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Abstract: In this chapter the equations of stellar structure are introduced. Up-to-date descrip-
tions of the most relevant microphysics needed to build reliable stellar configurations are also
provided. These include the equation of state, nuclear reactions, opacities, and other less fre-
quently discussed physical processes, such as diffusion and radiative levitation. The necessary
numerical techniques currently employed to build evolutionary stellar models as well as the
otherwise necessary boundary conditions needed to integrate the equations of stellar structure
are also addressed. Finally, an overview of the current state-of-the-art modeling is given.

Keywords: Stars: evolution, Stars: interiors, Stars: structure

1 Introduction

Stars are the fundamental blocks upon which galaxies, and by extension the universe, are built.
As such, their study has received continuous interest during several decades. In fact, reliable
and up-to-date stellar evolutionary models are routinely required in several fields of modern
astrophysics. Hence, understanding the structure of stars is a must, andmost branches of astro-
physics rely on detailed stellarmodels. In particular, understanding the structure and evolution
of our galaxy, a prototypical spiral galaxy, requires obtaining significant information from sta-
tistical studies of the several galactic populations (disk, halo, and bulge). Future space missions,
of which Gaia is the archetypical example (Perryman et al. 2001), will obtain an accurate cen-
sus of the stars in our galaxy, will determine three-dimensional velocities for most of them, and
will also quantitatively map its structure.This wealth of information can be accurately and effi-
ciently analyzed only if realistic stellar evolutionary models, based on an accurate description
of the properties of stars, are employed.Thus, understanding in detail the structure of stars is of
crucial importance. Additionally, Galactic satellite galaxies are proving to be the most natural
and successful places where to test and quantify the nature and distribution of dark matter, a
key issue in modern cosmology. A precise understanding of these galaxies is a challenge for
which again accurate stellar models are needed. Also, the origin of the different chemical ele-
ments cannot be assessed without fully understanding the structure and evolution of stars. As
a matter of fact, it turns out that all the elements – but hydrogen, helium, lithium, beryllium,
and boron – have been synthetized in the deep interiors of stars. Thus, our understanding of
the chemical evolution of the universe relies on our ability to describe the details of the internal
structure of stars. Moreover, due to the extreme pressures and temperatures that are reached in
some of their evolutionary stages, stars can also be used as astroparticle physics laboratories –
see the reviewof Raffelt (1999) – and provide environments that cannot be attained in terrestrial
laboratories. Also, stars can be used to test alternative theories of gravitation – see the recent
review of García-Berro et al. (2007) – a very hot topic. Finally, a detailed description of stellar
structure is also of primordial importance to understand one the most energetic events in our
universe: supernovae. Although important, these are only a few examples for which a detailed
knowledge of stellar structure is required and there are several other important applications
that are omitted here for the sake of conciseness.

As mentioned, our understanding of stellar structure has been built over several decades.
To the best of our knowledge the pioneering studies were done, among others, by Lane (1869),
Schwarzschild (1906), and Eddington (1916) between the end of the nineteenth century and
the very beginning of the twentieth century. Of course, these initial studies were very crude
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and several approximations done in these studies have turned out to be inaccurate. Neverthe-
less, they helped in setting the stage and they contributed to the foundation of a new branch of
astronomy. Since then, the field has experimented notable advances and has reached a degree
of maturity and a predictive power that do not have other fields of astronomy. Big steps forward
were given by renowned astronomers, of whichChandrasekhar, Fowler, Bethe, Schatzman, Sug-
imoto, Iben, and several others are conspicuous examples.Their work settled the basements of
the modern theory of stellar structure. More recently, the advent of computers and of advanced
numerical techniques helped to develop a consistent, coherent, and very detailed theory cor-
pus that nowadays has made possible to compare theoretical models with the extremely large
amount of very precise data that is routinely acquired by modern large telescopes.

The study of stellar structure involves several fields of contemporary physics. In order to
understand the structure of stars several physical inputs are required. Among them nuclear
reactions, which are of fundamental importance to understand the energetics of stars, need
to be mentioned first. In turn, an accurate knowledge of nuclear reactions involves not only
a proper theoretical description of the structure of nuclei, but also large experimental efforts
to measure the cross sections of the most important nuclear reactions. Needless to say that
although there exist accurate determinations for several nuclear reactions there are still sev-
eral others for which reliable determinations are sorely needed. Examples of the former are the
nuclear reaction rates relevant for hydrogen burning, and the most paradigmatic example of
the latter is, perhaps, the C(α, γ)O nuclear cross section. A detailed knowledge of the equa-
tion of state of astrophysical plasmas is also required to accuratelymodel stellar structures.This
includes not only the description of the thermodynamical properties of the ideal plasma for a
wide range of densities and temperatures – see >Fig. 1-1 – but also, if realistic models are to
be computed, several nonideal effects must also be taken into account. Also partial ionization
must be carefully taken into account. Accurate modeling of energy losses via neutrino emission
requires also a good description of weak interactions. Matter at very large densities, like those
found in the interiors of neutron stars, require modeling strong interactions. On the other hand,
opacities and conductivities of matter are also required. Actually, the list of physical inputs is so
large that no attempt is made to be exhaustive at this point, and a detailed discussion of all the
most important physical inputs is deferred to subsequent sections.

Before going into the details of stellar structure modeling it is rather convenient to have an
approximate and simplistic, but rather effective, idea of how typical stars, of which our own
Sun is an example, work. In fact, a main sequence star can be defined as a self-contained, self-
controlled, auto-gravitating thermonuclear reactor – something that nuclear engineers have not
been able to reproduce on Earth yet. Assume that all stars have spherical symmetry. This is not
anunrealistic assumption, because gravity only depends ondistance, but it has been only proved
for the case of the closest star: our Sun. The most important property (besides isotropy) of
gravity is that it is always attractive, contrary towhat happenswith electromagnetic interactions.
In fact, and as it will be shown in subsequent chapters, the life of a star is a battle against gravity.
Actually, normal stars succeed in winning successive battles but they lose the war, exploding
as supernovae, the most massive ones, or ejecting their external layers and forming compact
objects (either white dwarfs or neutron stars), the less massive ones. Since stars seem to be
in equilibrium, a force must balance gravity. This force, obviously, is pressure or, to be more
precise, the pressure gradient.That is, Archimede’s principle comes at work. Given the densities
and temperatures of main sequence stars – see >Fig. 1-1 – the pressure can be well described
by that of a totally ionized ideal gas. This is the same to say that the pressure is proportional
to the density (�) and the temperature (T). Now, to balance the gravitational force there are
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⊡ Fig. 1-1
Structure of several stellar configurations in the density-temperature plane. Note that the loga-
rithms of both quantities are plotted. The most external layers of these stellar configurations are
not displayed. The dotted line illustrates the structure of a main sequence star of 1M⊙. For com-
parative purposes the structure of amain sequence star of 30M⊙ is also displayed. Both structures
correspond to themoment at which hydrogen is ignited at the center. That is, at the zero agemain
sequence. Note that the 30M⊙ star is considerably hotter than our Sun. Also shown is the structure
of a red giant star of 1M⊙. As can be seen these types of stars have much wider density and tem-
perature ranges. Actually, the central density of this stellar configuration is rather high. The solid
line shows the stratification of densities and temperatures for an otherwise typical white dwarf of
0.6M⊙. It has been chosen to show the structure at an intermediate evolutionary phase, when the
central temperature is log T ≃ 7.2. It is important to realize that the central density in this case is
much larger than in the previous examples

two possibilities: either to increase the density or to increase the temperature. As increasing
the density increases as well the gravitational force per unit volume, it is rather evident that the
only possibility that is left to play with is the temperature.This has the consequence that since
gravity is stronger at the central regions of the star, the core of a typical main sequence star must
be hotter. The second consequence is that more massive stars must be hotter as well, because
they need to balance an overall stronger gravitational pull. These two facts can be clearly seen
in >Fig. 1-1. This issue will be addressed again when the virial theorem, in >Sect. 5, and the
equation of state, in >Sect. 6.1, will be discussed.

Now going one step forward, there is no question that stars shine, that is, stars lose energy.
Thus, as they radiate away energy, stars should cool, the pressure should decrease, and, con-
sequently, the radius should decrease as well. But it turns out that this is not the case. Indeed,
it can be easily shown that the gravitational potential cannot supply the required amount of
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energy during long periods of time. Actually, the release of gravitational energy is governed by
the Kelvin–Helmholtz timescale:

τKH ∼
GM

RL
(1.1)

where G is the gravitational constant, G = . × − dyn cm g−, and M, R, and L are,
respectively, the total mass, radius, and luminosity of the corresponding star. Adopting the solar
valuesM = M

⊙

≃ .× g, R =  R
⊙

≃ .× cm, and L =  L
⊙

≃ .× erg s−,
τKH ∼ . ×  years is obtained, much shorter than the age of the Solar System, which is
∼. ×  years. Thus, gravitational energy cannot be the source of the luminosity of stars.
Therefore, another source of energy must be at work. It took several decades to realize that
this source of energy were nuclear reactions occurring in the deep interior of stars. In fact, an
indication of this is obtained computing the nuclear timescale:

τnuc ∼
Mc

L
(1.2)

where c stands for the speed of light, and the rest of the symbols have been already defined.
Adopting again typical values, it turns out that τnuc >  years, which comfortably fits within
the age of the Sun. The sketch previously outlined allows to get a preliminary insight of typical
stars that will serve as a guide for more quantitative studies. However, it should be emphasized
that this sketch is not valid for compact objects, either white dwarfs or neutron stars. For these
stars the key control parameter is not temperature, but density, and nuclear reactions become
(in most cases and only as far as it is concerned about isolated stars) irrelevant. This issue will
be revisited when studying the equation of state.

With all these considerations in mind the study of the subject of this chapter in a consistent
manner can be started. The reader should take into account that the purpose of this chapter is
not providing a summary of the several stellar evolutionary phases.This will be found elsewhere
in this book. Instead, the chapter will focus on detailing all the equations and physical inputs
necessary to compute realistic and up-to-date stellar configurations. Also, the reader should be
aware that the selection of papers for explicit citation is necessarily somewhat arbitrary, and is
the product of the own special research trajectory and interests of the authors.

The chapter is organized as follows. The equations of stellar hydrostatic equilibrium and
energy conservation are first introduced. This will be done in > Sects. 2 and > 3, respec-
tively. The main energy transport mechanisms in stars will be described in > Sect. 4. With
these tools at hand, an overview of the gross properties of a star, the virial theorem, will be
given in >Sect. 5. All the necessary physical inputs (equation of state, nuclear reactions, opac-
ities, and neutrino emission rates) will be provided in >Sect. 6. A brief introduction to other
physical processes relevant for stellar evolutionary calculations, like diffusion and radiative lev-
itation, will be given in >Sect. 7. A discussion of how the boundary conditions are usually dealt
with will be provided in >Sect. 8, and numerical techniques to compute stellar evolution will
be detailed in >Sect. 9. >Section 10 provides insight on modern numerical techniques and
available stellar evolutionary codes. Finally, >Sect. 11 will close the chapter providing a brief
summary.
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2 Hydrostatic Equilibrium

In the absence of rotation andmagnetic fields, the only forces acting on a givenmass element of
an isolated star made of matter plus radiation result from pressure and gravity. For most stars,
a spherically symmetric configuration can thus be assumed, where functions are constant on
concentric spheres at a distance r from the stellar center. The imbalance between gravitational
and differential pressure forces yields the equation of motion at r:

�r̈ = −
dP
dr

−
Gm�

r
, (1.3)

where r̈ is the local acceleration dr/dt, � and P are the local matter density and pressure,
and m is the mass in the sphere interior to r. Generally speaking, and for most phases of stel-
lar evolution, stars evolve so slowly that the temporal evolution of the stellar structure can be
described by a sequence of models in hydrostatic equilibrium. This being the case, the struc-
ture can be assumed to be static. Hence, all time derivatives can be neglected. In this case, the
internal pressure gradient balances gravity everywhere in the star, and the equation of motion,
(> 1.3), reduces to the equation of hydrostatic equilibrium:

dP
dr

= −
Gm�

r
(1.4)

and mass conservation reads:
dm
dr

= πr�. (1.5)

These two expressions allow to derive an estimate of the central pressure, Pc , of our Sun using
dimensional analysis:

Pc
R

∼
GM⟨�⟩

R ∝
GM

R (1.6)

where ⟨�⟩ is the mean density and it has been assumed that the pressure at the surface is much
smaller than at the center, a very good approximation. Adopting typical values, Pc ∼ . ×
 dyn cm− is obtained.

Clearly, the assumption of hydrostatic equilibrium means that the pressure decreases
outward. The departures from hydrostatic equilibrium can be characterized using the dynam-
ical timescale τdyn, which can be computed neglecting the internal pressure gradient in a
gravitationally bound configuration. From (> 1.3) it follows that

R
τdyn

∼
GM
R , (1.7)

thus, we obtain

τdyn ∼


√
G ⟨�⟩

, (1.8)

which is essentially the free-fall timescale. For the Sun τdyn is about 30min, for a red giant with
⟨�⟩ = − g cm− about 40 days, and for a white dwarf with ⟨�⟩ =  g cm−, it is on the order
of a few seconds. This implies that hydrostatic equilibrium is always very quickly attained.
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3 Energy Conservation

Let l be the net energy per second outflowing from a sphere of radius r, that is, the luminosity,
and єnuc the nuclear energy released per unit mass per second. In a stationary situation in which
nuclear reactions are the only energy source of the star, the exceeding energy per second, dl ,
leaving a spherical mass shell of radius r, mass dm, and thickness dr is

dl = πr� єnuc dr. (1.9)

However, heating (or cooling) of themass element, and the work of expansion (or compression)
of the mass shell also contribute to the energy balance.This means that dl can be nonzero even
in the absence of nuclear reactions. Using the first law of thermodynamics, the energy equation
can then be written

dl
dm

= єnuc + єg , (1.10)

where єg is the gravothermal term per unit mass per second

єg = −
du
dt

+
P
�

d�

dt
, (1.11)

and u is the internal energy per gram. Differentiating the internal energy

du
dt

= (
∂u
∂�

)
T

d�

dt
+ (

∂u
∂T

)
�

dT
dt

, (1.12)

and with the help of the thermodynamic relation

(
∂u
∂�

)
T
=

P
� −

T
� (

∂P
∂T

)
�
, (1.13)

>Equation 1.11 can be rewritten as

єg =
T
� (

∂P
∂T

)
�

d�

dt
− CV

dT
dt

, (1.14)

where CV is the specific heat at constant density, CV = (∂u/∂T)�. Making use again of basic
thermodynamics, considering that � = �(P,T), and the relation

(
∂P
∂T

)
�
=

Pδ
Tα

, (1.15)

with α the isothermal compressibility and δ the volume coefficient of expansion, given by

δ = −(
∂ ln�

∂ lnT
)
P

α = (
∂ ln�

∂ lnP
)
T
. (1.16)

(> 1.14) can be cast, after some algebra, in the form

єg = −CP
dT
dt

+
δ
�

dP
dt

, (1.17)

where CP is the specific heat at constant pressure. In this analysis, the variation of the inter-
nal energy resulting from the change of local chemical composition has been neglected.
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This contribution is usually small for most stages of evolution, as compared to the release of
nuclear energy – see Kippenhahn et al. (1965) – but it is relevant in the case of white dwarf stars
where nuclear reactions are effectively extinguished (Isern et al. 1997). The energy equation,
(> 1.10), then becomes

dl
dm

= єnuc − CP
dT
dt

+
δ
�

dP
dt

. (1.18)

Integrating (> 1.11) over mass gives the overall gravothermal contributions to the total energy
budget. It is apparent that the integration of the first term in єg yields the time variation of
the total internal energy of the star. As it will be shown later, integration over m of the second
term yields the time derivative of the total gravitational energy (Ω) of the star (Kippenhahn and
Weigert 1990).

