
Chapter 22
Trends in Multiagent Negotiation: From
Bilateral Bargaining to Consensus Policies

Enrique de la Hoz, Miguel A. López-Carmona, and Iván Marsá-Maestre

22.1 Introduction

Negotiating contracts with multiple interdependent issues, which may yield
non-monotonic, highly uncorrelated preference spaces for the participating agents,
is specially challenging because its complexity makes traditional negotiation
mechanisms not applicable (López-Carmona et al. 2012). In this chapter, we
will review key concepts about multi-attribute negotiation and the most relevant
works in the field, and then we focus on the main recent research lines addressing
complex negotiations in uncorrelated utility spaces. Finally, we describe CPMF (de
la Hoz et al. 2011), a Consensus Policy Based Mediation Framework for multi-agent
negotiation which allows to search for agreements following predefined consensus
policies, which may take the form of linguistic expressions.

22.2 Multi-attribute Negotiation

Multi-attribute negotiation may be seen as an interaction between two or more
agents with the goal of reaching an agreement about a range of issues which
usually involves solving a conflict of interest between the agents. This kind of
interaction has been widely studied in different research areas, such as game theory
(Rosenschein and Zlotkin 1994), distributed artificial intelligence (Faratin et al.
1998) and economics.

Multi-attribute negotiation is seen as an important challenge for the multi-
agent system research community (Lai et al. 2004), and there is a great variety

E. de la Hoz (�) • M.A. López-Carmona • I. Marsá-Maestre
Computer Engineering Department, Universidad de Alcalá, Escuela Politécnica,
28871 Alcalá de Henares (Madrid), Spain
e-mail: enrique.delahoz@uah.es; miguelangel.lopez@uah.es; ivan.marsa@uah.es

S. Ossowski (ed.), Agreement Technologies, Law, Governance
and Technology Series 8, DOI 10.1007/978-94-007-5583-3__22,
© Springer Science+Business Media Dordrecht 2013

405



406 E. de la Hoz et al.

of negotiation models and protocols intended to address different parts of this
challenge. These models may be classified according to different criteria (But-
tner 2006), such as their structure, the dynamics of the negotiation process, or
the different constraints imposed on the problem (e.g. deadlines, information
availability. . .). According to the theoretical foundations of the negotiation models,
we can find approaches based on game theory, heuristic approaches (Gatti and
Amigoni 2005; Ito et al. 2008; Klein et al. 2003; Lai et al. 2006; Ros and Sierra
2006) and argumentation-based approaches (Amgoud et al. 2000; Jennings et al.
1998; Rahwan et al. 2003, 2007).

Regardless of the theoretical approach involved, different authors agree that there
are three key components in a negotiation model (Fatima et al. 2006; Jennings et al.
2001; Kraus 2001b):

• An interaction protocol, which defines the rules of encounter among the negoti-
ating agents, including what kind of offer exchange is allowed and what kind of
deals may be reached and how they are established.

• The preference sets of the different agents, which allow them to assess the
different solutions in terms of gain or utility and to compare them.

• A set of decision mechanisms and strategies, which govern agents’ decision
making, allowing them to determine which action will be the next one under
a given negotiation state.

The most-widespread interaction protocol for negotiation is based on the ex-
change of offers and counter offers, which are expressed as an assignment of
values to the different attributes. This kind of negotiation protocols are known as
positional bargaining. A particular protocol family for multi-lateral negotiations are
auction-based protocols, where negotiating agents send their offers (also called
bids) to a mediator, which then decides the winning deal (Teich et al. 1999).
Auction-based protocols allow one-to-many and many-to-many negotiations to be
dealt with efficiently. Another important division regarding interaction protocols is
between one-shot protocols and iterative protocols. In one-shot protocols, there is a
single interaction step between the agents. In iterative protocols, on the other hand,
agents have the opportunity to refine their positions in successive protocol iterations
(Osborne and Rubinstein 1990).

