
Efficient Algorithms for the Green’s
Function Formalism

Semiconductor Transport Simulations on CPUs
and GPUs

Jan Jacob, Bodo Krause-Kyora, Lothar Wenzel, Qing Ruan,
Darren Schmidt, Vivek Amin and Jairo Sinova

Abstract We present efficient implementations of the non-equilibrium Green’s
function method for numeric simulations of transport in semiconductor nano-
structures. The algorithms are implemented on CPUs and GPUs using LabVIEW
2011 64-Bit together with the Multicore Analysis and Sparse Matrix Toolkit and
the GPU Analysis Toolkit.

Keywords Algorithm � GPU � Green’s function � Inversion � LabVIEW �
Simulations

J. Jacob (&)
Institute of Applied Physics, University of Hamburg, Jungiusstraße 11,
22359 Hamburg, Germany
e-mail: jjacob@physnet.uni-hamburg.de

B. Krause-Kyora
PHYSnet Computing Center, University of Hamburg, Jungiusstraße 9,
22359 Hamburg, Germany
e-mail: krause@physnet.uni-hamburg.de

L. Wenzel � Q. Ruan � D. Schmidt
National Instruments, 11500 N Mopac Expwy, Austin, TX 78759-3504, USA
e-mail: lothar.wenzel@ni.com

Q. Ruan
e-mail: qing.ruan@ni.com

D. Schmidt
e-mail: darren.schmidt@ni.com

V. Amin � J. Sinova
Physics Department, Texas A&M University, 4242 TAMU, College Station,
TX 77843-4242, USA
e-mail: aminvp@physics.tamu.edu

J. Sinova
e-mail: sinova@physics.tamu.edu

G.-C. Yang et al. (eds.), IAENG Transactions on Engineering Technologies,
Lecture Notes in Electrical Engineering 186, DOI: 10.1007/978-94-007-5651-9_2,
� Springer Science+Business Media Dordrecht 2013

17



1 Introduction

The continuing circuit miniaturization leads to device dimensions where quantum
effects can be detrimental to the operation of standard CMOS devices. At the same
time these effects yield the potential for novel energy efficient devices, since their
channels no longer have to be depleted completely for switching [2, 9]. An electric
field across the channel that is generated by a gate can influence the electron’s spin
precession length—and thereby its spin orientation with respect to a spin-sensitive
detector [25]. Besides optical generation and detection of spin-polarized currents
[18] and by ferromagnetic electrodes [23] also all-semiconductor devices are
considered [6, 7] to pave the way to possible spin-based computing.

While charge-based devices are well understood, the realization of their spin-
based cousins is still challenging. Analytical predictions for these nano structures
often cannot be directly compared with experiments due to oversimplification.
Numerical simulations bridge the gap between analytical descriptions and experi-
ments allowing a thorough understanding of the quantum effects in such semi-
conductor devices by accounting for donor impurities, lattice imperfections, and
interactions within a sample that are inaccessible to most analytical methods.
Simulations with both realistic dimensions and appropriate grid sizes provide
significant computational challenges, due to the large processing and memory load.

The non-equilibrium Green’s function (NEGF) method [1] is a common approach
to transport simulations. Other approaches, like the transfer matrix algorithm [24],
can be translated to the NEGF method exhibiting similar mathematical structure and
numerical techniques with the same computational challenges. They can be broken
down to eigenvalue problems as well as multiplications and inversions of large, but
often sparse matrices. We have explored implementations of the Green’s function
method with respect to their memory footprint and scalability over multiple threads,
as well as their portability to general purpose graphics processing units (GPU) [8]
and now expand our work to multi-GPU and multi-node implementations.

