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  Abstract 

 MicroRNAs (miRNAs) negatively regulate gene expression level of mRNA 
post-transcriptionally. Deep sequencing and large-scale screening methods 
have yielded about 1,500 miRNA sequences in human. Each miRNA 
contains a seed sequence that is required, but not suf fi cient, for the correct 
matching with its targets. Recent technological advances make it possible 
to capture the miRNAs with their cognate mRNAs at the RISC complex. 
These experiments have revealed thousands of validated mRNA-miRNA 
pairing events. In the context of human stem cells, 90% of the identi fi ed 
transcripts appear to be paired with at least two different miRNAs. 

 In this chapter, we present a comprehensive outline for a combinatorial 
regulation mode by miRNAs. Initially, we summarize the computational 
and experimental evidence that support a combined effect of multiple 
miRNAs. Then, we describe miRror2.0, a platform speci fi cally convened 
to consider the likelihood of miRNAs cooperativity in view of the targets, 
tissues and cell lines. We show that results from miRror2.0 can be further 
re fi ned by an iterative procedure, calls Psi-miRror that gauges the robust-
ness of the regulation. We illustrate the combinatorial regulation projected 
onto graphs of human pathways and show that these pathways are ame-
nable to disruption by a small set of miRNAs. Finally, we propose that 
miRNA combinatorial regulation is an attractive regulatory strategy not 
only at the level of single target, but also at the level of pathways and 
cellular homeostasis. The joint operation of miRNAs is a powerful means 
to overcome the low speci fi city inherent in each individual miRNA.  

      Working    Together: Combinatorial 
Regulation by microRNAs       

     Yitzhak   Friedman   ,    Ohad   Balaga   , and    Michal   Linial         
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  Abbreviations  

  AGO    Argonaute   
  DB    database   
  DIS    disconnecting score   
  GO    gene ontology   
  HITS-CLIP    high-throughput sequencing of 

RNAs isolated by cross-linking 
immunoprecipitation   

  PAR-CLIP    photoactivatable-ribonucleo-
side-enhanced crosslinking and 
immunoprecipitation   

  miRNA (miR)    microRNA   
  ML    machine learning   
  MS    mass spectrometry   
  ncRNA    non-coding RNA 
RISC RNA-induced silencing complex   
  SILAC    stable isotope labeling by 

amino acids in cell culture   
  UTR    untranslated region.         

    16.1   General Overview 

 MicroRNAs (miRNAs) are short non-coding 
RNAs (ncRNAs) that negatively regulate gene 
expression post-transcriptionally  [  1  ] . Recent 
miRNA detection techniques con fi rmed the pres-
ence of hundreds of miRNAs in healthy and dis-
eased tissues  [  2,   3  ] . An estimate across animal 
genomes suggests that almost 1% of the genes in 
human and  C. elegans  consists of miRNAs. These 
estimates are derived from a combination of 
computational and experimental methods  [  4,   5  ] . 

 In human and other metazoa, miRNA plays a 
role as an additional layer of post-transcriptional 
regulation  [  6  ] . Mechanistically, miRNAs exert 
their function via base-pair complementarity at 
the RNA-induced silencing complex (RISC)  [  7  ] . 
The binding of miRNA to mRNA leads to gene 
silencing. Silencing of a gene by miRNA leads to 
a change in the mRNA stability, enhanced degra-
dation and to some degree also translational arrest 

 [  1,   8,   9  ] . It was originally proposed that the 
impact of miRNAs in animals is primarily at the 
translational level  [  10–  12  ] . However, the current 
view argues that most of the miRNA effects are 
attributable to the post-transcriptional enhance-
ment of mRNA degradation (through blocking of 
cap binding proteins, deadenylation and more). 

 A coherent picture of miRNA regulation is still 
highly fragmented, mainly due to gaps in the 
understanding of miRNA modes of action  in-vivo  
 [  13  ] . Nevertheless, ample evidence indicates that 
deregulation of miRNAs leads to pathogenesis ( i.e. , 
obesity, cancer, neurodegenerative diseases). In 
fact, for viral infection and cancer, a coordinated 
change in the relative expression levels of miRNA-
sets were shown to be a strong indicator of the 
pathological state  [  7,   14,   15  ] . Less is known on the 
role of miRNAs under normal physiology condi-
tions, chronic metabolic stress and ageing  [  16,   17  ] . 

 miRNAs are best known for the regulation of 
stem cell differentiation  [  18  ] , immunological cell 
function  [  19  ] , organogenesis  [  20  ] , cell identity 
 [  21  ] , apoptosis  [  22  ]  and more. The study of 
miRNAs in the context of cancer biology shows 
that a disruption in miRNA biogenesis leads to 
tumorigenesis  [  23  ]  and to a drastic change in the 
relative expression of a large number of mRNAs 
 [  24  ] . Furthermore, several miRNAs directly regu-
late cell cycle genes and thus induce oncogenic 
activity  [  3,   25,   26  ] . In other instances, the activity 
of miRNA resembles tumor suppression  [  27  ] . 
Interestingly, many of the miRNAs in human are 
located at fragile sites  [  28  ]  in agreement with the 
prevalence of miRNAs in cancer progression. 

    16.1.1   Outline 

 This chapter focuses on the notion of combinato-
rial miRNA action. We consider this hypothesis 
by appealing to experimental data as well as 
computational evidence. We provide evidence 
that the concept of ‘miRNAs working together’ is 
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valid for the different levels of cell regulation 
from an individual target to a set of targets and 
ultimately, at biological pathways. We present 
miRror2.0 as a computational, statistical platform 
that incorporates the concept of cooperativity 
when analyzing experimental results. We present 
the notion that within cells, the disruption of a 
network is best achieved by a coordinated action 
of a series of miRNAs. We conclude by suggest-
ing some general trends and architectural design 
principles for cellular regulation by miRNAs. 

    16.1.1.1   Classi fi cation and 
Nomenclatures 

 In this section, we focus on the complete set of 
human miRNAs. There are over 1,500 miRNAs 
in humans and about 750 in mouse  [  29  ] . We 
introduce some classi fi cations and accepted 
notations for the inventory of miRNAs:
     (i)     Chromosomal organization:  Each miRNA is 

annotated as ‘isolate’ or ‘cluster.’ Speci fi cally, 
a miRNA that is located in the vicinity of 
another one (within 10 kb) belongs to a 
cluster. miRNA that belong to a cluster are 
encoded in a polycistronic transcript. Over 
40% of human miRNAs are organized in 
such genomic clusters. The remaining miR-
NAs are considered ‘isolates’.  

     (ii)     Degree of seed sequence   overlap:  Two miR-
NAs that overlap in their seed sequences 
(6–8 nucleotides at the 5 ¢  region of the 
mature miRNA) belong to the same family. 
The term ‘single’ refers to the appearance of 
the seed only once. The de fi nition of a fam-
ily (according to miRBase  [  29  ] ) is across 
species. For our discussion, we follow a spe-
cies centric view of a family. Illustratively, 
consider a seed sequence of a miRNA that 
appears once in human, once in mouse but 
not in the  fl y. This sequence is viewed as 
‘single’ for human or mouse, but as a ‘fam-
ily’ from a cross-taxa perspective.  

    (iii)     Degree of pre-miR overlap:  The hairpin 
sequence of the pre-miR (ranges from 70 to 
120 nucleotides) includes the mature miRNA 
sequence. miRNAs that share sequence 
identity beyond the seed region may be 
identical in the entire miRNA sequence 
(22–24 nucleotides), or even at the entire 

primary transcript (called pri-miR). Such 
classi fi cation is not limited to sequence 
identity and also considers secondary struc-
ture resemblance  [  29  ] .  

