
2 Stellar Atmospheres
Ivan Hubeny
Department of Astronomy and Steward Observatory,
The University of Arizona, Tucson, AZ, USA

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Basic Physics of Stellar Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1 Overview of Basic Equilibrium Conditions: Atmospheric Layers . . . . . . . . . . . . . . . 55
2.2 Interaction of Radiation with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3 LTE Versus Non-LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Model Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1 Hierarchy of Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.1 Approximations of the Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 Approximations of the Presence of External Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.3 Approximations of the Dynamical State of the Atmosphere . . . . . . . . . . . . . . . . . . . 62
3.1.4 Approximations of the Opacity Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.5 Approximations Concerning the Thermodynamic Equilibria . . . . . . . . . . . . . . . . . . 65
3.2 Basic Equations of Classical Stellar Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Hydrostatic Equilibrium Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 Radiative Equilibrium Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.4 Statistical Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.5 Charge Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Complete Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Accelerated Lambda Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.3 Hybrid CL/ALI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Available Modeling Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Existing Model Atmosphere Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 LTE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.2 NLTE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Using Model Stellar Atmospheres to Determine the Fundamental Stellar
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

T.D. Oswalt, M.A. Barstow (eds.), Planets, Stars and Stellar Systems. Volume 4: Stellar Structure and Evolution,
DOI 10.1007/978-94-007-5615-1_2, © Springer Science+Business Media Dordrecht 2013



52 2 Stellar Atmospheres

Abstract: Basic concepts of the stellar atmospheres theory are briefly outlined. After dis-
cussing essential assumptions, approximations, and basic structural equations describing a
stellar atmospheres, emphasis is given to describing efficient numerical methods developed to
deal with the stellar atmosphere problem, namely the method of complete linearization and its
recent variants, and the whole class of methods known by name Accelerated Lambda Iteration.
The existing computer codes, and some of the most useful grids of model atmospheres that
are publicly available, are briefly summarized. Some interesting properties of newly computed
NLTE models atmospheres and their comparison to LTE models are shown. Finally, it is briefly
shown how the model atmospheres are used to determine basic stellar parameters.

1 Introduction

The term stellar atmosphere refers to any medium connected physically to a star from which
the photons escape to the surrounding space. In other words, it is a region where the radiation,
observable by a distant observer, originates. Since in the vast majority of cases the radiation is
the only information about a distant astronomical object that can be obtained (exceptions being
a direct detection of solar wind particles, neutrinos from the Sun and SN1987a, or gravitational
waves), all the information that is gathered about stars is derived fromanalysis of their radiation.

It is therefore of considerable importance to develop reliable methods which are able to
decode the information about a star contained in its spectrum with confidence. Having under-
stood the physics of the problem and being able to carry out detailed numerical simulations
makes it possible to construct theoretical models of a stellar atmosphere and predict a stellar
spectrum.Model stellar atmospheres are one of the building blocks of our understanding of the
radiating objects in the Universe.Modeling stellar atmospheres is one of the most mature fields
that deals with analysis and spectroscopic diagnostics of astronomical bodies. Being a mature
filed, one might not expect any significant new developments. But such a view is completely
wrong. The last decade brought a renewed interest in modeling stellar atmospheres. There are
several reasons for that.The first,more or less obvious, reason is a significantly increased quality
and quantity of observational data that bring new challenges for modelers. For instance, thanks
to Hipparcos, the accurate distances are now known for many stars, which means that the nor-
malization factor to convert the predicted fluxes at the stellar surface to observed fluxes at the
Earth is no longer a free parameter.

The last decade also brought an introduction, after almost a century, of completely new
stellar spectral types – L and T dwarfs (sometimes referred to as brown dwarfs; Burgasser et al.
1999; Delfosse et al. 1997). At present, there is a vigorous debate about the name for a spec-
troscopic class of objects cooler than the coolest T-dwarfs; likely candidate being “Y-dwarfs”,
essentially because there are not many more remaining letters of the alphabet available.

The second reason, or motivation, for a progress in modeling stellar atmospheres is an ever-
increasing computer power, both the memory available, as well as the computer speed. Conse-
quently, muchmore sophisticated model atmospheres of unprecedented degree of realism may
now be constructed in a reasonable amount of computer time.

However, even with most powerful computers and largest memory chips available, one
would still not be able to compute sophisticated modelswithout employing clever and powerful
numerical methods. Therefore, the third basic reason for a recent progress in modeling stellar
atmospheres is a development of new, very efficient numerical methods for solving the highly
nonlinear and nonlocal problem, which the solution of the structural equations for stellar
atmosphere requires.
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Besides being a crucial diagnostic tool for analyzing stellar spectra, the stellar atmospheres
theory provides a guide to the methodology of astrophysical quantitative spectroscopy. Stel-
lar atmospheres are the best-studied example of a medium where radiation is not only a
probe of the physical state, but is in fact an important constituent. In other words, radiation
in fact determines the structure of the medium, yet the medium is probed only by this radi-
ation. Unlike laboratory physics, where one can change a setup of the experiment in order
to examine various aspects of the studied structures separately, one does not have this lux-
ury in astrophysics: all what is available is an observed spectrum, so the information encoded
in it should be extracted as completely as possible. This is exactly what the stellar atmo-
sphere theory is doing for almost a century now. Consequently, it is developed to such an
extent that it provides an excellent methodological guide for other situations where the radi-
ation has the dual role of a probe and a constituent. Examples of such astronomical objects
are planetary atmospheres, interstellar medium, H II regions, and accretion disks, to name
just few.

The main goal of this chapter is to provide a brief introduction to the basic concepts
needed to understand the fundamental physics of stellar atmospheres, as well as the leading
principles behind recent developments. Particular emphasis will be devoted to the classi-
cal plane-parallel atmospheres in hydrostatic and radiative equilibrium. Much more mate-
rial on stellar atmospheres is presented in several monographs and conference proceedings.
The fundamental textbook of the field, Mihalas (1978), is still a highly recommended text,
although it does not cover important recent developments, like, for instance, modern numer-
ical methods. The third edition of the book is now in preparation, but it will take some time
before it is available. There is a textbook by Rutten (1995), distributed electronically, which
covers both the basic concepts as well as some of the modern developments and is recom-
mended to the beginner in the field. There are two books edited by Kalkofen which present
a collection of reviews on various mathematical and numerical aspects of radiative transfer
(Kalkofen 1984, 1987). A good textbook that covers both the theoretical and observational
aspects of the stellar atmospheres is that by Gray (1992). Other related textbooks include
Rybicki and Lightman (1979), Shu (1991), and an elementary-level textbook by Böhm-Vitense
(1989). An old but excellent textbook on radiative transfer is Jefferies (1968), an even older
but classical one by Chandrasekhar (1960), and a newer book by Cannon (1985). There are
two excellent books on the topic of radiation hydrodynamics, which contain several chap-
ters related to the present topic, namely Mihalas and Mihalas (1984), and Castor (2004).
Besides these monographs, two recent Proceedings (Hubeny et al. 2003, 2009) contain a
number of excellent review papers covering various topics in theory and modeling of stellar
atmospheres.

2 Basic Physics of Stellar Atmospheres

From the physical point of view, a stellar atmosphere is generally a plasma composed of many
kinds of particles, namely atoms, ions, free electrons, molecules, or evendust grains. In an early-
type stellar atmospheres, because of the high temperature and strong radiation field, there are
typically nomolecules nor dust grains present, at least in the layers that are traditionally consid-
ered as an atmosphere. Molecules are present in the atmospheres of solar-type stars and cooler,
and dust grains (cloud particles) are present in very cool stars and subsolar-mass objects (brown
dwarfs and giant planets).
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Typical values of temperature range from  K (or even much less in atmospheres of plan-
ets and brown dwarfs; say down to 50K) to a few times  K in the hottest stars. Temperature
is even higher, – K, in stellar coronae. The total particle density ranges from, say, 

to  cm−. Under such conditions, the natural starting point for the physical description is
the kinetic theory. The physical state of the system is then fully described by a set of kinetic
(Boltzmann) equation for the distribution functions, fi , of all kinds of particles that exist in
the atmosphere (generally, not only for the individual atoms, ions, free electrons, and possibly
molecules, but also for individual excitation states of the atoms/ions),

∂ fi
∂t

+ (u ⋅ ∇) fi + (F ⋅ ∇p) fi = (
D fi
Dt

)

coll
, (2.1)

where∇ and∇p are the usual nabla differential operators with respect to position andmomen-
tum components, respectively; u is the particle velocity, and F is the external force. The term
(D f /Dt)coll is the so-called collisional term, which describes creations and destructions of
particles of type i with the position (r, r + dr) and momentum (p,p + dp).

However, the full distribution functions are usually not needed, and in any case the number
of unknowns to be determinedwould be enormous.The standard procedure to reduce the prob-
lem is to form moments of the kinetic equation that lead to the usual hydrodynamic equations.
The procedure is described in any textbook of kinetic theory or hydrodynamics; in the astro-
physical context, the excellent textbooks are Mihalas and Mihalas (1984) and Castor (2004).

The standard set of hydrodynamic equations are the continuity equation,

∂ρ
∂t

+∇ ⋅ (ρv) =  , (2.2)

the momentum equation,
∂(ρv)
∂t

+∇ ⋅ (ρvv) = −∇P + f , (2.3)

and the energy balance equation,

∂
∂t
(



ρv

+ ρє)+ ∇ ⋅ [(



ρv

+ ρє + P) v] = f ⋅ v −∇ ⋅ (Frad + Fcon) . (2.4)

Here, v is the macroscopic velocity, ρ the total mass density, P the pressure, f the external force,
є the internal energy, Frad the radiation flux, and Fcon the conductive flux. >Equations 2.2–2.4
representmoment equations of the kinetic equation (>2.1), summedover all kinds of particles.

