
Chapter 17
Pair Distribution Function Technique:
Principles and Methods

Simon J.L. Billinge

Abstract One of the frontiers when studying complex and nanostructured materials
is the characterization of structure on the nanoscale. We describe how the atomic
pair distribution function analysis of powder diffraction data can be used to this
end, and what kind of structural information can be obtained in different situations.

17.1 Introduction

This chapter is adapted from a description of the PDF method described in Chapter
16 of “Powder Diffraction: Theory and Practice” [1]. Increasingly, materials that
are under study for their interesting technological or scientific properties are highly
complex. They are made of multiple elements, have large unit cells and often
low dimensional or incommensurate structures [2]. Increasingly also, they have
aperiodic disorder: some aspect of the structure that is different from the average
crystal structure. In the case of nanoparticles the very concept of a crystal is invalid
as the approximation of infinite periodicity is no longer a good one. Still we would
like to study the structure of these materials. Powder diffraction is an important
method for characterizing these materials, but we have to go beyond the Bragg
equation and crystallographic analysis.

The “total scattering” approach treats both the Bragg and diffuse scattering on
an equal basis [3]. Powder diffraction data are measured in much the same way
as in a regular powder measurement. However, explicit corrections are made for

S.J.L. Billinge (�)
Department of Applied Physics and Applied Mathematics, Columbia University,
New York, NY, USA

Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory,
Upton, NY 11973, USA
e-mail: sb2896@columbia.edu

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 17,
© Springer ScienceCBusiness Media Dordrecht 2012

183



184 S.J.L. Billinge

extrinsic contributions to the background intensity from such things as Compton
scattering, fluorescence, scattering from the sample holder, and so on. The resulting
coherent scattering function I(Q) is a continuous function of Q, the magnitude of
the scattering vector,

Q D jQj D 2k sin � D 4� sin �

�
(17.1)

with sharp intensities where there are Bragg peaks, and broad features in between,
the diffuse scattering. In general we like to work with a normalized version of
this scattering intensity, S(Q). This is the intensity normalized by the incident
flux per atom in the sample. S(Q) is the total-scattering structure function. It is
a dimensionless quantity and the normalization is such that the average value,
hS(Q)i D 1. Despite the tricky definition, it is worth remembering that S(Q) is
nothing other than the powder diffraction pattern that has been corrected for
experimental artifacts and suitably normalized.

To get a good resolution in real-space, the S(Q) must be measured over a
wide range of Q-values. The coherent intensity (the features) in S(Q) die out
with increasing Q due to the Debye-Waller factor which comes from thermal and
quantum zero-point motion of the atoms, as well as any static displacive disorder in
the material. By a Q-value of 30–50 Å�1 (depending on temperature and stiffness of
the bonding) there are no more features in S(Q) and there is no need to measure
it to higher-Q. Still, this is much higher than conventional powder diffraction
experiments using laboratory x-rays or reactor neutrons. The maximum Q attainable
in back-scattering from a copper-K˛ tube is around 8 Å�1 and from a Mo-K˛

tube 16 Å�1.Routine total-scattering measurements can be made using laboratory
sources with Mo or Ag tubes; however, for the highest real-space resolution, and
the smallest statistical uncertainties, synchrotron data are preferred. In the case of
neutron scattering, spallation neutron sources are ideal for this type of experiment.

Total scattering S(Q) functions appear different to standard powder diffraction
measurements because of the Q-range studied, but also because of an important
aspect of the normalization: the measured intensity is divided by the total scattering
cross-section of the sample. For neutrons, this scattering cross-section is simply
hbi2, where b is the coherent neutron scattering length of the atoms of the material
in units of barns. The angle brackets denote an average. The scattering length, b, is
constant as a function of Q and so is just part of the overall normalization coefficient.
However, in the case of x-ray scattering, the sample scattering cross-section is the
square of the atomic form-factor, hf(Q)i2, which becomes very small at high-Q.
Thus, during the normalization process the data at high-Q are amplified (by being
divided by a small number). This has the effect that even rather weak intensities at
high-Q, which are totally neglected in a conventional analysis of the data, become
rather important in a total-scattering experiment. Because the signal at high-Q is
weak it is important to collect the data in that region with good statistics. This is
illustrated in Fig. 17.1.

