye. This method was successfully used by Savary et al.  (  2007  )  
to isolate a population of supporting cells from the mouse cochlea that retained 
progenitor properties. It is important to note that hFASCs express the ABCG2 
transporter, which is believed to be the molecule responsible for the ‘side popula-
tion’ phenotype. However, because is a functional assay it is often very dif fi cult to 
standardize and different laboratories have obtained very dissimilar results while 
working in other systems (Sales-Pardo et al.  2006  ) . In an effort to address this lack 
of markers, Hertzano et al.  (  2010  )  identi fi ed a cohort of 107 ‘cluster of differentia-
tion (CD) antigens’ expressed in the postnatal mouse inner ear. From these, CD44 
was detected as a reliable marker for the outer pillar cells. In a follow-up study, 
they describe that CD326 stains sensory and non-sensory epithelial cells at day P0, 
while CD49f is speci fi c to sensory epithelial cells (Hertzano et al.  2011  ) .  

    31.7.2   Cell Expansion 

    31.7.2.1   Signalling Pathways That Control Stemness, Cell Growth 
and Viability 

 Another relevant feature to establish in the progression towards a clinical therapy is 
the identi fi cation of signalling cascades that would control proliferation, survival 
and maintenance of the undifferentiated phenotype. Interrogating gene array data 
could highlight potential pathways that can then be targeted with growth factors or 
small chemical compounds. For instance, the role of PI3K/AKT, MAPK/ERK and 
NF k ß signalling in the preservation of human embryonic stem cell pluripotency and 
viability was detected by transcriptional pro fi ling (Armstrong et al.  2006  ) , while a 
similar approach has shown the importance of PDGF, TGF-beta, and FGF signal-
ling for the growth of mesenchymal stem cells (Ng et al.  2008  ) . Identifying impor-
tant signalling pathways that control cell growth, stemness and viability will help in 
the design of improved culture media that will facilitate their expansion. 

 It is important to highlight the relevance of studying these events in the right 
experimental system. Although a lot of information obtained from animal cells has 
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proved to translate well to similar populations of human origin, relevant important 
differences are found on the behaviour of stem cells, primarily those regarding 
self-renewal of mouse and human ES cells (Sato et al.  2003 ; Ginis et al.  2004  ) . Some 
of these differences have been attributed to a problem of ‘timing’ and the fact that 
blastocyst-derived human ES cells will ‘drift’, once in vitro, to become comparable 
to the more developed, epiblast stem cells derived from postimplantation mouse 
embryos. However, this model of ‘cell progression’ would still re fl ect an intrinsic, 
specie-related difference between blastocyt-derived ES cells in their ability to remain 
pluripotent in vitro (Brons et al.  2007 ; Tesar et al.  2007 ; Vallier et al.  2009  ) . 

 On the other hand, information gathered from hFASCs is likely to be applicable to 
the production of auditory cells from other human sources such as ES or iPS cells.  

    31.7.2.2   The Genetic Signature of Auditory Stem Cells 

 The global analysis of gene expression, by using oligonucleotide arrays, is an 
extremely powerful tool to de fi ne the molecular identity of a cell population. A few 
years ago, it was initially applied to different populations of stem cells aiming to 
identify a set core of genes that will de fi ne ‘stemness’ across very different types of 
cells such as embryonic, neural and hematopoietic stem cells from adult and fetal 
origin (Ivanova et al.  2002 ; Ramalho-Santos et al.  2002  ) . These studies were then 
criticized as producing lists of genes that were too broad and vague (Evsikov and 
Solter  2003 ; Fortunel et al.  2003  ) , and not re fl ecting a true core of stem cell genes 
and the elusive ‘stemness’. However, although this criticism was partially appropri-
ate, these experiments were successful in identifying nanog, a gene that was later 
independently characterized by two different laboratories as having a pivotal role in 
stem cell behaviour (Chambers et al.  2003 ; Mitsui et al.  2003  ) . Since then gene 
arrays have been extensively applied to study stem cell populations, and the results 
have been most useful when the experimental systems are well characterized and 
the data interrogated by experiment-lead questions. When properly applied they 
have, for instance, allowed the identi fi cation of signalling cascades involved in the 
survival and differentiation of human embryonic stem cells (Enver et al.  2005  ) , and 
more recently, the identi fi cation of regulatory networks that de fi ne different classes 
of stem cells (Muller et al.  2008  ) . 

 In the ear, gene arrays have been used to study the developing cochlea (Sajan 
et al.  2007  ) , the organ after injury (Hawkins et al.  2003,   2007  )  and different immor-
talized mouse cell lines while proliferating and differentiating (Rivolta et al.  2002 ; 
Lawoko-Kerali et al.  2004  ) . Their comprehensive use in hearing research as been 
recently reviewed in Rivolta and Holley  (  2008  ) .  

    31.7.2.3   Screening of Small Compound Libraries 

 Small compound libraries currently available contain hundred of thousands or even 
millions of chemicals, targeting different molecules and signalling pathways. The 
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complexity of these huge, highly diverse libraries created through combinatorial 
chemistry sometimes conspires against the applicability in the search for a speci fi c 
phenotype (reviewed in Emre et al.  2007  ) . It is possible then to select a more speci fi c 
approach, where compounds are synthesized based on key biological motifs used 
as ‘core’ scaffolds, and targeting particular sets of molecules or protein families 
(i.e. kinases, phosphatases, etc. (Ding et al.  2002  ) ). This target-based approach is 
feasible when some prior knowledge allows the pre-selection of ‘candidate’ signal-
ling cascades that are likely to be relevant for the interested phenotype. On the other 
hand, in a phenotype-based approach, high throughput screening of unbiased chem-
ical libraries could lead to the identi fi cation of new pathways. For instance, in Chen 
et al.  (  2006  ) , a phenotype-based screening identi fi ed pluripotin as a promoter of self 
renewal in mES cells. Characterization of this compound identi fi ed it as an inhibitor 
of Erk1 and RasGAP, and that the inhibition of these two targets was necessary for 
the pluripotent phenotype. 

 Oligonucleotide microarrays and screening of small compound libraries are not 
the only high throughput screening methods that could produce vital results from 
auditory stem cells. Combinatorial evaluation of synthetic biomaterials uses a 
library of photopolymerizable material arranged in a microarray format. Using this 
approach, interaction between cells and the physical surfaces in which they are 
grown can be studied. In a particular study, the effect of more than 1,700 polymers 
on hESC growth and differentiation was explored (Anderson et al.  2004  ) . This 
method could be particularly attractive to explore potential interactions between 
stem cells and electrodes, developing their interface and applicability in combina-
tion with cochlear implants. Other high-throughput screening methods applicable to 
stem cell biology are reviewed in Mei et al.  (  2007  ) .    

    31.8   Cell Delivery 

 The routes for surgical delivery are another major factor for consideration when 
transplanting cells in the very small and delicate cochlear tissue. The main objec-
tive for transplantation is to deliver the cells into the target, damaged area. This 
will obviously depend on which type of degeneration has occurred and whether the 
primary aim is to replace HCs and/or SGNs (Fig.  31.2 ). Another challenge is to 
distribute the transplanted cells throughout the length of cochlea while minimizing 
further damage from the transplantation. A few articles have been published showing 
different cell delivery techniques into mammalian cochleae, which are summarized 
in the following section.  

    31.8.1   Intra-perilymphatic Transplantation 

 Perilymphatic transplantation via the scala tympani is probably the most used deliv-
ery technique so far. Positive features are the relative bigger volume of the space 
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when compared to the other cochlear compartments together with the fact that its 
 fl uid runs along the entire cochlear length, making it the best vehicle to distribute 
transplanted cells throughout the cochlea. Moreover, surgical access to the perilym-
phatic duct is believed to cause less trauma to the cochlea, and it can be done either 
through a cochleostomy in close proximity to the round window or through the 
round window itself. Access to the perilymphatic compartment is not just limited to 
the scala tympanic in the basal turn. Iguchi et al.  (  2004  )  have shown that it is pos-
sible to reach it via the lateral semicircular canal (LSCC). Transplanted neuropheres 
derived from mESCs were found in every cochlear turn in all experimental animals, 
with a larger ratio of cells found in the scala vestibuli than in the scala tympani. 
A small number of cells were also found in the scala media (around 0.4%). This 
experiment suggested that this surgical technique would cause only a minimal ABR 
threshold shift (~10–15 dB SPL) in the high frequency response region (40 kHz) 
(Iguchi et al.  2004  ) . There was no evidence of cells being able to reach the modiolus 
by this approach. Even though the number of cells in the scala media was modest, it 
would suggest that they could migrate into the endolymphatic compartment from 
the perilymphatic region. How could cells manage to cross into a tightly sealed 

  Fig. 31.2    Schematic illustration showing the routes for cell delivery into the cochlea. For neuronal 
replacement, cells can be delivered into the cochlear nerve trunk ( 1 ) or directly into the Rosenthal’s 
canal in the modiolus ( 2 ). Alternatively, cells can be injected into the scala tympani ( 3 ) or, in order 
to target the organ of Corti, directly into the scala media ( 4 )       
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compartment and survive in an environment with high potassium concentration, 
remains to be established. However, several other transplantation experiments using 
mESCs and MSCs delivered into the scala tympani found cells localized only to the 
perilymphatic space (Coleman et al.  2006 ; Matsuoka et al.  2006,   2007  ) . On a differ-
ent study, using neural stem cells transplanted into the scala tympani, cells were 
able to migrate to an area very close to the Rosenthal’s canal (Hu et al.  2005b  ) . 
However, the number of surviving cells was very low, and differentiating cells were 
only obtained when transduced with neurogenin2. Supplementation with GDNF has 
also been found to promote survival and migration of transplanted cells into the 
cochlear modiolus (Altschuler et al.  2008  ) . Dorsal root ganglion neurons co-grafted 
with mESCs would appear to promote migration and survival of the undifferenti-
ated cells. In this experiment, mESCs were found to migrate into the area of SGN 
via the intrascalar access, suggesting that DRG co-graft not only release growth fac-
tors to support the survival but also provide a structural matrix for cell growth in the 
 fl uid- fi lled compartment (Hu et al.  2005a  ) . Cells transplanted in the scala tympani 
are thought to migrate to the modiolus via holes located in the internal bony wall, 
known as ‘ canaliculae perforantes ’. This area is highly porous, and may provide 
windows big enough for transplanted cells to migrate into the Rosenthal’s canal. 
However, the size of transplanted cells would be a major factor limiting cell migra-
tion through these bony pores (Sekiya et al.  2007  ) . A report by Parker et al.  (  2007  )  
described general distribution of cells throughout different cochlear compartments 
when using a perfusion system (Parker et al.  2007  ) . Since the initial scala tympani 
delivery produced a localized lump of cells, they explored perfusion by using a 
syringe pump. As described above, this group used Y-FISH technique to trace the 
transplanted cells and showed migration to different areas in the cochlea including 
the organ of Corti, Rosenthal canal and even to the spiral ligament. Transplanted 
cells would appeared to have differentiated into both hair cells, supporting cells 
(pillar, Deiter’s, phalangeal), SGN, satellite cell and cells in the spiral ligament, 
although cell fusion could not be categorically ruled out.  

    31.8.2   Transplantation Aiming to the Organ of Corti 
via the Scala Media 

 There have been very few reports aiming to introduce stem cells directly into the 
scala media, and it remains the most technically dif fi cult. The main reason for this 
approach would be to target the replacement of HCs, however several biological 
barriers would need to be overcome. The endolymph, the  fl uid located in this com-
partment, contains high levels of potassium (~150 mM). These concentrations are 
toxic to many cell types, and it could lead to a very limited viability of transplanted 
cells. Moreover, the complex cytoarchitecture of the organ of Corti represents 
another challenge. The epithelium is a tightly sealed barrier and it will be dif fi cult 
for the transplanted cells to break through the adherent and tight junctions between 
hair cells and supporting cells in order to home and graft. An initial attempt into 



81131 The Development of a Stem Cell Therapy for Deafness

scala media transplantation was described in mice, by delivering cells through the 
cochlear lateral wall (CLW) of the second cochlear turn. This approach revealed the 
distribution of transplanted cells in all three cochlear chambers, that is scala media, 
scala vestibuli and scala tympani, with a relative distribution of cells of 62.1, 20.8 
and 17.1% respectively. There were no reports of differentiation and integration into 
the host tissue, neither con fi rmation of survival of transplanted cells in the endo-
lymph. To compound the problem, the surgical intervention produced a signi fi cant 
elevation of ABR thresholds over all frequency ranges after 3 days post- operation 
and there was no signi fi cant recover of threshold observed at any frequency (Iguchi 
et al.  2004  ) . The access via the CLW obviously damaged cochlear function, spe-
cially the structures needed to maintain homeostasis of K +  and/or endocochlear 
potential. It has been shown that by this lateral approach to the scala media is 
possible to damage the stria vascularis and cochlear blood supply (Izumikawa et al. 
 2005  ) . A different surgical access to the scala media was then developed by 
 approaching through the basilar membrane with a cannula via the cochlear round 
window. This technique was established by Hildebrand et al.  (  2005  )  to deliver 
 neuroectoderm-like embryoid bodies to deafened guinea pigs. There was no 
 evidence of damage to the organ of Corti or Reissner’s membrane attributable to the 
surgical procedure in any animal after surgical delivery. This evidence was con fi rmed 
by retaining the ABR threshold level after surgery when compared to the control 
group. The transplanted cells were found in all three cochlear chambers, scala 
media, scala tympani and scala vestibuli. The overall survival rate of transplanted 
cell was around 19.1%, 9 weeks after transplantation. Around 14% of cells survived 
in the scala media, and some were localized close to the damaged organ of Corti; 
however, there was no evidence of extensive cell differentiation and integration into 
the host tissue (Hildebrand et al.  2005  ) . This would indicate that some cells are able 
to survive, probably after partial differentiation, in a potassium-rich environment. 
However, conclusive evidence for the integration of transplanted cells into the dam-
aged organ of Corti is still missing.  

    31.8.3   Transplantation via the Modiolus and into the Cochlear 
Nerve Trunk 

 The modiolar and cochlear nerve trunk route for transplantation are mostly aimed to 
replace the degeneration of SGNs. Because of the dif fi culties described above, hair 
cell replacement is still a long way away. However, targeting sensory neurons 
appears as a far more realistic application in the short term. Moreover, a cell based-
therapy to reconstitute the nerve cells could be implemented in combination with 
the currently available cochlear implants. As mentioned before, these devices can 
substitute hair cell function but still require the existence of SGNs to function, as the 
bridge of signals to the central nervous system. Secondary degeneration of SGNs 
after hair cell loss is hugely problematic and this severely affects the chances of deaf 
patients to receive cochlear implantation. For these reasons, some research groups 
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have turned their interest to study the regeneration of SGNs and transplantation via 
cochlear nerve seem to be the most reasonable approach to deliver stem cells to the 
target location in Rosenthal’s canal. Interesting results from mESCs transplantation 
via cochlear nerve trunk access has shown both of peripheral and central migration 
along the cochlear nerve from the injection site. Transplanted cells were found close 
to the ventral cochlear nucleus (VCN) but the number of cells that migrated to 
Rosenthal’s canal is still limited (Hu et al.  2004  ) . Similar results were obtained 
when rat E13 embryonic SGNs progenitors were used. The transplanted cells grafted 
in the nerve trunk between the brain stem and the internal auditory meatus (IAM), 
but cells could not migrate further that the CNS/PNS transition boundary and failed 
to reach the cochlea (Palmgren et al.  2011  ) . There is evidence of cells undergoing 
differentiation to SGN-like morphology after transplanted via the IAM of the intact 
cochlear nerve (Sekiya et al.  2007  ) . Mouse conditionally immortalised neuroblasts 
(VOT-N33) were used in this study and distributed in the cochlear modiolus in 
different levels. Surprisingly, the transplanted cells via the IAM approach differenti-
ated into a bipolar morphology and showed a very strong neuronal marker staining 
of  b -tubulin III just 7 days after transplantation. Exploring a similar route, mESC-
derived neuroprogenitor cells were implanted into the cochlear nerve trunk of 
deafened animal model. The surgical approach was made at the bony area that sepa-
rates the cochlear nerve from the  fl oor of round window niche. This study has shown 
very nice engraftment of transplanted cell into the host tissue. Even though, very 
small number of cells showed migration to the Rosenthal’s canal but instead formed 
ectopic ganglions at the transplantation site with projections into the Rosenthal’s 
canal and believed to reach to the organ of Corti (Corrales et al.  2006  ) . Although the 
cochlear nerve trunk approach seems to allow for a more targeted delivery of cells, 
it still unable to introduce the transplanted cells into their ultimate destination, the 
Rosenthal canal. The osseous spiral lamina, which surrounds the SGNs might be a 
major barrier for cell migration. However, a few studies have shown  fi bres that 
project from ectopic, transplanted ganglion and penetrate into the Rosenthal canal. 
These are assumed to make synaptic connections at the base of hair cells. More 
evidence is still needed to con fi rm that this kind of synaptic connection is suf fi cient 
for functional recovery, together with the establishment of connections at the 
cochlear nucleus. Functional hearing measurements are also required to determine 
the level of mechanical damage from the surgical techniques that may further dete-
riorate residual auditory nerve. 

 Two studies have speci fi cally compared these different delivery routes using 
the same cell type. The  fi rst one, produced by Lang et al., explored the perilym-
phatic approach via scala tympani, the scala media and the Rosenthal’s canal 
approach through the round window niche using neuralized mESCs (Lang et al. 
 2008  ) . Two weeks after transplantation, cell survival into the endolymphatic com-
partment was very low when compared to the perilymphatic injection. Most of the 
transplanted cells were dead or dying, showing evidence of apoptosis. The 
Rosenthal’s canal approach performed the best, with large numbers of surviving 
transplanted cells labelling with neuron and glial markers. The microenvironment 
in the Rosenthal’s canal might be vital to provide the appropriate niche for the 
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transplanted cell. The results of this study are highly encouraging for the delivery 
into the Rosenthal’s canal area, but there was no evidence about migration beyond 
the transplantation site. 

 The other study aimed to compare amongst a cochleostomy into the scala 
tympani, the auditory nerve approach via translabyrinth and a direct access to the 
Rosenthal’s canal through the osseous spiral lamina wall of the scala tympani 
(Backhouse et al.  2008  ) . The transplantation was done not with cells, but with 
biocompatible microspheres delivered with or without the hydrogel, the matrix 
to minimize dispersal. Endogenous SGNs survival was measured, and the gen-
eration of areolar  fi brous tissue and bone formation were counted to indicate 
in fl ammatory tissue response. The translabyrinthine approach produced the larg-
est in fl ammatory responses and also damaged the SGNs. Hydrogel was claimed 
to be an effective biocompatible matrix, which could potentially retain micro-
spheres at their implant site and caused no reaction or in fl ammatory response 
affecting the survival of SGNs.   

    31.9   Models to Study Cell Transplantation in the Inner Ear 

 Several factors are critical for the success of a transplantation project. These include, 
for instance, the survival and homing of cells into the host tissues, the migration of 
transplanted cells to the target site, the differentiation of cells into appropriate phe-
notypes and their ability to regenerate the functional connections. All these vari-
ables are the result of a balanced interaction between the intrinsic potential of the 
donor cells and the properties provided by the microenvironment of the host tissue. 
Therefore, the models used for transplantation experiments should be considered 
carefully. In the different models, deafness can be induced in a targeted manner, 
hitting primarily the hair cells, the spiral ganglion neurons or the  fi brocytes of the 
lateral wall. Various kinds of chemical substances have been used, showing differ-
ent cellular targets. Aminoglycosides antibiotics have been widely used to damage 
primarily hair cells, subsequently causing SNHL. A secondary degeneration of 
SGNs takes place later (Coleman et al.  2006  ) . The glycoside and Na + K + ATPase 
inhibitor, ouabain, has been broadly employed to speci fi cally damage SGNs. Outer 
hair cells and stria vascularis are not affected, as shown by histology and the pres-
ervation of distorted product oto acoustic emissions (DPOAE) and endocochlear 
potential (EP), respectively (Schmiedt et al.  2002  ) . Ouabain application via the 
cochlear round window niche can increase the threshold of cochlear compound 
action potential (CAP) in just only 3 h after application and SGNs undergo apopto-
sis after 12 h. This drug targets speci fi cally type I spiral ganglion neurons (Lang 
et al.  2005  ) . Because of this speci fi city, the ouabain application has been used as a 
model of neuropathic deafness in several transplantation studies (Corrales et al. 
 2006 ; Shi et al.  2007 ; Lang et al.  2008  ) . A comparative study between transplanta-
tion in the intact cochlea versus a model of hair cell injury by neomycin, revealed 
that the survival rate of transplanted cells was better in the neomycin-treated animals. 
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Moreover, the differentiation potential of transplanted cells was also greater in the 
deafened model (Hu et al.  2005a  ) . This result suggests that the microenvironment 
provided by damaged host tissue is a signi fi cant factor for viability and differentia-
tion of transplanted cells. The length of timing after injury was also found to have a 
major impact in the survival of implanted cells. In an early post-injury transplanta-
tion, made 1–3 days after the deafening protocol, cell survival was substantially 
better than when transplantation was done 7 days after induction of deafness (Lang 
et al.  2008  ) . Finally, noise-induced deafness has also been employed as a model for 
transplantation. Exposure to loud noise (112 dB level) for 72 h can induce deafness 
in guinea pigs and generate damage to different cell types including cells in stria 
vascularis, hair cells and supporting cells of the organ of Corti. The area of damage 
corresponded with frequency of sound stimulus (Parker et al.  2007  ) .  

    31.10   Functional Tests to Explore Recovery of Hearing 
After Transplantation 

 To complete the analysis of a transplantation study, it is necessary to monitor for 
functional recovery. Many types of hearing measurements have been conducted to 
evaluate the level of deafness, establishing the severity of injury and detecting 
recovery after transplantation. Otoacoustic emissions are sounds produced as a con-
sequence of electromechanical feedback from the outer hair cells (OHC). Distortion 
product otoacoustic emissions (DPOAEs) are a measure of the sensitivity of the 
cochlea. Distortion products are generated when two tones with frequencies F1 and 
F2 are mixed in a nonlinear ampli fi er. In the cochlea, the ampli fi er is the OHCs and 
a principle distortion product is 2 F1 –F2. The magnitude of the distortion products 
generated by the cochlea is determined by the level of the primary tones and also by 
their ratio, which for the mouse cochlea is about 1.24. By varying the frequency and 
levels of the primary tones it is possible to derive an audiogram and also to derive 
input-output functions for each frequency region of the cochlea. DPOAEs can there-
fore be used to check the functional status of OHC in a given region of the cochlea 
(Kemp  2002  ) . Some experiments had obtained DPOAE measurements to evaluate 
the degree of deafness after drugs application and/or the level of cochlea perturba-
tion after transplantation (Corrales et al.  2006 ; Lang et al.  2008  ) . Compound action 
potential recording is the measurement that related to both HCs and SGNs function. 
This technique can give sensitive inference of cochlear function since the recording 
electrode is placed at the cochlear round window and it can detect the evoked 
responses from sound stimulation at different frequencies. Evoked auditory brain-
stem responses (ABRs) work in a similar way, but the recording is done from distant, 
surface electrodes. It measures the discharge of auditory neurons in response to a 
given tone and the subsequent series of potentials generated by the nuclei of the 
central auditory pathway. It is recorded as a pattern of a series of waves that repre-
sent different aspects of the pathway. Because of this, it is an ideal tool to study the 
integration of grafted cells into host tissues and the reconnection of the cochlear 
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nerve to auditory brainstem nuclei. ABRs have been used in transplantation studies 
to verify the level of injury after surgery (Iguchi et al.  2004 ; Bogaerts et al.  2008  ) , 
to determine deafness after drug application (Coleman et al.  2006  )  and to ascertain 
recovery after transplantation (Ito et al.  2001 ; Sekiya et al.  2007  ) . There is a cor-
relation between the three main parameters measured in ABRs (amplitude of the sig-
nal, threshold and latency of the response) and their anatomical signi fi cance. The 
amplitude of the  fi rst wave re fl ects primarily the sum of neural  fi rings of a large 
population of SGNs, whereas threshold level represents the function of only the 
most sensitive auditory nerve  fi bres (Agterberg et al.  2009  ) . An increment of latency 
after induction of deafness correlates well with the degeneration of dendrites and a 
reduction of the number of myelin layers in the  fi bers. In summary, the use of a 
single test or a combination of them should be decided depending which part of the 
auditory pathway the cell transplantation experiment is aiming to explore.  

    31.11   Conclusions and Future Perspectives 

 Although a substantial volume of information is starting to mount about this poten-
tially revolutionary technique, a lot more research is still needed to establish the 
ideal conditions for the system to work. A correct balance between the right intrin-
sic factors (such as the donor cell type) and extrinsic factors (such as the host envi-
ronment and means of delivery), still needs to be achieved. Undifferentiated ESCs 
have shown a good migratory capacity but less ability to differentiate into the target 
cell types. The neuroprogenitor cells appear to differentiate into SGNs but seem to 
stay mostly at the transplanted site. Systems that allow the control of directed 
differentiation, such as the neurog1 inducible one (Reyes et al.  2008  ) , are elegant 
solutions to establish proof of principle but, since they involve substantial genetic 
modi fi cations of the donor cell, are unlikely to be of clinical application. Studies 
with model cell systems of murine origin are highly valuable. However, given the 
important differences encountered between species (primarily in the stem cell biol-
ogy  fi eld) more studies with human cell types are required to establish conditions of 
clinical relevance. Since the use of factors such as NTFs supplements seems to 
promote survival and differentiation, the combination of cell transplantation together 
with NTFs supplementation should be worthwhile to explore. Along similar lines, 
studies combining the potential of stem cells and cochlear implants are critically 
needed. Regarding the transplantation route, the cochlear modiolar approach to gain 
direct access to the Rosenthal’s canal appears to be the best system for SGN replace-
ment. However, for hair cell replacement, the delivery techniques into the scala 
media are still rudimentary and produce a substantial amount of damage. Further 
development and re fi nement is clearly needed. Finally, promoting transdifferentia-
tion of supporting cells into hair cells can be considered cell replacement, albeit 
from an endogenous source. Alteration of the supporting cell phenotype, by removing 
the cell cycle inhibition imposed by p27 Kip1  or by promoting the expression of the 
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hair cell transcription factor  Math1 / Atoh1  (Kawamoto et al.  2003 ; Izumikawa et al. 
 2005  )  could have great potential for hair cell generation  in vivo .      
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  Abstract   Regenerative medicine and dentistry are two rapidly growing  fi elds of 
research with important clinical implications. Recent advances in cell biology, 
biotechnology, material science and tissue transplantation have been translated into 
new approaches to clinical repair and replacement of tissues and organs. In den-
tistry, a number of regenerative therapies and materials have been in clinical use for 
many years, to repair small and large defects involving multiple tissue types. 
Currently, various strategies are applied to stimulate healing of bone defects and to 
restore lost maxillofacial bone and periodontal support following traumatic insult, 
tumor ablation, disease or congenital deformities. 

 Bone tissue engineering is an emerging  fi eld using bone-forming cells seeded 
onto synthetic scaffolds to form hybrid constructs that can be used to regenerate 
tissues. There are numerous published case reports of the application of bone tissue 
engineering for oral and maxillofacial surgical reconstruction, periodontal tissue 
regeneration and sinus  fl oor augmentation. 

 Mesenchymal stem cells (MSC) are currently the cells of choice for bone tissue 
engineering and can be isolated from many different tissues such as bone marrow, 
periosteum, and trabecular bone as well as from muscle, adipose tissue and synovial 
membrane. MSC have also been found among the cells derived from human 
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 umbilical cord:  in vivo , these cells have demonstrated that they are capable of 
osteogenic differentiation, leading to bone formation and  in vitro  have shown 
adipogenic, chondrogenic, and osteogenic differentiation. Further, MSC have been 
identi fi ed in periodontal ligament, deciduous and permanent molar teeth. Recent 
research has shown that these cells have promising regenerative potential. Thus 
stem cell-based bone tissue engineering is a promising concept for reconstruction/
regeneration of craniofacial defects but much work remains before this approach 
becomes a routine part of clinical practice.     

     32.1   Background 

 Modern dentistry is not limited to maintenance of dentition but has many subspe-
cialties encompassing diagnosis and treatment of conditions affecting the oral and 
maxillofacial structures. In this relatively small area of the body, many different 
cells and tissue types occur in morphologically complex structures. Thus defects 
often involve multiple tissue types, including teeth and craniofacial bones, nerves 
and blood vessels, soft tissues such as mucosa, skin and muscles, salivary glands 
and specialized sensory organs. 

 The oral cavity plays an important role in daily living, including selection of 
nutritional intake through the complicated neural interactions of taste and smell. It 
is well documented in the scienti fi c literature that teeth are important to both general 
health and quality of life through masticatory function, as well as to esthetics and 
speech. The oral cavity is important to general health and the quality of life because 
it is the initial organ of digestion: the  fi rst stage of the digestive process or mastica-
tion, the mechanical breaking up of solid food particles into smaller pieces by chew-
ing and mixing them with saliva and its enzymes, occurs here. Natural dentition or 
a properly functioning substitute ( fi xed or removable prostheses) is of major impor-
tance to this function. The oral cavity is important to esthetics and speech because 
the physical appearance of the mouth,  i . e . the teeth and lips, are essential to these 
functions and help in de fi ning social and sexual attractiveness. 

 Over the past 50–60 years there have been major overall improvements in oral 
health, re fl ecting advances in research during this period. One of the most exciting 
developments is a change in traditional concepts of disease and its sequelae; from 
mechanical repair of damage to jaws and surrounding tissues, to a more biologi-
cally-based approach to treatment options. Advances in basic science using tech-
niques from cellular and molecular biology have been translated into clinical 
practice. At the same time, clinical and epidemiological studies have improved 
methods of diagnosis, treatment and prevention of oral health problems. 

 A striking development is the decrease in the number of edentulous people over 
the past 40 years. The elderly are retaining their natural dentition and the mean 
number of standing teeth is higher than a generation ago. Improvements in peri-
odontal health and oral health care are obvious. Many children are caries free or 
without active caries and the caries rate in adults has decreased. Important contributing 
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factors to caries prevention are water  fl uoridation and the widespread use of  fl uoride 
toothpaste, but it has also been shown that social, economic and geographic factors 
play important roles.    

    32.2   State of the Art 

    32.2.1   Loss of Permanent Teeth 

 One of the most common challenges for the dental clinician today, however, is reha-
bilitation following loss of the permanent teeth and the surrounding structures. 
Maintenance of good oral function is signi fi cant for general wellbeing, nutritional 
status and general health (Buhlin et al.  2002,   2003 ; Sheiham and Steele  2001 ; 
Nowjack-Raymer and Sheiham  2003  ) . Loss of all the teeth or even of one tooth is a 
dramatic life event. For many people replacing missing teeth with complete den-
tures is unsatisfactory: not only are oral factors such as pain, taste perception and 
chewing capacity adversely affected, but the patient may also undergo marked psy-
chological changes such as reduced self-image and loss of con fi dence in social situ-
ations (Trulsson et al.  2002  ) . 

 Bone resorption is a common sequela to tooth extraction, but both the rate and 
the total amount of resorption may vary between individuals. While the causes of 
this variation are still unclear, it is recognised that resorption of residual ridges after 
loss of all the teeth is a complex biophysical process. Successful replacement of the 
dentition with complete removable dentures that merely rest on the mucosa presents 
a challenge, not only for dentists but for the wearer: in order to eat, drink, or talk 
whilst wearing dentures, patients must master amazing adaptations of the oral mus-
culature (Fig.  32.1 ).  

 The concept of treating edentulism by osseointegration of dental implants was 
 fi rst proposed in the 1960s by two independent groups: Professor Schroeder at the 
University of Berne, Switzerland and Professor Brånemark at the University of 
Gothenburg, Sweden. Their data were based on treatment protocols using endos-
seous, root analogue, titanium implants. These investigators were the  fi rst to docu-
ment the fundamental requirements for osseointegration and the interaction between 
the titanium surface and bone (Brånemark et al.  1969,   1977 ; Schroeder et al.  1981  ) . 
They also addressed the primary biomechanical requirements for dental implant 
design. Both research teams obtained excellent results through the integration of 
basic biological and biomechanical knowledge and the initiation and application of 
clinical research projects. 

 Most of the endosseous cylindrical implant systems subsequently developed, 
both for submerged and non-submerged implant procedures, followed the guide-
lines for successful osseointegration by Adell et al.  (  1981  ) ,  i . e . a 3–6-month unloaded 
healing period. It was argued that implants required an undisturbed healing 
time for successful tissue integration and that premature loading might prevent 
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direct bone apposition and lead to  fi brous tissue encapsulation. Improved 
understanding of the osseointegration process, bone resorption and re-modelling 
and the interaction between bone and metal surfaces has resulted in recent depar-
tures from the traditional conservative approach established some 40 years ago. The 
importance of the surface characteristics and choice of the implant material in 
determining the quality of bone anchorage was recognized early (Albrektsson et al. 
 1981 ; Buser et al.  1991 ; Johansson  1991  ) . Various surface treatments have been 
successfully used to achieve more rapid and more stable bone integration  i . e . bone-
metal anchorage (Buser et al.  1999 ; Albrektsson et al.  2000 ; Arvidson  1998 ; 
Arvidson et al.  1998,   2008 ; Fischer et al.  2008 , for recent reviews see, Esposito 
et al.  2004,   2007a,   b ; Wennerberg and Albrektsson  2009  ) . 

 Successful endosseous implantation in the alveolar ridge requires suf fi cient qual-
ity and quantity of bone at the recipient site. Several surgical techniques have been 
described to augment bone before or in combination with dental implant installation 
(for a review see Hammerle and Jung  2003  ) . More recently, in a relatively limited 
RCT study, Jung et al.  (  2009  )  demonstrated that implants installed in defective bone 
sites grafted with demineralised bovine mineral with or without a growth factor 
(rhBMP-2) had excellent clinical and radiological outcomes after 5 years.  

  Fig. 32.1    Radiograph of fully dentate jaws with no signs of bone loss or other defects ( a ). 
Advanced resorption of the mandible in an edentulous patient ( b )       
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    32.2.2   Loss of Periodontal Tissues 

 The main function of the periodontium is to attach the tooth to the alveolar bone 
and to maintain the surface integrity of the masticatory mucosa. Epidemiological 
studies have shown that infections are the main cause of destruction of bone as a 
supporting tissue of the teeth. The etiology has, however, been shown to be multi-
causal. Periodontal disease, especially the most severe forms, is no longer regarded 
as a simple infection, but rather as the result of a complicated interaction with sys-
temic factors or disorders. In the most severe cases the outcome can be the loss of 
most or all teeth (Fig.  32.2 ).  

 An important goal of periodontal therapy is to achieve a reduction in the depth of 
the periodontal pocket in order to prevent further disease progression. In patients 
with moderate periodontitis,  i . e . pocket depths  £ 6 mm, this goal can be accomplished 

  Fig. 32.2    Radiograph of very severe bone loss around the maxillary anterior teeth       
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by non-surgical therapy, whereas in severe cases, particularly in the presence of 
intrabony defects and furcations (Fig.  32.3 ), the treatment must be supplemented 
with periodontal surgery. There is increasing use of regenerative procedures to 
restore lost periodontal support.  

 Periodontal regeneration has been de fi ned as the process by which the architec-
ture and function of the periodontal tissues are completely renewed (The American 
Academy of Periodontology  1992  )  and includes the formation of a new connective 
tissue attachment, cementum and supporting bone (Ellegaard et al.  1973,   1974 ; 
Karring et al.  1993  ) . Regenerative periodontal therapy comprises procedures which 
are specially designed to restore, by reattachment or new attachment, those parts of 
the supporting apparatus which have been lost due to periodontitis,  i . e . gingiva, 
periodontal ligament, root cementum and alveolar bone. For true regeneration, the 
root surface must therefore be repopulated by epithelial cells and cells derived 
from the gingival connective tissue, bone and periodontal ligament. Guided tissue 
regeneration (GTR) is a treatment modality intended to promote regeneration of 
periodontal tissue lost through periodontitis. Animal studies have con fi rmed that in 
intra-bony defects, this treatment results in true regeneration, albeit with some 
limitations (Laurell et al.  2006  ) . GTR has also been used in implant rehabilitation, 
using different techniques and membrane materials (for a review see Hammerle 
and Jung  2003  ) . 

 The most commonly used clinical methods for regeneration of the periodontal 
attachment apparatus are GTR (Sculean et al.  2008  )  and a derivative of enamel 
matrix proteins (EMD). GTR, using bioabsorbable barriers made of e.g. polylactide 
acetyltributyl citrate or polydioxanon, has shown stable clinical results in both short 
and long term studies (Eickholz et al.  2004  ) . EMD are acidic extracts of extracel-
lular enamel matrix, and include a heterogeneous mixture of polypeptides encoded 

  Fig. 32.3    Radiograph of vertical bone loss around a mandibular molar       
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by several genes (Bosshardt  2008  ) . It is unclear which of the enamel matrix proteins 
induces the regeneration, and the underlying molecular mechanisms have yet to be 
determined. 

 The use of bioactive molecules to induce local bone formation is an active  fi eld 
of research. Bioactive agents are used alone or together with grafting or GTR for 
treatment of intra-osseous and furcation defects (Trombelli and Farina  2008  ) . A 
variety of growth factors have also been tested for local bone regeneration (for a 
recent systematic review see Jung et al.  2008  ) .  

    32.2.3   Loss of Bone 

 Bone defects in the oral and maxillo-facial region may arise following surgical 
treatment of tumors, cysts and other pathological conditions as well as traumatic 
insults to the facial and dento-alveolar structures. As such defects often involve 
structures of different origins, the reconstructive procedures are very demanding. 
Maxillofacial tumors and cysts may arise from both soft and hard tissues and may 
be of odontogenic or nonodontogenic origin. Lesions located within the jaws thus 
include odontogenic cysts and tumors, nonodontogenic cysts and benign tumors and 
malignant, nonodontogenic neoplasms. Benign cysts and tumors occur frequently, 
are clinically and radiologically well-delineated and treated by curettage or enucle-
ation, whereas highly proliferative lesions are treated by resection. Malignant pri-
mary neoplasms of the jaws are rare, the most common being osteosarcoma. Much 
less common are chondrosarcoma, plasmocytoma and Ewing’s sarcoma. Some of 
these tumors may require extensive surgical treatment and reconstruction. Further 
examples of pathological conditions of the jaws requiring treatment by extensive 
bone resection are osteoradionecrosis or extensive, proliferative benign lesions 
which have proved resistant to other therapies. The most frequent pathological 
conditions for extensive resection and reconstruction however, are malignant tumors 
in the oral cavity and maxillary sinus, invading bone tissue. 

 Despite progress in the  fi eld of reconstruction as a result of new surgical tech-
niques, improved biomaterials and advances in cell biology, autologous bone graft-
ing remains the “gold standard”, especially for the reconstruction of large bone 
defects (Chiapasco et al.  2008 ; Raveh et al.  1987  )  (Figs.  32.4  and  32.5 ).   

 Free, nonvascularized autologous transplants are functioning for bridging of 
defects and as volume  fi llers by inducing bone growth. In some cases, however, the 
prognosis may be guarded, due to the risk of inadequate vascular regeneration and 
impaired tissue repair following hypoxia. Of vital importance to success are ade-
quate microvascularity of the recipient tissues and optimal  fi xation of the grafts, in 
order to prevent infection and loss of osteogenic cells. Segmental osteodistraction 
may have potential as a treatment solution. In cases of compromised tissue healing 
or composite tissue defects, the treatment of choice is the use of revascularized hard 
and soft tissue free  fl aps (Torroni et al.  2007 ; Smolka and Iizuka  2005 ; Emerick and 
Teknos  2007 ; Chepeha et al.  2008 ; Chiapasco et al.  2006  ) . Despite the above risk 
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factors, good functional and esthetic outcomes have been reported (Chiapasco et al. 
 2008 ; Louis et al.  2008  )  (Figs.  32.6  and  32.7 ).   

 For reconstruction of minor and single tissue defects, a wide range of autografts, 
allografts, xenografts and synthetic substitutes has been extensively used in recent 
years, in some instances showing outcomes comparable with autologous grafts 
(Hallman and Thor  2008 ; Hellem et al.  2003  ) . In a review article Kretlow et al.  (  2009  )  

  Fig. 32.4    Edentulous maxilla with extensive resorption of the alveolar crest. Reconstructed with 
free cortical onlay blocks from the iliac crest,  fi xed with miniscrews ( a ). After a healing period, a 
full arch maxillary bridge was retained on seven osseointegrated implants ( b )       

  Fig. 32.5    Mandibular defect after tumor resection. Treated with a free revascularized forearm soft 
tissue graft and a bridging reconstruction plate       
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presented an excellent summary of newer materials and methods in bone and soft 
tissue regeneration. Compared with autologous transplants, the disadvantages of 
allografts, xenografts and synthetic biomaterials include lack of osteoinductive prop-
erties and relatively varying osteoconduction. Varying, and to some degree uncon-
trolled resorption rates may represent a challenge in a clinical situation when assessing 
the amount and progression of tissue regeneration. The risks of bacterial, viral or prion 
transmission from allo- and xenografts as well as immunologic reactions are minimal 
and dependent on the method used for tissue preservation (Kretlow et al.  2009  ) . 

 Bone and soft tissue defects due to high velocity insults may be extensive, and 
involve several areas of tissue loss and progressive necrosis, demanding extensive 
surgery. These defects often have to be reconstructed by two stage surgery, using 
revascularized free or pedicled compound  fl aps or osteodistraction (Bertelè et al. 
 2005 ; Pereira et al.  2007  ) . Defects due to non-optimal repositioning of fractures in 
the periorbital, naso-ethmoidal and midface regions still remain a challenge, the 
mandibular regions however not. 

  Fig. 32.6    Hemi-mandibular defect after tumor resection. Treated with a temporo-mandibular joint 
prosthesis, a bridging reconstruction plate with free iliac crest graft and osseointegrated dental 
implants       

  Fig. 32.7    Lateral mandibular defect after tumor resection. Treated with a free revascularized com-
pound  fi bular graft       
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 Severe dento-alveolar trauma occurring in isolation or in combination with facial 
trauma, is often associated with loss of teeth and bone defects in the alveolar crest. 
Cases involving primary or secondary loss of teeth and bone tissue have to be recon-
structed as a prerequisite for treatment with dental implants. In some cases replace-
ment of lost mucosal/gingival soft tissue must be addressed as well. Functional and 
esthetic outcomes are priorities for treatment of bone defects in the maxillary ante-
rior alveolar crest. Bone grafting and local osteodistraction (Lundgren and Sennerby 
 2008  )  or even non resorbable bone substitutes are treatment modalities (Hallman 
et al.  2009 ; Hellem et al.  2003  ) .   

    32.3   Future Directions 

    32.3.1   Oral Stem Cells in Regenerative Dentistry 

 Physiological bone tissue regeneration is a remarkable process that results in healing 
without scarring. It is a multi-faceted process, beginning with angiogenesis, followed 
by callus formation and eventually bone remodelling. Key contributing factors in this 
process are growth factors [VEGF, PDGF-BB, plGF, BMPs, basic Fibroblast Growth 
Factor (bFGF)] osteocytes and angiocytes of the surrounding bone tissue, adult mes-
enchymal and hematopoietic stem cells. However, the prognosis is uncertain in the 
presence of large defects (>1 cm) or conditions associated with healing impairment 
such as old age, diabetes or radiation therapy. Under such suboptimal conditions, the 
gold standard of autologous bone transplantation is however associated with disad-
vantages, such as the limited amount of bone which can be harvested, unpredictable 
donor bone turnover, donor site morbidity, and the added cost incurred by surgical 
procedures to harvest the bone as well as pain at the harvest site. 

 Currently, various strategies are applied to stimulate healing of bone defects and 
to restore lost maxillofacial bone and periodontal support following traumatic insult, 
tumor ablation, diseases or congenital deformities. Despite the fact that materials 
science and technology has markedly improved the  fi eld of bone regeneration, none 
of the currently available treatment regimes stimulates bone and attachment forma-
tion. They therefore lack the potential to increase bone density and volume 
signi fi cantly and to form a new, functional periodontal attachment. For this reason 
large defects/injuries still represent a major challenge for dentists and oral maxillo-
facial surgeons. The clinical challenges have stimulated interest in developing new 
therapies that involve regeneration of bone and periodontal ligament. 

 Bone marrow has been shown to contain a population of rare cells capable of dif-
ferentiating into the cells that form various tissues. These cells, referred to as mesen-
chymal stem cells (MSC), are located within the bone marrow and, depending on the 
culture conditions chosen, have the potential to differentiate into  fi broblastic, 
osteogenic, adipogenic or reticular cells (Friedenstein  1976 ; Bianco et al.  2001  ) . The 
lack of immunogenicity of MSC heightens the potential of these cells for bone repair. 
Human bone marrow osteoprogenitors can be isolated and enriched from the CD34+ 
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fraction using selective markers such as STRO-1 (Stewart et al.  1999  ) . In recent years 
there has been increasing interest in the possibility of using adult MSC for regenera-
tion of oral tissues, not only to enhance attachment around periodontally compro-
mised teeth, but also to augment alveolar bone before and/or after placement of oral 
implants. Adult stem cells, previously thought to be limited in potential, have increas-
ingly been shown to be able to differentiate into tissues of an entirely different germ 
layer, with potential clinical application in the treatment of a number of diseases. 

 One of the most extensively studied populations of pluripotent stem cells has been 
mesenchymal stem cells (MSC) from bone marrow. It has been shown that from a 
small volume (0.1–3 ml) of marrow aspirate, alveolar bone mesenchymal cells 
(BMSC) can be expanded successfully 70% of the time (Matsubara et al.  2005  ) . 
Alveolar BMSC might be useful for regenerative medicine, because small marrow 
aspirates from alveolar bone can be made with minimal pain. Furthermore, Matsubara 
et al.  (  2005  )  demonstrated a high osteogenic potential from alveolar BMSC. Although 
this raises few ethical issues, harvesting of cells from bone marrow is still an invasive 
procedure, and stem cell numbers decrease signi fi cantly with the age. The search for 
more readily accessible sources of pluripotent stem cells has led to investigation of 
other tissues, including mobilized peripheral blood, umbilical cord blood and more 
recently, periodontal ligament (PDL), deciduous and permanent teeth. 

 The PDL is one of the tissues that has attracted interest as a source of stem cells and 
its potential for regeneration. It contains a heterogeneous cell population that can dif-
ferentiate into cementoblasts or osteoblasts. Recent  fi ndings suggest that PDL cells 
have osteoblast-like properties. They have the capacity to form mineralized nodules 
 in vitro , express bone-associated markers such as alkaline phosphatase and sialoprotein, 
and also respond to bone inductive factors such as parathyroid hormone, insulin -like 
growth factor 1, bone morphogenetic protein 2, and transforming growth factor 0 

1
 . 

Seo et al.  (  2004  )  showed that human PDL cells participate in periodontal tissue repair 
in immunocompromised rats, indicating that the PDL contains stem cells. 

 Dental pulp tissue is also a readily accessible source of pulp-derived mesenchy-
mal stem cells (PDSC). PDSC express the endothelial and smooth muscle marker 
STRO-1 (Shi and Gronthos  2003  )  and display a pericyte phenotype, with expression 
of the pericyte-associated antigen 3G5 (Shi and Gronthos  2003  ) . It is therefore 
assumed, but not yet con fi rmed, that the perivascular region in the pulp is the niche 
for PDSC and that pericytes give rise to dental pulp stem cells. Isolated dental pulp 
stem cells have been shown to be plastic-adherent and express the MSC markers 
STRO-1, CD90, CD29, CD44, CD166, CD105, CD106, CD146, CD13 and are also 
negative for CD14 and CD34 (Shi et al.  2005 ; Ikeda et al.  2006  ) .  In vitro , PDSC are 
capable of self-renewal, display plasticity and mutilineage potential (adipocytes, 
chondrocytes, osteoblasts, neural cell progenitors and myotubes) and can therefore 
be considered as stem cells (Gronthos et al.  2002  ) . 

 For tissue engineering purposes, PDSC have shown potential for both dentin and bone 
production. From the pool of human dental pulp cells, odontoblasts capable of forming 
dentin-like structures can be differentiated when cultured under mineralization-enhancing 
conditions (About et al.  2000  ) . Moreover, in immunocompromised mice, subcutane-
ously implanted cells derived from human dental pulp generate a dentin-pulp-like 
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complex without lamellar bone (Shi et al.  2005  ) . Using a similar model, another 
research group has also shown that PDSC are able to generate vascularized bone tis-
sue that  in vivo  was remodelled into a lamellar bone (Laino et al.  2005,   2006a,   b ; 
d’Aquino et al.  2007  ) . Further, when implanted into immunocompromised rats, a 
distinguishable STRO-1 positive subpopulation of cells was found to produce woven 
bone ef fi ciently and to remodel lamellar tissue (d’Aquino et al.  2007 ; Laino et al. 
 2006b  ) . After implantation, PDSC expressed bone markers including osteocalcin, 
Runx-2, collagen I and alkaline phosphatase (d’Aquino et al.  2007  ) . Furthermore, it 
might be possible for PDSC to contribute to the formation of new bone containing 
Haversian channels with appropriate vascularization  in vivo  (Huang et al.  2008 ; 
Pierdomenico et al.  2005 ; Shi et al.  2005 ; Young et al.  2002 ; d’Aquino et al.  2007 ; 
Laino et al.  2006b ; Ikeda et al.  2006 ; Gronthos et al.  2000 ; About et al.  2000 ; Batouli 
et al.  2003 ; Cheng et al.  2008  ) . Even when removed from their native location, dental 
pulp cells maintain the potential to contribute to the formation of both dentin and 
alveolar bone (Diep et al.  2009  ) . 

 The transition from deciduous (baby) teeth to permanent (adult) teeth is a unique, 
dynamic process in which the development and eruption of the permanent teeth is 
co-ordinated with the resorption of the roots of deciduous teeth. In humans, it may 
take >7 years to complete the orderly replacement of 20 deciduous teeth. Recently, 
researchers found that a naturally exfoliated human deciduous tooth contains a popu-
lation of stem cells (SHED) and are thus available without surgical intervention (Laino 
et al.  2006b  ) . These cells have been shown to be plastic-adherent, have great prolifera-
tive capacity and positive for MSCs markers STRO-1, CD29, CD106, CD146, while 
negative for CD14, CD34 (Shi et al.  2005  ) . Further, they exhibited a high degree of 
plasticity with the capacity to differentiate into neurons, adipocytes, osteoblasts and 
odontoblasts (Miura et al.  2003 ; Huang et al.  2008  ) . SHED are not only derived from 
a very accessible tissue resource but are also capable of providing enough cells for 
potential clinical application. Thus, exfoliated teeth may be an unexpected, unique 
resource for stem cell therapies including autologous stem cell transplantation and 
tissue engineering. These cells could aid the repair of damaged teeth and perhaps even 
treat neural injuries or degenerative diseases. Stem cells isolated from deciduous teeth 
(SHED) have several advantages. Although unlikely to have the differentiation and 
proliferative potential of ESC, deciduous tooth stem cells require no invasive harvest-
ing procedure. Furthermore, there are no ethical issues, as in the normal course of 
events deciduous teeth exfoliate and are discarded.  

    32.3.2   Arti fi cial Scaffolds in Regenerative Dentistry 

 The concept of tissue engineering has emerged as a valid approach to current therapies 
for bone regeneration. In contrast to the conventional biomaterials approach, tissue 
engineering is based on an understanding of tissue formation and regeneration, and 
aims at inducing new functional tissues, rather than just implanting replacement 
parts. There are numerous published case reports of the application of bone tissue 
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engineering for oral and maxillofacial surgical reconstruction, periodontal tissue 
regeneration and sinus  fl oor augmentation. Tissue engineering is the application of 
scienti fi c principles to the design, construction, modi fi cation and growth of living 
tissues, using biomaterials, cells, and factors alone or in combination. Skeletal tissue 
engineering requires a scaffold conducive to cell attachment and maintenance of cell 
function, in combination with a rich source of osteoprogenitor cells and osteoinduc-
tive growth factors. Crucial to success is an understanding of how cells function and 
form a matrix, and the development of appropriate materials for fabrication of scaf-
folding designed to promote cell attachment and maintain cell function. 

 Recently, much effort has been devoted to synthesis methods and fabrication 
techniques used to design and select a scaffold with properties that most closely 
match those required for bone regeneration. Highly porous and degradable aliphatic 
polyester scaffolds with varying pore size and interconnected pores were fabricated 
by bulk copolymerization of poly(L-lactide) (PLLA), 1,5-dioxepan-2-one (DXO-
co-LLA) and є-caprolactone (CL-co-LLA) (Dånmark et al.  2010  ) . The degradation 
rates of polyester scaffolds and loss of mechanical integrity were greatly increased 
in porous scaffolds made with hydrophilic co-monomers (Dånmark et al.  2011  ) . By 
incorporating hydrophobic co-monomers with limited ability to crystalize instead 
of hydrophilic co-monomers, the mechanical stability was retained longer during 
degradation. It has been shown that these scaffolds are biocompatible and stimulate 
bone regeneration both  in vitro  and  in vivo  (Arvidson et al.  2011 ; Dånmark  2011 ; 
Idris  2010 ; Xing  2012 ; Xue  2011  ) . These polyester scaffolding materials show great 
potential as bone tissue constructs. However, the scaffolds need to be optimized to 
control cell differentiation and growth as well as to achieve angiogenesis before 
they are ready for human use.  

    32.3.3   Paracrine Effects of Stem Cell-Derived Growth Factors 

 Tooth regeneration by cell transplantation is a meritorious approach. However, there 
are hurdles in the translation of cell-delivery-based tooth regeneration into thera-
peutics. The inaccessibility of autologous embryonic tooth germ cells for 
human applications, the limited availability of autologous postnatal tooth germ 
cells (e.g. third molars) and the low survival rates of the implanted cells may under-
mine the ef fi cacy of the cell-based treatment. Furthermore, other factors such as the 
availability of autologous dental pulp stem cells, the excessive costs of cell isolation, 
handling, storage, shipping and  ex vivo  manipulation, liability issues if contamina-
tion occurs, and potential for transmission of infectious disease are all potential 
drawbacks to cell transplantation (Inanc and Elcin  2011 ; Yildirim et al.  2011  ) . 

 It has been reported that stem cells secrete multiple metabolites, growth factors, 
signaling molecules, and extracellular matrix proteins during  in vitro  culture that 
affect cellular behavior (Kinnaird et al.  2004 ; Barcelos et al.  2009 ; Cai et al.  2009 ; 
Perin and Silva  2009 ; Osugi et al.  2012  ) . Stem cell-conditioned medium (CM) can 
be used, transplanted or injected with or without scaffolds to induce cell homing, 
migration, proliferation and differentiation (Ueda and Nishino  2010 ; Kim et al. 
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 2009 ; Yang et al.  2009  ) . Therefore, the use of stem cell-conditioned medium as an 
alternative to transplanting stem cells might be a feasible approach for tissue engi-
neering. The paracrine effects of the growth factors in CM on recruiting circulating 
progenitor/stem cells and/or endogenous adjacent cells to the treatment site is 
attracting considerable research attention at present. Although the molecular mech-
anisms that direct mobilization and homing of cells in response to the paracrine 
factors secreted by stem cells are not fully understood, cell homing represents a 
novel concept for regenerative dentistry and may offer a clinically useful approach 
(Kim et al.  2010  ) . 

 The therapeutic effects of CM derived from stem cells derived from different 
sources have been demonstrated in experimental animal models (Cho et al.  2012 ; 
Osugi et al.  2012  ) . It has been shown that conditioned medium derived from mesen-
chymal stem cells as well as SHED-conditioned medium is able to accelerate wound 
healing as well as tat seen with stem cell transplantation, and thus may become a 
new therapeutic method for wound healing in the future (Tamari et al.  2011 ; Ueda 
and Nishino  2010  ) . Thus conditioned medium might be used to create a highly 
inductive microenvironment, with many possible uses in regenerative dentistry. 
However, further studies are required to address the underlying mechanisms involved 
in organogenesis mediated by conditioned medium.   

    32.4   Conclusion 

 PDL, PDSC, SHED and alveolar bone mesenchymal stem cells appear to be appro-
priate candidates for tissue engineering involving restoration of dental and periodon-
tal tissues, as well as bone, suggesting a potential future therapeutic role of these 
cells for craniofacial regeneration. Arti fi cial scaffolds are currently underdevelop-
ment and may, together with cells from these different sources, lead to improvements 
in tissue engineering of bone defects in the oral cavity. The use of paracrine factors 
to improve tissue regeneration is a very promising new concept. However, much 
work remains before this approach will be ready for routine clinical use.      
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  Abstract   No preferred treatment, which could offer a functional solution, has been 
so far developed for patients affected by extensive airway damages. As the  fi eld of 
tissue engineering attempts to develop tracheal replacements, multiple types and 
combinations of cells, scaffold materials, and/or culture conditions have been used. 
Interest has been evoked by decellularized natural matrices, which affecting cell 
proliferation, migration and differentiation, could play an active part in tissue 
regeneration and remodeling. Using the detergent-enzymatic method, we were 
able to obtain decellularized human tracheal matrices lacking MHC antigens 
(bypassing rejection), having structural, mechanical and  in vivo  pro-angiogenic 
properties similar to that of native airways and supporting  in vivo  recellularization. 
Starting from these results, we have developed an  in vivo  tissue engineered strat-
egy, based on airway bioengineered grafts combined with autologous stem cells 
and pharmacological intervention (to boost progenitor cell recruitment commit-
ment), which resulted to be a clinically successful alternative for patients with 
serious airway disorders.  
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  Abbreviations  

  DEM    detergent-enzymatic method   
  EPO    erythropoietin   
  G-CSF    granulocyte colony-stimulating factor   
  MSCs    marrow stromal cells   
  TGF- b     transforming growth factor- b    
  TNF- a     tumour necrosis factor- a    
   b -FGF    basic  fi broblast growth factor         

    33.1   Introduction 

 Any tracheal damage    can compromise a wide range of important functions for 
survival, such as speech, deglutition (swallowing), respiration, mucociliary clear-
ance, and immune protection from inhaled or ingested antigens. In the world, 
approximately 0.1 every 100,000 persons per year are affected by primary tracheal 
cancer (Honings et al.  2010  ) , and a smaller, but severely impaired, group of patients 
are affected by benign disease and trauma linked to non-functioning airways 
(Nouraei et al.  2007  ) . To date, no conventional solution to treat these patients has 
been developed. 

 Regenerative medicine    is an interdisciplinary  fi eld that “replace or regenerate 
human cells, tissues or organs, to restore or establish normal function” (   Mason 
and Dunnill  2008  )  and it has been recently accepted as a useful clinical discipline 
that ensures and enhances the quality of life in patients undergoing organ recon-
structions. Among the different regenerative strategies, tissue engineering is a 
promising technology that has already provided functional human organ replace-
ments in various clinical settings (Atala et al.  2006  ) . Combining living cells with 
biocompatible and biodegradable scaffolds, tissue engineering can be applied to 
the obtainment of an anatomically, physiologically and biomechanically airway 
replacement which could transform functional outcomes for patients with advanced 
structural tracheal disorders.  

    33.2   Tracheal Anatomy and Pathology 

 The trachea is a  fi bro-cartilagineous, tubular structure, extending from the cricoids 
cartilage to the bronchial bifurcation. Structurally, it consists of 18–24 C-shaped 
cartilaginous rings joined by  fi broelastic tissue and closed posteriorly by a mem-
branous muscular structure, named  pars membranacea  (Fig.  33.1a ). The trachea 
functions as an air conduit: the cartilaginous rings prevent collapse during inspira-
tion and widen during expiration, the  fi bro-elastic tissue prevents over distention, 
while muscle contraction reduces lumen size facilitating airway clearance. The 
lateral  fl exibility of the trachea allows cervical rotation,  fl exion and extension, 
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while maintaining a constant patency for air passage. The tracheal luminal part is 
covered with a mucosal surface, which serves to protect against infection and aids 
in mucous clearance, lined with a pseudostrati fi ed columnar respiratory epithelium 
(Fig.  33.1b ), containing basal (classical stem cells, which can play a role in airway 
epithelium homeostasis and regeneration after injury), ciliated, secretory (goblet, 
serous and Clara cells), neuroendocrine and less well categorized ‘indeterminate’ 
or ‘intermediate’ cells (Mercer et al.  1994 ; Rock et al.  2010  ) . The supporting con-
nective tissue layer beneath the epithelium, mostly cartilaginous, forms a scaffold 
hosting blood vessels, nerves and undifferentiated adult stem cells of mesenchymal 
derivation (which could played a pivotal role in cell repair, regeneration and func-
tional restoration) (Fig.  33.1c ) (Okubo et al.  2005 ; Cardoso and Lü  2006  ) .  

 A wide spectrum of benign and malignant pathology, most leading to central 
airway obstruction with subsequent respiratory insuf fi ciency, may af fl ict the tra-
chea. The exact epidemiology of the tracheal diseases is not perfectly known, being 
included together with the pathologies affecting the total airway system. 

 Between benign lesions, tracheomalacia    and stenosis    (congenital or acquired) 
are the two most common tracheal anomalies. Tracheomalacia is described as a 
decreased rigidity of the trachea, due to a structural abnormalities of its wall. In 
response to variations in intrathoracic pressure or to compression by adjacent 
intrathoracic structures (esophagus, ascending aorta or aortic arch), tracheomalacia 
may result in functionally signi fi cant interference with air  fl ow and impaired clear-
ance of tracheobronchial secretions. Acquired tracheomalacia may occur following 
any injury that results in loss of cartilage (such as postintubation injury), chronic 
external compression or relapsing polychondritis. Stenosis is a  fi brotic narrowing of 
the airway, which can result in severe dyspnea. Although tracheal stenosis is a rare 
disease, the mortality rates for patients with long-segment tracheal stenosis and 
atresia (abnormally closed or absent trachea) are nearly 11 and 100%, respectively 
(Fuchs et al.  2002  ) . There are many causes of stenosis: postintubation injury and 
tracheostomy are the most common causes of acquired stenosis. Congenital tracheal 
stenosis, which may involve all or a portion of the tracheal length, is almost always 

  Fig. 33.1    ( a ) Human airway consisting of larynx, trachea and carina. ( b  and  c ) H&E stain of 
human trachea showing tracheal luminal part covered with a mucosal surface ( b ) and the supporting 
cartilagineous connective tissue layer beneath the epithelium ( c ). ‘ c ’ cartilaginous part, ‘ g ’ sero-
mucinous glands, ‘ e ’ epithelium (Scale bar = 100  m m)       
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secondary to a development defect in which the  pars membranacea  is de fi cient and 
the wall consists of complete or almost complete cartilaginous rings. 

 Primary tracheal tumors are the least common neoplastic lesions of the airways, 
representing the 2% of upper airway tumors (Macchiarini  2006  ) . A majority of 
primary tumors    (more than 90%) in adults are malignant (Macchiarini  2006  ) . By far 
the most common are adenoid cystic (50%) and squamous cell (20–40%) carcino-
mas. The adenoid cystic carcinoma is considered to be a slowly growing neoplasma; 
while squamous cell carcinomas are frequently locally advanced and associated 
with high incidence of lymph node metastasis (Macchiarini  2006  ) . 

 In almost all patients with tracheal diseases, resection followed by end-to-end 
anastomotic reconstruction (surgical joining of two trachea ends to allow air  fl ow 
from one segment to the other) yields better results and successful outcome than any 
other treatment. High success rates of over 70% have been reported (Grillo et al. 
 1995 ; Omori et al.  2005  ) . However, if a tracheal segment >6 cm long needs to be 
resected, direct anastomosis is impossible because of the high mechanical tension at 
the anastomosic site, leading to severe and fatal postoperative complications 
(Mulliken and Grillo  1968 ; Grillo  2002  ) . In these cases palliative treatment   , such as 
irradiation, stents and T tubes, are the only solutions (Grillo  2002  ) . Related to pri-
mary malignant tracheal tumors, epidemiological studies demonstrated that, due to 
the dif fi culties in the de fi nitive diagnosis, most patients present with already 
advanced local disease and the only possible treatment is the palliative management 
with stents or neoadjuvant radiotherapy (Gelder and Hetzel  1993 ; Yang et al.  1997 ; 
Licht et al.  2001 ; Bhattacharyya  2004  ) . For patients non-surgically treated, the 
5-year survival pass from 39 to 7% for squamous-cell tumors and from 52 to 33% 
for adenoid cystic tumors (Licht et al.  2001  )  and a median survival of less than 
12 months has been consistently reported (Chao et al.  1998 ; Choi  2004  ) . 

 For these reason, researchers have paid high attention to exploring a solution for 
tracheal function reconstruction; however, to date, there is no well established good 
conventional solution. An effective tracheal replacement, displaying anatomical, 
physiological and biomechanical properties equivalent to normal human airway, 
could provide an alternative for patients for which standard surgical procedures are 
not an option.  

    33.3   Clinical Application of Tracheal Replacement Strategy 

 In the last century, numerous studies have been made to identify the ideal airway 
substitute. The various techniques adopted ranges from synthetic stents and pros-
thetic materials, to autologous/allogenic tissue  fl aps and patches (   Grillo  2002 ; 
Osada  2006 ; Baiguera and Macchiarini  2011  ) . However, none has proven satisfac-
tory for clinical use mainly because of the lack of adequate vascularisation and 
respiratory epithelium along the lumen (Grillo  2002 ; Doss et al.  2007  ) . Moreover, it 
has to be underlined that the trachea is not located in a mesenchymal environment 
but it is in direct contact with the breathing air, making infection and contamination 
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more likely to    occur. More recently, the enormous efforts in the  fi eld of airway 
replacement allowed the development of strategies which could have relevant clinical 
applications. 

 Clinical tracheal allotransplantation    have been tried in humans obtaining differ-
ent results. Fresh or cryopreserved aortic allografts were used, without aid of immu-
nosuppressive therapy, for tracheal, carinal or bronchial replacements (Wurtz et al. 
 2006,   2010 ; Wurtz  2010 ; Martinod et al.  2011  ) : presence of respiratory epithelium 
and no graft rejection phenomenon were observed. However,  fi stula development, 
sparse calci fi cation, progressive graft contraction, stent necessity and/or no evi-
dence of cartilage regeneration were also reported (Wurtz et al.  2006,   2010 ; Wurtz 
 2010 ; Martinod et al.  2011  ) . Non-vital allogenic tracheal grafts resulted suitable 
only for tracheal patch replacement in the pediatric population, having however the 
big limitation not to grow with the recipients and resulting in long-term stenosis 
(Bujia et al.  1991 ; Elliott et al.  1996 ; Jacobs et al.  1996,   1999  ) . Recently, the Leuven 
Tracheal Transplant Group have reported successful tracheal allotransplantation, 
after withdrawal of immunosuppressive therapy (Delaere et al.  2010  ) . Indirect 
revascularization was achieved by placing the graft, for 4 months, in the recipient’s 
forearm fascia. During this period, immunosuppressive therapy was necessary, the 
cartilaginous viability was maintained, while the membranous posterior wall of the 
allograft underwent avascular necrosis. At the time of transplantation, the tracheal 
graft (3.5 cm) had viable cartilage fully lined with squamous epithelium, and 1 year 
after tracheal reconstruction, the patient was satis fi ed with the outcome and lung 
functions resulted to be normal (Delaere et al.  2010  ) . Even if clinically successful, 
the number of operation needed (two major plus eight minor) and the requirement 
of an 8-month immunosuppression (preventing the use of this strategy in a tumor 
context) limited the therapeutic potential of this approach. 

 A regenerative solution providing anatomical restoration of the airway, consist-
ing of a graft with pliability, elasticity, and mucosal lining similar to that of native 
tissues, which resists stenosis and tolerate implantation, with minimal risk of infec-
tion, extrusion, migration or failure, may provide functional airway replacement in 
a manner superior to that provided by present techniques.  

    33.4   Regenerative Tracheal Strategy 

 The tissue engineered approach    is normally based on three fundamental compo-
nents: (i) cells, acting as “seeds” for tissue regeneration, (ii) scaffold, where cells 
can proliferate and grow, and (iii) regulatory/growth/boosting factors, mediating 
cell behaviors (Table  33.1 ). Tissue engineering resulted to be the only technique that 
seems to offer any real promise, avoiding immunosuppression, for airway replace-
ment and regeneration (Walles et al.  2004a,   b ; Mertsching et al.  2005  ) .  

 A variety of regenerative approaches have been proposed for airway replace-
ment   , ranging from collagen scaffolds supported by silicones stents, cartilaginous 
tubes created by  in vitro  culture methods or Marlex mesh tube covered by collagen 
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sponge (Teramachi et al.  1997 ; Kojima et al.  2002 ; Omori et al.  2005,   2008 ; Kanzaki 
et al.  2006 ; Yamashita et al.  2007  ) ; however, none of these strategies resulted ade-
quate for clinical tracheal replacement due to incomplete epithelialisation, with 
associated stricture, and to a lack of mechanical integrity with consequent trache-
omalacic development (Grillo  2002  ) . To provide a biocompatible tracheal substitute 
with suf fi cient biological stability, the trachea itself has been hypothesized as the 
most suitable airway bioprosthesis. This approach relies on the fact that, for tracheal 
cartilage reconstruction, complex anatomically shaped scaffolds demonstrated to 
support tissue development better than simple highly modelled designs, the imper-
fections in the anatomical construct create local niches for increased cell-cell contact 
and the thinner (nanometric)  fi bers allow better chondrocyte attachment (Moroni 
et al.  2007  ) . A tracheal scaffold, conditioned with basic  fi broblast growth factor 
( b -FGF), has been recently implanted in patients affected by stenosis and, 6 months 
postoperatively, all patients were able to breathe easily (Kanemaru et al.  2010  ) . 
Even if this new regenerative therapy showed great potential for the treatment of 
airway diseases, the procedure involved two-staged operations (to enlarge the 
stenotic region and to implant tracheal scaffold) and  b -FGF could not be applied to 
oncological patients because of tumor recurrence. 

 Starting from the success of biological scaffolds, derived from decellularized 
tissues and organs (Ott et al.  2008 ; Petersen et al.  2010 ; Uygun et al.  2010 ; Song 
et al.  2011  ) , attention has been driven to the possible use of decellularized    tracheal 
matrix to realize functional tracheal replacement. Using a simple and effective 
procedure, based on osmotic lysis, detergent cell-extraction and DNA digestion 
(the detergent-enzymatic method) (Meezan et al.  1975  ) , we were able to obtain 
bioengineered decellularized human tracheal matrices characterized by preserved 
tissue matrix integrity and biomechanical properties, of suf fi cient length for clinical 
application, containing pro-angiogenic factors and supporting  in vivo  recellulariza-
tion (Fig.  33.2 ) (Baiguera et al.  2010 ; Go et al.  2010  ) . This scaffold (seeded with 
autologous epithelial respiratory cells and mesenchymal stromal cell-derived chon-
drocytes  via  a bioreactor) allowed to perform the world’s  fi rst successful transplant 
of a bioengineered airway (Macchiarini et al.  2008 ; Baiguera and Macchiarini 
 2011  ) . Starting from this clinical promising result, we have improved our tissue 
engineered tracheal approach focusing on the idea that the use of  in vivo  seeded 
bone marrow stromal cells (MSCs) and of an adequate stimulation (to directly 
differentiate stromal cells, to mobilize progenitor cells out of the bone marrow and 
to recruit them at the desired site of transplantation), could allow to obtain a faster 
tissue repair and remodeling (Bader and Macchiarini  2010  ) .  

    33.4.1    In Vitro  Cell Culture or  In Vivo  Cell Seeding? 

 Chondrocytes    result essential for the tracheal mechanical properties and the develop-
ment of a functional cartilage provides the needed support to prevent tracheal col-
lapse. Chondrocyte culture is a well-established procedure, however, de-differentiation 
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of chondrocytes during culture is a limitation (von der Mark et al.  1977  ) , and  in vitro  
engineering of cartilage with valuable quality and functional characteristics is still 
very challenging. Chondrogenesis    is promoted by several growth factors, such as 
transforming growth factor- b  (TGF- b ), insulin-like growth factors,  fi broblast growth 
factors, platelet derived growth factor-BB, parathyroid hormone related protein, bone 
morphogenic proteins and Wnt/ b -catenin signalling pathway, and a positive effect on 
chondrogenic differentiation has been demonstrated by combining various growth 
factors (Tsutsumi et al.  2001 ; Mastrogiacomo et al.  2001 ; Bianchi et al.  2003 ; Barbero 
et al.  2003 ; Solchaga et al.  2005 ; Ka fi enah et al.  2006,   2007 ; Augello and De Bari 
 2010  ) . However, the optimal combination has not been elucidated so far. TGF- b  has 
been used in different experimental studies, it revealed to be one of the most promis-
ing factor for chondrogenic formation (Johnstone et al.  1998 ; Ronzière et al.  2010  )  

  Fig. 33.2    ( a ) H&E stain of decellularized trachea showing the presence of a well preserved and 
intact extracellular matrix and the absence of cellular elements after 25 detergent-enzymatic cycles. 
( b ) Movat pentachromic staining (connective tissue staining) of decellularized matrices.  Yellow  
indicates collagen and reticulum  fi bers;  green to blue green , ground substance; and  red , muscle. ( c ) 
Immunostaining of decellularized tracheal matrix thin sections showing strong immunoreactivity 
( brown  staining) against anti-bFGF, a well-known angiogenic factor. ( d ) Representative example 
of chicken chorioallantoic membrane (CAM) implanted with fragments of decellularized tracheal 
matrices. Sample was placed on CAM surface of 8-day-old embryos and photographed 4 days 
later. The sample resulted totally enveloped by CAM vessels and induced a “spoke-wheel” patterns 
of the new vessels, exerting an in fl uence on vessel network development, as suggested by the loop-
ing of vessels toward the matrices ( * ). ‘ c ’ cartilaginous part, ‘ g ’ seromucinous glands, ‘ e ’ epithe-
lium (Scale bar = 100  m m)       
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and the different members of the TGF- b  family produce a wide range of effects in 
different cells and tissues in the body (Cals et al.  2011  ) . Among them, TGF- b 3 is 
emerging as one of the relatively newer isoforms to be discovered and studied.  In 
vitro  and  in vivo  researches, evaluating the effect of TGF- b 3 on chondrogenic 
differentiation of stem cells, suggested that the implantation of TGF- b 3 with chon-
drocytes in a suitable scaffold may offer a potential biological therapy for cartilagi-
nous regeneration (Tang et al.  2009  ) . 

 The  in vitro  use of factors poses great concerns because transplanted cells 
should be clinical grade and animal by-products free for clinical application. 
Another concern for  in vitro  cultures    is that static and mono-dimensional condition 
cannot mimic the physiological environment. It has been demonstrated that main-
taining differentiated chondrocytes in monolayer culture induces a shift of their 
biosynthetic pro fi le to a  fi broblast-like phenotype (Nehrer et al.  1999  ) , with a con-
sequent  in vivo  formation of  fi brocartilage instead of hyaline cartilage (Hedbom 
et al.  1992  ) . On the contrary, chondrocytes cultured in three-dimensional condi-
tions or in macroaggregates remained vital, functional and with a stable phenotype 
(Walles  2004 ; Wu et al.  2007  ) . The use of an  in vitro  bioreactor or of an  in vivo  
subcutaneous pre-conditioning has been also evaluated. However, all these appro-
aches requires time and money, introduces regulatory challenges and are related to 
bacterial contamination risks. 

 Recently, it has been suggested that a suitable regenerative strategy could be to 
avoid any  in vitro  cellular or construct manipulation and to directly implant the 
construct together with a pharmacological mix of speci fi c growth factors to induce 
 in vivo  physiological regeneration (Bader and Macchiarini  2010  ) . In this approach, 
the replacement is designed to take place in the body after implantation and thus is 
referred to as  in situ  or  in vivo  tissue engineering    (Bader and Macchiarini  2010  ) . 
This concept has been recently used by Nakamura and colleagues  (  2009  ) , which, 
seeding intraoperatively a synthetic polypropylene scaffold with autologous bone 
marrow MSCs, were able to  in vivo  rebuild a trachea-like organ, with a good epi-
thelial lining. The positive results obtained suggested that starting from in vivo   
seeded bone marrow stromal cells and using the body of the recipient patient as a 
biological, natural bioreactor, the  in vivo  tissue engineering approach may facili-
tate tracheal reconstruction. 

 Based on these idea, we improved our strategy by seeding the decellularized 
human tracheal graft with a mixture of mononuclear cells, MSCs and patient own 
blood directly after isolation in the surgery theatre, avoiding therefore any  in vitro  
culture step.  

    33.4.2   Pharmacological Therapy 

 Direct intraoperative    application of cells is an interesting and promising approach, 
however we suppose that graft survival could be supported by the activation of the 
endogenous repair system. A proper pharmaceutical intervention   , by which mobilize 
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endogenous stem and progenitor cells, could result then essential to promote a 
successful long-term graft regeneration. 

 It has been demonstrated that growth factors and cytokines, produced by injured 
and in fl ammatory cells, are able to activate, mobilize and attract different types of 
progenitor cells (Singer and Caplan  2011 ; Marquez-Curtis et al.  2011  ) , and cytok-
ines, in particular, have been accepted as “standard” agents to mobilize progenitor 
stromal cells (like hematopoietic) from bone marrow to peripheral blood. To date, the 
granulocyte colony-stimulating factor (G-CSF) has become a standard agent in cur-
rent clinical practice because it has been shown to mobilize signi fi cantly more 
peripheral blood stromal cells and resulted less toxic than other cytokines (Takeyama 
and Ohto  2004  ) . Moreover, addition of erythropoietin (EPO), a cytokine mainly 
active on erythropoiesis, to G-CSF has been demonstrated to increase peripheral 
blood stromal cell mobilization and resulted in signi fi cantly higher yields of CD34 +  
cells (Takeyama and Ohto  2004  ) . The EPO in fl uences in the peripheral circulation is 
well described and it has been observed in different tissues (Brines and Cerami  2008 ; 
Jungebluth et al.  2012  ) . It has been determined that, in the presence of an in fl ammatory 
region, local EPO production is repressed by high tumour necrosis factor- a  (TNF- a ) 
levels, while the EPO receptor becomes up-regulated by pro-in fl ammatory cytok-
ines, resulting a potential target region for pharmaceutical intervention (Brines and 
Cerami  2008 ; Brines  2010  ) . Moreover, it has been demonstrated that EPO, by bind-
ing to  b −common receptor (which does not have any contribution to the erythropoi-
esis but signi fi cant impact on tissue protection), induces a tissue protective effect in 
different tissue types and diseased conditions, particularly in ischemic settings of the 
lung, liver, heart, chronic skin ulcera or burn, trauma, cytokine-related acute injuries 
(Brines and Cerami  2008  ) . Based on these data and to counteract apoptotic events 
within the trachea graft, which occur due to surgery induced injury and to a lack in 
vascularization within the newly transplanted scaffold, we decided to submit trans-
planted patients to a regenerative therapy, by giving post-operative injections of 
G-CSF and EPO in order to increase construct regeneration. 

 G-CSF is almost an acceptable agent for peripheral blood cell mobilization, but it 
has obvious toxicities, such as bone pain, fever, reversible elevations of alkaline phos-
phatase, lactate dehydrogenase, asparate aminotransferase and uric acid and rare case 
of thrombosis, myocardial infarction, adult respiratory distress syndrome, and splenic 
rupture (Takeyama and Ohto  2004  ) . Also EPO treatment is related with negative side 
effects, such as hemodynamic changes and thrombembolic risks. Close careful moni-
toring of the patient’s condition, especially hematocrit, during regenerative therapy 
administration is then necessary for detecting early signs of complications.   

    33.5    In Vivo  Regenerative Tracheal Strategy 

 The new developed  in vivo  tracheal strategy is based on decellularized human tra-
cheas intraoperatively seeded with autologous bone marrow MSCs   , for the external, 
and respiratory epithelial cells, for the internal, tracheal surface (completely avoiding 
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 in vitro  cell culturing and using the patient’s own body as a “living natural” bioreactor), 
and intraoperatively conditioned with differentiative (TGF- b 3, to allow stem cell’s 
differentiation into cartilage-tissue), growing (G-CSF, to promote stem cell mobili-
zation and recruitment to the injured sites), and ‘boosting’ (EPO, to activate and 
stimulate stem cell recruitment and wound healing) factors    (Table  33.2 ) (Kalathur 
et al.  2010  ) . After implantation, the therapy is intensi fi ed by giving post-operative 
systemic injections of G-CSF and EPO at ‘regenerative’ dose levels every other day 
for 14 days.  

 This  in vivo  regenerative approach has been so far adopted in  fi ve patients with 
benign tracheal diseases and in two patients with primary tracheal cancers, involv-
ing the entire trachea (  http://abcnews.go.com/Health/Health/successful-stem-cell-
trachea-transplant/story?id=11308383    ). The cyto fl uorimetric analysis of peripheral 
blood cell mobilization    showed a steady increase in the number of the hematopoi-
etic progenitor cells (CD34 + ) during the peri-transplantation period, suggesting that 
peripheral blood (hematopoietic) stromal cell recruitment may play a vital role in 
the overall success of the replacement airway. To date, the new  in vivo  engineered 
transplanted tracheas are able to support themselves, have proved to possess a good 
epithelial coating, immediate vascularization and, upon all, a constantly wide open 
lumen for air passage. 

 These early successful results demonstrate that our strategy, based on optimally 
bioengineered materials combined with autologous cells and pharmacological inter-
vention, to boost progenitor cell recruitment and thereby promoting tissue forma-
tion and regeneration  in situ    , could provide a therapeutic option and eventually a 
better alternative solution for patients with serious clinical tracheal disorders. 

 Besides these clinical successful outcomes, this approach has some limitations, 
like a relatively long period for the decellularization process (15–20 days), the risks 
for altering long-term natural matrix mechanical properties and for bacterial con-
tamination during the  in vitro  natural graft manipulation and, most importantly, the 
absolute requirement of obtaining a donor organ and the reliance on donor tissues. 
A suitable approach to obtain a long-term preservation is one of the methods to help 
solve the limitation related to donor tissue shortage. We have reported that the 
immunological and mechanical characteristics of the acellular pig matrices remained 
unaffected by a 2-month storage in phosphate-buffered saline solution (containing 
1% antibiotic and antimycotic, at 4 °C) (Jungebluth et al.  2009  ) , however longer 
preservation periods have not been evaluated. Very recently, we have demonstrated 
that after 1-year storage   , human decellularized tracheas were characterized by a 
general damage of the extracellular matrix histoarchitecture, particularly collage-
nous and elastic  fi ber structure, resulting in decreased mechanical and angiogenic 
properties. Considering that the quality of the structural matrix at implantation may 
predetermine durability or failure of preserved graft, human decellularized tracheas 
stored for 1 year in phosphate-buffered saline solution at 4 °C, would not meet the 
demands for a tissue engineering matrix and likely would not yield a suitable graft 
for lifelong implantation. Moreover, the degradation phenomenon observed  in vitro  
may be further enhanced  in vivo , having clinical relevance for tissues that will be 

http://abcnews.go.com/Health/Health/successful-stem-cell-trachea-transplant/story?id=11308383
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transplanted long-term and this should be carefully evaluated in pre-clinical settings 
(Baiguera et al.  2012  ) . 

 Another solution could be represented by the development of a synthetic construct   , 
that mimics the structural and mechanical tracheal properties. Very recently, based 
on our experience on human tracheal matrix characteristics (Baiguera et al.  2010  )  
and using a nanocomposite polymeric material, we were able to obtain a tailored-
made arti fi cial tracheal scaffold with physical and mechanical properties similar to 
native tissue. The arti fi cial scaffold   ,  ex-vivo  seeded with autologous progenitor cells 
( via  bioreactor) and conditioned with pharmacology therapy, has been successfully 
implanted into a patient affected by primary recurrent tracheobronchial tumour 
(Jungebluth et al.  2011  ) . After three postoperative months, the nanocomposite was 
lined with a well-developed healthy mucosa and no distal ischemic necrosis was 
observable. Moreover, cellular biochemistry analyses have provided new insight 
into the mechanisms by which the utilized regenerative therapy contribute to cell 
mobilization, differentiation and ultrastructural organization of the fully engrafted 
tracheobronchial construct (Jungebluth et al.  2011  ) . The successful overall clinical 
outcome of this  fi rst-in-man bioengineered arti fi cial tracheobronchial transplanta-
tion provides ongoing proof of the viability of this approach, where a cell-seeded 
synthetic graft is fabricated to patient-speci fi c anatomical requirements and incu-
bated to maturity within the environment of a bioreactor.  

    33.6   Conclusions 

 Successful bioengineering airway transplants have been obtained, within the past 
3 years, thanks to a thorough interdisciplinary work. Patients transplanted can now 
breathe normally without any immunosuppression, and the application of the  in vivo  
tissue engineering technique in cancer patients, although requiring further follow-
up, is very promising and may be curative. These early successful results demon-
strate that the  in vivo  tissue engineered strategy, based on optimally bioengineered 
materials combined with autologous cells and pharmacological intervention, to 
boost progenitor cells, could provide a therapeutic option and eventually a cure for 
patients with serious clinical airway disorders. However, important questions, such 
as the evaluation of the long-term biomechanical properties of the bioengineered 
grafts, the optimization of tracheal synthetic graft and of bioreactor design, function 
and fate of the seeded cells in tissue regeneration and mechanisms of angiogenesis, 
remain to be answered before a full clinical trial accreditation may be obtained.      
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  Abstract   Recent discoveries in stem cell biology have generated excitement about 
the possibility of harnessing stem cells for repair and regeneration of lung diseases. 
Although initial emphasis was on engraftment of stem cells in lung, more recent 
studies demonstrate that mesenchymal stem cells (MSCs) can modulate local 
in fl ammatory and immune responses in experimental lung disease models including 
acute lung injury and pulmonary  fi brosis via a paracrine activity. Endothelial 
progenitor cells (EPCs) also seem to contribute to lung repair and are used in 
clinical trials for the treatment of pulmonary hypertension. The ability to produce 
stem cells by induced pluripotency may relieve many ethical concerns related to the 
use of embryonic stem cells and may open the way to large-scale production and 
evaluation of pluripotent stem cells for lung regeneration and repair. The aim of this 
review is to provide a summary of the recent progress made in the  fi eld of lung 
regeneration using different approaches including stem cell-based therapy and lung 
tissue bioengineering.      
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    34.1   Introduction 

 The respiratory system supports the vital function of breathing. It can be viewed as 
the interface between the oxygen-rich environment and the carbon dioxide-producing 
living organism. The failure of the lungs to complete their function is immediately 
life-threatening. 

 From a functional and anatomical viewpoint, the respiratory system comprises 
two compartments: the conducting airways (nasal cavity, pharynx, larynx, trachea, 
bronchi and bronchioles) and the gas-exchanging airways (respiratory bronchioles 
and the saccular-alveolar compartment, where alveolar walls come in close contact 
with capillary walls in order to facilitate the exchange of oxygen and carbon dioxide). 
Lung injury can occur at any of these levels leading to impairment of breathing 
function, which can be reversible or irreversible. Obstructive respiratory diseases, 
such as asthma and chronic bronchitis are caused by damage at the airway level, 
which limits air fl ow, whereas restrictive pulmonary diseases, such as lung  fi brosis, 
acute respiratory distress syndrome (ARDS), sarcoidosis are determined by 
in fl ammatory processes in the lung interstitium, leading to reduced lung compliance 
with limitation of lung expansion. Although the advancements of biomedical 
research over the past decades have brought novel therapeutic approaches for respi-
ratory disorders, many lung diseases, such as chronic lung disease of prematurity 
(or bronchopulmonary dysplasia, BPD), chronic obstructive pulmonary disease 
(COPD) and cystic  fi brosis are still lacking ef fi cient treatments. According to the 
WHO World Health Report 2000, lung diseases contribute to a total of 17.4% of 
deaths and 13.3% of disability-adjusted life years (DALY) worldwide (World Health 
Organization, World Health Report  2000  ) . These facts highlight the absolute neces-
sity to study the potential applicability of recent developments in the  fi eld of regen-
erative medicine as therapeutic options for lung diseases.  

    34.2   Lung Development and Regeneration 

 The current view is that  in situ  regeneration can occur in parenchymal organs 
following injury as long as the organ framework has been suf fi ciently preserved. 
Also, it is believed that the regeneration principles would normally follow evolu-
tionary principles and likely recapitulate ontogeny (Warburton et al.  2001 ; Cardoso 
and Whitsett  2008  ) . The intrauterine development of the lung has traditionally been 
subdivided in  fi ve overlapping stages, on the basis of gross histological features 
(Burri  2006  ) . The respiratory system starts forming as early as the third week of 
gestation as an outpouching of the primitive forgut bifurcating into the two main 
stem bronchi ( embryonic stage ). During the  pseudo-glandular stage , rudimentary 
bronchi divide by dichotomous branching; these tubular structures are lined by 
columnar epithelium surrounded by mesenchymal tissue. The  canalicular stage  is 
characterized by the bifurcation of the last generations of distal bronchi. In this 
stage there is also capillary invasion and differentiation of the air space epithelium 
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into type II cells (responsible for surfactant production) and type I cells (which form 
the thin air-blood barriers). During the  saccular stage  the peripheral air spaces 
expand in length and width, and, at the expense of the intervening mesenchyme, to 
form saccules at about 36 weeks. Alveolarization, the  fi nal stage of lung development, 
begins in the near-term lung prior to birth but primarily occurs postnatally, during 
the  fi rst 2–3 years of life, and may continue at a slower rate beyond childhood. The 
alveolus is the de fi nitive gas-exchanging unit- of the lung. Alveoli are, in part, 
formed by subdivision ( septation ) of the saccules. Septation involves budding of 
septal crests, which is followed by elongation of the septal walls to form individual 
alveoli. Septation increases the gas-exchange surface area, without a proportionate 
increase of lung volume (i.e. alveoli have a larger surface/volume ratio than 
saccules).  Microvascular maturation , the  fi nal important step in lung development, 
follows and partly overlaps the alveolar stage. The capillaries – which form double 
capillary layers in the immature gas-exchange region – remodel to form a single 
capillary layer. The thickness of the alveolar wall decreases about 20% and the dis-
tance between alveolar gas and capillary blood diminishes about 25%. Morphometric 
studies show that from birth to adulthood, the alveolar and capillary surface areas 
expand about 20-fold and the capillary volume 35-fold. 

 While the histological changes are well described (Zeltner and Burri  1987 ; 
Kitaoka et al.  1996 ; Maeda et al.  2007  ) , much more needs to be learned about the 
mechanisms that regulate normal lung development in order to harness these 
processes for therapeutic purposes (Warburton et al.  2001  ) . This is particularly 
relevant for the perinatal care of extremely premature infants who are born at the 
late canalicular stage before the completion of the alveolar stage. The immaturity of 
the lungs, together with the ventilator support required places these infants at risk of 
developing BPD, which may lead to an irreversible arrest in alveolar development 
and impaired lung function beyond childhood (Wong et al.  2008  ) . 

 The lack of ef fi cient therapies that would prevent or repair lung damage in 
diseases such as BPD, cystic  fi brosis, ARDS, emphysema, or pulmonary  fi brosis 
together with recent  fi ndings that suggest therapeutic bene fi ts of stem cell-based 
approaches in animal models of lung disease, have turned the use of stem cells into 
a new and exciting avenue in lung regenerative medicine (   Lane et al.  2007  ) .  

    34.3   Stem Cells 

 Stem cells are de fi ned as cells that have clonogenic and self-renewal potential and 
are able to differentiate along multiple cell lineages. The size, shape and cellular 
compartments of the adult organs are determined by embryonic and fetal stem/
progenitor cell behavior. Traditionally, stem cells are categorized based on their 
origin and differentiation potential into embryonic and adult (postnatal) stem cells. 
 Embryonic stem cells (ES)  are isolated from the inner mass of the trophoblast and 
are characterized by their ability to differentiate along multiple cell lineages origi-
nating in all three germ layers (pluripotency), whereas the differentiation potential 
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of  adult stem cells  (multipotent or, for progenitor cells, oligo- or unipotent) has 
been considered to be limited by their germ layer origin. However, recent studies 
are challenging this paradigm, as stem cells derived from bone marrow, either clas-
sically considered to be partially committed to the hematopoietic or mesenchymal 
lineages, have been shown to cross lineage boundaries and transdifferentiate along 
lineages derived from a different germ layer. 

 To date, ES cells are better characterized than adult stem cells. Yet, the lineage 
relationship between embryonic and adult stem/progenitor cells has not been clearly 
described. 

 One of the de fi ning features of stem cells is their ability to divide either sym-
metrically, generating two identical “daughter” cells or asymmetrically, giving rise 
to an identical “daughter” stem cell and a more specialized, lineage-committed 
progenitor cell (Rawlins  2008  )  that lacks the self-renewal ability but possesses a 
higher proliferation rate compared to its parent stem cell. It becomes obvious that a 
tight regulatory control of the balance between symmetrical and asymmetrical 
division, as well as the proliferation rate of these cells, is critical for organ develop-
ment and homeostasis. For instance, it has been proposed that at each stage of lung 
development the stem cells divide mostly in an asymmetrical fashion, leaving the 
specialized progenitor behind as the identical “daughter” cell moves distally with 
the budding lung tips.  

    34.4   Resident Lung Stem/Progenitor Cells 

 At birth, the normally developed lung will comprise more than 40 cell types that 
originate in both endoderm and mesoderm layers: basal cells, ciliated cells, secre-
tory (goblet, Clara, nonciliated) cells, type I and type II alveolar epithelial cells 
(pneumocytes), airway smooth muscle cells, capillary endothelial cells,  fi broblasts, 
alveolar macrophages, mast cells, dendritic cells. In healthy adults, lung cellular 
homeostasis is viewed as a slow process compared to highly proliferating tissues 
such as the bone marrow, intestine or skin, which makes it more dif fi cult to study 
lung resident stem/progenitor cells. However, it is widely accepted that stem/
progenitor cells contribute to maintenance of lung cell populations and there is evi-
dence that stem cell proliferation rate in the lung increases dramatically following 
injury and that the type and amplitude of injury also determines the intensity, dura-
tion and type of cellular response (reviewed by Gomperts and Strieter  2007  ) . 

 Current approaches in lung regenerative medicine include therapeutic approaches 
aiming at the protection and/or exogenous administration of both, lung resident and 
circulating stem/progenitor cells. Local stem/progenitor cells divide to replace 
injured or postmitotic cells and require strict control in order to regulate their pro-
liferation rate. Traditionally, local endoderm-derived adult stem/progenitor cell 
population have been considered to reside in well-delineated niches and categorized 
by lung region (Otto  2002 ; Liu and Engelhardt  2008 ; Stripp  2008 ; Rawlins et al. 
 2008 ). Lung cell populations that have been attributed stem/progenitor cell functions 
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(reviewed by Rawlins and Hogan  2006 ; Bertoncello and McQualter  2010  )  include 
airway epithelial cell types (basal and parabasal cells), Clara cells and type II alveo-
lar epithelial cells (AT2) for the endoderm-derived lineages and side population (SP) 
cells, pulmonary neuroendocrine cells (PNECs) and endothelial progenitor cells 
(EPCs) for the homeostasis of mesoderm-derived compartments (vasculature, air-
way smooth muscle cells,  fi broblasts). The models used to investigate the lung stem/
progenitor cell populations employ lung injury-inducing agents such as ozone, oxy-
gen, naphthalene, polydocanol, sulphur dioxide, nitrogen dioxide, bleomycin. Both 
basal cells and secretory cells have displayed progenitor-like behavior following 
chemical-induced lung injury, and the common feature generally employed to func-
tionally de fi ne these cells has been their ability to incorporate [H3]-thymidine 
into their DNA (reviewed by Crystal et al.  2008 ; Martin  2008 ; Snyder et al.  2009  ) . 
A recent addition to these studies is a report indicating that the human lung may 
harbor c-kit + resident stem cells capable to regenerate both pulmonary epithelium 
and vasculature following transplantation into cryoinjured mouse lungs (Kajstura 
et al.  2011  ) . 

