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Preface

The science of crystallography has seen many remarkable developments in the last
century. As a basis for experimental techniques, crystallography has evolved from
a niche interest to a point where its use in the study of materials is ubiquitous.
From the high-pressure phases found in planetary cores to the biomolecules that that
define us as individuals, it is crystallography that allows us to determine the three-
dimensional structures that are critical to understanding function. As a discipline,
crystallography continually evolves to incorporate the latest thinking on material
structure and embraces instrumental and computational advances. In particular,
powder diffraction and electron crystallography have both undergone rapid devel-
opment in the last decade, enabling the structure solution and characterization of
significantly more complex crystal structures, even when crystallinity exists only
over very short length scales.

Powder diffraction and electron crystallography are highly complementary;
powder diffraction offers a structural description of bulk samples, while electron
crystallography provides information about individual crystals. Given this comple-
mentary nature and the rapid advances made in both fields in recent years, it was
entirely appropriate that they were covered jointly in the Erice Crystallographic
Course of June 2011. The lectures, delivered by experts in their fields, provided
a common platform for introducing the basics of their subjects whilst exposing
students to the most advanced and cutting-edge topics. This volume contains
selected articles derived from these lectures.

The theory and practice of powder diffraction was covered in a sequence
of themed days. Fundamentals of the method, laboratory and facility-based in-
strumentation, methods for structure determination, nanocrystalline materials and
quantitative phase analysis were just some of the topics covered. Lecture material
was, wherever possible, backed-up by associated demonstrations and workshops,
to reinforce learning and comprehension. The electron crystallography element
offered an introduction to the fundamentals of electron crystallography, namely;
imaging and diffraction, kinematic and dynamical scattering theory. This was
followed by the recent advances in 3D electron data collection and processing. As
such, it considered structural characterization applied to materials such as small
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vi Preface

molecule crystal structures, incommensurate structures and biological crystals.
Since the IUCr redefined electron crystallography as ‘electrons scattering from
crystals’, the scope of the term has broadened significantly to incorporate many
methods that not only describe crystal structures but also crystal properties, such as
magnetism and circular dichroism. Consideration of these topics was incorporated
into the latter part of the course. Joint sessions were held for lectures that covered
concepts with clear commonality; for example, the application of direct methods
of structure determination and the use of combined powder diffraction and electron
crystallography in the structure determination of complex materials.

We hope that this volume will provide the reader with a sense of both the breadth
and the depth of the courses and serve as a very useful guide to topics and future
directions in the study of crystalline and nanocrystalline materials.

Organizing and executing these courses, with approximately 200 participants
in total, requires input from a great many people, not least those speakers who
willingly gave their time and energy in the hope of exciting and enlightening others.
We are grateful to them all. We are extremely grateful to NATO who, as part of
their ‘Science for Peace and Security’ programme, provided substantial funding
(ASI 984207) to underpin these courses. Materials development is an extremely
important aspect of fostering peace and security, by helping to ease pressure in
critical areas such as health care, defence, energy supply and access to information.
A cursory glance through this volume will be sufficient to convince the reader
that powder diffraction and electron crystallography are mainstays in shaping our
understanding of what materials ‘are’ and how they ‘work’. The International Union
of Crystallography (IUCr), the European Crystallographic Association (ECA) and
the Organisation for the Prohibition of Chemical Weapons (OPCW) also provided
substantial funding. We are also grateful to all many companies (ZEISS, FEI, JEOL,
App5, Nanomegas, Calidris, AnaliteX, Bruker AXS, Panalytical and ICDD) whose
contributions enabled many students to attend the course.

We would also like to express our sincere gratitude to the local organizing
committee of ‘orange scarves’ who, led by Paola Spadon, contributed greatly to
the success of the course. We also thank John Irwin and his team for ensuring that
the computational facilities ran smoothly. Finally, we would like to acknowledge the
pivotal contribution of Lodovico Riva di Sanseverino (1939–2010) to the planning
of these Erice-based courses.

Mainz Ute Kolb
Reading Kenneth Shankland
Beer-Sheva Louisa Meshi
Moscow Anatoly Avilov
Oxford William I.F. David
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Powder Diffraction



Chapter 1
Powder Diffraction: By Decades

William I.F. David

Abstract This introductory chapter reviews the first 100 years of powder
diffraction, decade by decade, from the earliest X-ray powder diffraction
measurements of the crystal structure of graphite through to the diversity and
complexity of twenty-first century powder diffraction. Carbon features as an
illustrative example throughout the discussion of these ten decades from graphite
and the disorder of carbon black through to lonsdaleite, the elusive hexagonal
polymorph of diamond, and C60, the most symmetrical of molecules. Electronics
and computing have played a leading role in the development of powder diffraction,
particularly over the past 60 years, and the Moore’s Law decade-by-decade rise
in computing power is clear in the increasing complexity of powder diffraction
experiments and material systems that can be studied. The chapter concludes with a
final discussion of decades – the four decades of length-scale from the ångstrom to
the micron that not only represent the domain of powder diffraction but are also the
distances that will dominate twenty-first century science and technology.

1.1 Powder Diffraction – The First 100 Years

1.1.1 A Brief Preamble

The origins of X-ray diffraction can be traced back to the discovery of X-rays by
Wilhelm Conrad Roentgen in the University of Wurzburg in the summer of 1895 [1].
The dramatic early images of the bones of living hands (initially, those of his wife!)

W.I.F. David (�)
ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory,
Harwell Science and Innovation Campus, Didcot OX11 0QX, UK

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
e-mail: bill.david@stfc.ac.uk

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 1,
© Springer ScienceCBusiness Media Dordrecht 2012
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4 W.I.F. David

Fig. 1.1 (a) Friedrich and Knipping’s first successful X-ray diffraction photograph – the crystal
was copper sulphate; (b) and (c) zinc-blende Laue photographs along the four-fold (b) and three-
fold (c) axes from Laue, Friedrich and Knipping, Sitz. Ger. Bayer. Akademie d. Wiss, 8 June 1912

created an immediate sensation and, even before the turn of the century, medical
applications were quickly developed. Perhaps less well-known was Roentgen’s
repeated attempts to observe the phenomenon of X-ray diffraction – and he was most
likely successful, as his Third Communication on X-rays in March 1897 suggests, in
observing diffraction on a few fleeting occasions. Roentgen moved from Wurzburg
to Munich in 1900 and in 1901 was accordingly awarded the first Nobel Prize in
Physics. The University of Munich was one of the leading universities in the world
in the “new physics” and rapidly became the centre of the development of X-rays
physics with a roll call of names such as Sommerfeld, Groth, Debye, Ewald and
Laue that would define much of the early years of the subject. Laue arrived in
Munich in 1909 with interests that ranged across the whole of physics from special
relativity and optics to thermodynamics and the theory of radiation. Prompted by
Ewald, Laue’s intuition led him to an analysis of the first diffraction data collected
by his assistants, Friedrich and Knipping. The first diffraction pattern (Fig. 1.1a) was
essentially uninterpretable but within weeks the improvement in data quality was not
only remarkable but, crucially, also led to an interpretable solution [2] (Fig. 1.1b, c)
and the 1914 Nobel Prize in Physics – but only to Laue! The first crystal structure
is, however, attributed to the father and son team, W.H. and W.L. Bragg.

On October 18, 1912, only a few months after the first diffraction patterns had
been successfully collected, the elder Bragg published his first paper [3] offering
an interpretation of the zinc-blended diffraction data published by Laue, Friedrich
and Knipping. It was, however, the younger Bragg who, while still a student at
Cambridge, came up with a correct analysis of the origins of the diffraction data [4].
Shortly afterwards, the Braggs collected single crystal data and solved the crystal
structures of NaCl, KCl, KBr and KI [5] – four crystal structures in the first paper
and the Nobel Prize in Physics within 2 years in 1915! Powder diffraction, with
its lower intensities, had to wait only a little longer. Some of the first clues are to
be found in the 1914 Nobel Prize lecture [6] delivered by Max von Laue who said
“Since 1912 much has been done in both fields, and in both sectors W.L. Bragg and
W.H. Bragg have taken the first important step beyond the investigations carried out
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Fig. 1.2 Powder diffraction photographs of (a) diamond and (b) graphite (Hull 10)

at Munich. It would range far too wide if I were, at this juncture, to compile a fairly
comprehensive list of all the researchers who have gained distinction in that research
work. I can mention here only the transformation of the process, which proved to
be of great importance for the further conduct of the experiments and in which
Debye transferred the examination of beautiful, well-formed crystal fragments –
which sometimes are obtainable only with considerable difficulty – to research into
the finest possible crystal powder.”

1.1.2 The First Powder Diffraction Measurements

X-ray powder diffraction has two separate beginnings in Germany, again in Munich,
and almost simultaneously in the United States. In Munich, Peter Debye determined
that not only powders but also liquids should exhibit distinctive diffraction patterns
[7]. Along with Paul Scherrer, Debye performed the first powder diffraction
measurements [8] discovering, inter alia, the crystal structure of graphite. The first
measurements in the United States happened in very different circumstances –
not in a university but in the General Electric Research Laboratory (GERL) in
Schenectady, New York by Albert Hull [9]. A chance comment about the unsolved
structure of iron by W.H. Bragg, who visited GERL in 1914, drew Hull into the
field of X-ray structural analysis and rapidly, although World War 1 interrupted his
efforts, he developed many of the essentials of the powder diffraction technique
using photographic techniques (see Fig. 1.2) and discussed multi-phase analysis,
preferred orientation, the need for sample rotation, wavelength filters, absorption,
the importance of sample preparation and the concept of a “lattice constant”.
The three principal papers [10–12] that Hull published are significant tours-de-
force – his first paper alone described the correct crystal structures of iron, silicon,
aluminium, magnesium, sodium, lithium, nickel, diamond and graphite. While
Debye and Scherrer reported the 3R structure of graphite (space group R-3m with
hexagonal lattice constants, a D 2.516 Å and c D 10.206 Å), Hull reported the more
familiar 2H structure which adopts space group P63/mmc with a D 2.47 Å and
c D 6.80 Å.

Hull, like Debye, did not stay long in powder diffraction research (indeed, his
short time in powder diffraction was essentially a diversion from his research on
thermionic valves) but moved on in GERL to invent, among other things, the
magnetron which was later used not only to create the microwave oven but also
by the British military in the development of radar.
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Fig. 1.3 (a) Atom distribution in a graphite crystal and (b) Atom distribution in carbon black, “a
mesomorphic form of carbon, consisting of single graphite layers stacked roughly parallel to one
another” [15]. It is noteworthy that while the data are not of the quality obtained with modern
instrumentation, the experimental and analytical rigour are all of a standard to aspire!

1.1.3 Towards Disorder

Crystallography developed rapidly in the 1920s and 1930s with an increasing
awareness of the power of the technique, particularly when single crystals were
available. Powder diffraction, although a powerful tool for fingerprinting and phase
identification, suffered (and still does) from a paucity of information compared
with what is available from single crystal data. One person deserves a special
mention in the development of the powder diffraction technique over the next
30 years and he took the technique in the direction of disorder. Carbon, again, is
the principal element of the story; Bertram Warren [13, 14] was the scientist. The
Fourier Inversion Method, which provides the pair distribution function, had applied
to the diffraction patterns of glass, and Warren was keen to apply the method to
other forms of amorphous matter. Carbon black was presumed to be amorphous and
Warren collected data from a sample that happened to be in the laboratory. Knowing
that carbon black diffracted poorly, he discovered, to his surprise, that the diffraction
pattern, when Fourier inverted to provide the atom-atom separations, resulted in a
distribution that was remarkably similar to graphite (Fig. 1.3). He concluded, in
his first paper on the subject published in 1934 [15], that carbon black was not a
truly amorphous form of carbon stating that “the existence of single graphite layers
is very definite and therefore the material is at least mesomorphic. The diffraction
data indicate a heterogeneous mixture containing particles which range from single
graphite layers up to graphite crystals several layers thick.” It was a topic that
he returned to throughout his career [16–18] – his last carbon-black paper was
published in 1965.

Very significantly, Warren discovered that materials did not fit into neatly defined
categories of crystalline and amorphous. Powder diffraction is not simply the
domain of crystalline systems – or should not be – and a major objective of this
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Fig. 1.4 Montage of powder X-ray diffraction patterns calculated as a function of the probability
that layers in a diamond crystal will stack in the cubic diamond sequence. Thus ’D 0 corresponds
to pure lonsdaleite and ’D 1 corresponds to pure diamond [19]

school is to remove the artificial boundaries in the solid-state between crystalline,
poorly crystalline and amorphous. Powder diffraction is not synonymous with the
Rietveld method – but we are ahead of ourselves – that is the next topic!

As a postscript to this section, it is worth noting that there has been significant
subsequent development in the analysis of disordered and partially ordered systems.
Deem et al. (1991) [19] produced an elegant program for calculating the diffraction
patterns of faulted and strained crystals. Figure 1.4 continues the theme of carbon
and illustrates the continuous variation of diffraction pattern from diamond to
lonsdaleite, the hexagonal variant of diamond. The peak broadening and appearance
and disappearance of peaks are particularly noteworthy. Other major developments
have been reviewed by Egami and Billinge [20] and Scardi et al. [21].

1.1.4 Neutron Powder Diffraction and the Rietveld Method

The first neutron diffraction experiments were performed in 1945 by Ernest O.
Wollan using the Graphite Reactor at Oak Ridge National Laboratory, USA. He
was joined shortly afterwards (June 1946) by Clifford Shull, and together they
established the basic principles of the technique and applied it successfully to
many different materials, addressing problems such as the structure of ice and
the microscopic arrangements of magnetic moments in materials [22]. For this
achievement, Shull was awarded one half of the 1994 Nobel Prize in Physics with
Bertram Brockhouse (who received the reward for his research on neutron triple-axis
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spectrometers and inelastic neutron scattering). Wollan died in 1984 and did not
receive the prize that was rightfully his. It is said that the unusually long delay
in awarding the prize was due to the politically incorrect association of neutron
diffraction analysis with nuclear power!

While Shull and Wollan performed the first neutron powder diffraction measure-
ments, the most significant contribution from neutron diffraction is almost certainly
the development of the structure refinement using the full diffraction profile by Hugo
Rietveld in the late 1960s [23, 24]. Fame is assured when one’s name becomes an
adjective and the technique that is ubiquitous today and has enabled the development
of the full power of the powder diffraction method is, of course, now called the
Rietveld method [25]. Rietveld’s two principal papers [23, 24] are elegantly written
and the abstract of his 1969 paper succinctly describes the challenge and his
solution.

“A structure refinement method is described which does not use integrated
neutron powder intensities, single or overlapping, but employs directly the profile
intensities obtained from step-scanning measurements of the powder diagram.
Nuclear as well as magnetic structures can be refined, the latter only when their
magnetic unit cell is equal to, or a multiple of, the nuclear cell. The least-squares
refinement procedure allows, with a simple code, the introduction of linear or
quadratic constraints between the parameters.”

Rietveld’s original program not only enabled the refinement of chemical and
magnetic structures but also contained constraints, preferred orientation, peak
asymmetry, essentially all the current definitions of R-factors, and the generally
used formulation of Fobs. He even stated that the method can, in principle, also
be extended to X-ray powder diagrams, if a satisfactory function can be found to
describe the peak profiles. This had to wait a further decade and then, as with
the beginnings of powder diffraction, two groups [26, 27] independently adapted
the technique to X-ray data. Malmros and Thomas in the University of Uppsala,
Sweden applied the Rietveld method to Guinier-Hagg film data while Khattak and
Cox at Brookhaven National Laboratory, USA, demonstrated its feasibility with a
conventional focussing X-ray powder diffractometer.

1.1.5 Back to Carbon

The principal purpose of this introductory talk has been to present a short – and
very selective – history of the development of powder diffraction. Modern powder
diffraction – the topic of this 44th International School of Crystallography – spans
an enormous breadth of topics [28–31] from archaeology and applied engineering
through to pharmaceutical science and protein crystallography. Given this range
of modern powder diffraction, it is probably best to finish the story a few years
ago. Carbon, in the form of graphite, carbon black, diamond and lonsdaleite have
all featured in the decades of powder diffraction and so it is appropriate to finish
with the crystal structure of C60, buckminsterfullerene, the most symmetrical of all
molecules.
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Fig. 1.5 (After [37]) (a) the orientation distribution function in the orientationally disordered high
temperature phase. White represents excess density and blue low density – the overall deviation
from spherical symmetry is only ca.10%; (b) and (c) the two distinct C60 orientations in the low-
temperature phase. The orientation with pentagons (b) aligned along �110 directions pointing
towards the CDC bonds are lower in energy than the “hexagon” orientation (c). This energy
difference is calculated from powder diffraction data alone (color figure online)

C60 was first identified in a molecular beam in 1985 by Kroto and colleagues
[32] who confirmed its truncated dodecahedral shape and icosahedral symmetry.
However, it was the discovery of a synthesis route for bulk C60 [33] that led
to the dramatic development of fullerenes and subsequently carbon nanotubes.
The crystal structure was soon identified to adopt a face-centred cubic lattice
[34–36] that contained orientationally disordered molecules at room temperature
which ordered below 249 K to a primitive cubic Pa3 symmetry. Neutron powder
diffraction measurements [37] not only determined the subtle deviations from
spherical behaviour in the high temperature phase (Fig. 1.5a) but also revealed
an orientational glass transition which was explained by the presence of two
crystallographically distinct orientations (Fig. 1.5b, c).

The most symmetrical of molecules is itself two-fold disordered in the ordered
low-temperature phase and this disorder is paradoxically a consequence of the
very high molecular symmetry. More recent neutron powder diffraction analysis
[38] has not only obtained very precise measurements of these orientations at
4 K but has also determined the single and double bond lengths to an extreme
precision (see Table 1.1) and modelled the orientational single-particle diffuse
scattering (Fig. 1.6). These latest results would not have been possible without
substantial developments in instrumentation, driven in significant part by advances
in electronics (see Sect. 1.2), but also by progress in powder diffraction software –
in this case, specifically the implementation of computer algebra in TOPAS [39]
(see Table 1.2).

1.2 Powder Diffraction – The Power of Moore’s Law

The previous section noted the importance of advances in computing power in
the development of the powder diffraction method. It would have been impossible
to utilise the Rietveld method without computers and early measurements were
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Fig. 1.6 (a) Observed and calculated 2007 HRPD neutron powder diffraction of C60 at 4 K (top)
the full range of data from 0.3 to 2.0 Å and (bottom) the new range available in 2007 from 0.3 to
0.6 Å containing �1,500 new reflections, (b) the background fitted in TOPAS as part of a Rietveld
refinement using a single molecule diffuse scattering model to a Qmax of 21 Å�1 [38]
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Table 1.1 Structural data for C60 obtained from HRPD, ISIS in 1991 and 2007

Year a (Å) bd(Å) bs(Å) �p (o) �h (o) np

1991 14.04212(4) 1.391(18) 1.455(12) 98 (fixed) 38 (fixed) 0.838(2)
2007 14.04225(2) 1.39745(30) 1.44953(15) 99.751(3) 41.915(15) 0.8276(9)

a, bd and bd are the 4 K lattice constant and double and single bond lengths while �p
,�h and

np are the rotation angles along 111 for “pentagon” and “hexagon” orientation and the fraction
of “pentagon” orientation at 5 K. The increase in 2007 precision is a consequence of the larger
Q range and also the refinement parameterisation

Table 1.2 Part of the TOPAS input file for the 4 K refinement of C60 that defines
all atomic positions in the standard orientation based solely on C–C and CDC bond
lengths. A single rotation angle C60 is required to define the atomic coordinates of
each of the “pentagon” and “hexagon” orientations. The script highlights the power
of computer algebra in TOPAS to define the refinement in terms of the appropriate
parameters [38]

restricted by both the computer speed and also the extremely small computer
memories compared with modern-day machines. Initially, a single cycle of Rietveld
analysis could be measured in hours and diffraction data collection was limited to
a few thousand datapoints per day. Figure 1.7 shows the increase in data collection
rates for neutron powder diffraction instruments since 1947. The graph follows an
exponential Moore’s Law growth suggesting that computer memory is the limiting
factor, rather than neutron sources, at the frontiers of neutron scattering. Time-of-
flight instruments such as GEM and WISH require massive raw files for collecting
data as a function of both scattering angle and time of flight. These instruments
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Fig. 1.7 The exponential rise in raw data collection rates for neutron powder diffraction. The early
measurements at Harwell by George Bacon were written down by hand – around 100 data points
were collected each day. The Petten measurements are attributed to Hugo Rietveld and mark the
beginning of the Rietveld method

would be impossible to build and operate without massive data storage and rapid
data reduction facilities. The ability to store and collate data rapidly is also crucial
in the development of ultra-fast X-ray powder diffraction measurements.

1.3 The Four Most Important Decades – From the Ångstrom
to the Micron – The Domain of Powder Diffraction

In the previous sections, we have discussed the development of powder diffraction
over the decades of the twentieth century and emphasised the central importance of
the decades of growth in computer speed and memory. However, the decades of the
twentieth century have not only transformed powder diffraction but all of science
and this has been fuelled by the growth in electronics that has taken us, within the
span of a single scientific career, from kilobytes to megabytes, gigabytes, terabytes
and, just over the horizon, petabytes. But there is another set of decades, the decades
of length scales that are also worthy of mention. The shortest length-scale that has
meaning in our universe is the Planck length, `P D p

(-hG/c3), which represents the
granularity of space itself. Coming in at around 1.6 � 10�35 m., it is unbelievably
small and, of course, at present is a conjecture and not proven. The smallest distance
that has been measured and probed comes in at �10�20 m., around 10�5 of the
diameter of a proton. This is, of course, the domain of particle physics which
represents our quest to understand the fundamental particles and interactions and the
underlying laws that govern our universe. At the other length of the length spectrum
is the dimension of the visible universe itself. Multiplying the estimated age of
the universe, 13.75 ˙ 0.11 billion years, by the speed of light leads to a massive
1.3 � 1026 m. This is domain of astronomy and cosmology where we can observe
and understand but cannot touch nor change. Within the 61 orders of magnitude
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from the Planck length to the size of the visible universe, there are four decades
from the ångstrom to the micron that already dominate the science of the twenty-
first century and will continue to define our future technological developments. The
ability to synthesise, visualise, understand and modify objects on these length-scales
place powder diffraction, along with other techniques such as electron microscopy,
at the centre of the discovery and development of twenty-first century science and
technology.
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Chapter 2
Rietveld Refinement

Peter W. Stephens

Abstract Rietveld refinement is generally the last stage of structure determination.
The determination of unknown structures generally proceeds through a series of
hypotheses of lattice, space group, atomic structure, each of which is subject to
subsequent verification, so Rietveld refinement is the final test of the correctness of
a structure. Unfortunately, there are not such clear tests of the veracity of a Rietveld
refinement as there are of single crystal structures, and so a clear understanding of
the process is required to judge a correct solution. This chapter will not directly
address another frequent use of the technique, quantitative phase analysis, although
many of the principles discussed here are relevant. There are any number of widely
used programs and this chapter emphasizes the general features of the process over
specific implementations.

2.1 Introduction

In powder diffraction, unlike a single crystal experiment, the 3D diffraction pattern
is compressed into one dimension. While each (hkl) diffraction peak occupies
a specific position, the density of peaks rapidly rises with increasing diffraction
angle 2� (or decreasing time of flight in a pulsed neutron experiment) that most
peaks are overlapped, and it is a non-trivial task to separate their intensities.1 A
nice example of a pre-Rietveld structure determination from powder x-ray data

1For notational convenience I will restrict this discussion to angle-dispersive experiments, with
absolutely no prejudice against pulsed neutron techniques.
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is Zachariasen’s (1951) solution of cubic Pu2C3 [1]. The structure was solved by
determining the intensity of a set of diffraction peaks, and then choosing space group
and coordinate(s) to fit. This works well for reasonably high symmetry, for relatively
simple structures (only the Pu atom was considered in matching intensities, and
the number and location of C atoms was inferred), and for people as ingenious as
Zachariasen.

The Rietveld method, in use since 1969, goes the other direction [2]. From a
hypothesized structure, one calculates the diffraction pattern to compare with the
measured diffraction profile, i.e., intensity as a function of 2� in a step scan. That
allows a treatment of overlapping peaks which, we will see, allows the maximum
amount of information to be extracted from an experimental pattern. This was
originally done for relatively low resolution CW neutron data from a reactor,
for which it was possible to give a fairly accurate model lineshape. In general,
one imagines that the lineshape, which depends on a convolution of instrumental
parameters and sample microstructure, can be specified more or less independently
of the crystal structure (peak positions and intensities), so that a simultaneous
refinement of lineshape and structure can be factored into reliable information about
each, separately. We will return to this point subsequently.

For the purpose of this discussion, we assume that an approximate structural
model (lattice parameters, space group, atom positions) is at hand. Our task is to
optimize those various parameters, while keeping a close watch for any symptoms
that the starting point was incorrect and needs to be revisited. The information in a
powder diffraction pattern consists of:

• Peak positions, which depend on lattice dimensions and space group,
• Peak intensities, which depend on the distribution of atoms within the unit cell,
• Peak shapes, which are a convolution of instrumental parameters and the

microstructure of the sample.

Crystallographic structure starts with the unit cell, defined by translation vectors
a, b, c. Diffraction peaks form a reciprocal lattice spanned by vectors a*, b*, c*
such that any diffraction peak can be specified as Q D ha* C kb* C lc*, defined as
a* D 2 (b � c)/a�(b � c), etc. The diffracting planes for each reflection are separated
by d D 2 /jQj, and the diffraction condition that the vector difference between
incident and diffracted radiation wave vectors ki and kf (of equal magnitude 2 /�) is
Q D kf � ki is equivalent to Bragg’s law, œD 2dsin� . The above definitions are those
commonly used in the physics community; others frequently drop all of the factors
of 2  in the equations and definitions in the foregoing paragraph. The position of
a peak in a powder pattern can be obtained from the magnitude of Q, while the
equations above can be put in the convenient form

sin2� D �
�2=4d2

� D �
�2=4

� �
Ah2 C Bk2 C C l2 CDkl C Ehl C Fhk

�
;

where the metric parameters A, : : : , F depend only on the real (or reciprocal) lattice
parameters.
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In a powder pattern, the integrated intensity of a given peak is

I.hkl/ D cMhkl

ˇ
ˇ
ˇ
ˇ̌
ˇ

X

atomsj

fj exp 2�i Œhx C ky C lz� exp �2W
ˇ
ˇ
ˇ
ˇ̌
ˇ

2

gLP.�/

Here c is an overall scale factor, Mhkl is the multiplicity of the given peak, LP is
the Lorentz-Polarization factor, e.g., LP.�/ D 1=.sin � sin 2�/ for x-rays polarized
perpendicular to the scattering plane and a detector scanning 2� with constant solid
angle. fj is the atomic scattering factor of the jth atom, including consideration of
partial or mixed occupancy, and exp �2 W is the Debye-Waller factor. The sum runs
over all atoms in the unit cell, including symmetry equivalent positions generated
by the space group. Details of the derivation and implementation of this equation
are given in any comprehensive crystallography text, e.g., Giacovazzo [3].

2.2 Lineshape

In order to obtain a computed powder pattern, Ycalc(2�), one must model the peak
shape, taking into account contributions both of the sample microstructure and the
diffractometer. Treatment of all of these effects is well beyond the scope of this
paper, but we can briefly summarize the usual approach to Rietveld refinement. The
comprehensive text edited by Dinnebier and Billinge contains much more detail [4].

Consider the case of an ideal lattice, truncated to spherical shape. Figure 2.1
shows the powder-averaged lineshape, computed from the Debye equation, for a
sphere with a diameter of 100 lattice spacings. The full width at half maximum of
this peak is � D 0.011 � 2 /a in Q.

The Scherrer equation, L D Kœ/�2™ cos™, is frequently used to estimate crystallite
size L, where K is a numerical constant having something to do with the (assumed)
shape of the grains and �2™ is the diffraction peak FWHM in radians. The numerical
computation that led to Fig. 2.1 gives K � 1.10 for a particle of spherical shape.
Powder samples with a single grain size are rare in practice; a distribution of
grain sizes will wash out the observed peak shape function and further obscure the
relationship between peak width and grain size. For almost all Rietveld refinements
of crystal structures, the microstructural details that could be extracted from the
lineshape are secondary to the desire to have a simple analytical model, and so one
can imagine that the ideal lineshape function might be modeled as a Gaussian or
Lorentzian. Figure 2.1 shows Gaussian and Lorentzian lineshapes of the same full
width at half maximum, from which it is obvious that the one has tails that are too
weak, and the other, too strong. It is generally satisfactory to use an interpolation of
the two, for example, a pseudo-Voigt centered at 2™0,

f .2�/ D 	
�=4�

.2� � 2�0/2 C �2=4
C .1 � 	/

p
4 ln 2

�
p
�

exp �
 
.2� � 2�0/

2

�2
4 ln 2

!
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Fig. 2.1 Computed powder lineshape of the (100) peak of a spherical grain, 100 atoms in diameter

normalized to unit integrated intensity, with full width at half maximum 
 , and
interpolation parameter 	.

Another sample dependent effect frequently encountered is microstrain, whereby
the peak width in Q is proportional to the diffraction order, i.e., the width in 2™
grows in proportion to tan� . One could rationalize that effect by imagining that some
form of disorder causes each crystallite to have a slightly different lattice parameter.
A more microscopically satisfying description would come from considering the
internal strains within each individual crystallite caused by lattice defects, and then
computing the diffraction pattern so produced. However, this requires a lot more
effort than is usually justified for a crystal structure analysis.

Especially in high resolution measurements, it is frequently found that fitting
experimental lineshapes require more elaborate models of size or strain, e.g., to take
account of anisotropic broadening; these are available in most Rietveld software,
and are beyond the scope of the current treatment. Combining the effects of size
and strain, and imagining that contributions to the width of a diffraction peak can be
modeled as a convolution, it is plausible that the observed width in diffraction angle
2� could be written as �2� D X= cos � C Y tan � , where X and Y are parameters
that represent the size and strain contributions. (This expression is justified if both
contributions are regarded as Lorentzians, whose widths add directly in convolution.
For Gaussians, the widths would add in quadrature).

The first application of the Rietveld method was to powder neutron diffraction
at a CW source, where the instrumental lineshape is essentially a Gaussian whose
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Fig. 2.2 Sketch illustrating the origin of low-angle tails on diffraction peaks due to axial
divergence

variance depends on the diffraction angle as �2 D U tan2� C V tan � C W , where
the parameters U, V, and W depend on the width of the collimators, and d-spacings
and mosaics of the monochromator [5]. X-ray spectral lines are combinations of
several Lorentzians in wavelength, and in high resolution diffractometers with
perfect crystals as monochromators and/or analyzers, the intrinsic reflection curves
have long (�™�2) tails. The approach of convoluting the contribution of each optical
element, known as fundamental parameters, was described in detail by Klug and
Alexander [6]. The utility of fundamental parameters approach has greatly expanded
with modern computational techniques, exemplified by Cheary and Coelho [7].
While such methods are extremely powerful, they are generally beyond the scope of
this chapter, and so we will restrict our attention to the more widely used empirical
lineshape models.

One important aberration in most powder diffractometers is axial divergence.
This produces asymmetric peaks, especially at low diffraction angles. The effect
may be visualized as shown in Fig. 2.2, where the diffracted radiation from a
given order radiates from the sample as a cone. The edges of the detector slit
intercept part of that cone below the nominal diffraction angle, and so there is a tail
extending to the low angle side of the peak, which is especially pronounced for low
diffraction angles. Several analytical treatments of this effect have been published,
and it is incorporated in modern Rietveld programs. In the opinion of this author,
unsubstantiated numerical approaches to this effect, such as the split-Pearson VII
lineshape, should be avoided.

A good point of reference is the lineshape function used in GSAS [8], which
is an approximate (pseudo-Voigt) convolution of a Gaussian with variance �2 D
U tan2�CV tan �CW CP=cos2� with a Lorentzian of full width at half maximum
(FWHM) � D X= cos � C Y tan � and an asymmetric function to describe axial
divergence of the diffracted beam. The origin of these parameters can be traced
to elements of the discussion above, although it is not at all clear how to unravel
information about sample microstructure from their converged values. Rietveld
codes usually incorporate other parameters for instrumental corrections such as
detector offset angle, sample displacement, etc.
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Since the purpose of Rietveld refinement is to adjust various structural and
lineshape parameters to obtain the best agreement between model and data, it is
important to be clear on the figure of merit used. Suppose that the data consists
of x-ray intensities collected in a step scan of 2™, so that the observed intensity
and standard error at each point are Yobs(2�) and �2� respectively. (Here we are
regarding 2� as an index spanning the discrete set of measured data points). If
Yobs(2�) is the number of counts detected, �2� is simply (Yobs(2�))1/2, but it is
frequently the case that the intensity is not constant through the scan, e.g., for a
synchrotron or pulsed neutron source, or if a variable counting time data collection
strategy is in use. In that case, Yobs(2�) must be normalized to the dose of radiation
reaching the sample while the data point at 2� was being integrated, and �2� scaled
by the same factor. If the computed profile is given by Ycalc(2�), the familiar reduced
2 parameter is given by

2 D .N � P/�1
NX

2�

�
Y obs.2�/ � Y calc.2�/

�2�

�2

;

where N is the number of points in the data set and P is the number of parameters
adjusted in the fit. If the deviation between model and observed data is due to the
counting statistics alone, one expects 2 to be very close to unity. Another parameter
frequently used is the weighted profile R-factor, defined as

Rwp D
X

2�

�
Y obs.2�/ � Y calc.2�/

�2�

�2,X

2�

�
Y obs.2�/

�2�

�2

Again, if differences between model and data are purely due to counting
statistics, Rwp should approach the expected R-factor, Rexp, which is given by

Rexp D .N � P /
,
X

2�

�
Y obs .2�/

�2�

�2

It is evident that Rwp=Rexp D p
2, a number which is also referred to as the

“goodness of fit” (GOF).
An obvious question is whether there is some threshold 2 or Rwp which indicates

a correct solution. The answer is no, and this is a source of consternation to people
who try to publish refinements, as well as journal editors and referees, who are
usually used to the clearer diagnostic signatures of a valid structure from single
crystal data. Indeed, in comparing two different Rietveld refinements, even of the
same sample, it is not necessarily the case that a better figure of merit indicates
superior structural results. This arises partly because the quality of a Rietveld fit
depends on details of the data that have little to do with the structure, and partly



2 Rietveld Refinement 21

because most of the information content in a diffraction pattern is at the higher
angles where peaks are generally weaker and more strongly overlapped, but likely
have less effect on the refinement statistics than a few strong low angle peaks. For
this reason, it is recommended to spend more data collection time on the high angle
peaks for the refinement of any complicated material. These issues are discussed in
greater detail in several useful papers, e.g., references [9] and [10].

In refining a structure, one must be prepared to examine both the fit and
the reasonableness of the result in detail. A paper entitled “Rietveld refinement
of a wrong crystal structure” provides a cautionary example, although there are
significant danger signals in the example discussed there [11].

2.3 Intensity Estimation and Extraction from Powder
Diffraction Pattern

The Rietveld method offers an approximate technique to estimate intensities of
partially overlapping peaks from the recorded profile, based in part on the structural
model. Imagine that the computed, normalized profile function of the nth diffraction
peak is given by fn(2™), so that the computed profile at a given point of the profile is
given by

Y calc.2�/ D
X

2�

In fn.2�/C B.2�/

where B is the background function, and In is the integrated intensity of the nth

diffraction peak. Measured intensity at a given profile point is attributed to all
diffraction peaks in proportion to their calculated contribution at that point, i.e.,

I obsn D
X

2�

�
Y obsi .2�/ � B.2�/� I calcn fn.2�/P

m

I calcm fm.2�/

One can then compute the standard crystallographic Bragg R factor comparing
“observed” and computed intensities,

RB D
X

n

jI obsn � I calcn j
,
X

n

I obsn :

Of course, the estimated intensities are obviously biased by the optimistic model-
based division of intensity of unresolved peaks.

It is frequently desired to “deconstruct” a powder diffraction profile into a set
of integrated intensities of the diffraction peaks present. Armel Le Bail noted



22 P.W. Stephens

that the Rietveld intensity estimation can be used in an iterative fashion to obtain
estimates of the integrated intensities of all peaks in a powder pattern [12].
Cycles of refinement of profile, lattice, and background parameters alternate with
reassignments of the set of integrated intensities, and the process is repeated until
it converges. Computationally, this is very convenient because most of the work
is already performed in the Rietveld program. The method is widely used and
has had a tremendous impact on the techniques of structure determination from
powder data.

Another method of intensity extraction was pioneered by Pawley, who treated the
set of diffraction peak intensities fIobsg as parameters in a least squares fit, along side
of the profile, lattice, and background parameters [13]. This idea faces the technical
obstacle of instability of the refinement when poorly peaks are present. Indeed, the
usual Hessian matrix is singular if two peaks have the same position, as occurs, for
example, with cubic (333) and (511) reflections. Until relatively recently (�10y), the
Pawley method was less used than the Le Bail method, but it is now incorporated
into several widely-used Rietveld codes. One direct advantage of the Pawley method
is that it provides estimates of the correlation between extracted intensities. This can
be used to compare the quality of a structural model much more rapidly than by
computing an entire profile Rwp [14]. Indeed, it has been shown that no information
is lost in reducing a powder diffraction pattern to Pawley intensities and covariance
matrix A, so that a quality of fit parameter

2 D
X

n;m

�
I obsn � I calcn

��
A�1�

nm

�
I obsm � I calcm

�

is just as good as a full pattern Rietveld fit to refine a model (with some subtleties
associated with the background) [15]. A similar method has been applied to
intensities obtained from a Le Bail fit [16].

Whether the Le Bail or the Pawley method is used, a lineshape fit to an
experimental data set is an important intermediate step in determining a crystal
structure from powder data. It generally allows accurate refinement of lattice
parameters, and a visual inspection can reveal whether a proposed lattice and space
group is correct, as well as the presence of impurities. Rwp of a Pawley or Le
Bail fit can be regarded as the target of a correct structural refinement, insofar as
the difference between such a fit and the structural Rietveld refinement lie in the
integrated intensities of the diffraction lines.

We now briefly illustrate some of the preceding points by analysis of a sample of
Rb3C60 [17]. Figure 2.3a shows the data, collected at a wavelength of 0.69970 Å at
beamline X3B1 at the NSLS, in 2002. The experimental conditions were a double
crystal Si(111) monochromator and a Ge(111) analyzer, with no focusing optics.
The sample was in a 1 mm diameter capillary, spun about its axis to improve the
powder statistics. The illuminated area extended about 8 mm along the capillary,
and the horizontal (out of scattering plane) slits before the detector were also 8 mm
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Fig. 2.3 (a) Pawley fit to Rb3C60 PXRD data, based on model described in text. Difference curves
are shown both in measured intensity (with the same vertical scale changes as the data and model)
and as difference divided by the standard uncertainty of each data point (from counting statistics).
(b) Rietveld refinement in space group FmN3. (c) Rietveld refinement in space group FmN3m
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wide, about 300 mm from the sample. Visual inspection of the data reveals that it
has face-centered cubic structure, and shows clearly the aforementioned low angle
asymmetry.

Figure 2.3a actually shows a Pawley fit to the data, with axial divergence
refined to a value consistent with the known diffractometer geometry, no observable
size broadening, and diffraction FWHM proportional to tan™ with roughly equal
Gaussian and Lorentzian components. Actually, the strain broadening is slightly
anisotropic, with peaks about 30% broader along the f100g directions than along
f111g. This can be modeled phenomenologically, and, at least in the case of
cubic materials, qualitatively understood as arising from the elastic response to
random internal stresses [18]. The background is a quadratic polynomial plus a
term in 1/™, plus a broad (pseudo-Voigt) peak centered at 11.5ı. This Pawley fit
has Rwp D 3.61%, 2 D 2.12, which, frankly, is about as good as it gets.

With the benefit of hindsight, we can immediately solve the structure. The lattice
parameter (14.424 Å) is slightly larger than that of an fcc crystal of C60, and a
moment’s consideration of the cubic close packing of spheres shows that there are
two tetrahedral and one octahedral spaces per sphere, which are clearly the sites
of the Rb cations, with fractional coordinates (¼, ¼, ¼) and (½, 0, 0) respectively.
Examination of a soccer ball leads to the conclusion that it fits naturally into a site
of cubic point symmetry, with three-fold axes at the centers of hexagons pointing
in the [111] directions, and two-fold axes, at the center of the stitching between
two hexagons, pointing in [100] directions. That leads to three crystallographically
distinct sites for C atoms: two in general positions (x, y, z), and one on the
coordinate plane (0, y, z). Space group FmN3 seems the obvious choice, with a
multiplicity of 96 in the general position and 48 in the y-z plane, for a total of
4 � 60 carbon atoms. Throwing three carbon atoms at random positions, along with
the two fixed cations, into a Rietveld program (here, TOPAS, ref. [19]), quickly
converges to the decent-looking solution shown in Fig. 2.3b. It was previously
noted that even subtle problems in a Rietveld refinement can reveal fundamentally
incorrect assumptions. As it happens, Fig. 2.3b is based on an incorrect space group.
The fullerene molecule can be rotated by 90ı without changing any of the Rb-
C distances, which suggests that it could be disordered. Indeed, going to space
group FmN3m with 50% occupancy of each C position embodies this disorder, and
produces the significantly better fit shown in Fig. 2.3c. Despite the small change in
refinement statistics, the better fit is clearly evident, especially at high angles. (Note
to skeptics – this disorder appears much more clearly in neutron refinements of
Rb3C60, as well as in the isostructural K3C60). The refined bond distances, shown
along with refinement statistics in Table 2.1, are also somewhat more plausible
in the disordered model. We will stop short of considering further improvements
in the model, such as cation vacancies and anisotropic thermal parameters, illus-
trating the maxim that no Rietveld refinement is ever entirely finished, merely
abandoned.
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Table 2.1 Refinement
statistics and derived bond
lengths of Rb3C60 fits shown
in Fig. 2.3

Pawley FmN3 FmN3m
R wp (%) 3.61 4:53 4:00

 2 2.12 3:26 2:55

R B (%) 0.43 2:31 1:26

Double bond (Å) 1:346.5/ 1:389.8/

Double bond (Å) 1:347.7/ 1:405.6/

Single bond (Å) 1:418.5/ 1:442.5/

Single bond (Å) 1:494.5/ 1:443.5/

Single bond (Å) 1:504.5/ 1:467.7/

Pentagon (deg) 105:0.3/ 103:0.4/

Pentagon (deg) 109:9.4/ 107:1.2/

Pentagon (deg) 110:0.2/ 111:4.4/

Hexagon (deg) 118:2.2/ 117:7.3/

Hexagon (deg) 118:4.3/ 119:2.4/

Hexagon (deg) 119:9.2/ 120:4.2/

Hexagon (deg) 121:6.3/ 120:8.4/

Hexagon (deg) 121:9.4/ 121:9.2/
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Chapter 3
Structure Solution – An Overview

Lynne B. McCusker and Christian Baerlocher

Abstract The structure solution process consists of a series of steps, each requiring
decisions and each depending upon the previous ones having been performed
correctly. The preliminary steps involve selecting the best sample, choosing the
most appropriate radiation, collecting the data, indexing the pattern, determining the
most probable space group(s), and estimating the profile parameters. If extracted
intensities are to be used for structure solution, something must be done about
the overlapping reflections. They can be equipartitioned, or, if necessary, more
sophisticated approaches can be applied to improve the partitioning. At this point,
the structure solution algorithm most appropriate for the material and the data must
be chosen and applied. Finally, the (partial) structural model has to be completed
and refined. The art of structure determination from powder diffraction data lies in
finding a viable path through the maze of possibilities.

3.1 Introduction

There has been a veritable explosion in the development of structure determination
methodology for powder diffraction data in the last 25 years. What used to be
considered a fairly reliable technique for phase identification and perhaps unit
cell determination, has become an almost standard one for complete structure
analysis: from the determination of a unit cell and space group, to the generation
of an approximate structure, to the refinement of that structure. What has caused
this modest technique to emerge from the shadow of its immensely superior
single-crystal cousin? Certainly, the advances in instrumentation (from radiation
sources to detectors and everything in between) and the phenomenal increase in

L.B. McCusker (�) • C. Baerlocher
Laboratory of Crystallography, ETH Zurich, CH-8093 Zurich, Switzerland
e-mail: lynne.mccusker@mat.ethz.ch; Ch.Baerlocher@mat.ethz.ch

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 3,
© Springer ScienceCBusiness Media Dordrecht 2012

27



28 L.B. McCusker and C. Baerlocher

readily available computing power have made many of the developments possible.
However, the driving force has come from scientists from disciplines as diverse as
physics, chemistry, biology, materials science and geology, who need to know the
structures of their polycrystalline materials.

Perhaps the beginning can be traced back to the introduction of the Rietveld
method of structure refinement in 1969 [1]. It was soon realized that the structural
information hidden in a powder diffraction pattern was not only substantial, but
retrievable. Then it was only a small step to ask if there was enough, not only
to refine an approximate structure, but also to determine one. The fact that the
Rietveld method could be adapted from neutrons to X-rays also played a key role
here, because X-ray powder diffraction patterns are much easier to come by [2].
Once the first few structure solutions were reported, an increasing number of
crystallographers took up the challenge. Even today, they continue to push the limits
of powder structure analysis to address increasingly complex problems. Three rich
sources of information on this topic, besides this conference, can be found in the
book entitled Structure Determination from Powder Diffraction Data, first published
in 2002 [3], a special issue of Z. Kristallogr. devoted to the same topic, published in
2004 [4], and a recent review by David and Shankland [5].

The problems to be overcome in structure determination from powder diffraction
data are twofold: (1) the basic phase problem, which is central to all crystallographic
structure analyses, whether the data be from a single-crystal or a powder diffraction
experiment, and (2) the reflection overlap problem, which is specific to powder
diffraction data. No single approach to these two problems has emerged as the
optimal one. The best approach always depends upon the nature and complexity
of the material under investigation, and the quality of the diffraction data. The
whole process can be viewed as finding a viable path through a maze of possibilities
(Fig. 3.1). Selecting the best path to take is part of the art of structure solution from
powder diffraction data. In the following sections, we will wend our way through
this maze.

3.2 The Initial Steps

The structure determination process is a sequential one. That is, each step depends
upon the previous one being correct. A mistake made early on in the procedure can
make all subsequent steps useless, so a careful approach is usually better than a
quick one. It may sound trivial, but structure solution begins with the sample. If the
sample is poorly crystallized or contains impurities, structure solution is severely
hindered and may become impossible. It is essential that the best sample available
be used for the data collection, because all of the following steps are based on these
data. It is well worth spending some time on optimizing synthesis conditions to
obtain the best possible material.

The first decision to be made is which radiation is best suited to the problem
and what parameters should be used for data collection. Are laboratory X-rays
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Fig. 3.1 The structure determination maze

sufficient [6] or is the high resolution and/or tunability of a synchrotron source
necessary [7]? Would the nature of the sample make a neutron source more
appropriate? Is the sample perhaps suited for (nanometer scale) single-crystal
electron crystallography?

Once the data have been collected, the pattern has to be indexed and the most
probable space group(s) determined. At this point, the positions of the reflections
are known and their intensities can be estimated. This is best done with a whole-
profile fit, where a peak shape, which can vary as a function of diffraction angle, is
assigned to each reflection and its intensity is either refined (Pawley method [8])
or adjusted in an iterative procedure (Le Bail method [9]) to fit the measured
data. Fine adjustments to the reflection positions can be made by refining the
lattice parameters. This approach to the determination of the reflection intensities
can be described as a model-free Rietveld refinement, where the intensities of
the reflections rather than the atomic coordinates are optimized [10]. Even if the
whole profile rather than the individual reflection intensities are to be used for
structure solution, this step is needed to determine the profile parameters (peak
width, peak asymmetry, peak shape, peak range, sample displacement, 2™ zero
correction, background) and the optimal unit cell. This information is used each
time the diffraction pattern of a structural model is calculated, so that it can be
compared directly with the measured pattern.
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3.3 Treating Overlapping Reflections

If the extracted intensities are to be used as input to the structure solution program,
something has to be done about the overlapping reflections. The better these are
estimated, the closer one comes to single-crystal data and the better the chances
of solving the structure. Usually, however, the intensity of a peak resulting from
several (overlapping) reflections is simply divided equally over the contributing
reflections. This is known as equipartitioning. Although this approach necessarily
yields a number of incorrect intensities, it has proven to be sufficient for structure
solution in many cases.

For the more difficult cases, more sophisticated approaches can be used. Two
ways of using the information from non-overlapping reflections in conjunction with
simple assumptions such as atomicity and positivity to get a rough estimate of the
relative intensities of overlapping reflections have been developed [10].

Should these computational approaches fail, an alternative is to attack the
problem experimentally. By collecting multiple datasets on a single sample un-
der different, but controlled conditions, additional information about the relative
intensities of overlapping reflections can be obtained. For example, if a sample
exhibits anisotropic thermal expansion without undergoing a phase transition (i.e.
the reflection intensities remain the same), the overlap pattern in a series of
diffraction patterns measured at different temperatures will change as the cell
parameters change. Reflections that overlap at one temperature may not at another.
By combining the information from the different patterns, better estimates of the
individual reflection intensities can be derived [11]. A related approach was used by
Von Dreele on a protein sample, whose lattice parameters had changed as a result
of solvent-induced and radiation-damage induced strains [12]. Another possibility
is to exploit (an induced) preferred orientation of the crystallites. If the crystallites
are oriented, the differences in the diffraction patterns measured for different sample
orientations can be used in a similar way [13].

Whichever approach is used to treat the overlapping reflections, the final result
is a list of reflections with their hkl indices and their intensities, from which their
structure factor amplitudes jFj can be calculated. That is, the list looks like a single-
crystal dataset. The jFj’s are just not as reliable.

3.4 Structure Solution

There are several algorithms to choose from for structure solution, and the best
choice will depend upon the problem at hand. In the early days of structure solution
from powder diffraction data, the extracted structure factor amplitudes were simply
used as input to one of the single-crystal programs (e.g. direct methods, Patterson
or maximum entropy algorithms). These all attempt to solve the phase problem
from the diffraction data (i.e. in reciprocal space). Today, several algorithms that
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take the ambiguity in the intensities of overlapping reflections into account are
available. Perhaps the most commonly used structure-solution programs that work
in reciprocal space are EXPO [14] or XLENS [15] for direct methods and MICE for
maximum entropy [16]. Recently, Rius reported the development of a Patterson-
function direct methods program that is particularly well-suited to dealing with
powder diffraction data [17].

If reciprocal space methods do not work, structure solution in direct or real
space can be tried. This is how single-crystal structures were solved in the days
before Patterson and direct methods. That is, a structural model that was consistent
with all known information about the material (both diffraction and non-diffraction
experimental results) was built, and then its diffraction pattern calculated and
compared with the measured one. This is an extremely powerful method, limited
only by the imagination of the model builder, and can be used very well with powder
diffraction data. The only drawback is that it takes time and patience to build such
models and to check them. It also requires considerable experience and chemical
intuition to build the correct model. Fortunately, computers have come along, and
algorithms for generating chemically sensible models and checking them have been
written. These are generally global optimization methods, most commonly based on
either simulated annealing or evolutionary algorithms [5]. The two most commonly
used programs for this approach are Fox [18] and DASH [19].

A few algorithms that exploit the advantages of both reciprocal and real space
have also been developed for powder diffraction data. The first of these was the
zeolite-specific Focus algorithm [20], where the reflection intensities are used in
conjunction with starting (usually random) phases to generate an electron density
map. This map is interpreted in real space using a framework search routine. The
largest fragment from this search is then used to generate a new set of phases and
these are combined with the extracted intensities to generate a new electron density
map. By going back and forth between real and reciprocal space, information in both
realms (e.g. the diffraction intensities and the chemical information about zeolite
framework structures) are used actively in the structure determination procedure.
Similarly, simulated annealing has been combined with direct methods in the newer
versions of EXPO [21]. The newest algorithm on the scene, charge flipping, is also
a hybrid method. It was introduced for single crystals by Oszlányi and Sütő in 2004
[22] and then adapted to powder diffraction data by two separate groups just a few
years later [23]. The algorithm combines electron density map generation (generally
starting with random phases) in reciprocal space with a density modification in real
space (flipping the sign of all densities below a very small positive threshold value).
The modified map is then used to calculate new phases, and, as in Focus, these
are combined with the observed amplitudes to produce a new electron density map
for the next cycle. For powder data, an additional loop for the repartitioning of
overlapping reflections is added. In the program Superflip [24], this repartitioning is
coupled to a second density modification in real space involving histogram matching
[25]. Coelho has also combined the charge-flipping algorithm with the tangent
formula in his program Topas [26].



32 L.B. McCusker and C. Baerlocher

3.5 Structure Completion and Refinement

Whichever method is used to solve the structure, the resulting structural model is
usually only approximate and may be incomplete. The final, and often most difficult
step of the structure solution procedure, is to complete the model and to refine the
structure. Before the atomic coordinates can be refined reliably, all atoms have to be
found. To do this, the approximate model is used, not only to calculate the phases of
the reflections, but also to partition the intensities of the overlapping ones. Then a
difference electron density map (measured structure factor amplitudes partitioned
according to the model minus those calculated from the model, combined with
phases from the model) can be calculated. This is usually good enough to find the
missing atoms and/or to identify problem areas in the model. Finally, the structural
parameters are refined using the whole-profile Rietveld method [27].
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Chapter 4
Inorganic Materials

Radovan Černý

Abstract The separation of compounds by inorganic/organic boundary is of less
importance for the structure determination by diffraction methods. More important
for the diffraction is how the atoms build up larger building units and the crystal
itself. A molecular/non-molecular boundary is therefore relevant for the choice of a
structure determination method. Non-molecular compounds – also called extended
solids – are constructed by bonds that extend “infinitely” in three dimensions
through a crystal. These non-molecular crystals usually crystallize with higher
symmetries, and atoms often occupy special Wyckoff positions. A review of actual
methodology is given first, and then highlights and pitfalls of structure determination
from powder diffraction, its problems and their solutions are shown and discussed
using selected examples.

4.1 Ab Initio Structure Determination – Polyhedral
Description

Inorganic compounds usually do not contain isolated molecules. This does not mean
a particular difficulty for the ab initio structure solution methods working entirely
in the reciprocal space (RSM). However, it becomes a difficulty for the methods
working entirely (global optimization methods) in the direct space (DSM) and using
the chemical knowledge in this space (for a comprehensive review on the methods
see [1]). The structure solution algorithm working in the direct space has to know
how to define basic structural blocks of the crystal which are then manipulated
(optimized) by the algorithm.
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The choice of the structural blocks is easy when isolated molecules are present
in the crystal like in organic or coordination compounds where the molecules are
easily described by a finite number of the internal molecular coordinates (bonding
distances, angles and dihedral angles). A molecule is naturally an isolated structural
block that can be moved in the unit cell, and deformed from its planar form.
No sharing of atoms between the molecules occurs. The situation becomes rather
unclear when one tries to model the crystal structure of a non-molecular compound.
The definition of a finite structural block for a crystal like iron or sodium chloride
is not unambiguous; should it be one atom, first coordination sphere of each atom,
structural sheet of finite thickness, the asymmetric unit?

Coordination polyhedra, typically the first coordination spheres, of selected
atoms, which will generate the whole inorganic crystal structure, can always be
identified. These polyhedra will share corners, edges or faces. A wide range of
polyhedra can be defined, and these are naturally described using again bond
distances, angles and dihedral angles. Sharing of atoms between the polyhedra is
either evident (for example exclusive corner sharing of SiO4 tetrahedra in alumino-
silicates [2]), or can be better described generally with an automatic, adaptive
routine, the Dynamical Occupancy Correction (DOC) which handles also the special
Wyckoff positions as it is used in the program Fox [3]. The optimization algorithm
of DSM must be able to move smoothly the building blocks to the positions when
they share atoms or to move an atom on the special position, while also allowing
separation of the building blocks or moving the atom away from the special position,
without any intervention from the user.

The polyhedra are typically described using Z-matrices as for the molecules
[3]. The restraint-based description [4] of the polyhedra then solved some pitfalls
of Z-matrices, however, with less benefit for the non-molecular compounds. A
careful choice of the structural blocks may significantly improve the convergence
of the DSM as illustrated on the example of AlMePO-” phosponate [5] where
the modelling by two free Al atoms converges faster than the modelling by AlO4

tetrahedron and AlO5 trigonal bipyramid.

4.2 Direct or Reciprocal Space Method?

The principal difference between DSM and RSM and an advantage of the former
is that DSM does not require the extraction of integrated intensities of individual
reflections which are needed for RSM. In the case of powder patterns of inorganic
compounds showing often broad peaks, because of particular sample synthesis like
mechanochemistry (ball-milling) or in situ studies of phase transformations and non
ambient studies the DSM are the only option as no reliable integrated intensities can
be extracted. An excellent example that has been solved ab initio by both DSM and
RSM, and shows effectiveness of both approaches when well crystallized samples
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Fig. 4.1 Structure of Mg(BH4)2 viewed along the hexagonal b axis, showing two unit cells. Dark
grey (partially transparent) tetrahedra are BH4 units; Mg atoms in light grey

are available, is Mg(BH4)2 (Fig. 4.1). With 55 atoms in the asymmetric unit it
represents one of the most complex atomic arrangements ever solved from powder
diffraction data. The correct structure was found independently by DSM [6] and by
RSM [7]. In both cases high resolution synchrotron data were required for indexing.
In the DSM approach, the structure was modelled by five free Mg atoms and ten
rigid tetrahedral BD4 groups, and optimized jointly with synchrotron and neutron
data by using the program Fox [3]. The correct structure was recognized after several
hours of optimization (guidelines for efficient use of Fox can be found in [8]). In the
RSM approach, the structure was solved with the aid of the program EXPO [9]
using only synchrotron data. The positions of Mg and B atoms were recognized in
electron density maps. In both cases the structure was refined by Rietveld refinement
keeping the borohydride groups rigid.

4.3 Need for Accurate Unit Cell Content

Knowledge of the chemical composition and estimation of the unit cell content are
the necessary information for most structure solution algorithms. The DSM may
successfully work with overestimated cell content as the DOC can simply merge
excess atoms (but does not create missing atoms!).

The recently discovered borohydrides AZn2(BH4)5 (A D Li, Na) [10] are an
example how important is the correct estimation of the unit cell content for an
unknown phase. In a parallel study [11] the chemical composition of the ball milled
product was wrongly estimated as AZn(BH4)3, and led to structural models that
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Fig. 4.2 Comparison of Rietveld plots for wrong, NaZn(BH4)3, and correct, NaZn2(BH4)5,
structural models, both in the same monoclinic cell (s.g. P21/c, a D 9.440(4), b D 16.573(4),
c D 9.110(2) Å, “D 112.99(3)ı)

have shortcomings in Rietveld plots (Fig. 4.2.) which are not easily detectable from
the powder diffraction data. Such a structural model can have balanced interatomic
forces as shown by the DFT optimization, but does not correspond to a stable
polymorph at given conditions.

The only warning about the wrong structural model came from the significant
increase of the cell volume (C5.2%) in the DFT optimized structure, because of
higher cell content (16 cations and 24 anions) compared to the correct model
(12 cations and 20 anions). It means also that the wrong model is more packed
(34.52 Å3/ion) than the correct one (40.81 Å3/ion) as calculated on DFT optimized
cells. Another warning about the wrong model could have been certainly obtained
from the measured density, a difficult experiment for a relatively reactive powder. In
the case of multiphase samples containing new phase with unknown exact chemical
composition it is therefore crucial to perform the synthesis of starting mixtures in
several different ratios of the starting compounds. This procedure allows deducing
the chemical composition of the new phase from molar fractions of known phases
in different mixtures.
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4.4 Structure Validation and Verification

A post-experimental DFT-optimization helps to validate new structures, locate light
atoms (hydrogen), especially when using high-pressure diffraction data [12], and
even correct the symmetry and some structural details as shown on following
examples:

The difficulty in finding the correct orientation of BH4 tetrahedra led to the
overlooked two-fold axes in the Mg(BH4)2 space group symmetry originally
identified as P61 [6, 7]. The DFT optimization of the structural model [13] has
suggested the true symmetry as P6122, which was then unambiguously confirmed
by the single crystal X-ray diffraction [14]. The fact that the structural solution has
been found independently by DSM and RSM in the lower Laue symmetry 6/m of
the space groups P61 rather than in the true Laue symmetry 6/mmm of the true
space groups P6122 can be also understood by more degree of freedom (hkl and
khl are independent) in 6/m allowing to correct the systematic errors of the powder
diffraction data (grain statistics) having the symmetry 6/mmm.

In the case of Li4Al3(BH4)13 (P-43n) the DFT optimization [15] of the exper-
imental structure has corrected the orientation of the complex anion [Al(BH4)4]�
and modified so the bonding scheme in the structure from isolated complex ions
[(BH4)Li4]3C and [Al(BH4)4]� rather to a 3D-framework structure (Fig. 4.3).
The corrected model was indeed confirmed by the Rietveld refinement. A sim-
ilar situation occurred for a nanocrystalline inorganic–organic hybrid compound
VO(C6H5COO)2 [16] where the correct orientation of the VO6 octahedron was
revealed by the DFT calculation.

The post-experimental DFT-optimization of the crystal structures allows achiev-
ing the global minimum in the Rietveld refinement which is not easily visible from
the diffraction data only, and can be thus highly recommended.

Fig. 4.3 Unit cell of Al3Li4(BH4)13 as solved from SR-XPD (left) and as corrected by DFT
optimization (right). Complex cation [(BH4)Li4]3C centred by BH4 tetrahedron in brown (light
grey), complex anion [Al(BH4)4]� centred by Al atom in green (dark grey) (color figure online)
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4.5 Symmetry Guided Refinement, Phase Transitions

The analysis of crystal symmetry plays an important role in the structure solu-
tion/refinement of inorganic compounds. The most complex inorganic structures
were solved from powder diffraction data by the symmetry analysis of superstruc-
tures based on a well described average structure. Good example is ’-Bi2Sn2O7,
a 176 atom crystal structure based on a pyrochlore structure [17]. Other example
of symmetry guided refinement is the parametric Rietveld refinement [18], i.e.
constraining the crystallographic parameters by set of equations which may have
a physical basis, and follow the crystal symmetry. Structural phase transitions are
one of the examples [19].

4.6 Multiphase Samples, Impurities

Solid state route synthesis is a method often used for the preparation of inorganic
compounds. The resulting products may contain more than one phase like unreacted
starting components and side reactions products. As the bottle-neck of the ab initio
structural studies is still indexing of the powder data, multiphase samples introduce
an additional complication.

A successful strategy consists of the so-called ‘decomposition-aided indexing’,
which utilizes in situ diffraction as a function of the temperature (T-ramping)
up to the decomposition/melting temperature of different phases. This procedure
allows to separate diffraction peaks of individual phases as illustrated in Fig. 4.4 by
synchrotron powder diffraction data for a ball milled KBH4-ScCl3 mixture [20].

The T-ramps (as well as any set of powder patterns collected as a function
of external stimuli like pressure, excitation by a light) play an important role in
the analysis of multiphase samples, as already mentioned. The studies of physical
properties (thermal dilatation, compressibility), and of phase transitions are of
course the original reason of the non-ambient diffraction studies.

4.7 Weak Superstructures and Lattice Pseudo-Symmetry

The arrangement of atoms in the lattice of an inorganic compound may show a
small deviation from an arrangement with higher symmetry or shorter periodicity.
A typical example are metal hydrides where this deviation is created by positioning
H atoms in the matrix of metal atoms which becomes then only slightly deformed
or by positioning a lower symmetry structural block like BH4 tetrahedron on a high
symmetry Wyckoff site. Because of a small deformation of the metal matrix and
the low scattering power of hydrogen for X-rays, the splitting of peaks caused by
lowering the symmetry is not very strong and the superstructures peaks are very
weak in X-ray patterns as was the case of Mg6Co2H11 [21] or Y(BH4)3 [22, 23].
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Fig. 4.4 In situ synchrotron radiation X-ray powder diffraction data for a ball milled sample of
KBH4-ScCl3 (2:1) (RT to 580 K,�T/�t D 5 K/min, œD 0.9707 Å). Only utilization of T-ramping
allowed for determination of attribution of observed peaks to individual phases, KSc(BH4)4 and
K3ScCl6, and led to a successful indexing of the RT-powder pattern. Symbols: � KSc(BH4)4,
j K3ScCl6,ı KBH4 and • KCl

4.8 Chemical and Positional Disorder – Local Structures

Chemical disorder is often observed in metal alloys where metal sites may have
mixed occupation. When the occupation of individual sites by different metals is not
statistically random, it can be analyzed provided the scattering contrast between the
metals is strong enough. It can be achieved either using the X-ray and neutron data
jointly or by resonant X-ray scattering. Note that for the case of n atomic species
(including vacancies) on one Wyckoff site, one needs n � 1 diffraction patterns
with different contrast between the scatterers under the question. An example of the
analysis of the multi-substituted LaNi5 alloy is given in [24].

Positional atomic disorder may show a local order (short range order) which can
be studied from the diffuse intensity of the scattered radiation. The diffuse scattering
from polycrystalline samples may be studied by using the Pair Distribution Function
(see [25] for more details) like local hydrogen ordering in Laves phases [26].
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4.9 Powder vs. Single Crystal

Independent studies of the orthorhombic (Cmca) Mg1CxIr1�x by single-crystal and
powder diffraction methods [27] have allowed a comparison of the structural results
obtained by two different methods on a compound having rather a complex crystal
structure with 304 atoms in the unit cell. The investigated volume in the reciprocal
space was approximately the same in both experiments, but with more than 4,000
unique reflections and redundancy factor of 7 for single crystal experiment and
754 unique non-overlapped reflections for the powder data. The atomic positional
parameters from both methods are identical within 3–4 times standard uncertainties
(s.u.) of the powder diffraction with the s.u. of the powder diffraction by one order of
magnitude higher than corresponding s.u. of single crystal results. On the contrary
the s.u. of the lattice parameters were by more than one order lower in favour of the
powder diffraction.

It is sometimes possible to find a single grain of sufficient size for X-ray
single crystal diffraction in an apparently powder sample, as was the case for
Li4BN3H10 [28] or LiBH4 [29]. Even a multi-domain single crystal obtained by a
low temperature annealing of an air- and moisture-sensitive Mg(BH4)2 has produced
more accurate structural results than powder diffraction [14].

4.10 Conclusions

The powder diffraction on inorganic compounds is not a routine work. A crystal-
lographer has to face numerous crystallographic challenges: complex structures,
superstructures, pseudo-symmetries, twinning, chemical and positional disorder,
local order, and structural solution from low quality data. On the other hand many
powerful tools are available: resonant scattering, total scattering analysis, fast in-
situ data collection. The good knowledge of basic crystallographic concepts like
symmetry analysis, theory of scattering including diffuse effects, aperiodic crystals,
and knowledge of limits and accuracy of powder data helps to avoid erroneous
conclusions. The final cut should be always left to the crystal chemistry analysis.

Acknowledgments The author wants to thank to all users of Fox, and especially to them who
have kindly provided the details of their work when solving the crystal structures.

References

1. David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination
from powder diffraction data. Oxford University Press, Oxford

2. Deem MW, Newsam JM (1989) Determination of 4-connected framework crystal structures by
simulated annealing. Nature 342:260–262



4 Inorganic Materials 43
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22. Ravnsbæk DB, Filinchuk Y, Černý R, Ley MB, Haase D, Jakobsen HJ, Skibsted J, Jensen TR
(2010) Thermal polymorphism and decomposition of Y(BH4)3. Inorg Chem 49:3801–3809

23. Frommen C, Aliouane N, Daledda S, Fonneløp JE, Grove H, Lieutenant K, Llamas-Jansa
I, Sartori S, Sørby MH, Hauback BCJ (2010) Crystal structure, polymorphism, and thermal
properties of yttrium borohydride Y(BH4)3. Alloy Compd 496:710–716



44 R. Černý
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Chapter 5
Organic Compounds

Kenneth Shankland

Abstract For many years, powder X-ray diffraction was used primarily as a
fingerprinting method for phase identification in the context of molecular organic
materials. In the early 1990s, with only a few notable exceptions, structures of even
moderate complexity were not solvable from PXRD data alone. Global optimisation
methods and highly-modified direct methods have transformed this situation by
specifically exploiting some well-known properties of molecular compounds. This
chapter will consider some of these properties.

5.1 Introduction

Molecular organic materials tend to crystallise in low-symmetry space groups (some
80% crystallise in one of five space group, P21/c, P-1, P212121, P21 and C2/c [1],
with % updated for Nov 2010 release of the CSD) and as such exhibit substantial
accidental reflection overlap, particularly at high values of 2™. This, coupled with the
fact that molecular materials do not, in general, have strongly scattering elements
present to boost measurable intensities at high angle means that it is particularly
difficult to extract accurate reflection intensities. As such, the application of un-
modified direct methods of crystal structure determination is generally unsuccessful.
Spurred on by this failing, numerous groups have developed global optimisation
based methods of structure determination, where the position, orientation and
conformation of a molecule are adjusted in such a way as to maximise the agreement
between observed and calculated diffraction data [2]. Clearly, to be able to perform
such an optimisation, one must have a fairly accurate model of the molecule

K. Shankland (�)
School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading, UK
e-mail: k.shankland@reading.ac.uk

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 5,
© Springer ScienceCBusiness Media Dordrecht 2012

45



46 K. Shankland

being studied. The vast number of previously determined organic crystal structures
provides a rich source of prior information that can be used in the construction of
such models ready for optimisation. This is discussed in more detail below.

5.2 Molecular Connectivity

In single-crystal diffraction, it is not generally necessary to know the molecular
connectivity in advance of the diffraction experiment, as the wealth of diffraction
data, coupled with the power of direct (and other) methods of structure deter-
mination/completion means that the molecular structure usually emerges directly
from the Fourier maps. In the case of powder diffraction, this is not normally
the case and when applying global optimisation methods, it is necessary to know
the molecular connectivity (or at least, a large part of it) in advance of structure
determination. This is a significant constraint, but is not as restrictive as it seems
at first sight; analytical techniques such as mass spectrometry and NMR can be
used to determine 2D connectivity quickly and accurately and many diffraction
problems consist of solving the structures of new crystalline forms of previously
well-characterised molecules. That said, if the 2D connectivity supplied is wrong in
any significant regard, it is unlikely that the structure determination will succeed and
the crystallographer should always be alert to this possibility. If a new structure is
being studied, one can frequently find significant molecular ‘chunks’ of the structure
in existing crystal structures. In this regard, the Cambridge Structural Database
(CSD) and its associated search interface ConQuest (Fig. 5.1) are essential tools
[3], as is a good molecular modelling program with which one can edit retrieved
structures to delete unwanted atoms or add new ones.

In the construction of a molecular model, one generally does not have to worry
about the exact positions of hydrogen atoms, as their individual contribution to
the scattering from any given point of the unit cell is relatively small. However,
collectively, their contribution to the overall scattering can be significant and they
should be included in the molecular model whenever possible.

Once a model of the molecule being studied has been constructed, it should be
carefully checked for chemical sense – this is discussed in more detail in a separate
section below.

5.3 Molecular Volume

Many molecular modelling programs (e.g. Marvin [4]) will quickly calculate a
volume for any given isolated molecule. These values can be extremely useful as the
powder pattern indexing stages, as the experimentally determined unit cell volume
should be able to accommodate a crystallographically sensible number of molecular
units. If the value of Vcell/Vmol makes crystallographic sense, this is a very good
indicator of the correctness of the solution, above and beyond whatever the indexing
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Fig. 5.1 Search options in the ConQuest program, with the ‘Draw’ option being used to search
for all crystal structures containing the sketched substructure. This particular fragment matches 92
structures in the November 2010 version of the CSD

figures of merit suggest. In considering the calculation of Vcell/Vmol, it should be
remembered that the Vmol obtained for an isolated molecule cannot be used “as is”,
as it does not take into account the crystal packing index. Fortunately, this is easily
corrected by the use of an average crystal packing index of 0.7 i.e. Vcell/(Vmol � 0.7).

The 18 Å rule [5], where the estimated molecular volume of an organic material
is obtained by counting all the non-hydrogen atoms in the structure and multiplying
this number by 18 Å3, is commonly used on account of its speed and simplicity.
The figure of 18 Å3 per atom is an average value derived from a survey of crystal
structures in the Cambridge Structural Database. In 2002, Hofmann introduced a
more specific formula [6], again based on observed crystal structures, but with
individual volume terms for each atom type present in the structure. The formula
is given in simplified form below:

Vmol D
xX

iD1
nivi

where the summation is over the x different atom types in the molecule, ni is the
number of atoms of the ith type in the structure and vi is a volume contribution
(in Å3, derived from the CSD) for the ith atom type. This method is very accurate
and should be used in preference to the 18 Å3 rule.
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5.4 Molecular Description

The 2D connectivity of a molecule has to be translated into a 3D description for use
in global optimization. This is generally a two-stage process: (1) perform the 2D to
3D conversion (if required), and (2) convert the 3D description into a format suitable
for the optimisation program. The 2D to 3D conversion can be performed in a variety
of ways but is generally done with a molecular modeling program. The specifics of
such programs lie outside the scope of this summary, but regardless of the method
used, the output structure should be checked carefully against the expectation values
before use (see Sect. 5.6). The output structure will have atomic coordinates in a
Cartesian frame and may or may not retain the explicit connectivity information.
For global optimisation, were this collection of N atoms to be optimised as freely
moving objects, there would be 3N parameters. However, to do so would neglect the
fact that we actually know a great deal about the molecular geometry [7]. Any two
directly bonded atoms in a molecular structure sit at well-defined distances from
one another, and these distances are not greatly influenced by the environment of
the crystal structure. As such, a bond length may generally be considered to be a
fixed entity and not one that requires to be optimised. Bond angles created by three
connected atoms are similarly well-defined, mainly by the molecular environment
as opposed to the crystallographic one. They are ‘softer’ than bond lengths (in that
it takes considerably less energy to induce a deviation from the value found in an
isolated molecule) but may generally be considered to be fixed entities that do not
require to be optimised. Bond torsion angles (defined as the angle between two
bonds A–B and C–D, viewed along a common bond B–C), are extremely ‘soft’ in
comparison to bond lengths and angles, as changing the bond torsion changes only
non-bonded contact distances. As such, they are considered to be flexible entities
whose values cannot (in general) be assigned in advance and that must be parameters
in the global optimisation.

Using an internal coordinate description of the molecule [7, 8] is a convenient
way of encoding this prior molecular knowledge and serves to reduce considerably
the number of parameters that needs to be determined. A very simple example is
shown in Fig. 5.2.

It is worth mentioning, however, that in some cases, it may be advantageous to
allow some variation in bond lengths and angles during the optimisation process [9].

Fig. 5.2 A simplified molecular model for butane, with H atoms omitted. The bond lengths are
known to be 1.54 Å and the bond angles are known to be 109.5ı. The arrow shows a torsion angle
whose exact value cannot be specified in advance of the optimisation. The 12 degrees of freedom
associated with the use of independent atoms are reduced to 7 (six positional, one torsional) when
an internal coordinate description is used
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5.5 Other Sources of Prior Information

Although the values of flexible torsion angles in a structure cannot, in general,
be specified in advance, that is not to say that one cannot infer probable values
in advance of an optimisation. It should come as no surprise that molecular
conformations within crystal structures populate low-lying areas of an energy
surface and as such, it is possible to either (a) attempt to calculate in advance likely
molecular conformations based on isolated molecule calculations1, or (b) examine
ensembles of existing crystal structures in order to determine energetically favorable
confirmations; see, for example [10]. The latter is conveniently achieved through
the Conquest or Mogul [11] front ends to the Cambridge Structural Database and
Fig. 5.3 shows the result obtained for the facile example of the amide bond. Few
distributions are as well defined as the one shown in Fig. 5.3, but it still possible
to use the distributions to influence the way in which torsional parameters in the

Fig. 5.3 A polar plot of the torsion angle associated with the amide bond (–C(DO)–NH–) in
crystal structures in the Nov 2010 CSD release. The plot summarises some 1,573 observations and
shows clearly that the amide bond is trans planar

1Carrying such calculations to their logical periodic conclusion brings us to the domain of crystal
structure prediction.
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Fig. 5.4 A histogram of the distance (Å) associated with the intermolecular contact NC� � � Cl�

in crystal structures containing the motif R-NH3
C� � � Cl�. Only structures with an R factor less

than 5% were included in the search of the Nov 2010 CSD release. The plot summarises some
1,200 observations and shows clearly that the chloride ion is consistently located at a distance of
3.18 ˙ 0.05 Å from the positively-charged nitrogen atom

optimization are varied. For problems involving multiple torsion angles, significant
reductions in the search space can be achieve, with consequent benefits for both
speed of solution and frequency of success [12].