Preference sets express the absolute or relative satisfaction for an agent about
a particular choice among different options (Keeny and Raiffa 1976). Cardinal
preference structures are probably the most widely used in complex negotiations.
In particular, it is usual to define agent preferences by means of utility functions.
The most basic form to represent a utility function is to make an enumeration of the
points in the solution space which yield a non-zero utility value. It is easy to see that,
although this representation for utility functions is fully expressive, its cardinality
may grow greatly with the number of issues or with the cardinality of each issue’s
domain. Because of this, more succinct representations for utility functions are
used in most cases. Examples of such representations which are widely used in
the negotiation literature are linear-additive utility functions (Faratin et al. 2002) or
k-additive utility functions (Grabisch 1997).
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Another widely used way to represent preferences and utility functions is the
use of constraints over the values of the attributes: either hard, soft, probabilistic or
fuzzy constraints (Ito et al. 2008; Lin 2004; Luo et al. 2003b). A particular case of
constraint-based utility representation which has been used to model complex utility
spaces for negotiation are weighted constraints. There is a utility value for each
constraint, and the total utility is defined as the sum of the utilities of all satisfied
constraints. This kind of utility functions produces nonlinear utility spaces, with
high points where many constraints are satisfied, and lower regions where few or no
constraints are satisfied.

Finally, the main challenge in an automated negotiation scenario is to design
rational agents, able to choose an adequate negotiation strategy. In negotiations
among selfish agents, negotiation mechanisms should motivate the agents to act
in an adequate way, since if a rational, selfish agent may benefit from taking a
strategy which is different to the one expected by the protocol, it will do so. This
problem is closely related to the notion of equilibrium and strategic stability defined
in game theory. In an equilibrium, each player of the game has adopted a strategy
that they have no rational incentive to change (because it is the best alternative,
given the circumstances). There are different equilibrium conditions which can be
defined, like dominant strategies (Kraus 2001a), Nash equilibrium or Bayes-Nash
equilibrium (Harsanyi 2004).

A potential threat to mechanism stability is strategic revelation of information.
In incomplete information scenarios (Jonker et al. 2007), since the agents’ beliefs
about the preferences of a given agent may influence the decision mechanisms they
use, an agent may use as a strategy to lie about its own preferences in order to
manipulate the decision mechanisms of the rest of the agents to its own benefit.
It would be desirable to design protocols which are not prone to be manipulated
through insincere revelation of information. Incentive-compatibility is defined as the
property of a negotiation mechanism which makes telling the truth the best strategy
for any agent, assuming the rest of the agents also tell the truth. An example of an
incentive-compatible protocol is the Clarke tax method (Clarke 1971).

22.3 Related Research on Automated Negotiation
in Complex Utility Spaces

Klein et al. (2003) presented, as far as we are aware, the first negotiation protocols
specific for complex preference spaces. They propose a simulated annealing-based
approach, a refined version based on a parity-maintaining annealing mediator, and
an unmediated version of the negotiation protocol. Of great interest in this work are
the positive results about the use of simulated annealing as a way to regulate agent
decision making, along with the use of agent expressiveness to allow the mediator
to improve its proposals. However, this expressiveness is somewhat limited, with
only four possible valuations which allow the mediator to decide which contract to
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use as a parent for mutation, but not in which direction to mutate it. On the other
hand, the performed experiments only consider the bilateral negotiation scenario,
though the authors claim that the multiparty generalization is simple. Finally,
the family of negotiation protocols they propose are specific for binary issues
and binary dependencies. Higher-order dependencies and continuous-valued issues,
common in many real-world contexts, are known to generate more challenging
utility landscapes which are not considered in their work.

Luo et al. (2003a) propose a fuzzy constraint based framework for multi-attribute
negotiations. In this framework a buyer agent defines a set of fuzzy constraints
to describe its preferences. The proposals of the buyer agent are a set of hard
constraints which are extracted from the set of fuzzy constraints. The seller agent
responds with an offer or with a relaxation request. The buyer then decides whether
to accept or reject an offer, or to relax some constraints by priority from the lowest
to highest. In Lopez-Carmona and Velasco (2006) and Lopez-Carmona et al. (2007)
an improvement to Luo’s model is presented. They devise an expressive negotiation
protocol where proposals include a valuation of the different constraints, and the
seller’s responses may contain explicit relaxation requests. This means that a seller
agent may suggest the specific relaxation of one or more constraints. The relaxation
suggested by a seller agent is based on utility and viability criteria, which improves
the negotiation process.