    (iv)     IsomiR classes:  Along the miRNA biogenesis 
and maturation process  [  30  ] , two strands of 
the stem-loop structure are produced  [  31  ] . 
The accumulated short reads from deep 
sequencing experiments indicated the presence 
of IsomiRs. The IsomiRs refer to miRNAs 
variants that derive from the chromosomal 
location but are modi fi ed, mainly at the 3 ¢  and 
5 ¢  tails to produce rich variants of mature 
miRNAs  [  32  ] . In such experiments, often the 
two complementary strands are identi fi ed, 
albeit at drastically different expression 
levels. The strands are called ‘guide/mature’ 
and ‘passenger/star’ strands. Traditionally, 
the non-preferred strand sequences were 
indicated as miR* (star, antisense)  [  33  ]    .  

    (v)     Genomic identity:  Most miRNAs are located 
in intergenic regions, similar to any coding 
gene. Some miRNAs overlap genes and their 
sequence is at the same position as other cod-
ing or non-coding gene. A substantial number 
of miRNAs are located in introns of host genes 
(mirtrons,  [  34  ] ). The different genomic loca-
tion is indicative of variation in the maturation 
and regulation process  [  35,   36  ] .  

    (vi)     Evolutionary evidence:  miRNAs can be 
classi fi ed according to their degree of evolu-
tionary conservation. While many miRNAs 
are human speci fi c, some orthologs are found 
only in chimpanzees  [  37  ] . Other miRNAs 
span the entire animal tree (from human to 
hydra)  [  38  ] . The presence of miRNAs that 
are evolutionary conserved is in accord with 
their  role in basic physiology and cell fate 
functions.      

 Figure  16.1  illustrates two forms of miRNA 
classi fi cations (a chromosomal location and a 
family assignment) and their relation.  

 The nomenclature of miRNAs is still evolv-
ing. The growth in the number of identi fi ed miR-
NAs is attributed to several deep sequencing 
datasets  [  33  ] . Results from this technology have 
led to the expansion in the number of known 
miRNAs, mainly by identifying the complemen-
tary strand (denoted -5p and -3p to identify the 
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directionality of the sequence as the 5 ¢ -arm and 
the 3 ¢ -arm of the stem, respectively) (Table  16.1 ). 
Table  16.1  illustrates the guidelines for navigat-
ing among the different miRNA names. 
Unfortunately, different names may be used for 
the same sequence by different database. For 
example, microRNA.org  [  39  ] , PicTar  [  40  ]  and 
miRDB  [  41  ]  refer to the same sequence as hsa-
miR-19b-2-5p, hsa-miR-19b and hsa-miR-
19b-2*, respectively   . Agreement on canonical 
names is necessary for the task of comparing the 
performance of individual miRNA-target predic-
tors. Inconsistency in miRNA naming is an unfor-
tunate reality. A reduced consistency between 
different miRNA-target predictors is partially a 
result of the inconsistent use of miRNA naming 
by different miRNA-target DBs.     

    16.2   Pairing Between a miRNA 
and Its Target 

 The most studied recognition signal for miRNA-
target pairing is restricted to 6–8 nucleotides (the 
seed and the immediate vicinity). With 1,500 
miRNAs in human and about 10,000 candidate 
target genes (excluding their alternative splicing 
variants), the network of interactions is quite 
complex. Critically, the determinants of binding 
speci fi city are poorly understood. Contrary to the 
known activity of transcription factors, individual 
miRNAs often attenuate the expression of their 
direct targets very modestly ( e.g.,  25% decrease in 
expression level)  [  42  ] . Consequently, a de fi nitive 
identi fi cation of miRNA mappings to their genuine 

  Fig. 16.1    Classi fi cations of the human miRNAs. The 
human miRNAs are classi fi ed according to chromosomal 
organization and family assignments. Focusing on the 1,527 
human miRNAs (miRBase Ver. 18, November 2011) indi-
cates 132 chromosomal clusters (covering 417 miRNAs). 

The rest are isolated miRNAs (separated by >10 kb). Genes 
that share the same seed in human are included in the same 
family. There are 139 families, covering 540 miRNAs. 310 
of the miRNAs belong to families that intersect with clus-
ters. The rest (230 miRNAs) are found among the ‘isolates’       

   Table 16.1    Nomenclature of miRNAs   

 Family name 
 # ID stem-loop 
Cross-taxa 

 # ID stem-loop  miR/mir  a  
 Comment on nomenclature  Human  Example 

 mir-515  144  42  hsa-miR-527  Unique mature sequence 
 mir-101  48  2  hsa-mir-101-1  Same mature sequence as hsa-mir-101-2, 

different genomic location 
 mir-30  122  6  hsa-mir-30a  High sequence similarity to hsa-mir-30b 

( i.e. , same seed) 
 mir-19  82  3  hsa-miR-19b-3p  Related seed, indicating the arm of the stem 

  Examples of the naming of miRNAs and the information these names suggest 
  a miR is used to indicates the mature miRNA sequence. ‘mir’ indicates the stem-loop precursor  
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targets is unlikely to succeed comprehensively 
with current technology  [  43  ] . The fraction of false 
positives across all prediction methods is high, 
and the number of false negatives is unknown 
 [  44,   45  ] . As a rough estimate, each miRNA is 
assumed to attenuate tens to hundreds of targets. 
More importantly, distinguishing between a direct 
and an indirect miRNA–target interaction remains 
a crucial challenge in the  fi eld. 

    16.2.1   Computational miRNA-Target 
Predictions 

 Currently, miRBase (version 18) is the most 
exhaustive collection of miRNAs with over 
18,000 mature miRNA sequences in over 100 
organisms  [  33  ] . The 1,500 miRNAs from human 
and 750 from mouse are estimated to target about 
half of the genes in human and rodents  [  46  ] . 

 There are many databases, algorithms and 
resources that provide predictions of miRNAs and 
their direct targets. We will not explicitly discuss 
the differences among these major resources. We 
introduce the main resources that were applied 
while developing the concept of ‘combinatorial 
regulation’ and the associated software platform. 
However, it is important to note that several of 
these tools are meta-servers that combine results 
from a variety of individual resources  [  47  ] . 

 Currently, there are over a dozen miRNA-tar-
get resources  [  48,   49  ] . While all resources use the 
knowledge of seed sequence complementarity, 
some algorithms add a weight to account for 
imperfect hybridization, context dependent 
features ( e.g. , accessibility of binding sites), spe-
cies conservation, thermodynamic stability of the 
miRNA-mRNA duplex and any combination of 
the above. The stable miRNA-target prediction 
databases include: (i)  TargetScan  database  [  50  ] ; 
(ii)  microCosm  which is based on the miRanda 
algorithm  [  51  ] ; (iii)  PicTar  (with two settings, 
according to the degree of evolutionary conversa-
tion)  [  40  ] ; (iv)  DIANA–MicroT   [  52  ] ; (v)  PITA  
(with dual settings for stringency and coverage) 
 [  53  ] ; (vi)  MirZ   [  54  ] ; (vii)  microRNA.org  that 
allows analysis of multiple miRNAs acting on the 
same gene-target using the miRanda algorithm 

 [  39  ] ; (viii)  miRDB  resource  [  41  ] ; (ix)  TargetRank  
(either conserved or all miRNAs)  [  55  ] ; (x) miR-
NAMap2  [  56  ] ; (xi) RNA22  (cbcsrv.watson.ibm.
com/rna22.html) , and (xii) the meta-predictor 
MAMI (  http://mami.med.harvard.edu/    ). A total 
of 15 sets of predictions are available for human 
miRNAs. While this is far from an exhaustive 
list, the most stable and up-to-date DBs for 
miRNA-target prediction are listed. 

