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       1.1   miRNA    Overview 

 miRNAs were originally shown to be important 
in timing of larval development in  C. elegans , 
leading to the identi fi cation of the miRNAs  lin-4  
and  let-7   [  1,   2  ] . Our initial understanding of 
miRNA-mRNA target recognition came from 
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  Abstract 

 Mature microRNAs (miRNAs) are single-stranded RNA molecules of 
20–23-nucleotide (nt) length that control gene expression in many cellular 
processes. These molecules typically reduce the translation and stability 
of mRNAs, including those of genes that mediate processes in tumorigen-
esis, such as in fl ammation, cell cycle regulation, stress response, differen-
tiation, apoptosis, and invasion. miRNA targeting is initiated through 
speci fi c base-pairing interactions between the 5 ¢  end (“seed” region) of the 
miRNA and sites within coding and untranslated regions (UTRs) of 
mRNAs; target sites in the 3 ¢  UTR lead to more effective mRNA destabi-
lization. Since miRNAs frequently target hundreds of mRNAs, miRNA 
regulatory pathways are complex. To provide a critical overview of miRNA 
dysregulation in cancer, we  fi rst discuss the methods currently available 
for studying the role of miRNAs in cancer and then review miRNA 
genomic organization, biogenesis, and mechanism of target recognition, 
examining how these processes are altered in tumorigenesis. Given the 
critical role miRNAs play in tumorigenesis processes and their disease 
speci fi c expression, they hold potential as therapeutic targets and novel 
biomarkers.  
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observations of sequence complementarity of the 
 lin-4  RNA to multiple conserved sites within the 
 lin-14  3 ¢  UTR  [  1,   3  ] ; molecular genetic analysis 
had shown that this complementarity was required 
for the repression of  lin-14  by  lin-4   [  4  ] . 
Homologues of  let-7  or  lin-4/mir-125  were there-
after shown to have temporal expression patterns 
in other organisms, including mammals, and to 
regulate mammalian development  [  5–  8  ] . Given 
their integral role in development, it was no sur-
prise that miRNAs were soon found to be impor-
tant in tumorigenesis, and since their discovery 
close to 5,000 publications associate miRNAs to 
cancer, including over 1,000 reviews (recent 
examples include  [  9–  11  ] ). miRNAs were initially 
linked to tumorigenesis due to their apparent 
proximity to chromosomal breakpoints  [  12  ]  and 
their dysregulated expression levels in many 
malignancies  [  13,   14  ] . 

 Given the wealth of rapidly accumulating 
information implicating miRNAs in cancer, to 
allow the reader to critically assess the reports 
exploring the function of miRNAs in malignan-
cies, we  fi rst review the methods used to study 
the expression and role of miRNAs in tumors, 
and then review the evidence that relates miRNA 
genomic organization, biogenesis, target recogni-
tion and function to tumorigenesis. An overview 
of miRNA cistronic expression and sequence 
similarity allows a better understanding of the 
regulation of miRNA expression and the factors 
contributing to technical limitations in accuracy 
of miRNA detection. Understanding the regula-
tory potential of miRNAs based on sequence 
similarity families and miRNA abundance allows 
evaluation of which miRNAs are important regu-
lators of tumorigenesis pathways.  

    1.2   Methods for Studying miRNA 
Genetics and Expression 

    1.2.1   miRNA Pro fi ling 

 The main methods currently used for miRNA 
pro fi ling are sequencing, microarray and real-time 
RT-PCR based approaches (reviewed in  [  15–  17  ] ). 
The input material initially used for these studies 

comprised high quality preserved fresh frozen 
samples, but recently it has been possible to obtain 
reproducible and comparable pro fi les using 
formalin- fi xed paraf fi n-embedded tissues (FFPE), 
making these archived tumor collections accessible 
for study  [  18–  20  ] . Microarrays generally provide 
fold-changes in miRNA expression between sam-
ples, with members of miRNA sequence families 
prone to cross-hybridization  [  21–  24  ] . More 
recently, calibration cocktails of synthetic miRNAs 
were used in array experiments to derive absolute 
abundance of miRNAs  [  25  ] . RT-PCR methods are 
lower throughput and require normalization (i.e. 
candidate reference genes including other small 
noncoding RNAs  [  26,   27  ] ). Mean expression nor-
malization has been suggested as an alternative 
RT-PCR normalization method for reduction of 
technical variation to allow appreciation of biologi-
cal changes  [  28  ] . If external miRNA standards are 
used for quanti fi cation (i.e.  [  29,   30  ] ), the most 
abundant miRNA, which may vary in length due to 
3 ¢  end heterogeneity, should be used as a calibra-
tion standard. Sequencing methods, besides their 
obvious potential to identify new miRNAs, editing 
and mutation events, estimate miRNA abundance 
based on frequency of sequence reads (e.g.  [  5,   7,   8, 
  31–  34  ] ). Given the dramatic increase in sequenc-
ing power, bar-coding samples can allow multiple 
specimens to be processed at the same time, reduc-
ing the cost and effort of pro fi ling, and paving the 
way for large specimen studies  [  34–  36  ] . Ligation 
biases between miRNAs and 5 ¢  and 3 ¢  adapters for 
RT-PCR ampli fi cation exist in sequencing meth-
ods, and miRNA read frequencies may not always 
re fl ect the absolute expression levels, but these 
variations are irrelevant when monitoring fold-
changes between samples. A study with a synthetic 
pool of 770 miRNA sequences showed that overall, 
these biases do not prevent identi fi cation of 
miRNAs, and allowed estimation of these biases 
 [  36  ] . For example, certain miRNAs could be over-
represented due to higher ligation ef fi ciency (such 
as miR-21, which was ~2-fold over-represented), 
while other miRNAs could be under-represented 
(such as miR-31, which was >5-fold under-
represented). However, given the increasing depth 
of sequencing, most under-represented miRNAs 
are identi fi ed with suf fi cient sequence reads to 
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allow for a statistically signi fi cant comparison 
across parallel processed samples. 

 Recent studies have compared the results 
obtained using multiple platforms  [  37  ] . A study 
of miRNA expression in liposarcoma revealed 
excellent agreement between bar-coded next gen-
eration sequencing and microarray pro fi les  [  38  ] , 
while another study of miRNA expression in 
breast cancer showed good agreement between 
bar-coded sequencing and another hybridization-
based method, Northern blotting  [  39  ] . 