Another interesting approach to solve the computational cost and complexity of
negotiating interdependent issues is to simplify the negotiation space. Hindriks et al.
(2006) propose a weighted approximation technique to simplify the utility space.
They show that for smooth utility functions the application of this technique results
in an outcome that closely matches the outcome based on the original interdependent
utility structure. The method is evaluated for a number of randomly generated utility
spaces with interdependent issues. Experiments show that this approach can achieve
reasonably good outcomes for utility spaces with simple dependencies. However, an
approximation error that deviates negotiation outcomes from the optimal solutions
cannot be avoided, and this error may become larger when the approximated utility
functions become more complex. The authors acknowledge as necessary future
work the study of which kind of functions can be approximated accurately enough
using this mechanism. Another limitation of this approach is that it is necessary to
estimate a region of utility space where the actual outcome is expected to be (i.e. it
is assumed that the region is known a priori by the agents).

In Robu et al. (2005) utility graphs are used to model issue interdependencies for
binary-valued issues. Utility graphs are inspired by graph theory and probabilistic
influence networks to derive efficient heuristics for non-mediated bilateral nego-
tiations about multiple issues. The idea is to decompose highly non-linear utility
functions in sub-utilities of clusters of inter-related items. They show how utility
graphs can be used to model an opponent’s preferences. In this approach agents need
prior information about the maximal structure of the utility space to be explored. The
authors argue that this prior information could be obtained through a history of past
negotiations or the input of domain experts.
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There are several proposals which employ genetic algorithms to learn the
opponent’s preferences, according to the history of the counter-offers, based upon
stochastic approximation. In Choi et al. (2001) a system based on genetic algorithms
for electronic business is proposed. Lau et al. (2004) have also reported a negotiation
mechanism for non-mediated automated negotiations based on genetic algorithms.
The fitness function relies on three aspects: an agent’s own preference, the distance
of a candidate offer to the previous opponent’s offer, and time pressure. In this work,
the agents’ preferences are quantified by a linear aggregation of the issue valuations.
However, non-monotonic and discontinuous preference spaces are not explored.

In Yager (2007) a mediated negotiation framework for multi-agent negotiation
is presented. This framework involves a mediation step in which the individual
preference functions are aggregated to obtain a group preference function. The
main interest is focused on the implementation of the mediation rule where they
allow a linguistic description of the rule using fuzzy logic. A notable feature of
their approach is the inclusion of a mechanism rewarding the agents for being open
to alternatives other than simply their most preferred. The negotiation space and
utility values are assumed to be arbitrary (i.e. preferences can be non-monotonic).
However, the set of possible solutions is defined a priori and is fixed. Moreover, the
preference function needs to be provided to the mediation step in the negotiation
process, and pareto-optimality is not considered. Instead, the stopping rule is
considered, which determines when the rounds of mediation stop.

Fatima et al. (2009) analyze bilateral multi-issue negotiation involving nonlinear
utility functions. They consider the case where issues are divisible and there are
time constraints in the form of deadlines and discounts. They show that it is
possible to reach Pareto-optimal agreements by negotiating all the issues together,
and that finding an equilibrium is not computationally easy if the agents’ utility
functions are nonlinear. In order to overcome this complexity they investigate
two possible solutions: approximating nonlinear utilities with linear ones; and
using a simultaneous procedure where the issues are discussed in parallel but
independently of each other. This study shows that the equilibrium can be computed
in polynomial time. An important part of this work is the complexity analysis and
estimated approximation error analysis performed over the proposed approximated
equilibrium strategies. Heuristic approaches have generally the drawback of the lack
of a solid mathematical structure which guarantees their viability. This raises the
need of an exhaustive experimental evaluation. An adequate complexity analysis and
establishing a bound over the approximation error contribute in giving the heuristic
approaches part of the technical soundness they usually lack. We also point out
that this work is focused on symmetric agents where the preferences are distributed
identically, and the utility functions are separable in nonlinear polynomials of a
single variable. This somewhat limits the complexity of the preference space.