2 Mathematical and Physics Background

We employ the Green’s function method to simulate transport in mesoscopic
structures [1] with dimensions smaller than the coherence length. Here the con-
ductance is obtained via the Landauer formula from the transmission probability T
describing the probability of carriers to be transmitted from the input to the output

contact G ¼ 2e2

h T , where e is the elementary charge and h is Planck’s constant. The
transport in these systems is through different quantum-mechanical modes, each
contributing 2e2=h to the total conductance for a perfect transmission T ¼ 1. In the
case of coherent transport, where the conductor is smaller than the phase-relaxa-
tion length, the total transmission probability can be decomposed into the sum of
the individual channels:

18 J. Jacob et al.



G ¼ 2e2

h

X

m;n

Tmn; where Tmn ¼ smnj j2: ð1Þ

Green’s functions provide a convenient way to obtain the s-matrix of the micro-
scopic sample. Not going into the detailed relationship between Green’s functions
and the s-matrix, we will show how to calculate the Green’s function for a par-
ticular sample and how to obtain T from the Green’s function. Starting from the
Schrödinger equation HW ¼ EW we define a Green’s function, for a system with
the Hamiltonian ĤðrÞ

E � ĤðrÞ
� �

Gðr; r0Þ ¼ dðr � r0Þ: ð2Þ

by rewriting the Schrödinger equation with an added source term. The Green’s
function can be interpreted as the wave function in terms of the position vector r of
the source. Now the device is discretized on a grid in a tight-binding model of
finite differences, such that Gðr; r0Þ ! Gij, where i and j are denoting different
lattice positions corresponding to r and r0. The differential equation becomes a
matrix equation EI � H½ �G ¼ I, where each row or column represents a particular
lattice site and each element defines the hopping between the two sites of its row
and column. For a system of Nx horizontal and Ny vertical sites the matrix is of
dimension NxNy � NxNy. Considering realistic dimensions of some micrometer
and a fine grid spacing of a few nanometer to precisely simulate all quantum
effects in such nano structures this leads to huge matrices. Converting the Ham-
iltonian to a matrix operator also requires discretized derivative operators that are
now given by

dF

dx

� �

x¼ jþ1
2ð Þa
! 1

a
Fjþ1 � Fj

� �
ð3Þ

d2F

dx2

� �

x¼ja

! 1
a2

Fjþ1 � 2Fj þ Fj�1
� �

: ð4Þ

Fig. 1 Flowchart for the basic green’s function algorithm

Efficient Algorithms for the Green’s Function Formalism 19



For a one-dimensional system, where only a simple kinetic and a potential term are
considered, the Hamiltonian matrix is given by

H ¼

� � � �t 0 0 0

�t U�1 þ 2t �t 0 0

0 �t U0 þ 2t �t 0

0 0 �t U1 þ 2t �t

0 0 0 �t � � �

0
BBBBBB@

1
CCCCCCA
; ð5Þ

where t ¼ �h2=2ma2 is the hopping parameter and Ui denotes the potential at each
lattice site. With appropriate labeling such a matrix can also be given for two or
three dimensional systems. The Green’s function can now be compute through
matrix inversion.

G ¼ ½EI � H��1: ð6Þ

There are two independent solutions for G, the retarded and advanced Green’s
function; often an imaginary parameter is added to the energy in Eq. 6 in order to
force one of the solutions. Solutions like Eq. 6 only yield information about
scattering inside the sample. The leads are included by connecting them to the
sample at various lattice site. Only directly neighboring sites are consider to be
relevant to compute the lead’s full effect on the transmission of semi-infinite,
homogeneous, and reflection-less leads. Considering a sample c represented by a
Nx � Ny grid and fully connected to two leads on either vertical side, labeled p and
q, one can rewrite the Green’s function in block matrix form as

G ¼
Gc Gcp Gcq

Gpc Gp 0

Gqc 0 Gq

0
B@

1
CA: ð7Þ

Carriers enter or leave the sample via Gcp, Gcq or Gpc, Gqc and travel through the
sample via Gc and in the leads via Gp and Gq. As there is no connection between
the leads, carriers must transmit through the sample to travel between p and q. We
assume this structure for G:

G ¼
EI � Hc sp sq

syp EI � Hp 0

syq 0 EI � Hq

0
B@

1
CA

�1

; ð8Þ

where the dimension of each element of the block matrix depends on the number
of lattice sites corresponding to the portion they describe, and ½spðqÞ�ij ¼ tdij,
assuming that carriers may only enter the sample through a site adjacent to a lead.
One can show, after some algebra, that