 Finally, choosing the appropriate statistical 
analysis to evaluate the data depends on the meth-
odology used to obtain the pro fi les, ranging from 
established SAM analysis for microarray data 
 [  40  ] , to newly developed techniques for sequenc-
ing data  [  34,   41,   42  ] . Recent in situ hybridiza-
tion (ISH) advances allowed sensitive detection 
of miRNAs in heterogeneous tissues, de fi ning 
miRNA cellular localization  [  43–  45  ] . The poten-
tial of miRNA localization to suggest function for 
a subpopulation of cells was demonstrated early 
on, as in the case of  lsy-6  expressed in less than 
ten neurons in  C. elegans  controlling left/right 
asymmetry  [  46  ] .  

    1.2.2   miRNA Databases 
and Validation 

 It is critical to know which miRNAs are vali-
dated and have the potential to regulate cellular 
functions, especially given the frequent revi-
sions of the miRNA database, miRBase (  www.
mirbase.org    )  [  47  ] , and the dramatic increase in 
the number of novel and re-annotated miRNAs 
through the use of deep-sequencing technolo-
gies. It is extremely challenging to establish the 
validity of novel miRNAs, particularly when 
their de fi nition is based on a handful of sequence 
reads. The latest release of miRBase (version 17) 
includes 1,424 human miRNA precursors. 
Compared to version 16, version 17 includes 385 
novel human miRNA precursors, 45 name 
changes, 1 sequence revision, and the removal 
of 2 precursors. Given the recent explosion in 
acquisition of next generation sequencing 
pro fi les, miRBase has now added features to 

allow evaluation of microRNA annotation  [  48  ] . 
The database mapped reads from short RNA 
deep-sequencing experiments to miRNAs and 
developed web interfaces to view these map-
pings. This is an important step in characterizing 
the newly identi fi ed miRNAs as prototypical 
miRNAs (consisting of a hairpin structure and 
processing sites consistent with RNase III cleav-
age steps). 

 The challenge of constantly revising and 
curating existing databases based on newly 
acquired sequencing data is illustrated in two 
recent studies re-evaluating mouse and human 
miRNAs. A recent study of 60 million small 
RNA sequence reads generated from a variety of 
adult and embryonic mouse tissues con fi rmed 
398 annotated miRNA genes and identi fi ed 108 
novel miRNA genes but was unable to  fi nd 
sequencing evidence for 150 previously anno-
tated mouse miRNAs. Ectopic expression of the 
con fi rmed and newly identi fi ed miRNA hairpin 
sequences yielded small RNAs with the classical 
miRNA features but failed to support other pre-
viously annotated sequences (of the 17 tested 
miRNAs with no read evidence, only one yielded 
a single sequence read, while of 28 tested miR-
NAs with insuf fi cient number of reads, only 4 
were veri fi ed)  [  49  ] . A more recent study has re-
annotated human miRNAs based on read evi-
dence from over 1,000 human samples  [  39  ] . 
miRNAs were curated both on the basis of read 
counts, as well as patterns compatible with tradi-
tional miRNA processing, re-de fi ning prototypi-
cal miRNAs (557 precursors, corresponding to 
1,112 mature and star sequences (miRNA*, 
described in the following section), miR-451 and 
miR-618 being the only miRNAs without a star 
sequence). 269 not yet reported star sequences 
were added (compared to miRBase 16), putative 
miRNAs from miRBase, for which read evidence 
was not obtained, were ignored, and speci fi c 
miRNAs were renamed according to the read 
ratio between mature and star sequences. The 
importance of curated miRNA databases is espe-
cially evident in assessing the statistical 
signi fi cance of differentially expressed miRNAs 
to identify potential biomarkers based on 
microarray studies. Including miRNAs without 

http://www.mirbase.org
http://www.mirbase.org
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strong read evidence in such comparisons could 
skew the results.   

    1.3   Mechanisms of Alteration of 
miRNA Levels in Malignancy 

 We review miRNA biogenesis (Fig.  1.1 ) and 
illustrate which steps of the biogenesis pathway 
are linked to malignancy, starting from miRNA 
genomic localization, transcriptional regula-
tion, processing steps and post-transcriptional 
modi fi cation. There is evidence supporting the 
association of the  fi rst three processes and/or the 
factors that control them with tumorigenesis, 
whereas evidence relating post-transcriptional 
miRNA modi fi cations to cancer is not clear-cut.  

    1.3.1   General Principles of miRNA 
Genomic Organization 

 miRNAs are frequently expressed as polycis-
tronic transcripts. To date, 1,424 human miRNA 
precursor sequences have been deposited in 
miRBase  [  47  ] . Approximately one-third (497) 
of these miRNAs are located in 156 clusters, 
each measuring  £ 51 kb in the human genome 
(51 kb being the longest distance between miR-
NAs belonging to the same cluster, Fig.  1.2 ). 
These miRNA clusters are co-expressed based 
on evidence from miRNA pro fi ling data from a 
variety of tissues and cell lines  [  22,   33,   34,   49  ] . 
The genomic organization of representative 
oncogenic (miR-17 and miR-21) and tumor 
suppressor (let-7 and miR-141) sequence fami-
lies (described in following section) is illus-
trated in Fig.  1.2 . Presentation of miRNA 
pro fi les in the form of expression clusters pro-
vides a readily interpretable summary of expres-
sion data and stresses the importance of cistronic 
expression regulation; dysregulation of one 
member of the cluster should be accompanied 
by similar dysregulation of other cluster mem-
bers  [  39  ] . Since miRNA genes are frequently 
multi-copy, determining the relative contribu-
tion of each genomic location to mature miRNA 
expression is challenging.   

    1.3.2   Alterations in Genomic miRNA 
Copy Numbers and Location 

 Changes in miRNA expression between normal 
and tumor specimens are often attributed to the 
location of miRNAs in regions of chromosomal 
instability (ampli fi cation, translocation or dele-
tion), or nearby chromosomal breakpoints, ini-
tially locating 52.5% of miRNA genes in 
cancer-associated regions or fragile sites  [  12  ] . 
The miRNA cluster  mir-15a/16-1  is located in a 
frequently deleted genomic locus containing a 
putative tumor suppressor containing region in 
chronic B-cell lymphocytic leukemia (B-CLL) 
 [  50  ] . Other examples include deletion of  let-7g/
mir-135-1  in a variety of human malignancies 
 [  12  ] , ampli fi cation of  mir-17-92  cluster in lym-
phoma  [  51  ] , translocation of  mir-17-92  in T-cell 
acute lymphoblastic leukemia (T-ALL)  [  52  ]  and 
ampli fi cation of  mir-26a  in glioblastoma  [  53  ] .  