4 Energy Transport

4.1 Radiative Transport

One of the mechanisms by which energy is transferred in stellar interiors is radiation, that is,
by photons. Generally speaking, radiation is the usual process by which energy is carried away
in stars. In stellar interiors, the photon mean free path ℓph is very short compared to the typical
length scale over which the structure changes. The mean free path of a photon can be easily
estimated:

ℓph =


κrad �
, (1.19)

where κrad is themean radiative opacity coefficient due to interactions of photonswith particles,
that is, the radiative cross section per unit mass averaged over frequency. Typical values of κrad
for stellar interiors are κrad ≈ 1 cm g−. Taking into account the average density of matter in the
Sun, ℓph ≈ 1 cm.This is much smaller than the stellar radius, thus implying that matter in stellar
interiors is very close to local thermodynamic equilibrium, and that the power spectrum of
radiation corresponds to that of a blackbody.Themean free path of photons is also so small that
the energy transport by radiation can be treated essentially as a diffusive process, introducing
an important simplification in the treatment. In the diffusion approximation, the radiative flux
is given by

Frad = −
 π

κrad �
∇ B = −

 acT

κrad �
∇ T , (1.20)

here B = (ac/π)T is the frequency-integrated Planck function, c the speed of light, and a
the radiation density constant (. × − erg cm− K−). In the spherical symmetric case,
Frad has only a radial component, ∣Frad ∣ = Frad . Thus, l = πrFrad , and the diffusion equation
becomes

dT
dr

= −


ac
κrad �

T
l

πr
. (1.21)

The total energy flux depends on an integral over all radiation frequencies. In the diffusion
approximation, the generalization to frequency-dependence leads to the concept of the Rosse-
land mean opacity, obtained as a harmonic mean of the frequency-dependent opacity. This can
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be seen by including in the equation for the radiative flux the frequency dependence

Fν = −
 π
κν �

dBν

dr
= −

 π
�

dT
dr


κν

dBν

dT
, (1.22)

where Fν is themonochromatic flux of frequency ν, and κν themonochromatic opacity resulting
from bound–bound, bound–free, and free–free interactions between radiation and electrons.
The total flux is obtained by integrating (> 1.22) over frequency

Frad = −
 π



κrad �

dT
dr ∫

∞



dBν

dT
dν, (1.23)

where κrad is the Rosseland mean opacity given by


κrad

=
∫
∞



κν

dBν
dT dν

∫
∞


dBν
dT dν

. (1.24)

With this definition and observing that

∫
∞



dBν

dT
dν =

ac
π

T, (1.25)

(> 1.21) is recovered. It is worth noting as well that the radiative flux can be cast in the form

Frad = −D
d(aT)

dr
, (1.26)

where aT is the radiation energy density and D is a diffusion coefficient given by

D =
c

κrad�
=



c ℓph. (1.27)

In stellar atmospheres, the mean free path of photons becomes much larger, and the dif-
fusion approximation is not valid. There, a more complete and detailed treatment of the full
radiative transfer problem is required (Mihalas and Mihalas 1984).

4.2 Conductive Transport

Energy can be transferred not only by photons but also by particles via collisions during the ran-
dom thermal motions of the particles. This becomes particularly relevant at the high densities
characteristic of evolved stars, where electron degeneracy increases both the electron veloc-
ity and the mean free path substantially, thus making the diffusion coefficient large. Hence, in
the case of stellar matter where electrons are degenerate, electron conduction results in a very
efficient energy transfer mechanism, superseding in some cases radiative transfer.

The energy flux due to electron thermal conduction can be written in terms of a coefficient
of thermal diffusion, De , and the temperature gradient as

Fcd = −De
dT
dr

. (1.28)

It is convenient to define a “conductive opacity” as

κcd =
 acT

De �
, (1.29)
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so that the total energy flux carried by both radiation and thermal conduction can be written as

Ftot = Frad + Fcd = −
 acT

κtot �
dT
dr

, (1.30)

where the total opacity is expressed as


κtot

=


κrad
+


κcd

. (1.31)

Note that when κcd ≫ κrad, then κtot ≃ κrad, and when electron conduction is very efficient,
κcd ≪ κrad, κtot ≃ κcd is verified.

It is useful to write the diffusion equation, (> 1.21), for the radiative plus conductive trans-
port in terms of the radiative temperature gradient for a star in hydrostatic equilibrium, ∇rad,

∇rad = (
d ln T
d ln P

)
rad

, (1.32)

in the form

∇rad =


πacG
κtot l P
m T . (1.33)

It should be noted that∇rad, which is a spatial derivative that relates the variables P and T
in two closemass shells, describes the temperature variation with depth for a star in hydrostatic
equilibrium where energy is transferred by radiation (and conduction).

4.3 Convective Transport

In a stellar interior, energy is transferred not only by radiation and/or conduction, but also by
convection, which is also responsible for chemical element transport. Under certain circum-
stances, small, local perturbations of elements around their equilibrium positions may grow,
thus leading to macroscopic motions. These large-scale motions, or convection, lead to energy
transport from the hottest to the coolest regions due to the rising and falling of mass elements
under the combined action of buoyancy and gravity. The condition for stability of a mass ele-
ment that is displaced around its equilibrium position in a certain region of a star (due to, for
instance, temperature fluctuations) is

(
d�

dr
)
int

> (
d�

dr
)
ext

, (1.34)

where the subscript “int” denotes the change of internal density of themass elementwhile it rises
a distance dr, and the subscript “ext” indicates the spatial gradient in the star. This condition
assumes that the element remains always in pressure equilibrium with the surroundings. That
is, the element moves with a speed lower than the local sound speed. The stability condition
given by (> 1.34) simply states that after moving a distance dr, the element will be denser than
the fluid in its new environment, so the gravitational force will make the element sink back to
its original position.
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In order to translate this stability condition into a more tractable form, the equation of state
� = �(P,T , μ) can be used, and can be written as

d�

�
=

P
�
(
∂�
∂P

)
dP
P

+
T
�
(
∂�
∂T

)
dT
T

+
μ
�
(
∂�
∂μ

)
dμ
μ

(1.35)

= α
dP
P

− δ
dT
T

+ φ
dμ
μ
,

where α and δ are given by (> 1.16), μ is the mean molecular weight, and φ is the chemical
potential. Hence, the stability criterion becomes

(
α
P

dP
dr

−
δ
T
dT
dr

+
φ
μ
dμ
dr

)
int

> (
α
P
dP
dr

−
δ
T
dT
dr

+
φ
μ
dμ
dr

)
ext

. (1.36)

Since the element is in equilibrium with its surroundings (the pressure is the same), and the
values of α and δ for the fluid element are almost equal to the external ones, the first term on
either side of the inequality cancel each other. Also, (du/dr)int =  since the element does not
change its chemical composition while moving, which is the same to say that there is no matter
exchange with the surroundings. Then, (> 1.36) reduces to

(
δ
T
dT
dr

)
int

< (
δ
T
dT
dr

−
φ
μ
dμ
dr

)
ext

. (1.37)

After multiplying both sides of this inequality by the pressure scale height

λP = −
dr
dlnP

, (1.38)

which is ameasure of the distance over which the pressure is changing by a factor e, the stability
condition becomes

(
d lnT
d ln P

)
ext

< (
d lnT
d ln P

)
int
+
φ
δ
(
d ln μ
d ln P

)
ext

. (1.39)

This condition can be used to test the stability of a layer where all energy is transported by
radiation and/or conduction. If the star is stable the term on the left-hand side of (>1.39) is the
radiative temperature gradient defined by (> 1.32). It will be assumed that the element moves
adiabatically. This is same as assuming that the rising fluid element has no time to exchange its
energy content with the surrounding environment. Thus, the Ledoux criterion for dynamical
stability is obtained

∇rad < ∇ad +
φ
δ
(
d ln μ
d ln P

) , (1.40)

where ∇ad is the adiabatic temperature gradient and corresponds to the temperature gradient
when the moving element does not exchange heat with the surrounding medium. For a general
equation of state, the adiabatic gradient reads

∇ad =
Pδ

CP�T
. (1.41)
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It is worth mentioning that for the particular case of a chemically homogeneous region of
a star, d ln μ/d ln P = . Therefore, the condition for stability in this case simply reads

∇rad < ∇ad, (1.42)

which is the Schwarzschild criterion for dynamical stability. In those stellar regions where
nuclear reactions produce heavier elements below the lighter ones, the chemical gradient term
in (> 1.39) favors convective stability since d ln μ/d ln P > . Indeed, in regions of varying μ,
a fluid element moving upward is made of matter with a higher molecular weight than that of
its surrounding medium, forcing the element to sink down as a result of gravity.

The derivation of the condition for stability can be seen from a slightly different point of
view. Assume that a fluid element in a star is displaced vertically and adiabatically from its
equilibrium position with the surroundings at r. It will experience a buoyancy force per unit
volume equal to −g (�int −�ext), where g is the absolute value of the gravitational acceleration
and �int and �ext are, respectively, the interior and exterior densities of the fluid element. In the
absence of viscous effects, the equation of motion of the element is

�int
dr
dt

= −g (�int − �ext). (1.43)

For a small displacement (r − r), we obtain

�int(r) = �int(r) + (
d�int

dr
)
r

(r − r), (1.44)

and the same for �ext . Since at r, �int(r) = �ext(r), the equation of motion becomes

�int
dr
dt

+ g (
d�int

dr
−
d�ext

dr
) (r − r) = , (1.45)

the solution of which is of the form (r − r) = A exp(i N t), with N the oscillation frequency
of the element around its equilibrium position, also called the Brunt–Väisälä frequency, which
is given by

N 
=

g
�
(
d�int

dr
−
d�ext

dr
) . (1.46)

Note that if (d�int/dr) > (d�ext/dr), then N  > , N is real, and the movement is oscilla-
tory. These oscillations are also known as gravity waves (not to be confused with gravitational
waves in General Relativity) since gravity is the restoring force. Thus, the layer will be stable
against convection. On the other hand, if (d�int/dr) < (d�ext/dr), then N  < , N is imagi-
nary, and then the element will move exponentially from the equilibrium position. Clearly, the
layer will be unstable against convection. Now compare these results with the stability condition
given by (> 1.34).

The actual temperature gradient in a convective region, the convective gradient∇conv , will
be different from the radiative temperature gradient. It is clear that if a fraction of the total flux
is carried by convection, then ∇conv < ∇rad , where ∇rad represents the temperature gradient
that would be needed to transport the entire flux by radiation and conduction. The total flux
consists of the radiative plus convective fluxes:

Ftot =
l

πr
= Fconv + Frad =

acGmT

 κtot P r
∇rad . (1.47)
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If ∇conv is the actual temperature gradient, it is clear then that the flux carried by radiation is
only

Frad =
acGmT

 κtot P r
∇conv. (1.48)

In a convective zone, the following relations are valid (the second inequality is the criterion
for convection)

∇rad > ∇conv > ∇int > ∇ad. (1.49)

The calculation of ∇conv remains a serious issue. In fact, a model for convection must be
specified. Convection is essentially a nonlocal and complex phenomenon that involves the
solution of the hydrodynamic equations, and it remains a weak point in the theory of stellar
evolution. In most stellar applications, a simple local formulation (Böhm-Vitense 1958) called
the mixing-length theory (MLT) is used. This crude model assumes that the convective flux is
transported by single size, large fluid elements, which after traveling, on the average, a dis-
tance ℓMLT, the mixing length, break up releasing their energy excess into the surrounding
medium. The distance ℓMLT, which is also the characteristic size of the elements, is parame-
terized in terms of the pressure scale height, ℓMLT = αMLT HP , where αMLT is a free parameter
not predicted by the theory that must be calibrated using observations, and HP is the pressure
scale height. In particular, in the Böhm-Vitense formulation, the MLT involves three length
scales which, in most stellar applications, are reduced to ℓMLT. Usually, αMLT is found fitting the
solar radius (αMLT ≈ .), and this value is usually used to model other stars and evolutionary
phases.

In the deep interior of stars, convection results from the large values of ∇rad caused by the
strong concentration of nuclear burning near the stellar center, for instance during the core
hydrogen burning phase via the CNO cycle in stars somewhatmore massive than the Sun.The
high densities of these regions make the temperature stratification almost adiabatic, and thus
∇conv = ∇ad. This means that a very small excess of ∇conv over the adiabatic value is enough
to transport all the flux. Consequently, the uncertainties in the MLT theory become irrelevant
and a detailed treatment of convection is not required to specify ∇conv. For the Sun, typical
convective velocities are of the order of 400 cm s−, whereas for more massive stars they are
much larger. Hence, the turnover time, or the travel time of the elements over the distance
ℓMLT, ranges from about 1 to 100 days. This time is far much shorter than the main sequence
lifetime. In fact, during most evolutionary phases convective mixing is essentially an instanta-
neous process, thus leading to chemically homogeneous convective zones. However, this may
not be true during fast evolutionary stages, where the convective timescale becomes comparable
to the evolutionary timescale.