20 J. Jacob et al.



Gc ¼ EI � Hc � R½ ��1; where ð9Þ

R ¼
t2gp 0 0

0 0 0

0 0 0

0

B@

1

CAþ
0 0 0

0 0 0

0 0 t2gq

0

B@

1

CA ¼ Rp þ Rq and ð10Þ

gpðqÞ ¼ EI � HpðqÞ
� ��1

: ð11Þ

The RpðqÞ are NxNy � NxNy matrices and gp and gq are Ny � Ny matrices. In the
final step the transmission probability is then calculated by

T ¼
X

m;n

Tmn ¼ Tr CpGcCqGyc
� �

; where CpðqÞ ¼ i½RpðqÞ � RypðqÞ� ð12Þ

3 Basic Implementation

The implementation of this algorithm includes six steps (see Fig. 1): First the
Hamiltonian H for the system is created. As the matrix H is of size ðNxNyÞ �
ðNxNyÞ it can cause memory issues, when implemented as a dense matrix. The
second step determines the eigensystem for the transverse Hamiltonian Hy of the
size Ny � Ny and can take significant computing resources for large systems. This
is used in step three to define the self-energies of the leads by scalar operations.
The fourth step calculates the Green’s function by inversion of a ðNxNyÞ � ðNxNyÞ
matrix representing the bottleneck of the algorithm. Step five creates the C
matrices, requiring only scalar operations on the elements of RA and RR. This can
be done in parallel to the inversion in step four. In the sixth step the transmission
probability is calculated from Eq. 12 that includes the product of four ðNxNyÞ �
ðNxNyÞ matrices.

4 Optimizations

The matrix H is of the size ðNxNyÞ � ðNxNyÞ scaling with the system size. How-
ever, the matrix’s structure allows memory optimizations:

Efficient Algorithms for the Green’s Function Formalism 21



HðNxNyÞ�ðNxNyÞ ¼

. .
.

Y 0 0

Y X Y 0

0 Y X Y

0 0 Y . .
.

0
BBBBB@

1
CCCCCA
; with ð13Þ

XNy�Ny ¼

. .
.

B 0 0

B A B 0

0 B A B

0 0 B . .
.

0

BBBBB@

1

CCCCCA
and YNy�Ny ¼ diag C½ �; ð14Þ

where A ¼ 4t þ Vðx; yÞ, B ¼ C ¼ �t, with the potential energy at a given site
Vðx; yÞ. The transverse Hamiltonian has an even simpler structure.

Hy ¼

. .
.

B 0 0

B D B 0

0 B D B

0 0 B . .
.

0
BBBBB@

1
CCCCCA
; ð15Þ

where D ¼ 2t. While a sparse implementation of the matrices would help, it is
most efficient to create only Ny � Ny matrix blocks, when needed in the algorithm.
Solving the Eigenproblem for Hy in step two yields the modes and wave functions
for the self energies and has potential for optimizations. However, benchmarks
have shown that the compute time is much smaller than for step four. Therefore,
we do not focus on optimizations of the Eigensolver. The inversion in Eq. 9
executed in step four is most demanding and therefore the focus of our optimi-
zations. We denote the basic implementation as Algorithm A shown in Fig. 2.
Four of the eight multiplications of Ny � Ny matrices in step five to obtain Eq. 12
can be done in parallel, which is already ensured by the parallel nature of the
LabVIEW development environment. The same is true for the second set of four
multiplications that need the results of the first set. As the computational load of
this part is small compared to the inversion no further optimizations have been
done to this part.

Optimized linear algebra functions. The Multicore Analysis and Sparse
Matrix Toolkit (MASMT) [12] provides Intel’s Math Kernel Library’s (MKL) [5]
linear algebra functions in LabVIEW, optimized execution on multi-core
processors and operation on large matrices. Replacing the matrix inversion with
the corresponding MKL function led to Algorithm B, that however, still is limited
by memory inefficiency due to the dense matrix representation as the benchmarks
in Sect. 6 show.