In addition to classical hydrodynamics, one also considers a zeroth-order moment equation
for the individual kinds of particles in the individual degrees of freedom (excitation states), i.e.,
the conservation equation for particles of type i,

∂ni

∂t
+∇ ⋅ (niv) = (

Dni

Dt
)

coll
, (2.5)

which are used for the so-called non-LTE (or NLTE) description – see below. Here, ni is the
number density (population) of the state i.

These equations provide the most general description of the dynamics of a stellar atmo-
sphere. They are still extremely complex to solve in full generality; therefore, one has to resort
to various simplifying approximations, which are briefly discussed next.
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2.1 Overview of Basic Equilibrium Conditions: Atmospheric Layers

Traditionally, a stellar atmosphere is divided into several basic layers, depending on what kind
of equilibrium conditions can be reasonably assumed to hold there. In the case of early-type
stars (early A-type and hotter), the two basic layers are the photosphere and the stellar wind.
In the case of solar-type stars and cooler, the layers are somewhat different. Typically, there is
again a photosphere, then chromosphere and corona, and finally a (typically week) wind.

The photosphere is the innermost part of the atmosphere. The mass outflow velocities are
very small there, smaller than the local sound speed, so that they can be neglected. The pho-
tosphere is assumed to be an essentially static region. The radial extent of the photosphere is
typically very small compared to the stellar radius, even for hot massive stars. This region is
very important because most of the observed spectral features originate there. Therefore, it
is fair to say that the photosphere is crucial for determining basic stellar parameters, such as
effective temperature, gravity acceleration, and chemical composition. Stellar photospheres are
characterized by the condition of hydrostatic and radiative equilibrium.

The hydrostatic equilibrium stipulates that the gradient of the total pressure is balanced by
the local gravity acceleration. Because the radial extent of the photosphere is small compared
to the stellar radius, the gravity acceleration is essentially constant. The explicit form of this
equation is (for a spherically-symmetric star):

dP
dR

= −ρ GM
∗

/R
≈ −ρ GM

∗

/R
∗

≡ −ρ g , (2.6)

where P is the total pressure, R is the radial coordinate, M
∗

and R
∗

are the stellar mass and
radius, respectively, g is the gravity acceleration at the stellar surface, and ρ the mass density.
Notice that (> 2.6) follows from the general momentum equation (> 2.3) by setting ∂/∂t = 
(a stationary situation), v =  (static case), and f = −ρg (external force being given by the grav-
ity force; theminus sign reflects the fact that the gravity acts inward, while the radial coordinate
increases outward).

The radiative equilibrium simply states that the total radiation flux is conserved. As follows
from the energy equation (> 2.4), its reduction to the static case and neglecting conduction
leads to

∇Frad =  �⇒ Frad = const ≡ σT
eff , (2.7)

where σ is the Stefan–Boltzmann constant and Teff is the so-called effective temperature.
As follows from (>2.6) and (>2.7), the gravity acceleration g and the effective temperature

Teff are two basic parameters of the stellar photosphere problem.
The atmospheres of cool stars (late A-type and cooler) contain regions that are unstable

against convection; the unstable regions are those that satisfy the Schwarzschild criterion, (e.g.,
Mihalas 1978),

∇R ≡ (
d lnT
d ln P

)

R
> (

d lnT
d ln P

)

A
≡ ∇A , (2.8)

where∇R is the logarithmic gradient of temperaturewith respect to the total pressure assuming
radiative equilibrium, while∇A is the adiabatic gradient. The latter can be easily evaluated as a
function of temperature and density of the stellar material.

Convection is a transport of energy by rising and falling bubbles of material with properties
(e.g., temperature) different from the ambientmedium. It is therefore, by its very nature, a non-
stationary and nonhomogeneous phenomenon. Putting v =  and assuming a 1D medium
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means, strictly speaking, that convection is a priori neglected in the hydrodynamic equations.
However, most modeling approaches use simplified descriptions, such as the mixing-length
theory (see any standard textbook, e.g., Mihalas 1978), which recasts the problem in the form
of a 1D stationary equation, viz.

Frad + Fconv = σT
eff , (2.9)

where the convective flux Fconv is a specified function of basic state parameters (temperature,
density, etc.)

The stellar wind is the region where the outflow velocities are comparable or larger than
the local sound speed.The radial extent of this region may be comparable to or, in some cases,
significantly larger than, the radius of the stellar photosphere.

Stellar winds, as well as stellar chromospheres and coronae, are covered in another chapters.
This chapter concentrates mainly on the stellar photospheres.

2.2 Interaction of Radiation withMatter

From the very nature of stellar atmospheres, it is clear that a detailed description of the processes
of interaction between radiation and matter is a crucial ingredient of the stellar atmospheres
theory. These processes determine (1) how the radiation is transported in the atmosphere and
(2) what is the distribution of the microscopic degrees of freedom of the massive particles (e.g.,
the excitation and ionization states of the individual atomic species, etc.).

The interaction between radiation and matter is described through the radiative transfer
equation, which is generally written as

(


c
∂
∂t
+ n ⋅ ∇) I(ν, r,n, t) = η(ν, r,n, t) − χ(ν, r,n, t) I(ν, r,n, t) . (2.10)

Here, I is the specific intensity of radiation, defined such that it is the energy transported by
radiation in a unit frequency range at the frequency ν, across a unit area perpendicular to the
direction of propagation, n, into a unit solid angle, and in a unit time interval. The specific
intensity provides a complete description of the unpolarized radiation field from the macro-
scopic point of view. This description can be generalized to an arbitrarily polarized light by
introducing the Stokes vector instead of the scalar intensity (e.g., Chandrasekhar 1960). This
case will not be considered here.

Quantities χ and η are the absorption and emission coefficients, respectively. They are
defined analogously to the specific intensity, namely as the energy removed or added to a beam
of radiation at unit frequency range, solid angle, area, and time.

It is known from the quantum theory of radiation that there are three types of elementary
processes that give rise to an absorption or emission of a photon: (1) induced absorption – an
absorption of a photon accompanied by a transition of an atom/ion to a higher energy state;
(2) spontaneous emission – an emission of a photon accompanied by a spontaneous transi-
tion of an atom/ion to a lower energy state; and (3) stimulated emission – an interaction of an
atom/ion with a photon accompanied by an emission of another photon with identical prop-
erties. In the astrophysical formalism, the stimulated emission is usually treated as negative
absorption.

In thermodynamic equilibrium, the microscopic detailed balance holds, and therefore the
radiation energy absorbed in an elementary volume in an elementary frequency interval is
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exactly balanced by the energy emitted in the same volume and in the same frequency range,
i.e., χ I = η. Moreover, in thermodynamic equilibrium, the radiation intensity is equal to the
Planck function, I = B, where

B(ν,T) =
hν

c


exp(hν/kT)− 
. (2.11)

In thermodynamic equilibrium, one has, therefore, η/χ = B, which is called the Kirchhoff ’s law.
The absorption coefficient (or opacity) is given by

χν = κν + σν , (2.12)

where κν is the coefficient of true absorption (or extinction coefficient) and σν is the scattering
coefficient. The extinction coefficient is given by

κν = ∑
i
∑

j>i
[ni − (gi/g j)n j] σi j(ν) +∑

i
(ni − n∗i e

−hν/kT
) σiκ(ν)

+∑

κ
nenκσκκ(ν,T) ( − e−hν/kT) , (2.13)

where the three terms represent, respectively, the contributions of bound-bound transitions
(i.e., spectral lines), bound-free transitions (continua), and free-free absorption (also called
brehmstrahlung).

Here, ni is the occupation number (population) of an atom in the energy level labeled i,
gi the corresponding statistical weight, and n∗i denotes an equilibrium population of level i
corresponding to temperature T , and electron density ne. σ(ν) are the corresponding cross
sections; subscript κ denotes the “continuum,” and nκ the ion number density. The nega-
tive contributions represent the stimulated emission. The relation between the bound-bound
cross section σi j(ν) and the well-known Einstein coefficients for the for the photoexcitation is
σi j(ν) = (hν/π)Bi jϕ(ν), where ν is the frequency of the line center, and ϕ(ν) the absorption
profile coefficient, normalized to unity, ∫ ϕ(ν) dν = . It represents the conditional probability
density that if a photon is absorbed in the transition i → j, it is absorbed in the frequency range
(ν, ν + dν).

In hot stars, a photon scattering on free electrons – electron scattering, is the dominant
scattering process. Moreover, it is to a good approximation coherent, i.e., without a change of
frequency – Thomson scattering. In this case,

σν = neσe , (2.14)

where σe is the Thomson cross section. A more general, incoherent case is called Compton
scattering. The effects of Compton scattering are negligible in the atmospheres of most stars,
with a possible exception of extremely hot subdwarfs, white dwarfs, and pre-white dwarfs. For
cooler stars, the Rayliegh scattering becomes important, and for very cool objects (M dwarfs
and substellar mass-objects) where clouds are formed, the Mie scattering on clouds particles is
important. There is no stimulated emission correction for the coherent scattering, because this
contribution exactly cancels with ordinary absorption.

