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  Abstract 

 microRNAs (miRNAs) have been shown to play a crucial role in the most 
important biological processes and their dysregulation has been connected 
to a variety of diseases, including cancer. The number of computational 
tools for the analysis of miRNA related data is continuously increasing. 
They range from simple look-up resources to more sophisticated tools for 
functional analysis of miRNAs. These systems may help to investigate the 
role of miRNAs in key biological processes and their involvement in dis-
eases. The ultimate goal is to allow the development of regulatory models 
describing complex processes and the effects of their dysregulation. 

 Here we review the most important and recent methods for the analysis 
of miRNA expression pro fi les and the tools available on the web for target 
prediction and functional analysis of miRNAs. 

 Particular emphasis is given to the integration of heterogeneous data, 
including target predictions and expression pro fi les, which can be used to 
infer miRNA/phenotype associations and for the generation of network 
models of miRNA function.  
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    15.1   Introduction 

 In the past decade, many efforts have been spent 
to demonstrate the crucial role of miRNAs in the 
most important biological processes, including 
apoptosis, development and immune response 
 [  1–  3  ] . Moreover, the dysregulation of miRNAs 
has been connected to a variety of diseases, can-
cer being probably the most extensively studied 
one  [  4–  6  ] . 

 The partial complementarity that most miR-
NAs exhibit to their targets, especially in animals, 
is the key to their  fl exibility. Indeed, a single 
miRNA is usually able to bind to many targets, 
often in several sites, and a single gene can be 
targeted by different miRNAs acting coopera-
tively. This is a clear indication that the simple 
miRNA/target interactions are actually part of a 
more complex regulatory system and should be 
analyzed in the wider context of expression 
networks. 

 The initial focus of bioinformatics miRNA 
research was primarily on the development of 
tools for the identi fi cation of miRNAs and their 
targets. The prediction of miRNA binding sites 
on targets still remains a challenge. Indeed, 
although several studies have uncovered the basic 
rules of miRNA/target interactions  [  7  ] , the target 
prediction tools currently available still produce a 
signi fi cant number of false positives and are not 
able to identify some experimentally validated 
miRNA/target pairs  [  8,   9  ] . 

 Nevertheless, target prediction tools constitute 
the essential basis of functional miRNA analysis, 
allowing to link miRNAs to processes, diseases 
and pathways, through their targets. Recently, 
many bioinformatics tools for functional analysis 
of miRNAs have been developed. Their ultimate 
goal is the identi fi cation of non trivial relation-
ships between miRNAs and other molecular 
actors, such as genes and transcription factors, 

and the development of regulatory models 
describing complex processes and the effects of 
their dysregulation. These purposes can be 
ful fi lled thanks to the huge amount of data that 
are produced daily and made publicly available 
on the internet, among which miRNA/target 
matches and miRNA expression pro fi les are 
mostly predominant. 

 In this chapter we review the most important 
and recent methods for the analysis of miRNA 
expression pro fi les and the tools available on the 
web for functional analysis of miRNAs. In par-
ticular, in Sect.  15.2  the most used miRNA 
pro fi ling technologies are described, together 
with the computational and statistical methods 
for the analysis of the related data. Emphasis is 
particularly given to some aspects such as data 
normalization, the identi fi cation of differentially 
expressed microRNAs, clustering and the role of 
miRNAs as biomarkers. Section  15.3  is focused 
on miRNA target prediction. An overview of the 
general features is given, together with a brief 
description of the most popular target prediction 
tools available on the web. Finally, in Sect.  15.4  
we present a series of tools for functional analy-
sis of miRNAs. Particular emphasis is given to 
the integration of heterogeneous data, including 
target predictions and expression pro fi les, which 
can be used to infer miRNA/phenotype associa-
tions and for the generation of network models of 
miRNA function.  

    15.2   miRNA Pro fi ling: Technologies 
and Data Analysis 

 Several methodological approaches for mRNA 
expression pro fi ling have been applied to pro fi le 
miRNA expression. Current methods widely 
used in the study of miRNA expression include 
northern blotting with radiolabelled probes, 
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 oligonucleotide microarrays, qPCR-based 
detection of mature miRNAs, single molecule 
detection in liquid phase, in situ hybridization 
(ISH) and massively parallel sequencing. 

 In this section we will review the main tech-
nologies used for miRNA pro fi ling as well as 
the computational and statistical methods used 
for the normalization and the analysis of the 
produced data. 

    15.2.1   Pro fi ling Technologies 

 In general, all existing pro fi ling methods can be 
separated into two categories: one that utilizes 
direct oligo hybridization without sample RNA 
ampli fi cation and the other requiring sample 
ampli fi cation. A caveat to keep in mind is that 
there are inherent advantages and disadvantages 
to both approaches. 

 Nonetheless, three principal methods are cur-
rently used more than others to measure the 
expression levels of miRNAs and genes in gen-
eral: microarray hybridization  [  10  ] , real-time 
reverse transcription- PCR (qPCR)  [  11,   12  ]  and 
massively parallel/next-generation sequencing 
(NGS)  [  13  ] , all of which face unique challenges 
compared to their use in mRNA pro fi ling. For 
example, the existence of miRNA families, the 
largest encompassing nine variants (hsa-let-7a–i), 
whose members differ by as little as one nucle-
otide but nevertheless exhibit differential expres-
sion patterns, represents a real challenge in 
miRNA recognition, regardless of the technology 
used. Microarray technology is actually based on 
the Watson–Crick base pairing nature of nucleic 
acids and thus involves nucleic acid hybridiza-
tion between target molecules and their corre-
sponding complementary probes. Synthesized 
antisense probes are spotted and immobilized 
onto a nylon support platform using a hand held 
spotting device. This method is relatively low 
cost and readily available to labs without special-
ized robotics and equipments dedicated to array 
fabrication. A disadvantage to this method is its 
scale. Oligo spots from a hand held device are 
macroscopic in nature, so the resulting array will 
be relatively large. About 30 mg of total RNA is 

commonly used to hybridize an array of this size 
 [  14  ] . To address this issue, automated robots have 
been employed to spot microscopic oligo dots 
onto a glass slide  [  15,   16  ] . 

 Probes designed to differentiate between 
mature miRNAs and pre-miRNAs and probes 
that detect hypothetical miRNAs can all be spot-
ted onto the same array. The isolated microRNAs 
are labeled with  fl uorescent dye and then hybrid-
ized with the microRNA microarray, resulting in 
speci fi c binding of the labeled microRNAs to the 
corresponding probes. The  fl uorescence emission 
from labeled microRNAs bound at different posi-
tions on the slides can be detected. Consequently, 
the kinds of microRNAs and their relative quanti-
ties in the studied sample can be evaluated by 
analyzing the  fl uorescence signal data. The design 
of the microRNA probes, the preparation of 
microRNA samples and the labeling of microR-
NAs are considered the most important proce-
dures in the microRNA microarray platform. 

 Direct hybridization of miRNA samples onto 
an oligo array may require a large amount of total 
RNA; however, some research protocols might 
have access to a small and limited amount of 
RNA—such as needle biopsies. A PCR based 
approach was developed to address this issue. 
The principle of qPCR is based on the detection, 
in real-time, of a  fl uorescent reporter molecule 
whose signal intensity correlates with amount of 
DNA present in each cycle of ampli fi cation. 

 In this method, total RNA is isolated as 
usual. The  fi rst step in qPCR of miRNAs is the 
accurate and complete conversion of RNA into 
complementary DNA (cDNA) by reverse tran-
scription (RT). The RT reaction  fi rst consists of 
small RNA fractionation, followed by polyade-
nylation. Then a standard RT protocol is 
applied where poly(T)s are added to prime the 
synthesized poly(A) tail so reverse transcriptase 
can produce cDNAs from the small RNA. 
Finally, miRNA speci fi c primers will probe for 
a speci fi c miRNA through PCR ampli fi cation 
 [  17,   18  ] . The speci fi city and sensitivity of 
qPCR assays are dependent upon primer 
design. In fact, due to speci fi city issues and 
inability to differentiate between mature and 
pre-miRNA, changes have been made to the 
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RT step. Instead of a general poly(A) reaction 
in combination with universal priming through 
poly(T) adapter molecules, a miRNA speci fi c 
stem-loop reverse primer is used. This spe-
cially designed primer contains a sequence that 
is antisense to a portion of the 30nt long 
sequence of the miRNA that is to be ampli fi ed. 
To increase the speci fi city of the PCR 
ampli fi cation step, the forward primer contains 
an antisense sequence derived from the mature 
miRNA, and the reverse primer consists of 
sequences taken from the stem-loop of the 
reverse primer. Sensitivity and speci fi city was 
found to be dramatically improved. In addition, 
the nature of speci fi c priming allows this pro-
tocol to differentiate between the longer pre-
miRNA and the shorter mature active form of 
the miRNA. Finally, it is claimed that this pro-
tocol can discriminate between isoforms of 
related miRNAs that differ by only one or two 
base pairs  [  18,   19  ] . 

 The major advantages of qPCR over microar-
rays are (1) the speed and the sensitivity of the 
qPCR assays, (2) considerably larger dynamic 
range compared to microarray analysis and (3) 
a convenient requirement for low amounts of 
starting material (in the range of nanograms of 
total RNA). 