A complete solution of the MLT, with all its associated uncertainties, is required in the
low-density, outermost part of convective envelopes where the temperature gradient markedly
differs from the adiabatic value (Cox and Giuli 1968). In these layers, large values of∇rad result
from the large opacity values in the ionization zones of hydrogen and helium close to the sur-
face, causing convection in the outer parts of relatively cool stars. Here, the density and the heat
content of matter are so low that a temperature gradient largely exceeding ∇ad is required to
transport energy. Depending on the efficiency of convection,∇conv will be somewhere between
∇ad and∇rad. Typical values for the average convective velocity in the solar envelope are about
1 km s− , close the local sound speed, and the turnover timescale is of the order of 5min.

However, processes such as overshooting, that is, the extension of convective zones beyond
the formally convective boundaries given by (> 1.40) – at the convective boundaries, fluid
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elements have zero acceleration but nonzero velocity – cannot be satisfactorily treated using
a local theory. More mixing than is expected from the MLT treatment is supported by differ-
ent pieces of astrophysical evidence, which suggest that real stars have larger convective cores.
Overshooting – which is critical in determining the total amount of nuclear fuel available for
the star – is a nonlocal process, and its extent depends on the properties of the adjacent lay-
ers. In most studies of stellar structure and evolution, overshooting is simulated extending the
boundaries of the convective layer and mixing material beyond the formal convective bound-
ary. This is known as instantaneous overshooting. A better approach is to treat overshooting
as a diffusion process. This approach enables a self-consistent treatment of this process in the
presence of nuclear burning (Herwig 2000). Here, overshooting parameterization is based on
hydrodynamical simulations (Freytag et al. 1996), which show that turbulent velocities decay
exponentially outside the convective boundaries. This diffusive overshooting gives rise to mix-
ing in the overshoot regions whose efficiency is quantified in terms of the diffusion coefficient

Dos = D exp(
− z
Hv

) , (1.50)

where D is the diffusion coefficient at the boundary of the convection zone, z is the radial
distance from the edge of the convection zone, and Hv is the velocity scale height of the over-
shoot convective elements at the convective boundary.Hv is parameterized as a fraction f of the
pressure scale height,Hv = f HP . The parameter f is a measure of the extent of the overshooted
region. Clearly, the larger the f , the extra mixing beyond the convective boundary extends fur-
ther. Usually f ≈ . is adopted.This choice of f accounts for the observed width of the main
sequence as well as for the intershell abundances of hydrogen-deficient post-AGB remnants.

Another complication is the occurrence of “semiconvection,” a slow mixing process that
is expected to occur in those regions with an inward increasing value of μ that are unstable
according to the Schwarzschild criterion but stable according to the Ledoux criterion, namely,
those layers where

∇ad +
φ
δ
(
d ln μ
d ln P

) > ∇rad > ∇ad. (1.51)

Here, energy losses from the fluid elements (elements are hotter than the surroundings)
will cause them to oscillate around their equilibrium positions (vibrational instability) with
progressively growing amplitudes (Kippenhahn and Weigert 1990). Because of heat losses, the
elements return to the equilibrium position with a temperature lower than that with which they
started, thus reaching deeper and hotter regions in their downward excursion. The growth of
the oscillation amplitudes is determined by the timescale of thermal adjustment of the fluid
elements. The overstability resulting from these growing oscillations and nonlinear effects is
believed to result in partial mixing of the corresponding layers. Realistic physical models of all
these nonlocal processes require two- and three-dimensional numerical simulations of nonlin-
ear hydrodynamic instabilities and turbulent processes (Young et al. 2003). Finally, heat leakage
of the elements is also responsible for another type of instability, thermohaline convection. This
process leads to significant turbulent transport in stable regions with negative chemical gra-
dients – see Traxler et al. (2011) for recent three-dimensional simulations of this process in
stars.

In closing, it is worth mentioning that various attempts to improve the MLT have been
made. In particular, Canuto and Mazzitelli (1991) have considered the full spectrum of turbu-
lence in velocities and sizes of the convective eddies. An extended version of theMixing Length
Theory of convection, for fluids with composition gradients, has been derived byGrossman and
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Taam (1996) in the local approximation.These authors – see also Grossman et al. (1993) – have
developed the nonlinear Mixing Length Theory of double diffusive convection (GNA), where
both the effects of thermal and composition gradients compete to determine the stability of the
fluid. The GNA theory is based on the MLT picture and considers the fluid as an ensemble of
individual elements or blobs. This ensemble is described by a distribution function that evolves
in time according to a Boltzmann-type equation. In its local version, all third-order terms in
the second-moment of the Boltzmann equation are neglected.The GNA theory applies in con-
vective, semiconvective, and thermohaline regimes. According to this treatment, the diffusion
coefficient D characterizing mixing in the various regimes is given by

D =


ℓσ (1.52)

where ℓ = αHP is the mixing length and σ the turbulent velocity. The value of σ is determined
by simultaneously solving the equations for the turbulent velocity and flux conservation – see
Grossman and Taam (1996) for further details. In this theory of convection, the standard MLT
for a fluid of homogeneous composition is a limiting case.

5 The Virial Theorem

Stars are one of the best examples of a virialized system. In fact, it is rather simple to prove this.
Assume that they are in hydrostatic equilibrium – and, hence, that (>1.4) holds – and that they
are made up of an ideal gas. Accordingly, multiplying (> 1.4) by πr and integrating over the
entire star,

∫
R


πr

dP
dr

dr = −∫
R


πr

G�m
r

dr (1.53)

is obtained, where R is the stellar radius.The left-hand side of this equation can be easily worked
out. Integrating by parts it is found that

∫
R


πr

dP
dr

dr = [πrP]
R
 − ∫

R


Pπrdr = −∫

M



P
�
dm (1.54)

where it has been assumed that the pressure at the surface of the star vanishes, and (> 1.5) has
been used.The right-hand side of the previous equation can also be further worked out, to yield

−∫
R


πr

G�m
r

dr = −∫
R


πr�

Gm
r

dr = −∫
R



Gm
r

dm = Ω (1.55)

which is the total gravitational energy. Thus,

∫
M



P
�
dm + Ω = . (1.56)

Quite generally, for an ideal gas, P = (γ − )�u, where u is the internal energy and γ is the
adiabatic index. Thus, substituting this relationship in the last equation, a rather general result
is obtained:

(γ − )U + Ω =  (1.57)

where the total thermal energy, U , has been introduced. On the other hand, the total energy of
a star (the binding energy) is B = U + Ω.Thus,

B =
γ − 
γ − 

Ω. (1.58)
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For a perfect gas γ = /. Consequently, U + Ω =  and B = Ω/. This means that if a star
contracts – or, equivalently, it releases gravitational energy – half of the gravitational energy is
transformed in thermal energy, whereas the other half must be radiated away. Note as well that
since Ω < , the total energy of the star is also negative, an otherwise expected result thatmeans
that the star is bound. Only in the case in which γ = /, that is, for a completely degenerate
relativistic gas, B = .This last result is of special significance as it is closely related to the concept
of Chandrasekhar’s mass and to the explosion mechanism of thermonuclear supernovae.

The virial theorem can be used to obtain a relation between the stellar mass and the mean
temperature, T . Assume that stars are essentially composed of hydrogen. This assumption is
valid for most stars, for which the hydrogen mass fraction is typically ∼0.75. The total thermal
energy is thus

U ∼


NkBT ∝ MT (1.59)

where N is the total number of particles and kB = . ergK− is the Boltzmann constant.
Since Ω ∝ −GM/R and U = −Ω, it follows that T ∝ M/R, and thus the more massive a star,
the hotter, in qualitative agreement with arguments put forth in >Sect. 1. This argument can
be pushed forward to obtain a mass-luminosity relationship. The total luminosity of a star can
be expressed as L = πRF, where F is the flux. Using (> 1.20) we obtain:

F ∝

κ�

T dT
dr

∼

κ�

T

R
. (1.60)

Consequently, after some elementary algebra, and taking into account that the virial theorem
states that T ∝ M/R, and also considering that � ∝ M/R one arrives at the conclusion that
L ∝ M/κ. This is same as saying that more massive stars are not only hotter, but also more
luminous.

6 Physical Inputs

As has been shown in the previous sections, the basic equations describing the structure and
evolution of stars are relatively simple. To this description the microphysics, that is, the proper-
ties of stellarmatter, has to be added.These properties include the equation of state, opacity, and
energy generation rates, among others. The relevant processes occur in an interacting plasma
of ions, electrons, and atoms, and the detailed physics of these processes is still an active field
of research. Thus, some uncertainties still remain. In this section, all the main physical inputs
necessary to model the structure of a star are detailed. These include, of course, the equation
of state, described in >Sect. 6.1, which provides the pressure as a function of the temperature,
density, and chemical composition. Obviously this is needed to solve the equation of hydrostatic
equilibrium. The second important input is the nuclear energy generation rate – >Sect. 6.2 –
which, as mentioned, is needed to maintain stable temperatures during long periods of time.
Attention will be paid to only the most important thermonuclear reaction rates, namely, to
those relevant for the hydrogen, helium, and carbon burning phases, and other interesting
nuclear reactions will be briefly mentioned, but the aim of this section is not to be exhaus-
tive. The interested reader is referred to the several recent works on this particular topic –
see, for instance, the detailed and interesting paper of Longland et al. (2010) and subsequent
publications – for detailed and exhaustive information.As already shown, opacities and conduc-
tivities are crucial in evaluating the rate at which energy is transported, and they are described
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in >Sect. 6.3, while >Sect. 6.4 is devoted to describe the most recent neutrino emission rates.
Finally, in >Sect. 7 an overviewwill be given of the several other physical inputs which are only
required under special circumstances.

6.1 Equation of State

The equation of state describes the thermodynamical properties of stellar matter and relates
density to pressure, temperature, and chemical composition. It is particularly simple in the case
of an ideal gas, but physical processes relevant for stars – that include, among others, ionization,
electrondegeneracy,molecular dissociation, radiationpressure, orCoulomb interactions – turn
the treatment of the equation of state into a rather complex issue. In dealing with these effects,
caremust be taken to ensure the treatment to be thermodynamically consistent in the sense that
it satisfies the thermodynamical identities between the different quantities. One way in which
this can be achieved consists in deriving the equation of state from the free energy of the gas.
Using this approach, the thermodynamical state of the gas for a given temperature, density, and
composition is derived minimizing the free energy, which yields the occupation numbers and
ionization states.The relevant thermodynamical quantities can be then obtained as derivatives
of the free energy. This is the basis for the so-called chemical picture in determining the equa-
tion of state. The second way to ensure thermodynamical consistency is based on the physical
picture. Within this less used approach, instead of dealing with the chemical equilibrium of a
set of predefined ions, atoms, and molecules, only elementary particles of the problem (nuclei
and electrons) are assumed at the beginning, and composite particles appear as a result of the
interactions in the system.

It is customary to characterize the chemical composition of stellar matter by means of the
mean molecular weight, μ, defined as μ = �/(n mH), where n is the total number of particles
per unit volume and mH the atomic mass unit (.× − g). For a mixture of fully ionized
gases, the molecular weight of the gas is given by the harmonic mean of the molecular weights
of the ions (μo) and electrons (μe):


μ
=


μo

+

μe

, (1.61)

where

μo

=∑
i

Xi

Ai
, (1.62)


μe

= ∑
i

Xi Zi

Ai
, (1.63)

with Xi , Ai , and Zi being the mass fraction (normalized to unity), Xi = �i/�, atomic weight,
and charge, respectively, of element i. These definitions are apparent by noting that

n =
�

μmH
= ne + no =∑

i
Zi ni + ∑ ni =∑

i
Zi

Xi

AimH
� +∑

i

Xi

AimH
�, (1.64)

where ni is the number of ions per unit volume of element i. In the case of a neutral gas, the
molecular weight reduces to μo. For complete ionization, a simple expression for μe is obtained
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by assuming that for all elements heavier than helium (Z > ), Ai/Zi ≈ . In this case the
molecular weight per electron becomes

μe =


 + XH
, (1.65)

where XH is the abundance by mass of hydrogen. In this approximation and when there is no
hydrogen, μe = .

6.1.1 Ions

In the absence of quantum effects, and assuming that the potential energy of particle interac-
tions ismuch smaller than the kinetic energy of the particles, the equation of state of ions adopts
the simplest form. The particles obey the Maxwell–Boltzmann distribution, and the equation
of state corresponding to an ideal (perfect) gas results

P =
kB

mHμ
� T . (1.66)

This equation describes the equation of state of fully ionizedmatter, as found in the deep interior
of stars (note that the electron contribution is through μ), as well as matter where all electrons
are in the atom (no ionization at all).

If photons contribute appreciably to gas pressure, Prad = (/)aT, then the equation of
state becomes (assuming that radiation is in thermodynamic equilibrium with matter)

P =
kB

mH μ
� T +



aT. (1.67)

From the internal energy per unit mass of the monoatomic gas (it is assumed that, in the
case of neutral matter, there are no internal degrees of freedom):

E =



kB
mH μ

T +
aT

�
, (1.68)

the specific heat at constant pressure, CP , and the adiabatic temperature gradient, ∇ad, are
derived:

CP =
kB

mH μ
[


+

 − β − β

β
] , (1.69)

and

∇ad =
 + ( − β)( + β)

β


 +

(−β)( + β)
β

. (1.70)
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Here, β quantifies the importance of radiation pressure, and is defined as β ≡ Pgas/P, where P
is the total pressure due to gas plus radiation. If radiation pressure is negligible, then β →  and
Pgas → P, CP → kB/( μmH), and ∇ad → ., the well-known values for the ideal gas. For
β → , P → Prad, CP →∞, and∇ad → ..