 Additional descriptive features associated with 
miRNAs include the distribution of miRNA bind-
ing sites, positioning of the binding sites on the 
mRNA sequences, transcript length, and energy of 
the secondary structures of the transcript  [  57  ] . 
These features are often excluded in the prediction 
algorithms, due to their sparse characterization in 
existing  in-vivo  studies and the dif fi culty to gener-
alize these features across animals. Nevertheless, 
recent miRNA-prediction tools are based on the 
use of the more thoroughly characterized features 
of miRNAs in conjunction with algorithms that 
use statistical models such as a Bayesian models 
or machine learning (ML). In such schemes, 
hundreds of examples (negative and positive) are 
used to suggest the best separation between the 
true and false predictions. The consistency with 
validated results is highest among predictors that 
applied ML technologies  [  58  ] . Several of the 
resources ( MirZ ,  microRNA.org)  and miRBase 
 [  33  ]  provide miRNA expression pro fi les for a large 
number of tissues and cell lines. 

 Rigorous assessment studies showed that the 
consistency among major miRNA-target predic-
tion tools is rather poor, re fl ecting a huge fraction 
of false positives associated with each of them 
 [  59  ] . The ability of the most established pre-
dictors (PITA, DIANA-microT4.0, Miranda, 
Microcosm, TargetScan5.0, TargetScanS, Pictar 
and MirZ-ElMMo and RNA22) to explain the 
pro fi le of the down-regulated genes in cells fol-
lowing overexpressing of individual miRNA has 
been reported. For example, the precision in 
recovering the results from hsa-miR-1 overex-
pression in HeLa cells  [  42  ]  was 23–50% with a 
sensitivity level of 6–20%. The union or intersec-
tion of any  fi ve of these predictors had negligible 
effect on the overall success and, in fact, a slight 
reduction in the performance was noted.  

http://mami.med.harvard.edu/
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    16.2.2   Experimental Data for miRNAs 
in Cellular Systems 

 In recent years, experimental protocols and 
tailored chemical probes were developed for the 
study of miRNA regulation within a cellular con-
text. Their development was necessary since the 
biochemical approaches initially used to identify 
miRNAs were biased towards the most abundant 
miRNAs. Other recently developed methods 
( e.g. , those which provide detailed analysis of the 
factors determining the level for the regulation of 
a speci fi c miRNA towards a speci fi c target using, 
 e.g. , 3 ¢ -UTR segment-luciferase reporter systems 
will not be discussed but are reviewed in  [  60  ] ). 

 The identi fi cation of miRNAs in a broad spec-
trum of metazoan calls for applying comparative 
genomics technologies. The evolutionary signal 
from sequence conservation and structural con-
sideration was brought into consideration. Hence, 
the collection of reported miRNAs has expanded 
and was doubled between 2009 and 2011. We 
will only mention methods that provide a global 
view on the cellular regulation by miRNAs  [  61  ] . 

 Functional con fi rmation of the miRNAs and 
their target genes is mostly based on  in-vitro  stud-
ies in which a speci fi c miRNA is introduced to 
cells. In a mirror view, a candidate miRNA gene is 
knocked down ( e.g.,  using anti-miR). A few hours 
after the cell manipulation (usually 12–72 h), 
global gene expression pro fi ling is performed 
using transcriptomic DNA microarray. The differ-
ential expression levels of genes relative to mock-
transfected cells are then recorded. The signal that 
is sought is a negative correlation between the 
overexpression of the miRNA of interest and the 
targeted genes. The results of such experiments 
are collected in the major gene expression archives 
including GEO  [  62  ]  and ArrayExpress  [  63  ] . Over 
30 large-scale experiments of this type were car-
ried out (some with few controls and a minimal 
reproducibility in the experimental design). Major 
concern in such experiments is that a shift in the 
balance between the authentic binding sites and 
off-targets cannot be avoided  [  64  ] . 

 In a more physiological paradigm, cells are 
exposed to some predetermined condition 
(hypoxia, glucose starvation, heat shock, drug) 
and a change in the expression pro fi le of the 

miRNAs is monitored. The result from these 
cases is a list of a few hundred candidate miRNAs. 
Applying the commercially available miRNA 
DNA-array platforms, large-scale analyses are 
presented. In recent years, an experimental design 
has emerged which uses size fractionated RNA 
from treated cells as input for deep sequencing, 
thereby collecting a complete set of ‘small ncR-
NAs’, among them the miRNAs  [  65  ] . Several 
large-scale studies of human tissues in health and 
disease were reported using this approach. For 
example, a catalogue of the miRNAs was com-
piled by RNA-Seq from cancerous and normal 
cervical tissues  [  66  ] , melanoma  [  67  ] , human stem 
cells  [  68  ]  and more. These experiments detected 
coordinated change in the expression of groups of 
miRNAs  [  5  ] . We expect to see more experiments 
that follow such experimental setting. 

 In human embryonic stem cells (hESC), the 
regulation of miRNAs was monitored by immu-
noprecipitation (IP) of the Argonaute (AGO) 
proteins  [  69  ] . Variations of this approach were 
reported using tagged AGO proteins. In such 
settings, the short miRNAs were eluted from the 
complexes and characterized by sequencing 
 [  70  ] . A similar approach was followed with 
other RISC proteins  [  71  ] . 

 The methods described above focus on a 
miRNA paired with its cognate mRNA target. The 
potential effect of miRNAs at the proteome level 
is typically studied using Mass spectrometry (MS) 
based methods  [  11,   72  ] . Brie fl y, cells are meta-
bolically labeled ( e.g. , stable isotope labeling by 
amino acids, SILAC) to allow a direct comparison 
of protein expression. While the results from such 
methodologies are non-conclusive, the expression 
level of hundreds of proteins appears to be affected 
 [  72  ] . It is likely that miRNAs do modify, whether 
directly or as a secondary effect, the expression 
levels of many proteins. This is probably achieved 
through attenuation of ribosomal initiation, elon-
gation or translational rate.  

    16.2.3   Validation of miRNAs-Targets 

 Computational predictions and the experimental 
results are both compiled in the TarBase database 
 [  73  ] . TarBase is a manually compiled repository 
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for achieving the validated miRNA-target pairs. 
It relies mainly on  in-vitro  miRNA overexpression 
experiments. Additionally, literature-based records 
for miRNA-targets are collected in miRecords  [  74  ] . 
An assessment using the TarBase benchmark  [  73  ]  
with ~50 manually validated instances and the 
results of a quantitative Mass Spectrometry (MS) 
experiment con fi rmed the limited agreement 
between the target prediction algorithms  [  58  ] . 
A gain in prediction success was achieved by 
combining several prediction resources (using 
TarBase as a benchmark). However, the consis-
tency in prediction of the different algorithms is 
rather poor  [  75,   76  ] . 

 Many experimentalists tend to use their 
favorite miRNA-target predicting algorithm and 
resources (often with insuf fi cient justi fi cation). 
The difference in the prediction results and hence, 
in the biological interpretation is a result of a sub-
stantial fraction of false positives present by all 
existing methods. To provide a functional rele-
vance to miRNA regulation, several tools analyze 
the match of miRNA-targets in view of the cell 
processes, GO (gene ontology), diseases  [  77  ]  and 
pathways  [  78,   79  ] .   