The absorption coefficient defined by (> 2.13) has the dimension cm−, and its inverse has
a meaning of the photon mean free path. This coefficient is also called opacity per length, in
contrast to opacity per mass which is defined as χν/ρ. The advantage of the latter is that it is
typically much less dependent on mass density, because the atomic level populations and the
electron density roughly scale with mass density, so that these dependencies almost cancel.
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Analogously, the emission coefficient is given by

ην = ηth
ν + ηscat

ν , (2.15)

where the thermal emission coefficient is given by

ηth
ν = (hν

/c) [∑
i
∑

j>i
n j(gi/g j)σi j(ν) +∑

i
n∗i σiκ(ν) e

−hν/kT

+∑

κ
nenκσκκ(ν,T) e−hν/kT ] . (2.16)

The three terms again describe the bound-bound, bound-free, and free-free emission processes,
respectively.

The scattering part of the emission coefficient is more complex. Generally, it is given by

ηscat
ν (n) = ∫ dν′∮ dΩ′/(π)R(ν′,n′, ν,n) I(ν′,n′) , (2.17)

where R(ν′,n′, ν,n) is the redistribution function that represents a probability density that a
photon in the frequency range (ν′, ν′+dν′) and in an element of solid angle dΩ′ around direc-
tion n′ is absorbed, and a photon in the frequency range (ν, ν + dν) and in an element of solid
angle dΩ around direction n is emitted in the scattering process.The redistribution function is
usually assumed to be separable into the frequency and the angular part,

R(ν′,n′, ν,n) = R(ν′, ν) g(n′,n) , (2.18)

where R(ν′, ν) is called frequency redistribution function, and g the phase function. In the case
of electron (Thomson) scattering, R(ν′, ν) = neσeδ(ν′ − ν), and assuming isotropic scattering,
g(n′,n) = , the scattering emission coefficient is simply given by

ηscat
ν = neσe Jν , (2.19)

where J is the mean intensity of radiation – see (> 2.29).
The absorption and emission coefficients are thus described through the corresponding

cross sections, given by the atomic physics, the local thermodynamic parameters, T and ne,
and the atomic level populations for all the levels involved in the microscopic processes that
give rise to an absorption and emission at frequency ν; such a number may be enormous. The
scattering emission coefficient moreover depends explicitly the radiation field. Besides that, the
main difficulty of the stellar atmospheres theory is that the level populations generally depend
(in a NLTE situation) on other state parameters and the radiation field.

It should also be realized that the number of cross sections and other parameters to be sup-
plied by atomic physics is enormous. In fact, once efficient numerical methods for solving the
coupled problem of radiation transport and hydrodynamics are developed, the main limiting
factor in producing realistic model stellar atmospheres is the availability of necessary atomic
data. The most popular large-scale source of data for bound-bound transitions, lines, are the
Kurucz line lists (Kurucz 1993; the latest additions described in Kurucz 2009). In the last two
decades, two major collaborative projects – Opacity Project (OP – OP Team 1995, 1997; Seaton
1987) and its continuation the Iron Project (Hummer et al. 1993; Pradhan et al. 1996), and
the OPAL Project (Iglesias and Rogers 1991, 1996) – have produced accurate atomic data on a
large scale. There have also been a significant progress on the molecular data; for a review, see
Jørgensen (2003) and Sharp and Burrows (2007).
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2.3 LTE Versus Non-LTE

It is well known from statistical physics that a description of material properties is greatly
simplified if the thermodynamic equilibrium (TE) holds. In this state, the particle velocity
distributions as well as the distributions of atoms over excitation and ionization states are
specified uniquely by two thermodynamic variables. In the stellar atmospheres context, these
variables are usually chosen to be the (kinetic) temperature (T), and the total particle number
density (N), or the electron number density (ne). From the very nature of a stellar atmosphere,
it is clear that it cannot be in thermodynamic equilibrium – a star is detectable by a distant
observer, so photons must be escaping from it. Because photons carry significant momentum
and energy, the elementary fact of photon escape has to give rise to significant gradients of the
state parameters in the stellar outer layers.

However, even if the assumption of TE cannot be applied to a stellar atmosphere, one may
still use the concept of local thermodynamic equilibrium – LTE. This assumption stipulates that
one may employ the standard thermodynamic relations not globally for the whole atmosphere,
but locally, for local values of T(r) and N(r) or ne(r), despite the gradients that exist in the
atmosphere.This assumption simplifies the problem enormously, for it implies that all the par-
ticle distribution functions may be evaluated locally without reference to the physical ensemble
inwhich the givenmaterial is found.Notice that the equilibriumvalues of distribution functions
are assigned to massive particles; the radiation field is allowed to depart from its equilibrium,
Planckian, distribution function (i.e., I = B is valid only in strict TE).

Specifically, LTE is characterized by the following three distributions:

– Maxwellian velocity distribution of particles

f (v)dv = (m/πkT)/ exp(−mv
/kT) dv , (2.20)

where m is the particle mass and k the Boltzmann constant.
– Boltzmann excitation equation,

(n j/ni) = (g j/gi) exp [−(E j − Ei)/kT] , (2.21)

where gi is the statistical weight of level i, and Ei the level energy,measured from the ground
state.

– Saha ionization equation.

NI

NI+
= ne

UI

UI+
C T−/ exp(χI/kT) , (2.22)

where NI is the total number density of ionization stage I, U is the partition function,
defined by U = ∑

∞

 gi exp(−Ei/kT); χI is the ionization potential of ion I, and C =

(h
/πmk)/ is a constant. It should be stressed that in the astrophysical LTE description,

the same temperature T applies to all kinds of particles, and to all kinds of distributions,
(> 2.20–2.22).

>Equations 2.20–2.22 define the state of LTE from the macroscopic point of view. Microscop-
ically, LTE holds if all atomic processes are in detailed balance, i.e., if the number of processes
A → B is exactly balanced by the number of inverse processes B → A. A and B refer to any
particle states between which there exists a physically possible transition. For instance, A is an
atom in an excited state, and B the same atom in another state (either of the same ion, in which
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case the process is an excitation/de-excitation; or of the higher or lower ion, in which case the
term is an ionization/recombination).

In contrast, the term non-LTE (or NLTE) characterizes any state that departs from LTE. In
practice, this usually means that populations of some selected energy levels of some selected
atoms/ions are allowed to depart from their LTE values, while the velocity distributions of all
particles are assumed to be Maxwellian, all at the same local kinetic temperature, T .

In this case, the number densities (populations) of all energy levels of all atoms and ions
that are important in the atmosphere have to be determined. Equations that describe how the
level populations behave are the statistical equilibrium equations (or rate equations), which are
(> 2.5) reduced to a static case, (Dni/Dt)coll = . More explicitly, they express the fact that
under stationary situation, the total number of transitions into a given level i is equal to the total
number of transitions out of level i,

ni ∑
j≠i
(Ri j + Ci j) = ∑

j≠i
n j (Rji + Cji) , (2.23)

where Ri j and Ci j are the radiative and collisional rates, respectively, for the transition from
level i to level j. The left-hand side of (> 2.23) represents the total number of transitions out of
level i, while the right-hand side represents the total number of transitions into level i from all
other levels.

One of the important issues of the stellar atmospheres theory for the last three decades was
whether, and if so to what extent, departures from LTE should be included in numerical model-
ing. Generally, to understand why and where one may expect departures from LTE, it is best to
turn to themicroscopic definition of LTE. It is clear that LTE breaks down if the detailed balance
in at least one transition A→ B breaks down. There are two types of transitions: the collisional
transitions (arising due to interactions between two or more massive particles) and radiative
transitions (interactions involving particles and photons).Under stellar atmospheric conditions,
collisions between massive particles tend to maintain the local equilibrium (because velocities
are Maxwellian). Therefore, the validity of LTE hinges on whether the radiative transitions are
in detailed balance or not.

The fact that the radiation escapes from a star implies that LTE should eventually break
down at a certain point in the atmosphere. Essentially, this is because detailed balance in radia-
tive transitions generally breaks down at a certain point near the surface. Because photons
escape (and more so from the uppermost layers), there must be a lack of them there. Con-
sequently, the number of photoexcitations (or any atomic transition induced by absorbing a
photon) is less than a number of inverse processes, spontaneous de-excitations (neglecting here,
for simplicity, the stimulated emission).

These considerations explain that departures from LTE are expected if the following
two conditions are met: (1) radiative rates in some important atomic transition dominate
over the collisional rates; and (2) radiation is not in equilibrium, i.e., the intensity does not have
the Planckian distribution. Because the collisional rates are proportional to the particle density,
the departures from LTE tend to be small for high densities. Likewise, deep in the atmosphere,
photons do not escape, and so the intensity is close to the equilibrium value. Departures from
LTE are therefore small, even if the radiative rates dominate over the collisional rates. On the
other hand, departures from LTE are important for low-density media immersed in a strong
radiation field, which are precisely the conditions met in the atmospheres of hot stars.
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3 Model Atmospheres

Model stellar atmospheres are basic tools to analyze observed stellar spectra. By fitting the
observed spectrum by a grid of theoretically predicted spectra, one can derive the basic param-
eters used for constructing the models, i.e., the effective temperature, surface gravity, chemical
composition, and, in the general case, themass loss rate. From those parameters, one can derive
the fundamental stellar parameters, like the mass, radius, and luminosity. Besides these, there
are a number of secondary parameters, such as the rotational velocity, or auxiliary parameters
describing the nature of atmospheric velocity fields, etc.