  Basal and parabasal cells  can be found in the proximal airway epithelium, typi-
cally in the submucosal glandular ducts and intercartilaginous zone. Studies involving 
the use of polydocanol or sulphur dioxide (Borthwick et al.  2001  )  as lung epithelium 
toxicants have revealed the existence of a cytokeratin 5/14-expressing subpopulation 
of cells that displayed both clonogenic capacity and multilineage differentiation 
potential, as they have been shown to differentiate into both ciliated and secretory 
epithelial cells when cultured at air-liquid interface (Schoch et al.  2004  )  and repop-
ulate airway epithelium following injury (   Hong et al.  2001 ). 

  Clara cells  are secretory epithelial cells expressing Clara cell secretory protein 
(CCSP, CC10, uteroglobin, Scgb1a1). There is increasing evidence that the traditional 
Clara cell population in fact consists of two functionally different subpopulations: 
the “classic” and the type A (also called new or variant) Clara cells. Type A Clara 
cell (naphthalene-resistant, CCSP-expressing) are able to survive ozone-induced 
lung injury and naphthalene-induced lung injury (which causes selective ablation of 
the “classic” Clara cells) and even to actively proliferate to repopulate injured 
airway epithelium with both mature, quiescent Clara cells and ciliated epithelial 
cells. Hence, they have been dubbed facultative transit-amplifying progenitor cells. 
Although CCSP-expressing cells, they differ from their mature counterparts by lack 
of secretory granules and smooth endoplasmic reticulum. These cells can also 
retain labeled DNA precursors (Rawlins et al.  2008  ) . Moreover, there is data 
indicating that these cells may also co-express SP-C and therefore could represent 
a common progenitor for Clara cells and AT2 cells. Therefore, they have been 
termed “bronchioalveolar stem cells” (BASC) and proposed to be strategically 
located at the bronchioalveolar junction, along with the other localization in the 
proximity of neuroepithelial bodies (NEBs) (Giangreco et al.  2002  ) . Loss of SP-C 
expression, simultaneous with the acquirement of aquaporin 5 (a type I alveolar 
epithelial – AT1 cell marker) by these cells in culture reinforces this hypothesis. 



866 L.I. Ionescu and B. Thébaud

The proposed cell surface phenotype of this cellular subset is Sca1+/CD34+/CD45−/
CD31− (Kim et al.  2005 ; Kim  2007  ) . Another recent candidate multipotent stem / 
progenitor cell, which displays the EpCAM(hi)/CD104+/CD24(low) phenotype, 
has also been shown to giverise to bronchial and alveolar epithelium (McQualter 
et al.  2010  ) . 

  Type II alveolar epithelial cells (AT2)  are the sole source of surfactant and differ 
both phenotypically and functionally from their type I counterparts. AT2 cells 
proliferate and generate AT1 cells following injury and have therefore long been 
considered the putative AT1 progenitors (Adamson and Bowden  1974 ; Reddy et al. 
 2004  ) . However, AT1 have also been shown to differentiate into AT2  in vitro  (Danto 
et al.  1995  ) , which suggests that AT1 and AT2 may be alternate progenitor cells 
depending on the type of lung injury. As knowledge and technical tools in stem cell 
biology improve, a better characterization of the distal lung progenitor cell will be 
possible, ultimately leading to therapeutic interventions aimed at selective protection 
of these cells or the use of these cells for cell-based therapies. 

  Side population (SP)  cells have initially been brought into the limelight by their 
ability to ef fl ux the DNA dye Hoechst (Giangreco et al.  2004  ) . These cells have 
been identi fi ed so far in several organs, including the lung. They seem to be a 
heterogeneous population initially derived from the bone marrow and display 
differentiation abilities along both endoderm- and mesoderm-derived lineages 
(Summer et al.  2004 ; Martin et al.  2008  ) . In newborn mice, SP cells demonstrate 
endothelial potential and the number of SP cells decreases in oxygen-induced 
arrested alveolar growth in these mice, suggesting that changes in lung SP cells 
may limit their ability to effectively contribute to lung recovery (Irwin et al.  2007  ) . 
The therapeutic potential of SP cells for lung diseases remains unexplored. 

  Pulmonary neuroendocrine cells (PNECs)  are enigmatic cells, mostly explored 
for their oxygen-sensing capabilities (Youngson  1993  ) . More recent evidence suggests 
a role in lung regeneration as well. PNECs proliferate following naphthalene-induced 
lung injury. PNECs constitutively express calcitonin gene-related peptide (CGRP) and 
are found along with type A Clara cells in NEBsassociated regenerative foci that appear 
following chemically-induced lung injury (Reynolds et al.  2000  ) . However, the use of 
mouse models in which ablation of both naphthalene-sensitive and -resistant Clara 
cells was possible did not lead to regeneration of airway epithelium, suggesting that 
these cells are not airway epithelial progenitors (Hong et al.  2001  ) . 

  Endothelial progenitor cells (EPCs)  have been traditionally considered to be 
circulating cells that contribute to the homeostasis of the endothelium (reviewed by 
Ingram et al.  2005 ; Yoder et al.  2007 ; Yoder and Ingram  2009  ) . Recent exciting 
 fi ndings have identi fi ed the presence of resident EPCs within the pulmonary micro-
vascular endothelium with angiogenic capacity (Alvarez et al.  2008  ) , highlighting 
the potential of new tools in stem cell biology to identify resident lung progenitor 
cells. The signi fi cance of these cells in health and disease as well as their therapeutic 
potential is currently being explored.  
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    34.5   Therapeutic Potential of Exogenous Stem/Progenitor Cells 

    34.5.1   Cell Replacement 

 Beside local stem/progenitor cell populations, there is evidence that non-resident 
stem/progenitor cells contribute to lung repair following injury (reviewed by 
Prockop et al.  2003 ; Neuringer and Randell  2004 ; Gomperts and Strieter  2007 ; 
Weiss et al.  2006 ; Siniscalco et al.  2008 ; Warburton et al.  2008 ; Mora and Rojas 
 2008 ; Prockop  2009 ; Summer and Fine  2008 ; Sueblinvong and Weiss  2009  ) . Kotton 
et al.  (  2001  )  and Krause et al.  (  2001  )  showed that bone marrow-derived stem cells 
can give rise to “daughter” cells in the airways. This ability of the cells to engraft 
and differentiate has led to the hypothesis that they may reconstitute injured tissues 
by replacing the damaged cells. There is now a large body of evidence in support of 
the hypothesis that bone marrow-derived multipotent stem cells, either hematopoi-
etic (HSCs) or mesenchymal (MSCs), can differentiate into airway (Wang et al. 
 2005 ; Wong et al.  2007,   2009  )  or alveolar epithelial cells  in vitro , engraft and dif-
ferentiate  in vivo  and prevent lung injury in various disease models including bleo-
mycin-induced lung  fi brosis (Ortiz et al.  2008 ; Rojas et al.  2005 ), 
lipopolysaccharide-induced ALI/ARDS (Yamada et al.  2004,   2005 ; Gupta et al. 
 2007 ; Mei et al.  2007 ; Xu et al.  2007  ) , oxygen-induced BPD (van Haaften et al. 
 2009 ; Aslam et al.  2009  ) , radiation (Abe et al.  2003  ) - and naphthalene (Serikov 
et al.  2007  ) -induced lung injury. This ability of MSCs to differentiate into lung epi-
thelial cells could be harnessed for diseases such as cystic  fi brosis, in which the 
symptoms are caused by mutations in the gene encoding for the cystic  fi brosis trans-
membrane regulator (CFTR), a chloride channel typically expressed in epithelia. 
The stem cells would be engineered to overexpress functional CFTR and act as 
a delivery vehicle to the damaged tissues, including the lung (Wong et al.  2007 ; 
Bruscia et al.  2009  ) . The same approach would be applicable for other monogenic 
diseases that severely affect the lung such as alpha-1-antitrypsin de fi ciency (that 
leads to irreversible emphysema-like lesions) or surfactant protein B de fi ciency 
(resulting in fatal respiratory failure in newborns). Moreover, the possibility of iso-
lating MSCs from other sources, such as the cord blood, makes autologous therapy 
a very promising approach in treating pediatric patients in the close future. 

 While most investigators have explored the therapeutic potential of bone marrow-
derived MSCs, there is increasing evidence that EPCs may also contribute to the 
maintenance of the lung parenchyma. This is consistent with observations in experi-
mental models and in the clinic indicating that the number of circulating EPCs 
correlates with survival and disease severity (Toshner et al.  2009 ). 

 Experimental observations suggest that EPCs contribute to lung repair (Fadini 
et al.  2007 ). Lipopolysaccharide (LPS)-induced murine lung injury is associated 
with a rapid release of EPCs into the circulation. These EPCs may collaborate with 
other bone marrow-derived progenitor cells to promote lung repair (Yamada et al. 
 2004  ) . In elastase-induced emphysematous lung injury, cells derived from the bone 
marrow develop characteristics of endothelial cells and contribute to repair the 



868 L.I. Ionescu and B. Thébaud

alveolar capillary wall (Ishizawa    et al.  2004a,   b ; Abe et al.  2004  ) . Likewise, arrested 
alveolar growth in experimental hyperoxic-induced lung injury in newborn mice, 
mimicking BPD, is associated with decreased circulating, lung and bone marrow 
EPC (Balasubramaniam et al.  2007  ) . Interestingly, hyperoxic adult mice did not 
display alveolar damage and had increased circulating EPCs, implying that decreased 
EPCs may contribute to the arrested lung growth seen in the neonatal animals. 

 In patients, the number of circulating EPCs correlates with survival and disease 
severity in acute lung injury (Burnham et al.  2005  ) , severe COPD or restrictive lung 
diseases (Fadini et al.  2006  ) , idiopathic pulmonary  fi brosis (JunHui et al.  2008  )  and 
pneumonia (Yamada et al.  2005  ) . 

 These observations suggest that EPCs contribute to the repair of injured endothe-
lium and help restore lung integrity and are consistent with previous  fi ndings 
demonstrating the bene fi cial effect of angiogenic growth factors in experimental 
BPD (Thébaud et al.  2005 ; Kunig  2005  ) .  

    34.5.2   Cell Replacement Versus Paracrine 
Activity of Stem Cells 

 However, all the studies aimed at evaluating the therapeutic potential of stem cell 
transplantation by cell replacement in animal models of lung disease shared one 
common feature: the degree of stem cell engraftment in the target organs was 
generally low and therefore alternate mechanisms may account for the observed 
therapeutic bene fi t. Moreover, MSCs have been shown effective in in fl ammatory 
diseases, such as sepsis (Németh et al.  2009  )  and asthma (Nemeth et al.  2010  ) , 
where the local cell engraftment may not be the primary bene fi cial component. 
This has led to the current view that stem cells act through a paracrine mechanism 
by secreted factors (Prockop  2009  ) . Indeed, MSCs secrete anti-apoptotic, angio-
genic, and immuno-modulatory factors (Le Blanc et al.  2008 ; Iyer and Rojas  2008 ). 
This paracrine activity has now extensively been explored  in vitro  (Gupta et al. 
 2007 ; Hung et al.  2007 ; Ortiz et al.  2007 ; Parekkadan et al.  2007 ; van Haaften 
et al.  2009  )  showing cell-protective, pro-angiogenic and anti-in fl ammatory prop-
erties.  Ex vivo  (Lee et al.  2009  )  and  in vivo  in oxygen- (Aslam et al.  2009  )  and 
LPS- (Ionescu et al.  2012b ) induced lung injury, MSC-derived conditioned 
medium conferred the same therapeutic bene fi t than whole cell therapy. The 
immunomodulatory, paracrine activity of MSCs may also have therapeutic poten-
tial in allergic diseases such as asthma (Ionescu et al.  2012a ). Several factors 
found in the MSCs secretome, among which are interleukin-10 (Németh et al. 
 2009  ) , transforming growth factor-beta (Nemeth et al.  2010  ) , stanniocalcin-1 
(Block et al.  2009  ) , keratinocyte growth factor (Lee et al.  2009  )  and adiponectin 
(Ionescu et al.  2012a ), have been proposed to mediate MSCs cross-talk with vari-
ous effector cell types. Identi fi cation of these secreted factors, along with 
clari fi cation of their mechanisms of action, may allow the development of new 
treatments.  
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    34.5.3   ES and Induced Pluripotent Stem (iPS) Cells 

 ES cells represent the most pluripotent stem cells but are mired in controversy. The 
recent landmark generation of “ES-like”, induced pluripotent stem cells (iPS) using 
viral delivery of pluripotency genes to somatic cells (Takahashi and Yamanaka 
 2006  )  may relieve many ethical concerns related to the use of ES cells for research 
and has opened the way to large-scale production and evaluation of pluripotent stem 
cells for lung regeneration and repair. 

 When maintained in conditions that support the undifferentiated state, pluripotent 
stem cells show unlimited proliferation potential, which renders them ideal candi-
dates for studies in developmental biology regeneration (Varanou et al.  2008 ). ES 
cells can be directed to differentiate into de fi nitive endoderm from which they may 
be further differentiated into lung cells using speci fi c factors (Rippon et al.  2006  ) . 
Another method employed was the exposure of ES cells to microenvironments mim-
icking lung conditions (coculture with lung mesenchyme or lung cell extracts) (Van 
Vranken et al.  2005  ) . Although there are isolated reports indicating the attainment of 
fully differentiated proximal airway-like tissue (Coraux et al.  2005  ) , airway epithe-
lium (Samadikuchaksaraei and Bishop  2006  )  or even pure populations of AT2 cells 
(Wang et al.  2007a, b ) from ES cells, most of the available literature indicates cellular 
heterogeneity of the cultures with a relatively low yield of lung cell.  In vivo  adminis-
tration of ES or progenitor cells derived from ES or iPS cells has also generated 
inconclusive results so far, with limited and transient ES cell expression in the lung 
(reviewed by Rippon et al.  2008 ; Wetsel et al.  2011 ). Further steps, such as stable 
differentiation and puri fi cation of desired cell populations need to be taken in order 
to assess the potential of ES and iPS cells for lung diseases.  

    34.5.4   Stem Cells and Carcinogenesis 

 The term “lung cancer” encompasses several different pathological entities: 
squamous cell carcinomas, small cell carcinomas and adenocarcinomas which 
appear with different frequency in different areas of the lung, suggesting that local 
lung environment may act upon cell fate. The hypothesis of tumor-initiating cells 
(Cancer stem cells) could explain the relapse of certain tumors owing to the fact that 
these cells might be resistant to many conventional cancer therapies (Peacock and 
Watkins  2008  ) . The identi fi cation of putative resident stem cells in lung tumors 
(Kim et al.  2005  )  leads to the question whether the resident cells that survive pollutant-
induced injury may in fact be such a cancer stem cells. The existence of cancer stem 
cells in the lung is supported by work indicating that CD133+ is a marker of self-
renewing cells that sustain tumor propagation in mice (Eramo et al.  2007  ) . Although 
the proportion of cells expressing this marker lacks prognostic value (Salnikov et al. 
 2009  ) , these cells are resistant to cisplatin treatment (Bertolini et al.  2009  ) . Other 
work suggests that activation of the k-ras gene, whose mutation is considered to be 
directly linked to lung cancer in humans (Johnson et al.  2001  ) , upregulates the 
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SP-C+/CCSP + (BASC) cells and leads to development of lung adenocarcinomas 
(Kim et al.  2005  ) . Similarly, deletion of PTEN, PI3 kinase or p38a MAP kinase led 
to proliferation of SP-C+/CCSP + cells simultaneous with the increase in suscepti-
bility to develop lung neoplasms (Yanagi et al.  2007  ) , whereas Bmi1 deletion had 
opposite effects (Dovey et al.  2008  ) . However, it has not yet been clearly deter-
mined whether there is a link between the CD133-expressing and the dual SP-C/
CCSP-expressing cell population or whether either of these populations acts as 
an initiator or propagator of lung malignant tumors. Also, the cells in small cell 
carcinomas have been shown to express basal cell markers, whereas small cell car-
cinomas have been found to express markers reminiscent of PNECs (Giangreco 
et al.  2007  ) , but the direct relationship between the putative stem/progenitor cells 
and the neoplastic cells has yet to be investigated. Although much work is still 
needed to identify and characterize cancer stem cells-initiating cells, the discovery 
opens therapeutic avenues for designing speci fi c cellular targets for the treatment of 
cancer (Pine et al.  2008 ; Yagui-Beltrán et al.  2008 ; Alison et al.  2009 ; Gao and 
Mittal  2009 ; Zhou et al.  2009  ) .   

    34.6   Biotechnology – Engineering Lung Tissue 

 Currently, lung transplantation is the only viable solution for incurable lung disease 
in patients under 65 years of age. These lung diseases include lung  fi brosis COPD, 
CF, primary pulmonary hypertension, sarcoidosis, lymphangioleiomyomatosis. 
However, the mortality rate from the moment the potential recipients are placed on 
the waiting list until they receive the transplant is currently around 30 % (Punch 
et al.  2007  ) . Moreover, lung transplantation is not an option for patients with other 
major accompanying health problems. This highlights the necessity to seek for 
alternative approaches, such as the development of the arti fi cial lung or bioengi-
neered lung components. 

    34.6.1   Human Ex-Vivo Lung Project (HELP) 

 Currently, the supply of donor lungs does not match the demand and one of the facts 
that contribute to this shortage is that only about 20 % of donor organs are consid-
ered acceptable for transplantation (Punch et al.  2007  ) . Improper oxygenation 
capacity (re fl ected by a PaO 

2
  below 300 mmHg after oxygenation with a FiO 

2
  of 

100 % for 5 min and PEEP greater than 5 cm H 
2
 O) leads to rejection of donor lungs. 

HELP involves the concept of reconditioning and transplantation of these otherwise 
rejected donor lungs. Lungs are reconditioned  ex vivo  by continuous perfusion with 
a lung evaluation–preservation solution (Steen solution – Wierup et al.  2006  )  mixed 
with erythrocytes for several hours, until the functional parameters reach acceptable 
values. After reconditioning, these lungs can be transplanted immediately or stored at 
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8 °C in  ex vivo  extracorporeal membrane oxygenation (ECMO) until transplantation 
can be performed (Ingemansson et al.  2009  ) . The  fi rst transplant of lungs harvested 
from a donor and reconditioned  ex vivo  was performed successfully in 2007 (Steen 
et al.  2007  ) . The impact of this promising strategy remains to be evaluated.  

    34.6.2   Arti fi cial Lung – NovaLung ® 

 The arti fi cial lung is a relatively new method, similar in concept to dialysis and 
designed to support respiratory function while the potential lung transplant recipient 
is waiting for the donor lungs (Fischer et al.  2006  ) . The patient’s blood  fl ows into a 
device that removes carbon dioxide and enriches the blood in oxygen. As compared 
to conventional ECMO, the arti fi cial lung eliminates the need for an extracorporeal 
blood pump and can be used for extended periods of time (up to 100 days – von 
Mach et al.  2006  )  in centres where ECMO is not available. Other advantages of this 
system over ECMO are reduced anticoagulation and avoidance of long-term 
mechanical ventilation (Taylor and Holtby  2009 ; review by Walles  2007  ) .  

    34.6.3   Bioengineered Lung Tissue 

 The structural and functional complexity of the lung has so far restricted the devel-
opment of bioengineered lung tissue, when compared to the progress made in engi-
neering less complex organs, such as the skin or the urinary bladder (Atala  2007  ) . A 
recent  in silico  model of the alveolar-capillary interface has been developed employ-
ing biomaterials and human alveolar epithelial cells at air-liquid interface, along 
with human pulmonary microvascular endothelial cells (Huh et al.  2010  ) . This type 
of biomimetic microsystems could facilitate drug screening and toxicology studies 
by allowing high-throughput processing. On a larger scale, so far both ES cells and 
adult multipotent stem cells, as well as mixed cell populations containing progenitor 
cells or terminally differentiated cells such as  fi broblasts or chondrocytes have been 
used with promising results to generate lung cell lineages or bioengineered lung 
components (Barrilleaux et al.  2006 ). Moreover, the ability of MSCs to differentiate 
along the chondrogenic lineage has so far been harnessed to engineer a main bron-
chus using the tracheal acellular scaffold (Macchiarini et al.  2008  ) . The engineered 
bronchus was successfully transplanted into a patient whose own airway had been 
irreversibly damaged. However, the lack of conclusive information with respect to the 
tumorigenic potential of stem cells, especially ES cells, known for their karyotypic 
instability, together with the unanswered question regarding the local progenitor 
cells as potential cancer stem cells, demand careful safety evaluation of stem cell-
based approaches. Also, the biomaterials used as scaffolds on which the lung tissue 
would be grown need to be evaluated with regards to their biocompatibility in terms 
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of elasticity, adsorption kinetics, porosity and degradation kinetics (Nichols and 
Cortiella  2008  ) . So far, natural scaffolds of type I collagen, Matrigel (composed of 
basement membrane proteins), Gelfoam (derived from porcine skin gelatin) and 
synthetic polymers, such as polyglycolic acid (PGA) have been used in attempts to 
engineer lung tissue. Aside from constructed scaffolds, a recent breakthrough in 
lung bioengineering has been achieved by demonstrating that decellularized lung 
matrices have the ability to support repopulation with newly-seeded epithelial and 
endothelial cells and, moreover, to sustain lung function following transplantation 
into animals (Ott et al.  2010 ; Petersen et al.  2010 ; Song et al.  2011  ) .   

    34.7   Clinical Studies: Experience, Outcome, Limitations 

 Several limitations have hampered clinical trials of stem cell based therapies for 
lung diseases. There are certain risks to heterologous cell transplantation. The cells 
may carry infectious agents, which poses an even enhanced peril in the case of 
recipients who have developed graft-versus-host disease (Runde et al.  2001  ) . 
Furthermore, there have been reports of bronchiolitis obliterans organizing pneu-
monia (BOOP) in patients who had undergone HSC transplantation (Hildebrandt 
et al.  2008  ) . Both heterologous and autologous transplantation bear the risk of tumor 
formation. ES and iPS cells develop teratomas  in vivo  and there are also reports 
indicating that transplantation of neural stem cells led to the development of tumors 
in the recipient brain (Amariglio et al.  2009  ) . MSCs, generally considered less 
prone to acquiring karyotypic abnormalities compared to ES cells, may also pose 
tumorigenic risks (Aguilar et al.  2007 ; Tolar et al.  2007  ) . However, these dangers 
may be overcome: recent  fi ndings indicating that stem cell-secreted factors exert 
therapeutic bene fi ts may abrogate the need to deliver the cells themselves to the 
damaged tissues. 

 Another limitation is the insuf fi cient characterization of stem cells in terms of 
both phenotype and function. For MSCs, minimal criteria for de fi ning human MSCs, 
established by the International Society for Cellular Therapy (Dominici et al.  2006  ) , 
have reduced some of the variations with regards to cellular composition of MSC 
populations isolated according to different protocols. Lung injury prevention 
obtained with MSCs in various animal models of lung disease, together with their 
ease of isolation and culture, as well as their immuno-modulatory properties make 
these cells very promising candidates for clinical trials. 

 Thus far, stem cells have been transplanted in humans as part of whole bone mar-
row transplantation for various disorders (including leukemia and genetic diseases 
of the immune system). Gender-mismatched transplantation (male donor bone 
marrow to female recipient) has proven to be a useful tool in assessing the impact 
of stem cell transplantation on other organs than bone marrow. Donor male cells 
were identi fi ed in the lungs of recipients as epithelial and endothelial cells (Suratt 
et al.  2003  )  and also in the liver (Theise et al.  2000  ) , heart (Deb et al.  2003  ) , brain 
(Mezey et al.  2003 ; Crain et al.  2005  )  and kidney (Poulsom et al.  2001  ) . Also, in the 
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reverse case where males were recipients of sex-mismatched organ transplants, the 
Y chromosome indicating recipient origin was identi fi ed in a variable proportion of 
organ-speci fi c cells. With regards to lungs, the chimerism was present in bronchial 
epithelial cells, AT2 and seromucous glands (Prockop et al.  2003  ) . 

 Currently, one phase I clinical trial aimed at evaluating the tolerability and safety 
of progenitor cells for the treatment of pulmonary arterial hypertension (Pulmonary 
Hypertension: Assessment of Cell Therapy, PHACeT) is underway. Autologous 
endothelial progenitor cells are engineered  ex vivo  to express endothelial nitric 
oxide synthase (eNOS), followed by injection of the cells via a pulmonary artery 
line. Previous pilot studies have supported the feasibility of this approach in idio-
pathic pulmonary hypertension (Wang et al.  2007a,   b ; Zhu et al.  2008  ) . 

 On the basis of initial reports of safety and ef fi cacy following allogeneic admin-
istration of MSCs to patients with Crohn’s disease or with graft-versus-host disease, 
a trial studying the effect of MSCs in patients with COPD is ongoing. Further infor-
mation on current clinical trials involving the use of stem cells or stem cell-derived 
products are regularly updated on the United States National Institute of Health’s 
website   www.ClinicalTrials.gov    .  

    34.8   Conclusions and Future Perspectives 
on Lung Regenerative Therapies 

 Since the initial observations that stem cells engraft into the lung (Kotton et al. 
 2001 ; Krause et al.  2001  ) , stem cell based therapies (using mostly whole bone 
marrow derived cells or MSCs) have been studied extensively in various animal 
models of lung diseases. All of them showed the ability of these cells to prevent 
lung injury, despite a low rate of cell engraftment. The current hypothesis is that 
stem cells activate a paracrine mechanism protecting resident lung cells from injury, 
rather than through engraftment and cell replacement. The identi fi cation of soluble 
factors produced by MSCs may yield new therapeutic avenues for lung diseases that 
currently lack ef fi cient treatment strategies, thereby alleviating the potential risks 
associated with whole-cell delivery. 

 Stem cells may also hold promise for genetic diseases such as cystic  fi brosis and 
alpha-1-antitrypsin de fi ciency. Stem cells engineered to express the corrected genes 
could be differentiated  in vitro  or  in vivo  and confer suf fi cient gene function. 
The projected developments of iPS cell research will facilitate further investigation 
of cell-based approaches for therapeutic purposes but also for understanding of dis-
eases processes and drug testing. The challenge of lung regeneration, e.g. repair of 
established lung damage, relevant for lung  fi brosis and emphysema for example, 
remains and may require additional strategies in combination with stem cell-based 
approaches to “rebuild” the lung. It is hoped that insight into lung stem cell biology 
will facilitate and expand bioengineering approaches for lung regeneration. 
Recommendations for future directions for lung stem cell biology have been sum-
marized by Weiss and colleagues (Weiss et al.  2008  ) . While much more needs to be 
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learned about the mechanisms of normal lung development-injury-and-repair, stem 
cell biology and the long term ef fi cacy and safety of stem cell-based therapies, 
the promising animal and sparse clinical observations suggest that it might be time 
to initiate clinical trials using stem cell-based approaches for devastating lung 
diseases that currently lack effective therapies. There is ample precedent in medicine 
of established treatments for which the mechanism of action is still not fully under-
stood. Carefully conducted trials for patients in desperate need for improvement 
may teach us more than additional pre-clinical studies.      
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  Abstract   Since the discovery of circulating endothelial progenitor cells (EPC) in 
adult human peripheral blood, EPCs are believed to home to sites of neovasculariza-
tion, where they contribute to vascular regeneration by forming a structural compo-
nent of capillaries and by secreting angiogenic factors, thereby enhancing vascular 
and blood  fl ow recovery in ischemic tissue. This therapeutic strategy has been effec-
tive in animal models of ischemia, and we and other clinical trials have demon-
strated that it was safe and feasible for treatment of critical ischemic limb and 
cardiovascular diseases. However, the decline of EPCs in the peripheral blood and 
evidence that several disease states reduced EPC number and/or function have 
prompted the development of several strategies to overcome these limitations, 
including the administration of genetically modi fi ed EPCs that overexpress angio-
genic growth factors. To optimize therapeutic outcomes, investigators must keep 
re fi ning methods of EPC puri fi cation, expansion, and administration, and to develop 
techniques that overcome the intrinsic decline and phenotypic de fi ciencies of EPCs. 
In this chapter, we have illustrated EPC biology and the therapeutic potential of 
EPCs for vascular regeneration demonstrating our data of clinical study.      
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    35.1   Introduction 

 Recently, endothelial progenitor cells (EPCs) have been isolated from adult 
human peripheral blood (PB) (Asahara et al.  1997  ) . EPCs are shown to be 
derived from bone marrow (BM), and to accumulate in active angiogenic foci 
and participate in neovascularization following ischemic insults, (Asahara et al. 
 1999a,   b  )  exhibiting common stem/progenitor cell characteristics. The evidence 
that BM derived EPCs home to sites of neovascularization differentiating into 
endothelial cells (ECs)  in situ  is consistent with “vasculogenesis”, a critical 
paradigm well described in embryonic neovascularization, but recently pro-
posed in adults in which a reservoir of stem/progenitor cells contribute to post-
natal vascular formation. The discovery of EPCs has therefore drastically 
changed our understanding of adult blood vessel formation speci fi cally in isch-
emic tissue. The following issue highlights the potential utility of EPCs for 
therapeutic angio/vasculogenesis in ischemic diseases, updating the notion of 
EPC biology. 

    35.1.1   Post-natal Neovascularization 

 In the events of minor scale neovascularization such as slight wounds or burns, 
“ in situ  preexisting ECs” causing post-natal angiogenesis may replicate and 
replace the existing cell population enough, as ECs exhibit the ability for self- 
repair that preserves their proliferative activity. Neovascularization through dif-
ferentiated ECs, however, is limited in terms of cellular life span (Hay fl ick limit) 
and their inability to incorporate into remote target sites. In the case of large 
scale tissue repair, such as the patients who experienced acute vascular insult 
secondary to burns, coronary artery bypass grafting (CABG), or acute myocar-
dial infarction, (Gill et al.  2001 ; Shintani et al.  2001  )  or in physiological cyclic 
organogenesis of endometrium, (Asahara et al.  1999a  )  BM- derived or  in situ  
EPC kinetics are activated under the in fl uence of appropriate cytokines, hor-
mones and/or growth factors through the autocrine, paracrine, and/or endocrine 
systems. Thus the contemporary view of tissue regeneration is that neighboring 
differentiated ECs are relied upon for vascular regeneration during a minor insult, 
whereas tissue speci fi c or BM-derived stem/progenitor cells bearing EPCs/ECs 
are crucial when an emergent and larger scale vascular regeneration process is 
required (Fig.  35.1 ).   

    35.1.2   Biological Characteristics of EPCs 

 During embryonic development, blood islands initially fuse to form a yolk sac 
capillary network, (Risau and Flamme  1995  )  which provides the foundation for an 
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arteriovenous vascular system that eventually forms following the onset of blood 
circulation (Risau et al.  1988  ) . The relationship between the cells which circulate in 
the vascular system (hematopoietic stem cells, HSCs) and those responsible for the 
vessels themselves (EPCs/angioblasts) is determined by their spatial orientation in 
the fused blood islands; HSCs are located in the center of the blood islands versus 
EPCs/angioblasts are at the periphery. In addition to this arrangement, HSCs and 
EPCs share certain common antigens, including CD34, KDR, Tie-2, CD117, and 
Sca-1 (Choi et al.  1998  ) . 

 Recently, EPCs were successfully isolated from circulating mononuclear cells 
(MNCs) in adults using KDR, CD34, and CD133 antigens shared by both embry-
onic EPCs and HSCs (Asahara et al.  1997 ; Peichev et al.  2000 ; Yin et al.  1997  ) .  In 
vitro , these cells differentiate into endothelial lineage cells, and in animal models of 
ischemia, heterologous, homologous, and autologous EPCs have been shown to 
recruit to the foci of angiogenesis contributing to neovascularization. Similar stud-
ies in which EPCs were isolated from human cord blood have also demonstrated 
their analogous differentiation into ECs  in vitro  and  in vivo  (Crisa et al.  1999 ; Kang 
et al.  2001 ; Murohara et al.  2000 ; Nieda et al.  1997  ) . There is an emerging evidence that 
vasculogenesis does make a signi fi cant contribution to postnatal neovascularization. 

EPCs
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EPC Recruitment

Angiogenesis

Mobilization

Bone Marrow

Vasculogenesis

Proliferation
Migration
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Migration
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  Fig. 35.1    The concept of “angiogenesis” shows that preexisting ECs proliferate and migrate to 
form a new vessel in response to the endogenous or exogenous stimuli ( left  in the  fi gure). In con-
trast, a variety of factors released from the jeopardized tissue or surrounding area affect BM 
remotely and mobilize EPCs from the BM into circulation. EPCs recruit (home) to the site and 
participate in neovascularization differentiating, proliferating, and migrating, which is the concept 
of “vasculogenesis” ( right  in the  fi gure)       
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Recent studies with animal BM transplantation (BMT) models, in which BM 
(donor)-derived EPCs could be traced, have shown that the contribution of EPCs to 
new vessel formation may range from 5 to 25% in response to granulation tissue 
formation (Crosby et al.  2000  )  or growth factor-induced neovascularization 
(Murayama et al.  2002  ) . Also, in the tumor neovascularization, the range is approxi-
mately 35–45% higher than the former events (Reyes et al.  2002  ) . The extent of 
EPC contribution to post-natal neovascularization depends on each neovasculariz-
ing event or disease. 

 Since the discovery of EPCs, (Asahara et al.  1997 ; Shi et al.  1998  )  other 
investigators have also tried to de fi ne this cell population. However, since EPCs 
and HSCs share a number of surface markers, it is dif fi cult to de fi ne EPCs with 
certain simple markers. The term EPC may therefore encompass a heterogenous 
cell population including the cells in various stages ranging from hemangio-
blasts to fully differentiated ECs, even though a variety of methods of EPC 
isolation have been reported (Asahara et al.  1997 ; Boyer et al.  2000 ; Fernandez 
Pujol et al.  2000 ; Gehling et al.  2000 ; Gunsilius et al.  2000 ; Harraz et al.  2001 ; 
Kalka et al.  2000 ; Kang et al.  2001 ; Lin et al.  2000 ; Murohara et al.  2000 ; Nieda 
et al.  1997 ; Peichev et al.  2000 ; Quirici et al.  2001 ; Schatteman et al.  2000 ; Shi 
et al.  1998  ) . Although the putative precursors of EPC and the differentiated  fi nal 
ECs remain to be determined, there is strong evidence  in vivo  that a population 
of EPCs exists in humans. 

 Lin et al. cultivated peripheral MNCs from patients receiving gender-mismatched 
BMT and studied their growth  in vitro . In this study, they identi fi ed a population 
of BM (donor)-derived ECs with high proliferative potential (late outgrowth); 
these BM cells likely represent EPCs (Lin et al.  2000  ) . Gunsilius et al. investi-
gated a chronic myelogenous leukemia model and disclosed that BM-derived 
EPCs contribute to postnatal neovascularization in human (Gunsilius et al.  2000 ). 
Interestingly, BM-derived EPCs could be detected even in the wall of quiescent 
vessels without neovascularization events, suggesting that BM-derived EPCs 
may be related even to the turnover of ECs consisting of quiescent vessels. Reyes 
et al. have isolated multipotent adult progenitor cells (MAPCs) from BM MNCs 
and differentiated them into EPCs, indicating that MAPCs are an origin of EPCs 
(Reyes et al.  2002  ) . These studies therefore provide evidence to support the pres-
ence of BM-derived EPCs that participate in neovascularization. However, the 
existence of namely ‘ in situ  EPCs’ as derived from tissue speci fi c stem/progeni-
tor cells in murine skeletal muscle remains to be investigated even in the other 
tissues (Lin et al.  2000  )  (Fig.  35.1 ).  

    35.1.3   EPC Kinetics in Peripheral Blood 

 As described previously, tissue trauma causes mobilization of hematopoietic cells 
as well as pluripotent stem or progenitor cells from the hematopoietic system 
(Grzelak et al.  1998  ) . Consistent with the notion that EPCs and HSCs share common 
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surface angigens, our recent data has shown that mobilization of BM-derived EPCs 
constitutes a natural response to tissue ischemia. The murine BMT model also pro-
vided direct evidence of enhanced BM-derived EPC incorporation into foci of cor-
neal neovascularization following the development of hindlimb ischemia, (Takahashi 
et al.  1999  )  indicating that circulating EPCs are mobilized endogenously in response 
to tissue ischemia and can incorporate into neovascular foci to promote tissue repair. 
These results in animals were recently con fi rmed by human studies illustrating EPC 
mobilization in patients following burns, CABG, or acute myocardial infarction 
(Shintani et al.  2001  ) . 

 In the pathophysiological events that require neovascularization  in vivo , a 
variety of cytokines, growth factors, or hormones released from the jeopardized 
tissue affect BM remotely and cause EPC mobilization from BM. For instance, 
granulocyte macrophage colony-stimulating factor (GM-CSF) is well known to 
stimulate hematopoietic progenitor cells and myeloid lineage cells, but has 
recently been shown to exert a potent stimulatory effect on EPC kinetics. The 
delivery of this cytokine induced EPC mobilization and enhanced neovascular-
ization in severely ischemic tissues and  de novo  corneal vascularization 
(Takahashi et al.  1999  ) . Vascular endothelial growth factor (VEGF), critical for 
angio/vasculogenesis in the embryo, (Ferrara et al.  1996 ; Carmeliet et al.  1996 ; 
Shalaby et al.  1995  )  has also been shown to be an important stimulus of adult 
EPC kinetics recently. Our studies performed  fi rst in mice (Asahara et al.  1999b  )  
and subsequently in patients undergoing VEGF gene transfer for limb or myo-
cardial ischemia (Kalka et al.  2000  )  revealed a previously unappreciated mecha-
nism by which VEGF contributes to neovascularization in part by mobilizing 
BM-derived EPCs. Similar modulation of EPC kinetics has been observed in 
response to other hematopoietic stimulators; granulocyte-colony stimulating 
factor (G-CSF) and stromal-derived factor-1 (SDF-1), (Moore et al.  2001  )  
growth factors; platelet derived growth factor -CC (PDGF-CC), (Li et al.  2005  )  
brain derived neurotropic factor (BDNF)(Kermani et al.  2005  )  and placental 
growth factor (PlGF), (Hattori et al.  2002  )  and hormones; estrogen (Iwakura 
et al.  2003  )  and erythropoietin (Heeschen et al.  2003  )  (Fig.  35.1 ). The distinct 
mechanism by which EPCs are mobilized to the peripheral circulation remains 
unknown, but may mimic aspects of embryonic development. 

 EPC mobilization has recently been implicated not only by natural hematopoi-
etic or angiogenic stimulants but also by pharmacological agents. For instance, 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (sta-
tins) are known to rapidly activate Akt signaling in ECs, thereby stimulating EC 
bioactivity  in vitro  and enhancing angiogenesis  in vivo  (Kureishi et al.  2000  ) . 
Recent studies by Dimmeler  et al . and our laboratory have demonstrated a novel 
function of statins by mobilizing BM-derived EPCs through the stimulation of 
the Akt signaling pathway (Vasa et al.  2001a,   b ; Urbich et al.  2002 ; Llevadot 
et al.  2001 ; Dimmeler et al.  2001  ) . Therefore this newly appreciated role of sta-
tins, along with their already well-established safety and ef fi cacy on hypercho-
lesterolemia, suggests that they can be bene fi cial in treating various forms of 
vascular diseases.   
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    35.2   Role of EPCs in Post-natal Neovascularization 

    35.2.1   Direct EPC Contribution to Neovascularization 

 Post-natal neovascularization was originally recognized to be constituted by the 
mechanism of “angiogenesis”, which is new vessel formation, operated by  in 
situ  proliferation and migration of preexisting ECs as previously described 
(Folkman and Shing  1992  ) . However, the discovery of EPCs resulted in the 
addition of the new mechanism for vascular formation in adults, “vasculogene-
sis”, which is frequently observed during embryogenesis. “Vasculogenesis” is 
 de novo  vessel formation by  in situ  incorporation, differentiation, migration, 
and/or proliferation of BM-derived EPCs (Asahara et al.  1999a  ) . The incorpora-
tion of BM-derived EPCs into foci of physiological and pathological neovascu-
larization has been demonstrated in various animal experiments. One 
well-established model that allows us to detect BM-derived EPCs utilizes wild-
type mice with BM cells transplanted from transgenic mice in which LacZ 
expresses under the regulation of an EC lineage-speci fi c promoter,  fl k-1 or 
Tie-2 (Flk-1/LacZ/BMT, Tie-2/LacZ/BMT). Using these mice, Flk-1- or Tie-2-
expressing endothelial lineage cells derived from BM (EPCs) have been shown 
to localize to vessels during tumor growth, wound healing, skeletal and cardiac 
ischemia, corneal neovascularization, and endometrial remodeling following 
hormone-induced ovulation (Asahara et al.  1999a  )  (Figs.  35.1  and  35.2 ). On the 
other hand, tissue speci fi c stem/progenitor cells with the potency of differentia-
tion into myocytes or ECs was also isolated in skeletal muscle tissue in murine 
hindlimb later on, although the origin of the cells remains to be cleared (Tamaki 
et al.  2002  ) . This  fi nding suggests that the origin of EPCs may not be limited to 
BM, e.g., tissue speci fi c stem/progenitor cells possibly provide “ in situ  EPCs” 
as other sources of EPCs than BM. Regardless of the origin of EPCs, they cer-
tainly play a signi fi cant role contributing to neovascularization directly via vas-
culogenesis in the tissue.   

    35.2.2   Indirect EPC Contribution to Neovascularization 

 Apart from the established role of EPCs in neovascularization, namely “direct par-
ticipation in neovasculature via vasculogenesis”, recruited EPCs to the jeopardized 
tissue that requires vessel regeneration do not always participate in the neovascula-
ture but rather stay in interstitial tissue along with neovascularization. (Fig.  35.2 ) 
These ‘resting’ EPCs in the tissue produce a variety of cytokines/growth factors, 
speci fi cally pro-angiogenic ones, and promote pre-existing EC proliferation and 
migration resulting in angiogenesis. This paracrine effect of EPCs represents indi-
rect contribution to neovascularization. As far as we and others con fi rm the cytok-
ines/growth factors produced from EPCs, EPCs will release VEGF, hepatocyte 
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growth factor (HGF), angiopoietin-1 (Ang-1), endothelial nitric oxide synthase 
(eNOS), inducible nitric oxide synthase (iNOS), SDF-1 a , and insulin-like growth 
factor-1 (IGF-1), etc. Both VEGF and HGF promote EC proliferation leading to 
angiogenesis, and Ang-1 may play a role for stabilizing pre-matured vessels in isch-
emic tissue. Nitric oxide (NO) synthase, by ether eNOS or iNOS, maintains tissue 
blood perfusion in microcirculating systems acting as a vasodilator. Since little 
eNOS expression is observed in cardiac capillaries except for ECs in coronary arter-
ies, ‘imported’ eNOS produced from the recruited EPCs is thought to be a major 
source of eNOS and important in short term ischemia, speci fi cally inchemia-reper-
fusion injury (Ii et al.  2005  ) . iNOS is also produced from the recruited EPCs, how-
ever, the expression is prominent only when the tissue hypoxia is sustained for a 
long time, i.e. in the case of chronic myocardial ischemia rather than ischemia-
reperfusion injury. BM-derived cell eNOS or iNOS deletion results in the exacerba-
tion of myocardial infarction induced by ischemia-reperfusion injury or permanent 
vessel occlusion, respectively, suggesting that ‘imported’ NOS is crucial for pre-
venting ischemic myocardium depending on the type of ischemic injury (Ii et al. 
 2005  ) . SDF-1 a  released from recruited EPCs further recruits more EPCs triggering 
a chain reaction. On the other hand, EPCs will prevent cardiac apoptosis caused by 
ischemia via a production of IGF-1, a potent anti-apoptotic factor, activating the Akt 
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  Fig. 35.2    Two different roles of EPCs in neovascularization. In the case of new vessel formation, 
one role of EPCs is the direct participation of EPCs in neovascularization accompanying preexist-
ing EC proliferation and migration ( left  in the  fi gure). The other role of EPCs is the indirect effect 
on angiogenesis with the production and release of pro-angiogenic cytokines/growth factors from 
recruited EPCs. These EPCs remain in the site without participating in the neovasculature, exhibit-
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signaling pathway. Thus, EPCs demonstrate tissue-protective effects producing 
favorable factors, namely “indirect contribution to neovascularization in ischemic 
tissue”.   

    35.3   EPC-Based Therapeutic Angiogenesis 

 Since the discovery of EPCs in 1997, we immediately focused on the regenerative 
potential of stem/progenitor cells as well as the unique characteristics.  In vitro , stem/
progenitor cells have the capability of self-renewal and differentiation into organ-speci fi c 
cell types.  In vivo , these cells are then directed by the appropriate milieu that allows 
them to differentiate and reconstitute target organs. The novel therapeutic strategy for 
ischemic diseases, EPC transplantation, may therefore be an epoch as a cell therapy 
involving the classic paradigm of angiogenesis developed by Folkman and colleagues. 

    35.3.1   EPC Transplantation in Experimental Animals 

 We and others indicated that cell therapy with culture-expanded EPCs can successfully 
promote neovascularization in ischemic tissue, even when administered as “sole ther-
apy,” i.e., in the absence of angiogenic growth factors. Such a “supply-side” version of 
therapeutic neovascularization in which the substrate (EPCs/ECs) rather than ligand 
(growth factor) comprises the therapeutic tool, was  fi rst reported by intravenously 
transplanting human EPCs to immunode fi cient mice with hindlimb ischemia (Kalka 
et al.  2000  ) . These  fi ndings provided a novel insight that exogenously administered 
EPCs restored impaired neovascularization in a mouse ischemic hindlimb model. A 
similar study in which human EPCs were transplanted in a myocardial ischemia model 
of nude rat, demonstrated that transplanted EPCs localized to the area of neovascular-
ization with the differentiation into mature ECs. These  fi ndings were consistent with 
preserved left ventricular (LV) function and reduced infraction size (Kawamoto et al. 
 2001  ) . Another study in which human cord blood-derived EPCs were transplanted in 
an ischemic hindlimb model of nude rats also demonstrated similar  fi ndings with 
enhanced neovascularization in ischemic tissue (Murohara et al.  2000  )  (Fig.  35.3 ).  

 Recently, other investigators have explored the therapeutic potential of CD34+ 
Cells as an EPC-enriched fraction. Shatteman et al. transplanted freshly isolated 
human CD34+ cells into diabetic nude mice with hindlimb ischemia, and showed a 
blood  fl ow recovery in the ischemic limb (Schatteman et al.  2000  ) . Also, Kocher 
et al. attempted intravenous infusion of freshly isolated human CD34+ cells into 
nude rats with myocardial ischemia, and observed preservation of LV function in 
consistent with the inhibition of cardiac apoptosis (Kocher et al.  2001  ) . CD34+ cell 
dose-dependent contribution to LV functional recovery and neovascularization in 
ischemic myocardium has been demonstrated. Notably, CD34+ cells in higher dose 
groups committed into not only vasculogenic (endothelial and mural) lineage but 
also myocardial lineage cells (Iwasaki et al.  2006  )  (Fig.  35.3 ).  
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    35.3.2   EPC Transplantation in Clinical Trials 

 We have recently reported a phase I/II clinical trial regarding intramuscular trans-
plantation of autologous and G-CSF-mobilized CD34+ cells in patients with intrac-
table critical limb ischemia (CLI) (Kawamoto et al.  2009  ) . The  fi rst-in man trial was 
conducted as a prospective, multicenter, single-blinded and dose-escalation study 
since 2003 in our institute. G-CSF was used to ef fi ciently mobilize BM-EPCs to PB, 
and the mobilized CD34+ cells were isolated as EPC-enriched fraction. 

 In all subjects, primary endpoint, the Ef fi cacy score at week 12 was positive value 
indicating improvement of lower limb ischemia after the cell therapy. In addition, both 
subjective and objective parameters of lower limb ischemia such as toe brachial pres-
sure index (TBPI), transcutaneous partial oxygen pressure (TcPO 

2
 ), total walking dis-

tance (TWD), pain-free walking distance (PFWD), Wang-Baker’s pain rating scale 
and the ulcer size signi fi cantly, (Fig.  35.4 ) and serially improved after transplantation 
of CD34+ cells. Because this was not a randomized, controlled study, possibility of 
the placebo effect after CD34+ cell transplantation needs to be evaluated in the large-
scaled future trial. As for the safety evaluation, neither death nor life-threatening 
adverse events were observed in this study. No severe adverse event, for which rela-
tion to a series of cell therapy could not be denied, was also observed. Although mild 
to moderate adverse events were frequent, these events were transient and expected. 
No malignant tumor was also clinically identi fi ed during the study period.  
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  Fig. 35.3    Therapeutic angiogenesis/vasculogenesis with EPC transplantation. In clinical trials, 
both freshly isolated CD34+ cells from G-CSF mobilized mononuclear cells in peripheral blood of 
patients with chronic ischemic myocardial ischemia and cultured EPCs from bone marrow or 
peripheral blood in patients with acute myocardial infarction have been used. Indeed, these EPCs 
give rise to favorable outcomes regardless of the type of EPCs       
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 In addition to CD34, CD133 is a surface marker of early EPC phenotype. A recent 
clinical study by Burt et al. showed the safety and feasibility of autologous, GCSF-
mobilized CD133+ cell implantation into lower extremity muscles of nine patients 
with CLI including a patient with Buerger’s disease (   Burt et al.  2010  ) . PB-MNCs 
were collected by leukapheresis after GCSF mobilization (10  m g/kg/day for 4–5 days), 
and CD133+ stem cells were selected using a magnetic separation system. There 
were no major complications from either leukapheresis or cell injection. The patient 
with Buerger’s disease underwent the procedure twice. After the procedure, rest pain 
resolved rapidly by day 2, and 7 of 9 patients including a case of Buerger’s disease 
were able to avoid limb amputation during the 1-year follow-up. 

 Although these studies were small-sized, non-randomized trials, these initial results 
suggest the potential effectiveness of the puri fi ed EPC population in CLI patients. 

 As for the EPC therapy for coronary artery disease, Losordo et al. recently reported 
a phase II, randomized, placebo-controlled and dose-ranging clinical trial for 167 
patients with refractory angina. Autologous CD34+ cells isolated from GCF-mobilized 
apheresis products were intramyocardially injected into ischemic myocardium under 
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  Fig. 35.4    Representative case of autologous CD34+ cell transplantation therapy for CLI in Burger 
disease. Thirty-six year old male patient who had toe necrosis due to microcirculation failure 
received CD34+ cell injection at 40 sites in ischemic limb under lumbar anesthesia, and the necro-
sis was signi fi cantly improved with blood  fl ow recovery with reduced skin ulcer size 3 months 
after the treatment. Quantitative analysis for skin ulcer size exhibits signi fi cant improvement of toe 
necrosis ( Graph ). **  P  < 0.01 vs. Pre ( baseline ). The improvement could be maintained for more 
than 1 year without recurrence       
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the guidance of NOGA endomyocardial mapping. Six and tweleve months later, 
angina counts and changes in exercise time signi fi cantly improved in CD34+ cell 
group than placebo group (Losordo et al.  2011  ) . These promising outcomes also sup-
port the clinical usefulness of EPC transplantation for reduction of tissue ischemia.  

    35.3.3   Problems in EPC Transplantation 

 Our animal studies (Kalka et al.  2000  )  suggest that heterologous EPC transplantation 
requires systemic injection of 0.5 ~ 2.0 × 10 4  human EPCs/g body weight of the recipi-
ent animal to achieve satisfactory improvement of hindlimb ischemia. In general, cul-
tured EPCs obtained from healthy human volunteers yields 5.0 × 10 6  cells per 100 ml 
of peripheral blood on day 7. Based on these data in human, a blood volume of as 
much as 12 l will be necessary to obtain enough number of EPCs to treat patients who 
have critical ischemic hindlimb. Therefore, the background factors in clinical patients 
such as aging, (Heiss et al.  2005  )  diabetes, (Ii et al.  2006 ; Vasa    et al.  2001b  )  hyperc-
holesterolemia, (Vasa et al.  2001a,   b  )  hypertension (Vasa et al.  2001a,   b ; Imanishi 
et al.  2005  )  and smoking (Kondo et al.  2004 ; Michaud et al.  2006  )  that may reduce the 
number of circulating/BM EPCs and the function will cause major limitations of pri-
mary EPC transplantation. In reality, most of the patients who are going to undergo 
EPC therapy for the ischemic diseases more or less have background diseases as 
described above. Considering autologous EPC therapy, certain technical improve-
ments that may help to overcome the malfunction of EPCs should include; (1) local 
delivery of EPCs, (2) endogenous EPC mobilization i.e. cytokine/growth factor sup-
plements to promote BM-derived EPC mobilization, (Asahara et al.  1999b ; Takahashi 
et al.  1999  ) , (3) enrichment procedures, i.e., leukapheresis or BM aspiration, (4) 
enhancement of EPC functions by gene transduction, or (5) culture-expansion of 
EPCs from self-renewable primitive stem/progenitor cells in BM or other sources. 
Unless the quality and quantity of autologous EPCs is obtained by the technical 
improvements as described above, allogenic EPCs derived from umbilical cord blood 
or culture-expanded from human embryonic stem cells (Murohara et al.  2000 ; 
Levenberg et al.  2002  ) , may be another alternative source supplying EPCs.  

    35.3.4   EPC as a Biomarker for Ischemic Diseases 

 Previous clinical studies reported that the number of circulating EPCs de fi ned with 
cell surface markers, CD34+, CD34+/KDR+, CD133+/KDR, or CD34/CD133/
KDR+, inversely correlated with the severity of cardiovascular diseases including 
congestive heart failure (Diller et al.  2008 ; Lev et al.  2005 ; Schmidt-Lucke et al. 
 2005 ; Shintani et al.  2001 ; Valgimigli et al.  2004 ; Werner et al.  2005  )  (Table  35.1 ). 
Colony forming activity of EPCs analyzed by Hill’s method (Hill et al.  2003  )  has 
also been known to correlate with the number of circulating EPCs and used for the 



892 M. Ii et al.

   Ta
bl

e 
35

.1
  

  C
or

re
la

tio
n 

be
tw

ee
n 

ci
rc

ul
at

in
g 

E
PC

 n
um

be
r/

fu
nc

tio
n 

an
d 

ca
rd

io
va

sc
ul

ar
 d

is
ea

se
s   

 Su
bj

ec
t d

is
ea

se
 

 C
on

tr
ol

 d
is

ea
se

 
 N

 
 E

PC
 ty

pe
 

 E
PC

 n
um

be
r/

fu
nc

tio
n 

 R
ef

er
en

ce
s 

 A
M

I 
(D

ay
 7

 a
ft

er
 o

ns
et

) 
 A

M
I 

(D
ay

 o
f 

on
se

t)
 

  1
6 

 C
D

34
+

 
 2X

↑/
C

FA
↑ 

 Sh
in

ta
ni

 e
t a

l. 
 (  2

00
1  )

  
 N

on
-S

T
↑A

M
I 

(w
ith

 
co

lla
te

ra
ls

) 
 N

on
-S

T
↑A

M
I 

(w
ith

ou
t 

co
lla

te
ra

ls
) 

  2
0 

 C
D

13
3+

/K
D

R
+

 
 2X

↑/
C

FA
 →

 
 L

ev
 e

t a
l. 

 (  2
00

5  )
  

 C
A

D
 (

C
ar

di
ac

 e
ve

nt
 +

) 
 C

A
D

 (
C

ar
di

ac
 e

ve
nt

 −
) 

  7
7 

 C
D

34
+

/K
D

R
+

 
 0.

5X
↓/

 (
~)

 
 Sc

hm
id

t-
L

uc
ke

 
et

 a
l. 

 (  2
00

5  )
  

 C
A

D
 (

C
ar

di
ac

 e
ve

nt
 −

) 
 C

A
D

 (
C

ar
di

ac
 e

ve
nt

 +
) 

 51
9 

 C
D

34
+

/K
D

R
+

 
 1.

5–
2X

↑/
 (

~)
 

 W
er

ne
r 

et
 a

l. 
 (  2

00
5  )

  
 C

on
ge

st
iv

e 
H

F 
 H

ea
lth

y 
vo

lu
nt

ee
r 

  4
6 

 C
D

34
+

/C
D

13
3+

/K
D

R
+

 
 M

ild
 H

F:
3–

4X
↑/

C
FA

↑ 
 V

al
gi

m
ig

li 
et

 a
l. 

 (  2
00

4  )
  

 Se
ve

re
 H

F:
0.

7–
0.

5X
倍

↓/
C

FA
↓ 

 E
is

en
m

en
ge

r 
Sy

nd
ro

m
e 

(w
ith

 p
ul

m
on

ar
y 

H
T

) 
 H

ea
lth

y 
vo

lu
nt

ee
r 

  9
6 

 C
D

34
+

, C
D

34
+

/
C

D
13

3+
, K

D
R

+
 

 0.
3–

0.
5X

↓/
C

FA
↓ 

 D
ill

er
 e

t a
l. 

 (  2
00

8  )
  

   A
M

I  
ac

ut
e 

m
yo

ca
rd

ia
l i

nf
ar

ct
io

n,
  C

A
D

  c
or

on
ar

y 
ar

te
ry

 d
is

ea
se

,  H
F

  h
ea

rt
 f

ai
lu

re
,  H

T
  h

yp
er

te
ns

io
n,

  C
FA

  c
ol

on
y 

fo
rm

in
g 

ac
tiv

ity
  



89335 Vascular Regeneration: Endothelial Progenitor Cell Therapy for Ischemic Diseases

assessment of EPC function, however, Hill’s colony assay is recognized as just a 
method for detecting EPC aggregation.  

 Thus, we have recently developed a novel EPC colony forming assay (EPC-CFA) 
system, capable to address and overcome most of the limitations of the classical 
assay systems, is challenging several of the predominant classical opinions about 
EPCs, and enabling an until now missing differential hierarchic view on EPCs. 
We have reported one of the  fi rst examples of such an assay system, initially 
designed to work with mouse samples. c-Kit + /Sca-1 + /Lineage negative (KSL) 
cells were used as a putative murine hematopoietic EPC-enriched cell population, 
allowing the identi fi cation of two clearly distinguishable types of colonies (small 
and large colonies) that in turn correspond to two distinct EPC populations, primi-
tive (small) and de fi nitive (large) EPCs, respectively (Kwon et al.  2008 ; Tanaka 
et al.  2008 ; Kamei et al.  2010  )  (Fig.  35.5 ). The concept of an EPC-CFA was 
recently introduced and further developed for analysis of human EPC samples 
(Masuda et al.  2011  ) . The EPC-CFA enables hereby not only the EPC-colony 
formation analysis of single and/or bulk cells from EPC-enriched arbitrary frac-
tions or non-selected cell populations but allows also the cell fate analysis of pri-
mary and/or suspension culture cultivated single and/or bulk cells. It can further 
be easily combined with a classical HPC colony assay system, thus allowing a 
direct and comprehensive elucidation of the differences and similarities between 
EPCs and HPCs via the clari fi cation of the cell fate of each cell type. The use of 
such an EPC-CFA allows not only the elucidation of a possible but so far elusive 
differentiation hierarchy of EPCs, but can be further used to identify and charac-
terize the parameters associated with proliferation, commitment, and differentia-
tion of EPCs  in vitro  and  in vivo  (Asahara et al.  2011  ) .  
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  Fig. 35.5    Representative images of large EPC colony and small EPC colony with human CD34+ 
cells. GCS-F mobilized human CD34+ cells were cultured in methylcellulose-based special cul-
ture medium for 3 weeks and the formed colonies were identi fi ed as colonies consist of large EPCs 
and those consist of small EPCs according to the morphology-based criteria. Both small EPC 
colony ( upper panels ) and large EPC colony ( lower panels ) show characteristics of acLDL uptake 
and isolectin B4 binding       
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 Indeed, application of EPC-CFA on human CD34+ or CD133+ stem/progenitor 
cells enabled the identi fi cation of small and large distinct colony types each derived 
from a single cell, small-EPCs and large-EPCs, respectively. Small-EPCs showed a 
higher rate of proliferative activity with a higher number of cells being in the 
S-phase, when compared to large-EPCs. Interestingly, large-EPCs showed a 
signi fi cantly higher rate of vasculogenic activity with overall increased potential for 
cell adhesion and tube-like structure formation  in vitro  as well as a high  in vivo 
de novo  blood vessel forming activity following transplantation of these cells into a 
murine ischemic hindlimb model, as compared to small-EPCs. In contrast to small-
EPCs, large-EPCs did not form secondary colonies but gave rise to isolated endothe-
lial cell (EC) like cells when reseeded. Due to the observed  in vitro  (by FACS 
analysis) and  in vivo  characteristics of these colony types, small-EPCs were further 
characterized and believed to represent “primitive EPCs”, a highly immature and 
proliferative population of cells, compared to large-EPCs which are believed to rep-
resent “de fi nitive EPCs”, cells prone to differentiate and promote vasculogenesis. 

 The advantage of these assessment for the number and colony forming activity 
of circulating EPCs is a convenient tool for clinical application in terms of a medical 
regulatory feasibility of sampling from blood cells by antibody targeting isolation, 
and a potent effectiveness on ischemic diseases through vasculogenic and angio-
genic mechanisms by primary cells.  

    35.3.5   Future Strategy with EPC Transplantation 

 The possible and feasible strategy that may recover potential EPC dysfunction in 
ischemic disorders should be considered, given the  fi ndings that EPC function and 
mobilization may be impaired in certain diseases. One of the strategies, genetic 
modi fi cation of EPCs to overexpress angiogenic growth factors, will enhance sig-
naling activity of the angiogenic response and reactivate the bioactivity and/or 
extend the life span of EPCs. 

 We have recently shown for the  fi rst time that gene-modi fi ed EPCs rescue 
impaired neovascularization in an animal model of limb ischemia (Iwaguro et al. 
 2002  ) . Transplantation of heterologous EPCs transduced with adenovirus encoding 
human VEGF165 improved neovascularization and blood  fl ow recovery, reducing 
the limb necrosis and auto-amputation rate in comparison with controls. The dose 
of EPCs needed to achieve limb salvage in these  in vivo  experiments was 30 times 
less than that required in the previous experiments involving unmodi fi ed EPCs 
(Kalka et al.  2000  ) . Other investigators have also demonstrated the therapeutic 
ef fi cacy of genetically engineered EPCs with a variety of target genes such as 
adrenomedullin (AM), (Nagaya et al.  2003  )  eNOS, (Kong et al.  2004  )  tissue plas-
minogen activator (tPA) (Griese et al.  2003  )  and integrin-like kinase (ILK) (Cho 
et al.  2005  )  in animal models. Thus, genetic modi fi cation might overcome the 
potential problems in the patients’ EPCs for EPC transplantation therapy in isch-
emic diseases as so-called “second generation EPC therapy”. Also, combining EPC 



89535 Vascular Regeneration: Endothelial Progenitor Cell Therapy for Ischemic Diseases

cell therapy with gene (i.e., VEGF) therapy (Kawamoto et al.  2004  )  may be another 
option to address the limited number and function of EPCs that can be isolated from 
peripheral blood in patients.   

    35.4   Summary 

 There is accumulating evidence that BM-derived EPCs have characteristics similar 
to those of angioblasts demonstrating the potential to promote postnatal vasculo-
genesis in adults, and clinical applications of EPCs in regenerative medicine are 
now on going. To acquire optimal quality and quantity of EPCs, however, several 
issues remain to be addressed, such as the development of a more ef fi cient method 
of EPC puri fi cation and expansion, the methods of administration, and background 
disease-induced dysfunction or senescence in EPCs in patients. Alternatively, in the 
case of impossible utility of autologous BM-derived EPCs in patients with impaired 
BM function, appreciable EPCs isolated from umbilical cord blood or differentiated 
from tissue speci fi c stem/progenitor or embryonic stem cells need to be optimized 
for EPC therapy. However, the unlimited potential of EPCs along with the emerging 
concepts of autologous cell therapy with gene modi fi cation suggests that they may 
soon reach clinical fruition.      
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  Abstract   Coronary heart disease and chronic heart failure are common and have an 
increasing frequency. Although revascularisation procedures and conventional drug 
therapy may delay ventricular remodelling, there is no basic therapeutic regime 
available for preventing or even reversing this process. Chronic coronary artery 
disease and heart failure impair quality of life and are associated with subsequent 
worsening of the cardiac pump function. Numerous studies within the past few 
years have been demonstrated, that cardiac stem cell therapy has to be considered a 
safe therapeutic procedure in heart disease, when destroyed and/or compromised 
heart muscle must be regenerated. Different autologous or allogenic progenitor cell 
populations have been addressed for cardiac cell therapy. This kind of cell therapy 
with autologous bone marrow cells is completely justi fi ed ethical, except for the 
small numbers of patients with direct or indirect bone marrow disease (e.g. myeloma, 
leukaemic in fi ltration) in whom there would be intrinsic lesions of mononuclear 
cells. Several preclinical as well as clinical trials have shown that transplantation of 
autologous bone marrow stem cells or precursor cells improve cardiac function after 
myocardial infarction and in chronic ischemic heart disease. Further indications are 
non-ischemic and diabetic cardiomyopathy (dilated cardiomyopathy), as well as 
heart failure due to an infectious cause like Chagas heart disease. Other clinical 
applications in heart valve and vascular conduit tissue engineering have been 
approached. Further clinical development is aimed to modify cardiac in fl ammation 
and cardiogenesis by stem cell modi fi cation and to test other stem cell sources.      
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    36.1   Background and Rationale for Stem 
Cell Therapy in Heart Disease 

 Stem cells have the important properties of self-regeneration and differentiational 
plasticity (Allgöwer  1956 ; Jiang et al.  2002 ; Krause et al.  2001 ; Quaini et al.  2004  ) . 
Thus, they are ideal candidates for regeneration of damaged myocardial tissue 
(Goodell et al.  2001  ) ,for example, in myocardial infarction or congestive heart 
failure. When acute myocardial infarction occurs, heart muscle tissue is regionally 
destroyed (Pfeffer and Braunwald  1990 ; Ren et al.  2002  ) . By percutaneous coronary 
interventions, coronary restitution can be achieved and coronary perfusion may be 
normalized by reopening coronary artery occlusions; however, regular heart muscle 
function may be restored not or only to a minor degree due to postischemic destruc-
tion, so that remodelling and heart failure mostly are not prevented. Prevention of 
remodelling which occurs in approximately 60% of postinfarction patients, however, 
may possibly be realized by cell transplantation, which leads to myocardial restitu-
tion with the bene fi cial aim of restoring or normalizing compromised heart function 
(Kocher et al.  2001  ) . 

 One possible way of heart muscle repair is to transplant cells of primarily non-
cardiac origin for cardiac regeneration. First clinical attempts to cardiac cell therapy 
using non-cardiac cells were made by the Paris-group (Menasche et al.  2001  ) , who 
for the  fi rst time in the year 2000 applied autologous cultured skeletal myoblasts for 
intramyocardial injection in postinfarction patients during coronary bypass surgery. 
The origin of skeletal myoblasts from bone marrow stem cells was described by 
Ferrari et al.  (  1998  ) . Bone marrow contains progenitor cells for different lineages 
including the cardiovascular system (Reyes et al.  2001  ) . Bone marrow stem cells 
may also operate as a source of cardiac cells; that is, as precursor of heart muscle 
tissue and of coronary blood vessel cells as demonstrated by Orlic et al.  (  2001  )  and 
Kocher et al.  (  2001  ) . Human bone marrow contains e.g. CD34/CD133-positive 
haematopoietic and CD34/CD133-negative mesenchymal stem cells (Reyes et al. 
 2001  )  and both these types of stem cells may contribute to heart muscle repair. The 
 fi rst steps and experimental cornerstones demonstrating mononuclear bone marrow 
stem cell differentiation to muscle cells in experimental heart disease, especially 
in experimental myocardial infarction, were realized by different investigators: 
demonstrating (i) regeneration of myocardium after infarction (Kocher et al.  2001  )  
(ii) reduction of infarct size (Kocher et al.  2001  ) ; and (iii) de novo expression of 
cardiac proteins by human bone marrow cells (Toma et al.  2002  ) . The Düsseldorf 
group performed clinical intravascular stem cell therapy for the  fi rst time in March 
2001, when treating acute myocardial infarction by intracoronary cell transfer 
(Strauer et al.  2001  ) . In July 2001 the Rostock group treated chronic ischemia after 
myocardial infarction in bypass surgery patients for the  fi rst time by intramyocardial 
injection of puri fi ed stem cell transplantation (Stamm et al.  2003  ) . The aims of these 
procedures, which had not been achieved before, were:

    1.    To use the body’s own (autologous) stem cells from bone marrow or from periph-
eral blood for cardiac tissue repair; that is, (a) for intracoronary (endovascular) 
application to use all three fractions of mononuclear bone marrow stem cells, 
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haematopoietic, angioblastic and mesenchymal; (b) for direct intramyocardial 
(interstitial) transplantation to use highly puri fi ed (f.e. CD133+) bone marrow 
stem cells.  

    2.    To facilitate and potentiate cell migration by arti fi cial cardiac ischaemia, which 
is one of the most effective stimuli for stem cell differentiation and recruitment 
(Kamota et al.  2009  ) , most probably via the CXCR4 – SDF-1 interrelationships. 
In the endovascular approach this has been achieved by repetitive intracoronary 
balloon dilatations within the occlusion of the former infarct-related artery. In 
the intramyocardial approach this has been achieved by cardioplegic ischemia 
during the heart surgery procedure prior to stem cell application.  

    3.    To enrich and to accumulate bone marrow stem cells within the postischemic 
infarct border zone either by intracoronary (endovascular) or intramyocardial 
(interstitial) administration.     

 In the recent past new evidence suggests that cardiomyocyte renewal takes place in 
humans, although this process seems to be of low magnitude (Bergmann et al. 
 2009  ) . Future therapeutic strategies should be aimed to stimulate this process. Stem 
cell transplantation could offer a therapeutic tool to fully exploit this self-renewing 
capacity of the adult human heart.  

    36.2   Cell Types 

    36.2.1   Adult Tissue Derived Cells 

    36.2.1.1   Bone Marrow Hematopoetic Progenitor/Stem Cells 

 Bone marrow derived haematopoietic stem cells    or circulating peripheral blood 
progenitor cells have been shown to differentiate into cardiomyocytes in culture 
making them particularly interesting for the treatment of cardiac disease since they 
represent a well characterised and ample source of progenitor cells (Joggerst and 
Hatzopoulos  2009  ) . The isolation and the systemic delivery of bone marrow stem 
cells has been established before in the treatment of hematopoietic diseases. Surface 
markers characterising hematopoietic stem cells in the adult human bone marrow 
include CD 133, CD 34, and CD 117 (c-kit). Besides the adult bone marrow stem cells 
expressing hematopoietic markers can also be obtained from the umbilical cord 
peripheral blood and the placenta. Large scale clinical trials using bone marrow 
derived hematopoietic stem cells could proof the safety and feasibility of this cell 
population for cardiac transplantation and showed moreover a modest improvement 
of the left ventricular function and a signi fi cant reduction in subsequent cardiovas-
cular events. Although experimental data suggests that for bone marrow derived 
stem cell with hematopoietic markers cardiomyocyte differentiation is comparatively 
rare (Nygren et al.  2004  ) , transplantation of bone marrow derived hematopoietic 
stem cells is closely related with myocardial regeneration most likely due to neovas-
cularisation and reduction of apoptosis (Ma et al.  2006 ; Tse et al.  2007  ) .  
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    36.2.1.2   Endothelial Progenitor Cells 

 Another cell type derived from the adult bone marrow, the endothelial progenitor cell    
(EPC), has been very promising in the recent past in order to become a potential thera-
peutic tool. Neoangiogenesis    was once thought to occur only through the proliferation 
of mature endothelial cells in the injured region. This understanding was challenged 
by the discovery that EPC derived from the bone marrow home to sites of injury and 
incorporate into the microvasculature (Asahara et al.  1997 ; Shi et al.  1998  ) . Although 
there is some controverse discussion about their true de fi nition as a subpopulation of 
bone marrow stem cells, EPC’s can be identi fi ed by their capability to acquire endothe-
lial cell characteristics in vitro and in vivo. They express the surface markers such as 
CD 133, the vascular endothelial growth factor receptor 2 ( VEGFR- 2), CD 34 and 
vascular endothelial cadherin (VE-cadherin) of which CD 133 and 34 are shared 
with hematopoietic stem cells. They are mobilised from the bone marrow in the state 
of injury like vascular trauma or myocardial infarction (Gill et al.  2001 ; Shintani et al. 
 2001  ) . Besides their role in vascular repair there is also evidence that EPC can dif-
ferentiate in cardiomyocytes (Iwasaki et al.  2006  ) . In preclinical settings injection of 
EPC’s into the infarcted myocardium improved left ventricular function and reduced 
 fi brosis (Jujo et al.  2008 ; Kocher et al.  2001  ) . These results led to small clinical trials 
assessing feasibility and safety. Moreover EPC’s have already found a niche in the 
 fi eld of interventional cardiology, where coronary stents have been coated with anti 
CD 34-antibodies to trap circulating endothelial progenitors in order to prevent 
in-stent restenosis by augmenting the endothelialisation process (Aoki et al.  2005  ) .  

    36.2.1.3   Mesenchymal Stem Cells 

 Mesenchymal stem cells    (MSC) are a subset of stem cells that are located in the stroma 
of the bone marrow and can differentiate into osteoblasts, chondrocytes and adipocytes 
(Alhadlaq and Mao  2004 ; Jiang et al.  2002  ) . They can be separated from haematopoietic 
stem cells by their ability to adhere to a culture dish (Alhadlaq and Mao  2004  ) . MSC can 
also be induced to differentiate in vitro into cardiomyocytes (Makino et al.  1999  ) . MSC 
are potentially advantageous as they seem to be less immunogenic than other cell 
lines(Dai et al.  2005  ) . Preclinical animal studies with myocardial infarction models 
demonstrated improved left ventricular function and a reduction of infarct size(Amado 
et al.  2005 ; Dai et al.  2005  ) . Dif fi culties however, may arise because of the remaining 
heterogeneity among MSC populations regarding their differentiation capacity and 
consecutive low predictability when implanted. For example some studies reported 
MSC differentiation into osteoblasts after implantation into ventricular tissue (Yoon 
et al.  2004  ) . This issue needs to be addressed prior full scale therapy.  

    36.2.1.4   Skeletal Myoblasts 

 Skeletal myoblasts    were among the  fi rst cell types considered for cardiac repair. 
Also called satellite cells   , they are found beneath the basal membrane of muscle 
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tissue and start to proliferate when stimulated by muscle injury or disease 
(Buckingham and Montarras  2008  ) . Skeletal myoblasts are of special interest for 
cardiac repair as they can differentiate into nonmuscle cell types (Arsic et al.  2008  )  
and are resistant to ischaemia (Pagani et al.  2003  ) , which is an obvious obstacle to 
the function of other stem cells in injured myocardium. Animal studies in cardiac 
disease models have been performed with encouraging results. However, skeletal 
myoblasts do not fully differentiate into cardiomyocytes in vivo after transplantation. 
The contracting myotubules do not operate in synchrony with the surrounding 
myocardium, which is most likely due to a lack of the gap-junction protein connexin 
43 activity and lack of electrical coupling with the surrounding cardiac cells (Leobon 
et al.  2003 ; Reinecke et al.  2002  ) . First clinical studies were able to proof the feasi-
bility and safety of skeletal myoblast implantation to the heart (Herreros et al.  2003 ; 
Menasche et al.  2003 ; Pagani et al.  2003  ) , yet the seen bene fi ts were only marginal. 
Moreover these studies raised one considerable concern regarding the use of skeletal 
myoblasts for cardiac regeneration, which is their potential to create ventricular 
arrhythmias (Fouts et al.  2006 ; Itabashi et al.  2005  ) . However more- recent clinical 
trials did not record an increase of arrhythmic events in vivo after intracardiac injec-
tion of skeletal myoblasts (Menasche et al.  2008  ) . Preclinical studies have also 
shown that induced overexpression of connexin 43 might help to overcome this 
problem (Abraham et al.  2005  ) .  

    36.2.1.5   Cardiac Stem Cells    

 The heart    has traditionally been seen as a postmitotic organ, with no further capacity 
for cardiomyocyte renewal and regeneration. In the last years contradictory data 
began to accumulate as – under certain pathological conditions, like ischaemia or 
hypertension – cardiomyocyte proliferation and cell cycling were found to take place 
in myocardium (Anversa et al.  1990 ; Beltrami et al.  2001 ; Bergmann et al.  2009  ) . 
This idea was challenged when male Y-chromosome positive cardiomyocytes and 
endothelial cells were found in donor female cardiac tissue after transplantation into 
a male recipient (Quaini et al.  2004  ) . Furthermore estimates of death rate levels of 
adult cardiomyocytes led to the consideration of a pool of cardiac progenitor cells 
(Ellison et al.  2007  ) . Following intensive research discovered several different cell 
types with stem cell characteristics in the adult heart. These stem cells are described 
by different patterns. Some cells are dye-negative, as they exclude any vital dyes 
like Hoechst 33342 or Rhodamin 123. They are also called side populations (SP) 
cells   . Another resident stem cell population is characterized by the expression of 
c-kit (CD 117)   . They are located in small clusters in the adult heart. A third popula-
tion of cells in heart with stem cell features expresses the stem cell antigen 1 (Sca-1)   . 
Of these cell types SP cells and Sca-1+ cells are mobilised after cardiac injury 
(Mouquet et al.  2005 ; Oh et al.  2003  )  and Sca-1+ cells have been found to differ-
entiate to cardiomyocytes around the injured area. C-kit + cells have regenerative 
potential after transplantation, giving rise to cardiomyocytes endothelial cells and 
smooth muscle cells. C-kit + cell transplantation    to injured hearts led to signi fi cant 
improvement in ventricular function (Beltrami et al.  2003  ) . Until today it is unclear, 
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if these various stem cells are distinct cell types or if they represent different stages 
of a single cell lineage. It appears that cardiac stem cells reside in specialised niches, 
which support the growth and maintenance of the cell pool (Fuchs et al.  2004  ) . 
Possible such niches have been localised all over the myocardium with a concentration 
in deep tissue at the atria and apex (Beltrami et al.  2003 ; Urbanek et al.  2005  ) . 
However these stem cell pools seem to diminish with ageing, a fact that might 
contribute to the lack of ef fi cacy of regeneration in elderly individuals (Torella 
et al.  2006  ) . Since it is predominantly the older patients are affected by increased 
mortality due to cardiomyopathies, attempts to enhance or rejuvenate this senescent 
stem cell population are of great interest. 

 There are two new encouraging reports on the therapeutic effects of cardiac stem 
cells: Autologous CD105+ cardiosphere-derived cells (CDCs), grown in 36 days 
from endomyocardial biopsy specimens ,signi fi cantly reduce scar mass of the 
infarcted ventricle, when infused intracoronarily 1–3 months after the onset of the 
infarct (Makkar et al.  2012  ) . There was also an increase of regional contractility, 
however, there were no relevant changes of ventricular geometry (enddiastolic and 
endsystolic volume). Anther also promising report showed, that intracoronary infusion 
of autologous C-kit-positive, lineage-negative cardiac stem cells (CSCs), obtained 
from atrial tissue during cardiac surgery, increased ejection fraction 4 months 
thereafter from 30 to 38 % in the majority of treated patients. Moreover, infarct size 
was considerably reduced (Bolli et al.  2011  ) .   

    36.2.2   Embyronic Tissue Derived Cells 

 Embryonic stem cells    (ESC), derived form the inner mass of the blastocyst, offer 
theoretically limitless regenerative capacity, since they are able to give rise to most 
somatic cell lineages in vivo and in vitro. Furthermore by culturing in various 
growth media, differentiation can be driven towards a desired cell type such as car-
diomyocytes (Odorico et al.  2001  ) . Implantation of these cells into injured cardiac 
tissue has been tested successfully in preclinical studies (Min et al.  2002  ) . Probably 
the greatest capacity for cardiac differentiation and long-term survival has been 
seen in studies using ESCs (van Laake et al.  2008  ) . However there are some major 
concerns regarding the use of ESC in humans for regenerative purposes. First, the 
broad differentiation capacity along endo-, ecto- and mesodermal lineages consid-
erably increases the likelihood of teratoma formation (Blum and Benvenisty  2008  ) . 
Therefore recent experimental results reporting about tumor-resistent, cardiopoietic 
programming of ESC by modi fi cation of host tissue tissue secrete factors are of 
interest (Behfar et al.  2007  ) . Second, there is increasing evidence that ESC, once 
thought to be uniquely immunoprivileged, express speci fi c human leukocyte antigen 
subclasses (Draper et al.  2002  ) . This raises the question how to avoid possible anti-
allogenic graft rejection. Immunosuppression with steroids is known to be harmful 
for ischaemic myocardium(Silverman and Pfeifer  1987  ) . At the moment there is 
ongoing research to limit the immunogenicity of the cell for allogeneic transplantation. 
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Finally ESC and their origin have raised a considerable ethical debate. The recent 
discovery of the possibility to generate ESC-like cells, called inducible pluripotent 
stem (iPS) cells, by reprogramming adult somatic cells (Aoi et al.  2008 ; Takahashi 
et al.  2007  ) , might help to overcome the ethical, immunogeneic and probably 
tumorogenic problems associated with the use of ESCs.   

    36.3   Cardiac Cell Therapy, Regenerative Principles 

    36.3.1   Stem Cell Isolation    and Methodological Prerequisites 

 Important conditions for clinical stem cell therapy are the precise and careful tech-
niques of bone marrow cell preparation, availability of large cell concentrations 
within the area of interest (border zone of infarction), migration of stem cells into 
the apoptotic or necrotic myocardial area, and prevention of homing of transplanted 
cells to other extracardiac organs. 

 For stem cell transplantation    in cardiac diseases, adult bone marrow (80–200 ml) 
is aspirated under local anaesthesia from the iliac crest. Respective bone marrow 
stem cell populations then need to be isolated under good manufacturing practice 
(GMP) conditions. During cell preparation, viability needs to be determined several 
times and  fi nally must reach around 95 %. All microbiological tests of the clinically 
used cell preparations must prove negative for endogenous (HIV, HBV, HCV) or 
exogenous contamination.  

    36.3.2   Intracoronary Application    

 One of the most important and crucial methodological questions refers to the opti-
mum mechanism of cell delivery to the heart   . When given intravenously, only a very 
small fraction of infused cells can reach the infarct region after the following injection; 
assuming normal coronary blood  fl ow of 80 ml/min per 100 g of left ventricular 
weight, a quantity of 160 ml per left ventricle (assuming a regular left ventricular 
mass of ~200 g) will  fl ow per minute. This corresponds to only around 3% of cardiac 
output (assuming a cardiac output of 5,000 ml/min) (Gregg  1963 ; Strauer  1979  ) . 
Thus, intravenous application would require many circulation passages to enable 
infused cells to come in contact with the infarct-related artery. Throughout this long 
circulation and recirculation time, homing of cells to other organs could considerably 
reduce the numbers of cells dedicated to cell repair in the infarcted zone. Supplying 
the entire heart muscle compartment by intracoronary administration obviously 
seems to be advantageous for tissue repair of infarcted heart muscle after interven-
tional reopening of the occluded coronary artery as all cells are able to  fl ow through 
the infarcted and peri-infarcted tissue during the immediate  fi rst passage of the 
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post-ischemic region (Fuchs et al.  2001 ; Galinanes et al.  2004  ) . Accordingly, by this 
intracoronary procedure the infarct tissue and the peri-infarct zone can be enriched 
depending on the arterial circulation access of the tissue compartments. 

 A selective intracoronary delivery route    has been developed in interventional 
cardiology (Strauer et al.  2001,   2002  ) , which minimizes the cell loss due to extrac-
tion toward organs of secondary interest by this  fi rst pass-like effect. To facilitate 
transendothelial passage and migration into the infarcted zone, cells are infused by 
high-pressure injection directly into the necrotic area, and the balloon is kept in fl ated 
for 2–4 min; cells are not washed away immediately under these conditions. 

 Cells are directly transplanted by the intracoronary administration route into the 
infarcted zone. This is accomplished by a balloon catheter, which is placed within 
the infarct-related artery. After exact positioning at the site of the former infarct-
vessel occlusion, percutaneous transluminal coronary angioplasty (PTCA) is per-
formed 4 times for 2–4 min each. During this time of vessel occlusion, intracoronary 
cell transplantation    via the balloon catheter is performed, using 4 fractional high-
pressure infusions of 5 ml cell suspension, each of which contains 6–8 million 
mononuclear cells. PTCA thoroughly prevents back fl ow of cells and at the same 
time produces a stop- fl ow beyond the site of balloon in fl ation to facilitate high-
pressure infusion of cells into the infarcted zone. Thus, prolonged contact time for 
cellular migration is allowed. This migration process is probably only present in 
injured and ischaemic tissue (Szilvassy et al.  1999  ) . Myocardial ischemia may be 
the best stimulus for a stem cell to  fi nd its optimum myocardial niche (Kamota et al. 
 2009  ) , probably due to SDF-1 and CXCR4 interrelations (Elmadbouh et al.  2007  ) . 
Therefore, ischemia-producing stimulus by balloon dilatation during bone marrow 
cell infusion seems to be necessary for the cells to home into the cardiac niche and 
for therapeutical effectiveness of cell migration (Sussman  2001 ; Loffredo et al. 
 2011  ) . The Intracoronary approach, however, should be reserved for mononuclear 
bone marrow stem cells, since intracoronary application of cultured cell types like 
mesenchymal stem cells or skeletal myoblasts could provoke microemboli (Furlani 
et al.  2009  ) . Due to their size and shape (stellar and spindle-shaped) these cells are 
more prone to embolisations than bone marrow mononuclear cells. Until now, in all 
published clinical studies, no case of embolisation by therapeutically used bone 
marrow cells has been reported.  

    36.3.3   Endocardial Application 

 A second interventional delivery route for cardiac stem cell transplantation is the 
transendocardial injection   . In contrast to intracoronary application stem cells can be 
delivered directly into the target area of the myocardium without dependence on 
vascular access or suf fi cient cell migration across the endothelial barrier. Left heart 
catheterization is performed, followed by subsequent electro mechanical mapping 
of the left ventricle. In this way areas of viable myocardium (unipolar voltage 
 ³ 6.9 mV) within the ischemic region can be identi fi ed as speci fi c targets for treatment. 
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This is followed by stem cell injection into the identi fi ed viable myocardium using 
the NOGA injection catheter, which is placed across the aortic valve into the target 
area. When in position, periodic cell injection can be performed to the endocardium 
and myocardium. This interventional approach offers intramyocardial cell delivery    
similar to the surgical approach with being less invasive at the same time. First clini-
cal studies were able to prove safety and feasibility of the transendocardial route 
in the setting of chronic ischemic heart disease (Perin et al.  2003  )  as well as for 
intractable angina (Losordo et al.  2007  ) . However, orientation by electromechanical 
mapping is technically demanding and cell loss into the ventricle or wrong injection 
sites can occur.  

    36.3.4   Epicardial Application    

 Surgical stem cell implantation    is performed into well exposed ischemic areas, 
allowing for multiple injections within and principally around the infarct area with 
a thin needle. First clinical studies performed stem cell injection in combination 
with coronary artery bypass grafting (CABG). Once the graft-coronary artery anas-
tomoses is completed the ischemic area is visualized and the cells are injected into 
the border zone of the infarcted area (Stamm et al.  2007  ) . This method has been 
applied successfully also during off-pump coronary artery bypass grafting as well 
as stand-alone minimally invasive procedure where cell injection is performed with-
out cardiac arrest. As already described for the transendocardial cell delivery   , 
intramyocardial stem cell injection    during surgery seems to overcome the problem 
linked to insuf fi cient vascularisation, migration and homing transplanted stem cells 
more likely than the attempts to in fl uence stem cell migration processes in the vas-
culature and results in a high stem cell persistence in the heart muscle (Kaminski 
and Steinhoff  2008  ) . However, the results of intramyocardial stem cell injection are 
dif fi cult to interprete conclusively when performed together with revascularisation 
procedures like CABG. Therefore recent reports about surgical “stand alone” stem 
cell therapy are of great interest (Klein et al.  2007 ; Pompilio et al.  2008  ) . Herein 
patients improved in myocardial perfusion and clinical symptoms as a result of stem 
cell injection only via lateral minithoracotomy. Besides distinguishing between 
stem cell and revascularisation effects on cardiac function this approach could 
help to further minimize perioperative risks in the context of surgical stem cell 
therapy (Fig   .  36.1 ).   

    36.3.5   Cardiac Tissue Engineering 

 The purpose of cardiac tissue engineering    is to replace or repair injured heart muscle 
effectively. It comprises a biomaterial based ‘vehicle’, either a porous scaffold or 
dense patch, made of either natural or synthetic polymeric materials, to aid transportation 
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of cells into the diseased region in the heart. Such scaffolds serve several purposes: 
they allow cell attachment and cell migration, they deliver and retain cells and bio-
chemical factors and they can exert certain mechanical and biological in fl uence to 
modify the behaviour of the cell phase (Christman and Lee  2006  ) . To achieve 
suf fi cient tissue reconstruction, scaffolds    have to meet some speci fi c requirements. 
They should provide high porosity and an adequate pore size to facilitate cell seeding 
and diffusion throughout the whole structure. Furthermore biodegradability is 
essential as implanted scaffolds should be absorbed by the surrounding tissue with-
out the need for surgical removal, and the rate of degradation should match the rate 
of tissue formation as much as possible. This means the scaffold will provide struc-
tural integrity as long as the seeded cells produce their own natural matrix structure 
(Eschenhagen and Zimmermann  2005  ) . The  fi nal goal is to allow- by the use of 
speci fi c biomaterials- the creation of a microatmosphere where exogenous and 
endogenous cells  fi nd the microenvironment optimal for myocardial repair with low 
scar formation (Chachques  2009  ) . One should also think of implantable, exogenously 
cellularized matrixes as a supplement of intramyocardial stem cell therapy. This prin-
ciple has been successfully demonstrated for tissue generated from neonatal cardio-
myocytes (Shimizu et al.  2002 ; Zimmermann et al.  2006  ) . The exogenous matrix 
could for example help to adjust modi fi ed collagen proportions within the scar zone 
and thereby contribute to the regenerative process (Kutschka et al.  2006  ) . Clinical 
studies with myocardial tissue engineered constructs have not been performed 
(Chachques  2009  ) . Preclinical studies on tissue engineered cardiac structures have 
also focussed on cardiac structures as heart valves and conduction tissue: 

 Heart valve tissue engineering    was started on the basis of seeding biodegradable 
polymer scaffold in 1995 by the Boston group (Shinoka et al.  1995  )  showing 

  Fig. 36.1    Illustration of intracoronary (interventional) and intramyocardial (surgical) stem cell 
application. Intracoronary ( a ) and intramyocardial ( b ) transplantation methods in heart disease 
(Strauer and Steinhoff  2011  )        
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successful seeding and implantation in a pulmonary heart valve seeded with 
autologous vascular cells. This concept was further developed by bioreactor seeding 
(Hoerstrup et al.  2002  )  and successfully introduced into cardiac surgery for vena 
cava vessel conduit replacement in congenital heart surgery by Shinoka (Shinoka 
and Breuer  2008 ; Shinoka et al.  2003  ) . The second concept of enzymatic acellular-
ization of biological heart valves was developed by the Hannover group (Steinhoff 
et al.  2000  )  and introduced in pediatric heart valve surgery with pulmonary conduit 
replacement (Cebotari et al.  2006  ) . 

 Tissue engineering of pacemaker    and conduction tissue    was only performed 
experimentally. Transplantation of fetal cardiac cells including conduction tissue 
into ventricular myocardium was successfully applied in an experimental atrio-
ventricular block model (Ruhparwar et al.  2002  ) . Ex vivo tissue engineered con-
duction tissue using skeletal myoblasts was successfully applied in a rat model 
showing function after atrioventricular ablation (Choi et al.  2006  ) . Clinical 
applications have not been performed with tissue engineered conduction 
tissue.  

    36.3.6   Pharmacological Strategies 

 Pharmacological strategies are aimed to (i) intensify stem cell action by promoting 
homing into heart muscle and (ii) to stimulate liberation of stem cells from bone 
marrow. Homing may be enhanced by interventions which increase the oxygen 
demand of heart muscle thereby inducing relative ischemia (and stimulation of the 
CXCR4 axis) within the infarct area and its border zone. This may be realised by an 
increase in contractility (Strauer  1979  )  and also by provoking coronary steal associ-
ated with distribution of blood from diseased to healthy muscle. Intravenous dobu-
tamine during intracoronary stem cell transplantation and up to 24 h thereafter 
seems is effective. Likewise, dipyridamole (0.5 mg/kg intracoronarily over 10 min) 
is used immediately prior to stem cell application (Strauer et al.  2008,   2009  ) . 
Liberation and enhanced production of mononuclear bone marrow cells may be 
pharmacologically induced by cytokine injection, (e.g. by G-CSF = granulocyte 
colony stimulating factor) which must be exactly titrated to avoid excess increase in 
peripheral leucocytes. Clinical studies have not yet con fi rmed the effectiveness of 
this kind of therapy (Renault and Losordo  2007 ; Engelmann et al.  2010  ) . However, 
recent combination of GM-CSF with SDF-1/CXCR-4 inducing substances as eryth-
ropoietin (Klopsch et al.  2009 ; Brunner et al.  2009  ) , parathyroid hormone (Huber 
et al.  2010,   2011  )  and sitagliptin (   Theiss et al.  2010,   2011  )  show promising effects 
on postinfarction regeneration in experimental models and are introduced in  fi rst 
clinical trials after acute myocardial infarction. First clinical studies employing 
erythropoietin treatment immediately after interventional reperfusion in acute myo-
cardial infarction show effects on infarction size (Ferrario et al.  2011  )  and microvas-
cular obstruction (Prunier et al.  2012  ) . Further studies are needed to test clinical 
safety and ef fi cacy.   
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    36.4   Indications and Clinical Principles 

 Best examined indications for stem cell therapy are previous myocardial infarction 
with large infarct area, aneurysm and depressed ejection fraction and heart failure 
due to chronic myocardial infarction. The age of infarction seems to be irrelevant to 
regenerative potency of stem cells, since stem cell therapy in old infarcts (older than 
8 years) is almost equally effective in comparison to previous infarcts. Further indi-
cations are non ischemic cardiomyopathy, diabetic cardiomyopathy, Chagas disease 
and ischemic mitral regurgitation owing to dysfunction of the left ventricular wall 
and papillary muscle. The underlying inclusion criteria for cardiac cell therapy are 
reduction of the ventricular function of cardiac function with an akinetic, viable 
area which offers no target for standard revascularization procedures. Before cell 
cardiac transplantation heart failure symptoms, neurohumoral status and the myo-
cardial function and viability should be assessed. Furthermore virus-free test should 
be performed. Selected patients should be in an early stage of heart failure since 
stem cell therapy is not an alternative to heart transplantation. The goal of this 
approach is to avoid or delay organ transplantation (Chachques  2009  ) . 