Finally, combinatorial auctions (Giovannucci et al. 2010; Xia et al. 2005) can en-
able large-scale collective decision making in nonlinear domains, but only of a very
limited type (i.e. negotiations consisting solely of resource allocation decisions).
Multi-attribute auctions, wherein buyers advertise their utility functions, and sellers
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compete to offer the highest-utility bid (Parkes and Kalagnanam 2005; Teich et al.
2006) are also aimed at a fundamentally limited problem (a purchase negotiation
with a single buyer) and require full revelation of preference information.

In summary, in the existing research nearly all the models which assume issue
interdependency rely on monotonic utility spaces, binary valued issues, low-order
dependencies, or a fixed set of a priori defined solutions. Simplification of the
negotiation space has also been reported as a valid approach for simple utility
functions, but it cannot be used with higher-order issue dependencies, which
generate highly uncorrelated utility spaces. Therefore, new approaches are needed
if automated negotiation is to be applied to settings involving non-monotonic and
highly uncorrelated preference spaces.

22.4 New Directions on Multiparty Negotiation Protocols:
Consensus Policy Based Negotiation Framework

Most research in multiparty automated negotiation has been focused on building
efficient mechanisms and protocols to reach unanimous agreements, which optimize
some kind of social welfare measurement like the sum or product of utilities (Klein
et al. 2003; Lai and Sycara 2009). They normally avoid considering situations where
unanimous agreements are neither possible nor desired. We believe that the type of
consensus employed to reach an agreement should be taken into consideration as
an integral part when building multiparty negotiation protocols. We describe here
CPMF (de la Hoz et al. 2011), a Consensus Policy Based Mediation Framework for
multi-agent negotiation. This framework allows the search for agreements following
predefined consensus policies (which may take the form of linguistic expressions) in
order to satisfy system requirements or to circumvent situations where unanimous
agreements are not possible or not desirable.

The basic protocol of the proposed negotiation process in an scenario with n
agents and m issues under negotiation is as follows:

1. The mediator proposes a set of points (mesh) around an initial random contract
x(1) using a step-length parameter �1. The points are generated according to the
expression x+(k) = x(k)±�ke j, j ∈{1, . . . ,m}, where e j is the jth standard basis
vector in the m-dimensional space. We will use the notation x+o(k) to designate
the mesh at round k including the current point x(k) (Fig. 22.1).

Fig. 22.1 Set of points or
mesh for a two-dimensional
preference space
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2. Each agent provides the mediator their preferences for each on of the contracts in
the current mesh x+o, in terms of a mapping Si : X → [0,1] such that for example
Si(xej (k)) indicates agent i’s support for the alternative xej (k). An agent does not
know the other agents’ support for the contracts.

3. For every point in the mesh, the mediator computes an aggregation of the
individual agents’ preferences. Each aggregation represents the group preference
for the corresponding contract in the mesh. We shall refer to this as the
aggregation of preferences step.

4. The mediator decides which is the preferred contract in the mesh according to
the group preferences for the different contracts.

5. Based on the preferred contract, the mediator decides to generate a new set of
points to evaluate, either expanding or contracting the mesh using the procedure
outlined in step 1 but using a new step-length parameter�2. Should a contraction
make �k small enough, the negotiation ends, otherwise mediator goes to step 2.

We assume that the negotiation process is such that a solution from X is
always obtained. At each stage of the process an agent provides a support measure
determined by its underlying payoff function and any information available about
the previous stages of the negotiation.