By the termmodel stellar atmosphere, it is understood a specification of all the atmospheric
state parameters as functions of position. These parameters are obtained by solving appropri-
ate structural equations, which, in the case of stellar photospheric models, are the equations of
hydrostatic equilibrium, radiative equilibrium, radiative transfer equation, and the set of statis-
tical equations (rate equations) for the atomic level populations. In the case of LTE models, the
rate equations are not needed because the level populations are given by the Saha–Boltzmann
distribution. Because the problem is very complex, it is impossible to find analytical solutions.
Therefore, one has to resort to numerical simulations. In order to make the overall problem
tractable, it is necessary to make a number of simplifications by invoking various approxima-
tions. The quality of an appropriate model, and consequently its applicability to the individual
stellar types, is closely related to the degree of approximation used in the construction of the
model. Needless to say, the degree of approximation critically influences the amount of com-
putational effort to compute it. It is fair to say that the very art of computing model stellar
atmospheres is to find such physical approximations that allow the model to be computed with
a reasonable amount of numerical work, yet the model is sufficiently realistic to allow its use for
a reliable interpretation of observed stellar data.The adopted approximations are therefore criti-
cal.There are several types of approximations that are typically made in themodel construction,
which are summarized below.

3.1 Hierarchy of Approximations

3.1.1 Approximations of the Geometry

What is meant by the geometrical simplification is that either some prescribed geometrical con-
figuration is assumed or some special kind of overall symmetry is invoked. The goal of those
simplifications is to reduce the dimensionality of the problem from a spatially 3D problem to
1- or 2D problem. The most popular approximations are (from simplest to more complex):

– Plane-parallel geometry, with an assumption of horizontally homogeneous layers. This
decreases the number of dimensions to one: the depth in the atmosphere.This approxima-
tion is typically quite reasonable for stellar photospheres, which indeed are by several orders
of magnitude thinner than the stellar radius, so the curvature effects are negligible. The
assumption of horizontal homogeneity ismade for the sake of simplicity – there is no plausi-
ble verification of this approximation, and, moreover, observational evidencemostly shows
that stellar surfaces are far from being homogeneous (a notorious example being detailed
pictures of the solar surface). Nevertheless, even in the presence of inhomogeneities,
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1Dmodels still have their value since, inmany cases, onemay construct different 1Dmodels
for the individual “patches” on the surface.

– Spherical symmetry. Again, the problem is one-dimensional. The approach is used for
extended atmospheres, for which the atmospheric thickness is no longer negligible with
respect to the stellar radius. Typically, one has to consider such models for giants and
supergiants, as well as for earliest types of main-sequence O stars.

– Multidimensional geometry. This field is at its infancy. A numerical solution is extremely
demanding on computer time andmemory, and only very recently has the computer power
reached a stage that calculating suchmodels is becoming feasible.Model atmosphereswith a
2D and 3D geometry have been constructed for solar-type atmospheres; for a recent review,
see Carlsson and Stein (2003), Stein and Nordlund (2003), and Nordlund and Stein (2009).

3.1.2 Approximations of the Presence of External Forces

In a typical stellar atmospheres, the only external force that is taken into account is the force of
gravity of the star, and its effect (in the case of a photosphere) is described through the hydro-
static equilibrium (> 2.6). Other forces are sometimes taken into account, depending above all
on the nature of the studied object.

– Centrifugal force. If the star rotates very fast, close to breakup rotation rate, the whole
star becomes distorted. A star is still assumed to be cylindrically symmetric, but the over-
all atmosphere is no longer described by a single model, but instead it is assumed to be
composed of a set of latitudinal belts, each described by a unique model atmosphere. This
approach implicitly assumes that the physical properties of the atmosphere varymuch faster
in the vertical direction (toward the stellar center) than in the horizontal direction. This is
usually an excellent approximation.The centrifugal force thus does not enter themodel con-
struction directly, but only indirectly through the need of constructing several models for a
stellar atmosphere instead of one.

– Magnetic force. Some objects (magnetic Ap stars, magnetic white dwarfs, neutron stars)
possess a strongmagnetic field, which needs to be taken into account inmodel construction.
This topic will not be discussed in this chapter.

3.1.3 Approximations of the Dynamical State of the Atmosphere

This is basically a specification of the realism of the treatment of themacroscopic velocity fields.
From the simplest to the most complex, the approaches are the following:

– Static models, in which the macroscopic velocity field is set to zero. As discussed above,
these models describe a stellar photosphere.

– Models with an a priori-given velocity field. In these models, the velocities are taken into
account explicitly, and their influence upon other state parameters, in particular the emer-
gent radiation, is studied in detail. In thesemodels, one can either consider only a dynamical
region (i.e., the wind) and take an incoming radiation from the photosphere as given a pri-
ori – the so-called core-halo model; or a model which treats the photosphere and the wind
on the same footing. Such models are called unified models. The most successful computer
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programs for computing such models are cmfgen (Hillier 2003; Hillier and Miller 1998),
Hoeflich’s suite of programs (Hoeflich 1995, 2003), phoenix (Hauschildt et al. 1997),
Munich codes (fastwind – Santolaya-Rey et al. 1997; wm-basics – Pauldrach et al. 2001),
and the Kiel-Potsdam code (Hamann 1985; Koesterke et al. 2002).

– Models where the velocity field is determined self-consistently by solving the appropriate
hydrodynamical equations.This problem is very complicated because thewind driving force
is given by the absorption of photons in thousands to millions of metal lines, so the hydro-
dynamical equations should be solved together with at least an approximate treatment of
radiative transfer in spectral lines.

3.1.4 Approximations of the Opacity Sources

In real stellar atmospheres, there is an enormous number of opacity sources. It is essentially
impossible (or, at least, impractical) to take all of them into account in full detail. The light
elements (H, He, C, N, O) have comparatively a small number of lines per ion (say –)
because of a relatively simple atomic level structure. The number of lines generally increases
with increasing atomic number, and for the iron-peak elements (Fe and Ni being the most
important ones), there are of the order of – spectral lines per ion! Therefore, the opacity
(and emissivity) may be an enormously complicated function of frequency. For cool stars, the
problem is even worse because the number of molecular lines is even larger (for instance, water
has of the order of  lines that should be taken into account).

There are several approximations that are meant to reduce this complexity considerably:

– Models constructed using certain frequency-averaged opacities; these models are called
grey models. The approach is based on the implicit assumption that the behavior of the
frequency-averaged intensity of radiation is well described by means of some frequency-
averaged opacities.There are several possible mean opacities, depending on how exactly the
averaging is done. The most used averaged opacity is the Rosseland mean opacity, defined
by


χR

≡
∫

∞

 (/χν)(dBν/dT) dν

∫

∞

 (dBν/dT) dν
, (2.24)

where χν is the opacity (per gram of stellar material). Because averaging is done for /χ, the
largest weight is given to regions of lowest opacity, which are the most efficient regions for
the energy flux transport. This explains why the Rosseland mean opacity is well suited for
describing the total radiation flux, and why it is the most appropriate mean opacity to be
used for modeling stellar interiors.

The grey model atmospheres are no longer used for spectroscopic analysis, but they
are useful for providing an initial estimate in any iterative method for constructing more
realisticmodel atmospheres, and they are very useful for pedagogical purposes because they
allow one to understand a rough behavior of temperature and radiation field as a function
of depth in the atmosphere.

– A possibility is to use stepwise frequency averages for a number of subintervals (frequency
bins), called sometimesmultifrequency/multi-greymethod.This approachwas used in con-
structing model stellar atmospheres only rarely (Anderson 1985, 1987, 1989) but is more
used in other branches of astrophysical and laboratory radiative transfer.
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– A completely different approach is to construct a model atmosphere neglecting the line
opacity completely. Although this may seem very crude, such models may actually provide
reasonable results for very metal-poor stars because, as was pointed put above, H and He
posses only a small number of lines, which occupy only a very small frequency range and
therefore have a small influence on the model structure. (Strictly speaking, this is not
completely true because just three of the most important hydrogen lines – Lα, Lβ, and
Hα – may already have an important indirect effect upon the temperature structure in
the outer layers of early-type photospheres (Auer and Mihalas 1969). In any event, this
approximation was introduced at the early stages of development of the non-LTE model
atmospheres and was motivated by limitations of then available computers and numerical
techniques.

– An obvious next level of approximation is to consider a small number of lines (typically tens
to hundreds) explicitly while neglecting the bulk of metal lines; the selected lines are those
which presumably have the largest effect upon the atmospheric structure. This approach
was used in early days of NLTE model atmospheres (Auer and Mihalas 1969).

– Finally, one can take into account, by one way or another, “all” metal lines. Such models are
traditionally called metal line–blanketed model atmospheres. The problem of constructing
such models is computationally very demanding. Under the assumption of LTE, it is, how-
ever, considerably simplified because the opacity and emissivity is a function of only local
temperature and electron density; the only problem is the complicated frequency depen-
dence of the opacity. Without the approximation of LTE, the problem is significantly more
difficult because one has to determine all the atomic level populations and temperature
self-consistently with the radiation field.

There are essentially two possibilities:

• Opacity Distribution Functions (ODF). In LTE, the use of ODFs is straightforward (Kurucz
1970). InNLTE, this method is used in conjunction with the concept of superlevels.A super-
level is a set of individual energy levels with close energies, and with identical or similar
quantum numbers (e.g., the same spin quantum number S, the same parity) that share the
common NLTE departure coefficient, that is, they are in Boltzman equilibrium within each
other (Anderson 1985). Transitions between superlevels are called superlines. The idea is
to resample a complicated frequency dependence of the superline cross section to form a
monotonic function of frequency; this function is then represented by a smaller number of
frequency quadrature points (Anderson 1989; Dreizler andWerner 1993; Hubeny and Lanz
1995).

