Chapter 41
Synergistic Use of LOTOS-EUROS and NO2

Tropospheric Columns to Evaluate the NOX
Emission Trends Over Europe

Lyana Curier, Richard Kranenburg, Renske Timmermans, Arjo Segers,
Henk Eskes, and Martijn Schaap

Abstract The NOx-emission trend has been evaluated over Europe using the
LOTOS-EUROS model and the NO2 tropospheric columns from OMI.
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41.1 Introduction

The quality of available information about sources (emissions) of atmospheric
pollutants is a key parameter in any attempt to represent the current state or predict
the future changes of the atmospheric composition. Besides natural sources and
biomass burning, current estimates show that fossil fuel combustion is responsible
for about 90 % of the total NOx emissions over Europe. In situ measurements in
polluted areas have shown that the boundary layer contains more than two third of
the tropospheric NO2. Hence, satellite remote sensing providing tropospheric NO2
columns is a suitable answer for the monitoring of pollution. Recent studies using
spaceborne instruments have illustrated that the tropospheric column of nitrogen
dioxide contains valuable information about its sources, transport and sinks. NO2
timeseries derived from satellites instruments have also been used to study long-
term changes in anthropogenic emissions of NOx. The goal of this study is to
estimate the trends in NOx emissions in Europe and subsequently identify the
source sectors responsible. To this end we investigate the possibility to assess
the trends in anthropogenic NOx emissions over Europe at high spatial resolution
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using OMI observation and the LOTOS-EUROS chemistry transport model. The
study takes place within the framework of the ENERGEO and GlobEmission
projects which respectively aims to set-up monitoring system of air pollutants using
earth observation data and contributes to the verification and improvement of the
UNECE/EMEP emission inventory over Europe.

41.2 NOx Emission Source Apportionment

In 2005, the anthropogenic NOx emissions over Europe were dominated by
combustion processes in road transport with a 40 % share, followed by power
plants, industry, off-road transport and the residential sector. In the last decades the
abatement strategies over Europe have principally targeted combustion processes
by power generation, road transport and industries. Moreover, it is anticipated that
future changes in NOx emissions will be driven by certain sectors. As the OMI
satellite observes the total column at local overpass time, It is important to know the
sensitivity of the OMI signal to emission changes and investigate whether OMI is
suitable to observe such trends over Europe. This is especially relevant considering
the short life time of NOx in the atmosphere and the large variability of the temporal
(or diurnal) variation in emission strengths for the different source sectors. To this
end, the LOTOS-EUROS chemical transport model was ran for 2005 over Europe
using the TNO-MACC emission inventory [4] for 2005. The model includes a
new source apportionment module that tracks the contribution of specified sources
through each modelled process and thus through the whole simulation. This means
that for all oxidised nitrogen components at every time step and each grid cell the
origin is calculated. Here the emissions were categorized per source sector and hour
of emission. As the life time of NOx is short, it was chosen to focus the resolution
for the time of emission to the morning hours prior to OMI overpass.

Figure 41.1 presents the modelled contribution per source sector and emission
hour over two industrialized area in Europe at OMI overpass time (i.e. 1.30 p.m.
local time). At first glance it is observed that 50 % of the OMI signal results from
NOx emissions in the 3 h prior to OMI overpass. Besides, it can be observed
that over the heavily industrialized area like the BENELUX the NOx emission
are mainly driven by combustion processes in the road transport whereas over the
Northern Iberian Peninsula the combustion processes in road transport energy sector
and non-road transport have an equal share.

41.3 Trends Analysis

The tropospheric NO2 columns retrieved from OMI measurements, DOMINO
[1, 2], are used in synergy with the LOTOS-EUROS [5] chemistry transport model.
LOTOS-EUROS is an operational 3D chemistry transport model which simulates
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Fig. 41.1 Barchart of the contribution of various source sectors for different emission time to the
total NOx emission