Thus, the value added of a total scattering experiment over a conventional powder
diffraction analysis is the inclusion of diffuse scattering as well as Bragg peak
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Fig. 17.1 Comparison of raw data and normalized reduced total scattering structure function
F(Q) D Q[S(Q)�1]. The sample is a powder of 2 nm diameter CdSe nanoparticles and the data
are x-ray data from 6ID-D at the Advanced Photon Source at Argonne National Laboratory. The
raw data are shown in the left panel. The high-Q data in the region Q > 9 appear smooth and
featureless (left panel). However, after normalizing and dividing by the square of the atomic form-
factor, important diffuse scattering is evident in this region of the diffraction pattern (right panel)

intensities in the analysis, and the wide range of Q over which data are measured.
In fact, the total scattering name comes from the fact that all the coherent scattering
in all of Q-space is measured.

Total scattering data can be analyzed by fitting models directly in reciprocal-
space (i.e., the S(Q) function is fit). However, an interesting and intuitive approach
is to Fourier transform the data to real-space to obtain the atomic pair distribution
function (PDF), which is then fit in real-space. The reduced pair distribution
function, G(r), is related to S(Q) through a Sine Fourier transform according to

G.r/ D 2

�

Q maxZ

Q min

QŒS.Q/ � 1� sin .Qr/ dQ (17.2)

Examples of a G(r) functions are shown in Fig. 17.2.
It has peaks at positions, r, where pairs of atoms are separated in the solid with

high probability. For example, there are no peaks below the nearest neighbor peak
at �2.5 Å which is the Cd-Se separation in CdSe [4]. However, in addition to
the nearest-neighbor information, valuable structural information is contained in
the pair-correlations extending to much higher values of r. In fact, with high Q-
space resolution data, PDFs can be measured out to tens of nanometers (hundreds
of angstroms) and the structural information remains quantitatively reliable.

There are now many classes of problems that have been studied using total
scattering analysis. Traditionally it was used for liquids [5] and amorphous ma-
terials, more recently for the study of disorder in crystalline materials, and now
with increasing popularity it is used to study nanostructured materials. A number of
recent reviews [3, 6, 7] give examples of modern applications of the PDF method.



186 S.J.L. Billinge

Fig. 17.2 PDFs in the form of G(r) from bulk CdSe, and from a series of CdSe nanoparticles. The
blue curve at the bottom is the PDF obtained from the data shown in Fig. 17.1. The thick lines
are from the data, with thin lines on top from models of the local structure in these nanoparticles.
Offset below are difference curves between the model and the data (Figure adapted from [4]) (color
figure online)

17.2 Theory

The basis of the total scattering method is the normalized, measured, scattering
intensity from a sample, total scattering structure function, S(Q) [3, 8, 9]. The
wavevector, Q, is a vector quantity and in general the intensity variation, S(Q), will
depend on which direction one looks in Q-space. However, when the sample is
isotropic, for example, a powder, it depends only on the magnitude of Q and not its
direction.

Similarly, the Fourier transform of the scattered intensity, in the form of S(Q),
yields the reduced atomic pair distribution function, G(r), defined by Eq. 17.2. This
is strictly correct when the sample is made of a single element. We will discuss an
approximate extension that works excellently in practice, to the more interesting
case of multiple elements.

The inverse transformation of Eq. 17.2 can be defined and it yields the structure
function S(Q) in terms of G(r),

S.Q/ D 1 C 1

Q

Z 1

0

G.r/ sin .Qr/ dr: (17.3)