22 J. Jacob et al.



F
ig

.
2

V
is

ua
li

za
ti

on
of

th
e

di
ff

er
en

t
al

go
ri

th
m

s
fo

r
th

e
m

at
ri

x
in

ve
rs

io
n

Efficient Algorithms for the Green’s Function Formalism 23



Sparse matrices. Also part of MASMT is the PARDISO direct sparse linear
solver [20–22] that we implemented as Algorithm C and that is faster than the
dense solver, but still memory limited above Nx ¼ Ny ¼ 700 as the solver creates
large intermediate data.

Block-Tridiagonal solver. Utilizing the block tri-diagonal structure of H we
replaced the PARDISO solver in Algorithm D with the generalized Thomas
algorithm [19]. Our block tri-diagonal linear system

A1 B1 0

C1 A2 B2

C2 A3
. .

.

. .
. . .

.
BNx�1

0 CNx�1 ANx

2
66666664

3
77777775

X1

X2

X3

..

.

XNx

2
66666664

3
77777775

¼

Y1

Y2

Y3

..

.

YNx

2
66666664

3
77777775

; ð16Þ

where Ak, Bk and Ck are all Ny � Ny blocks, can be computed in two steps. Step 1:
for k from 1 to Nx

Table 1 Summary of the benchmark results for the CPU-based algorithms

Nx;y A (s) B (s) C (s) D (s) E (s) F (s)

10 0.007 0.017 0.002 0.001 0.001 0.001
20 0.192 0.407 0.006 0.004 0.004 0.003
30 2.096 2.684 0.013 0.016 0.013 0.008
40 11.745 13.261 0.026 0.038 0.024 0.017
50 49.714 47.328 0.054 0.081 0.048 0.038
60 148.369 138.163 0.088 0.154 0.072 0.058
70 346.183 339.151 0.134 0.215 0.114 0.094
80 769.706 730.780 0.201 0.371 0.151 0.127
90 1,647.595 1,543.517 0.241 0.468 0.214 0.187
100 2,964.965 2,949.634 0.357 0.715 0.279 0.236
200 o.o.m. o.o.m. 2.194 8.662 2.428 1.765
300 o.o.m. o.o.m. 7.560 42.750 7.804 5.767
400 o.o.m. o.o.m. 18.323 130.317 20.709 14.643
500 o.o.m. o.o.m. 39.306 311.673 57.965 33.411
600 o.o.m. o.o.m. 72.519 595.367 102.021 61.147
700 o.o.m. o.o.m. 125.120 o.o.m. 168.005 109.006
800 o.o.m. o.o.m. o.o.m. o.o.m. 263.918 191.874
900 o.o.m. o.o.m. o.o.m. o.o.m. 389.083 297.420
1000 o.o.m. o.o.m. o.o.m. o.o.m. 538.907 422.620

Version A is the original direct inversion algorithm. Version B uses the optimized LabVIEW
high-performance computing libraries, Version C makes use of the matrices’ sparsity, Version D
is the first implementation of the block-tridiagonal solver, Version E is the optimized block-
tridiagonal solver, and Version F is the optimized block-tridiagonal solver with pipelining for
improved thread utilization (o.o.m. stands for out of memory—this benchmark could not be
performed on the test machine).

24 J. Jacob et al.



�Bk ¼ ðAk � Ck�1�Bk�1Þ�1Bk ð17Þ

�Yk ¼ ðAk � Ck�1�Bk�1Þ�1ðYk � Ck�1 �Yk�1Þ: ð18Þ

Step 2: for k from Nx to 1

Xk ¼ �Yk � �BkXkþ1: ð19Þ

Table 2 Benchmark results for the GPU implementation of the pipelined and optimized block-
tridiagonal matrix inversion solver

Nx;y Matrixsize (elem.) GPU pipelined BT solver (s)

128 16,384 2.463
256 65,536 0.691
384 147,456 2.936
512 262,144 8.887
640 409,600 21.255
768 589,824 43.610
896 802,816 80.244
1024 1,048,576 136.685
1280 1,638,400 332.707
1536 2,359,296 688.338
1792 3,211,264 1,272.800
2048 4,194,304 2,170.260
2560 6,553,600 5,290.440
3072 9,437,184 10,964.600
3584 12,845,056 20,297.700
4096 16,777,216 34,616.500
5120 26,214,400 84,462.700

