Residue-Derived Amino Sugar Formation and Its Carbon Use Efficiency

Zhen Bai, Samuel Bodé, Pascal Boeckx, and Xudong Zhang

Abstract A 21-day lab incubation experiment was carried out with arable soil and uniform ¹³C-labeled wheat residues. Residue-derived amino sugars (AS_R) accumulated exponentially and were fitted with a first-order model $C_t = C_{Max}(1 - e^{-kt})$ well. Their maxima were 88–381 nmol g^{-1} for glucosamine (GluN_R), 52–105 nmol g^{-1} for glacosamine (GalN_R), and 107–137 nmol g^{-1} for muramic acid (MurN_R), respectively. Their half-lives ($T_{1/2}$) separately varied between 1.2 and 3.3 days for GluN_R, 1.6 and 4.7 days for GalN_R, and less than 0.3 day for MurN_R. A close relationship was observed between carbon mineralization and AS_R (P < 0.05), and carbon use efficiency of cumulative AS_R was calculated and compared.

Keywords Amino sugar • Carbon use efficiency • Organic residue • Carbon-13 • LC-c-IRMS

Z. Bai

S. Bodé • P. Boeckx Laboratory of Applied Physical Chemistry (ISOFYS), Ghent 9000, Belgium

X. Zhang (🖂)

State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China

State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China

Chinese National Field Research Station of Shenyang Agro-ecosystems, Shenyang 110016, People's Republic of China e-mail: xdzhang@iae.ac.cn

J. Xu et al. (eds.), *Functions of Natural Organic Matter in Changing Environment*, DOI 10.1007/978-94-007-5634-2_22, © Zhejiang University Press and Springer Science+Business Media Dordrecht 2013

Introduction

Though amino sugars (AS) have widely been used to investigate microbial residues and correlated organic compounds sequestration, little is known about their formation dynamics in soil (Zhang and Amelung 1996; He et al. 2011). Difficulties are probably ascribed to the definition and differentiation of varied ASs pools, substrate availability, and time scale of the study. With ¹³C-labeled residues' incubation, LC-c-IRMS was utilized to investigate AS formation kinetics and its carbon use efficiency for the first time in this study.

Materials and Methods

0–10-cm top soil from conventional till (**CT**) and no till (**NT**) was amended with ¹³C-labeled wheat grain (**G**), leaf (**L**), and root (**R**) at 6-mg substrate Cg⁻¹ for a 21day incubation, including six treatments: <u>NG</u> (NT + G), <u>NL</u> (NT + L), <u>NR</u> (NT + R), <u>CG</u> (CT + G), <u>CL</u> (CT + L), and <u>CR</u> (CT + R). Concentrations and δ^{13} C of AS were determined by LC-c-IRMS. Residue-derived AS (AS_R) formation was described in AS_{R,t} = AS_{R,Max} · (1 - e^{-kt}), where AS_{R,Max} is potentially accumulative AS_{R,t}, and *k* is AS_{R,t} the formation rate constant, and *t* is the incubation time.

Results and Discussion

This study showed that $T_{1/2}$ of AS_R formation increased as MurN (≤ 0.3 day) < GluN (1.2–3.3 days) < GalN (1.6–4.7days); their maxima were 88–381 nmol g⁻¹ for GluN, 52–105 nmol g⁻¹ for GalN, and 107–137 nmol g⁻¹ for MurN; and AS_{R,Max}/AS_{SOM,0h} were separately 14.9–17.8% for MurN, 5.5–13.0% for GluN, and 2.7–6.3% for GalN (AS_{SOM} data not shown) (Fig. 1, Table 1), which agrees with previous studies (Glaser and Gross 2005). MurN is exclusively originated from bacteria, and its faster formation suggested the important role of bacteria at the early stage of mineralization of wheat residues.

The cumulative GluN_R or GalN_R was significantly correlated to the mineralized carbon (C_M) across all treatments throughout the whole incubation, which strongly suggests that a certain proportion of C_M is allocated into newly formed AS_R (except for MurN_R, Fig. 2). The intercepts and slopes of linear functions between GluN_R and C_M were evidently different from their counterparts between GalN_R and C_M , which clearly signifies a much higher carbon use efficiency of accumulative GluN_R than GalN_R . The stoichiometric relationship between C_M and AS_R could be calculated: an increase of 0.1 µmol GluN_R needed 0.38 µmol C_M , which was 13.61 lower than GalN_R , while after 1 µmol C_M , 0.16 µmol GluN_R would be synthesized, which was nearly 16 times the GalN_R .

Fig. 1 Modeled and measured residue-derived amino sugar concentration $(\mbox{AS}_{\mbox{R},\mbox{I}})$ as a function of time

AS _R	Treats	$AS_{R,max} \text{ (nmol g}^{-1}\text{)}$	$k (\mathrm{day}^{-1})$	$T_{1/2}$ (day)	R^2
GluN _R	NG	$348 \pm 13a$	$0.5\pm0.0a$	$1.3\pm0.1c$	≥0.967
	NL	$274\pm20\mathrm{b}$	$0.3\pm0.0b$	$2.4\pm0.4b$	≥ 0.852
	NR	$141 \pm 22bc$	$0.6\pm0.0a$	$1.3 \pm 0.1c$	≥ 0.474
	CG	$381 \pm 19a$	$0.6\pm0.0a$	$1.2\pm0.1c$	≥ 0.900
	CL	$212 \pm 13bc$	$0.5\pm0.0a$	$1.5\pm0.1c$	≥ 0.820
	CR	$88 \pm 11c$	$0.2\pm0.0c$	$3.3\pm0.4a$	≥ 0.849
GalN _R	NG	$90 \pm 5a$	$0.4\pm0.0a$	$1.6\pm0.1c$	≥0.917
	NL	$87 \pm 7b$	$0.2\pm0.0c$	$4.3\pm0.0a$	≥ 0.922
	NR	$64 \pm 7b$	$0.2\pm0.0c$	$4.7 \pm 1.2a$	≥0.734
	CG	$105 \pm 6a$	$0.4\pm0.0a$	$1.7\pm0.0c$	≥ 0.903
	CL	$61 \pm 3b$	$0.2\pm0.0c$	$4.0\pm0.5a$	≥ 0.924
	CR	$52 \pm 6c$	$0.3\pm0.0b$	$2.7\pm0.1b$	≥ 0.670
MurN _R	NG	$137 \pm 6a$	2.7 ± 0.7	0.3 ± 0.1	≥0.875
	NL	$133 \pm 40a$	_	_	-
	NR	$127 \pm 45a$	_	_	-
	CG	$120 \pm 11a$	_	_	-
	CL	$127 \pm 43a$	_	-	_
	CR	$107 \pm 8a$	_	_	-

 $\label{eq:able1} Table \ 1 \ \ \ \ Parameters \ \ description \ \ of \ \ \ \ AS_R \ formation$

Fig. 2 Correlation between C mineralization and AS_R

References

- Glaser, B., and S. Gross. 2005. Compound-specific δ^{13} C analysis of individual amino sugars–a tool to quantify timing and amount of soil microbial residue stabilization. *Rapid Communications in Mass Spectrometry* 19: 1409–1416.
- He, H.B., X.B. Li, W. Zhang, and X.D. Zhang. 2011. Differentiating the dynamics of native and newly immobilized amino sugars in soil frequently amended with inorganic nitrogen and glucose. *European Journal of Soil Science* 62: 144–151.
- Zhang, X.D., and W. Amelung. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. *Soil Biology and Biochemistry* 28: 1201–1206.