This simple treatment ignores a number of important effects that are relevant in the astro-
physical context. For instance, at low temperatures, partial ionization of matter must be taken
into account. This changes the mean molecular weight and the energetics of the gas. The treat-
ment of partial ionization is usually done assuming chemical equilibrium between the gas
constituents. In this case, the ratio n j+/n j of atoms j +  times ionized to those which are j
times ionized is given by the Saha equation

n j+

n j
= 

u j+

u j
(
πme

h
)
/ (kBT)/

Pe
e−χ j/kBT , (1.71)

where u j is the partition function for the ion in the energy state j (which is a function of T), h
is the Planck constant, Pe is the electronic pressure, and χ j is the ionization energy. Note that
ionization is favored at high temperatures and low electronic pressures. Quantities such as CP ,
∇ad, and μ are notably affected by ionization. In particular, ∇ad is decreased below 0.4 and CP

markedly increases when compared with the values resulting from fully ionized perfect gas. It
is important to note, however, that the treatment of ionization is a difficult task since it involves
considering the various ionization degrees of all chemical species. The problem is specified by
a full set of coupled Saha equations, the solution of which can only be done numerically.

6.1.2 Electrons

The inner regions of the vast majority of highly evolved stars, including white dwarf stars, are
dominated by degenerate electrons. At very high densities and low temperatures, the de Broglie
wavelength of electrons, h/(mekBT)/, becomes larger than the mean separation of electrons
(d ∼ �−/) and, as a result, quantum effects become relevant. Hence, electrons become degen-
erate and quantum mechanics – the Pauli exclusion principle – strongly affects the equation
of state. In this case, the distribution of electron momenta obeys the Fermi–Dirac statistics,
and the average occupation number at equilibrium of a cell in the phase space – actually, the
distribution function of energies – is given by

f (ε) =


 + exp [(ε − μq)/kBT]
, (1.72)

where μq is the chemical potential of the gas and ε is the kinetic energy corresponding to the
momentum, p, which is given by:

ε(p) = mec[
√
 + (p/mec) − ]. (1.73)

Note that this expression is valid for both relativistic and nonrelativistic electrons – in the
nonrelativistic limit (pc ≪ mec), and ε ≃ p/me . For noninteracting, degenerate electrons at
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a given temperature T , the number density and pressure for the electron gas are, respectively,

ne =
π
h ∫

∞



p

 + exp [(ε − μq)/kBT]
dp (1.74)

Pe =
π
h ∫

∞



p

 + exp [(ε − μq)/kBT]
dεp
dp

dp. (1.75)

In the limit of high temperature and low density, μq/kBT ≪ −, and the distribution func-
tion reduces to the Maxwell–Boltzmann distribution, f (ε) → exp[−(ε − μq)/kBT]. In this
case, Pe → nekBT . At very high densities (or very low temperatures), that is, when the de
Broglie wavelength is much larger than the mean separation, the electron gas behaves as a zero-
temperature gas. In this zero-temperature approximation, μq ≫ kBT and μq is identified with
the Fermi energy (εF). Hence, the Fermi–Dirac distribution that characterizes electrons reduces
to the step-like function:

f (ε) = {  if ε ≤ εF
 if ε > εF.

In this situation, electrons occupy only the energy states up to εF, and not the higher energy
states where the distribution function is zero. In particular, those electrons with energies close
to εF willmake the largest contribution to the pressure. In this zero-temperature approximation,
the so-called complete degeneracy approximation, the electron pressure can be easily derived
by considering only the energy states up to εF. Then, (> 1.74) and (> 1.75) need only to
be integrated up to pF, the momentum corresponding to the Fermi energy. Using the relation
� = μemHne , the electron pressure and mass density become then

Pe =
π
h ∫

pF



(p/me)dp
√
 + (p/mec)

= A [x(x + )/(x − ) +  sinh−(x)] (1.76)
� = Bμe x ,

where the dimensionless Fermi momentum is given by x = pF/mec, A = πm
e c/h = . ×

 dyn cm−, and B = πm
e cmH/h = . ×  g cm−, and the rest of the symbols have

their usualmeaning. Note that this expression is valid for any relativistic degree (Chandrasekhar
1939). Relativistic effects have to be taken into account at very high densities – note that as
the density is increased so does pF. In particular, relativistic effects start becoming prominent
when pF ≈ mec or x ≈ , which corresponds to a density of �/μe ≈  g cm−. This density
corresponds to typical values of the central densities in white dwarf stars. Thus, it is expected
that electrons in the core of white dwarfs are partially relativistic. Expansions of the equation
for the electronic pressure Pe are possible in the limiting cases x → , namely, nonrelativistic,
and x → ∞, extremely relativistic. In both cases it is possible to eliminate the variable x, thus
resulting in simple equations for the pressure of a completely degenerate electron gas:

Pe → A


x = (


π

)

/ h

memH/ (
�

μe
)

/

(1.77)

= . ×  (
�

μe
)

/

x ≪ 
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Pe → A x = (

π

)

/ hc
mH/ (

�

μe
)

/

(1.78)

= . ×  (
�

μe
)

/

x ≫ 

where Pe is in dyn cm−. Although the zero-temperature approximation is an idealized one,
the electron gas in some astrophysical environments behaves as if it were indeed at zero tem-
perature. This is the case of the core of cool white dwarfs, where their structure is supported
entirely by the pressure of an almost completely degenerate electron gas. This becomes clear
by noting that the condition for complete degeneracy, TF ≡ εF/kB ≫ T , where TF is the Fermi
temperature, can be written in the form (for nonrelativistic electrons):

TF =

kB

pF
me

=
mec

kB
(

�

C
)
/

=  ×  (
�

μe
)

/

≫ T . (1.79)

For a typical white dwarf with a central density of  g cm−, TF =  ×  K, which is
much larger than the core temperature (typical core temperatures range from  to  K).
Hence, the electron gas behaves as a zero-temperature Fermi gas. In sharp contrast, at the center
of the Sun �/μe ≈ , thus TF ≈  ×  K, smaller than its central temperature (∼ K).
Hence, electron degeneracy is not relevant at the center of the Sun. Finally, note the smaller
dependence of pressure on density for relativistic electrons. This relativistic “softening” of the
equation of state is responsible for the existence of a limiting mass for white dwarf stars, the
so-called Chandrasekhar limiting mass (Chandrasekhar 1939).

As noted, the equation of state of white dwarf interiors can be well approximated by that
of an ideal Fermi gas at zero temperature.This has important consequences. In particular, the
pressure only depends on the density and not on the temperature. Consequently, the control
parameter to balance the gravitational pull in this case is �, at odds with what was discussed
in >Sect. 1 for normal stars. It should be reminded that for main sequence stars the control
parameter is the temperature, and hence more massive stars have larger temperatures. This is
not the case for white dwarfs. Massive white dwarfs have larger central densities. It is easy to
also show that more massive white dwarfs have smaller radii and, in the limit, Chandrasekhar’s
mass appears as the limiting mass for which the radius of the equilibrium configuration is zero.

In the case of finite temperature (T ≠ ), the Fermi–Dirac distribution for electrons cannot
be approximated by a step-like function as in the case inwhich complete degeneracy is assumed.
Here, TF ∼ T and those electrons with energies near εF can occupy levels with energies larger
than εF.This situation is referred to as partial degeneracy, and the number density and electron
pressure are given by (> 1.74) and (> 1.75), respectively. Only the case of nonrelativistic elec-
trons, for which ε = p/(me), will be considered here. Introducing the degeneracy parameter
α = −μq/kBT , these equations become

ne =
π
h ∫

∞



p

 + exp(α + p/mekBT)
dp =

π
h

(mekBT)/ F/(α), (1.80)

Pe =
π

hme
∫
∞



p

 + exp(α + p/mekBT)
dp =

π
h

(mekBT)/kBT F/(α), (1.81)
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where Fn(α) are the Fermi–Dirac integrals, given by

Fn(α) = ∫
∞



un

 + exp(α + u)
du. (1.82)

It should be kept in mind that in the case of partial degeneracy, relativistic effects have to be
considered for temperatures in excess,  K. Indeed, it has been shown that relativistic effects
for a degenerate gas become relevant when density exceeds  g cm−. At such densities, degen-
eracy will be essentially complete unless T >  K. These rather extreme conditions are only
found in some very late stages of stellar evolution. Hence, the equation of state in the case of
relativistic partial degeneracy will not be discussed, instead the reader is referred to the spe-
cialized literature for this specific topic. In particular, it is worth mentioning here that the most
commonly used equation of state is the so-called Helmholtz equation of state. Full details of the
Helmholtz equation of state are provided in Timmes and Swesty (2000). This implementation
of the equation of state includes contributions from radiation, completely ionized nuclei, and
degenerate and relativistic electrons; has perfect thermodynamic consistency; and covers the
density and temperature ranges − ≤ � (g cm−) ≤  and  ≤ T (K) ≤ , respectively.
It is freely available on the Web page of F. X. Timmes,1 where several additional physical inputs
can also be found. Continuing with our treatment, it is immediately clear from (> 1.80) to
(> 1.81) that

Pe = nekBT [


F/(α)
F/(α)

] . (1.83)

This equation gives the pressure of a nonrelativistic, partially degenerate electron gas. Given
� (or ne) and T , the value of α can be found from (>1.80), and F/(α) and Pe can be assessed.
Note that the term in brackets in (> 1.83) measures the degree to which the pressure of a
degenerate electron gas differs from that of a nondegenerate gas. In the nondegenerate limit,
α →∞, the term in brackets tends to 1, and Pe → nekBT . Even for α > , the electron pressure
is basically the pressure of a nondegenerate gas.>Equation 1.83 also shows that the transition
from the nondegenerate regime to that of complete degeneracy as the density increases is not
discontinuous, but instead there is a gradual transition between those extreme conditions.

These and other concepts become clear when an expansion of the Fermi–Dirac integrals is
considered. This is possible in the limits of weak and strong degeneracy. For weak degeneracy
(α > ) it can be shown that

ne =
(πmekBT)/

h
∞

∑
n=
(−)n+

e−nα

n/ α > , (1.84)

Pe =
kBT(πmekBT)/

h
∞

∑
n=

(−)n+
e−nα

n/ α > . (1.85)

Note that for very large values of α, only the first term of each series is relevant, and the
classical result Pe = nekBT is recovered. Taking the first two terms of the series, the correction
to the pressure of an ideal gas due to very weak degeneracy is

Pe = nekBT [ +
neh

/(πmekBT)/
+ . . .] , (1.86)

1http://cococubed.asu.edu/code_pages/codes.shtml

http://cococubed.asu.edu/code_pages/codes.shtml


24 1 Stellar Structure

which is valid for large enough α. On the other hand, for strong, but not complete, degeneracy
(α ≪ −), expansion of the Fermi–Dirac integrals leads to

ne =
π
h

(me)
/μ/q

⎡
⎢
⎢
⎢
⎣
 +

π


(
kBT
μq

)



+
π


(
kBT
μq

)



+ . . .
⎤
⎥
⎥
⎥
⎦

(1.87)

Pe =
π
h

(me)
/ 


μ/q

⎡
⎢
⎢
⎢
⎣
 +

π


(
kBT
μq

)



+
π


(
kBT
μq

)



+ . . .
⎤
⎥
⎥
⎥
⎦
. (1.88)

These expressions allow to compute some basic thermodynamic quantities. For instance,
the specific heat at constant volume

CV = (
dE
dT

)
V ,Ne

= (
∂E
∂T

)
μq

+ (
∂E
∂μq

)
T

dμq
dT

, (1.89)

where E = (/)PeV is the internal energy of electrons. Taking into account that dne =  – the
volume of the gas is fixed – and considering only the first order in T , it can be shown that the
specific heat at constant volume for a almost completely degenerate electron gas is

CV ≈
π


kBT
εF

≪ . (1.90)

Thus, the specific heat for degenerate electrons is proportional to temperature. In the case
of strong degeneracy, the specific heat of the electron gas is much smaller than that of an ion
gas.This is a somewhat expected result because, as a result of the exclusion principle, only those
electrons with energies near the Fermi energy will be able to change its energy as a result of a
temperature variation.

Taking into account the contribution of ions and radiation, the equation of state for a
mixture of ions, electrons, and radiation can be written

P = Pion + Pe + Prad =
kB

mHμo
� T +

π
h ∫

∞



p

 + exp [(ε − μq)/kBT]
dεp
dp

dp +
a

T, (1.91)

� = μemH
π
h ∫

∞



p

 + exp [(ε − μq)/kBT]
dp. (1.92)

Note that ions are treated as a Maxwell–Boltzmann gas. This is so because at any given
temperature ions require much higher densities than electrons to become degenerate – because
of their larger mass, the de Broglie wavelength corresponding to ions is much shorter than that
of electrons. For strong degeneracy, ions barely contribute to the total pressure. As a matter of
fact, the stronger the degeneracy, the smaller the contribution of the ion gas to the total pressure.
However, ions mostly contribute to the mass density (note the presence of mH in the equation
for density) and strongly influence the thermodynamic properties of the mixture as well.

6.1.3 Nonideal Effects

The ion and electron equations of state just described have to be modified in the presence of
interactions between particles. In particular, at high densities and low temperatures, Coulomb
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interactions modify the thermodynamical properties of the ion gas, and in particular the spe-
cific heat. The strength of Coulomb interactions – relative to the thermal kinetic energy – is
determined by the Coulomb coupling parameter, which is defined as:

Γ =
(Ze)

akBT
= .

Z

T
(
�
A
)
/

(1.93)

where T is the temperature in units of  K, � is the density in units of  g cm−, and a is
the radius of the Wigner–Seitz sphere:

a = (
π

ni)

−/
, (1.94)

ni being the number density of ions. For small values of Γ, Coulomb forces are of minor impor-
tance (relative to thermal motions) and the ions behave like an ideal noninteracting gas. But,
once Γ becomes of order unity, ions begin to undergo short-range correlations, eventually
behaving like a liquid. For large enough values of Γ (∼180), as usually found in the core of cool
white dwarfs, they form a lattice structure. Coulomb interactions between the charged particles
of the gas make a negative contribution to the pressure and at low densities affect the energetics
and ionization states. Various types of interactions between the constituents have to be taken
into account in a realistic treatment that eventually leads to “pressure ionization.” Neglecting
these interactions and considering only a simple treatment of ionization given by the Saha equa-
tion – see (> 1.71) – leads to the incorrect prediction that matter at the center of the Sun is far
from being completely ionized. Sophisticated equations of state for solar-type stellar interior
conditions are those of Mihalas et al. (1988) and OPAL (Rogers and Iglesias 1992; Rogers et al.
1996), based on the chemical and physical picture, respectively, whereas for cool white dwarfs
the most up-to-date treatment can be found in Segretain et al. (1994) and references therein.