There are a number of similar correlation functions related to G(r) by multi-
plicative and additive constants. They contain the same structural information but
are subtly different in some detail. G(r) is the function obtained directly from the
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Fourier transform of the scattered data. The function oscillates around zero and
asymptotes to zero at high-r. It also tends to zero at r D 0 with the slope �4��0,
where �0 is the average number density of the material. From a practical point of
view G(r) is attractive because the random uncertainties on the data (propagated
from the measurement) are constant in r [3]. This means that fluctuations in the
difference between a calculated and measured G(r) curve have the same significance
at all values of r. Thus, for example, if the observed fluctuations in the difference
curve decrease with increasing r this implies that the model is providing a better fit
at longer distances (perhaps it is a model of the average crystallographic structure).
This inference cannot be made directly from a difference curve to �(r) or g(r). A
further advantage of the G(r) function is that the amplitude of the oscillations gives
a direct measure of the structural coherence of the sample. In a crystal with perfect
structural coherence, oscillations in G(r) extend to infinity with a constant peak-
peak amplitude [10]. In the G(r) from a real crystal the peak-peak amplitude of the
signal gradually falls off due to the finite Q-resolution of the measurement, which
is then the limitation on the spatial coherence of the measurement rather than the
structural coherence itself. A higher Q-resolution results in data extending over a
wider range of r. In samples with some degree of structural disorder, the signal
amplitude in G(r) falls off faster than dictated by the Q-resolution and this becomes
a useful measure of the structural coherence of the sample. For example, it can be
used to measure the diameter of nanoparticles.

Another function often denoted g(r) is called the pair distribution function. It is
normalized so that, as r ! 1, g(r) ! 1 and has the property that for r shorter than
the distance of closest approach of pairs of atoms g(r) becomes zero. It is closely
related to the pair density function, �(r) D �0g(r). Clearly, �(r) oscillates about,
and then asymptotes to, the average number density of the material, �0 at high-r
and becomes zero as r ! 0. The relationship between these correlation functions is
given by

G.r/ D 4�r .�.r/ � �0/ D 4��0r.g.r/ � 1/ (17.4)

Finally we describe the radial distribution function, R(r) given by

R.r/ D 4�r2�.r/ (17.5)

which is related to G(r) by

G.r/ D R.r/

r
� 4�r�0 (17.6)

The R(r) function is important because it is the most closely related to the
physical structure since R(r)dr gives the number of atoms in an annulus of thickness
dr at distance r from another atom. For example, the coordination number, or the
number of neighbors, NC , is given by

NC D
Z r2

r1

R.r/dr (17.7)
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where r1 and r2 define the beginning and ending positions of the RDF peak
corresponding to the coordination shell in question. This suggests a scheme for
calculating PDFs from atomic models. Consider a model consisting of a large
number of atoms situated at positions r� with respect to some origin. Expressed
mathematically, this amounts to a series of delta functions, ı(r – r�). The RDF is
then given as

R.r/ D 1

N

X
�

X
	

ı.r � r�	/ (17.8)

where r�	 D jr�– r	j is the magnitude of the separation of the �-th and 	-th ions and
the double sum runs twice over all atoms in the sample. Later we address explicitly
samples with more than one type of atom, but for completeness we give here the
expression for R(r) in this case:

R.r/ D 1

N

X
�

X
	

b�b	

hbi2
ı.r � r�	/ (17.9)

where the b terms are the Q-independent coherent scattering lengths for the �th and
	th atoms and hbi is the sample average scattering length. In the case of x-rays, the
b terms are replaced with atomic number, Z.

17.3 Experimental Methods

Total scattering measurements have basically the same requirements as any powder
diffraction measurement. Special requirements for high-quality total scattering data
are the following:

1. Data measured over a wide Q-range. This requires wide scattering angles and/or
short-wavelength incident radiation.

2. Good statistics, especially at high-Q where the scattering signal is weak.
3. Low background scattering. It is important to measure weak diffuse scattering

signals accurately which is difficult on top of high backgrounds.
4. Stable set-up and accurate incident intensity monitoring. The data are normalized

by incident intensity. It is important that the incident beam and detector character-
istics do not change in an uncontrolled way during the course of the experiment,
or that this can be corrected, for example, by monitoring the incident beam
intensity as is done at synchrotron x-ray and spallation neutron measurements.