    1.3.3   Alterations in miRNA 
Transcriptional Regulation 

 Some autonomously expressed miRNA genes 
have promoter regions that allow miRNAs to be 
highly expressed in a cell-type-speci fi c manner, 
and can even drive high levels of oncogenes in 
cases of chromosomal translocation. The  mir-142  
gene, strongly expressed in hematopoietic cells, 
is located on chromosome 17 and was found at 
the breakpoint junction of a t(8;17) translocation 
to  MYC , which causes an aggressive B-cell leu-
kemia  [  54  ] . The translocated  MYC  gene, which 
was also truncated at the  fi rst exon, was located 
only four nucleotides from the 3 ¢  end of the  mir-
142  precursor, placing it under the control of the 
upstream  mir-142  promoter. In an animal model 
for Hepatocellular Carcinoma (HCC), a similar 
event placed  C-MYC  downstream of the  mir-122a  
promoter, which is active only in hepatocytes  [  55  ] . 

 Many transcription factors regulate miRNA 
expression in a tissue-speci fi c and disease state-
speci fi c fashion, and some miRNAs are regulated 
by well-established tumor suppressor or oncogene 
pathways such as TP53, MYC, and RAS (reviewed 
in  [  56  ] ). The miRNA and its transcriptional 
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  Fig. 1.1    miRNA biogenesis pathway. miRNAs are tran-
scribed by RNAPII to produce pri-miRNAs. Canonical 
miRNAs are processed by the endoribonuclease Drosha in 
partnership with its RBP partner DGCR8; mirtrons are 
instead processed by the spliceosome. The processed pre-
miRNA is transported to the cytoplasm through an export 
complex consisting of exportin 5. The pre-miRNA is sub-
sequently processed in the cytoplasm by another endori-
bonuclease Dicer in partnership with its RBP partner 
TRBP to form the  fi nal 21–23 nucleotide miRNA product. 
miR-451 is not processed by Dicer, but is rather cleaved 

by AGO2. Mature miRNAs (indicated in  red ) are then 
incorporated into AGO 1 through 4, forming miRNPs, 
also known as miRISC. miRNPs also incorporate other 
proteins, such as GW182. miRNPs are thought to direct 
miRNA mediated destabilization (i.e. through interaction 
with CCR4) or miRNA mediated translational repression 
(i.e. through interaction with ribosomes) of miRNAs 
without perfectly complementary mRNA targets. miRISC 
is thought to direct AGO2 catalyzed target mRNA cleav-
age of miRNA fully or nearly fully complementary mRNA 
targets       
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miR-25 family

miR-99a   AACCCGTAGATCCGATCTTGTG
miR-100   AACCCGTAGATCCGAACTTGTG
miR-99b   CACCCGTAGAACCGACCTTGCG
           ********* **** **** *

let-7 family

chr9

let-7f-1 let-7dlet-7a-1

2.4 kb

chr21

mir-99a let-7c mir-125b-2

50.3kb
C21ORF34

chr22

let-7blet-7a-3
LOC400931

chr11
LOC39959

chrX
HUWE1

chr19

mir-99b mir-125alet-7e

chr3

let-7g
WDR82

chr12

46.7 kb

let-7f-2 mir-98

let-7i

5.6 kb

mir-100 let-7a-2 mir-125b-1

miR-99 family

miR-125 family

miR-125a  TCCCTGAGACCCTTTAACCTGTGA
miR-125b  TCCCTGAGACCCT--AACTTGTGA

          *************  *** *****

1 kb

mir-200c mir-141

chr1

chr12

mir-200b mir-200a mir-429

chr17

mir-21

chr13
mir-92a-1mir-20a

mir-19b-1mir-19a

mir-18a

mir-17

chrX

mir-92a-2

mir-363

mir-20b

mir-19b-2mir-18b

mir-106a

chr7

mir-93 mir-25mir-106b

miR-17 family

miR-93    CAAAGTGCTGTTCGTGCAGGTAG
miR-106b  TAAAGTGCTGACAGTGCAGAT--
miR-17    CAAAGTGCTTACAGTGCAGGTAG
miR-20a   TAAAGTGCTTATAGTGCAGGTAG
miR-18a   TAAGGTGCATCTAGTGCAGATAG
miR-106a  AAAAGTGCTTACAGTGCAGGTAG
miR-20b   CAAAGTGCTCATAGTGCAGGTAG
miR-18b   TAAGGTGCATCTAGTGCAGTT--
           ** ****     ****** *

miR-19 family

miR-19b   TGTGCAAATCCATGCAAAACTGA
miR-19a   TGTGCAAATCTATGCAAAACTGA
          ********** ************

miR-21 0.7 kb
TMEM49 miR-21 TAGCTTATCAGACTGATGTTGA

C13orf25

MCM7

a

b

c

d

let-7a   TGAGGTAGTAGGTTGTATAGTT
let-7f   TGAGGTAGTAGATTGTATAGTT
let-7b   TGAGGTAGTAGGTTGTGTGGTT
let-7i   TGAGGTAGTAGTTTGTGCTGTT
let-7g   TGAGGTAGTAGTTTGTACAGTT
let-7c   TGAGGTAGTAGGTTGTATGGTT
let-7d   AGAGGTAGTAGGTTGCATAGTT
let-7e   TGAGGTAGGAGGTTGTATAGTT
miR-98   TGAGGTAGTAAGTTGTATTGTT
          ******* *  ***    ***

miR-141 family

miR-141    TAACACTGTCTGGTAAAGATGG-
miR-200c   TAATACTGCCGGGTAATGATGGA
miR-200b   TAATACTGCCTGGTAATGATGA-
miR-200a   TAACACTGTCTGGTAACGATGT-
miR-429    TAATACTGTCTGGTAAAACCGT-

*** **** * *****    *  

miR-92a  TATTGCACTTGTCCCGGCCTGT-
miR-25   CATTGCACTTGTCTCGGTCTGA-
miR-363  AATTGCACG-GTATCCATCTGTA
          *******  **  *   ***
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regulators can participate in complex feedback 
regulation loops. Examples include the TP53 
regulated  mir-34a   [  57,   58  ] , the RAS regulated 
 mir-21   [  33,   59,   60  ]  and the MYC regulated  mir-
17-92  gene cluster  [  61,   62  ] . 

 miRNA dysregulation has also been linked to 
changes in epigenetic regulation, such as the 
methylation status of miRNA genes, which 
results in alterations in their expression levels 
 [  63,   64  ] . Examples of methylated miRNA genes 
include  mir-127  in bladder cancer cells  [  65  ]  and 
 mir-9-1  in breast cancer  [  66  ] .  