6.2 Nuclear Reactions

6.2.1 General Concepts

Consider a generic reaction between a particle a and a nucleus X to produce a nucleus, Y and
a particle b. Usually, both a and b can be either another nucleus, a photon, a proton, a neutron,
or an α particle. These are the most common reactions in stellar interiors, although not the
only ones since at very large densities electron captures may also play a role. A symbolic way of
expressing this is

a + X → Y + b (1.95)

although in a short and more convenient notation this is frequently expressed as X(a, b)Y .
In all nuclear reactions charge, nucleon number, momentum, and energy must be conserved.
However, the sum of the masses of the reactants differs from the sum of the masses of the prod-
ucts.The difference is called the mass excess.Themass excess is linked to the binding energy EB

of the nuclei involved in the nuclear reaction. Consider a nucleus of mass number A, charge Z,
and mass M(A, Z). The binding energy – that is, the energy required to separate the nucleons
against their mutual attraction by the strong nuclear forces – is defined as

EB = [(A− Z)mn + Zmp −M (A, Z)] c, (1.96)
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and the binding energy per nucleon is EB/A. The mass excess is then

ΔM = Ma +MX −Mb −MY = ΔEB/c, (1.97)

where ΔEB is the difference of binding energy of the reaction products and reactants. This
energy difference is released in exothermic nuclear reactions and is responsible for keeping sta-
ble the temperature in stellar interiors. For instance, when hydrogen is burned to form helium,
four hydrogen nuclei are converted in one helium nucleus. Given the masses of the proton and
of a helium nucleus, 26.5MeV are released in the process, corresponding to just 0.7% of the
rest mass of the system.The binding energy increases as a function of mass number, peaks for
Fe, and then decreases.Thus, exothermic reactions are either the consequence of thermonu-
clear fusion of light nuclei or of fission of nuclei heavier than Fe into lighter ones.The former
constitutes the main energy source in stars, provided that the temperatures are sufficiently high
to overcome the Coulomb barrier of the interacting particles. On the other hand, endothermic
nuclear reactions are only produced in those environments where an excess of thermal energy
is available.

6.2.2 Thermonuclear Reaction Rates

The nuclear reaction rate between two nuclei can be expressed as:

raX =
nanX

 + δaX
⟨σv⟩aX =


 + δaX

�N 
AXaXX

AaAX
⟨σv⟩aX, (1.98)

where the Kronecker δ prevents from counting twice identical particles, na and nX are the
number densities of the reacting particles, Xa and XX are the corresponding mass fractions,
NA is Avogadro’s number, and ⟨σv⟩aX is the product of the nuclear cross section, σ , and the
relative velocity, v, of the intervening nuclei, averaged over the distribution of relative velocities.
At the densities and temperatures typical of stellar interiors the distribution of velocities of the
interacting nuclei can be well approximated by a Maxwellian thermal distribution, because at
the relevant conditions found in most stars ions are nondegenerate:

⟨σv⟩aX =
√


πμ(kBT) ∫

∞


Eσ(E) exp(−

E
kBT

) dE (1.99)

where E is the relative kinetic energy, and μ is the reduced mass of the colliding nuclei. For
nonresonant reactions induced by charged particles the astrophysical S-factor, S(E), is usually
introduced instead of the nuclear cross section:

σ(E) =
S(E)
E

exp [−πη(E)] , (1.100)

where η(E) = ZaZXα/v is the Sommerfeld parameter, and α is the fine structure constant.
The exponential factor measures the probability of penetration of the Coulomb barrier. This is
done because the S(E) is a smoothly varying function and can be better extrapolated to low
energies, the regions where most of the relevant nuclear reactions occur. Accordingly, after a
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Taylor expansion, one finally obtains

⟨σv⟩aX =

√


μkBT
ΔE

kBT
fSeff exp(−

E

kBT
)

= .× − cm s− (
ZaZX

A
)
/

f
Seff

MeV b
T−/ exp(−

E

kBT
) , (1.101)

where the energy of the Gamow peak E – that is, the energy where the integrand of (> 1.99)
adopts its maximum value, and thus the reaction is most probable – is given by

E

kbT
= (

πZaZXα
√


)

/

(
μ

kBT
)
/

, (1.102)

and the full width at half maximum of the integrand is

ΔE

kBT
= 

√
E

kBT
(1.103)

and
A =

AaAX

Aa + AX
. (1.104)

Finally,

Seff = S() ( +
kBT
E

) + S′()E ( +
kBT
E

) +


S′′()E

 ( +
kBT
E

) + . . . (1.105)

and T is the temperature in units of  K. The factor f accounts for the electron screening
and will be discussed later. Hence, the values that need to be measured experimentally (or, in
the cases where this is impossible, theoretically computed) are S(), S′(), and S′′().

This formulation is only valid for nonresonant reactions. However, there are several nuclear
reactions in which there is a resonance.This happens when the energy of the interacting nuclei
is coincident with the energy level of an intermediate nucleus that eventually decays to produce
the daughter nuclei:

a + X → Z → Y + b. (1.106)

When this occurs, the nuclear reaction rate is enhanced by several orders of magnitude. For the
sake of simplicity, and without any loss of generality, it will be assumed that particle Z has only
one single excited state and that, moreover, can only decay to particles a and X and b and Y .
The probability of these transitions is given by the corresponding lifetimes, τa and τb , which
can be easily expressed by the inverse of the partial widths of the resonance in the incident and
exit channels, Γa and Γb . Thus, the probability of the direct reaction is Γb/Γ, where Γ = Γa + Γb ,
while that of the backward reaction is Γa/Γ. In this case it can be shown that the cross section
of the resonant nuclear reaction is given by the well-known Breit–Wigner formula:

σaX(E) = πλ̵ω
ΓaΓb

(E − E)
 + (Γ/)

, (1.107)

where λ̵ = ħ/p, p =
√
μE is the momentum, E is the energy of the colliding particles, E is the

mean energy of the resonance, and

ω =
J + 

(Ja + )(JX + )
(1.108)
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is a statistical factor that takes into account the angular momenta of the intervening particles,
J is the total angular momentum of the resonant state, and Ja and JX are the corresponding
angular momenta of particles a and X. Obviously, (> 1.107) shows that the closer the energy
to the mean energy of the resonance, the more likely the reaction. Thus, averaging over the
Maxwellian distribution, we obtain

⟨σaX⟩ =
√


μπ

(


kBT
)
/

∫
∞


EσaX(E) exp(−

E
kBT

) dE, (1.109)

which, taking into account that the resonances are usually very narrow, and thus the
Maxwellian distribution barely changes over the width of the resonance, can be very well
approximated by:

⟨σaX⟩ =
√
π(


μkBT

)

/

ωħΓaΓb exp(−
E

kBT
)∫

∞



dE
(E − E)

 + (Γ/)
, (1.110)

which, after some elementary algebra, reduces to:

⟨σaX⟩ = ħ (
π

μkBT
)

/

(ω
ΓaΓX
Γ

) exp(−
E

kBT
) , (1.111)

which, in combination with (> 1.98), provides the thermonuclear rate.

6.2.3 Electron Screening

The thermonuclear reaction rates previously explained assume that the reacting particles are
isolated. In fact, in stellar interiors this is not true, as the plasma is totally ionized.Thus, around
each nuclei there is a cloud of electrons that shields the positive charges, hence lowering the
Coulomb barrier and enhancing the reaction rates. Consequently, the nuclear reaction rates
derived in >Sect. 6.2.2 must be conveniently modified to account for this. This is done using a
multiplicative factor, f . Here, it will be outlined how this screening factor is computed.

In the weak-screening approximation (valid in the case of low densities) the modified
electrostatic potential is given by (Salpeter 1954):

V(r) =
αZaZX

r
e−r/rDH , (1.112)

where all the symbols but the Debye–Hückel radius have been already defined:

rDH =

√
kBT

πζe�NA
, (1.113)

being

ζ =∑
i

Zi(Zi + )
Ai

xi , (1.114)

where xi is the number abundance of chemical species i, with charge Zi and atomic mass
number Ai .

The weak-screening approximation holds when the average interaction energy between
particles is smaller than the mean particle kinetic energy. In this case the thermonuclear
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reaction rate is enhanced by a factor:

ln f =
ZaZXe

rDHkBT
≃ .ZaZX

-
.
./ ζ�

T

, (1.115)

where T is the temperature in units of  K.
In the case of strong screening (large densities), however, this expression is no longer valid,

and another approximation must be used. For the sake of conciseness the formulation of Itoh
et al. (1990) will be closely followed, and for simplicity a one-component plasma will also be
assumed. For extremely dense stellar plasmas the enhancement factor is computed from two
important parameters that characterize dense plasmas: the Coulomb coupling parameter Γ,
given by (> 1.93), and

τ = [(
π


)
Amp (Ze)

ħkBT
]

/

, (1.116)

where mp is the proton mass. This parameter gives the classical turning point at the Gamow
peak r ≃ Γ/τ. In this analysis the electrons are assumed to be strongly degenerate.That is, it is
assumed that T ≪ TF, where TF is the Fermi temperature, and furthermore the ions are treated
as classical particles. Accordingly, their thermal de Broglie wavelength

Λ =
πħ

AmpkBT
(1.117)

verifies the condition niΛ ≤ . Under these conditions the enhancement factor is given by:

ln f = .Γ − τh(β), (1.118)

where

h(β) =
.β + .β + .β − .β + .β

 + β + .β
, (1.119)

with β = Γ/τ.

6.2.4 Nuclear Networks

Nuclear reactions not only release energy but also change the chemical composition of the stellar
interior. This is an important issue as chemical composition changes are an important driver of
stellar evolution. Accordingly, the necessary equations to follow the change of chemical com-
position must be added to the set equations presented in > Sects. 2–4. The change of molar
abundances Yi = ni/�NA with time due to nuclear processes is followed using a set of coupled
ordinary differential equations. If N is the number of chemical species, the nuclear network has
a size N . A typical reaction network reads:

dYi

dt
=


�NA

⎛

⎝
−∑

j
YjYi λ j +∑

k l
YkYl λkl −

Yi

τi
+ . . .

⎞

⎠
. (1.120)

The first term in (>1.120) corresponds to the net destruction of nucleus i due to its interac-
tion with nucleus j, while the second one corresponds to the creation of nucleus i from nuclear
reactions involving nuclei k and l .The third term in this equation is the spontaneous radioactive
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decay of nuclei i with timescale τi . As can be seen the nuclear reaction equations constitute a
set of first-order, nonlinear differential equations. In most stellar evolutionary codes, (> 1.120)
is discretized in a convenient way and the chemical changes are obtained inverting a matrix.
For the sake of conciseness, it is assumed that nuclear decays can be neglected. If the beginning
and the end of the time interval are denoted by superscripts n and n + , then (> 1.120) can be
linearized and expressed as (Arnett and Truran 1969)

Yn+
i (


Δt

+ Yn
j λi j) + Yn+

j Y n
i λ

n
i j − Yn+

k Yn
l λ

n
kl − Yn+

l Y n
k λ

n
kl = Yn

k Y
n
l λ

n
kl − Yn

i Y
n
j λ

n
i j (1.121)

where Δt is the adopted time step. This set of equation can be solved by the Gauss method.
Nevertheless, adequate time steps must be chosen. Typically,

Δt ≤ η
Yn
i

(dYi/dt)n
(1.122)

where η is a constant less than unity. Typical values for this constant range from 0.01 to 0.05.

6.2.5 Hydrogen Burning Reactions

The energy source of main sequence stars is hydrogen burning, and the reaction product is
helium. The total energy yield of this nuclear reaction is 26.73MeV. Depending on whether
a star occupies the lower or the upper main sequence, hydrogen burning occurs through the
pp-chains or the CNO cycle. For the reader unfamiliar with this terminology, it should be noted
that massive stars are located in the upper main sequence, whereas low-mass stars populate the
lowermain sequence.There are three pp-chains, and in all of them the first step involves a weak
interaction to form deuterium and an e−e+ annihilation:

H +H→ H + e+ + νe

In a second step an isotope of helium is formed:

H +
H→

 He + γ.

Once enough He is accumulated it follows the so-called pp-I chain:

He +He →He + H.

However, for the temperatures typical of main sequence stars He is also burned through
the pp-II chain:

He +He → Be + γ
Be + e− → Li + νe
Li + H → He

or the pp-III chain, in which an excited state of beryllium decays to form two helium nuclei:
He +He → Be + γ
Be +H →

B + γ
B → Be∗ + e+ + νe

Be∗ → He.
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The pp-II chain starts to be relevant for temperatures above ∼. ×  K, while the pp-III
chain operates for temperatures larger than ∼.× K. Finally, it is important to realize that all
the nuclei involved in these chains but helium and hydrogen are very unstable, so the interac-
tions are rather inefficient. Actually, the CNO cycle is a more efficient way to produce helium.
In fact, CNO cycle is a bi-cycle: the CN cycle, which is dominant for relatively low tempera-
tures, and the NO cycle, which operatesmostly for larger temperatures. Both cycles need a seed
of carbon, nitrogen, and oxygen to be operative, and these nuclei catalyze the conversion of
hydrogen into helium. To begin with, the CN cycle is described next:

H +C → N + γ
N →

C + e+ + νe
H +C → N + γ
H +

N →
O + γ

O → N + e+ + νe
H +

N →
C +

 He + γ.

In this cycle the reaction with the smallest cross section, which acts as a bottleneck, is the
fourth one. Thus, in equilibrium the overall rate is governed by the reaction rate of N. Also,
the last reaction of the CN cycle can be substituted by this suite of nuclear reactions:

H +N → O + γ
H +

O →
F + γ

F → O + e+ + νe
H +O → N +He + γ

which is known as the ON cycle. According to the previous discussion, the equilibrium CNO
abundances are determined by the nuclear cross section of N, and thus the CNO cycle also
converts carbon and oxygen into nitrogen. Perhaps, the most commonly used reaction rates
for all this suite of reactions are those of Caughlan and Fowler (1988), although there are more
recent prescriptions – see, for instance, Adelberger et al. (2011).