X-ray experiments can be carried out using laboratory diffractometers with Mo or
Ag sources which give Q-ranges up to Qmax �14 and 20 Å�1, respectively. These are
less than optimal values for Qmax, but acceptable for straightforward characterization
of nanostructured materials at room temperature. Optimally, x-ray experiments are
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Fig. 17.3 Schematic of the rapid acquisition RAPDF x-ray data collection method

carried out at x-ray synchrotron sources using high incident energy x-rays. These
can be done with incidence energies in the vicinity of 30–45 keV in conventional
Debye-Scherrer geometry (for instance using be beamlines such as X31 at ESRF or
11BM at APS that are constructed for regular powder diffraction). However, more
common, these days, is to use the rapid acquisition PDF mode (RAPDF) in which
data for a PDF is collected in a single-shot using a planar 2D detector [11]. This is
illustrated in Fig. 17.3.

Dedicated beamlines have been constructed at APS for this purpose (11ID-B and
11ID-C) with similar beamlines under construction at NSLS (X17A), ESRF and
NSLS-II. In this geometry, incident x-rays of energy 60–150 keV are fired through
a sample and collected on a large area image-plate detector placed behind the
sample. The experiment consists of ensuring the incident beam is perpendicular and
centered on the detector and the sample, then exposing the image plate. Depending
on the strength of scattering and the sensitivity of the detector, exposures for good
PDFs in excess of Qmax D 30 Å�1 can be obtained in as little as 100 ms, and
typically a few seconds to minutes. This compares to data collection times of 8–12 h
with conventional non-parallel counting approaches, even at the synchrotron. The
RAPDF measurement is ideal for time-resolved and parametric measurements, of
local structure through phase transitions for example. The Q-resolution of these
measurements is very poor because of the geometry, and this limits the r-range
of the resulting data from crystalline materials. However, most modeling is carried
out over rather narrow ranges of r and this represents a very good tradeoff. Where a
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wide r-range is necessary for the measurement (to study some aspect of intermediate
range order on length-scales of 5–10 nm for, example) the Debye-Scherrer geometry
diffractometers can be used.

In the case of neutron measurements, the requirement of short-wavelengths really
limits experiments to time-of-flight spallation neutron sources. Reactor sources with
hot moderators would give good quality data for PDF studies, but are in short
supply. The requirements for a spallation neutron powder diffractometer are laid
out in the list of experimental requirements above. Normal time-of-flight powder
diffractometers can be used provided the length of the flight-path and frequency
of operation are such to allow good fluxes of neutrons with short wavelength
(0.2–0.4 Å). Currently neutron guides do not propagate these short-wavelength
neutrons effectively so shorter flight-path diffractometers with or without guides
give the best data. Currently the instruments of choice are NPDF at the Lujan
Center at Los Alamos National Laboratory in the USA and GEM at ISIS, Rutherford
Laboratory, in the UK. The former was upgraded with PDF experiments in mind
and has excellent stability on a water moderator and low backgrounds, though data
collection time is not quite at the level of GEM. New powder diffractometers are
coming on line at the Spallation Neutron Source at Oak Ridge National Laboratory
(NOMAD and POWGEN) that will give unprecedented data-rates and will be
suitable for PDF studies.

A number of data correction programs are available for free download and these
take care of the corrections and normalizations needed to obtain PDFs from raw
data. These can be browsed at the ccp14 software website [12]. Commonly used, and
generally easy to use, programs are Gudrun [13] and PDFgetN [14] for spallation
neutron data and PDFgetX2 [15, 16] for x-ray data. PDFgetX2 has the corrections
implemented for accurate analysis of RAPDF data. Details of the corrections are
beyond the scope of this article, but can be found in some detail in “Underneath the
Bragg peaks: structural analysis of complex materials” by Egami and Billinge [3].

17.4 Extracting Structural Information from Total
Scattering

Here we confine ourselves to real-space modeling whereby the PDF of the model is
calculated and compared to an experiment. Fitting the PDF is generally done with
models described by a small number of atoms in a unit cell (which may or may not
be the crystalline unit cell) and yields information about the very local structure.

Information can be extracted directly from the PDF in a model-independent way
because of its definition as the atom-pair correlation function. The position of a peak
in the PDF indicates the existence of a pair of atoms with that separation. There is
no intensity in R(r) for distances less than the nearest-neighbor distance, r < rnn

and a sharp peak at rnn. This behavior is very general and true even in atomically
disordered systems such as glasses, liquids and gasses. In crystals, because of the
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long-range order of the structure, all neighbors at all lengths are well defined and
give rise to sharp PDF peaks. The positions of these peaks give the separations of
pairs of atoms in the structure directly and the width contains information about
thermal motion of the atoms, or static disorder. In general, it is not possible to
tell directly from the data whether a PDF peak broadening is static or dynamic in
nature, though this can sometimes be inferred by fitting temperature dependence to
a dynamical model such as the Debye model.