    1.3.4   miRNA Biogenesis Pathway 
in Tumorigenesis 

 miRNA biogenesis has been reviewed extensively 
 [  56,   67–  73  ]  (Fig.  1.1 ). miRNA pathway compo-
nents could either be mis-expressed in tumors or 
mutated (reviewed in  [  74,   75  ] ). Post-transcriptional 
regulation of miRNAs themselves through RNA 
editing or terminal modi fi cations was shown to alter 
miRNA targeting, processing and stability, but con-
nection of these modi fi cations to tumorigenesis has 
not yet been de fi nitive (reviewed in  [  56,   75,   76  ] ). 

    1.3.4.1   miRNA Biogenesis 
 Brie fl y, the mature 20–23-nt miRNA molecules 
are excised in a multi-step process from primary 
transcripts (pri-miRNAs) that contain one or more 
70-nt hairpin miRNA precursors (pre-miRNA) 
and have their own promoters or share promoters 
with coding genes. These hairpin structures are 
recognized in the nucleus by DGCR8, a double-
stranded RNA-binding protein (dsRBP), and 
RNASEN, also known as RNase III Drosha, and 
excised to yield pre-miRNAs. These molecules 

are subsequently transported by XPO5 (exportin 
5) to the cytoplasm where they are further pro-
cessed by DICER1 (Dicer) in complex with the 
dsRBPs TARBP2 (TRBP) and/or PRKRA to yield 
an RNA duplex processing intermediate com-
posed of mature miRNA and miRNA* sequences. 
Some miRNAs bypass the general miRNA pro-
cessing and their maturation can be independent 
of DGCR8 and RNASEN, such as miR-320 or 
miR-484  [  77  ] , or are DICER1 independent, such 
as erythropoiesis-related miR-451  [  78,   79  ] . 
DGCR8 and RNASEN independent miRNAs 
include mirtrons and tailed mirtrons, which 
release their pre-miRNA by splicing and exonu-
clase trimming  [  80,   81  ] . A recent review describes 
alternative processing pathways and enumerates 
settings in which alternative miRNA pathways 
contribute to distinct phenotypes among miRNA 
biogenesis mutants  [  82  ] . 

 While the mature miRNA is loaded into the 
Argonaute/EIF2C (AGO) proteins that are at the 
core of the miRNA-containing ribonucleoprotein 
complex (miRNP), sometimes also referred to as 
RNA-induced silencing complex (miRISC), the 
miRNA* is released and degraded. miR-451 is 
generated from an unusual hairpin structure that 
is processed by AGO2 instead of DICER1  [  78, 
  79  ] . The miRNPs contain a member of the AGO 
family (1–4), which binds the miRNA and medi-
ates target mRNA recognition. Several other 
RBPs have been implicated in miRNA biogene-
sis, including DHX9, DDX6, MOV10, DDX5, 
DDX17, LIN28A, HNRNPA1 and KSRP  [  56, 
  83  ] . Following transcription, miRNAs can be 
modi fi ed by several enzymes, including deami-
nases, resulting in miRNA editing, and terminal 
uridylyl transferases (TUTases), leading to pre-
miRNA uridylylation, potentially affecting the 

  Fig. 1.2    miRNA genomic and functional organization. 
The genomic and functional organization of four 
miRNA clusters is clari fi ed: ( a )  let-7/mir-98  cluster, ( b ) 
 mir-141/mir-200a  cluster, ( c )  mir-21  cluster and ( d ) 
 mir-17-92  cluster. The genomic locations for each of 
the miRNA members are de fi ned.  Grey  lines denote 
intronic regions. miRNA mature sequences are color 
coded according to the sequence family they belong to 

(i.e. in the  let-7/mir-98  cluster  red  signi fi es the let-7 
sequence family). The star sequence is de fi ned with a 
 grey  bar. The sequence families are depicted as sequence 
alignments compared to the most highly expressed 
miRNA family member shown on  top , based on pro fi les 
of over 1,000 human specimens  [  39  ] .  Shaded residues  
denote differences from the most highly expressed 
miRNA family member       
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amount and ratio of miRNA and miRNA* (e.g. 
 [  84  ] ), or their sequences (e.g.  [  85  ] ).  

    1.3.4.2   Alterations in RNASEN/DGCR8 
and DICER1/TARBP2 

 Inhibition of the miRNA biogenesis pathway 
leads to severe developmental defects and is 
lethal in many organisms (reviewed earlier in 
 [  86  ] , recent examples include  [  77,   78  ] ), and per-
turbations of this pathway predispose to tumori-
genesis  [  87  ] . Initial miRNA expression pro fi ling 
experiments suggested that miRNAs are less 
abundant in tumors compared to their normal tis-
sue counterparts  [  14  ] , leading to the proposal that 
miRNAs are predominantly tumor suppressors 
rather than oncogenes. Quanti fi cation of abso-
lute miRNA levels, not only relative abundance, 
in miRNA pro fi ling methods is necessary to clar-
ify these observations. 27% of various tumors are 
found to have a hemizygous deletion of the gene 
that encodes DICER1  [  88  ] . Global knockdown 
of mature miRNAs by targeting DICER1, 
RNASEN and its cofactor DGCR8 increases the 
oncogenic potential of already transformed 
cancer cell lines and accelerates tumor forma-
tion  [  87  ] . Reductions in the amount of DICER1 
resulting in impaired miRNA processing have 
also been shown to increase the rate of tumor 
formation in two different cancer mouse models, 
a K-RAS-driven lung cancer  [  88  ]  and an 
Rb-driven retinoblastoma  [  89  ] . DICER1 is there-
fore considered a haploinsuf fi cient tumor sup-
pressor, requiring partial deletion for its 
associated tumorigenesis phenotype  [  89  ] . The 
phosphorylation of the DICER1 cofactor 
TARBP2 by the mitogen-activated protein kinase 
Erk enhances pre-miRNA processing of onco-
genic miRNAs, such as miR-21, and decreases 
production of tumor suppressor let-7a  [  90  ] . 
Moreover, TARBP2 is mutated in some colon 
and gastric cancers with microsatellite instabil-
ity, and TARBP2 frameshift mutations correlate 
with DICER1 destabilization; in cell lines and 
xenografts with TARBP2 mutations, reintroduc-
tion of wild type TARBP2/DICER1 slowed 
tumor growth  [  91,   92  ] . Finally, DICER1 was 
also recently implicated as a metastasis suppres-
sor (reviewed in  [  93  ] ).  