    16.3   Missing Pieces in 
Understanding miRNA 
Regulation 

 Some aspects of miRNA regulation in cells remain 
open. For example, we lack an understanding of 
the kinetics and rate limiting steps throughout 
the maturation of the pri-miRNA into their active 
miRNA form  [  80,   81  ] . The mechanistic details of 
miRNA-target recognition remain elusive. For 
example, the functional relevance of the comple-
mentary strand in the pre-miRNA duplex, coined 
passenger miRNA, is a matter of debate. Initially, 
it was thought that this strand is simply destined 
for degradation. However, in some cases, the 
expression of the passenger miRNAs is associated 
with tissue speci fi city and developmental stages. 
RNA editing of miRNAs provides an additional 
level of diversity. IsomiRs are miRNAs sequences 
that are slightly different from those encoded by 
the DNA. It is postulate that isomiRs are active 
components of miRNA-based regulation  [  31  ] . An 

even broader questions concerns miRNAs in the 
context of the mRNAs and related miRNAs. The 
following aspects in miRNA biology remain for 
further investigations:
     (i)    The dynamic aspects of the regulation. Kinetic 

parameters are missing for degradation, turn-
over and extrusion of miRNAs  [  82  ] .  

    (ii)    The AGO occupancy in the cells. The link 
between induction of mRNA degradation 
and the AGO occupancy remains to be deter-
mined  [  83  ] . Speci fi cally, the overlap between 
the miRNAs that are associated with a 
speci fi c AGO ( e.g.,  AGO-1 and AGO-2) is 
minimal  [  84  ] .  

    (iii)    The quantitative nature of miRNA regula-
tion. Speci fi cally, the balance of miRNAs 
and mRNAs can be considered from the per-
spectives of titration  [  85  ] , accessibility of 
binding sites and competition  [  86  ] . miRNAs 
in cells are probably sequestered by a 
“sponge” effect  [  87  ] . In such scenarios, a 
competition on binding sites may dominate 
the balance of miRNAs, AGO binding sites 
and eventually the cellular response  [  88  ] .  

    (iv)    The localization of miRNA regulation. Most 
of the proteins necessary for miRNA gene 
silencing are localized to P-bodies. However, 
the knowledge regarding sub-cellular parti-
tion of RISC, mRNA and miRNA within the 
cells is very limited  [  89  ] .      

    16.4   Working Together 

 Several of these open questions can be approached 
by a quantitative consideration of mRNAs and 
miRNAs guided by the concept of competing 
endogenous RNA (ceRNA)  [  90  ] . Accordingly, 
miRNA-binding sites are assumed to regulate the 
availability of miRNAs. A prediction from the 
ceRNA hypothesis claims that the induction of 
genes having speci fi c miRNA binding sites will 
indirectly lead to a reduction in the potency of 
such miRNAs. This hypothesis is supported by 
experimental data  [  86  ] . Based on the ceRNA 
concept, viruses, pseudogenes and even dupli-
cated genes should be considered as elements 
that may titrate out the miRNAs, leading to a 
relief of basal repression. 
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 We will henceforth focus our discussion to the 
notion of combinatorial activity of miRNAs and 
the view of miRNAs ‘working together’ as part 
of a broader cellular design principle. 

    16.4.1   Evidence for miRNAs Working 
Together 

 The concept of combinatorial regulation by miR-
NAs was validated experimentally. Manipulating 
a target gene by adding multiple distinct miRNA 
binding sites on the same transcript augmented 
the regulation levels  [  8,   91,   92  ] . In a cellular con-
text, a parallel overexpression of 2–3 miRNAs 
resulted in a synergistic effect on the transcrip-
tional level of some candidate genes  [  93  ] . For 
example, in pancreatic cells, for the known target 
of miR-375, a combined addition of miR-124 and 
let-7b led to synergy in target inhibition  [  40  ] . 
Similarly, the expression of miR-16, miR-34a and 
miR-106b altered the cell cycle while no effect on 
the cell cycle is monitored by each of these miR-
NAs, separately  [  85  ] . The regulation of the tumor 
suppressor Fus1 in cancer cells depends on the 
presence of at least three miRNAs (miR-93, miR-
98, miR-197) working together  [  94  ] . Importantly, 
introducing several miRNAs not only affected 
speci fi c candidate targets but also had a measur-
able effect on speci fi c pathways. For example, a 
complete block in cell cycle was achieved by a 
combination of three miRNAs, while the impact 
of each of these miRNAs alone was less pro-
nounced  [  95  ] . A synergetic effect on cell death 
and the oncogenic properties of multiple miRNAs 
acting on the same target was recently established 
 [  96  ] . Despite the growing number of instances 
reported, the generality of the combinatorial phe-
nomenon is yet to be fully established  [  97  ] . 

 Some genes are known to have many (pre-
dicted) miRNA binding sites. Many of these 
genes are cell cycle regulators. Recently, several 
systematic analyses were performed in order to 
validate the cooperative action of miRNAs on 
candidate genes  [  61  ] . Cells were manipulated to 
express a luciferase reporter gene for the 3 ¢ -UTR 
of p21 which is a cyclin-dependent kinase inhibitor 
1 (also called p21/WAF1). From over 250 different 

miRNAs that were tested, about 30 miRNAs 
showed a direct attenuation of the reporter gene 
 [  98  ] . Similar experiments for the CCND1 gene 
(G1/S-speci fi c cyclin-D1) revealed similar results 
with seven miRNAs cooperatively attenuating 
the expression of CCND1, as established by using 
a 3 ¢ -UTR luciferase reporter construct  [  99  ] .  

    16.4.2   Tools for the Detection 
of Combinatorial Regulation 
by miRNAs 

 The goal of most described miRNA-target pre-
dicting tools (Sect.  16.2.1 ) is to predict one-to-
one relations, namely to determine a miRNA that 
matches a transcript (at a single or multiple sites). 
However, as discussed in Sect.  16.4.1 , miRNAs 
most likely act as an ensemble that directly and 
speci fi cally alters the expression of multiple 
gene-targets. Conversely, a collection of genes 
that are targeted coordinately in some experimen-
tal settings can be used as input to uncover the set 
of miRNAs that is most likely responsible for 
their measured level of gene expression. Along 
this principle, the MiRonTop  [  100  ] , Diana-
mirExTra  [  101  ]  and GeneSet2miRNA  [  102  ]  were 
developed. 

 We expanded this notion in the miRror Suite 
platform. miRror Suite transforms noisy miRNA 
predictions into a rational uni fi ed analysis. The 
miRror Suite is centered on the miRror2.0 algo-
rithm  [  103  ] . The implementation is based on 
projecting most existing prediction tools into a 
uni fi ed statistical platform. Thus miRror2.0 can 
predict a coherent list of miRNAs that best 
explain the observed, complex signature of hun-
dreds of down-regulated genes from experimen-
tal data. While our discussion on miRror2.0 
focuses on miRNAs from human, the system sup-
ports the analysis of other animals (mouse, rat, 
 fl y, worm and zebra fi sh). There are a number of 
optional parameters that allow the miRror2.0 tool 
to restrict the analysis to more speci fi c requests. 
For example, the prediction can operate on prese-
lected tissues or cell-lines (from about 100 
options). We demonstrate the generality of the 
miRror application and its inherent  fl exibility. 
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 In practice, the miRror platform is used to 
connect a gene list to the minimal set of preferred 
miRNAs or a miRNA collection to a set of genes 
(Fig.  16.2a ). We refer to these analyses as 
Gene2miR and miR2Gene, respectively. The core 
of the statistical basis underlying miRror is the 
miRtegrate algorithm (Fig.  16.2a ). In a nutshell, 
for the Gene2miR mode, miRtegrate calculates 
the probability of matches between the experi-
mental gene set and all miRNAs. This is done by 
comparing the gene set to the complete gene list 
that is reported by each of the miRNA-target pre-
diction DBs. The probability of the miRNA’s 
interaction with the input gene set as opposed to 
the rest of the genes in each DB is calculated. 