When a well-defined PDF peak can be observed, we can determine information
about the number of neighbors in that coordination shell around an origin atom
by integrating the intensity under that peak, as shown in Eq. 17.7. In the case of
crystalline Ni there are four Ni atoms in the unit cell (fcc structure). Each nickel
ion has 12 neighbors at 2.49 Å [17]. When we construct our PDF we will therefore
place 48 units of intensity at position r D 2.49 Å (the weighting factor, bmbn/<b>2,
is unity since there is only one kind of scatterer) and divide by N D 4 since we put 4
atoms respectively at the origin. Thus, integrating the first peak will yield 12 which
is the coordination number of Ni. The same information can be obtained from multi-
element samples if the chemical origin of the PDF peak, and therefore the weighting
factor, is known. If, as is often the case, PDF peaks from different origins overlap
this process is complicated. Information can be extracted by measuring the chemical
specific differential or partial-PDFs directly [18], by fitting the peaks with a series
of Gaussian functions, or better, by full-scale structural modeling.

Atomic disorder in the form of thermal and zero-point motion of atoms, and any
static displacements of atoms away from ideal lattice sites, give rise to a distribution
of atom-atom distances. The PDF peaks are therefore broadened resulting in
Gaussian shaped peaks. The width and shape of the PDF peaks contain information
about the real atomic probability distribution. For example, a non-Gaussian PDF
peak may suggest an anharmonic crystal potential.

Modeling the data reveals much more information that straight model indepen-
dent analysis. The most popular approach for real-space modeling is to use PDFfit,
and its replacement PDFfit2 and PDFgui [19, 20], a full-profile fitting method
analogous to the Rietveld method [21] but where the function being fit is the PDF.

Parameters in the structural model, and other experiment-dependent parameters,
are allowed to vary until a best-fit of the PDF calculated from the model and
the data derived PDF is obtained, using a least-squares approach. The sample
dependent parameters thus derived include the unit cell parameters (unit cell lengths
and angles), atomic positions in the unit cell expressed in fractional coordinates,
anisotropic thermal ellipsoids for each atom and the average atomic occupancy of
each site.

We highlight here the similarities and differences with conventional Rietveld.
The main similarity is that the model is defined in a small unit cell with atom posi-
tions specified in terms of fractional coordinates. The refined structural parameters
are exactly the same as those obtained from Rietveld. The main difference from
conventional Rietveld is that the local structure is being fit which contains infor-
mation about short-range atomic correlations. There is additional information in the
data, which is not present in the average structure, about disordered and short-range
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ordered atomic displacements. To successfully model these displacements it is often
necessary to utilize a “unit cell” which is larger than the crystallographic one. It is
also a common strategy to introduce disorder in an average sense without increasing
the unit cell. For example, in the example where an atom is sitting in one of two
displaced minima in the atomic potential, but its probability of being in either well
is random, can be modeled as a split atomic position with 50% occupancy in each
well. This is not a perfect, but a very good, approximation of the real situation and
is very useful as a first order attempt at modeling the data.

This “Real-space Rietveld” approach is proving to be very useful and an
important first step in analyzing PDFs from crystalline materials. This is because
of two main reasons. First, its similarity with traditional Rietveld means that a
traditional Rietveld derived structure can be compared quantitatively with the results
of the PDF modeling. This is an important first step in determining whether there is
significant evidence for local distortions beyond the average structure. If evidence
exists to suggest that local structural distortions beyond the average structure are
present, these can then be incorporated in the PDF model. The second strength of
the real-space Rietveld approach is the simplicity of the structural models making it
quick and straightforward to construct the structural models and making physical
interpretations from the models similarly quick and straightforward. The most
recent version of the PDFfit code comes with a user-friendly graphical user interface
facilitating many tasks in the data analysis, called PDFgui and PDFfit2 [19].