    1.3.4.3   Alterations in Other Pathway-
Related RBPs 

 Firstly, expression of LIN28A blocks processing of 
tumor suppressor pri- and pre-let-7  [  94–  98  ] , thus 
maintaining expression of genes that drive self-
renewal and proliferation (reviewed in  [  99  ] ); tumors 
that express LIN28A were indeed shown to be 
poorly differentiated and more aggressive than 
LIN28A-negative tumors. Secondly, the helicases 
DDX5 and DDX17 are thought to stimulate pro-
cessing of one third of all murine miRNAs by acting 
as a scaffold and recruiting factors to the RNASEN 
complex and thereby promoting pri-miRNA pro-
cessing  [  100  ] . Association of DDX17 and DDX5 
RNA helicases through interactions mediated by 
the tumor suppressor TP53 with the RNASEN/
DGCR8 complex facilitates the conversion of pri- 
to pre-miRNAs  [  101  ] . Speci fi cally, the DDX5-
mediated interaction of the RNASEN complex with 
the tumor suppressor TP53 was shown to have a 
stimulatory effect on the tumor suppressor pri-
miR-16-1, pri-miR-143 and pri-miR-145 process-
ing in response to DNA damage in cancer cells 
 [  101  ] . Thus, TP53 mutations, often observed in 
malignancies, led to a decrease in pre-miRNA pro-
duction. Thirdly, oncogenic SMADs, downstream 
effectors of the TGF- b  superfamily pathways, have 
been shown to control RNASEN-mediated miRNA 
maturation through interaction with DDX5, pro-
moting expression of oncogenic miR-21  [  102  ] . 
KSRP promotes the biogenesis of a subset of miR-
NAs, including let-7a, by serving as a component of 
both DICER1 and RNASEN complexes affecting 
proliferation, apoptosis and differentiation  [  103  ] . In 
a  fi nal example, inactivating mutations of XPO5 in 
tumors with microsatellite instability result in the 
nuclear retention of miRNAs  [  104  ] . Restoration of 
XPO5 function reverses the impaired export of pre-
miRNAs and has tumor suppressor features.    

    1.4   Dysregulation of miRNA-mRNA 
Target Recognition 

    1.4.1   miRNA Function/Mechanism 

 As described above, miRNAs function through 
the AGO proteins, containing both RNA-binding 
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domains and RNase H domains (reviewed in 
 [  105  ] ). The four human  Ago  genes are co-
expressed and bind to miRNAs irrespective of 
their sequence. AGO2, in contrast to the other 
members, retains an active RNase H domain and  
thus is able to directly cleave target RNAs with 
extensive complementarity to the bound miR-
NAs. The assembly of the miRNP complex 
involves multiple AGO conformational transi-
tions captured in a series of crystal structures 
(reviewed in  [  106  ] ). The mRNA target is recog-
nized by pairing of the miRNA seed region (posi-
tion 2–8) to complementary sequences located 
mainly in the target 3 ¢  UTR, but also in the cod-
ing regions. Target mRNA recognition and regu-
lation involves members of the GW182/TNRC6 
family. TNRC6 proteins act at the effector step of 
silencing, downstream of AGO proteins, and play 
a crucial role in miRNA silencing in animals 
(reviewed in  [  107  ] ). Proteomic approaches 
identi fi ed additional AGO-interacting proteins, 
some of which likely represent mRNA-interact-
ing partners that co-puri fi ed with miRNA-tar-
geted mRNPs; their function in RNA silencing 
processes and potentially tumorigenesis remains 
to be established. 

 In mammalian cells under steady state condi-
tions, miRNAs have been shown to destabilize 
targeted transcripts  [  108–  111  ]  through a variety 
of mechanisms, including de-capping and de-
adenylation; target mRNA and protein abun-
dance changes track closely  [  108,   109,   112, 
  113  ] . These studies also showed that miRNAs 
destabilize mRNAs preferably through binding 
sites located in their 3 ¢  UTRs  [  114–  118  ] . 
Ribosome pro fi ling studies demonstrated that 
the ribosome density of miRNA targets was 
unaltered, while changes in miRNA levels were 
inversely correlated to mRNA and protein abun-
dance, emphasizing the role of miRNAs in regu-
lation of mRNA stability but not translation 
 [  119  ] . Translational regulation by miRNA tar-
geting is considered to predominantly act at the 
level of translation initiation. Identi fi cation of 
miRNA/mRNA ribonucleoprotein components 
in processing bodies (P-bodies) also implies 
their role in mRNA storage and RNA turnover. 
An excellent recent review describes the differ-

ent mechanisms implicated in miRNA function, 
highlighting the different experiments support-
ing translational repression versus mRNA decay 
and the evolution in our current thinking  [  107  ] .  

    1.4.2   Organization of miRNAs 
into Sequence Families 

 Certain miRNAs share sequence similarity in 
regions that are critical for mRNA target recogni-
tion, speci fi cally the seed region, and are best 
viewed as a family when considering mRNA target 
regulation and functional consequences of altered 
miRNA expression. miRNAs can be grouped in 
sequence families, based not only on their seed 
sequence similarity but also overall sequence simi-
larity given that the miRNA 3 ¢  end also contributes 
to miRNA targeting, although to a lesser extent 
(reviewed in  [  68  ] ) (Fig.  1.2 ). Changes in the overall 
abundance of miRNA sequence families relate 
directly to target regulation. In a MYC-driven 
B-cell lymphoma mouse model, a conditional 
knockout of the oncogenic  miR-17-92  gene cluster 
induces apoptosis, which can be reduced by 
 reintroduction of only one of the four sequence 
families produced from the cluster  [  120  ] .  