For problems involving more than one fragment in the asymmetric unit, informa-
tion about non-bonded contacts can also be also derived from the CSD using either
the Conquest or Isostar front ends. Both distance and direction information can be
obtained quickly and easily. Such information can be incorporated into the internal
coordinate description of the fragments in order to reduce the degrees of freedom in
the search. For the case shown in Fig. 5.4, the distance information can be included
in the form of a virtual bond and the angle information (not shown) in the form of a
virtual angle. Only one degree of freedom is saved (i.e. three positional for the Cl�
ion are reduced to two internal) but the resultant internal degrees of freedom are
very highly restrained, leading to a significant reduction in the search space [13].
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Fig. 5.5 The Mogul summary output of bond angles in CBMZPN01. Bong angle values in the
input structure (“Query value” column) can be quickly compared with the observed distribution of
similar angles present in structures in the CSD

5.6 Structure Checking

As mentioned earlier, when a model is constructed and ready for global optimisation
against the measured diffraction data, it is wise to check to make sure that the model
does not contain any bond lengths or angles that deviate too far from expected
(previously observed) values. In this regard, the Mogul [14] front end to the CSD
is an extremely valuable tool that makes this process straightforward. Figure 5.5
shows the results of a check performed on the molecular structure of carbamazepine
as recorded in CSD refcode CBMZPN01. These results make it easy to identify any
length, angle or torsion that deviates significantly from expectation values and that
might need modification in the input model.

5.7 Summary

There are many different ways of constructing molecular models ready for global
optimisation and this document has concentrated on arriving at the most accurate
internal coordinate description. As highly accurate computational methods (such
as DFT) become more widely used on the desktop, they will form an extremely
valuable addition to the range of tools than can be brought to bear on this
problem.
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Chapter 6
Laboratory X-ray Powder Diffraction

Pamela Whitfield

Abstract Laboratory diffractometers form the introduction to powder diffraction
for most researchers. On a basic level for phase ID, etc., one diffractometer is very
much like another. However when configuring a system for more challenging and
advanced experiments, a variety of options and choices confront the experimentalist.
Rather than cover the basics of diffractometer operation and geometry we will dis-
cover how a good understanding of the concepts behind laboratory diffractometers
and their components is vital to getting the best from a system and pushing the
limits of what can be achieved with lab instrumentation. Laboratory instrumentation
will never compete with the sheer power and resolution of a synchrotron beamline.
However, by departing from the conventional setups, it can be surprising what
may be achieved in-house without resorting to the delay and inconvenience of
synchrotron beamtime proposals.

6.1 Introduction

Although there have been many recent developments in software and instru-
mentation, the most basic Bragg-Brentano geometry used by many laboratory
instruments is unchanged. It is a parafocusing geometry with a X-ray tube source
and scintillation detector, with or without a monochromator. The biggest change has
been the increasing use of position sensitive detectors, although in many instances
the underlying parafocusing geometry is unchanged. This is not the forum to
describe the basic geometry of diffractometers, and the reader is referred to the
classical book by Jenkins and Snyder [1] or more recent texts [2–4] for further
details.
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6.2 Challenges in Everyday Powder Diffraction

Some researchers during their career are fortunate enough to be in the position
to purchase one or more new powder diffractometers and write the specifications
themselves. In many instances the standard system with a copper tube is not the
best configuration. In order to obtain the best instrument for the job a few basic
questions need to be answered.

The instrument should be matched to the type of sample to be analyzed – there
is no laboratory configuration that will be good for every conceivable sample. This
can be a challenge in a multi-user environment with a wide variety of sample types,
where certain compromises may be necessary. The first question should always be
“what are my samples?” Organic samples with low X-ray absorption and inorganic
samples with high X-ray absorption tend to require different configurations to obtain
high quality data. Organic samples are usually best served with a transmission
geometry, while inorganics tend to require reflection geometry. The second question
should be “how much sample do I have?” Very small samples may require capillary
geometry or a specialist microdiffractometer to obtain the best results. The third
question should be what elements do I have? The experienced analyst will come
to regard sample fluorescence as one of their biggest enemies. Avoidance is much
preferable to dealing with fluorescence after the fact.

6.2.1 Fluorescence

Fluorescence occurs when elements in a sample absorb a portion of the incident
radiation and re-emit it at different energies (inelastic scattering). Effectively
intensity is taken from the Bragg peaks and distributed into the background,
producing a poor quality diffraction pattern. The most problematic elements (most
often transition metal elements) for each type of X-ray tube are known, so it can
often be avoided by selecting a suitable X-ray energy (Table 6.1). The different
X-ray tubes, both common and uncommon are shown in Table 6.2. Unfortunately,
in a multiuser/multisample environment it may not be possible to avoid generating
fluorescence. This can be problematic where high-speed position sensitive detectors
are used, as secondary X-ray optics to remove fluorescence often can’t be used.

Scintillation detectors can easily be fitted with a graphite secondary monochro-
mator which is very effective at removing the background due to fluorescence. There
is an additional penalty in terms of peak intensity but the improvement in data
quality is usually more than worth it. If a secondary monochromator isn’t available,

Table 6.1 Problematic
transition metal elements for
Cu and Co X-ray tubes

X-ray tube
Problematic transition
metal elements

Cu Co, Fe, Mn
Co Mn, Cr, Ti
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Table 6.2 Different X-ray tubes available for laboratory X-ray diffractometers listed by
increasing K’1 energy

Anode
Energy
(KeV) Wavelength (Å) Uses

Cr 5:4 2.290 Lowest energy. Used for stress analysis, SAXS and
samples with large d-spacings (clays)

Fe 6:4 1.936 Rare tube, low power, used by some groups for
Mn-containing samples

Co 6:9 1.789 Fe-containing samples to reduce fluorescence.
Common in analysis of steel and minerals

Cu 8:0 1.541 Most common energy. Well matched to distances
in lattice planes. X-ray detectors often
optimized for CuK’

Mo 17:5 0.709 Small unit cell samples, highly absorbing samples,
in-situ work. Common in single crystal

Ag 22:2 0.559 Very rare tube. Highest practical energy available.
Very penetrating, best for PDF work

the peak-to-background ratio (P/B) can be improved somewhat by optimizing the
electronic discriminators of the detector. P/B is important in structure analysis – the
Rietveld round robin showed that a P/B of 50 or better is needed for accurate atomic
positions in a structure refinement to remove uncertainty in the background fitting
[5]. The discriminators determine the X-ray energies that the detector will ‘throw
away’ and ignore. The degree of discrimination for scintillation detectors and PSDs
is limited compared to energy-discriminating Si(Li) detectors but can go some way
to improving the P/B of the data collected.

6.3 Beyond the Sales Brochure

The sales brochures tell you what vendor can guarantee the instrument will do. To
find out what a lab diffractometer is really capable of requires an understanding of
the different concepts behind diffractometer geometry and the different components
(radiation properties, optics, detectors, software, etc.). Customized sample envi-
ronments benefit greatly from a good design/fabrication shop due to the precision
required. Integration with diffractometer systems and control software can require
some fore-thought in terms of controllers and computer I/O systems.

6.3.1 High-Energy Radiation with Lab Diffractometers

MoK’ is commonly used in single crystal diffractometers, but has recently become
quite rare in powder diffraction. Older systems with scintillation detectors are
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Fig. 6.1 (a) Rietveld fit to data from SRM1976 corundum collected using MoK’ and a Zr K“
filter using a modified emission profile. The calculated profile includes the low-angle step and high
angle tail caused by the K“ filter

perfectly capable of operating with higher energies, but many of the modern
generation PSD detectors are much more limited in their wavelength capabilities,
and in some instances will only operate with CuK’.

Even if your detector will operate with higher energies there are some potential
issues when using MoK’ or AgK’. In the absence of a monochromator it is
customary to use a K“ filter. With CuK’ this does induce some subtle and hardly
noticeable artefacts in the background. However, with MoK’ and AgK’ they are
very noticeable and may cause serious problems in data analysis. Attempting to fit
these artefacts with a conventional background in a Rietveld analysis fails miserably.
However, modifying the emission profile either empirically or using a function
written for the purpose can do a reasonable job as shown in Fig. 6.1. The calculated
profile in Fig. 6.1 shows the low-angle step and high-angle tail present on all the
intense reflections.

6.3.1.1 Laboratory Pressure Cells

One of the obvious applications for high energy X-rays is for laboratory-based
pressure cells. Here the attraction of higher energies is the improved penetration
through the cell windows and sample. The key to obtaining a reasonable time
resolution is sufficient transmission of X-rays reaching a detector that ideally has
good detection efficiency at higher X-ray energies.
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Fig. 6.2 (a) 125 bar CO2 laboratory pressure cell and (b) the theoretical X-ray transmission
through the cell with different X-ray energies

Gas Pressure Cell at the National Research Council

A 1st generation 125 bar, 200ıC pressure cell was constructed [6] for studying
crystallization of polymers under CO2 pressure (Fig. 6.2a). The design was a
modification of a literature design [7] to meet the ASME Boiler and Pressure Vessel
Code [8]. The use of high energy X-rays was dictated by the transmission through
the 1/8 in. beryllium windows and the dense, pressurized CO2. The theoretical
transmission with different X-ray energies is shown in Fig. 6.2b.

This cell was used with MoK’ and a Vantec-1 PSD detector with a 8ı window.
This configuration was capable of producing good data with reasonable time resolu-
tion either in scanning or snapshot mode. The reaction kinetics of the carbonation of
wollastonite (CaSiO3) was studied using quantitative Rietveld analysis with this cell
[9]. Data from different pressures and temperatures such as that showed in Fig. 6.3
allowed an activation energy for the carbonation of wollastonite to be calculated.

High Pressure Acid Leaching Studies at CSIRO

The group of Ian Madsen and Nicola Scarlett at CSIRO have been studying
reaction processes occurring during high pressure acid leaching of nickel laterite
ores [10, 11]. Industrially this process takes place in an autoclave to stop the acid
boiling. Studying the reaction in-situ requires penetrating a mixture of a solid and
an acidic solution, leading to use of MoK’ radiation to reduce attenuation. To
reduce absorption a thick-walled 1 mm quartz capillary is used as shown in Fig. 6.4,
together with an Inel diffractometer and a 120ı PSD detector. A hot air heater was
used to heat the sample and the capillary was oscillated as opposed to fully rotated
due to the connection of the pressure line. Maximizing the counting efficiency of
this detector with MoK’ required the use of a custom counting gas mixture.
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Fig. 6.3 In-situ data showing the carbonation of CaSiO3 over a period of 6 h at 60ıC and under
56 bar CO2 pressure

Fig. 6.4 Capillary cell used
for the high pressure acid
leaching experiments. This
setup was used both in
laboratory and synchrotron
experiments

The sample was either a slurry or powder. For powdered samples the acid solution
is forced into the powder by pressure. The lack of delay between fluid injection and
data collection allows a long series of 2 min datasets to be collected from the exact
moment of acid injection. An example dataset from the leaching experiments is
shown in Fig. 6.5.
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Fig. 6.5 Example dataset from high pressure acid leaching experiments

6.3.1.2 Highly Absorbing Capillary Samples

Capillary samples in a laboratory setting are usually restricted to samples with low
linear absorption with CuK’ – often organics. When a small quantity of a new
mineral with the composition PbF2 appeared, the use of a laboratory instrument is
not the first thing that comes to mind. The use of MoK’ with a 0.3 mm capillary
produced decent looking data but had an excessive absorption for a publication-
quality Rietveld refinement. Rather than use synchrotron radiation, AgK’ radiation
with a focusing primary mirror optic was used to obtain data with an acceptable
absorption of�R<3. The data was of sufficient quality for a multi-phase refinement
(Fig. 6.6) of the new mineral that has the same cubic structure as synthetic
“-PbF2. This structure refinement was used in a submission to the International
Mineralogical Association and corresponding journal paper [12].

6.3.2 Low Temperature Capillary Experiments

Liquid nitrogen cryostream systems are standard equipment in single crystal
instruments. However, the upright goniometer of most powder diffractometers
conspires to reduce the space in front the doors, and no easy access is available for
the semi-flexible vacuum insulated transfer line. A customized setup was assembled
using different supplied components that integrated with the diffractometer control
software. The laminar flow of nitrogen gas co-axial along the capillary cools
samples to 80 K without icing either the capillary or the goniometer head.



60 P. Whitfield

Fig. 6.6 Rietveld refinement of the “-PbF2 mineral with the intimately associated phases SnO2

and a new, uncharacterized “Sn hydroxide” mineral

This setup allowed for very rapid quenching of samples including liquid solvents.
Combined with an optimized diffractometer configuration of a CuK’ tube, focusing
primary mirror and a Vantec-1 detector with a 10ı window, very rapid data
collection was possible. Very satisfactory data could be collected between 10ı and
60ı 2™ in 4 min (Fig. 6.7) to the extent that crystal structures could be determined ab-
initio from some datasets using simulated annealing. Refinements of the structures
were carried out using Variable Count Time (VCT) data [13] to rebalance the loss
of intensity in the peak-rich high angle region.

6.3.3 Modified Relative Humidity (RH) Stage

Not every problem needs the design and construction of equipment from scratch.
In many instances modification of an existing stage can extend its capabilities. Ron
Peterson at Queens University has taken a commercial Anton Paar THC stage and
modified it to better control the RH and collect data from thin layers of sample [14].
Accurate control of RH is problematic as any cold-points in the gas-circuit will lead
to condensation and a drop in the RH of the gas stream. This has been tackled by
using the water from a recirculating bath to make the system isothermal from the
initial gas-mixing, along jacketed gas-lines and a water jacket around the chamber.
Accurate RH readings from the chamber are taken using a chilled mirror hygrometer
mounted as shown in Fig. 6.8. Kapton film windows and a PANalytical X’Celerator
PSD detector allow for rapid data collection with CoK’ to reduce fluorescence in
the iron-containing samples. An example dataset from this system can be seen in
Fig. 6.9, showing the phase behavior between FeSO4�4H2O and FeSO4�7H2O at a
fixed temperature of 40ıC but varying the RH.
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Fig. 6.7 Diffraction data from the solvent dimethyl carbonate between �180 and C20ıC.
Repeated rapid quenching to 82 K was used to determine reproducibility and improve particle
statistics. The data were collected every 5ıC and each dataset was collected in approximately
4 min

Fig. 6.8 Photo of the modified relative humidity cell showing the chilled mirror hygrometer and
some of the water-jacketed gas lines

6.4 Conclusions

A good understanding of the concepts and components of a laboratory diffractome-
ter allows for effective design for advanced experimental setups. Being open to
the possibilities of non-standard configurations allows the researcher to push the
limits of what is possible in the laboratory. This may involve the use of more
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exotic X-ray tubes, different instrument optics, customized sample environments
or a combination of these. Although the time and effort required to yield results
may be considerable, the potentially unique capabilities can open up new areas of
research that could be very productive over an extended period.
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Chapter 7
Synchrotron X-Ray Powder Diffraction

Fabia Gozzo

Abstract The large breadth of the Synchrotron Radiation X-ray Powder Diffraction
(SR-XRPD) technique inevitably requires that we make a certain number of
choices in its discussion. Assuming you already have some knowledge of SR and
XRPD, we explore the peculiar features that arise from combining them. From the
perspective of a beamline scientist, we discuss aspects influencing the beamline
optics, diffractometer, detectors and sample environments with attention to details
important to perform outstanding SR-XRPD experiments. We begin with a brief
overview of SR characteristics and properties and finish with a few SR-XRPD
highlights. An extensive literature citation is provided for those who want to delve
deeper into those topics that are inevitably not completely covered here.

7.1 Properties of Synchrotron Radiation

When a charged particle is accelerated or decelerated it emits electromagnetic (e.m.)
radiation. This is what happens, for example when an electron moves along a
curved trajectory. If the speed v of the electron is much smaller than the speed of
light c (v � c) the emitted e.m. radiation (called cyclotron radiation) is uniformly
distributed around the moving electron. When the electron’s speed reaches values
close to the speed of light (v � c), relativistic effects dramatically change the
properties of the emitted radiation making it a very attractive source of radiation for
a large variety of experiments. The emitted radiation is called synchrotron radiation
from the specific type of particle accelerator (the electron synchrotron) in which it
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Fig. 7.1 Pictorial representation of the radiation emitted by an electron moving along a curved
trajectory: when its speed v is much smaller than the speed of light (left) and v � c (right)

was first observed in 1947 [1]. Figure 7.1 is a pictorial representation of cyclotron
and synchrotron radiation. Today it is hard to believe that SR has not been always
perceived as a precious good. Initially considered only a side negative effect in high-
energy physics accelerators that needed to be investigated and minimized, it took
almost 20 years for SR to become a fundamental tool in physics, chemistry, biology
and medical science.

The history of synchrotron radiation is truly fascinating and the interested reader
can find a few dedicated reviews in [2–4].

The main characteristics of synchrotron radiation are here summarized [5–7]:

1. Tunable photon energy (or wavelength) over a wide spectral range.
2. Spectral Brightness (or brilliance) defined as the flux per unit area of the

radiation source per unit solid angle of the radiation cone per unit spectral
bandwidth: [Brightness] D [photons/s/0.1% BW/mm2/mrad2] that tells us how
collimated and intense the emitted photon beam is per unit spectral bandwidth.
Relativistic effects (v � c) alter the angular distribution of the emitted SR,
which is then concentrated around a direction tangential to the storage ring
orbit (see Fig. 7.1). The divergence of the SR emitted by the single particle is
approximately given by 1/”, where ” is the particle (typically electrons) energy

Ee in units of its rest energy: � D Ee
ı
m0c

2 D 1

�q
1 � .v=c /2 .

3. Polarization: the emitted radiation is linearly polarized with the electric vector
parallel to the plane of the orbit. Above and below the plane of the orbit, it is
elliptically polarized.

4. Pulsed time structure of the source, defined by the duration (order of psec) and
the separation between pulses (order of nsec or longer if requested). It depends
on the size of the ring (a fixed parameter) and the number of circulating bunches
that can be changed by changing the electron current I, usually measured in mA.

5. Coherence: transverse (or spatial or lateral) and longitudinal (or temporal)
coherence, the former depending on the size and angular spread of the source,
the latter on its wavelength bandwidth�œ.
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Although these properties qualitatively characterize all SR facilities, the detailed
characteristics of a given facility determine its specific numbers [5–7]. For example,
the Swiss light Source is a 2.4 GeV facility, where 2.4 GeV refers to the electron
energy Ee defined before. The value of Ee and the average magnetic field B produced
by the storage ring dipoles (also called bending magnets) influence the effective
radius of curvature ¡ of the storage ring (i.e. the radius of curvature that the
ring would have without the straight sections that host wigglers and undulators):
� D cte EeŒGeV � =BŒT � . The value of Ee and B also affects the critical photon
energy: h�c D 3hc�3 =4�� ) h�c ŒkeV � � 0:67E2

e ŒGeV �BŒT �, i.e. the value
that divides the spectral distribution of the emitted radiation into two parts of equal
total power. The critical energy obviously sets a limit to the maximum photon energy
that the given facility would be able to provide out of its bending magnets.

The SR characteristics can be further tuned and enhanced if the radiation is
extracted from the so-called insertion devices (wigglers and undulators, accom-
modated in the straight sections of the storage ring). Wigglers and undulators
characterize 3rd generation synchrotron sources. They are multiple magnets that
force the electrons to perform a slalom course instead of going along a straight
line when they traverse them and, therefore, emit e.m. radiation at each oscillation.
What makes multiple magnets wigglers or undulators is essentially the amount of
deviation from a straight path (i.e. the size of the excursions inside the device) that
they force the electrons to undergo, large for wigglers and small for undulators. This
in turn depends on the spatial period œu of the magnet array (smaller for undulators)
and the amplitude of the oscillating magnetic field B (larger for wigglers), the latter
essentially defined by the magnetic properties of the materials. Figure 7.2 shows
how the electron oscillations differ for wigglers and undulators.

Since œu and B define the wiggler- or undulator-like character of a multiple
magnet (wiggler: longer œu, stronger B; undulator: shorter œu, weaker B), the best
parameter to define if a periodic insertion device behaves like a wiggler or an
undulator is the dimensionless K parameter, K � 0:934BŒT � �uŒcm� whose value
is �1 for undulators and 	1 for wigglers.

It should be clear that without relativistic effects, the SR wavelength would not
be in the desired short-wavelength range. For example, an undulator with period
œu D 1.4 cm would produce radiation of the order of its period, that is in the
radio frequency range. Relativistic effects (Lorentz contraction and Doppler effect)
shorten the œ of the emitted radiation in the laboratory reference system by the
relativistic factor 2”2:

�1 � �u

2�2

�
1C K2

2
C �2�2

� for collection angles
� close to zero� �u

2�2

�
1C K2

2

�
:

For K small (<0.4) the emitted intensity is mostly concentrated at the funda-
mental wavelength œ1. As K increases by applying higher B values, however, the
motion of the electrons inside the multiple magnets is no longer a pure sinusoidal
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Fig. 7.2 Schematic representation of the electron beam behavior in a wiggler or an undulator
(Courtesy P.Willmott [7])

transverse motion and not negligible intensity is also emitted corresponding to
higher harmonics œn [5–7]:

n�n � �u

2�2

�
1C K2

2

�
� 13:056 �uŒcm�

E2
e ŒGeV �

�
1C K2

2

�
:

The energy of the emitted radiation depends, therefore, on K but how close
in energy are the harmonics and how the intensity is distributed among the
fundamental wavelength and its harmonics also depends on K.1 Tuning K, therefore,

1The higher is the value of K, the closer are to each other the generated harmonics. Therefore,
a wiggler can be thought as an undulator with an extremely high number of harmonics so close
to each other to generate a continuous bending magnet-like spectrum. The wiggler continuous
spectrum is also characterized by the critical photon energy h�c / E2

c ; B , where B is now the
amplitude of the “local” magnetic field. Because wigglers are characterized by higher B value, they
shift the maximum emitted photon energy towards values higher than those of bending magnets.
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allows us to change the intrinsically discrete character of the undulator emission
spectrum (spectrum with well separated emission lines) into a sort of continuous-
like spectrum by smoothly swap from the fundamental œ1 to the higher harmonics
while tuning the K parameter. It remains intrinsically different from the continuous
emission spectrum of the bending magnet and wiggler radiation, but it allows
covering uninterruptedly a wide energy range.

Another important figure of merit characterizing SR is its angular spread in both
the direction perpendicular ™v and parallel ™h to the storage ring plane. Referring to
[6] for a derivation, we find that:

Wigglers: �v � 1
�
I �h � K

�

Undulators: �v D �h � 1

�
p
nN

(n: harmonic number, N: number of periods)

Bending magnets: �v � 1
�
I �h � no intrinsic limitation

The unlimited horizontal angular spread characterizing bending magnets is due
to the fact that here the emission direction of the radiation changes as the electrons
move inside the storage ring and, therefore, the SR is emitted in the horizontal plane
as a search light. In practice, the value of ™h is limited by the obviously limited
acceptance of the beamline optics and explains why one single bending magnet
occasionally serves more than one bending magnet beamline.

7.2 SR-XRPD Beamline Optics

Once SR is extracted, depending on the planned experiments, the SR beam will be
ad-hoc conditioned by appropriate beamline optics. Beamline optics together with
the choice of a given magnetic device allow the same synchrotron facility to host
beamlines operating over very different energy ranges (e.g. from the infra-red up to
the hard X-rays in a medium energy facility like the SLS2).

In the case of powder diffraction, the ultimate achievable overall angular
(FWHM) resolution depends on (but not only) the energy resolution �œ/œ and
the degree of collimation of the photon beam. Therefore, the beamline optics for a
high-resolution PD station should provide a highly monochromatic and collimated
beam. On the other hand, for experiments requiring fast acquisition times (e.g.
time-resolved XRPD) and/or “photon-hungry” experiments (e.g. Pair Distribution
Function data collection), the ability to focus the X-ray beam is very important. The
beamline optics should, therefore, ideally provide dynamic focusing capabilities.

Beamline optics for SR-XRPD usually consists of a monochromator (typically
a double crystal monochromator DCM) and one or two mirrors [8–12]. A channel
cut can replace or follow the DCM to further improve the energy resolution [13].

2Since the optics needs to be optimized for the specific working energy range and the specific
experiment, each beamline covers only a portion of the entire range covered by the given facility.
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Fig. 7.3 Schematic representation of the SLS-MS beamline optics based on a wiggler (a) and on
an undulator (b) source

As a representative example of SR-XRPD beamline optics, we discuss the optics
characterizing the Swiss Light Source Materials Science (SLS-MS) beamline before
and after its upgrade to an undulator beamline, started in October 2010.

The SLS-MS beamline started being operative in 2001 and for �10 years it has
been the only wiggler beamline at the SLS and the one delivering the hardest X-rays
(5–40 keV) [8]. Back in 2001, in medium energy facilities, a wiggler was in fact the
only option to reach photon energies as high as 40 keV with usable intensities. The
maximum achievable photon energy that the 2001 undulator technology was able to
achieve was �25 keV with a U19, a prototype at that time (Schmidt Th, Ingold G,
2006, private communication).

The discovery of stronger magnetic materials (i.e. with higher B) and the
improvement of the in-vacuum undulator technology have made it possible to
design and construct a new in-vacuum undulator with a shorter œu D 14 mm period
(therefore called U14 (Schmidt Th, Ingold G, 2006, private communication)). A
shorter œu allows the energy of the fundamental and higher harmonics to be shifted
towards higher values, whereas higher B values allow one to keep the K value
essentially constant (K / B � �u). With the prototype U14 therefore, the SLS-
MS beamline still covers the 5–40 keV energy range, but with all the advantages of
an undulator beamline, namely enhanced brilliance and intrinsic collimation of the
beam.

Figure 7.3 shows a schematic view of the SLS-MS beamline optics based on a
wiggler (2001–2010) and an undulator source (2010-on). With the wiggler source,
the first optical element is a vertically collimating Rh-coated Si mirror followed by
a Si(111) DCM and a second Rh-coated Si refocusing mirror. The DCM main axis
of rotation defines the selected wavelength via Bragg’s law: 2dSi.111/ sin � D n�. In
a DCM, however, the energy resolution totally relies on the degree of collimation of
the incoming photon beam (see Fig. 7.4).
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Fig. 7.4 Schematic view of a DCM: œ1 and œ2 are two discrete wavelengths belonging to the
polychromatic divergent incident beam satisfying Bragg law for the same interplanar distance d of
the DCM crystal and a combination (œi, ™i) of photon wavelength and Bragg angles

We have seen that the intrinsic divergence of a photon beam generated by a
wiggler source is relatively large (�0.25 � 2.3 mrad2 at the SLS-MS) and, therefore,
it imperatively requires the use of a collimating mirror placed before the DCM. The
second crystal of the DCM is a bendable crystal which provides a collimated or
a focused beam in the sagittal (horizontal) plane and guarantees a fixed beam exit
height. Finally, the beam is reflected onto the second mirror, which can either be
bent, and deliver a focused beam or kept flat and deliver a collimated beam (high-
angular resolution set up).

The SLS-MS beamline optics based on an undulator source is also schematically
described in Fig. 7.3. The photon beam can now directly be sent on the DCM being
the fairly small undulator beam residual divergence in the vertical (diffraction) plane
comparable with that of the wiggler beam after collimation from the first mirror.
Why still having two mirrors? For essentially two reasons:

• The ability to focus the beam down to approximately 200 � 9 �m2 (unfocused
beam size 2.9 � 0.34 mm2) for all photon energies, but to this purpose one single
mirror would have been enough.

• To get an horizontal and fixed beam exit.
• Higher harmonics suppression to better than 10�7 that can only be achieved with

two mirrors working close to the critical angle ’c for total external reflection [14].

For the purpose of the efficient suppression of the higher harmonics, whether the
mirrors are placed before or after the DCM does not play any role. Placing them
after the DCM, however, allows us to preserve the beam coherence when working
with only one or no mirrors.

7.3 Powder Diffractometer

The mechanical properties of SR powder diffractometers need to be consistent
with ultra-high-resolution requirements. Mechanical accuracy and precision (re-
producibility) of ˙1–2 and resolution of 1 arcsec usually characterize SR powder
diffractometers [8–13, 15].
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Fig. 7.5 The SLS-MS powder diffractometer (left). A pictorial description explaining why the
diffraction plane is vertical (right)

Figure 7.5 (left) shows the SLS-MS powder diffractometer as an example. If you
are used to laboratory diffractometers, what probably immediately strikes you is the
size and weight and the vertical plane of diffraction.

The considerable size and weight guarantee high mechanical stability, whereas
the choice of the vertical plane as diffraction plane is related to the linear
polarization property of the SR beam in the plane of the electron orbit. As pictorially
described by Fig. 7.5, if the diffraction plane is perpendicular to the electron orbit
(storage ring plane), the electric field © associated with the incoming e.m. radiation
will always be at 90ı with respect to the scattered beam for all 2™ values. In other
words, there will not be a 2™ dependence of the scattered intensity from the 2™ and
the polarization factor P D 1.

The SLS-MS powder diffractometer consists of three coaxial independent rotary
tables and it is the result of a joint SLS and Rotary Precision Instrument® develop-
ment project. The central table (¨-axis) hosts the sample or sample environment.
The other two tables host two independent detection systems: a multi-crystal
analyzer detector [16] and a wide-angle (120ı) silicon solid state microstrip 1-D
position sensitive detector (MYTHEN II) [17] that we discuss later.

7.4 Detectors

A comprehensive overview of detectors is beyond the scope of this chapter. Through
examples of detectors widely used at synchrotron facilities, however, we define
and discuss a few relevant detector-related concepts, namely angular selectivity,
position sensitivity, point-,1D- or 2D-detectors, direct or indirect conversion,
single-photon-counting or integrated detectors.
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Angular selectivity refers to the selection of the diffracted beam by means of
a crystal (called, therefore, crystal analyzer) oriented at the appropriate Bragg
angle, before reaching the detector. Without a crystal in the secondary beam,
the diffracted rays are assigned an angular value based on the position at which
they hit the detector, therefore called position-sensitive detector. Intensity that
arrives at the analyzer crystal from inelastic scattering (i.e. fluorescence emission,
Compton scattering), air scattering is suppressed providing an ultra-high angular
(FWHM) resolution, a high signal-to-noise (S/N) and a high signal-to-background
(S/B). In addition to that, the angular selectivity makes the angular (FWHM)
resolution independent of the sample dimension (capillary diameter in transmission
measurements) and its accurate positioning at the center of the diffractometer.

Analyzer detectors – These are detectors (typically point-detectors) that include a
crystal analyzer in the secondary beam. Angular selectivity is very costly in terms
of diffracted intensity and a smart solution to recover some of the lost intensity was
found by Hodeau et al. in 1998 [16] with their multicrystal analyzer detector design.
Their idea consisted in placing n independent analyzer crystals as a fan at a fixed
offset and simultaneously collecting the diffracted signal with the detector following
each crystal. The counting statistics are, then, increased by n but the counting time
still remains of the order of min or hours.

Position sensitive detectors – These are 1- or 2-D detectors that identify the
value of the 2™ scattering angle from the position at which the diffracted ray
reaches the detector. 2-D detectors record the full Debye-Scherrer rings whereas
the 1-D detectors only one section of them, whose width is defined by the detector
aperture and make, therefore, the implicit assumption that the selected sections
are representative of the whole rings. The MYTHEN detector is a 1-D position
silicon solid state detector. It is an in-house development at the Paul Scherrer
Institut conceived for time-resolved powder diffraction experiments [17]. It is a
modular 1-D detector with over 30,000 elements covering an angular range of
120ı in 2™ (24 modules, each covering 5ı). Depending on the dynamic range
(4–24 bits), the read out time ranges between 90 and 250 �s whereas its frame
rate (1 frame D 1 diffraction pattern) ranges from 10 Hz (24 modules, 24 bits) to
600 Hz (1 module, 4 bits). Figure 7.6 explains the principle of operation of solid
state detectors. MYTHEN performances in terms of high angular (FWHM) and d-
spacing resolution, S/N and S/B are comparable with those of analyzer detectors
with a counting efficiency at least two orders of magnitude higher and acquisition
times several orders of magnitude shorter. These outstanding characteristics make
MYTHEN also ideal for the structural analysis of radiation-sensitive materials,
such as organic compounds, and for applications to total scattering techniques for
which high real space resolution data (i.e. high values of the momentum transfer
Q D 2 sin™/œ), high S/B, high S/N ratios and a remarkable counting statistics over
the entire angular range are of paramount importance.

As all position-sensitive detectors, MYTHEN does not perform an angular
selection of the diffracted beam and is, therefore, sensitive to inelastic scattering
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Fig. 7.6 Principle of operation of a solid state detector like MYTHEN

signals and its intrinsic angular resolution (�0.004ı in 2™) is relaxed by the sample
dimension. What makes MYTHEN very special among conventional position
sensitive detectors, however, is connected to the fact of being a direct conversion
single photon counting detector. When X-ray photons arrive on the silicon sensor
(see Fig. 7.6), they are absorbed and produce free charge (electron–hole pairs)
whose number is proportional to the energy of the X-ray photon. The created
charge is, then, separated by a voltage Vbias applied to the junction and travels to
the electrodes where it results in a pulse. The pulse is then amplified, shaped and
compared to a user-defined threshold. Only the signal whose amplitude is above
this threshold is counted. Properly chosen for the given experiment, the threshold
rejects, therefore, all unwanted signal (e.g. electronic noise, fluorescence signal).

Solid state detectors are, therefore, based on the production of charge directly
from the X-ray photons without the intermediate conversion into visible light in a
phosphor screen (which normally poses limitations on the spatial resolution because
of light diffusion). Their efficiency depend on the photon energy and for Si and
300 �m sensor thickness (as for MYTHEN) is 100% at 7 keV but already 15% at
25 keV, making them not ideal for photon energies above 40 keV. The PSI detector
group is presently working on thicker Si sensors and detectors made with different
absorbing materials.
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For powder diffraction, 2-D detectors (e.g. Image Plate, Charged Coupled
Devices, amorphous-Si Flat Plate, Pixel Detectors) are also often employed. They
simultaneously collect full Debye-Scherrer rings and their direct-space resolution is
directly proportional to their size and inversely proportional to the angular (FWHM)
resolution. With MYTHEN, the FWHM and d-spacing resolutions are instead
decoupled.

In Image Plate (IP) detectors [18], the core of the detector is a storage phosphor
screen and the creation of an image requires illuminating the plate twice: the first
exposure, to the radiation of interest, “writes” the image, and the second, to a visible-
laser, “reads” the image. After the initial exposure, excited electrons in the phosphor
material remain “trapped” in color centers (so-called F-centers) in the crystal lattice
that constitutes the image plate until stimulated by a second illumination. The
emitted visible light is, then, recorded by a photomultiplier. In terms of efficiency,
dynamic range and read-out times the IP detectors are not very competitive and
CCD or amorphous-Si Flat Plate detectors are often preferred.

At the APS 1-ID beamline [19], a high-sensitivity (quantum efficiency>65%),
fast-readout (up to 30 Hz) a-Si Flat Plate (FP) detector has been installed for in-situ
fast PDF acquisitions at high Q values (Qmax>35 Å-1). FP detectors are based on
amorphous-silicon thin-film-transistor (TNT)/photodiode arrays coupled to X-ray
scintillators. The coupling with scintillators that convert the X-rays into visible light
makes them very efficient even with the hard X-ray photon beams.

Charged Coupled Devices (CCD) detectors performances are, to some extend, in
between the IP and the a-Si FP detectors. Reference [19, Table 1] provides a suitable
comparison among these three different detector technologies. CCDs consist of a
photoactive region (usually epitaxial pC-Si) and a transmission region (the CCD,
properly speaking). As for the IP and the a-Si FP, it is based on the conversion of
the X-rays into visible light by means of scintillators.

All the 2-D detectors discussed above are integrating detectors. They collect the
totality (elastically and inelastically scattered plus noise) of the signal reaching the
detector without setting a discriminating threshold, as MYTHEN does.

The 2-D version of MYTHEN is the PILATUS pixel detector [20]. Apart from
all the advantages of the single photon counting mode discussed for MYTHEN,
PILATUS has a readout time of 5 ms, a dynamic range of 20 bits and a pixel size of
172 �m � 172 �m. Pixel 2D detectors have, however, quite small area/pixel ratio,
which often make IPs and CCDs a preferred choice for XRPD [17] MYTHEN and
PILATUS are now commercialized by the spin-off company DECTRIS [21].

7.5 SR-XRPD Highlights

The remarkable developments of instrumentation, computer technology, experi-
mental techniques (e.g. anisotropic thermal expansion and texture methods by
Brunelli et al. [22] and Wessels et al. [23] and methodologies (e.g. global opti-
mization techniques by David and Shankland [24]; resolution bias algorithm by
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Altomare et al. [25]; charge flipping by Oszlanyi et al. [26]) that have characterized
the powder diffraction technique of the last 10–15 years, have made it an undoubt-
edly powerful tool for both structural solution and refinement and microstructural
analysis of a large variety of materials. Not only is powder diffraction a valuable
alternative to single crystal diffraction when appropriate single crystals cannot be
obtained, but it is often the preferable choice for in-situ, non-ambient and time-
resolved analyses and for the analysis of materials at the nanoscale [27, 28].

We discuss here a few experiments performed at synchrotron facilities as
examples of recent SR-XRPD applications. They do not constitute an overview of
outstanding SR-XRPD applications, but a restricted choice due to the limited avail-
able time and space. Not discussed but of special note are SR-XRPD applications
to the structural analysis of proteins that will be the subject of two chapters by Irene
Margiolaki and Jonathan Wright, pioneers in this field with their co-workers at the
ESRF [29]; the in-situ studies of polymorphism of chocolate where polymorphic
transformation in coca butter have been studied in-situ and in real time as a function
of temperature and in parallel to the rheological properties of fats [30]; the study
of the dependence of the photocatalytic activity of TiO2 nanocrystals (a smart
textile material of industrial interest) on the nanocrystals size and shape by means
of a combination of SR-XRPD and total scattering methods based on the Debye
function [31].

7.6 Structural Solution of Small Organic Molecules

Ab-initio structural solution and refinement of small organic molecular compounds
(e.g. pharmaceuticals) is one of the fields where advanced SR-XRPD instrumenta-
tion and new methodologies are perfectly married to each other. Although successful
structural solutions from powders have been achieved using laboratory data [32],
for increased complexity of the system under investigation the outstanding quality
of SR-XRPD data is often the key for the success of their structural solution. Small
organic molecular compounds, however, are often strongly affected by radiation
damage, a normally unavoidable side effect of SR [33]. Therefore, the combination
of SR properties with the very high counting efficiency of the SR detectors
discussed before, allows collecting data of outstanding quality before irreversible
changes in the compound occur. At the SLS-MS powder beamline we have devoted
considerable efforts to optimizing the beamline optics, the calibration of the 1-D
single-photon counting detector MYTHEN II, the experimental set up and the data
collection strategy. Furthermore, the remarkable counting statistics of MYTHEN II
even at subsec acquisition times allows us to study in-situ the details of structural
transformations. Figure 7.7 shows as an example the diffraction patterns of S-
bupivacaine hydrochloride, a long-acting anesthetic drug of the amide type used
for local anesthesia [34], recorded at the SLS-MS powder station using the Si(111)
multicrystal analyzer detector and MYTHEN II at 50% reduced beam intensity.
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Fig. 7.7 Detail of the SR-XRPD pattern of form D of S-bupivacaine recorded at 12 keV with the
multicrystal detector for 15 min and with MYTHEN II in 1 s

The first and second powder diffraction patterns recorded by the multicrystal
analyzer detector were acquired for 15 min by continuously moving the detector
arm between 0ı and 50ı in 2™, whereas several 1 s diffraction patterns were collected
with MYTHEN covering simultaneously 120ı in 2™. A comparison of the first and
second multicrystal analyzer diffraction patterns clearly shows that the first 15 min
of measurements already damaged the sample and that the damage was already
not negligible after the acquisition of the first 10ı. The structures at 13ı and 14ı
are strongly compromised by the radiation damage. Successive multiple 1 s data
acquisition with MYTHEN, always at reduced intensity, showed that the powder
was stable for at least 2–3 min (Fig. 7.7 shows one of these 1 s runs). While
the analyzer detector data were not usable for indexation and structural solution,
MYTHEN data delivered a successful structural solution of form D of bupivacaine
in P212121 space group type (Gozzo et al., 2010, personal communication).

Another example of structural solution and refinement achieved with MYTHEN
II data is the study of the polymorphism of carprofen, which undergoes a subtle
isostructural transformation as a function of temperature and whose structure was
not accessible with analysis of laboratory data [35]. Figure 7.8 shows the molecular
packing of the metastable form of carprofen (left) and its molecular scheme (right)
indicating the internal degrees of freedom of the molecule. It was found that the
main difference between polymorph I and II structures was the rotation of the
propane skeleton about the C–C bond (torsion 1 in Fig. 7.8) and that form II was
characterized by configurational disorder.
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Fig. 7.8 Molecular packing diagram of polymorph II of carprofen showing both the carbon atom
of the predominant and the disordered configurations. The H atoms of the methyl group directly
involved in the configurational disorder have been omitted for clarity. A complete discussion of the
structure of carprofen can be found in [35]

7.7 Microwave-Assisted Heating

Microwaves can be efficiently used as source of heating during the chemical
synthesis of materials. Due to its low energy consumption and ultrafast heating
and cooling rates, the latter essential for the preservation of nanoscale features in
bulk nanostructured solids, microwave-assisted heating has recently received a lot
of attention as a valid alternative to conventional methods [36, 37]. Its development
and scaling up to industrial applications depends, however, on the understanding of
the mechanisms behind it, which in turn is related to the ability to follow in-situ and
in real time the evolution of materials during heating and cooling. In 2007, Vaucher,
Nicula and co-workers [37] have performed at the SLS-MS powder station the first
in-situ microwave heating experiments using synchrotron radiation and MYTHEN
I detector (Fig. 7.9).
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Fig. 7.9 Left: sequence of solid-state transitions leading to the formation of single-phase qua-
sicrystals [35]. Up-triangles “-Fe(Al); down-triangles ™-Al2Cu; diamonds ¨-Al7Cu2Fe; open
circles §-phase. Right: rate of transformation of ™!§ phases at 700 C with conventional heating.
Courtesy Sebastian Vaucher

Figure 7.9 (left) shows the evolution in time of the solid state phase transfor-
mations during microwave heating of metallic nanopowders of Al, Cu and Fe to
form single phase quasicrystals. The comparison of the transformation rate between
microwave assisted and conventional heating (Fig. 7.9, right) shows for the former
an exceptional rate enhancement. After 40 min at 700ıC only 96% of the sample
is transformed into the QC phase with conventional heating, whereas the same
transition is fully completed in less than 10 s if microwaves are employed.

7.8 Self-Propagating Exothermic Reactions

Ultra-fast SR-XRPD experiments were performed by Fadenberger and co-workers
to study in-situ the dynamics of structural transformations occurring in Self-
Propagating Exothermic Reactions (SPER). For the first time this was performed
with the angular (FWHM) resolution necessary to identify and follow the formation
and evolution of phases [38]. Self-Propagating Exothermic Reaction (SPER) are
self-sustained thermal processes that interest industry for their reduced energy
consumption via targeted delivery of the heat in the desired area. The understanding
of the mechanisms driving self-propagating reactions requires monitoring the
reactions and the induced phase transformations as they occur. The high flame front
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Fig. 7.10 Left: SPER experimental set-up for in-situ SR-XRPD with MYTHEN II. Right above:
1–1.125 ms after ignition (acquisition time of 0.125 ms) showing superimposed peaks of reactants
and the formed NiAl. Right, below: identification of NiAl phase 8–9 ms after ignition (acquisition
time of 1 ms). Courtesy Konrad Fadenberger

velocities (1–20 m/s) characterizing SPER require, therefore, diffraction analysis
at the submilliseconds scale with angular resolutions and statistics appropriate for
phase identification.

Figure 7.10 shows the experimental set up of an in-situ SPER experiment
performed on nanoscale foils of Ni0.9V0.1-Al multilayers at the SLS-MS beamline
using MYTHEN II detector, in combination with high-speed (HS) optical and
infrared (IR) imaging [36].The experiment starts with the foil ignition via a high-
voltage electric spark generated by a central trigger system, which simultaneously
triggers the HS and thermal cameras and the MYTHEN II detector.

The HS and thermal cameras start recording optical and thermal images while
MYTHEN starts recording successive XRPD patterns. XRPD frames were recorded
using 0.125, 0.25, 1 and 5 ms acquisition times with dead times between successive
frames of 0.125 or 20 ms, depending on the acquisition time. Figure 7.10 shows
the complex SPER experimental set up and two of the multiple XRPD frames
recorded by MYTHEN II at 0.125 ms (above) and 1 ms (below) acquisition time
at 1 and 8 ms from ignition, respectively. The patterns remarkably show the change
in composition of the films occurring over extremely short times.
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Chapter 8
Ultrafast Powder Diffraction

Andy Fitch and Caroline Curfs

Abstract An overview is given of the use of powder synchrotron-X-ray and neutron
diffraction to study very fast physical or chemical processes that require time
resolution of 500 ms or less. The experimental requirements to obtain data of good
quality are considered, including the incident flux, detector characteristics, and the
different strategies possible for irreversible and reversible processes. The latter are
accessible via a stroboscopic approach whereas the former require the maximum
rates of data acquisition. Some recent studies are described, drawn from the areas
of combustion synthesis, metallurgy and catalysis. The exploitation of the bunch
structure of a synchrotron ring to obtain time resolution in the sub-ns range with the
pump-probe stroboscopic approach is also illustrated.

8.1 Introduction

An important use of powder diffraction is in the study of samples that are
undergoing some sort of structural modification of a physical or chemical nature.
Such experiments are often designed to investigate the kinetics and the mechanism
of the process, which can be a phase transition caused by a change of the
temperature, pressure or other external condition, or a chemical reaction taking place
in the sample. Modern powder instruments, particularly at sources of penetrating
radiation such as neutrons or high-energy synchrotron X-rays, allow sophisticated
sample environments to be exploited, with great flexibility in the design of in-situ
experiments to study evolving systems. The question naturally arises as to just how
fast a process can be usefully measured.
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For measuring rapidly there are several technical issues to consider. For example,
rapid processes require powder diffraction patterns to be recorded with appropriate
time resolution – on the timescale of s, ms, �s, or faster still? – needing a
detector system that can acquire data and be read out fast enough. However, simply
registering patterns at enormous speed is of little use if the quality of the data is
not sufficient to reveal the relevant details of the sample on that time scale. For the
fastest, irreversible processes therefore, both high flux at the sample and efficient
detectors are required. A high flux at the sample can be obtained by appropriate
design of the source and instrumental optics, possibly focusing, and maximizing the
energy spread of the radiation used to probe the sample.

For reversible processes, the stroboscopic approach can be used, in which the
process under investigation is cycled and diffraction patterns registered during a
small time window are accumulated over a number of cycles, progressively building
up the statistical quality of the pattern. During the course of the experiment, the time
window probes different parts of the cycle so as to cover it as required.

As a general rule, speed has to be traded against d-spacing or angular resolution.
High resolution involves selecting only those neutrons or X-rays with an energy
lying in a narrow range and whose trajectory from the source to the detector via
the sample follows a stringently defined path (i.e. with a low divergence for the
radiation incident on the sample and a tightly defined angular acceptance range for
the detector, so as to have an exact measure of the Bragg angle ™). This necessarily
excludes a large fraction of the photons or neutrons from the source or scattered by
the sample which do not fulfill the criteria and so is a relatively inefficient process.
Rapidly acquiring data of adequate statistical quality for meaningful analysis
requires the maximum number of photons or neutrons to contribute to the diffraction
pattern. Thus the selection criteria on the recorded radiation need to be relaxed
by increasing the energy spread of the radiation and by allowing more pathways
through the instrument (greater divergence), thus reducing the overall resolution.

8.2 Instrumentation

Fast data collection requires a fixed multi-channel detector system that can record
the whole of the diffraction pattern essentially in one cycle. Scanning a detector
system through the d-spacing range of interest necessarily takes a few seconds so is
too slow to measure the fastest processes.

If working with monochromatic radiation and an angular-dispersive instrument
then a fast-readout two-dimensional area detector or a one-dimensional position
sensitive detector is the system of choice. 2-D detectors that have been found
suitable for use with hard X-rays include the Frelon camera, based on CCD
technology, and developed at the ESRF [1], and commercially available large flat-
panel detectors, developed primarily for medical imaging at hard energies, which
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have been exploited at speeds of up to 30 Hz [2–4]. A 1-D detector can be emulated
by applying a mask to an area detector and only reading out the region of interest.
Using the Frelon camera at beamline ID11 at ESRF, a time resolution of 10 ms
has been achieved in this way with a 64 � 1 rebin of the data on the CCD chip [1].
Other read-out modes exist, such as rapidly transferring the electronic image to the
masked part of the plate, which is read while the plate is re-exposed.

The best one-dimensional curved PSD for X-rays is the modular Mythen detector
developed at the Paul-Scherrer Institute in Switzerland [5]. These detectors can be
found on the powder diffraction beamlines at the Swiss Light Source, the Australian
synchrotron, and Diamond in the UK. Based on Si technology, (at the time of
writing), the detector is limited to detecting X-rays of up to �25 keV (0.5 Å
wavelength). At SLS the detector covers 120ı in 2™, 30,720 channels, that can be
read in parallel in 250 �s, with plans to be able to read even faster.

At ILL Grenoble, the angular-dispersive powder neutron diffractometer D20 [6]
is equipped with a large curved microstrip PSD covering 153.6ı in 2™ in 0.1ı steps.
The detector can be read in around 160 ms so giving a maximum time resolution of
about 6 Hz. At ANSTO in Sydney, the high intensity powder diffractometer Wombat
[7] is equipped with a similar curved PSD, covering 120ı in steps of 0.125ı. The
detectors of both instruments can be used in stroboscopic mode.

With polychromatic radiation – which automatically exploits a greater fraction
of the radiation from the source – the neutron time-of-flight approach is ideal,
or for synchrotron radiation an energy-dispersive solid-state detector is required.
Both methods work with detectors positioned at known 2™ angles that record the
diffraction pattern by discriminating the wavelength or energy of each detected
neutron or photon. For the fastest measuring rates multiple detectors are required.
Examples of neutron powder diffractometers with extensive detector coverage are
GEM [8] at ISIS, and the recently opened POWGEN [9] at the SNS (Oak Ridge).
The former has a detector area of 7.27 m2 covering scattering angles from 1.2ı to
171.4ı, and the latter, when completed, will have more than 40 m2 of detectors from
10ı to 170ı 2™ (about 4 sr of detector coverage, some 240,000 individual elements).

With energy-dispersive measurements the detector consists of a liquid-nitrogen-
cooled semiconducting Ge crystal. The energy of an absorbed X-ray photon,
typically within the range 10–150 keV depending on the source, promotes electrons
to the conduction band in proportion to its energy. By analyzing the amplitude of
the charge pulses arriving from the crystal, the energy of the absorbed photon is
determined with a multi-channel analyzer. The conversion from photon energy (in
keV) to wavelength (in Å) is E D 12.398/œ (where 12.398 � hc/e � 107). The energy
resolution of such a detector is modest, around 2%. Owing to the need to take
into account several energy-dependent effects, e.g. absorption and scattering factors,
the shape of the incident X-ray spectrum, and the detector response, modeling the
intensities of the powder diffraction pattern in a Rietveld refinement is generally
difficult.
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8.3 Examples

For the fastest processes, synchrotron radiation is generally expected to have the best
performance, because of the very high flux from the source. However, neutrons,
because of their penetrating power, can be used with larger samples, which can
compensate to some extent.

8.4 Combustion Synthesis

This is a technique for synthesizing materials that exploits the high exothermic
heat of reaction to promote a self-sustaining reaction, either by propagation from
a point of ignition, or by heating the whole sample volume to a point where reaction
occurs essentially simultaneously throughout. A number of advantages are cited for
such an approach including reduced energy requirements, rapid reaction rates, and
combined synthesis and sintering of the final product.

D20 at ILL was used at its peak-flux wavelength of 1.3 Å to investigate a number
of systems by heating pre-pressed pellets of the starting products, 10–20 g, in a
standard furnace for powder neutron diffraction until reaction was initiated [10–14].
Patterns were collected for 200–500 ms with readout of the detector requiring 80–
400 ms. For the formation of Ti3SiC2 from a stoichiometric mixture of Ti, SiC and
C five stages of the process were identified, including the transformation of ’-Ti to
“-Ti, the pre-ignition exothermic formation of intermediate TiCx phases, the very
rapid (sub-second) formation of a single intermediate phase, corresponding to a
solid solution of Si in TiC. After an incubation period of a few seconds the product
Ti3SiC2 nucleates and precipitates out as the temperature falls. Lattice parameter
variations were used to estimate the bulk temperature and indicated that �2,600 K
was attained. Rietveld analysis allowed the amount of each phase present to be
determined, from which kinetic parameters were derived via a non-isothermal form
of the Avrami equation. An activation energy of �45 kJ mol�1 was estimated for
the nucleation and growth of the product phase. During cooling, the temperature
deviated positively from an exponential decrease over a part of the range because
of the release of latent heat correlated with the precipitation of the product phase.
Analogous to differential thermal analysis, it was possible from this to estimate the
enthalpy of formation of Ti3SiC2 as �76 kJ mol�1 [15].

On beamline ID11 at ESRF several systems have been studied in the self-
propagating mode [1, 16–21]. Discs of the reactants were pressed, 20 mm in di-
ameter � �2 mm thick, which were mounted in transmission with a 200 � 200 �m2

monochromatic beam in the range 40–50 keV. The beam characteristics were chosen
to obtain a balance between incident flux, penetration through the sample, the size
of the combustion front, the grain size, and the angular resolution. Ignition via an
electrically heated wire led to the propagation of the reaction through the sample
at speeds of up to 100 mm s�1, monitored with the 2-D Frelon camera with the
temperature estimated via a pyrometer. The time resolution was typically in the



8 Ultrafast Powder Diffraction 87

Fig. 8.1 Powder diffraction patterns of the Al-Ni-Ti-C system during self-propagating combustion
synthesis measured on ID11 [17]

range 65–135 ms when exploiting the whole area of the detector and 20 ms when
masking and rebinning on the chip as in the synthesis of Jacobsite, Fe2MnO4 [1].
Systems studied included the synthesis if TiC-NiAl (Fig. 8.1), TiC-WC and TiC-
TiB2 composites, Al-Ni intermetallics, TiC-FeTi cermets. For the TiC-NiAl system,
for example, the formation of TiC accompanies the melting of Al then Ni and the
formation of a (probably) ternary phase before the final formation of NiAl during
cooling. The final product has small TiC particles embedded in a matrix of NiAl.

On beamline X11A at the NSLS Brookhaven the formation of several refractory
carbides and diborides (of Ti, Zr, Nb, Hf or Ta) was studied in a specially built
reaction chamber allowing operation under vacuum or in the presence of different
reactive or inert gasses [22]. The chamber is equipped with a 2,048-channel 50-
mm photodiode array covering 30ı in 2™, and a pyrometer. Data were collected in
50–200 ms at an energy of 8 keV in reflection mode.

Energy-dispersive measurements of the formation of barium, lithium and magne-
sium zinc ferrites were made on station 16.4 at the SRS Daresbury [23]. The reaction
is driven by the oxidation of iron which is highly exothermic. Reaction was carried
out in oxygen, and with the addition of sodium perchlorate as an internal oxidizing
agent. Three energy-dispersive detectors were set at low 2™ angles of 1.8ı, 4.7ı
and 7.5ı and measurements were made in reflection with a 100 �m diameter white
beam from the wiggler source. The time resolution was 100 ms. Measurements were
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also made under an applied magnetic field using a 1.1 T permanent magnet with a
cylindrical bore of 20 mm diameter. The X-ray beam direction was parallel to the
axis of the bore and the fixed scattering geometry made the measurements possible.
The magnetic field was seen to induce a transient phase identified as magnetite in
the synthesis of barium ferrite.

8.5 Metallurgy

Processing of metals is an area where rapid changes of state are involved, such
as during welding [24–28], heat treatment [29–32], and quenching [33, 34], etc.
To understand the effects induced by these actions, detailed microscopic structural
information is required.

At BL-10-2 at SSRL (Stamford), (beamline based on a multipole wiggler),
rapid, in-situ powder diffraction patterns were recorded as gas tungsten arc spot
welds were made on carbon-manganese steel bars [24, 25]. To prevent oxidation
the experiments were performed under a helium atmosphere, and used a 50-mm
photodiode array covering 24–54ı 2™ with a time resolution of 100 ms (260 �m
X-ray spot) or 50 ms (730 �m spot size) at an X-ray energy of 12.0 keV. The
fcc-to-bcc (”!’) transition on cooling happened twice as fast as the bcc-to-fcc
(’! ”) transition on heating reflecting, most probably, differences in the heating
and cooling rates. Subtle changes in d-spacings indicated the precipitation of carbide
or the relief of residual stress during heating. Detailed analysis indicated that there
were differences in microstructure between the weld fusion zone and the nearby
heat-affected zone (HAZ). The same experimental arrangement was also used to
study welding of stainless steel at two positions in the HAZ, 0.2 and 0.7 mm from
the fusion zone boundary, to investigate the transformation of austenite (” phase)
to ferrite (• phase) on heating, and back on cooling [26]. Volume fractions, peak
positions and widths were tracked and correlated with the temperature calculated
via a numerical heat transfer and fluid flow model.

Time resolution of down to 10 ms was exploited at Spring-8 (Japan) using
undulator beamline 46XU to study solidification during welding of martensitic steel
using X-rays of energies 18 or 30 keV and a large area pixel detector [28]. In a
further development, fast diffraction measurements during heat treatment of mild
steel and low-temperature transformation steel were combined with concurrent fast
laser scanning confocal microscopy, allowing insight into the origin and morphol-
ogy of the observed microstructural changes accompanying phase transitions on
cooling [29].

NiTi shape memory alloy wires must be annealed, modifying the cold-worked
deformed microstructure, and mechanically constrained to set the wire, to give the
shape-memory properties. Practically, heating can be done via an electrical pulse.
ID11 was used to study the transformation of a wire under rapid electrical heating
with applied tensile force and simultaneous electrical resistivity measurements [32].
By masking the detector and rebinning on the chip, a time resolution of 10 ms
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was obtained. Marked changes in microstructure and strain were apparent from
monitoring the evolution of the 011 reflection of the austenitic phase present,
depending on the power dissipated during the thermal treatment.

8.6 Catalysis

Many chemical processes are catalyzed by metallic nanoparticles such as platinum
or gold. Studying such systems by conventional diffraction is hampered because
of the effect of particle-size broadening on the diffraction pattern. Nevertheless the
structure of such systems can be studied by measuring to high Q values (where
Q D 4  sin ™/œ), then Fourier transforming to give the pair distribution function
(PDF). Measuring to high Q requires hard X-ray energies and, if not scanning
to high 2™, a large 2-D detector such as the GE medical imaging detector [3, 4]
installed at the APS (Illinois), which moreover has a time resolution of 30 Hz.
Thus the reduction of PtO2 to Pt metal by hydrogen at 200ıC was studied at
an energy of 77 keV (just below the Pt K edge to minimize fluorescence) while
recording data up to �25 Å�1. The individual patterns collected in 130 ms could
be suitably converted to yield a PDF showing the overall course of the reaction. In
a similar experiment, catalytic Pt nanoparticles were prepared in situ by reducing
with hydrogen a deposit of H2PtCl6 on a TiO2 support [35]. The support forms
the bulk of the system, but nevertheless sensitivity to the Pt particles is achieved
by adopting the differential PDF approach whereby the PDF of the bare support
(measured under equivalent conditions) is subtracted from the total PDFs obtained
from the individual patterns. It is evident that the reduction follows pseudo-zero-
order kinetics, and by performing the measurements at different temperatures (100,
150 and 200ıC) an Arrhenius plot allows an activation energy for the reduction of a
nanoparticle to be estimated at about 50 kJ mol�1, a quantity very difficult to obtain
by any other means.

At ESRF beamline ID15B diffraction patterns from 2% of Pd nanoparti-
cles (�3 nm diameter) supported on alumina were recorded using high energy
(86.8 keV) X-rays with a time resolution of 2 Hz [36]. During the measurements
the atmosphere was cycled between CO and NO, in simulation of a working
car exhaust catalyst. The reactions were also monitored by diffuse reflectance
infrared spectroscopy (DRIFTS) and mass spectroscopy (MS) of the effluent gas.
A complementary experiment applied time resolved dispersive EXAFS at the Pd
K edge in combination with DRIFTS and MS. During the CO cycle the Pd cell
parameter was seen to increase linearly with time accompanied by the production of
CO2 then reverse when switched to NO flow. The studies show that CO dissociates
on the surface of the nanoparticles to produce CO2 and PdCx (lattice expansion
consistent with x 
 0.06). Under NO, the PdCx is converted back to Pd, with the
emission of CO2 and nitrogen gas. The IR spectroscopic measurements indicate
moreover that the formation of the PdCx also promotes the adsorption of CO in a
linear configuration (PdCO) compared to a bridging (Pd2CO) arrangement.
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8.7 Stroboscopic Measurements

Commercial, doped, polycrystalline lead zirconate titanate (PZT) piezoelectric
ceramics were measured in a cyclic electric field of ˙400 V mm�1 at frequencies
up to 500 Hz via the stroboscopic approach using WOMBAT [37]. Each detected
neutron is time stamped and subsequently binned together with others that have
been scattered from the sample at the equivalent time in the electrical cycle. The
data resulting from the sum of many cycles can be represented relative to just a
single cycle. An effective time resolution of 30 �s is available using this approach.
Shifts in peak positions indicate the level of piezoelectric strain generated by the
field and showed no dependence on frequency. Time-of-flight neutron diffraction
studies performed at ISIS on a related system using ENGIN-X [38] showed time
and orientation dependence of the lattice strains [39]. Possible mechanisms for the
observed behavior were discussed.

Rather than using the detector to time the arrival of the scattered radiation, the
source can be pulsed to give the time frame for stroboscopic measurements. This
is particularly appropriate at a synchrotron where tight bunches of electrons are in
fact circulating in the storage ring. Specific ring-filling modes can be exploited to
enhance the possibilities for time-resolved studies. Thus at ESRF, when operating
in 16-bunch mode, an intense pulse (70 ps duration) of X-rays is emitted from
the ring every 180 ns as each bunch of electrons flashes past the entrance to a
beamline. A high-speed chopper in the X-ray beam can be used to select the source
frequency desired for any particular experiment. Of particular note are pump-probe
experiments, whereby a very short laser pulse (of the order 100 fs) excites the
sample, which is then probed with an X-ray pulse a chosen delay time later. The
diffraction pattern can be simply accumulated over a number of cycles on a passive
2-D detector like an image plate, because of the intrinsic low dark current for these
devices. Accurate electronics are required to synchronize the laser and chopper with
the bunch clock tracking the electron bunches in the storage ring.

Two examples studied at the ESRF on beamline ID09B are 4-(dimethylamino)
benzonitrile and 4-(diisopropylamino)benzonitrile [40, 41], whose fluorescence
properties indicate that photo-excitation leads to the formation of an intramolecular
charge-transfer state. Powder diffraction patterns were collected over 10 min at a
frequency of 897 Hz at delay times ranging from �150 ps (i.e. as a reference before
the laser excitation) to 2,500 ps after excitation. Only about 5% of the molecules
are excited by the laser, so the diffraction pattern is from a structure containing both
excited and ground-state molecules. Rietveld refinement of the structure from the
diffraction patterns gave the number of excited (distorted) molecules as a function of
delay time, and the nature of the molecular change induced by the photo-excitation.
For the isopropyl analogue, an exponential decay time of 6.3 (˙2.8) ns was
observed for the excited molecules (compared to 3.28 ns seen spectroscopically).
The main distortion to the molecules was a change in the torsion angle between the
diisopropylamino group and the benzene ring from 13ı to 14ı determined from
the pre-excitation patterns (14.3ı in the single-crystal structure) to 10 (˙1–2)ı.
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Such experiments give the highest time resolution currently possible for powder
diffraction experiments, though future experiments using free-electron lasers are
being considered [42].

8.8 Data Analysis

Measuring data at high speed produces a large number of powder patterns that
need to be analyzed, to extract lattice parameters, phase fractions, structural
parameters, etc. as required to understand the behavior of the system. Modern
Rietveld refinement programs (e.g. GSAS, Fullprof, Topas) allow a series of patterns
to be processed. One approach takes the output from pattern n as the input to pattern
n C 1, sequentially progressing through the series, (but watch out for abrupt changes
as the system evolves). Another way is to analyze several datasets simultaneously in
a single refinement, tying together chosen parameters between patterns so as to vary
according to an underlying theoretical model or to follow an empirical evolution,
i.e. essentially fitting to a data surface rather than to the individual patterns [43].
For example, instead of refining the lattice parameters for each pattern, the thermal
expansion coefficients can be refined, defining how the lattice parameters vary over
the series. Care is required in analyzing patterns from time-resolved measurements
as they are necessarily compromised by the need to measure rapidly. However you
choose to analyze your data, good luck.
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Chapter 9
Taking It to Extremes – Powder Diffraction
Under Non-Ambient Conditions

David I.A. Millar and Colin R. Pulham

Abstract Structural studies of materials under elevated pressures provide a fasci-
nating insight into the physical and chemical behaviour of matter under the wide
range of conditions experienced throughout the Universe. Both x-ray and neutron
powder diffraction techniques play a crucial role in structural studies and are
therefore at the forefront of high-pressure research. These notes provide a short
introduction to the principles and experimental practice of high-pressure powder
diffraction techniques.

9.1 Introduction

Although on the surface of the Earth we rarely experience pressures that deviate
significantly from 1 atm, much of the Universe experiences a much wider range
of pressures that span the near vacuum of outer space to the pressure at the centre
of a neutron star (estimated to be 1030 atm). Even on Earth there is a significant
variation – at the bottom of the Mariana Trench in the Pacific Ocean at a depth of
11,000 m, the pressure is over 1,000 atm, and the pressure at the centre of the Earth
is 3.5 million atmospheres. Under this range of extreme conditions, structural and
chemical changes in materials can be dramatic – proteins are denatured; pathogenic
bacteria are destroyed; ice melts above 100ıC; graphite turns to diamond; and non-
metals become metallic. Such conditions also provide a rich regime for geochemical
synthesis – diamonds, garnets, and perovskites are just a few of the many minerals
produced under extreme conditions within the Earth. The domain of pressure
therefore provides an exciting additional dimension to explore structure, chemical
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reactivity, and physical properties. At the same time it provides a powerful way to
test computational models, with a particular focus on the validation of the efficacy
of intermolecular potentials.

It is for these reasons that high-pressure research attracts such interest across
a wide range of disciplines that includes: geosciences; physics; chemistry; mate-
rials science; biology; engineering; and astronomy. Since physical properties are
intrinsically linked to structure, structural studies are key to understanding how
matter behaves under extreme conditions. Both x-ray and neutron powder diffraction
techniques therefore play a crucial role in such structural studies. These notes
will therefore provide a short introduction to high-pressure powder diffraction
techniques.

9.2 Techniques

High-pressure structural science is a particularly good example of an area that
relies upon the complementarity of various techniques to achieve the final aim of
the structural characterisation of novel materials. The advances in this field are
intertwined with the evolution of complex sample environments for experiments
at elevated temperatures and/or pressures, as well as the development of techniques
for the collection and analysis of spectroscopic and diffraction data under extreme
conditions. In particular, developments of high brightness X-ray and neutron
sources, coupled with the enhancement of associated detectors, have played a major
part in advancing powder diffraction studies at extreme conditions [1].

9.2.1 The Diamond-Anvil Cell

High-pressure X-ray diffraction measurements are generally performed using a
gasketed diamond-anvil cell (DAC). The premise for this device is relatively simple;
the sample is placed between two diamond faces (culets) and is subjected to high
pressures when a force pushes the opposed anvils together (see Fig. 9.1). The DAC
utilised in this work was based on developments by Merrill and Bassett in 1974 [2].
The small size (�5 cm diameter) and relative ease of use make these cells extremely
versatile and perfectly suited for high-pressure X-ray diffraction studies. Depending
on the size of the culets and the gasket hole, pressures beyond 100 GPa can be
obtained. Note that in high-pressure research it is common to find various units
used, sometimes interchangeably, as a measure of pressure. Gigapascals (GPa) may
be related to other units as follows:

1GPa D 10 kbar D 9869:2 atm:
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Fig. 9.1 Schematic representation of Merrill-Bassett diamond-anvil cell

The experimental set-up for a typical high-pressure X-ray powder diffraction
experiment is represented in Fig. 9.2a. Data are collected on an image plate detector
and are generally processed according to the procedure outlined for ambient-
pressure powder diffraction, although in some cases it may also be necessary to
mask out intense single-crystal reflections arising from the diamond anvils to ensure
no anomalies occur in the Iobs vs 2� profile. The image can then be integrated
to provide the one-dimensional powder diffraction pattern using programs such as
Fit2D [3].

It is also possible to mask intense powder diffraction rings due to the tungsten
gasket, although should this interfere with sample peaks it is also possible to perform
Rietveld refinements in which the tungsten diffraction pattern is incorporated.
Finally the data can be integrated to give a plot of diffraction intensity against
scattering angle. The large background common to such data collections is due to
Compton (inelastic) scattering from the diamonds and can be subtracted prior to
data refinement.

9.2.2 Radiation Sources

Whilst in principle it is possible to record powder diffraction patterns on laboratory
instruments using conventional sealed sources (e.g. Mo-K’), far superior results
can be obtained using synchrotron sources that combine high flux with tuneable
wavelength and low divergence. Beam diameters of less than 30 �m are easily
obtained and hence allow one to record diffraction patterns for heterogeneous
samples and without contamination from the DAC components. In such studies,
however, great care must be taken to ensure effective powder averaging of such a
small sample volume. This is typically achieved by ensuring that the DAC is loaded
with a very finely ground powder and rocking the DAC through an angle of 5–20ı.
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Fig. 9.2 (a) Schematic illustrating the key components of a high-pressure X-ray powder diffrac-
tion experiment. (b)–(d) Schematic illustrating the stages of data reduction. The raw image is
shown in (b). The concentric rings correspond to the diffracted intensities from the sample; the
dark spot at the edge of the image is an intense diamond reflection
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9.2.3 Pressure Measurement in the DAC

Direct pressure measurement from the applied force is both inaccurate and im-
practical. Instead, Piermarini et al. demonstrated that a small chip or sphere
of ruby (Al2O3:Cr3C) could serve as a continuous pressure sensor within the
DAC by utilising its laser-induced fluorescence [4]. Indeed the simplicity of the
ruby fluorescence method for in situ pressure calibration is without question a
contributing factor to the widespread application of diamond-anvil cell techniques
and, as such, was the subject of an extensive review by Syassen in 2008 [5]. The
spectral lines of ruby undergo a pronounced redshift with applied pressure; the R1

electronic transition shows a linear dependence with pressure up to at least 20 GPa
at ambient temperature [4].

9.2.4 The Paris-Edinburgh Cell

Neutron diffraction experiments require sample volumes ca 106 times larger than
those required for X-ray powder diffraction, thus precluding the use of diamond-
anvil cells. High-pressure neutron diffraction experiments were therefore severely
limited until the advent of the Paris-Edinburgh cell (P-E Cell), developed in 1992,
which extended the pressure range to 10–20 GPa [6]. The popularity of the P-E
Cell arose from its (relatively) light-weight design and its portability – the Paris-
Edinburgh cell weighs �50 kg, in contrast to other commercial devices of the time
with comparable sample volume that weighed close to 1 tonne. This portability,
coupled with the fact that loads can be applied to the cell by a hydraulic ram while
it remains in situ on the beamline, greatly simplified high-pressure experiments.
The P-E Cell is also an opposed-anvil device, like the diamond-anvil cell and the
Bridgman cell. In this construction, however, the sample is compressed between
anvils made of either tungsten carbide (WC) or sintered diamond, see Fig. 9.3a.
Early designs utilised null-scattering TiZr toroidal gaskets located into correspond-
ing grooves machined into the anvil faces to confine the sample and, generally, a
solid pressure-transmitting medium. Compression studies using the preferred fluid
pressure-transmitting media (methanol:ethanol and iso:n-pentane) were limited to
ca 2.0 GPa before anvil failure. It was realised that complete encapsulation of the
sample and pressure-transmitting medium in two flanged hemispherical caps (TiZr)
would prevent the fluid media coming into direct contact with the anvil surface [7].
In this way the anvils were shown to be protected and the available pressure range for
hydrostatic studies were extended up to the freezing pressure of methanol:ethanol
(i.e. �10 GPa). The encapsulated gasket is compared to the ‘standard’ TiZr toroidal
gasket in Fig. 9.3b.
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Fig. 9.3 (a) Cross-section of the Paris-Edinburgh cell (V3b) and (b) a comparison of the standard
and encapsulated gaskets [7]

9.2.5 Pressure Measurement in the Paris-Edinburgh Cell

Unlike the diamond-anvil cell, the Paris-Edinburgh cell does not allow optical access
to the sample chamber and therefore a method for pressure calibration other than the
ruby fluorescence method had to be developed. Instead, small quantities of internal
pressure calibrants are used, typically either NaCl(s) or Pb(s). Both materials have
clearly defined equations of state which means that the unit cell volume of the
chosen calibrant (as determined by Rietveld refinement of the powder diffraction
patterns) is directly related to the pressure within the gasket.

9.3 Pressure-Transmitting Media

In most powder diffraction experiments it is desirable to ensure that the stress
applied to the sample is homogeneous and that the sample is free of any differential
stress or induced shear strain over the entire pressure range of the experiment. In
order to achieve these conditions, the powder must be immersed in a medium that
displays hydrostatic behaviour. The consequences of a non-hydrostaticity include:
inhomogeneous strain in the crystallites leading to broadening of Bragg peaks
with associated loss of resolution and signal-to-noise; modification of the relative
evolution of unit cell parameters; and difficulties in measuring the pressure using
the ruby-fluorescence technique. Non-hydrostatic stresses may therefore adversely
affect results from equation of state and elasticity studies, especially those aimed at
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Table 9.1 Nominal
hydrostatic limits of
pressure-transmitting media
(From refs. [12] and [13])

Medium Hydrostatic limit/GPa

4:1 methanol:ethanol 9.8–10.5
16:3:1 methanol:ethanol:water 10.5
Anhydrous 2-propanol (isopropanol) 4.2
Glycerol 1.4
1:1 Pentane:iso-pentane 7.4
Silicone oil (various viscosities) 0.9
Fluorinert 2.0
Argon 1.9
Nitrogen 3.0
Neon 15
Helium 23

obtaining accurate pressure derivatives of elastic moduli. Non-hydrostatic stresses
can also promote or suppress phase transitions [8, 9] and they can promote the amor-
phisation of crystalline samples [10, 11]. Table 9.1 shows the nominal hydrostatic
limits of some common pressure-transmitting media. There is considerable variation
within the literature about the precise values of hydrostatic limits – this arises
because of the different ways that loss of hydrostaticity can be assessed. The onset of
line-broadening of the fluorescence spectra of ruby chips immersed in the medium
has often been used, but ruby is a relatively stiff material with a bulk modulus of
about 254 GPa and is thus intrinsically less sensitive to non-hydrostatic stresses than
most minerals or molecular compounds. Furthermore, the fluorescence spectra are
intrinsically broad as a result of defects and strains within the ruby crystals, unless
the crystallites have been very carefully annealed. More recently a systematic, more
sensitive, ruby-fluorescence study has been performed, which monitored values of
the pressure gradients across the sample chamber for the pressure-solidified medium
[12]. An alternative method for monitoring non-hydrostatic stresses is to measure
the widths of the diffraction peaks of quartz single crystals [13]. Quartz is available
as gem-quality samples that have intrinsically sharp diffraction peaks and it has a
low bulk modulus, which make the peak positions and widths sensitive to small non-
hydrostatic stresses. Gigahertz ultrasonic interferometry has also been used to detect
the onset of the pressure-induced glass transition in methanol:ethanol mixtures [13].

It should also be noted that neutron experiments require the use of fully deuter-
ated pressure-transmitting media since hydrogen-containing material produces a
strong background due to the large incoherent cross section of hydrogen.