6.2.6 Helium Burning Reactions

Once hydrogen is exhausted in the core of a main sequence star, the pressure gradient cannot
be balanced by the energy release of nuclear reactions. Hence, the hydrogen-exhausted core
contracts, and becomes hotter. At the same time a hydrogen burning shell is established, the
envelope expands, and the star becomes a red giant. Moreover, the envelope becomes convec-
tively unstable and the products of nuclear reactions produced deep in the star are dredged-up to
the surface.This is perhaps the most convincing proof of our ability to correctly understand the
fine details of stellar structure and evolution, because the theoretically computed abundances of
most of the nuclear species match those observationally found. When the temperature reaches
T ∼  K helium is ignited through the so-called triple-alpha process, and contraction stops.
This nuclear reaction can actually be regarded as a three-body interaction, thereby its name,
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and not a normal nuclear reaction. The suite of reactions is
He +He ⇌ Be∗

He +Be∗ ⇌ C∗
C∗ → C + γ.

Note that the nuclear isotope Be∗ is very short-lived at these very high temperatures. This is
the reason why this reaction is usually considered a three-body interaction, and also why as
soon as some carbon is produced α captures on it rapidly set in:

He +C→ O.

Thus, the reaction products of helium burning are carbon and oxygen, the ratio between their
abundances being extremely dependent on the temperature at which burning proceeds. As
mentioned previously, the C(α, γ)O reaction rate is the subject of a vivid debate, as it is one
of themost poorly determined experimentally.The nuclear cross section relies on an extrapola-
tion to low energies of the experimental data, which involves several resonances. Since this cross
section is crucial in several stellar evolutionary stages, this constitutes a serious drawback of the
theory. The most commonly employed nuclear reaction rates of this set of nuclear reactions are
those of the NACRE compilation (Angulo et al. 1999).

6.2.7 Carbon Burning Reactions

Once helium is exhausted in the inner regions of the star, its core can no longer support its own
gravitational force, and consequently starts to contract again until the temperatures necessary
to burn carbon are reached. This occurs at T ∼  ×  K. At the same time the star climbs the
so-called asymptotic giant branch in the Hertzsprung–Russell diagram. Carbon burning only
occurs for stars with masses larger than ∼M

⊙

(García-Berro et al. 1997; Ritossa et al. 1996).
The nuclear reaction network involved in the carbon burning phase is shown in >Fig. 1-2. As
can be seen, the number of nuclear isotopes largely increases, and several isotopes of carbon,
nitrogen, oxygen, neon, sodium, and magnesium are involved.The most relevant reactions are,
nevertheless, the carbon–carbon reaction, yielding either neon or magnesium, and α and pro-
ton and neutron captures. The most recent and up-to-date nuclear reaction rates for these last
reactions are those of Rauscher andThielemann (2000, 2001) and Iliadis et al. (2010), whereas
in most stellar evolutionary codes the prescription of Caughlan and Fowler (1988) is usually
adopted for the fusion of two carbon nuclei.

6.2.8 Other Nuclear Reactions of Interest

After carbon exhaustion there are several other nuclear burning stages. These burning stages
only occur for stars with mass larger than ∼M

⊙

– see, for instance, Ritossa et al. (1999).
These burning stages include neon photo-disintegration, oxygen burning, and silicon burn-
ing. Neon is burned before oxygen because at the very high temperatures required to overcome
the Coulomb barrier of oxygen atoms (∼. ×  K), Ne is photo-disintegrated:

Ne + γ ⇌ O + α. (1.123)
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⊡ Fig. 1-2
Nuclear reaction network for carbon burning. From García-Berro et al. (1997)

This reaction occurs at T ∼ . ×  K and is usually followed by an α capture (using the α
particles liberated in the photo-disintegration) on Ne to produce Mg:

Ne + α → Mg + γ. (1.124)

Consequently, the products of neon photo-disintegration are oxygen and magnesium, plus
some other products (sodium, zinc, aluminum, silicon, etc.) with much smaller abundances.
After neon is exhausted the next nuclear burning stage is oxygen burning:

O + O → Si + α
→

P + p
→ S + n

plus the corresponding recaptures of p, n, and α particles. The final products are mainly Si
and S, and traces of ,S, ,Cl, ,Ar, ,K, and ,Ca.

Finally, the last major burning stage is silicon burning. This burning stage involves a very
complex network of fast photo-disintegrations, with all sorts of reaction products (protons,
neutrons, and α particles), and the corresponding back-reactions. The main products of silicon
burning are iron-peak nuclei.However, it is worthmentioning that, at oddswith all the previous
burning stages, silicon burning occurs at such high temperatures (T ∼ .× K) that reactions
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are in quasi-equilibrium. This means that the reactions between the intervening nuclei are so
fast that the abundances of such nuclei are close to Nuclear Statistical Equilibrium. Under these
conditions the typical reactions are photo-disintegrations to produce neutrons, protons, and α
particles, plus the corresponding (γ, α), (n,α), (p,α), and (n,p) reactions – that is, a chain of
reactions which are all in equilibrium. Using basic thermodynamical relations the equilibrium
abundances can be obtained:

n(Z,A) =
g(Z,A)A/

A
nZ
p n

A−Z
n (

πħ

mpkBT
)


(A−)

exp(
EB(Z,A)

kBT
) (1.125)

where g is the nuclear partition function and the rest of the symbols have been previously
defined. To solve this equation the conditions of baryon and charge conservation must also
be added. It turns out that in nuclear statistical equilibrium – see, for instance Bravo and
García-Senz (1999), and references therein – the composition of matter is essentially deter-
mined by the density, the temperature, and the electron fraction, Ye = ne/n, which is basically
the proton-to-nucleon ratio.

6.3 Opacities and Conductivities

6.3.1 Radiative Opacities

As previously discussed in >Sect. 4, in stellar interiors the diffusion approximation is valid and
the temperature gradient is proportional to the Rosselandmean opacity, obtained as a harmonic
mean of the frequency-dependent opacity – see (>1.31). Accordingly, opacity is a crucial physi-
cal property of stellarmatter, since it determines the rate at which energy is transferred from the
interior to the outer space. Opacity calculations rely on very detailed descriptions of the inter-
action between the radiation field and the stellar matter. In fact, bound–free, bound–bound,
and free–free interactions between photons and electrons are significant sources of opacity. In
turn, these processes depend on the detailed thermodynamical state of the gas, in particular,
on the detailed distribution of electrons on the energy levels of the atoms. Consequently, the
equation of state plays a major role in the calculation of the opacity.

At high temperatures, when stellar material is almost completely ionized, the main source
of opacity is electron scattering with photons. Under these conditions, the cross section for the
interaction of photons with electrons is that of Thomson scattering:

σe =
π

(

e

mec
)



= . × − cm. (1.126)

From this equation, the opacity due to electron scattering is computed as κe = σene/�.
Given that ne = �/(μemH) = .�( + XH)/mH, it follows that

κe = . ( + XH) cm g−. (1.127)

Note that in the case of complete ionization, this opacity source is independent of the tem-
perature and density. Since κe is independent of frequency, (> 1.127) provides the Rosseland
mean for electron scattering. However, at high enough temperatures, when photons are suffi-
ciently energetic (kBT ∼ mec), the exchange of momentum between electrons and photons
has to be considered, thus reducing somewhat the opacity.
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The second important source of opacity are free–free transitions. In this case absorption
of radiation occurs when a free electron approaches an ion of charge Z. The physical principle
operating in this case is quite simple: As an electron passes close to an ionized atom it can be
accelerated or deccelerated, respectively, absorbing or emitting a photon in the process. Since
the photon can be of any wavelength, radiation emitted in this way has a continuous spectrum.
These processes can be studied from a classical point of view. It can be shown that the absorption
coefficient is proportional to Zν− per ion. At a temperature T , the electron thermal velocity
is v ∼ T . Consequently the time interval during which the electron is close enough to the ion
scales as v− ∼ T−/. Moreover, at a density �, the number of electron–ion pairs able to take
part in the process scales as �, and therefore the contribution to the opacity scales as ∼�T−/.
Since the absorption coefficient per system is proportional to Zν−, it follows that

κνff ∼ Z
�T−/ν−. (1.128)

Thus, the resulting approximate Rosseland opacity due to this process only turns out to be

κff = . × (XH + XHe)( + XH) � T−/ cm g−, (1.129)

which is often referred to as the Kramers opacity. In this expression XHe is the abundance by
mass of helium.

Absorptions of photons by bound electrons with the result that electrons are removed from
the atoms or ions (the so-called bound–free transitions) constitutes another important source
of continuum opacity. In the case of photo-ionization of a hydrogen-like system consisting of
one electron in the field of charge Ze of an ion, the total bound–free absorption cross section
σν for a photon of frequency ν is

σν ∼
Z

νn cm, (1.130)

where n is the principal quantum number of the initial state. To compute the total opacity, the
number density of atoms in the n-th excited state, Nn , has to be considered. The result is

κνbf ∼ ∑
Nnσν

�
cm g−. (1.131)

From this, the Rosseland mean opacity due to bound–free transitions only can be derived.
An usual approximation is

κbf = . ×  Z ( + XH) � T−/ cm g−, (1.132)

where now Z is the mass fraction of elements heavier than helium. Note that this opacity is of
the form of Kramers opacity.

Line absorption resulting from photon-induced transitions between bound levels in atoms
or ions, the so-called bound–bound transitions, importantly contributes to the total opacity at
temperatures below ∼ K. The bound–bound cross section is given by

σ bb
ν =

πe

mec
fi jϕν , (1.133)

where fi j is the oscillator strength of the transition from state i to j. This coefficient repre-
sents how strongly the line absorbs. Finally, ϕν is the line profile function. Because of the
large number of transitions (typically a few million lines) that must be taken into account,
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bound–bound transitions represent a major complication in opacity calculations. Thermal and
pressure broadening effects are important and the total absorption coefficient critically depends
on temperature.

Negative hydrogen ions, H−, provide another source of opacity. The hydrogen atom can
harbor a second electron in a bound state with a binding energy of only 0.7544 eV.This energy
being so small means that the H− ion will be easily ionized if temperatures exceed a few thou-
sand degrees. In fact, all photons with wavelengths λ < . μm have enough energy to ionize
the H− ion back to a neutral hydrogen atom plus a free electron. Additionally, it is clear that the
total opacity must be proportional to the electron density. However, it also has to be taken into
account that the electrons needed to form H− come from ionized metals. According to these
considerations it turns out that in hot stars the H− ion is so rapidly ionized that this source
of opacity is not relevant. On the contrary, in cool stars there are too few free electrons (since
no ionized metals are present) to form H− ions, so the contribution to the opacity is negligible
as well, whereas for solar-like stars the H− ion is the dominant source of continuum opacity
at optical wavelengths. In particular, the opacity due to the negative hydrogen ion is the most
important source of opacity in the solar atmosphere.

For temperatures lower than ≈5,000K, the contribution frommolecules becomes a relevant
opacity source.The contributions tomolecular opacity arise from transitions between rotational
and vibrationalmolecular states, which are very frequent at these very low temperatures, typical,
for instance, of late-type main sequence stars and cool red giants. Also the formation of small
dust grains at even lower temperatures (≈1,700K) has to be considered in the opacities needed
to compute reliable atmosphere models of cool stars.

As stems from the preceding paragraphs, which is the dominant source of opacity depends
very much on the thermodynamical state of stellar matter. In general, at low temperatures,
bound–bound and bound–free processes totally dominate the opacity. At larger temperatures,
when ionization is almost complete, free–free transitions take over and become themost impor-
tant source of opacity. These processes become less relevant at even larger temperatures, where
scattering by free electrons is the major source of opacity. Needless to say, all opacity processes
contribute simultaneously to the total opacity, and to compute the resulting value of the radia-
tive opacity, κrad, the sum of the contributions of the monochromatic opacities resulting from
all the processes described so far has to be done. After doing that, the integral in (> 1.24)
must be computed. It is important to realize at this point of our discussion that the sum of the
Rosseland mean opacities of each opacity component is not equal to the Rosseland mean of
the sum. Hence, the Rosseland mean of a given process lacks meaning, except in the particu-
lar case in which the corresponding process dominates by far the rest of the contributions to
the opacity. For typical stellar compositions, the largest values of the radiative opacity occur for
temperatures between ∼ and  K, corresponding to the temperatures appropriate to ionize
hydrogen and helium, the principal constituents of stellar matter.

Several groups have computed detailed frequency-averaged opacities. Among them the
most reliable and frequently used opacities are those of the OPAL (Rogers and Iglesias 1992)
and of the OP (Seaton et al. 1994) projects. Both projects have presented their calculations in
the form of extensive tabulations for different chemical compositions for a wide range of tem-
peratures and densities. At very low temperatures the most up-to-date and comprehensive set
of opacity data has been assembled by Ferguson et al. (2005).Their opacities cover temperatures
between 30,000 and 500K, and, in addition to the usual continuous absorbers, include atomic
and molecular line absorption, and grain absorption and scattering (by silicates, iron, carbon,
and SiC). More recently, Lederer and Aringer (2009) have presented calculations of Rosseland



Stellar Structure 1 37

opacities for low temperatures that consider the effects of varied abundances of carbon and
nitrogen for different metallicities.

6.3.2 Conduction

At the high densities found in the core of evolved stars, the main mechanism of energy transfer
is not radiation but conduction by degenerate electrons. For the conditions found in the deep
cores of these stars, the mean-free path of electrons is usually very large. This is so because
after an interaction in which an electron is involved its energy is in most cases below the Fermi
level. Consequently, since below the Fermi energy all the levels are occupied, the electron has
to travel long distances to release the excess energy absorbed in the interaction. Of course, this
only occurs when kBT ≪ εF, that is, in conditions of strong degeneracy. Hence, electrons can
transport energy very efficiently and the related opacity is small (κ ∼ /ℓ). It can be shown that,
for strong degeneracy, an approximate expression for the conductive opacity is

κcd ∼  × −
∑ Z

j X jθ j/Aj

( + XH)
T


(�/)
cmg−, (1.134)

where θ j ∼ ./Z /
j , T is the temperature in units of  K, and Xj the abundance by mass of

element j. Note that the larger the density, the smaller the conductive opacity. The reason for
this is that, as already explained, for strong degeneracy it becomes very difficult for an electron
to scatter, with the consequent result that the mean-free path becomes very long. For helium
composition and T ∼  K and � ∼  g cm−, the conductive opacity is two orders of mag-
nitude smaller than the electron scattering opacity (κes). Accordingly, the total opacity given
by (> 1.31) is very small, of the order of −κes. Finally, it is rather evident from the previous
discussion that at low densities, electrons transport little energy compared to photons.