 However, both the RNA ligation  [  20  ]  and the 
PCR ampli fi cation steps bear inherent biases, the 
method is laborious and costly, and associated 
tools for computational analysis are in their 
infancy. The reliability of miRNA expression 
pro fi ling depends also on the quality of the total 
RNA used as input material. Robust, reproduc-
ible methods for RNA isolation and estimation of 
RNA quality should be employed prior to initiat-
ing the characterization of miRNA expression 
levels. The successful outcome of qPCR analysis 
depends upon a number of interconnected steps 
that require individual optimization. To perform 
qPCR that provides meaningful and reproducible 
results, several parameters such as RNA extrac-
tion, RNA integrity control, cDNA synthesis, 
primer design, amplicon detection, and data nor-
malization must be taken into account. 

 qPCR is often considered a “gold standard” in 
the detection and quantitation of gene expression. 

However, the rapid increase in number of miRNAs 
renders qPCR inef fi cient on a genomic scale, and 
it is probably better used as a validation rather than 
a discovery tool. 

 As with genomic DNA and RNA analysis, 
microarrays are still the best choice for a stan-
dardized genome-wide assay that is amenable to 
high-throughput applications. Whole-genome 
screening generates a qualitative and quantitative 
evaluation of how experimental conditions affect 
miRNA pro fi les. 

 High-throughput sequencing of miRNAs, 
though, is coming into wider use and is unmatched 
for the discovery and experimental validation of 
novel or predicted miRNAs. The high demand 
for low-cost sequencing has driven the develop-
ment of high-throughput sequencing technolo-
gies that parallelize the sequencing process, 
producing thousands or millions of sequences at 
once  [  21,   22  ] . These technologies are intended to 
lower the cost of DNA sequencing beyond what 
is possible with standard dye-terminator meth-
ods. In particular, next generation sequencing 
(NGS) technologies provide a digital expression 
pro fi ling readout that is fundamentally different 
than analog measurement systems like microar-
rays. A variety of different approaches are being 
used. They generally involve the ampli fi cation of 
DNA templates by PCR and the physical binding 
of template DNA to a solid surface or to tiny 
beads called microbeads. These techniques are 
often referred to as massively parallel DNA 
sequencing, because thousands or millions of 
sequencing reactions are run at once to greatly 
speed up the process. All next generation sequenc-
ing systems use clonal cluster sequencing. The 
process, which begins with a single target mole-
cule, involves creation of a clonal target during 
an intermediate ampli fi cation step. Multiple iden-
tical copies are required to produce a high signal-
to-noise-ratio. 

 Finally, the Nanostring technology can be 
used to detect any type of nucleic acid in solution 
and could be modi fi ed with appropriate recogni-
tion probes to detect other biological molecules 
as well. 

 Nanostring utilizes a digital technology that is 
based on direct multiplexed measurement of gene 
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expression that is capable of high level precision 
and sensitivity at less than one transcript copy per 
cell  [  23  ] . The technology uses molecular “bar-
codes” and single-molecule imaging to detect 
and count hundreds of unique transcripts in a 
single reaction  [  24  ] . Each color-coded barcode is 
attached to a single target-speci fi c probe corre-
sponding to a gene of interest. Mixed together 
with controls, they form a multiplexed assay. The 
degree of multiplexing is in the hundreds, which 
is less than that of microarrays. However, the 
Nanostring technology has higher throughput, 
accuracy and sensitivity than microarrays, which 
makes it preferable for low-multiplex applica-
tions, such as biomarker validation or molecular 
diagnostics  [  25  ] . 

 Cancer research and biomarker validation are 
two of the areas where Nanostring has been 
most rapidly adopted. Advantages over existing 
platforms include direct measurement of mRNA 
expression levels without enzymatic reactions 
or bias, sensitivity coupled with high multiplex 
capability, and digital readout. Comparison of 
the Nanostring gene expression system with 
microarrays and TaqMan PCR demonstrated 
that the Nanostring system is more sensitive 
than microarrays and similar in sensitivity to 
real-time PCR  [  24  ] . 

 Although each of these methods has their own 
unique advantages, they have not been perfected 
yet. However, at present, the method chosen for 
miRNA detection should best  fi t experience, the 
experimental conditions in the laboratory, and the 
goal of research.  

    15.2.2   miRNA Pro fi ling-Normalization 

 The signal intensities of miRNA microarray 
experiments may be biased by differences in 
sample RNA preparation, dye labelling, hybrid-
ization and washing ef fi ciency, peculiarities of 
print tip, spatial or hybridization speci fi c effects 
or pre-ampli fi cation of extracted RNA. For these 
reasons normalization is an essential aspect of 
data processing. 

 It can minimize systematic, technical or 
experimental variation and thus has signi fi cant 

impact on the detection of differentially expressed 
miRNAs between two or more conditions. 

 Several studies pointed out that the selection 
of the data pre-processing method can have great 
impact on the resulting data outcome  [  26–  30  ] . 

 Inappropriate normalization of the data can lead 
to incorrect conclusions. Rigorous normalization 
of miRNA data may even be more critical than that 
of other RNA functional classes since relatively 
small changes in miRNA expression may be bio-
logically and clinically signi fi cant  [  31,   32  ] . 

 At present, there is no consensus normaliza-
tion method for the three miRNA pro fi ling 
approaches cited above. Several normalization 
techniques are similar to mRNA pro fi ling nor-
malization methods while others are speci fi cally 
modi fi ed or developed for miRNA data. Indeed, 
miRNAs have some unique signatures such as 
their small total number and short length. 

 Prior to normalization, data pre-processing of 
miRNA pro fi ling experiments includes platform 
and vendor speci fi c steps, such as baseline adjust-
ment and threshold setting for RT-qPCR analy-
ses, background correction for microarray 
technology, or  fi ltering for small RNA-sequence 
data. Following these very  fi rst steps of raw data 
pre-processing, one needs to choose the optimal 
normalization strategy to correct for systematic 
and technical variation enabling a better estima-
tion of the biological variation. 

    15.2.2.1   Normalization Approaches 
for microRNA RT-PCR 

 RT-PCR is generally accepted as gold standard 
for miRNA expression measurement and normal-
ized microRNA RT-PCR pro fi ling data is used 
for the evaluation of the goodness of miRNA 
microarray normalization methods  [  27,   33  ] . 

 Normalization of RT-qPCR miRNA pro fi ling 
data is needed because signal intensities may 
depend on reverse transcription and PCR reaction 
ef fi ciencies. 

 There are two types of sources of variation in 
RT-qPCR experiments. The  fi rst one is technical: 
there may be differences in sample procurement, 
stabilization, RNA extraction, reverse transcrip-
tion and PCR reaction ef fi ciencies. The second 
one is biological, there may be sample-to-sample 
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inconsistencies in cellular subpopulations or even 
differences in bulk transcriptional activity. For 
these reasons normalization of RT-qPCR miRNA 
pro fi ling data is needed. 

 The common normalization methods for 
microRNA RT-PCR pro fi ling are based on 
prede fi ned invariant endogenous controls, refer-
ence miRNAs  [  31  ]  or other small non-coding 
RNAs such as small nuclear and small nucleolar 
RNA  [  28,   34,   35  ] . 

 However, in  [  36  ]  the authors argued that it is 
best to normalize genes with reference genes 
belonging to the same RNA class because the use 
of small non-coding RNAs other than miRNAs 
does not mirror the physicochemical properties 
of miRNA molecules. 

 Using non-miRNA reference genes for qPCR 
normalization is not advisable when the overall 
abundance of miRNA varies, e.g., in experiments 
affecting the miRNA processing machinery, or in 
comparisons involving multiple tissues or combi-
nations of tissues and cell lines  [  37  ] . 

 Selection of invariant miRNAs identi fi ed by 
algorithms speci fi cally developed for reference 
gene evaluation and selection was superior over 
small non-coding RNA based normalization  [  31, 
  35  ] . These algorithms are based on reference 
gene ranking and stepwise elimination of the 
least stable gene  [  36  ] , repeated pairwise correla-
tion and regression analysis  [  38  ]  or statistical lin-
ear mixed-effects modelling  [  39  ]  of the respective 
experimental data. 

 Moreover invariant miRNAs can be selected 
based on a distinguishable low standard deviation 
and high-mean population as suggested by 
Pradervand et al.  [  28  ]  for miRNA microarray 
preprocessing and this approach is applicable for 
RT-qPCR pro fi ling experiments as well. Basically, 
the use of more than one reference gene increases 
the accuracy of quanti fi cation compared to the 
use of a single reference gene  [  36,   39  ] . 

 Commonly used methods for miRNA raw 
data processing use median or mean value of the 
raw readings as normalization factor. However, 
many miRNAs may not be expressed in a bio-
logical sample, and thus median or mean value 
may be skewed towards the assay readings for 
lowly expressed miRNAs, which tend to be more 

variable compared with the readings for more 
abundantly expressed miRNAs. A scaling 
method suggested by Wang et al.  [  40  ] , uses the 
average expression values of eight selected 
miRNAs with relatively high expression from a 
descending sorted list. 

 For large scale microRNA expression pro fi ling 
studies the mean expression value normalization 
outperformed the current normalization strategy 
that makes use of stable small RNA controls, such 
as snoRNAs proposed by manufacturers, in terms 
of better reduction of technical variation  [  35  ] . 

 However, the selection of a limited number of 
miRNAs or small RNA controls that resemble the 
mean expression value can be successfully used 
for normalization in follow-up studies where only 
a limited number of miRNA molecules are 
pro fi led to allow a more accurate assessment of 
relevant biological variation from a miRNA 
RT-qPCR pro fi ling experiment  [  32,   35  ] .  