One of the key points in the protocol is the process that the mediator uses to
aggregate the individual support for the contracts in the mesh at round k. We assume
each agent has provided at round k her preference Si(x+o(k)) over the set of points
under evaluation (x+o(k)) such that it indicates the degree to which each agent Ai

supports each contract. The mediator objective in this mediation step is to obtain a
group preference function G : x+o → [0,1] which associates with each alternative
xej (k) ∈ x+o(k) a value G(xej (k)) = M(S1(xej (k)), . . . ,Sn(xej (k))).

Here M is the mediation rule and describes the process of combining the
individual preferences. The form of M can be used to reflect a desired mediation
imperative or consensus policy for aggregating the preferences of the individual
agents to get the mesh group preferences. M will guide the mediator in the
expansion-contraction decisions in order to meet the desired type of agreements
for the negotiation process. The aggregation takes the form of a OWA operator
(Yager and Kacprzyk 1997). OWA operators provide a parametrized class of mean
type aggregation operators. In the OWA aggregation the weights are not directly
associated with a particular argument but with the ordered position of the argument.
If ind is an index function such that ind(t) is the index of the tth largest argument,
then we can express using OWA as M(S1 . . . ,Sn)=∑n

t=1 wtSind(t). Examples of OWA
operators are the max operator, which, in our case would give us the aggregation
Maxi[Si], the min operator, which would give us the aggregation mini[Si] or the avg
operator, which would give us the average 1

n ∑n
i=1 Si.

The final objective is to define consensus policies in the form of a linguistic
agenda. For example, the mediator could make decisions following mediation
rules like “Most agents must be satisfied by the contract”. These statements are
examples of quantifier guided aggregations. Under the quantifier guided mediation
approach a group mediation protocol is expressed in terms of a linguistic quantifier
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α

Fig. 22.2 Functional form of
typical quantifiers: all, any, at
least, linear, piecewise linear
QZβ and piecewise linear QZα

Fig. 22.3 Example of how to
obtain the weights from a
quantifier for n = 5 agents

Q indicating the proportion of agents whose agreement is necessary for a solution
to be acceptable. The quantifiers all, any and at least α shown at Fig. 22.2 are
examples of this. First, we will express the mediation rule using Q and then we
will derive the OWA weights from Q de la Hoz et al. (2011). Figure 22.3 shows an
example. Finally, let us describe the search process used by the mediator to decide
whether to generate a new mesh in order to continue with a new negotiation round,
or to finish the negotiation process. This process starts just after any aggregation of
preferences process, when the mediator has determined the group preferred contract
xe∗(k). The mediator generates a new mesh in order to continue the search process. If
the preferred contract is the previous mesh centre (x(k)), the step-length �k+1 used
to generate the new mesh is halved. Otherwise, the step-length �k+1 is doubled.

In order to avoid getting stuck in local optima, we use a probabilistic process in
the search procedure. The principle of this approach is analogous to the simulated
annealing technique (Klein et al. 2003) without reannealing.
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22.5 Conclusions

Automated negotiation can be seen from a general perspective as a paradigm to
solve coordination and cooperation problems in complex systems, providing a
mechanism for autonomous agents to reach agreements on, e.g., task allocation,
resource sharing, or surplus division. Although a variety of negotiation models have
been proposed according to the many different parameters which may characterize
a negotiation scenario, the consensus type by which an agreement meets in some
specific manner the concerns of all the negotiators is not usually taken into account.
Most of the works focus only on unanimous agreements. Such solutions do not fit
well on every environment. We believe that the consensus type should be considered
as an integral part of multiparty negotiation protocols. We propose a multiagent
negotiation protocol where the mediation rules at the mediator may take the form
of a linguistic description of the type of consensus needed using OWA operators
and quantifier guided aggregation. This protocol performs a distributed exploration
of the contract space in a process governed by the mediator that aggregates agent
preferences in each negotiation round applying the type of consensus desired.
This negotiation framework opens the door to a new set of negotiation algorithms
where consensus criteria will play an important role. A possible scenario for this
algorithms is consortium building in brokerage events where the linguistic expressed
mediation rules could be of great utility for guiding the set partitioning process and
the identification of high-valued consortia.
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