    36.4.1   Ischemic Cardiomyopathy    

 Cardiac stem cell therapy    is indicated in patients presenting with impaired left ven-
tricular ejection fraction between 20 and 40 % due to myocardial infarction leading 
to symptoms of NYHA class II or III with or without angina. The underlying myo-
cardial infarction should be of mild extension-approximately between 9 and 14 cm 2  
with the presence of hibernating myocardium in the infarction border zone. Left 
ventricular wall thickness in echocardiographic evaluation should be greater than 
4 mm in order to avoid extramyocardial injection and the risk of iatrogenic ventricu-
lar wall injury (Chachques  2009  ) . Early injection after infarction could be bene fi cial 
to prevent a large  fi brotic scare. On the other hand, since myocardial infarction leads 
to severe impairment of heart function associated with rhythmic instability and 
poorer tolerance of additional treatment it might be reasonable to wait for the acute 
phase to pass until the infarction zone is consolidated. Furthermore cell transplanta-
tion should be more effective after the postischemic in fl ammatory reaction has sub-
sided i.e. after day 8–12 following the acute attack (Chachques  2009 ; Kaminski and 
Steinhoff  2008  ) . Stem cell transplantation within the ‘hot’ phase post-myocardial 
infarction in fl ammation might lead them to take part in the in fl ammation cascade 
rather than in the formation of functional myocardium and vessels (Soeki et al.  2000  ) .  

    36.4.2   Non Ischemic Cardiomyopathy    

 Also patients suffering from non ischemic cardiomyopathy could bene fi t from 
cardiac stem cell therapy. Preclinical stem cell treatment has been performed 
successfully in small animal models, such as a canine model of idiopathic dilated 
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cardiomyopathy and in doxorubicin induced heart failure (Dhein et al.  2006  ) . On 
the basis of these results clinical trials have been initiated in dilated cardiomyopathy. 
This  fi rst-in-man study of autologous bone marrow cells in dilated cardiomyopathy 
(Firstin-Man ABCD   ) investigated 44 patients and the Düsseldorf autologous bone 
marrow cells in dilated cardiomyopathy trial (Düsseldorf ABCD Trial   ) investigated 
20 patients. In both studies none of the patients had coronary disease (excluded by 
angiography) or myocarditis (excluded by endomyocardial biopsy). In both trials 
cell transplantation was performed via the intracoronary administration route in 
either coronary artery. There has been a signi fi cant increase in New York Heart 
Association Functional Classi fi cation in treatment patients in both trials, further-
more ejection fraction improved by 5.4% in the First-in-Man ABCD trial and 8% in 
the Düsseldorf ABCD Trial. Also  fi rst results with paediatric patients suffering from 
idiopathic dilatative cardiomyopathy showed a clear improvement in left ventricular 
ejection fraction and left ventricular dimensions after intracoronary stem cell trans-
plantation (Olgunturk et al.  2010  ) . Transplanted cells seem to survive better in 
the host myocardium since in this pathology myocardial vascularisation is not 
signi fi cantly impaired (Seth et al.  2006  ) . Furthermore data from the First-in-Man 
ABCD trial suggest that the bene fi t of stem cell therapy could be a paracrine effect 
with changes in vascularity (Seth et al.  2006  ) .  

    36.4.3   Cardiogenic Shock 

 Only incidental published data are available for cardiogenic shock. A clinical 
report – in a 64 years old patient with cardiogenic shock after repeated myocardial 
infarcts – showed marked improvement in ventricular function 4–9-days after intra-
coronary bone marrow stem cell transplantation (152 × 10 million) in both coronary 
arteries (Brehm and Strauer  2007  ) . The ejection fraction increased from 17 to 28% 
within 9 days after cell therapy, the endsystolic volume decreased from 103 to 
09 ml, stroke volume increased from 20 to 35 ml, and 23 days after cell therapy the 
patient could be transferred to rehabilitation measures.  

    36.4.4   Diabetic Cardiomyopathy 

 It is well known that diabetic patients have an increased risk of developing heart 
failure due to diabetic cardiomyopathy   , which is characterized by microvascular 
pathologies and interstitial  fi brosis. Preclinical animal studies have shown that mes-
enchymal stem cells can, when transplanted, prevent apoptosis of ischemic heart via 
upregulation of Akt and endothelial nitric-oxide synthase. Furthermore they inhibit 
myocardial  fi brosis of dilated cardiomyopathy by decreasing the expression of 
matrix metalloproteinase (MMP). Mesenchymal stem cell transplantation    
signi fi cantly increased myocardial arteriolar density in diabetic myocardium leading 
to an improved cardiac function (Zhang et al.  2008  ) . The capability of mesenchymal 
stem cells to reduce apoptosis and remodelling processes was further improved after 
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anoxic preconditioning (Li et al.  2008  ) . Therefore mesenchymal stem cells could be 
a promising tool to attenuate cardiac remodeling and to improve cardiac function in 
the setting of diabetic cardiomyopathy.  

    36.4.5   Chagas Heart Disease    

 Chagas disease, also called American Trypanosomisasis   , is caused by the protozoan 
Trypanosoma cruzi and remains one of the major health problems in Latin America. 
In chronic cases 10–30 % of the patients have or will develop cardiomyopathy. In 
its  fi nal stages there are to date no other treatment options than heart transplantation. 
Four main pathogenetic mechanisms characterize the Chagas heart disease: derange-
ments of the autonomic nervous system, microvascular disturbance, parasite-dependent 
myocardial aggression and immune mediated myocardial injury (Chachques  2009  ) . 
On the long run patients develop severe cardiac arrhythmias, dilated cardiomyopathy 
and heart failure. Since the number of available organs for transplantation is very 
limited and furthermore late reactivation of the disease after transplantation due to 
isolated organ lesions is described, cardiac cell therapy is an important option for 
patients with secondary heart failure caused by Chagas disease. Selective intracoronary 
infusion of mononuclear stem cells has been performed and resulted in improved 
cardiac functions and haemodynamics (Soares et al.  2007 ; Vilas-Boas et al.  2006  ) .  

    36.4.6   Exclusion Criteria for Cardiac Cell Therapy 

 Patients presenting with a history of ventricular arrhythmias as well as patients with 
an implanted cardiac de fi brillator (ICD) or candidates for an implantation of an ICD 
should be evaluated and observed carefully since possibly induced arrhythmias by 
cell transplantation are a potential complication (Villa et al.  2007  ) , although certain 
antiarrhythmic properties have to be expected (Dhein et al.  2006  ) . Furthermore 
patients with hematologic disease should be excluded from bone marrow stem cell 
transplantation. Also subjects with a history of drug abuse, of cancer, or with active 
infectious disease (HIV, viral hepatitis) or positive viral test should be excluded 
(Chachques  2009  ) .  

    36.4.7   Stem Cells and Arrhythmogenicity of the Heart 
in Clinical Heart Failure 

 Stem cell therapy in heart failure    is aimed to improve ventricular geometry and 
function, thereby reducing ventricular arrhythmias by reducing its provoking deter-
minants (increased heart size, wall stress etc.). Studies concerning the rhythmologic 
effects of different stem cells have to consider that the diseased heart muscle is an 
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ideal basis for ventricular arrhythmias itself and may alter its electric instability 
parallel to remodelling. The arrhythmogenic risk in the course of stem cell trans-
plantation depends on the degree of myocardial damage, the speci fi c ability of the 
stem cell type itself to create arrhythmias and the mode of delivery (and presumably 
myocardial lesion). Skeletal myoblasts lose its capacity to create connexion 43 over 
time after transplantation which results in insuf fi cient gap junction formation (Macia 
and Boyden  2009  ) . Functional integration of skeletal myoblasts therefore is poor 
and increases arrhythmogenicity. Mesenchymal stem cells    have an inhomogenously 
increased arrhythmogenicity despite good coupling with myocytes., presumably 
because of increased tissue heterogeneity induced by inexcitable mesenchymal cells 
(Ly and Nattel  2009  ) . Also cardiac hyperinnervation is discussed. 

 Bone marrow stem cells    in the majority of studies do not provoke arrhythmias. 
In patients with acute myocardial infarction and in patients with chronic heart failure 
antiarrhythmic effects have been observed after stem cell therapy (Wollert et al.  2004  ) . 
However, it is dif fi cult to de fi ne a direct antiarrhythmic property. Stem cell therapy 
leads to ventricular anti-remodelling which itself acts indirectly antiarrhythmic: 
heart size and wall stress decrease and ejection fraction increases, thus reducing 
important proarrhythmic factors by virtue of its effects on ventricular geometry and 
wall dynamics. Moreover, long-term observations following intracoronary stem cell 
transplantation in acute myocardial infarction demonstrate increased survival of 
treated patients (Yousef et al.  2009  ) . In advanced cardiac failure due to dilatative 
cardiomyopathy signi fi cant decrease in premature beats and in the occurrence in 
late potentials were found, which is compatible with a “prorhythmic” effect of bone 
marrow cells. Moreover, after intracoronary bone marrow cell transplantation, left 
ventricular synchrony is improved, a result, which may potentially consider BMC 
therapy suitable for resynchronisation interventions. Stem cells with high potency 
for transdifferentiation to cardiac myocytes, e.g. embryonic stem cells, seem to possess 
high arrhythomogenicity, whereas stem cells with low or without transdifferentiation 
potency, e.g. bone marrow cells, exert “prorhythmic” effects. Independent from the 
primary arrhythmogenic properties of various types of stem cells, it has to be considered 
that even in the presence of stem cell induced cardiac excitability the anti-remodelling 
properties may overcome and improve the arrhythmic problem. In brief, it seems 
reasonable to assume that the type of stem cell may determine the arrhythmic 
fate of the heart: bone marrow stem cells seem to be neutral with regard to arrhyth-
mogenity and may even exert antiarrhythmic properties, whereas myoblasts, mesen-
chymal and preferably embryonic stem cells are prone to inducible arrhythmias.   

    36.5   Clinical Studies 

 To date several studies in humans with stem cell transplantation in patients with 
acute myocardial infarction as well as chronic ischemic heart disease have been 
performed (Tables  36.1  and  36.2 ). Although most of these studies have yielded 
encouraging results the extent to which stem cell transplantation can improve the 
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   Table 36.1    Major clinical trials investigating the treatment of acute myocardial infarction with 
autologous bone marrow stem cells   

 Author (year) 
 Sample 
size 

 Primary 
intervention 

 Co-intervention mean 
Stem cell dose (SD) 

 Time of SC 
application to AMI 

 Follow-up 
duration 

    Ge et al. ( 2006 )  20  PCI  BMSC aspiration 
4 × 107 

 Within 7 days  6 months 

 Huang (2006)  40  PCI  BMSC aspiration 
1.8 (4.2) × 10 8  

 Within 7 days  6 months 

 Janssens et al. 
( 2006 ) 

 67  PCI  BMSC aspiration 
1.7 (0.72) × 108 

 Within 7 days  4 months 

 Karpov et al. 
( 2005 ) 

 50  PCI  BMSC aspiration 
88.5 (49.2) × 106 

 >7 days  6 months 

 Lunde et al. 
( 2006 ) 

 100  PCI  BMSC aspiration 
0.68 10 × 8 

 Within 7 days  6 months 

 Wollert et al. 
( 2004 ) 

 60  PCI  BMSC aspiration 
2.46 (0.94) × 109 

 Within 7 days  6 months 

 Schachinger 
et al. ( 2006 ) 

 187  PCI  BMSC aspiration 
2.36 (1.74) × 108 

 Within 5 days  4 months 

 Strauer et al. 
( 2001 ) 

 20  PCI  BMSC aspiration 
2.8 × 107 

 Within 1 day  3 months 

   SD  standard deviation,  SC  stem cells,  PCI  percutaneous coronary intervention,  AMI  acute myocardial 
infarction,  BMSC  bone marro stem cells  

   Table 36.2    Major clinical trials investigating the treatment of chronic ischemic heart disease with 
autologous bone marrow stem cells   

 Author (year) 
 Sample 
size 

 Primary 
intervention 

 Co-intervention; mean 
stem cell dose (SD) 

 Route of 
injection 

 Follow-up 
duration 

 Hendrikx et al. 
( 2006 ) 

 20  CABG  BMSC aspiration 
60.25 (31) × 106 

 IM  4 months 

 Mocini et al. 
( 2006 ) 

 36  CABG  BMSC aspiration 
292 (232) × 106 

 IM  3 months 

 Perin et al. 
( 2004 ) 

 20  NOGA 
catheterization 

 BMSC aspiration 
25.5 (6.3) × 106 

 IM  12 months 

 Strauer et al.
( 2005 ) 

 36  PCI  BMSC aspiration 
90 × 106 

 IC  3 months 

 Erbs et al. 
( 2005 ) 

 26  PCI  BMSC mobilisation 
(G-CSF) 69(14)106 

 IC  3 months 

 Stamm et al. 
( 2007 ) 

 40  CABG  BMSC aspiration 
5.80 × 106 

 IM  6 months 

 Zhao et al. 
( 2008 ) 

 36  CABG  BMSC aspiration 
6.59(5.12)108 

 IM  6 months 

 Patel et al. 
( 2005 ) 

 20  CABG  BMSC aspiration 
22 × 106 

 IM  6 months 

   SD  standard deviation,  SC  stem cells,  PCI  percutaneous coronary intervention,  CABG  coronary 
artery bypass grafting,  BMSC  bone marrow stem cells,  IC  intracoronary,  IM  intramyocardial  
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patients outcome remains unclear since the methods and inclusion criteria used 
have been quite heterogenous until today. The following chapter will try to give an 
overview about major interventional and surgical trials carried out so far.   

    36.5.1   Acute Myocardial Infarction 

 In acute myocardial infarction   , as a domaine of interventional therapy strategies, a 
variety of studies has demonstrated longstanding (up to 3 years and more) improve-
ment of ventricular performance after using stem cell therapy, resulting in increase 
in ejection fraction by 4–20 (mean 14%) and decreased infarct size by 3–30% (mean 
37%) (Strauer et al.  2001,   2002  ) . 

 As the time point of stem cell transplantation most studies chose a point between 
7 and 8 days after infarction onset. As mentioned already above these data show 
large variability that not only relates to the biological and speci fi c haemodynamic 
situation of the infarcted heart, but may depend on different methodological proce-
dures (e.g. the number of transplanted stem cells, mode of balloon-induced 
preconditioning, time interval between the acute infarct and cell transfer, kind of 
left ventricular volume determination). However, altogether, there is in all clinical 
studies unequivocal improvement of performance of the infarcted heart (ejection 
fraction and/or infarct size) after stem cell therapy of at least 6 %, which is quanti-
tatively more than the sum of the interventional measures (PTCA, stent) and which 
is achieved in addition to these therapeutic interventions (Assmus et al.  2006 ; 
Schachinger et al.  2006  ) . Thus, autologous stem cell therapy represents an innova-
tive and effective procedure for regeneration of impaired heart muscle in the early 
phase after the infarct (Janssens et al.  2006 ; Lunde et al.  2005 ; Wollert et al.  2004  )   

    36.5.2   Chronic Ischemic Heart Disease 

 To date clinical studies have revealed bene fi cial stem cell effects in subacute and 
chronic ischemic heart failure   . Several surgical studies performing intramyocardial 
stem cell transplantation have been designed for this setting. Combined with coronary 
artery bypass surgery the improvement of cardiac function by the use of bone marrow 
stem cell has been described as an increase in left ventricular ejection fraction of 
about 10% (Ahmadi et al.  2007 ; Stamm et al.  2007 ; Zhao et al.  2008  )  and improve-
ment of wall motion caused by enhanced myocardial perfusion. Also studies 
combining stem cell transplantation with off-pump coronary surgery report similar 
results (Patel et al.  2005  ) , implicating that cardiac arrest is not a mandatory for safe 
an ef fi cient stem cell implantation. However these results will always be dif fi cult to 
interpret conclusively without consideration of revascularisation effects. Therefore 
recent reports about “stand alone stem cell treatment” for patients with ischemic 
heart failure are very interesting (Klein et al.  2007  ) . A recent study reported not only 
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a gain in cardiac function but also a clear improvement in quality of life for patients 
with chronic ischemic heart disease and refractory angina treated after “stand alone” 
bone marrow stem cell injection via lateral minithoracotomy (Pompilio et al.  2008  ) . 

 Interventional studies using intracoronary or endocardial stem cell application 
have also been performed in the setting of chronic ischemic heart disease. These 
studies report an improvement of left ventricular ejection fraction in a similar extent 
like surgical trials. Furthermore, a signi fi cant decrease in infarction size and an 
improved overall myocardial oxygen uptake have been described (Strauer et al.  2005  ) . 

 Although the results of these trials mentioned above have been promising, there 
remain open questions. For example if left ventricular ejection fraction alone, as the 
major outcome parameter so far, characterizes the effects of stem cell treatment 
adequately. Also several trials performed so far are limited by lack of sham/placebo 
treatment in control groups. For  fi nal evaluation of stem cell related gain in cardiac 
performance and quality of life, further double blinded Phase III prospective ran-
domised, placebo controlled, clinical outcome trials are needed.  

    36.5.3   Ongoing Clinical Trials 

 Several trials running currently try to answer the questions mentioned above. 
Regarding the effect of intracoronary bone marrow progenitor cell infusion in the 
setting of acute myocardial infarction placebo controlled Phase III trials like the 
REGEN-AMI    and BAMIare of particular interest. In the  fi eld of surgical cell ther-
apy the recently launched PERFECT trial    is the  fi rst placebo controlled, double 
blinded, multicenter study investigating the effects of intramyocardial bone marrow 
stem cell injection combined with CABG surgery. Although representing Phase I 
and II level the PROMETHEUS    study is highly interesting since it represents the 
 fi rst in men study analysing the safety and ef fi cacy of intramyocardial injection of 
mesenchymal stem cells during CABG in patients scheduled for coronary surgery 
due to ischemic heart disease, as an alternative cell population to hematopoietic 
progenitor cell populations mainly used in clinical trials for cardiac regeneration 
so far. There are several more interesting trials currently recruiting patients (  www.
clinicaltrials.com    ) and results from all of these a needed for a valid evaluation of the 
gain in cardiac function related to stem cell therapy.   

    36.6   Future Perspectives 

 Since the  fi rst description of the use of bone marrow-derived stem cells for treatment 
of heart disease in 2001, a large number of clinical studies have been published 
demonstrating the effectiveness of stem cells in various clinical conditions, but with 
very different bone marrow preparation techniques. The use of non-standardized cell 
transplantation procedures is common with large variation in (i) type of transplanted 
cells, (ii) number of transplanted cells (iii) additive preconditioning measures. 

http://www.clinicaltrials.com
http://www.clinicaltrials.com
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Therefore future studies performed should be aimed to de fi ne the optimum technique 
of cell preparation, to discover the best cell type for myocardial regeneration, to 
analyse their homing characteristics to the cardiac niche and to other extracardiac 
organs, to improve cell delivery techniques and to try to establish indications for cell 
therapy in various heart diseases (Strauer and Kornowski  2003  ) . In realizing these 
perspectives, joint and cooperative studies between preclinical and clinical research 
are essential. The mechanisms of stem cell related cardiac repair need to be further 
investigated and alternative modes of action like paracrine activity and immuno-
modulation should be considered. The immunomodulatory capacity of mesenchy-
mal stem cells for example could offer new options to supplement the established 
immunosuppressive therapies in the setting of solid organ transplantation. 
Furthermore attempts to create dynamic “multi-lineage” cardiac regeneration by 
combining cell therapy with tissue engineered scaffolds or cardiac resynchronisation 
therapy (Chachques  2009 ; Shafy et al.  2009  )  should be further supported since they 
offer a realistic perspective to come to an integrated regenerative approach.      
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  Abstract   The liver has adapted to the in fl ow of ingested toxins by the evolutionary 
development of unique self-regenerative properties and responds to injury or tissue 
loss by rapid restoration of the original organ mass. This high regenerative capacity 
is suf fi cient to restore normal volume and function in most forms of acute liver 
injury and medical interventions are not required. Regenerative therapies in hepa-
tology rather aim to enhance repair mechanisms of the liver in situations, where the 
capacity to regenerate is severely impaired. Alternatively, regenerative technologies 
are applied to solve so far unmet medical needs. The development of such therapies 
requires a fundamental understanding of the (patho-) physiology of the liver. In this 
chapter we discuss the emerging medical approaches for acute liver failure, chronic 
liver failure and hereditary liver diseases, which are based on technologies such as 
(stem) cell therapy, tissue engineering, bio-arti fi cial devices or gene therapies. 
Translation from the laboratory bench into routine clinical applications will also 
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require consideration of the legal framework for “advanced therapy medicinal 
products” (ATMP) as well as “state of the art” manufacturing (GMP) and good 
clinical practice (GCP) guidelines.      

    37.1   Physiology and Pathophysiology of Liver Regeneration 

 The liver, the largest internal organ of the body, comprises about 1/50th of the total 
adult body weight (Sherlock and Dooley  2002  ) , receives approximately 25% of 
cardiac output (Schiff et al.  2007  )  and consists of an exceptional anatomical struc-
ture in both biliary system and vasculature. The biliary system, an exocrine system 
in the liver, connects the apical surface of every single hepatocyte to the duodenum 
through bile cannaliculi, which drain into the canals of Hering and  fi nally into bile 
ducts (Burt et al.  2007  ) . The terminal branches of the hepatic portal vein and hepatic 
artery enter the liver sinusoids, which are characterised by fenestrated and discon-
tinuous endothelium (Sherlock and Dooley  2002 ;    McCuskey  1994 ). No basement 
membrane lines the sinusoid, which allows higher permeability and direct transfer 
of particles less than 100 nm from the vessels to the basolateral surface of the 
hepatocytes. 

 In the absence of injury the adult liver is a quiescent organ and as few as one out 
of 3,000 hepatocytes divides at a given time point to maintain the physiological liver 
mass. In situations of acute liver damage or surgical loss of liver mass, however, cell 
proliferation is extensively stimulated until the tissue mass has been restored (Fausto 
et al.  2006  ) . In 1 week up to 75% surgically removed liver mass can be regenerated 
in rodents (Michalopoulos and DeFrances  1997  ) . The parenchymal regeneration 
after necrogenic or surgical loss of liver tissue originates from extensive prolifera-
tion of the mature parenchymal liver cells (hepatocytes and cholangiocytes). In a 
young adult rat or mouse, approximately 95% of hepatocytes enter cell cycle during 
the  fi rst 3 days after extensive hepatectomy. Although the term “liver regeneration” 
is commonly used, restoration of the liver mass after partial hepatectomy is actually 
a form of compensatory growth of the remaining liver. 

 In the regenerative phase after acute liver injury or tissue loss the liver immedi-
ately induces more than 100 genes, which are not expressed in normal liver (Taub 
 1996,   2004  ) . The functions served are several and many of these genes appear to 
play an essential role, however, the precise role of the many genes expressed early 
in liver regeneration is often not yet clear. The early changes in gene expression 
re fl ect both the entry of hepatocytes into the cell cycle as well as the orchestration 
of speci fi c adjustments that hepatocytes have to make, so that they can deliver all 
essential hepatic functions while going through cell proliferation. The extensive 
“reprogramming” of hepatic gene expression requires activation of multiple signal-
ling pathways involving matrix remodelling proteins, growth factors, cytokines, 
paracrine signals, and neuroendocrine factors. 

 Small RNAs, mainly microRNAs (miRNAs), provide an additional level of 
regulation in liver regeneration. Global loss of miRNAs leads to the impairment of 
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hepatocyte proliferation at the G1-S stage of cell cycle. In particular, miR-21, one 
of the upregulated miRNAs in HCCs, has been shown to increase the proliferation 
of hepatoma cells by targeting Pten and Btg2. As of now, data are limited and 
mainly restricted to the early phases of liver regeneration. Importantly,  in vivo  
functions of individual miRNAs during liver regeneration have not yet been 
identi fi ed. Clearly, more work is required to further elucidate the functional role of 
known and novel miRNAs in all phases of liver regeneration including the termina-
tion process and to examine the effect of inhibition or over-expression of these 
miRNAs on liver regeneration. 

 The newborn liver contains mostly diploid hepatocytes, but polyploidization and 
binuclearity occur rapidly after birth. In perivenous areas hepatocytes are more 
often polyploid and serve different liver functions when compared to cells of the 
periportal region (“metabolic zonation”) (Gorla et al.  2001 ; Jungermann and 
Kietzmann  2000  ) . The gradient of less complex cells with higher proliferation 
potential ( in vitro ) in periportal areas and more mature hepatocytes in perivenous 
areas has been interpreted as evidence for the existence of a physiological niche for 
cell renewal (Sigal et al.  1995  )  in the periportal region. Recent experimental studies 
of hepatocytes with acquired mitochondrial mutations in the cytochrome c oxydase 
gene have also provided arguments for the periportal region as the “regenerative 
niche” in normal liver (Fellous et al.  2009  ) . The “streaming liver hypothesis” postu-
lating that the liver lobule is organized similar to the intestinal crypt and contains a 
stem/progenitor cell pool arising form the periportal area, however, has been dis-
puted by gene marking studies (Bralet et al.  1994  )  and by the observation that nearly 
all hepatocytes proliferate as a response to injury regardless of location and ploidy. 

 Regenerative responses and cell types involved differ depending on the severity 
and chronicity of liver injury. Although mature hepatocytes and cholangiocytes 
represent the  fi rst and most important resource for tissue repair (Quante and Wang 
 2009 ; Duncan et al.  2009  )  and restore liver mass after acute toxic injury or surgical 
removal of liver mass, a liver stem/progenitor cell compartment is likely to be 
involved in the repair of chronically injured livers. 

 The  fi rst evidence for the existence and activation of a resident hepatic stem/
progenitor cells compartment was provided by various murine animal models of 
“oval cell” proliferation (Alison et al.  1997 ; Fausto  2004 ; Thorgeirsson  1996  ) . The 
general principle underlying “oval cell” activation is based on a combination of a 
liver injury and the inability of hepatocytes to proliferate in response to the damage. 
These “oval cells” most likely play a facultative role in liver regeneration, i.e., they 
contribute to tissue regeneration in cases, where adult hepatocyte proliferation is 
inhibited or exhausted (Fausto and Campbell  2003  ) . Until now it is not known, 
whether “oval cells” pre-exist in the tissue or develop from mature adult cell types 
(i.e. bile duct cells) after an injury. 

 In parallel to what we know from rodent models, also in human liver diseases 
the inhibition of mature hepatocyte replication favors the proliferation of cell pop-
ulations with stem/progenitor phenotypes. Activation of these cells has been asso-
ciated with a variety of liver diseases, and, the numbers have been related to severity 
of the disease (Roskams et al.  2003 ; Roskams  2006  ) . It has recently been shown 



932 A.D. Sharma et al.

that hepatocytes become senescent, owing at least partially to telomere shortening, 
in the cirrhotic stage of a wide variety of chronic human liver diseases (Marshall 
et al.  2005 ; Wiemann et al.  2002  ) . Replicative exhaustion and senescence of the 
mature hepatocytes as a result of ongoing proliferation during 20–30 years of 
chronic liver disease has been linked to the emergence of these stem/progenitor 
cells and  fi nally with the evolution of hepatocarcinoma and cholangiocarcinoma 
(Alison and Lovell  2005 ; Mishra et al.  2009  ) . However, it is unclear whether these 
cells are simply a marker of carcinogenic disease states or whether the stem/
progenitor cells are at particular risk for transformation.  

    37.2   Regenerative Medicine in Hepatology 

 In this chapter we discuss three major areas in hepatology, for which regenerative 
therapies are being developed: “acute” and “acute on chronic” liver failure, chronic 
liver disease and hereditary (mostly monogenetic) liver diseases. The acute and self-
limiting liver diseases (e.g. due to acute viral disease, toxins, transient ischemia) 
normally result in complete regeneration and “ restitutio ad integrum ”. More massive 
injuries may temporarily exhaust the regenerative capacity of the liver and result in 
“acute liver failure”, a clinical syndrome, which is characterized by progressive loss 
of hepatic function und multiorgan failure. 

 Persistent injuries to the liver also induce regenerative responses but eventually 
result in scarring and excess deposition of extracellular matrix components includ-
ing collagen. Fibrosis and cirrhosis are the end result of chronic in fl ammatory 
reactions induced by a variety of stimuli including persistent infections, autoim-
mune reactions, allergic responses, chemical insults, radiation, and tissue injury. 
Although current treatments for  fi brotic diseases such as idiopathic pulmonary 
 fi brosis, systemic sclerosis and liver  fi brosis/cirrhosis typically target the 
in fl ammatory response, there is accumulating evidence that the mechanisms driving 
liver  fi brogenesis are distinct from those regulating in fl ammation. The key cellu-
lar mediator of  fi brosis is the myo fi broblast, which, once activated, serves as the 
primary collagen-producing cell. Myo fi broblasts are generated from a variety of 
sources including resident mesenchymal cells, epithelial and endothelial cells in 
processes termed epithelial/endothelial-mesenchymal (EMT/EndMT) transition, 
as well as from circulating  fi broblast-like cells called  fi brocytes that are derived 
from bone-marrow stem cells. Myo fi broblasts are activated by several mecha-
nisms, including paracrine signals derived from lymphocytes and macrophages, 
autocrine factors secreted by myo fi broblasts, and pathogen-associated molecular 
patterns (PAMPS) produced by pathogenic organisms that interact with pattern 
recognition receptors (i.e. TLRs) on  fi broblasts. 

 The liver is central to many metabolic activities with hundreds of genes involved in 
their regulation. In recent years the genetic basis for more than 100 liver diseases 
involving malfunction of the organ has been clari fi ed. Hereditary liver diseases usu-
ally result from point mutations, deletions or other genetic defects in single or multiple 
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genes, which are normally expressed in the liver and can cause acute and chronic liver 
diseases. The liver also secrets many proteins, which deliver functions for other organ 
systems, and a state of protein de fi ciency may not affect the liver function itself. For 
most of the hereditary liver diseases liver organ transplantation cures the disease or the 
state of protein de fi ciency and has become the most important therapeutic approach. 
Conceptually, many of these disorders, for which organ transplantation is effective, 
can be principally cured by cell- or gene therapies.  

    37.3   Cells for the Treatment of Liver Diseases 

 Many of the regenerative technologies generated or envisioned to treat liver dis-
eases are based on cellular substrates, which are either transplanted/injected into 
recipients or utilized in extracorporeal devices. The primary hepatocyte, which can 
be isolated from adult liver organs, is still the most important cellular resource in 
clinical situations, in which speci fi c liver functions need to be reconstituted. 
Hepatocytes from pig and human livers as well as immortalized human hepato-
cytes have been tested in extracorporeal liver devices (see Sect.  37.5.1.1 ). 
Transplanted human hepatocytes have been shown to engraft in the recipient liver 
and to respond to growth stimuli in vivo (Dandri et al.  2001 ; Bissig et al.  2007 ; 
Haridass et al.  2009  ) . Despite a high proliferative capacity of hepatocytes, which 
can undergo more than 69 cell doublings or a 7.3 × 10 20 -fold expansion (Overturf 
et al.  1997b  )  in vivo, the proliferation capacity in vitro is very restricted. 

 This lack of in vitro expansion protocols has stimulated the search for alternative 
cell sources, which can either expand in cell culture or can be easily harvested from 
the body in large quantities. Immortalized hepatocytes derived from adult and fetal 
tissue are restricted to ex vivo applications and have been applied in extracorporal 
liver devices (see Sect.  37.5.1.1 ). Human fetal liver derived hepatoblasts have been 
applied in a small number of patients with acute liver failure (Habibullah et al.  1994  )  
and recently in one patient with hereditary bilirubinemia (Khan et al.  2008  ) . These 
cells are also being tested as a cellular substrate for bioarti fi cial liver devices (Poyck 
et al.  2008  ) . Although the isolation of clinical grade stem/progenitor cells from human 
adult livers has been described, clinical applications have not yet been reported. 

 It has been proposed that (subpopulations of) adult hematopoietic stem cells (HSC), 
mesenchymal stromal cells (MSC) and cord blood stem cells (CBSC) can transdif-
ferentiate into hepatocytes after transplantation, but the ef fi cacy, by which these cells 
spontaneously form hepatocytes and liver tissue in animal experiments, still seems 
questionable (Petersen et al.  1999 ; Alison et al.  2000 ; Newsome et al.  2003 ; Aurich 
et al.  2007 ; Cantz et al.  2004  )  (Fig.  37.1 ). As an alternative concept, HSC, MSC and 
CBSC are being applied in patients with chronic liver disease with the therapeutic aim 
to induce liver regeneration and remodelling (see Sects.  37.5.3.2  and  37.5.2.1 )  

 High expectations have been attributed to embryonic stem (ES) cells and more 
recently to induced pluripotent stem (iPS) cells. These cells can be maintained in a 
state of pluripotency for long periods of time, grown in large quantities (Evans and 
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Kaufman  1981 ; Rathjen and Rathjen  2001 ; Thomson et al.  1998 ; Boiani and Scholer 
 2005 ; Takahashi and Yamanaka  2006 ; Takahashi et al.  2007  )  and differentiated into 
virtually all cell types of the body. The direct transcription factor-mediated conver-
sion of  fi broblasts into hepatic cells, which could at least temporarily rescue a 
murine model of metabolic liver failure, was recently demonstrated by two indepen-
dent groups (Huang et al.  2011 ; Sekiya and Suzuki  2011  ) . To date, it remains specu-
lative, whether direct “trans-programming” of adult stem cells or  fi broblasts into the 
desired phenotype by forced expression of sets of transcription factors represents an 
alternative approach and may circumvent the state of pluripotency, which is associ-
ated with teratoma formation in transplanted recipients 

    37.3.1   Modes of Therapeutic Activity 

 Various modes of therapeutic activity have been proposed for transplanted cells. 
Transplanted primary hepatocytes, fetal hepatoblasts and adult liver progenitor cells 
engraft in the recipient liver and function as parenchymal liver cells. In vitro hepatic 
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differentiation protocols for stem cells, in particular embryonic and iPS cells, aim to 
generate cell phenotypes compatible with long term engraft in the liver and hepato-
cyte functionality. 

 Several ways to obtain therapeutic activity have been proposed for transplanted 
unmodi fi ed stem cells. For example, the injection of hematopoietic stem cells (HSC) 
isolated from adult bone marrow or cord blood was shown to generate hepatocytes 
at therapeutically signi fi cant levels in animal models (Petersen et al.  1999 ; Alison 
et al.  2000 ; Newsome et al.  2003  ) . Initial studies suggested that those extrahepatic 
stem cells transdifferentiate from hematopoietic to hepatic lineage in the recipient 
organ, but more recent work has demonstrated fusion of stem cells with hepatocytes 
as the main mechanism (Wang et al.  2003  ) . In an alternative concept HSC and 
mesenchymal stromal cells have been injected in animals and humans with chronic 
liver disease in order to induce regeneration and remodelling of the recipient liver 
without forming hepatocytes. Paracrine signalling of the transplanted cells and 
direct cell-cell contact have been proposed as main mechanisms in this setting.  

    37.3.2   Generation of Hepatocytes from ES/iPS Cells 

 Hepatocytes derived from ES cells may serve as an unlimited cell source unlike 
primary hepatocytes isolated from donor livers. In order to generate hepatocytes 
from pluripotent stem cells the various differentiation protocols usually mimic the 
events occurring during embryonic development of the liver. Accordingly, the pluri-
potent ES cells are differentiated into the hepatocyte state by the formation of 
embryoid bodies, followed by the induction of de fi nitive endoderm using instructive 
cytokines such as Activin A. The endoderm cell population can be further induced 
towards the hepatocyte lineage by exposure to bone morphogenetic protein (BMP) 
4 and  fi broblast growth factor (FGF) 2, both important signals from the cardiac 
mesoderm in early liver embryogenesis (Gouon-Evans et al.  2006  ) . Assessment of 
the hepatic phenotype is commonly based on hepatocyte speci fi c gene expression 
pro fi les and metabolic activities such as cytochrome p450 activity, glycogen storage 
or urea synthesis which determine the ef fi cacy of the differentiation protocol. At the 
end of a differentiation process it is important to remove contaminating undifferen-
tiated ES cells from the heterogeneous cell culture to minimize the risk of teratoma 
formation. This can be achieved by various FACS/MACS sorting techniques or 
by the transfer of cell type speci fi c expression of antibiotic resistance genes 
(   Drobinskaya et al.  2008  ) . Transplantation of ES derived hepatic cells to the liver 
results in engraftment as both, mature hepatocytes and bile duct epithelial cells 
(Gouon-Evans et al.  2006 ; Touboul et al.  2010  ) . The level of liver repopulation 
obtained with hepatocyte-differentiated ESCs is very low, but can be increased 
somewhat when the cells are transplanted into MUP–urokinase plasminogen activa-
tor/severe combined immunode fi cient (SCID) mice (Heo et al.  2006 ). To date, most 
published ESC differentiation protocols generate hepatocyte-like cells, but not 
the fully functional, mature, and transplantable equivalents of hepatocytes that are 
isolated from adult liver. 
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 The pioneering work of Yamanaka and colleagues has paved the way for generation 
of embryonic stem cell like cells from almost any postnatal organ such as skin, liver 
and blood. These cells have been named induced pluripotent stem (iPS) cells. The 
iPS cells are generated from somatic cells by transduction with viral vectors express-
ing the stem cell genes  oct4 ,  sox2 ,  c-myc  and  klf4  (Takahashi and Yamanaka  2006 ; 
Takahashi et al.  2007  ) . The combination of these four transcription factors was 
identi fi ed from initially 24 different transcription factors. Later, it was shown that 
these 4 factors were also suf fi cient for human somatic cell reprogramming. 
Subsequently, iPS cells were generated without viral integration (Stadtfeld et al.  2008  ) . 
The precise mechanisms of reprogramming remain elusive. iPS cells resemble ES 
cells as they possess self-renewal capacity, the ability to differentiate into cells of 
ectoderm, mesoderm and endoderm and form teratomas after transplantation in 
mice. Similar to mouse ES cells, hepatocyte differentiation of mouse and human 
iPS cells has been documented recently. Notably the hepatocytes derived from 
mouse iPS cells had hepatocyte marker expression and metabolic activity similar to 
hepatocytes derived from mouse ES cells (Li et al.  2010 ; Si-Tayeb et al.  2010 ; Song 
et al.  2009 ; Sullivan et al.  2010  )    

    37.4   Liver Tissue Engineering 

 Liver tissue engineering is a new and emerging  fi eld in which a functional liver 
system is created using isolated hepatocytes and/or other cells types to treat acute 
and chronic liver diseases. Under circumstances in which a small, but functional 
liver tissue system could be engineered to provide the equivalent biological func-
tion proportional to a few percent of a normal, well-functioning liver, it would be 
possible to correct many disease phenotypes that result from various forms of 
inherited metabolic de fi ciencies. It has been demonstrated in animal models, that 
sheets of liver tissue can be grown under the renal capsule or under the skin (Ohashi 
et al.  2007,   2010  ) . Alternatively, hepatic tissues could be engineered ex vivo to 
produce therapeutic effects allowing this approach to become an effective modality 
for the treatment of acute liver failure. Three dimensional liver bioreactors, which 
are the main component of cell based liver support devices (see Sect.  37.5.1.1.2 ), 
may be considered as a “tissue engineering” approach. A much more complex and 
not yet achieved task will be the generation of transplantable liver tissue with a 
functional blood supply and biliary system.  

    37.5   Regenerative Therapies for Liver Disease 

 Regenerative therapies or treatments involving regenerative technologies are cur-
rently being developed for liver diseases of diverse etiologies. In acute liver failure 
syndromes, acute on chronic liver failure and non-function of transplanted livers 
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the therapeutic approaches aim to substitute liver function (synthesis of proteins, 
metabolism and detoxi fi cation) either by extracorporal support devices, transplan-
tation of liver cells or by engineering and transplantation of functional liver tissue. 
In chronic liver diseases conventional drugs, cytokines, stem cell therapy and 
gene transfer techniques are being employed to speci fi cally interfere with the 
in fl ammatory and pro fi brotic pathways. In hereditary metabolic liver disease the 
experimental and clinical approaches focus on substitution of defective genes and 
proteins by allogeneic transplantation of hepatocytes or by gene therapy. Therapies 
involving regenerative technologies such as (stem) cell therapies and gene transfer 
protocols, which emerge for liver cancer, viral infections and immune mediated 
liver diseases, are beyond the scope of this book chapter and have been reviewed 
elsewhere. 

    37.5.1   Acute Liver Failure 

 Acute liver failure (ALF) is a syndrome of diverse etiology, in which patients with-
out previously recognized liver disease sustain a liver injury that results in rapid 
loss of hepatic function. Depending on the etiology and severity of the insult, some 
patients undergo rapid hepatic regeneration and spontaneously recover. However, 
nearly half of the patients with ALF require and undergo orthotopic liver transplan-
tation or die. Even with optimal early management many patients with ALF develop 
a cascade of complications often presaged by the systemic in fl ammatory response 
syndrome, which involves failure of nearly every organ system. For those patients 
no satisfactory treatment exists other than liver transplantation. However, the 
number of donor livers available is limited and the outcome of liver transplantation 
for ALF is signi fi cantly lower than transplantation for chronic liver disease. 
Furthermore, many ALF patients are not placed on the transplant list due to exclu-
sion criteria such as sepsis, psychiatric illness, and multi-system organ failure. 
Specialised treatment algorithms for the intensive care of patients with liver failure 
and the introduction of antioxidative drug treatments have already signi fi cantly 
improved the survival of affected patients in the past. Trials of plasmapheresis and 
hypothermia from European consortia are near completion and drugs that facilitate 
the excretion of ammonia, such as L-ornithine phenylacetate (Jalan et al.  2007  ) , 
may provide a neuroprotective bridge to orthotopic liver transplantation. 

    37.5.1.1   Extracorporeal Liver Support in Acute and Acute-on-Chronic Liver 
Failure Patients 

 Future therapies for ALF would ideally maintain the patient’s clinical stability long 
enough to allow liver regeneration to occur, which would obviate the need for ortho-
topic liver transplantation. Realistically, however, the goal of such therapies will be 
to serve as a bridge to orthotopic liver transplantation. Extracorporeal liver support 
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devices have been developed to achieve the goal of “bridging” by temporarily 
supporting liver detoxi fi cation function. Arti fi cial liver support refers to purely 
mechanical devices including albumin dialysis, while bioarti fi cial liver support 
refers to devices with a cellular component. Arti fi cial systems remove toxins by 
 fi ltration or adsorption while bioarti fi cial liver systems perform these functions 
along with biotransformation and synthetic functions of biochemically active 
hepatocytes. 

      Non-cell Based Liver Support Devices 

 The molecular adsorbent recirculating system (MARS TM ; Gambro, Lund, Sweden) 
is the most frequently used type of albumin dialysis and most studied non-cell 
based liver-support technique (Mitzner et al.  2009  ) . The key feature to the function 
of albumin dialysis is the concentration gradient of low-molecular-weight sub-
strates between the patient’s blood and the 20% albumin in the secondary circuit. 
This concentration gradient allows diffusible low-molecular-weight substrates to 
 fl ow down their gradient over the membrane where they are transiently bound by 
albumin in the secondary circuit. (Steiner et al.  2004  ) . The low-molecular-weight 
substrate is then removed from the system by conventional dialysis and 
hemodia fi ltration within the secondary circuit. 

 The initial clinical study described a series of 13 patients who underwent treat-
ment after failure of response to best medical therapy for acute-on-chronic hepatic 
failure. In this series, the overall survival was 69% and the authors cited that all 
patients showed a positive response to therapy (Stange et al.  1999  ) . Other encouraging 
case reports and small studies eventually led to more widespread use of the system. 
To date, roughly 7,500 patients have been treated with MARS for various hepatic 
diseases, including acute liver failure patients. A meta-analysis assessing the use of 
MARS looked at four randomized controlled trials including a total of 67 patients 
and two selected nonrandomized trials including 61 patients (Khuroo et al.  2004  ) . 
Patients had either acute or acute-on-chronic liver failure. Primary meta-analysis 
did not show a statistically signi fi cant survival bene fi t. Subgroup analysis for both 
acute and acute-on-chronic liver failure again failed to show a signi fi cant survival 
bene fi t. However, explorative analysis of the two nonrandomized trials did show 
that survival was signi fi cantly improved with MARS treatment. The authors con-
cluded that this bene fi t was possibly related to bias in patient selection. Recently, 
the results of a large multicenter randomized trial of MARS in patients with ALF 
ful fi lling high-urgency liver-transplant criteria in France were presented (Saliba 
et al.  2009  ) . The data show a trend toward better surivival in the MARS treatment 
group, but the difference did not reach signi fi cance. The transplant-free 6 month 
survival, however, was signi fi cantly prolonged in those patients treated with at least 
three sessions of MARS. Although a relatively large number of patients have been 
treated with MARS and improvements in biochemical and physiologic parameters 
have been demonstrated, MARS must still be considered experimental, as survival 
bene fi t has not been reproducibly shown for the various indications. 



93937 Liver

 “Prometheus” TM , which employs fractionated plasma separation, is a close 
variant of MARS. While MARS is a two-circuit system separated by an albumin 
impermeable membrane, Prometheus utilizes a membrane with a 250 kDa cutoff 
between circuits, thereby making the membrane permeable to albumin and hence 
albumin-bound toxins. While a large portion of the toxins, which accumulate during 
liver failure are water soluble, many are still bound by albumin. Therefore fraction-
ated plasma separation may be advantageous in regard to toxin removal. Other 
factors that distinguish Prometheus from MARS include the fact that while MARS 
is pre fi lled with 120 g of exogenous human albumin, the patient’s endogenous albu-
min loads the secondary circuit in Prometheus. Because Prometheus is loaded with 
the patient’s albumin, there may be a drop in the patient’s albumin levels during 
treatment (Rifai et al.  2003 ; Santoro et al.  2006  ) . 

 Most of the clinical data involving Prometheus are either uncontrolled or retro-
spective. A controlled trial, published as an abstract, looking at the effect of frac-
tionated plasma separation on hepatic encephalopathy, demonstrated that a 6-h 
treatment course improved clinical grade and sensory-evoked potentials (Kramer 
et al.  2000  ) . Multiple case series describe both acute and acute-on-chronic liver 
failure patients being treated with Prometheus. Only recently, the results of a con-
trolled randomised multicenter clinical trial in 145 patients with acute on chronic 
liver failure were reported in abstract form (Rifai et al.  2010  ) . Survival rates after 1 
and 3 month were not signi fi cantly different in the treated versus the control group. 
However, patients with hepatorenal syndrome type I and MELD score of >30 
showed a signi fi cant survival bene fi t. Currently available data thus illustrate a need 
for new prospective randomized controlled trials to clarify indications and clinical 
impact of extracorporeal arti fi cial liver support devices.  

      Cell-Based Liver Support Devices 

 It is unlikely that the complex mechanism, by which the liver ensures homeostasis, 
can be replaced by means of nonbiologic detoxi fi cation alone. A bioarti fi cial liver, 
which incorporates hepatocytes from various sources, has the theoretical advan-
tage of not only providing blood puri fi cation through dialysis, but also providing 
the hepatocyte-speci fi c functions which are lost with ALF. These include protein 
synthesis, ureagenesis, gluconeogenesis, and detoxi fi cation through P450 activity. 

 The  fi rst biologically based liver assist device to be tested in FDA-approved 
phase II/III trial was HepatAssist TM  by Arbios (formerly Circe, Waltham, MA). The 
device employed a hollow  fi ber extracorporeal bioreactor loaded with cryopreserved 
primary porcine hepatocytes. A randomized, controlled, multicenter phase II/III 
clinical trial was conducted in patients with fulminant/subfulminant liver failure and 
primary graft nonfunction (Demetriou et al.  2004  ) . The study demonstrated favor-
able safety, but failed to demonstrate improved 30-day survival in the overall study 
population. Although sub-groups of the study population showed signi fi cant sur-
vival bene fi ts, HepatAssist is not yet approved by the FDA. The Extracorporeal 
Liver Assist Device (ELAD TM ) by Vital Therapies (San Diego, CA) utilizes hollow 
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 fi ber cartridges loaded with cells from the C3A human hepatoblastoma cell line. 
The most current model also contains a conventional hemodialysis unit. An early 
randomized controlled trial of 24 patients with acute alcoholic hepatitis demon-
strated that therapy with ELAD produced reduced levels of ammonia and bilirubin 
along with improvement in hepatic encephalopathy when compared to controls 
(Ellis et al.  1999  ) . However, a statistically signi fi cant survival advantage was not 
demonstrated. The Modular Extracorporeal Liver Support System (MELS TM ; 
Charité, Berlin, Germany) is a hepatocyte based liver support therapy composed of 
four independently functioning hollow  fi ber capillary cell compartments. A phase 
I study in 2003 including eight patients with ALF demonstrated safety, with all 
eight patients being successfully bridged to transplantation (Sauer et al.  2003  ) . 
Clinical experience with MELS has been limited by the infrequent and unpredict-
able supply of human hepatocytes and concerns of xenozoonosis involving pig 
hepatocytes which are prevalent in Europe. The Bioarti fi cial Liver Support System 
(BLSSTM) by Excorp Medical (Minneapolis, MN) is a system that utilizes ~100 g 
of primary porcine hepatocytes in a single hollow  fi ber cartridge. Venovenous 
bypass is used to circulate the patient’s blood through the system. A phase I trial, in 
which four patients were treated with BLSS demonstrated safety (Mazariegos et al. 
 2001  ) . Currently, a phase II/III study is underway, and results will further de fi ne the 
role of this device. The Amsterdam Medical Center bioarti fi cial liver (AMC-
BALTM; AMC, Amsterdam, The Netherlands) uses 100 g of primary porcine hepa-
tocytes bound to a spiral-shaped polyester fabric with integrated hollow  fi bers. 
During treatment, the bioreactor is perfused with the patient’s plasma. A phase 
I study of the system examined seven patients with ALF who underwent multiple 
treatments with AMC-BAL (Van De Kerkhove et al.  2002  ) . Six were successfully 
bridged to transplantation, and one patient recovered liver function without trans-
plantation. Improvements were observed in both clinical and biochemical parame-
ters including a decrease in both bilirubin and ammonia. No adverse events were 
associated with treatment. While preliminary results were encouraging, larger 
randomized, controlled trials are needed to determine the role of AMC-BAL.   

    37.5.1.2   Hepatocyte and Stem Cell Transplantation 

 In acute liver failure hepatocyte transplantation may act as a bridge to recovery and 
regeneration of the injured native liver or alternatively to orthotopic liver transplan-
tation once an organ becomes available. The procedure may also be used in patients 
who are not candidates for organ transplantation. A major advantage of hepatocyte 
transplantation is the immediate availability of cryopreserved cells. Suf fi cient cell 
mass (approximately 10–15% of liver cell mass) is needed to provide enough meta-
bolic function (Asonuma et al.  1992  ) . The mass of cells, which can be transplanted 
into the liver, is, however, limited by the effect on portal hypertension. Other options 
include intrasplenic or intraperitoneal transplantation, which allow a larger volume 
of cells. The spleen has been used successfully as injection site in animal (Kobayashi 
et al.  2000 ; Cai et al.  2002  )  and human transplantation (Bilir et al.  2000  ) ; however, 



94137 Liver

in view of the number of immunologically active cells located in the spleen, rejection 
or destruction of the non-native cells needs consideration. Hepatocyte transplanta-
tion in patients with ALF has resulted in a reduction in ammonia and bilirubin with 
improvements in hepatic encephalopathy and cardiovascular instability (Bilir et al. 
 2000 ; Fisher and Strom  2006  ) . In the absence of any randomized controlled trials, it 
is dif fi cult to comment on the true ef fi cacy of the intervention. 

 There are a few studies on liver cell therapy for treatment of acute liver failure 
in humans with the intention to bridge the patients to orthotopic liver transplantation 
or recovery (Bilir et al.  2000 ; Schneider et al.  2006 ; Fisher and Strom  2006 ). Main 
challenges for future applications are the appropriate timing of cell transplantation, 
the restricted uptake capacity of the recipient liver, the availability of cells and the 
need for immunosuppression to prevent the rejection of the transplanted cells. The 
latter point may become more important than considered before, because the liver 
failure gives a high risk for septic complications itself, which will be aggravated by 
immunosuppressive drugs. 

 Extended liver resections have been associated with signi fi cant morbidity and 
mortality due to hepatic dysfunction or hepatic failure in the postoperative period. 
Autologous bone marrow stem cell therapies may offer the potential to enhance 
hepatic regeneration in this setting, perhaps increasing the safety of the procedure. 
Preclinical models and initial translational studies have suggested that autologous 
bone marrow stem cell administration can facilitate hepatic regeneration following 
both acute and chronic liver disease (Stutch fi eld et al.  2010  ) . Infusion of HSC in three 
patients after extended liver resection demonstrated the therapeutic potential, how-
ever, more and controlled clinical trial data are needed (am Esch et al.  2005  ) .   

    37.5.2   Chronic Liver Disease and Liver Fibrosis 

 Chronic injury and in fl ammation triggers a gradual loss of liver function and depo-
sition of extracellular matrix components, which leads to  fi brosis and  fi nally to 
cirrhosis of the liver. Although acute injury does activate mechanisms of 
 fi brogenesis, more sustained signals associated with chronic liver diseases lead to 
a  fi brogenic response which engages several different cell types. Cirrhosis of the 
liver as a clinical endpoint of the  fi brogenic process is probably an irreversible 
condition and the only long-term therapeutic solution for end-stage chronic liver 
disease today is liver organ transplantation. However, experimental and clinical 
data indicate that earlier events of the perpetuated  fi brogenic process in the liver 
can be stopped or even reversed. 

 There is now experimental evidence that several endogenous factors/cytokines 
play important roles in regulation of liver  fi brogenesis. The use of interferon alpha 
-2 a  and -2 b  is nowadays the main therapeutic strategy for the treatment of chronic 
viral hepatitis and compensated viral liver cirrhosis (Manns et al.  2001 ; Fried 
et al.  2002  ) . In addition to decreasing viremia in HBV and HCV infections, it also 
leads to reduced liver  fi brosis. 
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 New therapeutic targets interfering with  fi brogenesis are emerging from 
translational research and have been recently addressed in clinical trials. Interferon-
gamma1 b  (IFN- g 1 b ) is a pleiotropic cytokine that displays anti fi brotic, antiviral, 
and antiproliferative activity. Initial studies conducted in patients with HCV-related 
liver diseases have shown a  fi brosis reduction in some of the patients (Muir et al. 
 2006  ) . In particular, patients with elevated interferon-inducible T cell-alpha 
chemoattractant (ITAC) levels in their blood and perhaps less advanced disease 
stage, may best be suited for IFN-gamma1 b  based therapy (Pockros et al.  2007  ) . 

 Interleukin-10 (IL-10) was  fi rst described as a cytokine synthesis inhibitory 
factor for T lymphocytes produced from T helper 2 cell clones. In fact various cell 
populations produce IL-10 in the body, including T cell subsets, monocytes, mac-
rophages and also various other cell types present in organs such as the liver. 
IL-10 gene polymorphisms are possibly associated with liver disease susceptibil-
ity or severity. Recombinant human IL-10 is currently tested in clinical trials in 
patients not responding to standard Peg-IFN  a  therapy. 

 PDGF is the most potent mitogen for hepatic stellate cell-derived myo fi broblasts 
and levels of the growth factor have been shown to increase in liver diseases. 
Autocrine signalling by PDGF was the  fi rst cytokine loop discovered in hepatic stellate 
cell activation and is amongst the most potent ones (Borkham-Kamphorst et al. 
 2008  ) . Hepatic PDGF- a  overexpression using the CRP-gene promoter was accom-
panied by a signi fi cant increase in hepatic procollagen III mRNA expression as well 
as TGF- b 1 expression. Liver histology showed increased deposition of extracellular 
matrix in transgenic but not in wildtype mice. These results point to a mechanism of 
 fi brosis induction by PDGF- a  via the TGF- b 1 signalling pathway (Thieringer et al. 
 2008  ) . On the other hand, Dominant-negative soluble PDGF receptor beta is cur-
rently investigated as a possible new anti fi brogenic target. 

 TGF b 1 remains, however, the classic  fi brogenic cytokine. TGF  b 1 activates 
stellate cells via the SMAD proteins pathway and also stimulates collagen expres-
sion in stellate cells through a hydrogen peroxide and C/EBP b  -dependent mechanism. 
There is experimental evidence that hepatocyte-speci fi c overexpression of TGF b 1 
in transgenic mice increases  fi brosis  in vivo , and that soluble TGF b  receptor type 
II treatment inhibits  fi brosis  in vivo . Also, it has been shown that adenovirus encod-
ing antisense TGF b  mRNA inhibits  fi brogenesis  in vivo . 

 More experimental strategies aim to reduce extracellular matrix deposition by 
over-expression of MMP’s. Siller-Lopez et al. have used an extrahepatic human 
neutrophil collagenase complementary MMP-8 DNA cloned in an adenovirus 
vector (AdMMP8) as a therapeutic agent in cirrhosis using CCl 

4
  and bile duct–

ligated cirrhotic rats models. Liver  fi brosis in bile duct–ligated cirrhotic animals 
was decreased by 45% along with reduced hydroxyproline levels in AdMMP8 
treated animals. Treatment in both models correlated with improvements in 
ascites, functional hepatic tests and gastric varices indicating diminished portal 
hypertension in animals injected with AdMMP8 (Siller-Lopez et al.  2004  ) . 

 Alternative treatment concepts aim to protect existing hepatocytes and/or to 
increase the hepatocyte mass. Hepatocyte growth factor (HGF), originally identi fi ed 
and cloned as a potent mitogen for hepatocytes (Nakamura et al.  1984,   1989 : Russell 
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et al.  1984 ; Miyazawa et al.  1989  )  has mitogenic and morphogenic activities for a 
wide variety of cells (Boros and Miller  1995 ; Michalopoulos and DeFrances  1997  )  
and also plays an essential role in the development and regeneration of the liver 
(Schmidt et al.  1995  ) . It has also been shown to have antiapoptotic activity in hepa-
tocytes (Bardelli et al.  1996  ) . Transduction of the HGF gene has suppressed the 
increase of transforming growth factor- b 1 (TGF- b 1), which plays an essential part 
in the progression of liver cirrhosis and inhibited  fi brogenesis and hepatocyte apop-
tosis leading to complete resolution of  fi brosis in the cirrhotic liver in a rat model 
(Ueki et al.  1999  ) . 

    37.5.2.1   Stem Cell Therapy of Chronic and Acute of Chronic Liver Disease 

 Although the concept of cell therapy for various diseases is principally accepted, the 
practical approach in humans remains dif fi cult. Bone marrow derived mononu-
cleated cells, hematopoietic stem and progenitor cells, mesenchymal stem (stromal) 
cells and sinusoidal endothelial cells are currently being investigated. There are 
several proposed mechanisms by which stem and progenitor cells might support 
regeneration in targeted organs including the liver: intercellular signalling through 
cell-cell contacts, paracrine signalling (growth factors, cytokines, hormones) or cell 
fate change in the target organ. 

 The concept of stem/progenitor cell infusions exerting a paracrine regenerative 
effect on the liver is gaining support and is backed up by both rodent and human 
studies, although the latter are small and uncontrolled. Endothelial precursor cells 
(EPC) have been shown in rodent models to promote angiogenesis and the degrada-
tion of liver scar tissue thereby contributing to liver regeneration (Taniguchi et al. 
 2006 ; Nakamura et al.  2007 ; Ueno et al.  2006  ) . By participation in neovascularisa-
tion and by the expression of multiple growth factors, transplanted EPCs signi fi cantly 
accelerate liver regeneration. This is achieved by enhancing proliferative activity of 
hepatocytes leading to improved survival after chemically induced liver injury 
(Taniguchi et al.  2006  ) . 

 Sakaida et al. have demonstrated that transplanted bone marrow cells degrade 
extracellular matrix in carbon tetrachloride (CCl 

4
 )-induced liver  fi brosis, with a 

signi fi cantly improved survival rate in this animal model. Their  fi ndings suggest 
that transplanted bone marrow cells can degrade collagen  fi bers and reduce liver 
 fi brosis by strong expression of MMPs, especially MMP-9 (Sakaida et al.  2004  ) . 

 Other groups have raised concerns about the role of certain subtypes of bone 
marrow stem cells in liver  fi brogenesis (Russo et al.  2006  ) . It has been shown that 
bone marrow derived myo fi broblasts signi fi cantly contributed to  fi brogenesis in a 
chronic liver injury model in mice. They originated predominantly from bone 
marrow cells enriched for mesenchymal progenitor cells. These cells were located 
in the region of hepatic scarring and actively expressed collagen. The data suggest 
that an axis of recruitment from the bone marrow to the liver does exist in chronic 
injury and that the therapeutic application of certain subsets of bone marrow derived 
cells may contribute to, rather than resolve scarring of the liver tissue. The choice of 
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the transplanted bone marrow cell type might thus be important with regard to 
supporting liver regeneration or  fi brogenesis. 

 Taken together the infusion of stem cells might provide an array of factors sup-
porting not only liver regeneration but also the remodelling of impaired liver archi-
tecture by interfering with  fi brogenesis. Important experimental  fi ndings, however, 
suggest that infused bone marrow cells may also contribute to  fi brogenesis 
(Takezawa et al.  1995 : Kisseleva et al.  2006  )  giving some cautious notes for the 
uncritical use of stem cells for chronic liver disease outside of controlled clinical 
trials (Sakaida et al.  2004 ; Fang et al.  2004 ; Zhao et al.  2005 ; Oyagi et al.  2006  ) . 

 Several clinical trials already investigated the effect of bone marrow (stem) cells 
in patients with liver disease. They were mainly uncontrolled, with only small 
numbers of patients enrolled and have provided heterogeneous results. The trials 
can be categorized in 4 groups according to the main endpoint and source of cells: 
(1) effects of granulocyte colony–stimulating factor (G-CSF) mobilized bone mar-
row cells in advanced chronic liver disease, (2) effects of infusion of autologous 
mononuclear cells collected from bone marrow in advanced chronic liver disease, 
(3) effects of collection (with or without ex vivo manipulation) and infusion of 
mobilized bone marrow cells in advanced chronic liver disease and (4) effects of 
bone marrow infusions on liver regeneration (after selective portal venous embo-
lization) prior to extended hepatectomy for liver tumors (Houlihan and Newsome 
 2008 ; Gaia et al.  2006 ; Terai et al.  2006 ; Mohamadnejad et al.  2007a,   b ; Lyra et al. 
 2007a,   b ; Gordon et al.  2006 ; Levicar et al.  2008 ; Yannaki et al.  2006 ; am Esch 
et al.  2005 ; Pai et al.  2008  )  

 The trials are quite heterogeneous with regard to the source of stem cells used 
and the number of patients included. The following stem cells sources have been 
used: bone marrow from iliac crest (50–400 ml), G-CSF mobilization only, 
G-CSF mobilization followed by leukapheresis and CD-34+ selection and reinfu-
sion. All but one trial were non-randomized. The stem cells were administered by 
peripheral vein infusions (three studies), by hepatic artery infusions ( fi ve stud-
ies) or portal vein infusions (two studies). The largest study conducted so far by 
Lyra et al .  was also the only randomised one and included 30 patients. 

 Eight out of 11 trials have shown a moderate improvement in liver function 
(albumin, INR, bilirubin, Child-Pugh score, MELD score) and the follow-up period 
has ranged from 2 to 12 months. 

 In one recent study safety and ef fi cacy of hepatic artery administration of 
mobilized autologous and  ex vivo  expanded adult CD34 +  hematopoietic stem cells 
in patients with alcoholic cirrhosis (ALC) was assessed (Pai et al.  2008  ) . This 
study reported one of the largest numbers of CD34 positive stem cells infused in 
cirrhotic patients so far. Nine patients with biopsy-proven ALC and abstinence 
from alcohol for at least 6 months were included in the study and all patients tol-
erated the procedure well, with no treatment-related side effects or toxicities 
observed. Signi fi cant improvement in liver function was shown by decrease in 
serum bilirubin levels, serum alanine transaminase and aspartate transaminase. 
The Child-Pugh score improved in seven out of nine patients and in  fi ve patients 
ascites production had declined. 
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 Two studies so far aimed to ameliorate acute on chronic liver disease by 
administration of granylocyte – colony stimulating factor (G-CSF) treatment. In 
contrast to an earlier study by Di Campli et al.  (  2007  )  a more recent study from 
India showed profound effects on short term survival, which was associated with a 
marked increase of CD34 stem cells in the liver of recipients (Garg et al.  2012  ) .   

    37.5.3   Hereditary Liver Disease 

 Liver organ transplantation can be viewed as a form of gene therapy for inherited 
liver diseases since the procedure substitutes a defective gene with a normal copy 
from a healthy donor. Animal studies have shown that for most monogenetic liver 
diseases partial substitution of a missing or defective protein is able to reverse the 
clinical phenotype and can result in complete remission of the disease. This redun-
cancy opens the possibility to apply minimally invasive therapies such as cell and 
gene therapies to correct an existing gene defect. Although many hurdles still 
exist, feasibility has been proven unequivocally in animal models and therapeutic 
protocols are now emerging in the clinical arena. 

    37.5.3.1   Transplantation of Mature (Adult) Hepatocytes 

 In recent years the interest in liver cell therapy has been increasing continuously, 
since the demand for whole liver transplantations in human beings far outweighs 
the supply (Nussler et al.  2006  ) . From the clinical point of view, transplantation of 
hepatocytes or hepatocyte-like cells may represent an alternative to orthotopic liver 
transplants for the correction of genetic disorders resulting in metabolically 
de fi cient states. The aim of hepatocyte transplantation in metabolic disease is to 
partially replace the missing function without the need to replace the whole organ. 
Almost 30 children and adults who received liver cell therapy for metabolic liver 
disease are reported in literature (Fisher and Strom  2006 ; Fitzpatrick et al.  2009  ) . 
Clinical therapies up to now have been performed by infusing fresh or cryopre-
served primary hepatocyte suspensions isolated from donated organs. The avail-
ability of high quality liver tissue for cell isolation, however, has slowed the 
widespread application of this therapy. Furthermore, the clinical situation of target 
patients is rarely immediately life threatening and often acceptable conventional 
therapies are available. Therefore, the potential bene fi t must be carefully weighed 
against any possible complications, such as side effect from immunosuppression, 
hepatocyte embolisation of the pulmonary vascular system, sepsis or hemodynamic 
instability. 

 Objective parameters such as laboratory data (i.e. bile acid, clotting factors, etc.) 
can be determined to unequivocally assess the ef fi cacy of the treatment. The results 
of hepatocyte transplantation for many metabolic liver diseases have been encour-
aging with demonstrable, although short-term correction of metabolic de fi ciency in 
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the majority of cases. Therapeutic bene fi t has been reported in a girl with Crigler–
Najjar Syndrome Type I, which is a recessively inherited metabolic disorder char-
acterized by severe unconjugated hyperbilirubinaemia (Fox et al.  1998  ) . Isolated 
hepatocytes were infused through the portal vein and partially corrected plasma 
bilirubin levels for more than 11 months. Similarly, a 9-year-old boy received 
7.5 × 10 9  hepatocytes, infused via the portal vein, which resulted in a decrease in 
bilirubin level from 530 ± 38  m mol/L (mean ± SD) before to 359 ± 46  m mol/L 
(Ambrosino et al.  2005  ) . Hughes et al. also report a 40% reduction in bilirubin lev-
els in a Crigler–Najjar Syndrome Type I patient following transplantation of hepa-
tocytes (Hughes et al.  2005  ) . Although these data demonstrate ef fi cacy and safety, 
a single course of cell application seems not suf fi cient to correct Crigler–Najjar 
Syndrome Type I completely. 

 Sustained response was reported in a patient with argininosuccinate lyase 
de fi ciency after repeated hepatocyte transplantation. Engraftment of the transplanted 
cells was analyzed in repeated liver biopsies for more than 12 month by  fl uorescence 
in situ hybridization for the Y-chromosome and by measurement of tissue enzyme 
activity (Stephenne et al.  2006  ) . Promising results have also been obtained in a 
47-year-old woman suffering from glycogen storage disease type 1a, an inherited 
disorder of glucose metabolism resulting from mutations in the gene encoding the 
hepatic enzyme glucose-6-phosphatase (Muraca et al.  2002  ) . 2 × 10 9  ABO-
compatible hepatocytes were infused into the portal vein. Nine months after cell 
transplantation, her metabolic situation had clearly improved. Successful hepato-
cyte transplantation has also been achieved in a 4-year-old girl with infantile Refsum 
disease, an inborn error of peroxysome metabolism, leading to increased levels of 
serum bile acids and the formation of abnormal bile acids (Sokal et al.  2003  ) . A total 
of 2 × 10 9  hepatocytes from a male donor were given during eight separate intrapor-
tal infusions. Abnormal bile acid production (for instance pipecholic acid) had 
decreased by 40% after 18 months. Recently, hepatocyte transplantation has been 
used successfully to treat inherited factor VII de fi ciency (Dhawan et al.  2004  ) . Two 
brothers (aged 3 months and 3 years) received infusions of 1.1 and 2.2 × 10 9  ABO-
matched hepatocytes into the inferior mesenteric vein. Transplantation clearly 
improved the coagulation defect and decreased the necessity for exogenous factor 
VII to approximately 20% of that prior to cell therapy. As with the other metabolic 
liver diseases, hepatocyte transplantation has been shown to provide a partial 
correction of urea cycle defects. Patients showed clinical improvement, reduced 
ammonia levels and increased production of urea (Horslen et al.  2003 : Mitry et al. 
 2004 ; Stephenne et al.  2005 ; Meyburg et al.  2009  )   

    37.5.3.2   Transplantation of Stem Cells 

 In the last few years, many reports have suggested that extrahepatic stem cells 
participate in liver regeneration and may be useful for treating many diseases 
(Alison et al.  2000 ; Herzog et al.  2003 ; Lagasse et al.  2000 ; Petersen et al.  1999 ; 
Theise et al.  2000  ) . However, subsequent work by several independent groups has 
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clearly shown that hepatocyte replacement levels after injection of extrahepatic 
stem cells or by bone marrow transplantation are low (<0.01%), unless those 
bone-marrow-derived hepatocytes have a selective growth advantage (Cantz et al. 
 2004 ; Kanazawa and Verma  2003 ; Wagers et al.  2002  ) . Furthermore, in most of 
the cases, fusion with host hepatocytes rather than transdifferentiation of extrahe-
patic cells, has been described as the underlying mechanism (Alvarez-Dolado 
et al.  2003 ; Quintana-Bustamante et al.  2006 ; Vassilopoulos et al.  2003 ; 
Willenbring et al.  2004  ) . 

 So far no convincing evidence has yet been provided in animal models that stem 
cells including HSC, MSC, iPS or cells derived from cord blood or the amnion can 
generate therapeutically signi fi cant numbers of hepatocytes for the correction of 
hereditary metabolic liver diseases. Consequently, no credible data on the use of 
stem cells in patients with hereditary liver disease have been published.  

    37.5.3.3   Gene Therapy 

 The liver is involved in the synthesis of serum proteins, regulation of metabolism 
and maintenance of homeostasis and thus provides a variety of opportunities for 
gene therapeutic corrections. Gene therapy is the treatment of an inherited or 
acquired disease through the manipulation of a patients’ genetic status or sequence 
in selected cells by introducing various types of genetic materials such as virally 
bound nucleic acids, plasmid DNAs, antisense oligonucleotides and short interfer-
ence RNAs. Both viral and non-viral methods have been developed for effective 
gene delivery. Currently, only viral vectors have transduction ef fi cacies needed for 
liver-based gene therapy of inherited metabolic diseases in humans. 

      Viral Vectors 

 Viral gene delivery employs replication de fi cient viruses as a carrier to bring 
genetic materials into cells through their natural infection mechanism. Viral vectors 
are created using molecular biological techniques by which portion of the viral 
genome is replaced with a gene of interest. Major drawbacks of viral vectors are 
their genetic and immunologic toxicities, which are mainly associated with an 
arbitrary recombination with genomic DNA of the target cells and acute immune 
stimulation, respectively. Because adult humans have already developed immunity 
against several types of viruses from which viral vectors are developed, an exposure 
of the viral vectors to patients often results in strong immunological reaction, and 
consequently disables ef fi cient gene delivery and long-term gene expression. 

 Viral vectors frequently used in gene therapy studies are derived from retrovirus, 
adenovirus, and adeno-associated virus. Retroviruses, enveloped RNA viruses with 
a particle size of approximately 100 nm, only infect dividing cells and are capable 
of integrating reverse transcribed DNA into the host genome at an unpredictable 
location (Sinn et al.  2005  ) . Viral integration has led to leukemia development as 
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revealed by recent gene therapy trial on X-linked SCID (Bey et al.  2003  ) . The 
requirement of hepatectomy (~70%) to stimulate hepatic proliferation is generally 
considered as a drawback for retrovirus mediated gene delivery to the liver (Rettinger 
et al.  1993 ; Branchereau et al.  1994  ) . Lentiviruses, a subclass of retroviruses including 
human immunode fi ciency virus, can transduce non-dividing as well as dividing 
cells. The lentivirus preintegration complex is able to pass the intact nuclear mem-
brane, which allows it to integrate into the host genome without cell division (Amado 
and Chen  1999  ) . It was reported that animals can be repeatedly infected with lenti-
viral vectors (Kafri et al.  1997  ) . 

 Adenoviruses are double-stranded DNA viruses with a diameter of approxi-
mately 110 nm. Adenoviruses infect both replicating and non-replicating cells, have 
a relatively large genome, and are unable to integrate into the host genome (Ghosh 
et al.  2006b  ) . A number of serotypes has been used to create adenoviral vectors and 
employed in 24.8% of clinical trials till the end of March, 2008 ( The Journal of 
Gene Medicine   2008  ) . These vectors exhibit a broad range of liver tropism with 
serotype 5 as the most commonly used to date (Jager and Ehrhardt  2007  ) . Adenoviral 
vector is the  fi rst proven gene carrier for the treatment of cancer (Peng  2005  ) . 
Because this virus is a natural human pathogen, preexisting immunity against 
adenovirus can cause severe allergic reaction and inactivation of viral vectors 
(Marshall  1999  ) . The current strategy in avoiding these problems is to use a sero-
type which the patients have no immunity against (Jager and Ehrhardt  2007  ) . If the 
immunogenic drawbacks can be overcome in the future, adenoviral vectors will 
probably  fi nd a great diversity of clinical applications. 

 Adeno-associated virus (AAV) belongs to the Parvoviridae virus family and is 
approximately 26 nm in diameter without envelope (Grieger and Samulski  2005  ) . 
It requires a helper virus for replication such as adenovirus. It is non-pathogenic and 
can infect quiescent cells. AAV is currently classi fi ed into 12 serotypes, and the 
liver is known to be a preferential target especially for AAV-8 (Wu et al.  2006  ) . 
It was reported that this virus can insert its genome at a de fi ned site on chromosome 
19 termed AAVS1 with nearly 100% certainty (Samulski et al.  1991  )  The site-
directed integration is controlled by viral Rep proteins (Young et al.  2000  ) , which 
are often deleted in recombinant AAV vectors in favour of more space for the exog-
enous gene to be packaged into the tiny viral particle. Cotransfection of plasmids 
coding for Rep protein was reported to restore capability of the site-directed integra-
tion and enable a long-term expression of the transgene without inducing insertional 
mutagenesis (Howden et al.  2007  ) . Results from a number of animal studies also 
indicate that AAV is less immunogenic when compared to adenoviruses (Coura 
Rdos and Nardi  2007  ) .  

      Preclinical Evaluation 

 Feasability of gene therapies has been demonstrated in a wide variety of animal 
models. Long-Evans cinnamon rats are a model of Wilson disease and transfer of 
the  ATP7B  gene to hepatocytes ameliorates both biochemical and histological 
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pathologies (Merle et al.  2006  ) . Transgene products released into blood circulation 
after successful gene transfer into the hepatocytes corrected pathological manifes-
tation both inside and/or outside of the liver in glycogen storage diseases (   type Ia, 
(Ghosh et al.  2006a,   b  )  Ib (Yiu et al.  2007  )  and II (Yiu et al.  2007  )) , mucopolysac-
charidosis type I (Kobayashi et al.  2005  ) , IIIB (Di Natale et al.  2005  )  and VII 
(Ponder et al.  2002  ) , hereditary tyrosinemia type I (Overturf et al.  1996  ) , UDP 
glucuronyltransferase de fi ciency (Crigler-Najjar type I) (Seppen et al.  2003  ) , and 
hemophilia (Miao et al.  2001 ; Herzog et al.  1999 ; Waddington et al.  2004  ) . 

 A complete and persistent phenotypic correction of phenylketonuria in mice 
was reported after hydrodynamic gene delivery of murine phenylalanine hydroxy-
lase cDNA with the help of phiBT1 phage integrase for long-term gene expression 
(Chen and Woo  2005  ) . Further, the ef fi cacy of adenovirus-mediated  in vivo  gene 
therapy for ornithine transcarbamylase de fi ciency was reported in mice and non-
human primates (Raper et al.  1998  ) . Hyperlipidemia was not only effectively 
treated in the respective genetic mouse models through delivery of apolipoprotein 
B (Crooke et al.  2005  )  or E (Kim et al.  2001  )  genes but also in wild type mice 
treated with a high-fat diet. A reciprocal pathophysiological condition of hypoal-
phalipoproteinemia was effectively reversed by adenoviral transduction of human 
apolipoprotein A-I gene in model mice as well (Oka et al.  2007  ) .  

      Liver-Directed Gene Therapy in Humans 

 Gene therapy has the potential to offer a de fi nitive cure for monogenic diseases by 
achieving a long-term correction of pathology. Monogenic diseases in the liver are 
divided into two groups depending on whether cell damage in the liver is involved 
or not. For example, hemophilia, familiar hypercholesterolemia, and phenylketonu-
ria show systemic manifestations without signi fi cant liver cell damage, and have the 
least risk for hepatotoxicity in orthotopic gene delivery. In fact phase I/II clinical 
trials for hemophilia B were completed with promising results (Manno et al.  2006  ) . 
Unfortunately, however, the development of inhibitory antibodies against the exog-
enous factor IX and/or components of viral vectors diminished a persistent pheno-
typic correction (Manno et al.  2006 ; Mingozzi and High  2007  ) . One possible 
solution to avoid antibody development against exogenous gene products is gene 
delivery into the fetal liver to induce tolerance to the exogenous gene products 
(Seppen et al.  2003 ; Waddington et al.  2004 ; Sabatino et al.  2007  )  or alternative 
injection routes (Tominaga et al.  2004  ) . It is important to point out that signi fi cant 
difference exists between animal studies and human clinical trials with respect to 
immunological reactions (Ye et al.  2004 ; Gao et al.  2006  ) . 

 In case of the monogenic liver diseases with substantial hepatocellular damage, 
gene therapy should not be a primary indication unless gene delivery can be com-
pleted in all hepatocytes in the liver. Successful delivery of human fumarylacetoac-
etate hydrolase gene into hepatocytes protected FAH (−/−)  – mice mimicking hereditary 
tyrosinemia type 1 disease from fulminant liver failure by restoring the enzyme 
activity (Overturf et al.  1997a ; Grompe et al.  1998  ) . However, hepatocellular 
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damage continued in the rest of hepatocytes that had not received the transgene and 
resulted in the frequent development of hepatocellular carcinoma. Liver transplan-
tation should be a primary option for the diseases in this category at this moment.     

    37.6   Advanced Therapy Medicinal Products Regulation 

 For many of the regenerative therapies discussed in this chapter a new legal frame-
work on advanced therapy medicinal products (ATMPs), which was implemented 
by the European Medicine Agency (EMEA) in December, 2008, is now applicable 
(Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 
13 November 2007 on advanced therapy medicinal products and amending direc-
tive 2001/83/EC and regulation (EC)No 726/2004. Of fi cial Journal of the European 
Union (10.12. 2007) L324/121). ATMPs are de fi ned as “innovative, regenerative 
therapies which combine aspects of medicine, cell biology, science and engineering 
for the purpose of regenerating, repairing or replacing damaged tissues or cells” and 
fall into three categories: (a) gene therapy ‘medicinal products’ (b) somatic cell 
therapy ‘medicinal products’ or (c) tissue engineered products. As a result of this 
European Union legislation, the EMEA has introduced the Committee for Advancced 
Therapies (CAT). The CAT will play a central role in safety and ef fi cacy assessment 
of new ATMP’s prior to formal marketing approval. This central European legisla-
tion will surely facilitate the development and wide spread application of regenera-
tive therapies in hepatology and other medical disciplines.  

    37.7   Future Directions 

 Regenerative therapies involving various types of cells as well as gene therapies are 
currently being investigated in research laboratories around the world and more and 
more  fi nd the way into therapeutic algorithms in the clinic. Bioarti fi cial liver sup-
port systems and cell therapies are currently limited by the availability of good 
quality hepatocytes. A renewable source of highly metabolically competent hepato-
cytes will be essential for any successful bioarti fi cial liver system. To date porcine 
hepatocytes are most commonly being used with limited acceptance due to ongoing 
concerns of xenozoonosis. Immortalized human hepatocytes have not shown expres-
sion of prerequisite hepatocyte function including ammonia detoxi fi cation. Other 
limitations of  fi rst-generation bioarti fi cial liver systems, which need to be solved, 
include excess device complexity, insuf fi cient number of hepatocytes to support a 
failing liver, early hepatocyte death, and absence or loss of differentiated function. 

 The application of stem cells in liver cell therapies seems to be a promising 
approach for the treatment of liver diseases. However, several issues still have to be 
addressed to ful fi l this promise. We need to identify, both inside and outside of the 
liver, the stem cell candidates that are able to form mature hepatocytes in vitro and 
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functional liver tissue after transplantation in vivo. The fundamental molecular 
pathways involved in the differentiation of hepatocytes and cholangiocytes from 
stem/progenitor cells, the factors that are responsible for in vitro differentiation of 
various stem cells into hepatocytes, the mechanisms involved in the fusion of stem 
cells and hepatocytes and the aspects that can potentially enhance these mecha-
nisms need to be studied in more detail. With future progress in stem cell research, 
the various stem cell sources including hepatic stem/progenitor cells, embryonic 
and adult extrahepatic stem cells should provide great opportunities for the treat-
ment of liver disorders. 

 Additional work is also needed in the development of an ideal gene delivery 
system. The ef fi cacy of delivery and the level of transgene expression achieved 
by the current methods have resulted in phenotypic correction of various heredi-
tary liver diseases in animal models. The most ef fi cient vehicles for gene delivery 
to the liver developed so far are viral vectors. Among the viral vectors applicable 
to liver gene delivery, lentiviral vectors appear to have great advantage because of 
their ability to transduce the liver cells at resting state and generate persistent gene 
expression. Gene toxicity by insertional mutagenesis with the transactivation of 
potentially harmful genes and interactions of the host immune system with the 
viral proteins and the therapeutic product need to be studied in more detail. Active 
participation of hepatologists in gene therapy research will accelerate the process 
in turning gene therapy into a common practice for the treatment of various diseases 
through the liver. 

 In summary, advanced approaches in regenerative hepatology will cover strat-
egies to improve endogenous liver regeneration, to correct monogenetic liver 
diseases by gene therapy, and to support organ function with additional hepatic 
cells, either in extracorporal devices or as cell transplants. For the latter aspect, 
improved cell isolation and propagation techniques to utilize cells from donor 
organs or advanced stem cell-differentiation protocols become of utmost impor-
tance to ensure the supply of functional hepatic cells.      
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  Abstract   Regenerative medicine is an area of intense excitement and potential. 
Despite the increasing rate of end-stage renal disease, dialysis and transplantation 
remain the only treatment options to date. However, there is hope that stem cells and 
regenerative medicine may procure additional therapeutic options for renal disease. 
Such new treatment options may include induction of repair using endogenous or 
exogenous stem cells or the reprogramming of the kidney to reinitiate development. 
This chapter reviews the current state of understanding with respect to stem cell 
functions in the kidney, regenerative principles in kidney diseases, as well as clini-
cal implications and implementation of regenerative medicine in renal disease.      

    38.1   Introduction 

 The term  regenerative medicine  spans bioengineering, cell biology and matrix biol-
ogy with the objective to repair or re-grow a damaged organ or tissue. It can be 
de fi ned as the use of cells for the treatment of a disease and covers both organ repair 
and the  de novo  regeneration of an entire organ. Organ repair can be delivered  in situ  
or  ex vivo .  In situ  possibilities include the recruitment of stem cells to the kidney to 
trigger repair and the induction of dedifferentiation of resident renal cells. Whereas 
some regard  in situ  approaches as more likely to be successful for an architecturally 
and anatomically constrained organ such as the kidney, the other approach is the 
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 ex vivo  culture of stem cells for re-delivery to the damaged kidney. This might 
involve autologous or non-autologous stem cells from a variety of sources. Finally, 
a bioengineering approach that relies on cells, factors, and matrix may be achievable. 
Although seemingly the most dif fi cult, it may be the more feasible approach for 
genetic conditions such as polycystic kidney disease (Little  2006  ) .  

    38.2   Kidney Development, Stem Cell Function 

 Regenerative biology draws on an understanding of normal developmental processes. 
Understanding the molecular basis of kidney development will be the key to the 
development of regenerative therapies for chronic renal disease (Little (Horster 
et al.  1999  ) . During mammalian development, three separate excretory organs 
develop: (Horster et al. (Horster et al.  1999  ) . The pronephros, the mesonephros, and 
the metanephros. In mammals, it is the paired metanephroi that persist postnatally 
and constitute the permanent kidney. The permanent kidney arises via reciprocal 
interactions between two tissues, the ureteric bud and the metanephric mesenchyme, 
the latter arising from the intermediate mesoderm. The ureteric bud gives rise to the 
collecting ducts and the ureter. The metanephric mesenchyme, which shows much 
broader potential and gives rise to all other elements of the nephrons, the interstitium, 
and the vasculature, is regarded as the renal progenitor population (Herzlinger et al. 
 1992 ). As the ureteric bud reaches the metanephric mesenchyme, signals from the 
tips of the branching UB induce areas of adjacent metanephric mesenchyme to 
aggregate and undergo a mesenchyme-to-epithelial (MET) transition. Each MET 
event represents the birth of a new nephron with the  fi rst nephrons “born” in the 
center of the metanephric mesenchyme. The peripheral metanephric mesenchyme, 
which has not yet undergone induction, is referred to as the nephrogenic zone. 
Nephrogenesis in humans is complete by week 36 of gestation, whereas it continues 
for 1–2 weeks after birth in the mouse and the rat. At that time, it is assumed that the 
peripheral nephrogenic zone is exhausted (Horster et al.  1999  ) . 

  Embryonic metanephroi, differentiating into the adult kidney, have come to be a 
generally accepted model system for organogenesis. Nephrogenesis implies a highly 
controlled series of morphogenetic and differentiation events that starts with recipro-
cal inductive interactions between two different primordial tissues and leads, in one of 
two mainstream processes, to the formation of mesenchymal condensations and 
aggregates. These go through the intricate process of mesenchyme-to-epithelium tran-
sition by which epithelial cell polarization is initiated, and they continue to differenti-
ate into the highly specialized epithelial cell populations of the nephron. Each step 
along the developmental metanephrogenic pathway is initiated and organized by sig-
naling molecules that are locally secreted polypeptides encoded by different gene 
families and regulated by transcription factors. Nephrogenesis proceeds from the deep 
to the outer cortex, and it is directed by a second, entirely different developmental 
process, the ductal branching of the ureteric bud-derived collecting tubule. Both systems, 
the nephrogenic (mesenchymal) and the ductogenic (ureteric), undergo a repeat series 
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of inductive signaling that serves to organize the architecture and differentiated cell 
functions in a cascade of developmental gene programs(Horster et al.  1999  ) . 

 The development of the metanephric (permanent) mammalian kidney begins at 
gestational  week 4–5  in humans and at E11 in mouse. Organogenesis and its govern-
ing principles have been studied mostly in the mouse. Metanephros formation, i.e., 
organogenesis of the permanent kidney, is initiated by the ureteric bud, which 
sprouts out of the posterior end of the Wolf fi an duct and invades the metanephro-
genic mesenchyme. The subsequent interaction between the two primordia induces 
the ureteric bud to branch dichotomously, thus initiating the morphogenesis of the 
collecting duct system. Induced metanephric mesenchyme condenses at the tips of 
the ureteric buds, and mesenchymal cells form aggregates, thus beginning the mes-
enchyme-to-epithelium transition. Each aggregate epithelializes (Sariola et al.  1983  )  
and proceeds in stages to the vesicle stage, comma stage, and S-stage, from where 
each S-shaped body, after fusion with the ureteric bud-derived collecting duct, dif-
ferentiates into one of the (2 × 10 6 ) nephrons of the human kidneys. The architec-
tural pattern, therefore, as a result of the sequential ureteric bud arborization, is 
designed to proceed from the deep cortex to the periphery in a repeat series of 
induction, morphogenesis, and differentiation (Horster et al.  1999  ) . 

 The epithelial segments of the nephron, unlike the ureteric bud-derived collect-
ing duct system, are created from mesenchymal cells by an intricate cascade of 
events. The early events result in the acquisition of an essentially epithelial 
character by the future nephron cells while these polarized cells form a sphere or 
vesicle. The process of modeling the subsequent stages of comma and S-shape is 
not yet fully understood, although plenty of morphoregulatory molecules and 
transcription factors are sequentially and differentially expressed. These stages of 
morphogenesis are the onset of nephron differentiation, i.e., epithelial segments 
begin to express their speci fi c properties (Horster  1985  ) . These stages of nephro-
genesis have an ancestry that begins at the blastula stage, which determines the 
mesoderm; it follows the induction of the pronephros and the directed migration 
of the pronephric duct to proceed through the stage of the Wolf fi an duct and to 
induce the metanephric mesenchyme, which in turn directs branching of the ure-
teric tree. Cells of the metanephrogenic mesenchyme are induced by ureteric bud 
cells to become stem cells after rescue from apoptosis; they go on to condense 
and, guided by regulatory circuits of gene expression and repression, to enter the 
mesenchyme-to-epithelium transition, and to polarize to apicobasal expression pat-
terns (Horster et al.  1999  ) . For the metanephric mesenchymal blastema to produce 
the ~15 epithelial cell types of the metanephric kidney, it must be induced to 
undergo a conversion to the epithelial phenotype and subsequently differentiate 
into the highly specialized cell types of the nephron. Hypothetically, this pathway 
could start from two different points. One starting point would be a homogeneous 
mesenchymal population consisting of one multipotent cell type from which all 
nephron epithelial cell types are derived. Alternatively, the primary inductive 
event is not the conversion to the epithelial phenotype but a commitment of the 
mesenchymal cell type to different developmental pathways, and the secondary 
inductive event of phenotypic conversion then destines already committed cells to 
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be recruited for the early nephron (Koseki et al.  1991 ; Herzlinger et al.  1992 ; Qiao 
et al.  1995  ) . Studies on the temporospatial expression of two transcription factors: 
 BF-2  (Hatini et al.  1996  )  and  Pax-2  (Dressler et al.  1990 ; Dressler  1997  ) , have 
shed some light on this situation. It seems now justi fi ed to favor the hypothesis 
that all peripheral mesenchymal blastema cell types are induced to become stem 
cells through the  fi rst signal interactions. This initial step rescues most of the 
nephrogenic stem cells now expressing  Pax-2  from apoptosis (Koseki et al.  1992 ; 
Barasch et al.  1996  ) , whereas the uninduced mesenchymal cells enter programmed 
cell death. Induction is a two-step event (Barasch et al.  1996  )  that had been pos-
tulated already from earlier tissue recombination work, (Saxen et al.  1983  )  where 
it was found that a short-time (hours) exposure of uninduced mesenchyme to the 
ureteric inductor led to the stem cell phenotype but no further. Nevertheless, this 
 fi rst step to the stem cell phenotype rescues most of the mesenchyme from apop-
tosis. The second step, however, very likely differs in molecular nature from the 
 fi rst one (Barasch et al.  1996  ) . Two hypotheses, at present, are similarly supported 
by data, although not yet by complete lineage analysis. In one, the primary induc-
tive interactions between mesenchyme and bud are believed to determine the dis-
tinct and  fi nal developmental pathways of both stromal and nephrogenic lineage 
(Ekblom  1989  ) . In the other, a bivalent stem cell progenitor population that gath-
ers next to the outermost ureteric bud cells is available throughout nephrogenesis, 
and it may either take the nephrogenic (Pax-2) or the stromogenic (BF-2) pathway 
(Saxen and Sariola  1987 ; Davies and Bard  1996 ; Hatini et al.  1996  ) . It is interest-
ing to note that the endothelial progenitor cell, the angioblast, may derive also 
from a bipotential (mesodermal) stem cell precursor (Risau  1997  ) . Cell lineage 
analysis based on classic embryologic work (Herzlinger  1994  )  clearly indicates 
that the de fi nitive kidney is derived from two independent tissue compartments of 
the intermediate mesoderm, namely, the metanephrogenic mesenchyme and the 
Wolf fi an duct. This traditional view has been broadened by a set of data derived 
from embryonic kidney organ culture (Qiao et al.  1995  ) , when uninduced mesen-
chyme was isolated and tagged so that cells could be followed to their  fi nal desti-
nation, and then cocultured with isolated ureteric bud, mesenchymal cells were 
found to be inserted into the collecting duct, although the majority of collecting 
duct cells were derived from the ureteric bud. Organogenesis of the kidney has 
long become a model system that represents principles in morphogenesis and cell 
differentiation. The continuous process of morphogenesis is guided by cascades 
of interactions between two different cell populations. Regulation involves diverse 
families of genes and their products, including protooncogene-encoded receptors 
and their polypeptide ligands, transcription factors and their target genes, and 
regulating extracellular matrix proteins and CAM-mediated signals. All of these 
diverse systems interact to initiate and guide embryonic renal morphogenesis and 
cell differentiation (Horster et al.  1999  ) . As distinct from other tissues, such as 
bone marrow, it has been dif fi cult to isolate or con fi rm the existence of stem cells 
in the kidney, although several studies have suggested the existence of stem cells 
in the adult renal interstitium (Hishikawa and Fujita  2006  ) . 
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    38.2.1   Slow-Cycling Cells in the Papilla 

 Adult stem cells are considered to have a slow cycling time, (Cotsarelis et al.  1989 ; 
Johansson et al.  1999 ; Lavker and Sun  2000  )  and thus Oliver et al. tried to distin-
guish the cells in the kidney by measuring the retention of the nucleotide label 
bromodeoxyuridine (BrdU), which is incorporated into the DNA of cells during 
DNA synthesis (Oliver et al.  2004  ) . BrdU was administered to 3-day-old rat and 
mice pups. At this age, because nephrogenesis in rodents continues after birth, 
many cells in the kidney were probably dividing and thus could incorporate BrdU. 
After a chase period of at least 2 months, during which the multiple cell divisions 
required for kidney growth would have diluted the BrdU content of most cells, 
incorporation of BrdU was analyzed in the kidney tissue. Oliver et al.  (  2004  )  found 
that only the interstitium of the renal papilla contained an abundant population of 
cells that retained a strong BrdU signal. They also found that the cells entered the 
cell cycle and the BrdU signal quickly disappeared from the papilla in transient 
real ischemia models. Moreover, the isolated renal papilla cells were multi-potent 
and displayed other characteristics of adult stem cells, and when they were injected 
directly into the renal cortex, the cells incorporated into the kidney parenchyma 
(Hishikawa and Fujita  2006  ) .  