Fig. 3 Execution time for data transfers of single precision elements

Efficient Algorithms for the Green’s Function Formalism 25



While the algorithm takes advantage of the sparse matrix structure it still requires
quite large memory to store 3Ny Ny � Ny matrices between step 1 and step 2. This
results in about 48 GB RAM for Nx ¼ Ny ¼ 1000 forcing slow storage on hard
disk media. Since only the four Ny � Ny corners of the inverse matrix are relevant
for the transmission, we are solving two linear systems with the right hand sides

INy 0 . . . 0
� �0

; and 0 . . . 0 INy

� �0
; ð20Þ

where INy is an Ny � Ny identity matrix, and only the first and last blocks are of
interest. As the last block of each system is already computed after the first step in
the Thomas algorithm, we propose another method to compute the first block.
Denote

K ¼

0 INy

INy

. .
.

INy 0

2
666664

3
777775
: ð21Þ

where K satisfies KT ¼ K and K2 ¼ I. Furthermore, if

A ¼

A1 B1 0

C1 A2 B2

C2 A3
. .

.

. .
. . .

.
BNx�1

0 CNx�1 ANx

2

66666664

3

77777775

; then ð22Þ

KAK ¼

ANx BNx�1 0

CNx�1 ANx�1 BNx�2

CNx�2 ANx�2
. .

.

. .
. . .

.
B1

0 C1 A1

2

666666664

3

777777775

: ð23Þ

Since ðKAKÞ�1 ¼ KA�1K, the upper left(right) corner of A�1 is equal to the lower

right(left) corner of ðKAKÞ�1 and the first step of Thomas algorithm with KAK
gives the upper left(right) corner of A�1. This new Algorithm E saves memory
because the second step is omitted by the cost of an extra matrix inversion. As this
additional inversion can be computed in parallel a significant performance gain
can be seen in Sect. 6 and the memory efficiency allows very large systems. For
further performance gain on parallel architectures we pipelined sequential linear

26 J. Jacob et al.



algebra operations in Algorithm F and adjusted each group of operations to
roughly the same complexity ensuring a constant high core utilization during the
full inversion algorithm while at the same time keeping the memory usage below
3 GB for systems of up to Nx ¼ Ny ¼ 1000.

5 Implementation on GPUs

The optimized pipelined block-tridiagonal solver is still the most demanding part
of the code. To further improve the performance we employed GPUs as they yield
a high performance potential for the matrix multiplications and inversions of the
algorithm. The rest of the code is executed exclusively on the host as it lacks
computational complexity. For the implementation on the GPUs we used a pro-
totype of the LabVIEW GPU Analysis Toolkit (LVGPU) [11]. The small memory
footprint of the solver allows us to download the entire problem to the GPU and
invoke the solver on the device, retrieving only the final result and thereby min-
imizing communication between the host and the GPU. Also multiple independent
simulation steps (i.e. as part of a sweep of e.g. potential or Fermi Energy) could be
executed if multiple GPUs are available. To control GPU devices from LabVIEW,
LVGPU includes multiple interfaces for calling CUDA-based functions for exe-
cution on NVIDIA GPUs: LVCUDA encompasses functions based on the CUDA
APIs for selecting and managing NVIDIA GPUs safely from the LabVIEW
environment. LVCUBLAS and LVCUFFT functions call into CUBLAS and
CUFFT available from NVIDIA’s website [13, 14]. All GPU computations
performed using LVGPU execute in parallel as if they were native LabVIEW
operations. The current block-tridiagonal solver on the GPU uses LabVIEW and
multi-core CPUs to orchestrate parallel execution of multiple LVGPU functions
within an iteration of the solver. Results for this solver are consistent with
performance gains achieved from LVGPU to solve other demanding problems. For
example, an NVIDIA Tesla C2070 computes large FFTs (e.g. 512 K elements) in a
few milliseconds including data transfers to and from the host. This meets
real-time constraints for real-world problems such as quench detection of super-
conducting magnets. Performing an FFT on this extreme signal size overwhelms
the core and cache size of present day multi-core CPUs. Experiments on multiple
GPU devices were equally successful. The same GPU solver producing the
benchmarks in Table 2 was deployed to two GPUs simultaneously. For a 1 K
system size, the increase in execution time was 250 ms—adding only a fraction of
the single GPU target time of 136.685 s. Distribution across multiple GPU devices
is trivial when using LVGPU and potentially important to evolving algorithm
variations such as Algorithm F from Fig. 2 as described in Sect. 7. To ensure that
distribution to multiple GPU devices is feasible at multiple implementation levels,
the jitter in data transfers to and from a GPU device was benchmarked. In Fig. 3,
the mean execution time for I/O to (light bar) and from (dark bar) an NVIDIA