9.4 Further Reading

References [14, 15], which represent proceedings of previous Erice Schools, give
a flavour of research in the field of high-pressure crystallography. Reference [16]
is an informative review of high-pressure chemistry that highlights some of the
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fascinating structural changes induced by elevated pressures. References [17–21]
provide a combination of tutorial and critical reviews that cover a range of high-
pressure research from simple metals through molecular compounds to ceramic
materials.
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Chapter 10
Structure Solution by Charge Flipping

Lukáš Palatinus

Abstract Charge flipping is an iterative structure solution method based on the
alternating modification of an electron density in direct space and structure factors
in reciprocal space. It has been successfully applied to a range of crystallographic
problems, including structure solution from powder diffraction data and from
electron diffraction data obtained by the precession electron diffraction method.
For electron diffraction no modification of the basic algorithm is necessary. For
the structure solution from powder diffraction the histogram matching technique
proved to be a powerful method to improve the quality of the solutions and use the
algorithm to solve quite complex structures.

10.1 Introduction

Introductory note: Reading of this chapter assumes a basic knowledge of crystallo-
graphic terms and concepts. Reader unfamiliar with these concepts will find them in
several text books on the subject, for example in an excellent treatise Fundamentals
of Crystallography [1].

The phase problem in crystallography is almost as old as structural crystallogra-
phy itself. For a long time, the approaches to this problem have been driven by the
attempts to reduce the computational complexity of the solution methods because of
the limited (or non-existent) access to powerful computers. Lots of effort has been
invested in the development of Patterson and direct methods in order to make them
as computationally efficient as possible.
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The advent of cheap computer power available on almost everyone’s desk has
allowed the development of methods that are conceptually simpler than the classical
methods at the expense of higher requirements for computing power. Among these
techniques are direct-space methods (simulated annealing, genetic algorithms : : : )
and extensions of the classical direct methods, like Shake-and-Bake [2, 3]. Recently,
a new class of methods based neither on the direct methods nor on direct-space
approaches have emerged. These methods are based on an iterative modification of
an image in both direct and reciprocal (Fourier) space, and can therefore be referred
to as dual-space iterative methods.

10.2 Dual-Space Iterative Methods

The diffraction experiment provides information about the amplitudes of the Fourier
coefficients of the scattering density, but the phases of the structure factors are lost.
In the case of X-ray diffraction by a crystal, the scattering density is the electron
density in the unit cell of the crystal. For diffraction by electrons the scattering
density is the electrostatic potential. The knowledge of the Fourier amplitudes
imposes constraints on possible electron densities (the amplitude constraints), but
these constraints alone are not sufficient for the solution of the phase problem.
To solve the phase problem without serious ambiguities, we have to define
additional constraints that allow us to discriminate between physically meaningful
and meaningless electron densities. The weakest and most general constraint is
the requirement for the electron density to remain positive (positivity constraint).
Another obvious constraint follows from the fact that crystals consist of individual
atoms. We could thus require that the electron density contains only a limited
number of significant peaks, and the rest of the unit cell is filled by almost zero
density. A weaker variant of this constraint is the mere requirement that only a small
part of the unit cell has significant density, with the rest being zero. In this weaker
formulation there is no explicit assumption that the significant density is grouped
into separated point-like peaks. We can call this condition a sparseness constraint.
All these constraints are defined with respect to the electron density rather than its
Fourier coefficients, and they are therefore direct-space constraints in contrast to the
amplitude constraint, which is defined in reciprocal space.

Whatever constraint we choose, we can now reformulate the solution of the phase
problem from a different perspective. In the space that contains all possible electron
densities, we seek the subset of densities that fulfill both the amplitude constraint
and some of the direct space constraints. This subset is an intersection of the subsets
fitting the amplitude constraint and the direct-space constraint. We are therefore
looking for an intersection of two subsets in the space of electron densities. The sets
of densities that fulfill the constraints are termed constraint sets.

The problem of finding an element from the intersection of two (or more)
constraint sets has been treated by mathematicians since long time ago. In the
special case of convex feasibility or convex optimization problems, where all
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Fig. 10.1 Finding the inter-section of two constraint sets. (a) Convex constraint sets and repeated
projections. (b) Non-convex constraint sets and repeated projections. (c) Non-convex constraint
sets and repeated overprojections

sets are convex, well-defined iterative procedures exist with proven convergence
properties [4]. For instance, the intersection between two convex constraint sets is
always reached simply by alternating projections onto the first and the second set
(Fig. 10.1a). In crystallography, the set associated with the amplitude constraint is
unfortunately non-convex. In such case the algorithms developed for convex sets are
not guaranteed to work, because they can get trapped in local minima (Fig. 10.1b).
It is nevertheless useful to use the terminology and approaches developed for the
convex feasibility problem. The two main elements constituting the basis of the
algorithms are the constraint sets and the projections onto them. We have already
discussed the constraints. Now let us consider the projections. For the purposes of
this chapter a projection P is a mapping from an arbitrary point � in the image space
onto the nearest point of the constraint set C:

P W P� 2 C and
��P� � �

�� D min

Applying a projection to an arbitrary density results in a new density that belongs
to the constraint set. A projection PF that projects an arbitrary density � on the
amplitude constraint CA can be written as:

PF D ˆ�1Aˆ

where ˆ represents a Fourier transform, and A an operation on the Fourier
coefficients such that the phases remain intact, and the amplitudes are replaced with
the experimental amplitudes. It is obvious from Fig. 10.1b that “naively” alternating
the projections onto the first and second constraint set can only be successful
sometimes, but it is prone to stagnation at local minima. This drawback can be
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overcome by replacing simple projections by relaxed projections (overprojections),
or combining these relaxed projections in more elaborate schemes. A relaxed
projection R is defined as:

R D P C �.P � I /

Thus, a relaxed projection is obtained by a “prolongation” of the vector from
� to P� by a factor � . The special case � D 1 is called a reflection. Figure 10.1c
illustrates that using relaxed projections may allow the iteration to escape from a
local minimum.

Multiple different combinations of projections have been suggested in the
literature (see [5] for overview), but it must be emphasized that not all possible
combinations are useful. A good algorithm must be designed in such a way that it
searches the image space efficiently, i.e. it does not get trapped in local minima, and
explores large parts of the image space. On the other hand, if the iteration approaches
the true solution, it must converge close to the solution, and not diverge again.
Clearly, the algorithm must be a balance between the perturbing aspect necessary
to explore the search space, and the stabilizing aspect needed for the stability at the
solution.

10.3 The Charge-Flipping Algorithm

Several dual space algorithms can be described in the frame-work of repeated (over)
projections onto the constraint sets. Among them the charge flipping algorithm
[6–8] has gained the widest attention, and is currently the main dual-space iterative
method used to solve structures in practical crystallography. The basic algorithm
can be briefly described as an alternation of a simple projection onto the amplitude
constraint set followed by an overprojection onto the positivity constraint set.
However, the exact implementation deviates somewhat from this general scheme,
and we will discuss these deviations later.

Figure 10.2 shows the flow chart of the basic algorithm. The electron density
� is sampled on a grid with Npix D N1 � N2 � N3 pixels. The density values �i are
evaluated in each pixel i D 1, : : : ,Npix of the grid. jFobs(h)j are the experimental
amplitudes of the structure factors. The algorithm is initiated in the zeroth cycle
by assigning random starting phases 'rand (h) to all experimental amplitudes and
making all unobserved amplitudes equal to zero:

F .0/.h/ D
� ˇˇF obs.h/

ˇ
ˇ exp.i'rand .h// if

ˇ
ˇF obs.h/

ˇ
ˇ is known

0 otherwise
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Fig. 10.2 The flow chart of
the basic charge flipping
algorithm

The iteration cycle then proceeds as follows:

1. The density �(n) is calculated by inverse Fourier transform of F(n).
2. The modified density g(n) is obtained by flipping the density of all pixels with

density values below a small positive threshold • and keeping the rest of the
pixels unchanged:

g
.n/
i D

(
�
.n/
i if �.n/i > ı

��.n/i if �.n/i 
 ı

3. Temporary structure factorsG.n/.h/ D ˇ
ˇG.n/.h/

ˇ
ˇ exp.i'.n/G .h// are calculated by

Fourier transform of g(n).
4. New structure factors F(nC1) are obtained by combining the experimental ampli-

tudes with the phases of G(n) and setting all non-measured structure factors to
zero:

F .nC1/.h/ D
( ˇ
ˇF obs.h/

ˇ
ˇ exp.i'.n/G .h// if

ˇ
ˇF obs.h/

ˇ
ˇ is known

0 otherwise

These structure factors then enter the next iteration cycle.
Let us analyze the steps in detail. Steps 1 and 3 are just Fourier transforms

that transform the quantities between direct and reciprocal space. Steps 2 and 4
are the actual modifications. Step 4 is a standard projection onto the amplitude
constraint set, as described in the previous section. To understand the meaning
of step 2 let us first define a significance pseudoprojection as an operation that
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sets all density values below the (small, but positive) threshold ı to zero. This
operation can be understood as a combination of the positivity projection (all
negative densities are set to zero), and the sparseness projection (small density
values are considered insignificant and set to zero). If we combine the definition
of the significance pseudoprojection and the definition of an overprojection, we see
that the charge flipping operation is an overprojection with ”D 1 associated with the
significance pseudoprojection. But why do we call the significance pseudoprojection
a pseudoprojection, and not simply a projection? Because this operation does not
minimize the distance between the original and modified density, and therefore
it does not match the definition of projection introduced above. For example, for
the value of ı equal to 0.5, the constraint set consists of all densities with density
values either exactly zero or larger than 0.5. Consider now a density value 0.4. The
minimum change of this value to bring it onto the constraint set is to increase it by
0.1–0.5. However, the significance pseudoprojection is defined so that this value
becomes zero, i.e. a change by �0.4. As a result, the charge flipping operation
cannot be understood as an overprojection in the strict sense. The difference might
seem unimportant, but tests show that replacing the charge flipping operation by a
true overprojection visibly decreases the efficiency of the algorithm.

The basic algorithm has been extended several times to improve the efficiency
and to widen its applicability [8]. One improvement involves the replacement of the
amplitude projection by the corresponding overprojection. This simple extension
significantly improves the ability of the algorithm to solve complex structures.
Another improvement has been obtained by introducing a so-called  -half variant
of the amplitude projection. In this variant, the amplitudes of the weak reflections
are not modified in step 4 of the algorithm, but their phase is shifted by  /2:

F .nC1/.h/ D

8
<̂

:̂

ˇ
ˇF obs.h/

ˇ
ˇ exp.i'.n/G .h//ˇ

ˇG.n/.h/
ˇ
ˇ exp.i'.n/G .h/C �

2
/

0

if
ˇ
ˇF obs.h/

ˇ
ˇ is known and strong

if
ˇ
ˇF obs.h/

ˇ
ˇ is known and weak

otherwise

Typically around 20% of the weakest reflections are treated as weak.
An extension of the algorithm towards scattering densities that are not strictly

positive (like neutron scattering densities in presence of isotopes of some elements)
is possible by a modification of the flipping operation. In this so-called band flipping
variant [9] only densities between Cı and �ı are multiplied by �1. This operation
leaves large negative densities intact, and allows the development of negative peaks.

10.4 Practical Considerations

The charge flipping algorithm has many practical aspects that are not fundamental,
but are important for application of the algorithm to real problems. Let us comment
on the two most important aspects.
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10.4.1 Data Completeness

Charge flipping requires atomic resolution to work. That means that the resolution
should be better than 1.2 Å for organic structures. The limit can be relaxed to 1.6 Å
or even more for structures containing heavier atoms. Being a method based on
Fourier transform, charge flipping is more sensitive to data completeness than direct
methods. It is especially harmful to remove strong reflections from the data set.
This, unfortunately, happens in practice, if strong reflections are saturated during
the exposure, and then removed from the data set as unreliable. It is recommended
to include the strong reflections in the data set for solution, even if their intensity
is less reliable. These reflections should, however, be removed before the structure
refinement procedure.

10.4.2 Symmetry Determination

An important aspect of the algorithm is the handling of symmetry. During the
iteration no symmetry is imposed on the density. The algorithm is said to “solve the
structures in P1”. Any attempt to use the symmetry information during the iteration
has so far resulted in a decreased or at least unchanged efficiency of the algorithm.
The symmetry is, of course, indirectly encoded in the diffraction intensities, and
therefore the reconstructed electron density contains the proper symmetry. As a
result the symmetry can be estimated from the electron density. This is an important
advantage, because the symmetry analysis can be based both on the experimental
amplitudes and reconstructed phases rather than only on the amplitudes [10].
Consequently, the symmetry analysis does not suffer from ambiguities between
centrosymmetric and noncentrosymmetric space groups. It is also less sensitive to
the noise in the data. In the analysis of systematic absences a handful of false strong
reflections (arising for example due to diffuse scattering) can obscure the detection
of the corresponding symmetry element. The analysis of the density, on the other
hand, relies on the full density in the unit cell, and is therefore much more robust.

Sometimes, however, the solution is not sufficiently accurate to detect small
deviations from a higher symmetry. This can happen for example, if large parts
of the structure (say all heavy atoms) match a higher symmetry, and only a few light
atoms break the symmetry. The best practice in symmetry determination is therefore
combining both standard symmetry analysis based on the distribution of diffraction
intensities, and the symmetry analysis of the electron density reconstructed by
charge flipping in P1.
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10.5 Applications of Charge Flipping to Powder
Diffraction Data

A powder diffraction diagram can be considered as a projection of the 3D diffraction
pattern onto one dimension. Such projection inevitably results in the overlap of
reflections in the pattern and consequently in the loss of information about the
intensity of individual reflections.

Using some of the decomposition procedures (Le Bail or Pawley decomposition
[11, 12]) it is possible to extract approximate reflection intensities from the powder
diagram. Some of these intensities can be very accurate, but those exhibiting heavy
overlap will be estimated with a significant inaccuracy. Nevertheless, such a set of
intensities can be considered as a noisy single crystal data set.

If the reflection overlap is not too severe, the charge flipping algorithm can
solve structures directly from the extracted intensities. In such case the structure
solution process is not different from the structure solution from single crystal data.
Such solutions are especially successful if synchrotron radiation data are available
[13, 14].

However, as the reflection overlap increases, the quality of the data set decreases
to the point when the density map reconstructed by charge flipping becomes
uninterpretable, although not completely wrong. We then stand in front of the
following problem: we have a partial solution, and we would like to modify the
solution in such a way that with the help of the modified solution we can obtain
a better guess for the individual intensities that are overlapped in the diffraction
pattern.

The first attempt to make such modification was to use the ratio of jG(n)(h)j of
the overlapped reflections, and modify their jF(h)j to have the same ratio while
keeping the total intensity of the overlapped group of reflections equal to the
experimentally determined value [15]. However, this approach does not bring any
really new information in the iteration process, and it has so far not gained wider
application.

An alternative approach has been developed by Baerlocher et al. [13]. It was
noted that the partial solution from the original, noisy data exhibited typical
distributions of the density values (density histograms), which were different from
the density histograms of the correct solutions (Fig. 10.3). The technique called
histogram matching [16] is used successfully in protein crystallography to improve
the estimated reflection phases by modifying a partial solution so that its histogram
matches the expected histogram. For powder diffraction this idea was modified, and
the histogram matching is used to improve the estimates of intensities rather than
phases.

The flowchart of the complete algorithm is shown in Fig. 10.4. The heart of
the algorithm is the original charge flipping algorithm. However, after every n
cycles (n being typically between 20 and 100), the current density �(n) is submitted
to a histogram matching procedure, which modifies the density values so that
histogram of the modified density matches the expected histogram. Structure factors
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Fig. 10.3 Density histogram of a partial solution obtained by charge flipping from powder
diffraction data, and a histogram of a good solution from [13]

calculated from such modified density are different from the original structure
factors. Because it can be assumed that the density was improved by the histogram
matching procedure, the calculated structure factors should also be improved, and
in particular the ratios of the structure factor amplitudes are probably closer to the
correct values than in the original dataset extracted from the powder pattern. These
ratios can thus be used to repartition the intensities in overlapped reflection groups.
The charge flipping algorithm then continues with the improved data set, and the
whole metacycle of n cycles of charge flipping followed by histogram matching is
repeated until convergence.

This algorithm proved to be successful in solution of several complex struc-
tures [13]. For extremely difficult problems the algorithm can be combined with
additional information obtained from high-resolution electron microscopy, and such
combination then resulted in solution of some of the most complex zeolite structures
known to date [17, 18].

10.6 Structure Solution from Electron Diffraction Data

Electron diffraction data have long been deemed generally unsuitable for ab initio
solution of crystal structures. This is because the dynamical effects present in the
electron diffraction scramble the intensities to such an extent that the structure-
solution techniques, which are based on the kinematical theory of diffraction, do
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Fig. 10.4 The flowchart of the charge flipping algorithm with histogram matching (From [13])

not work anymore. The situation has changed a few years ago, when the precession
electron diffraction method gained more attention. With this method the electron
beam precesses with high frequency along the surface of a cone with the vertex on
the sample. The motion of the beam is compensated under the sample so that the
resulting diffraction pattern is still point-like. The intensities in such pattern are then
integrals over all orientations of the incident beam along the cone. As a result, some
of the dynamical effects are averaged out, and the intensities are closer to intensities
predicted by kinematical theory.

Despite of this important advance the PED intensities are not perfectly kinemati-
cal, and they exhibit non-negligible dynamical effects. Therefore, from the point of
view of the structure solution, the intensity data from PED can be considered a very
noisy kinematical data set.

Charge flipping does not make any use of atomic scattering factors, because
it operates only with the scattering density. Therefore, charge flipping can be, in
principle, applied without any modifications to precession electron diffraction data.

Practical applications of charge flipping can be hindered by the incompleteness
of the data set. Traditionally the intensity data are recorded as a set of oriented zone-
axis patterns. Such a data set can have severe gaps and relatively low completeness
even at low diffraction angles. As mentioned earlier, such incomplete data set is
not suitable for charge flipping. Recently, however, 3D diffraction tomography
technique is becoming more and more popular [19, 20]. In this technique the
sample is rotated in small steps, and a diffraction pattern is recorded in each step.
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The intensities are then extracted from the collected images analogically to the
standard procedure used in X-ray crystallography, and the data set is complete
within the limits of the tilt of the sample holder.

The application of charge flipping to solution of crystal structures from preces-
sion electron diffraction data is still in its very beginning. The first demonstration
on a structure of barium sulphate has been made by Mugnaioli et al. [21]. Eggeman
et al. [22] showed a solution of the structure of erbium pyrogermanate by charge
flipping, and proposed a special treatment of symmetry to enhance the quality
of the structure solution from sparse intensity data. Recently charge flipping
was successfully applied to a structure solution of a complex aperiodic structure
of copper silicogermanate Cu3Cx(Si,Ge) [23]. The latter example illustrates the
potential of charge flipping for the solution of complex structures. The full potential
and limitation of the application still remains to be explored.
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Chapter 11
Structure Solution: Global Optimisation
Methods

Kenneth Shankland

Abstract The direct location of atomic positions from electron density maps
generated using conventional direct methods solutions is a far more difficult exercise
when using powder data as opposed to single crystal data. Global optimisation
methods that involve the assessment of trial crystal structures in real space offer
a powerful alternative method of structure solution that circumvents the map
interpretation stage by directly maximising the agreement between calculated and
observed diffraction intensities.

11.1 Introduction

Given a known unit cell, space group, and a set of atomic coordinates with
corresponding atom types, the structure factors for a trial crystal structure may
be easily calculated. The agreement between these structure factors and a set of
experimentally determined structure factor intensities (obtained from, for example,
a Pawley or LeBail refinement against a powder pattern) can be easily quantified
using a measure such as the jFj R-factor:

R D
X

h

jjF o
h j �K jF c

h jj
.X

h

jF o
h j

where the summation is over the list of observed intensities [1].
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2 range No. of
2 values

0 < 2  200 10

200 < 2  400 453

400 < 2  600 138,491

600 < 2  800 74,208

800 < 2  1,100 1085

Total 214,527

Fig. 11.1 The number of
stationary point ¦2 values
located on the ¦2

hypersurface of FFB. The ¦2

agreement factor is as defined
in [3]. A total of one million
minimisations was run in
order to locate the ca. quarter
of a million stationary points

The chances of guessing all of the atomic positions in a crystal structure correctly
in a single step are negligible, even if significant amounts of prior chemical infor-
mation are incorporated into the formulation of those positions (see, for example the
Chapter 5). As such, the coordinates of the trial structure must be adjusted in order
to explore the function that describes the agreement between the calculated and
measured diffraction data, with a view to maximising the level of agreement, which
equates to minimizing the R-factor (or some equivalent fit criterion, such as ¦2).
This function has N-dimensions, where N is the number of structural parameters
associated with the formulation of the model being optimised. The process of
structure solution is therefore equivalent to searching for, and locating the position
of, the minimum value of an N-dimensional agreement hypersurface. Though the
exact topology of the surfaces varies from problem to problem, it is the topology (as
opposed to the number of dimensions) that determines how difficult it is to locate
the global minimum – were it everywhere convex, for example, containing just
one minimum, local minimisation from any point would always locate the global
minimum. In fact, a typical hypersurface in the context of structure solution exhibits
multiple stationary points – this is easily verified by employing multiple local
minimisations, starting from random trial structures each time. Figure 11.1 shows
the results of such a verification exercise, for the relatively simple 13 dimensional
problem of solving the crystal structure of famotidine form B from powder data
fitted to 1.75 Å resolution [2].

These stationary points may be divided into two sets: (a) the global minimum
that corresponds to the fully determined crystal structure and (b) local minima
and saddle points that correspond to incorrectly determined crystal structures. In
a structure refinement, it is assumed that the starting model is sufficiently close to
the true crystal structure that the agreement function value lies within the radius
of convergence of the N-dimensional well that surrounds the global minimum. In
these circumstances, least-squares can quickly locate the precise global minimum.
In structure solution, this is unlikely to be the case and so global optimisation
algorithms, that possess the ability to escape from local minima, are employed.
Figure 11.2 shows a block outline of a generic global optimisation strategy for
powder diffraction.
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Fig. 11.2 A generic flowchart for implementing a global optimisation approach to crystal structure
solution. The target value is usually some small multiple of the best Rwp or ¦2 obtained from a
Pawley or LeBail fit to the data

11.2 Search Methods

A wide range of search methods, designed to locate the global minimum in a struc-
ture solution context, have been employed. Any ‘Monte-Carlo’ method involves
some element of random sampling; the term ‘Reverse Monte-Carlo’ is sometime
used in the context of the solution of disordered crystal structures [4]. Here, we use
the term ‘global optimisation’ to represent both search and optimisation algorithms,
bearing in mind that ‘global search’ and ‘global optimisation’ are normally used
interchangeably in the literature [5].
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The global optimisation problem in powder diffraction is analogous to the
conformational search problem in molecular modelling [6], with the additional
complication that the position and orientation of the molecule in the unit cell must
also be identified. It is therefore unsurprising that many of the optimisation methods
employed in molecular modelling are transferable to the crystal structure solution
problem.

The simplest approach is to perform an exhaustive grid search over the parameter
space of interest, and this has been applied successfully to some problems in
powder diffraction [7, 8]. However, the ‘combinatorial explosion’ that arises when
dealing with large numbers of parameters renders the approach somewhat limited in
applicability.

Simulated annealing (SA) is the most widely used optimisation method for
SDPD. References [9–14] all describe SA-based approaches and associated com-
puter programs. It is effective and requires only a limited number of control
parameters. A single SA run is only guaranteed to find the global minimum after
an infinite number of steps, but in practice, the global minimum is normally located
in a finite number of steps. There are many variants on the basic SA algorithm. For
example, rather than simply reduce the temperature of the system at a preset rate
[11], the rate of cooling can be linked to function value fluctuations [3]. Parallel
tempering, has also been used to good effect [14]. SA is intrinsically a sequential
process but is easily adapted to parallel computing environments in the context of
parametric execution. For example, multiple SA runs can be started in parallel,
in order to ensure that the same function minimum can be located several times
from different random starting points [15, 16]. SA has been responsible for the vast
majority of crystal structures from powder data solved using the global optimisation
approach and has even been combined with direct methods of structure solution to
provide an additional powerful tool [17].

Genetic algorithms (GAs) are an approach to global optimisation that borrow
heavily from the Darwinian theory of evolution and been widely applied to opti-
misation problems such as molecular docking [18]. In structure solution, each trial
crystal structure is treated as an individual defined by a collection (‘chromosome’)
of variables (‘genes’). The fitness of an individual is (generally) nothing more than
the figure of merit that describes how well calculated and observed diffraction data
agree. The genetic operators of crossover and mutation are applied to generate
new structures from a population of individuals, with the fittest members having
the highest probability of surviving into subsequent generations. Applied to the
powder diffraction problem [19–21] they have proven effective, but are not as widely
used as SA. Closely-related evolutionary algorithms have also been applied to the
powder problem [22] though they have not found wide adoption. As with SA, there
are a great many variants on the basic theme. For example, Lamarkian evolution
assumes that an individual is not a fixed-fitness entity, but rather one that improves
during its lifetime and that such improvements are coded back into the chromosome.
This notion can be incorporated into computer code by use of a local optimiser,
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Fig. 11.3 The potential energy (FOM for fit to the data) and total energy (kinetic energy plus
potential energy) evaluated over a single MD trajectory during the crystal structure solution of
capsaicin. The initial total energy is shown as a dotted line in order to highlight the total energy
fluctuations arising from the finite MD step size

which quickly pulls each candidate GA solution to location of the closest function
minimum before the genetic operators are applied. Unsurprisingly, this can improve
the convergence rate of a GA significantly [23].

Both SA and GAs are examples of stochastic algorithms, but deterministic
algorithms can also be employed in the context of global optimization. An excellent
example is the hybrid Monte Carlo (HMC) approach [24] – the algorithm combines
the key components of molecular dynamics (MD) and Monte Carlo (MC) simula-
tions to achieve efficient sampling of phase space, allowing a crystal structure to be
solved more effectively than using a SA-based approach. Put simply, the trial crystal
structure can be considered to be a hypothetical particle moving over a hypersurface,
following a trajectory determined by its initial momentum and the local gradient of
the hypersurface. As the total “energy” of the system must be conserved throughout
a particular particle trajectory, a promising structure (i.e. one lying on a low point
of the hypersurface) is said to have low potential energy and high kinetic energy. It
is this high kinetic energy component that allows the particle to subsequently move
uphill and thus escape local minima. Figure 11.3 shows how the algorithm explores
the potential energy surface and how the finite step size in the MD component results
in an accumulation of errors in the total energy. It is here, at the end of a single MD
trajectory, that the MC component is invoked to decide whether or not the trajectory
should be accepted or rejected, in a way similar to the move accept/reject step in SA.

Other approaches have been investigated and sometimes incorporated into SDPD
schemes. For example, the downhill simplex can be employed towards the end of
a global optimisation as a robust method for quickly and efficiently descending to
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Fig. 11.4 ¦2 (hypersurface FOM) values at each of the 64 iterations of a single successful quasi-
Newton Raphson minimisation of the structure of famotidine form B i.e. one that reaches the
global minimum of ¦2 D 75.3333. The unit cell contents (viewed down the b-axis) of the structure
are shown at 3 points along the path

the lowest point on the hypersurface from the lowest point located by the global
optimisation method [25]. Recently, it has been shown (somewhat unexpectedly)
that simple local minimizers can in fact locate the global minimum from a com-
pletely random start point [2]. Furthermore, they do so with a frequency higher than
that expected if one assumes that all stationary points have an equal probability of
location. Figure 11.4 shows the trajectory of one successful quasi-Newton Raphson
minimisation for the structure of famotidine form B (13 degrees of freedom).
Whilst this plot appears similar to the ‘ridge-and-cliff’-type plots sometimes used
to illustrate the progress of global optimisation algorithms, there is an important
distinction; the latter show only the lowest hypersurface values encountered as a
function of time, whereas Fig. 11.4 shows all hypersurface values encountered,
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confirming the monotonically decreasing nature of the path. The starting structure
is clearly randomised and a recognisable structure appears after only 30 iterations,
with the structure clearly solved by iteration 50. Significantly, minimisation takes
less than 50 �s to execute on a single core of a 2.5 GHz Xeon E5420 CPU.

The contribution of global optimisation methods to structure solution has been,
and continues to be, highly important but there is clearly still significant room for
development in the coming years.
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Chapter 12
Proteins and Powders: Technical Developments

Jonathan P. Wright

Abstract Protein powder samples offer many technical challenges for powder
diffraction experiments and data analysis. Samples are sensitive to radiation damage
and the large unit cells lead to severe peak overlaps, creating interesting challenges.
Powder diffraction remains as the unique tool to characterize certain polymorphic
forms of crystalline proteins.

Some 12 years ago Von Dreele published a Rietveld refinement of the structure of
the protein myoglobin from powder diffraction data [1]. For many crystallographers
this came as a surprise; could it be possible to refine a 1,261 atom structure using
only a powder diagram? This landmark achievement was the result of a system of
stereochemical restraints which keeps the local atomic geometry correct while the
secondary and tertiary structures of the molecule were determined by the powder
data. This work generalizes to many different protein structures, almost all proteins
mainly consist of a folded polymeric chain of amino acids, so that the same restraint
macros can be re-used. By making his work available to the community in the GSAS
software package [2] Von Dreele has helped many of us to join him in working at
an exciting new frontier in powder diffraction.

Since that breakthrough there has been good deal of progress and other reviews
are already available [3, 4]. This chapter focuses mainly on technical aspects and
should be complementary to previous reviews, and also to the next chapter from
Irene Margiolaki which gives more scientific results.

Technical developments come about when we address difficult challenges. A few
proteins, such as lysozyme, offer highly crystalline samples with huge unit cells so
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that we can obtain stunning diffraction patterns and really push our instrumentation
to the limits [5]. Making a complete analysis of such a rich dataset then encourages
progress on software and algorithms too. With these new methods in hand, proteins
provide a rich source of poorly crystalline samples and difficult problems which
motivate us to optimize our strategies as far as possible.

Protein structures are unlike small molecule or inorganic crystal structures in
a couple of important ways; we rarely have “atomic resolution” in the data and
so we cannot resolve individual atomic positions, also, large regions of the unit
cell may be filled with liquid water. The “structural resolution” is usually quoted
in Ångstroms and corresponds to the real space resolution for which the data can
provide an electron density map. A “high resolution” crystal structure is one where
we can actually see the atoms, and would be somewhat better than 2 Å. If we can
obtain a structural resolution of around 3 Å we may expect to see how the protein
chain is folded and packed into the crystal. At resolutions lower than about 10 Å the
peak intensities are strongly affected by the disordered solvent in the structure, but
still give information about how the molecules pack into the unit cell. Many of the
technical developments have been motivated to increase the structural resolution we
can obtain as far as possible.

The structural resolution we can obtain for a powder depends on the sample
and instrumentation, as for a single crystal. However, quite unlike single crystal
data, the numerical resolution is strongly affected by the size of the unit cell of the
sample. In a powder pattern the density of overlapping peaks gets worse as we go
further out into the reciprocal lattice. Even with high resolution instrumentation it
is rare to get more than about 1,000 peaks out of a powder diagram. This leads to a
conclusion that the structural resolution we may obtain for a sample is on the order
of the size of the asymmetric unit divided by 10, or in other words, 10 � 10 � 10
independent voxels. This limit may be too cautious if there is high solvent content
or other favorable effects, but nevertheless, it gives a useful guide as to what can
be expected for structural resolution from powder data. For a small protein with
a unit cell of 20–30 Å we may resolve amino acid side chains (2–3 Å), but for a
large macromolecular complex, we will probably remain limited to seeing only the
tertiary structures from powder data.

The strong contribution of the liquid water in a protein crystal structure causes
large changes in the low angle peak intensities. These differences may be modeled
by a Babinet model where all atoms are assumed to be embedded in a continuous
electron density from which they displace a local volume. This model modifies the
atomic scattering factors according to:

F D F0 � A expf�8 2Usin2™=œ2g

This Babinet model was originally implemented for powder data in the GSAS
software package [2]. “A” represents the average electron density of the solvent
and takes values of 3–6 and “U” is a thermal parameter falling in the range 1–10.
The equivalent model is also now available in Topas; see reference [6] for details
on how to use Topas with protein data. An alternative approach which is more
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common in protein crystallography is to fill the empty parts of the unit cell with
a uniform density. Then a Fourier transform is carried out to get the structure factor
of these solvent regions. An advantage of this method is that empty regions of the
unit cell which are too small to contain water can be excluded. This method has
been implemented in the protpow software [7]. Until recently the main drawback
of the map based methods were that they were not differentiable for least squares
fitting, but this too has been addressed in a recent publication [8]. We may hope that
this new differentiable model will improve the fitting of low resolution powder data,
as soon as it can be implemented into the various software packages.

In order to solve or refine any complex structure from a powder sample we should
try to get the best possible data. More time spent on the sample preparation and
experiment will make any analysis easier. We want to get data with good counting
statistics and very sharp diffraction peaks, but these two goals lead to a conflict,
when we improve the peak resolution, we tend to cut down the count rate. Proteins
present a problem as the counts we can collect are limited by radiation damage in
the sample.

Cooling the sample to cryogenic temperatures reduces the rate of radiation
damage by a factor of about 80 in most protein samples. Protocols for cryoprotection
of single crystal samples are almost universally used nowadays and many single
crystal synchrotron beamlines allow samples to be delivered and loaded onto the
diffractometer while remaining always at low temperatures. For powder diffraction,
cryocooling turns out to be more difficult than expected. The problem is avoiding
the formation of crystalline ice, which causes large strains and damage to the
protein crystals. By cooling a sample very quickly we can avoid ice formation and
instead obtain amorphous ice. Typically this process can be favoured by adding
a cryoprotectant chemical to the mother liquor which disrupts the formation of
crystalline ice.

We compared the effects of a series of different cryoprotectant molecules in a
systematic study [9] where we found that higher concentrations of cryoprotectants
worked better. We also found that the peak broadening due to strain is proportional
to the unit cell change which occurred when the sample was frozen. Since then,
Yves Watier [10] has further developed cryoprotection strategies for powders at
ESRF by using annular samples and kapton capillaries. A thin annular sample
can be prepared by inserting an empty capillary up the centre of a previous
filled capillary sample. The thin sample can then be cooled much more rapidly
and uniformly when plunging into liquid nitrogen, in comparison to the regular
capillary sample, where the core of the sample is insulated from the outside. This
procedure is also helped by the relatively high thermal conductivity of kapton at
low temperatures. Unfortunately, some small amounts of peak broadening are still
induced by cryocooling a sample, so that the data are not as sharp as can be obtained
at room temperature.

While a cryocooled sample will last for many hours in the X-ray beam, even at an
undulator beamline at the ESRF, at room temperature the lifetime is around 10 min.
When a large sample is available, radiation damage problems may be avoided at
ID31 at the ESRF due to the invention of a translating capillary spinner. A series
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Fig. 12.1 Left, geometrical contributions to the peak width in area detector powder diffraction.
Right, comparison of data for Typsin plotted versus 1/resolution2 for an analyser crystal instrument
(ID31) and an area detector (ID11)

of short scans are collected and then the capillary is translated to give a fresh area
of sample for the next scan. By coupling this spinner with a sample changing robot
one can continuously replenish the sample as it is destroyed by the X-ray radiation.
In this way, the data which can be obtained at ID31 are usually limited by the
quantity of sample that is available. Small samples are unfortunately very common,
especially when the protein has to be expressed from bacteria. This forces us to turn
to area detectors or cryocooling to improve the counting statistics.

By using a 1D strip [11] or 2D area detector [12], we may record many more of
the photons scattered by the sample in comparison to the use of a scanning bank
of point detectors. The instrumental resolution we can obtain in this case is given
mainly by the sample dimensions and the point spread function (typically similar to
the pixel size) of the detector system. Many single crystal diffraction beamlines are
available at synchrotrons for protein crystallography, and these too may be used for
powder diffraction. Getting a good powder diagram requires that the rings recorded
on the detector are as narrow as possible, which is helped by focusing the X-ray
beam at the detector surface. To overcome the point spread of the detector, it is
better to have a very large area detector with many pixels. A cost effective way to
make a modest sized are detector appear larger is to place it on a translation stage
and scan it. Then the powder diagram can be reconstructed in software by calibrating
the detector position and integrating each image separately. The peak width that can
be obtained with an area detector is limited by several contributions other than the
intrinsic sample broadening:

– Detector pixel size (point spread)
– X-ray beam size at the detector surface
– X-ray band pass and divergence
– Projected sample thickness

The beam size and point spread contributions give an angular broadening which
is reduced when the detector distance is increased. The sample thickness broading
(Fig. 12.1) depends on tan2™ as well as the sample to detector distance, so that
this contribution is reduced for peaks at lower 2™ angles, e.g., it is less problematic
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Fig. 12.2 Powder data for myoglobin and the bundles of needles which give rise to these strong
preferred orientation effects

for very large unit cells as in proteins. While most of the broadening effects are
reduced by moving the detector further back, this does reduce the overall 2™ range.
The range can be recovered by scanning the detector, or purchasing one with more
pixels. Finally, the bandpass contribution is determined by the X-ray source and
optics and contributes as cot™ d™, so is typically unimportant for proteins at small ™.

By using a lens focusing system at beamline ID11 at the ESRF [13] we are able
to focus the X-ray beamsize to less than 10 �m at the detector surface, making this
contribution negligible. The band pass of our Laue-Laue monochromator is about
3 � 10�3 and the pixel size is about 50 �m. If the sample to detector distance is
around 1.5 m and the wavelength is 0.3�0.4 Å then we have sufficient resolution
to index even very large unit cells [14]. The resolution can be improved by using
a thinner sample, or by moving the detector even further back. A similar system at
Spring8 uses an image plate and gives a peak width resolution of 0.028ı [15].

A great advantage of area detector data, especially for screening samples, is that
you get an extra dimension of information about the sample, in comparison to a
traditional 1D powder diagram. If the sample shows strong preferred orientation,
this is immediately obvious in the area detector images as the rings do not show a
uniform intensity around the azimuth (Fig. 12.2). This is explored in greater detail
in Chapter 22. We have observed strong preferred orientation effects in a number
of proteins. While such images offer strong encouragement for obtaining more
“single crystal” like data from powder samples, we still struggle to get strong data
at high scattering angles with such samples. This is mainly the technical difficulty
of obtaining a large sample while preserving the preferred orientation effect, and
also keeping the crystallites wet and immobilised. Ideally a series of images should
be collected as the sample rotates, which means overcoming radiation damage
problems.

Occasionally, single crystals can be found in a sample which appears to be a
powder when viewed in an optical microscope. When data are collected using
an area detector and a small beam size we often observe spots superimposed on
the powder rings. Then we can perform the same experiment as for single crystal
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Fig. 12.3 Simulation of five overlapping 3D lattices from a multi-crystal sample of triclinic
lysozyme to 3 Å resolution. The peaks were indexed to individual grains in the sample automati-
cally using the index unknown.py script

diffraction, record a series of pictures as the sample is rotated. Indeed, any powder
sample is just a collection of individual single crystals, and if we can make the beam
size small enough we may always hope to resolve the individual diffraction spots
on the rings. The challenge is then to assign each individual diffraction spot to an
individual crystallite in the sample. A good deal of progress has been made in this
area thanks to the “TotalCrystallograpy” project [16].

An outline of an algorithm that was developed specifically for indexing protein
multi-crystal data is given here. Peak positions the detector are converted into
scattering vectors in reciprocal space using the ImageD11 software package [17].
Then the observed peaks are treated as indexed peaks in an arbitrary, but very large
sized unit cell. If we make a Patterson map using the data indexed in such a large
cell, we will find origin Patterson peaks at the lattice positions of the individual
crystallites in the sample. Choosing one of the origin peaks out of this Patterson map
will give one of the lattice vectors of one of the crystallites in the sample. We may
attempt to group the lattice vectors together by observing which peaks are indexed
by multiple Patterson vectors, or simply by a brute force method which picks triplets
of vectors from the map. Once the peaks have been assigned to crystals they may be
integrated as usual. Figure 12.3 shows a set of 5 superposed lattices which have been
indexed using this procedure as implemented in the index unknown.py script in the
ImageD11 software package [17]. The script has also been successful in indexing
a number of small molecule crystal samples, as well as the protein multicrystal
samples for which it was designed [18].

When we cannot induce crystallographic texture or resolve diffraction spots
from individual crystallites, we are faced with the powder overlap problem. One
of the ways we can try to alleviate this problem is to persuade the peaks to move
a little with respect to each other, so that the pattern of peak overlaps changes.
Then by fitting the various patterns to a single set of integrated intensities we can
unravel the intensities of the individual contributions. This method has been used
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for structure solution of several small molecules [19, 20] and is now often exploited
for protein data collections. Many external variables can be used to perturb the unit
cell, including; temperature, pressure, pH, humidity, salt concentration and radiation
damage.

A multipattern fit using such data can be used to enhance the estimation of
overlapped peaks in an intensity extraction. These peaks can then be used for
molecular replacement structure solution [12, 21] and typically enhance the signal
to noise ratio compared to a single pattern fit. Alternatively the multiple datasets can
be combined for a Rietveld refinement of the crystal structure [22, 23]. The multiple
histogram approach for Rietveld refinement leads to more stable fits than with a
single pattern.

In order to attack the crystallographic phase problem we have also exploited
anisotropic variations in the unit cell [24] to improve the data. Currently the
majority of software for solving the phase problem is only available for single
crystal data, and so we need to extract integrated intensities from the powder
profiles. By using likelihood based criteria we are able to improve the estimation
of overlapped peaks in intensity extractions, especially in space groups where
symmetry systematically enhances certain peaks [25]. Using very heavy atoms,
Gadolinium with lysozyme, uranium with elastase, we were able to measure
significant changes in peak intensities in the heavy atom derivatives [26]. These
intensity changes were sufficient to unambiguously locate the heavy atoms in the
unit cell and the find the shapes of the solvent channels in the structure. By adding
data from another heavy atom derivative, based on Holmium, to the lysozyme data,
it was possible to find shown the shape of a protein molecule [27]. Electron density
maps showing the backbone of the protein molecule were of sufficient quality to be
interpreted by automatic software.

Suppression of radiation damage has been critical to being able to collect powder
data for proteins at elemental absorption edges. In order to detect small differences
due to anomalous scattering good counting statistics are required. In the study of
PtBr6 binding to lysozyme [28] data were recorded at the f0 dip wavelength which
corresponds to the inflection point on the absorption edge. This is in contrast to
single crystal MAD experiments where a wavelength at the top of the absorption
edge will be selected. The reasoning for this is as follows; atomic scattering factors
near and absorption edge are given by:

f D f0 C f 0 C if00

For any reflection (hkl) there will always be another reflection (-h-k-l) which
overlaps it exactly. The contribution of f0 to the structure factor summation is the
same for both of these reflections, however, the contribution of the f00 part has a
phase shift which is opposite for the two reflections in the Friedel pair. Therefore
we should experimentally maximize the f0 variation. This has been explored in detail
by Prandl [29, 30]. Figure 12.4 shows how the contributions add up:

By using a cryocooled sample and collecting data at both the Br and Pt edges
Helliwell et al. [28] were able to recover the positions of the heavy elements in the
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Fig. 12.4 Protein (Fp) and
heavy atom (Fh)
contributions to the structure
factor for a Friedel pair. At
the absorption edge f0 and f00

modify the Fh contribution

unit cell. These show up clearly in difference Fourier maps. Once the heavy atom
substructure has been obtained, the next step is to compute an electron density map
for the protein. While a range of single crystal software packages are available, more
optimized methods have recently been developed for MAD phasing of powder data
[31, 32].

When we refine complex structures we are often not sure that the changes we
make to a model offer a genuine improvement, or whether we are merely fitting the
noise which is present in the data. One useful figure of merit that has been developed
for protein crystallography is the free R-factor. The idea is exclude a fraction of the
dataset from the refinement and then watch how the model predicts these excluded
peaks as the fitting progresses. One can think of this procedure as hiding some
data from our refinement software which we can use to monitor progress. In a
powder diagram it does not work to remove some individual data points for this
computation, as they can easily be interpolated based on their neighbors. A method
was proposed by the author in terms of a refinement based on extracted correlated
integrated intensities [33]. To apply the same idea in a Rietveld refinement one
would need to allow the free-R reflections to vary so that they fit the pattern as
well as possible, and then compare them to the computed values from the model. In
practice this could be achieved either by including their intensities as free variables
(as in a Pawley refinement) or, perhaps with less programming effort, by using
Lebail extraction for these peaks. One just needs to replace Icalc by Iobs from the
previous cycle only for free-R flagged reflections, and then compute the R-factors
as usual.

The future outlook for protein powder diffraction is bright and there are still
many opportunities for cross fertilization of ideas. By combining powder diffraction
data with NMR and molecular dynamics simulations we may expect to go further
in the size and complexity of powder structures that can be tackled. Moreover, as
our knowledge of protein structure becomes more and more detailed, based on the
results of the many single crystal structures that are produced in the PDB databank,
we may get better at producing restraints for low resolution crystallography. A
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recent development of DEN refinement [34] added a new restraint which was highly
effective for low resolution single crystal structures; we may hope it will be equally
useful for powder data.

Powder diffraction as a technique has many applications outside of structure
solution, and continues to play an important industrial role in phase identification.
Recent developments at the free electron laser would seem to suggest that the size
limitation for single crystal diffraction no longer exists [35], and so that 1 day there
might be fewer structural problems which are only amenable to powder diffraction,
but probably not for a few more years. Nevertheless, for polymorph characterization
and in-situ experiments, powder diffraction will continue to offer unique insights to
the structural behavior of macromolecular crystals.
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Chapter 13
Proteins and Powders: An Overview

Irene Margiolaki

Abstract Following the seminal work of Von Dreele, powder X-ray diffraction
studies on proteins are being established as a valuable complementary technique
to single crystal measurements. A wide range of small proteins have been found to
give synchrotron powder diffraction profiles where the peak widths are essentially
limited only by the instrumental resolution. The rich information contained in these
profiles, combined with developments in data analysis, has stimulated research and
development to apply the powder technique to microcrystalline protein samples. In
this chapter, progress in using powder diffraction for macromolecular crystallogra-
phy is reported.

13.1 Introduction

In recent years, modern powder diffraction techniques have been applied to several
microcrystalline proteins. The use of high-resolution synchrotron data, together with
new analysis procedures, has stimulated exciting progress which is showing that
powders can offer unique opportunities for the structural characterization of proteins
and are complementary to existing methods. The developments in experimental
methods and instrumentation have been absolutely essential, and they have been
discussed recently in another article [1]. Perhaps the most enticing goal for any
crystallographer is to solve new structures; we discuss the progress and prospects
for powder diffraction data in this area. We then describe in some of the structural
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refinements which have been carried out for powders using single or multiple pattern
fitting and the Rietveld method. The application of the powder diffraction method
to phase identification in mixtures and crystal screening is also discussed.

13.2 Structure Solution

If powder data contain enough information to refine the structure of a small protein,
then it follows that the structure might also be solved from the same data. We are
choosing an inclusive definition of ‘solving’ a protein structure in this context.
The use of stereochemical restraints and introduction of prior knowledge, such
as the amino acid sequence, will be used to fill in missing information at high
resolution. Powder data can certainly be used to uncover new structural information
at low or even modest resolution, and we expect to see this becoming a more
common approach in the future. As water molecules have been seen in at least two
refinements already [1, 2], we can be confident that powder data will be sufficient
to unravel new structural information.

13.2.1 The Molecular Replacement Method

In the molecular replacement method [3], a model for a protein molecule is
proposed based on other known structures of proteins which have similar amino
acid sequences. This model is then oriented and positioned in the unit cell to match
the experimental data for the unknown structure. In this era of structural genomics
[4], the quality of the search models is expected to improve dramatically so that
molecular replacement using a powder diagram may be sufficient to confirm that
a new protein is indeed similar to one that is previously known. Proteins are often
found in a variety of different organisms with very similar amino acid sequences, or
are expressed with a few modified residues to investigate the effects these changes
have on the protein. There are only six degrees of freedom to be determined per
molecule in solving a structure by molecular replacement. The first three give the
orientation and the second three give the position of the molecule with respect to
the symmetry elements of the space group. Relatively low resolution data can often
be used for molecular replacement problems. A resolution of 6 Å can be sufficient
and a cut-off of 3 Å is often applied. Typically, even with single-crystal data, the
highest resolution data are not so useful as the details of the model structure will
not be correct at high resolution anyway. The solution of the structure of T3R3
insulin by Von Dreele et al. [5] is the first example of the molecular replacement
method at work. In our own laboratory, we have been able to successfully use the
MOLREP software [6] together with powder data for a variety of small proteins.
Integrated intensities are extracted [7] from the powder profile and then treated
as if they came from a single crystal, ignoring the overlap problem. Fortunately,
the molecular replacement method tolerates errors in the input data as if they were
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Fig. 13.1 Powder-diffraction structure of the ponsin SH3.2 domain. (a) Ribbon representation
of the SH3.2 indicating the secondary structure elements of the domain. The main hydrophobic
residues of the binding interface as well as the positions of the n-Src and RT loops are indicated.
(b) Electrostatic potential representation of domain identifying additionally the water molecules as
spheres [1]. This figure was generated using PYMOL (http://pymol.sourceforge.net/)

due to errors in the model for the structure. In the cases of turkey [8] and hen [9]
egg white lysozymes, there was a clear distinction of the correct structure which
was proposed by MOLREP from the second best, and in both cases these were the
correct positions and orientations for the molecule in the unit cell. After determining
the position and orientation of a model for the protein molecule in the unit cell,
it is of critical importance to be able to go through the structure and identify the
regions that are different in the new protein compared to the initial model. A more
recent example is the structure solution of the second SH3 domain (SH3.2) of
ponsin via molecular replacement. The high-quality extracted intensities from the
measured profiles led to the unique determination of an unknown 544-atom protein
structure from powder data. The search model had a moderate similarity (38%
sequence identity) and was sufficient for molecular replacement and model building
based on electron-density maps. Figure 13.1 illustrates the structure of the SH3.2
domain derived from powders [1]. Another example of a molecular replacement
style approach is the use of phase angle or structural information from another
technique, combined with data collected using powder methods. Oka et al. [10] have
investigated the structure of purple membranes, which comprise two-dimensional
crystals of bacteriorhodopsin trimers. They collected high-resolution synchrotron
powder diffraction data using a 1 m path length Guinier-type camera at beamline
BL40B2 at SPring-8. By combining extracted intensities up to a resolution of 4.2 Å
with phases from cryoelectron microscopy, they were able to produce an electron-
density map. The data from the synchrotron improved the resolution for purple
membrane compared to that attained previously with laboratory X-rays (intensities
extracted up to �7 Å) and opens up the possibility of studying these systems under
a wider range of conditions.

http://pymol.sourceforge.net/
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Recently, we have extended our studies on the 160 amino-acid nsP3 protein
macro domain of the Mayaro virus (MAYV), an emerging virus of South American
tropic regions, by means of powder diffraction on microcrystalline precipitants.
These results correspond to the first structural data existing in the literature since
1954 when the virus was isolated in Trinidad [11, 12]. Comparison with known
structures of sequence-homologous Chikungunya virus (CHIKV) macro domains
[13] indicate that MAYV adopts a trigonal/hexagonal structure associated with a
looser molecular packing. The cell dimensions of MAYV are significantly altered
in comparison to CHIKV and the unit cell is composed of six molecules and 58%
solvent. Structure solution via the molecular replacement technique and refinement
of MAYV are currently in progress [14].

13.2.2 The Isomorphous Replacement Method

When there is no starting model available for a protein molecule, then we face
the crystallographic phase problem. The isomorphous replacement method [15]
determines the phases of X-ray reflections by comparing data from a series of
crystals which contain different additive heavy atoms. This method was already
in common use prior to the application to proteins for the determination of
organic structures by comparing crystalline salts with differing cations or anions.
The first application to proteins [16] was used to determine the signs of centric
reflections in haemoglobin. In order to use the isomorphous replacement method,
one needs to collect data for a protein with and without the added heavy atom
and to be able to measure and interpret the differences in the data due to the
added atoms. Difficulties arise when the addition of the heavy atom perturbs
the structure leading to non-isomorphism and differences that can no longer be
simply interpreted by a few atoms. With powder data, we can determine whether
or not a particular heavy atom has formed a derivative by comparing the unit-
cell parameters, which are normally perturbed by the addition of a heavy atom.
In the case of a gadolinium derivative of hen egg white lysozyme (HEWL) [17],
we prepared derivatives using different concentrations of Gd and also different pH
values in order to alleviate the peak-overlap problem. Extracted intensities were
then used to solve for the atomic positions of the Gd atoms using SHELXD [18]
and then refinement of the heavy-atom substructure and phasing were carried out
using Sharp [19]. Similarly, in the case of a uranium derivative of elastase [20], the
peak-overlap problem was reduced by comparing data sets that had been exposed
to the X-ray beam for different amounts of time. The gradual changes in unit-
cell parameters due to radiation damage changed the pattern of peak overlaps
sufficiently to deconvolute the overlapping peaks. The U atom is clearly visible in
a difference Patterson map from native and derivative data sets and phasing using
Sharp proceeds to give a solvent mask which clearly and correctly delineates the
protein and solvent regions [17]. Recently, two heavy-atom derivatives of tetragonal
HEWL (a gadolinium derivative and a holmium derivative) were crystallized at
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room temperature. Using synchrotron radiation, high-quality powder patterns were
collected in which pH-induced anisotropic lattice-parameter changes were exploited
in order to reduce the problem of overlapping reflections. The phasing power of
two heavy atom derivatives in a multiple isomorphous replacement (MIR) analysis
enabled molecular structural information to be obtained up to approximately 5.3 Å
resolution. At such a resolution, features of the secondary structure of the lysozyme
molecule could be accurately located using programs dedicated to that effect. In
addition, the quoted resolution was sufficient to determine the correct hand of the
heavy-atom substructure which leads to an electron-density map representing the
protein molecule of proper chirality [21].

13.3 Rietveld Fits to High-Resolution Synchrotron
Powder Data

In 1999, the first protein structure refinement using powder data was reported [22]
for metmyoglobin. High-angular resolution synchrotron data from beamline X3B1
(œD 1.14991 Å) at the National Synchrotron Light Source (NSLS), Brookhaven
National Laboratory, USA, were used for the refinement. A key characteristic of
the powder profile was the observation of very sharp reflections associated with
the highly crystalline protein sample. By combining a suite of stereochemical
restraints with the measured diffraction profile, a successful refinement of the atomic
positions of the 1,260-atom protein was achieved (pdb code 1f6h). In order to
carry out this refinement, Von Dreele upgraded the GSAS [23] software package
in several ways. A suite of stereochemical restraints, as are normally used in low-
resolution refinements with single crystal data, were implemented with automatic
recognition of atom and bond types for the standard amino acid residues. A novel
restraint was introduced to describe the two-dimensional pseudo-potential surface
of a Ramachandran plot [24]. Also, a Babinet’s principle solvent correction was
used to account for the disordered solvent within the crystal structure. The excellent
Rietveld fit obtained was a breakthrough, showing for the first time that a crystal
structure refinement could be carried out for a protein molecule from powder data.
The following year, the structure of a new variant of the T3R3 human insulin–
Zn complex, produced by mechanical grinding of a polycrystalline sample, was
solved and refined from a powder [5]. It was determined that the reversible grinding-
induced phase change is accompanied by 9.5ı and 17.2ı rotations of the two T3R3
complexes that comprise the crystal structure. These results were later born out
by a single-crystal study [25] at cryogenic temperatures (100 K). The possibility
of using powder diffraction data on microcrystalline protein samples for detection
of ligands in protein–ligand complexes was illustrated by the studies of HEWL
complexes with N-acetylglucosamine (NAGn, n D 1–6) oligosaccharides [26, 27].
The location of each NAGn could be found from difference Fourier maps generated
from structure factors extracted during preliminary Rietveld refinements. Full
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NAGn–protein structures were subjected to combined Rietveld and stereochemical
restraint refinements and revealed binding modes for NAGn that depended on the
length of the NAG oligosaccharide. The series of refined powder structures are
available in the pdb database via access codes 1ja2, 1ja4, 1ja6, 1ja7, 1sf4, 1sf6,
1sf7, 1sfb and 1sfg. These studies showed that powder diagrams can give useful
electron density maps for protein samples and show unambiguously that a powder
sample can be sufficient for structural analysis. Following the tradition in the powder
diffraction community, Von Dreele has made the GSAS software package freely
available, including the most recent features for refinements of protein structures.
We were able to benefit from this generous philanthropy to use the package in our
laboratory to carry out a Rietveld refinement of the structure of turkey egg white
lysozyme [8]. By carefully balancing the restraint weights with a highly resolved
powder diagram collected at beamline ID31 at the ESRF, we were able to produce
an excellent fit and refined model (pdb code: 1xft). In the course of refining this
structure using GSAS, we also became convinced that powder methods can indeed
be applied to such large structures.

Structure refinements can be improved by the use of multiple datasets, provided
there are not significant changes in structure factors between the different data sets.
Two independent investigations of HEWL showed that the use of multiple patterns
associated with slightly different lattice parameters leads to enhanced extracted
intensities and more robust structure refinements [2, 9] using a modified version
of GSAS which could account for small lattice strains in different patterns. In our
laboratory, we prepared a total of 44 different polycrystalline HEWL precipitates
at 277 K and room temperature and in the pH range between 6.56 and 3.33
[9]. High resolution powder diffraction data were collected at room temperature
(œD 1.249826 Å, ID31, ESRF). The anisotropic effect of pH of crystallization
on the lattice dimensions of tetragonal HEWL shifts the peaks significantly and
alleviates the peak-overlap problem. We selected four patterns across the range
of pH for use in a multi-pattern Rietveld refinement [28] in order to extract an
average structural model for tetragonal HEWL using the GSAS software. Some
differences between diffraction patterns could be accounted for by allowing the
solvent-scattering coefficients to differ for each one of the four histograms following
the observation that the largest observed differences in peak intensities were mainly
at low angles. A more detailed description of this refinement can be found elsewhere
[9] and the model is deposited in the pdb database with access code 2a6u. We found
that this approach resulted in a much smoother and more robust refinement than
previously experienced with single-pattern fits and produced a structural model with
excellent stereochemistry. Von Dreele has also applied a multi-pattern approach
to HEWL but using data sets obtained from an image plate and approaching
single-crystal resolution limits (dmin � 2 Å). The patterns differ due to changes
in salt concentration and radiation-induced lattice strains. Anisotropic changes in
the unit cell are taken into account in all of these refinements using a special
profile function implemented in GSAS (No. 5). Using this function, only one set
of unit-cell parameters is refined and those corresponding to the other patterns are
related via a strain (�d/d) of the reciprocal metric tensor elements. By selecting
different combinations of data sets, Von Dreele refined three structural models and
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was able to add water molecules in each case (pdb codes 2hs7, 2hs9 and 2hso).
Many of these water molecules are conserved between the three models and have
also been found in single-crystal structures. The stereochemistries of the resulting
multi-dataset models show significant improvements in comparison to previous
single-pattern powder refinements. In one of our most recent studies of the second
SH3 domain of ponsin [9], we exploited radiation-induced anisotropic lattice strains
in a specially modified multi-pattern Pawley refinement taking into consideration
likelihood criteria for partitioning overlapped peaks [29]. The outcome of this
analysis was a set of improved extracted intensities, in excellent agreement with
single-crystal intensities later obtained by an independent experiment. The powder
extracted data were sufficient for the structure solution of the domain via the
molecular replacement method.

Maximum-likelihood refinement improved the phases to a level where we
could trace the main-chain alterations, build additional residues where needed
and eventually place the correct side chains along the sequence; a substantial
result from powder diffraction data. The protein conformation was refined in a
multiple-data-set stereochemically restrained Rietveld analysis taking advantage of
sample-induced anisotropic lattice strains. We further benefited from an approach
combining multiple-data-set Rietveld analysis and periodical OMIT map [30]
computation, to reduce the bias of the final model, extending the resolution limits
to levels comparable to single-crystal measurements, and even detecting several
water molecules bound to the protein [1]. The refined model is deposited in the
pdb database with access code 2O31 and is illustrated in Fig. 13.1.

13.4 Crystal Screening

Powder diffraction has been exploited as a technique for fingerprinting different
crystalline substances and allows rapid phase identification and quantification of
mixtures. High-resolution powder instrumentation is designed to obtain the sharpest
possible peaks in reciprocal space and also to determine accurate peak positions.
These features are complementary to area-detector single-crystal experiments,
where the aim is normally to measure diffraction peaks at the highest possible
scattering angles, to improve the direct-space resolution in an electron-density map.
By exploiting the excellent reciprocal-space resolution of powder instruments, a
variety of complementary studies can be carried out which are typically more
difficult to do with single crystals. Powder samples contain many millions of
individual crystallites and give information about the bulk properties of a material;
there is no question of whether a particular crystallite is representative of the whole
sample.

Wherever microcrystalline proteins come into use as biomaterials or medicines,
there will be an increasingly important role for powder diffraction to play. There are
many added benefits from using a crystalline form of an already existing drug: it
permits better control over the release rate into the system by an optimisation of the
crystals size and polymorphism, and it should also offer an extended shelf-life and
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Fig. 13.2 Upper panel: Optical microscopy images of Uox micro-crystals prepared at different
conditions. (a) Uox ligand-free with NH4Cl and 15% PEG 8000, (b) Uox ligand-free with NaCl
and 15% PEG 8000, (c) Uox ligand-free with (NH4)2SO4 and 15% PEG 8000, (d) Uox ligand-free
with 10% PEG, (e) Uox ligand-free with KCl and 10% PEG 8000, (f) Uox complexed to AZA
with NaCl and 10% PEG 8000. Lower panel: Selected Q-region of the LeBail fits for six distinct
phases of Uox [40]. Projection in the ab plane of candidate structure models available in the pdb
(a) 1R51 [44], (b) 1WS3 [45], (c) 1XXJ [45], (d), (e), and (f) 1XY3 [45]
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a reduction in production costs [31–37]. Microcrystalline forms of protein-based
drugs tend to be slower acting as the crystallites must dissolve before acting.
Crystallite size and polymorphism both affect dissolution rates and so they are
important factors in understanding formulations.

To date, our studies on microcrystalline Human Insulin (HI) [38, 39] and
Urate oxidase/Rasburicase (Uox) [40] suspensions using the powder diffraction
method have revealed a high degree of polymorphism upon variation of their
physicochemical environment (i.e. pH, ligand binding etc.). Even more important
was our discovery of two new biologically active Insulin-phenol complexes which
were later on characterized via single crystal methods [41]. In the case of Uox, a
key protein component of currently existing drugs (i.e. Fasturtec) helping body to
eliminate uric acid [42, 43] , a previously unknown, biologically active polymorph
was discovered when crystallization was performed in the absence of any chemical
additives. The structure solution of the latter Uox form is currently in progress. Part
of the current research within our group is devoted to the structural characterization
of an extensive series of Insulin-ligand complexes and Uox polymorphs, prepared at
different crystallization conditions (pH, ionic strength, crystallization agent) which
are potential drug targets. Figure 13.2 shows crystalline Uox samples, Le Bail fits for
six distinct phases of Uox identified from powders and the corresponding candidate
structure models available in the PDB.

13.5 Conclusions

In the last 10 years, the use of powder data with macromolecules has gone from
being an ambitious suggestion to a respectable practice. A series of demonstration
experiments and data analyses has been carried out which establishes the validity of
the methodology. Although developments are still in progress for phasing methods
and structure solution, there are already molecular-replacement and structure-
refinement methods that are now mature enough for consumption by the more
adventurous protein crystallographer. The solution of the structure of the SH3
domain of ponsin shows how powder diffraction is already moving ‘beyond
lysozyme’ and is a technique ready to tackle genuine biological problems.
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Chapter 14
Parametric Powder Diffraction

William I.F. David and John S.O. Evans

Abstract The rapidity with which powder diffraction data may be collected, not
only at neutron and X-ray synchrotron facilities but also in the laboratory, means
that the collection of a single diffraction pattern is now the exception rather
than the rule. Many experiments involve the collection of hundreds and perhaps
many thousands of datasets where a parameter such as temperature or pressure
is varied or where time is the variable and life-cycle, synthesis or decomposition
processes are monitored or three-dimensional space is scanned and the three-
dimensional internal structure of an object is elucidated. In this paper, the origins of
parametric diffraction are discussed and the techniques and challenges of parametric
powder diffraction analysis are presented. The first parametric measurements were
performed around 50 years ago with the development of a modified Guinier camera
but it was the automation afforded by neutron diffraction combined with increases
in computer speed and memory that established parametric diffraction on a strong
footing initially at the ILL, Grenoble in France. The theoretical parameterisation
of quantities such as lattice constants and atomic displacement parameters will be
discussed and selected examples of parametric diffraction over the past 20 years will
be reviewed that highlight the power of the technique.
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14.1 Parametric Powder Diffraction – The Beginnings

While many papers before 1960 reported multiple powder diffraction measure-
ments, it was the development of a modification to the Guinier camera (Fig. 14.1a)
by Lenné [1] that marks the beginning of parametric powder diffraction. Lenné’s
modification was profound but simple and involved translating a film cassette
across a narrow aperture that defined the equatorial plane of scattering. Simon [2]
developed a modified version for air-sensitive samples and these cameras were used
extensively over the next two decades to monitor structural changes, principally
as a function of temperature. An example of some early work on the ferroelastic
phase transition in LaNbO4 [3] is presented in Fig. 14.1b which clearly shows the
continuous transformation from monoclinic to tetragonal symmetry. While these
photographs gave an excellent oversight into the behaviour of materials, extracting
quantifiable data involved using microdensitometry where the transmission of light,
pixel by pixel, through the photograph was digitised. Given the computing power
and available memory, analysis of a single photograph of the complexity presented
in Fig. 14.1b was a major undertaking.

The next major breakthrough in parametric powder diffraction was to occur with
neutrons not X-rays. The Rietveld method [4, 5] was developed initially for neutron
powder diffraction and its application to X-ray scattering came a decade later [6, 7].

By the late 1970s, profile refinement was well-established for neutron powder
diffraction and the Institut Laue et Langevin (ILL), Grenoble was at the forefront of
the development of neutron scattering techniques. Two powder diffractometers were
commissioned; the high resolution diffractometer, D1a, which was represented the
state of the art in structural precision and accuracy from powder diffraction data
and D1b, a medium resolution neutron powder diffractometer, with a large area
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Fig. 14.1 (a) the Guinier camera geometry with the ribbon of illuminated film along the
equatorial plane; (b) a Guinier-Simon photograph of ferroelastic LaNbO4 covering the approximate
temperature range from 100 to 800ıC [3]. The monoclinic-tetragonal transition is clearly visible
at �590ıC and it is possible to see the anisotropic increase in line-broadening (particularly for the
220 reflection) around the phase transition
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Fig. 14.2 A typical thermodiffractogram from D1b: the temperature dependence of the neutron
powder diffraction pattern of Sr2Co2O5 showing one of five phase transitions Bp and R refer to the
paramagnetic brownmillerite-type and rhombohedral structures of Sr2Co2O5 [9]

position sensitive detector. In the late 1970s, a complete D1a dataset was collected
in 6–12 h, but D1b data could be collected in minutes. Jean Pannetier, the D1b
instrument scientist at the time, developed the technique of thermodiffractometry
[8] which defines the beginning of parametric powder diffraction analysis. A typical
mid-1980s example from D1b of the complex evolution of a crystal structure, that
of Sr2Co2O5 [9], is presented in Fig. 14.2.

14.2 Crystal Structure Parameters: Some Equations

Parametric powder diffraction measurements yield a wealth of information about
the variation of structural parameters as a function of an external variable such as
temperature or pressure. In this section, we discuss the variation of crystallographic
parameters such as lattice constants and displacement parameters as a function of
temperature. Equations of state as a function of pressure have also been derived
and applied to powder diffraction data [10] but these will not be discussed in this
chapter. Perhaps the simplest temperature dependence to explore is associated with
the thermal motion of an atom – the displacement parameter. Each atom in a crystal
structure vibrates around a mean position defined by its crystallographic coordi-
nates. The potential around this equilibrium position is, to a good approximation,
quadratic in nature. The temperature dependence of the mean square displacement,
<u2>, of such a quantum system, mass m, vibrating with frequency, ¨, is given by
<u2> D (-h/2m¨) coth(-h¨/2kT) (see [11]). Strictly speaking, this argument, origi-
nally derived by Einstein, pertains not to individual atoms but to phonons but the
assumption generally works well for displacement parameters. This is illustrated in
Fig. 14.3 which shows the difference in libration parameters between ND3 and BD3

rotation in ammonia borane, ND3BD3.
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Fig. 14.3 The coefficients for ND3 and BD3 libration in ammonia borane. As observed by NMR,
the ND3 libration is larger and has a lower frequency than BD3

The approximate equations that determine thermal expansion may also be
derived from a quantum-mechanical analysis. Thermal expansion is, however, a
consequence of anharmonic potentials as it is usually easier for bonds to expand
than contract. Following [11], the temperature dependence of the mean position,
a, of a weak anharmonic potential of the form V(x) D ½mw2x2 C kx3 is given by
the formula a D 3k-h coth(-h¨/2kT)/2m2¨3. In simpler terms, this Einstein oscillator
behaviour may be expressed as

.a � a.T D 0//

T
D .�E =T /

exp .�E =T / � 1
One final caveat – basic modelling of specific heat data (see, for example, Kittel

(1976) [12]) suggests that a more correct formulation is a low-frequency, quadratic
density of states model originally formulated by Debye
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This formulation is straightforward to implement in a least squares analysis. A
good example of the use of this parametric fitting is solid C60 which we will use
in this chapter to illustrate a number of different aspects of parametric powder
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Fig. 14.4 (a) the cubic cell constant of C60 as a function of temperature from 4 to 272 K and
(b) observed (circles) and calculated (line) C60 lattice constant below the orientational glass
transition. The data were fitted between 4 and 70 K using a combined Debye and Einstein model

diffraction. High resolution neutron powder diffraction data of solid C60 were
collected on HRPD at ISIS using a 2.5 g sample [13]. After an initial long 3½ h.
run at 4 K, the temperature was raised in 2 K intervals from 10 to 272 K. Each
dataset was collected for 20 min. with 5 min. allowed for temperature equilibration.
The resulting refined lattice parameters are presented in Fig. 14.4a and have been
precisely determined with a(4 K) D 14.04212(2)Å, a(170 K) D 14.07080(10)Å and
a(272 K) D 14.15425(20)Å. This high precision is important for the extraction of
non-crystallographic information which will be discussed further in Sect. 14.4.

The C60 lattice constant shows two significant features at �80 and �260 K. The
upper feature corresponds to an orientational melting of C60. Above this transition
temperature, Tc, the orientation distribution is close to isotropic; below Tc, C60 hops
between two sets of distinct crystallographic orientations – the lower energy, major
orientation is characterised by pentagonal face directed along the 110 direction
while the higher energy, minor orientation is characterised by hexagonal face along
110. The lower feature at �80 k, shown clearly in the expanded plot Fig. 14.4b,
corresponds to an orientational glass transition. Above this temperature, C60 is
rotating sufficiently quickly to maintain thermodynamic equilibrium and the relative
fractions of major and minor orientations follow a Boltzmann distribution. This will
be discussed further in Sect. 14.4.

Below the orientational glass transition, the fractions of major and minor
orientations are quenched at the glass transition temperature value. The lattice
constant behaviour is typical of substances at low temperature. The roughly linear
dependence with temperature above ca. 50 K levels off to a constant value at the
lowest temperatures. In specific heat data analysis, both the Debye and Einstein
models described above can look superficially similar as the evaluation of the
specific heat involves an integration, and consequent smoothing, over phonon
frequencies. The same also holds for lattice constant analysis. With high precision
data, however, the relative merits of a Debye, Einstein or approximate combination
can be discriminated in both specific heat and lattice parameter quantities. This has
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been found to be the case in the analysis of C60. Working with data between 4
and 70 K, a ‘Debye-only’ model gave a significantly poorer fit (2 D 12.1) to the
data than an ‘Einstein-only’ model (2 D 1.53). A single Debye C single Einstein
model gave an improved fit (2 D 1.20). No further parameters could be justifiably
introduced to improve the fit. The fitted lattice constant is given by

a.T / D 14:042 103.36/C 0:000 157.8/� aD.52:0.6/ =T /

C 0:000 65.9/� aE.93.8// =T

The derived Debye and Einstein temperatures are 52(6) K and 93(8) K which are
close to anticipated values obtained from specific heat data.

14.3 Refining a Complete Experiment – “Surface”
Refinements

In the previous section, we discussed the parametric fitting of structural quantities
such as lattice constants and displacement parameters as a function of an experiment
variable such as temperature and pressure. In this section, we explore the possibility
and advantages of going beyond the serial refinement of a set of diffraction data
to the simultaneous refinement of all the diffraction data together [14, 15]. The
simple idea behind this approach is that if one has an ensemble of data collected
under evolving conditions of a variable such as time, temperature, pressure or
chemical environment (a “surface” of diffraction data) many of the key parameters
one extracts from a Rietveld refinement can be derived from the whole set of data
rather than from a single (noisy) data set. A trivial example might be the zero-
point of a diffractometer during a series of time resolved experiments. The physical
instrumental misalignment leading to this correction is unlikely to change during the
course of the experiment, and the variable is therefore best determined from all data
sets simultaneously rather than from each individual set independently. In this way
one can sometimes extract “good information” from individually “bad data”. An
additional key feature of the parametric approach to data analysis is that physically
sensible conditions may be imposed on the refined parameters in a flexible manner.
This is extremely useful – and, indeed, essential, when the information content in
individual data sets is sufficiently low (e.g. due to low data quality or a complex
structural model) that a number of different models can provide an equivalent fit.

One area where this approach is potentially very powerful is in the quantitative
phase analysis of materials with complex or closely related structures. For example,
WO3 undergoes a series of phase transitions on cooling as shown schematically in
Fig. 14.5 in which the material evolves from a hypothetical high-temperature, high-
symmetry cubic form to a series of lower symmetry forms of increasing complexity.
[16–21].
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Fig. 14.5 The sequence of phase transitions in WO3

Figure 14.6a shows a two-dimensional “film plot” of powder diffraction data
recorded on cooling a sample of monoclinic P21/n WO3 from 300 to 90 K. Data
were collected using a Bruker d8 diffractometer equipped with a pHeniX cryostat
using Cu K’ radiation, with each dataset recorded for 20 min. The difficulty in
performing a quantitative analysis of such diffraction data arises from the displacive
nature of the transitions only resulting in small changes in atomic coordinates, which
in turn leads to relatively minor changes in the diffraction pattern.

In fact, as shown by Fig. 14.6b, if we consider a small region of the diffraction
pattern around 24ı 2™ all three phases of WO3 have peaks in this 2™ region, with
similar intensities. If one fits a single experimental dataset it is therefore possible
for the “incorrect” structure to distort to fit the diffraction data. For example,
even though the material is predominantly in the monoclinic P21/n form at room
temperature the P N1 structural model, which has more degrees of freedom, can
distort to fit the experimental data as well as a P21/n model. This makes quantitative
analysis of an evolving mixture of P21/n and P N1 phases extremely challenging.
Figure 14.6 shows the implications of this on quantitative Rietveld refinement on
the data in Fig. 14.5a as a function of temperature. Here all 100 data sets have been
fitted independently using three-phase Rietveld refinement. A total of 91 parameters
were used to fit each data set, requiring 9,100 refined parameters in total.

It is clear from Fig. 14.7a that the evolution of refined phase fractions as a
function of temperature makes little chemical sense. It is extremely unlikely, for
example, that abrupt and reverse changes of the type apparently observed at 180
and 200 K occur. This suggests that the refinements have found false minima. This
occurs despite each refinement being set up as carefully as possible, with variables
constrained to lie within sensible minimum and maximum ranges of ideal values.
That these are false minima is further shown by Fig. 14.7b where the apparent
temperature dependence of refined cell volumes is clearly non-physical. Clearly
independent Rietveld refinement of these data is not the optimal approach.