    38.2.2   Side Population Cells 

 In 1996, Goodell et al. reported a new method of obtaining an enriched population of 
hematopoietic stem cells from adult bone marrow in a single step by Hoechst 33342 
staining and FACS sorting (Goodell et al.  1996  ) . The isolated cells were called side 
population (SP) cells, and the SP phenotype can be used to purify a stem cell–rich 
fraction. The SP phenotype is determined by the BCRP1/ABCG2 gene, and enforced 
expression of BCRP1/ABCG2 prevents hematopoietic differentiation (Zhou et al. 
 2001  ) . To determine core genes comprising a stem cell genetic program, several 
comprehensive microarray studies have been performed (Ivanova et al.  2002 ; 
Ramalho-Santos et al.  2002  ) . However, the number of overlapping genes among the 
reports was limited, and BCRP1/ABCG2 was the only gene that was expressed in ES 
cells, hematopoietic stem cells and neurosphere cells (Easterday et al.  2003  ) . These 
results suggest that SP cells may play a role as adult stem cells. In fact, skeletal 
muscle SP cells (Asakura et al.  2002  )  may differentiate into endothelial cells (Majka 
et al.  2003  )  and bone marrow–derived SP cells into cardiomyocytes, endothelial cells 
(Jackson et al.  2001  )  and osteoblast precursors (Olmsted-Davis et al.  2003  ) . Recently, 
Hishikawa et al. found that kidney SP cells differentiated into multiple lineages in the 
presence of leukemia inhibitory factor  via  kidney-speci fi c cadherin 16 (Hishikawa 
et al.  2005b  ) . Moreover, the function of kidney SP cells was found to be regulated by 
basic helix–loop-helix transcription factor MyoR, and the cells resided in the inter-
stitial spaces of the kidney (Hishikawa et al.  2005a ; Hishikawa and Fujita  2006  ) .  
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    38.2.3   CD133 +  Cells in the Interstitium 

 CD133 is a surface marker of endothelial progenitor cells, hematopoietic progenitor 
cells and neural stem cells. Bussolati et al. reported that CD133-positive cells in the 
interstitium of the adult human kidney have characteristics of stem cells (Bussolati 
et al.  2005  ) . The cells expressed the early nephron developmental marker Pax2, as 
well as several markers typical of bone marrow stromal cells, but were negative for 
hematopoietic cell markers such as CD34 or CD45. By using different culture con-
ditions, the authors indicated that CD133+ renal cells might be pluripotent, having 
the capacity to differentiate into either type of tubular cells with the appropriate cues 
(Hishikawa and Fujita  2006  ) .  

    38.2.4   rKS56 Cells 

 In the developing kidney, there are two major distinct areas of cell proliferation, the 
nephrogenic zone in the outer cortex below the renal capsule and the area in the 
corticomedullary junction corresponding to the primitive S3 segment of the proximal 
tubule (Cha et al.  2001  ) . Kitamura et al. ( 2005 ) dissected individual nephrons from 
adult rat kidneys, then separated them into segments and cultured them (   Hishikawa 
et al.  2005a,   b  ) . Outgrowing cells were replated after limiting dilution so that each 
well contained a single cell. In this way, they were able to isolate the cell line show-
ing the most potent growth, which they designated rKS56. rKS56 cells expressed 
immature cell makers relating to kidney development and mature tubular markers. 
The location of rKS56 cells in kidney tissue is unclear, but rKS56 cells possessed 
self-renewal and multi-plasticity, and differentiated into mature tubular cells de fi ned 
by aquaporin1,2 expression under different culture conditions. With the exception 
of rKS56 cells, all of the above types of cells were found in the interstitium but it is 
still unclear whether these cells are completely different types of cells or merely the 
same cells isolated by different methods. Moreover, the multipotency of these cells 
was evaluated under different conditions, and thus further studies will be required to 
conclusively determine the most potent cells that contribute to kidney regeneration 
or cell therapy (Hishikawa and Fujita  2006  ) .   

    38.3   Kidney Diseases, Regenerative Principles 

 Most renal diseases can be envisioned as the consequence of a dysbalance between 
tissue damage and repair. Hypoxia, infection, immune reactions, and toxic substances 
can damage renal tissue (Rookmaaker et al. 2004 ). On the other hand, regenerative 
mechanisms counteracting the damage in fl icted on renal tissues have been reported 
as well, both in tubuli (Toback 1992 ) and the glomeruli (Abouna et al. 1983 ). Insights 
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into the nature of these regenerative mechanisms have evolved over the years. 
In tissues with a high cell turnover like the intestine or the hematopoietic system, 
organ- or tissue-restricted stem cells have been shown to replace cells that have com-
pleted their life cycle. It is becoming increasingly apparent that in organs with a rela-
tively low rate of cellular turnover like the liver and kidney similar regenerative 
mechanisms are operational (Pabst and Sterzel 1983 ; Imasawa et al. 2001 ; Poulsom 
et al. 2001 ). The cellular players responsible for regenerative mechanisms in the kid-
ney include not only proliferating mature renal cells but recent reports also suggest a 
renal role for stem cells, both from local pools as well as from the circulation 
(Rookmaaker et al.  2004  ) . 

  In the mammal, partial nephrectomy stimulates hypertrophy of remaining tissue, 
even in the contralateral kidney, but not the generation of new nephrons. However, 
whereas the resection of an adult kidney does not lead to the regeneration achieved 
in the liver, the mammalian kidney shares with the majority of organs the ability to 
repopulate and repair structures that have sustained some degree of injury. This 
process, termed  cellular repair , can be achieved by reentry into mitosis and prolif-
eration of neighboring cells. As a result, the kidney can undergo signi fi cant remod-
eling in response to acute damage. For example, obstruction of the ureter can result 
in the near destruction of the kidney medulla, but once the obstruction is removed, 
there is a rapid process of reconstruction and repair that will regenerate the tubules 
of the medulla without forming new nephrons. It has been proposed that the cells 
that elicit such repair come from interstitial cell transdifferentiation, tubular cell 
dedifferentiation and migration into the areas of damage before redifferentiation, 
the recruitment of stem cells from the bone marrow, or the generation of new tubular 
cells from an endogenous renal stem cell population (reviewed in reference [Davies 
and Bard  1996  ] ). Which of these is primarily responsible for the  cellular repair  that 
is observed after acute damage, has not been proved de fi nitively using lineage trac-
ing. However, the mammalian kidney seems to have a very limited potential for 
 structural repair  or true regeneration. While nephrogenesis is occurring in the fetus, 
there is evidence that a systemic humoral response to nephrectomy allows the 
enhanced nephrogenesis of the remaining organ. However, nephrogenesis in mam-
mals ceases just before or shortly after birth, and the birth of new nephrons has 
never been reported after this point in time. Chronic injury of the kidney, which is 
responsible for the majority of cases of end-stage renal failure, results in irreversible 
glomerular and tubular damage and resultant loss of renal function. Hence, 
mammalian kidneys respond to chronic damage by  fi brosis, scarring, and irreversible 
functional loss. 

    38.3.1   Regeneration of Renal Endothelium 

 A number of studies have addressed maintenance and regeneration of the special-
ized renal glomerular capillaries. In normal rats, the rate of total glomerular cell 
renewal is about 1% per day with the endothelial fraction being the most predominant 
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cell type (Pabst and Sterzel  1983  ) . However, in response to injury, the rate of 
vascular regeneration could well be increased. An established model to study 
glomerular injury and repair in rats is experimental anti-Thy1.1 glomerulone-
phritis. Injection of a complement- fi xing antibody to the mesangial cell antigen 
Thy1.1 causes acute mesangiolysis and matrix dissolution, leading to balloon-
ing of glomerular capillaries, formation of aneurysms, and loss of endothelial 
cells. In the subsequent repair phase increased proliferation and migration of 
endothelial and mesangial cells is observed resulting in (partial) restoration of 
glomerular structure and function (Rookmaaker et al.  2004  ) . Using this model it 
was shown that glomerular capillary repair is associated with a marked increase 
in endothelial cell proliferation (Iruela-Arispe et al.  1995  ) . Several studies have 
provided evidence that circulating endothelial progenitor cells (EPC) may con-
tribute to glomerular capillary repair. Experiments by Rookmaaker et al. with 
rat hematopoietic chimeras demonstrated low levels of bone marrow–derived 
cells staining for the rat endothelial cell antigen RECA-1 (Rookmaaker et al. 
 2003  ) . The number of these cells gradually increased over time suggesting that 
EPC contribute to normal physiologic glomerular endothelial cell turnover. 
Following anti-Thy- 1.1–induced glomerular injury they observed a 4x increase 
in bone marrow-derived endothelial cells in the glomeruli. These data indicate 
that glomerular repair cannot only be attributed to migration and proliferation 
of resident endothelial cells but also involves bone marrow-derived cells 
(Rookmaaker et al.  2004  ) . Participation of circulating EPC to renal regeneration 
has also been demonstrated in human adults. As early as 1969 the presence of 
acceptor endothelial cells in kidney allografts was  fi rst reported (Williams and 
Alvarez  1969  ) . It has been reported that in human renal transplants the extent of 
replacement of donor endothelial cells lining the peritubular capillaries by those 
of the acceptor was related to the severity of vascular injury (Lagaaij et al. 
 2001  ) . It was suggested that this endothelial replacement could be explained by 
the involvement of acceptor-derived EPC. Rookmaaker et al.  (  2002  )  demon-
strated male, donor-derived endothelial cells in the renal macrovasculature of a 
female patient who developed thrombotic microangiopathy after gender-mismatched 
bone marrow transplantation (Rookmaaker et al.  2002  ) . Taken together these 
observations con fi rm a novel role for bone marrow–derived endothelial cells in 
maintenance and repair of renal endothelium.  

    38.3.2   Regeneration of the Renal Mesangium 

 Glomerular mesangial cells provide structural capillary support to the glomerulus 
and display a smooth muscle cell–like phenotype. They play a central role in the 
pathogenesis of a number of human and experimental glomerular in fl ammatory 
diseases. In particular, mesangial hyperplasia is a prominent histopathologic fea-
ture associated with impaired glomerular function. Although transient hyperplasia 
is thought to re fl ect a physiologic response required for successful glomerular 
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reconstitution and renal tissue repair, tight regulation of mesangial proliferation, 
function, and apoptosis is needed for recovery without  fi brosis. Initially, mesangial 
maintenance and repair after injury was thought to depend solely on proliferation 
of viable resident intraglomerular mesangial cells (Rookmaaker et al.  2004  ) . 
These mature mesangial cells dedifferentiate before they proliferate (El-Nahas  2003  ) . 
Like the glomerular endothelial cells, in normal rats, mesangial cell turnover 
amounts to less than 1% per day (Pabst and Sterzel  1983  ) . Hugo et al. demonstrated 
that during recovery of anti-Thy1.1 glomerulonephritis, proliferating immature 
mesangial cells migrated from the juxtaglomerular apparatus and hilar region into 
the glomerulus (Hugo et al.  1997  ) . Reminiscent to mesangial cell recruitment dur-
ing embryonic glomerulogenesis, the involvement of extraglomerular mesangial 
progenitor cells in glomerular repair was reported by several investigators 
(Takahashi et al.  1998  ) . The involvement of bone marrow–derived cells in normal 
mesangial cell turnover was also demoenstrated (Imasawa et al.  2001  ) . Lethally 
irradiated mice given transplants of T-cell-depleted bone marrow cells from syn-
geneic donor transgenic for green  fl uorescent protein (GFP) manifested a time-
dependent increase in GFP-positive cells in their glomeruli. When isolated and 
cultured, these cells stained positive for the mesangial cell marker desmin and the 
cells contracted in response to angiotensin II, con fi rming that bone marrow–
derived cells have the potential to differentiate into glomerular mesangial cells 
(Rookmaaker et al.  2004  ) . Similar experiments with mice transplanted with 
puri fi ed clonally expanded hematopoietic progenitor cells were carried out to 
con fi rm the hematopoietic origin of bone marrow–derived mesangial cells 
(Masuya et al.  2003  ) . In similar experiments, using a rat allogenic bone marrow 
transplant model and antibodies to the mesangial cell–speci fi c antigen Thy-1 (ox7), 
this time-dependent increase of bone marrow–derived mesangial cells in the 
glomerulus was con fi rmed (Rookmaaker et al.  2003  ) . Also, a major increase of 
bone marrow– derived mesangial cells during recovery from anti-Thy- 1.1–induced 
mesangiolysis in bone marrow transplantation models in rats was observed 
(Ito et al.  2001  ) . Cornacchia et al.  (  2001  )  demonstrated that glomerulosclerosis 
can be transmitted by bone marrow transplantation in mice. Transplantation of 
bone marrow cells from sclerosis-prone mice in normal background mice invoked 
glomerulosclerosis in the recipients. These data not only point to the contribution 
of bone marrow–derived cells to glomerular maintenance and repair but also show 
that dysfunctional or diseased mesangial progenitor cells can have a negative 
in fl uence on the kidney (Hishikawa and Fujita  2006  ) .  

    38.3.3   Regeneration of the Renal Tubules 

 The renal tubule is known for its high capacity for regeneration. Acute tubular 
necrosis, as a result of ischemia or toxic substances, can be followed by active 
migration and proliferation to restore normal tissue architecture and function 
(Toback  1992  ) . Different sources of these proliferating progenitor cells have been 
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reported. Isolated resident proliferative epithelial cells from the tubuli of mature 
rabbit kindeys displayed a high capacity for self renewal and differentiated into 
complete three-dimensional tubular structures in vitro (Humes et al.  1996  ) . Similar 
experiments were later performed with human epithelial cells (Humes et al.  2004  ) . 
Bone marrow-derived extrarenal tubular progenitor cells were reported by Poulsom 
et al.: In the tubules of renal biopsy specimens from eight male patients transplanted 
with female kidneys, they found Y-chromosome–positive tubular cells within the 
tubules that co-expressed epithelial markers (Poulsom et al.  2001  ) . However, the 
proportion of Y-chromosome–positive tubular cells ranged from 1.8 to 20%. Gupta 
et al. reported  fi nding Ychromosome–positive tubular cells in renal biopsies taken 
from two men transplanted with female kidneys, but the positive cells made up less 
than 1% of the tubular cells examined (Gupta et al.  2002  ) . In female mouse recipi-
ents of male bone marrow grafts co-localization was observed of Y-chromosomes 
and tubular epithelial cell markers, suggesting participation of bone marrow-derived 
cells in normal tubular cell turnover. The potential importance of the role of bone 
marrow-derived cells in tubular repair was demonstrated by Kale et al.  (  2003  )  When 
LacZ gene-positive bone marrow cells from Rosa26 mice were transplanted into 
wild-type mice, renal ischemia was associated with the occurence of LacZ-positive 
(i.e. bone marrow-derived) tubular cells. It was estimated that the majority of the 
tubular cells after tubular repair were bone marrow–derived. Moreover, bone mar-
row ablation diminished functional recovery after tubular ischemia, while infusion 
of a progenitor cell reversed this effect, suggesting an important functional role for 
the hematopoietic stem cell in tubular repair (Rookmaaker et al.  2004  ) . When male 
kidney transplant patients who received a female kidney and who recovered from 
acute tubular necrosis were studied, a Y chromosome could be demonstrated in few 
(less than 1%) of the tubular cells. Although the functional importance of this phe-
nomenon in the human situation is still uncertain, these experiments do provide us 
with a proof-of-principle observation on bone marrowderived tubular repair.   

    38.4   Clinical Implications 

 Most therapies in nephrology focus on reducing renal damage. However, insight in 
renal repair and maintenance may offer new therapeutic strategies. Progenitor cells 
appear to participate in renal repair and turnover of the major renal cell types. 
Therefore, renal progenitor cells may encompass a new target for therapeutic strate-
gies aimed at the reduction or even prevention of renal disease. Such strategies 
could be directed toward different populations of progenitor cells. The advantage of 
circulating progenitor cells may be that they are more accessible for isolation in 
comparison to the resident progenitor cells. Autologous progenitor cells from the 
patient are preferable to allogenic progenitor cells because of possible rejection. 
Obviously, in case of inherited progenitor cell disease, allogenic cells should be 
considered. One approach to harness progenitor cells for therapeutic purposes is to 
increase the available pool of progenitor cells. Such expansion may be achieved by 
growth factor therapy both  in vivo  and  ex vivo . VEGF and erythropoietin are 
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probably good candidates to stimulate progenitor cell–mediated endothelial repair. 
Both have EPC mobilizing and proangiogenetic activities (Asahara et al.  1999 ; 
Bahlmann et al.  2003 ; Heeschen et al.  2003  ) . Another approach to enhance cellular 
repair and maintenance is reinforcement of progenitor cell function. EPC dysfunc-
tion has been shown in diabetic patients (Sorrentino et al.  2007  ) . The decreased 
re-endothelialization capacity of EPCs from diabetic patients was restored after oral 
therapy with the PPAR- g  agonist rosiglitazone (Sorrentino et al.  2007  ) . 

 Mesangial and mesangial progenitor cell dysfunction has been described, too 
(He et al.  1996 ; Cornacchia et al.  2001  ) . Replacement of these prosclerotic cells by 
healthy allogenic mesangial progenitor cells may potentially reduce or even prevent 
progressive renal disease. The relatively low turnover rate of mesangial cells of 1% 
per day might however hamper this strategy (Pabst and Sterzel  1983  ) . Controlled 
mesangial injury by pharmacologic agents combined with healthy allogenic or 
transfected autologous mesangial precursor cell infusion might increase mesangial 
turnover and improve cell replacement. Finally, progenitor cells can be used as so-
called “magic bullets.” (Rookmaaker et al.  2004  )  Progenitor cells are able to home 
and participate in their target tissue. This ability can be used to deliver certain gene 
products very locally. Gene therapy has already successfully been used. Transfection 
of skeletal muscles with the gene of a transforming growth factor-b1 (TGFb1) 
inhibitor was able to reduce glomerulosclerosis in a rat nephritis model (Isaka et al. 
 1996  ) . Transfection of renal progenitor cells might provide a more local therapy, 
preventing possible systemic side effects.  

    38.5   Clinical Studies, Experience, Outcome/Side Effects 
of Kidney Regenerative Therapies 

 Preclinical studies suggest that the administration of exogenous stem cells may 
ameliorate acute kidney injury and accelerate regeneration (Table  38.1 ). In consid-
eration of the role of endogenous bone marrow-derived stem cells, a possible 
approach could also be stem cell mobilization. However, the possible effects of 
bone-marrow-recruited cells and of in fl ammatory cells in this experimental setting 
require further investigation. Currently, the most promising approach may be the 
administration of  in vitro  expanded mesenchymal stem cells applied to acute tubular 
and glomerular injury (Bussolati et al.  2009  ) . Injected mesenchymal stem cells were 
shown to home to the injured kidney and to accelerate morphological and functional 
regeneration, possibly by a paracrine or even endocrine mechanisms, although their 
engraftment and transdifferentiation was not observed in the majority of the studies. 
A major role in the effect of mesenchymal stem cells has been attributed to the pro-
duction of growth factors and cytokines with immunosuppressive, antiin fl ammatory, 
anti-apoptotic and proliferative effects. Several clinical trials have been designed or 
are in progress to evaluate the effect of mesenchymal stem cells administration in 
renal transplantation, acute renal injury or chronic allograph nephropathy (Table  38.2 , 
  www.clinicaltrial.gov    ). The effect of mesenchymal stem cells administration in 
chronic renal damage still deserves investigation.    

http://www.clinicaltrial.gov
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   Table 38.1    Therapeutic administration of stem cells in experimental animal models of renal 
damage   

 Reference  Model  Stem cells  Outcome 

 Morigi et al.  (  2004  )   Cisplatin ARF  MSC  Improved urea; 
 decreased tubular damage 

 Togel et al.  (  2005  )   I/R ARF  MSC  Improved creatinine; 
 lower renal injury score 

 Lange et al.  (  2005  )   I/R ARF  MSC  Improved creatinine; 
 lower renal injury score 

 Duf fi eld et al.  (  2005  )   I/R ARF  MSC  Improved creatinine 
 Broekema et al.  (  2005  )   I/R ARF  MSC  Morphological/functional 

recovery 
 Bi et al.  (  2007  )   I/R ARF  MSC  Morphological/functional 

recovery 
 Kale et al.  (  2003  )   I/R ARF  MSC  Morphological/functional 

improvement 
 Herrera et al.  (  2004,

   2007 a) 
 Glycerol ARF  MSC  Improved creatinine; 

decreased tubular 
damage 

 Ninichuk et al.  (  2006  )    5 / 
6
  nephrectomy  MSC  Decreased interstitial 

 fi brosis 
 Kunter et al.  (  2006  )   MPGN (Anti-Thy1.1)  MSC  Decreased mesangiolysis, 

improved creatinine 
and decreased 
proteinuria 

 Uchimura et al. (  2005  )   MPGN (Anti-Thy1.1)  MSC  Decreased glomerular 
injury score 

 Wong et al.  (  2008  )   MPGN (Anti-Thy1.1)  MSC  Decreased glomerular 
injury score 

 Rookmaaker et al.  (  2002, 
  2007)  

 MPGN (Anti-Thy1.1)  MSC, EPC  Recovery and 
vascularization 

 Prodromidi et al.  (  2006  )   Alport  MSC  Improved renal function, 
decreased glomerular 
scarring and interstitial 
 fi brosis 

 Sugimoto et al.  (  2006  )   Alport  MSC  Partial restoration of 
expression of type IV 
collagen  a 3 chain with 
concomitant  a 4 and  a 5 
chain expression, 
improved glomerular 
architecture, reduction 
of proteinuria 

 Chade et al.  (  2009  )   Renal artery stenosis  EPC  Decreased microvascular 
remodeling, preserved 
microvascular 
architecture 

   ARF  acute renal failure,  MSC  mesenchymal stem cells,  I/R  ischemia/reperfusion,  MPGN  mesan-
gioproliferative glomerulonephritis,  EPC  endothelial progenitor cells  
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    38.6   Conclusions and Future Perspectives on Kidney 
Regenerative Therapies 

 Acute and chronic kidney diseases have a complex pathophysiology that may involve 
both ischemic and in fl ammatory as well as immunological injury. In contrast to most 
current pharmacological agents that target only a single pathophysiological pathway, 
cell-based therapies such as mesenchymal stem cells act through multiple mechanisms 
and have the potential to target immunological, vascular and in fl ammatory pathways. 
In addition, mesenchymal stem cells have the capacity to engraft and survive long-term 
in a speci fi c target tissue and are both non-immunogenic and immunosuppressive. This 
has important implications for the therapeutic application of mesenchymal stem cells 
in tissue repair and regeneration, in that mesenchymal stem cells derived from healthy 
unrelated volunteer donors can be cryopreserved, thus making them available in a 
timely manner for patients in a variety of acute and chronic clinical settings. The clini-
cal application of mesenchymal stem cells is broad and has generated signi fi cant inter-
est in clinicians from diverse  fi elds, with preclinical and clinical data in a wide variety 
of conditions, including osteogenesis imperfecta, osteoarthritis and cardiac regenera-
tion. Mesenchymal stem cells are currently being used in hematopoietic stem cell 
transplantation and although numbers to date are small, the results in high-risk popula-
tions with severe graft versus host disease are encouraging. However, many questions 
remain about their basic biology and long-term safety. More research is needed to 
understand the physiological role of these cells, their stimuli for migration and the 
pathways that mediate their apparent bene fi cial effects in regeneration and repair. 
Protocols that limit the differentiation potential of the cells into a speci fi c lineage when 
used for treatment of a speci fi c disease are needed, along with studies that determine 
the correct dose, schedule and administration route. Despite the lack of apparent 
adverse effects seen in trials to date, longer-term follow up is required given the pos-
sibility of malignant transformation (McTaggart and Atkinson  2007  ) . 

 And although there is excitement about the application of many of these novel 
regenerative approaches, many hurdles remain. The unique architecture of the kidney 
creates substantial obstacles to the functional integration of a stem cell–derived nephron. 
Indeed, the functional capacity of a bioengineered organ to provide anything like the 
 fi ltering and resorptive capacity of the endogenous kidney is doubtful (Little  2006  ) . 

 The  fi nal major obstacle is the degree of damage that is present in a patient with 
chronic renal disease. It is unlikely than any organ-based repair process will over-
come the extent of damage that is seen in a patient who has reached end-stage renal 
failure. This has major implications for the adoption of any autologous therapy. 
Even if an adult stem cell population does exist in the adult kidney, would it remain 
in an end-stage kidney? Indeed, the adoption of any organ-based cellular therapy is 
likely to succeed only if chronic renal disease can be diagnosed early and if such 
therapies are implemented well before end-stage renal failure is reached. As we 
move closer to that point in time, the ethical debate about whether trials can proceed 
before end-stage renal disease will become critical. A lack of surrogate end points 
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with which to assess the success of a cellular therapy in renal disease will make 
clinical trials long and expensive, eroding the will of the developers to continue to 
support the trials (Little  2006  ) . 

 However, the imperative to continue to forge such novel approaches is clear from 
the rate at which the incidence of chronic renal failure is rising in both the developed 
and the developing world. In the end, it is unlikely that any such therapies will pro-
duce a physiologic outcome that is equivalent to that of a healthy kidney, but as 
patient numbers inevitably increase the use of dialysis for treatment, a novel therapy 
that creates an improvement over dialysis will become not only a major achieve-
ment but also a necessity.  

    38.7   Recent Developments 

 During the last 2 years several areas of renal regeneration have been further devel-
oped. A major achievement has been the demonstration of regeneration in the  fi sh. 
Mammals can partly repair their nephrons, but cannot form new ones. By contrast, 
 fi sh add nephrons throughout their lifespan and regenerate nephrons  de novo  after 
injury providing a model for understanding how mammalian renal regeneration may 
be therapeutically activated. We have shown in the shark kidney that speci fi c stem 
cells are the main source for regenerating renal tissue. Davidson et al. trace the source 
of new nephrons in the adult zebra fi sh to small cellular aggregates containing nephron 
progenitors. Transplantation of single aggregates comprising 10–30 cells is suf fi cient 
to engraft adults and generate multiple nephrons. Serial transplantation experiments 
to test self-renewal revealed that nephron progenitors are long-lived and possess 
signi fi cant replicative potential, consistent with stem-cell activity. Transplantation of 
mixed nephron progenitors tagged with either green or red  fl uorescent proteins 
yielded some mosaic nephrons, indicating that multiple nephron progenitors contrib-
ute to a single nephron. Consistent with this, live imaging of nephron formation in 
transparent larvae showed that nephrogenic aggregates form by the coalescence of 
multiple cells and then differentiate into nephrons. Taken together, these data demon-
strate that the zebra fi sh kidney probably contains self-renewing nephron stem/pro-
genitor cells. The identi fi cation of these cells paves the way to isolating or engineering 
the equivalent cells in mammals and developing novel renal regenerative therapies. 

 Another area is the identi fi cation of novel molecules which regulate renal repair 
and regeneration. Molecules associated with the transforming growth factor  b  
(TGF- b ) superfamily, such as bone morphogenic proteins (BMPs) and TGF- b , are 
key regulators of in fl ammation, apoptosis and cellular transitions. Kalluri and his 
colleagues have shown that the BMP receptor activin-like kinase 3 (Alk3) is elevated 
early in diseased kidneys after injury. They also found that its deletion in the tubular 
epithelium leads to enhanced TGF- b 1-Smad family member 3 (Smad3) signaling, 
epithelial damage and  fi brosis, suggesting a protective role for Alk3-mediated signaling 
in the kidney. A structure-function analysis of the BMP-Alk3-BMP receptor, type 2 
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(BMPR2) ligand-receptor complex, along with synthetic organic chemistry, led them 
to construct a library of small peptide agonists of BMP signaling that function 
through the Alk3 receptor. One such peptide agonist, THR-123, suppressed 
in fl ammation, apoptosis and the epithelial-to-mesenchymal transition program and 
reversed established  fi brosis in  fi ve mouse models of acute and chronic renal injury. 
THR-123 acts speci fi cally through Alk3 signaling, as mice with a targeted deletion 
for Alk3 in their tubular epithelium did not respond to therapy with THR-123. 
Combining THR-123 and the angiotensin-converting enzyme inhibitor captopril had 
an additive therapeutic bene fi t in controlling renal  fi brosis. Their studies show that 
BMP signaling agonists constitute a new line of therapeutic agents with potential 
utility in the clinic to induce regeneration, repair and reverse established  fi brosis. 

 A fascinating area of kidney regeneration is the use of progenitor cells fort he 
repair and regeneration of damaged renal tissue. There is a pressing need for 
improved strategies to arrest or reverse intra-renal injury in kidneys with chronically 
impaired blood  fl ow. Endogenous endothelial progenitor cells (EPC) are often 
mobilized to mediate neovascularization and endothelial replacement that contrib-
ute to healing ischemic tissues. The mobilization from bone marrow and subsequent 
homing of progenitor cells can be regulated by a variety of mediators such as stromal 
cell-derived factor (SDF)-1, stem cell factor (SCF), erythropoietin (EPO), or angio-
poietins, which are released by injured tissue to attract the cells and ensure their 
adherence. In turn, the cells express corresponding cognate receptors such as 
CXCR4, cKit, EPO-receptors (EPO-R), and Tie, respectively, which allow them to 
be recognized, recruited, and retained at the injured tissues. 

 However, the endogenous system may be overwhelmed or dysfunctional, and 
hence fail to repair the tissues. Therefore, exogenous delivery of EPC collected and 
expanded  in-vitro  offers the potential for targeted treatment of conditions such as 
chronicallydamaged kidneys. Lerman and co-workers have recently shown the 
bene fi cial effects of intra-renal administration of autologous EPC in a porcine model 
of chronic non-atherosclerotic RAS. Conceivably, a decrease in tissue damage may 
resolve the injury signals and homing cues that it releases. 

 Speci fi c signals that portend chronic ischemic injury and regulate the homing 
and adherence of endogenous circulating cells into the ischemic kidney, or the ability 
of successful renal repair to alleviate these signals, have not been elucidated. 
Lerman et al. tested in an experimental study the hypotheses that,  fi rstly, renovas-
cular disease activates homing signals detectable in both the ischemic kidney and 
EPC, and secondly, that these signals are attenuated upon renal repair using selective 
intra-renal cell-based therapy. For this purpose they utilized a pig model of experi-
mental atherosclerotic RAS (ARAS), which recapitulates many characteristics of 
early human atherosclerotic renovascular diseases. Pigs were treated with intra-renal 
autologous EPC after 6 weeks of ARAS. Four weeks later, expression of homing-
related signals in EPC and kidney, single-kidney function, microvascular density, 
and morphology were compared to untreated ARAS and normal control pigs. 
Compared to normal EPC, EPC from ARAS pigs showed increased stromal cell-
derived factor (SDF)-1, angiopoietin-1, Tie-2, and ckit expression, but downregu-
lation of erythropoietin and its receptor. The ARAS kidney released the ckit-ligand 
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stem-cell factor (SCF), uric acid, and erythropoietin, and upregulated integrin  b 2, 
suggesting activation of corresponding homing signaling. However, angiopoietin-1 
and SDF-1/CXCR4 were not elevated. Administration of EPC into the stenotic 
kidney restored angiogenic activity, improved microvascular density, renal hemo-
dynamics and function, decreased  fi brosis and oxidative stress, and attenuated 
endogenous injury signals.  

    38.8   Conclusion 

 The ARAS kidney releases speci fi c homing signals corresponding to cognate recep-
tors expressed by EPC. EPC show plasticity for organ-speci fi c recruitment strategies, 
which are upregulated in early atherosclerosis. EPC are renoprotective as they atten-
uated renal dysfunction and damage in chronic ARAS, and consequently decreased 
the injury signals. Importantly, manipulation of homing signals may potentially 
allow therapeutic opportunities to increase endogenous EPC recruitment. 

 These studies may allow novelclinical studies wherebyEPC are used in patients 
after opening an atherosclerotic renalartery to enhance the regeneration of the dam-
aged and destroyedtissue. The identi fi cation of intra-renal stem cells, novel mole-
cules which regulate tissue repair and the use of progenitor cells may be the areas 
where clinically relevant progress for the repair and regeneration of renal tissue will 
be made.      
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  Abstract   The absorption of nutrients in the small intestine and the control of blood 
glucose levels are crucial to ensure energy homeostasis of the organism. These 
functions can be severely impaired in diseases like type I diabetes, short bowel syn-
drome, and in fl ammatory bowel disease, for which the standard treatment involves 
either life-long hormone or nutrient replacement, immunosuppression, or organ 
transplantation, and is often not satisfactory. After outlining the etiology and patho-
logy of these diseases and established as well as experimental approaches, this 
chapter summarizes recent preclinical and clinical studies on novel therapeutic 
options relating to regenerative medicine, including growth factors and stem cells.      

    39.1   Introduction 

    39.1.1   Type I Diabetes Mellitus 

 Human type 1 diabetes (T1D) is an autoimmune disease that arises in genetically 
predisposed individuals due to the destruction of insulin producing beta cells of the 
pancreatic islet of Langerhans, a process triggered by autoaggressive CD4+ and 
CD8+ T cells. This results in a lack of control of blood glucose levels culminating 
in hyperglycemia if more than 90% of beta cells are destroyed. This in time leads to 
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severe chronic complications such as widespread microvascular (retinopathy, neph-
ropathy and neuropathy) and macrovascular damage (myocardial infarction, stroke, 
peripheral arterial vascular disease) (Atkinson and Maclaren  1994 ; Daneman  2006  ) . 
The search for a cure for T1D or effective treatments that can prevent the complica-
tions associated with T1D is still ongoing. 

 T1D accounts for 5–10% of all diabetes cases and commonly occurs in people 
of European descent with estimates of 2 million people affected in Europe and 
North America (Daneman  2006 ; Gillespie  2006  ) . T1D is largely known as a 
childhood disease accounting for 90% of childhood-onset diabetes (Daneman 
 2006 ; von Herrath et al.  2007  ) . It has been reported that the incidence of T1D is on 
the rise with predictions suggesting a doubling of new cases in European children 
under the age of 5 years by the year 2020, with the prevalence of cases expected to 
rise by 70% in individuals that are below 15 years of age (Gillespie  2006 ; Patterson 
et al.  2009  ) .  

    39.1.2   Etiology of T1D 

 Much of our understanding of the etiology and pathogenesis of T1D stems from 
research conducted in the spontaneous non obese diabetic (NOD) mouse and 
biobreeding rat (BB rat) rodent models of T1D. The NOD mouse is the most widely 
used animal model of T1D that shares major disease characteristics with human 
disease as shown in Table  39.1  (Atkinson and Leiter  1999 ; Anderson and Bluestone 
 2005  ) .  

 Studies conducted in the NOD mouse show that like in humans, T1D is a com-
plex disease that is precipitated by a combination of factors such as genetic suscep-
tibility, environmental triggers and immune dysregulation (Kishimoto and Sprent 
 2001 ; Anderson and Bluestone  2005 ; Daneman  2006  ) . 

   Table 39.1    Comparison of T1D in NOD mice and human patients   

 Characteristic  Humans  Mice 

 Genetic predisposition 
and polygenetic trait 

 Yes  Yes 

 MHC-loci contribution  Multiple  Multiple 
 Environmental in fl uence  Yes  Yes 
 Defective peripheral immune regulation  Yes  Yes 
 Impaired dendritic-cell maturation  Possibly  Possibly 
 Autoantigens  GAD65, IA2, 

insulin and Hsp60 
 GAD65, IA2, 

insulin and Hsp60 
 Initiating auto antigen  Unknown  Unknown 
 Islet auto immunity linked 

to early gluten exposure 
 Yes  Yes 

  Adapted from Roep et al.  (  2004  )   
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 Genetic susceptibility to T1D is heritable and lies predominantly within the 
major histocompatibility (MHC) or human leukocyte antigen (HLA) locus in the 
NOD mouse and human disease respectively (Anderson and Bluestone  2005  ) . 
MHC/HLA molecules function in the initiation of immune responses to foreign 
antigens by presenting antigens to T cells bearing the respective T cell receptor 
(TCR) speci fi city. Furthermore these molecules are also involved in tolerance 
induction to self-antigens and account for both positive and negative selection of 
autoreactive T cells within the thymus. Therefore the occurrence of allelic variability 
within the MHC/HLA loci may lead to immune dysregulation. In human disease, 
strong associations have been made between T1D susceptibility and genes located 
within the HLA-DR and HLA-DQ loci (Cucca et al.  1993 ; Noble et al.  1996  ) . In 
addition, the risk assessment of familial T1D can be conducted by screening for 
allelic variations within the HLA-DR and HLA-DQ loci (Nejentsev et al.  1999 ; 
Ilonen et al.  2002  ) . 

 Variability within the insulin gene, in particular a variable number tandem repeat 
in the insulin promoter (insulin-VNTR), has been shown to also contribute to disease 
susceptibility, albeit to a lesser extent than the MHC/HLA. The insulin-VNTR 
controls the expression of insulin in the thymus, therefore potentially regulating the 
autoimmune repertoire. Shorter forms of insulin–VNTR are reported to be associated 
with T1D development, whilst the longer forms are associated with greater protection 
of thymic insulin message correlating with T1D protection (Bluestone et al.  2010 ; 
Gillespie  2006  ) . 

 Disease susceptibility has been further associated with the global immune dys-
regulation that occurs in both the NOD mouse and human disease. Indeed genetic 
variations in genes associated with immune homeostasis such as the regulatory 
cytotoxic T-lymphocyte antigen 4 (CTLA-4), the co-stimulatory molecule CD28, 
PTPN22 (which encodes the lymphoid protein tryrosine phosphate – LYP), IL-2RA 
(CD25), and PD-1 have been demonstrated to be associated with T1D development. 
Proteins encoded by these genes maintain homeostasis by either activating T and B 
cells or regulating their activity through regulatory cell populations which is key to 
regulating autoimmunity (Bluestone et al.  2010 ; van Belle et al.  2011  ) . On the 
whole, genetic susceptibility to T1D results from genetic variability in genes that 
are associated with antigen presentation, central tolerance induction and immune 
regulation. 

 Environmental factors are also believed to be involved in the causation of T1D. 
Indeed, the increase in disease incidence amongst young children has been reported to 
be occurring rather rapidly to result from genetic alterations alone, thereby implying 
that environmental factors may be responsible (Gillespie  2006  ) . The question of the 
identity of the environmental triggers involved is still under debate, though it is 
widely viewed that viruses such as enteroviruses (particularly Coxsackie B viruses), 
rubella, and rotaviruses act as environmental triggers for T1D (Ginsberg-Fellner 
et al.  1985 ; Peltola et al.  2000  ) . Furthermore, environmental toxins and foods such 
as cow milk proteins, cereals, or gluten have also been reported to be associated 
with the causation of T1D (Daneman  2006  ) . 
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    39.1.2.1   Immunopathogenesis of T1D 

 T1D results from a series of complex events and is believed to be initiated in geneti-
cally susceptible individuals by environmental triggers. How environmental factors 
trigger T1D is still under elucidation. However studies suggest that factors such as 
virus infection or environmental toxins prompt the up regulation of IFN-  g   and MHC 
class I molecules by pancreatic beta cells. This in turn leads to a loss of tolerance 
culminating in the release of beta cell antigens such as insulin, glutamic acid 
decarboxylase 65 (GAD65), the zinc transporter (ZnT8), protein tyrosine phos-
phatase (IA-2), islet-speci fi c glucose-6-phosphatase catalytic subunit-related protein 
(IGRP), and heat shock protein 60 (Hsp60) (Jaeckel et al.  2008  ) . These beta cell 
antigens are then taken up by antigen presenting cells and transported to the pancre-
atic lymph nodes where they are presented to potentially autoreactive T cells. 

 Studies in the NOD mouse show that dendritic cells and macrophages in fi ltrate 
the pancreas in the initial phase of T1D. Shortly thereafter, B cells and potentially 
autoreactive CD4+ and CD8+ T cells migrate from the pancreatic lymph node and 
in fi ltrate the pancreas without initially destroying the beta cells. This stage of the 
disease is known as insulitis (Gianani and Eisenbarth  2005  ) . At this stage, B cells 
initiate a humoral response that leads to the production of beta cell autoantibodies. 
The role of beta cell speci fi c autoantibodies in the pathophysiology of T1D is still 
controversial, yet they serve as a very useful biomarker for the development of auto-
immunity  ( Waldron-Lynch and Herold  2011 ; Daneman  2006  ) . Furthermore, insulin-
speci fi c autoantibodies can be detected months to years prior to the onset of clinical 
symptoms. This lag period between initiation of autoimmunity and development of 
overt diabetes also explains the dif fi culties in identifying a causative environmental 
agent for T1D. 

 After a gradual increase in cellular in fi ltrates, the progressive destruction of beta 
cells ensues. At this stage, beta cells are destroyed by perforin, interferon gamma 
(IFN-  g  ), and tumor necrosis factor alpha (TNF-  a  ), that are produced by the 
activated CD4+ and CD8+ autoreactive T cells. This leads to the release of new beta-
cell antigens that are then taken up by antigen presenting cells including migrated B 
cells and presented in the pancreatic lymph nodes to new T and B cell speci fi cities. 
As a result of epitope spreading, new antibody speci fi cities can also be detected, 
such as antibodies against GAD65, ZnT8 and IA-2. The number of detectable 
autoantibodies has been used in T1D risk assessment, with patients positive for 
three or more speci fi cities exhibiting a higher risk of developing diabetes in com-
parison to patients positive for a single speci fi city (Waldron-Lynch and Herold 
 2011 ; Daneman  2006  ) . Subsequently, the beta cells undergo a more aggressive 
immune attack that leads to a severe depletion of the beta cell mass. This leads to a 
complete loss of insulin production and dysregulation of glucose metabolism, a 
stage known as overt diabetes (van Belle et al.  2011 ; Gianani and Eisenbarth  2005  ) . 
Hyperglycemia results as a consequence of insulin de fi ciency, and T1D is diag-
nosed when there is about 10–30% of functional beta cells remaining (Gianani and 
Eisenbarth  2005  ) .  
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    39.1.2.2   Current Therapeutic Options for T1D 

      Insulin Replacement Therapy 

 Treatment for T1D currently involves insulin replacement therapy by subcutaneous 
injections of exogenous insulin. This treatment also requires daily blood glucose 
level measurements in order to determine the correct dosage of insulin required 
to control hyperglycemia, and to prevent hypoglycemia. For the best outcome, a 
multidisciplinary health team is required that also assists with dietary planning and 
screening for diabetes related complications (Daneman  2006  ) . Although insulin 
replacement therapy can control hyperglycemia, it does not induce immune toler-
ance and patients are still in danger of developing microvascular and macrovascular 
complications of diabetes due to suboptimal glucose control. Furthermore, there is 
the issue of compliance as patients have to treat themselves for decades beginning 
from childhood. Side effects such as hypoglycemia, weight gain, and excessive 
diurnal glucose  fl uctuations have also been associated with insulin replacement 
therapy (Waldron-Lynch and Herold  2009  ) . Therefore there is a need for new 
and potentially curative therapies for T1D that can improve the quality of life for 
patients.  

      Pancreas Transplantation 

 As previously stated, hypoglycemia is a dangerous side effect associated with insulin 
replacement therapy. This is particularly problematic in a subgroup of patients with 
erratic glycemic control (i.e. labile diabetes). For these patients whole organ 
pancreas or allogeneic islet transplantation are an alternative therapeutic approach 
(Vardanyan et al.  2010  ) . 

 Since the  fi rst pancreas transplant in 1966, more than 30,000 pancreas trans-
plants have been performed worldwide. About 7% of pancreas transplants were 
single organ transplants, with 72% performed in patients undergoing simultaneous 
pancreas-kidney(SPK)-, 17% undergoing pancreas after kidney (PAK)- and less 
than 4% undergoing combined heart, liver or intestine procedures (Gruessner and 
Sutherland  2008  ) . One year survival rates after transplantation were over 95% and 
83% after 5 years. Furthermore, SPK exhibited the best graft survival in comparison 
to the other procedures (Gruessner and Sutherland  2008  ) . Despite its success, 
pancreas transplantation is limited by the scarcity of tissue pancreas donors and the 
side effects of immunosuppressive drugs taken to prevent allograft rejection. Due 
to the invasive nature of pancreas transplantation, it is limited to a subgroup of 
individuals with labile diabetes and those undergoing kidney transplantation at the 
same time. SPK improves survival compared to patients with T1D on dialysis, and 
in addition, SPK also improves survival of the kidney graft. Despite these facts, just 
150–160 patients with T1D received a pancreas transplantation, although an estimated 
3,000–5,000 patients with T1D are on hemodialysis.  
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      Islet Cell Transplantation 

 Due to the limitations of whole organ transplantation, islet transplantation has been 
considered as an alternative approach to restore normoglycemia. Islet transplanta-
tion via percutenous transhepatic portal embolism combined with a corticoid-free 
immunosuppressive regimen (Edmonton protocol) was demonstrated to result in a 
1-year insulin independence in 50–80% of treated patients (Shapiro et al.  2000  ) . 
Patients exhibited better glycemic control and no hypoglycemic events. However, 
by year  fi ve 90% of patients were again dependent on exogenous insulin, although 
remaining C-peptide production of the graft could still be observed in many of those 
patients. The latter result was attributed to the side effects of the immunosuppressive 
regimen that involved administration of daclizumab (humanized anti-CD25 mAb), 
rapamycin (sirolimus), and FK-506 (tacrolimus). This regimen was reported to 
result in lymphopenia and led to the induction of homeostatic cytokines that 
expanded autoreactive T cells, thereby accounting for recurrent autoimmunity in 
transplanted patients. Furthermore, rapamycin was shown to impair engraftment, 
induce insulin resistance and inhibit beta cell replication (Zhang et al.  2006,   2007 ; 
Fraenkel et al.  2008 ; Monti et al.  2008  ) . Clinical trials for islet transplantation using 
different combinations of immunosuppressive drugs are currently underway (van 
Belle et al.  2011  ) . 

 Although promising, islet transplantation is limited by the isolation of adequate 
islets from the little available donor tissue. In order to meet demand xenogeneic 
islets especially from pigs have been considered as an alternative source of islets for 
transplantation. Porcine islets are ideal as they are physiologically similar to human 
islets and are readily available due to rapid breeding of pigs. However, this procedure 
is not without its drawbacks such as the possibility of zoonotic infections and an 
aggressive xenogeneic immune response against the islet xenografts. The latter, 
however, could potentially be overcome by co-stimulation blockade or encapsulation 
of the islet xenografts (Cardona et al.  2007 ; Kobayashi et al.  2008  ) . Initial xenoge-
neic islet transplantations performed in New Zealand and Moscow, however, proved 
to be safe as no transmission of porcine pathogens or viruses was observed. The 
effectivity of the transplant procedure still needs to be determined (Garkavenko 
et al.  2008  ) .   

    39.1.2.3   Therapeutic Advances for T1D 

 Our increased knowledge of the etiology and pathogenesis of T1D has led to the 
identi fi cation of a number of potential targets for therapy. Preclinical and clinical 
observations strongly suggest that a successful therapeutic strategy for T1D should 
ful fi ll three requirements: Firstly, the therapy should be short term and able to re-
establish immune tolerance by regulating the ongoing beta cell destruction. Secondly, 
the therapy must be able to maintain immune tolerance in order to facilitate beta-
cell regeneration. And  fi nally, the therapy should be acceptable to T1D patients and 
should have a similar or even better effect than the existing insulin replacement 
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therapy (Waldron-Lynch and Herold  2009  ) . In the section below we explore some 
of the therapeutic advances made thus far and their clinical applications. 

      Immunomodulatory Therapies 

 The goal of immunomodulatory therapies is to inhibit the destructive autoimmune 
response against the pancreatic beta cells in order to preserve and potentially restore 
beta cell function. Immunomodulatory therapies can be classi fi ed as either 
polyspeci fi c (i.e. use of global or cell targeted immunosuppressants) or antigen 
speci fi c (mediated by antigen speci fi c tolerance induction). 

      Polyspeci fi c Immunomodulatory Strategies: Immunosuppressive Drugs 

 The calcineurin inhibitor cyclosporine A and the corticosteroid prednisone were 
shown to deplete or inactivate T cells in solid organ transplantation. This led to their 
use in the initial clinical trials for T1D. Treatment of T1D patients with either 
cyclosporine A or prednisone in combination with the purine analogue azathioprin 
induced disease remission, with 50% of patients requiring no exogenous insulin 
during treatment (Feutren et al.  1986 ; Stiller et al.  1987 ; Silverstein et al.  1988  ) . 
However, treatment with immunosuppressive drugs did not restore tolerance to pan-
creatic beta cells as disease remission was largely limited to the duration of drug 
administration. Therefore, maintenance of normoglycemia would mean chronic 
treatment with these drugs. However, side effects associated with prolonged usage 
of cyclosporine A and prednisone, such as systemic immunosuppression, induction 
of nephrotoxicity and insulin resistance prevented their further clinical use 
(Bougneres et al.  1990 ; Parving et al.  1999  ) .  

      Polyspeci fi c Immunomodulatory Strategies: Targeted Cell Therapies 

 It was shown in the mid-1980s that short term treatment with depleting or non 
depleting isotypes or F(ab  ¢  )2 fragments of CD4 antibodies induces long-term toler-
ance to skin and islet allografts (Gutstein et al.  1986 ; Carteron et al.  1989  ) . The 
results obtained using F(ab  ¢  )2 fragments and non-depleting isotypes of CD4 
antibodies further demonstrated that non-depleting monoclonal antibodies can be 
used for tolerance induction  in vivo . Since then, antibodies against CD40L, CD25, 
CD3 and CLTA4-Ig amongst others have been shown to facilitate tolerance induction 
in transplantation and autoimmunity (Waldmann and Cobbold  1998  ) .  

      Anti-CD3  e   Therapy (Teplizumab and Otelixizumab) 

 One of the  fi rst monoclonal antibodies (mAb) described to be effective in preventing 
organ allograft rejection and in treating acute rejections after transplantation was the 
anti-CD3 antibody (OKT3, a murine immunoglobulin). However, the success of OKT3 
in solid organ transplantation was hampered by development of a severe cytokine 
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release syndrome that resulted from activation of T cells enhanced by cross-linking 
the murine Fc portions with human Fc receptors (FcR) (Cosimi et al.  1981 ; 
Abramowicz et al.  1989  ) . These  fi ndings led to the development of CD3 mAbs, 
which were humanized making them less immunogenic. In addition the Fc binding 
site was mutated to prevent cross-linking of Fc-receptors (Friend et al.  1999  ) . 

 The immunosuppressive capacity of anti-CD3 therapy in T1D was initially tested 
in the NOD mouse using a brief course of low dose non-Fc binding Fab-fragments of 
anti-CD3 mAb (145-2C11). These studies showed disease reversal in both treated 
recent onset and overtly diabetic NOD mice (Chatenoud et al.  1994,   1997  ) . The mech-
anism of disease reversal by anti-CD3 was shown to involve induction of peripheral 
tolerance via ignorance due to short term internalization of TCR complex after 
anti-CD3 binding, induction of anergy or Fas mediated apoptosis of activated Th1 
cells and induction of TGF-  b   dependent adaptive CD4 + CD25lowFoxp3+ Tregs from 
peripheral CD4 + CD25- T cells (Chatenoud et al.  1982,   1994 ; Belghith et al.  2003 ; 
You et al.  2007  ) . Owing to the success of the preclinical studies, two non Fc binding 
anti-CD3 antibodies were used for T1D clinical trials, namely humanized OKT3  g  1 
(Ala Ala, named teplizumab), and chAglyCD3 (aglycoslated FcR non-binding, named 
otelixizumab). Administration of a single course of teplizumab or otelixizumab in 
recent onset patients halted disease progression, and these patients exhibited better 
preservation of stimulated C-peptide levels and lower insulin usage compared to 
control groups. This effect lasted up to 4 years after treatment. Furthermore, patients 
that had the highest endogenous insulin production at the commencement of the 
clinical trial exhibited the greatest effect. However, despite the promising clinical 
outcome, the effect of teplizumab and otelixizumab was short-lived. This implies 
either disease re-emergence or a limitation of drug ef fi cacy to time of disease onset. 
Recently, phase III clinical trials with teplizumab and otelixizumab were declared a 
failure owning to their inability to meet their primary endpoints, that is reduced insulin 
usage and serum HbA1c levels. Furthermore, the phase III trial using otelixizumab 
failed because of 90% dose reduction between phase II and III trials (Herold and 
Bluestone  2011 ; Waldron-Lynch and Herold  2011  ) . However, it has to be emphasized 
that teplizumab could demonstrate its ability to stabilize stimulated C-peptide secre-
tion repeatedly. Taken together both antibodies are still promising partners for combi-
nation therapies described below.  

      CTLA4-Ig (Abatacept and Belatacept) 

 The activation of T cells requires two signals: The  fi rst signal emerges as a conse-
quence of antigen recognition of MHC-peptide complexes by the TCR while the sec-
ond signal emanates from the recognition of co-stimulatory molecules (e.g. CD28, 
CD40L, ICOS) expressed on T cells and their receptors (e.g. B7.1/B7.2, CD40, ICOSL) 
expressed on activated antigen presenting cells. The best characterized costimulatory 
pathway is the CD28/B7 pathway. Conversely, the binding of the T cell surface mole-
cule CTLA-4 to B7.1/B7.2 results in negative regulation of T cell activation. 

 CTLA4-Ig is a fusion protein consisting of a CTLA-4 extracellular domain and 
an IgG Fc domain. CTLA4-Ig has a higher af fi nity for B7 molecules than for CD28 
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and hence acts as a competitive inhibitor of the CD28/B7 pathway. CTLA4-Ig 
(abatacept) in combination with methotrexate has been shown to be immunosup-
pressive in rheumatoid arthritis patients. However, abatacept was shown to be non-
tolerogenic and patients require monthly infusions to maintain immunosuppression 
(Waldron-Lynch and Herold  2011 ; Kremer et al.  2008  ) . On the other hand, admin-
istration of CTLA4-Ig in preclinical trials for T1D yielded con fl icting results. 
CTLA4-Ig was shown to prevent diabetes development in an adoptive transfer 
model of diabetes. In these studies, tolerance induction mediated by expansion of 
Tregs was observed in treated mice (Rigby et al.  2008  ) . However, in an islet trans-
plantation model, anti-CD4 mAbs were shown to be more effective at preventing 
disease resurgence than CTLA4-Ig. This could be attributed to the fact that some 
studies have shown that the CD28/B7 pathway is important for Treg development 
and survival, and hence administration of CTLA4-Ig may interfere with Treg 
homeostasis (Guo et al.  2001 ; Salomon and Bluestone  2001  ) . Recently, a phase II 
trial using abatacept did just initially (3–6 months) slow the loss of   b  -cells despite 
continued use for 24 months. Additionally, belatacept (a high af fi nity variant of 
CTLA4-Ig) is currently being tested in a phase I/II islet transplantation trial (van 
Belle et al.  2011  ) . Taken together, CTAL4-Ig does not seem to be a promising partner 
for combination therapy in new onset T1D.  

      Anti-CD20 (Rituximab) 

 The role of B cells in the pathogenesis of T1D has been overshadowed by the pre-
dominant role of T cells. However, evidence of detectable autoantibodies prior to 
disease onset suggests that B cells may play a role in disease initiation. The  fi rst 
studies to demonstrate a role of B cells in disease pathogenesis were conducted in 
NOD mice engineered to express a humanized form of the B cell surface molecule 
CD20 (hCD20). These studies showed that depletion of B cells with an anti-hCD20 
antibody resulted in a delay in disease onset and also managed to control already 
established diabetes. The ef fi cacy of this treatment was attributed to the expansion 
of regulatory T and B cells (Hu et al.  2007  ) . 

 Successful treatment of autoimmunity with the anti-CD20 drug (rituximab) 
was demonstrated in clinical trials for rheumatoid arthritis and systemic lupus. 
Conversely, disease remission was limited to drug administration bringing to question 
long-term tolerance induction by rituximab in human disease (Kazkaz and Isenberg 
 2004 ; Looney  2005  ) . A phase II clinical trial for T1D using rituximab showed some 
preservation of C-peptide levels and reduced insulin usage between 3–6 months 
after treatment. However, the effect of rituximab on T1D was short lived and modest 
(Waldron-Lynch and Herold  2011  ) .  

      Antigen Speci fi c Strategies 

 The rationale behind antigen speci fi c immunomodulatory strategies is based on the 
evidence that oral, intranasal, or subcutaneous administration of antigens can induce 
peripheral immune tolerance. The therapeutic capacity of major beta cell antigens 



992 N. Mpofu-Mätzig et al.

such as insulin, GAD65 and Hsp60 was tested in the preclinical NOD mouse with 
much success (Atkinson et al.  1990 ; Zhang et al.  1991 ; Muir et al.  1995 ; Daniel and 
Wegmann  1996 ; Tian et al.  1996b ; Bockova et al.  1997 ; Elias et al.  1997 ; Ma et al. 
 1997  ) . Owing to the success of these preclinical studies, antigen speci fi c immuno-
modulation for T1D was translated to clinical trials. Furthermore, antigen speci fi c 
therapies were favored as they can ensure a tissue speci fi c response, which would 
circumvent the problem of systemic immunosuppression observed by the use of 
global immunosuppressants.  

      Insulin Trials 

 Insulin is considered to be a major autoantigen in both the NOD model and in 
human T1D. Ins B9-23, a peptide that is recognized by both CD4+ and CD8+ T 
cells, has been shown to be a prerequisite for T1D development in NOD mice and a 
target of autoreactive CD4+ T cells in T1D patients (Nakayama et al.  2005  ) . Oral 
and intranasal administration of insulin prevented disease development in the pre-
diabetic NOD mouse through the induction of Th2 (IL-4/IL-10), Th3-(TGF-  b  ) 
secreting, CD8 + and IL-10 dependent Tr-1 regulatory T cell populations (Atkinson 
et al.  1990 ; Zhang et al.  1991 ; Daniel and Wegmann  1996 ; Harrison et al.  1996 ; 
Faria and Weiner  2006a,   b  ) . However, parenteral and intranasal administration of 
insulin in at risk patients did not have an effect on disease progression in prediabetic 
and recent onset patients (Pozzilli et al.  2000 , Pozzilli  2002 ; Kupila et al.  2003 ; 
Harrison et al.  2004  ) . A bene fi cial effect was however observed in a subgroup of 
patients that had high titers of insulin autoantibodies. The results were sustained 
over 8 years in patients on continued therapy (Vehik et al.  2011  ) .  

      GAD65 Trials 

 Glutamic acid decarboxylase (GAD) is an enzyme that exists in two isoforms (GAD65 
and GAD67) and is involved in the production of the neurotransmitter   g  -aminobutyric 
acid (GABA). GAD is expressed exclusively in the brain and pancreas. GAD65 
reactivity has been primarily associated with T1D with the presence of GAD65 
reactive T cells and autoantibodies reported in T1D patients and at risk individuals 
(Fenalti and Rowley  2008  ) . Intranasal and intravenous administration GAD65 in pre-
diabetic or recent onset NOD mice resulted in disease prevention that was mediated 
by antigen speci fi c CD4+ regulatory T cells with a Th2 phenotype (Tian et al.  1996a,   b ; 
Tisch et al.  1998,   1999 ; Chen et al.  2003  ) . Administration of Diamyd (recombinant 
human GAD65 formulated in alum) in patients with latent autoimmune diabetes in 
adults (LADA) or recent onset T1D resulted in the preservation of insulin secretion. 
The effect of GAD alum treatment was attributed to the induction of TGF-  b   secreting 
FOXP3+ regulatory T cells (Hjorth et al.  2011 ; Agardh et al.  2005,   2009 ; Ludvigsson 
et al.  2008  ) . Unfortunately, two recently conducted Phase III clinical trials in Europe 
and the USA did not reproduce these effects and failed (Wherrett et al.  2011  ) . 
However, due to the low side effects of GAD65 administration it might be a 
potential candidate for combination therapy in GADA positive patients.  
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      DiaPep277 Trials 

 p277 is a major T cell epitope of the heat shock protein60 (HSp60) and has been 
shown to be an immunodominant epitope in human and NOD type 1 diabetes 
(Horvath et al.  2002  ) . Additionally murine and human p277 have been shown to 
differ in a single position and NOD T cells have been shown to respond to stimulation 
with the human peptide (Birk et al.  1996 ; Horvath et al.  2002  ) . Furthermore, subcu-
taneous vaccination of the human p227 prevented diabetes in recent onset and overtly 
diabetic NOD mice via a Th2 mediated cytokine burst and induction of Qa-1 CD8+ 
regulatory T cells (Elias and Cohen  1994 ; Bockova et al.  1997 ; Elias et al.  1997  ) . 

 Administration of DiaPep277 in phase II trials, a modi fi ed version of the p277 in 
which cysteines were substituted with valine in order to improve stability, resulted 
in the preservation of C-peptide for up to 18 months in adult recent onset diabetes 
patients. However the effect on C-peptide level was not accompanied by a reduction 
in insulin usage or lower HbA1c levels (Raz et al.  2001,   2007  ) . A phase III study in 
adults is currently ongoing while no DiaPep277 effect has been reported in young 
children (Lazar et al.  2007  ) .     

    39.1.3   Short Bowel Syndrome 

 Short bowel syndrome (SBS) occurs after an extensive loss of small intestinal 
length, typically after surgery, which leads to a malabsorption of  fl uid and nutrients. 
In a timespan of about 24 months following surgical resection of small intestinal seg-
ments, the remaining intestine undergoes adaptation through several mechanisms 
which aim at increasing the absorptive capacity, a process which has been recog-
nized  fi rst 100 years ago (Flint  1912  ) . These include villous cell hyperplasia, 
increased crypt depth, intestinal dilatation, increased mucosal enzyme activity and 
reduction of intestinal transit (Nightingale and Lennard-Jones  1993  ) . The underly-
ing mechanisms were shown to involve growth factor and speci fi c nutrients, such as 
growth hormone, insulin-like growth factor 1, glucagon-like peptide 2, glutamine, 
short chain fatty acids and pancreatic-biliary secretions (Tamada et al.  1993 ; Jacobs 
 1983 ; Seguy et al.  2003 ; Ellegard et al.  1997  ) . 

 Nevertheless, a subset of patients will develop intestinal failure, meaning the 
inability to maintain an adequate balance of nutrients and water even after the postop-
erative adaptation phase, and suffer from dehydration and malnutrition without dietary 
support. In particular, a residual small bowel length of less than 100 cm leading to an 
end stoma or less than 50 cm connected to a functioning colon poses a risk factor for 
the need of long-term parenteral nutrition or, in a selected number of patients, small 
bowel transplantation. Parenteral nutrition (PN) is the therapy of choice for intestinal 
failure, but carries considerable risks such as hepatic failure, central vein thrombosis, 
recurrent infections, and a reduced life expectancy. However, it is still superior to 
small bowel transplantation, which is encumbered by high incidences of graft rejec-
tion and other postoperative complications (Pironi et al.  2008,   2011  ) . 
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 Supportive medical management is directed to reduce stool output to <2 L per 
day. It includes agents that reduce secretion, such as proton pump inhibitors and 
octreotide, and motility, such as loperamide and opium, but also dietary advice 
which meets the requirements of the postoperative anatomy.  

    39.1.4   In fl ammatory Bowel Disease 

 In fl ammatory bowel diseases (IBD) are chronic in fl ammatory disorders of the gas-
trointestinal tract, including Crohn’s disease (CD) and ulcerative colitis (UC). They 
are characterized by recurrent mucosal in fl ammation and ulceration (Fig.  39.1 ), 
leading to various intestinal and extra-intestinal manifestations. Crohn’s disease 
mostly involves the distal ileum and/or the colon, whereas Colitis ulcerosa is 
restricted to the colon. The pathogenetic mechanisms that cause the two types of 
in fl ammatory bowel disease are still under investigation. It has originally been sug-
gested that they develop in a genetically predisposed subject due to a dysregulated 
adaptive immune response to unknown antigens, resulting in continuous immune 
mediated in fl ammation (Ardizzone and Bianchi  2002 ; Fiocchi  1997  ) . Currently, 
there is broad agreement that luminal microbes are playing an important role in the 
development of IBD, since both disease locations are characterized by high concen-
trations of intestinal bacteria, and the adaptive immune response is directed against 
the microbiota. Increasing evidence has shown that defects in the innate immunity 
are at the centre of both types of IBD. In healthy mucosa, an adequate secretion 
of antimicrobial peptides and the mucus layer act as a barrier against microbes. It 
was shown in the last years that the differentiation from the intestinal stem cell 
towards the Paneth cell in ileal CD and the goblet cell in UC might be impaired, 
which leads to a defective antimicrobial barrier and thus, microbes can invade the 
mucosa and cause in fl ammation (Gersemann et al.  2012  ) .  

  Fig. 39.1    Endoscopic aspect of ulcerative colitis ( a ) with multiple pseudopolyps and Crohn’s 
disease ( b ) with severe longitudinal ulceration          
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 Current treatment procedures for CD and UC variably affect the in fl ammatory 
events, and indeed no available drug is at present curative. Therapy is often 
implemented stepwise through aminosalicylates, antibiotics, corticosteroids, 
immunosuppressive medications including thioguanine compounds, methotrexate, 
ciclosporin, and  fi nally anti-TNF drugs. Many patients require surgery to combat 
complications. In the future, patients may bene fi t from new therapeutic approaches 
stimulating the protective innate immune system.   

    39.2   Medical Regenerative Therapies for Type 1 Diabetes 
and Intestinal Disease 

    39.2.1   Beta Cell Regenerative Strategies for Type 1 Diabetes 

 The results from islet cell transplantation demonstrated that diabetes can be cured 
by replenishing the beta-cell mass. As a result treatment strategies have been devel-
oped aimed at restoring beta cell mass and function such as stimulation of insulin 
secretion and islet neogenesis. However it must be emphasized that based on 
preclinical and clinical results a combination of both immunomodulatory and regen-
erative strategies could greatly improve clinical outcome. 

    39.2.1.1   Stimulation of Beta Cell Function 

 Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic peptide (GIP) function by regulating after meal blood glucose levels 
via mechanisms including enhancement of glucose–stimulated insulin release and 
reduction of postprandial glucagon levels (Drucker  2003  ) . In murine models, GLP-1 
and its analog exendin-4 were also reported to function by increasing beta-cell 
replication, decreasing beta-cell apoptosis, stimulating beta-cell neogenesis, and 
inducing beta-cell expansion (Xu et al.  1999 ; Farilla et al.  2003 ; Li et al.  2005  ) . 
Combination therapy trials using either GPL-1 and anti-lymphocyte serum (ALS) 
or exendin-4 and anti-CD3 resulted in disease reversal in overt diabetic and recent 
onset NOD mice, respectively. Treated mice showed an increase in insulin secretion 
with no effect on beta cell replication or beta cell apoptosis (Ogawa et al.  2004 ; 
Sherry et al.  2007  ) . In type 2 diabetes patients, GLP-1 and exendin-4 have been 
shown to stimulate insulin secretion in remaining beta cells (Kolterman et al.  2003 ; 
Buse et al.  2004  ) . However clinical trials for type 1 diabetes conducted with a 
combination of exenatide (a synthetic version of exendin-4) and daclizumab 
(an immunosuppressive anti-CD25 monoclonal antibody) yielded disappointing 
results: Exenatide resulted in delayed gastric emptying, suppressed endogenous 
incretin levels, but did not increase C-peptide secretion in most trials (Rother et al. 
 2009  ) . Besides this,   b  -cell replication in humans is more dif fi cult to stimulate 
compared to rodents.  
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    39.2.1.2   Beta Cell Neogenesis 

 The beta cell mass is dynamic and undergoes expansion and contraction depending 
on metabolic needs (e.g. during normal growth, pregnancy, obesity) (Bonner-Weir 
 1994  ) . Mechanisms such as replication of pre-existing beta-cells or the formation of 
new beta cells from progenitor cells (neogenesis) have been associated with beta 
cell mass expansion. The exact contribution of these two mechanisms to beta cell 
mass regeneration is still under debate. However, differences in the balance of these 
pathways have been shown to be species- and age-dependent. Murine beta cell 
expansion dynamics differ from human dynamics, with   b  -cell replication being 
predominant in murine models, whereas neogenesis was more evident in type 2 
diabetes patients and non-diabetic individuals (Bonner-Weir et al.  2010 ; Bouwens 
and Pipeleers  1998 ; Butler et al.  2003a,   b ; Dor et al.  2004  ) . 

 Murine models of injury such as partial pancreatectomy and partial duct ligation 
(PDL) have been used to study beta cell neogenesis (Bonner-Weir et al.  1993 ; Wang 
et al.  1995  ) . Beta cell neogenesis occurs either via stem/progenitor cell activation 
and/or transdifferentiation. The identity of the stem/progenitor cell for neogenesis is 
however still elusive but the PDL model demonstrated that regeneration is limited 
to the portion distal to the site of ligation. Furthermore, neurogenin 3 (a transcription 
factor involved in development of pancreatic endocrine cells), was induced in cells 
in or adjacent to the pancreatic ducts after PDL. These neurogenin 3+ cells yielded 
islets including beta cells (Xu et al.  2008  ) . These studies hence suggest that beta 
cells can be formed from progenitor cells within the pancreatic duct epithelium. 
Conversely, administration of the beta-cell toxin alloxan prior to PDL resulted in 
the generation of new beta-cells from adult alpha cells (Chung et al.  2010  ) , thereby 
suggesting that alpha cells of the islets of Langerhans may be a source of beta cell 
progenitors. 

 Taken together, these studies show that beta-cell neogenesis is feasible  in vivo ; 
therefore, induction of beta cell neogenesis could be an excellent way to restore 
beta-cell mass for effective T1D treatment. Hormones and growth factors have been 
shown to induce beta-cell neogenesis (Wang et al.  1993 ; Rooman et al.  2002 ; 
Rooman and Bouwens  2004  ) . However, any form of beta cell replacement in T1D 
will also need induction of immune tolerance to prevent the destruction of cells by 
the autoimmune response. 

      Gastrin and Epidermal Growth Factor 

 Infusions of the peptide hormone gastrin in a rodent PDL model induced neogenesis and 
expansion of beta-mass from transdiffentiated exocrine pancreas. These studies showed 
an increase in beta cell mass in the ligated portion of the pancreas that was not asso-
ciated with increased proliferation and hypertrophy or reduced beta-cell death 
(Rooman et al.  2002  ) . Furthermore a combination of gastrin and epidermal growth 
factor (EGF) was shown to restore normoglycemia, increase beta-cell mass, density 
and pancreatic insulin content in alloxan treated mice. Monotherapy with either 
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hormone was reported to have no effect on hyperglycemia (Rooman and Bouwens 
 2004  ) . The effect of gastrin and EGF was further con fi rmed in NOD mice as treated 
recent onset diabetic NOD mice exhibited increased beta cell mass and reversal of 
hyperglycemia (Suarez-Pinzon et al.  2005  ) . Furthermore combination therapy with 
gastrin and GLP-1 resulted in reversal of hyperglycemia, downregulation of autoim-
mune response and protection of beta cells from apoptosis in NOD mice (Suarez-
Pinzon et al.  2008  ) . Gastrin and EGF therapies have been translated into clinical 
trials with results from a phase II clinical trial conducted with an EGF analog 
E1-1NT showing a 35–75% reduction in insulin usage and maintenance of blood 
glucose levels in some T1D patients. Currently, a phase I combination trial with 
EGF and gastrin is ongoing (van Belle et al.  2011  ) . In parallel a phase II trial is 
being performed using gastric proton pump inhibition to increase endogenous gas-
trin in combination with a GLP-1 analogue.  

      Islet Neogenesis Associated Protein (INGAP) 

 Islet neogenesis associated protein (INGAP) is a member of the regenerating gene 
(Reg) family of proteins. The Reg family is part of the C-type lectin super family 
and is mainly involved in the proliferation or differentiation of liver, pancreas, 
gastric and intestinal cells (Zhang et al.  2003  ) . INGAP is believed to be the initiator 
of neogenesis in particular the INGAP104-118 peptide. This peptide stimulates an 
increase in beta cell mass in mice, rats, hamsters and dogs (Lipsett et al.  2007  ) . 
INGAP has been found to be overexpressed in islets from patients with recent onset-
type1 diabetes, and administration of INGAP into streptozotocin induced diabetic 
mice resulted in reversal of disease and an increase in beta cell mass (Rosenberg 
et al.  2004  ) . Phase I and II trials with INGAP showed an increase in C-peptide 
secretion, improved glycemic control but no decrease in HbA1c levels. A trial is 
ongoing to optimize dosing, exposure, formulations and possible combination 
therapies (   Dungan et al.  2009 ).    

    39.2.2   Growth Hormone and Glutamine in Short Bowel 
Syndrome 

 Growth hormone exerts its trophic effects on the intestine via IGF-1, which origi-
nates from lamina propria mesenchymal stem cells. The resulting increase in DNA 
and protein production involves ornithine decarboxylase activity, for which 
glutamine is a substrate. Previous animal studies have shown that growth hormone 
and glutamine both have bene fi cial effects on intestinal adaptation in the early phase 
after surgery (Gouttebel et al.  1992  )  and act synergistically on intestinal function 
(Gu et al.  2001  ) . Subsequently, further basic research could document the bene fi t of 
growth hormone and glutamine in human intestine (Scheppach et al.  1994 ; Inoue 
et al.  1994  ) . Byrne and colleagues  fi rst demonstrated 15 years ago the ef fi cacy of 
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growth hormone and glutamine in promoting intestinal adaptation in an open-label 
clinical trial and a case series (Byrne et al.  1995a,   b  )  with SBS patients. These 
results attracted much interest, and several randomized controlled trials were carried 
out in the following years, which were also the topic of a Cochrane review in 2010 
(Wales et al.  2010  ) . 

 The clinical studies examining the effects of growth hormone with or without 
glutamine demonstrated an increase in weight, lean body mass and absorptive 
capacities, but the bene fi t was short-lived after therapy cessation (Byrne et al.  1995a ; 
Ellegard et al.  1997 ; Scolapio et al.  1997 ; Seguy et al.  2003 ; Jeppesen et al.  2001  ) . 
Only one study was able to document a sustained effect on PN volume, calories and 
infusion number in growth hormone and glutamine-treated patients at the 3 months 
follow-up (Byrne et al.  1995a  ) . Analysis of the fat- and energy absorption yielded 
heterogeneous results, which is likely due to the different outcome measures and 
differences in patient selection (e. g. with or without underlying mucosal disease, age, 
or nutritional status). Only two of the trials found a positive effect on fat absorption 
at the end of treatment (Jeppesen et al.  2001 ; Seguy et al.  2003  ) . Furthermore, the 
dose and therapy duration may explain the differences between the clinical trials. 
While a lower dose of growth hormone led to an increase in absorption in one trial 
(Seguy et al.  2003  ) , higher doses in two different trials did not. This may be partially 
explained by observations from animal studies, where an excess of growth hormone 
caused a reduced, possibly compensatory, responsiveness of crypt proliferation to 
growth factor signaling (Lund  1998 ; Dahly et al.  2004  ) . The question whether 
glutamine addition to growth hormone treatment further enhances the clinical 
bene fi t is still controversial; in the studies using both compounds (Byrne et al. 
 1995a ; Scolapio et al.  1997 ; Jeppesen et al.  2001  ) , neither the crude results nor the 
subgroup analyses from the Cochrane review (Wales et al.  2010  )  detected signi fi cant 
differences. 

 Overall, the data is still insuf fi cient to routinely recommend growth hormone 
treatment for SBS. There is some bene fi t in terms of weight gain and fat absorption, 
but the patient numbers are very small, and the effects short lived. Evidence regarding 
long-term safety is non-existent. Furthermore, the question whether glutamine 
addition is bene fi cial remains unresolved. Growth hormone treatment may not be 
justi fi ed when considering bene fi t and costs.  

    39.2.3   Intestinal Growth Factors in In fl ammatory 
Bowel Disease 

 IBD treatment has largely focused on decreasing in fl ammation. Given a component 
of dysfunctional epithelial repair, several studies have investigated the effect of 
intestinal growth factors to treat not only growth retardation in pediatric IBD, but 
also in fl ammation in children and adults. In a preliminary study, 37 patients with 
moderately to severely active Crohn’s disease were treated with subcutaneous 
growth hormone vs. placebo and were instructed to increase their protein intake. 
At 4 months, CDAI had decreased by a mean of 144 points in the treatment group, 
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and by only 19 points in the placebo group, which represented a statistically 
signi fi cant difference. In terms of side effects, several patients experienced headache 
and edema. The authors concluded that growth hormone treatment can be bene fi cial 
in active CD (Slonim et al.  2000  ) . In a pediatric study, 20 patients were treated with 
systemic corticosteroids plus either growth hormone or placebo. Remission rates 
after 12 weeks of treatment were 65% in the combined treatment group vs. 20% in 
the monotherapy group. While the addition of growth hormone produced a positive 
effect on growth failure, the intestinal mucosal in fl ammatory state as assessed by 
endoscopy was not different between the groups (Denson et al.  2010  ) . 

 Epidermal growth factor can induce epithelial growth by activation of PI3-kinase, 
AKT and MAPK pathways. Based on concerns that systemic EGF may induce epi-
thelial neoplasia, one study investigated the effect of recombinant EGF enema 
(5   m  g) vs. placebo (n = 12 patients in each group) in mild-to-moderate ulcerative 
colitis. Disease remission de fi ned as a St. Mark’s score <4 was achieved by 10 
patients in the EGF group and 2 patients in the placebo group. However, both groups 
received additional mesalamine, which may have biased the results towards a more 
positive outcome, considering that a EGF-only group was not included (Sinha 
et al.  2003  ) . 

 Controlled clinical trials with keratinocyte growth factor (Sandborn et al.  2003  ) , 
trefoil factor (Playford et al.  1996  ) , GMCSF (Dieckgraefe and Korzenik  2002  ) , and 
sargramostim (Korzenik et al.  2005  )  did not reveal a bene fi t over placebo. Although 
the approach to use intestinal growth factors to treat in fl ammatory bowel disease, 
possibly as an adjunct to anti-in fl ammatory therapy, is intriguing and may aid the 
restitution of the damaged mucosa, none of the above therapies can today be recom-
mended for widespread use, and concerns regarding their potential to induce 
neoplastic growth remain.  

    39.2.4   Targeting GLP-2 Signaling to Treat Intestinal Diseases 

 The 33 amino acid peptide GLP-2 is a key mediator of intestinal adaptation (Scott 
et al.  1998  ) . It is secreted from neuroendocrine cells and increases absorptive 
capacity by augmenting crypt cell proliferation and reducing villous cell apoptosis 
(Drucker et al.  1996  ) . Additionally, it inhibits gastric emptying and acid secretion, 
reduces intestinal permeability, and modulates in fl ammatory responses and mesenteric 
blood  fl ow (for review see Tee et al.  2011  ) . Its half-life is very short, since it under-
goes N-terminal truncation by the proteolytic enzyme dipeptidyl peptidase IV. 

 G-protein coupled GLP-2 receptors are expressed on enteroendocrine cells, 
enteric neurons, and subepithelial  fi broblasts of the small intestine (Guan et al. 
 2006 ; Yusta et al.  2000 ; Orskov et al.  2005  ) . A variety of effectors appear to be 
involved in mediating the downstream signal, including insulin-like growth factor-1 
for epithelial proliferation, nitric oxide for the upregulation of intestinal blood  fl ow, 
vascular endothelial growth factor and transforming growth factor-  b   for wound 
repair, and vasoactive intestinal peptide for anti-in fl ammatory effects (Rowland and 
Brubaker  2011  )  (Fig.  39.2 ).  
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 Teduglutide is a DPPVI-resistant analog of GLP-2 lacking the N-terminal 
cleavage site to extend its half-life. Initially, an open label study of SBS patients 
demonstrated an increase in wet-weight absorption of up to 1 L daily without a 
signi fi cant effect on energy absorption, which was maintained for 24 months of 
treatment, but was quickly reversed upon treatment discontinuation (Jeppesen 
et al.  2005  ) . Subsequently, a multinational, randomized, placebo-controlled study 
involving 83 patients suffering from SBS in need of parenteral nutrition at least 
three times a week for 1 year or more was carried out (Jeppesen et al.  2011  ) . After 
a 4–8 week stabilization period to allow for optimization of parenteral nutrition, 
patients were randomized to receive either placebo, 0.05 mg/kg/day teduglutide, or 
0.1 mg/kg/day teduglutide for 24 weeks. The primary endpoint was a graded 
response score accounting for the intensity and the duration of the response, which 
was de fi ned as a reduction of the requirement for parenteral nutrition by 20%, with 
urine production being used as a surrogate marker. While the graded response score 
as well as a 20% reduction of parenteral nutrition were achieved by a signi fi cantly 
higher proportion of patients in the 0.05 mg/kg/day group than in the placebo group 
(16/35 [46%] vs. 1/16 [6%]), the difference of the 0.1 mg/kg/day arm vs. placebo was 
not signi fi cant. The latter result was explained by group differences and the fact that 
the high-dose group displayed a signi fi cant reduction in oral  fl uid intake. Additionally, 
there was a small increase in body weight despite reduced calorie provision via 
parenteral nutrition, and a positive effect on trophic markers of the intestine. A follow-
up study with the subjects completing this trial was published in abstract form 
(Gilroy et al.  2008  ) . Patients previously receiving active treatment were maintained 

  Fig. 39.2    GLP-2 action in 
the intestine. GLP-2 receptor 
(GLP-2R) is expressed on 
endocrine cells, subepithelial 
myo fi broblasts and neurons. 
The effects of GLP-2 on 
epithelial proliferation, 
in fl ammation and blood  fl ow 
are probably conferred to a 
large part in an indirect 
manner, involving nitric 
oxide (NO), vasoactive 
intestinal polypeptide (VIP), 
and growth factors (GF) such 
as IGF-1       
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on their dose, and patients previously treated with placebo were randomized to 
treatment with 0.05 or 0.1 mg/kg/day teduglutide. In both groups, 75% of the subjects 
were able to maintain their PN reduction. In a con fi rmatory phase 3 study (STEPS – 
study of teduglutide in PN-dependent short bowel syndrome, NPS pharmaceuticals 
press release), 86 patients were treated with either 0.05 mg/kg/day active drug or 
placebo for 24 weeks to investigate whether a 20–100% reduction in weekly PN 
volume at weeks 20 and 24 was feasible. 63% of teduglutide-treated vs. 30% of 
placebo-treated patients reached this endpoint. In addition, patients in the teduglutide 
group were able to reduce the weekly PN volume from 12.9 to 8.5 L, which was also 
signi fi cant vs. placebo. A 2-year follow-up study (STEPS 2) is underway. 

 Most studies with GLP-2 and teduglutide have not shown a signi fi cant increase of 
adverse events. Abdominal complaints, headache, and injection site reactions were 
commonly reported. In patients with congestive heart failure or a history of bowel 
obstruction, these therapies should be administered with caution. A remaining concern 
arises from the proliferative properties of GLP-2 agonists and therefore their potential 
ability to induce malignancies. This is of particular importance, since treatment of 
SBS with teduglutide may be life-long. In azoxymethane-treated mice, GLP-2 indeed 
had pro-carcinogenic effects (Iakoubov et al.  2009  ) . Until the safety pro fi le with 
long-term treatment has been clearly established in clinical studies, thorough screen-
ing for premalignant lesions, such as colonic adenomas, is advisable. 

 Based on the positive clinical data, teduglutide has been granted orphan drug 
status by the FDA and EMEA, and a new drug application for this  fi rst-in-class SBS 
treatment has been  fi led to the FDA in the fourth quarter of 2011. In summary, trials 
with teduglutide in SBS have shown encouraging results, making this drug a new 
therapeutic option for SBS with the potential to reduce PN dependence and compli-
cations. Future studies will have to delineate the long-term outcomes, safety, and 
optimal therapeutic regimen. 

 Since it has been shown that GLP-2 can act anti-in fl ammatory and promote epi-
thelial repair, studies have been carried out to investigate the effect of manipulating 
GLP-2 signaling in Crohn’s disease. In an 8-week, controlled pilot study, 100 patients 
were treated with teduglutide, and their CDAI determined (Buchman et al.  2010  ) . 
The higher teduglutide dose led to remission rates of 55.6% vs. 33.3% (placebo). This 
difference was not statistically signi fi cant, and secondary outcomes like surrogate 
markers of in fl ammation, were not reported.   

    39.3   Cell-Based Therapies 

    39.3.1   Stem Cells Approaches for Diabetes Therapy 

 Stems cells have been reported to hold great promise for T1D therapy due to their 
immunomodulatory role and regenerative capacities. Furthermore, drawbacks 
encountered in the optimization of islet cell transplantation have prompted researchers 
to search for other potential sources of glucose producing tissues including stem cells. 



1002 N. Mpofu-Mätzig et al.

Stem cells are de fi ned by their ability to self-renew and to differentiate into many 
specialized cell types, tissues or organs. Stem cells can be classi fi ed as either pluri-
potent (with the ability to differentiate into all cell types) or multipotent (with a 
limited differentiation capacity) (Tuch et al.  2011  ) . 

    39.3.1.1   Pluripotent Stems 

      Embryonic Stem Cells (ESC) 

 ESCs are derived from the inner cell mass of a blastocyst. These cells express the 
transcription factors Oct-4, Nanog-1 and Sox2, which are involved in self-renewal 
and act as markers of pluripotency (Friel et al.  2005  ) . ESCs are able to differentiate 
into the ectoderm, mesoderm, and endoderm (from which the pancreas is derived). 
The rationale behind the use of ESCs for T1D therapy is that under certain condi-
tions, these cells can be steered to differentiate into pancreatic islet cells that can in 
turn be transplanted into patients. 

 Various ESC differentiation protocols have been developed based on the devel-
opment of the embryonic pancreas. Many of the earlier attempts to generate func-
tional islets  in vitro  from ESCs were limited by  fi nal cell homogeneity, immaturity 
of differentiated cells, low numbers of insulin producing cells, and poor insulin 
responses to glucose exposure (McCall et al.  2009  ) . However, a recent study from 
Baetge and colleagues showed that implantation of pancreatic endoderm derived 
from human ESCs (hESCs) into mice could ef fi ciently generate glucose-responsive 
endocrine cells after implantation. These results imply the need for  in vivo  differ-
entiation in order to generate glucose responsive cells. Furthermore, these cells 
could protect against streptozotocin-induced hyperglycemia (Kroon et al.  2008  ) . 
Conversely, a separate study conducted by implanting hESCs derived pancreatic 
endoderm into athymic nude rats con fi rmed the development of islet-like structures 
but upon glucose challenge no increase in C-peptide or insulin was observed. These 
results led the researchers to conclude that though islet-like structures were formed 
from implanted hESC differentiated pancreatic endoderm, the extent of endocrine 
cell formation and secretory function is not yet suf fi cient to be clinically relevant 
(Matveyenko et al.  2010  ) . Apart from the complexities of generating functional 
islets, ESCs use is also limited due to ethical concerns. Furthermore, since ESCs are 
developed from an allogeneic donor, strategies need to be developed to protect the 
ESCs from immune attack. Moreover, ESC cells have been shown to give rise to 
teratomas and teratocarcinomas in humans (Guleria et al.  2007  ) .  

      Induced Pluripotent Stem Cells (iPs) 

 A major breakthrough in the pluripotent stem cell  fi eld was the development of 
induced pluripotent stem cells (iPS). iPS cells are derived from somatic cells in 
which pluripotency is restored by the induced expression of the transcription factors 
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Oct-4, Sox2, Nanog, c-Myc, LIN28, and Klf4 (Stefanovic et al.  2009  ) . With regards 
to morphology, self-renewal capacity, and differentiation iPS and ESC cells are very 
much alike; however, iPS cells have an added advantage over ESC cells in that they 
allow for the possibility of autologous cell therapy. Indeed, Maehr and colleagues 
showed for the  fi rst time that it was possible to generate iPS cells from dermal 
 fi broblasts of T1D patients. This process involved retroviral transduction of the 
 fi broblast with Oct4, Sox2, and Klf4. Furthermore, these iPS cells showed a normal 
karyotype and beta-cells derived from these iPS cells were shown to be C-peptide 
positive and were capable of releasing insulin after  in vitro  stimulation with glucose 
(Maehr  2011  ) . However, a lot of research still needs to be done before iPS cells can 
be considered for clinical trials. Furthermore, iPS cells are also limited by the for-
mation of teratomas, and the use of retroviral vectors for delivery of reprogramming 
factors could further lead to malignant transformation.   

    39.3.1.2   Multipotent Stem Cells 

      Hematopoietic Stem Cells (HSCs) 

 Adult stem cells/multipotent stem cells can be classi fi ed into hematopoietic stem 
cells (HSCs) and mesenchymal stem cells (MSCs). HSCs are by far the best charac-
terized and best studied stem population. HSCs are located in the bone marrow 
niche and can be readily harvested from bone marrow and umbilical cord blood 
(UCB). HSCs can also be collected from peripheral blood after mobilization from 
bone marrow with granulocyte colonystimulating factor (G-CSF) (Brignier and 
Gewirtz  2010 ; Flomenberg et al.  2005  ) . Additionally HSCs can be isolated on 
the basis of their surface markers, that is, lineage speci fi c antigen negative (lin-), 
CD34,+ CD38,− CD133,+ c-Kit/CD117,+ CD59,+ Thy1/CD90+, and CXCR4+ cells. 
HSCs preferentially differentiate into lymphoid and myeloid lineages. 

 The rationale behind the use of HSC transplantation (HSCT) for the treatment of 
autoimmunity is that transient lymphoablation followed by autologous HSCT will 
allow for immune regeneration and resetting of immune self-tolerance (Couzin-
Frankel  2010  ) . A clinical trial for T1D was conducted in Brazil using high dose 
cyclophosphamide plus rabbit polyclonal anti thymocyte globulin (ATG) for lym-
phoablation followed by an autologous HSCT. Analysis of this study showed an 
increase in C-peptide levels, good glycemic control, and insulin independence in a 
majority of the treated patients (20 out of 23 recent onset diabetics). Furthermore, 
12 of these patients were insulin independent for 31 months whilst the other 8 patients 
had periods ranging from 6 to 47 months when they were insulin free after which 
they resumed insulin therapy albeit at a lower dose than pretransplant (Voltarelli 
et al.  2007 ; Couri et al.  2009  ) . Additionally, using the same HSCT protocol in eight 
recent onset patients, Snarkski and colleagues achieved insulin independence in all 
the patients, except one who resumed low dosage insulin treatment 7 months after 
transplantation (Snarski et al.  2011  ) . Although these results seem promising, this 
treatment was associated with side effects such as nausea, vomiting, fever and 
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alopecia. Two patients presented with nosocomial pneumonia and cases of Grave’s 
disease, transient hypergonadotropic hypogonadism, and autoimmune hypothy-
roidism were reported. However, no mortality was observed so far (Couri and 
Voltarelli  2009  ) . Long-term consequence of the conditioning regimen need to be 
monitored, and it remains questionable how much risk of immune interventions we 
dare to take for a disease which can safely be treated with insulin replacement for 
decades. Taken together, the studies involving HSCs transplantation have taught us 
what can be achieved with appropriate immune therapies.  

      Mesenchymal Stem Cells 

 Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent 
stem cells that can differentiate into various mesodermal cell lineages including 
myocytes, osteoblasts, chondroblasts,  fi broblasts and adipocytes. MSCs can be 
found in almost every organ, but for therapeutic use they are isolated from the UCB 
and bone marrow. Human MSCs can be identi fi ed by their lack of HSC markers, 
their expression of CD105, CD73 and CD90 and ability to adhere to plastic. MSCs 
possess anti-in fl ammatory and immunomodulatory properties mediated by the 
secretion of factors such as indolamine 2,3-dioxygenase, IL-6, TGF-  b  1, inducible 
nitric oxide synthetase and prostaglandin (Brignier and Gewirtz  2010  ) . Furthermore, 
MSCs have been shown to induce regulatory T cells and to suppress effector and 
cytotoxic T cells and B cells  in vitro  (Selmani et al.  2008  ) . The immunomodulatory 
effects of MSCs are still under exploration for their application in T1D therapy. 
However, transfer of MSCs into prediabetic NOD mice was shown to result in 
disease prevention and induction of IL-10 secreting FOXP3+ regulatory T cells 
(Madec et al.  2009  ) . Furthermore, transfer of human MSCs (hMSCs) into a strepto-
zotocin induced diabetes model resulted in decreased hyperglycemia associated 
with an increase in beta cells mass and insulin production. In addition, it was 
observed that the hMSCs selectively homed to both pancreatic islets and renal 
glomeruli of the diabetic mice leading to tissue repair. This suggests that hMSCs 
may be useful in enhancing insulin secretion and perhaps improving the renal 
lesions that develop in patients with diabetes mellitus (Lee et al.  2006  ) . 

 MSCs have also been reported to be a potential alternative source for   b  -cell 
neogenesis. Retroviral transduction of the MSCs with the   b  -cell development 
transcription factor pancreatic and duodenal homeobox 1 (Pdx1), followed by 
 in vitro  steering in the presence of islet hormones resulted in the generation of 
insulin producing cells. Transplantation of these cells under the kidney capsule 
resulted in decreased hyperglycemia in a streptozotocin induced diabetes model. 
Furthermore, insulin producing cells could be generated from diabetic patients 
without genetic manipulation thereby demonstrating that long-term hyperglycemia 
does not constitute a factor against iPS generation in T1D patients (Li et al.  2007 ; 
Sun et al.  2007  ) . Phase I/II clinical trials aimed at assessing the ef fi cacy and safety 
of allogeneic or autologous MSCs therapy for T1D are currently ongoing (Fiorina 
et al.  2011  ) .   
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    39.3.1.3   Combination Therapy: The Future of T1D Treatment 

 Most of the clinical trials discussed thus far have been largely based on monothera-
pies which were either aimed at tolerance induction and beta cell preservation, or 
restoration of beta cell mass and function. However, many researchers in the  fi eld of 
T1D argue that like in cancer, T1D treatment could bene fi t from combination 
therapy thereby resulting in tolerance induction and beta cell regeneration (Bresson 
and von Herrath  2007  ) . They propose combinations of treatments with either a 
documented effect as a monotherapy in T1D or a combination treatment that has 
been ef fi cacious in another autoimmune disease (van Belle et al.  2011  ) . Combination 
therapies have been largely successful in preclinical rodent models. For example, 
studies in BB rats showed disease delay or prevention after administration of the 
purine biosynthesis inhibitor mycophenolate mofetil (MMF) and anti-CD25 mAb 
(Ugrasbul et al.  2008 ). Furthermore, intranasal insulin in combination with anti-
CD3 mAb was shown to be more ef fi cacious than the monotherapies at reversing 
recent onset diabetes in NOD mice and a RIP-LCMV diabetes model. This treat-
ment resulted in the expansion of CD25+Foxp3+ and IL-10, TGF-  b   and IL-4 
insulin-speci fi c Tregs, and these regulatory T cells could confer dominant tolerance 
to immunocompetent recent onset diabetic recipients (Bresson et al.  2006  ) . These 
results suggest combination therapy with immune modulators and islet antigen 
speci fi c vaccines could be effective. Additionally based on the success of anti-CD3 
mAb in combination with exendin-4 treatment in recent onset diabetic NOD mice, 
combination treatments with immune modulators and compounds that enhance   b  -
cell mass and function have also been proposed for future clinical trials (van Belle 
et al.  2011 ; Sherry et al.  2007  ) . This approach is postulated to have a higher success 
rate than the gastrin and exenatide   b  -cell regeneration trials owing to the fact that 
anti-CD3 induces tolerance whilst exenatide increases insulin secretion from resid-
ual   b  -cells. Clinical trials so far have shown that intensive insulin therapy in combi-
nation with exenatide and anti-CD25 mAb showed no improved function of 
remaining   b  -cells in patients with long-standing diabetes (van Belle et al.  2011 ; 
Rother et al.  2009  ) . However, these results do not rule out the ef fi cacy of combina-
tion therapy in recent onset diabetes patients. 