Efficient Algorithms for the Green’s Function Formalism 27



Tesla C1060 is shown. Error bars for each reflect the variation in transfer time
recorded over several hundred iterations. Jitter on the order of 100 ls affords
implementations of the current solver which deploy GPU kernels to multiple
devices at virtually any level.

6 Benchmarks

We ran code implementing the direct inversion of the Green’s function matrix
(Algorithm A) and the different optimizations (Algorithm B–F) on an IBM i-
dataplex dx360 M3 [3] with two Intel Xeon X5650 six-core processors, running at
2:67 GHz, 48 GB RAM, and two NVIDIA Tesla M2050 GPUs with 3 GB RAM
[17]. All code was written in LabVIEW 2011 using functionality from MASMT
and LVGPU. Internally, MASMT called Intel’s Math Kernel Library (MKL) v10.3
for execution on the CPU’s multiple cores. LVGPU invokes routines from NVI-
DIA’s CUDA Toolkit v4.0 [15]. Benchmarks were performed with LabVIEW
2011 64-Bit running under Windows 2008 Server Enterprise, with the NVIDIA
Tesla GPU in TCC mode. Results from the CPU-based implementations are shown
in Table 1. Results for the code in version F which executed primarily on GPUs
are shown in Table 2. The results include just the execution of the inversion in
Algorithm F. The initialization and postprocessing are not taken into account as
they represent just a fraction of the computation time. However, the presented
benchmarks include the time for transferring the data to and from the GPUs. To
visualize the performance we summarize the results and show the number of
system slices along the x-direction that can be simulated per hour on a single node
or GPU in Fig. 4. These timings are dependent on the number of system sites in the
y direction. This number gives a good description of the performance related to the
system size and shows the applicability of our CPU and GPU-based implemen-
tations to systems with realistic dimensions. While the information is given for a
two-dimensional system, where the transversal slice is one-dimensional, the same
holds for three dimensional systems, where the number of sites is the product of
height and width of the system.

7 Multiple GPU Implementation

For larger simulations and to further speed up the algorithm we present a scheme
for multi-GPU distribution. The limited GPU-memory size can be circumvented
by distributing the matrices over two or more GPUs. This in particular is conve-
nient, when multiple operations on independent matrices can be executed in
parallel as in our Algorithm F. Since CUDA-Version 4.0 multiple GPUs can share
the same memory-environment allowing GPU-Memory addressing in a single
namespace. Algorithm F consists of three threads where the third thread depends

28 J. Jacob et al.



on previous results as shown in Fig. 5. One has to design a synchronized pipeline
of these different threads to fully utilize the total available computing power.

While the third GPU is calculating the matrix multiplication, the first and
second GPU can already compute their next step. A deployment on just two GPUs
would leads to an asymmetric load: While both GPUs would start calculating the
two inversions in parallel the GPU1 would have to calculate the multiplication in
the end while the GPU2 would be idle. However, as all necessary results for the
next set of inversions are already present, the GPU2 could take over the thread of
inversion plus multiplication of the second step. As soon as the first multiplication
is done the GPU1 starts calculating the other inversion of the second step. As this
one does not require the final multiplication both GPUs would be in sync again at
the end of the second step and the procedure would start over for the next step. As
the CPU is not computing while the GPUs do, one can leverage the CPU-Power to
compute the initial part of the next problem within a sequence (e.g. when varying a
gate voltage, etc.) or cope with the communication. As the employed servers are
equipped with two GPUs, the next logical step is to distribute the problem to
several nodes. In this case multiple scenarios can be considered: First each of the
three tasks in Fig. 5 could be run on a dedicated node with a hybrid CPU/multi-
GPU implementation with algorithm as developed for example in the MAGMA