Calculating a P-value for the set of input (miRNA 
or Genes) is performed according to the hyper-
geometric distribution  [  103  ] . The reported result 
is any set with ranked probabilities and scores 
that meet the statistical threshold ( e.g. , P-value 
= 0.01, corrected for multiple tests).  

 Figure  16.2a  illustrates the key principles of 
the miRror2.0 platform. In reality, the number of 
genes or miRNAs that result from any large-scale 
transcriptomic experiments is in the 10s–100s for 
miRNAs and the 100s–1,000s for genes. The 
platform is based on a large number of parame-
ters allowing control over the statistical threshold 
of miRtegrate (which effectively translates to 
operation stringency). For example, in a case 

  Fig. 16.2    The work fl ow of the miRror2.0 platform. ( a ) 
miRror2.0 in the miR2Gene mode. There are two main 
modes of operations: the miR2Gene and the Gene2miR. 
The input for these modes is a set of miRNAs or genes of 
any size. Following a selection of an organism (human, 
mouse, rat, worm,  fl y and zebra fi sh) and the operational 
mode (miR2Gene, Gene2miR), some optional choices are 
available: (i) the tissue of interest or the preferred cell-
lines. The information is processed from the atlas of gene 
expressions  [  63  ] . (ii) Selection of all genes or only highly 
expressed subset (above a predetermined value, typically 
it reduces the list of genes by ~30%); (iii) the top scoring 
miRNA binding sites according to each DB. For each DB 
scoring method, a fraction that accounts for the top ( i.e.,  

10, 25, 50% and all predictions) can be selected for the 
analysis. (iv) Select any combination of the DBs (15 in the 
case of human). (v) To initiate the miRror2.0 search, sev-
eral free parameters that determine the stringency of the 
procedure are selected. These parameters include the 
choice of P-value threshold, the minimal number of sup-
porting DBs and the minimal number of input ‘hits’. By 
changing these parameters, a relaxed or a strict search 
protocol is activated. ( b ) PSI-miRror in a Gene2Gene 
operational mode with two iterations (from Set-1 to Set-
3). The  Venn diagram  shows the overlap of the input gene 
list (Set-1) and the output gene list (Set-3). The Venn 
allows focusing on genes that were removed from the 
input set or those that were added to the output set       
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where the set of miRNAs or genes is derived from 
a speci fi c tissues or cell line, the algorithm recal-
culates the likelihood of the input set in view of 
the candidate genes known to be represented in 
the selected tissues as obtained from Bio-GPS 
(  http://biogps.gnf.org    ). In addition, the analysis 
can be restricted to any combinations of miRNA-
target prediction DBs (for human, any combina-
tion of the 15 supported DBs). The platform may 
activate the miRror2.0 algorithm by applying 
only the top scoring predictions from each of the 
DBs used ( e.g.,  the top 25% of predictions). The 
 fl exibility in the number of DBs and the choice of 
P-value threshold for the miRtegrate algorithm 
allows full control over the speci fi city and extent 
of the resulting analysis. 

 The combinatorial view implemented in miR-
ror2.0 is further re fi ned by the PSI-miRror opera-
tion. Schematically, PSI-miRror is an iterative 
protocol that aims to re fi ne the input sets (Genes 
or miRNAs) by increasing the coherence of the 
input miRNA set to the set of genes and itera-
tively re fi ning the list of the genes by re-applying 
the miRror2.0 cycle. 

 Figure  16.2b  illustrates the operation of PSI-
miRror in Gene2Gene mode. PSI-miRror can be 
activated in four modes: Gene2Gene and 
miR2miR but also miR2Gene and Gene2miR. 
Figure  16.2b  shows that an input Gene Set 
(Set-1) results in a list of miRNAs that is then fed 
to an additional iteration that results in an inter-
mediate gene set (Set-2). By analogy to PSI-
BLAST  [  104  ] , the procedure halts when no 
additional re fi nement is achieved. In most 
instances, genes are added or removed from the 
original list. The application of PSI-miRror is 
attractive for testing hypotheses. Genes that were 
added along the iterations of PSI-miRror and are 
reported in the  fi nal set (Set-3, Fig.  16.2b ) are can-
didates for further investigation and experimental 
validation. The intuition is that genes or miRNAs 
that are not coherent with the experimental results 
( e.g. , due to the indirect effect of miRNAs) will be 
removed by the PSI-miRror operation, while 
coherent genes or miRNAs that were missed, will 
be added. Often, the intersection of the initial set 
and the  fi nal set is the most coherent set that can be 
further analyzed (Fig.  16.2b , Venn diagram).  

    16.4.3   Testing the Predictive Power 
of miRror2.0 

 As opposed to the other predicting tools, miR-
ror2.0 and its advanced application of PSI-miRror 
consider the ensemble rather than individual 
entities (miRNAs or genes) in the regulatory 
scheme. A crucial component is the associated 
scoring system. The performance and the predic-
tions from miRror2.0 are ranked according to the 
miRror Internal Score (henceforth miRIS). miRIS 
aims to maximize the different constraints that 
are implemented by miRror2.0. Speci fi cally, in 
the Gene2miR mode, we seek a maximal agree-
ment among the selected DBs and high sensitivity 
in respect to the input. miRIS is composed of a 
balanced contribution of these two components. 
Sensitivity is de fi ned as the number of hits from 
the entire input list. For example, consider an 
overexpression experiment of a speci fi c miRNA 
in cells and assume that 400 genes were down-
regulated (as measured by a DNA microarray). 
miRror application at the Gene2miR mode is 
applied after setting the desired level of strin-
gency (determined by a P-value threshold) and 
selecting the number of predictors for the analysis. 
For this illustration, we assume that 12 predicting 
DBs are selected. miRIS is associated with any of 
the predicted miRNAs. For example, for a miRNA 
on the list, only 6 DBs support the prediction and 
only 200 out of the 400 genes in the input set are 
marked as relevant genes (which we refer to as 
‘hits’), the calculated miRIS for this miRNA is 
therefore 0.5. A miRIS of 0.75 is calculated once 
all the 400 genes are reported ( i.e. , maximal sen-
sitivity) or if only 200 hits are reported, but with 
a full agreement of all 12 DBs. As shown by this 
example, miRIS combines DB consistency and 
sensitivity into a single score. 

 The validity of the concept of miRNAs ‘work-
ing together’ by miRror platform was tested. To 
this end, we took advantage of the growing num-
ber of experiments in which (i) miRNAs were 
introduced into cell cultures; (ii) the entire tran-
scriptome is compared to control (often cells 
introduced with a scrambled sequence or a mock 
transfection). We analyzed data from such experi-
ments from a variety of cell lines. The analyses 

http://biogps.gnf.org
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combined data from DNA microarray platforms 
(Affymetrix, Agilent) and quantitative mass spec-
trometry experiments. Speci fi cally, we focused on 
experiments that report on miRNAs that were 
overexpressed in cells. Under such controlled 
conditions, we tested whether miRror can suc-
cessfully identify the actual overexpressed miRNA 
using solely the gene expression pro fi les. 