    1.4.3   miRNA-mRNA Stoichiometry 

 The majority of miRNA pro fi ling studies do not 
provide an estimate of miRNA abundance, which 
is critical in our understanding of the role of 
miRNA-mRNA mediated regulation in tumori-
genesis. Only the most abundantly expressed 
miRNAs occupy a substantial fraction of their 
available mRNA target sites and affect target 
mRNA stability  [  118  ] . Abundant miRNAs that 
behave as “switches”, turned on or off during the 
tumorigenesis process, as shown in developmen-
tal processes, have the most signi fi cant regulatory 
potential, given that miRNAs usually only lead to 
modest 1.5- to 4-fold regulation of their target 
expression  [  112,   113,   115  ] . However, given that 
speci fi c mRNAs are subject to regulation by 
 multiple miRNAs of unrelated families, cumu-
lative effects of lower expressed miRNAs may be 
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relevant  [  67,   121,   122  ] . Furthermore, in the rare 
circumstance that miRNAs share near perfect 
complementarity to mRNAs, they may act in a 
siRNA-like catalytic mode, cleaving mRNA  targets 
even at low miRNA abundance. To conclude, the 
interplay between miRNAs expressed in particu-
lar tissues, the levels of their respective expressed 
targets, as well as other post-transcriptional gene 
regulatory mechanisms (such as  regulation by 
RBPs or other competing interactions – see 
below) is likely responsible for balancing miRNA 
conferred regulation.  

    1.4.4   Changes in the miRNA Targets 

 The binding sites of miRNAs in mRNAs can be 
altered through a variety of mechanisms, such as 
point mutations, translocations, shortening of the 
3 ¢  UTR, competition with other RBPs or decoy 
molecules for mRNA binding. Point mutations in 
miRNA targets can both create or destroy a 
miRNA binding site  [  123–  125  ] . Chromosomal 
translocations can remove miRNA binding sites 
from their regulated oncogenes, such as in the 
case of let-7 targeting of the 3 ¢  UTR of the  Hmga2  
gene  [  126  ] . Shortening of the 3 ¢  UTR through 
alternative polyadenylation can relax miRNA 
mediated regulation of known oncogenes, such 
as  IGF2BP1 / IMP1 , and lead to oncogenic trans-
formation  [  127  ] , as does use of decoy pseudo-
genes, as in the case of  PTEN , by saturating 
miRNA binding sites  [  128  ] . Finally, cooperativ-
ity or competition of miRNAs for mRNA target 
site binding with other RBPs, such as ELAVL1 
(HuR), DND1 and PUM1, can also de-repress 
target expression  [  129–  132  ] . This topic is dis-
cussed in a recent review  [  83  ] .   

    1.5   Cancer Tissues Have Distinct 
miRNA Pro fi les 

 We will  fi rst discuss the state of current miRNA 
pro fi le databases, and then explore the issue of 
tissue heterogeneity in the tissue pro fi les before 
summarizing the role of miRNA dysregulation 
in malignancies. 

    1.5.1   miRNA Cancer Database 

 The development of miRNA microarrays, RT-PCR 
platforms and deep sequencing methodologies 
has resulted in an exponential acquisition of 
miRNA pro fi les. Some of the published miRNA 
pro fi les are available in the NCBI Gene Expression 
Omnibus, similarly to mRNA pro fi les (other 
resources include   www.microrna.org    ,   http://www.
mirz.unibas.ch    ). Larger cancer and blood-borne 
disease collections have recently been published 
using various platforms  [  133–  135  ] . However, 
there is no database or viewer that allows for 
cross-platform comparison of existing data.  

    1.5.2   Tissue Heterogeneity 

 Tissues are generally composed of multiple cell 
types, each with their distinct gene expression pro-
gram. Disease not only alters the expression pro-
grams of the affected cell type, but often also its cell 
type composition. To best separate these effects in 
the pro fi ling of heterogeneous tumor samples, it 
may be useful to pro fi le tumor cell lines and indi-
vidual cell types that may be present in a tumor 
sample, or de fi ne miRNA cellular localization 
by performing RNA ISH. Figure  1.3  compares 
miRNA abundance pro fi les of normal breast, an 
estrogen receptor positive invasive ductal breast car-
cinoma, the estrogen receptor positive ductal cell 
line MCF7, human fat and blood  [  38,   39  ] . Strikingly, 
we can model the pro fi le of a human cancer by 
simply combining tumor cell line and human fat 
pro fi les at equal ratio. This demonstrates that the 
MCF7 tumor cell line may be a good disease model 
for deciphering miRNA regulatory networks, as it 
expresses many of the miRNAs present in the pre-
dominant tumor derived cell type and highlights 
the need for individual cell type miRNA pro fi les.   

    1.5.3   miRNAs as Tumor Suppressors 
and Oncogenes 

 miRNA dysregulation could be used as a diag-
nostic tool even if the particular miRNAs do not 
serve any regulatory function. Alternatively, 

http://www.microrna.org
http://www.mirz.unibas.ch
http://www.mirz.unibas.ch
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miRNA dysregulation could drive tumorigenesis 
through the roles miRNAs can adopt as tumor 
suppressors or oncogenes. miRNAs that are up- 
or down-regulated in malignancies are respec-
tively referred to as oncogenic or tumor-suppressor 
miRNAs, sometimes even if there is no evidence 
for their causative role in tumorigenesis. Some of 
the most commonly dysregulated miRNAs are 
summarized in Table  1.1  (reviewed in  [  11  ] ).  

 Functional studies performed in cancer cell 
lines or mouse models of various malignancies 
through over-expression or knockdown of miRNAs 
have supported a role for some of these miRNAs 
in tumorigenesis. Over-expression of tumor sup-
pressor miRNAs, such as let-7g, reduced tumor 
burden in a K-RAS murine lung cancer model 
 [  172  ] . Over-expression of the oncogenic  mir-17-
92  gene cluster led to a lymphoproliferative 

  Fig. 1.3    miRNA breast 
tumor and cell line pro fi les. 
Comparison of abundance 
pro fi les of the  top  
expressed miRNA 
sequence families of 
normal breast, an estrogen 
receptor positive invasive 
ductal carcinoma breast 
tumor (ER+), the MCF7 
ductal derived cell line, 
human subcutaneous 
adipose tissue and red 
blood cells       
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disorder, and higher level expression of the cluster 
in MYC-driven B-cell lymphomas dramatically 
increased tumorigenicity  [  62,   173  ] . Over-
expression of another oncogene, miR-21, fre-
quently highly expressed in solid and hematologic 
malignancies, resulted in a pre-B malignant lym-
phoid like phenotype whereas subsequent miR-21 

inactivation in the same model led to apoptosis 
and tumor regression  [  174  ] . Transgenic mice 
models with loss and gain of function of miR-21 
combined with a model of lung cancer con fi rmed 
the role of miR-21 as an enhancer of tumorigen-
esis when over-expressed, or a partial protector 
when genetically deleted  [  59  ] . Ectopic expression 