Fig. 4 Benchmark results in terms of simulation steps in x-direction per hour in dependence of
the system size in y-direction

Efficient Algorithms for the Green’s Function Formalism 29



toolkit [10]. Second several steps of a parameter sweep can be distributed to
several nodes as such a sweep is embarrassingly parallel. Third nodes could be
specialized to distinct tasks: One node will create the Hamiltonian and solve the
Eigenproblem and afterwards move the data to another set of nodes calculating the
Green’s function including the distribution of this subproblem to multiple nodes as
described before. While the parallel execution of multiple simulations within a
sweep is extremely easy, it is often desirable to receive results from a single step as
fast as possible, giving the other two approaches additional priority. However,
these two approaches will only be useful if a high-bandwidth-connection system
like infiniband [4] is provided between the nodes as the information passed
between the nodes would be matrices of size ðNxNyÞ � ðNxNyÞ in the first and still
matrices of the size Nx � Nx in the third approach. To speed-up the transfer of data
between GPUs on different nodes remote direct memory access RDMA, which
will be available in the upcoming CUDA toolkit 5.0 release [16], will be very
beneficial.

8 Conclusion

Simulations of transport in semiconductor nanostructures relying on the Green’s
function algorithm require—in their direct implementation—the inversion of
gigantic matrices if realistic device sizes and sufficient small grid spacings are
applied, making such a solution impractical. By exploiting the underlying sparse
structure of the matrices we have presented an optimized implementation that

Fig. 5 Visualization of the multi-GPU setup

30 J. Jacob et al.



avoids the direct inversion by employing a block-diagonal solver to reduce the
memory load from ðNxNyÞ � ðNxNyÞ matrices to Ny � Ny matrices. We enhanced
the parallelism of the algorithm and balanced the computational load using
pipelining to maximize the performance yield. The small memory footprint allows
to implement the whole algorithm on a NVIDIA Tesla M2050 GPU without
transferring data between the host and the GPU during the calculation. With the
above summarized techniques we were able to increase the system size by a factor
of 100 compared to the primitive algorithm and even beyond on CPUs with
another performance gain by a factor of three on the GPUs. Taking into account
the further parallelization approaches outlined in Sect. 7 that allow multi-GPU and
multi-node implementations further significant performance gain can be achieved.
The simulation of the transport in dependence on one varied parameter (e.g. gate
voltage) with 1000 steps for a device of 1 lm by 1 lm and a grid spacing of 1 nm
takes a total time of approximately 19 h. If further spread over multiple GPUs in
multiple nodes, complete simulations can be obtained within very short time spans
allowing almost just-in-time direct comparison of numeric results with experi-
ments. Having demonstrated that it is feasible to perform such simulations in
reasonable times, we are now exploring codes for three-dimensional structures
with multiple bands contributing to the transport. While adding bands increases the
matrix size to ðNxNyNsÞ � ðNxNyNsÞ, where Ns is the number of bands, the addition
of a third dimension increases the matrix size to ðNyNzÞ � ðNyNzÞ for each ‘‘slice’’
of the system letting the matrices again grow very fast. Therefore we will intensify
the research on multi-GPU and multi-node implementations as well as on further
optimizations of the algorithm.

Acknowledgments This work was supported by the Deutsche Forschungsgemeinschaft via GK
1286 and Me916/11-1, the City of Hamburg via the Center of Excellence ‘‘Nanospintronics’’, the
Office of Naval Research via ONR-N00014110780, and the National Science Foundation by
NSF-MRSEC DMR-0820414, NSFDMR-1105512, NHARP

References

1. Datta S (1999) Electronic transport in mesoscopic systems. Cambridge University Press,
Cambridge

2. Datta S, Das B (1990) Appl Phys Lett 56(7):665
3. IBM. idataplex dx360 M3 datasheet. http://www-03.ibm.com/systems/x/hardware/idataplex/

dx360m3/index.html
4. Infiniband TA. Introduction to Infiniband. http://members.infinibandta.org/kwspub/Intro_to_