 The aforementioned anti-CD3 and intranasal insulin preclinical study demon-
strated that adoptive transfer of regulatory T cells results in reversal of disease in 
recent onset diabetic mice (Bresson et al.  2006  ) . The ef fi cacy of adoptive transfer of 
CD4+CD25+Foxp3+ natural Tregs (nTregs) in human trials has been demonstrated 
in the treatment of leukemia by hematopoietic stem cell transplantation (HSCT) and 
donor lymphocyte infusions (DLI). Adoptive transfer of  ex vivo  puri fi ed nTregs in 
this setting was shown to be safe and the transferred nTregs promoted lymphoid 
reconstitution, did not overtly weaken the graft vs. leukemia effect, and prevented 
graft versus host disease (Edinger and Hoffmann  2011  ) . These  fi ndings open up the 
possibility of nTreg transfer as a potential immunomodulatory approach for T1D 
patients. The HSCT trials mentioned above utilized polyclonal nTregs however 
adoptive transfer of antigen speci fi c nTregs was shown to be more effective at 
disease prevention and reversal in recent onset and overtly diabetic NOD mice 
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(Katz et al.  1993 ; Salomon et al.  2000 ; Wu et al.  2002 ; Tang et al.  2004 ; Tarbell 
et al.  2006 ; Masteller et al.  2005 ; Jaeckel et al.  2008  ) . The frequency of antigen 
speci fi c nTregs coming from a polyclonal repertoire is very low however the suc-
cessful treatment of colitis in a murine model with nTregs redirected by antigen-
speci fi c chimeric receptor gives hope for the potential use of nTregs with redirected 
speci fi cities for T1D treatment (Elinav et al.  2009  ) . Furthermore, the fact that T 
cells with redirected speci fi cities are currently in use for a plethora of clinical trials 
for cancer (Jena et al.  2010 ; Morgan et al.  2010  )  and nTreg transfer was shown to be 
safe in HSTC implies that adoptive transfer of redirected nTregs could also be an 
acceptable therapy in T1D patients. Furthermore, one could envision combination 
therapies of adoptive transfer of redirected Tregs with compounds that enhance beta 
cell mass and compounds that favor  in vivo  Treg expansion such as rapamycin 
(Battaglia et al.  2005  ) .   

    39.3.2   Stem Cell Approaches in the Therapy 
of Intestinal Disease 

 Experimental and clinical research increasingly utilizes stem cell therapy for IBD. 
Initially, the excitement surrounding the stem cell  fi eld was based on the unique 
biological properties of these cells and their capacity to self-renew and regenerate 
tissue and organ systems. Later on, the immunomodulatory ability of stem cell 
therapy has become apparent. Conventionally, the de fi nition of stem cells refers 
to the hematopoietic stem cells (HSC), with reference to myeloid and lymphoid 
lineages. However, a distinct lineage is now known to consist of mesenchymal stem 
(stromal) cells (MSC). Stem cell therapy for IBD is thought to both repair damaged 
intestinal tissue and the immune system. For active luminal disease three forms of 
stem cell therapy have been attempted. First, bone marrow derived donor (BMD) or 
autologous stem cells (bone marrow contains both hematopoietic as well as mesen-
chymal stem cells), second, peripheral blood donor or autologous stem cells and 
third, donor or autologous mesenchymal stem cells from adipose tissue. Autologous 
and donor stem cell transplantation has involved pre-transplantation bone marrow 
ablation, while mesenchymal stem cell studies have avoided bone marrow ablation 
(Table  39.2 ).  

    39.3.2.1   Hematopoietic Stem Cells 

 The possibility that HSCT might be an effective treatment in CD arose from a case 
report published in 1993, reporting a female patient with CD who remained sym-
tom-free during a 6 month follow-up after HSCT for non-Hodgkin’s lymphoma 
(Drakos et al.  1993  ) . This report was followed by several other case reports and 
a case series in 1996. In this case series, remission was observed in four out a 
 fi ve patients with CD and leukemia after allogenic bone marrow transplantation 
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(Lopez-Cubero et al.  1998  ) . Five of these six patients had active CD, and four of the 
 fi ve patients had sustained remission of CD 54–183 months after transplantation. In 
another case series, remission of symptoms occurred in all patients (six with CD, 
four with UC) after myeoloablative treatment and allogeneic bone marrow trans-
plantation (Ditschkowski et al.  2003  ) . In this study, one patient had a mild self-
limiting recurrence and another died of infectious complications. All patients except 
two maintained immunosuppressive therapy at the end of follow-up (follow-up 
3–117 months). Although these studies were not designed to investigate the role of 
HSCT on IBD, they supported the notion that lymphoablation and generation of 
new self-tolerant lymphocytes might induce remission in patients with IBD. 

 Based on these results, attempts with HSC as a primary treatment were initiated. 
The  fi rst case was reported in 2003 (Craig et al.  2003  ) . These initial trials are inte-
grated in the  fi nal report of a phase I study in which infusion of autologous HSCs 
from peripheral blood after mobilization, expansion and conditioning in 12 patients 
with refractory CD was performed (Oyama et al.  2005  ) . Eleven patients had remis-
sion after 6 months, monitored by Crohn’s Disease Activity Index (CDAI) <150, 
and after 18.5 months of follow-up, only one patient has experienced recurrence. 
Another trial used peripheral HSC unselected for CD34 in four patients successfully 
(mean follow-up 16.5 months) (Cassinotti et al.  2008  ) . In a long term follow-up of 
24 patients by the group from Chicago, the percentage of clinical relapse-free 
survival, de fi ned as the percentage of patients restarting medical therapy after trans-
plantation, was 91% in 1 year, 63% at 2 years, 57% at 3 years, 39% at 4 years and 
19% at 5 years, showing that 81% of these patients had to begin medical therapy 
again 5 years after transplantation (Burt et al.  2010  ) . 

   Table 39.2    Types of stem cells for treatment in IBD   

 Hematopoietic  Mesenchymal  Intestinal 

 Origin  bone marrow, 
peripheral blood 

 bone marrow, 
adipose, placenta 

 intestinal crypt 

 Function  >Autologous or allogeneic 
hematopoietic stem cell 
transplantation (HSCT) 

 >Elimination of auto-
reactive lymphocytes 
(lymphoablative effect) 

 >Altered immune 
reconstitution after 
immuneablation 

 >Generation of naive cells 
to restore tolerance 

 >Autologous 
or allogeneic 
transplantation 

 >Keeps intestinal barrier 
functional 

 >Keeps crypt sterile through 
secretion of antimicrobial 
peptides and defensins 

 >Genetic repair approach 
in future might supply 
defective genes through 
genetic transfer techniques 

 >Antiproliferative for 
stimulated T-cells 

 >Inhibits in fl ammatory 
response of innate 
and adaptive 
immune system 
(immunomodulatory 
effect) 

 >Reparative effect 
on in fl amed tissue 

 >Adipose derived stem 
cells for treatment of 
 fi stulizing diseases 
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 The sustained clinical remission with hematopoietic stem cell therapy seems not 
only to be due to cyclophosphamide and G-CSF during mobilization (Kreisel et al. 
 2003  ) . The mechanisms underlying the bene fi cial effects remain unclear, but are 
probably the result of initial eradication of T-cells and memory cells because of the 
lymphoablative effects of drugs used in the conditioning regimen. Later on, there may 
be an effect of altered immune reconstitution. In 2005, the international committee 
established for the development of guidelines on entry criteria and transplant proto-
cols for IMIDs (immune mediated in fl ammatory diseases) recommended that 
autologous HSCT should be preferred to allogeneic HSCT because of a lower risk 
of severe toxicity (Gratwohl et al.  2005  ) . It has to be kept in mind that stem cell col-
lection and autologous transplantation are associated with morbidity and mortality, 
and that  fl ares of the disease and lethal complications during mobilization have been 
reported (Kapoor et al.  2007  ) . 

 In a study based on genetic linkage analysis and candidate-gene sequencing on 
samples from two unrelated consanguineous families with children with early-onset 
in fl ammatory bowel disease, three distinct homozygous mutations in genes IL10RA 
and IL10RB were identi fi ed that segregated with disease phenotype (Glocker et al. 
 2009  ) . One member of the family with IL10RB mutation suffered from a severe CD 
since his third month of life with proctitis, abscesses and multiple surgical interven-
tions. This subject underwent allogeneic HSCT using an HLA matched sibling not 
carrying the mutation. Fistulas resolved shortly after transplantation, and the patient 
remained in continuous remission from ileocolitis during a follow-up period of 2 
years after transplantation. This was the  fi rst study showing a curative approach to 
severe CD by means of allogeneic HSCT that was justi fi ed by a monogenic cause of 
the disease in this case. 

 Currently, there are two trials active but not recruiting on stem cell transplanta-
tion in patients with Crohn’s disease (NCT00271942, NCT 00278577). A phase III 
randomized and controlled trial is now recruiting patients in Europe to address the 
individual steps of the autologous peripheral blood stem cells transplantation 
(aPBSCT) protocol to treat CD (ASTIC, NCT00297193). Another trial addresses 
the ef fi cacy of aPBSCT in pediatric patients (NCT00692939), and a third uncon-
trolled trial is recruiting to assess the ef fi cacy of allogeneic PBSCT to treat CD 
(NCT01288053).  

    39.3.2.2   Mesenchymal Stem Cells 

 When cells from a bone marrow aspirate are cultured in plastic  fl asks, hematopoi-
etic cells and stem cells do not adhere to the plastic and are removed when changing 
media. The remaining plastic adherent cells are termed MSCs, an abbreviation for 
both mesenchymal stem cells and mesenchymal stromal cells: Mesenchymal stromal 
cells, because they can contribute to the structural matrix of bone marrow and 
support hematopoesis; mesenchymal stem cells, because they have the ability to 
differentiate under ex vivo conditions into different mesenchymal-derived cells 
(Pittenger et al.  1999  ) . MSCs may be isolated from bone marrow, skeletal muscle, 
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adipose tissue, synovial membranes and other connective tissue of human adults, 
as well as cord blood and placenta. Mesenchymal stem cells have been shown to 
inhibit in fl ammatory responses of innate and adaptive immune cells as well as have 
reparative effects on in fl amed tissues. 

 Successful preclinical studies using MSCs in models of autoimmunity, 
in fl ammation and tissue damage have paved the way for clinical trials. In one trial, 
expanded autologous bone marrow mesenchymal stem cells (BM-MSC) were 
applied intravenously and recorded an improvement in CDAI in four out of six 
patients (Duijvestein et al.  2010  ) . In a phase II trial with expanded allogeneic bone 
marrow derived adult MSCs that were administered in two doses in patients with 
moderate–severe refractory Crohn’s disease (CDAI >220), a clinical response 
de fi ned as a reduction in CDAI of at least 100 points in three out of nine patients 
was observed (Onken et al.  2006  ) . In a 12-month study with eight patients, seven 
adverse events were reported (Onken et al.  2008  ) . No tumors or formations of ectopic 
tissue were found. In another completed phase I trial of intravenous autologous 
bone marrow derived MSCs that included nine patients con fi rmed that the treatment 
is feasible and safe, but without apparent bene fi t for patients with severe refractory 
luminal disease (Duijvestein et al.  2010  ) . At the moment, four clinical studies are 
registered at clinicaltrials.com to further investigate the safety and treatment out-
come of intravenous human mesenchymal stem cells (Prochymal, remestemcel-L) 
as a therapy for Crohn’s disease (NCT01510431, NCT01233960, NCT00294112, 
NCT00543374, NCT00482092). 

 Taken together, there is a rationale for testing MSCs in human IBD, but initial 
phase I and II studies have produced mixed results. Methodological concerns are the 
small numbers of patients, the variation in cell products and the lack of published 
controlled studies. 

 Regarding  fi stulizing disease, there were encouraging results from an initial 
phase I clinical trial using locally administered adipose-derived stem cells (ACS) to 
treat complex perianal  fi stula (Garcia-Olmo et al.  2005  ) . These results have been 
con fi rmed in a phase II multicenter randomized trial including patients with com-
plex perianal  fi stulas (cryptoglandular origin n = 35, associated with Crohn’s disease 
n = 14) observing  fi stula closure in 17 out of 24 patients who received ASCs in addi-
tion to  fi brin glue, compared to 4 out of 25 who received  fi brin glue alone (Garcia-
Olmo et al.  2009  ) . Several studies are currently recruiting or completed assessing 
the use of bone marrow mesenchymal or adipose derived stem cells in  fi stulizing 
Crohn’s disease (NCT01372969, NCT01011244, NCT01144962, NCT0992485, 
NCT01378390, NCT00999115, NCT01157650, NCT01314079). 

 In summary, it is important to de fi ne the source and type of MSC (autologous or 
allogenic) in order to standardize cell expansion conditions and to adopt uniformal 
study protocols. Also, signi fi cant issues remain regarding the design and interpreta-
tion, such as patient selection, disease stage, disease activity, MSC source (bone 
marrow, adipose tissue, placenta) and long-term safety. Although the perspective of 
immune reeducation and regulation seems fascinating, it is unrealistic to believe 
that cell-based therapies can eradicate immune disease, because most processes 
have a genetic predisposition that remain unaltered by an autologous transplant. 
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Especially for IBD, where the primary defect is probably a stem-cell differentiation 
problem in the intestine, new therapeutic strategies should be based on stimulation 
of the protective innate immune system.  

    39.3.2.3   Intestinal Stem Cells 

 Intestinal stem cells maintain the rapidly self-renewing intestinal tract tissue. 
Concerning the localisation of intestinal stem cells in the gut, there are two major 
models still under debate. The  fi rst is called the “+4 position model”, which assumes 
that the stem cell is located above the Paneth cells at position +4 related to the crypt 
base (Haegebarth and Clevers  2009  ) , the second is called the “stem cell zone model”. 
This model proposes, that the crypt base columnar cells represent the intestinal stem 
cell (Haegebarth and Clevers  2009  ) . 

 Intestinal stem cells differentiate into four epithelial cell types, namely absorptive 
columnar cells, goblet cells, neuroendocrine cells and Paneth cells. LGR5 (Leucine-
rich-repeat-containing G-protein-coupled receptor 5) is a marker for intestinal stem 
cells since it could be shown that LGR5-positive cells are pluripotent, self-renewing 
and differentiate into all four epithelial cell types (Barker et al.  2007  ) . 

 Paneth cells are located at the crypt of the cell and secrete defensins and other 
antimicrobial peptides to keep the crypt sterile. For ileal Crohn’s disease it could be 
shown, that a defective differentiation from the intestinal stem cell toward the Paneth 
cell, because of a diminished expression of the Wnt signaling transcription factor 
TCF4 and the WNT coreceptor LRP6 (Koslowski et al.  2009,   2012  ) , resulting in a 
defensin de fi ciency. This in turn leads to a dysfunctional mucosal barrier and an 
invasion of luminal microbes resulting in an in fl amed mucosa. For ulcerative colitis, 
a defective differentiation from intestinal stem cell to goblet cell, mediated by the 
transcription factors Hath1 and KLF4, might lead to a goblet cell depletion and 
impaired mucin induction (Gersemann et al.  2009  ) . This causes a defective mucus 
barrier and again invasion of luminal microbes triggering in fl ammation. Despite 
these exciting new perspectives, interventions focusing intestinal stem cells are dif fi cult. 
One approach might be the genetic repair approach, supplying the defective genes to 
local crypt cells using a variety of gene transfer techniques. In a way, the alterna-
tives of hematopoietic or mesenchymal versus intestinal stem cell therapies replays 
the current paradigm shift from adaptive to innate immunity centered on a barrier 
disease.    

    39.4   Conclusions and Future Perspectives 
on Regenerative Therapies 

 Medical therapies aiming at beta-cell neogenesis like gastrin, EGF, and INGAP 
(islet neogenesis associated protein) are in early stages of clinical development, with 
insuf fi cient data available to date. Similarly, treatment of short bowel syndrome 
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with growth hormone with or without glutamine is ill-de fi ned with regards to the 
optimal treatment regimen and safety. Intestinal growth factors are being tested 
for in fl ammatory bowel disease, and may be possibly of value as an adjunct therapy 
in the future. The GLP-2 analogon teduglutide, on the other hand, demonstrated 
promising results in the treatment of SBS and has been granted orphan status for 
this indication. Regarding cell-based regenerative approaches for T1D, pluripotent 
stem cells are still in preclinical development, and the  fi rst studies involving 
multipotent stem cells are ongoing. In in fl ammatory bowel disease, trials using 
hematopoietic or mesenchymal stem cells have reported limited ef fi cacy. New 
promising approaches involve intestinal stem cells, which seem to account better 
for new clues to the pathogenesis of IBD as a barrier defect.      
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  Abstract   Commonly applied therapies to achieve bone reconstruction or function 
are restricted to the transplantation of autografts and allografts, or the implantation 
of metal devices or ceramic-based implants. Bone grafts generally possess osteo-
conductive and osteoinductive properties. They are, however, limited in access and 
availability and harvest is associated with donor site morbidity, hemorrhage, risk of 
infection, insuf fi cient transplant integration, and graft devitalisation. As a result, 
recent research focuses on the development of alternative therapeutic concepts. 
Available literature indicates that bone regeneration has become a focus area in the 
 fi eld of tissue engineering. Hence, a considerable number of research groups and 
commercial entities work on the development of tissue engineered constructs to aid 
bone regeneration. However, bench to bedside translations are still infrequent as the 
process towards approval by regulatory bodies is protracted and cost-intensive. 
Approval requires both comprehensive  in vitro  and  in vivo  studies necessitating the 
utilisation of large preclinical animal models. Consequently, to allow comparison 
between different studies and their outcomes, it is essential to standardize animal 
models,  fi xation devices, surgical procedures and methods of taking measurements 
to produce reliable data pools as a base for further research directions. The following 
chapter reviews animal models of the weight-bearing lower extremity utilized in the 
 fi eld, which include representations of fracture-healing, segmental bone defects, 
and fracture non-unions.      
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    40.1   Clinical Background 

 In general, bone displays a high intrinsic regenerative capacity following insult or 
disease. Therefore, the majority of bone defects and fractures heal spontaneously. 
Re fi nements in surgical techniques, implant design and postoperative care have 
signi fi cantly improved treatment outcomes of complex fractures and defects as 
caused by high energy trauma, disease, developmental deformity, revision sur-
gery, and tumour resection (Perka et al.  2000 ; Gugala and Gogolewski  2002 ; den 
Boer et al.  2003 ; Komaki et al.  2006 ; Laurencin et al.  2006 ; Wildemann et al. 
 2007  ) . Extensive soft tissue damage, insuf fi cient surgical techniques, infections, 
and biomechanical instability can, however, lead to formation of large defects 
with limited intrinsic regenerative potential (Perry  1999  ) . These defects represent 
a considerable surgical challenge, are associated with high socio-economical 
costs, and highly in fl uence patients’ quality of life. Understanding the factors and 
microenvironmental cues that favour the formation of such slow or non-healing 
defects therefore poses a major research challenge (DeCoster et al.  2004 ; Clements 
et al.  2008  ) . 

 Cancellous bone fractures often lead to impaction of bone and consequently 
defect formation after reduction (den Boer et al.  2003  ) . The tibial diaphysis, which 
consists of compact bone, however, represents the most common anatomic site for 
segmental bone defects since soft tissue coverage, especially on the anteromedial 
surface, is marginal (DeCoster et al.  2004  ) . This both increases the risk of bone loss 
and complicates treatment (DeCoster et al.  2004  ) . 

 Presently, the transplantation of bone autografts is considered the “gold stan-
dard” treatment to augment or accelerate bone regeneration (Einhorn et al.  1984 ; 
Perka et al.  2000 ; Komaki et al.  2006  )  (Fig.  40.1 ). Nevertheless, considerable 
shortcomings are associated with bone grafting. Graft harvest results in prolonged 
anaesthesia and requires personnel for graft collection (Bucholz et al.  1989 ; Gao 
et al.  1996 ; Liu et al.  2008  ) . Often, harvested graft amounts are insuf fi cient while 
donor site accessibility is limited (Stevenson  1998 ; Blokhuis et al.  2000 ; Oest 
et al.  2007 ; Liu et al.  2008  ) . Persistent pain at donor sites or hemorrhage can 
occur, and the risk of infection is signi fi cantly increased. Once transplanted, donor 
bone, is associated with a high rate of failure (Sciadini et al.  1997 ; Blokhuis et al. 
 2000 ; den Boer et al.  2002 ; Liu et al.  2008  ) , which commonly results from incom-
plete transplant integration and positively correlates with defect size (Gao et al. 
 1996  ) . Graft devitalisation and subsequent resorption processes can lead to 
decreased mechanical stability (Younger and Chapman  1989  )  and consequently 
compromised bone healing. Vascularised autografts are technically challenging; 
allografts and xenografts are prone to immune-mediated rejection, graft sequestration 
and transmission of infectious disease (Taylor et al.  1975 ; Dell et al.  1985 ; Gazdag 
et al.  1995 ; Puelacher et al.  1996 ; Chapman et al.  1997 ; Lindsey et al.  2006 ; 
Muscolo et al.  2006 ; Clements et al.  2008  ) . The high density of cortical bone 
allografts hinders both suf fi cient revascularization and cellular invasion from the 
surrounding host tissue after graft transplantation (Oest et al.  2007  ) . The limited 
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revascularization and remodelling ability of allografts account for graft failure 
rates of 25% and complication rates of 30–60% (Cacchioli et al.  2006 ; Oest et al. 
 2007  ) . The “Ilizarov technique” aims to circumvent these graft and integration 
related issues. It is based on osteotomies combined with bone distraction and is 
successfully applied to treat large bone defects, infected non-unions and limb length 
discrepancy (Cierny and Zorn  1994  ) . However, this approach is long-lasting, 
inconvenient for the patient (Goldstrohm et al.  1984 ; Ilizarov  1989  )  and recurrent 
pin track infections and pin loosening are common complications (Lindsey et al. 
 2006 ; Gugala et al.  2007  ) .  

 To avoid the limitations related to the current standard treatments, research 
interest has recently focused on the use of naturally derived or synthetic bone graft 
substitutes, and the concept of tissue engineering has emerged as an important 
alternative approach to regenerate compromised bone. Tissue engineering unites 
facets of cellular biology, biomechanical engineering, biomaterial sciences and trauma 
and orthopaedic surgery. It involves the association of cells and/or growth factors 
with a natural or synthetic scaffold to produce an implantable, three-dimensional 
construct to support regeneration. 

 To simulate human  in vivo  conditions and to assess the effects of bone grafts and 
tissue engineered constructs various large animal models have been developed. 
Most models, however, are not well described, de fi ned, or standardized, and provide 
only rudimentary information on the process of model establishment.  

  Fig. 40.1    Autologous, cancellous bone graft ( a ) harvested from the iliac crest ( b ) was used to 
reconstruct a 3 cm critical sized defect in an ovine tibia ( c ,  d ) Defects were stabilized with a 
4.5 mm broad dynamic compression plate (Synthes). Twelve weeks after surgery, new bone forma-
tion had resulted in solid bony union ( e )       
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    40.2   De fi nition of a Critical-Sized Bone Defect 

 Experimentally in fl icted osseous injuries to study bone repair are postulated to be 
of dimensions to preclude spontaneous healing (Einhorn  1999  ) . Therefore, the 
non-regenerative threshold of bone was determined in a variety of research animal 
models. Critical-sized defects can be de fi ned as “the smallest size intraosseous 
wound in a particular bone and species of animal that will not heal spontaneously 
during the lifetime of the animal” (Gugala and Gogolewski  1999 ; Rimondini et al. 
 2005 ; Cacchioli et al.  2006  )  or as a defect which shows less than 10% bony regen-
eration during the lifetime of an animal (Gugala and Gogolewski  1999  ) . 

 The minimum size that de fi nes a defect as “critical” is not well understood. 
Nevertheless, it has been described as a segmental bone de fi ciency exceeding 2–2.5 
times the diameter of the affected bone (Lindsey et al.  2006 ; Gugala et al.  2007  ) . 
However, defect healing also depends on the species’ phylogenetic scale, anatomic 
defect location, associated soft tissue, and biomechanical conditions in the affected 
limb as well as age, metabolic and systemic conditions, and related co-morbidities 
(Lindsey et al.  2006 ; Rimondini et al.  2005  ) .  

    40.3   Large Animal Models in Bone Defect Research 

 Animal models in bone repair research include models of normal fracture healing, 
segmental bone defects, and non-unions. With non-unions regular healing processes 
are compromised in absence of a critical-sized defect site (Tseng et al.  2008  ) . De fi cient 
signalling mechanisms, biomechanical stimuli or cellular responses prevent defect 
healing. Critical-sized segmental defects, however, do not bridge despite a suf fi cient 
biological microenvironment due to the loss of critical amounts of bone substance. 

 The selection of a speci fi c animal species as a model system requires consider-
ation of multiple factors. The chosen animal model should clearly demonstrate close 
physiological and pathophysiological analogies with humans regarding the scienti fi c 
question under investigation. Moreover, it must be manageable to operate and 
observe a multiplicity of study objects over a relatively short period of time 
(Schimandle and Boden  1994 ; Liebschner  2004 ; Egermann et al.  2005  ) . Further 
selection criteria include costs for acquisition and care, animal availability, accept-
ability to society, tolerance to captivity and ease of housing (Pearce et al.  2007  ) . 

    40.3.1   Dogs 

 A number of publications have described dogs as a suitable model for research 
related to human orthopaedic conditions (Martini et al.  2001  ) . In regards to bone 
weight, density and bone material constituents such as hydroxyproline, extractable 
proteins, IGF-1 content, organic, inorganic and water fraction, dogs are the closest 
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to humans although clear differences in bone microstructure and remodelling have 
been described (Gong et al.  1964 ; Aerssens et al.  1998  ) . While the secondary struc-
ture of human bone is predominantly organized in osteones, the osteonal bone struc-
ture in dogs is limited to the core of cortical bone, whereas in areas adjoining the 
periosteum and endosteum mainly laminar bone is found as characteristic for large, 
fast-growing animals (Wang et al.  1998  ) . It has been reported that generally, higher 
rates of trabecular and cortical bone turnover can be observed in dogs compared 
to humans (Bloebaum et al.  1993  )  and differences in loads acting on the bone as 
a result of the dog’s quadrupedal gait must be taken into consideration as well. 
A review article by Neyt states that between 1991 and 1995 11% of musculoskeletal 
research was undertaken in dogs, results that are con fi rmed by Martini et al. who 
 fi nd that between 1970 and 2001 9% of orthopaedic and trauma related research 
used dogs as animal models for orthopaedic and trauma related research (Neyt et al. 
 1998 ; Martini et al.  2001  ) . Recently, the use of dogs as experimental models has 
signi fi cantly decreased mainly due to ethical issues (O’Loughlin et al.  2008  ) .  

    40.3.2   Sheep and Goats 

 Mature sheep and goats possess a bodyweight comparable to adult humans and 
long bone dimensions enabling the use of human implants (Newman et al.  1995  ) . 
The mechanical loading environment in sheep is well understood. The loads, forces 
and moments acting within the hind limb bones, are approximately half of that 
determined for humans during normal walking (Taylor et al.  2005,   2006  ) . Since no 
major differences in mineral composition (Ravaglioli et al.  1996  )  are evident and 
both metabolic and bone remodelling rates are akin to humans (Anderson et al. 
 1999  ) , sheep are considered a valuable model for human bone turnover and remod-
elling activity (den Boer et al.  1999  ) . Bone histology, however, reveals some differ-
ences in bone structure between sheep and humans. In sheep, bone consists 
principally of primary bone (de Kleer  2006  )  in contrast to the largely secondary, 
haversian bone composition in humans (Eitel et al.  1981  ) ; furthermore, secondary, 
osteonal remodelling in sheep does not take place until an average age of 7–9 years 
(Newman et al.  1995  ) . A signi fi cantly higher trabecular bone density and greater 
bone strength was described for mature sheep when compared to humans, the tra-
becular bone in immature sheep, however, is weaker, has a lower stiffness and 
density, a higher  fl exibility (higher collagen content) (Nafei et al.  2000  ) , and shows 
a comparable bone healing potential and tibial blood supply (Dai et al.  2005  ) .  

    40.3.3   Pigs 

 In a variety of study designs, pigs are considered the animal of choice and were – 
despite their denser trabecular network (Mosekilde et al.  1993  )  – described as a 
highly representative model of human bone regeneration processes in respect to 
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anatomical and morphological features, healing capacity and remodelling, bone 
mineral density and concentration (Aerssens et al.  1998 ; Thorwarth et al.  2005  ) . 
However, pigs are often neglected in favour of sheep and goats as the handling of pigs 
is rather intricate (Newman et al.  1995  ) . Furthermore, the short length of the tibiae and 
femora in pigs may bring about the need for special bone/fracture  fi xation devices, as 
implants designed for humans cannot be used. For studies assessing orthopaedic 
knee and hip implants, however, pigs or pig bones are considered a standard model.   

    40.4   Femoral Fracture Models 

    40.4.1   Sheep and Goats 

 With the objective to develop a single-channel telemetric intramedullary nail that 
measures anterior-posterior bending strains and to determine whether these forces 
decrease sigmoidally when normalized to the ground reaction force during fracture 
healing, Wilson et al.  (  2009  )  stabilized a transverse mid-shaft femoral osteotomy 
(1 mm) using a customized TriGen intramedullary nail incorporating a strain gauge 
in the anterior–posterior plane. Fourteen skeletally mature sheep (2–3 years old) 
were treated in two pilot studies (n = 3/pilot) and a pivotal study (n = 8). Three ani-
mals, however, had to be excluded. Static strain measurements were acquired at 
approximately 130 Hz during leg stance.  In vivo  gait analysis was carried out weekly 
to assess ground reaction forces and fortnightly x-rays to assess stability and fracture 
healing. Animals were euthanized 12 weeks postoperatively. Callus formation was 
assessed by microcomputed tomography and histomorphometry. The degree of load 
shared between bone and the nail was determined post mortem by three-point bend-
ing. Study results indicated a signi fi cant preload generated during implantation, most 
notably during placement of the four interlocking screws and by the action of attached 
soft tissues. Eight animals showed evidence of bone healing by x-ray, microcom-
puted tomography, and histology. However, a reduction in implant load was only 
observed with two of the eight. The degree of load sharing observed  in vivo  in these 
animals (50–75%) compared favourably with  in vitro  observations (approximately 
50%). In the non-healing ambulating animals, nail forces did not change over time. 
Three-point bending tests carried out on “healed” femora suggested that load sharing 
between the bone and nail could be detected more easily in the absence of soft tis-
sues. No clear correlation between implant strain and fracture healing was observed 
using the single-channel system when subjected to one external loading regime (leg 
stance phase). However,  ex vivo  biomechanical testing demonstrated that load share 
changes could be detected when loads were directly applied to the bone in the absence 
of muscle and ligament forces. It was concluded that these data emphasize the need 
to fully characterize the complex biomechanical environment of the limb to deter-
mine the load changes resulting from fracture healing. 
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 Gray et al. conducted as study to compare the physiologic effects of external 
femoral  fi xation with those of intramedullary stabilization over the  fi rst 24 h after 
femoral fracture (Gray et al.  2009  ) . Under terminal anaesthesia, bilateral high-
energy femoral fractures and hypovolemic shock were produced using a pneumatic 
actuator. Twenty-four sheep were randomized into four groups and monitored for 
24 h. Group 1 – control, Group 2 – trauma only, Group 3 – trauma and external 
 fi xation, and Group 4 – trauma and reamed intramedullary nailing. Outcome mea-
sures included the pulmonary embolic load (transesophageal echocardiography), 
metabolic base excess, plasma coagulation markers, and polymorphonuclear cell 
counts obtained from bronchoalveolar lavage samples. It was found that the total 
embolic load was signi fi cantly higher in the intramedullary nailing group. All 
trauma groups had a signi fi cant increase in prothrombin times with a fall in anti-
thrombin III and  fi brinogen levels. However, the type of fracture stabilization used 
did not signi fi cantly affect any of the other outcome measurements. 

 Another study using an ovine femoral fracture model assessed the in fl uence of 
driving speed and revolution rate per minute of two reamers on femoral intramedul-
lary pressure increases and fat intravasation (Mousavi et al.  2002  ) . The AO and 
Howmedica reamers were tested in four groups with different combinations of driv-
ing speed and revolution rate per minute in both femora in a sheep model. The 24 
animals were exposed to hemorrhagic shock after mid-shaft osteotomy and were 
resuscitated before reaming of both femoral shafts. Controlled reaming was per-
formed at 15 and 50 mm/s driving speed with 150 and 450 rpm. Transesophageal 
echocardiography, Gurd tests, and a piezoelectric gauge measured fat intravasation 
and the intramedullary pressure. Low driving speed and high revolutions per minute 
with the smaller cored reamer led to lower intramedullary pressure changes. The 
same reaming parameters led to greater pulmonary stress during surgery of the sec-
ond side. The authors summarized that reaming with a smaller cored reamer and 
modi fi ed reaming parameters leads to a lower increase in intramedullary pressure 
and reduces the amount of fat intravasation. Primary reamed intramedullary nailing 
should therefore be done after resuscitation at a low driving speed and high revolu-
tions per minute with a smaller cored reamer to minimize the risk of pulmonary 
dysfunction. 

 The role and long-term degradation kinetics of synthetic polymers used for frac-
ture  fi xation is still unclear. Therefore, van der Elst et al. initiated a research project 
to investigate biodegradable interlocking nails in a long-term setting (van der Elst 
et al.  1999  ) . In 21 female sheep a complete mid-shaft osteotomy of the left femur was 
performed to mimic a fracture of the femoral shaft. For  fi xation, an intramedullary 
stainless-steel interlocking nail, a PLA rod or a PLA/PGA rod was used. Thirty 
months after implantation the histological sections of all groups were examined. 
In contrast to most reports the degradation rate of both polymers was much slower 
than suggested by the manufacturer (24 months). The response of the surrounding 
tissue was more pronounced than anticipated. It was summarised that this foreign 
body reaction together with the slow degradation kinetics of the polymers may imply 
certain risks for device rejection and may negatively in fl uence clinical outcomes. 
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 A minimally invasive approach to create a multifragmental fracture in the sheep 
femur (classi fi cation by the Association for the Study of Internal Fixation, AO type 
32-C), in which the bone was weakened by two short, transverse anterior osteoto-
mies and bi-cortical drill holes created through small incisions, has recently been 
described by Wullschleger et al. The insertion of two chisels and one blade bar were 
then used to initiate cracks connecting both the osteotomies and the drill holes, 
thereby creating a standardized multifragmental fracture. A minimally invasive 
approach for fracture  fi xation (MIPO) was compared to the traditional open approach 
(n = 8). In both groups, fractures were stabilized with a 4.5 mm narrow 7-hole 
LC-LCP (Synthes) (unpublished data).  

    40.4.2   Dogs 

 The dog is one of the most frequently used large animal species for musculoskeletal 
and dental research (Neyt et al.  1998 ; Martini et al.  2001  ) . The use of dogs as 
research animals varies greatly depending on the societal acceptance. In the 1980s, 
a number of biomaterials were tested in canine models for their suitability to serve 
as stabilization systems of femoral fractures. Kettunen et al. used a femoral fracture 
model in dogs to test the stability of newly developed carbon  fi bre-reinforced liquid 
crystalline polymers (LCF/CF) (Kettunen et al.  1999  ) . They have operated 14 
Beagle dogs with a follow up of 1 and 2 years, respectively. The osteotomy healed 
with a strong callus formation in all dogs after 12 weeks and there was no signi fi cant 
loss of length in the femur compared to the contralateral control femur. The implants 
fabricated from carbon  fi bre-reinforced liquid crystalline polymer showed suf fi cient 
mechanical properties and biocompatibility for intramedullary use in load-bearing 
applications in the 2-year follow-up. 

 The effects and applicability of an intramedullary self-reinforced polyglycolic 
acid, a self-reinforced poly- l -lactic acid and a metallic rod in the  fi xation of grow-
ing bones in a femoral shaft osteotomy were analysed by Miettinen et al.  (  1992  ) . 
Fifteen beagle dogs, 12 weeks of age, were used. In all animals a solid union of the 
osteotomy without secondary displacement was seen radiographically 6 weeks after 
surgery. None of the three different biomaterials used in this experiment caused a 
signi fi cant disturbance to the longitudinal growth of the operated femur. Jockisch 
et al. evaluated a 30% chopped-carbon- fi ber-reinforced poly(etheretherketone) 
(CFRPEEK) as a potential material for the use as a fracture  fi xation plate (Jockisch 
et al.  1992  ) . The plates were implanted as internal  fi xation devices for femoral mid-
shaft osteotomies in ten beagle dogs for 8 and 16 weeks. They were effective in 
promoting fracture healing; however, a non-speci fi c foreign body reaction to the 
plates was observed. The use of short carbon  fi bre reinforced thermoplastic plates 
for internal  fi xation of canine femoral transverse mid-shaft fractures was tested by 
Gillett et al.  (  1985  ) . After 8 and 12 weeks, they noted a moderate in fl ammatory 
reaction while the material allowed suf fi cient support for the healing fracture without 
preventing the remodelling process.  
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    40.4.3   Pigs 

 The surgical treatment of fracture models or bone defects of the femur in pigs is 
rather dif fi cult due to extensive soft tissue coverage and it’s short length. Therefore, 
most studies focus on the metaphyseal area of the pig femur or the knee joint 
(Jiang et al.  2007 ; Gotterbarm et al.  2008  ) . Kleinmann et al. analysed the image 
optimization and dose reduction with computed radiography for the detection of 
simulated in fl icted metaphyseal fractures in a fetal pig model (Kleinman et al. 
 2008  ) . They suggest that computed radiography can replace screen- fi lm imaging 
in the detection of classic metaphyseal fractures and may permit dose reduction.   

    40.5   Femoral Segmental Defect Models 

    40.5.1   Sheep and Goats 

 A mid-diaphyseal, 2.5 cm long osteoperiosteal segmental defect stabilized by plate 
 fi xation was created in the right femur of 17 sheep (Gerhart et al.  1993  ) . Four treat-
ment groups were included: Group I, no implant; Group II, inactive bone matrix; 
Group III, recombinant human bone morphogenetic protein (rhBMP-2) mixed with 
inactive bone matrix; and Group IV, autologous bone graft. Three animals had early 
failure of  fi xation, and the remaining 14 were evaluated at 3 months after implanta-
tion. Radiographs showed bony union of all defects treated with rhBMP-2 (six) and 
a lack of bony union in the negative-control groups treated with no implant (three) 
and inactive bone matrix without BMP (three). Both defects treated with autograft 
healed. New bone formation in the defect sites treated with rhBMP-2  fi rst appeared 
1 month after implantation and had a mean bending strength (expressed as a per-
centage of the contralateral femur) of 91% ± 59% (mean ± standard deviation) for 
defects treated with BMP-2, 77% ± 34% for autograft, 9% ± 8% for no implant, and 
11% ± 7% for inactive matrix without BMP. Three sheep treated with rhBMP-2 had 
their  fi xation plates removed at 4 months and were followed for 1 year. Their bone 
defect sites remained solidly healed 1 year after the initial operation. 

 Mid-diaphyseal 2.5 cm segmental defects in the right femora of 12 sheep were 
stabilized with stainless steel plates and treated with (1) 2 mg rhBMP-2 and poly[ D , l -
(lactide-co-glycolide)] bioerodible polymer with autologous blood (n = 7), (2) 4 mg 
rhBMP-2 and poly[ d , l -(lactide-co-glycolide)] and blood (n = 3), or (3) poly[ d , l -
(lactide-co-glycolide)] and blood only (n = 2) (Kirker-Head et al.  1998  ) . Bone heal-
ing was evaluated for 1 year using clinical, radiographic, gross pathological and 
histological techniques. Union occurred in three sheep in Group 1, two in Group 2, 
and none in Group 3. In healing defects, new bone was  fi rst visible radiographically 
between weeks two and six after implantation; new bone mineral content equalled 
that of the intact femur not surgically treated by week 16; recanalization of the 
medullary cavity approached completion at week 52; and at necropsy the surgically 
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treated femora were rigidly healed, the poly[ d , l -(lactide-co-glycolide)] was 
resorbed completely, and woven and lamellar bone bridged the defect site. In 
two Group 1 sheep euthanized at weeks two and six, polymer particles were perme-
ated by occasional multinucleated giant cells. Some plasma cells, lymphocytes, and 
neutrophils were present locally. The poly[ d , l -(lactide-co-glycolide)] tended to 
fragment during surgical implantation. Despite these observations, the recombinant 
human bone morphogenetic protein 2/poly[ d , l -(lactide-co-glycolide)] implant was 
able to heal large segmental bone defects in this model. 

 Zhu et al. tissue engineered bone using osteogenically induced MSCs (Zhu et al. 
 2006  )  isolated from bone marrow aspirates. Coral based scaffolds were used to 
facilitate cell administration. A 25 mm long defect was created in the mid-diaphy-
seal region of the right femur in a total of 20 goats and  fi xed using an intramedullary 
nail. Control animals received coral cylinders only (n = 10). In the experimental 
group, bony union was observed radiographically at 4 months, and engineered 
bone was further remodelled into cortical bone at 8 months. H&E staining demon-
strated that trabecular bone at 4 months and irregular osteon formation at 8 months. 
In respect to bending strength and stiffness, the tissue-engineered bone was not 
signi fi cantly different from the contralateral paired control (p > 0.05). In contrast, 
the coral cylinders of the control group showed considerably less bone formation. 
Almost complete resorption of the carrier had occurred after 2 months; only a 
small amount of residual coral particles surrounded by  fi brous tissue was evident 
at 4 months whereas the residues had disappeared at 8 months. 

 In a follow up study, the feasibility to use bone marrow stromal cells (BMSCs) 
infected with an adenoviral vector containing the BMP-7 gene (AdBMP7) to 
enhance bone regeneration was investigated. Defects were reconstructed with 
AdBMP7-infected BMSCs/coral or non-infected BMSCs/coral. The results sug-
gested that cellular overexpression of BMP-7 additionally stimulates bone healing 
(Zhu et al.  2010  ) . 

 A recently proposed one-stage bone transport surgical procedure exploits the 
intrinsic osteogenic potential of the periosteum while providing mechanical stability 
through intramedullary nailing. Knothe Tate et al. therefore assessed the ef fi cacy of 
this technique to bridge long bone defects in a single stage (Knothe Tate et al.  2007  ) . 
With use of an ovine femoral model, an  in situ  periosteal sleeve was elevated 
circumferentially from healthy diaphyseal bone, which was osteotomized and trans-
ported over an intramedullary nail into a 2.54 cm critical-sized diaphyseal defect. 
The defect bridging and bone regenerating capacity of the procedure were tested in 
 fi ve groups of seven animals each, which were de fi ned by the absence (Group 1; 
control) or presence of the periosteal sleeve alone (Group 2), bone graft within the 
periosteal sleeve (Groups 3 and 5), as well as retention of adherent, vascularized 
cortical bone chips on the periosteal sleeve with or without bone graft (Groups 4 and 5). 
The ef fi cacy of the procedure was assessed qualitatively and quantitatively. At 16 
weeks, osseous bridging of the defect was observed in all 28 experimental sheep in 
which the periosteal sleeve was retained; the defect persisted in the remaining seven 
control sheep. Among the experimental Groups 2–5, signi fi cant differences were 
observed in the density of the regenerated bone tissue; the two groups in which 



103340 Preclinical Animal Models for Segmental Bone Defect Research…

vascularized bone chips adhered to the inner surface of the periosteal sleeve (Groups 
4 and 5) showed a higher mean bone density in the defect zone (p < 0.02) than the 
other groups. In these two groups with the highest bone density, the addition of bone 
graft was associated with a signi fi cantly lower callus density than that observed 
without bone graft (p < 0.05). The volume of regenerate bone (p < 0.02) was 
signi fi cantly greater in the groups in which the periosteal sleeve was retained than 
in the control group. Among the experimental groups (Groups 2–5), however, with 
the numbers studied, no signi fi cant differences in the volume of regenerate bone 
could be attributed to the inclusion of bone graft within the sleeve or to vascularized 
bone chips remaining adherent to the periosteum. The authors concluded that the 
novel surgical procedure was shown to be effective in bridging a critical-sized defect 
in an ovine femoral model. Vascularized bone chips adherent to the inner surface of 
the periosteal sleeve, without the addition of morselized cancellous bone graft within 
the sleeve, provide not only a comparable volume of regenerate bone and composite 
tissue (callus and bone) but also a superior density of regenerate bone compared to 
that after the addition of bone graft. 

 Using the same animal model, the authors furthermore tested the hypothesis 
that directional delivery of endogenous periosteal factors enhances bone defect 
healing (Knothe Tate et al.  2011  ) . Defects (n = 5 per group) were treated with an 
isotropic elastomeric silicone membrane, membrane plus bovine collagen, silicone 
with collagen and periosteal cells or silicone membranes combined with autolo-
gous periosteal strips. Micro-computed tomography showed that bone defects 
enveloped by a substitute periosteum exhibited superior bony bridging compared 
to those treated with isotropic silicone membrane controls. Greatest tissue genera-
tion and defect bridging was observed when autologous periosteal transplant strips 
were transplanted. In summary, the authors drew the conclusion that periosteum 
derived cells, besides other factors intrinsic to periosteum, play a key role for 
in fi lling of critical sized defects. 

 Currently available synthetic void  fi llers are indicated for bony voids or gaps 
that are not intrinsic to the stability of the structure. Jax TCP (tricalcium phos-
phate) is an osteoconductive bioceramic fabricated into 4 mm granules with a 
unique interlocking form, promoting structural integrity while allowing bone 
ingrowth. Field et al.  (  2009  )  conducted a study to assess bone ingrowth using a 
large, critically sized, femoral defect. A 5 cm segmental ostectomy was created 
in the mid-diaphysis of 16 adult ovine femora. A stainless steel intramedullary 
nail was introduced and locked with two proximal and two distal fully-threaded 
locking screws. Each defect was surrounded with a resorbable macroporous 
poly( l -lactide-co- d,l ) lactide mesh acting as graft containment. Treatment groups 
(n = 4) were as follows: (1) Empty defect; (2) Morselized cortical bone; (3) Cortical 
strut; (4) Jax TCP. Serial radiographs were taken postoperatively and at 2, 4 and 6 
months. Femora retrieved at necropsy (6 months) underwent computed tomogra-
phy for volumetric analysis followed by histological assessment of the biological 
response. Little bone was apparent in the empty defect group, whereas signi fi cant 
bone was evident in both autograft groups and the Jax TCP group. Three-
dimensional CT reconstructions and volumetric analysis were in close agreement 
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with the radiographic  fi ndings. Jax TCP bone graft substitute has been proven to be 
effective in the healing of a large, critically sized, contained segmental defect. The 
healing observed was superior to that of cortical struts and the new bone laid down 
had similar radio-opacity to autograft. 

 Lian et al. investigated the suitability of bone marrow stromal cells (BMSCs) 
transfected with an adenoviral vector containing the gene encoding for BMP-7 
(AdBMP7) to enhance bone regeneration in a critically sized femoral defect in the 
goat model (Lian et al.  2009  ) . The defects of 25 mm length were  fi lled with 
AdBMP7-infected BMSCs/coral (BMP-7 group) or non-infected BMSCs/coral 
(control group) implants, respectively, and stabilized with an internal interlocking 
IM nail. Bridging of the segmental defects was evaluated by monthly radiographs, 
and con fi rmed by biomechanical three point bending tests. Extensive callus forma-
tion was found in the BMP-7 group, and intramedullary nails could be removed 3 
months after implantation to allow the regenerated bone in the defect to remodel. 
In the control group, the nails were removed after 6 months. Biomechanical testing 
revealed restoration of the mechanical properties at 5 months in the BMP-7 group, 
however not until 8 months in the control group. 

 In yet another study, Nzair et al.  (  2009  )  evaluated a triphasic ceramic (calcium 
silicate, hydroxyapatite and tricalcium phosphate)-coated hydroxyapatite (HASi) as 
a bone substitute for the repair of segmental defects (2 cm) created in a goat femur 
model. Three experimental goat femur implant groups – (a) bare HASi, 
(b) osteogenicly induced goat bone marrow-derived mesenchymal stem cells cul-
tured HASi (HASi + C) and (c) osteogenicly induced goat bone marrow-derived 
mesenchymal stem cells cultured HASi + platelet rich plasma (HASi + CP) – were 
included and the in fl uence on defect healing was assessed. In all groups, the mate-
rial united with the host bone without any in fl ammation and an osseous callus 
formed around the implant. A remarkable difference between the groups appeared 
in the mid region of the defect. In bare HASi groups, numerous osteoblast-like cells 
could be seen together with parts of the biomaterial. However, in HASi + C and 
HASi + CP, about 60–70% of that area was occupied by woven bone. The intercon-
nected porous nature (50–500  m m), together with the chemical composition of the 
HASi, facilitated the degradation of HASi, thereby opening up void space allowing 
for cellular ingrowth and bone regeneration. The combination of HASi with cells 
and PRP was advantageous promoting the expression of osteoinductive proteins, 
leading to faster bone regeneration and material degradation. Based on these results, 
it was concluded that bare HASi can aid in bone regeneration but, with the combina-
tion of cells and PRP, the sequence of healing events occurs much faster in large 
segmental bone defects in weight-bearing areas in goats. However, the study 
included two animals per group only and no quantitative analysis of bone formation, 
mechanical properties and no statistical analysis were performed. 

 Bullens et al. studied whether a static or dynamic mode of nail  fi xation in fl uences 
the healing of segmental defect reconstructions in long bones. Femoral 3.5 cm 
defects were created in skeletally mature milk goats and reconstructed using a cage 
 fi lled with morselized allograft mixed with hydroxyapatite (Ostim). All defects 
were stabilised with intramedullary nails. The nails were either locked statically 
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(n = 6), or in a dynamic mode (n = 6). It was hypothesized that nail dynamisation 
would stimulate bone healing. The torsional strength determined after sacri fi ce and 
normalized to the contralateral femora was 74.8 ± 17.5% (static) and 73.0 ± 13.4% 
(dynamic) after 6 months. Overall, it was concluded that that defect healing medi-
ated by impacted morselized grafts in a cage is not signi fi cantly in fl uenced by the 
mode of nail  fi xation (Bullens et al.  2010  ) .  

    40.5.2   Dogs 

 A well established procedure for the treatment of defects in long bones is the 
Ilizarov technique (Ilizarov and Gracheva  1971  ) . Pablos et al. treated large seg-
mental femoral bone defects by bone transport with monolateral external distrac-
tors (de Pablos et al.  1994  ) . Segmental bone defects of 4–5 cm length were created 
in the femoral bone of  fi ve male mongrel dogs. The distraction was started at the 
day after surgery with a rate of 1 mm/day. Results were evaluated on the basis of 
radiography, computed tomographic (CT) and histologic analyses 20 days after 
surgery, at the end of distraction and 4-month postoperatively. After 4 months, 
there was newly formed bone tissue with an appearance similar to normal diaphy-
seal bone. The ef fi cacy of cylindrical titanium mesh cages (CTMC) for the recon-
struction of a critical sized segmental femoral defect in a canine model was 
analysed by Lindsey et al.  (  2006  ) . A 3 cm mid-diaphyseal segmental defect was 
created in the femur of 21 adult dogs and four experimental groups were included. 
The cylindric titanium mesh cage was packed and surrounded with a standard 
volume of morselized canine cancellous allograft and canine demineralised bone 
matrix. The limbs were stabilized using a reamed intramedullary nail. In three 
groups the defects were CTMC reconstructed and the follow up was 6, 12 and 18 
weeks. The defects in the control group were simply stabilized with the nail. With 
CTMC bone continuity was successfully restored. Takigami et al. focused on the 
effect by implantation of osteogenic protein-1 in addition to autogenous bone 
marrow cells in a canine femur defect model (Takigami et al.  2007  ) . Brodke et al. 
analyzed the healing ef fi cacy of demineralised bone and cancellous chips 
(DBM-CC) enriched with osteoprogenitor cells (Brodke et al.  2006  ) . All grafts 
were transplanted unilaterally in a 2.1 cm long osteoperiosteal critical-sized fem-
oral defect. The results demonstrated that SCR-enriched DBM-CC was equivalent 
to autografts.  

    40.5.3   Pigs 

 Critical-sized defects in the femoral bone of pigs are dif fi cult to establish and the 
number of publications working with such a model is accordingly low. Consequently, 
predominantly osteochondral defect models of the femoral condyles are described 
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in the literature. Kilian et al. analysed the cellular activity in the early phase of 
biodegradation and bone healing of bone substitutes loaded with platelet derived 
factors (PLF) (Kilian et al.  2007  ) . A cylindric bone defect of 8.9 mm diameter was 
created in the distal femur condyle of 20 miniature pigs. After 20 days, histomor-
phometry of new bone formation and of biodegradation of the hydroxyapatite 
material was performed. In summary, PLF stimulated HA degradation and showed 
a positive effect on osteogenesis in the early stage of bone healing. Schnettler et al. 
evaluated angiogenesis, bone formation, and bone ingrowth in response to osteoin-
ductive implants consisting of bovine-derived hydroxyapatite (HA) ceramics either 
uncoated or coated with basic  fi broblast growth factor (bFGF) in cylindrical sub-
chondral defects of the femur of 24 miniature pigs (Schnettler et al.  2003  ) . 
Fluorochrome labelled histological analysis, histomorphometry, and scanning 
electron microscopy were performed after 42 and 82 days. The results showed 
comparable results of bFGF-coated HA implants and autogenous grafts regarding 
angiogenesis, bone synthesis and bone ingrowth.   

    40.6   Tibial Fracture Models 

 Animal fracture models have been widely investigated to identify and further 
characterize physiological and pathophysiological processes of fracture healing 
of long bones. One of the most important elements in the study of fracture healing 
or  fi xation is the establishment of standardized methods to create reproducible 
fractures. Although a substantial number of articles on fracture models in animals 
and treatment options have been described over the last decades, only few publi-
cations describe the actual in fl iction of a fracture by trauma rather than the creation 
of a bony defect <3 mm size by osteotomy, which is generally accepted as an 
alternative since it is less problematic to standardize. 

    40.6.1   Sheep and Goats 

 As previously mentioned, mature sheep and goats possess a bodyweight similar to 
adult humans, show no major differences in bone mineral composition with similar 
metabolic and bone remodelling rates, and therefore are considered a valuable 
model for human bone turnover and remodelling activity often used in fracture 
research. In the period between 1990 and 2001, sheep as an animal model were used 
in 9–12% of orthopaedic research, compared to only 5% between 1980 and 1989 
(Martini et al.  2001  ) . Over the last 10 years numbers of studies utilizing sheep and 
goats as animal models have even increased to 11–15% (O’Loughlin et al.  2008  ) . 

 To compare the effects of reamed versus unreamed locked intramedullary nailing 
on cortical bone blood  fl ow Schemitsch et al. created a standardized spiral fracture 
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by three-point bending with torsion in a fractured sheep tibia model (Schemitsch 
et al.  1994,   1996  ) , a method also described by Tepic et al.  (  1997  )  to establish a 
standardized oblique fracture in sheep tibiae in order to compare healing in frac-
tures stabilized with either a conventional dynamic compression plate (DCP) or an 
internal point contact  fi xator (PC-Fix). 

 The signi fi cance of postoperative mechanical stability for bony repair of a 
comminuted fracture was investigated in a sheep study comparing four commonly 
applied operative methods of stabilizing fractures. In this study, a triple-wedge 
osteotomy of the right sheep tibia was used as a fracture model (Heitemeyer et al. 
 1990  ) . Using a standard osteotomy of the ovine tibia stabilised by an external 
skeletal  fi xator, Goodship et al. elucidated the in fl uence of  fi xator frame stiffness 
on bone healing rates (Goodship et al.  1993  ) . Wallace et al.  (  1995  )  used a similar 
model to investigate serum angiogenic factor levels after tibial fracture. Likewise, 
transverse mid-diaphyseal osteotomies with an interfragmentary gap of 3 mm, as 
an experimental fracture model in sheep, were used to assess fracture repair pro-
cesses (Augat et al.  1997,   2003 ; Schell et al.  2005 ; Epari et al.  2006  ) . To validate 
the principle of external  fi xation dynamization in order to accelerate mineralized 
callus formation by  in vivo  measurements of callus stiffness, transverse fractures 
with an interfragmentary gap of 3 mm width were created in the mid third of the 
tibial diaphysis (Hente et al.  1999  ) . Hantes et al. investigated the effect of tran-
sosseous application of low-intensity ultrasound on fracture healing in a mid-shaft 
osteotomy sheep model (Hantes et al.  2004  ) . Epari et al. were the  fi rst authors to 
report on the pressure, oxygen tension and temperature in the early phase of callus 
tissue formation of six Merino-mix sheep that underwent a tibial osteotomy to 
model fracture conditions (Epari et al.  2008  ) . In this study, the tibia was stabilized 
with a standard mono-lateral external  fi xator. It was found that the maximum 
pressure during gait increased from 3 to 7 days. During the same interval, there 
was no change in the peak ground reaction force or in the interfragmentary move-
ment. Oxygen tension in the haematoma was initially high post-op and decreased 
steadily over the  fi rst 5 days. The temperature increased over the  fi rst 4 days 
before reaching a plateau on day 4. 

 Mechanical strain during callus distraction is known to stimulate osteogenesis 
and it is so far unclear whether this stimulus can enhance the healing of a fracture 
without affecting bone length. Just recently, Claes et al., reported that a slow tempo-
rary distraction and compression of a diaphyseal osteotomy accelerates fracture 
healing (Claes et al.  2008  )  in a mid-diaphyseal osteotomy fracture model of the 
right tibia in sheep, stabilized by external  fi xation. 

 Lu et al. conducted a study to compare bone healing of tibial osteotomies stabi-
lized with an  fi xation system consisting of Nitinol wire braids and hardened steel 
rods combined with polymethylmethacrylate bone cement (Braid system) with an 
interlocking intramedullary (IM) nail  fi xation in an ovine model (Lu et al. 
 2009  ) (Fig.  40.2 ). For biomechanical  in vitro  studies, a middiaphyseal, transverse 
osteotomy was performed in the right tibia of adult female sheep. The bones were 
randomly assigned to the Braid system or IM nail (n = 5). The left tibiae were used 
as paired controls. The torsional stiffness of the constructs was determined, showed, 
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however, no signi fi cant difference. A following  in vivo  study in 12 sheep compared 
the mechanical properties of healing bone at 12 weeks. While the operative time for 
the Braid system group was signi fi cantly shorter than the IM nail group, no 
signi fi cant differences in maximum torque and torsional stiffness between IM nail 
and Braid system groups nor signi fi cant radiographic or histologic differences 
between the groups were found.  

 After bone fracture, a sequence of well orchestrated cellular events lead to the 
formation of different tissue types, which form the basis for the process of second-
ary bone healing. Although these tissues have been quanti fi ed by histology, their 
material properties are not well understood. Thus, Manjubala et al. tried to corre-
late the spatial and temporal variations in the mineral content and the nanoindenta-
tion modulus of the callus formed via intramembranous ossi fi cation over the course 
of bone healing (Manjubala et al.  2009  ) . Mid-shaft tibial samples from a sheep 
osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA 
embedded blocks were used for quantitative back scattered electron imaging and 
nanoindentation of the newly formed periosteal callus near the cortex. The result-
ing indentation modulus maps show the heterogeneity in the modulus in the 
selected regions of the callus. The indentation modulus of the embedded callus was 
about 6 GPa at the early stage. At later stages of mineralization, the average inden-
tation modulus reached 14 GPa. There was a slight decrease in average indentation 
modulus in regions distant to the cortex, probably due to remodelling of the periph-
eral callus. The spatial and temporal distribution of mineral content in the callus 
tissue also illustrated the ongoing remodelling processes observed by histological 
analysis. Most interestingly the average indentation modulus, even at 9 weeks, 

  Fig. 40.2    Transverse tibial osteotomy in a sheep tibia stabilized with a intramedullary nail and 
two locking screws each proximally and distally 0, 2, 4, 8, and 12 weeks after surgery       
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remained as low as 13 GPa, which amounts for about 60% of the modulus for corti-
cal sheep bone. The decreased indentation modulus in the callus compared to cortex 
was attributed to the lower average mineral content and to the properties of the 
organic matrix, which differ from normal bone. 

 Starr et al. assessed the effects of hemorrhagic shock on fracture healing in a 
closed large animal fracture model (Starr et al.  2002  ) . Standardized bilateral closed 
mid-shaft tibia fractures were created in eight skeletally mature male goats. The 
goats were randomized to a hemorrhage, shock and resuscitation group (shock 
group), or a control group. Hemorrhagic shock was induced in the four goats of the 
shock group. The shock state was maintained for 30 min. The remaining four goats 
were used as a control group. All fractures were stabilized with a standardized 
external  fi xator. One goat of the shock group became agitated upon emergence 
from anaesthesia and dislodged two of his external  fi xator pins. This animal was 
not included in any further analyses. One goat that would have been entered into 
the control group was then switched to the shock group, leaving four goats in the 
shock group and three in the control group. One goat in the shock group developed 
a non-union of the left tibia fracture. This non-union occurred because of pin loos-
ening in the distal tibia. The non-united bone was excluded from further analysis. 
Hemorrhage uniformly resulted in shock. Radiographic analysis however showed 
no apparent differences in healing between groups. With the exception of the non-
union, all tibiae were healing uneventfully, resulting in radiographic unions. 
Biomechanical testing showed no statistical difference between the shock and con-
trol groups in regards to maximum torque (p = 0.95), stiffness (p = 0.64), and energy 
absorbed at failure (p = 0.91). Histomorphologic results revealed no differences 
between groups. Shock did not appear to in fl uence bone formation rate or callus 
remodelling. No evidence of osteocyte necrosis was observed. Therefore, it was 
concluded that transient haemorrhagic shock does not adversely affect closed tibia 
fracture healing in a goat model. 

 As little is known about the effectiveness of osteoinductive proteins such as 
osteogenic protein-1 (OP-1) in stimulating fracture healing, Blokhuis et al. inves-
tigated the biomechanical and histological aspects of fracture healing after an 
injection of OP-1 into a fracture gap (Blokhuis et al.  2001  ) . A closed fracture was 
created in the left tibia of 40 goats and stabilized with an external  fi xator. The 
animals were assigned to four different groups: no injection, injection of 1 mg 
OP-1, injection of 1 mg OP-1 with collagenous carrier material, and injection of 
carrier material alone. Twenty-one animals were sacri fi ced after 2 weeks and 19 
after 4 weeks. Biomechanical testing was perfomed on both explanted tibiae. Four 
longitudinal samples of the fracture were sawn, processed for histology, and 
examined by two observers. Biomechanical evaluation showed a higher stiffness 
and strength at 2 weeks after injection of OP-1. Histological evaluation showed 
normal fracture healing patterns in all animals without adverse effects of the given 
injections. It was concluded that fracture healing can be accelerated with a single 
injection of OP-1, eventually resulting in normal bone healing. 

 In a similar study, Welch et al. studied the effects of rhBMP-2 in an absorbable 
collagen sponge (ACS) on bone healing in a large animal tibial fracture model 
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(Welch et al.  1998  ) . Bilateral closed tibial fractures were created in 16 skeletally 
mature goats and reduced and stabilized using external  fi xation. In each animal, one 
tibia received the study device (0.86 mg of rhBMP-2/ACS or buffer/ACS), the con-
tralateral fracture served as control. The device was implanted as a folded onlay or 
wrapped circumferentially around the fracture. Six weeks following fracture, the 
animals were sacri fi ced and the tibiae harvested for torsional testing and histomor-
phologic evaluation. Radiographs indicated increased callus formation at 3 weeks in 
the rhBMP-2/ACS treated tibiae. At 6 weeks, the rhBMP-2/ACS wrapped fractures 
had superior radiographic healing scores compared with buffer groups and controls. 
The rhBMP-2/ACS produced a signi fi cant increase in torsional toughness (p = 0.02), 
and trends of increased torsional strength and stiffness (p = 0.09) compared with 
fracture controls. The device placed in a wrapped fashion around the fracture 
produced signi fi cantly tougher callus (p = 0.02) compared with the onlay applica-
tion. Total callus new bone volume was signi fi cantly increased (p = 0.02) in the 
rhBMP-2/ACS fractures compared with buffer groups and controls regardless of the 
method of device application. The rhBMP-2/ACS did not alter the timing of onset 
of periosteal/endosteal callus formation compared with controls. Neither the mineral 
apposition rates nor bone formation rates were affected by rhBMP-2/ACS treat-
ment. The increased callus volume associated with rhBMP-2 treatment produced 
only moderate increases in strength and stiffness. 

 To investigate the effect of the Reamer/Irrigator/Aspirator (RIA, Synthes) when 
nailing intramedullary, Klein et al. operated on 16 adult Swiss mountain sheep, in 
which a tibial fracture was induced (Klein et al.  2010  ) . The fractures were stabilized 
with a static interlocking nail using an AO/ASIF 9.5 mm nail trans fi xed with 3.9 mm 
interlocking screws after using a 11 mm RIA. Non-reamed fractures were stabilized 
with a 7.5 mm nail (n = 8 per group). 

 After the fracture and nailing procedure intravital staining with Procion red was 
performed. The effects of the nailing technique on cortical perfusion (Procion red) 
were evaluated in polymer embedded sections and cryosections. Cryosections 
stained with Sudan III were assessed with respect to cortical fat distribution. After 
irrigation and suction minute amounts of fat were observed in the cortex, whereas 
after non-reamed nailing the endosteal third of the cortical bone was penetrated with 
fat. Non-reamed nailing acutely showed better perfusion in the endosteal tenth and 
periosteal third of the cortical bone. After irrigation and suction reaming perfusion 
was preserved to a lesser degree. The authors concluded that the RIA is as ef fi cient 
as its predecessors as the irrigation and suction signi fi cantly reduces fat intravasa-
tion, and thus the danger of system-wide damage.  

    40.6.2   Dogs 

 In 1988, Macdonald et al. (Skirving et al.  1987 ; Macdonald et al.  1988  )  reported a 
device for the reproducible creation of transverse fractures in canine tibiae utilizing 
a three-point bending technique. Fracture models of osteotomized long bones have 
been well characterized over the years in different large animal species. A number 
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of publications have described fracture models in dogs since the dog, beside pigs, is 
considered the most closely related model for research of human orthopaedic condi-
tions. The effect of bending stiffness of external  fi xators on the early healing of 
transverse tibial osteotomies was described in a canine model by Gilbert (Gilbert 
et al.  1989  ) . Tiedemann et al. assessed densitometric approaches to measure frac-
ture healing in 6-mm tibial segmental defects and single-cut osteotomy defects in 
adult mongrel dogs (Tiedeman et al.  1990  ) . Bilateral tibial transverse osteotomies 
were performed with a 2 mm gap by Markel et al. to quantify local material proper-
ties of fracture callus during gap healing (Markel et al.  1990  ) . To compare the 
dosage-dependent ef fi cacy of rhBMP-2 on tibial osteotomy healing, adult female 
dogs underwent right mid-shaft osteotomies with a 1 mm gap. The operated bones 
were stabilized using external  fi xators (Faria et al.  2007  ) . In a similar study by 
Edwards, bilateral tibial osteotomies were performed to evaluate the capacity of a 
single percutaneous injection of rhBMP-2 delivered in a rapidly resorbable calcium 
phosphate paste (alpha-BSM) to accelerate bone healing (Edwards et al.  2004  ) . The 
effect of shock wave therapy on acute tibial fractures was studied by Wang et al. in 
adult dogs after creation of bilateral tibial osteotomies with a 3 mm de fi ned fracture 
gap (Wang et al.  2001  ) . Similar models were also described by Hupel to compare 
the effects of unreamed and reamed nail insertion (Hupel et al.  2001  ) , Jain et al. 
 (  1999  )  to investigate whether or not the limited contact design of the low-contact 
dynamic compression plate (LC-DCP) provides advantages over the dynamic com-
pression plate (DCP) in the context of cortical bone blood  fl ow, biomechanical 
properties, and remodelling of bone in segmental tibial fractures and Nakamura 
(Nakamura et al.  1998  )  to evaluate effects of recombinant human basic  fi broblast 
growth factor (bFGF) on fracture healing in beagle dogs.  

    40.6.3   Pigs 

 Pigs are reported as the subject of choice in a variety of studies of bone remodelling, 
including osteonecrosis of the femoral head, cartilage defects, fractures, and studies 
evaluating new implant designs (Buser et al.  1991 ; Sun et al.  1999  ) . The in fl uence 
of systemic growth hormone application to stimulate bone metabolism and the 
underlying cellular mechanisms of fracture healing were analysed by Bail et al. 
 (  2002  ) . A standardized osteotomy of 1 cm length was performed in the right tibia of 
Yucatan micropigs using an oscillating saw. The defect was stabilized with a low 
contact dynamic compression plate (LC-DCP) and the animals were divided into 
two groups. Animals in the treatment group received a single daily subcutaneously 
injection of 100  m g of recombinant species-speci fi c growth hormone per kg body 
weight over 42 days, while the control group received sodium chloride as a placebo. 
The quantitative computer tomography measurement showed a signi fi cant higher 
bone mineral content in the growth hormone group than in the placebo group. The 
bone mineral density was comparable in both groups, whereas the torsional stiffness 
and the torsional failure load were higher in the growth hormone group compared to 
the control group. Hill and Watkins developed a model of ballistic wounds in the 
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proximal tibia of pigs (   Hill and Watkins  2001  ) . They could show that osteomyelitis 
can be prevented by the administration of systemic antibiotics, commencing at up to 
6 h after surgery.   

    40.7   Tibial Segmental Defect Models 

    40.7.1   Sheep and Goats 

 In order to ascertain whether newly developed bone graft substitutes or tissue 
engineered constructs (TEC) comply with the requirements of biocompatibility, 
mechanical stability and safety, the materials must be subject to rigorous testing 
both  in vitro  and  in vivo . To extrapolate results from  in vitro  studies to  in vivo  patient 
situations however is often dif fi cult. Therefore, the application and systematic eval-
uation of new concepts in animal models is often an essential step in the process of 
assessing newly developed bone grafts prior to clinical use in humans. To simulate 
human  in vivo  conditions as closely as possible, a variety of large critical sized tibial 
defect models – mainly in sheep – have been developed over the past decade in 
order to investigate the in fl uence of different types of bone grafts on bone repair and 
regeneration (Fig.  40.3 ). Critical sized segmental defects in long bones are usually 
de fi ned by multiplying the shaft diameter by 2.0–2.5 (Lindsey et al.  2006 ; Gugala 
et al.  2007  ) . Interestingly, the method of producing the gap may in fl uence the out-
come of those studies. Kuttenberger et al. could show that by using a CO 

2
 -laser, the 

osteotomy ends were not as impaired in structure as when using an oscillating saw 
(Kuttenberger et al.  2008  ) .  

 To evaluate the effects of different bioceramics on bone regeneration during 
repair of segmental bone defects Gao et al.  (  1997  )  implanted biocoral and trical-
cium phosphate cylinders (TCP) in sheep tibial defects of 16 mm length. The defects 
were stabilized medially using two overlapping contoured auto-compression plates 
of 4 mm thickness (eight and six holes) and cortical screws. When compared to 
TCP, with the biocoral implants, a signi fi cant increase in external callus and density 
was seen after 3 weeks and an increase of torque capacity, maximal angle of defor-
mation and energy absorption could be measured after 12 weeks while microscopi-
cally osseointegration appeared better. However, in his study, Gao used both male 
and female animals with a relatively large variation in body weight. Both factors, 
gender and body weight are known to have an in fl uence on bone regeneration 
due to effects both on the biomechanical environment and hormonal feedback 
control mechanisms. Hence, variations in sex and body weight should be avoided. 
The defect  fi xation method used in this study can most likely be interpreted as a 
means to countervail bending forces on the implant after earlier failures. However, 
defect  fi xation by overlapping plates is not necessarily  lege artis  and has never been 
introduced and applied clinically to our knowledge. Therefore, a thicker and hence, 
stiffer plate should be chosen instead. 
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 Den Boer et al. reported a new segmental bone defect model where a 30 mm 
segmental defect was in fl icted on sheep tibiae and stabilized by an interlocking 
intramedullary nail (custom made AO unreamed humeral nail). X-ray absorptiom-
etry was applied to quantify healing (den Boer et al.  1999  ) . Groups of this pilot 
study included untreated controls and autograft. After 12 weeks, despite higher 
bone mineral density in the autograft group, no signi fi cant difference in torsional 
strength and stiffness could be revealed. Since 33% of the control animals showed 
suf fi cient bridging of the defect, it needs to be questioned if the authors succeeded 
in establishing a reliable non-union model. Removal of the periosteum or a larger 
defect site might have been bene fi cial. In a subsequent study, the authors described 
the fabrication of biosynthetic bone grafts and their application in the very same 
animal model (den Boer et al.  2003  ) . The  fi ve treatment groups included empty 
controls, autografts, hydroxyapatite alone, hydroxyapatite combined with rhOP-1, 
and hydroxyapatite with autologous bone marrow. At 12 weeks, healing of the 
defect was evaluated radiographically, biomechanically and histologically and 
revealed that torsional strength and stiffness were two fold higher for animals treated 
with autograft and hydroxyapatite plus rhOP-1 or bone marrow. Since healing was 
only evaluated after 12 weeks, no conclusions could be drawn regarding the process 
of healing. The mean values of both combination groups were comparable to those 

  Fig. 40.3    MicroCT images of a medical grade  e -polycaprolactone  b -tricalciumphosphate scaffold 
fabricated via fused deposition modelling ( a ,  b ). The scaffold has an outer diameter of 20 mm and 
a height of 30 mm. This scaffold type has been used to reconstruct a 30 mm critical sized defect in 
an ovine tibia ( c )       
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of autografts. A higher number of defect unions was described when hydroxyapatite 
plus rhOP-1 was applied rather than hydroxyapatite alone. Analysing this study, it 
has to be taken into account that animals treated with hydroxyapatite and bone 
marrow were of a different breed with a higher average body weight. Animals were 
held at a different holding facility and accustomed to unequal forage all of which 
could possibly in fl uence study outcomes. 

 Bone healing in critical sized segmental diaphyseal defects in sheep tibiae was 
also investigated by Gugala et al. (Gugala and Gogolewski  1999,   2002  ) . Defects 
were bridged with a single porous tubular membrane or with anatomically shaped 
porous double tube-in-tube membranes. Membranes with different pore structures 
were applied alone and/or in combination with autologous bone graft. The diaphy-
seal defects were 40 mm in length and stabilized with a bilateral AO external 
 fi xator. Operated animals were 6–7 years of age. Of the six treatment groups how-
ever, only in groups where the defect was  fi lled with autogenous cancellous bone 
graft and covered with a single perforated membrane or where the bone graft was 
administered in a space between a perforated internal and external membrane, 
could defect healing be observed. The authors partly contribute the healing effect 
to their membrane system, however a control group, where autologous bone graft 
is administered without any membrane was not described. It could also be criti-
cized that post surgery animals were suspended in slings over the entire experi-
mental period preventing the animals from sitting and therefore getting up, thus not 
re fl ecting the normal physiological load bearing conditions. 

 Wefer et al.  (  2000  )  conducted a study to develop and test a scoring system based 
on real-time ultrasonography to predict the healing of a bone defect  fi lled with a 
porous hydroxyapatite bone graft substitute or cancellous bone graft from the iliac 
crest and stabilized by anterolateral plate osteosynthesis. After sacri fi ce tibiae were 
tested in torsion to failure. The results were correlated with radiographic and ultra-
sound scores obtained. Sheep with ceramic implants that developed non-unions 
showed a signi fi cantly lower score than sheep with suf fi cient implant integration. 
A signi fi cant correlation between these scores and the biomechanical results was 
found. However, although the authors describe their 20 mm defect as a critical sized 
model, no control group was included for comparison. Hence, the critical nature of 
the defect in this study can be questioned. 

 The effects of new resorbable calcium phosphate particles and paste forms, 
which harden in situ after application, on bone healing were investigated by 
Bloemers et al.  (  2003  ) . They used a 30 mm segmental tibial defect  fi xed by a custom 
made AO unreamed interlocking titanium tibial nail. Twelve weeks after defect 
reconstruction, radiological, biomechanical, and histological examinations were 
performed. Radiographically, the resorbable paste group performed better than all 
other groups. Biomechanical tests revealed a signi fi cantly higher torsional stiffness 
for the resorbable calcium-phosphate paste group in comparison with autologous 
bone. The study indicated that new calcium phosphate based materials might be a 
potential alternative for autologous bone grafts in humans. As with several other 
studies critically reviewed in this article, animals of a minimum age of 2 years with 
a signi fi cant variation in body weight were used in this study. As mentioned before, 
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it must be considered that secondary osteonal bone remodelling in sheep does not 
occur until an age of 7–9 years. Therefore, it might be dif fi cult to extrapolate results 
from this study for applications in adult human patients as human bone primarily 
undergoes secondary osteonal bone remodelling. Insulin-like growth factor I (IGF-1) 
exerts an important role during skeletal growth and bone formation. Therefore, its 
localized delivery appears attractive for the treatment of bone defects. To prolong 
IGF-1 delivery, Meinel et al. entrapped the protein into biodegradable poly(lactide-
co-glycolide) microspheres and evaluated the potential of this delivery system for 
new bone formation in a non-critical 10 mm segmental tibia defect (Meinel et al. 
 2003  ) . The defect was stabilized using a 3.5 mm 11 hole DCP. Administration of 
100  m g of IGF-1 in the microspheres resulted in bridging of the segmental defect 
within 8 weeks. To avoid excessive load on the operated limbs and fracturing of the 
freshly operated tibial defects, the animals were accommodated in a suspension 
system for a period of 4 weeks postoperatively. When interpreting data published in 
this study, it must be taken into account that the close position of the screws to the 
defect proximally and distally, and the obvious fact that the screws at the defect site 
had not been inserted at a de fi ned angle might have in fl uenced and biased the 
outcomes. 

 In a 48 mm tibial defect model in sheep ceramic implants of 100% synthetic 
calcium phosphate multiphase biomaterial were evaluated (Mastrogiacomo et al. 
 2006  ) . The defect was stabilized with a 4.5 mm neutralizing plate. Although not 
reported by the authors, one can observe bent plates and axial deviations in pre-
sented x-ray and CT images, hence, from a clinical point of view, it must be con-
cluded that the chosen  fi xation in that model seemed not to be suf fi cient. The x-ray 
series of the 2-year animal suggests that the internal  fi xation device had been 
explanted 12–14 weeks post surgery, a fact not described and explained by the 
authors. Assuming recovery and bone regeneration without any complications, in 
human patients, internal  fi xation devices would usually not be removed until 12–18 
months post implantation. Good integration between the ceramic implants and the 
adjoining proximal and distal bone ends was observed. A progressive increase in 
new bone formation was seen over time, along with progressive resorption of the 
ceramic scaffold. Based on x-ray analysis, at the 1-year time point, approximately 
10–20% of the initial scaffold substance was still present, and after 2 years it was 
almost completely resorbed. The authors state that approximately 10–20% of the 
periosteum was deliberately left in situ as a source of osteogenic cells. However, 
one might conclude that this procedure appears to be rather dif fi cult to standardize 
in order to develop a reproducible model. 

 Another study using an ovine segmental defect model investigated the in fl uence 
of rhTGF b -3 on mechanical and radiological parameters of a healing bone defect 
(Maissen et al.  2006  ) . In 4–5-year-old sheep, an 18 mm long osteoperiosteal defect 
in the tibia  fi xed with a unilateral external  fi xator was treated by rhTGF b -3 deliv-
ered by a poly(L/DL-lactide) carrier, with the carrier only, with autologous cancel-
lous bone graft, or remained untreated. Weekly  in vivo  stiffness measurements and 
radiological assessments were undertaken as well as quantitative computed tomo-
graphic assessments of bone mineral density in 4-week intervals. The follow up of 
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the experiment was 12 weeks under partial weight bearing since animals were kept 
in a support system to prevent critical loads on the  fi xator and its interface to bone 
thus not re fl ecting physiological loading conditions. The 18 mm defect size described 
as spontaneously non-healing, might not have been suf fi cient to establish a non-
union model in a fully weight bearing biomechanical environment. In the bone graft 
group, a signi fi cantly higher increase in stiffness was observed than in the PLA/
rhTGF b -3 group and a signi fi cantly higher increase than in the PLA-only group. 
The radiographic as well as the computer tomographic evaluation yielded signi fi cant 
differences between the groups, indicating the bone graft treatment performed bet-
ter than the PLA/rhTGF b -3 and the PLA-only treatment. 

 Sarkar et al. assessed the effect of platelet rich plasma (PRP) on new bone forma-
tion in a 25 mm diaphyseal tibial defect in sheep (Sarkar et al.  2006  ) . The defect was 
stabilized with a custom-made intramedullary nail (stainless steel, diameter proxi-
mal 12 mm, distal 10 mm) with two locking screws each proximally and distally. To 
reduce stress at the screw/bone interface, a custom-made stainless steel plate was 
additionally applied medially representing an unconventional  fi xation method not 
found in the clinic. However, no reasoning for the additional medial plating was 
provided in the publication by the authors. Defects were treated with autogenous 
PRP in a collagen carrier or with collagen alone. A control group to establish the 
critical nature of the defect was not included and has therefore to be questioned. 
After 12 weeks, the explanted bone specimens were quantitatively assessed by 
x-ray, computed tomography (CT), biomechanical testing and histological evalua-
tion. Bone volume, mineral density, mechanical rigidity and histology of the newly 
formed bone in the defect did not differ signi fi cantly between the PRP treated and 
the control group, and no effect of PRP upon bone formation was observed. 

 In 2007 Tyllianakis et al.  (  2007  )  determined the size of a bone defect that can be 
restored with one-stage lengthening over a reamed intramedullary nail in sheep 
tibiae. Sixteen adult female sheep were divided into four main groups: a simple 
osteotomy group (group I) and three segmental defect groups (10, 20, and 30 mm 
gaps, groups II-IV). One intact left tibia from each group was also used as the non-
osteotomized intact control group (group V). In all cases, the osteotomy was  fi xed 
with an interlocked Universal Humeral Nail (UHN-Protek-Synthes). Healing of the 
osteotomies was evaluated after 16 weeks by biomechanical testing. The examined 
parameters were torsional stiffness, shear stress, and angle of torsion at the time of 
fracture. The regenerated bone obvious in x-rays in the groups with 10 and 20 mm 
gaps had considerable mechanical properties. Torsional stiffness in these two groups 
was nearly equal and its value was about 60% of the stiffness of the simple osteotomy 
group. Gradually decreasing stiffness was observed as the osteotomy gap increased. 
No signi fi cant differences were found between the angles of torsion at fracture for 
the various osteotomies or the intact bone. These results showed that the group with 
the 10 cm gap had 65% of the shear stress at failure compared to the simple osteot-
omy group. 

 Teixeira et al. treated tibial segmental defects of 35 mm size in both male and 
female sheep aged 4–5 months. Considering the age of the animals and the preser-
vation of the periosteum, the critical size of this defect can be questioned and 
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results cannot necessarily be extrapolated to adult humans, as described correctly 
by the authors. An empty control group was not included in the experiment. The 
bone defects in the diaphysis of the right hind limb were stabilized with a titanium 
bone plate (103 mm in length, 2 mm thickness, and 10 mm width) combined with 
a titanium cage. As reported by the authors, plate bending occurred in 42% of the 
animals and was partly attributed to the connection of the titanium cage to the 
plate. However, it appears that the bending of the plate was rather a result of 
insuf fi cient thickness of the  fi xation device. The titanium cages were either  fi lled 
with autologous cortical bone graft or with a composite biomaterial consistent of 
inorganic bovine bone, demineralised bovine bone, a pool of bovine bone morpho-
genetic proteins bound to absorbable ultra-thin powdered hydroxyapatite and 
bone-derived denaturized collagen. Bone defect healing was assessed clinically, 
radiographically and histologically. Titanium cages might keep implanted scaf-
folds and biomaterials in place initially and biomechanically support defect 
 fi xation, however, it must be taken into consideration that – since titanium is not 
resorbable – the cages might hinder complete bone remodelling in the long run. 

 Radiographic examination showed initial formation of periosteal callus in both 
groups at osteotomy sites, over the plate or cage 15 days postoperatively. At 60 and 
90 days callus remodelling occurred. Histological and morphometric analysis 90 
days post surgery showed that the quantity of implanted materials still present were 
similar for both groups while the quantity of newly formed bone was less (p = 0.0048) 
in the cortical bone graft group occupying 51 ± 3.46% and 62 ± 6.26% of the cage 
space, respectively (Teixeira et al.  2007  ) . 

 Recently, Liu et al. reported on the use of highly porous beta-TCP scaffolds to 
repair goat tibial defects (Liu et al.  2008  ) . In this study, 15 goats were randomly 
assigned to one of three groups, and a 26 mm long defect at the middle part of the 
right tibia in each goat was created and stabilized using a circular external  fi xator. 
In Group A, a porous beta-TCP ceramic cylinder that had been loaded with osteo-
genically induced autologous bone marrow stromal cells was implanted in the defect 
of each animal. In Group B, the same beta-TCP ceramic cylinder without any cells 
was placed in the defect. In Group C, the defect was left untreated. In Group A, bony 
union could be observed by gross view, x-ray and microcomputed tomography ( m CT) 
detection, and histological observation at 32 weeks post-implantation. The implanted 
beta-TCP scaffolds were almost completely replaced by host bone. Bone mineral 
density in the repaired area of Group A was signi fi cantly higher than in Group B, in 
which scant new bone was formed in each defect and the beta-TCP hadn’t been com-
pletely resorbed after 32 weeks. Moreover, the tissue-engineered bone of Group A 
had similar biomechanical properties as the contralateral tibia in terms of bending 
strength and Young’s modulus. In Group C, little or no new bone was formed and 
non-union occurred, demonstrating the critical nature of the defect. 

 Using 32 male adult goats (aged 3, average weight 50 kg), Liu et al. investigated 
the effect of  fi ber-reinforced scaffolds consisting of nano-hydroxyapatite/collagen/
poly ( l -lactic acid) (PLLA)/chitin  fi bers (nHACP/CF) (Liu et al.  2010  ) . Defects of 
25 mm length were created and stabilized with a four-hole steel plate. The scaffolds 
were transplanted alone or in combination with bone marrow derived mesenchymal 
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cells and compared to autograft from the iliac crest. Animals were kept for 4 and 8 
weeks (n = 4), respectively. Quantitative histological assessment showed the highest 
amount of bone with autograft followed by the scaffold with cells and the scaffold 
alone. After 8 weeks four out of four defects were bridged after autograft and scaf-
fold/cell transplantation. Three point bending showed a load to failure of the repaired 
tibiae in the scaffold/cell group of 1,396.6 ± 138.2 N, and of 1,402.3 ± 99.6 N in the 
autograft group. 

 To investigate the effect of chondroitine sulphate on bone remodelling and 
regeneration, Schneiders et al.  (  2008  )  created a 30 mm tibial mid-diaphyseal 
defect site and reconstructed it using hydroxyapatite/collagen cement cylinders. 
Defect stabilization was achieved by insertion of a universal tibial nail (UTN, 
Synthes, Bochum). However, to place the scaffold into the defect, the authors had 
to use a second operative aditus mid-diaphyseally. The published data suggest 
problems with defect  fi xation in form of implant failures. Moreover, signs of lock-
ing bolt loosening, poor contact between bone and nail, and the proximal nail end 
extending into the articular space were evident, facts not reported by the authors. 
In addition, it can be supposed that either the insertion of the nail or undesired 
movement of the loosened nail has caused damage to the cylindrical biomaterials 
at testing. When interpreting the acquired data, it also has to be taken into account 
that obviously no fabrication method has been described to reliably reproduce 
implants of corresponding geometrical shape. 

 Rozen et al. investigated whether blood-derived endothelial progenitor cells 
promote bone regeneration once transplanted into an ovine, critical sized, tibial 
defect (Rozen et al.  2009  ) . Cells were isolated and expanded  in vitro.  2 × 10 7  cells 
were resuspended in 0.2 ml saline were transplanted 2 weeks after a 3.2 cm defect 
had been created (n = 7). Defect  fi xation was achieved by a 4.5 mm stainless steel 
plate with four screws each proximally and distally. In the control group (n = 8) 
only 0.2 ml saline were injected. Defect bridging was observed in six out of seven 
animals in the experimental group. In the control group,  fi ve out of six defects 
analysed via  m CT showed discontinuous (two animals) or minute bridging (three 
animals) as stated by the authors. No reference to the remaining three animals of 
the control group was found throughout the manuscript. Therefore, the critical 
nature of the defect has to be questioned. Not resecting the periosteum and screw 
loosening as clearly evident in the published x-ray images might have contributed 
to defect bridging in the control group. 

 The regenerative capacity of xenogenic human and autologous ovine mesenchymal 
progenitor cells was assessed by Niemeyer et al. in an ovine critical-size defect 
model (Niemeyer et al.  2009  ) . Human and ovine MSC from bone marrow, were 
cultured on mineralized collagen and implanted into a 3.0 cm ovine tibial bone 
defect (n = 7). Unloaded mineralized collagen served as control. The 3 cm mid-
diaphyseal defects were  fi xed with a seven-hole LC-LCP (Synthes) and a carbon  fi bre 
reinforced poly-ether-ketone plate (snakeplate, Isotec AG, Altstätten, Switzerland). 
Animals were kept in suspending slings for 8 weeks post surgery. Nevertheless, 
implant failure occurred in one animal requiring immediate euthanasia. Wound 
healing related problems were reported for another animal. Bone healing was 
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assessed up to 26 weeks. Presence of human cells after xenogenic transplantation 
was analysed using human-speci fi c  in situ  hybridization. Radiology and histology 
demonstrated signi fi cantly better bone formation after transplantation of autologous 
ovine MSC on mineralized collagen compared to unloaded matrices and to the 
xenogenic treatment group. No local or systemic rejection reactions could be 
observed after transplantation of human MSC and although the presence of human 
MSC could be demonstrated. 

 In another study, the same group compared the osteogenic potential of bone 
marrow derived mesenchymal stem cells (BMSC) and adipose-tissue derived stem 
cells (ASC) and evaluated the in fl uence of platelet rich plasma (PRP) on the osteo-
genic capacity of ASC using the same set up and evaluation methods (Niemeyer 
et al.  2010  ) . Ovine BMSC (BMSC-group) and ASC (ASC-group) were seeded on 
mineralized collagen sponges and implanted into a critical size defect of the sheep 
tibia (n = 5 each). In an additional group, platelet-rich plasma (PRP) was used in 
combination with ASC (PRP-group). Unloaded mineralized collagen (empty 
group) served as a control (n = 5 each). Radiographic evaluation revealed a 
signi fi cantly higher amount of newly formed bone in the BMSC-group compared 
to the ASC-group at week ten (p < 0.05). In contrast to ASC, PRP application led to 
signi fi cantly more bone when compared to the empty control group (p < 0.05). 
These  fi ndings were con fi rmed by histological analysis. 

 Recently, Huang et al. reported on the design and fabrication of laminated scaf-
folds for the repair of bone defects (Huang et al.  2011  ) . The scaffolds consisted of 
 b -tricalcium phosphate ( b -TCP) and poly ( l -lactic acid) (PLLA) and were of cylin-
drical shape. Porosity and bending strength of the scaffolds were around 70% and 
1.7 MPa, respectively. Caprine diaphyseal tibial defects (20 animals) of 3 cm length 
were created, stabilized with a stainless steel plate, and left untreated or  fi lled with 
scaffolds loaded with allogeneic BMSCs. Compared to control, scaffold/cell trans-
plantation increased the rate of bone formation after 12 weeks. As in many other 
studies, the information provided does not allow for reproduction of the results. 

 Wang et al. treated a number of 12 segmental goat defects of 30 mm length (six 
animals, bilateral defects) with porous  b -TCP cylinders (porosity 70%; pore size 
450  m m; diameter 16 mm; height 30 mm; Shanghai Bio-Lu Biomaterials Co., Ltd. 
Shanghai, China). The scaffolds had a compressive strength of 2-4 MPa. The scaf-
folds were seeded with bone marrow derived cells in a perfusion reactor or cultured 
under static conditions prior to implantation. Animals were kept for 24 weeks. One 
animal did not survive the experimental period. After 24 weeks, the regenerated 
defects were analyzed by histology and micro-CT. The results showed an increased 
amount of bone formation for the scaffold group cultured under dynamic conditions 
(p < 0.05). 

 The ef fi cacy of allogeneic mesenchymal precursor cells for the repair of an ovine 
tibial segmental defect was assessed recently (Field et al.  2011  ) . Twenty-four, 
mature female sheep underwent surgery for the creation of a 3 cm tibial diaphyseal 
defect. In one group of 12 sheep a scaffold was used alone (MasterGraft Matrix, 
Medtronic), and in the second group the scaffold was seeded with allogenic MPC 
isolated from bone marrow aspirates. The defect was stabilised using a locking 



1050 J.C. Reichert et al.

intramedullary nail and allowed to heal over a 9-month-period. The MPC-treated 
group displayed a signi fi cantly greater level of callus formation and rate of bone 
apposition in the defect. The incorporation of allogeneic MPC to the synthetic void 
 fi ller stimulated early repair of critical-size diaphyseal segmental defects. 

 Our own research group has described a non-critical tibial segmental defect model. 
The model was used to compare the regenerative potential of scaffolds with different 
material composition but similar mechanical properties to autologous bone graft from 
the iliac crest. Twelve Merino sheep (weight 42 ± 2 kg, age 7 years) were included in 
the study, in which a tibial segmental defect of 2 cm length was created. The defects 
were stabilized with a 4.5 mm limited contact locking compression plate (LC-LCP, 
Synthes). They were left untreated,  fi lled with autologous cancellous bone graft from 
the iliac crest or medical grade polycaprolactone (mPCL-TCP) or poly( l -lactide-co-
 d , l -lactide) (PLDLLA)-TCP-PCL scaffolds. After 12 weeks,  in vivo  specimens were 
analyzed by X-ray imaging, torsion testing, micro-computed tomography and histol-
ogy to assess amount, strength and structure of the newly formed bone. The highest 
amounts of bone neoformation with highest torsional moment values were observed 
in the autograft group and the lowest in the mPCL-TCP composite group. The study 
results suggested that scaffolds based on aliphatic polyesters and ceramics, which are 
considered biologically inactive materials, induce only limited new bone formation 
but could be an equivalent alternative to autologous bone when combined with a bio-
logically active stimulus (Reichert et al.  2011  ) (Fig.  40.4 ).  

 We have also succeeded in establishing a critical-sized segmental defect model in 
sheep (Reichert et al.  2010  ) . In a following study, such critical-sized 3 cm defects 
were stabilized with a dynamic compression plate (DCP, Synthes) and left untreated, 
reconstructed with autologous bone graft (ABG), mPCL-TCP or silk-HA (hydroxy-
apatite) scaffolds. Animals were held for 12 weeks. X-ray analysis, torsional testing 
and quantitative CT analysis were performed. Radiologic analysis con fi rmed the criti-
cal nature of the defects. Full defect bridging occurred in the autograft partial bridging 
in the mPCL-TCP group. Only little bone formation was observed with silk-HA scaf-
folds. Biomechanical testing revealed a higher torsional moment/stiffness (p < 0.05), 
CT analysis a signi fi cantly higher amount of bone formation for the ABG group when 
compared to the silk-HA group. No signi fi cant difference was determined between the 
ABG and mPCL-TCP group. It was concluded that the combination of mPCL-TCP 
with osteogenic cells or growth factors might represents an attractive means to further 
enhance bone formation (Reichert et al.  2012  )  (Fig.  40.5 ).  

 Continuing work pertains to the use of mesenchymal progenitor cells and/or 
recombinant growth factors to stimulate bone growth in defects of critical size.  