    15.2.2.2   Normalization Methods for 
miRNA Microarray Experiments 

 Different normalization methods have been used 
on miRNA microarray expression pro fi ling data 
sets, but there is currently no clear consensus 
about their relative performances  [  28  ] . 

 Some have even chosen to omit normalization 
 [  41–  43  ]  but comparative studies on the relative 
performance of different normalization methods 
within a miRNA microarray platform have 
emphasized the need for evaluating and identify-
ing appropriate normalization methods  [  27,   28, 
  44  ] . miRNA microarrays can be single-color or 
dual-color systems calling for different normal-
ization approaches. Single-color miRNA microar-
rays have been predominately used, while 
dual-color hybridization systems are less fre-
quently prevalent  [  44  ] . 

 Both can be observed with respect to intra-
array normalization for the correction of dye 
effects and inter-array approaches for the bal-
ance of the distribution differences among 
experiments  [  45  ] . 

 The  fi rst normalization methods to be used 
with miRNA array data employed centring to 
median values  [  46–  48  ]  or scaling based on total 
array intensities  [  49,   50  ] . 
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 Certain methodologies currently used for 
large-scale genome arrays have been adapted to 
and modi fi ed for miRNA arrays such as Quantile 
 [  51  ]  and LOESS (Locally Weighted Regression 
and Smoothing Scatterplots)  [  52  ] . Various 
assumptions are often taken by several normal-
ization methods. Scaling, LOESS and Quantile 
 [  26,   27  ]  are based on two assumptions, (i) only a 
small portion of spots is differentially expressed, 
and (ii) differentially expressed spots are homo-
geneously distributed with respect to both, over- 
and under-expressed miRNAs  [  29  ] . 

 However, these assumptions could fail for 
miRNA platforms as they are printed with a rela-
tively small number of selected sequences  [  27, 
  29  ] . Moreover, the number of expressed miRNAs 
in a miRNA microarray pro fi ling is small (typi-
cally in the order of hundreds) compared with a 
few thousands of genes  [  30  ] . Hence, among the 
expressed microRNAs the proportion of those that 
are differentially expressed is much larger than 
that observed in mRNA expression pro fi ling  [  30  ] . 
Experiments with most miRNAs differentially 
expressed predominantly in one direction, that is 
only up- or down-regulated, are not unusual. 

 Thus, it must be veri fi ed whether these 
assumptions hold true for the respective datasets 
and one should choose a normalization method 
that makes only minimal assumption about the 
presence of a set of constant miRNAs, like invari-
ant-based normalization  [  28  ] . Alternatively, a 
normalization method free of assumption, the 
majority of algorithms for variance stabilization 
normalization  [  53  ]  or even an assumption free 
approach  [  54  ]  can be utilized instead. 

 Quantile normalization is a transformation 
method originally proposed by Bolstad et al. 
 [  51  ]  for oligonucleotide arrays. It is now widely 
used for one-color miRNA microarrays as well 
and was con fi rmed as one of the most robust 
methods  [  27,   28,   44,   55  ] . It is an inter-array 
approach and equalizes the distributions of 
expression intensities across arrays. Thus, 
quantile normalization assumes that the overall 
distribution of signal intensity does not change. 
While this assumption likely holds true for the 
comparison of p53 overexpressing versus control 
cells  [  28  ]  or even for brain–heart comparisons 

according to Rao et al.  [  44  ]  where only 5% of 
miRNAs were differentially expressed, it may 
not hold true in case large numbers of miRNAs 
are differentially expressed in only one 
direction. 

 Such cases may be, for example, the knockout 
of proteins essential for miRNA biogenesis, 
which lead to a dramatic reduction in steady state 
miRNA levels by blocking production of mature 
miRNAs  [  44  ] . 

 Rao et al.  [  44  ]  compare the performance of 
several normalization methods on miRNA single 
channel microarray pro fi ling, showing the better 
performance of quantile normalization. 

 Quantile normalization can be applied to dual-
labeled array data if red and green channels are 
treated as two independent single-labeled array 
data. On the contrary two single-labeled array data 
can be considered as a dual-labeled data and LOESS 
normalization may be used in this case  [  56  ] . 

 For the two colors microarray data, normal-
ization is usually applied to the log-ratios of 
green channel signal (Cy3) and red channel (Cy5) 
signal, which will be written as M and A . 

 The LOESS normalization and its variants 
 [  27,   29,   44  ]  are the most used transformation 
based methods. They use local regression via 
locally weighted scatter plot smoothing. M is 
de fi ned as the log transformation of Cy3/Cy5 and 
A as the log transformation of the squared root of 
Cy3*Cy5 (as used in the MA-plot). It is advis-
able to introduce weights that penalize outliers 
because outlier values can strongly in fl uence the 
local regression curve (LOWESS). However, 
Lowess and Loess are treated as synonyms. Local 
regression via LOESS uses a quadratic polyno-
mial weighted regression function with Tukey’s 
biweight function  [  52  ]  of the log ratios of the 
Cy3 and Cy5 signals on overall spot intensity of 
the two signals (Cy3*Cy5). 

 In addition to intensity-dependent variation in 
log ratios, spatial bias could also be a signi fi cant 
source of systematic error (print-tip effect). It is 
possible to correct for both print-tip and inten-
sity-dependent bias by performing a within-print-
tip-group normalization using LOESS. 

 Print-tip LOESS normalizes each M value by 
subtracting from it the corresponding value on 
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the tip-group LOESS curve  [  27  ] . Finally, the 
normalized log-ratios (N) are: 

 N = M − loess 
i
 (A) 

 where loess 
i
 (A) is the loess curve as a function of 

A for the  ith  tip group. 
 However, Sarkar et al.  [  30  ]  did not  fi nd 

signi fi cant differences between print-tip LOESS 
and other normalizations. 

 Hua et al.  [  27  ]  compared 15 normalization 
methods using microarray data and RT-PCR data. 
It was found that microRNA normalized data by 
print-tip LOESS method were most consistent 
with the RT-PCR results. 

 A variant of LOESS normalization called 
LOESSM was proposed by Risso et al.  [  29  ] . This 
non-parametric normalization scales the expres-
sion data on the global median expression rather 
than on zero. This modi fi cation relaxes the assump-
tion of symmetry among up- and down-regulated 
genes and it was shown that LOESSM, in case of 
absence of channel-effect, has better performance. 
In addition, LOESS combined with Generalized 
Procrustes Analysis (GPA), an assumption free 
inter-array normalization  [  54  ] , improved its results 
and outperformed the other normalizations in 
terms of sensitivity and speci fi city  [  29  ] . 

 LOESS normalizations and its variants 
emerged as being robust in the reduction of non-
biological bias. 

 Variance stabilization normalization (VSN), 
an inter-array transformation method, is widely 
used for microRNA microarray data  [  28,   30  ] . It 
was developed for mRNA arrays and is based on 
a parameterized arcsinh transformation instead 
of a logarithmic transformation that calibrates 
sample-to-sample variations and renders vari-
ance approximately independent of the mean 
intensity  [  53  ] . 

 Spike-in VSN normalization restricts the 
model  fi t to spike-in spots. These spots recognize 
speci fi c RNA transcripts that can be added as 
internal controls in the experiments. Normalization 
intensities for all miRNAs are then obtained by 
applying the resulting transformation to all spots 
of interest on the array  [  30  ] . 

 One limitation of this approach is that reliable 
results can only be obtained for intensities within 

the range covered by the spike-in used and that 
excludes targets that are not expressed. 

 Pradervand et al.  [  30  ]  proposed a linear 
regression method to select a set of miRNAs 
with constant expression (invariants) and used 
these invariants to calculate VSN parameter 
(VSN-INV). The invariant probes are those that 
have medium-high mean intensity and low vari-
ance across samples. VSN used with default 
parameter settings assumes that most genes are 
not differentially expressed whereas the invari-
ant-based regression only assumes that a sub-
population of expressed genes does not change. 
So, VSN-INV is appropriate only if a signi fi cant 
fraction of miRNAs is expected to be differen-
tially expressed. 

 Based on theirs comparisons, Pradervand et al. 
found that VSN-INV and quantile normalization 
were the most robust normalization methods 
compared to VSN with default parameter or scal-
ing. In general, one should note that VSN strongly 
affects the distribution of the large fraction of 
miRNAs whose expression is near or at back-
ground, resulting in the large increase of variabil-
ity for those microRNAs.  

    15.2.2.3   Scaling Normalization 
 The  fi rst normalization methods for mRNA 
microarray were based on the selections of 
prede fi ned and stably expressed housekeeping 
genes, as described by Garzon et al. and Perkins at 
al.  [  57,   58  ]  that uses all probes. These methods 
have been applied to one- or two-channel miRNA 
microarray pro fi ling. Most commercially available 
miRNA microarrays do not have controls for 
endogenous RNAs that have been shown to be 
robustly invariant between various different tissue 
samples or conditions  [  44  ] . To date, there is no 
consensus on the existence and reliability of refer-
ence gene miRNAs. The selection of reference 
genes to normalize miRNA levels depends on the 
bioinformatics analysis of the respective data (as 
shown for mRNA in  [  36,   39  ] ) and is otherwise still 
rather empirical due to the lack of robust reference 
miRNAs  [  34  ] , although a universal reference 
miRNA reagent set has been proposed  [  30  ] . 