IB_for_End_Users.pdf
5. Intel. Intel Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/
6. Jacob J, Lehmann H, Merkt U, Mehl S, Hankiewicz E (2011) DC-biased InAs spin-filter

cascades. J Appl Phys 112:013706
7. Jacob J, Meier G, Peters S, Matsuyama T, Merkt U, Cummings AW, Akis R, Ferry DK

(2009) Generation of highly spin-polarized currents in cascaded InAs spin filters. J Appl Phys
105:093714

Efficient Algorithms for the Green’s Function Formalism 31

http://www-03.ibm.com/systems/x/hardware/idataplex/dx360m3/index.html
http://www-03.ibm.com/systems/x/hardware/idataplex/dx360m3/index.html
http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf
http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf
http://software.intel.com/en-us/articles/intel-mkl/


8. Jacob J, Wenzel L, Schmidt D, Ruan Q, Amin V, Sinova J (2012) Numerical transport
simulations in semiconductor nanostructures on CPUs and GPUs. Lecture notes in
engineering and computer science: proceedings of the international multiconference of
engineers and computer scientists 2012, IMECS

9. Koo HC, Kwon JH, Eom J, Chang J, Han SH, Johnson M (2009) Control of spin precession in
a spin-injected field effect transistor. Science 325(5947):1515–1518

10. MAGMA. Magma—matrix algebra on gpu and multicore architectures. http://icl.cs.utk.edu/
magma/

11. National instruments (2012) LabVIEW GPU Analysis Toolkit. beta version
12. National instruments (2012) LabVIEW multicore analysis and sparse matrix toolkit. https://

decibel.ni.com/content/docs/DOC-12086
13. NVIDIA. CUDA BLAS implementation description. http://developer.nvidia.com/cuBLAS
14. NVIDIA. CUDA version 4.0 datasheet. http://developer.nvidia.com/cuFFT
15. NVIDIA. CUDA version 4.0 datasheet. http://developer.nvidia.com/cuda-toolkit-40
16. NVIDIA. CUDA version 5 RDMA feature. http://developer.nvidia.com/gpudirect
17. NVIDIA (2011) Tesla M2050 GPGPU datasheet
18. Oestreich M, Bender M, Hubner J, Hägele D, Rühle WW, Hartmann Th, Klar PJ, Heimbrodt W,

Lampalzer M, Volz K, Stolz W (2002) Spin injection, spin transport and spin coherence.
Semicond Sci Technol 17(4):285–297

19. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C, vol
123. Cambridge University Press, Cambridge, p 50

20. Schenk O, Bollhoefer M, Roemer R (2008) SIAM Rev 50:91–112
21. Schenk O, Waechter A, Hagemann M (2007) J Comput Optim Appl 36(2–3):321–341
22. Schenk O, Gärtner K (2004) Journal of Future Generation Computer Systems 20(3):475–487
23. Schmidt G, Ferrand D, Molenkamp LW, Filip AT, van Wees BJ (2000) Fundamental obstacle

for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys
Rev B 62(8):R4790–R4793

24. Usuki T et al (1994) Phys Rev B 50:7615–7625
25. Wunderlich J, Park B-G, Irvine AC, Zarbo LP, Rozkotov E, Nemec P, Novak V, Sinova J,

Jungwirth T (2010) Science 330(6012):1801–1804

32 J. Jacob et al.

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://decibel.ni.com/content/docs/DOC-12086
https://decibel.ni.com/content/docs/DOC-12086
http://developer.nvidia.com/cuBLAS
http://developer.nvidia.com/cuFFT
http://developer.nvidia.com/cuda-toolkit-40
http://developer.nvidia.com/gpudirect

	2 Efficient Algorithms for the Green’s Function Formalism
	Abstract
	1…Introduction
	2…Mathematical and Physics Background
	3…Basic Implementation
	4…Optimizations
	5…Implementation on GPUs
	6…Benchmarks
	7…Multiple GPU Implementation
	8…Conclusion
	Acknowledgments
	References