   Table 1.1    Some of the most common cancer-associated miRNAs   

 miRNA 
 Tissue type 
speci fi city 

 Chromosomal 
location  Property  Malignancy 

  let-7/98  
cluster 

 Ubiquitous  Multiple members 
(chromosomes 3, 9, 
11, 19, 21, 22, X) 

 TS  CLL  [  136  ] , lymphoma  [  137  ] , gastric 
 [  138  ] , lung  [  139  ] , prostate  [  9  ] , breast 
 [  140  ] , ovarian  [  138  ] , colon  [  138  ] , 
leiomyoma  [  138  ] , melanoma  [  138  ]  

  mir-15a/16-1  
cluster 

 Ubiquitous  13q14.2  TS  CLL  [  141  ] , lymphoma  [  9  ] , multiple 
myeloma  [  9  ] , pituitary adenoma  [  142  ] , 
prostate  [  142  ] , pancreatic  [  142  ]  

  mir-17-92  
cluster 

 Ubiquitous  Multiple members 
(chromosomes 
7, 13, X) 

 OG  Lymphoma  [  143  ] , multiple myeloma  [  9  ] , 
lung  [  139  ] , colon  [  143  ] , medulloblastoma 
 [  144  ] , breast  [  140  ] , prostate  [  145  ]  

 miR-21  Ubiquitous  17q23.1  OG  Lymphoma, breast, lung, prostate, gastric, 
cervical, head and neck, colorectal, 
glioblastoma (for all:  [  146  ] ) 

 miR-26a  Ubiquitous  3p22.2 (−1)  TS  Lymphoma  [  147  ] , hepatocellular 
carcinoma  [  148  ] , thyroid carcinoma  [  149  ]   12q14.1 (−2) 

 OG  Glioblastoma  [  53,   150  ]  
 miR-34a/b/c  Ubiquitous  1p36.22 (a)  TS  CLL  [  136  ] , lymphoma  [  9  ] , pancreatic  [  9  ] , 

colon  [  9  ] , neuroblastoma  [  151  ] , glioblas-
toma  [  152  ]  

 11q23.1 (b) 
 11q23.1 (c) 

 miR-155  Hematopoietic 
system 

 21q21.3  OG  Lymphoma (i.e. Burkitt’s, Hodgkin’s, 
non-Hodgkin’s)  [  9  ] , CLL ( [  9  ] ,  [  18  ] ), 
breast  [  140  ] , lung  [  9  ] , colon  [  9  ] , 
pancreatic  [  9  ]  

  mir-141/200a  
cluster 

 Epithelial 
speci fi c 

 Multiple members 
(chromosomes 1, 12) 

 TS  Breast  [  140,   153  ] , renal clear cell 
carcinoma  [  154  ] , gastric  [  155  ] , 
bladder  [  156  ]  

 OG/TS  Ovarian  [  157–  159  ]  
 miR-205  Epithelial 

speci fi c 
 1q32.2  TS  Prostate  [  160,   161  ] , bladder  [  162  ] , breast 

 [  153,   163,   164  ] , esophageal  [  165  ]  
 OG  Ovarian  [  166  ]  

 miR-206  Skeletal muscle 
speci fi c 

 6p12.2  TS  Rhabdomyosarcoma  [  30  ] , breast  [  167  ]  

 miR-9  Nervous system 
speci fi c 

 1q22 (−1)  TS  Medulloblastoma  [  168  ] , ovarian  [  169  ]  
 5q14.3 (−2) 
 15q26.1 (−3) 

 OG/TS  Breast  [  66,   170,   171  ]  

  miRNAs that are up- or down-regulated in malignancies are respectively referred to as oncogenic ( OG ) or tumor-sup-
pressor ( TS ), but their role in malignancy is not always experimentally validated. Given the number of manuscripts 
providing evidence for the role of each miRNA based on patient, cell culture or animal model studies, reviews are often 
cited instead of original reports to limit the number of references, and only a few selected reports are presented if no 
review is presented  
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of miR-155 in bone marrow induced polyclonal 
pre-B cell proliferation progressing to B-cell leu-
kemia or myeloproliferation in mice  [  175,   176  ] . 

 Metastasis-related miRNAs have been 
identi fi ed in various malignancies mainly from 
cell line and xenograft experiments (reviewed in 
 [  177  ] ). Examples include breast cancer-related 
miR-10b, miR-9, miR-31 and miR-335 among 
others. The interesting regulatory roles of these 
miRNAs cannot easily be validated in large clin-
ical studies. Two clinical studies with long-term 
follow-up data instead identi fi ed miR-210 to be 
associated with tumor aggressiveness  [  178,   179  ] , 
pointing to dif fi culties reconciling cell line, 
xenograft model and patient materials, due to 
tissue heterogeneity discussed earlier, the het-
erogeneous nature of the malignancy and timing 
of clinical specimen acquisition. Tumor miRNA 
pro fi les cannot dissect contributions from sub-
populations of cells that may be important for 
tumor characteristics such as metastasis, while 
cell line miRNA pro fi les cannot capture the cel-
lular interactions from supporting cell types in 
the tumor microenvironment. Patient samples 
are often collected at time of diagnosis, by which 
time a tumor is already well established and can-
not unravel early changes that may be critical in 
tumor initiation or later changes important in 
metastasis.  

    1.5.4   miRNA-Regulated Pathways 

 The observed effects of miRNA mis-expression 
on tumor initiation, maintenance or metastasis 
can be explained by the mRNA targets and path-
ways they regulate, which include known tumor 
suppressors and oncogenes (reviewed in  [  11  ] ). 
miRNAs regulate a large number of genes, some 
estimates reporting miRNA regulation of up to 
60% of the human genome, making it challeng-
ing to attribute a phenotype after mis-expression 
of a particular miRNA through its action on only 
a subset of targets  [  111,   180  ] . If a few of these 
targets control rate-limiting steps in the studied 
tumorigenesis processes within the speci fi ed tis-
sues and cell types, such as metastasis, then 
miRNA regulation of a handful of targets could 

potentially explain the phenotype resulting from 
miRNA mis-expression  [  181  ] . 