• Opacity Sampling (OS). The idea is a simple Monte Carlo-like sampling of frequency points
of the superline cross sections (Anderson 1989; Dreizler and Werner 1993). The advantage
of this approach is that it can easily treat line blends and overlaps; the disadvantage is that
considering too few frequency points may easily lead tomissing many important line cores.
On the other hand, the “exact” method is in fact a variant of the OS with a sufficiently high
frequency resolution.

An explicit comparison between results using the ODF and the OS approaches, and with
various frequency resolutions in the latter, is presented, e.g., in Lanz and Hubeny (2003). With
increasing computational power, both memory and speed, the Opacity Sampling scheme with
high–frequency resolution becomes the method of choice.
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3.1.5 Approximations Concerning the Thermodynamic Equilibria

As was discussed above, the issue here is whether the approximation of LTE is adopted or not.
If one assumesLTE, the resulting model atmospheres are called LTEmodels. Two state parame-
ters, the temperature, T , and density, ρ (or electron density, ne), suffice to describe the physical
state of the atmosphere at any given position. In practice, LTE models may be useful only for
stellar photospheres because for extended atmospheres and/or stellar winds, this approximation
breaks down completely and its application would yield erroneous and misleading results.

The models that take some kind of departure from LTE into account are called non-LTE
(or NLTE) models. This term is rather ambiguous because it is not a priori specified what is
actually allowed to depart from LTE in a given model. In early models, the populations of
only few low-lying energy levels of the most abundant species, like H and He, were allowed
to depart from LTE; the rest were treated in LTE. During the development of the field, progres-
sively more andmore levels were allowed to depart from LTE.The situation is similar for stellar
photospheres (static models), as well as for stellar winds and for unified models.

3.2 Basic Equations of Classical Stellar Atmospheres

The basic equations of stellar atmospheres for the case of horizontally-homogeneous, plane-
parallel, static atmospheres, that is, stellar photospheres) are summarized below.

3.2.1 Radiative Transfer Equation

For a 1D, static, planar atmosphere, the general transfer (>2.10) can be considerably simplified
to read

μ
dI(ν, μ, z)

dz
= η(ν, μ, z) − I(ν, μ, z) χ(ν, μ, z) , (2.25)

where the intensity of radiation is now only a function of the geometrical coordinate z, fre-
quency ν, and the directional cosine μ. Here, μ = cos θ, where θ is the angle between the
direction of photon propagation and the normal to the surface. Defining the optical depth
through

dτν = −χνdz , (2.26)

and the source function as
Sν = ην/χν , (2.27)

(the functional dependence of position and direction was omitted for notational simplic-
ity, and a dependence on frequency is expressed through subscript ν which is customary in
astrophysical literature), the transfer is rewritten to a usual form

μ
dIν
dτν

= Iν − Sν . (2.28)

It is customary to introduce moments of the specific intensity as
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where the last term corresponds to the 1D plane-parallel approximation. In this case, the only
nonvanishing component of vectorH is theHz-component, which is written simply asH; anal-
ogously the only nonvanishing component of tensor K is the Kzz-component, denoted as K .
The moment equations of the radiative transfer equation, in a plane-parallel approximation,
are written as

dHν

dτν
= Jν − Sν , (2.30)

and
dKν

dτν
= Hν . (2.31)

The system of moment equations is not closed, i.e., the equation for n-th moment contains
the (n + )-th moment, etc. It is therefore necessary to come up with some kind of closure
relation. In the stellar atmospheres theory, one defines the Eddington factor, f K, by (Auer and
Mihalas 1970)

f Kν ≡ Kν/Jν . (2.32)

It is clear from the definition of moments that in the case of isotropic radiation, Iν(μ) = Iν
being independent of angle, the Eddington factor f K = /. Assuming the Eddington factor to
be specified, one may combine the two moment (> 2.30) and (> 2.31) together,

d
( f Kν Jν)
dτν

= Jν − Sν . (2.33)

This equation is very useful. It effectively eliminates one independent variable, the angle μ, from
the problem. Numerically, it replaces the original transfer equation, which is a first-order linear
differential equation for the specific intensity, Iνμ , by a second-order but still linear differential
equation for the mean intensity, Jν . However, it cannot be used alone because the Eddington
factor is unknown unless the full solution of the transfer equation is known. However, it can
be used to advantage in iterative methods in which the current values of J and K are used to
determine the current Eddington factor f K, which is then kept fixed during the subsequent
iteration step.This form is usually used in constructing model stellar atmospheres.

3.2.2 Hydrostatic Equilibrium Equation

Recalling (> 2.6), this equation reads

dP
dz

= −ρ g , (2.34)

where P is the total pressure. Introducing the Lagrangian mass m, defined as the mass in the
column of a cross section of 1 cm above a given point in the atmosphere,

dm = −ρ dz , (2.35)

the hydrostatic equilibrium equation is rewritten as

dP
dm

= g , (2.36)

which, since g is constant in a plane-parallel atmosphere, has a trivial solution, P(m) = mg +
P(). In fact, this is the reason why one usually chooses m as the basic depth variable of the
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1D plane-parallel atmospheres problem. Nevertheless, it should be kept in mind that the total
pressure is generally composed of three pars, the gas pressure, Pgas, the radiation pressure, Prad,
and the turbulent pressure, Pturb , i.e.,

P = Pgas + Prad + Pturb = NkT +
π
c ∫

∞


Kνdν +



ρ v

turb , (2.37)

where vturb is the microturbulent velocity. The hydrostatic equilibrium equation may then be
written as (neglecting the turbulent pressure)

dPgas

dm
= g −

π
c ∫

∞



dKν

dm
= g −

π
c ∫

∞



χν
ρ
Hνdν . (2.38)

The right-hand side of this equation can be interpreted as the effective gravity acceleration since
it expresses the action of the true gravity acceleration (acting downward, i.e., toward the center
of the star), reduced by the radiative acceleration (acting outward).

3.2.3 Radiative Equilibrium Equation

This expresses the fact that the total radiation flux is conserved – (> 2.7),

∫

∞


Hνdν = const =

σ
π

T
eff . (2.39)

This equation may be rewritten, using the radiative transfer equation, as

∫

∞


(κν Jν − ην) dν = ∫

∞


κν (Jν − Sν) dν =  , (2.40)

Notice that (> 2.40) contains the thermal absorption coefficient κν , not the total absorption
coefficient χν . This is because the scattering contributions cancel out. To illustrate this mathe-
matically, let us take an example of electron scattering.The absorption coefficient for the process
(see > 2.13) is given by neσe; σe being the electron scattering (Thomson) cross section. The
emission coefficient is then given by neσe Jν . As it is seen from (> 2.40), these two contri-
butions cancel. This is also clear physically because an absorption followed immediately be a
reemission of a photon does not change the energy balance of the medium, and therefore can-
not contribute to the radiative equilibrium equation. The situation is different for noncoherent,
Compton, scattering. This case will not be discussed here; the interested reader is referred to
Rybicki and Lightman (1979).

3.2.4 Statistical Equilibrium Equations

They are also sometimes called the rate equations. These are given by (> 2.23),

ni∑
j≠i
(Ri j + Ci j) = ∑

j≠i
n j (Rji + Cji) . (2.41)

The collisional rates are given functions of temperature and electron density (since colli-
sions with electrons are usually most efficient), assumed to be known from atomic physics
(e.g., Mihalas 1978). The radiative rates are given by:
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1. For bound-bound (line) transitions between levels i and j, assuming that Ei < E j (that is, i
is the lower level and j the upper level of the transition)

Ri j = Bi j ∫
∞


Jνϕi j(ν) dν ≡ Bi j J̄i j , (2.42)

Rji = Aji + B ji ∫
∞


Jνψ ji(ν) dν → Aji + B ji J̄i j , (2.43)

whereA and B are the Einstein coefficients. Quantity J̄ is called the frequency-averagedmean
intensity of radiation. ϕi j(ν) is a normalized line profile coefficient for absorption, often called
shortly “absorption profile”. It represents a probability density that if a photon is absorbed in
the transition i → j, it is absorbed at an elementary frequency range (ν, ν+dν). Analogously,
ψji is the profile coefficient for emission, which is generally different form ϕ. However, if one
assumes complete frequency redistribution, which is a common approximation in the stellar
atmospheres theory, both profiles are equal, ϕi j(ν) = ψji(ν). In other words, absorbed
and reemitted photons are not correlated. A more general situation where the correlation
between an absorbed and an emitted photon is taken into account is usually referred to in
astrophysical literature as partial frequency redistribution. This case will not be considered
here; a review can be found, e.g., in Mihalas (1978), Hubeny (1985), and Uitenbroek (2003).
The last part of (>2.43) corresponds to the complete redistribution.

In the case of a pure Doppler profile, i.e., no intrinsic broadening of the spectral line,
which is broadened only due to the thermal motion of radiators, the absorption profile is
given by

ϕ(x) = exp(−x
)/

√

π . (2.44)

where x is a dimensionless frequency displacement from the line center, ν, measured in
unites of Doppler widths,

x ≡
ν − ν
ΔνD

, (2.45)

where ΔνD is the Doppler width, given by ΔνD = (ν/c)vth, with the thermal velocity
vth = (kT/m)/, m being the mass of the radiating atom.