 A growing number of such experiments are 
reported for which the whole transcriptome is 
compared to that of controlled cells. We assess 
the ability to recover the evidence of the trans-
fected miRNA from the global transcriptomic 
pro fi les of the down-regulated genes (at a thresh-
old >1.2-fold). Importantly, for some experiments 
hundreds of genes were used as input without 
reduction in the performance. For example, while 
only 270 genes were down regulated in an experi-
ment of hsa-miR-145 transfection (DLD-1 cells, 

GSE18625), for hsa-miR-335 (LM2-Lung cells, 
GSE9586) this number was almost 10,000. 
Success was determined according to miRIS. 
Namely, reporting the position of the correct (the 
overexpressed) miRNA in the ranked list of all 
miRNA predictions. 

 Figure  16.3  shows the results from miRror for 
overexpression experiments of hsa-miR-124 
(GSE6207), hsa-miR-155 and hsa-miR-1 
(GSE2002). Ten percent of the down-regulated 
genes in these experiments (1,700–3,300 genes) 
were used as input for miRror2.0. Zooming on the 
top ten predictions (Fig.  16.3 , bottom) shows that 
the actual miRNA is recovered as the top predic-
tion (from 200 best predicted miRNAs). Moreover, 
the ten top miRNA predictions show a sharp drop 
in score. In some cases an additional miRNA 
reaches very signi fi cant miRIS ( e.g. , has-miR-1). 
Interestingly, the extent of down-regulated genes 

  Fig. 16.3    Ranked analysis on miRror2.0. Data were col-
lected from the GEO  [  62  ]  and extracted from the SOFT 
 fi les. The Affymetrix platform datasets include: GSE6207 
(HepG2 cells, hsa-miR-124-24hr) and GSE22002 (HeLa 
cells, hsa-miR-1, hsa-miR-155). The results are shown in 

view of the miRror2.0 results, ranked according to miRIS 
for the top 200 predictions ( top ) and the top 10 predictions 
( bottom ). The correct miRNA from the over-expression 
experiments are marked  blue        
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( i.e. , fold change) is not a signi fi cant indicator 
for a successful recovery of the relevant miRNA 
by miRror2.0. We consider a success when the 
miRror prediction reports the correct (experi-
mentally over-expressed) miRNA among the top 
 fi ve results, ranked according to miRIS.  

 We applied miRror to about 30 large-scale 
miRNA over-expression experiments. miRror 
successfully identi fi ed the relevant miRNA in 
70% of the experiments. The success of the indi-
vidual DBs ranges from 20 to 60%. Remarkably, 
miRror was fairly stable regarding the number 
of genes that were loaded, from 1 to 50% of the 
down-regulated genes (at a moderate fold change 
of   ≥  1.2). 

 In order to assess the high success in recover-
ing the hidden miRNA from a noisy signal of 
hundreds of un fi ltered genes (at a subtle repression 
level of >1.2), we repeated the tests with random 
sets of genes (genes must be reported in at least 
one DB) or the up-regulated genes (at the same 
expression ratio of  ³ 1.2). We show that selecting 
the objective miRNA failed by repeating the 
miRror protocol on randomized sets (multiple 
randomization of identical group size). 

 We attribute the source of stability in miRNA 
identi fi cation to (i) the predetermined statistical 
threshold that is applied for a dozen of miRNA-
target predictors; (ii) the obligatory demand for a 
minimal consistency  ³ 2 DBs and (iii) a require-
ment of a minimal agreement on number of hits 
from the input gene list for each proposed 
miRNA.  

    16.4.4   Measurements of Direct Binding 
by miRNAs 

 The method of HITS-CLIP  [  45  ]  was developed 
as a way to directly monitor protein–RNA inter-
actions in living cells  [  105  ] . Brie fl y, the method 
is based on trapping by cross-linking RNA–
protein complexes of interacting molecules that 
are within a minimal molecular distance. The 
protocol allows the collection of trapped mole-
cules which are then subjected to trimming of the 
RNA hanging tails. The result of this protocol is 
a collection of minimally sized fragments that are 

suitable for deep sequencing. The use of the 
HITS-CLIP on AGO-based complexes provides 
genome wide miRNA–mRNA interaction maps. 
The  fi rst HITS-CLIP experiment was done on 
mouse brain under stringent conditions  [  45  ] . 

 The AGO based HITS-CLIP results address 
some of the questions on the  modus operandi  of 
miRNAs in living cells. Speci fi cally, the experi-
ment (ideally) separates between a direct and an 
indirect effect of miRNAs. More importantly, the 
analysis only allows detection of RNA segments 
(mRNA or miRNA) that are within a short molec-
ular distance and a narrow range of 50–60 nucle-
otides of the mRNA molecule. Considering the 
relatively high speci fi city of the AGO-mRNA 
(relying on the correlation among independent 
biological samples), the number of miRNAs 
that were trapped and identi fi ed per transcript 
is an approximation of  in-vivo  regulation and 
AGO-occupancy. 

 At present, the results from the CLIP-Seq 
 [  106  ]  and PAR-CLIP  [  76  ]  methodologies are 
limited to only few cellular settings. Nevertheless, 
some trends for the combinatorial activity of the 
miRNAs can already be demonstrated. Actually 
using HITS-CLIP  [  107  ] , only 10% of the genes 
were regulated by a single miRNA. Results from 
the recent CLIP based methods (HITS-CLIP, 
PAR-CLIP and CLIP-Seq)  [  58  ]  show that each of 
the genes that were identi fi ed to be subjected to 
miRNA regulation is in fact targeted by multiple 
miRNAs. These experiments allow, for the  fi rst 
time, the construction of a miRNA-mRNA 
interaction map, which supports the notion of 
combinatorial, cooperative action by miRNAs on 
targeted transcripts  [  45  ] . 

 A collection of large-scale CLIP experiments 
is compiled in the StarBase database  [  108  ] . 
StarBase includes thousands of experimentally 
con fi rmed miRNA-target interactions and com-
plementary data from other AGO proteins. In 
addition, it provides a genome browser for the 
reads that were collected during the deep 
sequencing phase. Figure  16.4  illustrates the 
complexity in CLIP-experimental interpretation. 
The deep sequencing reads are illustrated as ‘piles’ 
(Fig.  16.4a ). Using a consensus of prediction 
algorithms and in some cases, direct sequencing 
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of miRNAs, the match of the miRNA and the 
gene is reported. In Fig.  16.4a  three different 
miRNAs regulate the presented gene (indicated 
as miR-a, miR-b and miR-c). However, the 
miRNA-target prediction algorithms (Fig.  16.4b , 
marked as Predictors A-D), predict nine miRNA 
binding sites (1–9). Recall that many of the bind-
ing sites were not validated experimentally 
(miR-e and miR-f). Additional information that 
became evident from the CLIP-based experi-
ments concerns the intensity of the reads for each 
miRNA (indicated schematically by the + sign, 
Fig.  16.4b ). The simplistic illustration (Fig.  16.4a ) 
emphasizes the challenge in formulating a miRNA 
combinatorial view: (i) Some binding sites are 
more potent than others. (ii) The consistency 
between the different predictors is limited. (iii) 
Multiple binding sites for the same miRNA differ 
in the intensity of the reads (miR-a, purple). 

(iv) The miRNA-target prediction algorithms 
often support overlapping binding sites. In real-
ity, the overlap with other binding sites may be 
excluded due to accessibility argumentation. (v) 
There is no direct evidence for cooperative bind-
ing on one molecule, instead, the scheme 
(Fig.  16.4a ) is most likely a re fl ection of miRNAs 
bound to the population of mRNAs.   