    40.7.2   Dogs 

 Tiedemann et al. developed a non-invasive method to assess fracture healing using 
densitometric methodology, tested in 6 mm tibial segmental defects in adult mon-
grel dogs (Tiedeman et al.  1990  ) . The lowest measurable bone density in the 



105140 Preclinical Animal Models for Segmental Bone Defect Research…

defect was compared to bending rigidity of the involved extremity. They found a 
highly signi fi cant correlation between densitometric evaluation and bone rigidity. 
The changes in biomechanical characteristics during the healing process of experi-
mental transversal tibial mid-shaft osteotomies in 21 beagle dogs were investi-
gated by Hara et al.  (  2003  ) . The hindleg was stabilized with an intramedullary pin 
and an external coaptation was applied with a hardening bandage for 4 weeks 
after surgery. Observation at 2, 4, 8, 16, and 32 weeks showed that the biome-
chanical characteristics of the healing bone could not recover suf fi ciently even 
after the passage of the healing period, which has been empirically proposed from 
clinical  fi ndings. In a study by Kokubo et al. the long-term stability of bone tissues 
induced by rhBMP-2 and poly( l -lactide-co-glycolide) co-polymer-coated gelatin 
sponge (PGS) was examined (Kokubo et al.  2004  ) . A 2.5 cm long unilateral bone 
defect in the left tibia was created in 16 male beagle dogs and stabilized with a 

  Fig. 40.4    Von Kossa/van Gieson staining on PMMA embedded specimens ( a – d ) showed exten-
sive bone formation ( black ) and bridging in the autograft group ( b ,  f ), considerably less bone 
formation and nonunion in the empty control ( a ,  e ) and the scaffold groups (mPCL-TCP:  c ,  g ; 
PDLLA-TCP-PCL:  d ,  h ). Histology results correlated well with 3-D microCT reconstructions 
of the defects ( e – h ). Movat’s pentachrome staining ( i – k ) suggested endochondral bone forma-
tion in all groups ( i , cartilage,  green ) with subsequent osteoid formation ( j ). In the autograft 
group,  fi rst signs of bone remodelling were evidenced by osteoclasts and giant cells within the 
defect area ( k )       
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metal plate. The metal plates of the rhBMP-2 treated limbs were removed after 16 
weeks and biomechanical testing and histological analyses were performed after 
32, 52, and 104 weeks. The hindlimbs were supported with a glass  fi ber cast for 4 
weeks after plate removal. All defects treated with rhBMP-2 achieved radio-
graphic bony union after 8 weeks, whereas the defects treated with PGS alone 
resulted in non-unions at 16 weeks. No statistical signi fi cances were detected in 
all parameters between regenerated and intact tibiae at 104 weeks. To compare 

  Fig. 40.5    Quantitative analysis of CT scans 12 weeks after surgery. The total volume of newly 
formed bone within the defect ( a ) and the bone volume distribution to the proximal, middle and 
distal defect third ( b ) was calculated. The  box plots  indicate the median,  fi rst and third quartile as 
well as maximum as minimum values.  Bars  and  asterisks  indicate statistical signi fi cance       
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their treatment concept with the established Ilizarov technique, Rahal et al. used 
a segmental tibia defect model for the treatment of acute bone shortening fol-
lowed by gradual lengthening with circular external  fi xator (Rahal et al.  2005  )  
(Fig.  40.6 ). In seven female dogs, 30% (average 4.75 cm) of the tibia and  fi bula 
including the periosteum were removed and acute bone shortening of the proxi-
mal and distal segments was performed. After 6 days, bone distraction was started 
at a rate of 1 mm/day until a distraction equal in length to the removed bone seg-
ment was achieved. After lengthening, the  fi xator was left in place for 14 weeks 
for consolidation of regenerated bone. Functional results were considered excel-
lent in two, good in three and fair in the other two dogs. Radiographic images 
showed bone regeneration within the distraction gap after 14 weeks. Itoh et al. 
used a hydroxyapatite/type I collagen (HAp/Col) composite loaded with rhBMP-2 
for the treatment of 2 cm long segmental bone defects in the tibia of six male 
beagle dogs (Itoh et al.  2002  ) . The implants were  fi xed with an Ilizarov external 
 fi xator. The change of bone mineral density as well as radiological and histological 

  Fig. 40.6    Radiography of a right dog tibia submitted to acute bone shortening achieved by resection 
of 30% of its length. Tibia shortening was followed by gradual distraction at a rate of 1 mm/day 
until the excised fragment length was regained. The  fi xator was then locked to support the newly 
formed bone for another 14 weeks. The images show well-positioned fragments post surgery ( a ). 
At 6 weeks of bone distraction longitudinal radiodense columns in the direction of the distraction 
from both ends of the original bone could be observed ( b ) resulting in bone regeneration within the 
distraction gap at week 14 ( c ) of the neutral  fi xation period. The lateral radiography ( d ) demon-
strates the  fi nal appearance 4 weeks after frame removal       
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 fi ndings suggest that the implants were able to induce bone remodelling units and 
are a suitable carrier for rhBMP-2 due to the stimulation of early callus and new 
bone formation.   

    40.7.3   Pig 

 Windhagen et al. developed a new method for quantitative evaluation of  in vivo  
bone regeneration in distraction osteogenesis in micropigs (Windhagen et al.  2000  ) . 
To measure the  in vivo  stiffness they used a newly developed bone-healing meter. 
After euthanasia of the pigs, they quanti fi ed the maximum torsional moment data 
for the regenerated bones. When analysing the data, a highly signi fi cant regression 
between  in vivo  stiffness and maximal torsional moment was found. The authors 
concluded that their method may be a reliable tool for future quantitative monitoring 
of healing progress in patients. 

 The effect of homologous recombinant porcine growth hormone (r-pGH) on sec-
ondary fracture healing was investigated in a diaphyseal defect of the tibia in 24 Yucatan 
micropigs by Raschke et al.  (  2001  ) . A 1 cm defect of the tibia was surgically created 
and stabilized with an AO 3.5 mm dynamic compression plate (DCP). The treatment 
group received 100  m g of r-pGH per kilogram of body weight subcutaneously once per 
day. Quantitative computed tomography (qCT) and biomechanical analysis was per-
formd after 6 weeks. qCT measurements revealed a signi fi cant increase in the bone 
mineral content of the defect zone in the treatment group compared with controls, 
whereas the bone mineral density values were similar in both groups. Torsional failure 
load was higher in the treatment group than in the control group. The results showed 
that a daily application of recombinant GH stimulates secondary fracture healing, 
resulting in increased mechanical strength and stiffness of the callus. 

 Pek et al. created a porous bioresorbable nano-composite scaffold for the treat-
ment of segmental bone defects (Pek et al.  2008  ) . A 2 × 1 cm tibial bone defect was 
created in 10 Yorkshire-Landrace pigs, treated with the scaffolds and stabilized 
with a 7-hole limited contact dynamic compression plate (LC-DCP). After 3 and 6 
month histological examinations, dual energy X-ray absorptiometry (DEXA), bone 
mineral density (BMD) and computed tomography (CT) scans were performed. 
The nano-composite scaffold demonstrated excellent bioactivity for promoting cell 
attachment and proliferation, it was osteoinductive and successfully healed a criti-
cal-sized defect in the pig tibia.   

    40.8   Metatarsal Fracture Models 

 Only few groups have applied metatarsal fracture models to study bone regenera-
tion. A PubMed search including publications of the last 15 years listed publications 
from one research group only. Prof. Lutz Claes (University of Ulm, Germany) and 
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co-workers have published a number of original research articles investigating the 
effect of dynamisation on gap healing of diaphyseal fractures under external  fi xation 
(Claes et al.  1995  ) , the effects of mechanical factors on the fracture healing process 
(Claes et al.  1998  ) , local tissue properties in bone healing (Augat et al.  1998  ) , and 
the effect of mechanical stability on local vascularisation, tissue differentiation in 
callus healing (Claes et al.  2002  ) , and cortical remodeling after osteotomy (Augat 
and Claes  2008  ) .  

    40.9   Metatarsal Segmental Defect Models 

 In 2000 Nature Biotechnology published a study where 25 mm metatarsal defects 
 fi xed with a 3.5 mm narrow DCP were reconstructed with coral implants with and 
without MSC or freshly aspirated bone marrow (Petite et al.  2000  ) . While hardly 
any bone formation was observed in the empty control group, coral scaffolds 
induced new bone formation con fi rming the osteoconductivity of the material. The 
combination of the scaffold with fresh bone marrow aspirates was not able to pro-
vide a suf fi cient bone formation stimulating signal leading to  fi brous non-union in 
all defects. When combined with passage 2 MSCs (10 7  cells/scaffold) however, 
three animals showed clinical union after 16 weeks (n = 7). 

 Over the years, the same research group has published several studies relying on 
the same model (Viateau et al.  2004,   2006,   2007  ) . In eleven 2-year-old Pré-Alpes 
Sheep mid-diaphyseal metatarsal bone defects (25 mm) were stabilized with a 
dynamic compression plate over a polymethylmethacrylate (PMMA) cement spacer, 
and by external coaptation. The PMMA spacer was removed after 6 weeks by incis-
ing the encapsulating membrane. The defect remained un fi lled (n = 5) or was  fi lled 
with morselized autologous corticocancellous graft (Group 2; n = 6), the membrane 
closed, and external coaptation applied for 6 months. Radiographic, computed tomo-
graphic, and histologic examinations 6 months after the second surgery revealed 
non-union in ungrafted defects whereas grafted defects showed bone healing. The 
induced membrane contained blood vessels, cbfa-1 positive cells, and very few mac-
rophages entrapped in a collagenous tissue. It was concluded that the PMMA-induced 
membrane may help con fi ne bone morphogenetic proteins, skeletal stem cells, or 
other agents to the defect cavity where they could possibly enhance bone formation. 
In a recent study, MSC seeded coral granules were transplanted into these defects 
with preformed membranes. Radiographic, histological, and computed tomographic 
tests performed after 6 months showed that the osteogenic abilities of the engi-
neered construct and autograft were signi fi cantly greater than those of coral scaffold 
alone. No signi fi cant differences were found between the amount of newly formed 
bone in defects  fi lled with coral/MSCs and those  fi lled with autograft. 

 Claes et al. have examined the effect of the stiffness of the axial  fi xator on reducing 
the time of callus maturation (Claes et al.  2000  ) . Therefore, a mid-diaphyseal defect 
of 15 mm was created in the metatarsal bone in sheep and stabilised with a ring 
 fi xator. After 4 days a bony segment was transported over a period of 16 days at a 
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rate of 1 mm/day. After 64 days, animals were divided into four groups, three with 
axial interfragmentary movement (IFM) of 0.5, 1.2 and 3.0 mm, respectively, and a 
control group. The 3.0 mm IFM group showed the smallest values for bone density 
(p = 0.001) and area of callus and the largest IFM after 12 weeks. In this group also 
typical clinical signs of hypertrophic non-union were evident. The most rapid stiff-
ening of the callus was seen in the 0.5 mm group, which had the smallest IFM 
(p = 0.04) after 12 weeks along with radiological signs of defect bridging. The 
results indicated that suitable dynamic axial stimulation can enhance maturation of 
distraction callus when the initial amplitude is small, but that a large IFM can lead 
to delayed union. In the same model of distraction osteogenesis, they determined 
whether low-intensity ultrasound can be used to enhance callus maturation (Claes 
et al.  2005  ) . Eighteen sheep were operated on and divided into two groups. One 
group was treated with low-intensity ultrasound for 20 min/day, whereas the other 
group served as an untreated control group. Biomechanical tests after removal of the 
metatarsals showed signi fi cantly higher axial compression stiffness and signi fi cantly 
higher indentation stiffness of callus tissue in the healing zone in the group treated 
with ultrasound. Also, histologic analysis of the cortical defect zone showed 
signi fi cantly more callus formation and more active zones of endochondral 
ossi fi cation in the group treated with ultrasound. The authors therefore concluded 
that stimulation of callus maturation by ultrasound is possible, similar to stimula-
tion of fresh fracture healing, and may be used to shorten clinical treatment times. 

 As mentioned earlier, limited integration and remodeling can cause graft failure. 
Therefore, Di Bella et al. investigated whether mesenchymal stem cells (MSCs) and 
osteogenic protein-1 (OP-1) can improve allograft integration (Di Bella et al.  2010  ) . 
In 20 alpine sheep (age 3–4 years, weight 60–70 kg), a 3 cm segmental bone defect 
was created in the mid-diaphysis of the metatarsal. Defects were stabilized using a 
seven-hole dynamic compression plate (titanium). They were augmented with an 
allograft alone (control group), or with MSCs, OP-1, or MSCs and OP-1. Radiographic 
anlysis showed accelerated graft integration with MSC and OP-1. Histology also 
demonstrated a signi fi cantly higher amount of bone within the graft and a higher 
vascularization for this group. Consequently, the authors concluded that MSC and 
OP-1 promote graft integration.  

    40.10   Summary 

 The reconstruction of complicated fractures and large segmental bone defects 
remains a signi fi cant clinical problem. Large bone defects may occur as a result of 
extensive bone loss resulting from pathological events such as trauma, in fl ammation, 
and tumour resection. Present therapeutic approaches include the application of 
bone graft transplants (autologous, allogenic, xenografts),  fi xation devices consisting 
of different synthetic and natural biomaterials, and segmental bone transport. 
However, to date, no existing therapy has been fully satisfactory. A number of 
research groups therefore work on the development of new bone grafting materials, 
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carriers, growth factors, and tissue engineered constructs for bone regeneration. 
These groups are interested in evaluating their concepts in reproducible large animal 
models. To optimize cell-scaffold combinations and the application of locally or 
systemically active stimuli remains a complex process. It is characterized by a 
highly interdependent set of variables with a large range of possible variations. 
Consequently, the evaluation of new developments in the  fi eld of bone tissue engi-
neering must base on clinical experience, knowledge of basic biological principles, 
medical necessity, and commercial practicality. The area of bone tissue engineering 
relies on animal models to evaluate both experimental and clinical hypotheses. 
To overcome current limitations associated with bone tissue engineering, researchers 
must rely on the functional assessment of biological and biomechanical parameters 
of generated constructs. For comparison of different studies and their outcomes, the 
standardization of animal models,  fi xation devices, surgical procedures and methods 
of taking measurements is essential to accumulate a reliable data pool guiding further 
directions to orthopaedic and tissue engineering developments.      
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  Abstract   The glassy translucent material found at the ends of bones, within 
synovial joints, is termed articular cartilage. While healthy, it provides a low-
friction bearing surface, preventing bone-to-bone contact, and to an extent, 
absorb shock during vigorous activities. However, when damaged could lead to 
pain, deformity and reduced mobility; the social impact of which, entails high 
costs in terms of therapeutic treatments and loss of income. The present chapter 
reviews the common knowledge of the constraints to articular cartilage regenera-
tion; namely cartilage structure, composition and major diseases. The  fi rst of the 
three sections detail the major constituents of the tissue and their structural 
organisation; the tissues mechanical properties, and ends with a brief description 
of how these features change in an unhealthy cartilage; be it mechanical or dis-
ease. In the second section, both clinical and academic approaches are pooled 
together, to review the current strategies in restoring health to joints with dis-
eased or damaged cartilage. The  fi nal section highlights the fact that progression 
of cartilage disease affects not only the cartilage, but its underlying bone. The 
implications of the subchondral bone in the propagation of cartilage degenera-
tion are discussed, and  fi nally, their considerations in cartilage defect healing.      
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    41.1   In Health and Sickness 

    41.1.1   Structure and Function 

 Articular cartilage    is found at the end of bones as a thin, white tissue. This tissue 
consists mainly of extracellular matrix (ECM), and has a relatively low density of 
cells. The adult tissue is known to be devoid of blood vessels, lymph vessels, and 
nerves (Poole  1997 ; Stockwell and Meachim  1979  ) . The thickness of adult human 
cartilage generally varies between 2 and 7 mm (Meachim and Stockwell  1979  ) . 
This variation is evident both between joints and also within different regions of the 
same joint. 

 The ef fi cient functioning of the synovial joints is made possible by the presence 
of articular cartilage. Lining the surfaces of diarthrodial joints, articular cartilage 
provides a low-friction bearing surface and prevents bone-to-bone contact (Guilak 
and Mow  2000 ; Mow et al.  1980  ) . Major load bearing joints, such as the hip, knee 
and ankle are subjected to peak stresses up to three times body weight during nor-
mal walking or higher during stumbling (Guilak and Mow  2000 ; Mow et al.  1992 ; 
Weightman and Kempson  1979  ) . Under these high stresses, articular cartilage 
deforms, effectively reducing both the contact stresses and the pressures transmitted 
to the underlying bone (Ateshian and Wang  1997 ; Kim et al.  1994 ; McCutchen 
 1962 ; Weightman and Kempson  1979  ) . Cartilage also exhibits impact resistance, 
which permits a degree of shock absorbance during vigorous activities such as run-
ning and jumping.  

    41.1.2   Composition 

 Articular cartilage consists of Water, Collagen, and non-collageneous proteins, and 
cells. These are approximated to be 70–80, 10–15, and 5–10% of the tissues wet 
weight, respectively, while the cells are approximately 5% of the tissues volume. 
Notably these features vary amongst species, from joint to joint and within differ-
ent locations of the same joint (Buckwalter and Mankin  1997 ; Stockwell and 
Meachim  1979  ) . 

    41.1.2.1   Collagen 

 Collagen    is a large protein family with at least 27 members (Boot-Handford et al. 
 2003 ; Eyre  2004  ) . They can be distinguished by their distinct amino acid composi-
tion and hence polypeptide chains (Meisenberg and Simmons  1998  ) . The collagen 
types present in articular cartilage are types II, VI, IX, X and XI (Eyre et al.  1992  ) . 
Type II collagen makes up 95% of the solid composition of the mature human articu-
lar cartilage (Eyre et al.  1992  ) . It is derived from procollagen molecules containing 
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amino (NH 
2
 )-and carboxyl (COOH)-terminal extension peptides that are cleaved, 

extracellular, prior to  fi brilcollagens (Ryan and Sandell  1990  ) . 
 Due to their abundance in articular cartilage, type II and type X collagen are 

often used as indicators for extracellular matrix (ECM) formation by cultured chon-
drocytes and to ascertain a chondrogenic phenotype of differentiating stem cells. 

 Type XI collagen contributes less than 5% to the total collagen content of the 
articular cartilage. In cartilaginous tissues, collagen XI forms heterotypic narrow 
 fi brils with collagens type II and type IX (Grant et al.  1988  ) . Type VI collagen is a 
short-helical heterotrimer. Its monomers are arranged intracellularly into anti-parallel 
staggered dimers and then into tetramers by lateral aggregation of two dimmers, then 
secreted into the ECM. In the pericellular environment, collagen VI has been impli-
cated in both the maintenance of chondron integrity and cell-matrix signalling. Type 
IX collagen accounts for 10% of human foetal cartilage. This proportion decreases 
with age, reaching 1–2% in mature human articular cartilage. This molecule can be 
considered a proteoglycan, due to its possession of a chondroitin sulphate chain 
(Huber et al.  1988  ) . Type X collagen is a short-chain collagen, which forms a mat-like 
network in the hypertrophic cartilage matrix and around differentiating chondrocytes 
(Kwan et al.  1986  ) . It is found in either the cartilaginous tissues undergoing endo-
chondral ossi fi cation, such as the hypertrophic zones of the growth plate, or the 
calci fi ed zone in mature articular cartilage (Ayad et al.  1987  ) .  

    41.1.2.2   Proteoglycans 

 Proteoglycans    (PGs) are the most abundant non-collageneous macromolecular 
components in mammalian cartilage, making up approximately 10–15% of the 
mature mammalian articular cartilage. These are de fi ned as having a protein core to 
which one or more glycosaminoglycan    (GAG) chains are covalently attached. GAGs 
present in articular cartilage include chondroitin sulphate, keratan sulphate and 
hyaluronan. The GAG chains are often crucial to the functional properties of the PG 
(Hardingham and Fosang  1992  ) . However, for PGs such as decorin and biglycan, 
which bind to growth factors and modulate their activities, evidence exist, suggest-
ing that it is their protein core and not their GAG chains that mediates the binding 
function (Cheifetz et al.  1988 ; Ruoslahti and Yamaguchi  1991  ) . The most abundant 
PG, accounting for up to 90% of mature articular cartilage PG is aggrecan. As GAG 
builds up in the cells ECM, aggrecan molecules bind non-covalently along a 
hyaluronan chain to form an aggrecan-hyaluronan complex. The aggregate, having 
molecular weight approximately 50,000 kDa is associated with load distribution in 
articular cartilage (Hardingham and Fosang  1992  ) . Smaller PG molecules present in 
cartilage include biglycan, decorin and  fi bromodulin (Knudson and Knudson  2001  ) . 
These leucine-rich PGs bind to collagen type II and play important roles in ECM 
organisation (Pulkkinen et al.  1990 ; Vogel et al.  1984  ) . 

 PGs have important roles in collagen  fi brillogenesis, organisation of collagen 
networks and in providing rigidity to the ECM. Chondrocytes express cell surface 
PGs (Knudson and Knudson  2001  ) , which interact with growth factors such as, 
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basic Fibroblastic Growth Factor (bFGF) in order to regulate cell activities. 
Similar to types II and X collagen, PG provide a reliable indicator of biosynthetic 
activities of chondrocytes in culture (Knight et al.  1998 ; Lee et al.  2003  ) . Other 
common examples of such proteins are Anchorin CII. These bind to the surface of 
the chondrocytes and anchor it to the collagen  fi brils in the ECM and cartilage 
oligomeric matrix proteins, which also bind to chondrocytes (Mollenhauer et al. 
 1984  ) . These proteins maintain the chondrocytes phenotype, and are used as 
markers of cartilage turnover and can control the progression of cartilage degra-
dation in osteoarthritic cartilage (Salter  1993  ) . Other proteins, such as  fi bronectin 
and tenascin have roles in matrix organisation, cell-matrix interaction and the tis-
sue response to in fl ammatory conditions such as osteoarthritis (Buckwalter and 
Mankin  1997 ; Nishida et al.  1995  ) .  

    41.1.2.3   Extracellular Matrix Fluid    

 Water is the largest component of articular cartilage. It makes up to 80% of carti-
lage wet weight in the surface zone, and decreases to approximately 65% within 
the deep zone. The high af fi nity of articular cartilage for water is due to the charge 
density of the hydrophilic PG molecules. The PGs encapsulate the water within 
their matrices, forming a gel-like substance, with pore size of approximately 
6.9 nm (Meachim and Stockwell  1979  ) . These pores contribute to the diffusivity of 
the small molecules and water through articular cartilage (Lusse et al.  2000 ; 
Maroudas  1979  ) . Matrix water contains small gasses, proteins and dissolved elec-
trolytes (Na + , Cl − , Ca 2+ , SO 

3
  − , COO −  etc.). The cations balance the negatively 

charged PGs, thereby in fl uencing the mechanical properties of the tissue (Guilak 
et al.  1999  ) . A large proportion of the ECM  fl uid can move freely in and out of the 
tissue under applied load (Buckwalter and Mankin  1997  ) . Therefore during normal 
joint loading, the cartilage is compressed and the water is squeezed out of the 
loaded region. As the region is unloaded, the water is re-imbibed and the original 
volume is restored with time. This movement of cartilage  fl uid is crucial in joint 
lubrication, transport of macromolecules within articular cartilage and nutrition of 
the cells therein.  

    41.1.2.4   Chondrocytes 

 The cartilage ECM and its associated proteins are synthesised, assembled and 
organised into a highly ordered framework by its cellular component, the articular 
chondrocytes (Buckwalter and Mankin  1997 ; Muir  1995  ) . The chondrocytes    attempt 
to maintain the ECM and their associated protein by their continual replacement in 
health, disease and following trauma. However, this depends on the cells ability to 
detect changes in the matrix composition, which may be due to macromolecular 
degradation, or the mechanical demands placed upon the tissue. Although relatively 
sparse in density, the chondrocytes are the only living units available to adapt cartilage 
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to changes in its surroundings. Individually, chondrocytes have been found to be 
metabolically active, with a glycolytic rate per cell similar to that of cells found in 
vascularised tissues. However, the adult tissue as a whole, has a comparatively low 
metabolic activity due to its low cell density of approximately 1 cell per 100  m m 3  
(Buckwalter et al.  2005  ) . Both cell proliferation and ECM synthesis decline follow-
ing skeletal maturity in normal tissue.   

    41.1.3   Organisation 

 The structure and composition of articular cartilage changes with depth from the 
joint surface (Buckwalter et al.  1987 ; Clarke  1971 ; Lane and Weiss  1975 ; Lipshitz 
et al.  1976 ; Muir et al.  1970 ; Ratcliffe and Mow  1976  ) . Although these changes are 
continuous, articular cartilage    has been divided into four distinct zones/layers 
(Fig.  41.1 ). These are termed the super fi cial zone (I), transitional zone (II), the 
deep or radial zone (III), and the zone of calci fi ed cartilage (IV). PGs occupy the 
inter fi brillar space and their concentrations increase from the surface to a maximum 
in the transitional zone, and then diminishes toward the deep zone (Comper  1996 ; 
Muir  1980 ; Poole et al.  1982  ) . The volumetric concentration of collagen  fi bres in 
human articular cartilage increases from the super fi cial (16–31%) to the deep zone 
(14–42%), while that of the cell decrease by a factor of about three from the surface 
to the deep zone. The super fi cial zone is closest to the articular surface. It is approxi-
mately 250  m m thick for human articular cartilage, and is the thinnest of the four 
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  Fig. 41.1    Structure and composition of cartilage at different depths from the articular surface       
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zones. Chondrocytes    in this zone are  fl attened and oriented parallel to the articular 
surface (Meachim and Stockwell  1979  ) . Collagen  fi bres in this region are very  fi ne 
and, are arranged tangentially to the surface of the cartilage, thus deriving its alter-
native name; the tangential zone (Buckwalter et al.  1987  ) . The most super fi cial part 
of this region is termed the lamina splendens and is devoid of cells, but consists of 
 fi ne  fi bres and polysaccharides.  

 In the transitional zone, chondrocytes are spherical in form and fairly uniform in 
distribution. The collagen  fi brils in this zone are generally larger and more ran-
domly organised. There is a higher concentration of PGs and lower water content 
when compared with the super fi cial zone (Buckwalter and Mankin  1997  ) . The deep 
zone has a thickness greater than 500  m m, making it the thickest of the four zones. 
Chondrocytes of the deep zone are spherical, and are arranged in columns of four to 
nine cells, oriented perpendicularly to the joint surface (Meachim and Stockwell 
 1979  ) . Collagen  fi bres within the deep zone are arranged perpendicularly to the 
articular surface. The zone of calci fi ed cartilage separates the radial zone and sub-
chondral bone. The deep and the calci fi ed zones are separated by the  tide mark . It is 
widely believed that the calci fi ed zone of articular cartilage and the  tide mark  pres-
ent barriers for solute diffusion via the subchondral bone and therefore nutrition is 
solely from the synovial  fl uid, via the articular surface (Honner and Thompson 
 1971 ; McKibbin and Holdsworth  1966  ) . Evidence does exist, however to suggest 
the contrary, in that molecules can travel across to the articular cartilage. Notably, 
most of these studies have used immature synovial joint, and it is generally accepted 
that the route for nutrient delivery to the articular cartilage is affected by skeletal 
maturity (Honner and Thompson  1971  ) . Compared to the deep zones, cells in the 
calci fi ed zone have a smaller volume, and are associated with fewer golgi mem-
branes and endoplasmic reticula in the cytoplasm, thus suggesting a reduced meta-
bolic activity (Buckwalter and Mankin  1997  ) .  

    41.1.4   Cartilage Biomechanics    

 Mechanically, a healthy articular cartilage acts to limit the contact stresses acting on 
the underlying bone and provide an extremely ef fi cient low wear bearing surface for 
smooth movement (Kempson et al.  1970 ; Mow et al.  1992  ) . For these reasons, carti-
lage is more deformable than bone, and thus when loaded, can provide a considerable 
area of contact to support joint loads (Weightman and Kempson  1979  ) . 

 Interactions between the two main solid components of the ECM have crucial 
roles in the tissues ability to sustain an applied load (Maroudas  1976 ; Wong et al. 
 2000  ) . For example, PG exhibits a swelling capacity, resulting from the negatively 
charged GAG molecules repelling each other while attracting water and mobile 
cations. Therefore PG molecules impede the loss of water in the matrix by reducing 
the tissue’s permeability (Quinn et al.  2001  ) . When not loaded, the associated 
osmotic pressure is balanced by the hydrostatic pressure resulting from the tensile 
stresses within the network of collagen  fi bres. 
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    41.1.4.1   Cartilage Loading    

 When cartilage is loaded, there is a short-lived response that alters the balance 
between the osmotic and hydrostatic pressures. The internal pressures increase within 
the joints, producing pressure gradients. Consequently,  fl uid  fl ows away from the 
tissue, resulting in an increased in PG concentration (Weightman and Kempson 
 1979  ) . To minimise this displacement, tensile stresses builds up in the collagen net-
work. As the load is removed from the joint,  fl uid  fl ows back into the cartilage and it 
regains its original shape. This response varies with the magnitude and type of load 
applied (Herzog et al.  1998  ) . 

 During prolonged loading of cartilage,  fl uid  fl ows out from the tissue and over 
time, there is a loss of volume, resulting in a time-dependant creep response. During 
static loading such as squatting and maintaining a 90° bend, the load transmission is 
con fi ned to a relatively smaller area of the joint, the contact stress and deformation 
in this region is considerably greater than anywhere else the joint. Despite the load-
ing rate being lower than that in knee bending exercises, the cartilage is loaded 
continuously at a local site over a long period, and this can lead to creep-behaviour 
(Eckstein et al.  2000  ) .  

    41.1.4.2   Creep 

 The mechanical properties of cartilage can be measured either in creep or stress 
relaxation. Creep    is the slow time-dependent deformation process which occurs 
after the immediately, elastic deformation of cartilage during load application 
(Fig.  41.2a ). This is then followed by a slow, time dependant increased deforma-
tion. The initial deformation is brought about by the tissues’ matrix, thus there is 
no net change to its volume. Moreover, the tissues resistance to deformation is due 
to the network of collagen  fi bres. However, the time-dependent deformation, which 
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  Fig. 41.2    ( a ) Creep and ( b ) load relaxation measurements of cartilage       
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occurs as the load is maintained, results directly from the imbibition of water from 
the tissues matrix. As the  fl uid leaves cartilage, the applied load is transferred from 
the matrix  fl uid to the solid components. An equilibrium is established when the 
load is totally transferred unto the matrix  fi bres. For creep measurement of carti-
lage, the tissue is compressed with a constant load and the resulting deformation is 
recorded.   

    41.1.4.3   Load Relaxation 

 In load relaxation   , cartilage is compressed to a constant deformation and the load is 
measured (Fig.  41.2b ). Initially, the load required to maintain a constant deforma-
tion is high. This is necessary in order to pressurise the matrix  fl uid. As the  fl uid 
begins to leave the tissue, the load required to maintain the deformation decreases 
and tend towards a plateau. At this stage, the matrix is compacted and the inter fi brilar 
pore space is reduced. Equilibrium is then established when  fl uid is no longer exit-
ing the cartilage, and the remaining  fl uid is redistributed within the tissue. Both the 
time-dependent creep and load relaxation of cartilage is largely due to the  fl uid  fl ow, 
whereas the equilibrium is controlled by the solid matrix. In fact, the equilibrium 
stiffness of articular cartilage has been tied to the tissues PG content (Jurvelin et al. 
 1988 ; Mow et al.  1980  ) .  

    41.1.4.4    In Vitro  Mechanical Testing    

 Three common methods used for determining the mechanical properties of carti-
lage are con fi ned compression, uncon fi ned compression and indentation testing. 
In con fi ned compression (Fig.  41.3a ), cartilage is placed a non-porous chamber 
and compressed with a porous platen, so  fl uid is forced out only via the porous 
platen. During uncon fi ned compression (Fig.  41.3b ) however, cartilage is com-
pressed between two non-porous platens and  fl uid exits laterally. For indentation 
tests (Fig.  41.3c ), cartilage is compressed with an indenter that is either porous or 
non porous. In cases where a porous indenter is used,  fl uid expelled from the car-
tilage may  fl ow laterally or axially. However, non-porous indenters impede axial 
 fl uid  fl ow.  

 Although common mechanical parameters may be obtained using any of the 
three strategies, it has been recognised that the values of mechanical properties 
are dependent on the measurement technique employed. For example, Hurtig and 
co-workers (Korhonen et al.  2002  )  reported that values of compressive stiffness 
and poisson’s ratio of bovine cartilage derived from con fi ned compression were 
slightly higher than values derived from uncon fi ned compression tests, and values 
derived from indentation testing were signi fi cantly higher than both the con fi ned 
and uncon fi ned values. This technique dependence of mechanical properties is 
due to the inhomogeneous structure and anisotropic mechanical properties of 
cartilage.  
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    41.1.4.5    In Vivo  Mechanical Testing    

 The ability to monitor the health status of an intact cartilage, predict or diagnose 
osteoarthritis, and monitor the healing process of the tissue after a treatment had 
necessitated  in vivo  strategies, be it simple observation, or qualitative or quantitative 
measurements. Earlier techniques were based on magnetic resonance imaging 
(MRI). To this extent, Eckstein and co-workers  (  1999  )  analysed the deformation 
and recovery, as indicated by interstitial  fl uid  fl ow rate in seven healthy patellae 
joints. Similarly, O’Byrne et al.  (  2003  )  assessed the biochemical composition of 
cartilage in goat knees, in response to papain injection. The authors were able to 
demonstrate a compromise of the tissues collagen integrity with the magnetic reso-
nance technique. This dose-dependent degradation was con fi rmed by post-mortem 
biochemistry and histology. 

 High-frequency ultrasound and mechanical indentation in now commonly com-
bined to measure both structural and mechanical parameters, such as stiffness, and 
thickness, respectively. In an example, Kiviranta et al.  (  2008  )  compared the dynamic 
stiffness of healthy and degenerated patella cartilage, thereby diagnosing early 
stages of OA. In a similar study, Nishitani et al.  (  2008  )  were able to arthroscopically 
determine the thickness and surface roughness of ten male athletes while undergo-
ing mosaicplasty for steochondritis dissecans.   

  Fig. 41.3    Schematic representation of experimental setup used for the ( a ) con fi ned, ( b ) uncon fi ned 
compressive and ( c ) indentation testing of cartilage explants       
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    41.1.5   Modelling Theories for Articular Cartilage 

 During indentation tests, after a sudden application of constant load on cartilage, a 
rapid compression takes place, which is then followed by a slow creep process 
towards equilibrium at a rate which is governed by the applied load and test condi-
tions (Mow et al.  1984  ) . Early explanations for this viscoelastic behaviour did not 
take into account the interstitial  fl uid  fl ow and internal redistribution of the organic 
matrix and the compaction within the cartilage specimen. Although the possible 
in fl uence of the multiphasic nature of cartilage on its deformational characteristics 
was realised by Hirsch  (  1944  )  as early as 1944, the role of  fl uid  fl ow on the dynamic 
deformational behaviour of articular cartilage was not recognised until later. One of 
these studies (Elmore et al.  1963  )  showed that the creep response observed in inden-
tation testing of cartilage was largely due to the ef fl ux of interstitial  fl uid from the 
tissue. They also observed that upon removal of the load, complete recovery of the 
tissue occurred only if suf fi cient  fl uid was available to re-imbibe into the tissue. 
Indeed, Linn and Sokoloff  (  1965  )  recorded a positive correlation between creep 
response and the amount of  fl uid exuded from cartilage tissue. Such studies stimu-
lated a range of models describing both physicochemical and mechanical properties 
of cartilage. 

    41.1.5.1   Biphasic Theory 

 The biphasic model    depicts cartilage as a soft, porous and permeable material 
comprising 20% (wt/vol) of elastic solid, and  fi lled with an incompressible  fl uid 
(Mow et al.  1980 ; Torzilli and Mow  1976  ) . The model accounts for the effect of 
the drag forces arising from the relative motion between the  fl uid and solid phases. 
It incorporates all existing known mechanical properties of cartilage, namely, 
inhomogeneity, anisotropy, stress-strain non-linearity, interstitial  fl uid  fl ow and 
 fi nite deformation. However, several assumptions are associated with the theory 
(Mow et al.  1992  ) , namely,

   The solid matrix is porous, permeable, and elastic.  • 
  The solid matrix and interstitial  fl uid are intrinsically incompressible; i.e. vol-• 
ume change of the tissue as a whole is possible only if there is  fl uid exudation or 
imbibition.  
  Frictional drag is directly proportional to the relative velocity between the inter-• 
stitial  fl uid and the porous-permeable solid matrix – the proportionality coef fi cient 
is the drag coef fi cient [ K ], which may be strain-dependent.  
  The frictional drag of the interstitial  fl uid  fl ow is the dominant mechanism con-• 
trolling tissue viscoelasticity in compression.    

 A modi fi ed, general form is the Kuei, Lai and Mow biphasic theory for cartilage. 
This form differs to the previous by the addition of more constitutive assumptions, 
such as an in fi nitesimal strain, linear, isotropy, constant elastic coef fi cients, and 
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constant or strain-dependent permeability. However, some authors have associated 
the biphasic theory with inherent  fl aws (Brown and Singerman  1986  ) . In particular; 
the theory relies on the ability to de fi ne the distinct phases, which is problematic as 
there are no distinctive barriers between the matrix and the  fl uid components. When 
applied to the prediction of creep behaviour of an isotropic, homogeneous and lin-
early elastic material undergoing small strain deformation the biphasic theory was 
found to be inadequate. For example, it was incapable of modelling the substantial 
portion of the transient phase of cartilage response when load under a slow rate in 
uncon fi rmed compression.  

    41.1.5.2   Triphasic Theory 

 It has been observed that when unloaded cartilage specimens are soaked in a 
sodium chloride (NaCl) solution at constant temperature, the tissue dimensions 
decrease exponentially with increasing NaCl concentration. The in fl uence of ionic 
movements in cartilage on its swelling and deformational behaviour has long been 
recognised (Maroudas  1979  ) . This has led to the development of the triphasic the-
ory   . The theory couples both the physicochemical aspects of cartilage swelling and 
the biphasic view of solid matrix deformation and interstitial  fl uid  fl ow. The theory 
describes the equilibrium free swelling and con fi ned compression behaviour of 
cartilage and other soft hydrated tissues. In this theory, cartilage is considered as a 
mixture of three phases: an  incompressible solid phase , which is the matrix, con-
sisting of collagen and PG,  an incompressible  fl uid phase , which is the interstitial 
water, and an  ionic phase  of two species of a single salt, the cations and the anions. 
The theory can be applied to equilibrium as well as transient problems, and has 
been found capable of predicting the stress-strain  fi elds in the solid matrix, the 
interstitial  fl uid  fl ow along with the distribution of the ions, and  fl uid pressure 
(Gu et al.  1997 ; Lai et al.  1991  ) .  

    41.1.5.3   Poroviscoelastic and Poroelastic Theories 

 Both the biphasic and triphasic theories fail to incorporate the anisotropy and viscoelas-
ticity of cartilage, which are of great importance when determining cartilage mechani-
cal properties. To this extent, several models exist, whose details are beyond the scope 
of the present review. More relevant is the consideration of the inter fi brilar pores in 
cartilage, which control the transport of soluble nutrients and the  fl ow-independent 
viscoelasticity of cartilage mechanical and physicochemical properties. These are 
described by the poroelastic and the poroviscoelastic theories. 

 The poroviscoelastic model    describes the viscoelasticity exhibited by cartilage 
with a combination of a  fl uid  fl ow-dependent,  fl uid  fl ow-independent mechanisms 
and the intrinsic viscoelasticity of the solid matrix (Mak  1986  ) . In the poroelastic 
model    of cartilage, the tissue is modelled as an isotropic solid matrix containing 
 fl uid-saturated pores, entrapped by a  fi brillar network. Both the solid and the  fl uid 
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phases are assumed to be incompressible. The structure is de fi ned by the Young’s 
modulus, Poisson’s ratio of the matrix and the hydraulic permeability. The model 
assumes that the hydraulic permeability depends on the dilatation of the bulk mate-
rial. The  fi brils are evenly distributed in the radial, circumferential and axial direc-
tions forming an elastic constituent attached to the porous matrix and that the 
stiffness of the  fi brillar network depends on the longitudinal strain of the  fi brils. 
These  fi brils have no resistance to compression and the effect of lateral deformation 
of every single  fi bril is neglected (Li et al.  1999  ) .   

    41.1.6   Pathologies 

    41.1.6.1   Mechanical 

 Single and multiple blunt impacts on cartilage yielding 20% strains at strain rate of 
6.7%.s −1  have been found to cause destruction of bovine metacarpal cartilage. 
Moreover, strains of 40% and above have evidently caused surface defects, correlating 
to collagen network failure and cell death. However, cartilage has been shown to sur-
vive impacts yielding less than 10% strain, with no injury to chondrocytes on their 
ECM (Radin et al.  1970 ; Repo and Finlay  1977  ) . On the other hand, low impact may 
lead to cell death despite structural integrity being maintained (Duda et al.  2001  ) . 

 Defects of articular cartilage may or may not reach the surface of the underlying 
bone. In care of the latter, these are termed chondral, or partial thickness defects. Some 
of these super fi cial lesions result from surgical procedures (Rosenberg  1971 ; Thompson 
 1975  ) . Full thickness lesions, also termed osteochondral defects (Fig.  41.4 ), cross the 
tidemark of articular cartilage and violate the underlying subchondral bone. In doing 
so, they have access to cells in the bone marrow cavities.   

    41.1.6.2   Degenerative and Non-degenerative Diseases 

 Common diseases, which affect the health and functionality of the joint, are osteoar-
thritis    (OA), rheumatoid arthritis    (RA), chondromalacia    and disuse atrophy   . OA is a 
slowly progressive disorder of unknown cause (Mankin  1974a  ) , which generally 
occurs later in life, principally affecting major weight-bearing joints. It is character-
ised clinically, by pain, deformity and reduced mobility, and pathologically, by fea-
tures including focal erosive lesion, cartilage destruction, subchondral sclerosis, 
cyst formation, and large osteophytes at the margins of the joints. With the progres-
sion of OA, cartilage exhibits histological, biochemical and metabolic changes, 
although their precise nature frequently depends on the underlying abnormality and 
the duration of the disease progression. At the early stages of the disease, the tissue 
erodes, disappearing completely from the focal areas of the surface, leaving a 
denuded, sclerotic and eburnated bone. Type II collagen degrades beneath the artic-
ular surface, and their organisation is disrupted. Consequently, the tissue depletes in 
stiffness and strength and  fi brillation follows (Mow et al.  1992  ) . 
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 RA    typically affects many different joints and can be chronic in nature. This 
systemic disease affects the entire body and is one of the most common forms of 
arthritis. It is characterised by the in fl ammation of the membrane lining the joint, 
causing pain, stiffness, warmth, redness, and swelling. In a similar manner to OA, 
there is degradation of type II collagen, particularly around chondrocytes in the 
deep zones, rather than directly beneath the articular surfaces (Mow et al.  1992  ) . 
PGs are also degraded, but can be partly replaced. Eventual cartilage thickness is 
reduced due to its exposure of migrating cytokines, produced in the adjacent sub-
chondral bone, resulting in the erosion of underlying calci fi ed cartilage and bone. 

 Pathological diseases of the articular cartilage are not necessarily con fi ned to 
the elderly. Indeed, any form of joint immobilisation   , for example following an 
injury or surgery, will lead to tissue atrophy and joint stiffness. These conditions 
can be reversed with joint remobilisation, starting with gentle exercise, which 
gradually increase in intensity. Another non-degenerative disease is chondromala-
cia patella   , which is often caused by trauma, overuse, part misalignment or muscle 
weakness. Instead of gliding smoothly, the patella translates across the femur, 
thereby roughening the cartilage underneath the patella. The damage may range 
from a slight abnormality to a complete wear of the associated cartilage surface. 
Traumatic chondromalacia    occurs when a blow to the patella bone tears off either 
a small piece of articular cartilage or a large fragment containing a piece of bone. 

  Fig. 41.4    Schematic representation of full and partial thickness defects in articular cartilage       

 



1078 G.N. Duda et al.

The latter is termed an osteochondral fracture   . Clinically, the process results in 
mild to moderate pain and stiffness. The resulting changes resemble those of mild 
OA, with  fi brillation, surface irregularities and cartilage erosion (Mankin  1974b  ) .    

    41.2   Repair Strategies 

    41.2.1   Response to Injuries 

 The effects of mechanical injuries to articular cartilage vary considerably, depend-
ing on its nature and severity. Its response to super fi cial defects, which violate nei-
ther its calci fi ed layers nor the underlying bone typically lack in fl ammation of the 
cartilage, and has limited potential for self-repair (Buckwalter  1998 ; Mankin  1982  ) . 
Characteristically, there is minimal attempt on the part of the cartilage to elicit cel-
lular or matrix repair (Calandruccio and Gilmer  1962 ; Campbell  1969 ; DePalma 
et al.  1966  ) . However, cartilage responds to lacerative injuries with an enhanced 
mitotic activity adjacent to the defect margins. This is associated with increased 
synthesis of the matrix components (Mankin  1962  ) . 

 When a cartilage defect affects the vasculature of the subchondral bone, an enhanced 
biological response is elicited. This repair response is equivalent to that of other vascu-
larised tissues in the body (Mankin  1982  ) ,  fi lling the whole defect cavity with blood. 
In the proceeding events, a blood clot is formed, which contains both red and white 
blood cells, undifferentiated cells and marrow elements (DePalma et al.  1966  ) . However, 
only the bone defect is  fi lled with the new bone, and is fused with the cartilage defect, 
with its edges united by the vascular  fi brous tissue (Calandruccio and Gilmer  1962 ; 
DePalma et al.  1966  ) . As observed with super fi cial defects, brief synthetic activities 
take place in the remaining cartilage, during which a small amount of cells and matrix 
is produced, replacing some of that lost to the initial damage (Mankin  1962,   1982  ) . 

 The quality of the repaired cartilage is dependent on the initial defect size. For 
example, defects less than 3 mm in diameter often repair completely after 3 months 
and are dif fi cult to locate after 9 months (Convery et al.  1972  ) . However, defects 9 mm 
or larger may not completely repair. It has also been demonstrated that the site of an 
old osteochondral laceration may clearly be visible years after injury as a slightly 
discoloured, roughened pit, or linear grooves on the otherwise smooth surface adja-
cent to the defect site (Bennett and Bauer  1935 ; Campbell  1969 ; Key  1931  ) .  

    41.2.2   Non-invasive Therapies 

 Different interventions exist for the management of cartilage damage   . The most 
topical of these are lifestyle changes, pharmacological and surgical methods. The 
emphasis on lifestyle becomes highly relevant due to the high contributions of 
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obesity, and abnormal loading on the development and progression of osteoarthritis. 
Acute joint injuries, fractures of articular surface, along with tears of the meniscus 
and ligaments are all linked with osteoarthritis. Occupation and nutrition have also 
been deemed strong factors in degenerative cartilage diseases (Cooper et al.  1992 ; 
Felson and Zhang  1998 ; Lievense et al.  2001  ) . For example, strong evidence 
exists, which suggests that the risk of OA doubles after 10 years of farming (Jensen 
 2008  ) . Additionally, occupations which involve kneeling, squatting or heavy lifting 
also accelerates cartilage degeneration. Therefore, strategies such as weight control, 
recreational exercise, and injury prevention are all common interventions adopted 
as least-invasive therapies. More speci fi c, exercises such as quadriceps strengthen-
ing; stretching and aerobic exercises are commonly prescribed for treatment of hip 
and knee OA (Bukowski et al.  2006 ; Roddy et al.  2005  ) . Other examples are ultra-
sound (Soren  1965 ; Welch et al.  2001  )  and acupuncture (Brinkhaus et al.  2007 ; Lin 
and Chen  2009 ; Reinhold et al.  2008  ) . 

 Pharmacological interventions play a vital role in pain relief to OA patients. For 
mild or moderate pain, acetaminophen (paracetamol) is a common choice by physi-
cians (Towheed et al.  2006 ; Wegman et al.  2004  ) . Other non-steroidal anti-
in fl ammatory drugs (NSAID) such as naproxen and ibuprofen used for patients with 
either hip or knee OA have been found to be superior to paracetamol, in bringing 
pain relief, albeit, at a higher health risks. However, both analgestics have been 
associated with discomfort, perforation, and bleeding of the gastrointestinal tracts 
(Zhang et al.  2004  ) . Other pharmacological interventions include chondroitin and 
glucosamine (Dahmer and Schiller  2008 ; Matsuno et al.  2009 ; Owens et al.  2004  ) . 
While paracetamol and NSAIDs work by inhibiting the actions of cyclo.oxyge-
nase-1 and -2, thereby, relieving the patients of pain, chondroitin and glucosamine 
are taken as supplements, which are used as building blocks during the ongoing 
turnover of cartilage.  

    41.2.3   Surgical Interventions 

 In cases where non-invasive therapies are not possible, due to substantial cartilage 
damage, or detachment of cartilage fragments, surgical procedures are undertaken. 
These include joint lavage, subchondral stimulation, autogenic and allogenic trans-
plantation and cell transplantation, performed either arthroscopically or with an 
open joint surgical approach 

    41.2.3.1   Arthroscopic Cleaning    

 Arthroscopic procedures, such as lavage, involve thoroughly rinsing the joint cavity 
with Ringer solution, lactate and sodium chloride solutions. Such a palliative 
approach is designed to reduce the degree of the pain experienced by the patient. 
In the main, this strategy is successful, although the biological reasoning for pain relief 
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is not established (Anderson et al.  1993 ; Chang et al.  1993 ; Gillespie and O’Connell 
 1992 ; Livesley et al.  1991  ) . However, there are limits to its application, particularly 
with OA patients whose pain relief is generally considered to be a result of a pla-
cebo effect (Gibson et al.  1992 ; Moseley et al.  1996  ) . 

 Other arthroscopic strategies include chondral shaving and debridement. 
Chondral shaving involves the removal of the diseased tissue, while debridement 
combines chondral shaving with lavage to remove free bodies from the joint. As 
with lavage, the biological rationale behind each of these to procedures remains 
unclear. Indeed, cell loss along the lesion borders of the remaining cartilage has 
been reported to follow chondral shaving, which is counter-productive for cartilage 
repair (Kim et al.  1991 ; Mitchell and Shepard  1987 ; Tew et al.  2000  ) . In addition, 
debridement has been reported to be associated with skeletal misalignment and 
shown clinically to exacerbate the osteoarthritic condition (Messner et al.  2000  ) . 
Both procedures can be carried out using a gentle cutting instrument incorporating 
laser light at a speci fi c wavelength. Although the laser is useful for welding and fus-
ing the tissue, performing a chondral shaving or a debridement using laser offers 
little advantages over mechanical cutting method (Vangsness and Smith  1995  ) . 
In both cases, the structural integrity of the cartilage matrix with pre-tensioned 
water content is damaged in addition to the degradation process.  

    41.2.3.2   Subchondral Stimulation    

 Typically for super fi cial defects, a common repair strategy involves surgically 
accessing the adjacent bone-marrow spaces along with the bone, adipose tissues and 
the vascular spaces. Examples of such procedures include abrasion chondroplasty, 
Pridie drilling and microfracture techniques. The three procedures are very similar, 
although the holes in the microstructure techniques are distributed across the entire 
cartilage lesion site, approximately 3 mm apart to a depth of 4 mm. Moreover, the 
holes are relatively small (0.5–1.0 mm diameter) when compared to Pridie drilling 
involving holes of between 2.0 and 2.5 mm in diameter. 

 By penetrating the subchondral bone beneath the defect, the void is immediately 
 fi lled with a  fi brin clot which, within 2 days adheres to the bony compartments of the 
wound, as opposed to the cartilaginous tissue. By the  fi fth day, mesenchymal stem 
cells have penetrated and completely resorbed the  fi brin clot,  fi lling the void. Thereafter, 
between days 10 and 14, the cells differentiate into chondrocytes and lay down a 
PG-rich matrix. By 8 weeks, the repair tissue begins to resemble normal cartilage and 
forms a continuous surface with the surrounding native tissue by approximately 
6 months. However, by 12 months, there is generally evidence of degradation of repair 
tissue (Hunziker  1999 ; Wyre and Downes  2000  ) . There is an inherent discontinuity 
between the repair tissue and the surrounding cartilage, as the collagen  fi brils within 
the two compartments fail to integrate. Additionally, some PGs in the cartilage matrix 
exhibit anti-adhesive properties, and hinder the bonding between the repair and the 
native cartilage tissues. The employment of abrasion chondroplasty for cartilage 
defects in rabbits and dogs have resulted in the formation of cartilage-like tissue, 
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which originated from the subchondral bone (Altman et al.  1992 ; Kim et al.  1991  ) , 
though other studies report the presence of signi fi cant quantities of  fi brous cartilage 
(Furukawa et al.  1980  ) . It has also been reported that the repaired full-thickness carti-
lage lesion in rabbits are more durable following the Pridie drilling when compared to 
the abrasion chondroplasty strategy (Menche et al.  1996  ) . Indeed the Pridie approach 
has been reported to be of great bene fi t to patients with conditions such as osteochon-
dritis dissecans and gonathrosis (Pedersen et al.  1995  ) , yielding both pain relief and 
restored joint function (Beiser and Kanat  1990 ; Goldman et al.  1997  ) . The microfrac-
ture technique, being a minimally invasive arthroscopic procedure is relatively less 
disruptive to the subchondral bone. Nonetheless, its employment in treating young 
athletes and horses has resulted in an improved joint function and pain relief (Frisbie 
et al.  1999 ; Sledge  2001  ) .  

    41.2.3.3   Tissue Grafting 

 The transplantation of cartilage    into defect sites has been a viable strategy for sev-
eral decades (Cohen and Lacroix  1955  ) . The transplanted cartilage may be sourced 
autologously or extracted from cadavers. In autologous cartilage transplantation, 
plugs of cartilage biopsy are extracted either from adjacent to the defect (periosteal) 
or from the rib (perichondral). These are either sutured or glued to the defect  fl oor, 
such that the defect may be stimulated to form repair cartilage that binds to the 
transplant, forming a continuous neo-tissue over the entire defect (Ohlsen  1976  ) . 
With this technique, joint function and pain relieve have been reported to reach 80% 
of cases (Bouwmeester et al.  1997 ; Homminga et al.  1990 ; Korkala and Kuokkanen 
 1991 ; Moran et al.  1992  ) . Moreover, these strategies are advantageous because they 
minimise disease transfer and immunological rejection, which are commonplace 
with allografts from another donor. For these reasons, autografts have produced 
treatments with survival rates up to 70% at 2–5 years (Temenoff and Mikos  2000  ) . 
In general, chondrogenesis associated with periosteal grafts is relatively superior, as 
perichondral grafts often fail due to ossi fi cation (Nehrer et al.  1999  ) . In addition, 
explants taken from non-load-bearing region of cartilage is often unable to with-
stand forces imparted at joint surfaces. Due to its lack of mechanical integrity, the 
matrix of the implant and cartilage in the vicinity of the defect breaks down to the 
extent that the implant and associated regions later exhibit signs of osteoarthritis. 
Additionally, this breakdown also occurs at the donor site (Kim et al.  1991 ; Mitchell 
and Shepard  1987  ) , often necessitating undesirable and expensive second operation. 
Indeed, the amount of autograft that can be harvested is limited, thus the technique 
is often unsuitable for clinical-sized defects. 

 Alternately, allogenic osteochondral grafts obtained from human cadavers have 
been used to  fi ll cartilage defects. Unlike autologous grafts, no biological interac-
tion is predicted between the transplant and its surrounding cartilage, such that the 
primary role of the transplant is to  fi ll the defect site and replace the lost tissue volume. 
This approach has bene fi ted patients with large osteochondral defects, particularly 
caused by trauma and osteo-necrosis. The bene fi ts of osteochondral resurfacing in 
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the human knee joint has been observed to last for many years (Bakay et al.  1998 ; 
Bell et al.  1994  ) , with reported success rates such as 85% after 10 years (Mahomed 
et al.  1992 ; Meyers et al.  1989  ) . Although, adverse immunological reactions are 
associated with this procedure, the survival of allogenic transplants may be pro-
longed with the use of immunosuppression and histocompatibility techniques 
(Hickey et al.  1994 ; Stevenson  1987 ; Stevenson et al.  1989  ) . 

 The perichondrium, which is a dense membrane composed of  fi brous connective 
tissue that closely wraps cartilage (except for the articular cartilage, which is cov-
ered by the synovial membrane) has been implanted unto cartilage defects in the 
human joints (Homminga et al.  1990 ; Kwan et al.  1989  ) . These autologous scaffolds 
were advantageous because they naturally contain autogeneous cells that are useful 
for cartilage repair. However, in addition to the limited availability of harvest sites, 
the neo-cartilage formation resulting from these grafts have been deemed unsatis-
factory in patients over the age of 40 (Seradge et al.  1984  ) . Moreover, regenerates 
formed from these scaffolds do not completely  fi ll the defect and tend to detach and 
ossify (Hendrickson et al.  1994 ; Homminga et al.  1990  ) . Another autologous scaf-
fold is the ostechondral autograft. These are biopsies from osteochondral plugs 
removed from low-weight-bearing areas on the femoral condyles. Similarly to the 
perichondrial grafts, the osteochondral plugs are populated with the patients-own 
cells. However, the neo-cartilage formed does not survive inde fi nitely. This is partly 
due to the damaged sustained during their implantation procedure, which involves 
hammering into the defect site (Laprell and Petersen  2001  ) . Moreover, defects are 
created at the sites where the plugs are biopsied, though non-load-bearing; these 
may lead to future complications (Hurtig et al.  2001  ) .  

    41.2.3.4   Cell Transplantation    

 Isolated chondrocytes have been transplanted into articular cartilage defects for its 
repair. However, such an approach typically has a success rate of less than 40%, as 
the cells are not retained within the defect site for suf fi cient period to produce neo-
ECM (Temenoff and Mikos  2000  ) . On the other hand, mesenchymal stem cells 
from the skeletal muscle of adult rabbits, seeded onto porous polyglycolic acid 
(PGA) mats have also been implanted into non-weight bearing defects in the rabbits 
femoropatella groove. The PGA matrix biodegrades and the stem cells remain  in 
situ , producing a cartilage-like tissue containing type II collagen and subchondral 
bone that is morphologically similar to native tissue (Grande et al.  1997 ; Martin 
et al.  1999  ) . However, in a similar approach using mesenchymal stem cells and col-
lagen gel for cartilage defects in osteoarthritic human knees limited clinical improve-
ment was observed after 42 weeks (Wakitani et al.  2002  ) .  

    41.2.3.5   Autologous Cell Implantation    (ACI) 

 Since its  fi rst clinical application for treating deep articular cartilage defects in the 
knee (Brittberg et al.  1994  ) , ACI has been a fairly successful approach for treating 
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cartilage defects. The technique involves harvesting a healthy or non-healthy 
(Dehne et al.  2009  )  portion of cartilage, usually from a non-load bearing region of 
the patient, and enzymatically degrading the tissue to isolate the cell population. 
These cells are expanded  in vitro  to a suf fi cient density for implantation, approxi-
mately of the order of 50 × 10 6  cells.ml −1 , into the defect site which had been cleared 
and prepared using a purposely designed curette. The cells used in the repair may 
either originate from the chondrocytes in the host-extracted cartilage, its precursor 
cells from the periosteum or possibly mesenchymal stem cells of the subchondral 
bone (of the defect site) had this been injured. The use of ACI has resulted in an 
improved joint function for at least 72% of patients at 1 year post-operatively 
(Bentley et al.  2003 ; Minas  1998  )  and 84% of patients at 3 years post-operatively 
(Micheli et al.  2001  ) . For instance, ACI has been used for treating defects in other 
joints such as hips and ankles (Giannini et al.  2001 ; Romeo et al.  2002  ) . The use of 
ACI as an alternative treatment to surgical excursion, allogenic grafting and 
autografting (Peterson et al.  2003  )  has been discussed to provide long-term joint 
restoration and pain relief for patients with osteochondritis dissecans.   

    41.2.4   Tissue Engineering 

 Despite the numerous strategies available for treating cartilage defects, there is yet 
to be a standardised solution for restoring long term function, especially due to the 
large variability of defects to be treated. This limitation has encouraged a more 
sophisticated tissue-engineered approach (Ringe and Sittinger  2009  ) . Tissue engi-
neering    combines the principles of cell and molecular biology with material tech-
nology, to create a new tissue, which has the potential to physically and biologically 
mimic its predecessor and restore function to the damaged tissue. Key activities in 
this approach are the attainment and expansion of cells, the development of scaf-
folds that act as carriers for the cells. 

    41.2.4.1   Chondrocyte Source 

 An important step in tissue engineering is the isolation and expansion of cells that 
are to be transplanted. The cells must be both appropriate for the intended tissue 
and of suf fi cient quantity to treat clinical-sized defects (LeBaron and Athanasiou 
 2000  ) , whilst being free of pathogens and contamination. Cells sources can be 
either autologous, allogenic or xenogenic, the latter being derived from a different 
animal species. Each approach has speci fi c bene fi ts and shortcomings (Breinan 
et al.  2001 ; Ma et al.  2005 ; Masuoka et al.  2005 ; Ostrander et al.  2001 ; Pavesio 
et al.  2003  ) . For example, although autologous cells are free from imuno-related 
problems, without causing harvesting complications, they are relatively few in 
numbers. Thus the autologous approach does not effectively lead to a readily avail-
able off-the-shelf solution. 
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 Allogenic and xenogenic cells may be extractible in large numbers and are 
available off-the-shelf, but these are associated with immunological problems and 
in the case of xenogenic cells, there is often the possibility of animal virus trans-
mission (Sirlin et al.  2001  ) . Tissue-engineered constructs derived from these cells 
require additional steps to incorporate immune acceptance.  

    41.2.4.2   Stem Cells 

 More recently, stem cells have been proposed to be a vital source of cells for tissue 
engineering applications. In a similar manner to differentiated cells, stem cells may 
either be autologous, allogenic or xenogenic in nature. Stem cells offer the bene fi ts 
of being able to be multiplied extensively, yielding high cell number; from which, 
the desired number may be extracted and differentiated into chondrocytes. The 
remaining stem cells may be further multiplied for future use. As an example, mes-
enchymal stem cells derived either from the bone marrow and other adult connec-
tive tissues (Friedenstein et al.  1976  )  may differentiate to a selected range of cells 
including chondrocytes, osteoblasts, tenocytes or myocytes, irrespective of their 
origin (Jones et al.  2002 ; Minguell et al.  2001 ; Pittenger et al.  1999 ; Yoo et al.  1998  ) . 
For the same reasons, embryonic stem cells, derived from the inner cell mass of the 
embryonic blastocyst; offer even great potentials for tissue engineering. Stem cells 
have the ability to multiply extensively before showing signs of senescence (von der 
Mark et al.  1977  ) . However, there are ethical and legal concerns with using human 
embryonic cells. For this reason, much of the research has been conducted on ani-
mals (Fuchs et al.  2005 ; Kramer et al.  2006  ) . Though instructive, fundamental dif-
ferences between different species necessitate that those current  fi ndings resulting 
from animal models be con fi rmed on humans, before the therapeutic potential of 
embryonic stem cells are to be employed in tissue engineering and regenerative 
medicine.  

    41.2.4.3   Scaffold Technology    

 Cells and growth factors are commonly transplanted into the body with the support 
of a carrier scaffold. These carriers function to retain the cells at the defect site, 
allow them to multiply and synthesize their own ECM. Therefore, such scaffolds 
must provide a number of design properties including: (1) Biocompatibility: To 
prevent undesirable immune or biological response. (2) Permeability: to demon-
strate suf fi cient porosity to enable good nutrient supply to cells at all regions of the 
construct, allow transport of signalling molecules between cells, permit removal of 
waste products and allow ingrowth of host tissue. (3) Biodegradability, where appro-
priate, to enable the scaffold to degrade in a controlled temporal manner, into non-
toxic by-products as a neo-tissue is developed In addition, this property may enable 
the controlled release of morphogens and/or pharmacological agents to encourage 
cellular activity. 
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 To date, a wide range of natural and synthetic materials are available for use 
as scaffolds for tissue engineered cartilage constructs (Barnewitz et al.  2006 ; 
Ossendorf et al.  2007 ; Perka et al.  2000 ; Risbud and Sittinger  2002 ; Sittinger 
et al.  1994,   2004  ) . For example, the potential of  fi brin based scaffolds    as carri-
ers of cells and growth factors for cartilage regeneration was investigated 
(Hendrickson et al.  1994  ) . Although this naturally clot-forming polymer pro-
duces neo-tissue that is histologically similar to natural cartilage, it has poor 
mechanical properties and often evokes an immune response (Kawabe and 
Yoshinao  1991  ) . The use of collagen-based scaffold    for delivering cell and 
growth factors to defect sites is extensive. As collagen naturally occurs in skel-
etal tissues, it promotes attachment of cells unto its surface. Accordingly, it has 
been used either cell-free, seeded with chondrocytes or mesenchymal stem cells, 
in many animal studies (Russlies et al.  2002 ; Sams et al.  1995 ; Samuel et al. 
 2002  ) . Chondrocytes seeded onto dense collagen scaffolds, implanted into rabbit 
femoral trochleas for up to 24 weeks was demonstrated to have produced a 
hyaline-like cartilage that was biochemically and mechanically similar to its 
surrounding cartilage (Frenkel et al.  1997  ) . By contrast, other  in vivo  studies 
reported that although the repair appears adequate at earlier time point, subse-
quent thinning of the repair tissue occurs with time (Wakitani et al.  1994  ) . 
Hyluronan    is a non-sulphated GAG that is essential for the aggregation of large 
proteoglycans such as Aggrecans in articular cartilage. It has been used to 
deliver mesenchymal stem cells to caprine chondral defects (Butnariu-Ephrat 
et al.  1996  ) , and stabilise chondrocytes and osteochondral progenitor cells for 
cartilage defects in rabbits (Grigolo et al.  2001 ; Solchaga et al.  2002  ) . Although 
the newly developed tissues exhibit good integration with the host cartilage, 
they are typically thinner and often induce the breakdown of cartilage matrix. 

 Chitosans    have been used to deliver cells and growth factors to the defect site. 
Chitosan, which can form into thermo reversible hydrogels, offers the combined 
advantages of an implant with an uniform distribution of cells and direct injectabil-
ity into the defect. At lower temperature, chitosan is molten and is mixed with cell 
suspension. When injected into the body at 37 °C, the cell-gel solution solidi fi es 
into the defect (Chenite et al.  2000  ) . However, their inferior mechanical property of 
the chitosan implant limits its use in a load-bearing environment. 

 Dissemination of chondrocytes within agarose and alginate hydrogels is a well 
established protocol for  in vitro  cartilage models (Benya et al.  1988 ; Freeman 
et al.  1994 ; Lee and Bader  1995  ) . These systems have demonstrated their value in 
studying the response of chondrocytes to many external stimuli while excluding 
the coupled in fl uences of other factors that are also implicated within the native 
cartilage. Examples of such studies include the effects of dynamic mechanical 
stimulation on chondrocyte metabolism (Chowdhury et al.  2001,   2003 ; Lee and 
Bader  1997  )  and chondrocyte deformation (Buschmann et al.  1995 ; Knight et al. 
 1998  ) . In a similar manner to many hydrogels, however, cell-seeded agarose or 
alginate constructs are limited by their poor resorption rate and their inferior 
mechanical and biochemical properties, making them unsuitable for load-bearing 
applications. 
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 Compared to natural scaffolds, the mechanical and biochemical properties of 
synthetic scaffolds    are readily modi fi ed to suit speci fi c applications. For cartilage 
regeneration, these are commonly derivatives of polyglycolic acids (PGA) and 
polylactic acids (PLA), both of which have been demonstrated to support chondro-
genesis (Haisch et al.  2005  ) . However, PGA was found to be weaker than most 
synthetic scaffolds, and degrades very fast, often releasing acidic byproducts of 
degradation into its immediate environment, which may prove cytotoxic (Grande 
et al.  2003  ) . The uses of PLA/PGA copolymer as scaffolds allow improved control 
of the degradation rate. Indeed success was demonstrated by Cohen et al., who 
observed good histological and biochemical response, after 12-week implantation 
of the co-polymer into rabbit-chondral-defects (Cohen et al.  2003  ) . An exhaustive 
range of copolymers have been proposed for cartilage repair. These include PLA/
PEG (Polyethylene glycol) (Tamai et al.  2005  ) , and nano fi brous forms of PLA/PCL 
(Polycaprolactone) (Li et al.  2005  ) , the latter has been shown to elicit differentiation 
of human mesenchymal stem cells into chondrocytes exhibiting similar zonal mor-
phology to that of which in native cartilage. Other synthetic copolymers include 
Polyethylene glycol-terephthalate/polybutylene-terephthalate (PET/PBT) (Weisser 
et al.  2001  ) . Scaffolds derived from carbon  fi bres have also been used in cartilage 
lesions with good results (Mooney et al.  1996  ) . Multiphase implants consisting of 
PGA, Bioglass and calcium phosphates have been examined in osteochondral 
defects in goats (Niederauer et al.  2000  ) . The PGA  fi bres were seeded with autolo-
gous chondrocytes and the calcium phosphates were used to modulate the constructs 
stiffness at speci fi c regions of the implants.    

    41.3   The Limiting Factor: What Lies Beneath 

    41.3.1   Subchondral Considerations in Cartilage Disease 

 Although little is known about the relationship between bone and cartilage in the 
etiology of osteoarthritis   , an abnormal growth of the subchondral bone resulting in 
thickened subchondral bone plate   , increased stiffness, and bone mineral density 
have been tagged with the progression of the disease (Fazzalari and Parkinson  1997 ; 
Grynpas et al.  1991 ; Li and Aspden  1997  ) . Having observed these, and a decreased 
energy absorbing capacity Radin and co-workers proposed that stiffening of the 
subchondral plate was an initiating factor in osteoarthritis (Radin et al.  1970  ) . They 
later hypothesised that trabecular microfracture due to impulsive loading initiates 
bone remodelling in the subchondral plate. This leads to localized stiffening that in 
turn produces increased shear stress in the cartilage, culminating in cartilage break-
down (Pugh et al.  1974  )  

 It had been an ongoing debate that the calci fi ed cartilage layer and the tide 
mark was an impenetrable structure, separating the articular cartilage from its 
underlying subchondral bone. However, microcracks and micro channels between 
the subchondral region and the uncalci fi ed cartilage have been demonstrated 
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(Clark and Huber  1990 ; Holmdahl and Ingelmark  1950  ) . It is therefore conceivable 
that these microcracks, and the vascularization in the subchondral bone plate, 
could facilitate molecular transport from the subchondral region to the basal layer 
of cartilage. Evidence to support this transportation comes from the discovery of 
hepatocyte growth factor (HGF) within the deep zone of normal cartilage, and an 
elevated level in osteoarthritic cartilage (Pfander et al.  1999  ) ; despite it not being 
produced by chondrocytes, but by the osteoblasts in the subchondral region 
(Guevremont et al.  2003  ) . It has therefore been proposed that, following its syn-
thesis by subchondral osteoblasts, HGF can reach the deep layers of articular 
cartilage via these microcracks, and/or the vascularised subchondral plate, and 
promote cartilage breakdown and/or enhances matrix remodelling. The associa-
tion of HGF with Osteoarthritis comes from its incitement of MMP-13 production 
(Reboul et al.  2001  ) ; an enzyme present in the lower intermediate and deep layers 
of osteoarthritic cartilage. Other evidence for the role of subchondral bone in 
cartilage degradation are TGF-ß, Cathepsin K, and PGE2/LTB4, which are all 
produced by osteoarthritic subchondral bone cells, and yet found at the deep lay-
ers of osteoarthritic cartilage (Konttinen et al.  2002 ; Moldovan et al.  1997 ; Nakase 
et al.  2000  ) .  

    41.3.2   Subchondral Considerations in Cartilage Healing 

 Although clinical studies have reported favorable results with osteochondral 
autografts    at short and mid-term follow-up, animal studies 3 months after graft-
ing found signs of degeneration, evidenced by chondrocyte clustering and 
hyper-cellularity in cartilage (Tibesku et al.  2004  ) . Answering the question of 
whether the observed degradation may be detected histologically, Kleemann 
et al.  (  2007  )  characterized the mechanical competence and morphology of car-
tilage in osteochondral autografts. The ensuing study demonstrated that grafted 
tissues seem to undergo in a short period of time, where both substantial degen-
erative and regenerative processes occur. The compressive stiffness of the 
grafted cartilage was about 58% of that of healthy tissue at 3 months, and rose 
to 82% at 6 months. Fibrillation, hypercellularity, and cell clustering were 
observed at the edges of the grafts. Both the cartilage and the underlying bone 
were observed to be degrading, raising doubts as to their long term repair. Events 
such as disrupted nutrition (Malinin and Ouellette  2000  ) , physical damage dur-
ing the extraction, and transplantation of the graft (Buckwalter and Mankin 
 1998 ; Duda et al.  2001 ; Huntley et al.  2005 ; Redman et al.  2004 ; Whiteside 
et al.  2005  )  were thought to be contributing factors. Despite this, the intensity 
of type II collagen staining of the healthy and the grafted cartilage tissue were 
identical. 

 A bottom-upwards approach by Schell et al., had aimed to  fi rst support the 
reconstruction of the subchondral bone plate    in an osteochondral defect, and 
thereby improving the mechanical and histological quality of the repaired cartilage 
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(Schell et al.  2007  ) . The authors transplanted crushed bone graft together with a 
collagen membrane into osteochondral defects, 8.3 mm in diameter and 10 mm in 
depth. Comparing its healing with un fi lled control groups, they observed no differ-
ence in healing outcome between the two groups after 6 months. All defects, 
whether  fi lled or not, showed an irregular, more or less advanced cartilage repair. 
However, the articular surface was not restored in any case 

 A similar endeavour had attempted to encourage osteochondral healing through 
mechanical straining (Duda et al.  2005  ) . Bone resorption and formation were 
observed at the base, and at the circumference of the defects, respectively. Defect 
 fi lling, cartilage formation, and trabecular structures were observed for up to 12 
weeks. Although their defects were completely  fi lled, the neo-tissue mainly com-
prised of  fi brous cartilage, and only partially with hyaline-like cartilage. 

 The importance of the subchondral bone in cartilage healing is undisputed. When 
a cartilage lesion is deep enough, the penetrated subchondral bone is prompted into 
action. Often, in cases such as abrasion chondroplasty and microfracture, it is strategi-
cally penetrated surgically for its input into the healing process to be realised. It is now 
a topical discussion that the state of the underlying bone itself, be it mechanical, phys-
iological, or otherwise, is actually important for the quality of cartilage regenerated.  

    41.3.3   Subchondral Considerations in Cartilage 
Tissue Engineering 

 The functioning of articular cartilage is believed to be dependent on the mechan-
ical support by the subchondral bone. In fact, the steep stiffness gradient in the 
subchondral bone is suggested to be responsible for the initiation and progres-
sion of cartilage damage (Radin and Rose  1986  ) . Moreover, the stiffened sub-
chondral bone associated with osteoarthritis (Radin et al.  1970  )  is said to cause 
transverse stresses at the base of the articular cartilage, potentially resulting in 
deep horizontal splits therein. Given their apparent differences, tissue-engineered 
solutions either favours cartilage repair, or bone regeneration, and seldom sat-
isfy both tissues. Osteochondral repair strategies    now aim to concurrently mimic 
the physiological properties and structure of the cartilage and bone using cell-
seeded constructs. The resulting hybrid is an engineered scaffold consisting of 
both a cartilage-optimised phase and a subchondral bone-optimised phase 
(Temenoff and Mikos  2000  ) . Principally, the two phases are produced sepa-
rately, under their appropriate conditions, and with the appropriate cellular dis-
seminations, and are later united prior to implantation. On this front, two kinds 
of hybrid scaffolds have been developed by Hutmacher and co-workers, using a 
combination of  fi brin, polycaprolactone (PCL), and a PCL-TCP combination. 
In one instance, the  fi brin served as the cartilage phase while the PCL scaffold 
substitutes for the subchondral phase. On another occasion, their hybrid consisted 
of PCL and PCL-TCP. The top PCL region promotes cartilage regeneration 
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while the underlying PCL-TCP serves as the subchondral bone phase. Having 
been seeded with pre-cultured MSCs, the biphasic constructs were implanted 
into New Zealand white rabbits for up to 6 months. The researchers found that 
in terms of cartilage regeneration, PCL bettered the  fi brin constructs; stipulating 
that the mechanical support provided by the  fi brin was insuf fi cient for cellular 
development, and its subsequent secretion of the essential ECM products. In 
fact, the  fi brin degrades rapidly, while the porous PCL scaffold degraded slowly, 
providing an effective mechanical support. 

 Along a similar line, Schlichting et al. evaluated the healing of osteochondral 
defects using polylactideco-glycolide scaffolds of differing stiffness, hypothesiz-
ing that a stiff scaffold creates suf fi ciently stable conditions necessary for sub-
chondral bone formation and consequently cartilage regeneration compared with 
a softer scaffold or to untreated controls (Schlichting et al.  2008  ) . The stiff scaf-
fold was found to improve the regeneration of subchondral bone, while the soft 
scaffolds provided less support, and consequently the surrounding subchondral 
bone became more sclerotic. Indeed, the regenerated cartilage that was formed 
over, the stiff scaffold exhibited higher elastic and dynamic moduli at 3 months 
than did the soft scaffold group. However these mechanical properties were not 
dissimilar for both groups at 6 months. Moreover, these values were inferior to 
that of native articular cartilage. These  fi ndings led to the conclusions that materi-
als used to  fi ll subchondral defects should have a comparable stiffness to that of 
healthy subchondral bone rather than being too  fl exible. When this is not the case, 
degradation or resorption of  fi lling materials will lead to loss of stiffness, and may 
compromise the defect healing.   

    41.4   Summary 

 The present review has looked at the current challenges faced when trying to regen-
erate cartilage. Most of these issues have been related to the structure, composition, 
and mechanical features of the tissue. In light of the topics discussed above, the fol-
lowing statements may summarise the current challenges associated with cartilage 
regeneration: 

 Cartilage is a complex tissue, with at least three phases. Moreover, cartilage 
illness may be systemic, local, acute or chronic. Current treatment options aim to 
reduce pain. By large, there is as of yet no solution that is all-encompassing, and 
can regenerate all the different types of cartilage defects. Despite the ongoing 
debate over the separation of articular cartilage from its subchondral bone by the 
tide mark, there exists an overwhelming amount of evidence to link the two 
regions, particularly at the onset of OA. Therefore, a good strategy for cartilage 
regeneration ought not to neglect the underlying subchondral tissue. Principally, a 
successful clinical outcome will have re-established both the damaged cartilage 
and its underlying subchondral bone.      
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  Abstract   Muscle injury and degenerative muscle diseases are disabling conditions 
that are currently challenging orthopedic surgeons, neurologists and specialists in 
rehabilitative medicine. Upon traumatic or degenerative changes in the structure 
of the muscle, regeneration befalls mainly by increased proliferation of satellite 
cells. If the injury is extensive  fi brosis and scar tissue formation occurs. Till now 
various alternative therapeutic ways have been proposed to boost muscle regen-
eration. These methods include the use of growth factors, antioxidative therapeutic 
approaches, cell based therapy and cell transplantation as well as the use of scaffolds. 
Growth factors, antioxidative substances and endogenous polypeptides can not 
only in fl uence but also control the natural repair processes by acting on different 
intracellular pathways. Cell orientated therapies have been popular in muscle 
regeneration mainly because small quantities of cells are needed to achieve thera-
peutic effects. Transplantation of stem cells, myoblasts or genetically modi fi ed 
cells, have been used after injury to restore muscle structure and function. 
Furthermore scaffolds have been used to repair muscle defects and to generate 
new muscle  fi bers. 

 Similar approaches have been made for regeneration of ligaments. There are a 
number of cell sources that are potentially helpful for cell mediated tissue regenera-
tion. Scaffolds provide temporary mechanical support and can carry cells that pro-
mote the ligament regeneration. Furthermore growth factors can be used to stimulate 
ligament healing and accelerate regeneration mainly by modulating the 
proliferation.     
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     42.1   Muscle Regeneration 

    42.1.1   The Skeletal Muscle: Injury and Repair 

 Muscle is de fi ned as the anatomical construct of animals with the ability to contract. 
The skeletal muscle tissue derives from paraxial mesoderm. During development, 
myoblasts migrate to their destinations, where they fuse to form elongated skeletal 
muscle cells. Muscle cells contain contractile  fi laments that move past each other 
and change the size of the cell. The human body consists of more than 600 different 
muscles, which allow us to breath, to go and to perform daily tasks. About 40% of 
the total body mass in males are muscles whereas 25% in females, only. 

 Over a short period of time after muscle injury ischemic events as well as 
in fl ammatory damage of myocytes and interstitial muscle tissue cells occurs. 
Immediately after, the nutritive microvascular perfusion of the muscle gradually 
surceases and the in fl ammatory response with leukocyte endothelial cell interaction 
enlarges. Subsequently, normal function of the endothelial cell barrier is disrupted 
and interstitial muscle edema establishes (Oestern and Tscherne  1983  ) . At later 
time points after muscle injury tissue regeneration is characterized by three phases 
(Järvinen et al.  2005  ) : (1) Destruction phase: rupture and necrosis of muscle cells, 
hematoma formation and leukocyte cell in fi ltration; (2) Regeneration phase: phago-
cytosis of the necrotic tissue, regeneration of myo fi bers and formation of  fi brotic 
tissue, capillary incorporation as well as angiogenesis into the traumatic tissue; 
(3) Remodeling phase: reconstruction and regeneration of myo fi bers, increase of 
the breaking strength of the traumatized tissue, reorganization of the scar tissue and 
functional remodeling of the muscle. 

 Similar pathological changes occur not only after muscle injury but also in 
dystrophic muscle disease. Muscular dystrophies are a heterogeneous group of 
hereditary diseases affecting both children and adults, and are characterized by 
muscle wasting and weakness. Degenerative muscle diseases, like muscular dystro-
phies, involve cycles of segmental necrosis and regeneration. The muscle tissue is 
thereby characterized by  fi ber size variability, necrosis, regeneration, in fl ammation 
and connective tissues deposition (Ciciliot and Schiaf fi no  2009  ) .  

    42.1.2   Regenerative Capacity of Skeletal Muscle 

 The skeletal muscle is an irreversibly post-mitotic tissue that has under normal con-
ditions a very low mitotic activity. Under certain conditions and in response to vari-
ous stimuli like very mild trauma, regenerative cascades in the muscle become 
activated in order to restore the injured tissue. Under normal conditions muscle 
regeneration is initiated subsequently to muscle injury. 

 The most important cells during muscular regeneration are satellite cells. Satellite 
cells are undifferentiated reserve cells, which are located in the gap between 
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basal lamina and plasma membrane of each individual myo fi ber (Mauro  1961  ) . 
In response to muscle injuries satellite cells proliferate, differentiate into myoblasts 
and  fi nally fuse together to form a multinucleated myotube. The newly formed myo-
tubes fuse with the injured myo fi ber that has survived the initial trauma. 

 In the mature muscle tissue two major populations of satellite cells reside. The 
 fi rst population of satellite cells directly repairs the injured tissue by proliferation 
and differentiation into myoblasts immediately after muscle injury. The second 
population of satellite cells proliferates after muscle injury and replenishes the 
existing satellite cell pool by undergoing cell divisions before differentiation. 
Furthermore, it is known that post trauma, stem cells from the bone marrow but also 
muscle residual stem cells are migrating to the injured skeletal muscle and re fi ll the 
satellite cell pool. It is assumed that some satellite cells are capable to differentiate 
not only into myogenic cell lineages but almost any cells lineage of mesenchymal 
origin (Fig.  42.1 ).  

 However, this regenerative capacity is not in fi nite, as fatigue of the satellite cell 
population is an important factor during the regenerative process especially in 
patients with congenital myopathies such as Duchenne muscular dystrophy. 
Although the endogenous regenerative capacity of skeletal muscle can conven-
tionally be supported by physical means (like rest, ice, cooling and elevation of 
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  Fig. 42.1    The muscle regeneration: ( A ) If a normal myo fi ber ( MF ) is injured ( B ) satellite cells 
( SatC ) become activated and start to proliferate. Circulating stem cells as well as local stem cells 
from the skeletal muscle ( SC ) differentiate to satellite cells ( C ) and participate during the repair 
process in the muscle regeneration. The satellite cells fuse with the injured myo fi bers ( D ) or 
together ( E ) and form new myo fi bers with central nuclei ( F ). Growth factors ( GF ) control the 
procedure and enhance the regeneration. At a later time point the newly formed nuclei move away 
from the center of the cell and reside beneath the cell membrane ( G )       
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the injured limb) the recovery is not always ample. Novel therapeutic strategies can 
be applied to restore, improve and maintain the function of the muscle tissue healing 
during injury, disease, age and congenital defects.  

    42.1.3   Growth Factors and Muscle Boosters 

 Muscular regeneration is a crucial biological process, which occurs during the natural 
repair cycle. The recognition of biologically active proteins, which can enhance the 
repair process, is still under investigation. The ideal muscle booster would be a 
molecule that does not have side effects and can speci fi cally and successfully be 
delivered into the injured muscle. Further goals of the generative therapies include 
the maintenance of pre-traumatic muscle mass, reduction of the post-traumatic 
muscle loss and up-regulation of muscle regeneration. Up to now, many factors have 
been recognized to control natural repair processes by acting on different intracel-
lular pathways. 

  IGF-I and IGF-II (Insulin like Growth Factor I and II) : The IGF-l and IGF-II 
increases the satellite cell proliferation, restores muscle mass after injury, mobilizes 
non-muscle stem cells and improves regeneration in aged myopathy related skeletal 
muscle (Husmann et al.  1996 ; Singleton and Feldman  2001 ; Barton et al.  2002 ; 
McKay et al.  2008  ) . Furthermore IGF-I seems to utilize pathways in regulating the 
satellite cell pool. 

  TGF (Transforming growth factor) : The TGF plays a crucial role in regulating the 
repair and remodeling following tissue injury. Further TGF mediates many bio-
logical actions on extracellular matrix components (Husmann et al.  1996  ) . 

  FGF (Fibroblast growth factor) : The  fi broblast growth factor family participates in 
the muscle regeneration and has been suggested as a potent activator of myocytes 
satellite cells (Charge and Rudnicki  2004  ) . Especially FGF-2 and FGF-6 accelerate 
muscle regeneration (Israeli et al.  2004 ;    Li et al.  2010  ) . 

  HGF (Hepatocyte growthfactor) : The HGF plays a key role during the early stage 
of muscle regeneration. It promotes the satellite cell proliferation and migration into 
the site of injury as well as the stimulation of quiescence satellite cells (Charge and 
Rudnicki  2004  ) . 

  MSTN (Myostatin) : Myostatin is a potent negative regulator of skeletal muscle 
growth and member of the tumor growth factor-beta family. Disruption of the myo-
statin gene causes a combination of hypertrophy and hyperplasia which induces a 
remarkable increase in muscle mass. The depletion or inactivation of myostatin 
leads to a signi fi cant improvement in muscle regeneration processes, especially in 
degenerative diseases, mainly through stimulation of satellite cell proliferation and 
differentiation (Wagner  2005  ) . 

  NF- k B (nuclear factor kappa-light-chain-enhancer of activated B cells) : The 
NF- k B is a protein complex that controls the transcription of DNA. NF- k B 
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promotes proliferation, inhibits differentiation and modulates muscle development 
(Peterson and Guttridge  2008  ) . Further, it modulates immune response, in fl ammation 
and cell survival in skeletal muscle disease (Mourkioti and Rosenthal  2008  ) . 

  EPO (Erythropoietin), G-CSF (Granulocyte-Colony Stimulating Factor) and PDGF 
(Platelet Derived Growth Factor) : Are endogenic polypeptides with pleotropic 
actions on a variety of hematopoietic and non-hematopoietic cells. In relation to 
muscle regeneration EPO has been recognized as anti-apoptotic and tissue protec-
tive protein which increases the proliferation of local cells and improves muscle 
function (Rotter et al.  2008  )  after muscle injury as well as after muscle ischemia 
(Kim and Hong  2007  ) . G-CSF has been found to increase satellite cell proliferation 
and reduce cell apoptosis after muscle injury resulting in faster and better muscle 
restoration (Stratos et al.  2007 ; Naito et al.  2009  ) . The PDGF seems to increase 
myoblast proliferation, acts chemotactic for satellite cells and stimulates the angio-
genesis (Husmann et al.  1996  ) . 

  LIF (Leukemia Inhibitory Factor) : The LIF is an interleukin 6 class cytokine that 
affects satellite cell growth and development as well as proliferation and differen-
tiation after injury (Charge and Rudnicki  2004 ; Karalaki et al.  2009  ) . 

  ß2 adrenergic agonists : ß2 adrenergic agonists stimulate the muscle growth and 
impede the muscle loss. They further suppress protein degradation (Yimlamai et al. 
 2005  ) , provoke neuronal growth and activity as well as enhance the replacement of 
muscle speci fi c proteins (Arai et al.  2006  ) . 

  Calcineurin : Calcineurin is a calcium and calmodulin-dependent serine/threonine 
protein phosphatase, which mediates myotube differentiation, enhances myoblast 
recruitment and ameliorates injury to the dystrophic muscle (Mitchell and Pavlath 
 2002  ) . 

  Melatonin : Melatonin is an indolamine that enhances muscle force, reduces apopto-
sis and impedes in fl ammation after muscle injury (Stratos et al.  2012b  ) . Additionally 
it has been shown that Melatonin protects against ischemia/reperfusion injury in 
skeletal muscle (Erkanli et al.  2005  )  by acting as a potent antioxidative substance 
(Halici et al.  2004  ) . 

 Furthermore, various other substances have been described to promote muscle 
regeneration like caplains (calcium dependent proteases) as well as diverse steroids 
and hormones that seem to promote myoblast recruitment, enhance proliferation 
and induce muscle growth.  

    42.1.4   Antioxidative and Antiapoptotic Therapy 

 Antioxidative substances have been used with intent to prevent oxidative stress and 
the experimental results showed mixed success. Antioxidants may potentially 
reduce certain types of muscle damage but supplementation probably cannot totally 
prevent muscle injury and degeneration. Ubiquinone seems to stabilize the cell 
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membrane after injury (Kon et al.  2007  )  and to stop the ischemia reperfusion injury 
(Bolcal et al.  2007  ) . Vitamin C is a major antioxidant and has important functions 
in connective tissue and immune function. Vitamin C application before muscle 
injury preserves muscle function and reduces the local in fi ltration and edema 
(Kearns et al.  2004  ) . Furthermore, Vitamin C prevents microvascular dysfunction 
in the skeletal muscle of septic rats (Armour et al.  2001  )  and decreases the exercise-
induced increase in the rate of lipid peroxidation (Evans  2000  ) . Alpha Lipoic acid 
(an essential cofactor for many enzyme complexes) and Iso fl avonoids (a group of 
plant chemicals) have bene fi cial effects upon oxidative-induced damage of muscle 
tissue. Supplementation with vitamin E increases muscle force after injury (Warren 
et al.  1992  )  reduces the levels of protein oxidation in the skeletal muscle and lessens 
the exercise-induced lipid damage (Reznick et al.  1992  ) . Several groups have tested 
combined supplementation treatments in relation to exercise-induced muscle dam-
age. Combinations have included mainly vitamins E and C as well as other antioxi-
dants (Baskin et al.  2000 ; You et al.  2005  ) . 

 Antiapoptotic strategies have also shown enhanced muscle regeneration after 
injury. Additionally, it is postulated that inhibition of caspase activation could be a 
potential therapeutic target during katabolic events, trauma and disease (Jackman 
and Kandarian  2004  ) . Inhibition of caspase-mediated apoptosis supported the func-
tional restoration of the injured muscle by amplifying muscle force and furthermore 
promoted the survival of the injured myo fi bers by decreased muscle atrophy (Stratos 
et al.  2012a  ) . Interestingly, Hu et al. reported that transgenic mice, which selectively 
express the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis 
protein (XIAP) in skeletal muscles, have hypertrophic peripheral muscles compared 
to wild-type animals (Hu et al.  2010  ) .  

    42.1.5   Cell Therapy and Muscle Regeneration 

 Till now, cell orientated therapies have been introduced which endorse muscular 
regeneration. Stem cell therapy is an attractive method to treat both muscle injury 
and dystrophic muscle tissue, because a small quantity of cells is required to achieve 
therapeutic effects (Price et al.  2007  ) . A current classi fi cation of non muscle stem 
cells involved in muscle regeneration includes (1) non muscle stem cells from the 
ectoderm and endoderm e.g. neural stem cells (Galli et al.  2000  )  (2) non muscle 
stem cells from the hematopoietic system and (3) non muscle stem cells from the 
solid mesoderm. 

  Non muscle stem cells from the hematopoietic system : Possible ways to induce 
muscular regeneration by non muscle stem cells from the hematopoietic system 
includes the usage of cells from the bone marrow (Ferrari et al.  1998  )  or transplanta-
tion of bone marrow side population cells (Motohashi et al.  2008  ) . Furthermore, 
non muscle stem cells from the hematopoietic system expressing AC133+ are able 
to undergo myogenesis when cocultured with myogenic cells or when transplanted 
in-vivo (Torrente et al.  2004  ) . Using genetically marked bone marrow derived cells 
in a mouse model Ferrari and colleagues could show that this cell population could 
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migrate into areas of induced muscle degeneration. Furthermore, these bone mar-
row derived cells could participate in the regeneration of damaged muscle  fi bers by 
undergoing myogenic differentiation (Ferrari et al.  1998  ) . Differentiated myotubes 
can be formed in-vitro as well as in-vivo (Jiang et al.  2002 ; Muguruma et al.  2003  )  
by using multipotent adult progenitor progenitor cells. Furthermore, it is known that 
in response to injury bone marrow-derived cells are not only capable to differentiate 
into satellite cells but also to fuse with the existing damaged myo fi bers and to regen-
erate the muscle  fi bers (LaBarge and Blau  2002 ; Corbel et al.  2003  ) . For further 
support of his statements a parabiotic animal model was used. During these experi-
ments, the vascular systems of observed mice were surgically joined. The authors 
could demonstrate that bone marrow-derived cells formed skeletal myo fi bers in 
injured and physiologically stressed muscle (Sherwood et al.  2004  ) . 

  Non muscle stem cells from the solid mesoderm : Non muscle stem cells from solid 
mesoderm which participate to the muscular regeneration include mesenchymal 
stem cells (MSC). Isolated MSC from the bone marrow can be expanded in a cell 
culture, and differentiate into a variety of cells of mesenchymal origin including 
skeletal muscle. MSC have been used to restore the function and anatomy of degen-
erated peripheral skeletal muscle in cases of myopathy and other congenital muscle 
diseases (Dezawa et al.  2005  ) . The injection of MSC into the muscle of mdx mice, 
led to the formation of functional myo fi bers and satellite cells (De Bari et al.  2003  ) . 
Furthermore, it has been described that MSC are being mobilized into the peripheral 
blood in response to injury and to further migrate from the blood across endothelial 
cells into the injured tissue. Transplantation of MSC into the muscle after injury 
causes a site-speci fi c differentiation of the MSC into myocytes. Multipotent adult 
progenitor cells can be differentiated in-vitro in mesenchymallineages and partici-
pate in the muscular regeneration. Muscle derived stem cells reside in adult skeletal 
muscle, express CD34 as well as Sca-l and improve skeletal regeneration (Qu et al. 
 1998  ) . Mesoangioblasts have a myogenic potential in culture and are capable of 
ameliorating the symptoms of a number of differing skeletal muscle pathologies 
(Otto et al.  2009  ) . Further cells with myogenic capacity include endothelial pro-
genitor cells (Takahashi et al.  1999  ) , stem cells from adipose tissue (Rodriguez et al. 
 2005  )  as well as stem cells from synovium (De Bari et al.  2003  ) . 