In a more general case where there is an intrinsic broadening of lines described by a
Lorentz profile in the atomic rest frame (the most common types of intrinsic broadening
being the natural, Stark, and Van der Waals broadening – see Mihalas 1978, or monograph
by Griem 1974), the profile function is given by

ϕ(x) = H(a, x)/
√

π , (2.46)

where H(a, x) is the Voigt function,

H(a, x) =
a
π
∫

∞

−∞

e−y


(x − y) + a
dy . (2.47)

TheVoigt function is a convolution of the Doppler profile (i.e., the thermalmotions) and the
Lorentz profile (intrinsic broadening). The parameter a is a damping parameter expressed
in units of Doppler width, a = Γ/(πΔνD), where Γ is the atomic damping parameter. For
instance, for the natural broadening of a line originating in a two-level atom, Γ = A.
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2. The radiative rates for bound-free transitions (continua) are given by

Ri j = π∫
∞

ν

σi j(ν)/(hν)Jν dν , (2.48)

where σ(ν) is the corresponding cross section, supplied again by the atomic physics.
The set of rate equations for all levels of an atomwould form a linearly dependent system.

Therefore, one equation of the set has to be replaced by another equation. Usually, this is
the total number conservation equation (or abundance definition equation),∑i ni = Natom,
where the summation extends over all levels of all ions of a given species.

3.2.5 Charge Conservation Equation

This equation expresses the global electric neutrality of the medium,

∑

i
niZi − ne =  , (2.49)

where Zi is the charge associated with level i (i.e., equal to  for levels of neutral atoms,  for
levels for once ionized ions, etc.). The summation now extends over all levels of all ions of all
species.

3.3 Numerical Methods

The resulting set forms a highly coupled, highly nonlinear system of equations. Even in a
classical case of plane-parallel, horizontally homogeneous, static atmospheres, this presents a
considerable numerical challenge. The basic numerical strategies are described below.

3.3.1 Complete Linearization

The physical state of a 1D plane-parallel, horizontally-homogeneous atmosphere in hydrostatic
and radiative (or radiative + convective) equilibria is fully described by the set of vectors ψd
for every depth point, d, d = , . . . ,ND,ND being the number of discretized depth points. The
state vector ψd is given by

ψd ≡ {J, . . . , JNF ,N ,T , ne, n, . . . , nNL} , (2.50)

where Ji is the mean intensity of radiation in the i-th frequency point, N the total particle
number density, ne the electron density, and ni the atomic level populations. The structural
equations are discretized, and the resulting set of nonlinear algebraic equations is solved by
linearization, i.e., by an application of the Newton–Raphson method. This approach was first
used in the context of stellar atmospheremodels in a seminal paper byAuer andMihalas (1969),
who coined the term Complete Linearization (CL).

Writing the complete set of equations schematically as P(x) = , where x is a vector
composed of all state vectors ψd at all depths, the iteration scheme is written as

δx(n) ≡ x(n+) − x(n) = −J (x(n))
−

P(x(n)) , (2.51)
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where J is the Jacobi matrix (Jacobian), Ji j = ∂Pi/∂x j, i.e., the i j-element of the Jacobian is the
derivative of the i-th equation with respect to the j-th unknown. Since the system (> 2.51)
represents a finite difference solution of at most second-order differential equations, the Jaco-
bian J has a particularly simple structure, namely a block-tridiagonal form, and ( > 2.51)
reduces to,

−Ad δψd− +Bd δψd − Cd δψd+ = Ld . (2.52)

Here A, B, C are NN × NN matrices, and Ld = Pd (x(n)) is the residuum vector (of dimension
NN) at depth d; the total number of unknown per depth is given by NN = NF+NL+NC;NC
is the number of constraint equations, in this case NC = .

>Equation 2.52 is solved as a block-tridiagonal system, which means that one is left with
inverting one NN ×NNmatrix per depth point.Therefore, the total computer time for ordinary
complete linearization scales roughly as

t ∝ (NF + NL + NC) × ND × Niter , (2.53)

where Niter is the number of iterations needed to obtain a converged solution, defined through
a suitably selected convergence criterion. It is immediately clear that the original complete lin-
earization, despite its inherent power and robustness, cannot be used as a general numerical
scheme because in realistic calculations, one needs a very large number of frequency points NF
to describe the radiation field with a sufficient accuracy – of the order of – points. Like-
wise, a number of energy levels NL may also be quite large (– levels). Therefore, one has
to seek less global, but faster schemes. The basic options are (1) reducing the size of the prob-
lem keeping the general framework of CL intact, (2) avoiding repeated inversions of a Jacobian
(examples are the Broyden scheme implemented in this context byKoesterke et al. 1992; or Kan-
torovich scheme – Hubeny and Lanz 1992), or (3) using an idea of the so-called approximate
Newton–Raphson method (e.g., Hillier 1990; Hillier and Miller 1998).

The first category of approaches achieve a reduction of computer time by reducing the size
and/or the number of matrices to be inverted, and/or the number of iterations needed. Tak-
ing (> 2.53) as a guide, in order to reduce the computer time in the most efficient way, one
has to reduce NF or NL. One can trivially reduce these numbers by considering less frequen-
cies (levels), and thus constructing less accurate models, but this ruled out since the goal is to
construct as accurate and reliable models as possible. So, the way to go is keep the necessary
(large) numbers of these quantities, but only to eliminate them from matrices to be inverted.
Since NF is typically the largest contributor to the size of the linearization matrices, reducing
NF is most important. This can be achieved by using an idea of Accelerated Lambda Iteration
(ALI) method, which will be briefly described below. For a detailed discussion of other possible
improvements and modifications of the Complete Linearization scheme, see Hubeny and Lanz
(2003).

For LTEmodels, an interesting possibility is to linearize radiation intensities in all frequency
points. but to reorganize matrices as first suggested by Rybicki (1971) in the context of two-level
atom. Mihalas (1978) has reformulated the scheme to be applied for constructing LTE model
atmospheres.The schemewas implemented in a stellar atmosphere code tlusty (Hubeny 1988;
Hubeny and Lanz 1995) by Burrows et al. (2006) and Hubeny and Burrows (2007b) and was
used to construct comprehensive grids of model atmospheres for L and T dwarfs. It should
be noted that in order to make this scheme practical, all the structural parameters have to be
expressed as functions of a single parameter, the temperature.
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The idea consists in the following: The original complete linearization organizes the master
Jacobi matrix in a block-tridiagonal structure, that is, as an ND × ND grand block matrix,
with inner (NF + ) × (NF + ) matrices. The inner matrices are composed of a diagonal
NF × NF upper left corner (because the individual frequency points are not explicitly cou-
pled), plus a full last row and column (arising from the linearization of the energy equation).
The Rybicki scheme reverses the order of the inner and outer structure: The grand matrix is an
(NF+ )×(NF+ ) blocks matrix with inner blocks being ND×NDmatrices.The outer block
structure corresponds to structural parameters (radiation intensities and temperature), and the
inner structure to depth points. The upper part of the NF × NF blocks is a block-diagonal
matrix, with each block being an ND × ND tridiagonal matrix, and the last row and column
of clocks are full matrices. The bulk of work consists in inverting NF tridiagonal ND × ND
matrices, which scales only as ND

×NF, that is linearly with the number of frequency points.
The very unfavorable cubic scaling of computer time with the number of frequencies is now
completely avoided and is replaced by a linear scaling. The only cubic scaling is now with the
number of depth points, which is always kept quite low (up to about 100). The method is most
efficient with just one constraint equation; with more constraints the scaling would involve a
term with (NC × ND).

3.3.2 Accelerated Lambda Iteration

Soon after the advent of Complete Linearization, another crucial ingredient of the modern
numerical stellar atmospheres and radiation transfer was introduced, namely the first astro-
physical application of an iteration scheme that later became known as Accelerated Lambda
Iteration, or ALI for short. It was introduced by Cannon (1973a, b) by the name “Operator Per-
turbation” technique. Although recognized for its potential, the method was not widely used
until its reformulation by Scharmer (1981). The first application of the method to NLTE model
stellar atmospheres was worked out by Werner (1986), and the term ALI itself was coined by
Hamann (1985). A historical review is given by Hubeny (1992) and a more recent review by
Hubeny (2003).

The idea of themethod is usually explained on a simple case of two-level atomwith complete
frequency redistribution. Very briefly, the source function is written as

S = ( − є) J̄ + єB , (2.54)

where J̄ is a frequency-averagedmean intensity of radiation, є is the photon destruction param-
eter, and B the Planck function. In this problem, є and B are viewed as specified parameters.
The unknown quantity J̄ is given by

J̄ ≡ ∫ Jνϕν dν = Λ[S] , (2.55)

where ϕν is the (normalized) absorption profile coefficient. The second equality in (> 2.55)
represents the formal solution of the transfer equation, which is essentially a process of obtain-
ing the radiation intensity from the source function. In the case of two-level atom, the Lambda
operator is linear in the mean intensity. The two-level atom problem may be written as a single
integral equation

S = ( − є)Λ[S] + єB , (2.56)
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or, upon discretization, as a linear algebraic equation. Although it may be solved in a single step
without a need to iterate, a matrix representing Λ may be large and thus expensive to invert.

From the mathematical point of view, the ALI scheme is nothing else but an application of
the idea of iterative solution of large linear system by preconditioning, long known in numerical
analysis. The matrix is split into two parts, Λ = Λ∗ + (Λ − Λ∗), and the iterative procedure is
set up as

S(n+) = ( − є)Λ∗[S(n+)] + ( − є)(Λ − Λ∗)[S(n)] + єB . (2.57)

The action of the exact Λ operator is thus split into two contributions: an approximate Λ∗ oper-
ator that acts on the new iterate of the source function, and the difference Λ − Λ∗ that acts on
the old, known, iterate of the source function.The latter contribution may be easily obtained by
a formal solution of the transfer equation.With the choice Λ∗ = Λ, one recovers the exact, non-
iterative scheme, while with Λ∗ = , one obtains the classical Lambda iteration (e.g., Mihalas
1978) which is known to converge extremely slowly. Thus, in order that Λ∗ operator brings an
essential improvement over both schemes, it has to incorporate all the essential properties of
the exact Λ but, at the same time, be easy and cheap to invert. During the development of the
field, several approximate operators were suggested (for a historical review see Hubeny 1992).
In a seminal paper, Olson et al. (1986) performed a rigorous numerical analysis of the problem
and demonstrated that a nearly optimum operator is the diagonal (local) part of the exact Λ
operator. This makes the corresponding matrix inversions particularly easy because they are
reduced to simple algebraic divisions. Such a choice of approximate operator is equivalent to
the Jacobi method.