    16.4.5   Looking Through the miRror 
– Predictions Versus 
Experimental Reality 

 The coherence between the miRNA-targets that 
are based on gene expression (Fig.  16.3 ) and 
those obtained from the CLIP-based experiments 
is surprisingly low  [  106  ] . The gene expression 
data and the CLIP data are collected from live 

  Fig. 16.4    Interpretation of CLIP-based experiments. Data 
analyzed from StarBase  [  108  ] . ( a ) The deep sequencing 
reads are illustrated and the ‘piles’ along the 3 ¢ -UTR of 
the gene. ( b ) Each of the binding sites (1–9) is associated 
with predicting DB (marked  A – D ). Note that some bind-
ing sites are more potent than other ( marked by + symbol ). 

The consistency between the predicting DBs is only partial 
(see binding site 3,4). There are multiple binding sites 
(at different extent) for the same miRNA (miR-a,  purple ). 
The predicting DBs indicate miRNAs that overlap on the 
sequence of their binding sites (overlap, OL). The OL sites 
are often excluded due to accessibility argumentation       
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cells. Still, over-expression of speci fi c miRNA 
may be prone to non-physiologically high miRNA 
concentrations. On the other hand, a bias in the 
CLIP data may re fl ect the inability to capture 
transient interactions of AGO and mRNAs. 
Moreover, the identity of the apparently trapped 
miRNAs in the CLIP assays is largely based on 
the set of computational predicting tools that suf-
fer from high false positive rates. It is suggested 
that the readouts of mRNA suppression (mea-
sured by gene expression pro fi les) and the initial 
pairing (measured by CLIP technologies) are 
complementary but non-overlapping assessments 
of the regulation by miRNAs. An analysis of the 
features that govern miRNA–target match is criti-
cal to improving the prediction power of the 
methods (both computational and experimental). 

 Figure  16.5  shows the statistical analysis of 
the data collected from StarBase  [  108  ] . The 
cumulative representation (combining several 
experiments) with a gene centric view on all the 
data shows that 50% of the 6,200 targeted genes 
are associated with up to eight miRNAs 
(Fig.  16.5a ) and 90% of the genes are targeted by 
up to 35 miRNAs. A few genes are even targeted 
by more than 100 miRNAs. Interestingly, when 
all the potential sites that are predicted by all 12 

human miRNA-target DBs (the union of all), the 
analysis shows that the experimental CLIP data 
captures only a relative small fraction of the pre-
dicted set (Fig.  16.5b ).  

 Figure  16.6  summarizes the potential of miR-
ror2.0 to be used as an assessment tool for combi-
natorial regulation. Several tests are carried out to 
examine the coherence of the experimental data 
and miRror results. The results of the scheme illus-
trated in Fig.  16.6a  are discussed (Fig.  16.3 ). The 
scheme in Fig.  16.6b  is applied to the CLIP data 
from StarBase  [  108  ] . Speci fi cally, the ensemble of 
miRNAs that is associated with each targeted gene 
was collected for each gene from the thousands of 
genes that are targeted by at least two miRNAs 
(Fig.  16.6b ). For 98% of the genes miRror suc-
cessfully identi fi ed the relevant gene. For 81%, the 
correct prediction was among the top 10% of pre-
dictions (typically from a ranked list of >1,000 
predictions). This  fi nding supports the predictive 
power of miRror2.0 for genes that are targeted by 
a high number of miRNAs. Furthermore, when 
considering genes that were targeted by >20 miR-
NAs, the performance of miRror reached 98% and 
a complementary view was noted for genes that 
were targeted by <10 miRNAs (the performance 
dropped slightly to 90% success).  

  Fig. 16.5    Statistical analysis from CLIP-based experi-
ments. ( a ) A cumulative view of the number of miRNAs 
regulating each gene, from CLIP data. The steep climb 
demonstrates how prevalent regulation by multiple miR-
NAs appears to be. ( b ) A comparison of CLIP data and 
predicted miRNA-targets. The combination of all 15 
human predicting DBs is shown. The miRNA-targets that 

are covered by the CLIP data are shown separately in  light 
blue . The distributions from the CLIP data and the union 
of the DB predictions are very different. It emphasizes the 
gap between the computational view on the targeting 
potential of genes by miRNAs and the observed gene tar-
geting from the most up-to-date CLIP experiments       
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 The tools and methodologies developed for 
the validation of miRror2.0 and the large CLIP 
dataset allowed us to test the minimal mode of 
combinatorial regulation – namely the concept of 
‘miRNA pairs’. Figure  16.6c  shows the protocol 
applied in formulating the concept of miRNA-
pairs. Pairs are the simplest form of multiple 
miRNA co-regulation and thus are a natural start-
ing point for a computational assessment. We 
wish to see how well each of the major prediction 
DBs matches the biological experimental data. 
The number of genes that are reported from the 
multiple CLIP data (compiled by StarBase  [  108  ] ) 
is >6,200. A vast majority of them are regulated 
by multiple miRNAs (Fig.  16.5 ). There are two 
general modes that comply with regulation by 
pairs (Fig.  16.6c ): (i) A pair of miRNAs that 

expands the set of targets, thus allowing a better 
coverage of the relevant genes. (ii) Each miRNA 
in the pair tightly overlaps the targets of the other 
miRNA. In this case, the pair of miRNAs acts in 
‘backup’ mode, with a high degree of redun-
dancy. The two extreme scenarios are formulated 
using the Jaccard Index (JI). Intuitively, JI is a 
simple measure for comparing the similarity 
(intersection) and diversity (union) of the sample 
sets. A low JI value is indicative of the expansion 
mode while high JI indicates the backup mode. 

 From this naïve view on all pairs of miRNAs 
that were reported in CLIP data, several observa-
tions are worth noting: (i) The data from the CLIP 
experiments are dominated by a very low JI. 
Although only less than 20% of the pairs have no 
shared targets, the JI is extremely low. When 

  Fig. 16.6    Assessment of the combinatorial nature of 
miRNAs. ( a ) Using Gene2miR mode to assess the recov-
ery of over-expression of miRNAs from the repressed 
genes from large-scale transcriptomic pro fi ling platforms. 
( b ) Using miR2Gene mode to assess the recovery of a 
gene from the collection of the available CLIP-based 
experimental data. ( c ) Assessment using the Jaccard Index 

(JI) of pairs of miRNAs. Data were from CLIP-based 
experiments and from the prediction according to selected 
predicting DBs. ( d ) Using miRror2.0 at a Gene2miR 
mode for KEGG human pathway graphs and testing the 
ability of small sets of miRNA to disrupt the connectivity 
of the pathway. For details see text       
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compared the same data for a sample of miRNA-
target predicting DBs, each DB centers at a dif-
ferent JI (the arrows indicates the average JI 
value, Fig.  16.6c ). 

 The analyses that are schematized in Fig.  16.6  
further emphasize that a naive approach consid-
ering a single miRNA DB in order to extrapolate 
pairwise relations is insuf fi cient. Using the miR-
ror platform is a step toward such an extrapola-
tion. Speci fi cally, we observed that the targets 
covered by many miRNAs from the CLIP data 
provided us with higher prediction rates and 
scores relative to targets that were characterized 
by being targets of a relatively small number of 
miRNAs.   

    16.5   Working Together at the 
Pathway Level 

 The interpretation of gene sets that resulted from 
coordinated miRNAs (Fig.  16.6  miR2Gene), or 
from any other miRNA-target prediction protocol 
should be analyzed within a cellular context. A 
number of tools were developed that cover aspects 
of protein and functional interaction (STRING 
 [  109  ] ), regulatory pathways (Reactome  [  110  ] ) 
and functional annotations (PANDORA  [  111  ]  
and DAVID  [  112  ] ). 