PDFfit was originally designed to study disorder and short-range order in
crystalline materials with significant disorder such as nanoporous bulk materials.
It has also found extensive use in studying more heavily disordered materials such
as nanocrystalline materials and nanoporous materials and this looks set to increase
in the future.

17.5 Conclusions

This chapter contains a brief account of the theory behind the PDF method and the
basic methods for obtaining suitable data, analyzing it and extracting nanostructural
information from it. Interest in the technique is growing rapidly as the quality of
structural information obtainable from it improves due to methodological advances,
and as more and more researchers seek to make and characterize materials on the
nanoscale.

Acknowledgements Work in the Billinge group is supported by the US-Department of Energy,
Office of Science, through grant DE-AC02-98CH10886 and by the US National Science Founda-
tion through grant DMR-0703940.



17 Pair Distribution Function Technique: Principles and Methods 193

References

1. Dinnebier RE, Billinge SJL (2008) Powder diffraction: theory and practice. The Royal Society
of Chemistry, Cambridge

2. Billinge SJL, Levin I (2007) The problem with determining atomic structure at the nanoscale.
Science 316:561–565

3. Egami T, Billinge SJL (2003) Underneath the Bragg peaks: structural analysis of complex
materials. Pergamon Press/Elsevier, Oxford

4. Masadeh AS, Bozin ES, Farrow CL, Paglia G, Juhás P, Karkamkar A, Kanatzidis MG,
Billinge SJL (2007) Quantitative size-dependent structure and strain determination of CdSe
nanoparticles using atomic pair distribution function analysis. Phys Rev B 76:115413

5. Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys
202:295–306

6. Billinge SJL, Kanatzidis MG (2004) Beyond crystallography: the study of disorder nanocrys-
tallinity and crystallographically challenged materials. Chem Commun 2004:749–760

7. Proffen T, Billinge SJL, Egami T, Louca D (2003) Structural analysis of complex materials
using the atomic pair distribution function – a practical guide. Z Kristallogr 218:132–143

8. Warren BE (1999) X-ray diffraction. Dover, New York
9. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous

materials, 2nd edn. Wiley, New York
10. Levashov VA, Billinge SJL, Thorpe MF (2005) Density fluctuations and the pair distribution

function. Phys Rev B 72:024111
11. Chupas PJ, Xiangyun Qiu, Hanson JC, Lee PL, Grey CP, Billinge SJL (2003) Rapid acquisition

pair distribution function analysis (RA-PDF). J Appl Crystallogr 36:1342–1347
12. URL:http://www.ccp14.ac.uk/
13. Information can be found at the ISIS disordered materials group website: http://www.isis.rl.ac.

uk/disordered/dmgroup home.htm
14. URL: http://pdfgetn.sourceforge.net/
15. Xiangyun Qiu, Thompson JW, Billinge SJL (2004) PDFgetX2: a GUI driven program to obtain

the pair distribution function from X-ray powder diffraction data. J Appl Crystallogr 37:678
16. URL: http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX2/
17. Wyckoff RWG (1967) Crystal structures, vol 1, 2nd edn. Wiley, New York
18. Price DL, Saboungi ML (1998) Anomalous X-ray scattering from disordered materials. In:

Billinge SJL, Thorpe MF (eds) Local structure from diffraction. Plenum, New York
19. Farrow CL, Juhás P, Jiwu Liu, Bryndin D, Bozin ES, Bloch J, Proffen T, Billinge SJL

(2007) PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys
Condens Mat 19:335219

20. URL: http://www.diffpy.org/
21. Young RA (1993) The Rietveld method, vol 5 of international union of crystallography

monographs on crystallography. Oxford University Press, Oxford

http://www.ccp14.ac.uk/
http://www.isis.rl.ac.uk/disordered/dmgroup_home.htm
http://www.isis.rl.ac.uk/disordered/dmgroup_home.htm
http://pdfgetn.sourceforge.net/
http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX2/
http://www.diffpy.org/

	Chapter 17: Pair Distribution Function Technique: Principles and Methods
	17.1 Introduction
	17.2 Theory
	17.3 Experimental Methods
	17.4 Extracting Structural Information from Total Scattering
	17.5 Conclusions
	References