Figure 14.8 shows results from fitting the same data using a parametric approach
in which all patterns were fitted simultaneously. To fit the data, three simple
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Fig. 14.6 (a) Surface “film plot” showing changes in two regions of the diffraction pattern of
WO3 on cooling. Observed and calculated surfaces from a parametric refinement are shown and
(b) 300 K diffraction data showing predicted reflection positions for the f200g family of reflections.
The 2™ range corresponds to that shown in left hand zoomed region of Fig. 14.6a
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Fig. 14.7 (a) Phase fractions and (b) cell volumes of P21/n, P N1 and Pc forms of WO3 obtained
by independent Rietveld refinement

assumptions were made. Firstly, it was assumed that the cell parameters of each
individual phase show a smooth variation with temperature. The specific variation
was not imposed on the data, but cell parameters of the three phases were
parameterised using the following expression, a(T) D a(0) C c1/(exp(™/T) – 1) (see
Sect. 14.2) where coefficients a(0), c1 and ™ were refined from the diffraction data.
For variable unit-cell angles, a second-order polynomial was used. Secondly, it was
assumed that the temperature factor refined for each atomic site should increase
smoothly with temperature. The same Einstein functional form was used as for
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Fig. 14.8 (a) Phase fractions and (b) cell volumes of P21/n, P N1 and Pc forms of WO3 obtained
by parametric Rietveld refinement. Note that volumes extrapolate into temperature regions where
individual phases no longer exist

the lattice constants (see Sect. 14.2). Finally, the peak shape description was set
up such that each individual phase had an identical peak shape description at all
temperatures. In this fashion, a single Rietveld refinement was performed with
1,102 parameters fitted simultaneously to all 100 datasets [22]. This led to the phase
fractions and cell volumes shown in Fig. 14.8. The extracted phase fractions make
much more chemical sense and vary in a smooth fashion with temperature even
though they were not constrained in any way. The values also agree well with those
extracted from analysis of neutron data on a similar sample (inset to Fig. 14.7a).
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The parametrically fitted cell parameters also make physical sense in that they give
rise to comparable volume coefficients of expansion for each phase as expected.

The success of this approach has two basic origins. The most important influence
is the fact that the three-phase model, with each phase constrained to have cell
parameters which evolve with temperature in a physically sensible way, must
simultaneously fit each experimental data set. This essentially prevents the P N1
phase, for example, distorting to fit the room temperature data, as the distortions
required to do so would prevent accurate fitting of data recorded around 200 K,
where more of the P N1 phase is present. Secondly, the parametric approach to
modelling peak shapes means that the peak-shape parameters for an individual
phase are dominated by the temperature regions of the diffraction surface when it is
actually present. This prevents, for example, peak shapes for the Pc phase becoming
infinitely broad in regions of the data where the phase is not present, “mopping up”
minor errors in fitting the experimental background and influencing the quantitative
refinement. In essence the parameters modelling an individual phase are determined
by regions of the data where the phase is present rather than regions where it is not.

The approach used to fit the data in this example is entirely general and the
degree of complexity, in terms of which variables are parameterised and which
functions are used, is the choice of the analyst. It is possible, for example, to
parameterise atomic coordinates, peak shape parameters or background functions
as required. One criticism of the approach is that one imposes a certain physical
form on the evolution of variables which may not be correct. In fact, this objection
can turn out to be a major strength. If an inappropriate parametric form is chosen
for a given variable, or if the overall model is not sufficiently flexible to model
all the features of the diffraction surface the inadequacy is often revealed in a plot
of R-factor against data set number for the parametric refinement. Normally one
would expect a smooth evolution in R-factor (e.g. as data quality improves slightly
on cooling). If the parametric model is incorrect one sees unexpected variations
(e.g. humps in certain temperature regions) with temperature. When data sets are
refined independently these tell-tale variations can be lost as the Rietveld model
can distort in non-physically sensible ways to fit an individual data set and the
distinguishing power of the R-factor is reduced.

14.4 Parametric Powder Diffraction – Beyond
Crystal Structure

In this section, we illustrate the possibility of obtaining significant non-
crystallographic properties from parametric diffraction. We use the example of
solid C60 [13] and continue our discussion from Sect. 14.2 focussing on the low-
temperature ordered phase and, in particular, the orientational glass transition
around 80 K. Below this transition, the proportions of the two orientations are fixed.
There is a slight rise around the glass transition temperature, Tg and this is attributed
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Fig. 14.9 (a) The fractional occupation, pP, of the more energetically favourable, major orien-
tation as a function of temperature. The sum of major, pP, and minor, pH , sums to unity. The
quenching of the relative populations of major and minor orientation fractions at the glass transition
of �90 K is clearly evident. The fitted line above 90 K corresponds to a refined energy difference
of 122(4) K (11.0(3)meV) between the two orientations. There are clear departures from this
behaviour above 200 K; (b) the free energy difference between the two orientations obtained the
relative major and minor orientation populations

to the fact that the cooling rate (ca. 1 K min�1) is substantially faster than the heating
rate (i.e. the experiment duration). The re-orientational hopping thus unlocks at a
lower temperature than the original ‘quenching’ temperature. This effect is more
prominent in the lattice parameter and can be used to determine the relaxation rate
and hence the re-orientational correlation. A model for this effect is developed
later in this section. Above Tg, the decrease in major orientation fraction may
be expressed in terms of a Boltzmann distribution since thermal equilibrium is
achieved. The energy difference between major and minor orientations, �G, may
be expressed by the equation

and thus .pH =pP/ D .Œ1 =p P�� 1/ D exp .��G =kT /
�G D �kT ln ..1 =pP/ � 1/:

A least squares fit assuming �G to be constant between 90 and 200 K gives fair
but not excellent agreement (Fig. 14.9a). The derived value for the energy difference
is 122(3) K. Above 200 K, there are clear precursor effects of the orientational
order – disorder transition at 260 K. Evaluation of the energy difference, �G,
calculated point by point from the above equation emphasises these precursor effects
and clearly indicates that �G is not precisely constant between 90 and 200 K and
that there is therefore an additional entropic contribution (Fig. 14.9b).

Previously in this section, attention was drawn to the anomalous rise in the major
orientation fraction at the glass phase transition temperature. This was explained in
terms of the differing rates of initial cooling (ca. 1 K min�1) and heating. The latter
corresponds to the experimental time of ca. 25 min. (i.e. 12.5 K min�1). The slower
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Fig. 14.10 (a) The lattice constant difference between the observed and calculated C60 lattice
constant. From this, the relative volumes of pentagonal and hexagonal orientations may be
obtained; (b) the lattice constant difference fitter to a recursive function that model the return
to thermal equilibrium around the glass transition temperature. Reorientation times extracted by
the method lead to an accurate estimate of the reorientation activation energy

rate of heating implies that the system will unquench at a lower temperature and
that the approach to thermal equilibrium will be distinguishable when thermal
relaxation rate (the inverse of the reorientational correlation time) is around an
order of magnitude longer than the experimental time. This behaviour is particularly
evident in the temperature variation of the lattice parameter as an anomalous rise in
the vicinity of the glass transition. As an example of obtaining non-crystallographic
data, a model is developed that explains the lattice parameter anomaly below Tg and
enables relaxation rates to be determined and hence the reorientational activation
energy to be derived.

Consider the information in Fig. 14.10a below the orientational glass transition
temperature, Tg. The plotted data provide a baseline that corresponds to a fixed
major/minor orientation ratio. The dotted line represents the thermodynamically
stable, but unattainable, population ratio. As Tg is approached, thermal relaxation
begins to occur. The lattice constant rises above the ‘quenched’ baseline. Relaxation
does not approach completion, however, until Tg.

The approach to thermal equilibrium is, however, a cumulative effect which,
when accounted for, leads to the conclusion that the relaxation rate, £(Tk), at the
kth temperature step may be obtained from the equation
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where the experiment time, Texp � 25 min, uk D�ak/zk is the deviation of the plotted
data from the baseline and zk is the difference between the theoretical equilibrium
lattice constant and the baseline. The relaxation rate can thus be obtained in a
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recursive manner. A starting point of 70 K was found to be adequate. The relaxation
rates obtained are listed in the following table:

Temperature/K £ (derived)/s £ (calc)/s

74 8.47 � 104 8.18 � 104

76 3.51 � 104 3.31 � 104

78 1.32 � 104 1.40 � 104

80 5.89 � 103 6.21 � 103

82 3.20 � 103 2.86 � 103

The functional form of this anomalous lattice parameter model is shown in
Fig. 14.9b where it can be seen to provide an excellent fit to the data. Note that
the full lattice constant range in this figure is only 0.004 Å. The variation in
relaxation rate of more than an order of magnitude between 74 and 82 K permits
a precise Arhennius formulation to be obtained. Writing £(T) D £0 exp(Ea/kT)
yields £0 to be 10�10˙1 s and a reorientational activation energy of 219(7) meV
in excellent agreement with other techniques. This parametric powder diffraction
study of C60 not only yields an accurate account of the temperature variation of the
crystal structure of C60 through the orientational glass and order–disorder transitions
but also provides detailed information about reorientation times and the relative
energies of and the activation energy between the two crystallographically distinct
orientations. Similar properties may be obtained from studying in-situ reactions and
in operando processes.

14.5 Conclusions

Most modern X-ray and neutron powder diffractometers have the potential to collect
datasets in a matter of minutes and indeed with synchrotron radiation the timescales
can be significantly shorter. Combining sophisticated sample environment, substan-
tial computer memory and speed and advanced computer programs, it is possible
with parametric powder diffraction not only to investigate the temperature and
pressure evolution of a material through complex phase transitions but to perform
a very wide range of more complex experiments. These include in-situ synthesis
reactions, in-operando material systems such as batteries, hydrogen storage mate-
rials, hydration/dehydration and gas absorption/desorption and the pixel-by-pixel
scanning of materials at the micron level. By performing advanced parametric
analysis it can be possible to extract “non-crystallographic” information such as
rate constants, activation energies, temperature and others from diffraction data. It
also becomes possible to introduce physically meaningful constraints or restraints
to an entire body of diffraction data and obtain “high quality” information from
individually “low quality” data.
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Chapter 15
Powder Diffraction C Computational Methods

L’ubomı́r Smrčok

Abstract It is proposed that the application of computational methods provides
an attractive route towards structures, whose accuracy is well-comparable to that
typical for single crystal standards. Although theoretical calculations and powder
diffraction seemingly represent completely disjunctive sets, it is demonstrated that
they could meet at three stages of structure analysis from powders – initial model
building, structure refinement and crystal chemical analysis.

15.1 Introduction

A restricted amount of structural information extractable from a powder diffraction
pattern strongly limits the accuracy of structural data resulting from Rietveld
refinement, which usually follows a structure solution step. If the information
content of a powder pattern is insufficient and we are, this reality notwithstanding,
interested in accurate structure, it is time to turn out our attention to other methods
of refinement. Basically, there are two possible routes. The first one, introducing
various improvements to the Rietveld method is the subject of other contributions
to this School. In this place we will focus on the second direction and will point to
the advantages of symbiosis of powder diffraction with several types of theoretical
(quantum chemistry) calculations. Although theoretical calculations and powder
diffraction seemingly represent completely disjunctive sets, we will show how
they could meet at three stages of structure analysis from powders – initial model
building, structure refinement and crystal chemical analysis based on the refined
parameters.
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SK-845 36 Bratislava, Slovak Republic
e-mail: Lubomir.Smrcok@savba.sk

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 15,
© Springer ScienceCBusiness Media Dordrecht 2012

165



166 L’. Smrčok

15.2 Molecular Calculations

The first occasion a crystallographer comes across a theoretical calculation during
structure solution is, as a rule, preparatory step dedicated to building of a structural
model to be used in (i) a future structure solution in the direct space, or (ii)
for geometrical analysis of electron density maxima obtained by a calculation
in reciprocal space. Seen from the quantum chemistry side “a model building”
corresponds to optimization of the geometry of a molecule, starting either from a
very approximate outline based on a combination of the fragments taken from a
choice of databases, or even on the oracle nicknamed chemical intuition.

In case of organic molecules one is normally satisfied with relatively simple
quantum chemistry molecular calculation, frequently referred to as “calculations
in vacuum”. Both terms are equivalent and in fact only emphasize the fact, that
the geometry of the subject is not influenced by its environment. Such calculations
can be easily accomplished by any standard quantum chemistry package (Gaussian,
Turbomole, Gamess, NWChem, ADF, etc. : : : ) as this path is the most used and
hence the best tuned and debugged. For simple organic compounds reasonable
results are normally obtained at DFT level of theory by making use of one from
the family of hybrid functionals (e.g. B3LYP) combined with the split valence
(“Pople”) basis sets augmented by diffuse and polarization functions. For example,
the 6–31CG* basis (the symbol stands for the basic 6–31G basis augmented
with polarization denoted by * and diffuse functions denoted by C) will provide
satisfactory results in the vast majority of the cases [1, 2].

It should be however noted, that optimization of a flexible molecular geometry
under the absence of any “environment” (“external field”) is likely to provide the
values of torsional angles disagreeing with the values obtained in the subsequent
structure solution and refinement. If the differences are striking, one should, before
accusing any of the method of its total or partial malfunction, carefully evaluate
the impact of the external field and/or of formation of intra- and intermolecular
hydrogen bonds. In any case, the shape of a flexible molecule ought to be optimized
also during the direct space structure solution, of course only if the accuracy of the
experimental data permits. A word of warning: semiempirical methods belonging to
the NDO group (CNDO, INDO, MNDO, AM1, PM3, : : : ) though fast, are known
not giving very accurate molecular geometries.

While preparing the building blocks of a future organic structure usually does
not pose any important problem worth explicitly mentioning, this need not be
the case for metal-organic or inorganic compounds. Geometry of a representative
cluster (a polyhedron) of the atoms (a central atom of a transition metal surrounded
by medium sized organic ligands or water, for instance) playing the role of
“molecule” can be to a certain degree influenced by a spin state of a transition
metal. Furthermore, presence of very heavy atoms in the structure could call for
application of so called Effective Core Pseudopotential (ECP) in place of the basis
functions approximating the inner (core) shells of the atoms. This approach not
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only saves the computational time due to the reduction of dimensionality of the
problem, but modern relativistic pseudopotentials also take care about the important
part of relativistic effect, which plays non-negligible role for atoms beyond the first
transition metal row. Note that when using an ECP, the valence parts of the basis
functions of all atoms in the molecule should be consistent and one is discouraged
from mixing of principally different types of bases.

15.3 Solid State Calculations

Inasmuch as structure solution process usually provides only approximate positions
of atoms, an improvement of their accuracy is desirable. Standard “powder” refine-
ments nowadays almost exclusively rely on a few variants of Rietveld idea, that
the parameters of a function approximating the diffraction profiles can be refined
by a non-linear weighted least-squares procedure simultaneously with the atomic
parameters. Due to the notorious problems with accurate and cheap description of
powder diffraction profiles, with instrumental and sample effects and in particular
with a low number of structure factors compared to the number of refined atomic
parameters, the accuracy of the resulting structures is, more often than not, markedly
inferior to that typical for the current single crystal standards.

Although several improvements of this procedure have been already proposed
(restrained and rigid body refinements, just among others; see e.g. [3, 4] and the
references cited therein), the problem with a low number of uncorrelated/inaccurate
structure factors persists. As the elements of the Jacobian matrix related in Rietveld
method to structural parameters are calculated considering the structure factors
and not the individual profile intensities, any bias in the former is involuntarily
transferred to the accuracy of the refined atomic parameters. In reality, accuracy of
any powder refinement is smaller or at maximum identical to the accuracy of a single
crystal refinement based on the same numbers of independently collected structure
factors and refined parameters. Unfortunately, in a common practice this is the ideal
point never reachable as the accuracy of structure factors from a powder pattern
is always lower, especially due to overlap of the individual diffractions caused by
collapse of 3D diffraction pattern to 1D or due to various sample effects.

A remedy to the chronic difficulty of standard powder refinements, which is the
aforementioned lack of information extractable from a powder pattern, could be
structure optimization by energy minimization in the solid state. If we (for the lack
of space) restrict ourselves only to the solid-state DFT methods, we realize that
the size of problems tractable on a laboratory computer nowadays reaches �1,000
atoms per unit cell – in dependence on the level of approximation used by the
concrete computational method. This number greatly exceed the widely accepted
limits for powder refinements, which frequently fail in providing accurate results
even for the structures with much, much smaller numbers of atoms. Moreover, since
theoretical calculations are frequently done in the P1 space group, simultaneous
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optimization of the geometries of possibly symmetrically equivalent units within a
unit cell provides a good measure of internal consistency of structure optimization
and/or solution.

The main “crystallographic” advantage of this approach is that all atoms in a
structure are on equal footing, i.e. not weighted by their scattering abilities. For
organic structures (in fact, not only for them) it implies direct access to accurate
geometry of hydrogen bonds, whose knowledge is in good deal of cases essential
for understanding of physicochemical properties of a compound. Secondly, a shape
of the molecule or of a fragment (polyhedron) in an “inorganic” structure is further
optimized under the constraints imposed by a crystal field. Last but not least, by
exploiting the resulting wavefunction several interesting quantities like electronic or
vibrational densities of states, distribution of the electron density in a crystal, stress
tensors, etc. are easily accessible. The approach to handling of lattice parameters is
twofold. Either they are refined in advance e.g. by Le Bail technique and kept fixed
in the course of optimization of the atomic coordinates, or their values are refined
along with the atomic coordinates. Validity of both these approaches has been a
subject of long discussions with many pros and cons. In short, the main argument
of the “pros” group is that, that without the cell parameters “the optimized structure
is not in the minimum” ( : : : of total energy), while the second group proclaims that
the accuracy of the lattice parameters obtained from a crystallographic experiment
is as a rule much more accurate than that of those obtained by energy minimization
and there is hence no need to make it worse.

Such a combined approach to powder structure solution and refinement was
to our best knowledge pioneered by Dinnebier et al. [5] in their study of a rigid
ferrocene-based macrocycle, C48H44B4Fe2N8O4, crystallizing in a relatively large
monoclinic (C2/c) cell (V D 4152.8 Å3). In order to decrease the number of the
optimized atom coordinates the calculation was done in the reduced cell with V/2.
The initial structure models were generated by Monte Carlo method using the
synchrotron data and the atomic coordinates were refined by energy minimization
in the solid state. Refined structures were put to Rietveld refinement and the
profile parameters were improved, while keeping the atomic coordinates fixed. This
study was soon followed by the structure solution followed by the refinement by
crystal energy minimization of the red polymorph of tetrahexylsexitiophene [6].
The powder pattern was collected with a laboratory diffractometer and the structure
solved by Monte Carlo technique. Nearly identical solution in the space groups
C2/m, C2 and P�1 were found, of which the first was at last chosen.

Since then, two different attitudes to co-existence of classic crystallographic
Rietveld refinement and the refinement by crystal energy minimization have devel-
oped. The first and the more frequently used, gives more weight to standard Rietveld
refinement and uses theoretical calculation only to refine positions of hydrogen
atoms and/or for “validation” of a refined structure (see [7–14] for examples). The
second approach, on the contrary, is based on the presumption that it is unlikely that
Rietveld refinement with all atoms relaxed can provide sufficiently accurate struc-
tural data for the structures built from more than few atoms. Rietveld refinement
is therefore used only for estimation of isotropic displacement parameters and/or
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selected “profile” parameters, like preferred orientation correction (e.g. [15–21]).
Like the first approach, also the second has been successfully applied to organic,
metal-organic and inorganic compounds. Note, however, that the lists of the papers
belonging to any of these groups are not claimed to be complete and the author
apologizes for omissions.

The requirements for successful application of energy minimization in structure
refinement are however stricter than those typical for a standard Rietveld refinement.
First of all, the model must be complete, i.e. no dangling bonds resulting from
omission of atoms (intentional or accidental) are allowed. Partial occupancies of
atomic positions are not possible and must be modeled by a supercell simulating
distribution of atoms and vacancies. The optimization path could depend on the
initial configuration, as the optimization of atomic coordinates by energy minimiza-
tion is not, in spite of his robustness, the method of global minima. Fortunately, in
case of a configuration being rather far from a reasonable minimum, its accuracy
can be improved by molecular dynamics approach. A way towards improvement
of resulting accuracy is application of d-DFT method (e.g. [22]). This pragmatic
approach may, however, bring unwanted variability into energy calculations, unless
the empirical correction terms (“d”) are rigorously defined.

Although there is a variety of computer programs for theoretical calculation in
the solid state available, two of them are probably at the leading edge: CASTEP
[23] and VASP [24].1 Both these codes employ pseudopotentials to approximate the
inner (core) shells of atoms and plane waves as a basis set describing the valence
charge density. In spite of the effort invested to construction of pseudopotentials of
various flavors, the user should always carefully consider their quality, especially
when dealing with the atoms from the opposite corners of the periodic table in
one structure. Plane waves in place of the basis set have for the solid state calcu-
lations several advantages over the localized basis functions typical for molecular
calculations. Using FFT procedure one can calculate the electronic structure using
plane-waves basis set in reciprocal rather than in the direct space, making the
calculation less computationally demanding. A good beginner’s guide to the art of
solid state calculations is provided in the review paper by Gillan [25].

15.4 Post-optimization Calculations

The last stage where theory meets experiment is post-optimization applications of
theoretical methods not only for the molecules (fragments) cut from a structure,
but also for “bulk”. These applications are not by any means any by-products and
require each a special attention. The first group in principle employs very similar
methods as those used at the model building stage, but calculation of some derived

1Because it is not the role of this contribution to provide a comprehensive list of all the approaches
and of the relevant computer codes, a reader is asked to visit e.g. http://www.psi-k.org/codes.shtml

http://www.psi-k.org/codes.shtml
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quantities require a higher accuracy of the calculations and hence larger basis sets or
even a higher level of theory. A very typical post-optimization application is detailed
analysis of hydrogen bonds geometry including calculation of the relevant binding
energies or vibration analysis. The next widely accepted “chemical” application,
which can prove useful especially when comparing properties of a series of
structurally similar compounds, is estimation of the atomic charges followed by cal-
culation of the dipole moment and, optionally, of its components. Sadly, importance
of the atomic charges is in many cases overestimated and obvious arbitrariness in
their calculation frequently ignored. Projected densities of electronic states obtained
from a calculation in the solid state provide a good picture of bonding conditions in
a crystal and are frequently correlated to the selected physical properties. Calculated
vibrational densities of states can aid interpretation of vibrational (IR, Raman, INS)
spectra by revealing significance of the individual modes.

Quite a prominent chemical application calculated at the molecular level is
Natural Bond Orbitals (NBO) method, which transforms a given wave function
into a localized form, corresponding to the one-center (“lone pairs”) and two-center
(“bonds”) elements of the chemist’s Lewis structure picture. In NBO analysis, the
input atomic orbital basis set is transformed via natural atomic orbitals (NAOs) into
natural bond orbitals (NBOs). Resulting NBOs correspond to the image, in which
two-center bonds and lone pairs are localized [26, 27]. Examples of application of
NBO in interpretation of the variations in bond distances in the crystal structures is
e.g. in [17] or in [28]. In the second case also the concept of inequivalent hybridiza-
tion [29] was applied to explain variations in some bond angles in the aminoethylene
substituent attached to flourophenyl from their expected ideal values. Another nice
example of symbiosis of crystallography, though here single-crystal, and theoretical
calculations is a combined structure solution of [Ag26In18S36Cl6(dppm)10(thf)4]
[InCl4(thf)]2 [30]. Although the structure was solved from X-ray single crystal data,
the assignment of several atom positions solely on the basis of X-ray analysis was
impossible due to close scattering factors of the pairs Ag/In and S/Cl and very
similar bond lengths for Ag-S and In-S. The correct assignment was found by
molecular DFT/TZVPP calculation.
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Chapter 16
Information on Imperfections

Matteo Leoni

Abstract Line Profile Analysis is the common name given to those methods
allowing microstructure information to be extracted from the breadth and shape
of the peaks in a diffraction pattern. A fast analysis is always possible via
traditional techniques such as the Scherrer formula, Williamson-Hall plot and
Warren-Averbach method, but at the expenses of the physical meaning of the result.
A more sound alternative is offered by the Whole Powder Pattern Modelling,
allowing physical information to be extracted from diffraction data in a self-
consistent way.

16.1 Introduction

Nanostructured materials are still a hot topic in current research. An obvious choice
for the analysis of the microstructure of such systems would be microscopy, as the
sub-nm resolution can be easily achieved on last generation Transmission Electron
Microscopes (TEMs) and Scanning Probe Microscopes (SPMs). However, obvious
does not always mean better. SPMs mainly provide morphological information,
whereas the TEM, albeit accessing morphology and microstructure information,
is limited to the analysis of a few grains, a too small range to guarantee a good
statistical significance of the measurements.

A possible alternative is certainly offered by indirect methods such as powder
diffraction. The microstructure information is contained, highly integrated, in a
single powder diffraction pattern: already at the beginning of last century, in fact, it
was observed a close relationship between e.g. the breadth of a diffraction peak and
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the microstructure of the scattering domains. In the years, several techniques have
been proposed for the so-called Line Profile Analysis (LPA), mainly grouped into
two broad classes characterised by a totally different approach to the problem:

• pattern decomposition (PD) i.e. fitting of the individual peaks in the pattern using
some bell-shaped function and a posteriori analysis of the parameters of the fit

• pattern modelling (PM) i.e. fitting of a set of microstructure models to the entire
diffraction pattern.

Most of the traditional techniques of LPA, still widely employed by the scientific
community, fall in the first category. They are e.g. the well known Scherrer formula
(SF), Williamson-Hall (WH) plot and Warren-Averbach (WA) method [1–8].

They all pretend to give some microstructure information under the form of
average domain size and microstrain: in most practical cases, however, the true
meaning of those terms and the theory behind those methods are highly overlooked.
Pattern modelling is the modern answer to most of the limitation of traditional LPA.
The information provided e.g. by the Whole Powder Pattern Modelling [9–11] is
in fact tightly bound to the physics of the material (e.g. a domain size distribution
is refined, and a quantitative account of the sources of microstrain is given) and
the model is refined directly on the data for full consistency. A brief account for
traditional and advanced models is here given. For further details, an extensive
account is provided in the old and recent literature [5, 6, 12–15].

16.2 Integral Breadth Methods

Scherrer formula relates the Full-Width at Half-Maximum (FWMH) of a diffraction
peak in Bragg position 2™B with a so-called average crystallite size<D>. To render
the approach independent of the actual shape of the fhklg peak, the FWHM is usually
replaced with the so-called Integral Breadth (IB) ˇfhklg i.e. the ratio between peak
area and peak maximum. With this definition, SF reads:

ˇfhklg .2�/ D �Kˇ

ı�hDi cos �fhklg
�

(16.1)

where � is the wavelength, Kˇ is the so-called Scherrer constant for the given
shape and � fhklg is Bragg angle. In reciprocal space, we can analogously write
ˇfhklg(d*) D Kˇ/<D> being d* the reciprocal space variable. The Scherrer constant
in Eq. (16.1) can be calculated for any given domain shape and in general depends
on hkl (see e.g. [8]).

The meaning of the average crystallite size obtained from the SF is not obvious.
In fact, applying the idea of Bertaut [16, 17], <D> is an average of the length of
the columns in which the shape can be subdivided along the scattering direction.
Therefore it does not represent the average size of a physical object, the quantity of
usual interest. For non-spherical sizes, the average crystallite size depends on the
hkl and the same value can be obtained with different shapes.
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In order to compare the broadening corresponding to different directions and try
to increase the level of information that can be extracted, Williamson and Hall [2]
proposed to plot the FWHM or the IB in reciprocal space. For an isotropic domain
(direction-independent size), this plot is expected to be constant in reciprocal space.
An increase in the integral breadth with the distance from the origin of the reciprocal
space is observed, and the following model is employed:

ˇ
�
d�� D Kˇ =hDi C 2 � ˝"2˛1=2 � d� (16.2)

being the combination of Scherrer formula with the differential of Bragg’s law.
The first term in (16.2) is again named average crystallite size (extrapolation of
the integral breadth to the origin of the reciprocal space), whereas the second is the
so-called microstrain or root mean strain. The true meaning of this approach and of
the corresponding results is seldom considered.

In fact, even if the WH formalism seems straightforward, there is no physical
reason for summing the two contributions up. As breadths are additive only for
Lorentzians, the Williamson-Hall formalism is strictly valid only for Lorentzian
peaks, condition seldom met in practice. Alternatives have been proposed to cover
all Gauss/Lorentz-type combinations [18, 19], being complete from a mathematical
point of view but poor from a physical one.

The meaning of the size term in Eq. (16.2) is that of the Scherrer formula. In the
real case of polydispersed domains, the average crystallite size provided by the SF
and WH plot is different from the first moment of the size distribution. If we assume
a certain shape for the domains, we can see that this size is in fact the ratio between
two high order moments of the size distribution [20].

Quoting the result of the SF or WH as “average size” may thus lead to confusion
or misinterpretation.

The microstrain contribution is quite an abstract concept as it provides an
evidence for the presence of defects, but it does not identify their source. It should
also be borne in mind that the microstrain term accounts for the breadth of the local
strain distribution: should the microstrain be constant or average to a non-zero value,
a residual strain (leading to shift in peak position) would be present.

16.3 Fourier Methods

A first step towards the use of the full information contained in a diffraction peak
was the introduction of the Warren-Averbach method [3–6], the father of all Fourier
methods of LPA. If x D s � sfhklg is the distance in reciprocal space with respect to
Bragg position sfhklg, then the peak profile h(x) in the powder diffraction pattern of a
polycrystalline material results from the folding of an instrumental profile g(x) with
sample-related effects f (x) (microstructure) [5, 6]:

h.x/ D
Z
f .x/g .y � x/ dy D f .x/˝ g.x/ (16.3)
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The Fourier Transform (FT) allows an easier handling of this expression: the
convolution theorem, in fact, states that the FT of a convolution can be obtained as
the product of the Fourier transforms of the functions to be folded. In synthesis:

H.L/ D F T Œh.x/� D F T Œf .x/� � F T Œg.x/� (16.4)

where L is the variable conjugate to x. The original h(x) function can be obtained
by inverse Fourier transform of H(L). In traditional Fourier methods, the f (x) is
obtained by inverting Eq. (16.4) and is further split into size (AS(L)) and a strain or
distortion (AD(L)) components:

C.L/ D F T Œf .x/� D F T Œh.x/� =F T Œg.x/� D AS.L/AD.L/ (16.5)

The separation becomes trivial if size effects are considered as isotropic and thus
independent of the diffraction order (true for spherical domains). Strain effects, in
fact, depend on the diffraction order (and thus the reciprocal space variable) and
can be expressed, in a first order approximation, as: AD(L) D<cos2 Ln"L>D 1 �
2 2L2n2<"L

2>where "L is the strain averaged over the length L. A suitable plot
of ln(FT[f (x)]) D ln(AS(L)) C ln(AD(L)) as a function of n2 is the practical tool for
Warren-Averbach analysis. A size term, with meaning similar to that of the SF, can
be obtained in this case by taking the intercept of the initial slope of AS(L) [5]. The
chain of operations leading to the result is quite long and several approximations are
made: the consistency between data and result cannot be readily verified.

A few extensions of the WA method have been proposed. In the Multiple
Whole Profile Fitting (MWP) [21, 22], for instance, simple models for the size and
strain terms AS(L) and AD(L) are fitted to the Fourier coefficients extracted from
the experimental data. Arbitrary data pre-processing is necessary to separate the
peaks and to extract their Fourier transform. Even if transforms of multiple peaks
are simultaneously used, the method is nowadays scarcely employed, as fitting in
Fourier space leads to results that cannot be easily checked on the measured data.

16.4 Whole Powder Pattern Modelling

A leap forward in LPA was the introduction of reciprocal-space full pattern
techniques such as the Whole Powder Pattern Fitting (WPPF) [9, 23–25] and the
Whole Powder Pattern Modelling (WPPM) [9–11, 20, 23–45] or variants of it
[21, 22, 46–48]. In those techniques, model parameters are directly refined on
the entire pattern as in the Pawley [49] and Rietveld methods (RM [50–52]).
We can somehow consider the WPPM as the dual of the Rietveld method as
they have common bases, but complementary targets: structural refinement in RM,
microstructural refinement in WPPM. The major differences lay in the generation of
the peak profiles (Fourier plus reciprocal space in WPPM, angular in the RM) and
in the treatment of the peak shape (peaks from microstructure models in WPPM,
and Williamson-Hall or effective models in the RM).
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Using some microstructure model in the Rietveld method to improve the fit and to
extract extra information is certainly an advance over traditional LPA, as the whole
pattern is employed. The structural constraint on peak intensities can however pose
serious problems, as it can bias the microstructure extraction. It would be ideal to
model structure and microstructure simultaneously, but it is advised to perform the
microstructure studies with the least degree of biasing to correctly take into account
the subtle features of each profile.

The WPPM starts from the Fourier approach of Eq. (16.3) and (contrary to
traditional methods) works in a convolutive way. Each peak in the pattern is built as:

Ihkl .s � shkl / D k.s/ h .s � shkl / D k.s/

Z
C.L/e2�iL�.s�shkl /dL (16.6)

where k(s) groups all geometrical and structural factor that are constant or known
functions of s (e.g., structure factor, Lorentz-polarization factor). This equation is
not fully general, as it implicitly assumes that the broadening contributions act on
the entire fhklg reflection family and thus that a multiplicity term (included in k(s))
can be used. Certain defects (e.g. faults), can however act independently on each
member of the reflection family, leading to:

Ifhklg
�
s � sfhklg

� D
X

hkl

whkl Ihkl
�
s � sfhklg � ıhkl

�
(16.7)

where whkl is a weight function, (s � sfhklg � ıhkl) D (x � ıhkl) is the reciprocal-
space distance from the centroid of the (hkl) component and ıhkl is the shift from the
reciprocal-space point sfhklg corresponding to the Bragg position in the absence of
defects. The sum in Eq. (16.7) is over independent profile sub-components, selected
on the basis of the specific defects (e.g. 4 for f111g when faults are present in the
fcc case: selection is based on the value of h C k C l that can be ˙3 or ˙1).

The whole pattern is synthesised as sum of peaks obtained by means of Eqs.
(16.6) and (16.7) plus background and aberrations. The desired parameters are then
refined by fitting the model to the measured data using a nonlinear least squares
routine. Full consistency between data and model is thus preserved.

Any broadening contribution can enter the convolution chain and can therefore
be included in Eq. (16.6). The most common broadening sources in a real case are
certainly those related to the non-ideal nature of the instrument, the finite size of
the coherently diffracting domain (size effect) and to the presence of defects such
as e.g. dislocations and faults. Taking this into account, the C(L) reads:

C.L/ D T IP .L/AShkl .L/
˝
e2�i � hkl .L/

˛ ˝
e2�i ��hkl .L/

˛
(16.8)

where TIP(L) and AS
hkl are the FT of the instrumental profile (IP) and domain

size components, respectively, and the terms in brackets (<>) are average phase
factors related to lattice distortions ( ) and faulting (�). A plug and play behaviour
is thus envisaged: new broadening sources can be considered by including the
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corresponding complex FT in the product of Eq. (16.8). Expressions are available
for a wide selection of cases of practical interest [10–15, 20, 23–35, 53, 54]
including a size distribution of domains with given shape, the effects of dislocations
and stacking faults, grain surface relaxation, antiphase boundaries, distribution
of cell parameters, just to cite some. The method is conveniently implemented
in a flexible and freely available software [31] allowing the analysis of X-rays,
synchrotron, neutron or electron diffraction patterns.

A warning should be given here: the physical bases of the approach should
always be considered. The WPPM is certainly valid if the broadening sources are
diluted and independent, i.e. if the correlation between defects can be neglected.
If this does not apply, then cross terms start playing a role: errors can arise
if this is not properly done and therefore the WPPM needs being revised. For
example, in the case of extended faulting and heavy interaction between structure
and microstructure, a possible alternative to traditional models has been proposed
in [55].

16.5 Example of Analysis

The analysis of a nanocrystalline ceria specimen produced by sol–gel (details are
given in [36]) is proposed using traditional and advanced techniques of LPA. The
diffraction pattern collected on a laboratory instrument over ca. 24 h is shown in
Fig. 16.1a. TEM shows spherical domains with a distribution of diameters approxi-
mately lognormal (cf. bar plot in Fig. 16.1b, evaluated on 800 isolated grains [36]).

The application of Scherrer formula to the most intense f111g peak is proposed
in Fig. 16.1c: no fitting, no background and no peak overlapping were considered.
From the FWHM of the peak, it is possible to estimate an average<D>/K“ of
5.8 nm. The actual size value depends on the Scherrer constant K“ and therefore
on the domain shape.

To improve the result, all peaks were simultaneously fitted using pseudo-
Voigt functions, properly considering the instrumental profile contribution. The
corresponding IB was employed for the WH analysis (cf. Fig. 16.1d). Linear
fitting leads to ˇ(d*) D 0.019 C 0.008d*. Despite the clear presence of a microstrain
(<"2>1/2 D 0.004), the size is 5.3 nm, i.e. smaller than the SF result. This is a caveat
that instrumental effects must always be considered in the analysis.

Residual anisotropic broadening is clear in the WH plot (errors are small and
points do not lie on the line), and can be ascribed to the presence of dislocations. The
WPPM analysis was conducted assuming the presence of a lognormal distribution
of spherical domains (compatible with TEM) and of dislocations. The modelled
pattern is shown in Fig. 16.1a together with the experimental data: the residual is
flat and the GoF is close to 1 [36], witnessing the perfect match of data and model.

The resulting WPPM size distribution is proposed in Fig. 16.1b superimposed
to the TEM result. The mean size is 4.4 nm, quite far from SF and WH results.
A better agreement (3.98 nm) is obtained if the correcting factor ¾ (valid of a
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Fig. 16.1 (a) Experimental pattern (dots), WPPM result (line) and difference curve (line below).
Comparison between TEM and WPPM size distributions is proposed in (b). The analysis using
Scherrer formula and Williamson-Hall plot are shown in (c) and (d) respectively

lognormal distribution of spheres [20]) is applied to the WH result to extract the
first moment of the distribution. What is clear, however, is that or a well behaving
specimen (narrow monomodal distribution), the breadth of the peaks gives at least
an order of magnitude estimate of the size. Considering that CeO2 is a ceramic, a
high dislocations density is also obtained (1.4 � 1016 m�2): the value corresponds to
ca. 1 dislocation every few grains, in agreement with TEM observations [26].

A final word should be dedicated to the number of parameters employed in
the analysis: excluding Scherrer formula, clearly inappropriate here, the WH plot
involved the use of 67 parameters (4 parameters for each of the 16 peaks C3 for the
background). Conversely just 26 were necessary for the WPPM (16 intensities, 1 cell
parameter, 2 size, 3 dislocations, 3 background, 1 specimen displacement). A higher
quality result is thus obtained with less model parameters, further suggesting that
modern LPA methods are mature enough for a more frequent use.
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Chapter 17
Pair Distribution Function Technique:
Principles and Methods

Simon J.L. Billinge

Abstract One of the frontiers when studying complex and nanostructured materials
is the characterization of structure on the nanoscale. We describe how the atomic
pair distribution function analysis of powder diffraction data can be used to this
end, and what kind of structural information can be obtained in different situations.

17.1 Introduction

This chapter is adapted from a description of the PDF method described in Chapter
16 of “Powder Diffraction: Theory and Practice” [1]. Increasingly, materials that
are under study for their interesting technological or scientific properties are highly
complex. They are made of multiple elements, have large unit cells and often
low dimensional or incommensurate structures [2]. Increasingly also, they have
aperiodic disorder: some aspect of the structure that is different from the average
crystal structure. In the case of nanoparticles the very concept of a crystal is invalid
as the approximation of infinite periodicity is no longer a good one. Still we would
like to study the structure of these materials. Powder diffraction is an important
method for characterizing these materials, but we have to go beyond the Bragg
equation and crystallographic analysis.

The “total scattering” approach treats both the Bragg and diffuse scattering on
an equal basis [3]. Powder diffraction data are measured in much the same way
as in a regular powder measurement. However, explicit corrections are made for
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extrinsic contributions to the background intensity from such things as Compton
scattering, fluorescence, scattering from the sample holder, and so on. The resulting
coherent scattering function I(Q) is a continuous function of Q, the magnitude of
the scattering vector,

Q D jQj D 2k sin � D 4� sin �

�
(17.1)

with sharp intensities where there are Bragg peaks, and broad features in between,
the diffuse scattering. In general we like to work with a normalized version of
this scattering intensity, S(Q). This is the intensity normalized by the incident
flux per atom in the sample. S(Q) is the total-scattering structure function. It is
a dimensionless quantity and the normalization is such that the average value,
hS(Q)i D 1. Despite the tricky definition, it is worth remembering that S(Q) is
nothing other than the powder diffraction pattern that has been corrected for
experimental artifacts and suitably normalized.

To get a good resolution in real-space, the S(Q) must be measured over a
wide range of Q-values. The coherent intensity (the features) in S(Q) die out
with increasing Q due to the Debye-Waller factor which comes from thermal and
quantum zero-point motion of the atoms, as well as any static displacive disorder in
the material. By a Q-value of 30–50 Å�1 (depending on temperature and stiffness of
the bonding) there are no more features in S(Q) and there is no need to measure
it to higher-Q. Still, this is much higher than conventional powder diffraction
experiments using laboratory x-rays or reactor neutrons. The maximum Q attainable
in back-scattering from a copper-K˛ tube is around 8 Å�1 and from a Mo-K˛
tube 16 Å�1.Routine total-scattering measurements can be made using laboratory
sources with Mo or Ag tubes; however, for the highest real-space resolution, and
the smallest statistical uncertainties, synchrotron data are preferred. In the case of
neutron scattering, spallation neutron sources are ideal for this type of experiment.

Total scattering S(Q) functions appear different to standard powder diffraction
measurements because of the Q-range studied, but also because of an important
aspect of the normalization: the measured intensity is divided by the total scattering
cross-section of the sample. For neutrons, this scattering cross-section is simply
hbi2, where b is the coherent neutron scattering length of the atoms of the material
in units of barns. The angle brackets denote an average. The scattering length, b, is
constant as a function of Q and so is just part of the overall normalization coefficient.
However, in the case of x-ray scattering, the sample scattering cross-section is the
square of the atomic form-factor, hf(Q)i2, which becomes very small at high-Q.
Thus, during the normalization process the data at high-Q are amplified (by being
divided by a small number). This has the effect that even rather weak intensities at
high-Q, which are totally neglected in a conventional analysis of the data, become
rather important in a total-scattering experiment. Because the signal at high-Q is
weak it is important to collect the data in that region with good statistics. This is
illustrated in Fig. 17.1.

Thus, the value added of a total scattering experiment over a conventional powder
diffraction analysis is the inclusion of diffuse scattering as well as Bragg peak
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Fig. 17.1 Comparison of raw data and normalized reduced total scattering structure function
F(Q) D Q[S(Q)�1]. The sample is a powder of 2 nm diameter CdSe nanoparticles and the data
are x-ray data from 6ID-D at the Advanced Photon Source at Argonne National Laboratory. The
raw data are shown in the left panel. The high-Q data in the region Q> 9 appear smooth and
featureless (left panel). However, after normalizing and dividing by the square of the atomic form-
factor, important diffuse scattering is evident in this region of the diffraction pattern (right panel)

intensities in the analysis, and the wide range of Q over which data are measured.
In fact, the total scattering name comes from the fact that all the coherent scattering
in all of Q-space is measured.

Total scattering data can be analyzed by fitting models directly in reciprocal-
space (i.e., the S(Q) function is fit). However, an interesting and intuitive approach
is to Fourier transform the data to real-space to obtain the atomic pair distribution
function (PDF), which is then fit in real-space. The reduced pair distribution
function, G(r), is related to S(Q) through a Sine Fourier transform according to

G.r/ D 2

�

QmaxZ

Qmin

QŒS.Q/� 1� sin .Qr/ dQ (17.2)

Examples of a G(r) functions are shown in Fig. 17.2.
It has peaks at positions, r, where pairs of atoms are separated in the solid with

high probability. For example, there are no peaks below the nearest neighbor peak
at �2.5 Å which is the Cd-Se separation in CdSe [4]. However, in addition to
the nearest-neighbor information, valuable structural information is contained in
the pair-correlations extending to much higher values of r. In fact, with high Q-
space resolution data, PDFs can be measured out to tens of nanometers (hundreds
of angstroms) and the structural information remains quantitatively reliable.

There are now many classes of problems that have been studied using total
scattering analysis. Traditionally it was used for liquids [5] and amorphous ma-
terials, more recently for the study of disorder in crystalline materials, and now
with increasing popularity it is used to study nanostructured materials. A number of
recent reviews [3, 6, 7] give examples of modern applications of the PDF method.
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Fig. 17.2 PDFs in the form of G(r) from bulk CdSe, and from a series of CdSe nanoparticles. The
blue curve at the bottom is the PDF obtained from the data shown in Fig. 17.1. The thick lines
are from the data, with thin lines on top from models of the local structure in these nanoparticles.
Offset below are difference curves between the model and the data (Figure adapted from [4]) (color
figure online)

17.2 Theory

The basis of the total scattering method is the normalized, measured, scattering
intensity from a sample, total scattering structure function, S(Q) [3, 8, 9]. The
wavevector, Q, is a vector quantity and in general the intensity variation, S(Q), will
depend on which direction one looks in Q-space. However, when the sample is
isotropic, for example, a powder, it depends only on the magnitude of Q and not its
direction.

Similarly, the Fourier transform of the scattered intensity, in the form of S(Q),
yields the reduced atomic pair distribution function, G(r), defined by Eq. 17.2. This
is strictly correct when the sample is made of a single element. We will discuss an
approximate extension that works excellently in practice, to the more interesting
case of multiple elements.

The inverse transformation of Eq. 17.2 can be defined and it yields the structure
function S(Q) in terms of G(r),

S.Q/ D 1C 1

Q

Z 1

0

G.r/ sin .Qr/ dr: (17.3)

There are a number of similar correlation functions related to G(r) by multi-
plicative and additive constants. They contain the same structural information but
are subtly different in some detail. G(r) is the function obtained directly from the
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Fourier transform of the scattered data. The function oscillates around zero and
asymptotes to zero at high-r. It also tends to zero at r D 0 with the slope �4��0,
where �0 is the average number density of the material. From a practical point of
view G(r) is attractive because the random uncertainties on the data (propagated
from the measurement) are constant in r [3]. This means that fluctuations in the
difference between a calculated and measured G(r) curve have the same significance
at all values of r. Thus, for example, if the observed fluctuations in the difference
curve decrease with increasing r this implies that the model is providing a better fit
at longer distances (perhaps it is a model of the average crystallographic structure).
This inference cannot be made directly from a difference curve to �(r) or g(r). A
further advantage of the G(r) function is that the amplitude of the oscillations gives
a direct measure of the structural coherence of the sample. In a crystal with perfect
structural coherence, oscillations in G(r) extend to infinity with a constant peak-
peak amplitude [10]. In the G(r) from a real crystal the peak-peak amplitude of the
signal gradually falls off due to the finite Q-resolution of the measurement, which
is then the limitation on the spatial coherence of the measurement rather than the
structural coherence itself. A higher Q-resolution results in data extending over a
wider range of r. In samples with some degree of structural disorder, the signal
amplitude in G(r) falls off faster than dictated by the Q-resolution and this becomes
a useful measure of the structural coherence of the sample. For example, it can be
used to measure the diameter of nanoparticles.

Another function often denoted g(r) is called the pair distribution function. It is
normalized so that, as r ! 1, g(r) ! 1 and has the property that for r shorter than
the distance of closest approach of pairs of atoms g(r) becomes zero. It is closely
related to the pair density function, �(r) D �0g(r). Clearly, �(r) oscillates about,
and then asymptotes to, the average number density of the material, �0 at high-r
and becomes zero as r ! 0. The relationship between these correlation functions is
given by

G.r/ D 4�r .�.r/� �0/ D 4��0r.g.r/ � 1/ (17.4)

Finally we describe the radial distribution function, R(r) given by

R.r/ D 4�r2�.r/ (17.5)

which is related to G(r) by

G.r/ D R.r/

r
� 4�r�0 (17.6)

The R(r) function is important because it is the most closely related to the
physical structure since R(r)dr gives the number of atoms in an annulus of thickness
dr at distance r from another atom. For example, the coordination number, or the
number of neighbors, NC , is given by

NC D
Z r2

r1

R.r/dr (17.7)
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where r1 and r2 define the beginning and ending positions of the RDF peak
corresponding to the coordination shell in question. This suggests a scheme for
calculating PDFs from atomic models. Consider a model consisting of a large
number of atoms situated at positions r� with respect to some origin. Expressed
mathematically, this amounts to a series of delta functions, ı(r – r�). The RDF is
then given as

R.r/ D 1

N

X

�

X

�

ı.r � r��/ (17.8)

where r�� D jr�– r�j is the magnitude of the separation of the �-th and�-th ions and
the double sum runs twice over all atoms in the sample. Later we address explicitly
samples with more than one type of atom, but for completeness we give here the
expression for R(r) in this case:

R.r/ D 1

N

X

�

X

�

b�b�

hbi2 ı.r � r��/ (17.9)

where the b terms are the Q-independent coherent scattering lengths for the �th and
�th atoms and hbi is the sample average scattering length. In the case of x-rays, the
b terms are replaced with atomic number, Z.

17.3 Experimental Methods

Total scattering measurements have basically the same requirements as any powder
diffraction measurement. Special requirements for high-quality total scattering data
are the following:

1. Data measured over a wide Q-range. This requires wide scattering angles and/or
short-wavelength incident radiation.

2. Good statistics, especially at high-Q where the scattering signal is weak.
3. Low background scattering. It is important to measure weak diffuse scattering

signals accurately which is difficult on top of high backgrounds.
4. Stable set-up and accurate incident intensity monitoring. The data are normalized

by incident intensity. It is important that the incident beam and detector character-
istics do not change in an uncontrolled way during the course of the experiment,
or that this can be corrected, for example, by monitoring the incident beam
intensity as is done at synchrotron x-ray and spallation neutron measurements.

X-ray experiments can be carried out using laboratory diffractometers with Mo or
Ag sources which give Q-ranges up to Qmax �14 and 20 Å�1, respectively. These are
less than optimal values for Qmax, but acceptable for straightforward characterization
of nanostructured materials at room temperature. Optimally, x-ray experiments are
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Fig. 17.3 Schematic of the rapid acquisition RAPDF x-ray data collection method

carried out at x-ray synchrotron sources using high incident energy x-rays. These
can be done with incidence energies in the vicinity of 30–45 keV in conventional
Debye-Scherrer geometry (for instance using be beamlines such as X31 at ESRF or
11BM at APS that are constructed for regular powder diffraction). However, more
common, these days, is to use the rapid acquisition PDF mode (RAPDF) in which
data for a PDF is collected in a single-shot using a planar 2D detector [11]. This is
illustrated in Fig. 17.3.

Dedicated beamlines have been constructed at APS for this purpose (11ID-B and
11ID-C) with similar beamlines under construction at NSLS (X17A), ESRF and
NSLS-II. In this geometry, incident x-rays of energy 60–150 keV are fired through
a sample and collected on a large area image-plate detector placed behind the
sample. The experiment consists of ensuring the incident beam is perpendicular and
centered on the detector and the sample, then exposing the image plate. Depending
on the strength of scattering and the sensitivity of the detector, exposures for good
PDFs in excess of Qmax D 30 Å�1 can be obtained in as little as 100 ms, and
typically a few seconds to minutes. This compares to data collection times of 8–12 h
with conventional non-parallel counting approaches, even at the synchrotron. The
RAPDF measurement is ideal for time-resolved and parametric measurements, of
local structure through phase transitions for example. The Q-resolution of these
measurements is very poor because of the geometry, and this limits the r-range
of the resulting data from crystalline materials. However, most modeling is carried
out over rather narrow ranges of r and this represents a very good tradeoff. Where a
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wide r-range is necessary for the measurement (to study some aspect of intermediate
range order on length-scales of 5–10 nm for, example) the Debye-Scherrer geometry
diffractometers can be used.

In the case of neutron measurements, the requirement of short-wavelengths really
limits experiments to time-of-flight spallation neutron sources. Reactor sources with
hot moderators would give good quality data for PDF studies, but are in short
supply. The requirements for a spallation neutron powder diffractometer are laid
out in the list of experimental requirements above. Normal time-of-flight powder
diffractometers can be used provided the length of the flight-path and frequency
of operation are such to allow good fluxes of neutrons with short wavelength
(0.2–0.4 Å). Currently neutron guides do not propagate these short-wavelength
neutrons effectively so shorter flight-path diffractometers with or without guides
give the best data. Currently the instruments of choice are NPDF at the Lujan
Center at Los Alamos National Laboratory in the USA and GEM at ISIS, Rutherford
Laboratory, in the UK. The former was upgraded with PDF experiments in mind
and has excellent stability on a water moderator and low backgrounds, though data
collection time is not quite at the level of GEM. New powder diffractometers are
coming on line at the Spallation Neutron Source at Oak Ridge National Laboratory
(NOMAD and POWGEN) that will give unprecedented data-rates and will be
suitable for PDF studies.

A number of data correction programs are available for free download and these
take care of the corrections and normalizations needed to obtain PDFs from raw
data. These can be browsed at the ccp14 software website [12]. Commonly used, and
generally easy to use, programs are Gudrun [13] and PDFgetN [14] for spallation
neutron data and PDFgetX2 [15, 16] for x-ray data. PDFgetX2 has the corrections
implemented for accurate analysis of RAPDF data. Details of the corrections are
beyond the scope of this article, but can be found in some detail in “Underneath the
Bragg peaks: structural analysis of complex materials” by Egami and Billinge [3].

17.4 Extracting Structural Information from Total
Scattering

Here we confine ourselves to real-space modeling whereby the PDF of the model is
calculated and compared to an experiment. Fitting the PDF is generally done with
models described by a small number of atoms in a unit cell (which may or may not
be the crystalline unit cell) and yields information about the very local structure.

Information can be extracted directly from the PDF in a model-independent way
because of its definition as the atom-pair correlation function. The position of a peak
in the PDF indicates the existence of a pair of atoms with that separation. There is
no intensity in R(r) for distances less than the nearest-neighbor distance, r< rnn

and a sharp peak at rnn. This behavior is very general and true even in atomically
disordered systems such as glasses, liquids and gasses. In crystals, because of the
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long-range order of the structure, all neighbors at all lengths are well defined and
give rise to sharp PDF peaks. The positions of these peaks give the separations of
pairs of atoms in the structure directly and the width contains information about
thermal motion of the atoms, or static disorder. In general, it is not possible to
tell directly from the data whether a PDF peak broadening is static or dynamic in
nature, though this can sometimes be inferred by fitting temperature dependence to
a dynamical model such as the Debye model.

When a well-defined PDF peak can be observed, we can determine information
about the number of neighbors in that coordination shell around an origin atom
by integrating the intensity under that peak, as shown in Eq. 17.7. In the case of
crystalline Ni there are four Ni atoms in the unit cell (fcc structure). Each nickel
ion has 12 neighbors at 2.49 Å [17]. When we construct our PDF we will therefore
place 48 units of intensity at position r D 2.49 Å (the weighting factor, bmbn/<b>2,
is unity since there is only one kind of scatterer) and divide by N D 4 since we put 4
atoms respectively at the origin. Thus, integrating the first peak will yield 12 which
is the coordination number of Ni. The same information can be obtained from multi-
element samples if the chemical origin of the PDF peak, and therefore the weighting
factor, is known. If, as is often the case, PDF peaks from different origins overlap
this process is complicated. Information can be extracted by measuring the chemical
specific differential or partial-PDFs directly [18], by fitting the peaks with a series
of Gaussian functions, or better, by full-scale structural modeling.

Atomic disorder in the form of thermal and zero-point motion of atoms, and any
static displacements of atoms away from ideal lattice sites, give rise to a distribution
of atom-atom distances. The PDF peaks are therefore broadened resulting in
Gaussian shaped peaks. The width and shape of the PDF peaks contain information
about the real atomic probability distribution. For example, a non-Gaussian PDF
peak may suggest an anharmonic crystal potential.

Modeling the data reveals much more information that straight model indepen-
dent analysis. The most popular approach for real-space modeling is to use PDFfit,
and its replacement PDFfit2 and PDFgui [19, 20], a full-profile fitting method
analogous to the Rietveld method [21] but where the function being fit is the PDF.

Parameters in the structural model, and other experiment-dependent parameters,
are allowed to vary until a best-fit of the PDF calculated from the model and
the data derived PDF is obtained, using a least-squares approach. The sample
dependent parameters thus derived include the unit cell parameters (unit cell lengths
and angles), atomic positions in the unit cell expressed in fractional coordinates,
anisotropic thermal ellipsoids for each atom and the average atomic occupancy of
each site.

We highlight here the similarities and differences with conventional Rietveld.
The main similarity is that the model is defined in a small unit cell with atom posi-
tions specified in terms of fractional coordinates. The refined structural parameters
are exactly the same as those obtained from Rietveld. The main difference from
conventional Rietveld is that the local structure is being fit which contains infor-
mation about short-range atomic correlations. There is additional information in the
data, which is not present in the average structure, about disordered and short-range
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ordered atomic displacements. To successfully model these displacements it is often
necessary to utilize a “unit cell” which is larger than the crystallographic one. It is
also a common strategy to introduce disorder in an average sense without increasing
the unit cell. For example, in the example where an atom is sitting in one of two
displaced minima in the atomic potential, but its probability of being in either well
is random, can be modeled as a split atomic position with 50% occupancy in each
well. This is not a perfect, but a very good, approximation of the real situation and
is very useful as a first order attempt at modeling the data.

This “Real-space Rietveld” approach is proving to be very useful and an
important first step in analyzing PDFs from crystalline materials. This is because
of two main reasons. First, its similarity with traditional Rietveld means that a
traditional Rietveld derived structure can be compared quantitatively with the results
of the PDF modeling. This is an important first step in determining whether there is
significant evidence for local distortions beyond the average structure. If evidence
exists to suggest that local structural distortions beyond the average structure are
present, these can then be incorporated in the PDF model. The second strength of
the real-space Rietveld approach is the simplicity of the structural models making it
quick and straightforward to construct the structural models and making physical
interpretations from the models similarly quick and straightforward. The most
recent version of the PDFfit code comes with a user-friendly graphical user interface
facilitating many tasks in the data analysis, called PDFgui and PDFfit2 [19].

PDFfit was originally designed to study disorder and short-range order in
crystalline materials with significant disorder such as nanoporous bulk materials.
It has also found extensive use in studying more heavily disordered materials such
as nanocrystalline materials and nanoporous materials and this looks set to increase
in the future.

17.5 Conclusions

This chapter contains a brief account of the theory behind the PDF method and the
basic methods for obtaining suitable data, analyzing it and extracting nanostructural
information from it. Interest in the technique is growing rapidly as the quality of
structural information obtainable from it improves due to methodological advances,
and as more and more researchers seek to make and characterize materials on the
nanoscale.
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Chapter 18
Debye Analysis

Yuri G. Andreev

Abstract Violation of 3D translational symmetry often precludes extraction of
accurate structural information from powder diffraction data using the established
methods of structure refinement. Prone to turbostratic distortions, layered structures
and nano objects, with anisotropic crystallite size and non-uniform deformation,
are the prime examples of compounds that provide a considerable challenge for
diffraction studies. Application of the fundamental diffraction equation of Debye
provides a means of establishing the arrangement of atoms with any degree of
structural disorder.

18.1 Introduction

The arrival of the Rietveld method initiated the renaissance of powder diffraction
methodology as a tool for structure refinement [1]. It took another 25–30 years after
that for the powder diffraction method to end the total dominance of single-crystal
diffraction as the technique for ab initio structure determination [2–5].

Despite the mentioned advances in powder diffraction methodology, single-
crystal diffraction remains the technique of choice if a single crystal of adequate
quality and size of the solid in question is available. At modern synchrotron
sources diffraction data, sufficient for establishing the crystal structure, can be
collected from a micron-size single crystal. However, when the crystal size is in
the nanometer range or the structure lacks translational symmetry due to disorder,
powder diffraction remains the only option on hand.
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Full-profile analyses of powder diffraction patterns, e.g. Rietveld method, utilise
empirical peak-shape functions which work reasonably well when long-range
translational symmetry is not violated by small and anisotropic crystallite size,
non-uniform deformation of the crystal lattice, loss of structural registry in 1 or
2 dimensions, etc. Such crystal structure imperfections are common in a number
of materials of current interest, which include graphene and nanoparticles. More
often than not, the shape of diffraction peaks from such disordered materials
cannot be adequately described by analytical functions, rendering the application of
established powder methods difficult or impossible [6]. The arrival of total scattering
approach [7, 8] circumvents the use of such methods by employing basic x-ray
diffraction theory which uses Fourier transforms. Based on the early methodologies
of Kitaigorodsky and Guinier [9, 10] originally used to interpret diffuse scattering
data, the total scattering approach takes full advantage of the modern powerful
synchrotron radiation sources to collect high quality diffraction data in a wide range
of values of the modulus of the wave vector, Q. The extended Q range greatly
reduces the truncation errors, caused by performing a Fourier transform within a
finite interval, and produces an atomic pair distribution function which takes into
account both diffuse and Bragg scattering data.

In this Chapter, a different approach is used to interpret diffraction data from
imperfect structures. The method utilises the fundamental equation of Debye
[11] which allows one to calculate a powder pattern by considering diffrac-
tion/interference contributions from each pair of atoms in the scattering domain.
Thus calculated powder profile from a trial direct-space structural model can be
directly compared to the experimental diffraction pattern.

18.2 Debye Formula

In 1915 Debye derived an equation that relates directly the inter-atomic distances be-
tween each pair of atoms in the scattering volume to the observed X-ray diffraction
pattern, without recourse to symmetry (crystallography) [11]. The equation is exact
in the first Born, or kinematic, approximation and deals explicitly with Bragg and
diffuse scattering as well as the small-angle scattering from a powder. The intensity
of X-ray radiation diffracted by an array of atoms, allowing all orientations of the
array to have equal probability, is

I .�/ D
X

n

f 2
n .�/C 2

X

i

X

j

fi .�/ fj .�/
	
sin
�
4�rij sin � =�

� ı�
4�rj i sin � =�

� 


where fn(�) is the atomic form-factor of the nth atom in the array,� is the wavelength
and rij is the distance between atoms i and j.

To account for the effect of preferred orientation a multiplier, Tij, can be added
into the double sum of the above equation [12].
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Tij D
�
T 2cos2˛ij C 1

T
sin2˛ij

�� 3
2

The correction is similar to the March-Dollase formulation [13], however, in this
case ˛ij is the angle between rij and the preferred orientation vector.

18.3 Applications

18.3.1 Layered Structures with Dimensional Disorder

Layered materials with loose coupling between sheets (layers) in the structure are
prone to losing the inter-layer registry (ordering) on mechanical impact (e.g. ball-
milling) or during intercalation/deintercalation of host atoms or molecules between
the layers. The classic examples of such materials are graphite and hexagonal
boron nitride. Under normal circumstances both solids have a highly symmetrical
hexagonal structure with only a few atoms in the asymmetric unit. Atoms in these
structures are arranged in honeycomb layers, with the latter stacked in registry,
forming a 3D-ordered array which gives a powder pattern with sharp symmetric
peaks, Fig. 18.1a.
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Fig. 18.1 X-ray diffraction patterns of 3D-ordered (a) and turbostratically disordered (b) graphite



198 Y.G. Andreev

When such layered materials are synthesised via a disorder-inducive route or
subjected to mechanical or chemical treatments mentioned above, the size of the
in-plane ordered regions tend to decrease along with the degree of the inter-layer
registry. This type of disorder is often referred to as turbostratic distortions. Such
distortions have dramatic effect on the powder diffraction pattern, Fig. 18.1b. All
reflections that are not of the 00l, h00 or hk0 type disappear. The 00l peaks broaden
and shift to lower 2� (higher d-spacing) values, while the shape of the in-plane h00
and hk0 reflections, in addition to broadening and shifting of the position of the
maximum count towards higher 2� , becomes highly asymmetric, with significantly
slower intensity decay from the peak maximum on the lower d-spacing side. The
latter peak shape in some cases can be adequately described by the function
derived by Warren and Bodenstein for diffraction reflections from a single circular
honeycomb layer (or a collection of randomly oriented layers of this type) [14]. The
profile, Yhk(2�), of such 2D reflection is defined as follows:

Yhk .2�/ D mMD�3=2 F 2R5=2 �
h
2�A2a sin �.sin � C sin �0/

1=2
i�1

;

where

� D
1Z

0

nh
arccosS � S

�
1 � S2

�1=2 i.
S1=2

o
.cos 2��S C sin 2��S/ dS;

Aa D a2
p
3 =2 ; � D .4R =�/.sin � � sin�0/

m is the multiplicity of the hk reflection; M is the number of randomly oriented
layers in the sample; D is the distance to the receiving surface; � is the wavelength;
F, R and a are the in-plane structure factor, layer radius and lattice parameter,
respectively; �0 is the position of the hk0 reflection in the case of 3D ordering. Note
that, unlike for 3D reflections, the position of the 2D peak maximum is a function
not only of the in-plane lattice parameter but also of the layer size!

The peak-shape function of Warren and Bodenstein has been successfully applied
to determine the in-plane crystallite size and lattice in a turbostratically disordered
hexagonal BN, Fig. 18.2 [15].

However, modelling of 2D diffraction peak shapes from single honeycomb
layers of different size, Fig. 18.3, and ensembles of parallel, but not in complete
crystallographic registry, layers (to produce 00l reflections, in addition to h0 and hk)
using Debye equation clearly demonstrates that the analytical formulation would fail
in some cases [16].

Thus, when the radius of a layer is reduced to 10 Å deviations from perfect
circular shape become more evident and the 2D profile shape suggested by Warren
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and Bodenstein provides a poor match to the true profile obtained by using the
equation of Debye. Similarly, even for larger layer size, when turbostratic distortions
are caused by random rotations of the layers, the single-layer peak shape fails to
adequately describe the 2D reflection profile, Fig. 18.4.
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Fig. 18.4 Calculated using
Debye equation X-ray
diffraction profiles of .10
reflection from (a) single
circular graphene layer (50 Å
in diameter) and (b) 16 such
layers first stacked in the
ABAB registry of graphite and
then rotated by a randomly
chosen angle around their
centres

Fig. 18.5 Fragments of the
experimental neutron
diffraction profile of the 400
reflection from oxygen-free
(top) 160 Å Ni particles and
the same particles at an early
oxidation stage (bottom)

18.3.2 Oxidation of Ni Nanoparticles

In the course of neutron diffraction study of oxygen insertion into spherical Ni
nanoparticles, 160 Å in diameter, a pronounced peak asymmetry, Fig. 18.5, has been
detected at early stages of oxidation, when the oxygen content is several atomic
percents and the NiO phase is not yet formed [17].

The true diffraction profiles, I(�), of the 400 reflection from the oxidised
and oxygen-free powders, which have been extracted by solving the convolution
equation

H .�/ D
Z
I .�/G

�
� � � 0�d� 0

[H(�) and G(�) are experimental profiles from the nanoparticular and micron-size
Ni powders, respectively], reveal that on oxidation the intensity of the left satellite
of the main peak becomes greater than that of the right satellite.

In order to explain the changes in the peak shapes the profile of the 400 reflection
was calculated using Debye equation. A spherical Ni particle with the ideal and
non-uniformly deformed fcc structure was used as a model. The deformation was
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Fig. 18.6 True neutron
diffraction profiles, I(� ), of
the 400 reflection from 160 Å
Ni particles (a) at an early
oxidation stage and (b)
oxygen-free

Fig. 18.7 Calculated using
Debye equation neutron
diffraction profiles of the 400
reflection from
(a) non-uniformly expanded,
(b) ideal and
(c) non-uniformly contracted
spherical Ni nanoparticles

introduced through the components of the deformation tensor implying that the
greatest distortion of the ideal lattice is observed on the surface of the particle
and gradually reduces towards the centre. The calculated profiles show that the
satellites of the main diffraction peak are of equal height for the ideal particle
(Fig. 18.6b) while non-uniform deformation causes considerable redistribution of
their intensities. The left-hand side satellite is higher for the expanded particle
(Fig. 18.6a) and is lower for the non-uniformly contracted particle (Fig. 18.6c).
The I(�) profile from the oxidised powder is similar to that of the expanded
particle (compare Figs.18.7a and 18.6a). It is natural to assume that the observed
deformation is caused by the presence of oxygen atoms in the nickel particle
which form a coherent solid solution with the metal. The non-uniformity of the
deformation can be explained by the concentration gradient of oxygen within the
particle, with the higher oxygen content in the surface area.

18.3.3 Deformations in TiO2-B Nanotubes

According to TEM data internal and external diameters of TiO2-B nanotubes are
50 and 100 Å respectively, and the length can be up to tens of microns. A powder
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Fig. 18.8 Dots – observed X-ray diffraction pattern of TiO2-B nanotubes; red line – simulated
pattern based on the ideal TiO2-B structure. Numbers are Miller indices. Inset shows ideal TiO2-B
crystal structure with crystallographic axes (color figure online)

X-ray diffraction pattern for the nanotubes is presented in Fig. 18.8 along with the
ideal monoclinic TiO2-B crystal structure and a simulated powder X-ray diffraction
pattern based on the latter.

Comparison between the simulated and observed powder patterns highlights the
severe hkl-dependent peak broadening/distortion of the latter, features that reflect
the limited dimensions of the tube walls, the anisotropy of the nanotubes and the
structural distortions (deviations from the ideal crystal structure) which are expected
to occur on bending a layered crystal structure into a nanotube.

The 020 reflection in Fig. 18.8 is noticeably narrower than other peaks in the
experimental pattern and by application of the Scherrer formula a coherence length
in the b direction is estimated at 144 Å. This exceeds the diameter of the tubes and
implies that the b-axis lies along the axial direction of the nanotubes.

Many materials have been formed as nanotubes, the vast majority are based on
layered structures in which the layers fold to form the tubes. Since the layers of
the TiO2-B structure lie in the ab plane and since b lies along the axial direction, a
tube may be formed by folding the ab plane along a, as shown in Fig. 18.9 (middle
pattern).

Such a structure is consistent with the TEM image which indicates that the walls
are composed of four layers, consistent with the wall thickness of �25 Å. Hence,
the first structural model to be constructed was based on folding four layers of the
crystal structure in the ab plane, as just described. The length of the tube was set
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Fig. 18.9 Dots – observed X-ray diffraction pattern of TiO2-B nanotubes; black line – simulated
pattern based on folding the ab plane of the ideal TiO2-B structure along a into a tube; red line –
simulated pattern based on folding the bc plane of the ideal TiO2-B structure along c into a tube.
Views along the tube axis for each model are also shown (color figure online)

at 142 Å (equivalent to 38 unit cells along b in the ideal structure), consistent with
the coherence length along b, and the internal diameter at 23 Å, consistent the TEM
data. Bending a slab of the ideal TiO2-B structure into a tube inevitably leads to
distortions of the TiO6 octahedra along the annulus of the tube.

A powder diffraction pattern generated from this model using Debye equation is
compared with experiment in Fig. 18.9, from which it is clear that the model does
not adequately describe the nanotubes. The peaks of the simulation are narrower
and more abundant than in the observed powder diffraction pattern, suggesting that
the model possesses more symmetry than is the case in practice. Similar problems
are noted for an alternative model in which the tubes are formed by folding the bc
plane along c, Fig. 18.9 (bottom pattern). Despite the inadequacies of both models,
comparison between them and the observed powder diffraction pattern suggests that
folding along a better describes the nanotubes. Also, as discussed above, folding
along a is more physically reasonable than folding along c.

Recognising that a model involving order throughout the entire nanotube does not
adequately describe the observed data, segments of this structure were considered,
all retaining four layers in the radial direction and extending 142 Å along b but
extending to different degrees along the circumference. A segment of dimension
32 Å best represents the observed data, Fig. 18.10.



204 Y.G. Andreev

Fig. 18.10 (a) Dots – observed X-ray diffraction pattern of TiO2-B nanotubes; black line –
simulated pattern of a 3.2 nm tube segment with a view of the model along y. (b) Schematic
representation of an ordered segment within a nanotube

A schematic representation of a segment within the tube is also shown in
Fig. 18.10; the segments are not in registry with each other but are aligned along
the axial direction of the tubes. Further details about this investigation can be found
in [12].
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Chapter 19
Quantitative Phase Analysis

Ian C. Madsen, Nicola V.Y. Scarlett, and Nathan A.S. Webster

Abstract The most common use of powder diffraction in analytical science is
the identification of crystalline components, or phases, present in a sample of
interest. The near universal applicability of the method for this purpose is derived
from the fact that a diffraction pattern is produced directly from the components’
crystal structure. However, for multi-phase samples, once the nature of phases
present has been established, the next question usually asked of the diffractionist
is “how much of each phase is there?” This chapter provides an overview of the
basis and application of commonly used methods of quantitative phase abundance
determination as well as references to the extensive literature on the subject.

19.1 Introduction

The mathematical basis of quantitative phase analysis (QPA) from diffraction data is
well established and, in an ideal world, QPA should be a relatively straightforward
science. However, there are a significant number of factors, most of them experimen-
tal, which serve to decrease the accuracy which can be obtained. Some of these, such
as accuracy in measurement of peak position and intensity, resolution of overlapping
peaks and counting statistics, relate to instrument geometry and data collection
conditions, while other sources of error derive from sample related issues. This latter
group includes effects such as preferred orientation (which distorts the observed
relative intensities from those expected for a randomly oriented powder), crystallite
size and strain broadening (leading to increased peak overlap) and microabsorp-
tion (where phases which strongly absorb the incident and diffracted beams are

I.C. Madsen (�) • N.V.Y. Scarlett • N.A.S. Webster
CSIRO Process Science and Engineering, Box 312, Clayton South 3169, VIC, Australia
e-mail: ian.madsen@csiro.au; Nicola.Scarlett@csiro.au; Nathan.Webster@csiro.au

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 19,
© Springer ScienceCBusiness Media Dordrecht 2012

207



208 I.C. Madsen et al.

underestimated with respect to weakly absorbing phases). Microabsorption remains
the largest impediment to accurate QPA and is more pronounced in X-ray diffraction
than neutron based studies.

This paper provides some of the background to methods of QPA from diffraction
data. The round robin on quantitative phase analysis run under the auspices of the
International Union for Crystallography (IUCr) Commission on Powder Diffraction
(CPD) [1, 2] demonstrated that 87% of participants collected laboratory-based
X-ray diffraction data, while the majority (75%) used whole pattern, especially
Rietveld [3] based, methods for the analysis of their data.

Rietveld-based methods have the potential to produce more accurate and precise
results than those obtained from conventional single peak methods. The improve-
ment derives from the fact that (i) all of the peaks in the pattern contribute to the
analysis, regardless of the degree of overlap, and (ii) the impact of some sample
related effects, such as preferred orientation, are minimised by the inclusion of all
reflections. The application of models for correction of other residual aberrations,
serves to further improve the analysis.

While the Rietveld technique was initially developed for the refinement of crystal
structure, other parameters, which must be refined to ensure best fit between the
observed and calculated patterns, contain useful, non-structural information which
can be of interest to the analyst. These include peak width and shape which can be
related to crystallite size and strain or preferred orientation parameters which can
be related to crystal morphology. However, it is the Rietveld scale factor which, in a
multiphase mixture, is related to the amount of the phase present that is interesting
in the current context.

There is extensive coverage of traditional ‘single-peak’ methods in earlier
literature [4–8] plus a thorough review of the field by Zevin and Kimmel [9] to
which the reader is directed for more detailed explanations. Due to the wide-spread
use of the Rietveld method in QPA, this chapter will focus only on the use of whole-
pattern, Rietveld based approaches. The mathematical basis will be described along
with detailed discussion of various modifications which aim to produce absolute,
rather than relative, phase abundances. A number of case studies and applications,
which serve to illustrate selected issues in QPA, are also presented.

19.2 Mathematical Basis

19.2.1 Rietveld-Based Methods

The Rietveld method uses a model to calculate a diffraction pattern which is then
compared with observed data. The difference between the two patterns is then
reduced through least squares minimisation. The refinable parameters used in the
models provide the analyst with information regarding the crystal structure of the
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component phases, the crystallite size and strain and, importantly, their relative
proportions. The Rietveld scale factor, which is a multiplier for each component’s
contribution to the pattern, is related to the relative abundance of that phase and can
be used in the quantification of phases.

The integrated intensity I of the hkl reflection for phase ˛ in a multi-phase
mixture, measured on a flat-plate sample of infinite thickness using a diffractometer
with Bragg-Brentano geometry, is given by:

I.hkl/˛ D
�
I0�

3

32�r

e4
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2c4

�
�
�
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2V˛
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�2B
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(19.1)

where I0 is the incident beam intensity, e is the charge on an electron, me is the
mass of an electron, r is the distance from the scattering electron to the detector
and c is the speed of light. Mhkl and Fhkl are the multiplicity and structure factor
of the hkl reflection respectively, V is the unit cell volume and � and �m are the
diffraction angles for the hkl reflection and the monochromator respectively. B is
the mean atomic displacement parameter (ADP). W˛ and �˛ are the weight fraction
and density of phase ˛ respectively, while �m

* is the mass absorption coefficient of
the entire sample.

Many of the terms in Eq. 19.1 can be grouped together and defined as a constant
K. Equating I(hkl)˛ with the overall Rietveld scale factor S˛ for each phase, Eq. 19.1
reduces to:

S˛ D
�
K

V 2
˛

�
�
�
W˛

�˛

�
� 1

��
m

(19.2)

Since this expression inherently contains the weight fraction information it can
be rearranged to derive W˛:

W˛ D S˛�˛V
2
˛ �

�
m

K
(19.3)

The value K is an ‘experiment constant’ that can be used to put W˛ on an absolute
basis. O’Connor and Raven [10] have shown that K is dependant only on the
instrumental conditions and is independent of individual phase and overall sample-
related parameters. A single measurement therefore is sufficient to determine K for
a given instrumental configuration.