 Bargaje et al.  [  55  ]  identi fi ed constitutively 
expressed miRNAs across tissues. A mean of expres-
sion levels of a set of 16 microRNAs showing 



29915 Elucidating the Role of microRNAs...

minimum variability, was reasonably successful 
as a normalization factor for comparing datasets 
generated by the same platforms. However, nor-
malization using constitutive microRNAs was 
ineffective when comparing bead-based and 
microarray-based datasets. In these cases quan-
tile and Z-score normalization were both suc-
cessful in transforming the data sets generating 
comparable means and scale. 

 The scaling methods like Z-score, mean, 
median, or 75th percentile assume that different 
sets of intensities differ by a constant global fac-
tor and all raw intensity values are multiplied 
with one common (i.e., global) scaling factor  [  26, 
  27,   55  ] . The Z-score provides a mean-centered 
rank for the expression level in units of standard 
deviation. Z-scores thus provide an index of the 
expression level of the miRNA with respect to 
the cellular pool of miRNA. Unlike other normal-
ization methods, Z-scores are not in fl uenced by 
the addition of new datasets allowing  fl exible 
cross-platform validation of miRNA microarray 
pro fi ling experiments  [  55  ] . 

 Recently, Wang et al.  [  40  ]  suggested the pre-
evaluation of the overall miRNA expression pat-
tern by a panel of miRNAs using RT-qPCR assays 
to build a logistic regression model based on 
these results. The personalized logistic regression 
model based on 29 miRNAs ef fi ciently calibrated 
the variance across arrays and improved miRNA 
microarray discovery accuracy compared with 
different scaling methods, LOESS or quantile 
normalization  [  40  ] .   

    15.2.3   Identi fi cation of Differentially 
Expressed Genes and miRNA 

 Several methods have been applied to the 
identi fi cation of differentially expressed genes 
and microRNA in microarray data. 

 The simplest method is to evaluate the log 
ratio between two conditions (or the average of 
ratios when there are replicates) and consider all 
the genes that differ by more than an arbitrary 
cut-off value to be differentially expressed. This 
is not a statistical test, and there is no associated 
value that can indicate the level of con fi dence in 

the designation of genes as differentially or not 
differentially expressed. 

 It is considered to be unreliable  [  59  ]  because 
statistical variability is not taken into account and 
is susceptible to outliers. 

 More sophisticated statistical methods have 
been proposed. The classi fi cation success is 
affected by the choice of the method, the number 
of genes in the genelist, the number of cases 
(samples) and the noise in the dataset. 

 Different methods produce dissimilar gene 
lists, which can produce dramatically different 
discrimination performance when trained as gene 
classi fi ers. 

 The gene lists produced by the feature selec-
tion methods can be grouped broadly according 
to the manner in which they treat gene variance. 

    15.2.3.1   t-Statistic 
 The simplest statistical method for detecting dif-
ferential expression is  t  test. It can be used to 
compare two conditions when there is replication 
of samples. With more than two conditions, anal-
ysis of variance (ANOVA) can be used. 

 The t-test calculates the observed t-statistic for 
each gene. The idea is to compare between-group 
difference and within-group difference and then 
to calculate the probability value (p-value) of 
t-statistic for each gene from t-distribution. 

 The output of the analysis is a p-value for each 
gene. It represents the chance of getting the t-sta-
tistic as large as, or larger than the observed one, 
under the hypothesis of no differential expression 
(null hypothesis). A small p-value indicates that 
the hypothesis of no differential expression is not 
true and the gene is differentially expressed. 

      15.2.3.2   SAM 
 Several modi fi ed t-statistics have been proposed 
to address this problem. SAM  [  60  ]  is one of the 
most popular. It performs moderately well except 
when applied to data with low sample size and to 
the noisy datasets. 

 SAM uses a moderated t-statistic, whereby a 
constant is added to the denominator of the t-sta-
tistic. The addition of this constant reduces the 
chance of detecting genes which have a low standard 
deviation by chance. The constant is estimated 
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from the sum of the global standard error of the 
genes  [  61–  63  ] .  

    15.2.3.3   Empirical Bayes Method (Limma) 
 The empirical bayes method provides a more 
complex model of the gene variance. The gene 
standard error is estimated as a representative 
value of the variance of the genes at the same 
level of expression as the gene of interest  [  64  ] . In 
training sets with a large number of cases, the 
empirical bayes method performed comparably 
with ANOVA. Importantly, unlike most other 
methods, the empirical bayes t-statistic proved 
equally robust with low numbers of cases. The 
Bayesian statistic also provides p-values and has 
the advantage that it can be expanded to deal with 
datasets that have more then two classes. 

 Limma provides advanced statistical methods 
for linear modelling of microarray data and for 
identifying differentially expressed genes. It  fi ts a 
linear model to the data and uses an empirical 
Bayes method for assessing differential expres-
sion  [  65  ] . One or two experiment de fi nition 
matrices need to be speci fi ed during the analysis: 
a  design matrix  de fi ning the RNA samples and a 
 contrast matrix  (optional for simple experiments) 
de fi ning the comparisons to be performed. 

 When there are more than two conditions in an 
experiment, a more general concept of relative 
expression is needed. One approach that can be 
applied to cDNA microarray data from any exper-
imental design is to use an analysis of variance 
model (ANOVA) to obtain estimates of the rela-
tive expression ( VG ) for each gene in each sample 
 [  66,   67  ] . In the ANOVA model, the expression 
level of a gene in a given sample is computed rela-
tive to the weighted average expression of that 
gene over all samples in the experiment. 

 The microarray ANOVA model is not based 
on ratios but it is applied directly to intensity 
data; the difference between two relative 
expression values can be interpreted as the 
mean log ratio for comparing two samples (as 
log A −  log B  = log( A / B ), where log  A  and log  B  
are two relative expression values). 
Alternatively, if each sample is compared with 
a common reference sample, one can use nor-
malized ratios directly. This is an intuitive but 

less ef fi cient approach to obtain relative 
expression values than using the ANOVA esti-
mates. Direct estimates of relative expression 
can also be obtained from single-color expres-
sion assays  [  68  ] . 

 The set of estimated relative expression values, 
one for each gene in each RNA sample, is a 
derived data set that can be subjected to a sec-
ond level of analysis. There should be one rela-
tive expression value for each gene in each 
independent sample. The distinction between 
technical replication and biological replication 
should be kept in mind when interpreting results 
from the analysis of a derived data. If inference 
is being made on the basis of biological repli-
cates and there is also technical replication in 
the experiment, the technical replicates should 
be averaged to yield a single value for each 
independent biological unit. The derived data 
can be analyzed on a gene-by-gene basis using 
standard ANOVA methods to test for differences 
among conditions.  

    15.2.3.4   ROC 
 Classi fi ers built using gene lists from the ROC 
method outperform all other methods when 
applied to large datasets. High RCI scores are 
observed even when only a few of the most 
highly ranked genes are examined. These high 
RCI scores are maintained when the number 
of genes examined is increased. It is possible 
to obtain p-values using this method  [  69  ] . 
ROC, like the t-statistic methods, loses power 
when the number of samples is reduced. It 
ranks a gene based on its power to discrimi-
nate between the groups given a threshold 
false positive rate. This means that it ignores 
the level of expression of the gene in the two 
groups. Therefore as the training size 
decreases, the likelihood of a gene with low 
variance and no biological meaning being a 
good discriminator by chance increases. ROC 
is an unsuitable method when the sample size 
is below 30 (class size of 15).  

    15.2.3.5   Rank Product 
 The Rank Product  [  70  ]  package contains functions 
for the identi fi cation of differentially expressed 
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genes using the rank product non-parametric 
method described in  [  63  ] . It generates a list of up- 
or down-regulated genes based on the estimated 
percentage of false positive predictions (pfp), 
which is also known as false discovery rate (FDR). 
The attractiveness of this method is its ability to 
analyse data sets from different origins (e.g. labo-
ratories) or variable environments. 

 Rank product assumes constant variance 
across all samples. It compares the product of the 
ranks of genes in a class with the product of the 
ranks of genes in the second class. For each gene 
in the dataset, rank products sorts the genes 
according to the likelihood of observing their 
ranked positions on the lists of differentially 
expressed genes just by chance.   

    15.2.4   Clustering 

 Clustering algorithms are widely used in the 
analysis of microRNA pro fi ling data. In clinical 
studies, they are not only used to cluster 
microRNA into groups of co-regulated miRNA, 
but also for clustering patients, and thereby defy-
ing novel disease entities based on miRNA 
expression pro fi les. 

 A reliable and precise classi fi cation of tumors 
is essential for successful diagnosis and treatment 
of cancer. 

 Current methods for classifying human malig-
nancies rely on a variety of morphological, clini-
cal, and molecular variables. In spite of recent 
progress, there are still uncertainties in diagnosis. 
Also, it is likely that the existing classes are het-
erogeneous and comprise diseases which are 
molecularly distinct and follow different clinical 
courses. microRNA microarray datasets have 
been used to characterize the molecular varia-
tions among tumors by monitoring microRNA 
expression pro fi les on a genomic scale. This led 
to more reliable classi fi cation of tumors and to 
the identi fi cation of marker miRNA that distin-
guish among these classes. Eventual clinical 
implications include an improved ability to 
understand and predict cancer survival. However, 
there are three main types of statistical problems 
associated with tumor classi fi cation:

   The identi fi cation of new tumor classes using  –
microRNA expression pro fi les – unsupervised 
learning;  
  The classi fi cation of malignancies into known  –
classes – supervised learning  
  The identi fi cation of marker microRNA that  –
characterize the different tumor classes – fea-
ture selection.    
 Clustering can answer these problems. It is 

possible to cluster rows, columns or both. Rows 
(miRNA) clustering can identify groups of co-
regulated miRNA, spatial or temporal expression 
patterns, reduce redundancy (cf. feature selec-
tion) in prediction, and detect experimental arte-
facts. On the other hand columns clustering 
allows to identify new classes of biological sam-
ples, new tumor classes or new cell types. 
Moreover, it allows to detect experimental 
artefacts. 