More elaborated prescriptions than that given by (> 1.134) are available in the referenced
literature. In particular, detailed calculations of conductive opacities for a wide range of stellar
conditions have been given by Itoh et al. (1983). This set of conductive opacities is the most
commonly adopted in nearly all the state-of-the-art stellar evolutionary codes. However, there
are other prescriptions, the most recent one being that of Cassisi et al. (2007). These authors
provide determinations of the conductive opacity covering the entire parameter space relevant
to stellar evolution models (i.e., both the regime of partial and high electron degeneracy).

6.4 Neutrino Losses

Photons are not the only way in which energy is lost from stars. Neutrinos also play an impor-
tant role, especially during the last stages of stellar evolution. These weakly interacting particles
escape freely from the dense cores of evolved stars – except in the case of core-collapse super-
novae, where the densities are extremely high – carrying out copious amounts of energy. This
is because under most circumstances (but in those found in the central very dense regions of
these supernovae) their interaction cross section with matter is extremely small (∼−x cm,
x being the neutrino momentum in units of MeV/c).Thus, their mean-free paths are very large
and, hence, they can be considered as an instantaneous sink of energy for most stellar evolution-
ary stages. According to this discussion, (> 1.18) must be correspondingly modified to include
an additional term −єν , which acts as an instantaneous sink of energy.
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Besides the nuclear processes in which neutrinos are produced as a regular product of the
reaction – like electron captures or the several reactions described in > Sect. 6.2, where the
neutrino energy loss is already included in the nuclear energy released – there are four typical
processes in which neutrinos are produced as a result of purely leptonic processes: the pho-
toneutrino, plasmaneutrino, pair annihilation, and bremsstrahlung processes, respectively. In
the photoneutrino process the outgoing photon in a regular Compton scattering is substituted
by the emission of a neutrino–antineutrino pair. In the plasmaneutrino process a photon mov-
ing in the electron gas – the so-called plasmon – is transformed in a neutrino–antineutrino
pair. Pair annihilation neutrinos are produced at very high temperatures (T >  K) in the
reaction e−+e+ ⇌ νe + ν̄e, instead of a normal photon. Finally, the emission of a neutrino–
antineutrino pair due to the interaction of a high-energy electronwith a heavy nucleus is known
as the neutrino bremsstrahlung process, where again the photon is replaced by the neutrinopair.
Additionally, there is a less common neutrino process, which only occurs for nuclei with rela-
tively large values of Z and at low densities and temperatures – a situation not commonly found
in stellar interiors – which is the recombination neutrino process. In this process an electron in
the continuum makes a transition to a bound state and a neutrino pair is emitted.

Analytic expressions for all these processes as a function of the density, the temperature, and
the chemical composition have been compiled by Itoh et al. (1996). For the sake of conciseness
and given that these analytical expressions incorporate coefficients that depend on the detailed
chemical composition – which are listed in lengthy tables – their results will not be reproduced
here. Instead, the interested reader is referred to their paper. These neutrino emission rates are
the most commonly used in stellar evolutionary calculations. However, other expressions can
be found in the specialized literature – see, for instance, Haft et al. (1994).

7 Other Physical Processes

During some evolutionary phases there are other physical processes which become of themaxi-
mum importance.This is especially true for compact stars, and specifically for white dwarfs, for
which element diffusion and radiative levitation are crucial. Element diffusion is of the max-
imum importance to understand the observed purity of white dwarf atmospheres. The very
large surface gravities of these stars makes elements heavier than hydrogen to settle down over
timescales shorter than the evolutionary ones, leaving behind pure hydrogen or helium atmo-
spheres. In these stars, the interfaces between the hydrogen (if present) and helium layers, and
between the helium buffer and the core are the product of element diffusion. The study of ele-
ment diffusion processes in white dwarfs dates back to the early studies of Schatzman (1958).
Since then, numerous studies have been devoted to this subject, and have convincingly demon-
strated that gravitationally induced diffusion is an extremely efficient process in the envelopes
of white dwarfs.

Under the influence of gravity, partial pressure, thermal gradients, and induced electric
fields, the diffusion velocities in a multicomponent plasma satisfy a set of N −  independent
linear diffusion equations (Burgers 1969):

dpi
dr

−
�i

�

dp
dr

− niZi eE =
N
∑
j≠i

Ki j (wj −wi) +
N
∑
j≠i

Ki jzi j
m jri −mir j
mi +mj

, (1.135)
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coupled with the equation of heat diffusion:
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−
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j z
′
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′′

i j) ri

+
N

∑
j≠i

Ki jmimj

(mi +mj)
 ( + z′i j − .z′′i j) r j. (1.136)

In these equations pi , �i , ni , Zi , andmi denote, respectively, the partial pressure, mass density,
number density, and charge and mass of chemical species i, N is the number of ionic species
plus the electron, and the rest of the symbols have their usual meaning.The unknown variables
are the diffusion velocities with respect to the center of mass,wi , and the residual heat flows ri .
In addition, the electrical field E has to be determined. The resistance coefficients Ki j, zi j , z′i j ,
and z′′i j must also be provided (Paquette et al. 1986a, b) to solve these equations. In total there
are N −  equations and N +  unknowns.The equations for no net mass flow and no electrical
current provide two additional conditions that must be fulfilled:

∑
i
Ai niwi =  (1.137)

∑
i
Zi niwi = . (1.138)

>Equation 1.135 can be manipulated to obtain:


mi
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⎢
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N
∑
j≠i
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⎤
⎥
⎥
⎥
⎥
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− Zi eE = αi − kBT
d ln ni

dr
, (1.139)

where
αi = −AimHg − kBT

d lnT
dr

, (1.140)

g being the gravitational acceleration. The unknowns wi , ri , and E can be written in terms of
the gradient of ion densities (similarly for ri and E):

wi = wgt
i −∑

j
σi j

d ln n j

dr
, (1.141)

where wgt
i stands for the velocity component resulting from gravitational settling and thermal

diffusion, and the summation is done for the ions only. This equation, together with (> 1.136–
1.138) can be solved using matrix inversion to find wgt

i j and σi j, which finally are employed to
follow the evolution of the ionic species:
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⎞
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⎥
⎥
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⎦

. (1.142)

In the otherwise pure atmospheres of white dwarf stars there are occasional appearances
of other elements. Consequently, a competing mechanism to gravitational diffusion must be at
work. One of these is radiative levitation, especially for hot white dwarfs – those with effective
temperatures larger than ∼20,000K.The physical principle operating here is that ions with large
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charges have larger cross sections and, thus, absorb more photons. This is done usually through
bound–bound interactions, the net effect being that these ions acquire momentum from the
radiation field, thus leading to differential accelerations that make them appear on the surface
of the star. In virtually all recent calculations it is assumed that a given levitating element is trace.
That is, it is assumed that its abundance has no relevant influence on the structure of the star.
Additionally, it is assumed that the approximation of equilibrium abundances holds, and thus
that the radiative acceleration can be equated to the local effective gravity at each mass shell of
the envelope. To solve for the abundances the total radiative acceleration for element i through
bound–bound absorption,

gradi =
π
c


Xi

∑
j
∑
k> j

∫
∞


κ jk
i (ν)Hνdν (1.143)

must be computed. In this expression Xi is the mass fraction of the corresponding element, κ jk
i

is the monochromatic opacity due to the bound–bound absorption from state j to level k, and
Hν is the monochromatic Eddington flux. In local thermodynamic equilibrium,

κ jk
i (ν) =

N j
i

�

πe

mec
f jki ϕ jk

i (ν) ( − e−hν/kBT) , (1.144)

whereN j
i is the number density of ions of type i in excitation state j, f jki is the oscillator strength

of the bound–bound transition from j to k, and ϕ jk
i is the normalized line profile of such tran-

sition. This acceleration must be equated for each ion to the local gravity at each mass shell.
Clearly, computing radiative accelerations requires improved oscillator strengths and reliable
atomic data. Modern calculations (Chayer et al. 1995) rely on the data bank TOPBASE (Cunto
and Mendoza 1992), associated with the Opacity Project (Seaton et al. 1994).

There are other physical processes that affect stellar evolution like mass loss, rotation, and
magnetic fields. Mass loss is relevant in giant and luminous stars and it is important to explain
some observations. On the other hand, stars are observed to rotate. Rotation affects star evo-
lution particularly via the associated meridional circulation and other processes that lead to
chemical mixing – see Maeder (2009). Additional physical processes associated with changes
in the chemical abundance distribution may affect the evolution of evolved star. This is the case
of old and cool white dwarf stars, where the gravitational energy released during carbon-oxygen
phase separation upon crystallization constitutes an additional source of energy that markedly
impacts the cooling times of these stars (Isern et al. 2000).

8 Boundary Conditions and Stellar Atmospheres

As it will be shown below, to integrate the equations of stellar structure, boundary conditions
are needed at both the stellar center and the surface. At the stellar center, that is, atm = , both
the radius and the luminosity vanish. This leads to singularities. It is not difficult to show that
near the center a first-order Taylor expansion of the equations of stellar structure previously
derived in > Sects. 2–4 yields

r = (


π�c
)

/

m/
c (1.145)



Stellar Structure 1 41

P = Pc −
G
π

(
π�c


)
/

m/
c (1.146)

l = (εnuc − εν + εg)c mc (1.147)

T = T
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lnT = lnTc − (
π


)
/

G
∇ad,c �/

c

Pc
m/

c (convective), (1.149)

where the suffix “c” means the central values of the physical variables andmc is the mass of the
central sphere.

The treatment of the surface conditions is more difficult, partly because it involves the dif-
ficult issue of how energy is transported in the very outer layers of the star. At the surface,
m = M and l = L, where L is the surface luminosity that has to be determined. Deriving the
boundary conditions at the surface requires the computation of model atmospheres. Usually,
the Eddington gray approximation for radiative transfer in the case of plane-parallel geometry
is used:

dP
dτ

=
g

κrad
(1.150)

T =


T
eff(τ +



) (1.151)

where g is the surface gravity and τ is the optical depth, defined by dτ = κrad � dr. The first
of these equations corresponds to the equation of hydrostatic equilibrium. Integration of these
two equations from starting values (P ≈ , T ≈  at τ = ) down to τ = / yields Ps. The layer
at τ = / defines the location of the photosphere from which most of the radiation is emitted
into the space. There the temperature is T = Teff , where Teff is the effective temperature of the
star, which is defined by the relation Ls = π Rσ T

eff , σ = ac/ being the Stefan–Boltzmann
constant. Note that Teff corresponds to the temperature of a blackbody that has the same energy
flux of the real star. From here, a two-parameter set of boundary conditions between Teff , Ps ,
Ls , and R can be cast. For instance, assuming arbitrary values of R and Ls all the other values at
the surface can be obtained. In fact, from the values of R and Ls , the value of Teff is determined.
Also, the value of g is obtained as well, since the total stellar mass is given. This information
together with the chemical composition of the atmosphere (which is assumed to be the same as
the composition of the outer layers, and thus known) allows to integrate the model atmosphere
and to find Ps .

Finally, it is worth mentioning that during certain stages of evolution, a better treatment for
the outer layers than that given by the Eddington approximation is needed. This is the case for
instance in giant stars, where the effects of sphericity are usually considered. In cool and dense
atmospheres, like those of white dwarfs, the results from full non-gray model atmospheres that
take into account convection has to be considered.This is necessary for a proper determination
of the envelope structure as well as the cooling time of such stars.
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9 Numerical Techniques: Modern Implementations

The basic equations that govern the structure and evolution of a spherically symmetric star in
hydrostatic equilibrium have been derived in > Sects. 2–4. In terms of the Lagrangian variable,
m, they can be written as

∂r
∂m

=


πr�
(1.152)

∂P
∂m

= −
Gm
πr

(1.153)

∂l
∂m

= εnuc − εν − CP
∂T
∂t

+
δ
�

∂P
∂t

(1.154)

∂T
∂m

= −
GmT
πrP

∇. (1.155)

To this set of equations, the equation for the variation of chemical composition with time
has to be added. This, for radiative regions, must be done using the set of equations presented
previously in >Sect. 6.2.4 – see (> 1.120) – whereas if chemical changes are due to different
mixing processes, a diffusion-like set of equations must be used:

(
∂Yi

∂t
) = (

∂Yi

∂t
)
nuc

+
∂
∂m

[(πr�)D
∂Yi

∂m
] , (1.156)

where the first term represents the chemical changes due to nuclear reactions and the sec-
ond one provides the changes of the chemical abundances resulting from mixing processes,
which are characterized by a diffusion coefficient D. In general, the equations for the abun-
dance changes are decoupled from the set of equations providing the thermal and mechanical
changes, namely, (> 1.152– 1.155). This is a valid assumption only in the case in which the
nuclear timescale is much larger than the other relevant timescales of the star. This allows to
treat the problem by solving first (> 1.152– 1.155) at a given time t and for a given chemical
composition. Then the change in chemical composition during the time step Δt – that is, the
chemical composition at time t+Δt – is obtained using the physical variables determined at t.
Afterward the new chemical compositions are used recursively to find the new physical vari-
ables at t+Δt, and so on. However, in some advanced stages of evolution, where the changes of
chemical compositions occur in timescales comparable to that of the physical variables, decou-
pling the equations for the chemical changes from the other four equations is not a realistic
assumption. The term εν in (> 1.154) represents the energy losses by neutrino in erg g− s−,
as discussed in >Sect. 6.4. As mentioned, for most stellar conditions, neutrinos do not inter-
act with matter, thus they only act as an energy sink of energy at the location where they are
produced. In (> 1.155), ∇ = ∇rad – as given by (> 1.33) – if the energy transport is done by
radiation (and conduction). In the case where energy transport is due to convection,∇ = ∇conv,
where∇conv is specified by the adopted treatment of convection. In addition, the functions that
describe the properties of stellarmatter – �, δ, α,CP ,∇ad, εnuc, εν , κtot, and∇conv – that depend
on P, T , and chemical composition, must be specified.

>Equations 1.152– 1.155 constitute a set of nonlinear, partial differential equations that
have to be integrated numerically. The independent variables are the mass coordinatem, which
runs from zero to the value of the total massM – the index r is dropped in the notation – and t.
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To solve these equations, the total massM of the star and proper initial values, usually only the
chemical composition at the initial instant t, together with appropriate boundary conditions
at m =  and m = M must be specified. These boundary conditions have been discussed previ-
ously, in >Sect. 8. The solution for r, P, l , T , and chemical composition at a given time in the
whole mass interval is named a stellar model.