Finally, it should be noted that the convergence properties of the ALI scheme can be sig-
nificantly enhanced by applying various acceleration techniques, such as the Ng acceleration
(Auer 1987; Hubeny and Lanz 1992; Ng 1974), or methods based on Krylov subspace scheme
such as the Generalized Minimum Residual (GMRES) scheme (Auer 1991; Hubeny and
Burrows 2007a; Klein et al. 1989).

In the context of model stellar atmospheres, one does not use the ALI scheme as a means
of evaluating the source function; instead, it is used as a means of expressing current mean
intensities, namely

Jν = Λ∗ν Sν + (Λν − Λ∗ν ) S
old
ν , (2.58)

where the second term represents a “correction” which is known from the previous iteration.
The source function is a function of other structural parameters (temperature, electron density,
atomic level populations). In the context of a linearization scheme, the first term of (> 2.58) is
easy to linearize in terms of these structural parameters, and the second term is known and need
not be linearized at all. The mean intensities of radiation are thus effectively eliminated from
the state vector. This is essentially the procedure used by Werner and collaborators (Dreizler
and Werner 1993; Werner 1986; Werner et al. 2003).

3.3.3 Hybrid CL/ALI Method

Hubeny and Lanz (1995) developed a variant of this approach, in which one uses (> 2.58) to
eliminate the mean intensities in most, but not all, frequency points, while the intensities in a
few, most important, frequencies are treated as in original Complete Linearization (cores of the
strongest lines; frequencies just above the ionization thresholds of most important continua).
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The method is called hybrid CL/ALI method and offers a wide spectrum of options ranging
from full Complete Linearization to a full ALI scheme. It was demonstrated that the method
combines essential advantages of its both constituents: the computer time per iteration is essen-
tially the same as in the case of full ALI scheme, while the number of iterations needed to get
a converged model is essentially the same as in the original Complete Linearization, i.e., quite
small.

3.4 Available Modeling Codes

There are several publicly available codes for computing model stellar atmospheres. The
following list is by no means exhaustive.

For LTE models, the most popular code is Kurucz’s atlas (Kurucz 1970, 1993) and marcs
(Gustafsson et al. 1975). It should be noted that most of the NLTE codes listed below can be
used to calculate LTE models as well. Appropriately modified versions of phoenix and tlusty
were actually used for generating grids of LTE models – see >Sect. 3.5.1.

In the context of NLTE static models, the first publicly available NLTE model atmosphere
code was the “NCAR code” (Mihalas et al. 1975). More recently, popular and widely used
codes are tmap – Tuebingen Model Atmosphere Package (Dreizler and Werner 1993; Werner
1986, 1989; Werner et al. 2003), and tlusty (Hubeny 1988; Hubeny et al. 1994; Hubeny and
Lanz 1992, 1995). Static models are also being constructed by codes originally designed for
expanding atmospheres (by setting the expansion velocity to a very low value), such as cmfgen
(Hillier and Miller 1998) or phoenix (Hauschildt et al. 1997, 1999a).

It should be noted that besides the codes that solve for the complete NLTE model atmo-
sphere structure, there are several codes that take an atmospheric structure (temperature,
density) given and fixed, and solve for statistical equilibrium + radiative transfer for a selected
chemical element – the so-called restricted NLTE problem. Although recently these codes lost
much of their former appeal because the modern codes are capable of solving the structure
plus detailed NLTE rate equations for many species, they are still being used for analyz-
ing stellar spectra. The most popular codes of this sort are pandora (Avrett and Loeser
2003); detail/surface (Butler and Giddings 1985), and, perhaps the most widely used, multi
(Carlsson 1986).

3.5 Existing Model Atmosphere Grids

3.5.1 LTEModels

The most extensive grid of LTE plane-parallel line-blanketed models is that of Kurucz
(1979, 1993), widely used by the astronomical community. The grid covers effective tempera-
tures between 3,500 and 50,000K, log g between− and , and for severalmetallicities.The term
“metallicity” traditionally means that all the chemical species heavier than helium share a com-
mon ratio of their abundance to the solar abundance; this ratio is calledmetallicity. Numerically,
the metallicity is often taken as a logarithm of the metal abundance ratio.

Using the marcs code, Gustafsson et al. (1975) generated their original grid of models for
cool stars, with Teff between 3,750 and 6,000K; log g between . and . and metallicities
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−. ≤ [M/H] ≤ . Recently, Gustafsson et al. (2008) made public a new, very extensive grid of
marcs model atmospheres, with Teff between 2,500 and 8,000K, log g between − and , and
metallicities − ≤ [M/H] ≤ . They also include “CN-cycled” models with C/N =4.07 (solar),
1.5 and 0.5, and C/O from 0.09 to 5, which represents stars of spectral types R, S, and N.

Hauschildt et al. (1999a, b) used their code phoenix to generate a grid LTE spherical mod-
els for cool stars, called NextGen, with Teff between 3,000 and 10,000K, with step 200K; log g
between . and ., with step ., and metallicities −. ≤ [M/H] ≤ . Another grid (Allard
et al. 2000) is for pre-main-sequence cool stars with Teff between 2,000 and 6,800K, log g
between  and . with step ., stellar mass M = .M

⊙

, and metallicities −. ≤ [M/H] ≤ .
Themodels are available online at www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html.
A detailed comparison between the ATLAS and NextGen models was performed by Bertone
et al. (2004).

3.5.2 NLTEModels

During the last three decades, it was amply demonstrated that departures from LTE are crucial
for spectroscopic studies of early-type stars, even the photospheric layers. Early NLTE mod-
els were constructed already in the late 1960s and in the first half of the 1970s by Mihalas
and coworkers (Mihalas 1972; Mihalas and Auer 1972). Nevertheless, the numerical problems
and sheer amount of computer time and memory needed for computing non-LTE metal line-
blanketed model atmospheres have precluded computing such models until the late 1980s.
Thanks to the development of a very efficient numerical methods such as ALI or the hybrid
CL/ALI scheme, this last barrier of the classical stellar atmosphere problem was broken and
non-LTE metal line-blanketed model, including literally millions of spectral lines in NLTE, are
now being constructed more or less routinely.

There are several partial grids of NLTE models for various stellar types mostly of hot stars.
The models constructed by the tmap code for very hot white dwarfs, subdwarfs, and pre-white
dwarfs (also known as the PG 1,159 stars) are available online at http://astro-uni-tuebingen.de/
~rauch/TMAP/TMAP.html. Rauch and Werner (2009) describe the so-called Virtual Obser-
vatory, which is a web-based interface that enables a user either to extract already computed
models, or generate specific model using tmap, for very hot objects (hottest white dwarfs;
super-soft X-ray sources).

The effort of the developers of tlusty culminated in the construction of a grid of
NLTE fully blanketed models atmospheres for O stars (OSTAR2002; Lanz and Hubeny 2003)
and early B stars (BSTAR2006; Lanz and Hubeny 2007). It is believed that these grids,
which each took several years of computer time of several top-level workstations, repre-
sent a more or less definitive grids of models in the context of 1D plane-parallel geom-
etry, with hydrostatic and radiative equilibrium, and without any unnecessary numerical
approximations.

The basic characteristics are as follows:TheOSTAR2002 grid contains 680 individual model
atmospheres for 12 values of Teff between 27,500 and 55,000K, with a step of 2,500 K, and 8
values of log g, and for 10metallicities: 2, 1, 1/2, 1/5, 1/10, 1/30, 1/50, 1/100, 1/1000, and 0 times
the solarmetal composition.The following species are treated inNLTE:H, He, C, N, O,Ne, Si, P,
S, Fe, Ni, in all important stages of ionization; which means that there are altogether over 1,000
(super)levels to be treated in NLTE, and about  lines, and about 250,000 frequency points to
describe the spectrum.

http://astro-uni-tuebingen.de/~rauch/TMAP/TMAP.html
http://astro-uni-tuebingen.de/~rauch/TMAP/TMAP.html
http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html
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The BSTAR2006 grid is similar. It contains 1,540 individual models for 16 values of Teff
between 15,000 and 30,000K, with a step of 1,000K, and for 6 metallicities: 2, 1, 1/2, 1/5, 1/10,
and 0 times solar. The species treated in NLTE are the same as in OSTAR2002, adding Mg
and Al, but removing Ni, which is less important for B stars. There are altogether about 1,450
(super)levels treated in NLTE, about  lines, and about 400,000 frequency points.Themodels
for both grids are available online at http://nova.astro.umd.edu.

Several representative results from the grids are shown below. > Figure 2-1 displays the
temperature structure for three representative effective temperatures of the OSTAR2002 grid.
The temperature distribution nicely illustrates the basic features of line blanketing, namely the
so-called back-warming (line blanketing leads to a heating ofmoderatelydeep atmospheric lay-
ers between Rosseland optical depths 0.01 and 1), and a surface cooling. The zero-metallicity
and low metallicities models exhibit a temperature rise at the surface, a typical NLTE effect
discovered by Auer andMihalas (1969) and explained as an indirect heating effect of the hydro-
gen Lyman and Balmer lines. This effect competes with surface cooling caused by metal lines,
and these effects nearly cancel at metallicities 1/50 (for hotter models) to 1/10 (cooler models).
Interestingly, the temperature curves for all metallicities cross in a very narrow range of optical
depths.