 In order to perform clustering, a way to mea-
sure how similar or dissimilar two objects are is 
needed. The feature data are often transformed to 
an n × n distance or similarity matrix, D = (dij), 
for the n objects to be clustered. Features corre-
spond to expression levels of different microR-
NAs and possible classes include tumor types or 
clinical outcomes (survival, non-survival). Other 
information such as age and sex may also be 
important and can be included in the analysis. 
The most popular distances are Euclidean dis-
tance and Manhattan distance. Hamming distance 
is used for ordinal, binary or categorical data. 

 Clustering procedures can be divided into three 
categories: Hierarchical, Partitioning (K-means 
K-medoids/partitioning around medoids) and 
Model based approaches. The  fi rst one is either 
divisive or agglomerative and provides a hierarchy 
of clusters, from the smallest, where all objects are 
in one cluster, through to the largest set, where 
each observation is in its own cluster. One must 
often also de fi ne a distance measure between clus-
ters or groups of miRNA and the linkage methods 
used are single, complete, average, distance 
between centroids and Ward Linkage. Hierarchical 
clustering methods produce a tree or dendrogram. 
The partitions are obtained from cutting the tree at 
different levels. The tree can be built in two dis-
tinct ways bottom-up (agglomerative clustering) 
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or top-down (divisive clustering). Examples of 
Hierarchical clustering methods are Self-
Organizing Tree Algorithm – SOTA  [  71  ]  and 
DIvisive ANAlysis – DIANA  [  72  ] . 

 Partitioning methods require the speci fi cation 
of the number of clusters. A mechanism for 
apportioning objects to clusters must be deter-
mined, then data is portioned into a prespeci fi ed 
number K of mutually exclusive and exhaustive 
groups and iteratively reallocated to clusters until 
some criterion is met, e.g., minimize within-clus-
ter sums-of-squares. Examples of partitioning 
methods are k -means and its extension to fuzzy 
k -means, Partitioning Around Medoids – PAM 
 [  72  ] , – Self-Organizing Maps – SOM  [  73  ]  and 
model-based clustering, e.g., Gaussian mixtures 
in  [  74–  76  ]  and McLachlan et al.  [  77,   78  ] . 

 An important feature of partitioning methods 
consists in satisfying an optimality criterion 
(approximately), however they need an initial K 
and long computation time. Hierarchical meth-
ods are computationally fast (for agglomerative 
clustering) but rigid, since they cannot later cor-
rect for earlier erroneous decisions. 

 Most methods used in practice are agglomera-
tive hierarchical methods. In large part, this is 
due to the availability of ef fi cient exact algo-
rithms that implement them. 

 Model based approaches assume that data are 
‘generated’ from a mixture of K distribution. 
They try to  fi t a model to the data and try to get 
the best  fi t. A classic example is a mixture of 
Gaussians (mixture of normals). They take advan-
tage of probability theory and well-de fi ned distri-
butions in statistics. 

 In microarray experiments is also useful to 
detect the presence of outliers. Outlier detection 
is an important step since they can greatly affect 
the between-cluster distances. Simple tests for 
outliers should be identifying observations that 
are responsible for a disproportionate amount of 
the within-cluster sum-of-squares. 

 Most features in high dimensional datasets 
will be uninformative, examples are unexpressed 
genes, housekeeping genes, ‘passenger altera-
tions’. Clustering (and classi fi cation) has a much 
higher chance of success if uninformative fea-
tures are removed. Simple approaches to feature 

selection are: selecting intrinsically variable 
genes or requiring a minimum level of expression 
in a proportion of samples. 

 Clustering can be also employed for quality 
control purposes. The clusters that are obtain 
from clustering samples/microRNA should be 
compared with different experimental conditions 
such as batch or production order of the arrays, 
batch of reagents, microRNA ampli fi cation pro-
cedure, technician, plate origin of clones, and so 
on. Any relationships observed should be consid-
ered as a potentially serious source of bias.  

    15.2.5   miRNA as Biomarkers 

 miRNAs have a very important role in cancer. 
Their expression is often dysregulated in malig-
nant cells. Some miRNAs that are temporarily 
over-expressed in early development and shut off 
in the normal differentiated state may re-express 
in cancer, causing a persistent stem cell–like ded-
ifferentiated state. Many miRNAs may act like 
oncogenes by promoting proliferation and/or 
repressing apoptosis. Other miRNAs play the 
role of tumor-suppressors. They have a regula-
tory function in normal tissues but when they are 
down-regulated in cancer, they abrogate their 
tumor-suppressor activity. 

 Over-expression or lack of expression of 
speci fi c miRNAs appears to correlate with 
clinically aggressive or metastatic phenotypes 
 [  79,   80  ] . 

 miRNA expression has tissue speci fi city and 
has been used for identifying the tissue in which 
cancers of unknown primary origin arose  [  81  ] . 
Rosenfeld and colleagues constructed a miRNA-
based tissue classi fi er by measuring miRNA 
expression levels using a microarray platform 
in 336 primary and metastatic tumors repre-
senting 22 different cancer types. They built 
and tested a classi fi er for 48 miRNAs that accu-
rately predicted tissue type in 86% of the test 
set, including 77% of the metastatic samples. 
Moreover, the classi fi er predicted tissue type 
with 100% accuracy for six of the ten tumor 
types in the metastatic test set. The authors pro-
posed that their classi fi cation system could be 
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applied to cancer of unknown primary origin, 
de fi ned as histologically con fi rmed metastatic 
cancer for which no primary site of disease can 
be identi fi ed. 

 Cancer classi fi cations previously determined 
by mRNA expression pro fi ling are now being 
investigated with miRNAs. One study has directly 
compared mRNA and miRNA microarray expres-
sion data and shown that known molecular sub-
types of breast cancer can also be identi fi ed using 
miRNAs, and that expression of processing 
enzymes and proteins involved in miRNA bio-
genesis are down-regulated in the more aggres-
sive subtypes  [  82  ] . Clinical trials are underway 
that test different therapies in different breast 
cancer molecular subtypes as de fi ned by mRNA 
expression. 

 Mitchel et al.  [  83  ]  discovered microRNAs in 
healthy human plasma that can be traced back to 
speci fi c tissue (miRNA-15b, miRNA-16, and 
miRNA-24). In addition, they found that serum is 
more readily available than plasma and the stabil-
ity of miRNA compared to the plasma is strongly 
positively correlated. 

 They found the baseline levels of miRNA 
expression in healthy individuals and detected 
the levels of prostate cancer-expressed miRNAs 
(miRNA-100, miRNA-125b, miRNA-141, 
miRNA-143, miRNA-205, and miRNA-296) in 
serum. miRNA-141 level is speci fi cally elevated 
in prostate cancer in serum and several experi-
ments illustrated that miRNA-141 is expressed 
by several common human cancers. They estab-
lished that tumor-derived miRNAs can be 
detected in plasma or serum and serve as an effec-
tive circulating biomarker of common human 
cancer types. 

 A lot of bene fi ts will come from using miRNA 
to diagnose cancer. miRNA is 97.6% accurate for 
sensitivity as a biomarker for cancer and 96.3% 
accurate as a biomarker for the classi fi cation of 
cancer  [  84  ] . It means less false positive or false 
negative cases. It will decrease the delay in diag-
nosis of cancer because a blood test with miRNA 
assay or electrophoresis is much cheaper and 
suf fi cient for diagnosis. 

 It will avoid invasive, expensive and/or unnec-
essary tests to  fi nd out if a patient has cancer and 

what type of cancer. All this will get patients less 
stressed. 

 Signi fi cant progress has been made on the 
relationship between miRNAs and cancers and 
the important function of miRNAs in a variety of 
cancers has been reviewed by several research 
groups. 

 In fact as shown by Lu et al., the miRNA 
expression pro fi le based on the expression of 
only 200 miRNA genes successfully classi fi ed 
poorly differentiated tumors con fi rming in the 
majority of cases the clinical diagnosis whereas 
mRNA pro fi ling, based on the expression of 
about 16,000 protein coding genes, failed to do 
so  [  85  ] . 

 Visone et al. found out that miR-181b is a 
unique biomarker for CLL since its expression 
can be monitored throughout the disease course 
of a patient and this change in the leukemic cells 
correlate with the overexpression of four genes 
with great signi fi cance in CLL and other cancers 
(i.e. MCL1, TCL1, BCL2 and AID). Collectively, 
this information together with the analysis of 
stable prognostic markers (e.g. ZAP-70 and 
IGHV mutation status) specify disease progres-
sion in chronic lymphocytic leukemia and is 
associated with clinical outcome  [  86  ] . 

 Finally, a signi fi cant justi fi cation for using 
miRNAs as biomarkers is that miRNAs have an 
unusually high stability in formalin- fi xed tissues, 
which means that the miRNA can be stored and 
extracted with minute degradation. Short miR-
NAs from older tumors preserved as formalin-
 fi xed paraf fi n-embedded tissue are less susceptible 
to chemical modi fi cation and degradation over 
time and have proven satisfactory for miRNA 
analysis.   