A standard technique for solving the equations of stellar structure and evolution is based on
an iterative implicit technique, the so-called theHenyeymethod or relaxationmethod, in which
the differential equations are replaced by a set of difference equations in a discrete number of
mass shells (or grid). Here, an initial or approximate solution is gradually improved by applying
successive simultaneous corrections to all variables at all points on the grid. The corrections to
the physical variables are applied until they become insignificant and the initial model “relaxes”
to the correct one. To implement the technique, the star is divided into N concentric mass
shells (very few stellar evolutionary codes use the radius as independent variable), each of them
labeled with the lagrangian coordinate mj, where m =  and mN = M. In addition, the time
derivatives appearing in (> 1.154) are usually replaced at any point j of the grid by

(
dP
dt

)
j+/

=
Pj+/ − P∗j+/

Δt
(1.157)

(
dT
dt

)
j+/

=
Tj+/ − T∗j+/

Δt
, (1.158)

where P∗ and T∗, evaluated at the middle of the mass interval, denote the values of P and T at
the earlier time to − Δt, and are, thus, known quantities. With these considerations, (> 1.152–
1.155) are converted to a set of ordinary differential equations, which can be replaced by the
corresponding difference equations. For instance, the equation of hydrostatic equilibrium is
replaced by the following difference equation:

Pj+ − Pj

mj+ −mj
= −

G
π

mj+/

rj+/
, (1.159)

where r j+/ = (r j+ + r j)/ and mj+/ = (mj+ + mj)/. For each mass shell j, the resulting
four difference equations (i = , ) can be written in the form

Gi
j ≡

yij+ − yij
m j+ −mj

− fi (yj+/, . . . , y

j+/) = , (1.160)

where y = r, y = P, y = l , and y = T . The index j runs from 2 to N − . At the center
( j = ), singularities occur. There, the radius and luminosity vanish, that is, r =  and l = . As
already shown – see >Sect. 8 – the boundary conditions at the center ( j = ) can be obtained
by performing a Taylor expansion of (> 1.152) and (> 1.153) – see (> 1.145–1.149) – and it
can be easily shown that they adopt the form

Ci
(y, y


, y


, y


 , y


 , y


 ) = , (1.161)

with i = , . As for the boundary conditions at the surface ( j = N) – see >Sect. 8 – the following
equations can be established:

S ≡ yN − hs(yN , y

N) =  (1.162)
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S ≡ yN − qs(yN , y

N) = . (1.163)

Usually, a linear approximation is considered for the functions hs and qs . Thus, only three inte-
grations of the model atmosphere – (> 1.150) and (> 1.151) – are needed to find all the
coefficients that define hs and qs .

Note that the total number of unknowns is N −  and the total number of equations is also
N − . Consider now a given time t and assume that (yij) with i = , . . . ,  and j = , . . . ,N is
a first approximation to the solution of the set of equations, which as a first guess may be taken
as the solution at the previous time t − Δt. Since the values of (yij) are only an approximation
to the solution to the set of equations and not the real one, it is clear that Gi

j() ≠ , Ci() ≠ ,
and S,() ≠ . Here, the label “” refers to the initial guess. Let now δyij be the corrections to
all variables at all mass points. A second approximation can be then obtained:

(yij) = (y
i
j) + δyij, (1.164)

so that now Gi
j() = , Ci() = , and S,() = . If the corrections are small, a first-order

Taylor expansion yields:

Gi
j() +


∑
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∂Gi
j

∂ymj
δymj +


∑
m=

∂Gi
j

∂ymj+
δymj+ =  i = , . . . ,  j = , . . . ,N − , (1.165)

and similarly for (> 1.161), (> 1.162), and (> 1.163).The derivatives of Gi
j are evaluated using

the first approximation as arguments. From here, the corrections δyij can be found after invert-
ing a band-type matrix (Henyey matrix) which has nonvanishing elements only in blocks near
the diagonal (Henyey et al. 1959, 1964; Larson and Demarque 1964; Nobili and Turolla 1988).
Indeed, note that difference equations depend only on variables at adjacent points. This fact
enormously simplifies the inversion technique to find the corrections δyij. After consecutive
iterations, the approximate solution can be improved until the absolute value of all correc-
tions drops below a given limit or difference equations are satisfied to the desired accuracy. To
compute an evolutionary sequence, after convergence of the model at time t, a new time step
is determined, the chemical composition for the new time is assessed from the stellar model
converged at t, which is also used as an initial solution for the new time. The Henyey tech-
nique is a relaxation technique, and has proved to be extremely efficient and stable. It should be
stressed, however, that the equations of stellar structure and evolution are strongly nonlinear,
so it is expected that, since the corrections are obtained from linearized equations, the solution
requires several iterations in some cases, particularly if the initial approximation is not a good
representation of the solution or if the time step is not small enough. Nevertheless, in most
cases, only few iterations are needed to find the solution.

10 State-of-the-ArtModeling

Building a state-of-the-art stellar evolutionary code requires large efforts. As has been made
clear in >Sect. 6, detailed physical inputs are required to produce reasonable models. Not only
that, it has also been shown in >Sect. 9 that the systemof differential equations that governs the
structure and evolution of stars must be solved using specific techniques. This, as mentioned
earlier, is a tough task as it involves the solution of a boundary problem.
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There are several existing evolutionary codes which incorporate reliable solvers of the equa-
tions of stellar structure and up-to-date physical inputs. Among these it is worth mentioning,
in alphabetical order, the following ones, but the reader should keep in mind that this list is not
intended to be exhaustive whatsoever:

• ASTEC – Aarhus STellar Evolution Code (Christensen-Dalsgaard 1982)
• CESAM – Code d’Evolution Stellaire Adaptatif et Modulaire (Morel and Lebreton 2008)
• DSEP – Darmouth Stellar Evolution Program (Chaboyer et al. 2001)
• EVOL (Blöcker 1995; Herwig 2000)
• EVOLVE (Iben 1965), which was subsequently modified to follow carbon burning (García-

Berro and Iben 1994)
• GARSTEC – Garching STellar Evolution Code (Weiss and Schlattl 2008)
• FRANEC – Frascati Raphson Newton Evolutionary Code, of which there are several ver-

sions, see for instance Pietrinferni et al. (2004)
• GENEC – Geneva Evolution Code (Meynet and Maeder 2000)
• KEPLER (Heger et al. 2000; Weaver et al. 1978)
• LPCODE – La Plata Stellar Evolutionary Code (Althaus et al. 2005)
• MESA – Modules for Experiments in Stellar Astrophysics (Paxton et al. 2011)
• STARS (Pols et al. 1995)
• STERN (Heger et al. 2000; Langer 1998)
• TGEC – Toulouse-Geneva Evolution Code (Richard et al. 1996)
• TYCHO (Young and Arnett 2005)
• YREC – Yale Rotating Stellar Evolution Code (Demarque et al. 2008).

Fortunately, some of these codes are freely available on the Internet – although, of course,
some work must be done to adapt them to the specific problem under study – whereas others
can be used with permission of the original authors. Finally, others are proprietary codes and
permission to use them is not granted.

Describing in detail the variety of physical inputs adopted in each one of these stellar evolu-
tionary codes is beyond the scope of this chapter, so the interested reader is referred to the cited
literature.However, a fewwords regarding the general features of these codes are in order.There
are some codes that are specialized at following the initial stages of stellar evolution, for instance
ASTEC. Many others are able to follow only the hydrogen and helium burning phases and the
thermal pulses on the Asymptotic Giant Branch, but are not able to follow in a detailed and
realistic way the carbon burning phase – FRANEC and GARSTEC are good examples, but not
the only ones – however they perform extremely well at producing realistic sets of isochrones,
while others are specialized in following specific evolutionary stages, for instance the white
dwarf evolutionary phase – the leading example is LPCODE – and they produce very accurate
cooling tracks. Other codes (GNEC and YREC) incorporate the effects of slow rotation. Finally,
other codes are more suitable to follow the evolution of massive stars all the way to the super-
nova stage – KEPLER being an example of these type of codes. Also, most of the freely available
stellar evolutionary codes, but a few ones, rely on gray atmospheres and some adaptations must
be made to incorporate non-gray detailed atmospheres.

It is also important to mention that although all these codes are specifically adapted to the
research needs and interests of the authors and, consequently, the physical inputs are, as previ-
ously said, extremely diverse, there are as well a set of basic ingredients which are common to
all of them. One of these is the usage of the OPAL opacities previously discussed in >Sect. 6.3.
The most up-to-date stellar codes use this set of opacities, which are a reference in the field.
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However, prescriptions for the convective instability are very different from one another, as
also are other physically interesting inputs. Specifically, most stellar evolutionary codes use the
classical mixing length treatment of Böhm-Vitense (1958) and the onset of convection is deter-
mined according to the Schwarzschild criterion (∇ad − ∇rad < ), see > Sect. 4.3, although
some (variable) amount of convective overshooting is allowed to occur, and only very few stel-
lar evolutionary codes incorporate more sophisticated theories of convection. Finally, it is also
important to realize that most of these state-of-the-art codes adopt the nuclear reaction rates
of the NACRE compilation (Angulo et al. 1999), see > Sect. 6.2, although depending on the
size of the nuclear network employed to follow the abundances other sources for the relevant
cross sections are implemented.Thus, the results obtained using these stellar evolutionary codes
differ sizably from one another, although the general characteristics of the different stellar evo-
lutionary phases agree qualitatively. Anyone trying to pursue the hard task of building a stellar
evolutionary code from scratch or to improve a previous version of one of his/her own should
be aware that most of the necessary pieces of computer code needed to produce realistic phys-
ical inputs can be found on the Web page of the IAU Commission 35.2 Also, the exact way in
which the equations of stellar structure are solved is very different in all the numerical codes.
Although all of the previously listed stellar codes share a common feature, namely, that they
use Henyey-type techniques, the way in which the equations of stellar structure are discretized
varies from one to another code. For instance, most commonly the equations of stellar struc-
ture are discretized adopting the interior mass as the independent variable, but some codes
adopt the radius as the independent variable. Additionally, the pressure, temperature, luminos-
ity, radius, and interiormass can be all defined at the zone edges, but in some codes the pressure,
temperature, and, thus, density are defined midway between l , r, and m. To these differences
one must also add the way in which the changes in composition are dealt with, not only in the
convective regions, but also in the radiative ones. The most extensively used stellar evolution-
ary codes employ nuclear networks similar to that introduced in >Sect. 6.2.4, but the variety
of implementations is also very large, as it is also the number of isotopes followed during the
course of stellar evolution. Finally, the way in which zoning and the choice of adequate time
steps is dealt with is also extremely dependent on the particular taste of the programmer. To
put just one example of these procedures, most stellar evolutionary codes introduce new mesh
points to allow a smooth variation of the relevant physical quantities, say the temperature, den-
sity, pressure, luminosity, etc., inside the star. This is done by allowing a maximum fractional
change between adjacent mass shells, η, which is typically of the order of a few percent. Most
stellar evolutionary codes use this strategy to avoid numerical instabilities, except the STAR
evolutionary code, which incorporates additional equations to determine the adequate zoning
(Eggleton 1971). The way in which the boundary conditions are introduced also adds differ-
ences to the results obtained using each of these evolutionary codes, and the way in which the
initial guess for the next time step is computed is very different as well, since in some codes the
initial solution is extrapolated (linear, semilogarithmic, etc.) from the previous one, while in
some others this initial guess is simply the last computed model (absolutely no extrapolation).
Additional fine details include different prescriptions to deal with the boundaries of convective
regions, as in some codes the nature of a given mass shell cannot change once it is determined
from the initial model (it is always convective or radiative), while in some other codes matter
can change from convective to radiative and vice versa in all trials. Finally, it should be men-
tioned that regions in which an adverse and abrupt temperature gradient forms, implying large

2http://iau-c35.stsci.edu/Resources/index.html
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negative luminosities, are difficult to deal with, and that sometimes it is highly advisable to
freeze the mesh during certain periods of time to avoid propagation of numerical errors. The
way in which this is done by the different stellar evolutionary codes is highly dependent on the
specific way in which the code has been designed and written.

11 Summary

In this chapter, our current understanding of stellar structure has been reviewed. A compre-
hensive discussion of the equations of hydrostatic equilibrium was given in >Sect. 2, while in
> Sects. 3 and >4 the energy conservation law and the treatment of energy transport – either
by radiation, conduction, or convection – were extensively discussed. All these otherwise clas-
sical results were treated in detail, and the most commonly used prescriptions were provided.
Also, when necessary, the needed references to construct realistic stellar configurations were
given as well. With these tools, the virial theorem was introduced in >Sect. 5, which helped to
understand the physical behavior of stars.

In the second part of this chapter, the reader was provided with a series of essential physical
inputs needed to build a stellarmodel.This includes, of course, the equation of state, the nuclear
reaction rates, the opacities and conductivities, and the neutrino emission rates.This was done
in >Sect. 6. Additional physical processes, of special importance for some evolutionary stages,
were discussed in > Sect. 7. When possible, the aim was to provide to the interested reader
with the most commonly used and/or most reliable or recent physical inputs. As mentioned
in >Sect. 1, the intention was to be as complete as possible, without unintentionally missing
any key reference.

The subject of stellar atmospheres was superficially treated in > Sect. 8, and, certainly,
additional details on this topic are needed, as it was only treated here in connection with the
boundary conditions needed to stellar evolution.The reader can find excellent descriptions else-
where. An approximation to the numerical techniques was given in >Sect. 9, where the most
usually adopted technique was described in full detail. To conclude, in > Sect. 10, the most
widely used stellar evolutionary codes were critically analyzed.

To conclude we feel necessary to explicitly mention at this point of the discussion that the
field of stellar evolution is continuously improving, and most probably several advances during
the coming years will be witnessed. More reliable physical inputs will most likely be incorpo-
rated to improved versions of the available state-of-the-art stellar evolutionary codes. Better
descriptions of convective mixing will become available, an example being the very recent –
and impressive – work of Canuto (2011), and companion papers. Certainly, the next decade
will see an increase of the predictive power of the theory of stellar structure. Clearly, this will
enhance the status of this theory as one of themost important tools for understanding the origin
and evolution of our Universe.
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