For each phase, the density �˛ can be calculated from:

�˛ D 1:6604 � ZM˛

V˛
(19.4)
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where ZM is the mass of the unit cell contents (Z is the number of formula units in
the unit cell and M is the molecular mass of the formula unit) and V is the unit cell
volume.1

Substitution and rearrangement of Eq. 19.4 in Eq. 19.3 shows that:

W˛ D S˛.ZMV /˛�
�
m

K
(19.5)

In this context, (ZMV)˛ is the ‘calibration constant’ for phase ˛ and can be calcu-
lated from published or refined crystal structure information alone. Determination
of K may be carried out by:

(i) Measurement of a standard pure phase or mixture separately from the measure-
ment of the actual unknown mixture in question, or

(ii) Using a phase which is present in the sample in known amount.

The value of K calculated in this way will be appropriate for the calibration
of subsequent measurements as long as all instrumental conditions remain the
same as those used in its determination. This methodology is important in many
applications in that it produces, within the limits of experimental error, absolute
phase abundances and is referred to hereafter as the external standard approach.
While the use of a phase within the sample to determine K may be considered as
an internal standard approach, in some applications, including in situ studies, that
phase may be removed from the system through, for example, decomposition or
dissolution. However, the value of K remains valid for subsequent determination of
phase abundances as the reaction proceeds.

Equation 19.5 is directly applicable for the analysis of those phases for which
detailed crystal structure information is available. For phases where only a partial
structure (for example, an indexed unit cell but no atom coordinates or site
occupation factors) is available, an empirical ZMV can be derived using mixtures
of the phase of interest with known amounts of a well characterised standard [11].
QPA of phases with partial structure is also possible through the use of Eq. 19.3 but
an estimate of the phase density, obtained through direct measurement, is required.

The limitations of the approach embodied in Eqs. 19.3 and 19.5 derive from the
need to (i) conduct a measurement of K and (ii) estimate the value of the mass
absorption coefficient �m

* for the sample(s) used to determine K, as well as each
sample of interest. However, the benefits which can be derived, namely the ability to
extract the absolute, rather than relative, phase abundances, make it worth pursuing
in many analytical situations.

The value of�m
* can be calculated from the sum of the products of the theoretical

mass absorption coefficient (�j
*) of each element (or phase) and the weight fractions

(Wj) of all n elements (or phases) in the sample. Elemental composition may be
determined, for example, by X-ray fluorescence (XRF) measurement and use of this

1The value 1.6604 D 1024/6.022 � 1023 is needed to convert � in AMU/Å3 to g/cm3.
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is more accurate than the use of phase composition as it takes into account any
amorphous material not represented by peaks in the diffraction pattern but which
still contributes to �m

*.

��
m D

nX

jD1
��
jWj (19.6)

The need to measure K and measure, or calculate, �m
* serves to increase the

overall experimental difficulty and can be eliminated in a number of ways. For a
simple two phase mixture where both phases, ˛ and ˇ, are fully crystalline, the sum
of their weight fractions W˛ and Wˇ equals unity and can be expressed as [12]:

W˛ D W˛�
W˛ CWˇ

� (19.7)

Substitution of Eq. 19.5 for phases ˛ and ˇ in Eq. 19.7 results in:

W˛ D S˛.ZMV /˛
S˛.ZMV /˛ C Sˇ.ZMV /ˇ

(19.8)

Alternatively, in a multi-phase sample, the addition of an internal standard s in
known amount Ws and taking the ratio of Eq. 19.5 for analyte and standard phases
provides the relationship:

W˛ D Ws � S˛.ZMV /˛
Ss.ZMV /s

(19.9)

The method embodied in Eq. 19.9 also serves to produce absolute phase
abundances W˛(absolute) and is referred to hereafter as the internal standard approach.
One of the benefits accruing from the use of absolute phase abundances is the ability
to estimate the presence and amount of any amorphous and/or unidentified phases
W(unknown) present through:

W.unknown/ D 1:0 �
nX

kD1
Wk.absolute/ (19.10)

The so-called matrix flushing method of Chung [13, 14] uses the additional
constraint that all phases are known and included in the analysis. The consequence
of this constraint is that the analysed weight fractions are summed to the assumed
concentration of the crystalline components (usually unity). Hill and Howard [15]
and Bish and Howard [12] have applied the matrix flushing approach to the Rietveld
analysis context and shown that the weight fraction of phase ˛ in an n phase mixture
is given by the relationship:
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W˛ D S˛.ZMV /˛
nP

kD1
Sk.ZMV /k

(19.11)

The use of Eq. 19.11 in QPA once again eliminates the need to measure the
instrument calibration constant and estimate the sample mass absorption coefficient.
However, the method normalizes the sum of the analysed weight fractions to unity.
This approach, while it is the most widely used in Rietveld based QPA and is
almost universally coded into Rietveld analysis programs, only produces the correct
relative phase abundances. If the sample contains amorphous phases, and/or minor
amounts of unidentified crystalline phases, the analysed weight fractions will be
overestimated. Where absolute phase abundances are required in, for example, the
derivation of reaction kinetics in in situ studies, then one of the methods which
produces absolute phase abundances must be used.

19.3 QPA Applications in Minerals Research

19.3.1 Crystallisation from Hydrothermal Solutions

The strengths and weaknesses of some of the methods described in Sect. 19.2.1
are highlighted in the recent work of Webster et al. [16]. This was a study of
the mechanism and kinetics of nucleation and crystal growth in the context of
the Bayer process for the extraction of aluminium from bauxite ores. Specifically,
the experiments utilise synthetic Bayer liquors, consisting of Al-loaded caustic
solutions to which a variety of seed material is added. Several polymorphs of
Al(OH)3 (gibbsite, bayerite and nordstrandite) crystallise from solution onto the
seed material. The rate of crystallisation, and the ratio of the phases, depends on the
sample conditions used, including the Al and caustic concentration in solution, as
well as sample temperature.

The mechanism and rate of crystallisation were followed by collecting X-ray
diffraction data at the powder diffraction beamline of the Australian Synchrotron
over a period of about 3 h. The diffractometer incorporates a Mythen detector [17]
which allows for the simultaneous collection of 80º 2™ of the diffraction pattern.
A wavelength 0.826 Å was used to ensure adequate penetration of the beam in the
sample. The sample environment (described in Madsen et al. [18]) consisted of a
1 mm quartz glass capillary heated to temperatures between 60 and 75 ºC using a
hot air blower.

The data were analysed using the TOPAS software package [19]. A fundamental
parameters approach [20] was used with an empirical instrument width and shape
contribution determined using the NIST SRM660 LaB6 profile standard. For the
samples in the study, refined parameters included 2™ zero offset, pattern background
and, for each phase, the Rietveld scale factor, crystallite size and strain and unit cell
dimensions.
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Fig. 19.1 The results of quantitative phase analysis from the seeding experiments of Webster
et al. [16]. The values were derived using the Hill/Howard [15] relationship in Eq. 19.11. Note
the decrease in apparent goethite concentration (left axis) as the polymorphs of Al(OH)3 (right
axis) crystallise from solution

A number of different approaches were used to extract the phase abundances at
each stage of the reaction. Initially, QPA was derived using Eq. 19.11; the value that
many Rietveld analysis programs output as their first estimate of phase abundance.
Figure 19.1 shows the output from an in situ run in which goethite (FeOOH) was
added as the seed.

At the start of the run, prior to the crystallisation of any of the Al(OH)3

polymorphs, Fig. 19.1 shows that the reported concentration of the goethite seed
is 100 wt.% since it is the only phase represented in the analysis at that time.
On formation of gibbsite, bayerite and nordstrandite, the goethite concentration
decreases progressively to about 65 wt.% and the total Al(OH)3 concentration
reaches about 35 wt.% at the end of the run. However, these figures are in
disagreement with (i) the fact that goethite is unlikely to dissolve or otherwise be
consumed in this system, (ii) the known addition of goethite to the sample and (iii)
the total amount of Al available from solution.

The problem with the QPA in this case arises from the fact that only the
crystalline components are considered in the analysis and that Eq. 19.11 normalises
the sum of their analysed weight fractions to unity. However, aluminium, which is
in solution at the start of the run, forms crystalline phases continuously throughout
the reaction after an initial incubation period. In order to overcome the anomalies
in the QPA results, it is necessary to consider the sample as a whole; that is, the
concentration of both the solid and liquid components in the X-ray beam for the
duration of the experiment.
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Fig. 19.2 The results of quantitative phase analysis from the seeding experiments of Webster
et al. [16]. The values are absolute phase abundances derived using the relationship in Eq. 19.9.
The goethite concentration (left axis) is now fixed at the known addition at the start of the run
(14.13 wt.%)

In this sample, the goethite seed was added at a concentration of 14.13 wt.%
in the slurry injected into the sample capillary. If the assumption is made that, in
this environment, goethite is unreactive and hence will not change its concentration
during the reaction, it can effectively be used as an internal standard to put the
Al(OH)3 concentrations on an absolute basis. The QPA results derived using the
internal standard or ‘spiked’ approach in Eq. 19.9 are shown in Fig. 19.2.

The goethite concentration is now fixed at the known addition at the start of the
run. The concentrations of the Al(OH)3 polymorphs are put on an absolute scale,
thus allowing derivation of relative rates of formation for runs conducted at different
temperatures.

If, however, there is residual doubt about the reactivity of the goethite, it may be
necessary to use the external standard approach embodied in Eq. 19.5. In this case
the value for the instrument constant, K, can be derived using the Rietveld scale
factor, ZMV and the known addition of goethite in a rearranged Eq. 19.5. For this
determination, the goethite scale factor from the first few data sets was averaged
to minimise any errors which may be introduced by counting statistics. The value
of the sample mass absorption coefficient �m

* has been set to an arbitrary value of
unity for both the determination of K and all subsequent analyses since the overall
chemical content of the capillary, and hence the attenuation of the X-ray beam, does
not change during the reaction.

This experimental work was conducted at the Australian Synchrotron where
the ring current is boosted every 12 h. In between these times the current, and
hence the incident beam intensity, decays resulting in what amounts to a change
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Fig. 19.3 The results of quantitative phase analysis from the seeding experiments of Webster
et al. [16]. The values are absolute phase abundances derived using the relationship in Eq. 19.12.
Note the slight decrease in the goethite concentration (left axis) during the run

in the ‘instrument configuration’. This requires a modification of the K value and
subsequent calculation of concentration to compensate for the changing incident
intensity in a modified Eq. 19.5:

W˛i D S˛i .ZMV /˛�
�
m

K
� I0
Ii

(19.12)

where I0 and Ii are the monitor count (or ring current) at the start of the run and
during data set i respectively.

Figure 19.3 now shows the results of QPA derived from Eq. 19.12. In this case the
concentrations of the Al(OH)3 polymorphs are similar to those in Fig. 19.2. How-
ever, since the phase abundances are derived using an external standard approach,
any changes in the goethite concentration can now be monitored. Figure 19.3 shows
a small, but systematic, decrease in the goethite concentration as the run progresses.
At the end of the run, the goethite concentration appears to be lower by about 1%
relative than the concentration at the start.

This apparent decrease has been attributed to the ‘shielding’ of the goethite from
the X-ray beam by the Al(OH)3 phases as they form and coat the goethite particles.
This decrease in intensity from the goethite could then be used to obtain an average
thickness of the Al(OH)3 phases. This layer was calculated to be about 5.5 �m
(assuming a linear absorption coefficient of 9.5 cm�1 for gibbsite) resulting in an
overall particle size of about 11 �m at the end of the run (the goethite particles are
about 0.2 � 2 �m and hence do not contribute significantly to the overall particle
size). This is in good agreement with independent SEM measurements (Fig. 19.4).
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Fig. 19.4 SEM image of a
gibbsite particle (grey) which
has grown on the goethite
seed (white inclusions). From
Webster et al. [16]

Table 19.1 Comparison of
errors generated during the
analysis of XRD data (Cu
K’) from three sub-samples
of Sample 4 from the IUCr
CPD round robin on
quantitative phase analysis [2]

Phase
n D 3 Corundum Magnetite Zircon

Weighed 50:46 19:46 29:90

Mean measured wt.% 56:52 17:06 26:42

Mean of Rietveld errors 0:15 0:11 0:11

S.D. of measured wt.% 0:63 0:41 0:35

Mean of bias 6:06 �2:58 �3:48
XRF 50:4.2/ 19:6.1/ 29:5.1/

The bias values are (measured – weighed) while the values
denoted “XRF” are the phase abundances generated from
elemental concentrations measured by X-ray fluorescence
methods

19.4 Precision, Accuracy and Calculation of Error

The question of precision and accuracy in QPA via XRD is a difficult one. It is sim-
ple enough to calculate errors on the basis of replication or precision in the mathe-
matical fit. However, determination of the actual accuracy of the analysis is no trivial
task in a standardless method. In fact, it cannot be achieved without recourse to some
other measure of the sample which does incorporate standards. Too often, analysts
will report Rietveld errors calculated in the course of refinement as the errors in
the final quantification. These numbers relate purely to the mathematical fit of the
model and have no bearing on the accuracy or otherwise of the quantification itself.

Consider, for example, a three phase mixture of corundum, magnetite and zircon.
Such a sample was presented as Sample 4 in the IUCr CPD Round Robin on
quantitative phase analysis [2]. Its components were chosen with the deliberate aim
of creating a sample in which severe microabsorption occurs. Table 19.1 shows the
weighed amounts of each component and the results of replicate analyses of three
different sub-samples of this material.

In this context, the Rietveld error represents the uncertainty in the mathematical
fit between the observed and calculated patterns and is the value most often quoted
as the error in the phase abundance. Contrasting with this is the standard deviation
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of the mean abundances which represents the expected precision in the analysis and
is 3–4 times greater than the Rietveld derived errors. The good level of fit achieved
in conducting these analyses (evidenced in the low R-factors) could lead the analyst
to conclude that the mean value ˙ the standard deviation of the mean is an adequate
measure of the phase abundances and their errors.

However, the Rietveld errors and the replication errors are at least an order of
magnitude smaller than the bias (measured – weighed). The bias, due to the presence
of severe microabsorption, represents the true accuracy which can be achieved in
this system if the analyst takes no further steps are taken to identify the cause and
minimize the effect of absorption contrast or other aberrations which may affect
accuracy.

In the example above, the phases are such that the chemistry is unambiguous
and the phase quantification could have been derived by normative calculation
from bulk elemental analysis (XRF). This is not often the case, but it is frequently
possible to establish the composition of each phase within a system via electron
probe microanalysis or similar and conduct the inverse of a normative calculation
to derive the bulk chemistry from the XRD QPA. This can then be compared with
the results of a standards based technique such as XRF to obtain a measure of the
accuracy of the XRD analysis. Where this is not possible or practical, it is better to
consider XRD-based QPA as a “semi-quantitative” technique at best.
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Chapter 20
Quantifying Amorphous Phases

Arnt Kern, Ian C. Madsen, and Nicola V.Y. Scarlett

Abstract Traditional quantitative phase analysis using the Rietveld method fails
to take into account the occurrence of amorphous material and without careful
attention on behalf of the operator its presence remains undetected. In this paper
the methodology of several different approaches to the determination of amorphous
content and an assessment of their performance is described. All methods discussed
produce reasonable results; however the study highlights some of the strengths,
deficiencies and applicability of each of the approaches.

20.1 Introduction

X-ray powder diffraction (XRPD) is (i) the most direct, (ii) the only truly phase
sensitive, and thus (iii) the most commonly used analytical technique for quantita-
tive analysis of crystalline and amorphous phases in mixtures. The fundamental
relationships between diffracted peak intensity in a powder diffraction pattern
and the quantity of a phase in a mixture are well established. Both single peak
and full pattern methods for quantitative phase analysis (QPA) are mature and
extensively covered in literature, e.g. [1–5]. Recently, thorough reviews of the field
have been given in [6, 7], with emphasis on current methods, sources of error, as
well as accuracy and precision. This chapter builds on Chapter 19 dealing with
quantification of amorphous materials as a special case.
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More often than not, polycrystalline materials contain amorphous or poorly
crystalline phases. In many cases, the presence of amorphous or poorly crystalline
phases is undetected or simply ignored. While information about amorphous phase
amounts is frequently not sought-after, this is also a result of the preferred (and
sometimes indiscriminate) use of the traditional Rietveld method [8, 9], as one of the
most convenient methods for QPA available. It is, however, frequently overlooked,
that the traditional Rietveld method only delivers relative phase amounts by default;
in the presence of amorphous and/or any amount of unidentified crystalline phases,
the analyzed crystalline weight fractions may be significantly overestimated. Most
phase abundances reported in literature, obtained via Rietveld analysis, are provided
in a manner suggesting absolute values. However, where no allowance of amorphous
and/or unidentified phases has been made/reported, it is actually reasonable to
assume relative phase abundances instead. While knowledge of relative phase
amounts may be sufficient for many analyses, e.g. for monitoring of trends, there
is a rapidly increasing number of applications in industry and materials science,
where it is essential to know absolute phase amounts including amorphous com-
ponent(s). Important examples include pharmaceuticals, (geo)polymers, cements,
among others, where the absolute crystalline and amorphous fractions are critical
for their usefulness.

Limitations of QPA have already been discussed in Chapter 19 of “Quantitative
Phase Analysis” and are principally the same for analysis of amorphous phases.
There are some instances which require special consideration, mostly due to
differences in the way X-rays are scattered by crystalline and amorphous phases.
This is complicated by the fact that there is often no sharp dividing line between
crystalline and amorphous materials.

Crystalline materials are frequently characterized as solids with fixed volume,
fixed shape, and long-range order bringing about structural anisotropy, producing
sharp diffraction peaks (e.g. [5]). Amorphous (or non-crystalline) materials are thus
solids with fixed volume, fixed shape, characterized by short-range order, which,
however, may also have loose long-range order (e.g. [5]). This therefore embraces
disordered materials possessing only one- or two-dimensional, or lesser, degrees of
order [1]. Scattering by an amorphous material produces broad diffraction bands (or
halos), which may extend to some ten’s of degrees 2™. Note that terms like “short”-
and “long”-range order, as well as “sharp” and “broad” diffraction maxima clearly
show the ambiguity of these definitions, and why there cannot be a sharp dividing
line between crystalline and amorphous materials.

A more strict definition for amorphous solids has been given by [1]: “The term,
amorphous solid, must be reserved for substances that show no crystalline nature
whatsoever by any of the means available for detecting it”. In other words: The
ability to detect and characterize ordering is dependent upon the principles of the
analytical method and models being used. Conventional X-ray diffraction loses
its power for crystalline material structures on the nano-scale, diffraction patterns
become broad and features are less defined. Frequently, resulting ambiguities are
paraphrased in literature by the term “X-ray amorphous” to highlight the limitations
of X-ray diffraction.
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Recently it has been shown by several authors, that so-called “total scattering”
analysis techniques, based on pair distribution functions (PDF) obtained from
Fourier transformed XRPD data, allow the extraction of structural information from
amorphous materials, also providing for “finger-printing” (amorphous phase identi-
fication) and quantitative analysis (e.g. [10–13]). In this technique, all information
of the powder pattern, that is Bragg-peaks as well as background (diffuse scattering)
is equally used. This is in contrast to conventional XRPD methods, where the
background is treated independently and frequently discarded from the analysis.

The scope of this paper is limited to conventional powder diffraction methods for
quantitative analysis of amorphous phases. Total scattering is not discussed here,
due to (a) the intrinsic limitation of the Q (4 sin™/œ) range accessible in the vast
majority of currently installed laboratory equipment and (b) the current lack of both
dedicated and mature software tools.

20.2 Analytical Techniques

Quantification of crystalline and amorphous phase amounts relies on the deter-
mination of the intensity contribution of each component phase in a mixture
to the diffraction pattern; the mathematical base is detailed in Chapter 19 of
“Quantitative Phase Analysis”. For this reason, the same methodology can be used
for quantitative analysis of crystalline and amorphous phase amounts. Analysis of
the latter, however, can be made difficult by the fact that the intensity contribution
of amorphous phases to the diffraction pattern is not always evident, especially at
low concentrations. Accordingly, available evaluation methods can be grouped into
two categories:

1. Indirect methods are based on the use of internal or external standards. Only
crystalline components are analyzed and subsequently put on an absolute scale.
The amorphous fraction is then calculated by difference, that is indirectly. Most
importantly, unidentified and amorphous phases cannot be distinguished, only the
sum of these phases can be estimated. Indirect methods are suited for amorphous
phases without clearly evident intensity contribution to the diffraction pattern.

2. Direct methods provide a direct measure of an amorphous compound by ana-
lyzing the amorphous intensity contribution to the diffraction pattern. Individual
unidentified and amorphous phases may be distinguished, and some approaches
allow the quantification of more than one amorphous phase if data quality is
sufficient. Direct methods rely on the ability to observe the intensity contribution
of amorphous phases to the diffraction pattern.

In the following a survey of the most commonly used conventional laboratory
XRPD techniques is presented, adapted from [14]. Benefits and limitations of the
methods are compared and recommendations made accordingly. Successful analysis
requires careful considerations in choosing the best suited evaluation method for a
given sample.
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20.2.1 Single Peak Method

Single peak methods are direct methods based on the measurement of one or
more peaks, for each phase of interest, and assume that the intensity of these
peaks are representative of the amount of the individual phases. They rely on the
availability of a suite of standard samples from which calibration constants may be
determined, and on the direct estimation of the amorphous intensity contribution to
the diffraction pattern. This can be done using profile fitting or simple numerical
methods. The general procedure is:

1. Prepare a series of standards containing the amorphous phase at known concen-
trations

2. Obtain a measure of the amorphous component’s intensity which may be related
to its concentration

3. Generate a calibration curve, e.g.

Wa D A�Ia CB (20.1)

where Wa is the fraction of the amorphous phases and Ia is the measure of the
intensity of the amorphous phase (determined in (20.1)).

The term measure has been chosen to highlight the fact that single peak methods
do not necessarily require background determination; i.e. Ia is not required to
solely represent the amorphous band intensity, it can also represent the sum of
the amorphous band intensity plus background. This in an advantage in those
cases where the distinction between background and amorphous band intensity is
difficult and therefore unreliable. Note: If the background intensity is included, the
calibration function will not go through the origin of the plot. At first glance this
may be deemed to be an unconventional approach, it nevertheless can allow for
very accurate analyses.

Profile fitting has the definite advantage over numerical methods in dealing better
with peak overlap in the presence of crystalline phases. Numerical methods are
based on some sort of numerical integration of step intensities within one or more
selected 2™ ranges and are in widespread use, most notably in X-ray fluorescence
analysis. The distinct advantage of numerical methods is the possibility of choosing
small measurement ranges (usually optimized to regions with no or negligible peak
overlap). These may include complete peaks/bands but may be limited to a single
data point.

Benefits:
Single peak methods can be limited to one or a few phases, and there is no need to

characterize all phases in the mixture. They generally allow for significantly longer
measurement times per data point, compared to whole pattern methods. This will
lead to a significant improvement in counting statistics, and thus allow for quanti-
tative analysis at higher levels of precision and improved lower limits of detection.
The method has the potential to minimize errors related to microabsorption as this
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aberration is included in the calibration function. When profile fitting is used, more
than one amorphous phase can be analyzed.

Limitations:
At higher degrees of overlap, the distinction between amorphous band intensities

and crystalline phase peaks (tails!) can become difficult and unreliable, particularly
if the latter are broad. The methods also require access to relatively pure or well-
described materials for preparation of standards, and are thus only applicable
to mixtures similar to the calibration suite. Neither sample properties nor the
instrument setup must change between the calibration and unknown measurements,
and tube ageing must be monitored, otherwise the calibration function is invalidated.

20.2.2 Whole Pattern Methods

Whole pattern methods rely on the comparison of observed wide range diffraction
data with (a) calculated patterns (Rietveld methodology) or (b) measured patterns
(e.g. [15, 16]). In the Rietveld methodology patterns are calculated using structure
factors calculated from (i) crystal structure information, or (ii) measured from
actual samples, or (iii) both. Measured pattern approaches use measured diffraction
data acquired from pure phase data libraries, which need to accurately represent
all phases in the mixture. Although this methodology has distinct advantages
specifically if crystal structures are unknown (e.g. for disordered or amorphous
materials), it is a niche approach as it does not allow for structure refinement (e.g.
lattice parameters in the case of solid solutions) or preferred orientation corrections.

In the following the six most commonly used methods for the characterization
of amorphous phase amounts within the Rietveld methodology are described, based
on [14].

20.2.2.1 Method 1: Rietveld Method

In the traditional Rietveld Method, the weight fractions W˛ of the crystalline phases
present in each sample are estimated using the algorithm of Hill and Howard [9]

W˛ D S˛.ZMV/˛
nP

jD1
Sj .ZMV/j

(20.2)

where S, Z, M and V are, respectively, the Rietveld scale factor, the number of
formula units per unit cell, the mass of the formula unit and the unit-cell volume,
and n is the number of phases in the analysis. It is assumed that all phases in the
sample are crystalline and have been included in the model and thus Eq. (20.2) sums
the analyzed concentrations to unity. In the presence of amorphous or non-included
phases, these values will be overestimated with respect to the true concentrations.
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The traditional Rietveld Method can be used as a direct method for quantitative
analysis of amorphous phases, however, if a crystal structure can be found which
adequately models the positions and relative intensities of the observable bands
of an amorphous component in a diffraction pattern. Allowance for extreme
peak broadening provides peak widths and shapes which represent those of the
amorphous bands in the observed data. Since this approach treats all components
as crystalline and includes them in the analysis, the amorphous phase abundance
can be obtained using the traditional Rietveld methodology, applying the algorithm
of Hill and Howard [9], Eq. (20.2).

Benefits:
The Rietveld Method has the potential to model more than one amorphous phase,

and requires no standards or calibration.
Limitations:
Some amorphous material will not have a representative crystal structure, i.e.

available crystal structures (with long-range order) may not accurately represent
material which only has short-range order (e.g. glasses).

20.2.2.2 Method 2: Internal Standard Method

The Internal Standard Method is an indirect method, where the sample is “spiked”
with a known mass of standard material and the QPA normalized accordingly. In
this method, the weight fractions of the crystalline phases present in each sample are
estimated using the Rietveld methodology (Hill and Howard [9], Eq. (20.2)). The
presence of a known weight fraction of an internal standard material in the sample
allows these reported concentrations to be corrected proportionately according to:

Corr.W˛/ D W˛

STDknown

STDmeasured
(20.3)

where Corr(W˛) is the corrected weight percent, STDknown the weighed concentra-
tion of the standard in the sample and STDmeasured the analyzed concentration derived
from Eq. (20.1).

The amount of amorphous material Wamorphous can then be derived from:

Wamorphous D 1 �
nX

jD1
Corr.Wj / (20.4)

Obviously, the Internal Standard Method can also be used, if the concentration of
one phase in a mixture is known (e.g. via complimentary methods such as elemental
analysis or others) and thus can be defined as the internal standard.

Benefits:
The Internal Standard Method is enabled in many Rietveld analysis packages.
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Limitations:
The approach is reliant upon obtaining a standard of appropriate absorption

contrast to prevent the introduction of errors into the analysis via the creation of
a microabsorption problem. Only the sum of all amorphous and unidentified phases
can be reported. The standard addition process is laborious (weighing, mixing), and
not feasible in industrial, automated sample preparation environments. Furthermore,
and most significantly, the sample is contaminated.

20.2.2.3 Method 3: External Standard Method

The External Standard Method [17] is an indirect method and closely follows the
approach in the Internal Standard Method in that it attempts to put the determined
crystalline components on an absolute scale and derives the amorphous content by
difference. An external standard – either a pure material or a mixture in which the
chosen standard is present in known quantity – is used to determine a normalization
constant (K) which allows the calculated weight percentages to be placed on an
absolute scale,

W˛ D S˛.ZMV/˛ � ��
m

K
(20.5)

where �m
* is the mass absorption coefficient of the entire sample.

K is dependent only on the instrumental conditions and is independent of individ-
ual phase and overall sample-related parameters. Therefore, a single measurement
should be sufficient to determine K for a given instrumental configuration.

Benefits:
The External Standard Method uses an external standard, the sample is not

contaminated. As good laboratory practices require regular instrument monitoring
(alignment, tube aging) anyway, the choice of an appropriate standard enables to
put all QPA results on an absolute basis and thus enables the calculation of the
amorphous fraction, without any additional experimental effort.

Limitations:
Only the sum of all amorphous and unidentified phases can be reported. The

normalization constant K is dependent on the instrumental conditions and needs
redetermination to compensate for tube ageing and any instrument configuration
changes.

20.2.2.4 Method 4: PONKCS Method

The PONKCS method is a direct method, its background and application is de-
scribed in detail in [18, 19]. In this method, phases with partial or no known crystal
structure are characterized by measured rather than calculated structure factors.
Most importantly, this overcomes the requirement of the traditional Rietveld method
that the crystal structures of all phases must be known. Intensity contributions
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of crystalline as well as amorphous phases to the diffraction pattern may be
characterized via single line or Pawley [20] or Le Bail fitting [21] methods.

The PONKCS Method follows the same general form as that used in the Rietveld
Method but now includes all crystalline and amorphous phases characterized by
either calculated or empirical structure factors in Eq. (20.2). However, for all
phases using empirically derived structure factors (i.e. those with no defined crystal
structure), ZMV “calibration constants” must be derived. This can be achieved by
using a known mixture of a respective crystalline or amorphous phase ˛ and an
internal standard s,

.ZMV/˛ D W˛

Ws

Ss

S˛
.ZMV/s (20.6)

A one time calibration per phase with a single standard mixture is usually
sufficient. It is highly recommended to create a database with “PONKCS phases”;
such a database can be used in full analogy to crystal structure databases.

Benefits:
The PONKCS Method includes amorphous phase(s) in the analysis model.

It has the potential to model more than one amorphous phase. It may be used
simultaneously with traditional Rietveld methodology for phases in the system
with known crystal structures. When ZMVs have been calibrated for all phases,
microabsorption will be eliminated, as this aberration is included in the calibration.
Thus, where microabsorption potentially leads to significant errors, it should be
considered to use the PONKCS methodology also for all crystalline phases of which
the crystal structures are known, i.e. replacing their calculated ZMVs by calibrated
ZMVs.

Limitations:
This method requires availability of a standard mixture to derive an empirical

ZMV.

20.2.2.5 Method 5: Linear Calibration Model (LCM) Method

The Linear Calibration Model (LCM) Method is a direct method and similar to
the previous approaches, however, the information pertaining to the crystalline
phases is discarded. Similar to the PONKCS Method, the intensity contribution of
an amorphous phase to the powder pattern is modeled via single line or Pawley
or Le Bail fitting methods, but only the refined scale factor is used in subsequent
analysis. This allows the derivation of a simple linear calibration model from a suite
of standard mixtures, which relates the refined scale factor, S, to the amorphous
phase concentration, Wamorph,

Wamorph D A � S � B (20.7)

where A and B are the slope and any residual offset of the calibration, respectively.
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Benefits:
The LCM Method has the potential to model more than one amorphous phase. It

is convenient to use when there is minimal variation of absorption contrast between
the phases. For systems where there is significant variation in absorption between
phases, then a sample absorption correction must be included. Errors related to
microabsorption can be minimized as this aberration is included in the calibration
function.

Limitations:
The approach requires preparation of a series of standards for calibration and is

only applicable to mixtures similar to the calibration suite. Neither sample properties
nor the instrument setup must change between the calibration and unknown mea-
surements, and tube ageing must be monitored, otherwise the calibration function is
invalidated.

20.2.2.6 Method 6: Degree of Crystallinity Method

The Degree of Crystallinity (DOC) Method is a direct method, which is relatively
straightforward but different from the methods discussed earlier. For a detailed
description refer to e.g. [22]. This method is based on the estimation of the total
intensity or area contributed to the overall diffraction pattern by each component in
the analysis. The degree of crystallinity (in literature also referred to as “crystalline
index”), DOC, is then calculated from the total areas under the defined crystalline
and amorphous components from

DOC D Crystalline Area

Crystalline Area C Amorphous Area
(20.8)

The weight fraction of the amorphous material, Wamorph, can be calculated from

Wamorph D 1 � DOC (20.9)

This approach can only be used, if the crystalline phase has the same chemical
composition of the whole sample. Where this requirement is not fulfilled, absolute
values can be obtained via calibration based on a suite of standard materials.

Benefits:
The DOC Method is enabled in many software packages and has the potential to

model more than one amorphous phase. The method does not require application of
calibration constants, if the crystalline phase has the same chemical composition of
the whole sample.

Limitations:
Difficulties arise in defining intensity contributions as “crystalline” or “amor-

phous”. If the chemistry of the crystalline phase is different from the whole sample
then an additional calibration step is required to obtain absolute phase amounts.
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Table 20.1 Important properties of the analytical techniques discussed

Method

Calculation
of amorphous
content

Requires
calibration suite or
standard

Can correct for
microabsorption
errors

Can deal with
more than one
amorphous phase

Single peak Direct Calibration suite Yes Yes
Rietveld method Direct No No Yes
Internal standard Indirect Internal standard No No
External standard Indirect External standard No No
PONKCS Direct Single mixture Yes Yes
LCM Direct Calibration suite Yes Yes
DOC Direct Case dependent No Yes

20.3 Summary

All of the methods discussed in this paper are principally capable of determining
amorphous phases in mixtures with the same accuracy (and precision) as for
crystalline phases, in ideal cases even down to 1% absolute or better. Limitations
are the same as for QPA of crystalline phases and are dictated by sample properties
and the analytical technique used. Table 20.1 gives an overview about important
properties of the latter.

Benefits and limitations of the individual analytical techniques are to be thor-
oughly considered when choosing the best method for a given mixture; some basic
principles can be summarized as follows:

• Intensity contributions of amorphous phases to the diffraction pattern are not
always evident, especially at low concentrations. In this case amorphous bands
will be difficult to model and indirect methods (Internal or External Standard
Method) will usually perform better.

• Where intensity contributions of amorphous phases are evident, any method
based on modeling amorphous bands provides improved accuracy. These meth-
ods will usually require a sample of pure amorphous material, or a sample where
the amorphous content is high, to establish an accurate model.

• For indirect methods, any errors in the structural models for the crystalline phases
have the potential to decrease the overall accuracy. This is especially true when
structure models for amorphous materials are selected.

• Calibration based methods usually have the potential to achieve the highest
accuracy, as many aberrations, most notably microabsorption, are included in
the calibration function.

• Any method based on calibration suites or standards have issues with the
availability of suitable calibration samples and standards. Where single samples
are to be analyzed, it is generally not practical to make a calibration suite.

• Any calibration sample and standard will contain amorphous materials which,
if not accounted for, will decrease accuracy. This is also true for materials
deemed to be perfectly crystalline, as any material possesses a non-diffracting
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surface layer with some degree of disorder due to relaxation of the crystal
structure and inclusion of surface reaction products and adsorbed species (water,
hydrocarbons, : : : ) Such a layer can easily account for a mass fraction of several
percent in a finely divided solid.
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Chapter 21
Quantitative Phase Analysis: Method
Developments

Luca Lutterotti

Abstract During the years several methods have been developed to identify
and quantify the phases in our samples. The newly developed methods respond
to precise needs like increasing accuracy, lowering detection limits, automatize
and speed-up the process or overcome errors and limitations. Most of the last
developments are based on the use of large set of data and full pattern analyses like
the Rietveld method. The progresses have been stimulated by the need to analyze
new and complex materials with the help of advanced hardware to collect quickly
and reliably our data. Refinement of old and new methods will be presented for the
quantification of phases as well as some examples. Particular cases will be treated
for layered materials and thin films, bulk amorphous, textured samples and clay
materials. The last frontier appears to be the combination of the diffraction with
other techniques to improve the final analysis.

21.1 Introduction

In the quantitative analysis of our samples we may identify two principal cases
that it is worth to consider. The first case is when the sample is a powder or was
a bulk reduced to a powder; this is quite a common case. There is also a second
important case when the sample is a bulk not reducible to a homogeneous powder or
it has a special structure/distribution of phases for which it is necessary to analyze
it in the original form. In the first case we can just utilize the usual methods for
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quantitative analysis, provided we take every precaution to fulfill the requisites for
a good analysis: homogeneous sample, a sufficient number of small grains and
randomly oriented.

When the sample is a bulk or a sample is not fulfilling all these requisites, we
need to employ special methodologies and measurement techniques to perform the
quantitative analysis. In this chapter we will cover this second case showing some
of the methods developed to quantify the phases amount and distribution through
diffraction and the help of other techniques when necessary.

21.2 Layered Materials and Thin Films

There are several cases in which the material is structured in more layers. Each layer
may have different phases and a phase may be present in more than one layer. If the
sample is analyzed the traditional way, by assuming an homogeneous volume, this
may lead to two problems:

• The phase fraction we obtain does not really represent the composition of the
sample and their quantification depends on the beam penetration.

• The absorption factor in the formula for the quantitative analysis is no more
a constant value and this also will result in increasing the inaccuracy of the
analysis.

In such cases it is necessary to use a model for the layered material to take into
account thicknesses of the layers, absorption factors and phases distribution. The
absorption factor depends on the phase content and thickness in each layer and this
cause a circular dependency in the quantification method. The Rietveld method as a
multi parametric fitting technique can solve the problem by including a suitable
model. This has been done and demonstrated for the analysis of the oxidation
of some super-alloys [1]. Following that work we can compare an analysis made
assuming a homogeneous sample and subsequently adopting the correct model. In
this example an Inconel 738 has been oxidized at high temperature (for details we
remind to the original work) and the phases have been identified and quantified using
an X-ray diffraction pattern collected in Bragg-Brentano geometry, copper radiation.
Table 21.1 reports the phase quantification by the Rietveld method assuming a
homogeneous sample and the layered model.

It is immediately clear how much informative is the correct model. Determining
a phase fraction for the substrate using the homogeneous model does not make
sense. A first indication that the sample has a layered structure is given by the B
factors (a overall B factor for each phase has been used). Looking at the third row
of Table 21.1 phases on top of the layers show much higher intensity at low angle
respect to high angle and this is corrected in the Rietveld by a higher B factor.
Instead for phases down in the sequence the reverse is observed. The correct layered
model has been constructed by trial and error, observing the B factor value. This has
been compared and validated using EDXS elemental maps in a cross section.
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Table 21.1 Rietveld phases quantification for the oxidized Inconel 738 assuming a homogeneous
sample and a layered model [1]

Rietveld Alloy
homogeneous Cr2O3 TiO2 CrNbO4 Al2O3 matrix Ni3Al

Volume fraction 0.49 0.011 0.353 0.055 0.086 0.005
B factor 0.297 �1.77 5.72 4.76 �4.75 �3
Rietveld layered

model
Volume fraction Layer thickness

(�m)
Layer # Cr2O3 TiO2 CrNbO4 Al2O3 Alloy

matrix
Ni3Al

1 – – 1 – – – 0.089
2 0.952 0.048 – – – – 2.2
3 – – – 0.973 0.026 0.001 0.36
4 – 0.11 – – 0.845 0.045 5
5 – – – – 0.95 0.05 1
B factor �0.19 0.73 �0.45 1.98 0.51 0.6

To correctly compute the absorption factor in a layered model we point the reader
at the excellent formulation in [2] (see Eq. 23) that include also the case of a general
orientation of the sample surface respect to the incident and diffracted beam.

The procedure can be used successfully also for textured thin films provided
a sufficient number of pattern/data is collected to characterize quantitatively the
texture [3–5]. This is necessary when the texture is strong as it happens often
in the thin film production. Otherwise, for the errors connected to the adoption
of a simplified texture models and only one pattern, we remind at a subsequent
paragraph.

21.3 Clay Materials and Turbostratic Disorder

The quantification of clay materials or in general of phases having stacking faults
like turbostratic disorder (e.g. graphitic materials) has been always a big problem as
the traditional Rietveld method is not able to fit the pattern with the same accuracy
as for other phases. Indeed, also other methods (internal standard, RIR or PONKCS;
see the work of Madsen in this book), if they can ameliorate the analysis, they do
not provide a satisfactory solution, most of the time. In 2004 Ufer et al. [6, 7] have
introduced an elegant way to treat the turbostratic disorder as encountered in many
clay materials. This permits a good fitting of the diffraction pattern using a simple
to setup model where it is only necessary to identify the faulting axis and fit the
anisotropic crystallite size broadening. This has been used to successfully quantify
clay materials [8] as you can see in Fig. 21.1 and carbon-carbon composites. This
kind of modeling is present in both BGMN and Maud Rietveld software.
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Fig. 21.1 Rietveld phases quantification of clay minerals using the model of Ufer et al. [6] for
both the Ca-montmorillonite and the Opal-CT

21.4 Texture and Preferred Orientation

Preferred orientations are one of the main causes of errors in phase quantification
by diffraction as enlightened in another part of this book. The best method in such
case is to try to avoid them by changing the experiment or re-preparing the sample.
Not always this is successful or can be done, as for example in the case of a bulk
or a film. When the texture of the sample cannot be eliminated completely by the
experimental procedure, we need to choose an analysis strategy to get the phase
quantities as much accurate as possible. We have ideally three choices:

• Not apply any correction for preferred orientations
• Apply the texture factors computed from the Orientation Distribution Function

(ODF) for this sample
• Fit and apply some corrections based on a simplified texture model.

To examine the effect of each method we have constructed a simple case with a
known amount of phases and ODF. We can test the different corrections and their
effect on the quantitative phase results. The test is based on a Cu-Fe bulk sample
where the two phases were co-laminated for a certain extent. The original content
is 1/3 in volume of Fe and 2/3 of Cu. The sample in cube form has been analyzed
at the IPNS neutron TOF source in Argonne. A sufficient number of TOF pattern
covering different orientation of the sample has been collected in order to obtain
the true ODF for both phases. The complete analysis has been done on all patterns
using the Rietveld method with the EWIMV texture model [5]. This full analysis
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Fig. 21.2 Rietveld fit of all patterns of bank 2. Rwp D 18%

Fig. 21.3 Pole figures (recalculated from ODF, on the right) for the Fe-Cu sample as obtained
from the full refinement of all patterns by Rietveld C EWIMV; on the left the measurement point
of each pattern is reported as texture measurement angles (so-called pole figure coverage). Different
symbols indicate patterns coming from different banks (detectors)

confirmed the 1/3:2/3 volume fraction for the Fe and Cu phases (0.667(2) % vol. Cu
and Rwp D 18%) and the overall fitting for only one bank is reported in Fig. 21.2.
The EWIMV method provides us the ODF from which some pole figures have been
calculated and are shown in Fig. 21.3 along with the measurement points in the
orientation space. As we can see the texture is the typical one for such laminated
phases. It is not a strong texture and nearly orthorhombic.

For our test we will use the Rietveld method for the phase analysis but with
only one pattern in the center of the pole figure to be in the same usual conditions
of a Bragg-Brentano experiment. In Bragg-Brentano the usual measurement only
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Table 21.2 Result of quantitative analysis on Fe-Cu sample by refinement
of a single pattern using different preferred orientation correction models

0.3–2.2 Å range 0.79–2.2 Å range

Type of P.O. correction % vol. Cu Rwp (%) % vol. Cu Rwp (%)

ODF corrected 67.8(14) 14.5 66.5(19) 15.6
No correction 65.5(25) 31.5 63.3(37) 35
March-Dollase 58.3(20) 25 57.3(38) 29
Fiber harmonic, Lmax D 4 67.4(23) 27.5 62.7(41) 30.5
Fiber harmonic, Lmax D 6 70.0(13) 13 66.0(25) 14.5
Fiber harmonic, Lmax D 8 71.4(14) 12.7 70.2(40) 14.4

covers the center of the pole figure and consequently even if we spin the sample this
does not decrease the texture and only improves the statistic. Moreover measuring
only one point in the pole figures, even if for more reflections, it does not permit
to discriminate the kind of texture or measure the complete ODF and in general the
normalization cannot be done. All the texture models we can apply in this case are
based on a fiber texture with the axe in the center of the pole figure. In Table 21.2
the results for different models are summarized. Also two different ranges in d-space
were used to check the effect of the number of reflections. Not always the best fit
corresponds to the best result in the quantitative analysis. Obviously correcting for
the true ODF should give a good result even if only one pattern is used. But when
this is not possible the test shows that using no correction at all gives the worse fit but
the results are acceptable. Not always this is true for the other models. The March-
Dollase produces a better fit but a wrong quantitative analysis. For the harmonic
method this depends on the range and expansion used even if the texture is not
strong. This is due to the fact that we suppose a certain fiber texture when it is not.
The advice is that when we do not know the texture type, applying no corrections
for the texture has more probability of giving a good result even if the fit is worse
(Table 21.2).

If the texture is stronger the use of the wrong model (and no simplified models,
harmonic included, are correct in this case) will cause a worse result.

21.5 Microabsorption

Microabsorption or absorption contrast affects the quantitative analysis when we
have large grains of a highly absorbing phase with other low absorbing phases. In
such cases we have few alternatives to avoid or reduce absorption contrast effects:

• Grind the powder to reduce the grain size below a certain level (usually 1 �m).
• Change the wavelength or radiation to a more penetrating one.
• Apply a model to correct the absorption contrast in the analysis (this requires the

knowledge of the grain sizes of the phases).
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Most of the time only the third option is feasible and the most used correction
is the so-called Brindley microabsorption model [9, 10]. Applying it to the formula
for quantitative analysis by the Rietveld method [10–12] we get for a mixture of N
phases:

wi D Ii�i

�i
PN

jD1
Ii �j
�j

where I is the scale factor from the Rietveld fitting, wi is the weight fraction for
phase i, �i the density and � i the absorption contrast effect. Brindley has reported
some tables for the absorption contrast effect from which we can extrapolate
a function of a form similar to the absorption characteristic [13]. For spherical
particles the Brindley table can be fitted well by [13]:

�i D �0:00229C 2:054e � .�i � N�/Ri C 0:50356

0:69525

where�i is the linear absorption coefficient for phase i,� the mean linear absorption
coefficient of the mixture and Ri the mean particles radius. Similar formulas can be
obtained also for other shapes correction.

21.6 Amorphous and Polymer Crystallinity Determination

Le Bail in 1995 [14] published how by diffraction it is impossible to distinguish
between a real amorphous and a nanocrystalline structure without any long range
order. So there is always the possibility to reproduce an amorphous diffraction
pattern using a so-called pseudo-amorphous model in which the short range order
is simulated by a particular crystal structure and the long range order is loosed
by small crystallite sizes and/or high value of r.m.s. microstrain. The advantage
of the description is that the short range order can be refined much better in the
Rietveld framework instead of relying uniquely on Monte Carlo techniques. In 1998
Lutterotti et al. [15] demonstrated how this pseudo-amorphous model can be used
in the Rietveld to accurately measure the amorphous content without any internal
or external standard. The classical formula developed for Rietveld phase analysis
[11, 15] works perfectly to give the amorphous content as a normal phase if the
model is sufficiently accurate in describing the short range order. The benefits of
this method are that no calibration, internal or external standard are needed and it
can be applied also to bulk samples. Limitations are that it requires a model for the
pseudo-amorphous and the background level should be estimated correctly. For the
last problem it is advisable to use a monochromator in the diffracted beam to lower
the background as much as possible.

The methodology can be used for crystallinity determination in polymers. An
example is shown in Fig. 21.4 for polypropylene where the same crystal structure
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Fig. 21.4 Crystallinity determination on polypropylene by Rietveld fitting

Fig. 21.5 Quantification of the nifedipine amorphization inside the PVP matrix by ball milling.
On the left the Rietveld fit using the PVP modeled using the cell of the crystalline PVP with the
PONCKS method and the pseudo-structure of the nifedipine for the amorphous part; on the right
the nifedipine amorphous content as determine by the Rietveld fit

is assumed for both the amorphous part and the crystalline part. This assumption
is quite reasonable in the polymer case and it gives results in agreement with DSC
measurements. The same hypothesis do not work always in the case of ceramics
or alloys, the silica glass structure by Le Bail is an example. The method requires
that the pseudo-crystal structure is known. Up to now very few of them have been
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Fig. 21.6 Amorphization of the griseofulvine in the PVP matrix for different milling times. The
values of griseofulvine crystallinity are reported in Table 21.3

Table 21.3 Griseofulvine crystallinity after milling at different times

Crystallinity (%) 100 70 60 51 50 40 46 50 35 32 17
Milling time (min) 0 5 10 15 20 25 35 45 60 90 120

found or tested [14, 16, 17] but in the case the pseudo-structure is unknown and
a pure sample is available the same procedure as in the PONCKS can be used
to calibrate the intensities. This last methodology has been used to determine the
phase quantities with the presence of two different amorphous structures [18]. Two
examples are reported in Figs. 21.5 and 21.6 and Table 21.3. In both examples
an incipient (griseofulvine and nifedipine) in crystalline form is amorphized by
ball milling with the help of a polymer (PVP) to stabilize the amorphous form.
In such case the procedure has been able to quantify the incipient crystallinity with
the presence of a second amorphous, the PVP polymer by the fact that the two
amorphous phases have a different pattern.

Those last examples are a further proof of how flexible is the Rietveld method
and how a correct quantification can be reached using the appropriate model.
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Chapter 22
Texture – An Overview

Robert B. Von Dreele

Abstract Samples that are polycrystalline solids produced by some mechanical
process frequently possess a non-random orientation of the crystallites due to
deformation of the material during the forming operation. The resulting crystallite
orientations (“texture”) can be more complex that those obtained from simple pack-
ing of powders. In the course of crystal structure analysis from powder diffraction
data, changes in the Bragg intensities resulting from texture / preferred orientation
can strongly degrade the quality of a Rietveld refinement or prevent a structure
solution. Here, we consider models for describing texture in polycrystalline samples
and examine their application to real world examples.

22.1 Introduction

By definition, an ideal microcrystalline powder consists of a very large number
of small crystals that are randomly oriented with respect to each other and to the
macroscopic dimensions of the sample. Ignoring macroscopic effects of absorption,
the diffraction intensity for any Bragg reflection from this sample is independent of
its orientation in the beam because there is an equal probability of crystallites being
in the diffracting condition for all sample orientations. In this circumstance, the
observed intensities are proportional to the crystal structure diffraction intensities
(Fhkl

2) after applying simple geometric corrections (e.g. Lorentz-polarization and
absorption) and the appropriate reflection multiplicity.

However, the process of producing the sample by packing microcrystals in
a holder (flat plate or cylinder) can force the crystal grains into a non-random
orientation. For example, if the crystallites have a strong platy habit, then they will
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Fig. 22.1 Cartoon view of the effect of texture or preferred orientation on the diffracted intensities
from a sample. Note that in general the intensity pattern around each ring will change as the sample
is rotated in the beam

preferentially pack so that their plate normal aligns perpendicular to the sample
surface. Conversely, crystallites with a needle-like habit will pack so that the needle
axis preferentially lies in the sample surface plane. In either case the diffraction
intensities are not independent of sample orientation and some intensities will be
enhanced while others are suppressed for a particular sample orientation as shown in
Fig. 22.1. It is important to note that this “preferred orientation” not only describes
how the crystallites align with respect to each other but also with respect to the
macroscopic sample dimensions.

Samples that are polycrystalline solid objects (e.g. a metal bar, wire or plate) are
usually produced by some mechanical process (e.g. rolling, drawing or pressing)
that frequently forces a non-random orientation of the crystallites in response to
plastic deformation of the material during the forming operation. The resulting
crystallite orientations (“texture”) can be more complex that those obtained from
packing of powders and due to anisotropy in physical properties (elasticity, conduc-
tivity, etc.) the details of the orientation can have an impact on the formed object’s
material properties.

In the course of crystal structure analysis from powder diffraction data, these
changes in the Bragg intensities from preferred orientation can strongly degrade the
quality of the result of a Rietveld refinement and can prevent a structure solution
for an unknown. This nuisance factor is generally most severe for Bragg-Brentano
x-ray diffraction experiments, particularly for highly absorbing materials. It is
less a problem for Debye-Scherrer experiments where powders are packed in thin
capillaries and frequently use is made of high energy synchrotron radiation. Neutron
powder diffraction experiments with large samples and almost no absorption rarely
show preferred orientation effects.
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Fig. 22.2 Obverse and reverse view of a silver Roman coin; is it a fake?

On the other hand, the crystallite orientation (‘texture’) within a formed,
polycrystalline object can be of considerable technological interest. For example,
the texture can be used to infer the history of the piece – “was that piece of metal
cast, rolled or drawn to give that shape?” The answer to this question might be of
great interest to a museum curator of Roman artifacts looking for fakes (Fig. 22.2).
Significantly, the macroscopic properties of materials (strength, stress/strain, ther-
mal expansion, magnetization, superconductivity, thermal conductivity, etc.) are
frequently dependent on direction within a crystal structure and therefore dependent
on the texture in a polycrystalline object made of these materials. For example, the
steel plates that make up a common electrical transformer must be produced with a
very strong alignment of the steel crystal grains to have the desired magnetization
properties for an efficient transformer. In another example, the formation of cuprate
high-Tc superconductors into wires requires that the crystallographic c-axis be
perpendicular to the wire axis because the superconductivity is largely confined to
the basal plane.

Reducing the impact of preferred orientation on powder diffraction data can be
done in a variety of ways. For Bragg-Brentano samples, one can use either “back
mounting” or “side mounting” which attempt to prevent the alignment of the crystal
grains against the surface exposed to x-rays. The samples can also be prepared by
“spray drying” which agglomerates the crystallites into spherical particles which
are then loaded in the sample holder; the presumption is that the crystallite grains
are more randomly oriented within these particles. Additionally, a sample spinner
is often used. Note that this does not eliminate preferred orientation; it simplifies it
by making the distribution have cylindrical symmetry. Note that in Debye-Scherrer
geometry, the sample generally is spun about the cylinder axis to remove the
effect of sample grittiness and thus improve the powder average; it also makes any
preferred orientation have cylindrical symmetry.

The measurement of texture requires the determination of how individual
reflection intensities change as the sample is placed in a suite of orientations in
the x-ray (or neutron) beam. The classical approach as done in the laboratory is
to sample a few reflections in a grid of orientations (typically 5ı steps on two
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Fig. 22.3 Typical sample orientation grid for pole figure measurement at nominally 5ı orientation
resolution using (a) an area detector and (b) a point detector (Taken from “Two-dimensional x-ray
diffraction”, Bob B. He, 2009, Wiley, New York, p 230)

angles – c.f. Fig. 22.3b). After applying absorption, geometric and normalization
corrections, the intensities are then displayed in a polar plot (“pole figure”) of the
two angles for each reflection sampled in the experiment. This measurement can be
time consuming requiring 12–24 h on a laboratory diffractometer equipped with a
special pole figure measuring device. Instruments equipped with area detectors can
use fewer sample orientations and thus can obtain the required data in less time (c.f.
Fig. 22.3a). The observed intensities must arise from cleanly separated peaks; note
that the geometry used in this data collection is not optimized for peak resolution.

An alternative approach is to use “whole pattern fitting” of full diffraction
patterns from a small subset of sample orientations; a model is used to represent the
texture and the coefficients are obtained via Rietveld techniques. This approach can
take advantage of high energy synchrotron x-rays with area detectors or spallation
neutrons and time-of-flight data collection techniques and be much faster than the
classical measurement of pole figures.

22.2 Texture Models

Modern Rietveld refinement programs will frequently allow inclusion of a texture
model to describe the change in Bragg intensity for each reflection from that
expected for an ideally random powder. The simplest is that of March [1] as
simplified by Dollase [2].
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This expression is essentially a modifier of the reflection multiplicity, M, for
all equivalent h depending on the ratio, Ro, of the major and minor axes of a
cylindrically symmetric ellipsoid and on the angle, �, each equivalent reflection,
h, makes with some user specified direction, H. The sum is over all the equivalent
reflections, n. This description is suitable for either a cylindrical sample spun about
its axis as in a Debye-Scherrer experiment or a flat sample spun about its normal in
a Bragg-Brentano experiment.

A more complex description derives from a representation of the orientation
distribution function (ODF). The ODF gives the probability of finding a particular
crystallite orientation with respect to some defined sample coordinate system and is
an average over all locations within the sample volume. A further elaboration not
considered here is to describe the ODF(xyz) as it varies over the sample volume; this
may be of interest in, for example, comparing the bulk texture of a manufactured
object with its surface texture. The properties of the ODF are that it must be a real
and positive function for which the integral over all orientations is unity. It may also
have certain symmetries arising from both the manufacturing process used to make
the sample and the crystal symmetry of material. If there is more than one crystalline
phase, each will have its own ODF. An ODF has two parts; one is symmetric to
inversion (“even” part) and the other is not (“odd” part). Due to Friedel’s Law only
the even part of the ODF will affect the diffracted intensities and the odd part is thus
invisible.

Projections of the ODF are used to represent the texture. If a particular reciprocal
crystal direction is chosen as hkl and a projection is made along one sample axis, the
result is a “pole figure” and is plotted as a function of two sample orientation angles
(¥,§) as in Fig. 22.3. Conversely, one can choose a particular sample direction (xyz)
and then make a projection along some reciprocal crystal direction, and plot the
projection as a function of two crystal orientation angles (�, �) to obtain an “inverse
pole figure”. These pole figures also have certain mathematical properties. They
must be real and positive everywhere and their integral over all orientations must be
unity. Their magnitudes are usually expressed as “multiples of random distribution”
(MRD).

As noted above, a diffraction experiment is sensitive to the ODF of a crystalline
phase within a solid object in that reflection intensities can differ depending on the
fraction of crystallites with a particular orientation. A way of representing this effect
on intensities is with the General Axis Equation [3, 4].

A.h,y/ D 1C
LX

lD2

4�

2l C 1

lX

mD- l
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nD- l

Cmn
l Km

l .h/K
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which is dependent on both a direction in the sample coordinates, y(¥, §), and a
direction in the crystal reciprocal space, h(�, �), and is thus 4-dimensional in (¥, §,
�, �). The outer summation is over the only even indices, l, to some maximum, L,
thus representing the even part of the ODF that can affect the diffracted intensities.
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Recall that the odd part has no impact on the diffracted intensities. The two sets
of terms, Kl

m(h) and Kl
n(y), are spherical harmonics symmetrized according to the

crystal and sample symmetries, respectively. The forms of the spherical harmonics
are identical to those used for the angular part of the atomic orbitals, and form
an orthogonal set of functions. The Cl

mn coefficients are determined by Rietveld
refinement and are restricted according to both the crystal and sample symmetries;
the orthogonality properties of the functions confer great stability to this refinement.
If all Cl

mn are zero, then clearly the diffraction is the same in all directions as from
an ideally random powder. By selecting either a specific h or y direction and then
computing A(h, y) over the remaining orientation angles, one can produce either a
pole figure for the selected h or an inverse pole figure for the selected y. The texture
index, J, can be obtained from the coefficients via

J D 1C
LX

lD2

1
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lX

mD�l

lX

nD�l
jCmn
l j2 (22.3)

If the texture is random then J D 1, otherwise J> 1. J is very large for strongly
textured materials; J D 1 for a single crystal.

22.3 Applications

Here, a few applications of the spherical harmonic model are presented. One
is the original test case study [4] of a calcite sample used in an earlier round
robin study [5] and the other is a combined texture/microstrain study of a 3-layer
hot rolled stainless/carbon steel sandwich (obtained from H. Priesmeyer (1995),
private communication). Both were performed using neutron time-of-flight (TOF)
diffraction data collected at LANSCE, Los Alamos National Laboratory on the
High Intensity Powder Diffractometer (HIPD). In a neutron TOF experiment, the
detectors are in fixed locations as is the sample, thus in the general axis equation the
sample direction, y, is fixed and each powder pattern is in essence an inverse pole
figure scaled by the magnitudes of the crystal structure factors. A complete texture
measurement for the calcite was thus obtained from 13 sample orientations in 4 sets
of detectors, comprising 52 inverse pole figure measurements. Similarly, 24 sample
orientations and 3 detectors were used for the steel sample resulting in 72 inverse
pole figures (Fig. 22.4).

The Rietveld refinement on the steel sandwich required two texture descriptions,
one for each phase. The stainless steel texture model had 18 Cl

mn and the carbon
steel model had 12 Cl

mn coefficients. These were then used in the general axis
equation to generate pole figures (Fig. 22.5).
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Fig. 22.4 The 72 ¥, § orientations obtained in 24 settings for the steel sample on HIPD

Fig. 22.5 Pole figures for carbon steel (top) and stainless steel (bottom) obtained from the hot
rolled steel sandwich. They are both examples of (100) [110] rolling texture
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Chapter 23
The Future of Powder Diffraction Is 2-D

R.E. Dinnebier and B. Hinrichsen

Abstract The growing attractivenessv of two-dimensional detectors in powder
diffraction does brings with it one severe drawback – the 2D to 1D data reduction.
This can be a most time consuming and error prone operation, especially when the
artifacts of the sample environment affect the intensities. Some developments in the
field of calibrating, filtering and evaluation are presented. A selection of applications
will be given throughout the oral presentation.

23.1 Introduction

The combination two-dimensional detectors, powder diffraction and synchrotron
light sources has been staggeringly successful, opening doors to many new experi-
ments [1–5]. The great advantages of such data collection lie in the short exposure
times as well as in the huge redundancy. A large angular region of the Bragg cone
is recorded in a single exposure; indeed most detectors are set up perpendicular and
centrally to the primary beam, intercepting the Bragg cone over the entire azimuthal
range. The standard practice is to integrate the image along the ellipses described
by the intersection of the cone with the planar detector to a conventional powder
pattern [6]. This commonly reduces the amount of information by the square root
of the number of pixels. Does this represent the gamut of information contained
in a powder diffraction image? A glance at an image from a calibration standard
might lend itself to such a conclusion. Less perfect samples, as well as sample
environments leave distinctive artifacts on images. How can they be extracted,
filtered or interpreted? Methods offering answers to some of these questions are
introduced.

R.E. Dinnebier (�) • B. Hinrichsen
Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
e-mail: r.dinnebier@fkf.mpg.de

U. Kolb et al. (eds.), Uniting Electron Crystallography and Powder Diffraction,
NATO Science for Peace and Security Series B: Physics and Biophysics,
DOI 10.1007/978-94-007-5580-2 23,
© Springer ScienceCBusiness Media Dordrecht 2012

251



252 R.E. Dinnebier and B. Hinrichsen

23.2 Experimental Geometry

The experimental geometry of a plane detector used for powder diffraction has been
explained in detail by others [6]. We will therefore merely give a short outline of the
most important points.

Each diffraction (Bragg) cone intersecting a plane detector results in an elliptical
projection (see Fig. 23.1). This projection is described most palpably using the
experimental parameters of the beam centre, the sample to detector distance, the
tilt of the detector out of the normal of the primary beam and finally the azimuthal
rotation of the tilt with respect to an arbitrarily selected position.

In the course of the calibration of the experimental geometry a high quality image
of a standard sample is used to determine and refine the required five parameters.

The standard method for refining the calibration parameters can be separated
into two parts. Initially a number of radial lines are drawn from the common focus
of the ellipses to the edge of the image. The profile along these lines is plotted, and
the peak positions refined using a Gaussian profile. To ensure that an acceptable
number of pixels are selected to contribute to the individual histograms the radial
lines need to be of an acceptable width, in our case a width of five pixels for
these lines returned good results. The peak positions, or rather the positions of the
intersection of the radial lines with the ellipses, are now known. Each point can be
uniquely associated to a given lattice spacing. The requirement that points belonging

Fig. 23.1 Conic sections.
The planes represent the
detector plane at various
angles to the primary beam.
The projections of the Bragg
cone trace a circle, an ellipse
or a parabola on the detector
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to the same lattice spacing should have an identical diffraction angle is sufficient for
the refinement of the calibration parameters. A Levenberg-Marquard least squares
minimization using the positions weighted by the statistical uncertainty of the initial
peak refinement procedure leads to the final calibration values. This method leads
to good results if enough radial lines are chosen and the initial six starting values,
the five calibration parameters and the wavelength, are sufficiently close to the true
values. To ensure this we have developed pattern recognition techniques which very
successfully estimate these parameters [7, 8]. These have been described elsewhere.
Recently an alternative calibration method has been proposed [9] which appears to
have a high degree of automation.

23.3 Whole Image Refinement

The question poses itself, especially in view of the great computing power available
to us currently, why image analysis is always synonymous with data reduction?
Could not far more information be gleaned from diffraction images than a distilled
I(2�) plot? As a first step along the path of full pattern appreciation this holistic
approach was applied to the calibration refinement with surprising results.

Calibration, as described earlier, is commonly a two step process. The initial step
is the determination of the intersections of any number of radial lines with the Bragg
ellipses. The second is the refinement of the ellipse (calibration) parameters along
those points (see Fig. 23.2). The approach chosen here was to refine the sought after
parameters against the difference of the observed and computed images (Fig. 23.3).
The number of data points in such a refinement is of course rather large, a couple
of million against what would normally be a couple of hundred. As ellipses furthest
from the centre are most susceptible to the calibration quality, the FWHM of the
highest angle peak of from the integrated pattern was chosen to give an idea of
the calibration results. The material used was the common calibration standard
finely ground LaB6. Whole image refinement showed an improvement over the
conventional method of 15%, reducing the FWHM from 0.122ı to 0.106ı.

23.4 Filtering Techniques

Experimental artefacts are a continual nuisance in the analysis of in-situ experi-
ments. These generally result from the experimental environment, can however stem
directly from the sample. Data becoming to powder diffraction analysis originates
from an ideal sample, having all the positive attributes: random orientation, narrow
size dispersion and an improved statistical distribution by sample rotation. In some
cases this ideal cannot be achieved, this is especially valid for high-pressure powder
diffraction experiments. Sample rotation, if any, is limited to a small angular range
because of the diamond diffraction peaks and the deleterious effects of gasket
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Fig. 23.2 Conventional calibration refinement method. On the left the radial lines are traced from
the centre to the edge. The intensity profile is traced and the various peaks are fitted using a
Gaussian profile function. The successfully refined peak positions are utilized to refine the five
calibration parameters

Fig. 23.3 Whole image refinement. The observed intensities (Iobs) are shown in the left image. In
the central image the simulated images (Icalc) are shown. The difference is shown on the right. The
calibration parameters are refined to minimize the difference between Iobs and Icalc

shadowing. An X-ray beam that has a diameter in the order of a few micrometers
further worsens the already poor statistics of such an experiment. The general image
obtained is filled with single grain spikes looming over the intensity of the Debye-
Scherrer ring by at least an order of magnitude. A few peaks on a ring can cause the
normal averaging process used during integration to produce data misrepresents the
true powder intensities.
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Fig. 23.4 Results of fractile filtering on an image from a high temperature experiment. Top left:
before filtering, top right: after filtering. The spots of high intensity result from the sapphire
capillary. The lower image is a preview of the finally integrated diffractogram, red is the unfiltered
pattern, blue is the filtered pattern (color figure online)

When estimating the most representative value for the intensity of a single bin
generally only the mean of the intensities within the bin was calculated. This of
course leads to great aberrations when outlier intensities are within the bin. One
way of dealing with such data would be to select the median value as a more robust
estimator of the true intensity. This however still leads to variances which do not
portray the true data quality. The sigmas of the intensities, which are generally used
to weight the least squares refinements are completely meaningless and of no use in
the refinement process.

An alternative method is to filter out the aberrant values. As a rule only very
few highly deviant values cause the averaging problems. A method which can be
looked upon as the inverse of the aforementioned median intensity estimation is
that of fractile filtering. Here a highest or lowest intensity fraction of the data is
removed. As this method has no real intensity based cut-off criteria it is very robust.
An additional advantage is that it does not skew normally distributed data. The
effects of this computationally cheap filter can be seen in Fig. 23.4, an example
of a high temperature image.
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Table 23.1 Image reliability values for some typical examples

LaB6 Rim (filter applied)*100 Rim (no filter)*100

Good calibration 0.414 25.9
Bad calibration 10.1 45.9
Experimental data
Sapphire tube 1.12 4,512
DAC 15.3 7,532

23.5 Reliability Values

The visual appreciation of a two-dimensional diffraction image can sometimes give
an idea of the quality of the data gathered. No quantitative measure of the quality of
such a data collection has yet been proposed. In lieu of appraising the effectiveness
of the presented filtering algorithms an unbiased estimation of the data quality
seemed opportune. A measure that has shown itself to be of good use is shown
below

Rim D
1
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iD1
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Where l is the total number of pixels in the image, n is the number of bins used
to integrate the image and m is the number of pixels within each bin. Ik is the
intensity of the kth pixel and Ib the background intensity of that pixel. This is a very
simple measure of the average bin variance, normalized to the background corrected
total intensity. The value is intensity and consequently detector independent. It is
intentionally very sensitive to azimuthal variations in intensity. This leads to an
extremely good indicator of not only the uniformity of the Bragg peaks but also
of a successful calibration, as can be seen in Table 23.1.

23.6 Concluding Remarks

Some aspects in the analysis of two-dimensional powder diffraction patterns have
been presented. The effectiveness of filtering methods dealing with outlier inten-
sities has been shown, as has been a holistic approach to the calibration question.
Finally an image reliability factor has been proposed to quantify the quality of a
diffraction image. All the functionality has been implemented in a freely available
software package, Powder3D [10].
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Chapter 24
Electron Crystallography – New Methods
to Explore Structure and Properties
of the Nano World

Ute Kolb

Abstract Electron crystallography, as the branch of science that uses electron
scattering, developed in the last century into a manifold and powerful approach
to study the structure of matter. Major historical milestones of this development
are discussed. Especially electron diffraction experienced recently a renaissance
and grew into an established method of structure analysis. The techniques of data
collection and processing available nowadays are described.

24.1 Introduction

Structural elucidation of materials is a key step in the characterization of their phys-
ical properties, and therefore of particular interest to both academics and industry.
The spectroscopic methods investigate the molecular structure whereas diffraction
experiments are used to study the crystal structure. Quantitative crystallography
dates back to 1780, when Carangeot invented the contact goniometer in order to
measure the angles between the faces of a crystal [1]. Already in 1850 Bravais
introduced the concept of polar axes describing a unit cell but only when Wilhelm
Conrad Röntgen (University of Würzburg and Munich, first Nobel Prize in physics
1901) discovered X-rays in 1895 Bravais’s concept could be featured by scaling
these polar axes, called reciprocal axes [1]. First diffraction experiments on zinc-
blende by Max von Laue (University of Munich, Nobel Prize in physics 1914)
and co-workers Friedrich and Knipping [2] together with the interpretation of the
data by William Lawrence Bragg in 1912 (University of Cambridge, Nobel Prize
in physics 1915 together with W.H. Bragg) started the era of crystal structure
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analysis [3–6]. In the next decades crystallography and especially single crystal
structure analysis developed rapidly. Rapid advances in technology (x-ray sources,
goniometers, detectors and automation) reduced the accessible crystal size, to about
1 mm3 for standard laboratory sources down to a few �m3 using synchrotron
radiation [7], but beyond this X-ray data collection needs to be extended to measure
crystal ensembles, i.e. crystal powder.

24.2 Powder Diffraction

The first X-ray powder diffraction data (XRPD) was collected by Peter Debye
and Paul Scherrer [8, 9] and in parallel by Albert Hull in 1914 [10–12] but the
limitations of the one dimensional data in comparison to the three dimensional
single crystal measurements hampered the development of XRPD analysis. An
important step was performed by Bertram Warren with the analysis of carbon black
in 1934 [13]. Using the Fourier Inversion Method to calculate the pair distribution
function (PDF) he discovered that carbon black is not amorphous but consists
of single or multiple graphite layers. Structure solution using XRPD developed
rapidly in the following years being accelerated by the development of a method
by Ernest O. Rietveld in the field of neutron diffraction in 1945 [14]. The Rietveld
method allows the usage of the full diffraction profile for structure refinement.
XRPD, for which well consolidated structure analysis routines exist, utilizes the
diffraction of X-rays on samples consisting of many small crystallites. Exactly this
circumstance provides one of the strongest advantages of XRPD namely that the
data is collected from the bulk sample and not from a selected crystal which may not
be representative for the material. On the other hand the simultaneous measurement
of many crystallites leads to the reduction of three dimensional diffraction data
to one dimensional data. The resulting reflection overlap, apart from the mere
multiplicity, happens systematically in the case of high symmetry space groups
(e.g. cubic case (511)/(333)) or accidentally dependent on cell dimensions and space
group. This prevents the direct analysis of many peaks and enforces an estimation of
the underlying intensities. Additionally, peak profile shapes may be strongly biased
by broadening due to small crystallite size in the nano regime and asymmetry
due to strain effects, which both may appear even in an anisotropic manner. The
uncertainties in intensity determination hamper structure solution significantly.
Even cell parameter determination and thus indexing of the diffraction pattern can
be problematic or impossible. This problem can be exacerbated further for samples
consisting of multiple phases or containing impurities. XRPD typically uses crystals
of 1–10�m but can utilize smaller crystals as well. The borderline caused by crystal-
size driven peak broadening (Scherrer equation [15]) is about 100 nm for inorganic
structures and approx. 300 nm for organics.
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24.3 Electron Microscopy

1924 Louis de Broglie postulated that to every particle with matter and speed a
wavelength can be assigned. Inspired by this, the first diffraction experiments using
electrons were performed by Clinton Joseph Davisson and Lester Germer in the
low-energy range [16, 17] and by George Paget Thomson and A. Reid in the high-
energy range [18] both in 1927. Thomson (University of Cambridge) shared with
Davisson (Bell-Laboratories, New York City) the Nobel Prize in 1937. 1931 Ernst
August Friedrich Ruska (University of Berlin, Nobel Prize 1986) and Max Knoll
build the first electron microscope prototype based on electron lenses and Ruska
succeeded to beat the resolution of an optical microscope in 1933 [19–21]. The
advantage of using electron radiation is that structural information can be collected
from areas of a few tens of nanometers [22]. This is possible because the charged
electron undergoes coulombic interaction and has therefore a stronger interaction
with matter. In addition, electron microscopy is the only method where imaging and
diffraction can be performed on the same sample volume.

A few crystal structures containing light elements were solved by single crystal
electron diffraction data [23–25] but due to problems related to dynamical scattering
in electron diffraction, as described by the theory of multibeam dynamical scattering
developed by Cowley and Moodie 1957 [26–28] the main attention focused on high-
resolution transmission electron microscopy (HRTEM) and only a few scientists
continued to use quantitative electron diffraction data for structure analysis [29].

HRTEM proved to be successful in solving heavy atom positions in inorganic
structures, and also some of the more radiation resistant organic molecules after the
necessary point-to-point resolution of less than 4 Å has been surpassed in the late
1960s. Later imaging by scanning transmission electron microscopy (STEM) gained
increasing importance [30], especially after highly sensitive high angular annular
dark field detectors (HAADF) were developed. Substantial efforts were dedicated
to the construction of field emission guns (FEG), delivering a highly coherent and
bright electron source. Additionally, elemental analysis methods such as energy
dispersive X-ray spectroscopy (EDX) or electron energy loss spectroscopy (EELS)
were implemented. In parallel, various preparation methods have been invented in
order to optimize the production of electron transparent samples.

With increasing interest in synthesis and characterization of nano particles
high resolution transmission electron microscopy (HRTEM) gained more and
more importance. Unfortunately, based on lens aberrations of axially symmetric
electromagnetic lenses the resolution is limited to about 100 times the used
wavelength (Scherzer theorem [31]) and is coupled to the spherical aberration of
the microscope. The only chance to achieve higher resolution was to use higher
acceleration voltages thus increasing beam damage. High resolution imaging in
general requires a relatively strong illumination and thus a large electron dose on the
sample. Under these conditions, nearly all organic and most of inorganic materials
suffer a fast deterioration due to beam damage. This leads to a modification of
the crystalline structure or to complete amorphization or sublimation of the sample
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[32, 33]. Therefore one of the biggest improvements of TEMs, developed recently, is
the design of non-axial symmetric lenses that can correct these lens aberrations [34]
thus allowing the usage of low-voltage for imaging purposes. Nowadays, aberration
correctors for STEM and HRTEM are available in order to achieve sub-ngstrom
resolved images [35].