    15.3   miRNA Target Prediction 

 In order to determine miRNA functions it is fun-
damental to  fi nd their targets. While miRNA tar-
get prediction in plants is rather simple, due to 
the perfect complementarity that plant miRNAs 
usually exhibit to their targets, the prediction of 
miRNA binding sites in animals is much more 
challenging. In fact, perfect complementarity in 
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animals is usually limited to the 5 ¢  end of the 
miRNA, which is usually referred to as the seed 
(~6–8 nt long)  [  87  ] . The target sites are usually 
located in the 3 ¢  UTR sequences of mRNAs. In 
order to signi fi cantly reduce the number of false 
positives, other determinants are needed due to 
the fact that the short length of the miRNA seeds 
raises the probability of  fi nding random matches 
that don’t correspond to functional sites  [  7  ] . Such 
determinants or rules should be primarily inferred 
from experimentally veri fi ed targets, thus show-
ing how important it is to have good sources of 
data as the basic step in the development of pre-
diction tools. A signi fi cant amount of miRNA/
target interactions data, usually coming from the 
literature, is publicly available on web databases, 
such as Tarbase  [  88  ]  and miRecords  [  89  ] . 
Information on the binding sites of miRNAs in 
their veri fi ed targets is usually provided by this 
data. Moreover, high-throughput sequencing of 
RNAs isolated by crosslinking immunoprecipita-
tion (HITS-CLIP) has recently identi fi ed func-
tional RISC interaction sites on mRNAs, allowing 
the creation of libraries of reliable miRNA bind-
ing sites  [  90  ] . Data Mining analysis of these 
sequences could help identifying important dis-
criminant features for the prediction of new bind-
ing sites. 

 In predicting functional targets, miRNA/target 
interaction rules are generally not suf fi cient due 
to the high number of false positives that derive 
from random matches of the short seed region of 
miRNAs to false targets. Consequently, other 
kinds of data are needed to improve prediction 
algorithms. For instance, target conservation is 
widely used as a valid additional criterion. High 
sequence conservation is indeed revealed by the 
alignment of miRNAs in different species, espe-
cially in the seed regions, which often corre-
sponds to high conservation of their targets. 
Therefore, an help in detecting functional sites 
could come from the identi fi cation of conserved 
regions in the 3 ¢  UTR of a gene, even though this 
approach is not useful in the case of non-con-
served miRNAs  [  91  ] . Several prediction methods 
exploit thermodynamics properties. Free energy 
( D G) can be used to evaluate the stability of the 
predicted duplexes. Low values of free energy, 

usually below −20 kcal/mol, characterize indeed 
all validated miRNA/target pairs  [  92  ] . A low 
energy value, however, is a necessary but not 
suf fi cient condition. Not all energetically favour-
able miRNA/target duplexes, in fact, are func-
tional. Structural accessibility of the target 
molecule is another thermodynamic feature used 
by computational methods. miRNA binding sites 
shouldn’t be involved in any intra-molecular base 
pairing, and any existing secondary structure 
should be disrupted in order to make the site 
accessible to the miRNA  [  93  ] . This very complex 
problem mostly relies on secondary structure 
prediction computation, which is still one of the 
challenges of computational biology  [  94  ] . 

 Nucleotide composition surrounding the bind-
ing sites and the position of the sites in the UTR, 
as well as the presence of multiple sites on the 
same UTR, are additional features used by pre-
diction tools. In fact, it is proven that a single 
miRNA can have more binding sites on the same 
target and that a target can have multiple sites for 
different miRNAs  [  95  ] . 

    15.3.1   Tools for the Prediction 
of miRNA Targets 

 Several computational tools for the prediction of 
miRNA targets are currently available on the 
web  [  96  ] . 

 In this subsection we will review the basic 
concepts behind the most popular ones: 
TargetScan, miRanda, Pictar, Diana-microT, 
RNA22, RNAHybrid, StarMir and PITA. 

 TargetScan is one of the most popular tools for 
miRNA targets prediction. It’s a sophisticated 
algorithm based on both conservation and base 
pairing rules  [  91,   95  ]  that searches for miRNA 
seed matches on UTRs, considering different 
kinds of seeds and making use also of secondary 
structure prediction in order to calculate the free 
energy of the predicted duplexes. In addition, it 
considers the presence of multiple sites for the 
same miRNA on a target as positive contribution 
to the score of the prediction. Through sequence 
alignment, TargetScan also takes into account the 
conservation on different species for the 
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identi fi cation of the most probable targets. All 
the predictions, computed for different species 
like human, mouse and rat, are available on the 
TargetScan website. 

 miRanda is another web tool that performs pre-
dictions and it’s based on an alignment algorithm 
which uses a weighted matrix aimed at promoting 
the binding of the seed of the miRNA rather than 
its 3 ¢  end. It also uses the free energy of predicted 
duplexes and the conservation criteria to select the 
most probable targets. Its website allows predic-
tions on human, mouse and rat  [  97,   98  ] . 

 Another popular tool for the prediction of 
miRNA targets on vertebrates, nematodes and 
 fl ies is PicTar  [  99  ] . Its algorithm is trained to 
identify binding sites for a single miRNA and 
multiple sites regulated by different miRNAs act-
ing cooperatively. It makes use of a pairwise 
alignment algorithm in order to  fi nd sites con-
served in many species (7 Drosophila species and 
8 vertebrate species), considering also the clus-
tering and co-expression of miRNAs together 
with ontological information, such as the time 
and tissue speci fi city of miRNAs and their poten-
tial targets, to enhance its predictions. 

 Diana-MicroT implements an algorithm that 
is trained to identify targets with a single binding 
site for a miRNA  [  100  ] . Its sequence alignment 
algorithm focuses on the search for miRNA/tar-
get duplexes characterized by central bulges and 
paired 5 ¢  and 3 ¢  ends. 

 A different approach is instead adopted by the 
web tool RNA22. It performs the analysis of 
miRNA sequences to  fi nd intra- and inter-species 
patterns of conserved sequence features  [  101  ] . 
The algorithm generates the reverse complement 
of the most signi fi cant patterns and searches for 
their instances in the UTRs in order to identify 
the target islands supported by a minimum num-
ber of pattern hits. A target island is de fi ned as 
any hot spot where the reverse complement of 
mature miRNA patterns aggregate. It then com-
putes the pairing of each target island with each 
candidate miRNA and evaluates the thermody-
namic stability of the duplex obtained. 

 The miRNA target prediction tool RNAHybrid 
is conceived as an extension of the RNA second-
ary structure prediction algorithm by Zuker and 

Stiegler to two sequences  [  92  ] . Hybridization of 
the miRNA to the target is considered through an 
energetically optimal criterion, i.e. yielding the 
Minimum Free Energy (MFE), but absolutely 
avoiding intra-molecular base pairing and multi-
loops. The algorithm used adopts dynamic pro-
gramming, forcing the perfect match of the seed. 
Bulges and internal loops are restricted to a con-
stant maximum length in either sequence. 

 The computation of the structural accessibility 
of the targets is instead the main feature of the 
tools StarMir and PITA. StarMir is based on the 
target’s secondary structure as predicted by the 
tool Sfold  [  102  ] . The miRNA/target interaction is 
modelled as a two-step hybridization reaction: 
the nucleation at an accessible site and the hybrid 
elongation to disrupt the local secondary struc-
ture of the target and form the complete duplex. 
PITA is based on a slightly different model which 
computes the difference between the free energy 
gained from the formation of the miRNA/target 
duplex and the energetic cost of unpairing the tar-
get to make it accessible to the miRNA  [  103  ] . 

 In spite of the rather successful predictions of 
effective miRNA targets performed by the tools 
mentioned above, the problem still remains a big 
challenge. The high number of false positives and 
the use of conservation criteria clearly show our 
partial knowledge in the targeting mechanisms. 
Combining Data Mining, Pattern Discovery and 
Machine Learning techniques together with ther-
modynamics and the availability of more reliable 
experimental data, will allow the improvement of 
predictions and enhance our knowledge and 
understanding of RNAi.   

    15.4   Functional Annotation 
of miRNAs 

 As discussed in the previous section, our knowl-
edge about the molecular rules that underlie 
miRNA targeting is still incomplete, hence the 
huge number of false positives that target predic-
tion tools can produce. Functional analysis of 
miRNAs may help to identify the most probable 
targets and to uncover non trivial relationships 
between miRNAs and other molecular actors, 
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such as genes and transcription factors, allowing 
the development of regulatory models describing 
complex processes and the effects of their dys-
regulation. There are several tools available 
online which collect and integrate miRNA-related 
data retrieved from different sources in order to 
infer miRNA functions. 

 In this section we are going to describe the 
most popular tools for functional analysis of 
miRNAs, that we divided in three categories: 
tools for miRNA/phenotype associations, tools 
integrating target prediction with expression data 
and tools for the generation and the analysis of 
network models of miRNA function. 

    15.4.1   miRNA/Phenotype Associations 

 Several tools provide users with manually curated 
information about the involvement of miRNAs in 
diseases and biological processes. Some of them 
also make use of computational predictions, sta-
tistics and data mining features in order to  fi lter 
the data and infer new knowledge. 

 miR2Disease and the Human microRNA 
Disease Database are manually curated databases 
based on experimental data. They aim at provid-
ing a comprehensive resource of miRNA deregu-
lation in various human diseases  [  104,   105  ] . 
These web based tools offer user friendly inter-
faces to query the information on miRNA/disease 
relationships. miR2Disease also allows research-
ers to contribute to the data contents through a 
submission page. 