From the practical point of view, the most important result of model atmospheres is the
prediction of emergent radiation, which is then compared to the observed spectrum in order
to determine the basic stellar parameters. Also, theoretical predictions are indispensable for
estimating the radiation in unobservable spectrum regions, in particular in the hydrogenLyman
continuum (wavelength less than 912 Å), which produces ionizing photons, but which cannot
be directly detected for early-type stars because of the absorption by interstellar hydrogen. (Only
two early-type stars, є and β CMa, which are relatively close, and which lie in the direction of a
“tunnel” of low density in the local interstellarmedium, have detectable Lyman continuum flux
as observed by the EUVE satellite.)

A sensitivity of the predicted spectra to the effective temperature is depicted in >Fig. 2-2,
which shows (from top to bottom) emergent spectra for 50, 45, 40, 35, and 30 kK. Notice a
diminishing Lyman jump at 912 Å when going to higher temperatures; this is a consequence
of increased ionization of hydrogen. A similar sensitivity to metallicity is shown in >Fig. 2-3.
The models with higher metallicities exhibit deeper lines but higher continuum flux.

> Figure 2-4 shows the predicted flux from the OSTAR2002 grid for three solar com-
position model atmospheres with Teff = , K, 40,000K, and 50,000K, for log g = ,
degraded to a lower resolution (about 5 Å), compared to Kuruczmodel fluxes. Differences both
in the continuum level, as well as in the individual line features, are clearly seen. An analo-
gous comparison of the predicted flux from the BSTAR2006 grid for three solar composition
model atmospheres with Teff = , K, 20,000K, and 15,000K, for log g = , degraded to
a lower resolution (about 5 Å), compared to Kurucz model fluxes, is presented in >Fig. 2-5.
A similar comparison of high-resolution spectra in several wavelength intervals is presented
in >Fig. 2-6.

As an actual example of a fit of OSTAR2002 models to observations, >Fig. 2-7 displays
a sample of the predicted flux for a model for Teff = , K, log g = ., and a high-
resolution, high signal-to-noise observation of a late-O main-sequence star 10 Lac secured by
the GoddardHigh Resolution Spectrograph (GHRS) aboard theHubble Space Telescope (Hubeny
et al. 1998; Lanz et al., in preparation). The agreement between observations and predictions
is excellent and demonstrates a power of the present-day model atmospheres of early-type
stars.

http://nova.astro.umd.edu
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⊡ Fig. 2-1
Temperature as a function of Rosseland optical depth for OSTAR2002 model atmospheres with
Teff = 50, 000K (top), 40,000K (middle), and30,000K (bottom); log g = 4.0, andvariousmetallicities.
At low optical depths (τRoss < 10−3), the top curves are for a pure H-He model, and temperature
is progressively lower when increasing the metallicity, while the reverse applies in deep layers
(τRoss > 10−2) (From Lanz and Hubeny 2003)
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Predicted flux for six solar composition OSTAR2002model atmospheres with Teff between 55 and
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metallicities (From Lanz and Hubeny 2003)
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Predicted flux for three solar composition mode atmospheres with Teff = 50, 000K, 40,000K, and
30,000K, for log g = 4 (black lines), compared to Kurucz models with the same parameters (gray
histograms). The OSTAR2002 model fluxes were degraded to lower resolution to roughly match
the resolution of the Kurucz grid (From Lanz and Hubeny 2003)
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histograms). The BSTAR2006model fluxeswere degraded to lower resolution to roughlymatch the
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4 Using Model Stellar Atmospheres to Determine the
Fundamental Stellar Parameters

The fundamental stellar parameters to be determined are the stellarmass,M
∗

, radius, R
∗

, lumi-
nosity, L

∗

, and the chemical composition, i.e., the set of abundances (ratios of the total number
of particles of species A with respect to hydrogen). If the distance to the star, d, is not known,
it is added to the list of fundamental parameters to be determined, even if it does not represent
an intrinsic stellar property.

A determination of chemical composition is a subject of a vast volume of literature so that
there is no need to repeat it here. Essentially, they are determined by comparing the observed
line profiles (or integrated quantities, like equivalent widths) with those predicted from model
atmospheres.
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Predicted line profiles for solar-composition model atmospheres with Teff = 20, 000K, logg = 3.0,
and vturb = 2 km s−1 (black lines); compared to the Kurucz model with the same parameters (gray
lines) (From Lanz and Hubeny 2007)



Stellar Atmospheres 2 81

1460 1462 1464 1466 1468 1470
0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

1470 1472 1474 1476 1478 1480

1480 1482 1484 1486 1488 1490

1490 1492 1494 1496 1498 1500

⊡ Fig. 2-7
A comparison of the observed HST/GHRS flux for 10 Lac (heavy line) and the predicted flux from
the fully blanketed NLTE model atmosphere with Teff = 33, 500K, log g = 3.85, and for the solar
abundancesof all species (thin line). Theabscissa is thewavelength inÅ, and theordinate is theflux
in 10−9 erg cm−2 s−1 Å−1. Most spectral features are lines of Fe IV, Fe V, Ni IV, and Ni V. A difference
between theory and predictions is hardly seen on the plots

There are, obviously, other stellar parameters, like the rotational velocity and others, but for
the purposes of this chapter, it is assumed that these additional parameters and the chemical
abundances are determined independently of the fundamental parameters listed above.

The parameters which can be determined directly from observations are the effective tem-
perature, Teff , and surface gravity, g. In addition, one has the measured magnitude, mobs, that
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reflects the whole observationally accessible wavelength range. If the flux in the unobserv-
able region is negligible, then this magnitude represents the total, bolometric, magnitude,mbol.
If not, one has to apply the bolometric correction, which follows from the model atmosphere.

In any case, one ends up with three “measured” quantities, Teff , g, and mbol, but there are
four unknown fundamental parameters, M

∗

, R
∗

, L
∗

, and d. The governing relations between
them are

σ T
eff = L

∗

/(πR
∗

) , (2.59)

g = GM
∗

/R
∗

, (2.60)

L
∗

= L
∗

[mbol (mobs,Teff) , d] , (2.61)

The last relation expresses the conversion of the observed magnitude to the stellar luminosity.
There are thus three relations for four unknowns. In fact, in some cases, the stellar evolution

theorymay supply an independent additional relation between the fundamental parameters, for
instance, the mass–radius relation for white dwarfs (Hamada and Salpeter 1961) or the mass–
luminosity relation for central stars of planetary nebulae (Paczynski 1971). However, in the
general situation one does not have such a relation, and, even if so, one may want to check the
theoretically predicted relations observationally.

Therefore, from the photospheric analysis only, one cannot derive all four parameters simul-
taneously.This is easily understood from the physical point of view. A plane-parallel hydrostatic
atmosphere is just a thin layer located on the top of a spherical star.The only information about
a dimension of the underlying star is contained in the surface gravity g which depends also
on the stellar mass. Since the atmosphere is thin, the emergent spectrum does not carry any
independent information about the atmospheric extent.

To remove the radius–mass degeneracy, either an independent geometrical information
(knowing the radius or the distance) or an independent knowledge of the mass is needed. A
typical situation is that the distance d is known (e.g., from Hipparchos parallaxes); then the
other parameters are determined as follows:

1. From knownmobs and d (and, possibly, Teff ), the absolute bolometric magnitude,Mbol and,
therefore, luminosity, L

∗

, is determined.
2. From L

∗

and Teff , the stellar radius, R
∗

, is determined.
3. From R

∗

and g, the stellar mass, M
∗

, is determined.

As it turns out, if the mass of an early-type O stars is determined in this way, the so-called
spectroscopic mass, and if the mass is also determined by comparing the evolutionary tracks
and the position of the star in the H-R diagram, the so-called evolutionary mass, one finds a
significant discrepancy (e.g., Herrero et al. 1992). The sense of discrepancy is that the spectro-
scopic masses are systematically lower than the evolutionary masses. The discrepancy arises
either by inaccuracies of the stellar atmospheres theory, or the stellar evolution theory, or, most
likely, both. From the stellar atmospheres side, there has been a progress in understanding the
reasons for the discrepancy (e.g., Lanz et al. 1996), namely as an effect of a previously neglected
effects of metal line blanketing on the atmospheric structure. However, the problem is not yet
fully solved.
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5 Summary and Outlook

Thanks to the concentrated effort of several groups of researchers, startingwith pioneeringwork
of Mihalas and Auer in the late 1960s and early 1970s, and a continuing effort during the last
three decades, the problem of constructing 1D stationary model atmospheres, even with full
metal line blanketing and in NLTE, is now conceptually solved, although a significant amount
of new models still need to be computed.

Even in the domain of LTEmodels, new discoveries led to new challenges. In particular, the
rapidly evolving field ofmodeling atmospheres of substellar-massobjects, such as brown dwarfs
and extrasolar giant planets, provides a natural extension of the traditional stellar atmosphere
theory to new and exciting domains, and contributes to a revival of stellar atmospheres theory
in general.

The next big step will be to go to 3D radiation hydrodynamic models, which will undoubt-
edly be one of the main themes of theoretical astrophysics in the next decade.The effort in this
area is under way, but much remains to be done. The future of the stellar atmospheres theory
thus seems quite bright and exciting.
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