  Myoblasts : Up to now, many therapeutic attempts have been proposed to cure 
degenerative muscle disease using myoblasts. Based upon early experimental 
 fi ndings on mdx mice, dystrophin expression was restored after intramuscular trans-
plantation of myoblasts. Irintchev et al.  (  1997  )  applied in 1997 a muscle injury of 
the soleus muscle and induced an increased muscle force and functional improve-
ment after transplantation of 10 6  myoblasts into the site of injury. Furthermore, 
muscular regeneration was preceded after muscle injury and immediate application 
of myoblasts into the site of injury (Irintchev et al.  1997 ; Wernig et al.  2000  ) . These 
promising results were quickly followed by clinical trials. In the early 1990s intra-
muscular injection of allogenic myoblasts was per formed on humans with Duchenne 
Muscular Dystrophy (Gussoni et al.  1992,   1997 ; Mendell et al.  1995  ) . Unfortunately, 
the clinical bene fi t obtained from these studies was minimal, and research programs 
attempted to recognize the failures and pitfalls of these clinical trials. Major limitations 
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of previously mentioned attempts included insuf fi cient cell distribution, immune 
rejection, and poor cell survival after cell transplantation. According to knowledge 
based on preliminary experimental results, only a small number of cells participated 
in muscle regeneration whereas the vast majority of the injected cells did not sur-
vive the transplantation (Farini et al.  2009  ) . In virtue of current data, satisfactory 
myoblast transplantation requires an ample delivery system of cells to the injured or 
degenerated tissue as well as a suf fi cient immunosuppressive therapy. 

  Genetically modi fi ed cells for gene delivery into muscle : It has been suggested that 
overproduction of pleiotropic cytokines into the injured tissue via genetically 
modi fi ed cells may represent an attractive alternative to conventional therapeutic 
strategies. An interesting method, which has been already used, for tissues repair of 
muscle, skin, liver and cartilage is to transfect speci fi c cells with genome which 
enhances repair processes. For this purpose transfection of myoblasts may be an 
interesting option since these cells are used to repair and regenerate damaged skel-
etal muscle by acting as vectors for gene therapy. Genetically modi fi ed myoblasts 
have been used for replacing degenerating muscle  fi bers in mdx mice. As a gene 
delivery vehicle, myoblasts were used to deliver growth hormones, VEGF, Factor 
IX, EPO, FGF and others. Recent  fi ndings predict that targeted delivery of mRNA 
or DNA into the site of injury or injured cells will speci fi cally manipulate genes 
and enhance muscle regeneration (Järvinen et al.  2005 ; Caplan  2007 ; Krampera 
et al.  2007  ) .  

    42.1.6   Scaffolds and Muscle Regeneration 

 Transplantation of cells or the use of growth factors is a suitable procedure to treat 
minor defects after muscle injury. The application of cell-containing-scaffolds into 
the site of injury shows advances compared to the previously mentioned methods 
particularly in the treatment of larger muscle defects. Detailed in-vitro studies have 
enabled the development of scaffolds with the ability to generate muscle tissue. Aim 
of experimental approaches with scaffolds is to restore the structure and function of 
the injured muscle without scar tissue formation (Grefte et al.  2007  ) . Seeding of the 
matrix with autologous satellite cells reduces not only the in fl ammation but also 
decreases the  fi brosis at the edge of the implant (Grefte et al.  2007  ) . Moreover, growth 
factors like FGF-2 or HGF inside the matrix have a positive effect on local myoblasts 
and improve myogenesis (Hill et al.  2006a,   b  ) . Further studies have shown that the 
matrix in which the cells are embedded plays a major role in the regenerative pro-
cess. The use of myoblasts in scaffolds containing polyglycolic acid meshes, alg-
inate or hyaluronic acid constructs promotes the vascularization and muscle 
neoformation (Saxena et al.  1999,   2001 ; Kamelger et al.  2004 ; Stratos et al.  2011  ) . 
Myoblast can furthermore fuse in-vitro and can develop physiological function like 
force production. For this purpose a three-dimensional matrix can be used, were 
myoblasts are seeded and differentiated on top of a  fi brin gel (Huang et al.  2005  ) .  
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    42.1.7   Future Perspectives 

 Although major scienti fi c efforts have been made to understand the principles of 
myogenesis and muscular regeneration, no de fi nitive treatment for muscle injury 
and degenerative muscle disease exists. The primary focus of current studies has 
been to identify molecules and cascades that can regulate the proliferation of satel-
lite cells, in fl uence the tissue in fl ammation, control the angiogenesis and affect 
the apoptosis of skeletal muscle. Further studies are needed to de fi ne the speci fi c 
role of stem cells, scaffolds and other growth factors in the regeneration after injury, 
degeneration and dystrophy. Further goal should be to identify molecules that can 
modulate muscle cell homeostasis as well as to be able to boost proliferation and 
cell survival. These results will enhance our understanding of cell biology and cell 
regeneration serving as a platform for patient oriented based therapies.   

    42.2   Regeneration of Ligaments 

 Ligaments are non-stretchable strings of the skeleton, they contain mainly collagen 
and connect bones together. Ligamental tissue consists of an extracellular matrix 
with its embedded  fi broblasts. The  fi broblasts are responsible for biologic adaption 
to the mechanical environment, remodeling and healing of the injured ligament. 
Immediately after ligament injury (phase I) bleeding of the injured tissue occurs. 
This phase is followed by an in fl ammatory response (phase II) as various cytokines 
and growth factors are released by the in fl ammatory cells. This results in neovascu-
larization and initiation of granulation tissue formation. Later  fi broblasts proliferate 
(phase III) and collagen is being formed. Remodeling (phase IV) occurs 6 or more 
weeks after injury as wound gap is being  fi lled with unorganized granulation tissue. 
This phase of healing can extend up to many years and is responsible for restoration 
of tensile stiffness and strength (Woo et al.  2004  ) . 

    42.2.1   Ligamentisation and Mechanical Load 

 A common surgical procedure in humans for ligament replacement is to use autolo-
gous tendon grafts. The biological and morphological changes which take place 
after tendon transplantation are de fi ned as ‘ligamentisation’ (Amiel et al.  1986  ) . 
During the  fi rst two months a  fi broblast proliferation occurs followed by graft 
remodeling, angiogenesis, vascularization and necrosis. Throughout the steady 
maturation of the graft and within 3 years after transplantation the tissue undergoes 
a complete metaplasia to a ligamentous structure. 

 Application of mechanical loading has been reported to positively in fl uence the 
cellular proliferation as well as to effect cellular morphology and alignment in the 
regenerating ligament. Additionally, mechanical load in fl uences the ligamental 
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regeneration by modulating the healing of the graft-bone interface. According to 
recent studies both the timing as well as the magnitude of mechanical stimulation 
after ligament injury are important for the optimal healing during the regeneration 
period (Rodeo et al.  2010  ) .  

    42.2.2   Cell Therapy and Scaffolds 

 In-vivo studies have shown ligament regeneration by implanting mesenchymal stem 
cells and silk scaffold (Fan et al.  2008,   2009  )  resulting in a histological and functional 
improvement. Current in-vitro and in-vivo experiments suggest that subsequent to 
transplantation of autologous or allogenic mesenchymal stem cells, the transplanted 
cells display phenotypic characteristics of the endogenous surrounding tissue. These 
studies suggested that administration of mesenchymal stem cells at the site of injury 
reduces the injury size and enhances the regeneration (Arthur et al.     2009 ). 

 Clinical trials as well animal studies have pointed out the ef fi cacy of platelet-rich 
plasma treatment for ligament and tendon injuries (Rodeo et al.  2010 ; Paoloni et al. 
 2011  ) . Platelet-rich plasma is produced after centrifugation of whole blood. That 
centrifugate holds not only higher platelet concentration than that of the whole 
blood but contains also numerous growth factors that can participate into regenera-
tion after injury. However, the ef fi cacy of such treatment remains controversially 
discussed especially when comparing platelet-rich plasma treated subjects with 
corresponding sham groups (Paoloni et al.  2011  ) . 

 Further scienti fi c efforts have been made to generate adequate ligament scaffolds. 
The scaffolds should be biodegradable, porous, biocompatible, exhibit suf fi cient 
mechanical strength, and promote the formation of ligamentous tissue (Cooper et al. 
 2005  ) . In summary, collagen  fi ber scaffolds as well as hybrid biomaterial-biological 
ensembles have been proposed to enhance ligament regeneration after injury 
(Kew et al.  2011  ) . Current literature distinguishes between biologic and synthetic 
scaffolds, however both of them seem to exhibit inadequate tensile strength as well 
as to have fatique properties (Ignatius and Durselen  2009  ) .  

    42.2.3   Matrix Metalloproteinases, Ultrasound Application 
and Nitric Oxide (NO) 

 Recently, extracellular proteins were identi fi ed to modulate ligament regeneration. 
The metalloproteinases are proteins, which function, in both extracellular environment 
through transmembrane and intracytoplasmic domains. Matrix metalloproteinases 
induce further production of pro-in fl ammatory cytokines and are counterbalanced 
by the Tissue Inhibitors of Metalloproteinases (TIMPs). The major role of the matrix 
metalloproteinases is to contribute to normal tissue remodeling mainly through 
breaking down any extracellular matrix component. Furthermore low-intensity 
ultrasound has been shown to have angiogenic actions on the ligaments as well as 
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gene expression and proteoglycan synthesis. The NO is a free radical agent which 
acts in intracellular and extracellular environment. NO is enhanced during ligament 
healing (Deehan and Cawston  2005  ) .  

    42.2.4   Growth Factors and Gene Therapy 
by Ligament Regeneration 

 A variety of growth factors have been identi fi ed to modulate the regenerative capac-
ity of ligaments and to improve tissue function. Researchers have tried to develop 
strategies that improve ligament regeneration and repair mainly by modifying the 
extent of scar tissue formation due to the fact that ligament regeneration is similar 
to the healing process of the skin. Platelet-derived growth factor (Hildebrand et al. 
 1998  ) , epidermal growth factor and transforming growth factor as well as the 
 fi broblast growth factor (DesRosiers et al.  1996 ; Deehan and Cawston  2005  ) , 
promotes the angiogenesis and scar tissue formation of the ligament. Growth factors 
can be applied to modulate many cellular activities, including cell proliferation, cell 
migration, and extracellular matrix synthesis and production. 

 Gene therapy introduces foreign nucleic acids into cells in order to alter their 
endogenous protein expression. Direct transfer involves the use of naked DNA from 
mammalian tissue and a one-step delivery of genes into host cells in vivo. Indirect 
transfer involves transfection of desired genes into cells followed by implantation of 
the cellular tissue into the host. By means of tissue engineering it is possible to 
transfect cells with bene fi cial factors and to inject them into the injured ligament 
(Menetrey et al.  1999  ) . This results in an improved ligament healing and a faster 
maturation. One of the major drawbacks of this technique is the mutagenesis, which 
is clinically unacceptable especially in elective cases. 

 It is clear from the current literature, that regeneration of ligaments is possible 
and that growth factors, cell transplantation as well as scaffolds (Fig.  42.2 ) do have 
a capacity to repair. Unfortunately none of the previously mentioned methods has 

ligament regeneration

signaling
molecules growth factors cells

  Fig. 42.2    A proposed approach achieving successful ligament regeneration combining signaling 
molecules, growth factors and cell transplantation       
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been analyzed clinically. Considering the limited number of clinical and experimental 
studies as well as our poor knowledge regarding ligament regeneration, we conclude 
that at present tissue engineering of ligaments only partially ful fi lls scientist’s 
expectations due to the challenge of achieving a suf fi cient primary tensile strength 
and adequate tissue angiogenesis.        
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  Abstract   Skin is the largest organ in the human body. Its surface ranges in average 
between 1.5 and 1.8 m 2  and the thickness varies between 0.5 (lower eyelid) and 
15 mm (foot sole) in a young healthy adult, resulting in a tissue volume of 7,500–
27,000 mm 3 . The skin has to ful fi ll a magnitude of physiological organic tasks, 
which is indicated by the variety of tissue thicknesses. These tasks include mecha-
nistic, metabolic, energetic and immunologic aspects. Skin was the  fi rst organ which 
had been tissue engineered in vitro and translated back into clinical application. 
Therefore it is a prime target for regenerative therapies, not only due to its easy 
accessibility but also, because of the fact that skin is one of the most active and 
continuously regenerating organs and therefore a fascinating model to learn more 
about the human body’s intrinsic regenerative mechanisms. 

 This book chapter focuses on the regenerative capacities of skin tissue and its 
comprising cell compartments and explains how the principles of skin regeneration 
may be translated into clinical practice.  
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  Abbreviations  

  TEN    Toxic epidermal necrolysis   
  EPO    Erythropoietin   
  EPOR2    EPO Receptor 2   
  EPO b  1/2    EPO Receptor  b  1 or 2   
  TNF- a     Tumour Necrosis Factor  a    
  IL-2    Interleukin 2   
  IL-6    Interleukin 6   
  IL-8    Interleukin 8   
  TGF b  1–3    Transforming growth factor beta 1–3   
  PDGF    Platelet-derived growth factor   
  PLC    Phospholipase C   
  PKB    Proteinkinase B   
  NF k B    Nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells   
  BAD    Bcl-2-Antagonist of Cell Death   
  GSK-3 b     Glycogen Synthase Kinase 3   
  NO    Nitric oxide   
  Ca    Calcium         

    43.1   Introduction 

 Skin is the natural barrier between the human body and its environment. Therefore, 
it is frequently challenged by extrinsic noxes of any kind, but also intrinsic factors 
may be cause for damage to the skin (e.g. auto immunologic noxes). Due to perma-
nent loss of tissue and cell fractions within its surface, skin is continuously in the 
process of regeneration. It is the only organ which enables even the medically 
untrained to give an accurate diagnosis about its morphological and functional sta-
tus (e.g. aging). But what is the cellular and molecular motor behind the fascinating 
regenerative capacities of skin tissue? The following book chapters will give insight 
into the developmental and structural principles of skin, its repair and regeneration 
tools after damage and the resulting therapeutic modalities, which could be the 
result of a better understanding of skin regeneration.  

    43.2   Skin Development and Stem Cell Function 

 Dermis and epidermis divide the skin tissue structurally into two major compo-
nents. The super fi cial epidermis consists mainly of keratinocytes in different devel-
opmental stages and represents the most super fi cial layer of the skin. It is a squamous 
epithelium with several strata: the stratum corneum, stratum lucidum, stratum gran-
ulosum, stratum spinosum, and stratum basale (Freedberg et al.  2003  ) . The dermal 
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part is situated deeper in the body, below the epidermis. It represents the functionally 
important tissue and is mainly comprised of matrix collagen type I, elastin,  fi broblasts 
and skin appendices (capillary, sweat and sebaceous glands, sensory corpuscles, 
blood vessels). Cellular nutrition to the layers of the epidermis is provided via 
diffusion from the dermis, since the epidermis has no direct blood supply. The epi-
dermis consists of four cell types: keratinocytes, melanocytes, Langerhans cells, 
and Mekel cells. Of these, keratinocytes amount to 95% of the cells of the epidermis 
(Burns et al.  2006  ) . This strati fi ed squamous epithelium is maintained by constant 
cell division within the stratum basale, in which differentiating cells slowly migrate 
outwards through the stratum spinosum to the stratum corneum, where corni fi ed 
cells are continually shed from the surface. In normal skin, the rate of reproduction 
equals the rate of loss; it takes an average of 2 weeks for a cell to migrate from the 
basal cell layer to the top of the granular cell layer, and an additional 2 weeks to 
cross the stratum corneum (Bolognia et al.  2007  ) . 

 The dermis is the layer of skin between the epidermis and subcutaneous tissue, 
and is composed of two sections, the papillary and reticular dermis. The super fi cial 
papillary dermis interdigitates with the overlying rete ridges of the epidermis, the 
two layers interact through the basement membrane (Rapini  2005  ) . Structural com-
ponents of the dermis are collagen, elastic  fi bers, and extracellular and extra fi brillar 
matrix. Within these components are the pilosebaceous units, arrector pili muscles, 
and the eccrine and apocrine glands. The dermis contains two vascular networks 
that run parallel to the skin surface—one super fi cial and one deep plexus—which 
are connected by vertical communicating vessels (Freedberg et al.  2003  ) . The func-
tion of blood vessels within the dermis is twofold: to supply nutrition and to regulate 
temperature. These blood vessels are also crucial for regaining rapid reconnection 
with underlying blood vessels after split skin transplantation on wounds by a pro-
cess called ‘inosculation’ within 24 h after transplantation (Converse et al.  1975  )  
(Fig   .  43.1  and Table  43.1 ).   

 Skin tissue covers the surface of the embryo right from the beginning of the earliest 
embryologic stages and has contributions from two germ layers: Ectoderm forms 
the surface epidermis and the associated glands, whereas mesoderm forms the 

  Fig. 43.1    Anatomical 
structure of the human skin. 
 1  Epidermis:  a  Stratum 
corneum;  b  Stratum 
germinativum,  c  Basement 
membrane.  2  Dermis:  2a  
Sebaceous gland,  2b  Hair 
follicle,  2c  Arrector pili 
muscle,  2d  Sweat gland,  2e  
Nerve,  2f  Capillaries and 
vascular plexus.  3  
Subcutaneous fatty tissue. 
 4  Musculature       
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underlying connective tissue of the dermis. Ectodermally derived neural crest cells 
also migrate into the forming epidermis to populate with melanocytes and special-
ized sensory endings. For more detailed information we advice a multitude of 
detailed developmental overviews (McGrath et al.  1971  )  (Fig.  43.2 ).  

 Already during early embryologic development the ectodermal sheath becomes 
intrinsically important since it provides environmental protection already in the 
early gestational weeks. The further development into epidermal and dermal layers 
arises at a much later point of time, but the immanent stem cell population remains 
active within the later formation of the hair bulges. From here, pre-keratinocytes 
grow out and form the epidermal layers, losing subsequently its differentiating 
capacity while slowly migrating from the lower, more undifferentiated towards the 
outer, more differentiated cell layers and  fi nally into the squamous epithelium. 

 It has been shown recently that both epidermally and dermally derived stem cells 
can differentiate into structures of all three germ layers, indicating the intrinsic poten-
tial of these cell sources within the skin (Rolletschek and Wobus  2009  ) . Meanwhile 
laboratory protocols are described for isolation and cultivation of human keratino-
cytes from skin or plucked hair for the generation of induced pluripotent stem cells 
(Aasen and Belmonte  2010  ) . A further resource of stem cells is located within the 
dermal layer, where  fi broblasts present the main population of resident cells (Fernandes 
et al.  2008  ) . Recent reports lead to the assumption that pluripotent stem cells can be 
found within this  fi broblast cell population of the dermis (Lorenz et al.  2008  )  

   Table 43.1    Skin: anatomical structure and function   

 Layer  Structure  Function 

 Epidermis  Epithelial cells  Barrier, protect against injury, contamination 
and moisture loss 

 Melanocytes  Protect against UV-light, origin for skin 
pigmentation and tanning 

 Langerhans cells  Antigen presenting, immuncompetent cells 
 Dermis  Collagen  Strength and support 

 Elastin  Elasticity 
 Nerves  Sensors for: pain, temperature, touch, 

vibration 
 Capillaries  Nutrition and oxygen supply, waste removal, 

thermoregulation 
 Fibroblasts  Mesenchymal derived cells producing the 

extra cellular matrix 
 Epidermal appendages  Hair follicles  Produce epidermis and hair, epidermis 

regeneration 
 Sweat glands  Produce sweat: thermoregulation 
 Sebaceous glands  Produce sebum: antimicrobial, maintains: 

pH, skin and hair condition 
 Subcutaneous tissue  Fat cells  Isolation, energy storage 

 Stem cells  Pluripotent cells in the fat tissue enabling 
regeneration 

 Connective tissue  Attaches skin, divides tissue into 
compartments 
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 Pluripotent stem cells can be recruited from glandular cells including sweat glands 
(Petschnik et al.  2009  )  pancreas and submandibulary gland (Egana et al.  2009  )  

 Therefore, it seems worthwhile to take a closer look into the relation between 
skin development and stem cell function (Fig.  43.3 ).  

 Stem cells play a crucial role in postnatal skin maintenance, since they provide 
permanent recruitment of important functional tissue in the dermal and epidermal 
compartment. Within the different stem cell compartments, epidermal stem cells 
may even play an exceptional role: since the epidermis continually renews itself by 
sloughing a layer of cells every day, it is in a constant state of cellular turnover and 
requires continual cell replacement for life. Thus, maintaining a vital epidermal 
stem cell population is of prime importance, even during aging. Unlike stem cells 
from internal tissues, epidermal stem cells show little response to aging (Racila and 
Bickenbach  2009  ) . They do not appear to decrease in number or functionality with 
age, and do not show changes in gene expression, developmental responsiveness, or 
age-associated increases of reactive oxygen species. While human skin grows older, 
the stem cells within have no loss in numbers and in their regenerative capacity. It is 
tempting to hypothesize that the process of aging is strongly related to stem cell 
reservoir and functional capacity in the dermal layer of the skin.  

  Fig. 43.2    Different embryological phases of skin development. ( a ) 4 weeks:  a  Surface ectoderm, 
 b  Mesenchym. ( b ) 7 weeks:  a  Periderm,  b  Germinal layer,  c  Hair germ,  d  Mesenchyme cells, 
 e  Mesenchyme. ( c ) 16 weeks:  a  Hair canal,  b  Sebaceous gland,  c  Inner root sheath,  d  Bulge,  e  Hair, 
 f  Mesenchyme cells. ( d ) Birth:  a  Epidermis,  b  Dermis,  c  Sebaceous gland,  d  Hair bulb, 
 e  Subcutaneous fatty tissue       

 



  Fig. 43.3    Stem cell participation in postnatal skin structure. ( a ) Immunhistological images of rat 
skin tissue sections, stained with monoclonal antibody against nestin for identi fi cation of neuronal 
stem cells,  A / C  magni fi cation × 40,  B / D  magni fi cation × 100;  1  basement membrane (basal lam-
ina);  2  hair follicle. ( b ) Immunhistological images of rat skin tissue sections, stained with anti-
body against CD 90 for identi fi cation of mesenchymal stem cells and  fi broblasts,  A / C  magni fi cation 
× 40,  B / D  magni fi cation × 100;  1  basement membrane (basal lamina);  2  hair follicle 
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    43.3   Regenerative Repair Mechanisms (Trauma – Dependent 
Activation of ß1-EPO Receptors) 

 In recent years a new player in wound regeneration has been explored and described. 
It is a well known protagonist, which is used for the treatment of anaemia for more 
than two decades: Erythropoietin (EPO). Therefore potential risks and bene fi ts of 
this innovative therapeutical tool can easily be estimate. 

 The tissue-protective effects of EPO seem to be mediated by a special EPO 
receptor-sub-type, which is postulated to be different from the EPOR2 of the eryth-
ropoietic system (Brines et al.  2004  ) . 

 Signalling via the  b 1-EPO receptor initiates multiple, coordinated functions that 
counteract the stereotype injury response which occurs after any trauma and the 
possible further collateral damages. The organism reacts in this stereotypic manner 
to primarily prevent the invasion of pathogens and generalised infection; it does not 
differentiate between sterile and infectious pathogens, or between external trauma 
and internal stress reactions (Lotze et al.  2007  ) . 

 Initially, the reaction is mediated via members of the pro-in fl ammatory Type I 
cytokine family such as TNF- a  (Takeuchi et al.  2007  ) . In turn multiple players like 
‘free radicals’ and other highly reactive molecules are released. Herewith, patho-
gens which potentially have penetrated the organism are destroyed, whereby healthy 
cells are destroyed as well (collateral damage) (Brines et al.  2008  ) . 

 The inhibition of the primary injury response is of utmost importance for a nor-
mal wound healing process. EPO and TNF- a  inhibit their mutual production and 
biological activity (Bernaudin et al.  1999  ) ; additionally EPO receptor expression is 
enhanced by TNF- a , creating a balance between the initial injury response and the 
inhibitory EPO system. 

 In the following regenerative wound healing steps, EPO recruits stem cells and 
thus ensures that they are present in the area of regeneration. Additionally it also 
triggers the release of speci fi c growth factors (Viviani et al.  2005  ) . 

 An acute tissue protective action of EPO is the iNOS and eNOS triggered vaso-
dilatation shortly after trauma, resulting in a persisting blood supply of the sur-
rounding tissues (Rezaeian et al.  2008,   2010  ) . 

 Another pro-regenerative EPO action is the protection of capillary endothelial 
cells which, under hypoxic stress would become apoptotic, thus providing improved 
blood supply to surrounding areas (Peterson et al.  2007  ) . 

 In addition, an inhibitory in fl uence of EPO is impacted upon specialised cells for 
the prevention of infection, such as leukocytes and macrophages: thus the produc-
tion of pro-infective interleukins and interferons as well as TNF- a  is inhibited 
(Schultz et al.  2008 ; Yazihan et al.  2008  ) . 

  Acknowledgment: Thanks for excellent contribution in preparing the histological specimens with 
great acknowledgment to Sabine Ebert from University of Leipzig, Centre for Biotechnology and 
Biomedicine, Department of Applied Stem Cell Biology and Cell Techniques, Germany       
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 EPO and EPO receptors are reported to be produced in the skin, where in addition 
the typical cell protective effects could be demonstrated. The same has been examined 
for hair follicles; here a protective effect against chemotherapy-induced apoptosis 
of hair follicle cells could be revealed (Bodó et al.  2007  ) . 

 Just recently our comprehension regarding the inaction between multiple players 
in skin regeneration was signi fi cantly improved. It could be demonstrated, 
that the regulation of mesenchymal stem cell growth is closely connected to the 
co-expression of EPO and several trauma cytokines such as Il-6 and TNF- a  
(   Bader and Machens  2010  ) .  

    43.4   Skin Diseases 

 The number of endo- and exogenous noxes, affecting the skin in its different cellular 
components and as a whole organ is countless. Certainly, thermal injury is the most 
devastating traumatic cause for total loss of all skin components at a single and 
exogenious incident. While auto immunologic agents, as endogenous factors, mostly 
affect the epidermal part or the epidermo-dermal junction (e.g. epidermolysis bullosa, 
toxic epidermal necrolysis = TEN). 

 As long as at least parts of skin tissue survives, regenerative tools are recruited to 
commence repair and regeneration. In general, it may be stated that the regenerative 
capacity of skin directly depends on three factors: the amount of surviving epi-
dermo-dermal tissue, the regenerative capacity of local tissue in the trauma zone 
and ability of the organism to recruit new cells from other restorative compartments 
(e.g. bone marrow). In principle, loss of epidermis may be fully compensated and 
restitutio ad integrum achieved, as long as the dermis and its regenerative cellular 
departments are still intact and vital enough to reproduce the necessary cells and 
tissues (Table  43.2 ) .   

    43.5   Clinical Principles, Diagnostics, Indications of Skin 
Regenerative Therapies 

 Skin may regenerate even after total loss of the epidermo-dermal junction, depend-
ing on the regenerative capacity of the underlying tissue and the whole organism. 
It is sometimes clinically dif fi cult to estimate the correct amount of surviving tissue, 
especially after partial loss of dermal tissue. In such instances, younger patients 
develop more regenerative activity as compared to elderly. Therefore, dermal hyper-
trophy can result on the one hand and total loss of remaining dermal tissue on the 
other. Clinical experience with these defects, e.g. thermally injured patients allows 
a more accurate estimation of wound depth and therefore prognosis of the patient 
(Figs.  43.4  and  43.5 ).   
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  Fig. 43.4    ( a ) 2a Degree burn, super fi cial, 3 days after injury, careful cleaning and removing of the 
blisters in total anesthesia. ( b ) Spontaneous healing after 2 weeks. Total restitutio ad integrum was 
achieved       

  Fig. 43.5    ( a ) 2b Degree burn, non- healing, hypergranulatig wound after 3 weeks ( b ) The resulting 
granulation tissue was excised ( c ) and the defect transplated with an autologous split skin graft       
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 A typical clinical example for a non-thermal 1st degree wound surface is TEN. 
 While the regeneration of epidermis is in process, the dermis and underlying 

tissue are prone to infection and injury. Therefore, it is mandatory to protect the 
integument both immunological and mechanically with a temporary epidermal 
skin substitute. Meanwhile, there is a variety of different industrial products 
available (e.g. Biobrane), which ful fi ll these requirements. 

 Partial loss of dermis may still be regenerated, as long as enough dermal tis-
sue and especially the sub dermal vascular plexus are preserved. Typical exam-
ples are given by a 2a thermal injury and TEN, resulting in preservation of the 
deep dermal tissue. Clinically, after removal of bullae and blisters, a reddish 
wound bed appears. Recapillarisation occurs after gentle pressing on the wound 
surface, indicating an intact sub-dermal and partially intra-dermal vascular 
plexus with vital dermal capillaries. In this clinical picture, dermal regeneration 
can occur and suf fi cient nutrient and cellular supply transported into the wound 
area. The major complication in both, however, is systemic infection, especially 
in the elderly. The regenerative capacity becomes insuf fi cient, when too much 
body surface is involved and not enough cellular repair and regeneration capaci-
ties are maintained. 

 If a full skin defect exists, split skin grafts, which contain dermal and epidermal 
parts, can be transplanted directly onto it, to enable a suf fi cient dermal-epidermal 
remodeling. But if the destroyed area of skin comprises more than 60% body sur-
face area there are not suf fi cient amounts of autologous split-skin grafts to be taken, 
to cover the defect in one operation. Therefore, a variety of dermal substitutes or 
combined dermal and epidermal substitutes have been developed. They can be per-
manent or temporary, biological or synthetic or combined. 

 Xeno- and heterologic-split-skin-transplants and Epigard are temporary sub-
stitutes, which are subject to phagocytosis or have to be surgically removed. 
Therefore a second-step operation is necessary for permanent closure of the 
wound. Alloderm™, Biobrane™ and Integra™ need a second-step operation as 
well and a thin split-skin-graft transplantation as epidermal layer or a keratino-
cyte transplantation. However, previous to that, a neo-dermis has to develop by 
invasion of the collagen matrix via  fi broblasts and angiogenesis must have 
occurred. 

 Cultured keratinocytes need, if transplanted as single cell layer or cell-suspension, 
to be able to develop an intact epidermis, an existing dermis, which ensures suf fi cient 
nutrient support and growth factor supply and other interactions such as formation 
of a stable epidermo-dermal junction. Otherwise these keratinocytes are prone to 
apoptosis or at least they do not continue to grow and do not form an epidermal 
layer. Thus it is not surprising that early attempts transplanting keratinocytes onto 
full thickness skin defects without a neo-dermis or dermis remnants allowed 
primary survival of severely burned patients but showed unsatisfying results after 
longer observation periods due to unstable wounds and secondary infection 
(Table  43.3 ).  
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    43.5.1   Hypertrophic and Keloid Scars 

 Scars develop always, if the cellular connections in the regenerative layers are 
divided and the dermis is completely interrupted. A typical clinical example is given 
after a clean cut with a sharp instrument like a scalpel for example. Scar formation 
also occurs after meticulous surgical repair. Interestingly, the tendency to form scar 
tissue is different in the human population and co depending on age, sex and race. 
Hypertrophic scarring and keloid formation are found more often in children and 
young adults than in the elderly. Persons who developed keloids in their childhood 
may not exhibit this tendency at an older age. Keloids and hypertrophic scars are 
more often found in more intensely pigmented skin than in less or no pigmented 
skin; this can be seen within one person as well as in different individuals. The inci-
dence of keloid formation is 6–16% higher in darker pigmented populations as com-
pared to Caucasians (See Fig.  43.6 ). Gender seems to be a risk factor too, as the 
female to male ratio is 2:1. Keloids can occur in every region of the body; they are 

   Table 43.3    Gives an overview of some of the commonly used skin substitutes   

 Biological substitutes  Synthetic substitutes/Combined substitutes 

 Xeno-split-skin-transplants (porcine) 
temporary 

 Biobrane® (nylon, silicone, bovine collagen) 
permanent/temporary 

 Heterologic-split-skin-transplants (human) 
temporary 

 Integra® (shark hyaluronic acid, bovine 
collagen, silicone) permanent/temporary 

 Alloderm® (a-cellular, de-epidermalised human 
skin, with collagen and elastin) permanent 

 Epigard® (Gore-Tex, polyurethane) temporary 

 Autologus split skin grafts (autologous 
human) permanent 

 – 

 Amnion (heterologic or xenologic) temporary  – 
 Apligraf® (bovine collagen, heterologic 

 fi broblasts and keratinocytes) temporary/
permanent 

 – 

 Dermagraf® (collagen-glycosamninoglycan 
matrix, heterologic  fi broblasts) temporary/
permanent 

 – 

  Fig. 43.6    ( a ) Keloid, ( b ) Hyperthropic scar       
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most commonly located on the upper trunk (chest, upper back, shoulders and ears). 
The etiology remains unclear. Hormone (estrogen) and growth factor in fl uences 
(melanocyte stimulating hormone, MSH) may play a role, as well as different 
immunological in fl uences and genetic predisposition. The diagnosis is mainly clini-
cal: hypertrophic scars remain on the borders of the initial injury, whereas keloids 
grow over these boundaries like a pseudo tumor (Rockwell et al.  1989  ) . Histologically, 
hypertrophic scars and keloids show both stretched and aligned collagen bundles, 
but fewer cells and capillaries are found in keloids. Today we know that although 
the macroscopic result of this scarring disorder cannot be seen for weeks or months, 
it is the result of very early dysregulation during wound healing (Meenakshi et al. 
 2005  ) . Satisfactory, predictable and reliable therapies do not exist so far. Future 
therapies will have to be based on our improved understanding of regenerative 
mechanisms in the injured skin and will therefore lead to more speci fi c therapeutic 
interventions.    

    43.6   Standardized Treatment and Technologies 

    43.6.1   Loss of Epidermis (1st Degree) 

 The classical example for a 1st degree thermal dermal injury is the sun-burn. Usually, 
as the dermis is intact in a  fi rst degree wound, it heals completely without scar for-
mation within 4–8 days. It is moderately painful and in general there is usually no 
need for any speci fi c analgetic therapy. There are abundant therapeutical options, 
most available products have a cooling and local analgetic effects, others just keep 
the wound moist.  

    43.6.2   Loss of Super fi cial Dermis (2a Degree) 

 Super fi cial second degree thermal dermal injuries usually result in blister forma-
tion. To prevent infections the blisters should be punctured carefully. As exposure of 
the open blister to air is extremely painful, blister removal should be considered 
carefully and only performed if necessary. Additionally an adequate analgetic therapy 
or especially in children a short anaesthesia should be taken into account. 

 There are two state of the art treatment options: the occlusive (removing the 
blisters and starting an occlusive local therapy) or the exposure (leaving the blisters 
intact as long as possible as a natural wound dressing) method. In Europe and 
Northern America the occlusive method is more commonly used. In less developed 
regions the exposure method is seen more frequently. It is a inexpensive, easy to 
perform method and as long as the scab is intact, the wound heals pain-free and very 
often without scar formation. 
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 Concerning the occlusion method there exist a multitude of treatment options and 
products (silver nitrate, Marfenid, vinegar, iodine, silver sulfadiazine, etc.). Their 
most important common characteristics are the microbiological control and the pres-
ervation of a moist wound environment to enable undisturbed wound healing. 

 A broadly used product is Flammacine® (silver sulfadiazine), which is simple to 
handle and has a favourable cost-effectiveness ratio. Disadvantageous are the dressing 
changes which have to be performed at least daily and which are usually painful. 

 In our clinic our favourite occlusive method is the closure of the wound surface 
with synthetic membranes under strictly sterile conditions (for example Biobrane™) 
after careful surgical cleaning and debridement of the wound. These membranes 
stay in place until complete wound healing. This has the advantage that no dressing 
changes are necessary, although frequent wound controls have to be performed.  

    43.6.3   Loss of Deep Dermis (2b Degree) 

 After a deep second degree dermal thermal injury the necrotic super fi cial layers of 
the skin have to be removed surgically. Today’s standard therapy is tangential necrec-
tomy until suf fi ciently perfused layers are reached. This is easily recognised by little 
spot bleedings in the healthy dermis. After bleeding control, keratinocytes (as solution 
or as sheets) can be transplanted if enough dermal tissue is preserved or split skin 
grafts are used if deeper layers of dermis are involved. If after extensive thermal 
trauma the remaining non-damaged body surface does not allow for suf fi cient amounts 
of split skin grafts to be taken, temporary skin substitutes, such as heterologic or xeno 
split-skin grafts, amnion or Epigard can be used for a short period of time to prevent 
both infection and also hypertrophic granulation and later scar tissue formation. 

 In deep second degree injuries, the regenerative capacity of the skin will be 
exhausted in most of the cases. Without the transplantation of healthy split-skin 
grafts, the remaining dermal tissue will create a protective layer of granulation 
and later scar tissue as the most primitive, yet effective way to protect the wound 
from the environment and external noxes. It may be stated that in younger patients 
the regenerative capacity of mature and stem cells in this tissue compartment is 
stronger, compared to adults and elderly. Therefore, the production of scar tissue 
is also more rapid and pronounced. The therapeutic consequence in young patients 
is radical excision of the epidermo-dermal compartment down to the lowest dermal 
layers and split skin transplantation to prevent overgrafting.  

    43.6.4   Loss of Full Skin (3rd Degree) 

 When an acute full-thickness skin defect has occurred (for example 3rd degree burn) 
the wound has to be carefully cleaned and all remnants of necrotic skin have to be 
removed cautiously under surgical conditions. This means that the underlying tissue 
is also subjected to infection and trauma, since the biological barrier is lost. 
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 If a clean wound bed is established, split skin grafts can be transplanted, or, after 
pre-treatment with a dermis substitute and neo-dermis formation, keratinocytes may 
be transplanted. 

 If a chronic full thickness skin defect exists (for example pressure sores, crural 
ulcer, and diabetic foot ulcers) the therapeutic strategy has to be different. That is 
due to the fact, that in chronic wounds an “anti-healing environment” prevails, with 
a majority of inhibitory factors which prevent healing. Additionally, the wound area 
is colonized with a multitude of microorganisms, which have to be at least grossly, 
most often surgically, eradicated before a de fi nitive wound closure can be performed. 
If the wound is thus cleaned and necrotic tissue remnants have been removed, 
 fi rst and foremost the environment has to be changed from an anti-proliferate to a 
pro-proliferate environment. 

 Therefore, chronic in fl ammatory cascades have to be blocked. For example 
metalloproteinases and TNF a  have to be antagonized and the concentrations of 
pro- proliferative factors such as EPO or TGF b 3 have to be increased. Then granu-
lation tissue formation can successfully take place or a neo-dermis can be grown 
using a dermis substitute. Split skin grafts can then be transplanted on these pre-
pared new wound bed if necessary. 

 If a pro-proliferative environment cannot be created due to advanced loss of vital 
and vascularised tissue, plastic surgical techniques have to be employed by using 
local or free tissue transfers to substitute the previous tissue loss in an adequate 
manner (Table  43.4 ).    

    43.7   Clinical Studies and Outcome of Skin Regenerative 
Therapies 

    43.7.1   Scar-Free Healing in the Embryo 

 A very interesting aspect is the scar-free healing of mammalian embryos, which 
came into the research focus just a few years ago. Several studies have been carried 
out to investigate adult and embryonic wound healing and scarring. In the mean-
time, most of the involved factors in adult and in embryonic skin regeneration are 
described. The most important factor seems to be the fact that in embryos the 
immune system and the in fl ammatory cascade are not suf fi ciently developed. Thus, 
the resulting in fl ammatory reaction in an embryo is much smaller and of a shorter 
time period than in more advanced developmental stages and adults. Additional key 
roles are played by TGF b  1–3 and PDGF. If PDGF and TGF b 1 and 2 are neutralized 
and TGF b 3 is added to adult wounds, embryonic scar-free healing can be achieved. 
This was successfully demonstrated in rodents, pigs and healthy human volunteers. 
Following these promising results new scarring-preventing drugs are being devel-
oped and clinical trials are carried out (Ferguson et al.  2004  ) . It could be shown that 
locally administered TGFbeta3 is well tolerated and improves skin regeneration and 
thus reduces scarring after trauma (Occleston et al.  2008  ) .  
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    43.7.2   Clinical Studies 

 There are abundant studies on cosmetic skin alterations and their therapeutical 
options. Only in recent years the regenerative trigger for diseases with partial or 
total dermis loss has come into focus. Dermatological disorders of the skin have 
also been studied extensively in clinical prospective trials. Very few data, how-
ever, are available on life-threatening skin wounds. Mostly, trials on testing 
wound dressings after split-skin transplantation have been performed with little 
focus on skin regeneration. A major reason for the lack of evidence-based data in 
this  fi eld is probably the fact that each traumatic, thermally induced wound has 
its own special pattern and therefore is not standardized, which is a pre-reqisite 
for clinical trials. Full skin defects have also been treated with dermal substitutes 
during the last 30 years. Therefore several products have reached routine clinical 
practice. 

 However, there is a one exception from this problem: the surgically induced 
split-skin graft donor site, which is created by a surgical instrument (dermatome), 
thus exactly de fi ning depths and size of the surgically created wound. This, in fact, 
is the only standardized traumatic wound in clinical practice. More than 50 studies 
have been carried out to compare different strategies of locally applied therapeutics, 
especially dressings. None of these, however, has focused on the biological regen-
erative effects on a cellular level. Primary treatment target was always the time 
needed until complete re-epithelialisation was achieved. 

 In a recent publication, a multi-layer tissue engineering approach to cover large 
full thickness defects was described. In this approach, keratinocyte and  fi broblast 
primer cell cultures are established from autologous skin biopsies. Cells are grown 
on special hyaluronic acid matrices, with which they are transplanted in two-time, 
two-step operative procedures. If necessary, a thin split skin graft expanded to 1:6 
can be added later on. That way, a completely autologous and biological fully active 
epidermal-dermal substitute is realized (Hollander  2004  ) . 

 There are several publications investigating the effects of EPO on skin regenera-
tion. But only two report about EPO treatment in humans. 

 In a full-thickness-defect mouse model treated with EPO, the healing process 
clearly improved in a dose dependent manner (Sorg et al.  2009  ) . These pro-regenera-
tive effects could be shown in acute and chronic, ischemic and diabetic environments 
(Galeano et al.  2004,   2006 ; Buemi et al.  2004  ) . 

 In patients even sclerodermic ulcers improved statistically signi fi cant under 
EPO therapy (Ferri et al.  2007  ) . Keast and Fraser reported about four paraplegic 
patients, whose decubital ulcers improved signi fi cantly under systemic EPO treat-
ment (Keast and Fraser  2004  ) . 

 At present, the  fi rst large, prospective, randomised, double-blind, multi-centre 
study, founded by the German federal ministry of education and research, is 
being carried out to investigate the effects of EPO in severely burned patients. 
The primary endpoint is the time of complete healing of a split skin donor sample 
area. Furthermore, clinical parameters such as wound healing (Vancouver Scar Scale), 
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laboratory values, Quality of Life (SF-36), angiogenic effects, and gene- and protein 
expression patterns are to be determined. (EudraCT Number: 2006-002886-38, 
Protocol Number: 0506, ISRCT Number: ISRCTN95777824)   

    43.8   Conclusions and Future Perspectives on Skin 
Regenerative Therapies 

 It is obvious that regenerative therapies after skin loss have been executed especially 
with local topical approaches for a long time, without focusing on the underling 
biological processes taking place. Only recently, with a better molecular biological 
understanding of stem-cell and protein- based principles, we are able to customize 
regenerative therapeutic strategies which respect such fundamental biological prin-
ciples. Perhaps the therapeutic use of EPO, which selectively triggers cell-protective 
and pro-regenerative effects, may play a key role in future developments of new 
therapeutics to enable and improve skin regeneration after partial skin loss. 

 Full skin loss will still remain a therapeutic challenge for clinicians. Since 
total skin loss necessitates skin transplantation or bioarti fi cial generation of skin 
substitutes in such situations. Three key problems need to be solved in the future 
to optimize skin tissue engineering and tissue regeneration: creating a stable 
epidermo-dermal junction between the two major compartments dermis and epi-
dermis, implementing a vascular supply in the dermal layer and supporting the 
construct with its functional cells and appendices (e.g. melanocytes, sweat and 
sebaceous glands, hair bulges etc.).      
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  Abstract   Whereas some basic therapies based on tissues and cells have been in 
clinical use for years, regulatory regimes applying to such applications have recently 
been revised and extended in Europe and in the US. Moreover, advances in regen-
erative medicine present new challenges and new types of products for regulation. 

 Both European and US regulators have developed rules to distinguish ‘complex’ 
cell therapies from their more established predecessors. In Europe, regulation of 
medicines and tissues and cells has now been supplemented by the regulation of 
‘Advanced Therapies’ that is speci fi cally relevant for regenerative medicine. We 
discuss the European legislative framework with reference to Germany and the UK 
as examples how the common rules are implemented. We also show how similar 
distinctions are made in the United States and consider the stance of the FDA on 
clinical development of novel cell therapies. 

 In conclusion, we brie fl y discuss whether the proposed regulatory regimes strike 
the appropriate balance between protecting patient safety and promoting innovation 
in regenerative medicine.     

     44.1   Introduction 

 Legal and regulatory provisions shape the medical innovation trajectory in major 
ways. To safeguard public and patient health, legislation is laid down to control the 
testing, manufacture, marketing and use of therapeutic products for human use. 
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Over the years, regulatory provisions have evolved to cover the medical sector more 
and more comprehensively and regulators are also struggling to keep up with novel 
scienti fi c, technical and economic developments. 

 Advances in regenerative medicine result in a group of innovative and complex 
products that may involve living cells and tissues, regenerative molecules and 
biomaterials. These approaches to potential new treatments and long-term health 
protection stand for a step change in medicine. 

 A general distinction has traditionally been drawn between medical devices, 
pharmaceuticals and transplants. Some therapeutic approaches that could be classed 
as ‘regenerative medicine’  fi t with existing regimes of regulatory oversight. For 
example, small molecules enhancing the regenerative capacity of endogenous stem 
cells would be classed as pharmaceuticals; a donated liver is a transplant. For others, 
the product classi fi cation may be ambiguous or confusing. For example, are 
genetically modi fi ed stem cells seeded on an implantable scaffold that contains a 
slow-release capsule which secretes chemical factors to promote angiogenesis a 
device (because of the scaffold), a drug (because of the factors), a transplant, a gene 
therapy or something else entirely? Moreover, can the new regenerative treatments 
be ‘made to  fi t’ existing categories or are there new and different considerations that 
innovators and regulators need to pursue? 

 Here, we will focus on the regulation of cell therapy and tissue engineered 
products (cell therapies in shorthand). Cell and tissue based therapies have long 
been left relatively unregulated, in part because these treatments were seen as more 
closely aligned to surgical interventions than the pharmaceutical market. Driven by 
scienti fi c progress in regenerative medicine which has produced new and different 
types of the above ‘borderline’ complications, new legal provisions have been 
developed to regulate the cell therapies sector. 

 In this context, there has been considerable debate about what makes a regula-
tory regime in cell therapies regulation  fi t for purpose (see Fig   .  44.1 ). 

 In this chapter, we will give a summary introduction to the regulatory regimes 
applicable to cell based therapies in Europe and the US and conclude with a brief 
discussion regarding the adequacy and effectiveness of these regulations.   

  Fig. 44.1    Classi fi cation of regenerative products       
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    44.2   Regulation of Cell and Tissue Based Therapies in Europe 

 In the European Union (EU) recent legislative efforts have speci fi cally addressed 
cell and tissue engineering approaches. In order to understand how these initiatives 
take practical effect, a basic appreciation of European Law is required: A distinction 
can be made between European  Regulations  and European  Directives . Whereas 
European Directives are considered to have direct  effect , they  fi rst require imple-
mentation by national legislation in the individual Members State (MS). In contrast, 
European Regulations are  directly applicable  (yet may still be in need of substan-
tiation in a national context). Therefore, although European Law may proscribe the 
regulatory parameters, the interpretation and implementation of these stipulations in 
individual MS may differ. 

 For this reason, after discussing the EU regulations in cell and tissue based 
therapies, we will look brie fl y at two MS – Germany and the United Kingdom (UK) 
as case studies for national implementation. 

    44.2.1   Basic Regulatory Domains 

 The three basic domains of medical products referenced in the introduction also 
exist in Europe:

    Medical Devices  
 The core legal framework for medical devices consists of 3 directives  (the Device 
Directives) : Directive 93/42/EEC covers medical devices generally. Directive 
90/385/EEC concerns speci fi cally active implantable medical devices. Many regen-
erative medicine approaches will fall under this scope. Also of interest is Directive 
98/79/EC regarding in vitro diagnostic medical devices, such as tissue engineered 
toxicology assays. These directives have been supplemented over time by several 
modifying and implementing directives, including the last technical revision brought 
about by Directive 2007/47/EC. 

 A key regulatory component of bringing a medical device to the European market 
is the so called ‘CE marking’ to indicate conformity with the essential health and 
safety requirements. Depending on the class of product, conformity can be proven 
by the manufacturer or with the involvement of a  noti fi ed body . 1  

 Whether clinical trials are necessary to demonstrate safety and ef fi ciency depends 
on the class of the product. Authorization for clinical trials is given by the compe-
tent authorities of the MS.  

   Pharmaceuticals  
 The nexus for regulation of small molecule drugs, complex biologics, and even 
herbal products, vitamins and minerals where used for medical treatment is 

   1   A list of noti fi ed bodies can be found at   http://ec.europa.eu/enterprise/newapproach/nando/      

http://ec.europa.eu/enterprise/newapproach/nando/
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 Directive 2001/83/EC (the Medicines Directive)  which applies to medicinal 
products for human use intended to be placed on the market in Member States and 
either prepared industrially or manufactured by a method involving an industrial pro-
cess. Under this legislation, all medicinal products in its scope require a Marketing 
Authorisation (MA) from the European Commission or the national competent author-
ity of the MS to ensure quality, safety and ef fi cacy before they can be sold commer-
cially. Similar to the devices legislation, the Medicines Directive has also been 
extensively amended in order to incorporate new legislative agendas including, most 
recently, initiatives on regenerative medicine as will be discussed below.  

   Transplantation  
 Whole organ transplantation is not currently regulated at EU level, although efforts 
are underway to address this sector. 2   Directive 2002/98/EC (the Blood Directive)  
sets standards of quality and safety for the collection, testing, processing, storage and 
distribution of human blood and blood components. Although some blood products 
may be very relevant in regenerative medicine, we will not focus on this area here. 
 Directive 2004/23/EC (the Tissues and Cells Directive)  sets standards of quality 
and safety for the donation, procurement, testing, processing, preservation, storage 
and distribution of human tissues and cells. This Directive is complemented by two 
technical directives (2006/17/EC and 2006/86/EC), which specify further detailed 
requirements. The Tissues and Cells Directive set standards that must be met when 
carrying out any activity involving tissues and cells intended for ‘human applica-
tion’ (medical treatment of human patients). It could be thus be thought that the 
Tissues and Cells Directive is the relevant European regulatory instrument for cell 
therapies – however, the Directive only relates to cells which have been minimally 
manipulated such as in whole bone marrow transplantation and in fertility treat-
ment. As we will see, most stem cell and tissue engineering therapies in regenera-
tive medicine involve substantially manipulated cells or tissues and thus form part 
of a new regulatory paradigm on ‘advanced therapies’ which are regulated similar 
to pharmaceuticals under the Medicines Directive.      

    44.2.2   Legislation on Advanced Therapy Medicinal 
Products (ATMP) 

 After discussion and stakeholder consultation about regimes applicable to living cell 
based therapies, and in particular tissue engineered products, the European Commission 
established as  ‘lex specialis’   Regulation (EC) No 1394/2007  on advanced therapy 
medicinal products ( the ATMP-Regulation ) as shown in Fig.  44.2 . 

 From a legal implementation perspective, the ATMP Regulation has several 
elements: it amends other aspects of European medicines law most notably the 

   2   Press release: MEMO/08/774, 08/12/2008.  
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Medicines Directive; it contains some provisions which have direct applicability; 
and it contains some instructions for MS to establish further regulatory provisions 
and also tasks the European Commission and the European Medicines Agency with 
speci fi c implementation steps. Figure  44.3  gives an overview of the follow-up 
amendments, legislation, guidelines and provisions engendered by the ATMP 
Regulation.  

    44.2.2.1   Types of Advanced Therapies 

 The ATMP Regulation establishes the concept of  Advanced Therapy Medicinal 
Products  (ATMP) – a category that is meant to encompass gene therapy, certain 
types of cell therapy and tissue engineering. With a circular cross-reference to 
Annex I Part IV of the Medicines Directive, (which has since been amended by 
Directive 2009/120/EC) the ATMP Regulation refers to products in these areas as 
‘gene therapy medicinal products’ (GT), ‘somatic cell therapy medicinal products’ 
(SCT), and ‘tissue engineered products’ (TEP). 

 A comparison of the three ATMP-product-classes GT, SCT and TEP regarding 
de fi nition, indication and active substance is shown in Fig.  44.4 .  

 It should be pointed out that these de fi nitions are regulatory constructs and not 
necessarily in line with scienti fi c terminology (e.g. SCT may well include stem cell 
based treatments, even though the word ‘somatic’ is used). 

 The ATMP Regulation also recognises ‘Combination Products’ which are ATMP 
that incorporate, as an integral part of the product, one or more medical devices 
(Art.2 (d)). 

  Fig. 44.2    Regulatory regimes for regenerative medicines in Europe       
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 The ATMP Regulation has no impact on national legislation prohibiting or 
restricting the use of certain type of human or animal cells (for example embryonic 
stem cells) and aims not to interfere with MS policy on whether to allow the use of 
any speci fi c type of human cells. Products modifying the germ line genetic identity 
of human beings and products derived from human-animal hybrids or chimeras are 
excluded from the ATMP Regulation, but Xenotransplantation is speci fi cally 
included. 

 As one can see from the de fi nitions listed in Fig.  44.4  a lot turns on a decision of 
whether cells/tissues are ‘substantially manipulated’. TEP make a similar reference 
to cells/tissues which are ‘engineered’. 

 The ATMP Regulations specify that manipulations which shall  not  be consid-
ered as ‘substantial manipulations’ include: cutting, grinding, shaping, centrifugation, 
soaking in antibiotic or antimicrobial solutions, sterilization, irradiation, cell separation, 
concentration or puri fi cation,  fi ltering, lyophilisation, freezing, cryopreservation 
and vitri fi cation. 

  Fig. 44.3    Integration of Regulation (EC) 1397/2007 into the European regulatory framework: 
Implementation plan (black font on white background) and the current implementation status 
(white font on dark background)       
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 A similar classi fi cation problem can exist where tissues and cells are not intended 
to be used for the same essential function (so called ‘non homologous use’). 

 In summary, tissues and cells are ‘elevated’ to ATMP when they EITHER are 
‘substantially manipulated’ OR ‘for non-homologous use (see Fig.  44.5 ) – or 
both.  

 In effect, this means that the great majority of regenerative medicine therapies 
will be covered by the ATMP Regulation. Nonetheless, this determination must be 
made for each product individually. The Commission anticipated that such 
classi fi cation questions may lead to problems initially and CAT have established 
a free classi fi cation procedure which is supposed to feed back a classi fi cation 
recommendation to the questioner within 60 days. The results of these determina-
tions are published to provide other innovators with a list of examples.  

gene therapy
medicinal product
GT

somatic cell therapy
medicinal product
SCT

tissue engineered
product
TEP

full
definition

Directive
2001/83/EC Annex I
Part IV –2.1

Directive 2001/83/EC
Annex I Part IV –2.2

Reg. (EC) 1394/2007/EC
Art.2(b)

indication administered to
human beings with a
view to regulating,
repairing, replacing,
adding or deleting a
genetic sequence;

treating, preventing or
diagnosing a disease
through 
pharmacological,
immunological or
metabolic action

regenerating, repairing or
replacing a human tissue

active
substance

recombinant nucleic
acid

(engineered) cells or tissues
that have been subject to substantial manipulation so
that biological characteristics, physiological functions
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  Fig. 44.4    De fi nitions    of ATMPs: GT-, SCT-, and TE-products       
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    44.2.2.2   Dual Classi fi cation 

 The ATMP-Regulation provides some general rules on classi fi cation of an ATMP 
that ful fi ls multiple characteristics: 

 Where a product contains viable cells or tissues, the pharmacological, immu-
nological or metabolic action of those cells or tissues shall be considered as the 
principal mode of action of the product. A product with mixed characteristics is 
classi fi ed only by according to the dominant characteristic in the following order 
(Fig.  44.6 ):  

 Whereas it is important to point out the primacy of GT in this arrangement, we 
focus here on TEP and SCT products. In both cases, it may sometimes be dif fi cult 
to determine whether a product quali fi es as covered by the ATMP Regulation or 
whether it is covered ‘only’ by the Tissues and Cells Directive.  

    44.2.2.3   ‘Exemption §28(2)’ from the Scope 

 Because the ATMP regulations builds on the Medicine Directive, its scope is limited 
to products which are intended to be placed on the market in MS and which are 

  Fig. 44.5    Cells or tissue 
products in and out of the 
de fi nition of an ATMP       

  Fig. 44.6    ‘Dominance’ of ATMP classi fi cation       
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either prepared industrially or manufactured by a method involving an industrial 
process. If an ATMP is  not  prepared industrially or manufactured by a method 
involving an industrial process,  and not  intended to be placed on the market in the 
Member State it is out of the scope of the ATMP-Regulation. 

 In order to avoid these cell-and tissue-products to be completely exempted 
from pharmaceutical legislation, the ATMP-Regulation (Art. 28(2)) amends Art.3 of 
Directive 2001/83/EC with the so-called ‘Hospital Exemption’ related to ATMPs 
which are prepared on a non-routine basis according to speci fi c quality standards, and 
used within the same Member State in a hospital under the exclusive professional 
responsibility of a medical practitioner, in order to comply with an individual medical 
prescription for a custom-made product for an individual patient (see Fig.  44.7 ).  

 Member States are requested to lay down rules for authorising these products by 
the national Competent Authority whilst at the same time ensuring that relevant 
Community rules related to quality and safety are not undermined. 

 While searching for ‘exemptions’ to the process of marketing authorisation, 
another, similar provision may be of interest that predates the ATMP Regulation and 
applies equally to all other medicines: According to Art.5.1 of the Medicines 
Directive, a MS may, in order to ful fi l special needs, exclude a medicinal product 
from the provisions of the Medicines Directive altogether if that product is supplied 
in response to a bona  fi de unsolicited order, formulated in accordance with the 
speci fi cations of an authorised health-care professional for use by an individual 
patient under his direct personal responsibility (see Fig.  44.8 ).  

 Whether this provision is useful and applicable will depend not only on the 
circumstances of the individual case but also on the extent that the individual MS 
has recognised and interpreted the provision.   

    44.2.3   Interactions with Regulatory Bodies 

    44.2.3.1   Marketing Authorisation 

 In order to place an ATMP product on the market in the EU, the manufacturer needs 
to obtain marketing authorisation (MA) from the European Commission. 

 All ATMP are subject to a centralised MA procedure which involves a single 
scienti fi c evaluation of the quality, safety and ef fi cacy of the product which is carried 
out by the European Medicines Agency (EMEA) 3  as established by Regulation (EC) 
No 726/2004. 

 For ATMPs which were ‘legally on the market’ in accordance with national or 
Community legislation on 30 December 2008 a transitional period of 3 years for SCT 
and GT (30 December 2011) and 4 years for TEPs (30 December 2012) is granted. 

   3   Following a recent rebranding, the European Medicines Agency is no longer using the acronym 
EMEA, but is also not using EMA. Here we have opted for EMEA to avoid confusion for those 
used to the old abbreviation.  
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  Fig. 44.7    Cells or tissue products in and out of the de fi nition of an ATMP       
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  Fig. 44.8    Some of the main differences in scope between ATMP produced under the standard 
provisions, Art. Directive 2001/83/EC Art. 3(7), and Art.5.1       
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 MA is not required where the product is still undergoing development in clinical 
trials.  

    44.2.3.2   Committee for Advanced Therapies (CAT) 

 The evaluation of ATMPs often requires very speci fi c expertise. For this reason a 
new and multidisciplinary expert committee ‘Committee for Advanced Therapies’ 
(CAT) within EMEA has been established, to assess ATMPs and to follow scienti fi c 
developments in the  fi eld (see Fig.  44.9 ). The names and scienti fi c quali fi cations of 
the members are made public by the Agency. The CAT is responsible for preparing 
a draft opinion on the quality, safety and ef fi cacy of each ATMP – including 
combined ATMPs – for  fi nal opinion by the Committee for Medicinal Products for 
Human Use (CHMP). The CHMP delivers this opinion to the Commission for  fi nal 
approval.  

 For scienti fi c consistency and the ef fi ciency of the system, the coordination 
between the CAT and the other Committees, advisory groups and working parties, 
notably the CHMP, the Committee on Orphan Medicinal Products (COMP), and the 
Scienti fi c Advice Working Party (SAWP) must be ensured.  

    44.2.3.3   The Role of National Regulators 

 Whereas ATMP have to pursue the centralised European route, for other regenera-
tive medicine products it may be possible to gain national approval in individual MS 
and subsequently European-wide approval under the mutual recognition procedures. 
EMEA has no scienti fi c assessors on its own and relies on outsourcing its licensing 

  Fig. 44.9    Committees involved in evaluation of ATMPs       
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activities to national authorities. In the young  fi eld of regenerative medicine, 
arguably the most important role for national regulatory authorities however, is in 
regulating the conduct of clinical trials. Clinical trial authorisation – as well as 
manufacturing authorization of the clinical trial samples – is required in each MS 
where a trial is being undertaken. Some MS further differentiate between national 
and regional authorities.  

    44.2.3.4   Fee Reductions 

 Speci fi c incentives for small and medium sized enterprises (SMEs) exist in the ATMP 
area. Additional procedures are offered to support applicants in the development process. 

 Any applicant or holder of a marketing authorisation may request advice from 
the Agency on the design and conduct of pharmacovigilance and of the risk man-
agement system. There are speci fi c incentives of 90% fee reduction for SMEs and 
65% for others. If an applicant is SME or a hospital and can prove there is a particular 
public health interest in the Community he can get additional fee reductions: 50% 
fee reduction on MA fee and 50% post authorisation activities for 1 year.  

    44.2.3.5   Certi fi cation of Quality and Non-clinical Data 

 A new certi fi cation system aims at giving SMEs an incentive to develop ATMPs. 
Under this scheme, the Regulator can ‘certify’ data as being of suf fi ciently high 
quality for regulatory consideration. It is expected that innovators will then be able 
to raise capital for further R&D. The scope of the evaluation is to certify that each 
submitted study complies with the relevant scienti fi c and technical requirement set 
out in the Annex I to Directive 2001/83/EC and adequately follows state-of-the-art 
scienti fi c standards and guidelines. 

 SMEs may submit to the Agency all relevant quality and, where available, non-
clinical data required in accordance with modules 3 and 4 of Annex I to Directive 
2001/83/EC, for scienti fi c evaluation and certi fi cation. 

 The Commission has laid down provisions for the evaluation and certi fi cation of 
the data.

    Not a marketing authorisation : The certi fi cation procedure is independent from a 
future application for MA. But it could facilitate the evaluation of any future appli-
cation for clinical trial authorisation or a marketing authorisation application 
(MAA), provided that these applications are based on the same data.  

   Not ‘legally binding’ for the Agency : A certi fi cate is not binding with regard to 
any future regulatory procedure and all relevant data should be submitted again for 
the purpose of any future regulatory procedure.  

   Mostly quality and, where available, non clinical data : The certi fi cation proce-
dure covers only a scienti fi c evaluation of experimental data (quality/non-clinical) 
already generated. Advice for further development will have to be obtained by the 
Scienti fi c Advice procedure.    
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 The certi fi cate cannot conclude on the adequacy of the studies submitted to be 
further developed in a clinical trial. This is under the responsibility of the National 
Competent Authorities where the clinical trial will be conducted. 

 Whether such a certi fi cation scheme will prove a worthwhile investment for inno-
vators remains to be seen. Until 2012 there was only one certi fi cation procedure con-
ducted by the CAT. The reason may be that the procedure is not open for Academia 
where about 60% of the early development is done. This has to be changed in future.  

    44.2.3.6   Speci fi c Requirements 

 Part IV, Annex I of the Directive 2001/83/EC lays down detailed scienti fi c and tech-
nical requirements regarding the testing of medicinal products for human use and 
describes the format requirements (Modules 1–5) for MA. This section was recently 
amended by Directive 2009/120/EC speci fi cally to address ATMP. Member States 
shall bring into force the laws, regulations and administrative provisions necessary 
to comply with Directive 2009/120/EC by 5 April 2010 at the latest. 

 The regulations specify a number of requirements. A few examples:

    Cell sources : Information on donation, procurement and testing shall be provided. 
Animal cells or tissues are expressly not excluded but speci fi c acceptance criteria 
must be provided. If ‘non-healthy’ cells or tissues are used as starting materials, 
their use shall be justi fi ed. Problematically, if allogeneic cell populations are being 
pooled, the pooling strategies and measures to ensure traceability shall be described. 
It is still unclear what constraints this imposes on ‘rollover’ cell pools.  

   Pre-clinical development : The Regulations suggest that ‘The use of homologous 
models (e.g. mouse cells analysed in mice) or disease mimicking models shall be con-
sidered, especially for immunogenicity and immunotoxicity studies’. Different 
scienti fi c opinions exist on the value of such studies. The regulations state that ‘conven-
tional pharmacokinetic studies to investigate absorption, distribution, metabolism and 
excretion shall not be required’. However, parameters such as viability, longevity, dis-
tribution, growth, differentiation and migration of cells shall be investigated, unless 
otherwise duly justi fi ed. Given the reported dif fi culties in cell tracking, this require-
ment alone may provide a signi fi cant barrier to development.  

   Risk analysis : Risk factors that may be considered include: the origin of the cells 
(autologous, allogeneic, xenogeneic), the ability to proliferate and/or differenti-
ate and to initiate an immune response, the level of cell manipulation, the combina-
tion of cells with bioactive molecules or structural materials, the long time functionality, 
the risk of oncogenicity and the mode of administration or use.  

   The manufacturing process  involves the emulation of the concept of a ‘production 
batch’ used in the context of mainstream pharmaceuticals. Manufacturing must be 
validated to ensure “batch consistency” and “the proper differentiation state and the 
cell function with additional substances throughout the manufacture” – this would 
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seem to place signi fi cant technical requirements on manufacturers in handling an 
inherently heterogeneous product. The regulations suggests that normally, the func-
tional integrity of the cells should be tested at the moment of application/adminis-
tration, but specify that if certain release tests cannot be performed on the active 
substance or  fi nished product, but only on key intermediates and/or as in-process 
testing, this needs to be justi fi ed.  

   Risk-based Approach : in January 2012 the CAT came over with a new draft guide-
line on the risk-based approach according to Annex I, part IV of Directive 2001/83/
EC applied to ATMP. It is a strategy aiming to determine the extent of quality, non-
clinical and clinical data to be included in the Marketing Authorization Application 
(MAA), in accordance with the scienti fi c guidelines relating to the quality, safety and 
ef fi cacy of medicinal products and to justify any deviation from the technical require-
ments. It is not the intention to provide a rigid classi fi cation system of different risks 
but rather to exemplify the concept by using several examples with different risk 
pro fi les. This may be a worthwhile instrument leading through the complex develop-
ment process in a fruitful dialog with the authorities.     

    44.2.3.7   Speci fi c Guidelines on Good Clinical Practice (GCP) 
and Traceability 

 Clinical trials on ATMPs have to be conducted in accordance with the overarching 
principles and the ethical requirements laid down in Directive 2001/20/EC for good 
clinical practice. However, Commission Directive 2005/28/EC laying down princi-
ples and detailed guidelines for good clinical practice, as well as the requirements 
for authorisation of the manufacturing have to be adapted to ATMPs. Draft Guidance 
by the Commission thus far simply references 2005/28/EC and CPMP/ICH/135/95 
without adding many further speci fi cations regarding, inter alia, the investigators 
brochure, the clinical protocol, ethics quality control etc. However, this approach 
brings a particular emphasis to the requirements for traceability that the document 
selectively focuses on. 

 The system has to ensure coherence and compatibility with traceability require-
ments in the Tissue and Cells Directive. Notably, the traceability system must also 
respect the provisions laid down in Directive 95/46/EC on data protection, which 
are considered to be particularly stringent in international comparison. For example, 
because the European Commission does not regard the privacy laws in the US as 
adequate, the transfer of patient data, to the USA is prohibited except under special 
‘safe harbour’ agreements.  

    44.2.3.8   Guideline on Safety and Ef fi cacy Follow Up – Risk 
Management of ATMPs 

 In addition to the requirements for pharmacovigilance laid down in Articles 21 to 
29 of Regulation (EC) No 726/2004, the MA-application for an ATMP shall lay 
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down measures envisaged to ensure the follow-up of ef fi cacy of ATMPs and of 
adverse reactions thereto. The Commission requires a risk management system 
designed to identify, characterise, prevent or minimise risks related to AMPs, 
including an evaluation of the effectiveness of that system, be set up. EMEA may 
stipulate that speci fi c post marketing studies be carried out. 

 If serious adverse events or reactions occur in relation to a combined ATMP, 
there is an obligation for EMEA to inform relevant national competent authorities.    

    44.3   Examples: Germany and United Kingdom 

 As explained above, although European Regulations on regenerative medicine 
impose an ever greater degree of uniformity on regulatory standards across Europe, 
Members States retain some leeway in implementing those provisions into national 
law. We have also seen that the ATMP ‘Hospitals Exemption’ is expressly delegated 
to National Competent Authorities. Here, we will brie fl y provide two illustrations 
on how European regulations are incorporated into the national framework by brief 
reference to Germany and the UK. 

    44.3.1   Germany 

 There are two main Competent Authorities in Germany: the  Bundesinstitut für 
Arzneimittel und Medizinprodukte ( BfArM – Federal Institute for Drugs and Medical 
Devices) and the  Paul-Ehrlich-Institut  (PEI – Federal Institute for Vaccines und 
Biomedical Drugs). The latter is responsible for cell and tissue products. In addition 
to these federal authorities there are cooperating local authorities, which have 
speci fi c functions. The German approval and authorisation requirements are laid 
down in the German MP-Act the  ‘Arzneimittelgesetz’  (AMG). 

 For living cell and tissue based medicines the relationship between Community 
and German legislation is shown in Fig.  44.10 .  

    44.3.1.1   Basic Tissue and Cell Treatments in Germany 

 Since 2007 the Tissues and Cells Directive has been transposed to the German 
law, as amendments to the transfusion-, transplantation- and pharmaceutical regu-
lation. The de fi nitions and speci fi c rules for classic tissue-preparations 
( ‘Gewebezubereitungen’)  have been laid down in the 14th Amendment (‘14te 
Novelle’) of the AMG. 

 ‘Classic’ tissue/tissue-preparations are de fi ned as MP in §4(30) AMG, regarding 
the German Transplantation Act §1a Nr. 4 (TPG). If these products are  produced 
industrially  the requirements are – as for any other MP – the manufacturing 
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authorisation regarding §13(1) AMG by the local authority (after consultation with 
the PEI) and MA through §21(1) AMG, including clinical trials. 

 If the tissue preparations however are  not processed with industrial methods 
and where the methods are well-known in the Community , speci fi c national 
authorisation provisions for manufacturing as well as for use are laid down in the 
AMG. 

 For  manufacturing  again the respective local authority is responsible but the 
manufacturer has to ful fi l only reduced requirements for processing and testing 
(§20c AMG) – in addition to the general requirements for donation, procurement 
and testing laid down in §20b AMG (which is also applicable for the procurement 
of autologous blood, often required for the preparation of TEPs). 

 The  authorisation for use  is the so called  ‘Genehmigung’  (§21a AMG), issued 
by the PEI. The requirements are – compared to the ‘normal’ dossier for MA – 
rather similar but reduced, particularly regarding clinical trials. 

 According to §20d AMG tissues/tissue preparations are  excluded  from these 
provisions, if they are not placed on the market and are processed and applied under 
the responsibility of a physician ( ‘Einhandprinzip’) . Tissues, which are procured 
and re-applied within the medical operation without any change to their material 
composition, are entirely excluded from the scope of the AMG (§4a (3)).  

  Fig. 44.10    Relationship between Community and German legislation       

 



115544 Regulatory Frameworks for Cell and Tissue Based Therapies in Europe…

    44.3.1.2   ATMP in Germany 

 The implementation of the ATMP Regulation with its follow up effects has led to 
new further amendments to the AMG. Since July 2009 ATMPs are implemented in 
the ‘15th Novelle’ under the term ‘ Arzneimittel für neuartige Therapien ’ (§4(9) AMG). 
GMP-manufacturing (§13(1) AMG) and centralised MA (§21 AMG) are required. 

 For the exemption according to Article 28(2) of the ATMP-Regulation for 
‘non-routine’ ATMPs §4b AMG lays down  ‘Sondervorschriften für Arzneimittel 
für neuartige Therapien ’. In the following we will focus on the German provisions 
for this ‘Hospitals Exemption’.  

    44.3.1.3   ‘Hospital Exemption’ in Germany 

 The speci fi c ‘non routine’ provisions are laid down in §4b (1 and 2) of the AMG and 
apply to ATMPs, which are:

   prescribed by a physician for an individual patient as a custom-made • 
preparation,  
  applied under the responsibility of a physician in a specialised health care unit  • 
   • manufactured on a non-routine basis  according to speci fi c quality standards.    

 Here  ‘manufactured on a non-routine basis’  means in particular ATMPs

   which are manufactured on a small scale and where – on the basis of routine • 
production – the product has to be  individually modi fi ed because of a medical 
indication for a single patient , or  
  products not yet manufactured in a suf fi cient number to lay down the neces-• 
sary results for a comprehensive evaluation.    

 The German provisions for these ‘non-routine’ ATMPs are in detail:

    • no  need for MA according (§21 AMG) (as there is  no  placing on the market (§43 
AMG))  
  traceability and pharmacovigilance administered via competent local authority • 
and/or PEI (but equivalent to the rules on Community level)  
  quality standards for production by manufacturing authorisation • 
( ‘Herstellerlaubnis’)  regarding §13 AMG via local authority and PEI (same 
authorisation as for ‘routine ATMPs’)  
  if the ATMPs are “handed over to others” authorisation through ‘ • Genehmigung ’ 
(§21a(2–8)AMG) via PEI (speci fi c quality standards: template for authorisation 
corresponds in general with the Common Technical Document (CTD) for 
approval but the 5 CTD-modules for quality, preclinical and clinical data, sum-
maries and registration are abbreviated versions) is required.    

 If there is doubt whether an ATMP falls under the provision  ‘Genehmigung’  or 
not, the relevant local competent authority is responsible to decide this on request of 
the applicant and after consultation with the PEI. 
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 The authorisation will be withdrawn, when the prerequisites for the ‘exemption’ 
are not or no more ful fi lled. At de fi ned time points the owner of the authorisation 
has to report to the PEI about the scale of production and/or the consolidated  fi ndings 
for the evaluation of the MP.   

    44.3.2   United Kingdom 

    44.3.2.1   Basic Tissue and Cell Treatments in the UK 

 The regulation on tissues and cells which are not classi fi ed ATMP is largely covered 
by the Human Tissue Act 2004 (HTA). Following a national scandal into unauthor-
ised retention of organs for research, the Human Tissue Act is unusual in a European 
context in covering the storage of human tissue not just for purposes of the Tissue 
and Cells Directive but also for clinical and other research. 

 The UK Human Tissue Authority has issued Directions under Art.26(7) of the 
Human Tissue Act to address the European requirements: HTA Directions 001/2006 
implement the requirements of the Tissue and Cells Directive and technical Directive 
2006/17/EC including standards relating to procurement, distribution, donor selec-
tion and evaluation, and the transport of tissues and cells. HTA Directions 002/2007 
implement technical Directive 2006/86/EC on facilities and equipment, quality 
management and review, con fi dentiality, processing and storage and the reporting of 
serious adverse events and reactions. HTA Directions 004/2007 regulate to the 
import of tissues and cells from outside the EU.  

    44.3.2.2   ATMP in the UK 

 Cell therapies which are classed as ATMP on the other hand are primarily regulated 
as normal medicines under the Medicines Act 1968 which – with its vast number of 
amendments – “has become a very complex and fragmented set of legal provisions” 
the structure of which is currently under review. 4  Clinical trials for ATMP will be 
regulated mainly under the Medicine for Human Use (Clinical Trials) Regulations 
2004 by the UK Medicines and Healthcare products Regulatory Agency (MHRA).  

    44.3.2.3   Hospitals Exemption in the UK 

 MHRA has consulted in this context not only on the implementation of the ‘Hospitals 
Exemption’ (Art.3 (7) 2001/83/EC as amended) but also on the re-framing of the 
UK ‘Specials’ regime (ie the national arrangements set up under a derogation in 
Article 5.1 of Directive 2001/83/EC). 

   4   MHRA Concept paper on the project to consolidate and review medicines legislation; Jan 2009.  
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 Where a number of different products are under consideration the question of 
whether preparation is non routine will be considered separately in relation to each 
product prepared by that operator. 

 MHRA will take into account the overall numbers of the product prepared by the 
operator, the regularity/frequency of production, and the time period over which the 
preparation of that product has become established. The Agency would not, for 
example, accept an argument that depended on the premise that all autologous 
ATMPs were by de fi nition different products, where their intended use, manufacturing 
processes and  fi nal product presentation are the same. 

 MHRA suggests that it should typically be possible to determine within a period 
of 1–3 years where the scale and frequency of production means that preparation 
has become routine, but where some months are elapsing between each preparation, 
a signi fi cantly longer period may need to elapse before the preparation could be 
reasonably regarded as routine. 

 A manufacturer needs to obtain a hospitals exemption manufacturer’s licence 
from the MHRA. The licence will authorise the manufacture of particular categories 
of ATMPs (gene therapy, somatic cell therapy or tissue engineered product) rather 
than individual products. ATMPs made and used under the exemption must comply 
with the principles of GMP as stipulated by the European Commission. The MHRA 
will inspect for compliance with GMP and review an annual return on this activity.    

    44.4   Regulation of Cell and Tissue Based 
Therapies in the USA 

    44.4.1   Legislative Framework 

 We have seen that for Europe, an understanding of the relationship between Community 
and Member States legislation is useful for a perspective on the regulation of cell 
therapies. Similarly the US constitution provides a basis for medicines regulation in 
the USA. Congress regulates interstate commerce, and in this context the authority to 
regulate drugs, devices, and biological products was delegated to the Food and Drug 
Administration (FDA) by the federal Food, Drug and Cosmetics Act. 

 As shown in Fig.  44.11  the FDA divides regulatory oversight in this area among 
the Center for Drugs, Evaluation and Research (CDER) which deals with ‘chemical’ 
pharmaceuticals, the Center for Biologics, Evaluation and Research (CBER) which 
deals with ‘complex’ biological treatments and the Center for Devices and 
Radiological Health (CDRH) that deals with medical devices.  

 CBER will likely be the most important centre for innovators in this area 
and within CBER the Of fi ce of Cellular, Tissue and Gene Therapies (OCTGT) is 
comprised of three Divisions:

   Division of Cellular and Gene Therapies (DCGT)  • 
  Division of Clinical Evaluation and Pharmacology/Toxicology (DCEPT)  • 
  Division of Human Tissues (DHT)    • 
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 Contact details of relevant personnel can be accessed at the FDA website. 5  
 Whereas FDA is the ultimate respondent on regulatory affairs, also of interest in 

this sector is the important role of voluntary accreditation and certi fi cation programs 
such as by the American Association of Tissue Banks (AATB) and Foundation for 
the Accreditation of Cellular Therapy (FACT). 

 FDA considers “articles containing or consisting of human cells or tissues that 
are intended for implantation, transplantation, infusion, or transfer into a human 
recipient” as  human cellular-and tissue-based products (HCT/Ps) . However, the 
designation as HCT/P in itself does not determine how the product will be considered 
by the FDA. In the past, cell and tissue therapies have been exempt from product 
regulation because of their stronger association to medical practice than to industrial 
manufacture. During the last decade however, steps were taken to bring the sector 
under stronger regulatory supervision. 6  

 In the regenerative medicine area, the  fi rst determination will be whether the 
product requires marketing authorisation. The product’s classi fi cation determines the 
regulatory scrutiny of clinical R&D and marketing authorisation. It also determines 
the FDA branch with lead responsibility for the product. 

  Fig. 44.11    Organigram of FDA with focus on cellular therapies (Note that this is a snapshot, other 
FDA institutions may be of relevance, e.g. within CBER the Of fi ce of Compliance and Biologics 
Quality, or the Of fi ce of Communication, Outreach and Development)       

   5   Currently at   http://www.fda.gov/AboutFDA/CentersOf fi ces/CBER/ucm123224.htm      
   6   Beginning with the “Reinventing the Regulation of Human Tissue” discussion paper CBER 
February 1997.  
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    44.4.1.1   Unaltered or Manipulated 

 Organs, blood products and tissues do not require marketing authorisation, but they 
still require compliance with regulatory standards. 

 CBER does not regulate the transplantation of  vascularised human organ 
transplants  and blood vessels recovered with an organ. These are overseen by the 
Health Resources Services Administration (HRSA) (although the position in the 
case of a vascularised tissue engineered human organ may 1 day be of interest). 

  Blood and Blood Products  are sui generis products covered under CP 7342.001 
“Inspection of Licensed and Unlicensed Blood Banks, Brokers, Reference 
Laboratories, and Contractors”; and CP 7342.002 “Inspection of Source Plasma 
Establishments”. 

 Also excluded are secreted or extracted human products, such as milk, collagen, 
and cell factors; (semen  is  considered an HCT/P); Cells, tissues, and organs derived 
from animals other than humans; and in vitro diagnostic products. 

  Tissues:  Some HCT/Ps are regulated solely under section 361of the US Public 
Health Service (PHS) Act and the regulations in 21 CFR Part 1271 (see Fig.  44.12 ).  

 Tissues and cells under this category include bone (including demineralized 
bone), ligaments, tendons, fascia, cartilage, ocular tissue (corneas and sclera), skin, 
arteries and veins (except umbilical cord veins), pericardium, amniotic membrane 
(when used alone, without added cells for ocular repair), dura mater, heart valve 
allografts, semen, oocytes and embryos (but not embryonic stem cells). The category 
also includes “hematopoietic stem/progenitor cells derived from peripheral and 
cord blood” – this is likely a signi fi cant borderline area in the context of regenera-
tive medicine, not least because with these cells there is no consensus on what 
entails an original and relevant characteristic. However, the Administration advises 
that ‘propagation’ and ‘pharmacological treatment’ are at any rate ‘kick-up factors’ 
that constitute ‘substantial manipulation’ and bring blood stem cells into the area of 
products requiring marketing authorisation. 

 Where doubt exists, the FDA Tissue Reference Group (TRG) aims to provide a 
single reference point for HCT/Ps classi fi cation questions – however, an alternative 
and ultimately more authoritative route exists through the Of fi ce of Combination 
Products (OCP). The TRG is composed of representatives from CBER and CDRH 
and attended by a liaison from OCP. The group will issue guidance to applicants 
within 60 days on whether the product is regulated solely as a tissue. Similarly, a 
request for designation to OCP will yield a response within 60 days, with an oppor-
tunity to request reconsideration after 15 days of receiving the opinion, to which 
OCP must respond within 15 days.  

    44.4.1.2   Drug, Biologic or Device 

 If the HTC/P is considered substantially manipulated, so as to be regulated as a 
medicinal product the question arises what type of product it would then be. FDA 
seeks to determine this by focusing on the ‘primary mode of action’ of the therapy. 
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  Fig. 44.12    Decision tree relating to whether a human tissue or cell product is regulated exclu-
sively under Sec.361 of the US Public Health Service Act (PHS) or requires a license, approval, or 
clearance as part of a premarket review (Trial)       
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If the ‘primary mode of action’ is that of a drug, the product is assigned to CDER, 
if that of a device to CDRH, and biologics to CBER. 

  Drug  is an article intended for use in the diagnosis, cure, mitigation, treatment, 
or prevention of disease in humans or animals, and an article (other than food) 
intended to affect the structure or any function of the body (42 USC 262(a)). 

 This category is oriented towards ‘established’, ‘pill-type’ products. Thus, very 
few products in regenerative medicine will be considered as drugs. 

  Device  means an instrument, apparatus, implement, machine, contrivance, 
implant, in vitro reagent, or other similar or related article, including any component, 
part, or accessory, which is intended for use in the diagnosis of disease or other 
conditions, or in the cure, mitigation, treatment, or prevention of disease, (…) or 
intended to affect the structure or any function of the body (…) and which does not 
achieve any of its principal intended purposes through chemical action within or on 
the body and which is not dependent upon being metabolized for the achievement 
of any of its principal intended purposes (21 USC 201(h)). The latter provisions 
seem to preclude certain bioresorbable scaffolds. 

  Biologic  is de fi ned as a virus, therapeutic serum, toxin, antitoxin, vaccine, blood, 
blood component or derivative, allergenic product or analogous product, (…) appli-
cable to the prevention, treatment, or cure of diseases or injuries of man (42 USC 
262(a)). Most HCT/Ps that have been substantially altered will fall into this 
category. 

 There is no statutory de fi nition of what constitutes primary mode of action. FDA 
has issued guidance 7  where the mode of action is de fi ned as the means by which a 
product achieves its intended therapeutic effect, and –for combination products– the 
single mode that is expected to make the greatest contribution to the overall intended 
therapeutic effects. Sponsors can instigate a ‘Request for Designation’ (21CFR §3.7 – 
all §§ in this section are under 21 CFR) but in the past the classi fi cation of a product 
as either a device or biologic has sometimes appeared arbitrary. To complicate 
matters CDER now review certain biologics including: monoclonal antibodies 
for in vivo use; cytokines, growth factors, enzymes, immunomodulators, and throm-
bolytics; proteins intended for therapeutic use that are extracted from animals or 
microorganisms, including recombinant versions of these products (except clotting 
factors); and other non-invasive immunotherapies. 

 OCP publishes jurisdictional updates of decisions rendered on sample products.  

    44.4.1.3   Regulation of ‘Unaltered’ Tissue 

 Although, as we have seen, the issues of classi fi cation are not always clear-cut, it is 
unlikely that many advanced tissue or cell based products will be treated as tissue in 
this category. However, the regulations relating to tissues are still of prime relevance 

   7   De fi nition of primary mode of action of a combination product. Fed Regist 70(164, Aug 
25):49848–49862.  
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to innovators who –perhaps in a trans-Atlantic collaboration– use tissues and cells 
as ‘raw material’ for further or future development (e.g. blood stem cells as a com-
ponent, or embryos for the derivation of embryonic stem cell lines). Similar to the 
European situation, the regulatory provisions that apply to the procurement of tissue 
will also be relevant for the further development of cell therapy and tissue 
engineered products. For example, the donor testing and eligibility criteria will 
apply to both contexts. 

 In the past, innovators have sometimes been able to convince regulators of the 
acceptability of a tissue component (e.g. a cell line) ‘post hoc’ with safety data, but 
the preferred approach will be one of integrating regulatory standards throughout 
the product development chain. We will therefore quickly reference some of the 
relevant provisions in this section. 

 Domestic or foreign establishments that manufacture or import HCT/P into the 
US must register with FDA and submit a list of each a HCT/P manufactured. CBER 
maintains a listing of registered HCT/P establishments on which over 100 foreign 
stem cell procurement facilities are listed. 8  Satellite recovery establishment only 
provide temporary storage of recovered HCT/Ps and may perform no other activity 
or manufacturing step. 

 HCT/P establishments must screen and test HCT/P donors for risk factors for, 
and clinical evidence of, relevant communicable disease agents and diseases and 
communicable disease risks associated with xenotransplantation. These procedures 
must be designed to ensure compliance with the requirements of subpart 21 CFR 
1271 C. Donor eligibility determination must be based upon the results of donor 
screening (§ 1271.75) and donor testing (§§ 1271.80 and 1271.85). Certain records 
must accompany the HCT/P at all times once a donor eligibility determination has 
been made (§ 1271.55). For such tissues, FDA compliance programme 7341.002 – 
Inspection of Human Cells, Tissues, and Cellular and Tissue-Based Products 
applies. 

 Each HCT/P that is manufactured must be assigned and labelled with a distinct 
identi fi cation code that relates the HCT/P to the donor, to all records pertaining to 
the HCT/P; and to the recipient. The code may not include an individual’s name, 
social security number, or medical record number (§ 1271.290c). 

 Manufacturers must investigate any adverse reactions and deviations related to 
an HCT/P they made available for distribution. Reportable adverse reactions must 
be submitted to FDA within 15 days of receipt of information as a MedWatch Form 
3500A. Adverse reaction means a noxious and unintended response to any HCT/P 
for which there is a reasonable possibility that it was caused by the HCT/P (Part 
1271.3(y)) and deviations relate to events that represent a deviation from applicable 
regulations, standards or established speci fi cations that relate to prevention com-
municable disease transmission (§ 1271.3(dd)).  

   8   Currently at   http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatory
Information/EstablishmentRegistration/TissueEstablishmentRegistration/FindaTissue
Establishment/ucm110270.htm      

http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/EstablishmentRegistration/TissueEstablishmentRegistration/FindaTissueEstablishment/ucm110270.htm
http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/EstablishmentRegistration/TissueEstablishmentRegistration/FindaTissueEstablishment/ucm110270.htm
http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/EstablishmentRegistration/TissueEstablishmentRegistration/FindaTissueEstablishment/ucm110270.htm
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    44.4.1.4   Regulation of ‘Manipulated’ Tissue 

 Only very few cell therapy products are on the market to date, many products of 
relevance in this sector are currently in early stages of development. We will con-
centrate on the regulatory requirements for conducting clinical trials in this sector. 

 The Food, Drug and Cosmetic (FD&C) Act requires demonstration of safety 
and effectiveness for new drugs and devices prior to introduction into interstate 
commerce. The Public Health Service Act (PHS) requires demonstration of safety, 
purity, and potency for biological products before introduction into interstate 
commerce. 

 Consequently, pre-marketing authorization clinical studies must be performed 
under exemptions from these laws. 

 For drugs and biologics, a Investigational New Drug (IND) application must be 
 fi led (§ 312), for devices an Investigational Device Exemption (IDE, § 812).   

    44.4.2   Interactions with FDA 

 Once the responsible FDA division has been identi fi ed as outlined above, sponsors 
may take advantage of a pre-IND meeting opportunity to seek Agency guidance 
(§ 312.82). However, an important distinction should be made between ‘of fi cial’ and 
‘informal’ pre-IND meetings. The Sponsor may request a formal pre-IND meeting 
from FDA which should be scheduled to occur within 60 days of FDA receipt of the 
meeting request. The former provides the investigators with formal advice that 
re fl ects ‘current thinking’ –it will subsequently be very dif fi cult for the team to devi-
ate from that advice without extremely good justi fi cation. Generally, FDA will not 
grant more than one pre-IND meeting for each potential application. 

 Informal advice can often be sought by interactions with the regulators. 

    44.4.2.1   Preclinical Data 

 The sponsor of a clinical trial should provide “…adequate information about the 
pharmacological and toxicological studies…on the basis of which the sponsor has 
concluded that it is reasonably safe to conduct the proposed clinical investigations.” 
(CFR 21 Part 312.23 (a)(8)). 

 The kind, duration, and scope of animal and other tests required vary with the 
duration and nature of the proposed clinical investigations. Potential for tumorige-
nicity and the potential for inappropriate differentiation at a non-target location are 
signi fi cant safety concerns especially with hESC derived products. 9  Selection of the 

   9   CTGTAC Meeting #45, April 10, 2008 Brie fi ng: “Cellular Therapies Derived from Human 
Embryonic Stem Cells – Considerations for Pre-Clinical Safety Testing and Patient Monitoring”.  
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most appropriate animal species and models is a major unresolved issue. In addition 
to the species used, the safety assessment of many cellular therapies has also made 
use of animal models of disease/injury that mimic some aspect of the pathophysiol-
ogy of the proposed patient population. Such models help provide insight regarding 
dose/activity and dose/toxicity relationships. Thus, the applicability of such models 
in the context of species-speci fi c immunology should be addressed. Cell survival, 
migration/traf fi cking, differentiation/mRNA or protein expression pro fi le, integra-
tion (anatomical/functional), and proliferation also may need to be considered when 
selecting appropriate preclinical models.  

    44.4.2.2   Application 

 The contents of IND and IDE applications are similar. Beyond a description of the 
product and its manufacturing they will contain an account of preclinical studies 
including patient inclusion and exclusion criteria, study end points, patient follow-up, 
data monitoring and stopping rules. A list of standard operating procedures (SOP) 
will normally suf fi ce for submission but critical SOP should be supplied in detail. 

 A Drug Master File (DMF) may be used to provide con fi dential detailed infor-
mation about facilities, processes, or articles used in the manufacturing, processing, 
packaging, and storing of the product. Facility design and layout, production 
steps, contingency arrangements and personnel records must be relayed and may be 
referenced in a ‘Type 5’ DMF where such information already exists with FDA. 10  

 Both IND and IDE investigations require Institutional Review Board (Ethical) 
assessment and approval. FDA must respond to the IND application within 30 days.  

    44.4.2.3   Phase 1 

 Phase I clinical trials (§ 312.21(a)) are typically designed to assess tolerability, or 
feasibility, for further development. In many situations, conducting the  fi rst-in-man 
study under an IND or IDE as a ‘classis’ phase1/feasibility study in healthy volun-
teers will be inappropriate for cell therapies. 

 FDA con fi rms: “We recognize that it may not be possible to follow each recom-
mendation. For example, with some cellular products, it may be impossible to retain 
samples of the  fi nal cellular product due to the limited amounts of material available. 
Therefore, we recommend that you include your justi fi cation for adopting addi-
tional controls or alternative approaches to the recommendations in this guidance in 
the records on the phase 1 investigational drug.” 11  

   10     http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm122886.
htm      
   11   FDA Draft Guidance for Industry: INDs—Approaches to Complying with CGMP During Phase 1.  

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm122886.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm122886.htm
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 An investigational cell therapy for use in a Phase 1 study, is subject to the statutory 
requirements set forth at 21 U.S.C. 351(a)(2)(B). The production during Phase 1 is 
exempt from compliance with the cGMP regulations in part 211 but the exemption 
ceases if the investigational cell therapy has been made available for a Phase 2 or 
Phase 3 study or been lawfully marketed.  

    44.4.2.4   cGMP Criteria 

 The legislative framework for GMP requirements is set in §§210 and 211 for phar-
maceuticals and for devices (Quality Systems Regulations) in §§820. 

 Staff quali fi cations and continued professional training need to be speci fi ed and 
recorded (§ 211.25). 

 Release criteria in 21 CFR 610 include sterility (§ 610.12) as common in biologics 12  
including growth-promoting properties of the culture medium (note that some stem 
cell lines are reportedly compromised by mycoplasma 13 ), identity (§ 610.14, estab-
lished either through the physical or chemical characteristics of the product, inspection 
by macroscopic or microscopic methods, speci fi c cultural tests, or in vitro or in vivo 
immunological tests) and potency – in vitro or in vivo tests, which have been 
speci fi cally designed for the product so as to indicate its speci fi c ability to effect a 
given result (§ 610.10; § 610.10; § 600.3(s)). This can be problematic in some cell 
therapies where the mode of action is a complex systemic interaction, but FDA 
representatives have given verbal indication of being alert to this complexity. Of 
particular interest for advanced therapies are the stipulations on culture (§ 610.10; § 
610.18) which must be stored by a method that will “retain the initial characteristics 
of the organisms” – this obviously has to be reconsidered for complex cell deriva-
tion protocols. Moreover, the regulations talk about “source strains” and “seed lots” – 
which equates to ‘master cell banks’ and sub-cultures. Periodic tests must be 
performed to verify the integrity and purity of the culture and these results must be 
recorded and retained (§ 211.188; § 211.194). 

 Cell lines used for manufacturing biological products shall be:

     (i)    Identi fi ed by history;  
     (ii)    Described with respect to cytogenetic characteristics and tumorigenicity;  
    (iii)     Characterized with respect to in vitro growth characteristics and life potential; 

and  
    (iv)    Tested for the presence of detectable microbial agents.     