24.4 Electron Diffraction

Electron diffraction, which provides 3D sub-Ångstrom structural information with
good signal-to-noise ratio in reciprocal space, is usually performed using a parallel
illumination (Bragg diffraction) of the specimen and selecting the area of interest
by insertion of a selected area aperture in the image plane of the objective lens.
Illumination of the sample with a higher beam convergence leads to diffraction
discs rather than focused spot patterns. Electron diffraction in high-convergence
mode (convergent-beam electron diffraction – CBED also referred to as nano-beam
diffraction (NBD) or micro-diffraction) traditionally uses the disc patterns to extract
cell parameters and space group information including the existence of inversion
symmetry [36–38]. CBED recently showed its potential for “ab-initio” structure
solution of materials based on extracted intensities [39]. This technique almost has
no applications to beam sensitive materials since high convergence of the beam
introduces high electron dose at the sample which many materials cannot tolerate.
Furthermore, long crystallographic axes cause overlap of the diffraction disks and
limit the useful information in CBED patterns.

In order to utilize electron diffraction for structure solution dynamical scattering
had to be reduced or taken into account. In the attempt to avoid these effects a
group in Moscow used texture patterns and solved several inorganic and organic
structures successfully [40–43]. Textured samples are large aggregates of regularly
oriented small crystals. These are achieved by different techniques, for instance by
use of orienting supports, mechanical action or application of an electrical field.
Other scientists focused on organic or biological samples since for these materials
dynamical effects are small and in a first approximation kinematic [44–46]. A third
approach is the preparation of thin samples and the combination of information
from HRTEM imaging with electron diffraction patterns [47–49]. In 1994, the
precession electron diffraction (PED) technique was developed by Vincent and
Midgley as another approach to reduce dynamical effects in electron diffraction
patterns [50–53]. This method is based on the precession of the incident primary
electron beam, which is inclined away from the optical axis of the TEM. A
diffraction pattern recorded in this mode is the sum of patterns produced by
the precessing beam sequentially. The intensities of the reflections are integrated
throughout the reciprocal volume covered by the precessing Ewald sphere and show
reduced dynamic diffraction effects. Having the ability to acquire more kinematic
diffraction data via the PED data sets in two and three dimensional has significantly
dramatically increased the number of publications in recent years [52, 54–57]
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Other attempts for structure solution, were performed in combination with
imaging, or focused on weak scattering objects such as organic [58, 59] or biological
samples [60–62] which were expected to deliver nearly kinematical diffraction data.
Early work pioneered by Klug and co-workers, focused on imaging of biological
macromolecules provided the groundwork for structure solution with electron
crystallography. First were the structure solution attempts by Unwin and Henderson
[63] to solve membrane protein structures using both imaging and diffraction, a
combination of these two pieces of work inspired Sven Hovmöller and co-workers
[64] to attempt the same approach with inorganic structures, which was a significant
challenge because of the increased dynamical content of the data for such structures
and the assumption of kinematic data in the theoretical framework. A further
approach to reduce dynamical effects was the use of very thin crystals (e.g. less than
50 Å) so that intensities can be assumed proportional to F2 and will be sufficient for
structure solution [49, 65, 66] was established.

The ability to obtain more kinematic like data from electron diffraction wither
it be from PED or thinner crystals has lead to the adoption of direct methods
techniques from X-ray crystallography. Making the assumption that the data is
kinematic and just using the ideas of direct methods was first introduced by Fan [67]
with the use of the Sayre equation to extend the resolution of the phases obtained
from images from 2 to 1 Å for a structure of copper perchlorophthalocyanine; which
was then followed by the use of Symbolic addition and Maximum entropy [68] in
order to solve structures. Later came the use of direct methods as commonly used
with X-ray data, with the increasing completeness of data sets as various methods
developed [69].

There have also been developments in the opposite direction, rather than
minimize the dynamical content of the data but to use the dynamical content of
the data in order to resolve the structure. Jean-Paul Morniroli, John Steeds and co-
workers have contributed significantly to the development of CBED as a method for
determining the symmetry of a crystal system from the dynamical content of the
diffraction pattern discs. This work has also been extended to the development of
LACBED, to LARDIF which uses the aberration correctors on modern microscopes
to obtain LACBED pattern but in image mode, there are two main advantages
here, the spot patterns have a larger coverage of reciprocal space when compared
to the SAED patterns and the diffracted spots are fully integrated [70]. Another
interesting development has be the Large Angle Rocking curve beam diffraction
(LARBED) by Christoph Koch [71]. This method combines the ideas of CBED and
precession where diffraction patterns are collected by an off axis beam and the beam
is precessed in order to obtain more information. There is also the ability to slightly
focus the diffraction patterns to avoid disc overlap even when very large angles
are used. This work is part of a technique development, which hopes to provide a
solution to the phase problem for dynamical data.

In order to obtain a better understanding of dynamical diffraction patterns it
has been essential that the theory of dynamical calculations and simulations is
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continually evolving to help experimentalists understand what they are looking at.
Primarily there are two approaches, one, the multislice method developed by Cow-
ley and Moodie [26–28], and two the Bloch wave approach developed by Howie
and Wheelan [72, 73]. Both approaches have their advantages and disadvantages. In
general Multislice is preferred for HRTEM and bloc waves calculations for STEM
and CBED, however much of this relies on how well characterized your system
is. For a long time there has been difficulties in matching theory and experiment
in electron microscopy, especially in imaging, a problem often referred to as the
Stobbs factor [74] after Michael Stobbs. This is a constant effort to make the data
acquired from electron microscopy more quantitative by eliminating the Stobbs
factor and making theory and experiment match, which would allow for more
quantitative interpretation of the data. For STEM some significant advances in the
last few years most notably originated from the groups of Les Allen and Susanna
Stemmer [75].

It should be noted that electron crystallography has played a significant role
in the fundamental understanding of crystallography in general. The discover of
Quasicrystals by Dan Shechtman et al. [76] fight to establish his finding as valid
which have recently become well known after the announcement of his subsequent
Nobel prize in 2011. This discovery redefined what a crystal is, from an object
with a repeating unit, which is restricted in three dimensions to an object which
produces Bragg diffraction, which now includes Quasi-crystals commensurate and
incommensurately modulated structures [77].

Looking beyond pure crystal structure determination, electron microscopy has
much to contribute to the field of crystallography, with Electron Energy Loss
Spectroscopy (EELS) which can identify the coordination state of atoms in the
structure to the more recent development of detecting magnetic circular dichroism
[78]. It is also possible to measure the magnetic and electric fields produced by
crystals via electron holography and Lorentz microscopy [79]. This additional
knowledge is critical to the overall understanding of how these crystals interact
with there surrounding and affect there overall system they are placed in, wither
it be a computer disc hard drive or a biological crystal an animal. Another recent
development has been the addition of Dark field holography, which allows the
measurement of stress and strain within a crystal system [80]. This works by passing
the beam through two different crystals and then looking at the hologram produced
between the reference unstrained crystals and the system of interest. This method
has been shown to produce stress strain maps with incredible detail on electronic
components, which allows a deeper understanding of how the manufacturing
process effects the production and operation of electronic devices [81].

Other than the direct crystal properties electron crystallography can help with the
understanding crystal growth and polymorphism [82] of nano crystals in particular.
The individual crystals can be studied in the microscope overcoming some of the
limitations of X-ray powder diffraction which would only be able to acquire data
from multiple phases simultaneously in the bulk sample.
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24.5 Conclusion

Based on new technical developments electron diffraction is an upcoming method
for structural investigation of matter on the nano scale. The possibility to computer
control data acquisition as well as the vast improvement of computer performance
for data processing supports has significantly advanced the ability to develop new
methods for electron crystallography. These methods have produced improved data
quantity and quality for “ab-initio” structure solution and increase the number of
crystal system which it is possible to obtain data from in order to solve crystal
structures. Moreover, recent developments like aberration correction, is opening up
the possibilities of imaging beam sensitive materials at low beam energies. As well
as the many techniques which are under development to help solve crystal structures,
the significant advances in complementary techniques which help describe the
crystal system more completely, from fundamental crystal properties of magnetic
and electric fields, to the ability to measure stress and strain of a crystal. The topics
covered in this school provide an overview of available and emerging methods in
electron crystallography in order to broaden awareness of what is now possible with
modern electron crystallography.
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Chapter 25
Image Formation in the Electron Microscope

Louisa Meshi

Abstract This chapter is an introduction to electron microscopy. Instrumentation,
electron optical principles, formation of an image and diffraction in the transmis-
sion electron microscope, as well as contrast and basic principles of high resolution
electron microscopy are discussed.

25.1 Introduction

Nowadays electron microscopy is a well-established branch of science that uses an
electron microscope for characterization of material. Unique to modern transmission
electron microscopy (TEM) is the possibility of obtaining simultaneously images
at atomic resolution, analytical information (using energy dispersive spectroscopy
(EDS), or electron energy loss spectroscopy (EELS), for example), and structural
information using various diffraction techniques available – such as selected area
electron diffraction (SAED) or convergent beam electron diffraction (CBED)
methods from a very small area of the specimen (approx. 1–5 nm). Due to this
outstanding possibility, there is a wide range of exploitation of TEM in various
fields, including the field of structure determination.

The aim of this chapter is to explain the most important electron optical
principles, which must be clearly understood so that the reader can utilize the
available facilities of a modern high resolution instrument to the best advantage
in transmission work with crystalline materials.

An electron microscope consists of an electron gun and an assembly of electron
lenses, as shown in Fig. 25.1. This depicts schematically the ray paths in a
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Fig. 25.1 Ray paths in the electron microscope: (a) imaging conditions and (b) diffraction
conditions [1]

microscope employing three stages of magnification (objective, intermediate lens,
and projector), and a single or double condenser lens system for illumination of the
specimen.

There are two kinds of electron sources used in TEM: the first is called a
thermionic source, which, as the name suggests, produces electrons when heated;
and the second is a field-emission source, which produces electrons when a large
electric potential is applied between the source and an anode.

The magnification and formation of an image in the TEM are performed by the
electromagnetic lenses. The most critical component of a magnetic lens is the soft-
iron pole-piece, which produces an axially symmetric magnetic field for focusing
the electrons. The performance of a magnetic lens depends on its pole piece (for
example: distance between the upper and bottom pole pieces of the objective lens
influences the resolution of the TEM). The rest of the lens is a magnetic yoke
containing the winding for energizing the lens with the d.c. current and varying
the focal length of the pole-piece system.

Electromagnetic lenses, as with optical lenses, produce distortions which affect
the final image produced by the microscope and limit attainable resolution. The most
important lens distortions are: (1) spherical aberrations – this defect occurs when
the lens field behaves differently for off-axis rays. The further off-axis the parallel
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Fig. 25.2 Ray diagram when the lens suffers from (a) spherical aberrations; (b) astigmatism

beam of electrons is, the more strongly it is bent back toward the axis. Thus, as
shown in Fig. 25.2a, different electron beams will be focused in different planes. As
a result, a point object is imaged as a disk of finite size, which limits the resolution
of the instrument; (2) chromatic aberrations – which appear due to electrons that
have different energies. In TEM there are two reasons for these energy variations
(energy spread) – the source and the electron-sample interactions. Electron-sample
interactions produce electrons of a wide range of energies emerging from the thin
foil; this effect is the major reason for energy spread. The objective lens bends
the electron path of lower energy more strongly and thus electrons from a point
in the object are blurred to form a disk in the Gaussian image plane (plane I1 in
Fig. 25.1); and (3) astigmatism – which occurs when the electrons sense a non-
uniform magnetic field. As shown in Fig. 25.2b, beams that propagate in two
perpendicular planes have different focus. If we wish to image a cross while our
system suffers from astigmatism, the vertical and horizontal lines will be in sharp
focus at two different distances. This defect arises because the pole pieces cannot
be machined to be perfectly cylindrically symmetrical down the bore and they
might also have microstructural inhomogeneities, which cause local variations in
the magnetic field strength.

Astigmatism of condenser and objective lenses can be corrected in all
TEMs using stigmators, which introduce a compensating magnetic field that
balances the inhomogeneities causing the astigmatism. Contrary to astigmatism,
aberrations are inherited properties of the lenses and they cannot be eliminated in
regular microscopes. Although today Cs (spherical aberration coefficient) and even
Cc correctors (chromatic aberration coefficient) can be installed, lens aberrations
are still the most limiting factor of TEM resolution (aberration corrected electron
microscopy will not be addressed in this chapter).

TEM assembly also includes a variety of apertures. These apertures are intro-
duced into the bores of the lens pole pieces. With a double condenser lens system
condenser 1 usually contains a fixed aperture of about 400 �m diameter, while
condenser 2 may be equipped with a range of interchangeable apertures of about
10–400�m diameter. The objective lens also has interchangeable apertures of about
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5–100 �m diameter. For selected area diffraction, interchangeable apertures are
inserted in the first intermediate image plane (I1 in Fig. 25.1) during examination
of the specimen (the purpose of the latest apertures will be discussed thoroughly
later in this chapter).

25.2 Bright Field/Dark Field Imaging and Selected
Area Diffraction

In order to understand the formation of image and diffraction patterns in the electron
microscope, objective lens function should be explained. As shown in Fig. 25.1, due
to electron–specimen interactions two types of beams are formed: transmitted beam
and diffracted beams. On this image scattered beams, which form due to inelastic
scattering, are not shown; however, we would like to emphasize that they do exist.
The transmitted and diffracted beams are focused by the objective lens in the focal
plane; following the ray diagram we can see that afterwards an image is formed in
the image plane. In a case of crystalline materials the dominant scattering that takes
place is of Bragg diffraction type; thus diffracted beams traveling at small angles
with the incident beam, which are focused by the objective, form a transmission
diffraction pattern in its focal plane.

Since the intermediate lens, as all electromagnetic lenses, does not have a fixed
focal length, it can be focused either on the image plane and in this way a magnified
image will be transferred to the fluorescence TEM screen or onto the focal plane
and then a diffraction pattern will be seen (Fig. 25.1a, b). Usually diffraction from
a particular place in the specimen is needed and in order to receive a pattern from
only this specific area a selected area aperture is introduced in the first intermediate
image plane (I1). In this manner one specific place at the specimen can be chosen
and then the diffraction formed will be related only to this particular chosen part.

Let us consider a crystalline specimen with uniformly thinned grains. The
resultant image of several grains will not have any contrast! Contrast can be
increased artificially by introduction of objective aperture. This aperture’s position
is approximately at the focal plane of the objective lens. If an aperture is inserted we
can choose which beam will form an eventual image – a transmitted beam or one
of the scattered/diffracted beams (see Fig. 25.3). If a transmitted beam is chosen,
this means that it passes through the objective aperture hole. Such an image will
be formed using only those electrons that were transmitted through the specimen
without interactions; thus the place in the specimen that satisfied Bragg conditions
will appear dark, since most of the electrons from such a place were scattered and
only a few electrons contributed to the transmitted beam that forms the image.
On the other hand – a different place in the specimen that did not satisfy Bragg
conditions will appear bright, since most of the electrons were transmitted through
it without interactions; thus there is a large quantity of electrons that forms an
image. This type of contrast is called diffraction contrast and this particular image
formation mode is called Bright Field.
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Fig. 25.3 Image formation in bright field (left image) and dark field conditions (right image)

If one of the diffracted beams is transferred through the hole in the objective
aperture, the resultant image will be received in Dark Field mode. In this mode
those parts of the specimen where these particular Bragg conditions were satisfied
will appear bright and all the rest of the specimen will be dark.

The manner in which the contrast is introduced is not used only for crystalline
samples. Since the scattering effect is proportional to z (atomic number), introduc-
tion of an objective aperture into non-crystalline material will also add a contrast.
In Bright Field mode, when only the transmitted beam forms an image, heavily
scattered places in the specimen will appear darker. This type of contrast is called
mass or amplitude contrast.

There are two other additional types of contrast that need to be mentioned –
thickness and phase contrast. Thickness contrast is seen even without the objective
aperture; introduction of the aperture increases the contrast. If the place is thick – it
appears darker. Phase contrast will be discussed below.

25.3 Basics of High Resolution Transmission Electron
Microscopy (HRTEM) Theory and Practice

Since the transmission image is necessarily a projection of the specimen structure
in the incident beam direction, an ultra-thin specimen must be used if one wishes to
resolve detail at the atomic level. By definition, a HRTEM image is a micrograph
that approaches atomic resolution; see Fig. 25.4 as an example.

In addition to the need for very thin specimens, in order to receive a HRTEM
image, the microscope used for this purpose has to have special high or ultra-high
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resolution pole pieces (with small gaps), high electronic and mechanical stability,
ultra-high vacuum, and a coherent illumination source.

A high resolution transmission electron microscope is a close analogue to the
optical phase contrast microscope [3]. Fresnel edge fringes, atomic lattice fringes,
and images of small molecules are all examples of phase contrast, i.e., interference
effects. Thus, in order to create such an image, we need the inference of several
beams. The phase contrast principle is dramatically different from the conventional
diffraction/mass/thickness contrast principle presented earlier. The image that is
formed as the interference of transmitted and diffraction beams will be without any
contrast. In both electron and optical microscopy the reasons for the lack of contrast
at exact focus are the same – the thin specimens (phase objects) affect only the phase
of the wave transmitted by the specimen and not the amplitude. That is, they behave
like a medium of variable refractive index [4]. It is this variation in the phase from
point to point across the specimen (proportional to the specimen’s atomic potential
in volts for electron microscopy) that must be converted into intensity variations in
the image if we wish to “see”, for example, atoms in the electron microscope.

Another way to explain the lack of contrast (or weakness of the contrast) in
these interference images is to calculate the phase shift among the electron waves.
The scattered waves, which carry the information about the crystal, suffer a 90ı
extra phase shift with respect to the unscattered wave. This is why the phase contrast
originated by the crystal is weak when the crystal is thin and the lens is in focus.
Since in the electron microscope there is a way to introduce additional phase shift
by defocusing the lens and making use of the aberrations of the lens (according to
formula (25.1)) – the real projected potential of the crystal (exit wave function) can
be revealed.

�.u/ D ��F�u2 C �Cs�
3u4

2
(25.1)

Fig. 25.4 HRTEM image
taken from the Al-Rh-Ru
E-phase along the [010]
direction. The image
corrected by crystallographic
image processing method is
shown in the inset. It
corresponds to the optimal
defocus and the exact zone
axis alignment. Plane group
symmetry pmg was imposed
on the image Fourier
components [2]
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Fig. 25.5 Theory of HRTEM image formation

when: ”D phase shift; u D reciprocal lattice vector; �F D defocus value of the
objective lens; œD electron wavelength; and Cs D coefficient of spherical aberra-
tions.

Thus eventual phase contrast, enhanced by the additional shift, will enable us to
resolve atomic columns in the HRTEM image.

In order to understand deeply the HRTEM image formation let us review again
the ray diagram in the TEM objective lens area (see Fig. 25.5). If ‰(x, y) is an
exit wave function of electrons that leave the crystal, then in the diffraction plane,
formed by the objective lens, (u) will be the electron intensity distribution function
that will be seen (where u is the reciprocal space vector). This function describes the
intensity of the diffraction beams. The exit wave and intensity distribution functions
relate one to another by Fourier transform:

 .u/ D F Œ‰ .x; y/� (25.2)
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The function of intensity distribution of the image formed by the objective lens
in the image plane is ˆ(x, y) and, following pure mathematics, it should be equal
to inverse Fourier transform of the function  (u). According to Eq. (25.2) this will
also be equal to the exit wave function – ‰(x, y). Mathematically:

ˆ.x; y/ D F �1Œ .u/� D ‰ .x; y/ (25.3)

Equation (25.3) means that a HRTEM image formed in this way will represent
the projected potential of atomic columns; this proves the theoretical possibility to
resolve atoms using HRTEM. However, as with everything else in life, the reality
is not so simple, since, as stated earlier, electromagnetic lenses used in electron
microscopes are not perfect and they distort the image. Thus the function of the real
image formed in the image plane of an objective lens (ˆ(x, y)) will not be equal to
the exit wave function –‰(x, y) – and the final image will be distorted. Actually, the
coefficient by which these two functions relate to each other is called the Contrast
Transfer Function (CTF) – this function takes into account all distortions introduced
by the microscope and thus is a function of the microscope used. Equation (25.4)
summarizes the real relation between an atom distribution function of the specimen
and the intensity distribution function of the image formed by the microscope:

ˆ.x; y/ D F �1A.u/D .˛;�/ exp .�i�.u//  .u/ D F �1CTF .u/ (25.4)

when: A(u) D objective aperture function that limits the number of diffraction
beams that form the image; D(’, �) D function of chromatic aberrations, beam
convergence, and defocus spread; ”(u) D phase shift of the electron wave with
respect to incident electrons, see Eq. (25.1). This function depends on the coefficient
of spherical aberrations (Cs), electron wavelength, and defocus (�f).

Cs and defocus are the main factors affecting the CTF of the microscope (see
Fig. 25.6). CTF function, as shown in Fig. 25.6, is a function of image intensity
vs. the reciprocal vector (u). Thus at some lattice spacing we see the inverse of the
contrast and some spacings have zero intensity (see points marked as u1 and u2 in
Fig. 25.6b). For interpretable HRTEM images we prefer to choose a defocus value
in which these effects will be minimized. Such a defocus value is called Scherzer
focus [6]. In Fig. 25.6 this condition is satisfied when �f D �50 nm.

Summarizing, we would like to state that minimization of the distortions of
image caused by CTF will enable formation of a HRTEM image that would be
straightforward interpretable. Nowadays, there are two paths in which scientists
work in order to achieve this: (1) improvement of the instrumentation (such as
development of Cs and Cc correctors and monochromators), and (2) HRTEM image
processing (such as the crystallographic image processing method). These issues
will be addressed in later chapters.



25 Image Formation in the Electron Microscope 279

Fig. 25.6 Changes of CTF as a function of (a) coefficient of spherical aberrations (Cs) (for
V D 200 kV and �f D �60 nm) and (b) defocus (�f) (for V D 200 kV and Cs D 1 mm) [5]

References

1. Hirsh PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1967) Electron microscopy of
thin crystals. Butterworths, London

2. Meshi L, Samuha S, Kapush D, Pavlyuchkov D, Grushko B (2011) New complex intermetallic in
the Al-Rh-Ru alloy system. J Alloy Compd 509:6551–6555. doi:10.1016/j.jallcom.2011.03.108

3. Bennett AH, Jupnik H, Osterberg H, Richards OW (1951) Phase microscopy. Principles and
applications. Wiley, New York

4. Spence JCH (2003) High-resolution electron microscopy, 3rd edn. Oxford University Press,
New York

5. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials
science. Springer, New York

6. Scherzer O (1949) The theoretical resolution limit of the electron microscope. J Appl Phys
20:20–29. doi:10.1063/1.1698233

http://dx.doi.org/10.1016/j.jallcom.2011.03.108
http://dx.doi.org/10.1063/1.1698233


Chapter 26
Models for Precession Electron Diffraction

Laurence D. Marks

Abstract Precession Electron Diffraction has become an increasingly popular
method of obtaining crystallographic data, and may well replace older methods such
as selected area diffraction or microdiffraction. While a full model has to involve a
dynamical calculation, some approximations give some indication how the results
vary as a function of thickness and precession angle. This note reviews some of the
basic models, their advantages and failures as well as some of the open issues.

26.1 Introduction

Over the last few years Precession Electron Diffraction (PED), a technique for
acquiring electron diffraction intensities, invented in 1994 by Vincent and Midgley
[1] has started to emerge as a viable technique for determining structures based
solely upon the intensities, and/or with some assistance from crystallographic
phases determined using HREM or similar techniques. An incomplete list of refer-
ences is [1–50]. It was clear from the first attempts to use the method coupled with
direct methods that it gave remarkably better results than conventional diffraction
techniques except in relatively special cases such as surfaces where the diffraction
intensities are very close to kinematical. Hence the quandary; electron diffraction
can only be properly be described using dynamical diffraction, but tools based upon
a kinematical formulation work. Why? While the detailed answer to this is still not
fully understood, many of the details are and I will here briefly describe the main
models along with their advantages and limitations.
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26.2 Kinematical Model

The kinematical model has to be mentioned as it is the simplest. The result one
gets is that the intensities are proportional to the square of the crystallographic
structure factor. Unfortunately except for special cases such as surfaces or graphene
monolayers the method has only a very limited relevance for standard samples as an
accurate model, as illustrated in Fig. 26.1, failing by 10 nm thickness.

26.3 Blackman Model

The Blackman model [51, 52] makes the assumption that the integration over angles
can be considered as equivalent to a complete integration of a two-beam diffraction
problem for all possible angles. In more detail, the intensity for a given reflection
can be written as the integral of a Bessel function:

I.t/ D
AgZ

0

J0.2x/dx Ag D �t

�g
2

Where Ÿg is the standard extinction distance which scales inversely with the
structure factor and t is the thickness. The result one obtains is that the intensity,
for a relatively thick crystal, scales directly as the crystallographic structure factor;
for a thin crystal it scales as the square of the structure factors. While this is again
a useful, simple approximation which has been sometimes used and is better than
kinematical, there are several fundamental problems with it:

(a) It neglects most dynamical diffraction effects, as the two-beam model really
only applies for specific orientations.

(b) It neglects the fact that in a precession experiment only a limited range of angles
are used.

Unfortunately it is not accurate, R1> 40% for 200 Å, see Fig. 26.2.
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Fig. 26.1 Comparison of kinematical intensities (y axis) versus full dynamical calculations
(x axis) for different thicknesses for (Ga,In)2SnO4 with the R1 shown
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Fig. 26.2 Values of the R1 from a Blackman model versus a full dynamical calculation (y-axis)
for (Ga,In)2SnO4 as a function of thickness in Angstroms along the x-axis

26.4 Methods Based Upon Lorentz-Type Corrections

From the earliest days of PED a different approach has been to try and separate the
contributions associated with the integration over angle and dynamical diffraction
effects, what has been called a Lorentz correction. In more formal fashion, the
intensity would be written as

I.g/ D L.g/ � B.g/

where L(g) is an approximate form to take into account the integration range, and
B(g) is purely a diffraction term, for instance Kinematical or the Blackman equation.
The concept is that one might then be able to precalculate L(g) and remove it,
thereby obtaining a better form. A simple form for L(g) suggested by Gjonnes [2] is

L.g/ D g

s

1�
�
g

2R0

�

Where R0 is the precession scan angle in reciprocal Angstroms. While this is an
interesting idea unfortunately to date it has not been particularly successful as
illustrated in Fig. 26.3.

26.5 1s Channeling Model

The concept of a channeling approach is to expand the electron wave in terms of
local orbitals rather than plane waves, e.g. [53–56]. One can then approximate by
using just the 1s states, which works well for HREM and STEM imaging [57].
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Fig. 26.3 Scatter plot of Lorentz-corrected data (y-axis) versus the true values (x-axis) for (Ga,
In)2SnO4 with two different precession angles and three different thicknesses

At least in order of simplicity, this model is an attractive approach. The result of the
model is “atom-like” features and it has been shown that even though the results are
dynamical, the deviations from kinematical are in fact statistical in character rather
than being systematic [58, 59]. Since both direct methods and refinements are (in
principle) stable against statistically random deviations, it is therefore true that in
some cases on a zone axis these methods will work well. Alas, while there may be
some relationship to what one finds in a PED pattern, to date this approach has not
proved to be useful. (A 1s-model leads to scattering which is dominated by atomic
strings which is similar to what PED yields so there may be some connection, but
so far there is no proof beyond qualitative intuition.)

26.6 Two-Beam Model

The first model to account for at least some of the effects present is a two-beam
model with a proper tracking of the range of integration. A specific form [26] is

C2beam .g; t; �/ D Fg
2

0

@ 1

�g
2

2�Z

0

sin2
�
�tseff

�

�
seff
�2 d�

1

A

�1

Where the effective excitation error seff D .s2 C �2g/
1=2

is used. This is better, but
again not perfect and breaks down for a thickness much beyond 10 nm as illustrated
in Fig. 26.4.
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Fig. 26.4 Comparison for (Ga,In)2SnO4 of the R1 for a two-beam model versus thicknesses (left)
compared to a kinematical model (right). Unfortunately while there is some improvement, it is not
enough

26.7 Full Multislice or Bloch Wave Methods

Good agreement between experimental and calculated intensities has been obtained
using methods where all the dynamical diffraction effects (except fine details of
inelastic scattering/adsorption) are taken into account. These are based upon either
the multislice method [60–63], a fast numerical integration of the intensities, or
Bloch Wave methods [64–66] where a matrix problem is solved. Assuming that the
potential used is the same for the two methods, it is known that they give identical
results provided that they have been properly coded.

The approach [13], as illustrated in Fig. 26.5 is to consider all different incident
beam directions and integrate the final intensity over these, for instance the set 1–8
below.

Without any additional refinement one can easily obtain an R1 of about 0.1, as
illustrated below in Figs. 26.6 and 26.7.

26.8 Intensity Ordering

An explanation of why the methods work, which unfortunately slightly begs the
question of the details of when they will fail, is intensity ordering [67]. Instead
of the intensities being simply related to the structure factors as in kinematical or
Blackman approaches, the hypothesis of this model is that reflections with large
structure factors lead to large intensities in PED, those with small structure factors
small intensities. By inspection this is largely true for the plots shown above which
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Fig. 26.5 Schematic of a
dynamical simulation. For a
range of different tilts a full
calculation is performed and
the results are summed.
Specific results for eight
illustrative tilts are shown; in
general 512–1,024 different
values are used

Fig. 26.6 R1 as a function of thickness in Angstroms from a multislice calculation using
experimental data for (Ga,In)2SnO4 both on-zone (upper line) and precessed (lower line). The
minimum with precessed data is much clearer, and the R1 much lower

plot the kinematical structure factors versus the true values. This is a sufficient
condition for direct methods to work, indeed in the early days of the technique
with “by eye” measurement of intensities for x-ray diffraction from film, structures
were solved by dividing the intensities into those which were strong, those which
were of medium intensity and the weak ones. Classical direct methods only use
the strong intensities, so provided that these are representative then †2 and similar
relationships will be preserved.
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26.9 Summary

For certain PED has emerged as a powerful tool for solving structures. The inten-
sities are much better behaved than those from zone-axis diffraction particularly if
larger tilt angles are used. Unfortunately most simple models to date fail to explain
fully the dynamical diffraction effects in enough detail so one has to do a full
calculation.

Fortunately the PED intensities are not chaotic, but are ordered which is enough
for direct methods to work and there is now extensive empirical evidence showing
that this approach can be used to obtain an initial structure for later refinement either
(or both) from powder x-ray data or by using a dynamical approach.

What remains as a problem is how to refine the structure, or perform structure
completion – in most respects the later is a more significant issue as structure
completion is in many respects why direct methods work. The large R1 values with
kinematical models are problematic. In principle one might be able to use a two-
beam model as an improvement upon kinematical in a refinement as implied by an
initial estimate [26] and one can use it to approximately invert a set of intensity
data. This might be a viable refinement approach as it would be faster than a full
dynamical method, and this is currently under investigation.

There are also other alternatives. For instance, some time ago it was suggested by
Peng [68] that one could use a quasi-kinematical approach, an idea that may well be
worth returning to. Alternatively there are ways to exploit the implicit periodicity in
reciprocal space (Brillouin Zone folding) so rather than calculating 1,024 different
tilts a much smaller number of Bloch wave calculations is needed, perhaps only 1
if chosen judiciously or at most 8 [47]. This could give a 103 improvement in speed
and might make a Bloch wave refinement viable on a reasonable computer; full
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Fig. 26.8 Plot the R1 for (Ga,In)2SnO4 using a limited number of tilts exploiting Brillouin-
Zone folding for different thicknesses relative to a full calculation (left) with a scatter plot of the
intensities on the right for one Bloch-wave as arrowed

refinements will be unrealistically slow if all points are used. This is illustrated in
Fig. 26.8 below which compares the results of an accurate Bloch wave calculation
with 1,024 tilts to a much smaller set.

Despite these limitations, PED has moved from the early days when it was
a curiosity to a mainstream tool for electron microscopists to use to determine
structures where real-space imaging methods are problematic, for instance when
there is beam damage or ambiguities in the interpretation of the images. Even with
its current limitations the R1 values obtained are in most cases rather better than one
can obtain with alternative approaches.

References

1. Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of
integrated electron diffraction intensities. Ultramicroscopy 53:271–282

2. Gjonnes K (1997) On the integration of electron diffraction intensities in the Vincent-Midgley
precession technique. Ultramicroscopy 69:1–11

3. Berg BS, Hansen V, Midgley PA, Gjonnes J (1998) Measurement of three-dimensional
intensity data in electron diffraction by the precession technique. Ultramicroscopy 74:147–157

4. Gjonnes J, Hansen V, Berg BS, Runde P, Cheng YF, Gjonnes K, Dorset DL, Gilmore
CJ (1998) Structure model for the phase AlmFe derived from three-dimensional electron
diffraction intensity data collected by a precession technique. Comparison with convergent-
beam diffraction. Acta Crystallogr Sect A 54:306–319

5. Gjonnes K, Cheng YF, Berg BS, Hansen V (1998) Corrections for multiple scattering in
integrated electron diffraction intensities. Application to determination of structure factors in
the [001] projection of AlmFe. Acta Crystallogr Sect A 54:102–119

6. Midgley PA, Sleight ME, Saunders M, Vincent R (1998) Measurement of Debye-Waller factors
by electron precession. Ultramicroscopy 75:61–67



26 Models for Precession Electron Diffraction 289
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Chapter 27
Structure Solution Using HRTEM

Sven Hovmöller

Abstract Electron microscopy is the only method known today that allows us to
directly see the atoms in a sample. Compared to X-ray crystallography, crystals
billions of times smaller can be studied by electron crystallography. The funda-
mental difference between (electron microscopy) images and diffraction patterns
is explained. Images have a one-to-one relation to each point in the object. This
is not the case for diffraction patterns, where each point comes from all points in
the sample. The crystallographic structure factor phases that are necessary to know
in order to solve a crystal structure, can be read out numerically directly from the
Fourier transform of an image, but not from diffraction patterns.

27.1 Introduction

All materials and compounds are made up of atoms. The 3D arrangement of these
atoms determines the properties of everything, ranging from simple inorganic salts
to biological macromolecules. Therefore it is of fundamental importance to be able
to determine the atomic arrangement with high accuracy. Mankind has speculated
about what the inner structure of matter was, for thousands of years. It would take
until exactly 100 years ago, until the dream of revealing the inner secrets of matter
was fulfilled.

It was in 1912 that father and son Bragg invented X-ray crystallography and
solved the structures of NaCl and other inorganic compounds. During the following
century, X-ray crystallography has evolved in a spectacular way and has been used
for solving hundreds of thousands of structures, up to the complexity of viruses.
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With such a fantastic method at hand, one may wonder if it is worth while to
compete, using electron crystallography. There is one good reason for this: X-rays
interact so weakly with matter that it can only be used for compounds that form
perfect crystals with about 1012–1015 unit cells. Electrons interact about a million
times stronger with matter than X-rays do and thus become the alternative for
very small crystals. X-rays cannot in practice be focussed into images with atomic
resolution, so only diffraction patterns are available. Electrons, on the other hand,
can be focused into images. Electron microscope lenses have been improved over
the years; they have today reached atomic resolution. Electron microscopy can be
used both for crystal structure determination and for looking at non-crystalline
features, including defects, grain boundaries and so on, even down to individual
atoms [1].

The downside of the strong interaction of electrons with matter is that the
electrons can scatter more than once on their way through the sample, even if
it is only a few nanometres thick. This can make the interpretation difficult or
even impossible. Another difficulty is the dramatic change of appearance of an
EM image with even slight changes of focus. Unlike the multiple scattering, the
focus effects are rather easy to determine and compensate for, as shown below. In
summary, electron diffraction and electron microscopy are two powerful techniques
for studying the atomic arrangements in crystals and in non-crystalline materials.
Here we will only deal with crystals, but what is said, especially about the effects of
focus, holds for any kind of specimen.

27.2 Phase Information Is Present in EM Images

There is a fundamental difference between an image and its diffraction pattern. In
an image, you see directly the object. Mathematically, an image should have a one-
to-one relation from a point in the object to a point in the image. An image is not
the same thing as the object and it may have suffered from distortions. For one
thing, the object may be in colour but the image only black and white. Most objects
are 3-dimensional while almost all images are 2-dimensional. In microscopy, the
images are much larger than the objects. In electron microscopy, the magnification
may be as large as one million, allowing us to see individual atoms. Always when
you have lenses, there will be a number of more or less serious distortions. Theses
distortions can be minimized to some degree by special hardware and they may be
compensated for by software (image processing).

A diffraction pattern is a different matter altogether. It does not give a one-to-one
relation from the image to the diffraction pattern. In fact, every single point in a
diffraction pattern carries information from all the points in the object. A diffraction
pattern is a frequency spectrum of the object. Large features (low resolution) appear
near the center of the diffraction pattern. Small details, such as atoms, contribute to
the high resolution part, far away from the center of the diffraction pattern.
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The most important difference between an image and a diffraction pattern is that
the crystallographic structure factor phase is present in images but lost in diffraction
patterns. Thus, there is a phase problem for diffraction data, but not for images. This
phase problem is well known in crystallography and the X-ray crystallographers
have developed many ways to solve the phase problem, including Patterson, direct
methods, charge flipping and others that you will read about in this book. The easiest
way to understand the phase problem (and many more things) in crystallography is
via electron crystallography. That is because in the electron microscope you can get
both an enlarged image of your crystal and the diffraction pattern. While an electron
diffraction pattern looks very similar to the (precession) X-ray diffraction pattern
of the same crystal, the EM image is a different matter! An EM image can be an
enlargement of a million times, and then individual atoms are seen. This works for
inorganic materials, such as metal oxides, that can resist the high electron dose. For
proteins it is harder, but taking great care you can still get (almost) atomic resolution
EM images also from proteins. If you now calculate the Fourier transform (FT) of
an EM image, it will look just like the diffraction pattern, although the spots in the
FT don’t go so far out from the center.

Now to the phases: An image of a crystal is a sum of several sets of lines
(black/white/black : : : ) in all directions. Crystallographers would say these lines
are projected Bragg planes. Each such set of lines gives rise to just a single spot
(and its Friedel pair) in the diffraction pattern. From the position of that spot, you
know the direction and spacing of the Bragg plane. If the spot is strong it means this
set of black/white lines are strong (high amplitude). But – you don’t know how all
these sets of lines are positioned, relative to each other. That is the phase problem
in crystallography. In an EM image, on the other hand, you see the fringes and
when you calculate the Fourier transform of the EM image, you get also the phases!
Numerically in degrees – just read out from the FT! This was first realized by Aaron
Klug at the MRC in Cambridge around 1965 and he got the Nobel Prize for this
(and more) in 1982.

In Fig. 27.1 below, you can see some of the structure factors that together make
up the crystal structure, superimposed on the crystal structure. In Fig. 27.2 you see
the EM image from which this structure was solved, as well as its Fourier transform
and the sum of just these six structure factors shown in Fig. 27.1.

In order to solve a crystal structure from HRTEM images, we need to determine
the crystallographic structure factor phases and amplitudes of sufficiently many
reflections with sufficient accuracy. We must also recognize that all chemical
structures are 3-dimensional, but a single EM image is always just a 2D projection.
Only in some special structures with a very short (�4 Å) unit cell dimension, is
it possible to determine the crystal structure from a single projection, along that
short axis. This is the case for the example above. For larger unit cells, it becomes
necessary to take EM-images from several different orientations; along all the three
crystallographic axes and even among several diagonals for the most complex
(Dlarge) structures.
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Fig. 27.1 The structure of a metal oxide K7Nb15W13O80 [2] superimposed on various structure
factors. The white dots are the metal atoms. Each set of white/black waves is a structure factor.
White stands for high electrostatic potential and so coincides with most (but not necessarily all)
of the atoms. Low index structure factors (top) give low resolution contributions, whereas the
higher indices (bottom) give high resolution, eventually reaching atomic resolution. This structure
is centrosymmetric, so all phases have to be 0ı or 180ı. If the wave has its maximum (white) at the
origin of the unit cell, its phase is 0ı, since in crystallography we talk only about cosine functions
and a cosine has its maximum at 0ı. The sum of these six structure factors is not sufficient to create
an interpretable map (see Fig. 27.2d) – another ten are needed for that [3]
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Fig. 27.2 (a) HRTEM image of K7Nb15W13O80 and (b) its Fourier transform, with the six
reflections shown in Fig. 27.1 marked. In (c) all the 35 reflections seen in (b) have been used
to reconstruct a very clear image of the atomic structure, while in (d) the reconstruction based only
on those six reflections marked in (b) (and their Friedel mates) is not quite enough to give a clear
image of the crystal structure

27.3 Importance of Amplitudes and Phases

Experimental data is always imperfect. It is important to know what the minimum
quality required for atomic resolution is. We can discuss this in three parts; how
many reflections do we need and how accurate must the amplitudes and phases
be? The phases are more important than the amplitudes. Amplitudes extracted from
HRTEM images typically are accurate only ˙20% or so. This is much poorer than
amplitudes obtained by X-ray crystallography, but that is compensated by the fact
that phases are available from EM images, which is not the case for X-ray diffraction
patterns. The phases are typically accurate to within about 20–30ı, which is very
good.
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27.4 Symmetry Determination from HRTEM Images

Symmetry is fundamentally important in crystallography. In 3D there are 230 space
groups, but when these are projected onto a plane (as in an EM image) there
are only 17 plane groups. These are characterized by the unit cell dimensions
and, more importantly, by amplitude and phase relations between symmetry-related
reflections. In the image processing system CRISP [4], these relationships are tested
for every image and the closeness to each of the 17 plane groups are reported in
numerical form. Most plane groups are centrosymmetric, which forces all phases to
be restricted to either 0ı or 180ı. This makes it very easy in most cases to assign
the correct phase, given that the phase errors are typically less than 30ı. Once the
correct plane group symmetry is found, amplitudes and phases consistent with that
symmetry will be imposed, resulting in clear images, as seen in Fig. 27.2c.

The number of reflections that are needed for solving a structure, and those that
are available experimentally from HRTEM images, is best described with the term
resolution. The resolution of a reflection is the d-value of that reflection. It can easily
be calculated from its h, k-index and the unit cell dimensions. For example, in the
structure discussed here, the unit cell dimensions are 9 � 21 Å. The 1 0 reflection
has a d-value of 9 Å, while the 0 2 reflection has a d-value of 10.5 Å as shown in
Fig. 27.3. In this case, we are not able see oxygen atoms (O), so only the metal
atoms (Me D W or Nb) can be determined. The Me-O distances are �1.9 Å, while
the Me-Me distances are �2.7 Å. In order to see the metal atoms, we will then

Fig. 27.3 The effect of resolution. (a) From the Fourier transform of the EM image seen in
Fig. 27.2a, different resolution limits have been applied. These are seen as white circles. The
innermost ring corresponds to 6 Å resolution. The next rings are at 5 Å, 3.5 Å and the largest
ring is at 3.0 Å resolution, respectively. As the resolution is increased, more and more reflections
are included and so the resulting image gets more and more detailed, as seen in (b) to (e),
corresponding to the four resolution ranges. At 2.5 Å resolution, all reflections are used, given
the result seen in Fig. 27.2c
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Fig. 27.4 (a) An HRTEM image of the same crystal as in Figs. 27.2 and 27.3, but taken away
from Scherzer focus. This image cannot be interpreted directly. This is because all reflections
between the first and second ring (or ellipse rather) seen in the FT (b) are reversed. Using the
image processing program CRISP, these ellipses are marked in (c) and the program then switches
the phases of those reflections by 180ı (simply by multiplying by �1). When the inverse Fourier
transform of this corrected data is calculated as in (d), the metal atoms become visible as dark
spots

expect it necessary to have (good) data to �2.7 Å. That level of resolution became
available in HRTEM instruments in the 1970s, which marked a revolution in terms
of EM studies on metal oxides.

27.5 Determining the Focus and Compensating
for Defocus Effects

In summary, for metal oxides, taken along a short (�4 Å) unit cell direction, we can
solve the atomic structure directly from a single HRTEM image. But this works only
if the image was taken near the so-called Scherzer focus. As we shall see, it is also
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Fig. 27.5 High-resolution transmission-electron-microscopy images taken along different zone
axes of IM-5. (a) [100], (b) [001] and (c) [010]. Shown as insets are the corresponding ED pattern
(left), the CTF-corrected and symmetry-averaged image (middle), and the computer simulation
from the structural model (right). (d) The final three-dimensional density map (in green) with
a stick model of the final structure of IM-5 (Si atoms yellow, O atoms red) superimposed for
comparison [3] (color figure online)

possible to solve the structure if a totally different focus is used, but then we must
compensate for the effects of the focus. This is manifested in the Contrast Transfer
Function, CTF, as shown in Fig. 27.4.

Notice that the amplitude and phase data are distorted as the focus is changed,
but this distortion is easily determined from looking at the black rings (so-called
Thon rings) in the Fourier transform. It can also easily be corrected for, as shown
in Fig. 27.4. If the image was astigmatic, like in this case, the Thon rings turn into
ellipses, but that can equally easily be corrected for. Unfortunately, the effects of
the multiple scattering that occurs if the sample is not infinitely thin, cannot be
compensated for in a similar straight-forward procedure. The best thing to do is
therefore to try very hard to find the thinnest areas for HRTEM images.

27.6 From 2D to 3D Structure

For more complex structures, with all unit cell dimensions>6–8 Å or so, there is
no single projection that can reveal all atoms without overlap. Then it becomes
necessary to take several projections and add them all up in a crystallographic
program that allows 3D data. Several such structures, including complex metal
alloys [5] and zeolites [6] have been solved.
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In order to combine several 2D projections into one 3D map, all the images have
to be on the same origin. For the zeolite IM-5 shown in Fig. 27.5, it was enough
to use the three projections along each of the crystallographic axes. For the AlCrFe
alloy [2] several diagonal projections had to be included.

In summary, HRTEM is a powerful method for solving crystal structures.
It becomes even more powerful when it is combined with image processing
techniques, since they are capable of improving the experimental amplitude and
phase data.
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Chapter 28
Combination of X-ray Powder Diffraction,
Electron Diffraction and HRTEM Data

Christian Baerlocher and Lynne B. McCusker

Abstract A combination of X-ray and electron scattering data can facilitate
structure analysis of polycrystalline materials that are problematic to study by
conventional methods. Different electron diffraction data collection techniques as
well as high-resolution imaging are described. A number of diverse algorithms of
data combination and their applications to structural analysis of several materials
systems are provided.

28.1 Introduction

X-ray powder diffraction and electron microscopy are probably the two most useful
techniques for analyzing the structures of polycrystalline materials. While it is
relatively easy to measure an X-ray powder diffraction pattern, a detailed interpre-
tation of the data is not always straightforward because of the well known overlap
of reflections with similar diffractions angles. This hinders structure elucidation
by conventional (single-crystal) crystallographic methods, because the algorithms
assume that the intensities are reliable. However, a wide variety of approaches have
now been developed to deal with this overlap problem, and structures of moderate
complexity can now be solved from powder diffraction data in an almost routine
manner [1].

With an electron microscope, on the other hand, very tiny crystals (<100 nm)
can be examined individually, because electrons interact much more strongly with
matter than do X-rays. Furthermore, because electrons can be focussed easily, both
diffraction patterns and high-resolution images can be obtained. These obvious ad-
vantages are offset by the fact that the operation of an electron microscope requires
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Table 28.1 Comparison of X-ray powder and electron diffraction data

X-ray powder Electron

Data collection Easy Difficult
Data set Complete (up to 2™max) Incomplete
Lattice parameters Precise Approximate
Intensities Kinematic Dynamical
Multiple diffraction No Yes
Systematic absences Difficult Easy
Crystallite size �m nm
Reflection overlap Yes No
Phase information No Yes (from HRTEM images)

considerable expertise and the measured diffraction intensities are distorted by a
number of effects that are not easy to control or correct for. Nonetheless, electron
crystallography has been applied successfully to various classes of materials (e.g.
[2, 3], U. Kolb, this school).

These two techniques are remarkably complementary (see Table 28.1), and over
the last few years, several ways of combining them have been developed to address
structures that cannot be solved by either method alone. In this lecture, the relevant
features of the two techniques, the algorithms used to combine the different kinds
of data, and some recent examples taken from the world of zeolite structures are
described.

28.2 Structure Determination from Powder Diffraction
and Electron Microscopy Data

28.2.1 Powder Diffraction

As mentioned above, the main limitation of X-ray powder diffraction data is
reflection overlap. In most cases, the total intensity measured for a group of
overlapping reflections is simply equipartitioned over the contributing reflections.
The problem can be reduced by collecting high-resolution data at a synchrotron
facility, but it cannot be eliminated. It was soon recognized that single crystal
methods could not be applied for diffraction patterns with severe overlap and
alternative approaches would be required. Supplementing the powder diffraction
data with chemical information (known bond distances and angles, coordination
numbers, connectivity, etc.) was found to be a particularly effective approach [1].
This resulted in a number of automated model-building programs based on global
optimization algorithms. While direct methods operate in reciprocal space (i.e. with
reflection intensities and phases), the global optimization algorithms work in direct
space. For more detailed information, the reader is referred to the book Structure
Determination from Powder Diffraction Data [4], the special issue of Z. Kristallogr.
devoted to the same topic [5] and of course to the lectures of this school.
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A few algorithms, such as the shake-and-bake modification to direct methods [6],
the charge-flipping algorithm that was introduced only recently [7], and the zeolite-
specific program Focus [8], alternate between the two spaces and can therefore
benefit from the individual strengths of both. On particular idea that can be used
in this respect is the concept of a structure envelope [9]. A structure envelope
defines regions within the unit cell that are most likely to contain atoms, and can
be generated from just a few strong, low-index reflections [10].

28.2.2 Electron Microscopy

All aspects of electron crystallography are of course extensively covered in the
workshop on that topic. For the benefit of the “powder people” the problems and
techniques relevant for this lecture are briefly mentioned here. Whereas the main
problem with powder diffraction data is the reflection overlap, the main problem of
electron diffraction is the strong interaction of the electron beam with the crystal. As
a consequence the diffracted beams are also strong and can, in turn act as incident
beams. Thus, the interaction between the incident beam and the crystal cannot be
treated as a single-scattering event for each reflection as it is for X-rays (kinematical
approximation). The thicker the sample, the more severe is this effect.

28.2.2.1 Selected Area Electron Diffraction (SAED)

If the crystal in the electron beam is thin enough (�50 nm or less), however, the
dynamical effects are minimized and the diffraction intensities measured using a
conventional selected area electron diffraction (SAED) technique can be treated as
quasi-kinematical. In a typical SAED pattern, the incident beam is generally aligned
along a zone axis, and the complete zero-order diffraction pattern for that zone
(zero order Laue zone or ZOLZ) can be recorded out to a resolution of less than
1 Å in a single shot. However, because many reflections are excited simultaneously,
multiple scattering effects can be severe, and the measured intensities are not very
reliable.

28.2.2.2 Precession Electron Diffraction (PED)

In 1994, Vincent and Midgley [11] introduced the precession electron diffraction
(PED) technique that partially solves this problem. The electron beam is deflected
and then precessed around a stationary crystal, and with this tilted illumination,
only a few reflections are excited at a time, so the possibilities for multiple
scattering are reduced and the resulting diffraction intensities are more kinematical
in nature. Although the PED intensities are still not ideal, they are significantly
improved over typical SAED intensities [12], and have been used to solve several
structures [13–16].
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28.2.2.3 High-Resolution Transmission Electron Microscopy (HRTEM)

Because the electron beam can be focused, it is also possible to record a magnified
image of the sample with an electron microscope. The advantages of having a high-
resolution transmission electron microscope (HRTEM) image for structure analysis
are twofold. First, the image shows approximately where the atoms are in that
projection of the unit cell even if atomic resolution is not attained, so the validity of
a structure envelope can be evaluated by eye. Second, the Fourier transform of the
image yields a list of structure factor amplitudes and phases for the reflections in
the corresponding diffraction pattern. Before the Fourier transform is performed, the
image is usually lattice and symmetry averaged to obtain a clearer and defect-free
image. Then a contrast-transfer-function (CTF) correction is applied, which allows
for the modulation of the amplitudes and phases caused by various parameters of
the microscope. Fourier transform of this modified image then generates the desired
phase information. The crystallographic image processing software package CRISP
[17] can be used to perform these calculations.

28.3 Dual-Space Structure Solution Algorithms

It was mentioned earlier that a few structure determination algorithms work in both
reciprocal and direct space, so information from different sources can in principle
be added in either realm. Such algorithms are particularly well-suited for combining
data from different sources. In the last few years, two of them, Focus [8] and
powder charge flipping pCF [18], which is implemented in the program Superflip
[19], have been used successfully to combine X-ray powder diffraction and electron
microscopy data.

28.3.1 Focus

Focus is a zeolite-specific structure-solution program that uses chemical information
(real space) to compensate for the ambiguities in the reflection intensities (reciprocal
space) extracted from a powder diffraction pattern. Structure factor amplitudes
are calculated from the extracted intensities, and are then assigned starting phases
(usually random). These are used to generate a (random) electron density map. The
program then interprets the map and calculates a (partial) model. It is primarily
in this interpretation step that the chemical information about zeolite framework
structures is exploited (4-connected, 3-dimensional network of corner-sharing TO4

tetrahedra, where T is any tetrahedrally coordinated atom such as Si or Al). If a
framework model is found, it is classified and written to a file. When a sufficient
number of frameworks have been found, a histogram is generated, and in general,
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the framework found most frequently (from different starting phase sets) will
be the correct one [20]. The algorithm has now been applied by many different
laboratories with considerable success. Its only drawback is that it is specific to
zeolites.

Until 2006, the germanosilicate ITQ-22 [21] had the most complex zeolite
framework structure, so it was used to test the value of including some initial phases
in the Focus input [22]. These tests showed that by prescribing the phases of just
31 of the 992 strongest reflections, the time required for structure solution could be
reduced from 31 days to 44 h. Doubling the number of phases to 62 resulted in 17
solutions within 11 h. Obviously even a limited amount of phase information has a
significant effect on the structure solution.

28.3.2 Powder Charge Flipping

In 2004, Oszlányi and Sütő introduced a more general algorithm for structure
solution from single-crystal data, that they called charge flipping [23]. The details
of this algorithm as applied to powder diffraction data is explained by L. Palatinus
during this school. To start with, an electron density map is generated using random
phases as in Focus, and therefore it is again simple to introduce already known
phases in this step to help the solution process. How this and other combinations
help this process is explained in the following chapters.

28.4 Combining X-ray Powder Diffraction Data
with HRTEM Images

Data from high-resolution electron microscopy images can be supplied to the Focus
and pCF algorithms in several different ways. For example, a structure envelope for
a zeolite derived from one or more HRTEM images can be imposed in real space to
limit the peak search in Focus or to set the electron density in the pore regions
to zero in pCF. It is also possible to include all phases obtained from HRTEM
images in the starting phase set in either program. Although it would be possible
to keep these phases fixed, experience has shown that it is more prudent to allow
them to change during the normal procedure, whether in Focus or pCF, to allow
any incorrect phases to correct themselves. However, in pCF, it is critical that they
be fixed for the initial 10–20% of the cycles if they are to be effective. A further
option is to use an approximate or partial model that has been deduced from HRTEM
images as a seed for generating sets of complete starting phase sets.

Different combinations of these options eventually led to the determination of
the three most complex zeolite structures using powder diffraction data (TNU-9
[24], IM-5 [25] and SSZ-74 [26]). The relevant aspects of these structure solutions
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are given in the following sections to illustrate the procedure. Although all three
are zeolites, only the first was solved using the zeolite-specific program Focus.
The more generally applicable pCF algorithm was used for the other two, and
the concepts applied in all three cases should be readily transferable to non-zeolite
materials.

28.4.1 TNU-9

The first true test of the value of including phases in the Focus input was performed
in the structure solution of the high-silica zeolite TNU-9 [24]. It’s high-resolution
synchrotron powder diffraction pattern could be indexed (C2/m, a D 28.2219 Å,
b D 20.0123 Å, c D 19.4926 Å, ˇD 92.33ı), but there were a few unindexed peaks,
so SAED data were used to confirm the unit cell. However, attempts to solve the
structure with Focus using the powder diffraction data alone were not successful.

From three high-quality HRTEM images of TNU-9 (along the [010], [001] and
[N110] zone axes), the phases of 258 reflections were estimated using the CRISP
software package. Only when these phases were included in the Focus input along
with a structure envelope to describe the pore system, could the structure, with 24
Si and 52 O atoms in the asymmetric unit, be solved.

28.4.2 IM-5

In the case of IM-5 [25], another high-silica zeolite, a slightly different approach was
used. As for TNU-9, impurities were present, so SAED experiments were performed
to verify the unit cell (Cmcm, a D 14.299 Å, b D 57.413 Å and c D 20.143 Å).

Initially, the phases of 95 reflections were estimated from three HRTEM images
(along the [100], [010] and [001] zone axes) and included in pCF runs, but the
resulting electron density maps could not be interpreted on an atomic level. After
careful corrections to the HRTEM images, a 3-dimensional potential map was
generated in the space group C2cm and a model with 36 Si atoms in the asymmetric
unit deduced. Although this structural model was geometrically strained and its
calculated powder pattern did not fit the measured one very well, it was reasoned that
it was probably at least partially correct (certainly more so than a random structure).
Therefore it was used as a seed to generate 1,000 different starting phase sets for
1,000 pCF runs. To do this, the phase of each structure factor calculated from
the geometrically optimized model was varied by up to 25% in a random manner.
The 1,000 electron density maps resulting from these pCF runs were symmetry
averaged assuming the space group C2cm, and then the best five were combined.
Interpretation of this map was almost trivial: 35 of the 36 Si atoms and 61 of the
79 O atoms could be located directly in the strongest 106 peaks. The position of the
missing Si atom was derived from the positions of the four surrounding Si atoms
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and the missing bridging O atoms were added. Rietveld refinement of this model
revealed that it could be described in the higher space group Cmcm with 24 Si atoms
in the asymmetric unit.

These HRTEM images of IM-5 were later used to test the limits of electron
crystallography. By careful analysis, it proved to be possible to derive the positions
of the 24 Si atoms from the HRTEM data alone (Sun et al. [31]).

28.4.3 SSZ-74

The pCF approach was also applied to synchrotron powder diffraction data collected
on the high-silica zeolite SSZ-74 [26]. In this case, no impurities were present and
the pattern could be indexed with confidence with a monoclinic unit cell (C2/c or
Cc, a D 20.514 Å, b D 13.395 Å, c D 20.097 Å, ˇD 102.2ı). Unfortunately, only
one HRTEM image of relatively low resolution was available, and only 29 structure
factor amplitudes and phases could be derived from it. These were used to construct
a structure envelope that could be imposed in real space in the pCF algorithm to
eliminate any electron density in the pores.

The best electron density maps generated from a series of pCF runs were
examined by eye. Those judged to have realistic pores and at least a partial
framework structure were averaged, and then used as a seed within the Superflip
program to generate 100 new starting phase sets in a manner analogous to that used
for IM-5 (but with a map in this case rather than a model). The ten best maps from
these runs were then averaged, and the framework structure could be recognized
easily. The space group symmetry had to be reduced to Cc, and the final structure,
with 23 Si atoms in the asymmetric unit, proved to be a most unusual one with
ordered Si vacancies.

28.5 Combining X-ray Powder with Precession
Electron Diffraction Data

Although it is readily apparent that HRTEM images can be extremely useful in the
structure determination process, they are not always easy to obtain, especially if the
sample is beam sensitive. To circumvent this problem, Xie et al. [27] investigated
the possibility of using the less demanding precession electron diffraction (PED)
technique in place of HRTEM. While PED and X-ray powder diffraction data have
been used in combination by Dorset [28] to solve and refine the structure of the
zeolite ZSM-10, in that case, the structure was solved from the PED data and then
refined with the X-ray data. The question here is whether or not the two sets of
data can be combined to facilitate structure solution. Two approaches have been
developed: (1) PED data are used to identify weak reflections, and (2) PED data are
used to estimate the phases of the reflections in the projection. Both strategies proved
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Fig. 28.1 The effect of weak reflection elimination on intensity extraction. The true intensities of
three reflections (10, 7, 1) under a single peak are shown in the center. On the left is a conventional
equipartitioning (6, 6, 6), and on the right, equipartitioning after the weak reflection has been
eliminated (9, 9, 0)

to have a significant and beneficial effect on the structure solution process. To keep
things simple, the structure factors derived from the PED patterns were calculated
assuming kinematical scattering and no geometric corrections were applied.

28.5.1 Weak Reflection Elimination

Although the scattering factors for X-rays and electrons are not identical, they do
show the same general trend, so reflections that are weak in the electron diffraction
pattern should also be weak in the corresponding X-ray diffraction pattern. Thus,
if those reflections are eliminated during the X-ray intensity extraction process,
the intensities of the remaining reflections in an overlap group should be better
estimated (see Fig. 28.1).

Tests on the zeolite ZSM-5 (Pnma; a D 20.022 Å, b D 19.899 Å, c D 13.383 Å)
using just four projections (Œ010�, Œ01N2�, Œ02N1� and Œ10N1� with a total of 594
reflections) showed that the electron density map generated by pCF with intensities
derived using this weak reflection elimination (WRE) procedure improved signifi-
cantly. Of the 3,042 reflections in the powder diffraction pattern, 412 were defined
to be weak and eliminated from the intensity extraction procedure. With the new
set of intensities, the best maps produced by the powder charge flipping algorithm
matched the correct one much better. The agreement factor Rmap, which compares
the pCF map with a reference map calculated from the true structure, decreased
from over 55% without WRE to less than 25%.

28.5.2 Phase Retrieval from PED Data Using Charge Flipping

Precession electron diffraction data have already been used in combination with
direct methods and maximum entropy methods to determine two-dimensional
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structures [13–15]. This is an indication that the reflection intensities are reliable
enough and have sufficient resolution for the phasing process to succeed. For three-
dimensional structures, of course, a single projection is insufficient to solve the
structure, but the phases for selected projections can be used in combination with
X-ray powder diffraction data in the same way as those derived from 2-dimensional
electron microscopy images.

Baerlocher et al. [26] used the single-crystal charge-flipping algorithm imple-
mented in the program Superflip [22] to estimate the phases. Using the same PED
patterns for ZSM-5 as for the weak reflection elimination study, 100 charge-flipping
runs were performed on each of the 4 two-dimensional datasets (289 reflections for
[010], 162 for Œ01N2�, 124 for Œ02N1� and 246 for Œ10N1�). The resolution for each of
these datasets was ca. 0.8 Å.

For each projection, the five maps with the best Superflip R-values were averaged.
Then a Fourier transform was applied to calculate the phases of the corresponding
reflections. Even though the symmetry of the map at this stage was P1, the space
group symmetry was imposed for this transformation to ensure that only phases
consistent with a centrosymmetric space group were obtained. The total amplitude
that was correctly phased was more than 70% for each of the four zones. This
number compares well with that obtained for the phases derived from HRTEM
images.

28.5.3 Combining Weak Reflection Elimination
and Phase Retrieval

It is to be expected that the combination of weak reflection elimination and phase
retrieval will further improve the changes for a successful structure determination.
This was tested with PED data recorded for the zeolite TNU-9. Five PED patterns
were used to eliminate 323 reflections and to derive 176 phases. The best map
showed the positions of 23 of the 24 Si atoms in the asymmetric unit and many of
the O atoms. By “recycling” this map in a second series of pCF runs, more realistic
electron densities for Si and O atoms were obtained and all 24 Si atom positions
could be located.

28.6 Combining X-ray Powder with Selected Area
Electron Diffraction Data

Selected area electron diffraction patterns can also be used to advantage in conjunc-
tion with X-ray powder diffraction. Not only can the unit cell dimensions be verified,
but the intensities can also be used if sufficient care has been taken in recording
them. In the case of the zeolite ITQ-26 (I4/mmm, a D 26.7769(8) Å, c D 13.2505(5)
Å), Dorset et al. [29] used 41 and 17 SAED intensities taken along the [001] and
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[100] directions, respectively, as input to the maximum entropy program MICE [30]
to produce low resolution electrostatic potential maps. These were not sufficiently
detailed to allow direct interpretation, but could be used to screen the framework
structures generated by Focus from the X-ray powder diffraction data.

Sun et al. [31] used SAED data in a somewhat different way to solve the structure
of the germanosilicate zeolite ITQ-37 (P4132, a D 26.5126(3) Å). Because the unit
cell is cubic and rather large, many symmetry-unrelated reflections overlap exactly
in the powder pattern (e.g. 511 and 333). SAED patterns were recorded along
the [100], [110], [111] and [120] directions and their intensities extracted using
the program ELD [32]. To get a better estimate of the relative intensities of the
reflections in the overlap groups, the ratios of the corresponding SAED intensities
were used to prepartition them. This improved set of intensities was then used as
input for Superflip, and the resulting electron density maps could be interpreted in a
straightforward manner.

28.7 Conclusions

The combination of X-ray powder diffraction and electron microscopy techniques
is a powerful one for the determination of the structures of polycrystalline ma-
terials that resist solution by more conventional methods. Crystallographic phase
information obtained from high-resolution electron microscopy images or from
precession electron diffraction patterns has proven to be particularly useful. The
powder diffraction structure determination programs Focus and pCF, both of which
operate in both direct and reciprocal space, use the phase information in the critical
early stages of the structure solution procedure. Electron diffraction data, whether
recorded using the conventional selected area or the newer precession technique, can
also be exploited to get a better estimation of the relative intensities of overlapping
reflections. By combining data from these two different sources, several complex
zeolite structures have been solved. The concepts used for these zeolite structure
solutions are generally applicable, and can also be applied to other classes of
materials, whose structures cannot be solved by more traditional methods.

References

1. David WIF, Shankland K (2008) Structure determination from powder diffraction data. Acta
Crystallogr A 64:52–64

2. Dorset DL (1995) Structural electron crystallography. Plenum Press, New York
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23. Oszlányi G, Sütő A (2004) Ab initio structure solution by charge flipping. Acta Crystallogr A
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Chapter 29
Automated Electron Diffraction Tomography

Ute Kolb

Abstract Ab-initio structure analysis by electron diffraction is hampered by two
major problems: insufficient number of reflections sampled and an intensity alter-
ation by dynamical scattering contribution or beam damage. Thus, in recent years
the principles of automated diffraction tomography (ADT) allowing systematic
reciprocal space sampling and automated data analysis were developed. Here the
basic ideas of ADT and its general applicability will be discussed along with some
examples of solved structures.

29.1 Principles of Automated Diffraction Tomography

In conventional electron crystallography, prominent crystallographic zones com-
prising approximately planar cuts through reciprocal space are recorded. To gain
three dimensional diffraction data for structure solution, intensity collection from
several independent single diffraction patterns or from a tilt series, derived through a
crystal tilt around a crystallographically pronounced axis, is necessary. The resulting
in-zone diffraction patterns can be indexed via Vainshtein plots [1]. Figure 29.1
(top), where such planar reciprocal space cuts are viewed along the tilt axis, shows
that the collection of only prominent zones ignores a vast number of high indexed
reflections inside the scanned reciprocal space thus reducing the total number of
collected reflections. Limiting factor of the tilt range, called the missing cone
problem, includes geometric constraints such as pole piece gap, specimen holder
thickness, position of the particle on the grid.
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Fig. 29.1 Sketch of the reciprocal net viewed down the tilt axis c*. On the top a traditional tilt
collecting prominent zones is sketched. Ewald sphere cuts are approximated by planes. Collected
in-zone patterns are marked as linear cuts. Collected reflections are indicated as dark spots and
missed reflections as bright spots. On the bottom a scan of the reciprocal space with fixed tilt
steps by ADT is sketched. The off-zone cuts are marked as dark lines. The non-reachable area, the
missing cone, is indicated in black

The ADT method [2] improves reciprocal space coverage by applying fixed tilt
steps (Fig. 29.1 bottom). The resulting diffraction patterns are not oriented, they
are off-zone, and can be indexed only by automated data analysis. Here 3D volume
reconstruction from a set of sequential 2D slices, known as tomography, is utilized.
Although the term tomography is associated with “real-space” tomography, each
slice being a projection of the real space structure, it describes “reciprocal-space”
slicing as well. For such a sampling of the nearly complete reciprocal space pre-
orientation of the crystal is not necessary and should be even avoided in order to
collect as many independent reflections as possible.

Oriented diffraction patterns suffer particularly from dynamic effects: as they
typically have a large number of geometrically related and simultaneously excited
beams, multiple scattering effects are very strong [3, 4]. Additionally, in low index
zones channeling effects are strong leading to additional redistribution of diffracted
intensity [5]. Being “off zone” automatically reduces dynamic effects such that the
collected data set can be considered pseudo-kinematic.

Diffraction experiment inside a TEM can be performed with a large parallel
beam using the selected area aperture (SAED). Focusing the beam on the sample
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by the condenser lens creates a convergent beam producing diffraction discs instead
of spots [6, 7]; decreasing convergence in CBED, LACBED, NBD. Nano electron
diffraction (NED) can be applied, when a small condenser aperture (
10 �m) is
used producing a quasi-parallel beam (�0.2 mrad convergence) with a diameter of
down to 20 nm. Small discs do not hamper data processing, but may cause for large
unit cells reflection overlap. Therefore diffraction patterns are focused additionally
with the diffraction (intermediate) lens. This introduces an effective camera length
change, which can be handled through an additional calibration, and a slight rotation
of the diffraction patterns. Even crystals, perfectly adjusted in eucentric height,
move slightly through crystal tilting. Therefore, the crystal position needs to be
tracked manually or automatically by correlation with a reference image taken in
TEM or STEM mode.

29.2 Data Collection

ADT data collection can be performed manually or automatically, following the
sequence – tilt, crystal tracking, diffraction acquisition – being basically applicable
to nearly every TEM on the market [8]. Preferably, the machine should be equipped
with a computer-controlled goniometer. Sample holder/pole piece combination
should allow at least 30ı complete tilt range for cell parameter determination. Most
structure solutions from ADT data were performed using FEG source at 300 kV
but have been successful as well with LaB6 at 120 kV as well [9]. Primarily, data
resolution is given by the diffraction camera length necessary to ensure that the
diffraction spots are uniquely resolved. In order to maintain the resolution and
resolve the spots at the same time a CCD detector with larger area can be used.
Automation becomes important for beam sensitive samples because an extremely
low electron intensity can be chosen, where the beam is hardly visible on the screen.
Exposure time can be reduced further by blanking the beam every moment it is
not necessary to illuminate the sample. The acquisition module was developed
in collaboration with FEI (FEI Company Eindhoven, The Netherlands), thus it
is primary designed for TECNAI-class of TEMs equipped with a scanning unit
(STEM). Calibration procedures, necessary prior to the measurement, were adopted
from real-space tomography. During a tilt series collection the microscope is toggled
between �-STEM imaging mode for crystal tracking and NED mode for data
collection. Diffraction as well as imaging data is stored in an MRC file.

29.3 Combination with Electron Beam Precession

ADT diffraction information is collected in discrete tilt steps. The intensity recorded
depends on the distance of the reflection centre to the intersection with the Ewald
sphere, commonly referred to as the excitation error [10, 11]. The probability to
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Fig. 29.2 Sketch of the reciprocal space during collection of precession electron diffraction
pattern

cut a reflection close to the centre increases for smaller tilt steps. Electron beam
precession (PED), developed by Vincent and Midgley [12] to reduce dynamical
effects in electron diffraction patterns, can improve the situation. Using PED the
electron beam is tilted away from the vertical optical axis and precessed around
the optical axis. When precession speed is high the diffraction patterns produced at
each azimuthal position of the beam are merged into an integrated steady pattern.
As shown in Fig. 29.2, the diffraction volume within the wedge, described by
the Ewald sphere precession, integrates the gap between the slices, comparable to
the oscillation method used in single crystal X-ray crystallography [13, 14]. The
combination of automated diffraction tomography data acquisition and electron
beam precession has two substantial benefits, which lead to vastly improved data
quality for structural investigations: the intensity data has less dynamical effects
(which may be only a problem when approaching low index zones) and the
intensities between the tilt steps are integrated by the use of precession sweeping
the full reflection through Ewald sphere.

29.4 Data Processing

As mentioned above automated data processing and analysis is crucial to index
off-zone diffraction patterns and to extract intensities [15]. Data processing uses
the knowledge of the diffraction geometry to reconstruct the 3D reciprocal space,
including diffraction pattern shift, analysis of the correct azimuthal tilt axis position
and subsequent rotation of the patterns, and integration into a 3D volume by recal-
culation of 2D pixel-data into 3D voxel-data. Data analysis covers visual inspection
of the reconstructed 3D diffraction volume, unit cell parameters determination and
orientation matrix, indexing of reflections and extraction of intensities.
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Fig. 29.3 Reconstructed reciprocal volume of crystals: (a) BaSO4 view down b*, extinct columns
caused by a-glide plane marked by circles; (b) MoO3, view down b* plus representing lattice of the
major crystal and additional reflections of an extra crystal (circled); (c) Bi12O17Cl2 superstructure,
representing lattice of the parent structure; (d) high-temperature modification of Li2O/Al2O3/WO3,

partially disordered

29.4.1 Visual Analysis of the 3D Reciprocal Space

The ability to visualize the 3D reciprocal space can be used to recognize and
separate superimposed crystal lattices in the diffraction volume, when crystals
agglomerate so strongly that a single crystal to collect data from cannot be found.
In principle, two lattices can be taken apart and treated separately (Fig. 29.3a, b)
and for separated reflections there is no problem extracting intensity data sets of
both lattices. Additionally, the visualization of the complete 3D volume can be
very useful to analyze structural features like superstructures and partial disorder.
Figure 29.3c shows a projection of the diffraction volume of a Bi12O17Cl2 super-
structure: the parent lattice (white dotted lines) is visible. Partial disorder is seen as
streaking along some reflection lines (Fig. 29.3d), like in the diffraction pattern of
a low temperature modification of Li2O/Al2O3/WO3. Indices of these lines can be
easily deduced and the structure faults assigned.
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29.4.2 Unit Cell Parameter Determination

Reflection positions, the basis for unit cell parameter determination, can be derived
from 2D diffraction patterns and transformed into 3D coordinates or determined
directly from the 3D reciprocal volume. Since all collected points can be considered
as 3D vectors, a difference vector space, an autocorrelation of the reflection set,
can be produced. It emphasizes the 3D periodic lattice and fills the non-sampled
diffraction volume (missing cone) arising from data collection. Clouds of high
difference vector density can be detected by cluster routines; three shortest non-
coplanar difference vectors are taken as initial unit cell vectors and refined. The used
density based clustering routine is robust but may need special parameter adjustment
for strongly anisotropic cell dimensions.

29.4.3 Intensity Extraction

Once unit cell parameters and an orientation matrix have been determined it is
possible to assign and integrate intensities. Within the integration boxes a “local”
background function is calculated and subtracted. In order to index the reflections,
a correct projection of the 3D net onto 2D diffraction patterns, thus the effective
camera length and the effective radius of the Ewald sphere need to be known
accurately.

Due to the effective diffraction peak size in 3D, reflections penetrate through
several diffraction patterns. From the intensities collected for one reflection the
maximal intensity value is associated with each (hkl) according to the assumption
that this comprises the closest cut to the reflection center. As a result of intensity
integration, an hkl I file, with

p
I as error estimation is created analogous to single

crystal X-ray data analysis. No correction is applied yet to the raw data.

29.5 Structure Analysis Using ADT Data

29.5.1 Data Evaluation

An ADT 3D data set provides information about the symmetry of the structure and
the extinction conditions. Dynamical effects, which cause zonal and serial reflection
extinction violations, are significantly reduced and can be detected, even for more
than 100 nm thick specimens, inspecting the full 3D-reconstructed diffraction
volume. In most of the cases the extinction group can be automatically determined
by statistical routines implemented in structure solution programs. Visualizing the
3D reconstructed reciprocal space as a projection (integral: lattice centering, zonal:
glide planes) or clipped along a main axis (serial: screw axes) shows extinctions
clearly in addition.
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Both quantity and quality of data are crucial for performing structure solution.
The later depends on the kinematical nature of the diffraction data, i.e. how closely
the intensities of reflections are proportional to the squared structure factor (I � F2).
A strict quantification is not trivial, as reflection intensities can also deviate from
expected values for reasons not related with dynamical scattering. In order to
judge the quality of an ADT data set before attempting structure solution, several
parameters should be evaluated.

The achievable resolution is given by the field of view of the CCD camera
and the camera length necessary to separate reflections in a reasonable way. Well-
ordered inorganic structures usually deliver reflections with sufficient intensity up
to resolutions above 1 Å. A reason to consider a resolution cut-off may be to
compensate for poor sampling of reciprocal space at high scattering angles, where
the gap between slices is too large to sample the reflections completely. Reliable
small molecule structure solution needs a data resolution of at least 1.2 Å for direct
methods programs [16].

For an ADT electron diffraction data set the number of reflections is, dependent
on the lattice cell parameters, in the range of several thousands. The ratio of
collected independent reflections to expected reflections for a given resolution is
defined as completeness. Data sets with<50% completeness rarely give reliable
structure solutions. For high symmetry structures good data completeness is rela-
tively easy to achieve, while for a triclinic structure within a tilt range of ˙60ı one
can get only 2/3 D 66% of data coverage.