 The authors of the Human microRNA Disease 
Database performed some analysis on their dataset 
and found that there is a negative correlation 
between the tissue-speci fi city of a microRNA and 
the number of diseases associated to it. They also 
found that miRNAs that are close in the genome, 
like members of the same clusters, are often associ-
ated with the same diseases. This suggests that 
neighboring miRNAs might be regulated by com-
mon regulators, and that they might regulate differ-
ent genes involved in the same pathways. Finally, 
the analysis revealed that miRNAs which are con-
served in other species, tend to be signi fi cantly 
associated with diseases with a higher probability. 

 miReg is also a manually curated miRNA 
Regulation Resource that provides users with 
regulatory relationships among validated 
upstream regulators like transcription factors or 
drugs, downstream targets, associated biological 
processes, experimental conditions or disease 
states and dysregulation of the miRNA in those 
conditions  [  106  ] . All the collected data is 
described in the literature and the corresponding 
references are provided together with other use-
ful links about the studied miRNAs. The website 
has a user-friendly interface browseable through 
different options. 

 A further step in the integration of heteroge-
neous information about miRNA is miRo’, a web 
environment that provides users with miRNA–
phenotype associations in humans  [  107  ] . It inte-
grates data from various online sources, such as 
databases of miRNAs and targets, Gene Ontology 
terms and diseases into a uni fi ed database 
equipped with a  fl exible query interface and data 
mining facilities. miRo’ allows both simple and 
advanced queries and introduces a new layer of 
associations between genes and phenotypes 
inferred based on miRNAs annotations. 

 miRNAs are connected to diseases, GO pro-
cesses and functions through their validated and 
predicted targets (miRecords, miRanda, PicTar, 
TargetScan)  [  89,   91,   97,   99,   108  ] . 

 The simple search allows the selection of a 
single miRNA, process, function, disease or tissue 
and quickly displays the corresponding informa-
tion. By selecting a miRNA, for example, the user 
can obtain the list of diseases, processes and func-
tions in which the miRNA is potentially involved 
through its targets. Moreover, a list of tissues 
expressing the miRNA and the corresponding 
expression values is given. These are obtained 
from the Mammalian microRNA Atlas  [  109  ] . 

 Similarly, by selecting a process, a disease, a 
function or a tissue, the user obtains a list of miR-
NAs related to the selected item. In all cases, 
detailed information about the miRNAs, the tar-
gets and the source of predictions are given, 
together with links to the original data sources. 

 The advanced search allows users to perform 
more complex queries through the introduction 
of speci fi c constraints that data must satisfy. For 
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example, it is possible to search for all the 
miRNAs which are involved in a group of dis-
eases and processes or for all the diseases related 
to a group of miRNAs, genes, processes and 
functions. The results are given in a table with 
details about the miRNA/target predictions. 
Furthermore, this advanced query tool allows to 
identify new potential associations between dis-
eases, processes and functions inferred based on 
miRNA annotations. For example, a disease d 
and a process p which are not linked through any 
common gene might be associated through a 
miRNA which regulates a gene gd, involved in d, 
and a gene gp, involved in p. 

 miRo’ is also equipped with a special Data 
Mining module which allows clustering of miR-
NAs that are associated to the same set of terms. 
Chosen a set of up to  fi ve miRNAs and an asso-
ciation criteria (i.e. process or disease), the sys-
tem will  fi nd all the subsets of the selected 
miRNAs which are closely associated to groups 
of processes or diseases. This feature may help 
to identify a set of miRNAs acting cooperatively 
to carry out certain biological functions. 
Moreover, a speci fi city score allows to evaluate 
the relationships between the miRNAs and their 
annotation terms. 

 In a similar way, the tool FAME uses compu-
tational target predictions in order to automati-
cally infer the processes affected by human 
miRNAs  [  110  ] . The website provides a simple 
menu for retrieving of fl ine computed data. By 
choosing a miRNA from the list, the user obtains 
two tables reporting the most signi fi cantly asso-
ciated Gene Ontology processes and KEGG 
Pathways, respectively. 

 For each miRNA-process/miRNA-pathway 
association, a score, a p-value, a q-value and an 
enrichment factor are given, together with the list 
of target genes involved in the process/pathway. 

 In the paper, the authors used their method to 
identify 68 miRNA families and 27 genomic 
clusters regulating 21 gene co-expression clusters 
in diverse human stem cell lines. They found out 
that clusters enriched with the targets of a speci fi c 
miRNA tend to be anti-correlated with the 
miRNA expression, whereas clusters depleted of 
miRNA targets are co-expressed with it.  

    15.4.2   miRNA Target Prediction 
Consensus and Gene Expression 
Data Integration 

 Most of the available tools for miRNA functional 
analysis make use of heterogeneous information, 
and their classi fi cation into categories, based on 
their purposes and the kind of data that they use, 
is not an easy task. However, there is a well dis-
tinct class of tools which make use of miRNA 
and gene expression data, either retrieved from 
public sources or provided by users. As discussed 
in Sects.  15.2  and  15.3 , miRNA and gene expres-
sion pro fi ling is an important source of informa-
tion in the study of miRNA functions. In this 
section we introduce miRonTop, MAGIA and 
Diana-miRExTra, three tools that combine target 
prediction with expression data. 

 miRonTop is an online application allowing 
the detection of miRNAs that signi fi cantly affect 
gene expression at a large scale  [  111  ] . It is a 
java web tool that integrates DNA microarrays 
or high-throughput sequencing data with target 
predictions in order to identify the potential 
implication of miRNAs on a speci fi c biological 
system. 

 Users have to provide a table summarizing a 
large-scale gene expression study in a tab-delim-
ited  fi le, and select the prediction software to be 
used, among miRbase, miRanda, TargetScan, 
PicTar or the exact seed (7-mer/8-mer) match. 

 The program then performs an enrichment 
analysis of the predicted targets, for each miRNA 
considered in the expression table, according to 
the selected prediction tool across the DOWN 
and the UP gene sets. The signi fi cance is evalu-
ated using the hypergeometric distribution. 

 MAGIA is a web-based tool which allows to 
retrieve and browse miRNA target predictions for 
human miRNAs, based on a number of different 
algorithms (PITA, miRanda and TargetScan), set-
ting cuttoffs on prediction scores, with the possi-
bility of combining them with Boolean operators 
 [  112  ] . The query output is a table including the 
list of predicted target genes or transcripts with 
different prediction scores according to the meth-
ods chosen by the user. For each prediction sev-
eral external links are provided. 
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 The tool also includes an analysis framework. 
Given as input miRNA and gene expression 
pro fi les (MATCHED or UNMATCHED expres-
sion data) it provides different statistical mea-
sures of pro fi les relatedness and algorithms for 
expression pro fi les combination. 

 For unmatched expression data, MAGIA 
employs a meta-analysis approach based on a 
p-value combination, while one of four different 
measures of relatedness (Spearman and Pearson 
correlation, mutual information, and a variational 
Bayesian model) can be adopted for the analysis 
of matched pro fi les. 

 The results are reported in a web page con-
taining different sections. For the top 250 most 
probable functional miRNA–mRNA interactions 
according to the association measure selected by 
the user, the interactive bipartite regulatory net-
work obtained through the analysis is reported 
along with the corresponding browsable table of 
relationships. 

 Finally, Diana-miRExTra is a web-based tool 
that allows the detection of overrepresented 
motifs (hexamers) on the 3 ¢  UTRs of deregulated 
genes, in order to identify miRNAs responsible 
for such deregulation  [  113  ] . 

 The input consists of two lists: a list of changed 
genes and a list of unchanged genes (background). 
Moreover, the web server offers the option to use 
evolutionary information in order to re fi ne 
results. 

 Instead of a gene list the user may provide a 
list of genes with associated fold change values 
(or any other metric used in high-throughput 
experiments). Optionally, the user may provide a 
list of miRNAs of interest to calculate results 
only for hexamers corresponding to these 
miRNAs. 

 The tool compares the distributions of all 
possible hexamers on the 3 ¢ UTR sequences 
between changed and unchanged genes. A one-
sided Wilcoxon Rank Sum test is used in order 
to identify hexamers that are present signi fi cantly 
more often in the set of changed genes com-
pared to the background of unchanged genes. A 
p-value for each motif is calculated signifying 
the probability that the changed and unchanged 
sets are produced by the same distribution and 

the differences between them are due to chance 
alone. DIANA-mirExTra provides a combinato-
rial hexamer score that takes into account the 
whole active region of the 8  fi rst nucleotides of 
the miRNA.  

    15.4.3   miRNA, Gene Expression 
and Networks 

 The third class of miRNA functional analysis 
tools that we consider provides users with net-
work oriented data. Networks constitute an effec-
tive tool for modelling complex biological 
systems and since miRNAs play a central role in 
many processes and pathways, it is important to 
have tools able to integrate miRNA related data 
into networks. In this subsection we brie fl y intro-
duce four different tools which combine miRNA 
related data with other information such as tran-
scription factors or gene expression in order to 
create interaction networks which model and 
describe the molecular systems involving miRNA 
regulation. Most of these tools also offer compu-
tational facilities for the visualization and the 
analysis of such networks. 