 These rules do not apply to primary cell cultures that are subsequently subcultivated 
for only a very limited number of population doublings. 

   12   Pharmaceutical Inspection Co-operation Scheme. Recommendation on sterility testing, 
Pharmaceutical inspection convention (1 November 2002) PI 012-1.  
   13   Cobe et al. (2007) Microbiological contamination in stem cell cultures. Cell Biol Int 
31(September)991–995.  
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 FDA recognised that investigational cell therapy products may be manufactured 
as one batch per subject, 14  nonetheless testing of each batch for viability, cell number, 
mycoplasma and endotoxins close to the moment of application will usually be 
expected. Moreover, regulators ask for metrics on identity and potency but it is 
recognised that these may be ‘moving targets’.  

    44.4.2.5   Expeditions and Facilitation 

 There are ways to expedite the process: Firstly FDA will ‘fast track’ the review if 
the product is intended for the treatment (or, in the case of devices, diagnosis) of a 
serious or life-threatening condition and it demonstrates the potential to address 
unmet medical needs. 

 When there is suf fi cient clinical experience to establish the safety of a product 
after use outside the US or in a different patient population, the FDA may review 
data from clinical studies performed outside the US in both the IND/IDE applica-
tion or in an application for marketing approval. For devices, the sponsor can 
demonstrate substantial equivalence of the device to a legally marketed predicate 
device (510(k)). 

 Another way to speed up the process is to gain a Humanitarian Device Exemption 
(HDE) for certain devices (FD&C Act, §520 m) or an orphan drug designation 
(FD&C Act, 525, et. seq.). A device may be marketed under the humanitarian 
exemption for treatment or diagnosis of a disease or condition that affects fewer 
than 4,000 individuals per year in the US. The exemption relates to the effectiveness 
requirements for devices (FD&C Act, 529(m)(1), as amended February 1998). 
Several engineered skin constructs have been approved for market under the human-
itarian exemption. Orphan drugs are those intended to treat a disease or condition 
affecting fewer than 200,000 individuals in the US for which there is little likeli-
hood that the cost of development will be recovered from sales in the US. Other 
bene fi ts of an orphan drug designation include grants and tax credits for clinical 
trials, FDA fee waivers and marketing exclusivity in the US for a period of 7 years 
from the date the compound is approved.  

    44.4.2.6   Vigilance 

 Manufacturers and clinicians should report adverse events through the FDA 
‘MedWatch’ process. Post marketing studies may be a condition of the FDA 
approval, which may often be the case for novel cell therapies. Devices manufac-
turer may be required to conduct postmarket surveillance for any device which is a 
class II or class III device the failure of which would be reasonably likely to have 

   14   FDA Guidance for Industry CGMP for Phase 1 Investigational Drugs; July 2008.  



116744 Regulatory Frameworks for Cell and Tissue Based Therapies in Europe…

serious adverse health consequences or which is intended to be implanted in the 
human body for more than 1 year, or for a life sustaining or life supporting device 
(SEC. 522. [21 USC § 360 l]).    

    44.5   Regulatory Policy 

 It is implicitly clear that all discussions on ‘Advanced Therapies’ concern regimes 
of scienti fi c, clinical and commercial conduct that do not  fi t the mould of existing 
medicines.

   Advanced therapies depart from a focus on ‘simple’ ligand-receptor interactions, • 
but often also do not present a product the effect of which can be de fi ned purely 
by its presence (such as whole-organ transplantation). Both safety and function-
ality of the product cannot be assessed with any signi fi cance in vitro.  
  Cells and tissues are very complex entities that react very sensitively to a variety • 
of stimuli, some of which cannot be replicated in vitro. Cell populations in many 
therapies are necessarily heterogeneous. The search for optimal puri fi cation pro-
tocols which is applicable for other contexts may not be appropriate for ATMP.  
  Stem cells are often used precisely for their ability to differentiate into a variety • 
of cell types and to engender changes in surrounding tissue. Thus any isolated 
assessment of proliferation pro fi le and reactivity will always be insuf fi cient. 
Almost all cells harbour a potential to proliferate in unexpected ways.  
  Whereas in established ‘pill-type’ and biologics manufacture large ‘lots’ and • 
‘batches’ are released and tested, ATMP are often produced speci fi cally for a 
particular patient. This means that regulatory provisions on product release testing 
may not only be inappropriate but also create a disproportionate burden.    

    44.5.1   Different Protagonists 

 Clinical trials require in-depth discussions between manufacturers, clinicians and 
regulators. Traditionally, only large pharmaceutical companies are equipped to 
shoulder the burden of maintaining GMP manufacturing facilities, of coordinating 
complex trials to the requisite standard and to meet the considerable bureaucratic 
requirements. The European ATMP regulation established special provisions and 
cost bene fi ts for SMEs. However, it is sometimes overlooked that a great proportion 
of ATMP are not pioneered by industry but as individual ventures at a single 
(university) hospital, often on the initiative of clinicians collaborating with local 
academic groups. 

 It has been observed that for many ATMP products, especially cell-based and 
patient-speci fi c treatments, the pharmaceutical industry has limited interest (and 
know how) in playing its ‘usual’ role of  fi nancing development and of acting as a 
sponsor in clinical trials. 
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 Several reasons have been suggested:

   Many ATMP are manufactured very differently from mainstream medicines.  • 
  It is often not possible to conduct trials on a large patient population.  • 
  Many ATMP are seen to be more closely related to transplantation, an area that • 
does not interface much with industrial R&D.    

 In many instances, the ‘spin out’ of ATMP development from the academic GMP 
facilities also meets technical dif fi culties: Puri fi cation of a speci fi c ATMP product 
requires a highly specialised skill mix which combines elements of scienti fi c expertise, 
with technical know-how and a strong clinical link to the treatment protocols of the 
individual patients. 

 Consequently, academic facilities are major contributors to the development of 
ATMPs. Not only do they have an important function in the translation of pre-clinical 
academic research into GMP, but many products may only reach clinical application 
by relying exclusively on academic facilities.  

    44.5.2   cGMP – Trying to Make Fit 

 Although the ATMP regulations are oriented towards the granting of a marketing 
authorisation its reach does not just extend to the ‘launching’ of a  fi nished product 
on the Common Market. As we have seen, regulatory stipulations apply to every 
stage of development in clinical trials and even reach into pre-clinical development. 
One effect of the recent regulatory initiatives is to extend considerations of GMP to 
the area of ATMP. Rules on GMP have evolved over decades to ensure standards of 
quality, safety and ef fi cacy in the development of pharmaceutical products. They 
stipulate a ‘clean room culture’ where every step is carefully monitored, controlled, 
validated and recorded. It is universally acknowledged that established GMP 
standards cannot simply be imposed on cell therapies without modi fi cation. 

 In fact, the ATMP Regulations in Europe were partially created to address this 
issue, but judging by the picture that emerges in this area, there remains a real concern 
that standards and practices in other  fi elds are imported and imposed to advanced 
cell therapies without a careful assessment of whether these standards are appropriate 
and effective.  

    44.5.3   Some Examples 

    44.5.3.1   ‘Biomolecules’ 

 The revised Annex 4 of 2001/83/EC contains the innocuous sounding provision: 
“For somatic cell therapy medicinal products and tissue engineered products, pro-
ducing systemically active biomolecules, the distribution, duration and amount of 
expression of these molecules shall be studied.” (4.3.2b) 
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 This requirement could be interpreted as putting an unwarranted and unobtainable 
burden on complex ATMP. As an analogy: in organ transplantation, the ‘biomolecules’ 
emitted by the whole organ are not generally studied let alone exhaustively under-
stood. Anyone familiar with recent scienti fi c discourse in cell therapy will recognise 
that some perspectives are ascribing therapeutic bene fi t to the systemic interactions 
that the cell therapy induces, rather than to particular functions of the transplanted 
cells in situ. The mission to chart in detail every ‘systemically active biomolecule’ 
that a cell may produce in vivo is one that may well occupy generations of scientists 
for decades. The requirements of this provision could be seen to depart from the 
risk-based approach that the regulations posit.  

    44.5.3.2   Tumorigenicity 

 An issue that has created a great deal of concern for regulators in the US is the 
proposition of using cells with a multipotent differentiation pro fi le, as such cells 
may ‘revert’ and grow uncontrollably in the recipient. 

 Where tumorigenicity is a theoretical concern, it is necessary to validate these 
applications using animal testing and ultimately in clinical trials. It is worth bearing 
in mind that decades of stem cell transplants have not produced large scale inci-
dences of cancer. In situations where ATMP represent the only option to halt or 
mitigate the progression of a serious life threatening condition, lingering concerns 
about the long-term neoplasia risks must be weighted against a patients chances of 
survival without the intervention.  

    44.5.3.3   Hospital Exemption 

 It is clear from the proceedings that led to the Advanced Therapies Regulations, that 
the issue of a ‘Hospitals Exemption’ involved protracted discussion among Member 
States with very different positions and perspectives. The current wording therefore 
represents a baseline consensus, from which Member States are called to develop 
their own regimes. The context developed here is one that seeks to protect patients, 
but acknowledges that particular types of bespoke treatment are  fi rmly a category 
apart. 

 The law support a clinician’s unique right and responsibility to determine the 
best course of treatment for an individual patient. Many unlicensed stem cell thera-
pies are only an option in very seriously debilitating or life-threatening conditions 
where no effective, licensed treatment alternative is available. In such cases, regulators 
must not encumber the decision making process but instead facilitate it by providing 
guidance about the management of situations in observance of appropriate safety 
standards. 

 Thus, where Art.3 (7) 2001/83/EC as amended states “Member States shall 
ensure that national traceability and pharmacovigilance requirements as well as 
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the speci fi c quality standards referred to in this paragraph are  equivalent  to those 
provided for at Community level in respect of advanced therapy medicinal products 
for which authorisation is required” (our emphasis) we suggest that the level of 
equivalence required is approximate similarity, not one of identical application. 
While it is not yet clear how these requirements will be interpreted across Europe, 
what we have seen emerging in the UK and Germany may give rise to concern, 
where they allow no leeway on GMP standards. The aim of charting and enforcing 
(current) Good Manufacturing Practice is to operate high standards in the produc-
tion of medicinal product. Often these regimes aim at establishing protocols that are 
robustly applicable in de fi ned conditions over extended periods of time and gener-
ate products of comparative makeup, for example to avoid batch inconsistency. 
Where a treatment is inherently “non routine”, these considerations of GMP are not 
as pertinent. For example, whereas GMP assessments focus strongly on Standard 
Operating Procedures (SOP), there is, by de fi nition, no “standard” in non-routine 
ATMP production. 

 A further complication is introduced by the fact that data generated by relying on 
the Exemption cannot be generated for the purpose of analysing it scienti fi cally – 
otherwise the treatment may be considered a clinical trial, which introduces a new 
set of regulatory requirements. This is clearly at odds with much of the discussions 
surrounding the exemption where it was assumed by many parties that small scale, 
proof of principle trials could be conducted under the exemption.    

    44.6   Summary Outlook 

 When considering the regulatory approach to novel cell and tissue based therapies, 
regulators in both Europe and the US have embarked on a precarious road: on the 
one hand copious new regulatory provisions and guidance suggest that the Regulators 
are responsive to the different nature of these therapies and aware of their potential. 
On the other hand there is a clear tendency to make the new regimes  fi t the existing 
mould as much as possible. In the US, greater discretion seems to be left with the 
regulatory authorities whereas in Europe the approach is of fi cially more text-based 
while it remains uncertain how speci fi c provisions will be interpreted by assessor 
and inspectors for EMEA and at Member State level. 

 By 30 December 2012, the European Commission shall publish a general report 
on the application of the ATMP-Regulation. By then it may already become apparent 
whether the regulatory approaches are sustainable or whether the concerns of inap-
propriate regulation we have alluded to here are justi fi ed. Until then, researchers, 
clinicians and entrepreneurs pioneering regenerative medicine treatments are in the 
position of not just scienti fi c but also regulatory trailblazers – at dire risk of colliding 
with emerging rules but also with an opportunity to shape regulatory attitudes 
and regimes. In turn, regulators must be aware that in an emerging  fi eld even 
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‘little things’ such as inability to access appropriate guidance or rigid application of 
inappropriate standards can have an instant ‘ripple’ effect on the entire  fl edgling 
community and can inadvertently sti fl e all innovation at least in that particular 
branch of regenerative medicine.      
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  Abstract   Although France, Germany and Poland share common legal roots, the 
national laws of biomedicine distinguish themselves. Working out these differences 
in existing law the picture drawn shows how particular the law situation in each of 
the countries is and that these differences are caused by basic different ethical 
adjustments. 

 The speci fi c relation between ethics and law in general and in particular in the 
three neighboring countries has  fi nally led to different procedures to deal practically 
with research in the Regenerative Medicine, described and critically evaluated in 
the following.     

     45.1   Law Part    

 France, Germany and Poland are three countries with written laws that share com-
mon legal roots. Generally speaking, and especially in France and Poland, many 
similarities can be found between legal answers, for instance within civil or con-
sumer laws. However, if there is one area of law where each of these European 
countries distinguishes itself, it is that of biomedicine. 

 The three countries we will study are members of the European Union and have 
recently adapted the European standards relating to the main activities within bio-
medicine such as clinical drugs trials as well as standards relating to organs, tissue 
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and cells. In addition, the three countries have all signed the Oviedo Convention    1  
and are on track to ratify it. 

 However, it is notable that on the subject of bioethics   , the differences in legal 
solutions implemented by these countries are as numerous as the points they have in 
common: European standardisation does not infer an obligation to accept and legiti-
mise biomedical practices and activities themselves. Rather, member states alone 
hold the power to make decisions with respect to the authorisation or banning of 
biomedical activity. 

 So this decision, the choice of whether or not a practice is acceptable, is not for 
the law to determine, rather the laws are merely a formal expression of country’s 
values and beliefs. 

 In the area of biomedicine   , perhaps more than any other, legal ruling is depen-
dent on the ethical, cultural, historical and/or religious beliefs of a country. 

 The framework of research into regenerative medicine provides an excellent 
example of this. 

    45.1.1   Regenerative Medicine and Research 

    45.1.1.1   Regenerative Medicine and Fundamental Research 

       Embryonic Stem Cell Research  

 Without a doubt, human embryonic stem cell research    gives rise to the greatest 
amount of scrutiny and questioning as it involves destroying the embryos. 
 Whatever the nature of this questioning (religious, ethical…), it leads to certain 
unease when linked to the human aspect of the embryo. 

 Moreover, it is this human aspect that generates the well-known question asked 
by jurists from countries whose legal rules are the legacy of Roman law: is the 
embryo a person or a thing? 

 The experimentation on an embryo with unmistakeably ‘human’ characteristics, 
generally considered as a potential human being, 2  gives rise to the fear that human 
exploitation will become accepted. 

 It is therefore no surprise to  fi nd a systematic ban on embryo research, as well as 
protective legal guidance in countries which have already adopted legislation relating 
to embryo research. 

   1   Council of Europe. Convention for the Protection of Human Rights and Dignity of the Human 
Being with regard to the Application of Biology and Medicine: Convention on Human Rights and 
Biomedicine. Oviedo, 4.IV.1997 Available for consultation on:   http://conventions.coe.int/Treaty/
en/Treaties/Html/164.htm      
   2   That which ‘would ensure the widest ethical consensus’ according to the French Council of State. 
Further reading: Study – “The revision of bioethical laws”, Study adopted by the General Plenary 
Session, Les études du Conseil d’Etat, 2008, p. 12. 

http://conventions.coe.int/Treaty/en/Treaties/Html/164.htm
http://conventions.coe.int/Treaty/en/Treaties/Html/164.htm
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 This is the case in Germany and France, however, not all European countries 
have followed suit. For example, the legal situation is more complex in  Poland  
which has not yet adopted speci fi c legislation for embryonic research. 

     Embryonic Stem Cell Research in Germany and France: A Unique Case 

 Germany 3  instituted a law protecting the embryo early on in 1991. In accordance 
with this law, the human test tube embryo cannot be the object of any research 
unless the research relates to the embryo’s own protection. 

 Nevertheless, on June 28, 2002, the Bundestag passed a federal law on stem cells 
(Stem Cell Act    – ‘Stamzellgesetz’- StGZ) through which it authorised research on 
imported embryonic stem cells. 

 This law was very restrictive as it states that research can only be carried out on 
stem cells obtained from outside German territory prior to January 1, 2002. 

 On April 11, 2008, the StGZ law was modi fi ed by a slight easing of the condi-
tions. It now authorises research on descendant stem cell lines taken from embryos 
obtained outside German territory before May 1, 2007. 

 Apart from this exception, no major changes 4  have been brought to this law; 
research on surplus German embryos remains illegal. 

  In France , the issue of embryonic research is controlled by clauses in Law No. 
2006-800 of August 6, 2004, relating to bioethics whose measures have been 

 Available for consultation on:   http://www.conseil-etat.fr/cde/media/document//etude-bioethique_
ok.pdf     (text in French) 
 “The Council of State advises the Government on the preparation of bills, ordinances and certain 
decrees. It also answers the Government’s queries on legal affairs and conducts studies upon the 
request of the Government or through its own initiative regarding administrative or public policy 
issues. 
 The Council of State is the highest administrative jurisdiction – it is the  fi nal arbiter of cases relat-
ing to executive power, local authorities, independent public authorities, public administration 
agencies or any other agency invested with public authority. 
 In discharging the dual functions of judging as well as advising the Government, the Council of 
State ensures that the French administration operates in compliance with the law. It is therefore one 
of the principal guarantees of the rule of law in the country. 
 The Council of State is also responsible for the day-to-day management of the administrative tri-
bunals and courts of appeal. 
 Every year, 110 bills, 900 drafts of decrees and 3,000 non-statutory texts are examined by the 
Council of State” (  http://www.conseil-etat.fr/cde/en    )  
   3   For further general reading on this point, see: Christian Starck, Embryonic Stem Cell Research 
according to German and European Law, 41 EUROPARECHT 1 (2006) Available for consultation 
on:   http://www.germanlawjournal.com/pdf/Vol07No07/PDF_Vol_07_No_07_625-656_Articles_
Starck.pdf      
   4   For a summary of the debates and issues of the revision of the StGZ, see:   http://www.etatsgener-
auxdelabioethique.fr/base_documentaire/international/allemagne_bioethique.pdf     (text in French). 
 For a complete study, see the opinion “Should the Stem Cell Law be amended ?” of the German 
National Ethics Council:   http://www.ethikrat.org/_english/publications/Opinion_Should_the_
Stem_Cell_Law_be_amended.pdf      

http://www.conseil-etat.fr/cde/media/document//etude-bioethique_ok.pdf
http://www.conseil-etat.fr/cde/media/document//etude-bioethique_ok.pdf
http://www.conseil-etat.fr/cde/en
http://www.germanlawjournal.com/pdf/Vol07No07/PDF_Vol_07_No_07_625-656_Articles_Starck.pdf
http://www.germanlawjournal.com/pdf/Vol07No07/PDF_Vol_07_No_07_625-656_Articles_Starck.pdf
http://www.etatsgenerauxdelabioethique.fr/base_documentaire/international/allemagne_bioethique.pdf
http://www.etatsgenerauxdelabioethique.fr/base_documentaire/international/allemagne_bioethique.pdf
http://www.ethikrat.org/_english/publications/Opinion_Should_the_Stem_Cell_Law_be_amended.pdf
http://www.ethikrat.org/_english/publications/Opinion_Should_the_Stem_Cell_Law_be_amended.pdf
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codi fi ed within the Public Health Code   . The principle of the ban on embryonic 
research 5  is stated in the  fi rst paragraph of Article L. 2151-5 of the Public Health 
Code in unequivocal terms: ‘Human embryo research is prohibited.’ 

 Nevertheless stem cells offer the hope of discovering new cures and as a result, 
the law of August 6, 2004 was modi fi ed on February 6, 2006 allowing for the pos-
sibility of embryonic research 6  for the next 5 years following the executive order 
issue. 7  

  Similar requirements , and in both cases cumulative ones, govern  German and 
French stem cell research . 

 In France, as well as in Germany, human embryonic stem cell research    can only 
be carried out on so-called ‘surplus’ embryos    – those obtained through medically 
assisted reproduction but no longer required for the parental procedure. 

 Moreover, whether the embryos have been imported (Germany and France) or 
not (France only), the consent of both parents must be obtained prior to beginning 
research. (In France consent must be obtained twice with a 3 month interval between 
each af fi rmation) The embryos cannot be exchanged for money and, if imported, 
they cannot be obtained by violating any laws in place in the exporting country. 

 Finally, in order for the research to obtain legal authorization from the relevant 
authorities (the Robert Koch Institute in Germany and the Biomedicine Agency    8  in 
France 9 ), the research must be likely to allow major progress in treatments and also 

   5   The human embryo is further protected with regulations more far-reaching than the banning of 
research. Articles L.2151-1 to L.2151-4 in fact state other bans:

   That of  cloning , whether it be reproductive, for therapeutic purposes, for research purposes or for 
use in commercial or industrial purposes  

   The creation of embryos  for research purposes as well as industrial or commercial purposes  
   The use of the embryo  for commercial or industrial purposes     

   6   Just as OPECST sums up perfectly in its report “In the beginning, Article 37 of the 2004 Law gave 
ministers of Health and Research the power to authorise the importation of embryonic stem cells, 
provisionally, after a recommendation by an ad hoc committee (decree No. 2004-1024 of September 
28th, 2004;  fi nalised on September 28th, 2004). These measures were intended to allow French 
researchers to answer calls for projects launched by the European Commission. The law was then 
supplemented by the decree No. 2006-121 of February 6, 2006 relating to embryo and embryonic 
stem cell research and modifying the Public Health Code. This exceptional arrangement actually 
began on February 6, 2006 and is due to run until February 5, 2011.” Report on research into the 
functioning of human cells. Report No. 3498, AN, drafted by M. Alain CLAEYS. Available for 
consultation on:   http://www.assemblee-nationale.fr/12/rap-off/i3498.asp     (text in French).  
   7   Decree No. 2006-121 of February 6, 2006 relating to research on the embryo and embryonic cells 
and modifying the Public Health Code, JORF No. 32 of February 7, 2006 page 1974.  
   8   Following the creation voting of the French Bioethics Law of August 6th 2004, the Agence de la 
biomédecine is the only such public body in Europe to combine the four domains of organ procure-
ment, procreation, human embryology and genetics. Its close links with medical teams and patients 
enable it to ensure respect for safety and quality, anticipation, ethics and transparency”. (  http://
www.agence-biomedecine.fr/agence/english.html    )  
   9   Just as Article L. 2151-5 of the Public Health Code sets out in paragraph 5: “The decision to 
authorise is taken according to the scienti fi c relevance of the research project, its terms of imple-
mentation from the point of view of ethical principles and its interest to public health. The agency’s 

http://www.assemblee-nationale.fr/12/rap-off/i3498.asp
http://www.agence-biomedecine.fr/agence/english.html
http://www.agence-biomedecine.fr/agence/english.html
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be the only way of obtaining the expected results, which is only possible if no alternative 
and comparably effective method exists. 

 Research on cells obtained from embryos or foetuses originating from pregnancy 
terminations can be carried out in France and is subject to laws relating to the 
removal of tissue and cells (Article L. 1241-5 of the Public Health Code). After the 
woman whose pregnancy has been terminated has been informed of the purpose of 
the removal, her written consent is obtained. Research protocol must  fi rst submitted 
to the Biomedicine Agency and can be suspended or banned by the Ministry of 
Research when the scienti fi c relevance or the need for the removal is not established 
or when respect for the ethical principles is uncertain. 

 Germany only allows embryonic stem cell research on surplus embryos    obtained 
from medically assisted reproduction. Therefore the issue of using foetuses or 
embryos from terminated pregnancies does not arise.  

      Can We Expect Legislative Changes? 

 That is the question being asked in France at the moment. In fact, Law No. 2004-
600 of August 6, 2004 will be revised very soon. 10  

 Many reports, drawn up by the main institutions in charge of these issues (the 
Biomedicine Agency and its advisory council, 11  the Parliamentary Of fi ce for 
Scienti fi c and Technological Options, 12  the Council of State…), have been pub-
lished or are being compiled, and many key  fi gures have been or are being 
consulted. 

 Furthermore, General Estates on Bioethics have been put together so as to allow 
members of the public to express their opinions on the group of subjects relating to 
bioethics. The summary of the  fi nal report 13  on this public consultation was submit-
ted to the President of the Republic on July 16, 2009. 

decision, accompanied by advice from an advisory council, is communicated to ministers respon-
sible for Health and Research who can, when the decision authorises a factual record of observa-
tions, ban or suspend it from being carried out when its scienti fi c relevance has not been established 
or when respect for the ethical principles is uncertain.”  
   10   Ever since their  fi rst issues, France chose to review bioethics laws on a regular basis, so regula-
tions remain consistent with fast scienti fi c evolutions and improvements. This policy is also an 
effective way to address outdated measures. This revision is theorically intended to be set every 5 
years. After a  fi rst late revision (only settled in 2004), the next revision should be conducted with, 
more or less, respect to the deadlines, since it is scheduled for 2010.  
   11   The advisory council of the Biomedicine Agency brings together experts in the  fi elds of science, 
medicine and human sciences, representatives of associations and various institutions, and mem-
bers of Parliament. It watches over the consistency of the Agency’s actions as well as the respect 
for statutory and ethical principles applicable to these activities.  
   12   Parliamentary Of fi ce for Scienti fi c and Technological Options, “Report on the evaluation of the 
appliance of the bioethics law of August 6, 2004”. Report No. 1325 (Assemblée Nationale) and 
No. 107 (Sénat), drafted by M. Alain CLAEYS and M. Jean-Sébastien VIALATTE. Available for 
consultation on:   http://www.senat.fr/rap/r08-107-1/r08-107-11.pdf     (text in French).  
   13   See:   http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_ fi nal.pdf     (text in French).  

http://www.senat.fr/rap/r08-107-1/r08-107-11.pdf
http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_final.pdf
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 The question of embryonic research continues to cause controversy: should we 
return to an absolute ban, as was the case when under the rule of the bioethical laws 
of July 29, 1994? Should we keep the current solution of compromise, namely a 
temporary opening? Or, should we proceed with a continued opening and give wider 
and/or consistent authorisation to embryonic research? 

  The Council of State     14  assessed authorized research results as well as the current 
body of knowledge regarding stem cell research and has declared itself in favour of 
embryonic research. It is the case that today’s embryonic stem cell research    and 
adult stem cell research    compliment each other; therefore, there is a real scienti fi c 
justi fi cation for pursuing stem cell research. 15  

 According to the Council of State, continuing temporary exemptions cannot be 
justi fi ed, as there is no reason to believe that embryonic research will no longer be 
of scienti fi c interest in years to come. The Council suggests dropping the blanket 
stem cell research ban by creating and implementing a permanent but strictly con-
trolled system of stem cell research authorisations. This would be a straightforward 
right of the Biomedicine Agency, but not a duty to deliver it. 16  

 This is equally the position of the Of fi ce for Evaluation of Scienti fi c and 
Technological Options, which is in favour of a supervised system of authorisation. 17  

 This issue of a new system of embryonic research is also raised by  the Biomedicine 
Agency    . The Agency encourages legislators to consider many points when discussing 
future laws relating to bioethics. In particular, there is the issue of nucleus transferral, the 
possibility of creating embryos for research or even the creation of biological resource 
centres allowing the preservation of embryos for research without a speci fi c aim. 18  

 In this respect, the Advisory Council 19  questions not only the requirement for 
‘major progress in treatment and cure’ in particular in the widening of its scope to 
‘scienti fi c and medical progress’, but also making the authorisation of research sub-
ject to there being an absence of effective alternatives, pointing to the issue of cells 
resulting from nucleus transfer as well as the need to resort to surplus embryos 
which have not been created for research. 20  

   14   See above, note 1.  
   15   See: Study of the Council of State – “The revision of bioethical laws”, p. 18.  
   16   For further developments, see: Study of the Council of State – “The revision of bioethical laws”, 
pp. 12–27.  
   17   See: Parliamentary Of fi ce for Scienti fi c and Technological Options, “Report on the evaluation of 
the appliance of the bioethics law of August 6, 2004”. Report No. 1325 (Assemblée Nationale) and 
No. 107 (Sénat), drafted by M. Alain CLAEYS and M. Jean-Sébastien VIALATTE, p. 193 
Available for consultation on:   http://www.senat.fr/rap/r08-107-1/r08-107-11.pdf     (text in French).  
   18   See: Biomedicine Agency Report, Application Report – Bioethics Law of August 6, 2004, Report 
to the Minister of Health, Youth, Sports and Associative Life, October 2008, pp. 58–80   http://www.
agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf     (text in French).  
   19   See above, note 8.  
   20   For all these questions, see: Advisory Council, Contribution of the Agence de la Biomédecine 
Orientation Council pertaining to the bioethics law revision preparatory debates . Lessons of expe-
rience (2005–2008) and Questionings, pp. 30–41   http://www.agence-biomedecine.fr/uploads/
document/bilanLB-partie3.pdf     (text in French).  

http://www.senat.fr/rap/r08-107-1/r08-107-11.pdf
http://www.agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf
http://www.agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf
http://www.agence-biomedecine.fr/uploads/document/bilanLB-partie3.pdf
http://www.agence-biomedecine.fr/uploads/document/bilanLB-partie3.pdf
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 In the end, the result of the  fi nal report 21  on  The General Estates on Bioethics     22  
is that it opens the door to criticize the need of a mere ‘therapeutic aim’ for embryo 
research and embryonic stem cell research. The report suggests that allowing 
research with therapeutic aims could justify the authorisation of research which 
might actually be unethical. 23  Furthermore, the term ‘therapeutic aim’    indicates 
simple potential consequences of a piece of research, whereas, by de fi nition, the 
research is already laden with uncertainties, including the nature of the knowledge 
it will bring to light. That being the case, just as the Advisory Council of the 
Biomedicine Agency recommends, it would be preferable to replace the term ‘thera-
peutic aim’ with ‘medical purpose’ or even ‘scienti fi c purpose’. 

 The French public has also wondered about the changes in the legal system sur-
rounding embryonic research and whether or not to maintain an automatic stem cell 
research ban accompanied by exemptions. 24  

 The  parliamentary proceedings  are expected to begin in the  fi rst half of 2010 
and it is very probable that a permanent and conditional authorisation will be the 
retained solution concerning embryo research and embryonic stem cell research.  

      Embryonic Stem Cell Research in Poland 

 The modi fi ed legislation of July 1, 2005 on tissue does not apply to embryonic cells. 25  
 The proceedings and debates are under way, however, with the upcoming rati fi cation 

of the Oviedo Convention. 26  This will also be an opportunity to reach a decision on the 
overall problems relating in particular to medically assisted reproduction, and with 
this, to legislate this point as well as embryo and embryonic stem cell research. For the 
time being, the legal framework for embryo and embryonic stem cell research must be 
analysed with regard to laws and regulations already in place.

   The absence of a clear legal solution in current laws and regulations    • 

   21   See:   http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_ fi nal.pdf     (text in French).  
   22   For this expression of opinion and the issues debated on this occasion, see: opinion No.105 of the 
National Consultative Committee on Ethics. Available for consultation on:   http://www.ccne-
ethique.fr/docs/avis105anglais.pdf     (text in English).  
   23   See: Final report of The General Estates on Bioethics, p. 29 Available for consultation on:   http://
www.etatsgenerauxdelabioethique.fr/uploads/rapport_ fi nal.pdf     (text in French).  
   24   See: Final report of The General Estates on Bioethics, pp. 31–32 Available for consultation on: 
  http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_ fi nal.pdf     (text in French).  
   25   This law was revised on July 17, 2009 to conform with the Directive 2004/23/EC of the European 
Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the 
donation, procurement, testing, processing, preservation, storage and distribution of human tissues 
and cells. 
 Available for consultation on:   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004
:102:0048:0058:EN:PDF      
   26   Council of Europe. Convention for the Protection of Human Rights and Dignity of the Human 
Being with regard to the Application of Biology and Medicine: Convention on Human Rights and 
Biomedicine. Oviedo, 4.IV.1997 Available for consultation on:   http://conventions.coe.int/Treaty/
en/Treaties/Html/164.htm      

http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_final.pdf
http://www.ccne-ethique.fr/docs/avis105anglais.pdf
http://www.ccne-ethique.fr/docs/avis105anglais.pdf
http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_final.pdf
http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_final.pdf
http://www.etatsgenerauxdelabioethique.fr/uploads/rapport_final.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:102:0048:0058:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:102:0048:0058:EN:PDF
http://conventions.coe.int/Treaty/en/Treaties/Html/164.htm
http://conventions.coe.int/Treaty/en/Treaties/Html/164.htm
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 Dignity, deserving of respect and legal protection, is a principle inscribed in 
Article 30 of the Polish Constitution, which furthermore guarantees the protection 
of each man’s life. 

 The Polish Republic also guarantees the protection of a child’s rights   . Thus, the 
law of January 6, 2000 has appointed an Advocate of Children’s Rights. Within this 
law, the child is de fi ned in Article 2.1 as: “a complete human being from its concep-
tion to its coming of age. 27 ” 

 The legislation of August 30, 1996 28  inserted a second point into its  fi rst article: 
in accordance with this law, ‘the right to life, including the antenatal phase, is subject 
to protection within the boundaries speci fi ed within the present law’, thus modify-
ing the law of January 7, 1993, relating to family planning, protection of the human 
foetus, and the conditions of admissibility for a pregnancy termination. 

 Moreover, it is because of the measures in this legislation that the Constitutional 
Tribunal had the opportunity to give a verdict on the matter of the dignity of the 
conceived child. This law, in fact, used to allow a pregnant woman, who found her-
self in dif fi cult living conditions or in a dif fi cult personal situation, to have recourse 
to a pregnancy termination. 

 In a judgement on May 27, 1997, 29  the Tribunal concluded that the Constitution 
was not in agreement with this clause. In fact, as far as it is concerned, the Constitution 
guarantees to protect human life throughout all stages of its development. 

 Meanwhile, in so far as the 1996 Law and the Tribunal’s decision only affect 
pregnancy termination and, as a result, the embryo  in utero , this raises questions as 
to whether or not the test-tube embryo    bene fi ts from the same protection and the 
same guarantees. 

 If the answer is assumed to be yes, test-tube embryos could be put in the same 
category as ‘the conceived child’, on which no scienti fi c research is possible (unless 
undertaken in its interest), in accordance with the 3rd point of Article 26 in Chapter 
4 of the law pertaining to the medical profession, relating to medical research. 

 Taking all these elements into consideration, there are two possible interpreta-
tions. The  fi rst is that combination of laws set forward would, in the absence of an 
exemption law, place an obstacle in the way of all human embryo research, even 
test-tube embryos. 30  On the other hand, a second interpretation could consider that 
the embryo is actually bene fi ting from a source of protection, which is not effective 
as long as there is no law to enforce it. 

 Consequently, since a law does not exist to regulate, surround, and, if need be, 
ban it, research on test-tube embryos and, therefore, on embryonic stem cells would 

   27   According to Article 10 of the Polish Civil Code, the age of majority is conferred to the minor 
subject either when the minor reaches the age of 18 or gets married before the age of 18.  
   28   Dz. U. 1996 r. nr 139, poz. 646.  
   29   See: Constitutional Tribunal See: Constitutional Tribunal, 27.05.1997,  sygn .  akt K 26 / 96  
(OTK 1997, nr 2, poz. 19) (text in Polish).  
   30   See in particular: A. ZOLL ‘Can we talk about a legal statute on stem cells?’ Gazeta Lekarska, 
No. 2005-02, Debata Available for consultation on:   http://www.gazetalekarska.pl/xml/nil/gazeta/
numery/n2005/n200502/n20050221     (text in Polish).  

http://www.gazetalekarska.pl/xml/nil/gazeta/numery/n2005/n200502/n20050221
http://www.gazetalekarska.pl/xml/nil/gazeta/numery/n2005/n200502/n20050221
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be possible. The two positions co-exist at the moment and only adopting a future 
law on Medically Assisted Reproduction will enable Poland to reach a  fi nal 
conclusion.

   Planned Legal solutions for the future law on Medically Assisted Reproduction       • 

 With the prospect of future legislation surrounding medically assisted reproduc-
tion six proposals 31  have been presented at Sejm, the Polish Chamber of Deputies to 
accompany the rati fi cation of the Oviedo Convention. 

 Two of these proposals recommend a de fi nite ban on all in vitro fertilisation   ; 
one was presented by the deputies from the presidential party, the PiS (‘Prawo 
I Sprawiedliwosc’ – ‘Law and Justice’), and the other was the public proposal by 
the Committee of Legislative Initiative 32  ‘Contra in Vitro’. It followed that all 
research carried out on embryos or on cells obtained from them would thus be 
banned. 

 On the contrary, two other proposals issued by the Prime Minister Donald Tusk’s 
party were in favour of the administration of in vitro fertilisation, the conditions of 
which would be more or less restrictive depending on the project in question. Deputy 
GOWIN’s proposal 33  suggests advocates for the banning of the preservation of sur-
plus embryos as well as banning their destruction. Deputy KIDAWA-BLONSKA’s 
proposal, on the other hand, accepts the cryogenic preservation of embryos and 
therefore the creation of surplus embryos. 

 However, the two proposals do have one point in common: by refusing to destroy 
embryos, 34  both of them make all cognitive projects, which are carried out using 
embryonic stem cells in particular, impossible to pursue. 

 A public proposal, following the initiative of the Federa Association (Federation 
for women and family planning), 35  advocates a wide opening for access to in vitro 
fertilisation. However, even though the proposal suggests that preserved gametes 
can be destroyed or used for research purposes when the person bene fi ting from this 
preservation makes such a request, such a possibility is not foreseen especially for 
embryos. 

   31   On September 15th, 2009, date when the present text was written (author’s note).  
   32   Article 118 of the Constitution grants the right to legislative initiative to citizens, as long as the 
law proposal comes from a group of 100,000 citizens able to vote in legislative elections.  
   33   Deputy GOWIN was named as head of the Bioethics Commission in 2007, in charge of the 
legislative proposal concerning the issues relating to in vitro fertilisation and supporting the 
rati fi cation of the Oviedo Convention. The text of the proposal was  fi xed on December 6th, 2008. 
It is available for consultation on:   http://ekai.pl/wydarzenia/x17354/co-dokladnie-mowi-projekt-
ustawy-gowina-caly-tekst-projektu/    (text in Polish).  
   34   For the KIDAWA-BLONSKA proposal, see:   http://www.platforma.org/pl/aktualnosci/newsy/
art1488,kidawa-blonska-o-projekcie-ustawy-regulujacej-zasady-korzystania-z-metody-in-vitro.
html     (text in Polish). 
 For the GOWIN proposal, see Article 6:   http://ekai.pl/wydarzenia/x17354/co-dokladnie-mowi-
projekt-ustawy-gowina-caly-tekst-projektu/    (text in Polish).  
   35   Available for consultation on:   http://www.federa.org.pl/Informacje/INF.pdf     (text in Polish).  

http://ekai.pl/wydarzenia/x17354/co-dokladnie-mowi-projekt-ustawy-gowina-caly-tekst-projektu/
http://ekai.pl/wydarzenia/x17354/co-dokladnie-mowi-projekt-ustawy-gowina-caly-tekst-projektu/
http://www.platforma.org/pl/aktualnosci/newsy/art1488,kidawa-blonska-o-projekcie-ustawy-regulujacej-zasady-korzystania-z-metody-in-vitro.html
http://www.platforma.org/pl/aktualnosci/newsy/art1488,kidawa-blonska-o-projekcie-ustawy-regulujacej-zasady-korzystania-z-metody-in-vitro.html
http://www.platforma.org/pl/aktualnosci/newsy/art1488,kidawa-blonska-o-projekcie-ustawy-regulujacej-zasady-korzystania-z-metody-in-vitro.html
http://ekai.pl/wydarzenia/x17354/co-dokladnie-mowi-projekt-ustawy-gowina-caly-tekst-projektu/
http://ekai.pl/wydarzenia/x17354/co-dokladnie-mowi-projekt-ustawy-gowina-caly-tekst-projektu/
http://www.federa.org.pl/Informacje/INF.pdf
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 Nevertheless, Article 46a of the proposal holds that anyone who, against the 
wishes of the gamete donors, destroys embryos which could have been able to 
develop normally should be given a maximum 3-year prison sentence. 

 Two possibilities should be considered. 
 If the embryos are likely to develop normally, then their destruction may be 

 carried out provided that it is the wish  of the donors. 
 If, on the other hand, the embryos are unlikely to develop normally, then their 

destruction can be carried out without the donor’s consent being necessary, or even 
in spite of the couple expressing their wish to the contrary. Consequently, embry-
onic stem cell research would be possible, despite the fact that it involves the 
destruction of embryos. It is worth noting that the proposal also makes provision for 
the banning of the creation of embryos for research, in accordance with the principle 
terms in the Oviedo Convention. 

 Unlike embryonic stem cell research, research on adult stem cells, a category 
which includes blood cells from the umbilical cord (also called placental blood 
cells), does not attract real controversy. Its importance is widely accepted and none 
of the three countries being studied are opposed to it.   

      Research on Adult Stem Cells    

  In France , the removal of tissue and cells as well as the harvest of human material 
from  living people  can be carried out for a scienti fi c purpose (Article L.1241-1 of 
the Public Health Code). However, haematopoietic stem cells from bone marrow 
can only be harvested for a therapeutic purpose, as opposed to those from peripheral 
blood which can be harvested for scienti fi c purposes. 

 The donor’s consent must be expressed in writing after he/she has been “duly 
informed of the purpose of the removal or harvest and of the associated conse-
quences and risks.” (Article L. 1241-1 of the Public Health Code). 

 In certain cases, “when the nature of the removal and its consequences to the 
donor so justify” (article L. 1241-1 alinéa 2  in  fi ne ), rules relating to the donation of 
organs apply (Article L. 1231-1): the person will only give his or her consent after 
having been informed by the expert committee that the law makes provision for and 
before the presiding judge of the County Court or his representative or, in the case 
of extreme emergency, before the State Prosecutor. 

 Finally, neither tissue or cell removal nor the harvest of human material    can be 
carried out on a minor or an adult who is under legal protection (for example, under 
supervision.) 

 ‘Operating remains’, in other words the organs, tissue, cells and human material 
which have been removed during a surgical operation, can be used for research 
purposes, as long as the person does not object (Articles L. 1235-2 and L. 1245-2). 

 Removal for scienti fi c purposes can also be carried out on  the deceased  (Article 
L. 1232-1). 

 For this to happen, the donor must not have expressed his or her refusal while 
alive, which must be listed in the National Register of non-donors   . 
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 However, in the case where the deceased person’s wishes have not been expressed, 
the doctor must do his or her utmost to obtain from the next of kin the deceased 
person’s possible opposition to organ donation expressed when alive and inform 
them of the intended purpose of the removal. 

 When the deceased is a minor or an adult under guardianship, the removal can 
only take place on condition that each of the holders of parental rights or the guardian 
gives written consent. However, if it is impossible to consult one of the holders of 
parental rights, the removal can take place on condition that the other holder gives 
written consent (Article L. 1232-2). 

 Removal for scienti fi c purposes can only be carried out within the framework of 
agreements forwarded beforehand to the Biomedicine Agency (Article L. 1232-3). 

 The Agency must be noti fi ed of the removal before it is carried out (Article 
L.1232-1  fi nal paragraph). 

 Lastly, “the minister in charge of research may suspend or prohibit the imple-
mentation of these agreements when the need for the removal or the relevance of the 
research has not been established.” (Article L.1232-3). 

 Finally, it can be pointed out that Article L. 1211-2 of the Public Health Code    
provides the possibility of carrying out research on elements which have been 
removed for a given purpose (therapeutic or scienti fi c), but to which a new aim can 
be assigned. French legislation makes provision for and allows these premises where 
“a change of purpose” is made. Only the person’s lack of opposition is required 
then, after he or she has been informed of this other purpose. However, in accor-
dance with this law, “it can be exempt from the obligation to inform if it proves 
impossible to  fi nd the person concerned again, or when one of the advisory commit-
tees for the protection of people mentioned in Article L. 1123-1, consulted by the 
person in charge of the research, does not deem this information necessary. these 
exemptions are not permitted, however, when the elements initially removed consist 
of tissue or germinal cells. In the case of the latter, any use other than the purpose 
for which it was initially removed, is prohibited in the event of the death of the per-
son concerned.” 

  In Poland , the removal of organs, tissue and cells is governed by the law of July 
1st, 2005, modi fi ed by the law of July 17th, 2009. 

 Removal for scienti fi c purposes can be carried out on  deceased people . It is 
surprising to note that the conditions relating to the expression of wishes are only 
formally provided for in the premise of removal with a view to transplant. This over-
sight, moreover, was not corrected when the intervening law was modi fi ed on July 
17th. 2009. Can we conclude from that that it is not necessary to seek the person’s 
wishes? That strikes us as being contrary to the spirit of the law; we also think that 
the person’s wishes must be sought whatever the purpose of the removal. 

 In accordance with Article 5 of the law, refusal must in fact be expressed while 
the person is alive and noted down in the Register of Non-Donors   . 

 On the other hand, no provision has been made regarding removal of tissue and 
cells for scienti fi c purposes from  a living person . 

 It will be advisable then to consult common law rules which could be applied to 
the protection of the integrity of the human body. 
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 Attacks on physical integrity receive penalties, which Articles 148–162 of the 
penal code 36  make provision for. 

 However, in accordance with Article 27 of the penal code, “a person is not com-
mitting an offence if he or she intends to carry out a piece of cognitive research (…), 
if the expected bene fi t is of essential cognitive, medical or economic importance, 
and if the hopes linked to the obtainment (the obtainment of the bene fi t), as well as 
the purpose and the way the research is conducted, are justi fi ed in the eyes of pres-
ent medical knowledge.” 

 What is more, the person’s informed consent must be obtained: he or she must be 
informed beforehand of the expected bene fi ts and the risks incurred, as well as the 
possibility of them occurring, and also that he or she can stop participating in the 
research at any time. 

  In Germany , a speci fi c federal law relating to adult stem cell research does not 
exist; in fact, the law concerning stem cells only pertains to embryonic cells. 

 Therefore, it is necessary to look for possible rules controlling this type of 
research in the constitutional principles and general laws. 

 The freedom of research and of the profession of researcher is limited by the 
constitutional principle of the dignity of the human being and a person’s right to 
self-determination. The latter results in as many constitutional principles (the right 
to life and physical integrity, the general right of the individual) as in common law, 
which prohibits attacks on a person’s physical integrity without his or her informed 
consent. 37  

 This principle of self-determination expresses itself therefore in  the requirement 
of an informed consent , prior to all removal of stem cells, whatever their nature and 
origin.    

    45.1.2   Regenerative Medicine and Applied Research 

 The use of adult stem cells in the context of research on human subjects implies that 
autologous or allogenic cellular products, which can sometimes be genuine patent 
medicines for which an authorisation will have to be requested to be put on the 
market, may be administered directly to a person. 

  In France , all research carried out on a person, whether or not it concerns health 
products, is subjected to a one single set of measures. 

   36   See Chapter XIX “Offences against life and health” of the Penal Code. 
 Available for consultation on:   http://prawo.money.pl/akty-prawne/ujednolicone-akty-prawne/
kodeksy/kodeks;karny;z;dnia;6;czerwca;1997;r;,1997,88,553,DU,410.html     (text in Polish).  
   37   This requirement of collecting the informed consent can however be quali fi ed when the research 
is intended on samples already in existence. As the German National Ethics Council speci fi es, the 
absence of the collection of further consent may, in certain cases, not constitute an illegal attack on 
the general right of the individual. It is mainly to do with premises where samples have been made 
anonymous. See the opinion “Biobanks for research” of the German National Ethics council:   http://
www.ethikrat.net/_english/publications/Opinion_Biobanks-for-research.pdf     (text in English).  

http://prawo.money.pl/akty-prawne/ujednolicone-akty-prawne/kodeksy/kodeks;karny;z;dnia;6;czerwca;1997;r;,1997,88,553,DU,410.html
http://prawo.money.pl/akty-prawne/ujednolicone-akty-prawne/kodeksy/kodeks;karny;z;dnia;6;czerwca;1997;r;,1997,88,553,DU,410.html
http://www.ethikrat.net/_english/publications/Opinion_Biobanks-for-research.pdf
http://www.ethikrat.net/_english/publications/Opinion_Biobanks-for-research.pdf
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 The rules surrounding this “biomedical” research appear in Articles L. 1121-1 
and the those following of the Public Health Code   . 38  These measures issue from the 
law No. 2004-806 of August 9th, 2004, which completely revised the modi fi ed law 
of December 20th, 1988 39  and was the opportunity to transpose the 2001/43/CE 
directive relating to clinical drugs trials. 

 All clinical research using adult stem cells are therefore subject to these 
measures. 

 In order for this to be implemented, the research protocol must also obtain the 
approval of the Committee on the protection of persons (Article L. 1123-7 of the 
Public Health Code) as well as the authorisation of the French Agency for the 
Security of Health Products (Afssaps) 40  (Articles L. 1123-8 and L. 1123-13). 

 Speci fi c measures relating to clinical trials    using embryonic stem cells do not 
exist. In the premise where a certain protocol had just been established, general 
rules such as the ones mentioned above would therefore be applied. However, in its 
report on the application of bioethical legislation, 41  the Biomedicine Agency makes 
it clear that after consultations with the agencies and the Ministry of Health, the 
obligation to take note of the advice of the ABM on research using differentiated 
cells made from human embryonic stem cells 42  has been proposed and could be 
con fi rmed during the future revision of the bioethical laws. 

  In Poland , research carried out on a human subject is governed by Chapter 4 of 
the Law pertaining to the medical and dentistry professions. 43  

 So that the protocol can be implemented, the opinion of a Bioethical Commission 
is necessary, which expresses an opinion in the respect of the legal and ethical con-
ditions of research. If it does not give its approval or it does subject to modi fi cations, 
the promoter can submit his or her protocol to a Bioethical Commission of Appeal   , 44  
close to the Ministry of Health. An authorisation must also be granted by the Health 
Minister. 

 There is, however, a peculiarity relating to research concerning cell preparations. 
Put into the same category as pharmaceutical products, they are governed both by 
general measures relating to research on human subjects and also by the measures 

   38   See:   http://www.legifrance.gouv.fr/af fi chCode.do?idArticle=LEGIARTI000006685827&idSect
ionTA=LEGISCTA000006170998&cidTexte=LEGITEXT000006072665&dateTexte=20090818      
   39   Law No. 88-1138 of December 20th, 1988, known as “the Huriet-Sérusclat law” relating to the 
protection of persons who participate in biomedical research, Of fi cial Journal of the French 
Republic (JORF), December 22, 1988.  
   40   The French Agency for the Security of Health Products is in charge of a general task of evaluat-
ing the risks and bene fi ts of health products. See:   www.afssaps.fr      
   41   The report is available for consultation on:   http://www.agence-biomedecine.fr/uploads/docu-
ment/rapport-bilan-LB-oct2008.pdf      
   42   See: Biomedicine Agency Report, Application Report – Bioethics Law of August 6, 2004, Report 
to the Minister of Health, Youth, Sports and Associative Life, October 2008, p. 77   http://www.
agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf     (text in French).  
   43     http://www.mp.pl/prawo/index.php?aid=40167     (text in Polish).  
   44     http://www.kb.mz.gov.pl/index_en.html     (text in Polish).  

http://www.legifrance.gouv.fr/affichCode.do?idArticle=LEGIARTI000006685827&idSectionTA=LEGISCTA000006170998&cidTexte=LEGITEXT000006072665&dateTexte=20090818
http://www.legifrance.gouv.fr/affichCode.do?idArticle=LEGIARTI000006685827&idSectionTA=LEGISCTA000006170998&cidTexte=LEGITEXT000006072665&dateTexte=20090818
http://www.afssaps.fr
http://www.agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf
http://www.agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf
http://www.agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf
http://www.agence-biomedecine.fr/uploads/document/rapport-bilan-LB-oct2008.pdf
http://www.mp.pl/prawo/index.php?aid=40167
http://www.kb.mz.gov.pl/index_en.html
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in Chapter 2 of the law “Pharmaceutical Law   ”, 45  which sets out the conditions relating 
to the carrying out of clinical trials on health products. 

 The rules relating to research on human subjects are not the subject of general 
federal legislation  in Germany . On the other hand, research in certain types of activi-
ties or on certain products have been the subject of federal laws, such as, for example, 
the German Drug Act or also the Medical Products Act. 46  

 As regards medicine, the jurisdiction to legislate on these points is shared with the 
Lander, which have, moreover, sole jurisdiction to establish the standards relating to 
the medical professions. 

 Therefore, in the absence of a speci fi c federal law, measures can be found relat-
ing to biomedical research within the professional codes which, although estab-
lished by professional orders, have legal strength. 47  

 They contain, as is usually the case, the requirement for an informed consent 
from the person participating in the research, in accordance with the constitutional 
principles of dignity and self-determination, but also the need to submit the research 
protocol for the opinion of an ethical committee. 

 When the research is concerned with cellular products, it is, as in Poland, put into 
the same category as research on pharmaceutical products 48  and from then on, sub-
ject to one of the speci fi c federal laws, the German Drug Act    49  ,  50  whose measures 
relating to clinical trials transpose the 2001/20/CE directive of April 4th, 2001. 

 The German Drug Act de fi nes thus the conditions for the implementation of 
clinical trials in Chapter 6, entitled “Protection of human subjects in clinical 
trials”. 

 The opinion of an Ethical Committee (the Committee of the investigator’s Land 
or, in the case of multi-centric research, that of the main investigator’s Land) must 
be sought and the authorisation of the authority concerned, the Paul Ehrlich 
Institute, 51  must be obtained.  

   45     http://www.mp.pl/prawo/index.php?aid=13358     (text in Polish).  
   46     http://bundesrecht.juris.de/bundesrecht/mpg/gesamt.pdf     (text in German).  
   47   Just as Professor TAUPITZ mentions, a model of the professional code has been drawn up by the 
Federal Order of Doctors. It can therefore provide inspiration to the Lander in the drawing up of 
their own measures for professional codes. So, for example, Article 15 of the code model features 
the obligation to seek the opinion of an Ethics Committee before all research on a human subject. 
See: Jochen TAUPITZ, “Germany: current legislation” in Biomedical Research, Council of Europe 
publ., 2004, pp. 107–120  
   48   They are speci fi cally excluded from the  fi eld of application of the Medicinal products Act, Chap. 
1, §2, pt. 5. See:   http://bundesrecht.juris.de/bundesrecht/mpg/gesamt.pdf     (text in German).  
   49   On this point, see: SCHLENKE, TAPERNON et al., “The impact of the german tissue act on the 
manufacturing of autologous and allogeneic stem cell preparations”, Transfus Med Hermother 
2008;35:446–452.  
   50   See the English version of the German Drug Law:   http://www.bmg.bund.de/cln_110/nn_1200354/
SharedDocs/Downloads/EN/health/AMG-pdf,templateId=raw,property=publicationFile.pdf/
AMG-pdf.pdf      
   51   See:   http://www.pei.de/cln_109/nn_162554/EN/home/node-en.html?__nnn=true      

http://www.mp.pl/prawo/index.php?aid=13358
http://bundesrecht.juris.de/bundesrecht/mpg/gesamt.pdf
http://bundesrecht.juris.de/bundesrecht/mpg/gesamt.pdf
http://www.bmg.bund.de/cln_110/nn_1200354/SharedDocs/Downloads/EN/health/AMG-pdf,templateId=raw,property=publicationFile.pdf/AMG-pdf.pdf
http://www.bmg.bund.de/cln_110/nn_1200354/SharedDocs/Downloads/EN/health/AMG-pdf,templateId=raw,property=publicationFile.pdf/AMG-pdf.pdf
http://www.bmg.bund.de/cln_110/nn_1200354/SharedDocs/Downloads/EN/health/AMG-pdf,templateId=raw,property=publicationFile.pdf/AMG-pdf.pdf
http://www.pei.de/cln_109/nn_162554/EN/home/node-en.html?__nnn=true


118745 Ethics and Law in Regenerative Medicine…

    45.1.3   Conclusion 

 Adult stem cell research, which the three countries studied agree is acceptable, is 
the area which shows the most similarities in the basic rules which surround it. It is 
hardly surprising and quite the norm in fact, to  fi nd two main legal –or rather, legal 
and ethical requirements: the respect for the requirement of informed consent and 
the need to seek the opinion of an ethical committee in the case of research on a 
human subject. 

 The questioning and hesitation surrounding the acceptability of embryonic stem 
cell research, the need for an ethical backing for its implementation, are them-
selves, without doubt, the most revealing of the close links between the law and the 
code of ethics.   

    45.2   Ethics Part 

    45.2.1   The Relations Between Ethics    and Law 

 Although it cannot be the purpose of this article to provide a complete general 
outline on the nature of ethics, respective certain points have to be mentioned to 
regiment the importance of ethics into the current structure of the  ethical - legal 
systems  in Europe. 

 Generally, ethical guidelines seem to have a heterogeneous character. 
 The purpose of ethical guidelines    is to provide concrete rules supporting and 

conducting respective decision making processes within a problem area and –  en 
passent  – already to represent a preliminary strategic policy regarding respective 
ethical discussions. The target group(s) of a guideline can vary immensely, as well 
as its impact. 

 Nevertheless – based on its nature -there is not even one ethical guideline that 
does not appear as a general binding declaration on its respective subject. 

 However, ethical guidelines are no instructions how to act in single cases, but just 
the middle-step of managing ethical problems – between existing law and concrete 
rules of action. 

 Main critics on European Ethics settings providing ethical guidelines – in what 
form ever – have to be formulated. 

 First of all, it appears that it has become not just fashionable to establish compli-
ant ethics committees and commissions by governments, but that this fashion indi-
cates the debatable political standing and importance of the “producers” of ethical 
guidelines. In this regard Krippner  (  2004  )  sees speci fi c dangers connected: “Therefore, 
it may appear hardly odd to see the rising danger of a spreading “Expertocracy” or 
– a little malicious – to talk about the Renaissance of a “Soviet Republic”.” 52  

   52   Krippner  (  2004  ) , p. 239; translation from German to English by G. Becker.  



1188 G. Becker and A. Grabinski

 Ethics in organised and often administrative form has developed a political standing 
that provokes criticism on several levels. Here and now, we only would like to men-
tion the point that especially National Ethics Committees pretend representing the 
“nation’s moral pro fi le”. It is questionable if it is at all possible to establish a 
Committee ful fi lling this claim, but it is even more doubtful when such a Committee 
is established by political organs – and so the questions regarding the independence 
and whether such a Committee could be used as a “political toy” have to be raised. 

 Non-academic ethics    is usually an ongoing evolutionary societal process and not 
a political action. To “extract” representatives from this process is at least a task that 
shall not be in the hands of politics. Nevertheless, the aim to organise ethics coun-
cils, giving a kind of bioethical outline is meritorious – against the background of a 
certain urgency to deal with bioethics. 

 Written statements of such committees are meant to be ethical guidelines for 
certain topics with – at least – national width. 

 The procedural connections between ethical guidelines    and law    making pro-
cesses are in no case transparent. The concrete in fl uence of guidelines being trans-
formed to laws and regulations is unknown. However, using the example of the 
establishment of the German Stem Cell Act, it becomes clear that  fi nally political 
thoughts, constitutional tactics, private attitudes and economic interests could pre-
vail over pure ethical evaluations – and – that  fi nally respective ethics committees 
and commissions ful fi l – often unintended – a political role. 53  

 Ethical guidelines rarely prove impact on rules of action – in default of rules of 
action! 54  Rarely, ethical guidelines reach the facilities facing exactly the ethical 
problems the guideline deals with. Too often, they are acknowledged somehow, but 
keep abstract and disconnected or will be considered in administrative ways – form 
papers to  fi ll out; however, the value oriented procedure of ethics commissions at 
work, resulting in ethical guidelines gets lost when they are transferred to law or to 
action rules. Furthermore, it must be said that biomedical institutions    have a stronger 
interest in actions and results itself but acknowledging, developing and establishing 
concrete rules of action. 55  

   53   The question of the political state of ethical guidelines in many European States is  de facto  decided: 
the National Ethics committees, established – by what legitimation in this regard ever – by politics 
“furnishes politics a  fi t ethical occasion” by the ethical guidelines they prepare. It keeps debatable for 
pluralistic societies to disregard completely federal ideas of concrete ethics models, as e.g. repre-
sented by the Polish group for bioethics in Life Sciences: this pluralistic model follows the idea that 
the current top-to-bottom- model shall be replaced by a bottom-up model, in which Scienti fi c institu-
tions develop their own guidelines AND action rules – covered only by established law.  
   54   In a way it is amazing that although bioethics has improved its importance in Europe over the last 
decade, “action rules” in form of “rules of conduct” in labs, sickrooms etc. have not been estab-
lished. Bioethics has not reached (yet) the units where concrete work is done.  
   55   Possible reasons for that kind of ignorance can be found in archaic self-images, in which Science 
itself has got an ethics  status  so developed that a concrete formulation on the “dos and don’ts” 
simply appears not necessary; another reason is the disability of Science and its representatives to 
deal concretely with that meta-level of Science without counsel – and in Europe there are not too 
many bioethics consultants with the ability helping implementation of concrete bioethics rules 
within Science.  
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 It is in the nature of ethical guidelines that they often keep below – but never 
extravagate – the limits of existing law. Ethical guidelines use the leeway connected 
laws and regulations provide, and –  vice versa  – ethical guidelines, as moral work-
outs of normative character, in fl uence law makers preparing laws. This way ethics 
develops political in fl uence, although – as mentioned – it keeps absolutely unclear 
how this process works in details. 56  The correlation between ethics and law and the 
meaning of ethical guidelines within law-making processes neither follows  fi xed 
rules nor is the setting of involved parties determined. The question whether either 
level of ethics have any in fl uence on law-making as a political process has –  fi nally 
even – to be kept open. However, we claim that developing laws in pluralistic societ-
ies is always based on the consideration of respective ethics – here meant in a 
special way: 

 Ethics shall be the purposeful formulation of the current societal standing of 
moral attitudes of the respective society under consideration of the constitutional 
values of society. It is more but a moral “snapshot in time” or an ethical “cross-
section” of ruling moral attitudes within a society   : 

 For the  fi nal purpose of formulating a law, it considers the “moral pillars 57 ” of 
society, formulated in the constitution. 58  

 Based on that model of ethics, it is understandable that, e.g. the establishment of 
a modern abortion law in Germany, has become possible in the 1970, when it had 
been impossible in decades before; the ethical main stream in society does not only 
underlie evolutions, but also creates calls for action. 

 Furthermore, in reference to the German Stem Cell Act, as well as in reference 
to the German Abortion law, it is understandable that the formulation of both laws 
appear to be odd for non-lawyers. The consideration of the constitutional sacrosanct 
protection of life in principle has made it necessary in either case to use formula-
tions – appearing as circumlocutions – explaining indirectly and in “bowed” ways 
the conformity with the constitution. 59  

   56   Finally, law makers in parliaments raise their hand pro or contra a law suggestion – what  fi nally 
has moved them to vote in this or that way keeps their secret. However, hopefully they all have 
re fl ected ethically the law they vote on!  
   57   Certainly, this is the “perfect case”; however, legal, political and tactical-political aspects are 
usually involved, too.  
   58   In this context the motive of “eternal recurrence” is the question how to build up laws in a 
pluralistic society at all. The practical answer usually given is the hint to the formulas of basic 
rights  fi xed in the constitution. Such a “check-up” in practice can be extremely dif fi cult when a 
problem touches from all possible sites different basic rights at the same time or when it touches 
ideas beyond law; the debates about the Stem Cell Act in Germany was such a case: apart from 
the right of “physical integrity” and “dignity of man”, also the question of the beginning of 
Human life was relevant.  
   59   The same is valid for example in German Medical Law. The circumlocution in this case is that a 
syringe given by a medic is an “assented personal injury” without criminal sanction or prosecution. 
This formulation has been necessary for the constitution includes the physical integrity (Grundgesetz 
Article 2), but syringing in the frame of medical treatment makes perfectly sense, too. So, the 
law-makers had to combine both circumstances in a formulation appearing slightly odd.  
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 The described comprehension of ethics in practice counters de fi nitions of ethics 
as discipline of Philosophy. Rules valid in Philosophy have no validity in the 
described setting. e.g. “ David Hume ’ s guillotine ” and “ George Moore ’ s naturalistic 
fallacy ”, each describing on different levels the failure of logic methodology in 
philosophical ethics   , regarding extrapolating the Good from described entities. 

 In Ethics in practice as described above, it is not only the case that  Moore ’s and 
 Hume ’s rules regarding ethics being independent from actual progression of Science 
have no validity; in Practical Ethics    it is even the case that ethical evaluations  have  
to be based on real existing circumstances and on facts, provided by Science   . 60  

 In regard of Stem Cell Research, the possible fact that only  so - called embryonic 
stem cells  61  lead to concrete therapies is a strong and considerable argument sup-
porting endeavours to justify morally Embryonic Stem Cell research. 62  

 The involvement of Theology in ethics committees and commissions, preparing 
ethical guidelines for scienti fi c work bears problematic aspects on different levels. 63  
Brie fl y, the problems core lies in the question why church    representatives shall be 
preferred to representatives of other societal groups when it comes to questions of 
Science    and ethics. 

 However, a comparable bigger problem of the general setting of ethics commit-
tees is the kind of participation of law in ethics commissions, especially – like in 
Germany’s Central Ethics Commission for Stem Cell Research – when the lawful-
ness of a research project has to be evaluated in addition to ethical aspects. Usually, 
like in the mentioned commission, a legal opinion by a specialist is essential for 
 fi nalising the process of evaluation of the ethics commission. 

 Also on this level the question of the relation between ethics and law keeps still 
open.  Erwin Deutsch  formulates it this way: “The Ethics Commission ranks as an 
“Instance of Problematisation”. Therefore, in dif fi cult cases it appears recommend-
able that the commission bases its counsel on a legal opinion. One cannot hold against 
it that the legal opinion makes the work of the Ethics Commission    redundant. Law    

   60   This way it may be understandable that we call it debatable to involve ethicists from Philosophy 
in Ethics leading to concrete rules, regulation and laws. The aims of Philosophy, delivering a pur-
poseless general outline of ethics is only in restricted ways compatible with the concrete goals of 
establishing rules. The consideration of e.g. Hume’s and Moore’s rules is – without any doubts” a 
“must” on the philosophical level of ethics, but contra productive and quixotic when it comes to 
societal relevance of real existing ethics, as a grown and developing societal phenomenon.  
   61   Keller  (  2009  )  points out the debatable distinction of the distinctive terms “embryonic -” and 
“adult stem cells” against the background that these terms are not describing exactly “the source of 
withdrawal” in a biological and medical sense.  
   62   Furthermore, it has to be said that there are certain indications that on a societal level the question 
whether it is morally justi fi ed to destroy Human Life in early stage for the bene fi t of sick people 
has found a clear positive answer. If it comes to the point that Embryonic Stem Cell research leads 
to life-saving therapies – becoming describable fact – societies may decide clearly for them, rep-
resenting the ethical evaluation that these life-saving therapies have higher moral value but Human 
early-stage-life. This way, in real life, facts determine ethical evaluations, whereas the author dis-
agrees on a moral level in the described case!  
   63   The metaphysical argumentation of Theology might be incompatible in discussions of practical 
ethics. Furthermore, the point of secularisation is an open question in this context.  
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only represents the ethical minimum. Even a lawfulness research project can meet 
ethical concerns.” 64     

  Deutsch ’s phrasing that law only represents the ethical minimum hits the nail just 
half on its head – the ethical content of law is a “derivate” of the moral adjustment 
of the state under consideration of the current ethical status of society and the basic 
moral adjustment of the State expressed in the Constitution – and due to this con-
text, law enjoys a lower “ethical concentration” than a pure ethical statement. 
However, disregarding this part of the nature of law, the meaning of law in the 
described context of an ethics commission cannot be overestimated: law builds the 
decision and working frame of an ethics commission. It is excluded that ethics com-
missions give counsel beyond existing law. 

 We  fi nd it an often disregarded aspect of ethics commissions that doing their 
work they are moving solely on legal ground: an ethics commission in the given 
frame is the exponent of law, meanwhile both – law and ethics – are either rooted in 
the ground of morality. 

 Nevertheless, this legal-bond of ethics commissions raises from one side the 
question of the independence of such a commission. From the one side the work of 
the ethics commission is framed by law, but we think that this does not speak against 
the idea of independence of ethics commissions in the way it is formulated in the 
“ Hong - Kong revision ” of the  Helsinki Declaration    . There it is described as “a spe-
cially appointed ethical review committee, which must be independent of the inves-
tigator, the sponsor or any other kind of undue in fl uence”. 

 Especially regarding ethical questions modern Sciences    bring up, ethics com-
missions cannot afford working independently and unattached to law. Modern 
Sciences often touch aspects that enjoy constitutional protection. Therefore, the 
state has got a special interest in establishing ethics commissions and, we claim so, 
even a duty to take care for their establishment. 65  

 In the following chapters we will give an outline on the respective situations of 
ethics committees in France, Germany and Poland. 

 Summarising, we already can mention that in these countries ethics is organised 
by politics. 66   

    45.2.2   The Situation of Ethics Commissions in Poland 

 In Poland no of fi cial national ethics commission has been established yet. The 
Commission of Bioethics at the Medical Faculty of the University of Wroclaw is 

   64   Deutsch (2006), p. 631.  
   65   How far it is justi fi able that a government or a ministry and NOT the parliament establishes ethics 
commissions, as it is the case in Germany referring the Central Ethics Commission for Stem Cell 
Research has to be released for further discussions!  
   66   This is not a natural given fact. Over the years, inter alia the Polish Group for Bio-Ethics in Life 
Sciences has tried to convince Science to build up ethics unit as a “voluntary self-monitoring” to 
prevent a political takeover of bioethics as such; until now in vain…  
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mentioned in several lists of National Ethics Commissions, although of fi cially it 
does not have this status. 

 Although in 2007 nominations for a National Ethics commission consisting of 
scientists, philosophers and priests were already sent to the candidates by the Polish 
government, an inaugural session has not taken place yet. 

 In Poland there are several ethics commissions, like the Advisory Council on 
Ethics in Research at the Ministry of Science and Information Technology, the 
Committee at the Presidium of the Polish Academy of Science, called “Ethics in 
Science”, the Bioethics Appeal Committee at the Ministry of Health. Additionally, 
there are about 50 local research ethics committees and “Ad hoc committees”, e.g. 
Stem cell research ethics committee at the President of the Polish Academy of 
Science. 67  

 In April 2008, the Tusk administration has established the “Team for Biomedical 
Convention   ”, consisting of well-known personalities from biomedical Science, 
Law, Catholic Theology and Philosophy; the ratio between these three groups keeps 
in equilibrium. 68  

 Although, the task of this “Team” is the “analysis of the legal status in the  fi eld 
covered by the Biomedical Convention” 69  it has to be mentioned here. This “team” 
may develop importance referring national bioethics decisions (also connected with 
Regenerative Medicine) against the background of a missing National Ethics 
Commission. 

 It is probable that the “team’s” decisions on legal regulation will anticipate ethi-
cal debates – not taking place yet. In this regard it can be claimed that the estab-
lished “team” will take over tasks and will take decisions a National Ethics 
Commission shall be responsible for. 

 This way, sophisticatedly, the “team” seems to be a political instrument of the 
Tusk administration and is an evasion of the political dif fi culties connected with the 
establishment of a National Ethics Commission. 

 At the inaugural meeting of the “team for Biomedical Convention” Prime 
Minister Tusk stated truly in reference to legal backlogs in the  fi eld of legal deci-
sions in their ethical and substantial aspects: “In this respect we are far behind the 
European Union member states.” 70  

 A second remarkable statement Prime Minister Tusk has made at the same occa-
sion referring the political dimension of this group: “I hope that political interests 
will not disturb the intellectual and ethical dimension of this debate.” 71  

   67   See also Szwarski (2004); the impact and tasks of the Ad-hoc commissions keep unclear. 
Generally, the state of sources referring ethics commissions and/or Regenerative Medicine are not 
satisfying. Statements and publications on of fi cially planned actions referring law and ethics of 
Regenerative Medicine con fi ne themselves on generalities or press statements without of fi cial 
character.  
   68   See   http://www.kprm.gov.pl/s.php?id = 1273    , Accessed 2009-07-27.  
   69   Loco citato.  
   70   L.c.  
   71   L.c.  

http://www.kprm.gov.pl/s.php?id<2009>=<2009>1273
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 Considering the fact that this “team” has been established by he Polish government 
and taking into account that the issues that group is dealing with  are  highly political 
by its nature, Tusk’s statement has to be called at least “surprising”. 

 Bioethics   , especially in regards of Regenerative Medicine in Poland is a topic as 
political as in any other EU-state – and even more. The political and in fl uential role 
of the Roman Catholic Church    in this regard cannot be overestimated in terms of 
in fl uence on bioethical leading arguments and respective political decisions on 
national level. Therefore, it keeps an open question if a Polish National Ethics 
Commission can disregard Church interests without causing political struggles of 
large dimension. 

 Analyzing inter-alia the question why there is no National Ethics Commission in 
Poland,  Szawarski  describes Poland superbly this way: “Poland is predominantly a cath-
olic country. For someone who has known “the moral truth” there is no need for discus-
sion and moral compromise. It is known a priori that e.g. some reproductive activities 
are morally wrong and stem cell research should never be morally approved”. 72  

 Considering the importance of “Catholic positions” in Poland, the Tusk admin-
istration has made a smart tactical move in establishing the chairman of the above 
mentioned “team” with Jaroslaw Gowin. Gowin is member of the governing party 
 and  president of the  Tischner European University , named after and dedicated to 
his friend and mentor, the late  Józef Tischner , a famous liberal Catholic priest and 
signi fi cant philosopher, still very much venerated in Polish public. 

 Evaluated politically, the person of Gowin seems to represent in a uni fi ed way 
both, party positions and catholic interests. This way, in bioethics Gowin is a pre-
cious tactial personnel and provides valuable political leeway for the government, 
probably not been given in case of another s. 

 We have mentioned these facts on the “team for Bioethics convention” and the 
connected circumstance so exhaustingly for it shows a basic and general aspect of 
any of fi cial ethical work in Poland: the “church factor” has to be at least considered 
when of fi cial steps in bioethics are done. Especially in connection with Regenerative 
Medicine, in Poland statements (given or being missed) from politics and academia 
often can be characterized as “preemptive obedience” to church positions, better not 
to get in con fl ict with. 73  

 All hopes for open discussions on ethics of Regenerative Medicine are pinned on 
enlightened representatives of Biomedical Science in Poland – although the political 
weight of Science – in European comparison – in Poland has to be called weak – yet. 

   72   Szawarski  (  2004  ) .  
   73   Just within the last few years, we have observed that members of the Scienti fi c community have 
been daring advocating ethical positions in opposition to church positions. Too, it has to be men-
tioned that recently provocations, also in bioethical sense, of the politician Mr. Palikot, have 
brought in the sequel a more open discussion e.g. regarding in-vitro-fertilisation and other also 
bioethical topics. A new term in Poland for unusual and provoking statements is named after him: 
“ palikotyzacja ”, it keeps an open question whether “palikotyzacja” can help establishing an open 
discussion generally on ethical aspects of Regenerative Medicine – we do not wish to exclude this 
possibility here and now.  
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 Nevertheless,  fi rst of all, in a European frame Polish biomedical Science    has got 
quite a comparable quality level and Regenerative Medicine is an interesting topic 
for Polish Scientists. Secondly, Science in Poland enjoys traditionally the privilege 
of freedom and independence, and thirdly there are certain versatile hints that Polish 
Science insists more and more on its charted right of freedom of Science and its 
connected ethical responsibility coming along with that freedom. 

 The transition of bioethical debates to administrative and political levels and 
the establishment of a working National Bioethics commissions as units of 
counsel and check-ups – like in France or German – can hardly be expected 
within the decade. In Poland, Regenerative Medicine is a topic of Science and 
the political relevant public opinion on it keeps distance to connected goals and 
hopes of Regenerative Medicine. A reason to be mentioned for that is also the 
comparably low rate of available information to public on bioethics and 
Regenerative Medicine. Therefore, the political class will be extremely cautious 
dealing with this and other related topics, and an establishment of more or less 
powerful bioethical commissions like in France and Germany is as improbable 
as the development of respective liberal laws and liberal regulations for 
Regenerative Medicine.  

    45.2.3   The Situation of Ethics Commissions in Germany 

 In Germany in 2001 the Schröder administration has established the National Ethics 
Council (Nationaler Ethikrat), changed in 2008 to the German Ethics Council 
(Deutscher Ethikrat). This unit has been the German version of a National Bioethics 
Committee, with the tasks to give counsel to the parliament, to raise public discus-
sions and in general to be a central forum for bioethics. 74  

 Although the importance of this unit is beyond question, another national ethics 
committee is of more practical relevance. 

 “The Central Ethics Committee for Stem Cell Research (Zentrale Ethik-
Kommission für Stammzellenforschung   , henceforth ZES) was established in 2002 
with the enactment of the Stem Cell Act   . The 18 members and deputy-members of 
the ZES are appointed by the German FederalSIC! for 3-year periods. The ZES is 
charged witSIC! the task of reviewing and evaluating applications for import and use 
of human ES cells according to the Stem Cell Act and has to submit a written opinion 
on each application to the licensing authority, the RKI (Robert-Koch-Institute –  the 
author ). 

 The Of fi ce of the ZES organises the meetings of the ZES, supports the members 
and deputy members of the committee in the assessment of applications according 
to the Stem Cell Act and coordinates the collaboration between the ZES and the 
licensing authority. 

   74   See also:   http://www.ethikrat.org/de_der/ethikratgesetz.php      

http://www.ethikrat.org/de_der/ethikratgesetz.php
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 The Central Ethics Committee for Stem Cell Research submits an annual report    
to the Federal Ministry of Health.” 75  

 There are some open questions connected with the work, procedures of making 
decisions and structure of this commission, partially already mentioned above: the 
question whether an ethics commission with sovereign function shall be established 
by the government, the structure of the commission, disregarding important pressure 
groups, opinion makers and NGOs, and the question of involvement of representa-
tives of Catholic Church, when it is known that it principally denies stoutly the idea 
of embryonic stem cell research   . 76  

 Nevertheless, based inter alia on the yearly reports 77  the work of ZES has to be 
evaluated an outstanding example of excellent work of a bioethics commission. 

 First of all, in this commission main relevant specialists for decisions making 
processes on an ethical level based on existing law come together. 78  

 The possible risk that the scienti fi c horizon and possible future consequences of 
a planned research object keeps unclear or undiscovered is excluded. Scienti fi c 
details of proposed projects can be explained by present scientists. This way the 
complete scienti fi c setting can be considered in the work of the commission. The 
same is valid for the often complex and “delicate” ethical argumentation from phil-
osophical and theological point of views. 

 Secondly, the idea that Practical Ethics    has to come to conclusions is considered, 
for the goal of the commission’s work is to evaluate concrete research projects. 

 Thirdly, this commission’s decisions are  fi nally based on existing law and a pref-
erable bypass of ethics and law is guaranteed. 79  ,  80  

   75   RKI (2009).  
   76   The fact that in this commission the Protestant and Catholic Church are represented by Professors 
of Theology does de facto not speak against their designation as “church representatives. In 
Germany Professors of Theology need permission by church, the “missio canonica”, respectively 
the “Vokation” for  fi lling their academic positions. Therefore, it might make a political difference 
between direct involvement of the Christian churches and the involvement of academic Theologians, 
but not in the matter. Academic Theologians are obliged to represent the of fi cial church guidelines 
and principles.  
   77   Loco citato.  
   78   For any concrete impact of bioethics it is a fatal mistake if bioethics is evaluated a discipline of 
philosophy or theology! The competence of evaluating ethical dimensions of biomedical Science 
is given to scientists as well. Therefore, “ethics” is not an esoteric but exoteric discipline – not for 
specialist from Humanities only but –for all society, including scientists taking over responsibility 
by re fl ecting ethics of their own work! ZES is an excellent example how scientists “can be forced” 
dealing with ethics of their work; something that too rarely is still the case!  
   79   As mentioned before: although a research project can ful fi l all legal requirements, in spite of that, 
by a commission like ZES it can be evaluated as unethical. This possibility makes the essential 
difference between a purely legal and an ethics commission; this way it builds a much “ fi ner instru-
ment” and therefore an “appropriate instrument” dealing ethically with issues from Biomedicine.  
   80   In an edition published on the occasion of the  fi fth anniversary Siep  (  2008a  )  deals critically with 
the German Stem Cell law and “The view of the German Central Ethics Committee for Stem Cell 
Research” (l.c.). He states that “according to the German Stem Cell Act the Central Ethics 
Committee for Stem Cell Research (ZES) advices the competent authority (Robert Koch Institute) 
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 Interesting details about the concrete ethical debates within the commission keep 
classi fi ed: “For the proposal-discussion is part of an approval-procedure, the “daily 
routine” of the commission’s work requires strict con fi dence.” 81  

 Therefore, exact information on the course of the ethical debate keeps unknown, 
as well as exact information on respective decision making processes within the 
group. 

 Till now, the Robert-Koch-Institute   , as the hosting public body of the commission, 
has followed all evaluations of the commission: 

 “All the projects supported by ZES were approved by RKI.” 82  
 Too, there is not even one case known, in which an objection against the commis-

sion’s evaluation has followed from the side of the applicant. 
 A fact that surprises in this context is the relatively low total number of proposals 

the commission has dealt with. 
 “In its work now spanning 6 years, ZES has deliberated on a total of  38 applica-

tions     for the import and/or use of human embryonic stem cells and  three applications 
for extensions  to already approved projects. In total  41 opinions  were handed down, 
 39 of them were positive .” 83  

 After longstanding national discussion about the absolute necessity of large-
dimensioned high-end research in the  fi eld of embryonic Stem Cell research (pro-
moted not least by strong voices from Science), it could have been expected that 
ZES would have faced a much higher number of proposals to deal with. 

 There are several possibilities for the low number of applications:

   There are not enough stem cell researchers in Germany for large-dimensioned  –
Stem Cell Research  
  Large-dimensioned Stem Cell Research was a political  fi gure of speech, designed  –
for a political struggle on more than Stem Cell Research, but on the  fi ght against 
any restrictions in Science at all  
  The legal regulations, based on nation-wide ethical discussions are too  –
restrictive    

 If the last point might be the right answer, it could be concluded that ethical 
restrictions    put into law, expressed in the German Stem Cell Act, has lead to a situ-
ation in which German Science cannot develop due to its full potency by ethical 
“handcuffs”. 

as to whether an application to import human embryonic stem-cells for research is “ethically 
justi fi able” (“ethisch vertretbar”). The law does indeed specify some conditions of this justi fi cation, 
but without precisely de fi ning them.” (l.c.). Generally, the question of “broad” legal formulation 
and the possible leeway in interpretation from ethical side is quite a dif fi cult one that requires 
another publication than the present one; however, from a legal point of view the question is “easy” 
to answer, regarding connected other laws and the spirit of basic rights formulated in the German 
Constitution (Grundgesetz).  
   81   Siep  (  2008b  ) .  
   82   ZES  (  2008  ) .  
   83   ZES  (  2008  ) .  
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 Here and now, we keep this point open for further discussions, as well as the 
question if less- or un-restricted Science in the  fi eld of embryonic Stem Cells can be 
desirable at all.  

    45.2.4   The Situation of Ethics Commissions in France 

 In France the landscape of ethics commission is heterogeneous. 
 There are several commissions with different tasks, but the one of highest impor-

tance is the COMITÉ CONSULTATIF NATIONAL D’ÉTHIQUE POUR LES 
SCIENCES DE LA VIE ET DE LA SANTÉ (henceforth CCNE   ). 

 Also due to the restrictive law situation, a direct work of the CCNE with ethical 
aspects of concrete research projects from within the  fi eld of Regenerative Medicine 
is not given. 

 The CCNE describes its work with the following statement ending with a remark-
able, although cryptic, statement: 

 “Casting light on the progress of science, raising new societal issues and looking 
at change from the perspective of ethics: such is the mission of the French National 
Consultative Ethics Committee on Health and Life Sciences – at the very heart of 
society’s present-day debates. The CCNE always encourages thinking on bioethics 
by contributing to the debates – never by stealing them.” 84  

 The French government is at liberty to request or not bioethical counsel at the 
CCNE. Additionally, public research institutions can request counsel in bioethical 
questions. The CCNE gives statements on relevant ethical questions from 
Biomedicine, including Regenerative Medicine, e.g. “N°052 Opinion on the cre-
ation of human embryonic organ and tissue collections and their use for scienti fi c 
purposes (1997-03-11)”. 85  

  Sicard  86  intimates that the statements of CCNE keep without deeper impact on 
the political level and  Deutsch  87  claims explicitly that the in fl uence of CCNE on the 
national legislation has kept restricted only. 

 One reason for that might be seen in the fact that in France political issues, and 
bioethics is de fi nitely such, are treated  fi nally as such by the political class of the 
executive. In an online interview  Sintomer  pleads in favour of more “Participatory 
democracy” in France based on his analysis that in the presidential system “(…)in 
practice there is hardly any counterweight to the omnipotence of the executive.” 88  

 The importance of the role of ethics consultants, politicians and commissions in 
France and Germany is still matter of discussions; in Germany there were big politi-
cal argues in connection with the National Ethics committee, e.g. by the former 

   84   CCNE  (  2009a  ) .  
   85   CCNE  (  2009b  ) .  
   86   Sicard  (  2007  ) .  
   87   Deutsch  (  2007  ) .  
   88   Sintomer  (  2009  ) .  
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chairman of the committee of inquiry “Ethics and Law of Modern Medicine” of the 
German Bundestag, Mr. Röspel. Mr. Röspel criticizes inter alia the low in fl uence of 
members of parliament in a the National Ethics council, the reformed National 
Ethics commission. 89  This argue shows quite a dilemma connected with National 
Ethics committees and commissions: The legitimation of National ethics unit. On 
the one hand the idea that ethics specialists and specialists of Biomedicine shall be 
members is obvious; on the other hand the commission members have no demo-
cratic legitimation at all, and in no case they are representatives speaking for the 
people, in what way ever. Representatives of the people are solely members of the 
parliaments. In the French presidential system the meaning of the parliament may 
be smaller than in Germany and the meaning of the executive comparably greater 
than in Germany 90  – however, the point is that they all are elements established 
 fi nally by democratic processes, meanwhile a national ethics committee established 
by who ever is not. 

 The French CCNE has got remarkable aspects concerning its structure. First of 
all, not only academic experts of Ethics, Theology and Science are members    of the 
commission. The term “expert” is meant in a broader sense.  Sicard  explains: “The 
term “expert” does not  fi t completely to French circumstances. Whereas different 
members can be considered as experts for their subject, especially the ones coming 
from research, one has to point out that 19 members have not been chosen only for 
their expertise but for their interest in ethical questions.(…) 

 On the other hand, the membership of  fi ve personalities representing big philo-
sophical and religious directions in France makes a pluralistic representation of 
different ideologies possible.” 91  

  Deutsch  reports: “It (the CCNE-the author) consists of 37 members, among them 
15 researchers, further a Catholic, a Protestant, a Jew, a Muslim and a Marxist.” 92  

 The CCNE considers the idea of pluralism    in a National Ethics Committee and 
hint on structural questions of National Ethics Committees. First of all, in bioethics 
committees there is an often existent concentration on academic specialists that is 
generally debatable considering the societal dimensions of ethical questions * e.g. 
in connection with Regenerative Medicine. 

 Secondly, all Western States of the EU, including Germany, have a relative high 
number of Muslims in their population that shall be represented in National Ethics 
Committees. 

 Thirdly, the cultural roots of Europe are Judaeo-Christian, although the Jewish 
population is currently comparably low in Europe; therefore, a participation of 
Jewish representatives in National Ethics Committee may be appropriate. 

 Fourthly, the legitimation of a National Ethics commission is – as mentioned – a 
dif fi cult issue; nevertheless, under aspects of the pluralistic self-image of European 

   89   Deutschlandradio  (  2006  ) .  
   90   See also Sentimer  (  2009  ) .  
   91   Sicard  (  2007  ) .  
   92   Deutsch  (  2007  ) .  
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democracies, an embedment of other in fl uential ideologies and in certain cases of 
minorities (disabled, gays etc.) shall be indicated. 

 It also can be called appropriate that gender related bioethical issues make it 
necessary to consider gender-representatives as members of a National Ethics 
Committee. 

 Furthermore, the possible role of NGOs in settings of National Ethics Commission 
is still to be discussed. 

 If a National Ethics Committee shall mirror a pluralistic society, more variations 
in its setting is indicated! The French CCNE teaches an at least more pluralistic 
model of composition of a National Ethics commission.  

    45.2.5   Conclusions 

 The character of National Bioethics Committees, Commissions and Councils in 
France, Germany and Poland is directly not comparable. 

 In France the in fl uence of the National ethics commission on political decisions 
is comparably low, in Germany in comparison probably most in fl uential and in 
Poland the question of the importance and duties of a possible National bioethics 
unit not decided yet. 

 We have found many points for critics in the different national structures of bio-
ethics commissions, and we recommend continuing the discussion on the structures, 
on the democratic legitimation and on the intransparant decision making processes 
of ethics commissions. 

 However, we have come to the conclusion that the German ZES is currently the 
most advanced model of dealing  conclusion - oriented  with ethical questions of 
Regenerative Medicine based on law.       
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  Bone marrow transplantation (BMT) , 267   
  Bone morphogenetic proteins (BMPs) , 
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  Calcium phosphate , 618   
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  Cancer stem cell (CSC) 

 cellular origin , 392  
 drug resistance , 407  
 genetic instability , 407  
 hierarchy model , 391–392  
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 niche , 407, 408  
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 treatment implications , 401–406   
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receptor (CAR)  
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  Carcinogenesis , 389–392   
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 cardiac tissue engineering , 909–911  
 endocardial application , 908–909  
 epicardial application , 909  
 implanted cardiac de fi brillator , 914  
 intracoronary application , 907–908  
 pharmacological strategies , 911  
 stem cell isolation , 907   
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  Cardiovascular stem cells , 282  
 FACS , 288  
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  Cardiovascular system development , 281   
  Cardiovascular tissue engineering , 281, 291   
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 structure , 52–54   
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 sheet approach , 281  
 surface markers , 891  
 theory , 6  
 therapies , 61–65  
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 epigenetic control , 306–308  
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  Ceramic materials , 621   
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regulator (CFTR)  
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  Chirality , 467   
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  c-Kit/stem cell factor (SCF) , 223   
  Clara cells , 865–866   
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 protein markers , 159   
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  CLP.    See  Common lymphoid progenitor (CLP)  
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  Cochlea , 794   
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  Columnar cell lineage , 375   
  Commitment , 110   
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Use (CHMP) , 1149   
  Committee on Orphan Medicinal Products 

(COMP) , 1149   
  Common lymphoid progenitor (CLP) , 265   
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  CPCs.    See  Cardiac progenitor cells (CPCs)  
  CRAds.    See  Conditionally replicating 

adenoviruses (CRAds)  
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  CTE.    See  Chronic traumatic 
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  Dopamine (DA) , 698   
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  ECM.    See  Extracellular matrix (ECM)  
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  EFTFs.    See  Eye  fi eld transcription 

factors (EFTFs)  
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 BM-derived , 884  
 genetically engineered , 894  
 genetic modi fi cation , 894  
 kinetics , 884–885  
 mobilization , 885  

 therapeutic angiogenesis , 888–895  
 transplantation , 888–891   

  Enteroendocrine cells , 375   
  Enzymatic digestion , 439   
  EPAMINONDAS trial , 651   
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 collagens , 26–32  
 ground substance , 34–37  
 heart and valve tissue engineering , 65–66  
 heart diseases , 60–61  
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 proteoglycan , 1068   
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  Fertility , 237   
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  Food, Drug & Cosmetic (FD&C) Act , 1163   
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 embryonic stem cell research , 1175–1176  
 ethics commissions , 1197–1199  
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  Functional regeneration , 730   
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  German Stem Cell Act , 1189   
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 adult stem cells , 1184  
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channels , 238  
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  Germ plasm , 222   
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  Glucose-dependent insulinotropic peptide 

(GIP) , 995   
  Glutamic acid decarboxylase (GAD) , 992   
  Glutamine , 997   
  Glycosaminoglycan (GAG) , 34–37, 1067   
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  Hematopoiesis , 668   
  Hematopoietic stem cell (HSC) , 156, 162, 

166, 251–253, 1003  
 allogeneic transplantation , 674  
 autologous transplantation , 672–674  
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 MACS , 253  
 markers , 258  
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 myeloid-biased HSCs , 264  
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 therapies , 267–269  
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1045, 1104   
  Insulin like growth factor II (IGF-II) , 1104   
  Insulin replacement therapy , 987   
  Insulin trials , 992   
  Insulin-VNTR , 985   
  Integration-free methods , 209   
   b 1-Integrin , 223   
  Integrins , 37–43, 59–60, 233, 479, 613, 614   
  Interferon alpha-2 a  , 941   
  Interferon alpha-2 b  , 941   
  Interferon-gamma1 b  (IFN- g 1 b ) , 942   
  Interleukin 3 (IL3) , 257   
  Interleukin-10 (IL-10) , 942   
  Internal point contact  fi xator (PC-Fix) , 1037   
  International Standards Organization 

(ISO) , 532   
  International stem cell forum (ISCF) , 182   
  Inter photoreceptor retinoid binding 

protein , 399   
  Intestinal stem cell (ISC) , 85–86, 91–92, 

156, 368, 1010   
  Intestinal stem cell niche , 85–86, 91–92   
  Intracerebral hemorrhage (ICH) , 711   
  Intracoronary application , 907–908   
  Intrahepatic bile duct (IHBD) , 352   
  Intramedullary pressure , 1029   
  Intramedullary self-reinforced polyglycolic 

acid , 1030   
  Intrinsic, factors , 111, 137, 440–441   
   In vitro  cultures , 851   
   In vivo  tissue engineering , 851   
   In vivo  tracheal strategy , 852   
  iPS.    See  Induced pluripotent stem cells (iPS)  
  iPS cell technology , 356   
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  ISC.    See  Intestinal stem cells (ISC)  
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  LSC.    See  Limbal stem cells (LSC)  
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  Magnetic resonance imaging (MRI) , 590   
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 trophic factors , 443  
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  in vitro  cultivation , 417  
 isolation , 416  
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  Metatarsal fracture models , 1054–1055   
  Metatarsal segmental defect models , 1055–1056   
  MHC/HLA molecules , 985   
  MIC1-1C3 , 349   
  Micro-contact printing ( m CP) , 465, 466   
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  N 
  Nanobiotechnology , 739   
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 stem cell-based cell , 697   

  Neuronal cell markers , 398   
  Neuroplasticity , 730   
  Neuroprostheses , 748   
  Neuroprotection , 741   
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scaffold , 1054   
  Poroviscoelastic model , 1075   
  Postnatal tooth germ cells , 835   
  Pre-absortive cells , 372–373   
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 evidences , 400–401  
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 neuronal cell markers , 398  
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  Satellite stem cells , 156   
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 pale type A (Apale) , 225  
 single type A (Asingle)) , 224  
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 deoxyribozyme , 747  
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 niche , 22–24, 299–300, 615 
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 self-assembly , 591   

  Tissues & cells directive , 1142, 1153, 1156   
  Titanium, implants , 620, 622   
  Toe brachial pressure index (TBPI) , 889   
  Topography , 622   
  Total walking distance (TWD) , 889   
  Totipotent cells , 130, 156   
  Traceability system , 1152   
  Trachea , 844   
  Tracheal allotransplantation , 847   
  Tracheal damage , 844   
  Tracheal substitute , 849   
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