 The pathway representation best describes the 
biological processes in cells. The human regula-
tory pathways are compiled by the KEGG 
resource  [  113  ] . KEGG pathways are a collection 
of manually drawn pathway maps. These maps 
represent knowledge on the molecular interaction 
and reaction networks for domains including 
human diseases, organismal systems, cellular 
processes, and environmental information pro-
cessing. The collection covers ~100 pathway 
maps for human. 

 The notion of ‘miRNAs working together’ is 
tested in view of metabolic and regulatory path-
ways. Speci fi cally, regulation of miRNAs was 
suggested at the level of pathway or biological 
process  [  114  ] . We assess the possibility that 
cooperative action by a small, selected group of 
miRNAs can alter the expression of genes that 
belong to the same pathway, without sacri fi cing 

speci fi city. An extension of the ‘working together’ 
concept argues that a disruption of the pathway’s 
topology by miRNAs has the potential to alter the 
outcome of the targeted pathway. It is known that 
various diseases and developmental stages are 
characterized by a coordinated alteration of a 
number of miRNAs. 

 With this idea, one can prioritize each path-
way according to its susceptibility to regulation 
by a small group of miRNAs (for example pairs 
or triplets). Reliable resources for human path-
ways are the PID (NCI human pathways)  [  115  ]  
and KEGG  [  116  ] . The de fi nition of pathways is 
somewhat vague as some resources describe 
modules rather than full pathways. For example, 
the Reactome database covers 1,100 pathways 
(cellular modules)  [  117  ]  and the Human Pathway 
Database (HPD), that uni fi es the major resources, 
includes over 1,000 pathways  [  118  ] . Many of the 
pathways were previously analyzed in view of 
their modular nature, redundancy and robustness 
against perturbations  [  119,   120  ] . While recent 
studies have acknowledged the usefulness of 
miRNAs on regulation pathways  [  121,   122  ] , add-
ing the connectivity of genes in the pathway is a 
key determinant that was largely ignored. The 
intuition for the pathway disruption approach is 
that a quantitative change in a set of miRNAs is 
expected to alter the pathway outcome  [  90,   123  ] . 

 A test case (Fig.  16.6d ) using the 100 regula-
tory, disease oriented and metabolic pathways 
from KEGG that cover about 4,500 human genes 
revealed an intriguing principle of miRNA regu-
lation. Analysis of the pathway via the concept of 
individual miRNA prediction databases results in 
hundreds of potential miRNAs. Therefore, match-
ing a small number of miRNAs to a pathway is 
virtually impossible with the current prediction 
DBs. However, the potential of a small group of 
coordinated miRNAs to alter the integrity of 
human pathway can be challenged using the miR-
ror2.0 combinatorial tool. The motivation of our 
approach is in assessing the potential of a set of 
miRNAs to disrupt a graph that represents a cel-
lular pathway. 

 For the scheme in Fig.  16.6d , we start from a 
pathway and end up with a selected list of miRNA 
sets ( i.e. , pairs and triplets that work together) 
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which preferentially disrupt the integrity of the 
pathway. The following steps are taken: (i) All 
high quality human pathways are converted to 
undirected graphs in which the nodes are the 
genes (or complexes) and the edges are the regu-
latory interactions. (ii) Each pathway is converted 
to a gene set that is subjected to miRror2.0 to 
determine the ranked list of possible miRNAs. 
Re fi nement by PSI-miRror further limits the list 
of possible miRNAs to the most relevant set. (iii) 
Designing a disconnecting score (DIS) that cap-
tures the degree of network disruption (for exam-
ple, the partition into connected components, 
edge elimination and the like). (iv) Applying an 
exhaustive search for all pairs and triplets from 
all candidate miRNAs combinations. Finally, 
providing the sets that maximally impact graph 
connectivity (resulting in a high DIS score). As 
the miRNA combinatorial space is vast, for a 
pathway that reported by miRror2.0 to have 40 
miRNAs, about 10,000 possible miR-Triplets 
need to be ranked (by DIS score) in order to iden-
tify the best sets. For a pathway with 50 potential 
miRNA candidates, the search space for miRNA 
triplets is 19,600. Of course, the topology of the 
pathway graph is a key determinant in this 
scheme. Note that the number of genes in the 
human KEGG pathways ranges from 10 to 250 
and the number of initial candidates for miRNA 
disruption (according to miRror output) range 
from 2 to 60. 

 Several conclusions are derived from this 
approach. Most notably, 85% of all KEGG based 
pathways are amenable to disruption by a small 
miRNA set of pairs or triplets (the same results 
apply to PID pathways  [  115  ] ). Analyzing all 
pathways revealed that typically, only 4–5 miR-
NAs are associated with the most potent set of 
miRNA pairs and triplets for each pathway. 
Several biological interpretations from the 
miRNA cooperative pathway disruption scheme 
can be drawn. Genes such as MAPK1, EGFR, 
AKT3, SRC that are prevalent in tens of regula-
tory pathways, are almost always included in the 
set of disrupted genes. Most likely, these proteins 
serve as connectors in the pathway graphs. Thus, 
targeting these signaling genes will lead to a sub-
stantial disruption of many pathways. Most 

surprisingly, the selected miRNA sets (pairs and 
triplets) with a maximal capacity to disrupt path-
ways show a minimal overlap. Therefore, it seems 
that a critical factor in selecting the most 
in fl uential miRNA combinations is the graph 
topology rather than the identity of the individual 
nodes in the pathway graph.  

    16.6   Concluding Remarks 

 The concept of miRNAs working together is not 
new. In this chapter, we present experimental evi-
dence while emphasizing tradeoffs in adopting a 
combinatorial mode of regulation for living cells 
under changing conditions. 

 We present a tool that incorporates the concept 
of ‘working together’ and describe some tests in 
view of the current experimental knowledge. The 
miRror Suite is a platform that empowers experi-
mental biologists in gaining insights from a broad 
range of experimental protocols. It is based on a 
many-to-one and many-to-many approach. 
Namely, a group of miRNAs as an input leads to 
a minimized set of genes that best explain the 
observed gene expression pro fi le. Similarly, this 
applies for a set of genes as input. The many-to-
many optimization is performed by the PSI-miRror 
approach that provides a re fi ned set of molecules 
by iterative application of the PSI-miRror algo-
rithm. The miRror Suite provides an integrative, 
statistically based platform and exposes miRIS: a 
combined scoring system for a successful 
 prediction of miRNA combinatorial regulations. 
miRror performance is discussed in [ 124 ].  

 Multiple layers of regulations in the cell are 
coordinated in governing cellular phenotypes. 
Most notable are: epigenetic chromatin marks, the 
transcription machinery of gene expression, the 
translation process, the degradation of transcripts 
and proteins, the metabolic balance and more. 
miRNAs constitute an additional layer of regula-
tion that was carefully studied in stem cells, viral 
infection, cancer progression and other patholo-
gies. It is likely that regulation of miRNAs is a 
key strategy of the cell as it strives to maintain 
robust homeostasis. Under this assumption, a 
modest modulation executed in a combinatorial 
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mode can be manifested by a substantial change 
in cell physiology and phenotype. We illustrate 
the combinatorial regulation concept at the level 
of the individual target (Sect.  16.4.4 ), at the level 
of a set of genes whose expression were moder-
ately changed (Sect.  16.4.3 ), and  fi nally at the 
level of human pathway integrity (Sect.  16.5 ). 
While many questions remain to be solved, we 
expect the ensemble-oriented tools will prove 
essential to the biological interpretation of 
miRNA data.      
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