Rsym or Rint indicates the agreement of reflections related by Friedels law.
In electron diffraction the main sources of perturbations are dynamical effects,
excitation error and beam damage or experimental problems such as inhomogeneity
of recording media, presence of hot spots or additional intensity from another
crystal. A low Rsym, was found to be in the range of 7–17% for ADT/PED and 12–
22% for ADT data. Higher Rsym values are usually caused by strong beam damage
of the sample or disorder effects. If Rsym shows high values for particular or classes
of reflections, a closer inspection the data set is recommended.

Rsym .SIR/ D
P jjFoj � jFo .mean/jj

P jFoj I Rint .SHELX/ D
Pˇ
ˇF 2

o � F 2
o .mean/

ˇ
ˇ

P
F 2

o

If the Wilson plot [17, 18], which relates the intensities of reflection groups to
the scattering angle, is positive the data will most likely lead to a routine structure
solution. Unlike conventional manual-tilt electron data [10, 19], the majority of
ADT data sets delivers positive thermal factors. Therefore the Wilson plot can be
used to evaluate the reliable resolution of the data set.

Reflection/parameter ratio: To achieve reliable structure solution a ratio of
independent reflections to refined parameters of 10:1 or higher is normally required
[18]. Atoms on general positions need at least four parameters (positions and
isotropic thermal factor or occupancy). Anisotropic thermal factors are usually not
refined.
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29.5.2 Structure Analysis

With the exception of a few outstanding data sets electron crystallography has
not been able to rely on direct methods to solve crystal structures like the
single crystal X-ray community. However, ADT electron diffraction data, being
of pseudo-kinematic nature, moved ab-initio structure solution closer to routine
using traditional direct methods (SIR: [20], SHELX: [21]) or more exotic direct
method programs such as maximum entropy methods (MICE: [22, 23]) and charge
flipping (SUPERFLIP: [24]). A combined structure solution strategy implemented
in Endeavour [25] has been used for electron diffraction data as well. TOPAS [26],
FOX [27, 28] and DASH [29] could also be used by making the simple adjustment
of changing the X-ray scattering factors to electron scattering factors.

Using ADT and ADT/PED, over 40 structures were solved ab-initio in the last
2 years; 24, 12 known and 12 unknown structures (see Table 29.1) ranging from
small structures with two independent atoms to relatively complex ones including
90 independent atoms with triclinic up to cubic cells. The majority of the atoms were
detected directly from SIR2008 solution even for light atoms in the vicinity of heavy
atoms. The achieved R(F) values (R1 D P jjFoj � jFcjj =P jFoj ), in the range of
20–30% and for beam sensitive samples or non-precessed data about 30–40%, are
at the lower limit or below those achieved for conventional electron diffraction
data. The largest cell solved so far is Basolite, a metal organic framework, for
which structure solution was only possible with data collected from a liquid N2

cooled crystal. Deviations of atomic positions from structure solution in comparison
to those taken from literature turned out to be in the range of 0.1–0.2 Å. Five
unknown structures were refined versus X-ray powder diffraction data and showed
comparable atomic position deviations. For the remaining structures, where samples
turned out to contain several phases and crystals smaller than 50 nm, X-ray powder
diffraction data was not suitable for structure refinement.

The advantage of ADT approach is the ability to investigate one single particle
at a time. The smallest particle ever used for structure solution from ADT/PED data
was 20 nm. In general all atomic positions for heavy atoms as well as the majority of
light atom positions could be detected by direct methods structure solution. Using
least squares refinement the 5% missing positions, which resemble mainly atoms
in channels of porous materials, could be located from difference Fourier maps as
well. Except for zeolite structures with remaining template residual potentials are
negative or extremely low.

29.6 Conclusion

ADT is an emerging technique that combines the ability to access nano-crystalline
volumes with the ability to perform a more complete sampling of the reciprocal
space. Intensity data sets are significantly less dynamical than conventional zonal
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acquisitions, producing reliable intensities even from crystals thicker than 100 nm.
The technique has been proven suitable for beam-sensitive materials because crystal
pre-orientation resulting in reduction of electron dose during acquisition is not
necessary. The method can be performed using standard specimen holders and
TEMs. 3D reciprocal space reconstruction allows unambiguous unit cell parameters
determination for any cell metric with accuracy of 2–5% and makes it possible to
analyze additional structural features like partial disorder and polycrystallinity.

ADT allows for structure identification and solution within multiphase systems.
The combination of ADT with PED leads to more reliable pseudo-kinematic
intensities. It is highly suitable for structure solutions of nano-crystalline and beam
sensitive inorganic materials with high structural complexity like charoite having
more than 300 atoms in the unit cell. The ADT approach allows a significant
acceleration of structure solution leading to the ability to access hot-topic structures
in an acceptable time scale. In comparison with single crystal X-ray data collection
and analysis, electron diffraction experiments are now achievable on similar time
scales. Quality and speed of structure analysis will increase the number of solved
crystal structures by electron diffraction significantly and will have a strong impact
on the electron crystallography field.
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Chapter 30
Automated Quantitative 3D Electron Diffraction
Rotation Tomography

Peter Oleynikov

Abstract Recent developments in data collection allow automated acquisition of
3D electron diffraction data from nano-sized crystals using conventional trans-
mission electron microscopes. In the present work we show that the automated
3D electron diffraction rotation method can be successfully applied for the rapid
data collection. Moreover, a dedicated data processing system can be used for the
treatment of the obtained 3D data and for the quantitative extraction of integrated
intensities which are required for the successful crystal structure solution.

30.1 Introduction

Investigations of atomic structure of materials improve the understanding of their
unique physical and chemical properties. This knowledge is of high importance in
the developments of new materials for e.g. biomedical sciences, optics, catalysis,
electronics etc. Generally, synchrotrons and transmission electron microscopy
(EM), which can collect data from very small crystals, are used for such investiga-
tions. However, the EM approach has a major advantage in the possibility to work
with crystals a million times smaller in volume (few nanometers) than the smallest
single crystals possible to use at synchrotrons (few microns). Unfortunately, the
conventional EM approach for such investigations is extremely tedious, skill
demanding, and time consuming. These draw backs are even more obvious when
3D data collection is required, which can easily take months.
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There is an obvious need for fast and automated methods for 3D data col-
lection, data processing, crystal structure solution and refinement of any kind
of fine structure materials. Crystallographic and numerical computation methods
combined with recent advances in the hardware development such as computer
controlled TEMs, Cs aberration correctors, precession/rotation, CCD cameras, and
automated electron diffraction tomography have opened a new era for the EM
approach. First of all, advances in both the methods and hardware have allowed
us to study in detail and reveal/understand the atomic structures of different types
of materials such as nanoparticles, meso-porous materials and zeolites etc., both
in bulk and on their surfaces. Most importantly, these new robust tools boosted
technological development and innovation by introducing and realizing automated
quantitative measurements and data analysis procedures. This means significant
shortening of the time required to design new materials with required properties. A
good example is the solution of the full (3D) crystal structure of a very complicated
quasicrystal approximant [1] which requires at least 13 electron diffraction patterns
from specific zone axes. With the development of an automated rotation electron
diffraction tomography, the time necessary to find and acquire these patterns is
reduced from at least 3 months of tedious manual TEM work down to just 1–2 h
of data collection time. This approach had never been possible before even with
inorganic materials, not until the last 3–4 years. Automated 3D data collection also
present as an untapped potential to collect 3D ED data from biological samples such
as proteins, which could revolutionize the way protein structures are solved.

30.2 Precession and Rotation Methods

There are great scientific and applications interests in nanoparticles, meso-porous
materials, metal-organic frameworks and zeolites as these materials represent a
“bridge” between bulk materials and atomic/molecular structures. It has been
assumed that a bulk material has constant physical properties independent of its
size. However, this is often not true at the micro- and nano-scale. Size-dependency
of material properties (particles become more reactive or catalytic) due to enormous
increase of surface area to volume ratio has been observed in many cases [2, 3].

The structural characterization of these materials is often done using electron
microscopy, both in image and diffraction modes. The drawback of conventional
approaches is the low performance of an electron microscope in diffraction mode
in comparison to an automatic X-ray diffraction collection method. The precession
electron diffraction method, which involved conical electron beam movement [4],
has gained popularity among electron crystallographers and is today often used
for high quality electron diffraction data collection [5, 6]. However, this method
required installation of an extra expensive hardware. We have recently developed a
method to perform the same task using only software approach (no extra hardware
needed) for computer controlled TEMs [7]. However, the precession method can
only collect data within limited geometry (the range of accessible precession angles
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is typically 1–3ı both for hardware and software methods) and cannot be considered
as a 3D data collection method. The real 3D data can only be recorded using other
methods such as the tomography and rotation techniques [8, 9]. The latter is well
known in the field of X-ray crystallography.

In the X-ray rotation method, the Bragg condition for each reflection is satisfied
for monochromatic radiation by rotating the sample crystal. Each lattice plane is
brought into the diffraction condition for a short period of time as the crystal rotates
(see Fig. 30.1). An equivalent description is to imagine reciprocal lattice points
traversing the Ewald sphere as the lattice rotates.

The wavelength for electrons is about 50 times smaller than that used in X-
ray crystallography (�0.02–0.03 Å for electrons against 1–2 Å for X-rays). This
introduces a significant difference between electrons and X-rays – the radius of
the Ewald sphere becomes very large in case of electron diffraction. It eliminates
the influence of geometrical limits on the resolution, which then depends only on
factors not related to the geometry of the experiment. We thus introduced automated
electron diffraction rotation, which is robust and quite reliable in producing similar
results as the X-ray rotation, into our recently developed method [9].

The main difference between the implementations of the X-ray and the electron
diffraction rotation methods is the crystal tracking problem when a computer
controlled TEM is used for the data collection. In order to avoid imperfections of
TEM goniometers we scan reciprocal space by using the electron beam tilt within a
given angular range and a small step. The beam tilt is combined with the mechanical
crystal tilt to cover the full range of tilt angles available for the accessible TEM
goniometer.

30.3 Data Collection

The automatic electron diffraction data collection is done through both mechanical
and electronic controls. Firstly, the mechanical tilt is used in order to reach different
low-index crystallographic axes. Secondly, the deflection coils of the electron
microscope are used for tilting the beam electronically around some axis, thereby
sampling and scanning reciprocal space with desired precision. The smallest beam
tilt step depends on the TEM machine but can be as small as �0.0005ı.

At present, our rotation method allows the 3D data collection in the range from
�43ı to C43ı, the actual limits for our double tilt TEM sample holder, JEOL JEM-
2100 LaB6, covering �86ı of reciprocal space, or from �75ı to C75ı using the
single tilt holder. The complete data set contains 25 individual subsets for double
tilt holder. Each subset has 80 individual frames recorded by tilting the beam with
0.05ı steps between frames. Every data subset is recorded after physically tilting the
sample at an interval of 3.5ı to introduce some overlap (�0.5ı) between individual
data subsets.

Our developed automated electron diffraction rotation tomography method can
collect an impressive number of individual diffraction patterns, for example 2,880
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Fig. 30.1 X-ray rotation geometry. Side views of reciprocal space: (a) for the exact zone axis
orientation and (b) during sweeping by the Ewald sphere. The schematic projection view showing
the difference between (c) the static and (d) the rotating crystals (the dark grey regions represent
the sampled areas where the reflections will be observed)
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Fig. 30.2 The titanosilicate zeolite ETS-10. (a) A 3D reconstruction of reciprocal space after
sweeping �150ı of reciprocal space. (b) The accumulated electron diffraction pattern of 30
individual frames with a step of 0.15ı. The diffuse scattering between main spots can be clearly
observed as streaks (Data collection: P. Oleynikov, sample preparation: F. Hirotoshi, Stockholm
University)

frames within 90 min. This means �1 frame per second, �60 min for 2,000
frames including automatic crystal tracking. The scanning of reciprocal space using
rotation tomography not only allows the recording of the Bragg reflections, but
also the 3D diffuse scattering intensity around and between diffraction spots (see
Fig. 30.2).

There are different tilting modes that can be used in case of digital beam control:
full scan, precession, or rotation [9]. The advantages of this approach are as follows.
Firstly, at any beam tilt, the total number of excited reflections is low, which
significantly reduces the dynamical effects [5]. Secondly, due to the integration
effect during beam tilting (we “remember” all spots through the acquisition of
individual diffraction patterns at each beam tilt), the final electron diffraction pattern
has higher resolution than a regular selected area electron diffraction pattern.

The practical data collection and analysis shows that due to the strong dynamical
interactions present in the zone-axis diffraction patterns it is normally better to avoid
passing through the low-index zone axes. Thirdly, again due to the integration effect,
the diffuse scattering intensity has higher amplitude on recorded diffraction patterns.
This simplifies the measurements and the quantification of electron diffraction
patterns from nano-sized, modulated or disordered samples.

The main problem which arises with electron diffraction tomography is the
so-called “missing” cone. A part of data collected from one crystal is absent in
some volume of reciprocal space. To avoid this problem a double tilt holder with
capability of 360ı continuous rotation of the sample can be used.



332 P. Oleynikov

Fig. 30.3 The Ewald sphere sweeps through reciprocal space and samples reflections differently
depending on their distance from the center of the reciprocal lattice. The corresponding intensity
curves are shown for these reflections as insets

Another problem which shows up during the data collection and the data
processing is the reflections sampling (see Fig. 30.3). If the half-width of the
reflections is very small they can be sampled at only a few points (1–3) (if they
appear at high resolution). Thus the beam tilt step must be chosen carefully in
order to record enough sampling points for those reflections which appear at high
resolution [9].

It is possible to use a specialized hardware (for example, from NanoMEGAS,
Belgium) for the data collection. A single integrated frame (precession or rotation)
can be recorded for each goniometer tilt instead of acquiring several individual
diffraction frames at every beam tilt. The advantage of this approach is reduced
data collection time per single data set since the hardware rocks the beam at high
speed (60–1,000 Hz). The disadvantages are: (a) after each goniometer tilt the
hardware alignment should be verified; (b) special care should be taken for the
partially recorded reflections (partials of these reflections are recorded on two or
more diffraction frames); (c) each reflection has uncertainty in the third dimension
(e.g. for a diffraction pattern with rotation/precession angle range �2ı to C2ı and a
reflection with the width ™ı, we can only say that it lies within the range �2 � ™/2 :
C2ı C ™/2).
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30.4 Radiation Sensitive Materials

The use of cryo-TEM specimen holder allowed us to collect a data set and perform a
partial reconstruction of a small part of reciprocal space of a sucrose sample. It was
possible to maintain the data collection for �12 min covering 16.5ı in reciprocal
space using the 3D rotation tomography.

30.5 Data Processing

The data from all series is combined into a 3D data set for reciprocal space
reconstruction, representing a part of reciprocal space that has been sampled. This
task is performed by a post data processing program “ED-tomo”. After reciprocal
space is reconstructed, all the reflections can be indexed. The unit cell dimensions
and space group can thus be determined even for a crystal with unknown structure.
When the integrated intensities of all the reflections are estimated, hkl files can be
produced and used for solving the structure.

The collected and processed data of high quality can be used for further
determination of the 3D crystal structure. Figure 30.4 shows the results of data
collection and crystal structure analysis using the rotation tomography method, for
a K2Nb14O36 sample (space group P4/mbm, unit cell a D b D 27.5 Å, c D 3.94 Å).
For a K2Nb14O36 crystal with tetragonal symmetry, a general hk0 reflection appears
8 times while a general hkl reflection appears 16 times (8 times as hkl and another 8
times as hk–l). In other words, we only need to reconstruct 1/16 of reciprocal space
to get a complete 3D reflection data set. For structures with lower symmetries, more
coverage of reciprocal space during data collection is needed.

The oxygen atoms can be easily identified in the calculated 3D potential map
(Fig. 30.4c, d). This is the first time, for the given structure, when the oxygen
atoms have been localized and identified in the 3D potential map using electron
microscopy.

30.6 Conclusions

We have developed a software-based method, for computer-controlled TEMs, to
automatically collect 3D electron diffraction data from particles or crystals with a
size of only a few nanometers. We have shown that up to 2000 unique diffraction
patterns can be collected within 1 h using our approach, an impressive improvement
over the conventional method, which can take months to collect less than a 100
frames. Both the data collection and the alignment and calibration procedures are
all automatic, which opens new applications for those crystallographers and material
scientist who are not experts in TEM operations. By this rotation method, reciprocal
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Fig. 30.4 From the 3D reconstruction of reciprocal space to 3D crystal structure solution. (a)
The 3D reconstruction of reciprocal space after sweeping �120ı (2,880 diffraction patterns). The
pattern shows the intensity distribution within hkl reciprocal layers with different Miller index
l. This is the first time such reconstruction is done for electron diffraction. (b) The hk1 slice of
reconstructed reciprocal space (a) with the missing cone marked. (c) The calculated projected
potential using the intensities extracted from reconstructed reciprocal space. (d) The overlay of the
real atomic structure (large D niobium, small D oxygen) on the calculated potential (c)

space can be reconstructed with very high resolution (1–0.6 Å). With measures
taken to minimize the electron beam damage, this technique may also be applied
to beam-sensitive materials such as organic molecules and even bio-molecules
such as proteins, allowing full 3D electron diffraction data sets from crystals of
unprecedented small sizes to be collected.
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Chapter 31
Introduction to ADT/ADT3D

Tatiana E. Gorelik, Sebastian Schlitt, and Ute Kolb

Abstract ADT approach was successfully used within the last years to solve crystal
structure of nanocrystalline material ab-inito using programs initially written for
X-ray diffraction data. The methodology of ADT data analysis including data
extraction in a format suitable for established structure solution programs was
developed. A collection of processing routines was implemented into dedicated
software ADT3D. Here the main steps of ADT data processing are explained, and
the complete sequence of steps from importing raw data to saving the hklI file is
demonstrated.

31.1 Introduction

Automation of an electron diffraction experiment does not only simplify the data
acquisition procedure but also drastically improves the quality of the data and its
performance for structure analysis. Instrumentally two possibilities exist for 3D
diffraction data collection: tilting a crystal in respect to the electron beam and tilting
the beam in respect to the crystal. The beam tilt controlled by magnetic lens is much
more precise, but the tilt range is limited to several degrees. Therefore in order to
collect diffraction data from a reasonably large fraction of the reciprocal volume,
a combination of the beam tilt and crystal (stage) tilt has to be used. This method
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is called rotation electron diffraction – RED [1]. Alternatively, electron diffraction
data can be collected using stage tilt solely. This approach was developed under the
name Automated electron Diffraction Tomography (ADT). This chapter describes
the experimental procedure to acquire ADT data as well as major processing steps
necessary to prepare the data for structure analysis. The ADT method is being
actively developed at the moment therefore the proposed algorithms should be
seen as possible solution of the problem, thus inspiring further improvement of the
method.

In contrast to traditional electron diffraction data collection approach – using
zonal data, ADT data acquisition is performed through a tilt around an arbitrary
crystallographic axis, intentionally avoiding low index patterns. The patterns are
collected using a small tilt step sampling the reciprocal volume almost continu-
ously. Coupling with electron beam precession geometrically integrates reflection
intensities also “between” the frames.

ADT diffraction patterns do not have internal symmetry; even inversion related
Friedel-pairs may not be found in one pattern. Therefore, special automated
procedures are necessary to treat this kind of data. These procedures should be able
to read in the data as delivered by an ADT experiment and transform it into the
information which can be directly used by a structure solution program. Essentially
this information is the unit cell metric, symmetry and indexed reflection intensities
(hklI data set).

Initially a processing package was developed in MatLab (The MathWorks
Inc.), later in order to improve performance and enhance visualization possibil-
ities, all routines were implemented in ADT-3D package written in C (ADT3D,
NANOMEGAS, Belgium). Below key points of the processing will be discussed in
details.

31.2 ADT Experiment

An ADT experiment can principally be realized in any transmission electron
microscope (TEM). Electron diffraction patterns can either be collected using
nano-electron diffraction (NED) or selected area electron diffraction (SAED) beam
geometry [2]. The complete acquisition sequence would include diffraction pattern
acquisition, tilting and adjustment of the crystal position. An automated acquisition
module, developed in collaboration with FEI for TECNAI class TEMs [3], uses
NED mode for diffraction data acquisition and scanning transmission electron
microscopy (STEM) mode for crystal imaging.

No matter if the diffraction data is collected using the devoted automated
acquisition module or in a manual way, the output of the experiment is a stack
of electron diffraction patterns representing the covered reciprocal space (see
Fig. 31.1). The stack of patterns can be stored either as a set of separate 2D files, or
a single 3D file (MRC file format was selected for 3D ADT data). A 2D stack can
easily be transformed into a 3D file and processed further.
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Fig. 31.1 Schematic representation of ADT acquisition geometry: the Y axis is defined along the
goniometer axis, the X axis within the zero-tilt pattern and orthogonal to Y. The Z axis is orthogonal
to X and Y and completes the right handed Cartesian coordinate system

ADT experimental data appears quite different in comparison to what electron
crystallographers are used to, because the patterns lack symmetry (inversion-
symmetry related reflections are not always present in a pattern) the azimuthal
position of the tilt axis within a diffraction pattern is not known a-priori, and the
centre of different diffraction patterns in a stack may be shifted for different patterns.

ADT diffraction patterns should satisfy specific quality requirements: the reflec-
tions within a pattern may not form a continuous lattice. Coexistence of several
overlapping lattice parts usually is an indication of the polycrystallinity within the
diffracted volume and should be avoided. The intensities of the reflections should be
strong in order to use most of the available dynamic range of the recording media,
but not overexposed. Exposure series may help to increase the dynamical range
and record the strong reflections as well as weak. The transmitted beam should
have smooth symmetrical form. The background in the patterns possibly caused by
contamination/ice crystal formation when cooling is used should be low. These data
then have a high success rate for ab-initio structure solution.

31.3 Preprocessing

Geometrically, diffraction patterns are collected through a tilt around a goniometer
axis, so it is reasonable to consider the complete data in cylindrical coordinates. Be-
fore associating cylindrical coordinates with the data, the position of the coordinate
origin and the cylindrical axis have to be determined. In other words, the patterns
must be centered and the azimuthal position of the tilt axis has to be found.
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Fig. 31.2 Views of 3D reconstructed diffraction volume: (a) using the correct tilt axis position,
(b) using a tilt axis position 10ı off

31.3.1 Pattern Centering

The position of the transmitted beam can serve as a stable reference for pattern
centering. The transmitted beam appears as a strongest “spot” in a diffraction pattern
(if it does not, something is seriously wrong – maybe the crystal is too thick).
Therefore, a simple approach of searching for the centre of mass in the pattern can
already deliver a good centre vector. Analyzing the shape of the transmitted beam is
another method to centre the patterns and sometimes delivers a more accurate result.

Both of these methods can be applied only if the shape of the transmitted beam is
not disturbed significantly, which is the case when a beam stopper was used during
diffraction pattern collection. In this case the patterns can be still centered when a
Friedel pair can be found. In a general case the centering procedures cannot rely on
2D data solely, but on the mutual consistency of the 3D reciprocal lattice.

31.3.2 Tilt Axis Position Determination

Knowing the exact azimuthal position of the tilt axis within 2D diffraction patterns
¥ is essential for proper coordinate transformation. However this value is not trivial
to estimate. A wrong assumption on the tilt axis position causes distortion of the
3D diffraction space after reconstruction, and can even compromise the lattice
parameters determination. The effect is shown in Fig. 31.2.

The correct tilt axis position can be refined assuming that the correct geometry
should produce a periodic equidistant net of reflections. Therefore, the geometrical
consistency of the 3D lattice is used as a criterion for ¥ refinement. For different
trial positions of the tilt axis a 3D net of reflections is constructed and the spatial
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Fig. 31.3 The routine for tilt axis determination for a BaSO4 data set: spherical projection of the
difference vectors mimicking a stereographic projection of a crystal, an image of the cylindrical
projection of the sphere surface and a variance plot of this image. A well pronounced maximum of
the variance plot represents the correct position of the tilt axis

orientation of the vectors ending at reciprocal nodes is analyzed. Wrong values of ¥
cause distortion of the 3D periodical net of reflections while the correct position
of the tilt axis should result in a sharp well pronounced pattern of the spatial
distribution, resembling a stereographic projection. A spherical projection of all
reflections (or their difference vectors) is produced and the quality of this projection
is traced while ¥ is adjusted. Figure 31.3 shows a spherical projection of a BaSO4

tilt series together with its cylindrical projection in (®, ™) coordinates. The detailed
description of the procedure can be found in [4]. The routine is very stable and can
refine the position of ¥ down to the accuracy of 0.2ı.

31.3.3 Reconstruction of a 3D Volume

A diffraction pattern is a set of reflections approaching the given position of the
Ewald sphere, projected onto 2D recording media (CCD or image plate plane).
Therefore, knowing the 2D coordinates of a pixel within a diffraction pattern fx,
yg, tilt position ’, and the radius of the Ewald sphere R, it is possible to reconstruct
the 3D Cartesian coordinates fX, Y, Zg.
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Fig. 31.4 Schematic sketch of coordinate system associated with diffraction data collection,
viewed along the tilt axis direction

Figure 31.4 represents a sketch of the diffraction geometry viewed along the tilt
axis. A reflection is excited when it approaches the surface of the Ewald sphere.
Then it is projected onto the CCD/image plate plane. Due to the curvature of the
Ewald sphere, there is an effective height of a reflection •. For a reflection with a
given vector g, having 3D coordinates fX, Y, Zg, one can write:
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Here x and y are 2D coordinates of the reflection projection on the CCD plane,
˛is the goniometer tilt angle, and R is the radius of the Ewald sphere.

Using these formulae a complete reciprocal volume can be reconstructed from
a 2D data stack. Fixed tilt steps (1ı) result in gaps in the reciprocal volume, which
are filled by data interpolation. Visualization of the volume helps detecting possible
extinction conditions and therefore provides hints about the symmetry of the martial.
Centering of the lattice causes an extinction pattern going through the complete
volume; glide planes can be detected as rows of missing reflections along specific
directions (see Fig. 31.5a). Serial extinctions due to screw axes cannot be visualized
directly within the volume, because of the overlap with other reflections, but can be
detected in a zone clipped out of the reciprocal volume (Fig. 31.5b). Additionally
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Fig. 31.5 Views of the reciprocal volume of OPBA3 P21/c: (a) a view of the volume along the
(100) direction: zonal extinctions due to a c-glide plane are marked by dotted circles; (b) a planar
cut close to the [100] zone clipped out of the volume: serial extinctions due to 21 screw axis are
evident

to symmetry determination, the visualization of the reciprocal volume can deliver
information about the quality of the data, possible polycrystallinity, disorder effects,
superstructures, and other specific crystallographic features.

31.4 Lattice Parameter Determination

31.4.1 Determination of 3D Reflection Positions

Unit cell vectors are determined based on the 3D positions of the reflections
within the reciprocal volume [5]. Therefore, first positions of reflections should be
found. Principally, the reflections can either be found within the reconstructed 3D
volume as 3D intensity volumes, or within 2D patterns of a data stack including
a recalculation of their coordinates into 3D with the formalism described above.
Either way has its benefits and drawbacks mainly based on the algorithm used for
reflection identification. At the end both approaches should deliver the same unit
cell parameters.

31.4.2 Difference Vectors Space Approach

A collected tilt series usually covers a large part of the reciprocal volume, but
practically rarely comprises all three main crystallographic axes. Since, reflections
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corresponding to the shortest reciprocal vectors and therefore to main directions are
usually close to the transmitted beam a determination of their coordinates may not
be accurate. It order to enhance basic lattice vectors and statistically average the
unit vector over the complete reciprocal lattice, autocorrelation of the detected peak
positions is used. From all collected peaks difference vectors are calculated. Three
shortest linearly independent vectors should then represent the main directions of
the lattice.

Figure 31.6a shows a part of an idealized reciprocal lattice. The two main
directions are not included into the collected volume, so they cannot be found
directly from the data. On the right side the difference vector space (DVS) of the
lattice is presented. All difference vectors create an ideal lattice, which clearly
exhibit the basic vectors.

Experimentally slight offset of reflections from their idealized position is always
present. Figure 31.6b shows a sketch of a lattice with randomly shifted nods.
For this lattice in the DVS the nodes become blurred, although the periodicity of
the lattice is clearly present. When larger random shift vectors are used for the
reciprocal lattice nodes (Fig. 31.6c), the lattice in the DVS appears even more
unclear. More complicated situations are often met – when the displacement of the
reciprocal lattice nodes is anisotropic (for instance due to thin-foil effect). In this
case elongated groups of spots are seen in the DVS.

Although for distorted data the lattice nodes in the DVS are not clearly defined,
the periodicity of the experimentally measured reciprocal lattice is preserved and
even enhanced. Finding the centers of the groups of spots and thus determining the
basis vectors in this kind of data can be done using cluster analysis approach.

31.4.3 Clustering

Cluster analysis is a technique used for data classification within sets in which the
elements possess a certain dissimilarity function. This dissimilarity function can be
of different nature: e.g. a distance between the elements. It is seen from Fig. 31.6c
that the elements are not homogeneously distributed over the field, but grouped
around the lattice nodes. Use of best suited clustering algorithms allows finding the
centers of the nodes.

A systematic study of main clustering approaches and their application to ADT
data revealed that the most robust and fast algorithms are density based, among
which DBSCAN [6] was selected for implementation in ADT3D.

Once three linear independent shortest vectors are found, the primitive unit cell
is determined. If the lattice is centered, the three vectors do not represent the correct
cell, but can be easily recalculated.

If the lattice is centered, the reflection indices can be determined using the
primitive unit cell and recalculated into a centered lattice or the intensities can be
integrated using the centered unit cell directly.
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Fig. 31.6 Schematic view of reciprocal lattice (left) and corresponding difference vector space
(right): (a) idealized lattice defined within a restricted wedge; (b) lattice nodes are randomly shifted
from their idealized positions; (c) the nodes of the lattice are shifted randomly using a larger shift
vector; (d) the shift vector components are different along the two main directions
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31.5 Intensity Integration

Once unit cell parameters and the orientation matrix have been determined, the
positions and indices of reflections in 2D diffraction patterns can be assigned, and
therefore intensities in vicinity of these positions can be integrated and assigned to
a specific (hkl). For the correct projection of the 3D net onto 2D diffraction patterns
the effective camera length and the effective radius of the Ewald sphere need to be
known accurately.

A detailed description of the integration procedure can be found in [7]. In
Fig. 31.7 an original 2D pattern and the same pattern with integration boxes are
shown. The size of integration boxes is related to the lattice parameters for a given
crystal. Within the integration boxes a “local” background function is calculated and
subtracted.

Due to the effective diffraction peak size in 3D, reflections typically penetrate
through several diffraction patterns. Therefore, from the integration of the whole 2D
data several intensity values can be found for the same (hkl) index. For all analyzed
structures only the maximal intensity value associated with each (hkl) has been taken
into consideration, no matter how many times the reflection was sampled at different
tilt steps, supposing that in this slice of the reciprocal space the reflection was cut
closest to its middle point. As a result of the intensity integration, an intensity hkl
file is created analogous to single crystal X-ray data analysis.

The error in the measured intensity strongly depends on the exact position where
the reflection was cut by the Ewald sphere. If the cut passes close to the center of
the reflection, the maximal possible and optimum value is reached. Otherwise, if
the reflection intersects the Ewald sphere further away from the center recording

Fig. 31.7 Diffraction pattern of natrolite (a), the same pattern with integration boxes on it (b)
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the outer part of the reflection, the experimental intensity value is likely to be
underestimated. The electron beam precession, integrating a volume rather than
delivering a mere cut, considerably reduces this problem.

31.6 Conclusion

ADT experiment delivers a specific kind of data. The data is not intuitive, and
therefore the extraction of information needs dedicated automated routines. These
routines should be able to import the data as it is produced by an ADT experiment
and export the information which can be further used by a structure solution
program, i.e., from a stack of off-zone electron diffraction patterns, lattice cell
parameters, symmetry and a hklI data set should be produced.

The processing routines are combined in the program ADT3D including data
preprocessing and refinement of geometrical acquisition parameters. After the
unit cell determination using density-based clustering algorithm the reflections are
indexed and their intensity is integrated using the found set of lattice basis vectors.
Finally, a hklI file is produced in a format taken by most structure solution programs.
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Chapter 32
Electrostatic Potential Determined
from Electron Diffraction Data

Anatoly Avilov

Abstract Modern level of the precise electron diffraction structure analysis
(EDSA) provides possibility of the quantitative analysis of electrostatic potential
and electron density of crystals and, therefore, brings us closer towards the ultimate
goal of direct study of properties of solids. It is shown on an example of NaCl
type structures with ionic bonding and Ge, which has covalent bonds. Analytical
structural models of crystals built on the basis of EDSA data, enabled for the first
time quantitative characterization of chemical bonding and study of topological
features of electrostatic potential. It was established that the inner crystal field
is well structured, and its topological analysis revealed important features of a
structure which essentially enrich our understanding of the interatomic interactions
in crystals.

32.1 Introduction

Fundamentals of electron diffraction structural analysis (EDSA) of crystals using
high-energy electron diffraction were formulated in the book, “Structural Analysis
by Electron Diffraction” by B.K. Vainshtein [1]. State of method and the main prac-
tical areas of EDSA, including theoretical foundations, experimental techniques,
preparation, definition of structure amplitudes and the actual structural results are
summarized in [2]. The main features of the EDSA were underlined there as:

1. Scattering on inner crystalline electrostatic potential;
2. Strong interaction of electrons with matter;
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3. High intensity of the diffracted beams, comparable with the intensity of syn-
chrotron radiation;

4. High sensitivity to the distribution of valence electrons.

Hence we see the advantages of EDSA over other diffraction methods, the
main one – the opportunity to investigate the structure of nano-objects and the
electrostatic potential.

Mainly polycrystalline samples are used as objects in the EDSA. In such samples,
a large number of small crystals, which are either completely disordered or oriented
in a certain way, fall simultaneously under the incident electron beam. This creates
conditions for the formation of a special type of diffraction patterns with solid
rings for polycrystals, arcs for the texture and the broadening of reflections due
to the misorientation of the microcrystallites from mosaic crystals. These unique
diffraction patterns contain three-dimensional set of reflections that corresponds to
large scattering angles, which make it possible to perform structural analysis with
high resolution [1, 2].

For the diffraction of electrons with energies over 10 keV the interaction effects
between the incident electron and the electrons of the crystal can be neglected. In
this case, the method gives the Fourier transforms of the electrostatic potential (ESP)
of atoms, molecules and crystals (structure amplitudes). ESP determines a number
of important properties of crystals, including features of atomic and molecular
interactions. That is why high-energy electron diffraction is attracting attention as
a method for obtaining direct information about the physical properties of crystals.
It is important that for a certain arrangement of atoms in the unit cell, ESP can
be calculated using the Hartree-Fock or the Kohn-Sham equations [3, 4]. Thus, the
results of electron diffraction experiments allow direct comparison with the theory.

Provided high accuracy of the experiment and regarding atoms in a crystal as
non-spherical, it is possible not only to improve the accuracy of atomic positions
and parameters of their thermal vibrations, but also quantitatively reconstruct 3D
continuous distribution of ESP. Thermal parameters are related to the quantities,
derived in the theory of the dynamics of the crystal lattice. ESP is associated through
Poisson equation with the full charge density, the electron part of which, as was
shown by Hohenberg and Kohn [5], completely determines all the properties of
ground electronic states of atoms, molecules and crystals. Electron density (ED),
defining the characteristics of the crystal field and the chemical bonding in matter,
is also ground variable in the quantum mechanical density functional theory, which
describes the electronic properties of substances, and its characteristics are used in
different physical models. Thus, if the characteristics of the ESP are obtained from
electron diffraction, one can easily investigate the electron density of crystals. These
relations bring EDSA on the front edge of physics and chemistry of solids.

For quantitative study of the distribution of electrostatic potential and electron
density, we need to develop [6]:

– electron diffractometry with precise measurement of intensities;
– modelling techniques based on the ESP experimental data and estimate its real

accuracy;
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– methods for treating a continuous distribution of ESP in terms of conceptions of
physics and chemistry of solids.

In general, thermal diffuse scattering leads to an underestimation of the height
of the Bragg peaks and appears near the peaks and between them. Carrying the
smooth lines of the background makes it possible to partially take into account
the thermal diffuse scattering. We have shown that ignoring the absorption of very
thin polycrystalline films of materials with low atomic numbers does not give
appreciable experimental errors in determining the structure amplitudes. We may
conclude that EDSA allows one to make systematic, precise electron-diffraction
studies of ESP of crystals of various types.

32.2 Electron Diffractometry

For precise structural analysis of crystals, quantitative recovery of ESP and analysis
of the chemical bond in crystals it is necessary to obtain the most comprehensive set
of structural amplitudes with the statistical accuracy of better than 1–2%. For this
purpose, we developed a system of electronic diffraction on the basis of domestic
electron diffraction chamber EMR-110K, produced by Selmi Ltd. The well-known
principle of measurement was used [7]: the diffraction pattern is scanned point by
point before the stationary receiver. Scanning and measurement control can been
made by a computer in the accumulation mode or in the time constant mode.

For precise measurements it is necessary to provide a wide dynamic range, a
sufficient angular resolution and high performance of measurement systems. A new
type of detector was developed in the Institute of Crystallography in Moscow, based
on the principle of measuring the electron current with a Faraday cup [8]. This type
of detector, as it is known, is the most linear and has a wide dynamic range. Usually
it is used for checking the metrological characteristics of other detectors (e.g. CCD-
cameras, imaging plates).

32.3 Topological Characteristics of the Electrostatic Potential

Electrostatic (Coulomb) potential is a scalar function depending on a charge density

'.r/ D
1Z

�1

˚
�.r 0/=

ˇ̌
r � r 0ˇ̌ �dv0;

having nuclear and electronic components:

�.r 0/ D
X

Za � ı.r 0 � Ra/ � �.r 0/ (32.1)
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Here Za and Ra are the charge of the nucleus of an atom a and its coordinate,
¡ (r0) – electron density. ESP includes the mean inner potential ®0, which depends on
the shape and surface structure of the crystal. ®0 can be determined experimentally
by electron holography or calculated theoretically. Characteristics of the atomic-
molecular interactions and crystal packing can be concluded from the distribution
of the ESP. In addition, knowing the ESP, gradient of the electric field at the
nuclei can be defined. This quantity appears in the characteristics of nuclear
quadrupole resonance and MRossbauer spectroscopy, diamagnetic susceptibility and
the coefficient of the refractive index of the electrons.

ESP of the multi-electron multi-core systems has maxima, saddle points and
minima corresponding to those nuclei, the internuclear lines, nuclear cycles and
closed cavities in the unit cell. Consequently, as ED, the ESP may be characterized
by critical point (CP), rc, in which r®(rc) D 0. In terms of the topological analysis
[9] CP-s, corresponding to saddle points, one-and two-dimensional minima are
denoted as (3, �1) and (3, C1), and maxima and minima as (3, �3) and (3, C3),
respectively. Here 3 is the number of nonzero nondegenerate eigenvalues of Hessian
of ESP, and the second number in parentheses is the sum of the algebraic signs of
œi (diagonal member in Hessian).

The electrostatic potential is convenient to characterize by the vector field
gradient r®(r) and by the curvature r2 ®(r). Importantly, these characteristics do
not depend on the constant ®0. As it is known, the vector of intensity of the classical
electrostatic field E(r) D � r®(r), sent along the tangent to the gradient line ESP
at a given point and the concentration of these lines passing through a unit area
perpendicular to it, is the value of intensity of the field at this point.

Nucleus of the neighboring atoms in any crystal or molecule are separated in a
field E(r) by surfaces satisfying the condition of zero flux:

E.n/ � n.r/ D �r'.r/ � n.r/ D 0; 8r2 Si .r/; (32.2)

where n(r) – the unit normal to the surface. These surfaces define the specific atomic
fields (atomic basins), within which the nuclear charge is completely screened by
electron charge, i.e. they define electrically neutral bonded pseudoatoms.

ESP determining inner crystalline electrostatic field E(r), produced by all the
nuclei and electrons, determines also the value of the classical electrostatic (one-
electron) Coulomb force at the point r. By condition r®(rc) D 0, the critical points
of ESP are the points at which the electric field and, consequently, the electrostatic
force, acting as the element of charge at the point rc, is equal to zero. At the nuclei
positions it is consistent with the requirements of the Hellmann-Feynman theorem
[10, 11] for a system in equilibrium.

Thus, the topological characteristics of ESP, in addition to those for the electron
density carry physical information about inner crystalline electrostatic field.
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32.4 Construction of the Electrostatic Potential

Construction of the electrostatic potential in the EDSA using electron diffraction
data is usually carried out with a Fourier series. However, regardless of the progress
of the reached resolution the appropriate (dynamic) ESP maps suffer from the
effect of series abruption, leading to a distortion of true potential maximum and
the appearance of false maximum, reaching the 5–10% of the true ones.

Our proposed method of calculating the ESP using analytical structural model
parameters, through fitting of the theoretical structure amplitudes to the experimen-
tal ones, has several advantages. The method is as much as possible free from the
effect of abruption and errors, associated with the experimental determination of the
diffraction intensity and the transition to the structural amplitudes. As an output it
gives a static ESP, which is being checked through comparison of experimental
and theoretical results. It is important to point out that reconstructed from an
experiment ESP should be adjusted at a “selfaction potential”, without which it is
impossible to obtain physically meaningful values of the electrostatic energy (the
energy of electrostatic interaction between nuclei and electrons per unit cell) [12].
The calculation of the ESP using the analytical model makes it easy to take this into
account by a simple subtraction of the corresponding contribution to the total charge
density, see formula (32.1).

32.5 An Example of Ionic Bonding

To further treatment of the experimental data and in the analysis of chemical
bonding the multipole model [13] was used, in which the electron density of each
pseudoatom is represented as

�atom.r/ D �core.r/C Pvalk
03�val.k

0r/C
4X

lD1
k003Rl.k00r/

lX

mD�l
Plmylm.r=r/

(32.3)

Core ¡core and valence electron density ¡val the spherical density of valence shells
are described by means of atomic wave functions. Structural ›-model [14] used in
the analysis of ionic chemical bonding [10] was the following. Electronic structure
amplitude of each atom a was expressed as the sum of a fixed component fcore,a,
bound with the atomic core and variable valence component Pval,afval,a, taking into
account the interatomic charge transfer and the expansion-contraction of the ion in
the crystal:

ˆa.q/ D .��jqj2/�1
X

fZa � Œfcore; a.q/C Pval; afval; a � .q=ka/g
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Fig. 32.1 (a) Electrostatic potential distribution for LiF (100 – plane). (b) Electron density
distribution for LiF (100 – plane). Critical points are denoted: circles – (3,�1), triangles – (3,C1),
squares – (3,C3). Solid lines going across CP show the atomic surfaces of zero flux defined
by (32.2)

Here q – vector of the reciprocal lattice,� – unit cell volume, fcore,a (q) and fval,a,
a X-ray atomic scattering amplitudes for the spherically averaged atomic (or ionic)
core and the valence electron densities, normalized to one electron. ›a- is an atomic
parameter responsible for the contraction-expansion, and Pval,a – atomic electron
occupations.

Knowing the parameters of ›, values for the average inner potential ®0 can be
calculated for all crystals [15]. In [10] they were derived as: 7.07 (for LiF), 8,01
(NaF) and 11,47 V (MgO).

Figure 32.1a shows the typical distribution of the ESP for ionic LiF. In general,
ESP along cation-anion bonding has a smooth character with a single axial one-
dimensional minimum at distance 0.93 Å from the anion in LiF. Critical points are
marked as: circles – (3, �1), triangles – (3, C1). We emphasize that the appearance
of minima in the ESP is a very sensitive indicator of the interatomic charge transfer
in the crystal.

Comparing the pictures of the locations of CT in the ESP and the electron density
(Fig. 32.1b) crystal LiF (as typical), we can conclude that both sets of CP did not
coincide. Nuclear potential also gives a picture of CP-s are different from those in
the ED. These observations reflect the well-known fact: the electron density (and
energy) many-electron system is not completely determined by the inner crystalline
electrostatic field.

For the studied crystals, the atomic surfaces of zero flux, defined by (32.2),
are shown in Fig. 32.1. These surfaces are naturally bounded by the electrostatic
potential of the crystalline atom-like areas, defined by the relevant nuclear potential.
Each element of the electron density, within such a “pseudoatom”, is attracted
to its own nucleus. Consequently, the shape and size of these regions reflect the
electrostatic energy balance between the bound atoms in a crystal.
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Fig. 32.2 Distributions of ESP (a) and ED (b) along (110) – plane. Critical points are denoted:
circles – (3,�1), triangles – (3,C1), squares – (3,C3). Solid lines going across CP show the atomic
surfaces of zero flux defined by (32.2)

The lines formed by pairs of lines the electric field gradient, ending at CP (3, �1)
in the ESP, corresponds to the shortest cation-anion and cation-cation distances in
the crystal with a structure of NaCl. These observations reveal the defect model of
pair Coulomb interactions between all the point ions, usually used in calculations
of electrostatic energy of crystals. Thus, the consideration of the gradient field leads
to the conclusion that long-range Coulomb interaction between atoms having finite
sizes in a crystal occur in the crystal in the form of an “atom-atom interactions”,
the structure which is a specific property of each compound, more precisely – each
structural type.

32.6 An Example of a Crystal with a Covalent Bond (Ge)

Ge crystal has a pronounced covalent bond. So, to further treatment of the
experimental data the multipole model (32.3) was used. The radial functions of
the form Rl Drnl exp.��0� r/ with n3 D n4 D 4 (l 
 4) and the values of orbital
exponents ŸGe D 2.1 a.e. [16] were used. Ge atom is in position 43 m, hence
only the octupole P32- and hexadecupole and P40 i P44 D 0.74045P40 terms are
nonzero in (32.3). Electronic population of multipoles Plm and ›0 parameter can
be refined by LSQ using specialized software (see, for example MOLDOS96 [17]).
For germanium, value of ›0 D 0,922 points to an 8% expansion of the spherical part
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Fig. 32.3 Laplacian of ED for the fragment of Ge structure in (110) – plane

of the valence shell was obtained. The values of the multipole parameters obtained
for the Ge crystals for electron diffraction data were used to calculate the static
ED and ESP and the Laplacian of ED. Maps of these functions at (110) plane are
shown in Figs. 32.1a, b and 32.2. Topological characteristics of CP-s in the bonds
provide a quantitative description of known effect of formation of Ge crystal, which
is accompanied by a strong shift of the electron density to the line of Ge-Ge. In
general, the layout of the critical points of the ED and ESP does not match. However,
for the Ge crystal, due to the symmetry of the electrostatic potential, electron density
is homeomorphic. In this particular case, the location of critical points of the EP and
ESP is equal (Fig. 32.3).

32.7 Conclusion

Distribution of ESP gives a lot more information about the nature of atomic
interactions in crystals. It is important since the resulting distribution can be used in
the theoretical models for the calculation of physical properties. For in-depth study
of the connection of the electronic structure with the physical properties of crystals
it is useful to combine electron diffraction data of the potential distribution with the
distribution of an electron density data derived from precision X-ray experiment.
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Chapter 33
Domino Phase Retrieval Algorithm
for Structure Solution

F.N. Chukhovskii

Abstract Novel domino-fashion-algorithm method for structure determination is
being aimed to general solution of the phase retrieval problem, consequently com-
bining the electron diffraction (ED) and the high-resolution transmission electron
microscopy (HRTEM) patterns. The fusion of the direct-method technique that is
described here allows realization of a full-phase restoration of complex structure
factors. A numerical example, using the dynamical ED and HRTEM input data
for (Ga,In)2SnO5 ceramic, shows that the method is capable of yielding unique
phase retrieval solution. The clear sense is that the domino-fashion algorithm
presented does work well and it is a valuable method for phasing diffraction patterns
experimentally observed in electron crystallography provided that collecting the ED
and HRTEM data have been consequently carried out.

33.1 Introduction. Direct Methods for Structure
Determination

An application of conventional (kinematical) direct methods and refinements for
purposes of electron structure determination raises some fundamental problems.
There are some simple cases, for instance a surface, where such refinements are
legitimate as a good first approximation, but even here correct results require the
inclusion of dynamical effects. It is very well established theoretically that even
one atom layer of a heavy element such as gold is a ‘dynamical’ scattering unit
[1]. So, there are no cases with real samples where the kinematical approximation
is rigorously valid. At the same time, under some optimal imaging conditions
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the high-resolution transmission electron microscopy (HRTEM) technique provides
real-space information toward crystal structures though HRTEM images in general
do not manifest true atom positions.

On the other hand, to obtain true real-space information concerning atom
positions one may explore the direct methods relying on the electron diffraction
(ED) information alone and extracting the unknown phase information among the
structure factors [2].

Noteworthy is the fact that the first quantitative relationships being capable to be
used for phasing diffraction patterns via direct methods were Sayre’s equation [3]
and statistical phase invariants [4, 5].

Switching to a set of structure factors, fU(g)g, the phase set f§(g)g with
§(g) D Im[ln[U(g)]] and g a reciprocal lattice vector, could be determined using the
iterative transform algorithm based on the Sayre–Tangent formula as a convolution
equation (namely, §(g) D Im[ln[†hU(h)U(g-h)]] with the known set of moduli
fj U(g)jg. For this, the Sayre–Tangent formula is relatively exact for pointlike atomic
structures as long as the atom-scatter positions are not overlapped that coincides
with the basic assumption of the ED channeling approximation [6, 7].

At the same time, the phase information is preserved in the HRTEM images and
can be extracted sometimes using the Fourier transform [8, 9].

Ishizuka, Miyazaki and Uyeda [10] have developed the resolution improvement
and/or phase correction method first proposed by Hoppe and Gassmann [11].
Combining the information in the electron micrograph and electron diffraction
within a kinematical approach, they have applied the procedure to the model
structure of the crystal of copper perchlorophthalocyanine for determining the
phases (signs) of the structure factors.

The least-squares refinement and direct method technique to decode structural
data from ED experiment was reviewed in many cases [12], in the most part of
which dynamical ED effects have been ignored. The work [13] has to be drawn out,
in which the direct methods combining with the Fourier transform of the HRTEM
image were attempted to solving the phase problem on an example of (Ga,In)2SnO5

ceramic.
The two- and three-phase structure invariants, †0 and †2, within the scope of

‘dynamical’ direct methods has been analyzed in the works [14, 15]. It was shown
that applying direct methods to dynamical ED data could be understood via an
“effective kinematical approximation”. For this, each of both the phase conditional
probability †0-distribution defined for a number of (g, �g)-reflection pairs and the
phase conditional probability†2-distribution defined for a number of (g, h, �g�h)-
reflection triplets are proved to display a strong peak in many cases. This assertion
is obtained, particularly using the multislice-calculation method.

In this lecture we push the concept of direct methods one step further, and apply
the lattermost using both the two-dimensional ED and HRTEM data sets as con-
straints for a phase restoration [16]. To attribute this concept the iterative transform
algorithm, which has at its core the Gerchberg-Saxton algorithm [17, 18] and makes
the phase retrieval procedure in a domino fashion, is discussed. A prerequisite to
solving the problem herein is to elaborate the appropriate numerical algorithm that
creates a unique phase restoration.



33 Domino Phase Retrieval Algorithm for Structure Solution 361

For purposes of this study, some numerical simulations are given on a sample
of (Ga,In)2SnO5 ceramic, which exhibits a convergence property of the domino
iterative transform algorithm. In particular, the domino phase retrieval algorithm,
which is described here, has been proven to be convergent in the general case of
complex structure factors.

Noteworthy is the fact that its implementation can facilitate a true determination
of nanometre-size crystal structures combining both the ED and HRTEM data in a
sequential domino manner.

33.2 Problem Formulation. Domino Phase-Retrieval
Algorithm

Before formulate the domino phase-retrieval algorithm (DPRA) issue we now use
the necessary mathematical model describing the dynamical ED within the scope of
1s channeling approximation, where the electron wavefunction may be cast in the
form [6]

§ .r; z/ D 1C 2i

jX

jD1
aj§

�
r � rj

�
e
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�
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2E0
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�
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�
kz

�
; (33.1)

where now the sum is over the j-atomic positions in the two-dimensional unit cell,
E0 is the incident electron energy, the wavenumber k Dœ�1, the eigenvalue Ej refers
to the lowest lying 1s-eigenstate energy.

Equation (33.1) is the 1s channeling approximation for the wavefunction describ-
ing the electron propagation through the crystalline sample.

In the reciprocal space, which is used in structural crystallography, the structure
amplitude for the g reflection has the form [15]
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is the complex atomic scattering amplitude of the j-atom, rj is its two-dimensional
position vector and J is the number of atomic columns in the two-dimensional unit
cell.

It is remarkable that Vj(g) is the Fourier transform of the two-dimensional
eigenstate function ‰j(r–rj), to a first approximation the kinematical single-atom
structure factor.
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Generally, addressed to electron structure solution the direct phase-retrieval
problem is related to the complex structure factor set fU(g)g provided that the ED
magnitude set fjU(g)jg in your hand. They are formed as a result of an incident
electron plane wave scattering by nanometre-size crystalline sample and e.g., can
be measured using the HRTEM technique. At the same time, along with the
two-dimensional ED array fU(g)jg the latter allows to measure the corresponding
HRTEM image I(x) when the scattered electron wave propagates through an
electron optical system consisting of selected-area apertures and focusing lens.

Intensities measured in the back focal plane are referred to the ED magnitudes
fjU(g)jg, with diverse reciprocal lattice vectors g, whereas the intensity distribution
I(x) in the image plane is the modulus squared of the two-dimensional Fourier
transform of the complex structure factor set fU(g)g, in general taking into account
all likely aberrations, particularly, defocus, spherical aberration and so on. Clearly,
the two-dimensional periodical function I(x) is the HRTEM image of the crystal
structure. Underline that both the two-dimensional arrays fjU(g)jg and fA(x)g with
A.X/ D p

I.X/ can be considered as the data arrays for formulating the phase-
retrieval issue underway.

From the mathematical viewpoint each of data arrays fjU(g)jg, fA(x)g is non-
convex. As is known, the non-convexity of both these arrays, fjU(g)jg, fA(x)g, is a
main obstacle to applying the Gerchberg-Saxton-type algorithm [17, 18] for direct
phasing solution of diffraction patterns.

Then, it is physically reasonable, as well as mathematically precise, to consider
the present diffraction-pattern phase-retrieval issue for phasing structure factors
using both the finite data arrays (N)fjU(g)jg and (N)fA(x)g, which may be measured
in the back focal plane and the image plane, respectively, N is the array rank (remind
that the array size is equal to N � N).

Thus, in order to overcome the fundamental non-convexity limitation and, as
a result, to avoid numerous redundant solutions we now attempt to go beyond
the conventional Gerchberg-Saxton algorithm by using the DPRA, the modified
Gerchberg-Saxton-type algorithm for the structure factor phase determination in a
sequential ‘domino’ fashion.

Presumably, let us introduce the selected-area constraint sets of (�)fjU(g)j, A(x)g
for the consecutive values of �D 2, 3, 4, : : : , N (for sake of simplicity U(g)gD0 is
assumed to be unity for any �).

For the selected-area array index rank � fixed the DPRA flow-equation takes
the form

.v/MkC1.x/ D .�/A.x/ exp
	
i.v/®k.x/




.v/ jUkC1.g/j D ˇ
ˇInverseFourier

	
.v/MkC1.x/


ˇˇ

.v/§kC1.g/ D Im
	
1n
	
InverseFourier

	
.v/MkC1.x/






.v/UkC1.g/ D ˇ̌
.v/U.g/

ˇ̌
exp

	
i.v/§kC1.g/




.v/AkC1.x/ D ˇ
ˇFourier

	
.v/UkC1.g/


ˇˇ

.v/®kC1.x/ D Im
	
1n
	
Fourier

	
.v/UkC1.g/





, (33.4)
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where we calculate the (k C 1)-th phase sets of (�)f§kC1(g), ®kC1(x)g by use of the
preceding k-th ones (�)f§k(g), ®k(x)g, and keeping in mind that the ED and HRTEM
sets of (�)fjU(g)j, A(x)g are considered as a priori fixed ones (the data constrains)
and do not depend on the cycle value of k over all the iteration processes of �
(particularly, they can be experimentally measured).

The two figures of merit (FOM) related to the reciprocal space, R(�), and real
space, X(�), are evaluated at each cycle over k

R.v/kC1 D v†gjj.v/UkC1 .g/ j � j.v/U .g/ jj=Œ†gj.v/U .g/ j2�1=2;

X.v/
kC1 D v†xj.v/AkC1 .x/�.v/A .x/ j=Œ

X

x.v/
I .x/�

1=2
; (33.5)

For reference, (�)§k(g) is the given phase of the complex structure factor (�)Uk(g)
at the beginning of each cycle k, and (�)§kC1(g) is the new phases calculated at the
end of the same cycle k. The phase set of (�)f§kC1(g)g calculated, is then fed back
in the cycle iteration fashion according to the flow-equation (33.5); k D 1, 2, 3, : : : ,
K and the range value K is chosen to be fixed.

Our main focus is on the fact that some important restrictions are imposed onto
the phase set of (�C1)f§k(g)g, specifically, the phase set of (�C1)f§k(g)g fixedly
contains the subset of (�)f§(g)g, with the array size of ���, determined within the
preceding iteration of �. And clearly, the other elements of the phase set of (�C1)f§k

(g)g are chosen to be random in the range of (� ,  ) for the first cycle, k D 1, only.
Loosely speaking, the principal idea of the domino phase retrieval method is to

obtain the phase fit for the complete structure factors set fU(g)g sequentially step by
step starting from the first subsets (2)fjU(g)jg, and (2)fA(x)g, each of them has the
rank size 2, and for every combined subset (�)fjU(g)j, A(x)g, �D 2, 3, 4, : : : , N, the
conventional Gerchberg-Saxon iteration procedure is applied.

We then use the phase consistency check factor (a ‘correctness’ factor)

C .v/
kC1 D 0:5†0

gj.v/UkC1 .g/�.v/U .g/ j=†0
g� j.v/U .g/ j (33.6)

that is calculated in a process of numerical simulations for all the values of k, and
the sum, †0, taken over the reflections except g D 0.

Going on from the iteration of �D 2 until the final iteration N via the consecutive
selected-area iterations the true phase solution holds on up to some numerical
uncertainties depending on the final iteration number N, whereas other redundant
solutions can be readily detected yielding inappropriate values of FOM.

In principle, numerical uncertainties of the ‘true’ phases increase with increasing
the iteration number � (the ED reflection array rank) that might be compensated by
enlarging the cycle range value of K.

Underneath the domino iterative transform algorithm above described is tested
numerically simulating the input ED and HRTEM data and true solution of the
(Ga,In)2SnO5 crystal structure.
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33.3 DPRA Implementation for a Sample of the Ceramic
(Ga,In)2SnO5

The test case we attempt to resolve the phase problem is a centrosymmetric structure
of the ceramic (Ga,In)2SnO5. The structure is monoclinic with a D 1.169 nm,
b D 0.317 nm, c D 1.073 nm, and “D 99.00o. The atom positions within the unit
cell obtained from direct methods and neutron diffraction are presented in the work
[13], the projected two-dimensional structure of (Ga,In)2SnO5 is shown in Fig. 33.1.
The incident electron beam propagates along the b-axis, and the accelerating voltage
is 300 kV.

The true complex structure factors related to the proper dynamical ED pattern
for (Ga,In)2SnO5 were calculated using 1s-state channeling approach.

The corresponding ideal HRTEM images calculated using the above values of
thickness and 0.01 nm resolution are shown in Figs. 33.2a and 33.3a, respectively.

x

z

oxygen gallium

tin

indium/gallium

Fig. 33.1 Structure of .Ga; In/2SnO5 viewed along
	
010
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Fig. 33.2 The numerically calculated 2D- and 3D-images of the two-dimensional structure of
.Ga; In/2SnO/5-ceramic with using the DPRA for the iteration range N: (b) D 20, (c) D 40 in
comparison with the ideal HRTEM image in (a) D 100. The cycle range of K is 1,000. The sample
thickness along the b-axis is 4.121 nm
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Fig. 33.3 The numerically calculated 2D- and 3D-mages of the two-dimensional structure of
.Ga;In/2SnO5-ceramic with using the DPRA for the iteration range N: (b) D 20, (c) D 40 in
comparison with the ideal HRTEM image in (a) D 100. The cycle range of K is 1,000. The sample
thickness along the b-axis is 7.291 nm
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Fig. 33.4 Parametric plots of
the factor �lnR versus a
‘correctness’ factor –ln
C-factor for the two iteration
ranges N: (a) D 20, (b) D 40.
The cycle range K D 100.
The sample thickness along
the b-axis is 7.291 nm

To illustrate the convergent features of the DPRA guiding the structure-factor-
phase determination the calculated parametric plots of the R-FOM versus a ‘correct-
ness’ C-factor (cf. Eqs. 33.6) is depicted in Fig. 33.4. It is found that the calculated
R-FOM and C-factor achieve the values of order of 10�5 and 10�7 for the cycle
range of K D 100 used for the calculated images given in Fig. 33.3b, c.
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Chapter 34
LARBED: Exploring the Fourth Dimension
in Electron Diffraction

Christoph T. Koch

Abstract This chapter describes a novel method for acquiring information-rich
convergent beam-like patterns of thin specimen and materials with very large lattice
constants. Yet, despite effective convergence angles of up to 100 mrad diffraction
orders do not overlap. It is demonstrated how the 4-dimensional information carried
by these patterns may be used to solve the dynamic inversion problem in electron
diffraction and reconstruct 3D diffraction patterns. It is also shown how aberrations
of the illumination system up to seventh order are measured in a fully automated
manner and may be compensated on any TEM without installing any additional
hardware.

34.1 Introduction

Because of the strong interaction of the fast electron beam with matter TEM-
transparent samples must usually be not much more than 100 nm thick, in many
cases even thinner.

The reciprocal space representation of a thin crystalline sample consists of a
regular lattice of Bragg points (at reciprocal lattice vectors g), each of which, when
‘zooming in’ has a rod-like shape which is why these features are also called
reciprocal lattice rods or just ‘relrods’ (see Fig. 34.1b). In kinematical scattering
theory the amplitude squared of the relrod at the point of intersection with the Ewald
sphere defines the scattering intensity.

If the electron beam is tilted with respect to the zone axis of the crystal, the
Ewald sphere may cut through points that lie precisely on the reciprocal lattice
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Fig. 34.1 (a) Illustration of CBED and (b) how it samples the reciprocal lattice of a crystal of
finite thickness

Fig. 34.2 Illustration of the relation between Bragg spacing and CBED disc size: While for
crystals with small lattice constant (a) CBED works very well, for crystals with large lattice
constant (b) only very small disc sizes are possible

of the crystal, bringing these reciprocal lattice vectors g (reflections) in the exact
Bragg condition. Convergent beam electron diffraction (CBED – see Fig. 34.1a)
is an elegant way of probing many slightly different incident beam directions in a
single experiment [1].

If the beam convergence angle is matched to the crystal’s lattice constant the
diffraction discs may barely touch. For crystals of large unit cells, however, the
reciprocal lattice is often too dense to allow the application of CBED at all, because
diffraction discs corresponding to any significant illumination convergence angle
would overlap (Fig. 34.2).

Proposed techniques to overcome limitation of overlapping discs (see also
Fig. 34.3 for diagrams illustrating some of them):

• Recording only one disc at a time: Large-angle CBED (LACBED) [2]
• Recording integrated LACBED discs: LACDIF [3] (here, as in precession

electron diffraction (PED) the rocking curve information is lost).
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Fig. 34.3 Three examples of techniques aiming at recording diffraction information for different
angles of incidence

Recording all LACBED discs simultaneously (SLACBED) [4] by working at a
large defocus of the intermediate lens.

• Double-rocking zone-axis pattern (DRZAP) technique [5, 6]
• Rotation method [7]
• Large-angle rocking–beam electron diffraction (LARBED) [8]

34.2 The Dynamic Inversion Problem

While the kinematic diffraction intensity Ig at a specific g is determined only by the
structure factor of that particular diffraction vector, dynamic diffraction intensities
depend on the complete structure factor matrix A according to the equations given
in Fig. 34.4.

This means that Ig is actually the intensity of coherently adding partial waves,
each having taken a different ‘Umweg’ (D detour) through the sample. Even for
very thin samples this interference of the direct path with longer scattering paths
(higher order Umweg excitations), or, as in the case of forbidden reflections, only
these Umweg excitations, affects the diffraction pattern. However, for thin samples
this can only be seen for large variations of the incident beam direction, much larger
than that achievable by CBED (often several degrees or 10s of mrad). This is where
techniques capable of exceeding the limit imposed by the Bragg spacing listed in
Fig. 34.3 become very interesting.

The fast convergence of a recently developed scattering path expansion [9]
allows us to expresses the diffraction pattern intensities as a set of multivariate
polynomial equations. Applying a globally convergent algorithm to solve these is
a direct inversion of the dynamical scattering equation and solves for the relative
phases of the structure factors. Figure 34.5 shows how, by using a sufficiently high
order scattering path expansion we can recover the projected crystal potential [10],
without applying any iterative refinement techniques. Of course, the finite order
expansion will always be an approximation, but once an approximate solution has
been found, further iterative refinement will not be a problem anymore.
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Fig. 34.4 Comparison of kinematic and dynamical diffraction. While kinematic (e.g. X-ray-)
diffraction theory implies the crystallographic phase problem, dynamical diffraction intensities are
interference patterns of different scattering paths, implying that the phase relation between these is
encoded already in the measured intensities

Fig. 34.5 (a) projected potential of Si. (b) potential reconstructed from a simulated LARBED
pattern of 4 nm thin Si, applying a q �3 scattering path expansion, q being the total length of
the scattering path. (c) potential reconstructed from the same pattern using a q �4 scattering path
expansion.

Important prerequisite for being able to directly solve the dynamic inversion
problem in this way is the availability of diffraction information for a rather large
range of incident beam directions for all relevant reflections. Because the specimen
thickness should be kept constant, this diffraction information should stem from
a rather small area on the sample. Exactly this kind of data is provided by the
LARBED technique described below.
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34.3 The LARBED Experimental Setup

The LARBED technique works very similar to PED, except that only a partial
compensation of the incident beam tilt is applied by the diffraction shift coils. In that
way a constant but large and well known fraction of the tilt-induced diffraction shift
is compensated, preserving the information about the original angle of incidence
and the associated diffraction intensities in the pattern (Fig. 34.6).

Software control of beam tilt, beam shift and diffraction shift easily allows

• arbitrary scan patterns (ring, square, disc [see], etc.)
• compensation of objective pre-field lens aberrations, objective lens aberrations,

and pivot point (shift tilt impurities, even if non-linear)
• fully automated beam alignment and calibration

34.3.1 Aberration Compensation

One very important requirement of quantitative LARBED experiments is that all
diffraction information stems from exactly the same specimen area, for all angles
of incidence of the electron beam. Otherwise it will be impossible to separate
the effect of varying specimen thickness from the genuine rocking curve signal.
This is particularly challenging if the sample is nanocrystalline and a very small
probe must be used. It is thus necessary to keep the probe from wandering about
the sample surface during acquisition. Within the Quantitative Electron Diffraction
(QED) software (HREM Research, Japan), a commercially available plug-in for

Fig. 34.6 (a) Sequence of ray paths in the TEM when completing a circular LARBED pattern as
well as examples of a few other scan patterns: (b) circle, (c) square, (d) disc
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Fig. 34.7 Illustration of the effect of aberrations of the objective lens on the measurement of the
spot on the sample. (a) Without aberrations, images of the tilted beam, as well as the diffracted
beam travelling parallel to the optic axis end up at the same position on the detector. (b) Aberrations
cause images of the diffracted and undiffracted beams to be detected at different positions

DigitalMicrograph (Gatan Inc., Pleasanton, CA) implementing LARBED as well as
a few other technique, this is achieved by fitting a large set of pseudo-aberration
coefficients to the movement of the spot on the sample for a large range of beam
tilt angles. These parameters which include all aberration coefficients up to (and
including) third, fifth, or seventh order, depending on the user’s choice, are then
used to predict the probe shift corresponding to any beam tilt within (and to some
degree also outside) the range of tilt angles sampled during the calibration.

Such calibration may be achieved in two different ways. As illustrated in
Fig. 34.7b, aberrations of the objective lens will induce a tilt-dependent image
shift of the illuminating probe, exaggerating its actual movement on the sample. As
discussed in detail in [8], when tracking the movement of the illuminating spot on
the detector by recording its bright-field (BF) image, it is necessary to characterize in
addition to the aberrations of the objective pre-field lens, also those of the objective
lens. However, if one brings some amorphous sample area within the field of view,
inserts a small objective aperture and aligns it with the microscope’s optic axis,
the movement of the probe on the sample may be tracked directly by following the
movement of the dark-field (DF) image of the probe on the sample, independent of
the aberrations of the objective lens. Either method has some advantages as well
as disadvantages, which is why QED offers a choice of either method (BF or DF).
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While the BF calibration requires both imaging as well as illumination aberrations
to be calibrated, its advantage is that, once the aberrations of the objective lens have
been determined, the calibration of the illumination aberrations may be performed
without any sample. The DF method, on the other hand, may be simpler in that it
requires only a single calibration step, but it may involve very long exposure times
if the scattering of the amorphous sample is weak, which is why QED offers an
auto-illumination option for the illumination aberration calibration in DF mode.

34.4 Applications of LARBED (Using the QED
Plug-In for DM)

At the moment, the only tool implementing the LARBED principle is the QED Plug-
In to DigitalMicrograph. This software is commercially available [11] and works
on any TEM with the possibility of controlling the beam tilt and – shift through
DigitalMicrograph. While the QED plug-in implements a number of diffraction
techniques (e.g. PED, diffraction mapping, fluctuation electron microscopy), this
section focuses on its application to LARBED-like experiments.

34.4.1 Quantitative LARBED

LARBED patterns can also be analyzed at least as quantitatively as CBED patterns.
In principle, the same numerical fitting routine applied in quantitative CBED [12,
13] work may also be applied to LARBED data. Because of the large effective
convergence angle one obtains diffraction discs with feature variations in intensity
even for very thin specimen where conventional CBED patterns would show discs
of constant contrast.

Figure 34.8 shows a LARBED pattern of a thin SrTiO3 specimen. This pattern
provides dynamical rocking curve information up to an illumination tilt angle of
70 mrad in all directions, i.e. the diameter of each of the diffraction disc is 140
mrad (D8ı). As for conventional PED patterns, the (partial) compensation of the
illumination tilt by the diffraction shift smears out any detail within the thermal
diffuse scattering background, such as Kikuchi bands. Compared to conventional
CBED this increases the accuracy with which quantitative information may be
extracted from each of the diffraction discs of a partially compensated LARBED
pattern.

Since the data presented in Fig. 34.8 was acquired by recording each of the 1,009
individual diffraction patterns, storing these in a single data potentially even higher
quality (more quantitative) data can be extracted. For a diffraction pattern consisting
of discrete spots, as is the case in the presented example, it is possible to subtract the
background under each of the individual diffraction spots present in the diffraction
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Fig. 34.8 Zero-loss filtered LARBED pattern (log scale) of very thin SrTiO3 acquired using the
QED software installed on a Zeiss EM912 at 120 kV. To the left and right of the pattern individual,
background-subtracted diffraction discs extracted from a LARBED data stack are shown

pattern, for each discrete illumination tilt angle separately. The value of each pixel
within the individual diffraction discs displayed to the left and right of the LARBED
pattern in Fig. 34.8 thus represents the integrated background-subtracted diffraction
intensity for the selected Bragg spot [8].

Such kind of data will extend the application of quantitative CBED to structures
with arbitrarily large unit cells and also arbitrarily small specimen thicknesses.

34.4.2 Pseudo-3D Reconstruction of 4D Electron
Diffraction Data

Much of what is counted as a great advantage of PED may be attributed to the
washing out of 3D (dynamical) diffraction information by integrating along the
relrods. Figure 34.9 shows a very extreme case of this (K2O�7Nb5O2, space group
P4/mbm [No. 127], a D b D 27.5 Å, c D 3.94 Å). The integrated LARBED pattern
for a disc scan with 70 mrad radius shows that Bragg spots from several Laue zones
have been sampled by the Ewald sphere.

Looking at the background-subtracted LARBED discs (shown as insets in
Fig. 34.10a, b, c) extracted from the data set shown in Fig. 34.9, we notice three
features:

(a) Because of the large tilt range and the not very thin sample only sharp lines
appear where the Bragg condition is satisfied exactly D> ‘Bragg lines’
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Fig. 34.9 (a) individual zero-loss filtered diffraction pattern of K2O�7Nb5O2, (b) LARBED
pattern of the same sample with complete scan compensation (The sample was kindly provided
by D. Zhang and S. Hovmöller (Stockholm university))

Fig. 34.10 Central part of the pattern shown in Fig. 34.9b. The arrows in (a, b and c) point to
the reflections for which LARBED discs (shown in the respective insets) have been extracted. The
related intensity variations along the Bragg are shown in (d), (e), and (f)



378 C.T. Koch

Fig. 34.11 (a) Isosurface plot of a small section of 3D reciprocal space of the K2O7Nb5O2 lattice
reconstructed form the LARBED data stack shown in Fig. 34.10. Note that the kz-axis has been
magnified 5 times. (b) Vertical cuts through the 3D volume displayed in (a). The intensity has been
adjusted to reveal even the faint reflections. The kx- and kz-axes have equal scales

(b) The intensity along these Bragg lines (shown Fig. 34.10d–f) varies very much,
depending on which other reflections are also excited (dynamical diffracting
conditions).

(c) While the orientation of these Bragg lines is always normal to the corresponding
g-vector, their position within the discs indicates the z-component of g.

Feature (b) in the above list indicates a significant advantage of LARBED over
PED in this context, because PED includes at most two points along these Bragg
lines. Feature (c) can be made use of for recovering the 3D information contained
in this data. The combination of these two facts means that the data presented here
is of 4D nature. While the position of the Bragg line indicates the z-position of a
given reflection (D>3D), the intensity variation along the Bragg lines (the fourth
dimension) may, in principle, be used to solve the crystallographic phase problem,
as described earlier when discussing the dynamic inversion problem.

However, disregarding the fourth dimension for the moment and simply averag-
ing the intensity along the Bragg lines one may also just reconstruct a small section
of 3D reciprocal space, as shown in Fig. 34.11.

34.5 Conclusion

This chapter has presented a short introduction to the additional kind of information
that can be access by collecting diffraction information for a range of different
incident beam directions. Particular emphasis has been put on the importance
of overcoming the limitations imposed in conventional CBED experiments and
the advantages implied by the very recently developed LARBED technique. It
has been shown that the availability of the kind of 4D diffraction data made
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available by LARBED experiments opens the door to a whole new range of
possible experiments, including the possibility of a fully automated solution to
the dynamic inversion problem in electron diffraction. While this making full
use of the information carried by dynamically scattered electrons is still work
in progress, some other alternative applications, such as quantitative CBED for
arbitrarily thin samples and arbitrarily large unit cell crystals, pseudo-3D diffraction,
or the extension of the acceptance angle of imaging energy filters may already be
applied routinely.
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Chapter 35
Shadow Imaging for Charge Distribution
Analysis

Yimei Zhu and Lijun Wu

Abstract We briefly review the shadow imaging method for charge distribution
analysis developed at Brookhaven. It is a unique electron-diffraction technique.
Instead of focusing a small electron probe on the sample in conventional convergent
beam electron diffraction, we focus the probe above (or below) the sample, resulting
in parallel recording of dark-field images (shadow images), or PARODI. Because the
method couples diffraction with imaging, it is thus suitable for studying crystals as
well as their defects. We used this technique to accurately describe charge transfer
that determines the functionality of technologically important materials. Examples
are given for MgB2 superconductor and CaCu3Ti4O12 oxide that exhibits giant
dielectric response. Discussions on non-spherical electron scattering factors and
their parameterizations for direct observations of electron orbitals in atomic images
are also included.