 Examples of miRNA regulated cancer path-
ways include differentiation, apoptosis, prolifera-
tion and stem cell maintenance, a process 
important for disease relapse and/or metastasis. 
The skeletal muscle-speci fi c miR-206 blocks 
human rhabdomyosarcoma growth in mouse 
xenograft models by inducing myogenic differ-
entiation  [  30  ] , while the mir-141/200a cluster is 
critical in the epithelial to mesenchymal transi-
tion (EMT) in various malignancies (reviewed in 
 [  182  ] ). Sustained expression of endogenous  mir-
17-92  cluster is required to suppress apoptosis in 
Myc-driven B-cell lymphomas in a conditional 
knockout allele of  mir-17-92  cluster  [  120  ] . TP53-
regulated, ectopically expressed miR-34 induced 
cell cycle arrest in both primary and tumor 
derived cell lines, downregulating genes promot-
ing cell cycle progression (reviewed in  [  58  ] ). In a 
 fi nal example of miRNA regulated cancer path-
ways, isolation of a subset of highly tumorigenic 
breast cancer cells that were thought to have 
stemness properties showed that these cells do 
not express let-7 family members and that expres-
sion of let-7 or its known target RAS leads to loss 
of self renewal  [  183  ] .   

    1.6   Alterations of miRNA Sequence 

 miRNA dysregulation could be a result of muta-
tions in miRNA genes in well-conserved regions 
in their mature sequence affecting mRNA target-
ing, or the remainder of the miRNA precursor 
potentially affecting processing and stability of 
the mature miRNA (reviewed in  [  75  ] ). For exam-
ple, a mutation in the seed region of  mir-96  was 
shown to lead to hearing loss in a mouse model 
 [  184  ]  and was identi fi ed in families with non-
syndromic progressive sensorineural hearing loss 
 [  185  ] , while a point mutation in the viral  mir-K5  
precursor stem loop was shown to interfere with 
its processing and reduce mature miR-K5 accu-
mulation  [  186  ] . Germline deletion of the  mir-17-
92  gene cluster was another recent example 
causing skeletal growth defects in humans  [  187  ] . 
If miRNAs are drivers of oncogenic and tumor 
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suppressor pathways we would expect to  fi nd 
miRNA mutations that can also be causative of 
the disease. So far the only mutation identi fi ed in 
a miRNA that could lead to malignancy is miR-
16, where a germline mutation potentially affects 
miR-16 biogenesis and abundance in a kindred 
with familial CLL  [  188  ]  and New Zealand black 
mice that naturally develop CLL-like disease 
 [  189  ] . Single nucleotide polymorphisms (SNPs), 
located both in precursor and mature miRNA 
sequences, have been examined in the context of 
disease risk for various malignancies but have not 
been validated as causative (reviewed in  [  75  ] ).  

    1.7   miRNA Target Identi fi cation 

 The currently available target prediction data-
bases (reviewed in  [  68  ] ) do not easily allow pri-
oritizing the involvement of reported targets in 
certain phenotypes, thus necessitating the selec-
tion of a few targets from a list of hundreds for 
further study and validation, based on a priori 
knowledge of potentially involved biological 
pathways. Since the prediction algorithms do not 
always produce identical target lists, use of mul-
tiple algorithms and comparison or intersection 
of their results narrows the list to higher 
con fi dence targets. Targets are only relevant to a 
speci fi c phenotype if they are expressed in the 
studied tissue, an issue not addressed by most 
computational prediction algorithms. Recently, 
new algorithms are trying to prioritize compu-
tationally predicted targets using integrated 
miRNA and mRNA pro fi les  [  134  ] . Biochemical 
identi fi cation methods in cell lines and tissues 
are being established and further re fi ne our 
understanding of miRNA-mRNA target bind-
ing recognition. These methods involve two 
approaches: over-expression or down-regulation 
of studied miRNAs followed by assessment of 
transcriptome-wide mRNA levels by mRNA 
microarray analysis (e.g.  [  118  ] ) or deep sequenc-
ing technology after immunoprecipitation of 
miRNAs and mRNAs complexed with AGO, the 
main component of the miRNA effector com-
plex, to not only identify mRNA targets, but also 
localize their precise binding sites  [  190,   191  ] .  

    1.8   miRNAs as Diagnostics 

 miRNAs demonstrated their potential as diagnostic 
tumor markers early on when their pro fi les were 
shown to correlate with the tumor embryonic ori-
gin, thus de fi ning tumors of unknown origin 
indistinguishable by histology and assigned based 
on clinical information  [  14  ] . miRNA expression 
patterns have been linked to clinical outcomes 
given that miRNAs modulate tumor behavior 
such as tumor progression and metastasis. 
Expression of let-7 is downregulated in non-small 
cell lung cancer patients  [  192  ]  and is associated 
with poor prognosis  [  125,   193  ] , whereas a 
miRNA signature was identi fi ed to be associated 
with prognosis in CLL  [  188  ] . Advances in 
miRNA detection, such as ISH or RT-PCR, may 
allow miRNAs to be used as diagnostic and 
 prognostic markers in the clinic.  

    1.9   miRNAs as Therapeutics 

 Because miRNAs affect the expression of multiple 
genes and thereby tune multiple points in disease 
pathways, miRNAs and their regulated genes repre-
sent interesting drug targets. Antisense oligonucle-
otide targeting experiments in human cell lines, 
mice  [  117,   194–  197  ]  and non-human primates 
 [  198  ]  have demonstrated the feasibility of manipu-
lating miRNA levels. miR-143 was initially shown 
to promote adipocyte differentiation and could be a 
target for therapies in obesity and metabolic dis-
eases  [  194  ] . Alternatively, “miRNA sponges” have 
been exploited to reduce miRNA expression in 
mammalian cells and mouse models by using RNA 
transcripts expressed from strong promoters con-
taining miRNA-complementary binding sites 
(reviewed in  [  199  ] ). Systemic administration of 
antisense oligonucleotide therapeutics to miR-122, 
a liver-enriched miRNA, in mice and primates was 
shown to alter lipid metabolism and hepatitis C viral 
load, resulting in reduced liver damage  [  117,   195–
  197,   200,   201  ] . At the same time, systemic delivery 
of a miRNA mimic for miR-26a in a murine model 
of HCC reduced tumor size  [  148  ] . The new and 
exciting advances in delivery of miRNA inhibitors 
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and mimics hold the promise of quickly translating 
our knowledge of miRNAs into treating disease.      
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