 The  fi rst tool that we describe is strictly con-
nected to Diana-miRExTra, introduced in the 
previous section, and is called Diana-miRPath. It 
is a web-based computational tool developed to 
identify molecular pathways potentially altered 
by the expression of single or multiple microR-
NAs  [  114  ] . The user can select either a single 
miRNA or multiple miRNAs and specify the 
tools used for the prediction of targets, among 
Diana-MicroT, PicTar and TargetScan  [  115  ] . 
The software then performs an enrichment anal-
ysis of the predicted miRNA targets comparing 
them to all known KEGG pathways. The output 
consists of a list of pathways in which the miRNA 
is potentially involved through its target genes. 
For each association an enrichment p-value is 
given. When working on multiple miRNAs, the 
algorithm also performs an enrichment analysis 
of the Union and Intersection target sets. The 
graphical output of the program provides an 
overview of the parts of the pathway modulated 
by microRNAs, facilitating the interpretation and 
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presentation of the analysis results. A direct link 
to the Diana-miRPath analysis is also provided 
in Diana-miRExTra for the targets of each 
miRNA belonging to the set of ‘changed’ genes. 

 MIR@NT@N is a tool which predicts regula-
tory networks and sub-networks including con-
served motifs, feedback loops (FBL) and 
feed-forward loops (FFL)  [  116  ] . It integrates 
Transcription Factors, miRNAs and genes into a 
uni fi ed model and allows the identi fi cation and 
the analysis of molecular interaction networks 
within a given biological context. 

 The MIR@NT@N database integrates infor-
mation from multiple available databases: 
PAZAR, JASPAR and oPOSSUM for TF regula-
tions, miRBase, MicroCosm and microRNA.org 
for miRNA target predictions, UniHI for protein-
protein interactions and Ensembl for gene anno-
tations  [  117–  124  ] . The tool is based on a 
meta-regulation network model that illustrates 
interactions between the considered three bio-
logical entities, transcription factors, microRNAs 
and protein-coding genes. 

 The tool allows to perform two types of query. 
The  fi rst type allows to search for novel key actors 
in a biological context. This query includes three 
sections. The  fi rst one is called Transcription 
Factor regulation which statistically predicts 
potential TFs regulating a list of miRNAs, or con-
versely miRNAs regulated by a list of TFs. 

 The second section is called miRNA regula-
tion and allows the prediction of signi fi cant tar-
gets of a list of miRNAs or the miRNAs targeting 
a list of genes. The third section is called 
Regulation Network. It allows to reconstitute 
meta-regulation networks together with the detec-
tion of regulatory motifs such as FBL or FFL, by 
combining both TF and miRNA regulation 
predictions. 

 Users can also provide a list of miRNA-gene 
interactions experimentally inferred from 
microarray data combining genes and miRNA 
expression, or a list of published TF-miRNA 
interactions. 

 The second type of query provides an over-
view on any TF, gene or miRNA, including their 
interactions. It has two types of search called 
Quick Search and Quick Network. 

 The  fi rst one rapidly retrieves information on 
any actor, its regulators and/or targets, while 
Quick Network generates regulation networks 
from a list of actors presumed to be involved in a 
particular biological context, and also allows the 
extraction of sub-networks including regulatory 
motifs. The output is an exportable interaction 
graph recapitulating all predicted interactions 
and which is linked to external resources. 

 Based on these predictions, the user can gener-
ate networks and further analyze them to identify 
sub-networks, including motifs such as FBL and 
FFL. In addition, networks can be built from lists 
of molecular actors in a given biological process 
to predict novel and unanticipated interactions. 

 miRConnX is a web tool for the identi fi cation 
of gene network motifs involving transcription 
factors and miRNAs  [  125  ] . Users have to provide 
a document with a gene expression pro fi le. 
Optionally, a document with a miRNA expres-
sion pro fi le can be provided. 

 The output consists of the graphic visualiza-
tion of networks involving miRNAs, transcrip-
tion factors and miRNA-regulated genes. 

 Details about the miRNA/gene and the tran-
scription factor/miRNA interactions are provided 
in tables, reporting the effect (activation/repres-
sion), the identi fi ed FFL motifs, if any, the 
strength of the interaction and several links to 
other resources about the corresponding miRNA 
and genes, like Gene Ontology, miRo’ and 
miR2Disease. 

 The tool uses a pre-compiled network, which 
is derived from transcription factors binding pre-
dictions, miRNA target predictions and literature 
evidences. All the connections in this network 
correspond to direct, predicted or veri fi ed inter-
actions. Another network based on the input 
expression data is then created by using a statisti-
cal association measure. This network connects 
transcription factors and miRNAs and doesn’t 
discriminate between direct and indirect interac-
tions. The two networks are superimposed via an 
integration function. The result is a directed net-
work, which is a smaller version of the pre-com-
piled network, re fi ned by the user provided 
expression data. Since the expression pro fi les can 
be related to a certain disease or phenotype, the 
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resulting network is representative of the condition 
of interest. 

 Finally, we describe miRScape, a Cytoscape 
plugin for annotating networks with miRNAs. 
Cytoscape is a software environment for the visu-
alization and analysis of biological networks 
 [  126–  129  ] . It has a basic set of features for data 
integration and visualization, while additional 
features are available as plug-ins. miRScape is 
the  fi rst Cytoscape plug-in allowing the mining 
of biological networks annotated with miRNAs. 
The data is retrieved from miRò, thus miRScape 
represents a bridge connecting miRò and 
Cytoscape. Given a network, previously loaded 
into Cytoscape, miRScape allows to identify 
relationships among genes, processes, functions 
and diseases at the miRNA level and annotating 
them as attributes of each network node. These 
annotated networks may be further analyzed by 
using mining features available as plug-ins on 
Cytoscape allowing to  fi nd for examples hubs, 
interesting motifs and so on. 

 mirScape is equipped with two modules, avail-
able on two different panels. The  fi rst panel 
allows users to perform a “Search by Gene” 
query. Once a set of nodes in the network have 
been selected, users can choose the kind of data 
to be retrieved from miRò, which can be pro-
cesses, functions, and diseases in which the 
selected genes are involved and the miRNAs reg-
ulating them. The result is the annotation of the 
network with the obtained information. The 
“Search by miRNA” panel allows the selection of 
a set of miRNAs and the source of miRNA target 
information, which can be TargetScan, PicTar, 
miRanda and miRecords (validated interactions). 
Moreover, it is possible to choose to annotate the 
nodes with information about the related dis-
eases, processes and functions. 

 Once the information has been retrieved 
from miRò, the new miRNA nodes are added to 
the network and connected to target gene nodes, 
if they are present in the network. The annota-
tion function allows to store such acquired data 
as network attributes. However, the annotation 
function can be used as a stand-alone tool, storing 
in the network all the information retrievable 
from miRò.   

    15.5   Conclusions 

 MiRNA and, more in general, ncRNA research is 
in its golden age. It is clear that miRNAs are 
involved in a variety of fundamental processes 
and that their dysregulation can be related to can-
cer and many other diseases. Evidence shows that 
they don’t act as single actors but cooperate 
among themselves and together with other mole-
cules, like transcription factors, to regulate gene 
expression and, indirectly, carry out speci fi c 
functions. 

 The number of computational tools for the 
analysis of miRNA related data is continuously 
increasing. They range from simple look-up 
resources to more sophisticated analysis tools. 
Some of them are based on manually curated 
information but the vast majority makes also use 
of computationally predicted data. Although 
miRNA pro fi ling is a valuable diagnostic and 
prognostic tool itself, allowing the classi fi cation 
of samples and the identi fi cation of biomarkers, 
the central data in the analysis pipeline is the tar-
get gene, through which the miRNA is connected 
to all the other data. Indeed, miRNAs exert their 
functions by directly regulating the expression of 
their target genes and most genes are well anno-
tated with the processes, diseases and pathways 
in which they are involved. Thus, miRNAs inherit 
these annotations, but this only represents a  fi rst 
step in their functional analysis. Much effort is 
needed to uncover the real role of miRNAs in the 
great number of processes and diseases in which 
they are potentially involved and this is the ulti-
mate goal of most of the computational tools 
reviewed in this chapter. 

 Some of them are focused on speci fi c kinds of 
data, while others try to provide a complete view 
of the environment in which miRNAs operate 
and offer modules for the analysis of the complex 
relationships in that they intertwine with the other 
molecular actors. 

 The increase of precision in the data produced 
by the use of new technologies for the measure-
ment of gene expression and high-throughput 
sequencing, involves the need for more sophisti-
cated software tools for the analysis of this data. 
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As in a bottom-up schema, the collected raw data 
constitutes a  fi rst layer. The upper layers consist 
of tools for the annotation of this data, often 
focused on speci fi c aspects. This annotated data 
constitutes the input for the top layer tools, whose 
aim is the integration of heterogeneous informa-
tion in order to produce general models of miRNA 
functions in the context of complex processes. 
These tools must be equipped with powerful anal-
ysis facilities, helping researchers to formulate 
concrete functional hypotheses and guiding them 
to design the correct experiments to perform 
hypotheses validation. Then, the data produced 
with these experiments represents a feedback for 
the re fi nement of the analysis pipeline. 

 The  fi nal key point is the integration of public 
data with user data, and this is already partly 
ful fi lled by some of the reviewed tools. In fact, 
many users typically get original data from their 
experiments, thus it is important to have tools 
able to combine this data with the other informa-
tion stored in databases, in order to produce more 
reliable models speci fi c to user needs.      
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