X-ray and electron diffraction are complementary. X-ray diffraction measures the
total density of electrons in crystal; in contrast, electron diffraction measures
electrostatic potential, i.e., the total electron density as well the nuclear core charge.
With x rays we often collect a powder pattern containing many reflections from
many crystals, while with electrons we can determine accurately a few selected
structure factors, and due to the small electron probe, a tiny powdered grain or
a crystal smaller than 100 nm can be easily studied as a single crystal. Electron
diffraction is particularly sensitive to valence-electron distribution in crystals at
short reciprocal vectors, and thus the structure factors determined from electron
diffraction at small scattering angles give valuable information about electron or
charge transfer over longer distances in the crystal unit cell. This becomes evident
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Fig. 35.1 Comparison of X-ray form factor (vertical axis on the left) and electron form factor
(vertical axis on the right) as a function of scattering vector s for neutral Cu atom, CuC and
CuCC ions based on the Mott-Bethe formula. Here f with superindices e and x refers to the atomic
scattering amplitude for electrons and x-rays, respectively, Z is the charge of the nucleus. For
small s, where f (x) approaches the number of electrons at the atom that is close to Z, the electron-
scattering amplitude will vary greatly with the distribution of valence electrons around the atom

when considering the Mott-Bethe formula (see Fig. 35.1), where we see clearly
that the electron diffraction is more suitable for the accurate measurement of
charge distribution using the innermost reflections than x-ray diffraction. Measuring
accurately just a few of the low-order electron structure factors provides a useful test
of electronic structure calculations of the electron density.

Conventional Convergent Beam Electron Diffraction (cCBED) have been
successfully used to study charge distribution of crystals with a small unit-cell,
see for example [1, 2]. However, the cCBED method is not suitable for studying
crystals with a large unit-cell (where Bragg reflections are closely spaced), such as
high-temperature superconductors, partly because of the wide range of incident-
beam directions that is required to extract accurate information in cCBED, resulting
in overlapping diffraction disks for large unit-cell crystals. Small convergent angles
have to be used to avoid overlap for measuring individual structure factors. To
overcome the drawback of limited angular information, we literally introduce an
additional dimension, thickness, into the diffraction pattern and study the variation
in diffraction intensity not only in relation to excitation error, s, but also as a function
of the crystal thickness [3–8].

The method we developed is a new breed of CBED which is imaging and
diffraction coupled. It differs from the traditional CBED in that we focus the
electron probe above the sample rather than on the sample [3–9], as illustrated
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Fig. 35.2 Sketches of experimental setup for conventional convergent beam electron diffraction
(cCBED) (a) and the shadow imaging method (Parallel Recording Of Dark-Field Images,
PARODI) (b). Examples of experimental observations are shown in (c) and (d) for the (00 l) and
(h00) systematic rows of MgB2, respectively, to determine structure factors for charge density
analysis. In cCBED, we probe an area of consistent thickness, while in PARODI an area with
thickness variation. Here, s denotes excitation error and t denotes the thickness (arrows in (c-d)
denote the direction of the change). Thickness measurement used in PARODI is shown in (e-f)
with experimental observations in (e) and calculations, based on dynamic scattering theory, in (f)
for the (000) and (022) reflection of Si to map the thickness of the area. (e) Energy filtered PARODI
pattern (left) and experimental hologram (right); (f) calculated patterns (a 2-demensional thickness
distribution) extracted from the phase map (� D CV0t) obtained from the hologram (e), using a
scaling factor of 1/CV0 D13.33 nm/rad (where V0 D11.5 V is the mean potential). The reflections
were recorded in the [1 1–1] zone with the center of Laue circle at (�14.2, 6.55, �7.65) position

in Fig. 35.2. In doing so, we form shadow images (mainly dark-field images)
of a large illuminated area within the diffraction disks that contain not only
information on orientation (as with cCBED), but also thickness profiles, or Pen-
dellösung plots, for the many simultaneously recorded reflections. At the edge
of the sample, the thickness profile usually starts from zero and goes up to a
maximum that can range from 10 nm to several hundred nanometers depending
on the distance from the specimen to the beam’s crossover. Because this method
obtains dark-field images within each diffraction disk for many reflections in a
single exposure (parallel recording), we term the method Parallel Recording Of
Dark-field Images, or PARODI (see also Fig. 35.3). Our PARODI method offers
distinct and important advantages [7]. First, dozens of reflections (for large unit-cell
crystals) are recorded simultaneously, ensuring that the incident-beam illumination
and exposure are exactly the same for all reflections. Second, the dark-field images
are recorded in the back focal plane of the objective lens where the aberration of
the objective lens and the transfer function of the microscope can be neglected
for quantitative analysis. Third, for a wedge sample, the discrete data points
within each reflection (corresponding to different thicknesses of the sample) are
independent for defect-free sample areas or incoherent illumination; this results in
a high ratio of experimental observations versus the number of fitting parameters in
model calculations, giving correspondingly higher levels of confidence. Fourth, the
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Fig. 35.3 Calculated PARODI patterns (a-d) for a wedge sample of Si with a linear change in
thickness (t D 0–300 nm) in the vertical direction (a and c) and the horizontal directions (b and d).
The vacuum area (t D 0) is at the bottom for (a, c) but on the left for (b, d) of the probing area. (a-b)
the 022 reflection; (c-d) the 00 l systematic row. s represents excitation error (or the deviation from
the Bragg condition). (e) For comparison, a calculated cCBED pattern with a constant thickness
(t D 300 nm) is included. Right panel: Calculated PARODI pattern of a bended Si sample showing
the bend contours in 16 Bragg reflections (the corresponding dark-field images) and the center
beam (bright-field image). Structure factor of all the reflections can be determined using a single
diffraction pattern

defocused beam minimizes possible radiation damage in comparison with cCBED.
Fifth, the interference fringes due to planar defects (e.g., interfaces) show strong
contrast even when the defect is viewed edge on for coherent illumination [4, 9].
And last but not least, a wide range of reflections from the same illuminated area
can be simultaneously analyzed in quantitative measurement of charge distribution
and lattice displacement because electrons scattered at small angles are sensitive to
charge arrangement, whereas those scattered at large angles are sensitive to crystal
distortion. Although introducing sample thickness imposes additional complexity
in measurement, for crystals with a large unit-cell this is the only way to accurately
measure the low-index structure factors using CBED. We have demonstrated that
the thickness distribution of the probing area can be routinely mapped using off-axis
electron holography (Fig. 35.2e, f). When the area is a wedge, only one additional
parameter is needed for the refinement [5].

The low-order structure factors were determined through a refinement proce-
dure by comparing experiment with calculation based on Bloch-wave dynamic
diffraction theory. The high-order structure factors are either based on experimental
measurement using synchrotron X-ray, or DFT calculations, combing the low-order
electron structure factors as a full dataset. The initial calculations usually start from
electron structure factors (ESFs) of the procrystals (i.e., a hypothetical crystal with
atoms having the electron distribution of free atoms; also so-call independent atom
model (IAM)). Then iterative calculations were carried out by adjusting values of
structure factors until the difference between calculated and experimental patterns
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Fig. 35.4 DFT calculated difference charge-density maps�¡(r) of MgB2 superconductor incorpo-
rated with several measured low-index electron structure factors. The contours are shown as dashed
black line for �¡(r) <0 with intervals of 0.2 e/Å3, orange line for �¡(r) D 0, and solid black line
for �¡(r)>0 with intervals of 0.05 e/Å3. A color scheme of black-blue-green below zero level,
yellow-purple at and above zero level was used. (a-b) Planes normal to the c-axis through the B
and Mg atoms, respectively. (c) The 110 plane through the Mg and B atoms. The structure model
of MgB2 showing the (120) plane (pink) and the (001) plane (yellow) related to the charge-density
maps in (a) and (c), respectively, is also included [6] (color figure online)

reaches minimum. To ensure that this minimum is not a saddle local minimum,
we test it by selecting several different starting points and re-calculating structure
factors iteratively until we reach the same lowest minimum. Multipole refinement
model of Hansen and Coppens [10] are used to refine the measured structure factors
for charge density analysis via computer codes of VALRAY:

�atomic.r/ D Pcore�core.r/C Pval�
3�val.�r/C

l maxX

lD1
˛3Rl.˛r/

lX

mD1
Plm˙Ylm˙.�; �/

where �core.r/ and �val.r/ are the spherical atomic core charge density and spherical
valence charge density (monopole), respectively. Pcore and �val.r/ are the electron
population of core and valence parts. The last term is the multipole contribution.
Several applications of charge density measurement using the PARODI method,
including those illustrated in Fig. 35.4 (MgB2 superconductor) and Fig. 35.5
(CaCu3Ti4O12 dielectric oxide), will be presented. Results obtained from the
PARODI method will be compared with cCBED.
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Fig. 35.5 (a) The structure model of CaCu3Ti4O12 (CCTO), an oxide with giant dielectric
response across a wide range of temperatures. (b) Measurement of low-order structure factors using
PARODI. Top row: an experimental PARODI pattern of CCTO recorded on a 20 bit imaging plate
showing the h00 systematical row of the 000, ˙200, and ˙400 reflections at room temperature.
Middle row: the calculated pattern using the dynamic Bloch-wave approach. Bottom row: the
line scans of the intensity oscillation from the experiment as open circles are compared with
calculations as solid lines. (c) Experimental observation at 90 K of the charge distribution of CCTO
in (001) basal plane containing Cu, Ca, and O atoms (i.e., the static deformation electron density
map using neutral atoms as a reference), extracted from structure factor measurements using
combined electron and x-ray diffraction data through multipole refinement and best-fit analysis.
A total number of 58 independent structure factors including six from the innermost electron
reflections, were used. (d) DFT calculation based on the ideal crystal structure. The color legend
indicates the magnitude of the charge, and the contour plot has an interval of 0.1e/A3. The orbital-
ordered Cu-3d states of xy symmetry are clearly visible, as well as its antibonding with O-2p states.
Note the significant difference near the A’ sites (circled by white solid line) between (c) and (d),
where an anisotropic density pattern of eg electrons is observed only experimentally, suggesting
some degree of disorder with Cu replacing Ca in real material [8]

In charge density analysis the future challenges include direct observations of
valence electron distribution in real-space via high-resolution imaging (HREM).
Currently spherical form factors are used in most HREM image simulations, thus
structure related aspherical orbitals (such as p- and d-orbitals) cannot be revealed or
interpreted in HREM. To meet the challenge we have formulated and parameterized
the aspherical electron scattering factors for atoms with atomic number ranging
from 1 (H) to 54 (Xe) [11]. Our tabulated aspherical form factors (Fig. 35.6)
might well afford a better description of the experimentally observed exit-waves
in electron diffraction and imaging after they pass through the sample, thereby
allowing more accurate comparisons between the experiments and the density
functional theory (DFT) of functional materials. Recent HREM image simulations
based on DFT calculations have demonstrated that the effect of aspherical orbitals
can be visible in atomic images [12, 13]. The real-space approach is especially
useful for understanding the role of valence electrons and the charge transfer
associated with interfaces and defects, and is complementary to the reciprocal
approach.
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Fig. 35.6 Formulation and parameterization of aspherical electron form factors: replacing charge
density ¡(r) with orbital wavefunction ®(r); and expressions of angular dependent electron form
factors for p-orbitals and d-orbitals. Comparison of fitting residuals with a different number of
Gaussian functions using Fe as an example and parameterization of aspherical electron form factor
using Cu as an example are also included [11]
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Chapter 36
Electron Diffraction of Protein 3D Nanocrystals

Jan Pieter Abrahams, Dilyana Georgieva, Linhua Jiang, and Igor Nederlof

Abstract Protein crystallography, being one of the most established methods for
structure determination of biomacromolecules, relies on the diffraction analysis
using X-rays for 3D (micro-)crystals. Electron diffraction is only employed for
single layer 2D nano-crystals. However, there is no established method for analysing
multi-layered 3D nano-sized protein crystals. Electron diffraction may fill this
important niche, but several problems have to be surmounted for this method
to become mainstream. Our group aims tackling some of the bottlenecks, and
although our work is still very much in progress, we can report advances in
some important areas. Here we summarise improvements in (i) the induction of
growth of (nano-)crystals, (ii) electron diffraction data collection using the Medipix
quantum area detector, (iii) unit cell determination using single, non- oriented
diffraction patterns, (iv) integration of diffraction data and (v) phasing of electron
diffraction data.

36.1 Introduction

Knowledge of the atomic structures of biological molecules like DNA, proteins
and their complexes, has been one of the major driving forces in life science.
Crystallography is the dominant method in this field. Protein crystallography is
a major justification for large-scale facilities like synchrotrons and the planned
free electron lasers X-ray sources (XFELs). However, 3D protein crystals that
are smaller than about 0.5 �m are too small for standard X-ray crystallography,
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Fig. 36.1 Electron diffraction data up to 2 Å resolution of randomly oriented 3D crystals of
lysozyme. Many different spacings are seen in the patterns, suggesting a broad sampling of
reciprocal space. Shown is a representative sample of hundreds of diffraction patterns of lysozyme
nano-crystals that we have gathered [2]

although XFEL sources may help in expanding the method towards smaller
crystals [1]. This is a serious bottleneck, as about 30% of proteins that crystallize,
do not grow crystals of a sufficient size, and therefore remain beyond the reach of
atomic structure determination1. Especially membrane proteins and large (dynamic)
protein-nucleic acid complexes fail to grow into crystals that are large enough.
Structural information on these important drug targets is therefore severely lacking.

However, electrons are less damaging to proteins than X-rays by several orders
of magnitude per diffracted quantum [2], and the groups of Profs. Abrahams and
Zandbergen in Leiden and Delft recently demonstrated that useful, high-resolution
electron diffraction data (up to 2.5 Å) can be obtained from nano-sized 3D protein
crystals, where X-rays fail (e.g. see Fig. 36.1). For radiation sensitive material, this
opens new possibilities, including full 3D data collection of 3D protein crystals
to atomic resolution. However, even just qualitative knowledge of the diffraction
potential of nano-sized protein crystals is important as it allows identifying positive
crystallisation hits.

If electron crystallography of 3D protein crystals is so promising, why doesn’t
it work yet? We believe the answer to this question is the major success of X- ray
crystallography as a tool for structure determination. The success of every tech-
nology is characterised by a sigmoidal curve: early on, it takes major efforts to
prove the usefulness of a technique and progress is slow; then progress picks up
and the popularity rapidly increases – investments in competing techniques no

1http://targetdb.pdb.org/statistics/TargetStatistics.html

http://targetdb.pdb.org/statistics/TargetStatistics.html
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longer seem justified. For example, the immense success of X-ray crystallography
discouraged the development of 3D electron crystallography of proteins. Finally,
more and more effort and investments are needed to make smaller and smaller gains
in efficiency and in the end any technique will reach a plateau. We make the case that
in X-ray crystallography increasingly more effort is being invested in ever-smaller
gains in terms of resolution. By contrast, electron crystallography of 3D protein
crystals is in the early stages, where it has to prove itself. In the case of sub-micron
protein crystals, electron crystallography has the physics of diffraction on its side.
It is becoming clear that tiny crystals that do not even yield to the most powerful
dedicated synchrotron beamlines, can diffract well on a regular commercial electron
microscope that can be obtained for a fraction of the cost.

36.2 The Disadvantages of Electron Diffraction in the Study
of Protein Crystals

Being able to use smaller crystals does not solve the inherent problem of protein
crystallography: obtaining crystals. Even when proteins do have the potential to
crystallise, large scale screening of the many parameters that affect protein solubility
has to be undertaken in order to identify suitable crystallisation conditions [3].

Detecting high-energy electrons without noise is not trivial. Off-line detectors
like image plate and photographic film have advantages in sensitivity and spatial
resolution respectively, but do not allow high throughput data collection. Live
detectors like CCDs and direct electron detectors do not have these problems, but,
like off-line detectors, these do not discriminate between high-energy electrons
and other types of radiation that are generated inside the electron microscope [4].
This results in a sub-optimal signal-to-noise ratio, compromising data quality. For
radiation hard materials, this may not be a major problem, as longer measuring times
will increase the signal-to-noise, but for proteins, the problem is severe.

Unfortunately it is not possible to employ strategies for indexing diffraction
patterns that are successful for electron diffraction of radiation hard crystals. These
methods rely on careful alignment of the crystals in the microscope and this
alignment requires continuous monitoring of the diffraction patterns as the crystals
are oriented [5]. Protein crystals die in the beam during such alignment.

Mature software exists for the indexing and intensity measurement of diffraction
data in the case of X-rays [6, 7]. In theory this software should also be able to
be used on electron diffraction data, even though some types of distorion that are
typical for electrons are currently not yet modeled by these programs. The extreme
radiation sensitivity of protein crystals does not allow to collect complete data sets
and only small wedges of data, often only single diffraction shots, can be obtained.

High-energy electrons (200–300 kV) are scattered 4–5 orders of magnitude
more efficiently by organic materials, compared to X-rays, and lose only little
energy when scattering inelastically. Hence, electrons are prone to scatter elastically
multiple times within the crystals, a phenomenon also referred to as dynamic
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scattering. In practice this implies that crystals that are more than about 200–300 nm
in thickness are seriously affected by dynamic scattering, even with electron
energies up to 300 keV.

36.3 Growing Nano-crystals

Crystallization of biological macromolecules is still one of the major bottlenecks
in X-ray crystallography [8]. First a screening and then an optimization step
characterize the process of obtaining diffraction-grade crystals. First nucleation of
a microscopic crystallite must occur. Such a nucleus often composed of only a few
hundred molecules and is not visible with an optical microscope. The screening
step aims to identify suitable nucleation conditions, which has been shown to be the
limiting step in the formation of X-ray grade crystals. Spontaneous formation of a
crystal nucleus by the ordered aggregation of supersaturated proteins (homogeneous
nucleation) is an unlikely event [9], but it is well known that surfaces can help in the
formation of crystal nuclei.

We discovered that locally coating crystallisation plates with fragments of human
hair allows automated, high-throughput crystallisation trials in a fashion that is
entirely compatible with standard protein crystallisation techniques. We assessed the
effect of these nucleants on the crystallisation of 11 different proteins in more than
4,000 crystallisation trials. We found additional crystallisation conditions for 10 out
of 11 proteins when using the standard JCSG C screen (96 different conditions). The
median increase in crystallisation hits was 14% and even membrane proteins were
found to nucleate on human hair. On the basis of these numbers, we conclude that
the inclusion of human hair fragments in high throughput crystallisation screens is
straightforward and may be beneficial [10].

Furthermore, when crystals nucleate heterogeneously, for instance on fragments
of human hair, they can be harvested straightforwardly by picking out the heteroge-
neous nucleant on which the protein crystals grow, even when the protein crystals
themselves are sub-micron size (see Fig. 36.2). We have found that this greatly
facilitates mounting nano-sized crystals on electron microscopy (EM) grids, prior
to flash-freezing them using standard flash-freezing equipment.

Fig. 36.2 Lysozyme needles growing on human hair fragments. These crystals can be harvested
straightforwardly by picking out the hair fragments, even though the thinnest needles are sub-
micron sized [10]
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36.4 Measuring Electron Diffraction Data Using
Quantum Area Detectors

A fundamental and often disregarded problem in electron detection in EM is that
most of the energy of the electrons is converted into photons inside the microscope.
These photons are produced when the electrons are being generated, focused by
electromagnetic lenses, or interact with the sample, the walls of the EM or with
the electron detector. Although the energy of these photons is high (hard UV
and X-ray), it is not as high as that of imaging electrons. Nothing prevents these
randomly scattered photons from depositing their energy along- side the imaging
electrons on the electron detector. This inevitably means that conventional electron
detectors have inflated signal-to-noise ratios, which often obscure essential details.
This problem severely impacts studies that necessitate a limited electron dose, like
time resolved studies or life science research. If there would be a way to only
detect the signal (electrons), whilst disregarding the noise (photons), this would
represent a quantum leap in electron microscopy, as this would allow studies with
unprecedented contrast [11].

Quantum area detectors measure the energy of incoming quanta and can be pro-
grammed to only count events within a predetermined energy window [12]. Faruqi
established their usefulness for TEM applications and LEEM/PEEM applications
[13, 14]. In electron diffraction studies with Medipix quantum area detectors, we
showed that this can result in an improved contrast in (ultra) low dose conditions:
the same signal-to-noise ratio could be obtained at a dose that was 1–2 orders of
magnitude lower, when compared to conventional technologies like photographic
film, image plate or CCD electron detectors [11]. This finding, in addition to the
high dynamic range (more than four orders of magnitude), the absence of read-out
noise and comparatively fast read-out time (currently five frames/s) of the Medipix2
detector, allowed us to collect multi- degree diffraction data sets of nano-sized
protein crystals (for an example: see Fig. 36.3). By employing an extremely small
and parallel electron beam, we could pick out parts of the crystal with a minute
mosaic spread, explaining the appearance of so-called ’lunes’ due to the curvature
of the Ewald sphere.

36.5 Unit Cell Determination

The first step of crystallographic data analysis is determining the unit cell parameters
of the crystal. The conventional method for unit cell determination by electron
diffraction is based on obtaining diffraction patterns from main crystallographic
zones. Finding such zones requires carefully orienting the crystal, a process that
is made easier if the diffraction pattern shows Kikuchi lines when using convergent
beam. Based on the spacings between diffraction spots and the angular relationship
between the patterns, unit cell parameters can be calculated. This remains a tricky
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Fig. 36.3 The first and the last diffraction patterns of a series of 23 subsequent frames (0.065ı per
frame) collected at 200 keV with a Medipix Quad detector (512 by 512 pixels). The crystal was
orthorhombic lysozyme, maximum resolution ˙4.5 Å

procedure and often in the final stage, X-ray powder diffraction and electron
diffraction are combined to assure accurate determination of cell parameters and
their subsequent refinement.

Unit cell determination by X-ray crystallography does not rely on the avail- abil-
ity of diffraction patterns along main zone axes, and several groups have explored
the possibility to likewise facilitate electron diffraction data acquisition by also
allowing misoriented diffraction patterns. The Automated Diffraction Tomography
technique (ADT) [15, 16] and the diffraction rotation technique [17] have recently
raised major interest in this respect. In diffraction tomography, patterns are acquired
in STEM mode in order to reduce beam damage and data are collected every 1ı
by tilting the crystal stepwise. The technique is suited for collecting data from
beam sensitive materials, where the nature of the sample does not allow long
exposures. The diffraction rotation technique aims at collecting a complete dataset
of diffraction patterns in a fashion similar to X-ray crystallography. In this method
tilting of the beam in small steps is combined with rotation of the crystal.

However, for very beam sensitive materials, like nano-crystals of proteins, it is
not always possible to collect multiple diffraction patterns, or only small wedges
of data can be collected (see for instance Fig. 36.3). For such cases (which we
encounter frequently), we developed the program EDiff, which is a user friendly
software suite for unit cell determination of 3D nano-crystals from randomly
oriented electron diffraction patterns with unknown, independent orientations [18].
It can also be used for 3D cell reconstruction from diffraction tilt series. In neither
case exact knowledge of the angular relationship between the patterns is required.
The unit cell can be validated and the crystal system is assigned. EDiff can index
the reflections in electron diffraction patterns, and can be employed as a first step
in reconstructing the 3D atomic structure of organic and inorganic molecules and
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Fig. 36.4 Main graphical user interface of the program EDiff V1.0, used for finding unit cells
from non-oriented electron diffraction patterns [18]

proteins. Before EDiff can suggest unit cells and indexing, the diffraction data need
to be pre-processed with AMP, which forms part of the suite. AMP (Autocorrelation
Mapping Program) removes the background noise from the diffraction images,
picks reflection spots and determines short lattice spacings by examining the
autocorrelation functions of the diffraction patterns [19].

Two reflection spots together with the direct beam position form a triangle, which
we call a ‘facet’. The facet defined by the two shortest vectors (corresponding to
two reflection spots closest to the centre) is called a ‘main facet’. In short, every
reflection pair defines a facet. The main facet defines the smallest repeating unit
of the 2D lattice defined by the low-resolution spacings (but not any higher-order
Laue zone (HOLZ) that may be visible at high resolution). The facets found from
all diffraction images contained in a dataset are used to find the cell parameters. For
a more detailed explanation, please refer to [18]. EDiff also has a Graphical User
Interface (GUI); see Fig. 36.4.
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36.6 Integration of Diffraction Data

The current version of EDiff can also determine the intensities of indexed spots,
but this feature is undergoing testing at the moment of writing. We are also
testing whether the images can be integrated with X-ray diffraction data integration
programs like MOSFLM [6] and XDS [7]. In some instances, notably for small
molecules, XDS proved successful, but we are still facing some unexplained
difficulties for the general cases.

36.7 Phasing of Electron Diffraction Data

Once data has been integrated, the phases of the structure factors must be determined
in order to solve the crystal structure. In the case of protein crystals, molecular
replacement – where the phases of a different but related protein structure are used
as an initial guess – is likely to be a powerful phasing method for electron diffraction
data too. Another possibility is to use imaging data of the crystals to infer low
resolution phase information in a method that is successful for electron diffraction
structure determination of 2D protein crystals. In any case, subsequent structure
refinement has to include corrections for dynamical scattering, like the strong phase
approximation or multi-slice simulations.

The presence of dynamical diffraction, especially if crystals are in the order of
100–200 nm in thickness, has been considered to be a serious obstacle in structure
determination by electron diffraction. The regime for dynamical scattering of
bacteriorhodopsin 2D crystals was indicated by Glaeser and Ceska [20]: differences
between Friedel pairs caused by dynamic scattering were clearly ob- served when
20 kV electron diffraction patterns were collected; however, they were not observed
in 100 kV patterns. For 3D protein crystals, which are considerably thicker than
2D protein crystals, differences between Friedel mates were anticipated even at
high accelerating voltage [21]. However, these Friedel pair differences anticipated
in this paper were severely overestimated, since the calculations assumed a zero
scattering potential for the disordered solvent and lipid parts of the crystal (which on
average occupy 50% of the unit cell in protein crystals). This results in a substantial
overestimation of the phase shift of electrons that travelled through ordered protein,
compared to electrons that traversed the disordered parts of the crystal. In a recent
theoretical paper, we showed that dynamical diffraction may be used to retrieve
phase information from diffraction patterns [22], but this theoretical result remains
to be validated experimentally.
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36.8 Discussion and Conclusion

The road towards structure determination of 3D nano-crystals of proteins is arduous,
but important progress has been made. Although we have been able to remove
some of the bottlenecks, we cannot claim success (yet). The main problems that
we are facing now are all related to the experimental difficulties of collecting
diffraction data of sufficient quality. We have found the vitrification of crystals on
EM grids using standard cryogenic techniques that are employed routinely in single
particle analysis and cryo-electron tomography, to be a major source of variability.
Sometimes we have to scan up to ten grids before we find well-frozen protein
crystals. So far, we have not been able to pinpoint the source of this variability,
which is currently the main factor hampering progress. It may be that the cause is
the larger thickness of the sample, compared to samples routinely used for single
particle analysis. In this case, the inclusion of cryo-protectants should improve
reproducibility (at the expense of contrast), but so far we have insufficient data to
make any claims in this respect.

We anticipate that the availability of two Titan Krios microscopes, which will
be installed in our lab in 2011, will be highly important for progress. With these
microscopes (both equipped with an autoloader), we will be able to scan grids
for well-frozen crystals in a fraction of the time we currently require (we are
currently using a CM-200 microscope). Furthermore, the new microscopes allow
us to combine STEM-diffraction [15, 16] with measuring the diffraction using a
quantum area detector [11], which may further reduce beam damage.
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Chapter 37
Parallel-Beam Diffraction and Direct Imaging
in an Aberration-Corrected STEM

Ondrej L. Krivanek

Abstract Aberration-corrected scanning transmission electron microscopes
(STEMs) are versatile instruments that can perform many types of investigations.
The main use of such microscopes has so far been in direct imaging and analysis,
but they are equally well suited to performing diffraction studies and combined
diffraction C imaging experiments. The various optical modes needed for such
operating modes are reviewed. They include producing electron beams with angular
spreads as narrow as a few �rad, and conical precession scans with scan angles
>50 mrad.

37.1 Electron Diffraction in a STEM

Crewe’s original STEM [1, 2] had no lenses after the objective lens. The information
projected onto its detectors was therefore always a diffraction pattern. However,
this STEM also had no 2-dimensional detector – it detected its various signals
on scintillator C photomultiplier type detectors, and the richness of the diffraction
information available in a STEM was not fully appreciated at the time.

This situation changed fundamentally when John Cowley, the author of Diffrac-
tion Physics [3], acquired a Vacuum Generators (VG) HB5 STEM, built a camera
detector for it, and started to explore the wide variety of imaging and diffraction
modes available in a STEM [4]. The results of these pioneering studies were
presented in many papers by Cowley and coworkers and also in Spence’s and Zuo’s
comprehensive book [5].

Modern STEMs are able to take these studies further, because they have several
features that Cowley’s STEM lacked:
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(a) symmetric or nearly-symmetric condenser-objective lens. This kind of lens
can transform a nearly parallel beam of electrons into a convergent beam that
illuminates the sample, and then transform the outgoing electron beam, widely
dispersed in angle, back into a nearly parallel beam. It allows scattering angles
of up to about 200 mrad to be transferred onto detectors. It also allows the
STEM to operate as a parallel-beam instrument.

(b) Post-specimen lenses. These serve to magnify the parallelized exiting beam as
needed on the detectors, i.e. to give an adjustable camera length, typically from
a few mm to several m.

(c) Aberration correctors. In a STEM, aberration correctors primarily serve to
produce smaller electron probes, by correcting aberrations to higher angles
and thus making it possible to use more convergent (and therefore smaller)
illuminating probes. The correctors introduce many new lenses into the column,
and these lenses can also be used for setting up various diffraction experiments.

37.2 Convergent and Nearly Parallel Electron Probes

Magnetic electron lenses have one great advantage over glass lenses used for light:
their focal length can be changed very easily, simply by adjusting the current flowing
through their coils. This gives electron-optical columns a very large degree of
flexibility. Figure 37.1 illustrates how an electron beam can be made more or less
convergent simply by adjusting the strength of two electron lenses, L1 and L2.

The figure shows schematically a case of 1:1 imaging of a crossover (a), 2�
reduction (b) and 2� magnification (c). In practice, a pair of lenses with adjustable
focal lengths can typically cover 10:1 reduction to 1:10 magnification, and strong
lenses (with short minimum focal length) can cover 50:1–1:50. To cover the range
continuously, the lenses have to be individually alignable, as is done for instance for
every lens in the Nion microscope column [6].

When the output crossover is made smaller, as in Fig. 37.1b, the illumination
grows more convergent (as shown by the axial ray). The image of the beam-
defining aperture then moves towards the first crossover and becomes larger. The
total electron flux remains the same, which means that the final crossover becomes
more intense (more concentrated).

When the output crossover is made larger, as in Fig. 37.1c, the illumination grows
less convergent (as shown by the axial ray), and the image of the beam-defining
aperture becomes smaller. The total electron flux again remains the same, which
means that the crossover appears fainter (more spread out), as shown schematically
in the figure.

The diagrams shown in Fig. 37.1 are very simple, but they illustrate several
important points. First, in order to understand an optical system, its first-order
(Gaussian) trajectories must be precisely quantified. This is because all the other
properties of the system, such as its higher order aberrations, are crucially dependent
on the first order trajectories. In a complicated optical system, such as one involving
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Fig. 37.1 Changing convergence and probe size by adjusting two electron lenses: (a) 1:1,
(b) 1:0.5, (c) 1:2

aberration correctors, the widths of the electron beam in the different optical
elements must typically be known with an accuracy better than 0.1%.

Second, a crossover is never a point-like object. Each new crossover is simply
an image of the previous crossover, all the way through the optical column. The
first crossover is typically the virtual crossover situated behind the actual electron
source, from which the electrons appear to emanate.

Third, it is useful to trace two types of rays through an optical system: axial rays,
which go through crossovers at recurring images of the object we are imaging, and
field rays, which go through crossovers at images of the beam-defining aperture, and
traverse the object plane some distance from the optic axis.

Fourth, when modeling electron-optical systems, it is often convenient to run
the electrons backwards, so that their trajectories can start at a place where the
optical conditions are readily defined, such as in the sample plane of a condenser-
objective lens. Provided that the polarity of all the magnetic fields is reversed at the
same time, the backward-traveling electrons trace out exactly the same trajectories
as the forward-traveling ones. Applying this principle to Fig. 37.1, one can see
that reversing the direction of the electron travel in mode (b) produces the same
schematic of magnifying the crossover (and demagnifying the angular range) as
depicted in mode (c).

Fifth, conservation of brightness (Liouville’s theorem) means that the area of a
crossover times the solid angle of the rays converging into it is constant throughout
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Fig. 37.2 Different ways of illuminating the sample in a STEM: (a) convergent beam, (b, c)
nanodiffraction, (d, e) microdiffraction

any part of an optical system that contains no apertures. The magnification of each
crossover is therefore simply equal to 1/angle at which the rays going through the
crossover meet.

Sixth, there is no such thing as a completely parallel illuminating probe. If it were
completely parallel, all the rays would have to originate from the same point in the
aperture plane. The area subtended by a point being zero, this would mean that for a
practical electron source of finite brightness, the electron flux through the aperture
plane would also be zero. In other words, an illuminating beam with a zero spread
of angles automatically means zero electron flux, and a real illuminating beam will
therefore always have a finite spread of angles.

Figure 37.2 illustrates the formation of electron probes of different degrees of
convergence in a complete STEM. I have placed the electron source at the bottom,
with the electron beam traveling upwards, as pioneered by Vacuum Generators (VG)
and currently done in Nion microscopes. The shown source is a cold field emission
electron gun (CFEG), the brightest and most coherent electron source presently
known. (For a “conventional” view, in which the electrons travel downwards, simply
turn the page upside down.)

The angles of the rays defining the illuminating beam have been greatly
exaggerated for better schematic clarity. In practice, the unscattered electrons stay
close to the optic axis. The largest deviation, about 50 �m, typically occurs in
the front-focal and back-focal planes (FFP and BFP) of the condenser-objective
lens (OL).

Mode (a) illustrates the standard way of operating the STEM when acquiring
high resolution scanning transmission images. With third-generation aberration cor-
rectors (see [7] for a description of STEM correctors), the convergence semi-angle
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on the sample is typically around 30–40 mr. The smallest attainable probe size,
which is given by the diffraction limit

d D 0:61
�

˛o
(37.1)

(where � is the electron wavelength and ˛o is the illumination semi-angle) is
then about 0.5 Å in a 200 keV STEM operating with a very small beam current.
For larger probe currents, d grows bigger due to source-size broadening, as
described quantitatively in [8]. The probe can also be broadened by aberrations
and instabilities. Even so, sub-Å probes are now readily achievable in aberration-
corrected STEMs operating at 100 keV and higher.

Mode (b) parallelizes the beam simply by adjusting condenser lenses C2 and C3,
much like mode (c) in Fig. 37.1. The narrower beam traverses the corrector, whose
precise setting then becomes much less critical, and which can even be turned off
altogether. In practice, a reduction of the beam divergence by about 40x is readily
possible, giving a beam with a semi-angle of 1 mr, and a diffraction-limited probe
size of around 2 nm. The total beam current can be kept the same, or increased by
strengthening C1, so that the beam density becomes larger on the aperture in front
of C2.

Several modern microscopes have a condenser mini-lens (mini CL) just in front
of the objective lens, and turning this lens on allows the beam to be switched into
a nano-diffraction mode too (mode (c)). In practice, another condenser lens is then
needed after the corrector, to project a beam crossover into the front-focal plane of
the mini CL without requiring new trajectories through the corrector.

Mode (d) parallelizes the beam further, by projecting the aperture plane into the
sample plane, and the source plane into the front-focal plane of the objective lens.
For clarity of the schematic, the beam through the corrector is shown as similar to
nanodiffraction mode 2. In reality, one typically starts from nanodiffraction mode
1, i.e. with a fairly narrow beam through the corrector. The probe convergence at
the sample is determined by how wide the image of the source is in the front-focal
plane of the OL. The half-angle of the illumination ˛0

o at the sample is:

˛o
0 D ds

2fo
(37.2)

where ds is the size of the source projected into the FFP and fo the focal length of the
objective lens. For CFEG STEM, the typical projected source size is about 20 nm.
fo of 2 mm therefore gives ˛0

o D 10 �rad, i.e. the beam becomes quite parallel
in this mode. At the same time, the diffraction-limited probe size at the sample is
about 0.15 �m. The large probe size is why we call this mode “microdiffraction”.

If the image of the source is made only about a nm in size, either by the last
lenses of the corrector, or by a CL minilens preceding the OL FFP, if one is present,
then ˛0

o can be made smaller than 1�rad and the illumination becomes very parallel
indeed. The probe on the specimen then grows to several �m in size, but it can still
be largely coherent.
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A problem with mode (d) is that the objective lens parallelizes the outgoing
electron beam, and features of interest in the diffraction pattern obtained with the
parallel illumination, which can lie at scattering angles <0.1 mrad, remain close to
the optic axis. The projector lenses must then be highly excited to produce the large
camera lengths, of the order of 10 m, that are needed to project a clear version of the
pattern onto the final detector. This difficulty is avoided if the objective lens is turned
off altogether (mode (e)). A diffraction-limited probe size of the order of between
0.01 and 1 �m is then again possible, with a correspondingly parallel illuminating
beam. At the same time, the scattered electrons now spread away from the optic axis
rather than become parallelized, and very large camera lengths at the detectors are
much easier to attain.

37.3 Coherence, Intensity and Shape of the Illuminating
Probe

A coherent electron probe is one in which the electron wave-packets extend over the
full width of the probe, and electrons constituting the probe carry no information
about which part of the source they came from. An incoherent probe is one in which
the wave-packets are narrower than the probe, and the electrons go through the probe
at locations corresponding to where they originated at the virtual source. In practice,
of course, a perfectly coherent probe carries zero probe current, and hence all probes
are only partially coherent.

A convenient description of partial coherence is provided by the concept of
the “coherent probe current”, defined as the current for which the probe size due
to diffraction and the projected source size are the same [8]. The magnitude of
this current is determined only by the electron source, and it does not change no
matter what the optical system does to the beam: magnify or demagnify the probe,
accelerate or decelerate the beam. Coherent probe currents are typically about 150
pA for a cold field emission gun (CFEG) and 30 pA for a Schottky source [8]. Both
values may increase in the future; for instance, a coherent probe current of 430 pA
has been measured recently for a newly developed CFEG [9].

Probes with currents less than the coherent value are largely coherent and
exhibit various interference phenomena not observed with incoherent probes: e.g.,
interference fringes in overlap region produced by Bragg spots whose separation is
less than the convergence angle of the probe. They are also at most

p
2 larger than

the diffraction-limited probe size, whereas incoherent probes are typically much
larger than the diffraction limit. One can of course pass continuously from the
coherent into the incoherent regime simply by changing the amount of the beam
current admitted through the final beam-defining aperture, either by changing the
aperture size, or by changing the magnification of the beam projected onto the
aperture.
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The precise shape of the probe depends on what it images. If the probe is coherent
and contains an image of the source, as in modes (a–c) and (e) in Fig. 37.2, then
it typically contains the Airy disk distribution [10], somewhat smoothed by the
partial incoherence. Such a probe has multiple rings around the central maximum,
and can also contain pronounced and not necessarily symmetric tails arising due to
remaining aberrations.

If the probe contains an image of the beam-defining aperture, as is done for
instance in mode (d) in Fig. 37.2, it typically has a more square profile, but it
can still contain pronounced Fresnel fringes due to the aperture being projected
into the sample plane unfocused. Making sure that the aperture image is properly
focused is an extra constraint, which can be satisfied if an extra lens is available.
Every aberration-corrected microscope has several extra lenses, and setting up the
illumination so that the aperture image is sharply in focus is therefore mostly a
matter of making sure the lenses are set up correctly. Putting a beam crossover in
one of the lenses, i.e. using this lens as a “field lens”, which then does not change
the heights of the crossovers in the column but changes the heights of the focused
images of the illuminating aperture, makes the set-up especially convenient.

An illumination mode in which the illuminated spot on the sample is a focused
image of an aperture rather than an image of the source is called Kohler illumination
[11]. It is the main illumination mode used in optical microscopy, and it can have
major advantages as an illumination mode in electron microscopy too.

37.4 Scanning Modes

A high-performance STEM typically has four layers of scan coils, and the layers can
be driven independently. Two of the layers are before the sample and two layers after
the sample. A variety of scan modes becomes possible with such an arrangement.
Figure 37.3. illustrates two of them: regular scanning and beam rocking, as used for
instance for precession diffraction [12].

For regular scanning (mode (a)), the beam is made to rock about the “coma free
plane” of the objective lens, which is located between the front-focal plane of the
lens and the sample. The coma-free plane can be thought of as the plane in which
the objective lens effectively inserts the phase change due to its spherical aberration
(Cs), i.e. the plane in which sideways beam shift must be avoided if coma is not to
arise as a misalignment aberration in a Cs-producing optical element. Because the
coma-free plane is located closer to the sample than the front-focal plane of the OL,
coma-free scanning rocks the angle of beam at the sample slightly, and the correct
ratio setting of the de-scan coils is not the same as for the scan coils. In practice,
however, the rocking is quite small: less than 50 �rad for a 100 nm field of view.

De-scanning makes sure that the beam does not move on the detectors, especially
the energy-loss spectrometer, in which beam movement causes a shift of spectra in
energy. In practice, this correction only becomes important for scans larger than
about 100 nm in size.
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Fig. 37.3 Different ways of scanning and de-scanning the beam in a STEM: (a) probe scanning,
(b) probe rocking, (c) compensated rocking

The beam rocking mode (b) involves setting the ratio of the first and second layers
of the scan coils such that the beam is shifted while remaining nearly parallel to the
optic axis as it enters the OL. The beam is typically much narrower in this mode,
as needed for nanodiffraction, and rocks about a stationary point on the sample.
Anti-symmetric de-rocking brings it back onto the optic axis. The scan magnitudes
in this mode are typically much larger than for regular scanning used to acquire
high-resolution images. With an objective lens of 2 mm focal length, the shift of the
beam entering the OL amounts to 2 �m for 1 mrad of rocking, and rocking angles
of 20 mrad and more are of interest.

It is also worth noting that when the objective lens is switched off, this kind of
scan becomes a regular scan (parallel scan on the sample). The resultant imaging
mode is very useful, because it provides a low magnification view of the sample.

Beam rocking as shown in mode (b) was first implemented by Eades in a Philips
400 EM [13], and was used soon thereafter by Higgs and Krivanek for obtaining
EELS channeling maps [14]. For precession diffraction, the basic features of the
scanning system are the same, but the scan is made conical rather than rectangular.
There are various commercial devices able to perform such scans when added to
electron microscopes [15]. Some microscopes such as the Nion UltraSTEM™ [6, 9]
have the hardware needed to do the scans already built into them, but presently lack
software dedicated to this type of operation.

For rocking ranges smaller than about 10 mrad, the relationship between the
scans needed in the different layers of scan coils is approximately linear, and scan
coil layers 2–4 of the complete scan-descan system can therefore be driven by a
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linear combination of the signals sent to scan coils in layer 1. For rocking angles
higher than about 10 mrad, spherical aberration and also aberrations such as three-
fold astigmatism begin to affect the scan. The probe then starts wondering on the
sample instead of rocking about a stationary point, and it also goes out of focus and
becomes astigmatic. This is shown schematically in mode (b) for the beam that is
deflected by a large amount.

A simple solution is to make the relationship between the signals sent to the
different scan coil layers non-linear, as shown for mode (c). Adding a negative
third-order curve to the scan signal for scan coil layers 2–3 (i.e., weakening
the large-magnitude deflections from these coils) can compensate for spherical
aberration, adding a parabola term can compensate for three-fold astigmatism and
remnant axial coma. At the same time, the probe focus and astigmatism need
to be adjusted dynamically across the scan field. (For correctly aligned conical
precession scans, only the astigmatism adjustment needs to be done dynamically.)
A stationary, diffraction-limited nanoprobe, with an angular range of about a mrad
and a stationary size of <5 nm should then become available for rocking and
precession scans of 50 mrad magnitude and beyond. To my knowledge, such a
system has not yet been implemented in a STEM. The basic hardware for it exists in
every Nion STEM column, and it is simply a question of spending the time needed
to program the non-linear scans.

An alternate solution would be to scan the beam using scan coils located
in front of the aberration corrector, which would then be able to automatically
correct the effects of axial aberrations, just like it corrects the aberrations when
producing a probe with a large semi-angle. However, such a system would not
correct imperfections of the scan coils (such as non-linearities), and a completely
corrected scan-descan system would need two correctors, one pre-sample and one
post-sample. So even though a corrector could correct the scan imperfections in
principle, in practice it will probably be more efficient to compensate them instead,
as outlined above.

37.5 Conclusion

An aberration-corrected scanning transmission electron microscope is a very pow-
erful instrument, which makes possible many kinds of experimental techniques.
This brief summary of the optical solutions for some of the techniques is far
from comprehensive, and there is no space in these printed notes for examples of
applications. These will be given in the talk at the school.

A comprehensive compendium of the many aspects of STEM capabilities has ap-
peared recently [16]. It includes chapters on STEM history, STEM imaging theory,
application examples of sub-Å resolution imaging, nanodiffraction and diffraction
imaging, EELS, fluctuation microscopy, low-voltage STEM, etc. I recommend it
highly to all students interested in exploring electron crystallography with a STEM.



408 O.L. Krivanek

Acknowledgement I am grateful for useful discussions with Niklas Dellby, Lawrence Marks and
Christopher Own.

References

1. Crewe AV, Wall J, Welter LM (1968) A high-resolution scanning transmission electron
microscope. J Appl Phys 39:5861–5868

2. Crewe AV (2009) The work of Albert victor Crewe on the scanning transmission electron
microscope and related topics. In: Hawkes PW (ed) Cold field emission and the scanning
transmission electron microscope. Advances in imaging and electron physics. Elsevier,
Amsterdam

3. Cowley JM (1995) Diffraction physics, 3rd edn. Elservier, Amsterdam/New York
4. Cowley JM, Spence JCH (1978) Innovative imaging and microdiffraction in STEM. Ultrami-

croscopy 3:433–438
5. Spence JCH, Zuo JM (1992) Electron microdiffraction. Plenum Press, New York
6. Krivanek OL et al (2008) An electron microscope for the aberration-corrected era. Ultrami-

croscopy 108:179–195
7. Krivanek OL, Dellby N, Murfitt MF (2009) Aberration correction in electron microscopy.

In: Orloff J (ed) Handbook of charged particle optics, 2nd edn. CRC Press, Boca Raton
8. Krivanek OL et al (2011) Atomic resolution STEM at low primary voltages. In: Pennycook SJ,

Nellist PD (eds) Scanning transmission electron microscopy. Springer, New York
9. Dellby N et al (2011) Dedicated STEM for 200 to 40 keV operation. Eur J Phys Appl Phys.

doi:10.1051/epjap/2011100429
10. Born M, Wolf E (1997) Principles of optics, 7th edn. Cambridge University Press, Cambridge
11. Koehler A (1894) New method of illumination for photomicrographical purposes. J R Microsc

Soc 14:261–262
12. Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of

integrated electron diffraction intensities. Ultramicroscopy 53:271–282
13. Eades JA (1980) Zone axis patterns formed by a new double-rocking technique. Ultrami-

croscopy 5:71–74
14. Higgs A, Krivanek OL (1981) Energy-filtered, double-rocked zone axis patterns. Proc 39th

Annual EMSA Meeting, Atlanta
15. See for instance http://www.nanomegas.com/ and http://www.beamdevices.com/
16. Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy: imaging and

analysis. Springer, New York

http://dx.doi.org/10.1051/epjap/2011100429
http://www.nanomegas.com/
http://www.beamdevices.com/


Chapter 38
Electron Diffraction of Commensurately
and Incommensurately Modulated Materials

Joke Hadermann and Artem M. Abakumov

Abstract Many materials have structures which are modulated, either displacively
or compositionally, or a combination of both. A distinction can be made between
commensurately modulated structures (where the period of the modulation is an
integral multiple of the periodicity of the unmodulated cell) and incommensurately
modulated structures (where that period is a non-integral multiple of the periodicity
of the underlying unmodulated cell).

Electron diffraction (ED) is often very helpful in the analysis of modulated
structures, especially if the compound is not available in the form of single crystals
suitable for X-ray diffraction. Being applied to modulated structures, powder
diffraction techniques face problems in the correct determination of the periodicity
of the modulation waves (reflected in the modulation vector(s) in the reciprocal
space) and the symmetry associated with the basic structure and the modulation
waves (reflected in the superspace symmetry group). Reconstruction of the 3D
reciprocal lattice using the ED data is a great help for solving these problems,
especially taking into account that powder diffraction data often suffer from poor
resolution (neutron powder diffraction) or low signal/noise ratio (conventional
laboratory X-ray diffraction). This creates particular difficulties in recognizing weak
satellite reflections, caused by some minor perturbations of the basic structure, such
as displacements of the oxygen atoms or oxygen/vacancy ordering.

This chapter is an introduction to handling electron diffraction patterns of both
commensurately and incommensurately modulated materials. This does not extend
to the underlying theory of incommensurate crystallography due to the limited
amount of space, and appropriate references are given instead.
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38.1 Commensurately Modulated Structures

38.1.1 The Supercell Approach

Assume a simple primitive structure I with only one atom type A, as shown in
Fig. 38.1a. For simplicity we will consider a two-dimensional lattice, but the consid-
eration can be extended to the third axis analogously. The schematic representation
of the ED pattern of this structure, is given next to the scheme of structure I and
shows a rectangular pattern. All reflections have the same weight, as expressed by
the structure factor FII D fAe

2�i.0hC0kC0l/ D fA, showing no particular cases for
any h,k,l. If each second atom along the b-axis is replaced with another atom B
(Fig. 38.1b) we can call this new structure II an occupationally modulated structure
for which the structure I serves as the parent, or basic structure. The periodicity
of the structure II along the b-axis is twice that of structure I, and in reciprocal
space extra reflections will therefore appear at the g0 D G˙1/2b* positions. These
reflections are the superstructure reflections, while the reflections at G, that were
also present for structure I, are the basic reflections. In general the superstructure
reflections are weaker than the basic reflections. This can be demonstrated by
expressing the structure factor FII D fAe

2�i.0hC0kC0l/ C fBe
2�i.0hC 1

2 kC0l/ D fA
C fBe

�ik which gives FII D fA C fB in case k D 2n, and FII D fA � fB for
k D 2n C 1, the latter corresponding to the superstructure reflections.

Similar considerations can be made for structures where every n-th A atom is
replaced by a B atom, which will give a periodicity along the b-axis that is n times
that of structure I, and will give extra reflections at h, k C m/n, l (with hkl the indices
relative to the basic structure I), or in other notations at g0 D G˙ m/nb*, which can
then be treated using a supercell with unit cell basis vectors a0, b0, c0 that are a0 D a,
b0 D nb, c0 D c and reciprocal basis vectors a0* D a*, b0* D 1/nb*, c0* D c*.

The modulation does not always occur exactly along one of the axes of the
basic structure. In the structure III (Fig. 38.1c) the atoms B are lying on planes
(110) and (120), forming a rectangular pattern, and are tripling the periodicity along
the directions perpendicular to (110) and to (120). In reciprocal space this leads
to extra reflections along the directions [110]* and [120]*, i.e. extra reflections
at g0 D G C m[1/3, 1/3, 0] and at g0 D G C m[1/3, �2/3, 0] (see right side of
Fig. 38.1c). It is possible to again take basis vectors for the supercell that are lying
along the same direction as those of the basic structure, a0 D 3a, b0 D 3b, c0 D c and
reciprocal basis vectors a0* D 1/3a*, b0* D 1/3b*, c0* D c* (Fig. 38.1d). However,
it is possible to find a better, smaller unit cell by choosing reciprocal basis vectors
for the supercell that are not lying along the same directions as those of the basic
structure. In this case choosing a0* D 1/3 g110, b0* D 1/3g120, c0* D c* will give a
smaller primitive unit cell that allows you to index all reflections (see Fig. 38.1c for
the unit cell indicated in direct space and Fig. 38.1e for the corresponding indexes
in reciprocal space).
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Fig. 38.1 Models for structures I (a), II (b) and III (c) on the left side, and their corresponding
schematized electron diffraction patterns at the right side. (d) and (e) show two alternative
indexation schemes for the electron diffraction pattern corresponding to the order in structure III

One can now use the transformation matrix to find the corresponding direct space
basis vectors for your choice of reciprocal basis vectors. The transformation in
reciprocal space between the basic unit cell and the supercell is given by



412 J. Hadermann and A.M. Abakumov

Fig. 38.2 The schematic
electron diffraction patterns
for (a) structure II and (b)
structure III, indexed in the
q-vector approach
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while the relation in direct space is given by (a0 b0 c0) D (a b c)P with P D Q�1. For
the case in Fig. 38.1e:
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Thus the basis vectors of the supercell in direct space are a0 D 2a C b,
b0 D �a C b, c0 D c, corresponding to the unit cell in Fig. 38.1c.

As it was demonstrated with the last example, the choice of the supercell is
not unique, but it should follow the requirement of keeping the highest possible
symmetry and the smallest unit cell volume. If the new axes are chosen along other
directions than in the basic structure, the transformation matrix should be included
for clarity. More details on this aspect can be found in the International Tables for
Crystallography, volume A, section 5 [1].

38.1.2 The q-Vector Approach

Instead of finding a supercell, one can describe the positions of the superstructure
reflections using a modulation vector which connects the basic reflections to the
superlattice reflections. This vector is expressed as q D ’a*C“b*C”c*. The basic
reflections are indexed with G D ha*Ckb*Clc*C0q, while the superstructure
reflections (also called satellites) are indexed with g D ha*Ckb*Clc*Cmq, with m
an integer, m ¤ 0. The modulation vector gives the plane on which the modulation
occurs, while the reciprocal of the length of the modulation vector gives the
periodicity of the modulation wave.

For the structure II, q D 1/2b* and the indexation using this approach is shown
in Fig. 38.2a. The modulation occurs on the (010) plane, the interplanar spacings
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for the satellite reflections (assuming an orthorhombic cell) can be found as 1

d2hklm

D h2

a2
C .kCmˇ/2

b2
C l2

c2
which gives a periodicity of the modulation wave as the

reciprocal length of the q-vector:

ˇ
ˇ
ˇ̌1
q

ˇ
ˇ
ˇ̌ D d0001 D 1

r
�
0
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�
1=2
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�2 C �
0
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�2
D 2b

For structure III, the modulation occurs on the (110) plane with q D 1/3a*
C 1/3b* (Fig. 38.2b) and the periodicity of the modulation is 3d110.

38.2 Incommensurately Modulated Structures

When the components ’, “ and ” of the modulation vector q are rational numbers
with a reasonably small denominator (such as 1/2, 1/3, 1/4 etc.) the supercell
approach seems to be the most straightforward way to describe the extra periodicity
due to modulations. However, cases are frequently observed, where a very large
denominator is required to represent the component of the modulation vector with
sufficient precision. For example, Fig. 38.3 shows a schematic electron diffraction
pattern with the same basic structure as structures I–III, and with q D 0.458b*
(structure IV). Although the “ value is not an irrational number, it requires quite
a large unit cell to build a commensurate approximation. It can be approximated by
5/9 D 0.444, in which case the supercell will be 9 times larger along the direction
of the b-axis. It can be approximated even closer by 5/11 D 0.455 or 6/13 D 0.462
but this increases the size of the supercell to respectively 11–13 times along the b-
axis, and still it will only be an approximation. The components of the modulation
vector are always measured with some finite precision (i.e. they are known only up
to certain digit after comma) and therefore can always be expressed as a rational
number, but sometimes needing a very large denominator. In incommensurately
modulated structures the modulation vector has at least one such component which
cannot be approximated with a rational number with reasonably small denominator
and can be regarded as an irrational component. Treating such structures with a large

Fig. 38.3 Example of a
schematical electron
diffraction pattern of a
structure with q D 0.458b*
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Fig. 38.4 A change of the position of the satellites upon a change in composition is shown, which
can help distinguish satellites from basic reflections

supercell is impractical because it would require a very large amount of structural
variables. The more rational way is to use (3 C d)-dimensional crystallography (the
superspace approach). The diffraction pattern of the incommensurately modulated
structure can be considered as a projection from this (3 C d)-dimensional reciprocal
space onto the 3D reciprocal space. Here we restrict ourselves to the (3 C 1)D
case only.

The first step in the indexation of the electron diffraction patterns of an
incommensurately modulated structure consists of the separation of the reflections
into a set of basic reflections (m D 0) and a set of satellites (m ¤ 0). Intuitively, in
many cases this can be done by choosing the brighter reflections as the basic ones,
surrounded by one- or two-dimensional arrays of weaker satellites. The separation
of the reflections into basic reflections and satellites can be performed, for example,
by monitoring the systematic changes of the reflection positions with temperature
or chemical composition (Fig. 38.4). The basic reflections should form a regular 3D
reciprocal lattice. The symmetry operators of the point group of the crystal should
transform any basic reflection into a reflection also belonging to the basic reciprocal
lattice, i.e. the reflections with m D 0 and m ¤ 0 should not be intermixed. The basis
vectors of the basic direct lattice should obey the requirement of keeping the highest
symmetry and lower volume. The analysis of the extinction conditions imposed on
the hkl0 reflections will provide the possible centering of the basic structure.

The second step is the selection of the modulation vector and assigning hklm
indexes for the satellites. This problem may not have a unique solution. The
components of the modulation vector should be in correspondence with the selected
crystal system and the centering type of the basic lattice. The modulation vector
can be split into a rational and irrational part: q D qr C qi. The operator R of
the point group of the crystal should transform satellites into satellites and basic
reflections into basic reflections: R:G(m D 0) ! G0(m D 0) and R:g(m ¤ 0) !
g0 (m ¤ 0). This condition is fulfilled if the operator R transforms the vector q
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Table 38.1 Allowed
irrational components of the
q-vector for different crystal
systems (After [2])

Crystal system qi Crystal system qi

Triclinic (’,“,”) Tetragonal
Monoclinic (”-setting) (’,“,0) Trigonal (0,0,”)

(0,0,”) Hexagonal
Orthorhombic (’,0,0) Cubic none

(0,“,0)
(0,0,”)

Table 38.2 Compatibility between the centering types and possible rational compo-
nents of the q-vector (After [3])

Crystal system q Crystal system q

Triclinic No rational component Orthorhombic-P (0, 1/2, ”)
(1/2, 1/2, ”)

Monoclinic-P (’, “, 1/2) Orthorhombic-C (1, 0, ”)
Monoclinic-B (”-setting) (1/2, 0, ”) Orthorhombic-A (1/2, 0, ”)

(0, 1/2, ”) Orthorhombic-F (1, 0, ”)
Tetragonal-P (1/2, 1/2, ”)
Trigonal-P (1/3, 1/3, ”)

into itself or to �q: Rq D ©q ˙ G, © D ˙1. Let’s assume that an orthorhombic
structure has a modulation vector with only the irrational component qi D (’,“,”).
The mirror plane my transforms qi D (’,“,”) into qi

0 D (’,�“,”). The Rqi – ©qi D 0
condition is fulfilled only if ’D ”D 0 for ©D �1 or “D 0 for ©D C1. If the “
component is not zero as for the structure IV, it fixes © to �1 for the my plane in this
structure and automatically leads to null ’ and ” components. Considering the same
conditions for the mx and mz planes will result in only a single irrational component
possible for the modulation vector in the orthorhombic crystal system. The allowed
irrational components of the q-vector for different crystal systems are summarized
in Table 38.1.

For the orthorhombic basic structure let’s consider the action of the mx and
my planes on the q D (’,“,0) vector assuming that “ is the irrational component:
mxq D q0 D (�’,“,0), myq D �q0 D (’,�“,0), so that q0 ¤ ˙q unless we select
’D 1/2, then q0 D q – a* (i.e. it transforms into itself with adding a basis vector
of the basic reciprocal lattice). Thus a rational component is allowed in the
orthorhombic system q D (1/2,“,0) D qr C qi D (1/2,0,0) C (0,“,0). Choosing the
modulation vector with both rational and irrational components one should check
the compatibility of the rational part with the centering translations of the basic
lattice. For example, assume that this orthorhombic basic structure is B-centered,
i.e. the hkl0 reflections obey the h C l D 2n reflection condition. Then the q0D q –
a* condition cannot be fulfilled because the (2n C 1)a* reciprocal lattice vectors are
forbidden by the B-centering: only the h00 reflections with even h are permitted.
Thus the rational part of the modulation vector qr D (1/2,0,0) is incompatible with
the lattice centering. The compatibility list between the centering types and possible
rational components of the q-vector is provided in Table 38.2.
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Fig. 38.5 Two alternative indexation schemes for the same electron diffraction pattern

The symmetry of the modulated structures is described in terms of the (3 C 1)-
dimensional symmetry groups. Due to the limited volume of this chapter it is
not possible to provide a comprehensive description of the concept of superspace
symmetry, which can be found in Ref. [2, 3]. The superspace group symbol consists
of the Hermann-Mauguin symbol of the 3D space group of the basic structure, an
(’“”) notation for the rational and irrational components of the modulation vector
and the symbols for the symmetry generator of the 3D space group denoting whether
this symmetry element introduces a phase shift of the modulation wave or not
(analogous to screw axes and glide planes in 3D structures, but having a translational
component along the fourth axis x4). A typical (3 C 1)D superspace group symbol
looks like Pnma(00”)000 or Fmmm(’10)0s0. The symmetry elements of the
(3 C 1)D superspace group can be identified from the analysis of the reflection
conditions in a way similar to the conventional 3D case.

It might be possible that the standard setting of the superspace group is not
the most convenient choice for subsequent structure determination. It concerns
especially the cases where the q-vector has both rational and irrational components.
The representation of the structure in (3 C 1)D direct space will be easier if the
rational component will be eliminated, so that a new modulation vector q0 D qi is
chosen. This may cause satellites to be assigned to extinct basic reflections and also
may lead to a non-standard setting for the superspace group.

In Fig. 38.5, two variants of indexation are shown for the ED pattern of an
incommensurately modulated structure with a face-centered orthorhombic basic
structure. For the indexation on Fig. 38.5 (left image) the modulation vector
q D’a* C b* is chosen. In this case, the reflection conditions imposed on the hklm
reflections are h C k D 2n, k C l D 2n, l C h D 2n, which corresponds to the standard
setting of the superspace group Fmmm(’10). On the other hand, eliminating the
rational part qr D b* results in the new modulation vector q’ D’a* (right image
on Fig. 38.5). Now some satellites are assigned to extinct basic reflections (such as
0101 and 0100 in right image, Fig. 38.5). This transformation changes the reflections
conditions to be H C K C m D 2n, K C L C m D 2n, L C H D 2n (HKLm are the
indexes of the reflections in the new basis). These reflections conditions correspond
to a non-standard set of centering vectors (1/2, 1/2, 0, 1/2), (0, 1/2, 1/2, 1/2) and
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(1/2, 0, 1/2, 0) denoted as X in the symbol of the superspace group Xmmm(’00)
(non-standard setting of the Fmmm(’10) superspace group). The relations between
hklm and HKLm can be understood from the invariance of the diffraction vectors
under the transformation of the basis:

g D ha� C kb� C lc� Cm.˛a� C b�/ � g0 D Ha� C Kb� C Lc� Cm˛a�;

resulting in H D h, K D k C m, L D l.
Both cases are crystallographically equivalent and the choice between them is a

matter of convenience. Non-standard settings of superspace groups are used very
frequently in incommensurate crystallography.
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Chapter 39
Detection of Magnetic Circular Dichroism
Using TEM and EELS

Stefano Rubino, Jan Rusz, and Peter Schattschneider

Abstract Magnetic Circular Dichroism (MCD) is a phenomenon that occurs in
magnetic materials whereby the intensity of transitions from core states to available
states above the Fermi energy depends on the circular polarization of the exciting
radiation. This is due to the fact that spin-orbit coupling breaks the degeneracy of
core states with different total angular momentum (J) and the magnetic field gives
rise to difference in spin-up/spin-down density of available states. Traditionally,
those transitions are excited with X-rays (XMCD). We present here a new technique
by which a virtual circularly polarized photon is absorbed in Electron Energy-
Loss Spectroscopy (EELS), giving rise to EELS-MCD (EMCD). The basis of this
work is the equivalence between photon polarization (") and electron momentum
transfer (hq) in the determination of the scattering cross section. The equivalent of
circular polarization in EELS is achieved through special scattering conditions as
interference between Bloch waves in a crystal. Angular resolved EELS is then used
to measure spectra under different polarization conditions, from which information
about the magnetic properties can be extracted, in particular the ratio of spin
to orbital contribution to the magnetization. Measurements can be performed by
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simply recording spectra at two particular symmetric points in reciprocal space
or by acquiring the whole diffraction pattern trough a series of energy filtered
images. Spatial dichroic maps can be obtained too either in EELS STEM or by
EFTEM. The advantage with respect to XMCD lies in the higher spatial resolution
(2 nm). However, since the magnetic information is intrinsically entangled with
dynamical diffraction, DFT simulations of the momentum space are required to
extract quantitative information from the measurement. We present an example in
this work. This also means that the measured difference depends on parameters
such as crystal thickness and orientation. It has been recently proposed that a way
to overcome this limitation would be to use so-called electron vortex beams. EMCD
would then be applied to a larger class of samples and become a true complementary
alternative to XMCD.

39.1 Introduction

A material in a magnetic field is said to show Magnetic Dichroism (MD) when
its absorption spectrum changes as function of the polarization of the exciting
radiation. In the case of light, the absorption could be in the visible/UV region
(many organic molecules are optically active in this region) or, when transition
from core-shell states are involved, in the X-ray region. A technique routinely
used nowadays for the characterization of magnetic material is the so-called X-ray
Magnetic Circular Dichroism (XMCD), based on the observable difference between
two X-ray Absorption Spectra (XAS) collected with opposite circular polarization
of the exciting X-ray radiation [1–4]. The brightness and quality of modern X-ray
synchrotron sources allows extracting from XMCD spectra information such as the
total magnetization and its spin and orbital components by use of the sum rules,
with a resolution of about 25 nm at best [5–7].

In the case of 3d transition metals (such as Fe, Co, Ni), the largest differences are
observed in the intensity ratio between the L2 and the L3 edges, corresponding to
transitions from the 2p1/2 and 2p3/2 states respectively, where the subscript indicates
the total angular momentum J. Spin-orbit coupling is the reason behind the fact that
states with different J have different energies (the splitting being about 10–20 eV for
3d metals). At the same time, the final states are spin polarized by the magnetic field,
giving rise to a different available Density of State (DoS) for spin up or spin down
electrons. It is shown schematically in Fig. 39.1 that circularly polarized photons
carrying one quantum of angular momentum induce transitions whose intensity
depends on the handedness of the incoming radiation [4, 8]. This remains true
if the transitions are induced by electron scattering rather than photon absorption
(one can imagine that a virtual photon is absorbed as result of the interaction with
the fast electron). In fact, the equivalence between XAS and Electron Energy-Loss
Spectroscopy (EELS [9]) has been proposed and demonstrated decades ago for the
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Fig. 39.1 Scheme of the electronic transitions giving rise to MCD for the absorption of a left-
handed photon (carrying a quantum of angular momentum antiparallel to J). The initial states are a
superposition of states with a well defined spin (Sz) and angular momentum (Lz). The absorption
of the photon can only change the angular momentum, therefore the emitted photoelectron will
have a certain polarization (probability to be spin up or down). The numbers next to the arrows
are proportional to the transition probability calculated with the Fermi Golden Rule, whereas the
percentage numbers on top give the photoelectron probability by taking into account the weight of
the initial state in the Lz Sz decomposition. Since the available final states are spin-polarized and
have therefore different occupancy (the DoS is shown on the left side of the figure), the resulting
transitions will have different intensities for spin up or spin down photoelectrons (Figure from PhD
Thesis [8])

case of linear dichroism [10, 11]. It can be easily understood by comparing the
theoretical scattering intensity � for XAS and EELS:
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where i and f indicate respectively initial and final states of the excited electron,
! is the photon angular frequency, R is the quantum mechanical position operator,
" is the polarization of light, ki and kf are the initial and final wave vectors of the
incoming fast electron, hq (q D ki – kf) is the resulting momentum transfer to the
atom, and ı is the energy Dirac function. Therefore in EELS the momentum transfer
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plays the same role as the polarization of light in XAS. There are different setups
that make possible to perform momentum resolved EELS experiments, the easiest is
to project the diffraction pattern onto the spectrometer and use the entrance aperture
to select a particular point in reciprocal space (i.e. a specific kf).

39.2 Theoretical Basis of EMCD

In the case of linear dichroism the equivalence is thus rather straightforward
to implement. In q-resolved EELS one simply needs to place an aperture (real
or virtual) in reciprocal space in different positions, so that the q would point
along different crystallographic directions. This is known in the TEM community
as EELS anisotropy or EMLD (EELS Magnetic Linear Dichroism). But how to
obtain a “circular” momentum transfer and therefore EELS-MCD (EMCD)? From
the mathematical point of view, circular polarization can be expressed as the
superposition of two perpendicular linear polarizations, out of phase by 90ı. This
can be formally substituted in the expression for electron scattering [12]:

�!" circ D �!" 1 C i�!" 2 ) �!q circ D �!q 1 C i�!q 2;

but what is its physical significance and how to experimentally implement it? Two
perpendicular momentum transfers can be obtained if two plane waves interfere
to simultaneously excite the electronic transition. If the original plane waves are
also dephased by 90ı, then the momentum transfers will be dephased too. In
both cases (electron scattering and photon absorption) an electric field at the
atomic site is the perturbation responsible for the electronic excitations [13]. The
problem of obtaining two coherent electron plane waves in a TEM that only has
one electron source can be solved in several ways: by means of a biprism, of
holographic masks [14] or by using the sample itself as beam splitter and phase-
locker [15]. The latter is the so-called “intrinsic method” and can only be used on
crystalline specimens. It is the one used to first detect EMCD [8, 16] and requires
only a standard TEM equipped with an EELS spectrometer or image filter. It is
known from the theory of electron diffraction that when the electron beam (plane
wave) enters a crystal it becomes a superposition of Bloch waves (solutions of the
Schrödinger equation in a periodic potential), each of them uniquely identified by
an index vector k C g in their plane wave component. The amplitude and phase
of each Bloch wave are a function of the boundary conditions, namely thickness
and orientation of the crystal with respect to the incoming beam. It is possible
to find conditions where only two or three beams are non-negligible (called the
two-beam case, 2BC, or three-beam case, 3BC). For these cases, each of the
beams can be considered an electron wave, source of a momentum transfer. A
measured EELS spectrum will be the sum of the EELS spectra from each of
the beams plus their interference terms. Another advantage due to the periodic
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nature of the Bloch waves is that their relative phase shift is also periodic;
therefore all equivalent atoms having the same z coordinate will see the same phase
shift.

39.3 EMCD Experiments

The key factor in performing an EMCD experiment is the optimal placement of a
kf-defining aperture in reciprocal space, so that spectra with opposite helicity can be
obtained. The simplest method is to place the aperture as shown in Fig. 39.2. The
0 and G beams define the Thales circle; placing the aperture on this circle will give

Fig. 39.2 EMCD setup. Left: Zone axis diffraction pattern of a 10 ˙ 2 nm Fe layer epitaxially
grown on a [001] GaAs substrate. The 100 type reflections visible in the pattern are, in reality, 200
reflections from the GaAs substrate. The pattern is afterwards tilted to a two-beam case (2BC),
strongly exciting one of the reflections (for example the 110) and projected onto the spectrometer,
so that the spectrometer entrance aperture (dotted circle) defines the collection angle and kf . The
segment connecting the direct beam and the beam excited in the 2BC (110 in this figure) defines
the diameter of the Thales circle, solid black. The two points on the Thales circle equidistant from
000 and 110 define A and B for that specific beam (hence the subscript 110). For example, in a
two beam case with the 200 beam, the point A200 would be exactly on top of the 110 reflection.
The position for A-1–10 is shown as another example. Right: EMCD measured (top) and simulated
(middle) spectra, compared with XMCD measurements (bottom) on the same sample (Figu e from
paper [16])

r  
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rise to perpendicular momentum transfers: hq from 0 and hq0 from G. Two positions
(A and B) will also have q D q0. The helicity associated with the two positions is
opposite, since their vectorial product qˆq0 changes sign from A to B. In Fig. 39.2
spectra obtained in this way are shown. With the microscope in diffraction mode,
the Spectrometer Entrance Aperture (SEA) is placed first in A110 then in B110 and
spectra are recorded. This is the detector shift method [8, 16]. Alternatively, one
could keep the aperture in one position and change the phase shift between the 0
and G beams, but this would also slightly change the illuminated area.

Ideally, there should not be other beams where the aperture is placed; if this is not
the case, two signals are collected: one related to the interference between two single
inelastic scattering events with non-zero momentum transfer (one for the 0 beam and
one for the G beam occurring simultaneously); and one related to a double event,
an elastic scattering with q D k000–kf (or with q D k110–kf) and an inelastic event
with q D 0 (neglecting the qz due to energy loss). The former is the origin of the
EMCD signal and changes between A and B, whereas the latter is a spurious signal
that disappears when calculating the difference, but affects negatively the signal-to-
noise ratio S/N by increasing the Poissonian noise. In the simple approach described
above (only two plane waves, point-like detector, neglecting the beam tilt away from
ZA to achieve 2BC), the points A and B give the maximum EMCD signal, but when
other factors are taken into account, this is no longer the case [17]. Both collection
and convergence angle are non-zero (and correspondingly non-point-like in the
diffraction pattern), several beams contribute to the signal and the tilt from ZA give
rise to an asymmetry independent of the magnetic field [18]. In this case, dynamical
diffraction simulations of the diffraction pattern are needed to estimate the optimal
size and placement of the kf-defining aperture in reciprocal space [19]. A more
advanced approach is to couple dynamical diffraction theory with DFT calculations
to produce dichroic maps such as the one in Fig. 39.3 [20, 21]. Those maps can
be obtained experimentally by acquiring a series of energy filtered images of the
diffraction pattern [22–24]. Each pixel of the CCD camera collects the signal of a
specific kf. Spectra can be extracted by placing a virtual aperture in the same position
of every energy filtered image and plotting the resulting intensity as function of the
energy loss. Sum rules [25] can then be evaluated either directly from integrating
the spectra (with a somewhat arbitrary integration range) [26] or by modeling them
with a combination of Gaussian, Lorentzian and double arctan functions [23, 27]. It
is also very important to remove the effect of plural scattering to properly apply the
sum rules [28].

Operating the TEM in diffraction mode means that the spatial resolution will be
determined by the selected area aperture (usually in the 100 nm range). One way to
improve the resolution is to use the objective aperture to select kf [8, 13]. Spectra
can be acquired directly with a spectrometer or extracted from an energy filtered
series of real space maps (two maps have to be acquired, one for each helicity) [24].
The resolution in this case is in the nm range, with the theoretical possibility to
map magnetic moments and electronic transitions with atomic resolution [29, 30].
It is also possible to obtain EMCD spectra in convergent beam modes [31] and in
scanning TEM mode [32], with a resolution of 2 nm.
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Fig. 39.3 Dichroic maps. DFT simulations for 3BC Fe showing the absolute left/right (l/r)
difference (upper row), the relative l/r difference (middle row) and the l/r average (lower row)
for two different thicknesses. Notice how the maximum of the dichroic signal is not on position A
and B of the Thales circle and how the signal weakens for thicker samples (Figure adapted from
Ref. [17])

39.4 Conclusions and Future Perspectives

EMCD has been developed as the TEM analogue of the synchrotron-based XMCD.
It offers a superior spatial resolution and bulk sensitivity on instruments widely
spread and more easily available than beam-time on high quality X-ray sources.
On the other hand, the intrinsic EMCD method is more demanding both in terms
of operator and samples. Moreover, it does not give information on the absolute
magnetization but only on the ratio between its spin to orbital components, due to
the fact that the effective polarization of the excitation is not known. Nonetheless, it
has been already successfully used to track magnetism changes such as in magnetic
phase transitions [33, 34] or magnetic diluted semiconductors [35]. High resolution
real space information has been obtained [24, 32, 36], but domain contrast could
not be evidenced because the strong magnetic field of the TEM lenses forces the
magnetization along the optical axis. This could be possibly addressed in Lorentz
mode.

Recently, electron vortex beams were successfully created in the TEM [14]. They
are unique in the sense that – as vacuum solutions of the Schrödinger equation with
magnetic quantum number m – they carry discrete angular momentum m. First
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experiments showed surprisingly high EMCD signals using electron vortices. It
could be demonstrated that Angstrom-sized vortices can be produced [37], a fact
that allows EMCD experiments in scanning mode with atomic resolution. This
approach would circumvent many of the disadvantages of the intrinsic method: it
is straightforward to implement, it imposes no restrictions on the sample in terms of
crystallinity and gives perfectly polarized beams. However, the holographic mask
required to produce the vortex beams absorbs a large percentage of the fast electron
which translates in low S/N. The mask is also not yet commercially available and has
to be fabricated ad hoc. Once these difficulties are overcome, vortex beams promise
to become the method of choice for EMCD experiments. But before vortices can
replace the intrinsic method, more experiments and simulations are necessary in
order to elucidate the details of vortex-matter interaction.
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