the air pollution in the lower troposphere over Europe. The OMI tropospheric
NO-2 column product has been validated in several studies [1, 2] and recently
a comparison of OMI NO2 tropospheric columns with an ensemble of global
and European regional air quality models was performed [3]. This last study
concluded that the vertical column of the regional air quality models ensemble
median shows a spatial distribution which agrees well with the tropospheric OMI
NO2 tropospheric columns. The discrepancies observed between the tropospheric
OMI NO2 tropospheric column and its modelled counterparts should occur mainly
in the higher part of the atmosphere due to a lack of sources such as lightning and
incorrect estimates of the lifetime of NO2 at higher altitude. In this study, a multi-
year simulation is performed for 2005-2010 by LOTOS-EUROS using a constant
a priory NOx emission database [4], to model the NO2 tropospheric columns at
the overpass location and time of OMI. As we are using a fixed NOx emission
database the inter-annual and seasonal variability present in these columns will
solely represent the changes in the meteorology, transport and chemistry. In a second
step the NO2 tropospheric columns from both OMI and LOTOS-EUROS were
meshed into a 0.25 x 0.5 grid and for each pixel the time series of the monthly
mean NO2 tropospheric columns are fitted using a model with a linear trend
and a seasonal component which accounts for the annual cycle of NO2 [8]. This
model has been validated for mean NO2 tropospheric columns using GOME and
SCIAMACHY data at a global scale and over China [6, 7]. Figure 41.2 shows an
example of a measured time series and the fitted function. The monthly averaged
NO?2 tropospheric column is plotted as a function of the month number starting in
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Fig. 41.2 Example of a 15 T T
timeseries for one grid cell
near Paris (France). The Y
axis shows the monthly mean
NO2 tropospheric column,
and the X axis shows the
month index starting January
2005. The dots represent the
measurement while the
straight and sinusoidal lines
represent respectively the
linear decrease and seasonal
component of the fitting result
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January 2005. The fitting model is applied to each grid cell over Europe, which
allow for a spatial distribution of each of the fitting parameters. Figure 41.3 presents
the annual linear trends per year for tropospheric NO2 for 2005-2010 derived from
OMI observations over Europe due to change in the NOx emission. A clear negative
trend is observed over Europe. Significant negatives trends, ranging between —8 and
—4 % are found over the dominant anthropogenic source regions of Western Europe
such as Western Germany, Benelux, Po-Valley. The largest decreases coincide with
well-known industrialized areas such as the Benelux, the Po-Valley in Italy and
the Ruhr area in Germany. This can be explained by the fact that over Europe the
decrease of NOx emissions is mainly due to a better control of road transport and
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Table 41.1 Comparison table for the average trends (% per year)
derived for three heavily industrialized area over Europe

Area
Study Benelux  Po Valley  Northern Spain
Konovalov et al. [4] —3.7 —2.7 —1.3
Zhou et al. [9] —6. —6. —20to —10
This study —4.1 —6.1 —7.5 with hotspot —20
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Fig. 41.4 Barchart of the yearly trends derived per country within the framework of this study
(left bars) and the trends derived from officially reported data by countries (right bars)

power plants. A comparison of our results with recent trend studies using satellite is
presented Table 41.1 for the BENELUX, Po Valley and Northern Spain. In general,
a good agreement is observed. However, discrepancy occurs between the study
carried out by Konovalov et al. [4] and the other two studies for Northern Spain.
In fact, the strongest decreases occurred over Northern Spain (—20 to —10 %) and
we believe it to be strongly related to emission abatement strategies targeting power
plants implemented since beginning of 2008.

The trends derived for each country from this study are presented in Fig. 41.4
and compared to official reported data by countries. In general, the reported and
retrieved trends are of similar amplitudes and providing confidence in the trends
deduced in this study. However, a dichotomy between European countries appears
and the reported and estimated NOx emissions tends compare better over Western
Europe than over Central and Eastern Europe. This dichotomy may illustrate the
differences between countries in re-updating their emission inventories but may also
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reflect that the dominant NOx source in Western Europe is road transport with a
well-documented and, here confirmed, decrease in emissions due to implementing
new technologies, whereas trends in other source sectors in eastern Europe are
less known. The difference in sensitivity of the OMI instrument to source sectors
may also play a role here and is under investigation. Besides, the large differences
observed for Finland, Norway and Sweden are believed to be due to surface
reflectance contamination and are under further investigations.

41.4 Conclusion and Outlook

A trend was derived from synergistic use of LE and OMI NO2. The results were in
agreement with recent studies and reported emission inventories per country from
EMEP. Significant negative changes were found in highly industrialized areas over
Western Europe i.e. ~5-6 %/year. Strong decrease in were observed over a regions
with many power plants in Northern Spain (up to 20 %) and over the Po-Valley
(~11 %). The method described here is a promising methodology to complement
and evaluate trends in bottom up emission reportings. A strong point is the fact
that the methodology using satellite date is in principle consistent throughout the
entire domain. Besides, satellite data are available in near real time. Remote sensing
observations can therefore provide a top-down constraint which allows for a near
real time estimate of the emissions.
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Questions and Answers

Questioner Name: W. Lefebvre

Q: How does the changing NO2/NOx ratio affect your results?.

A: The downward trend observed in NOx emissions partly resulted in the devel-
opment of new technologies that influence the ratio. Changes in NO2/NOX ratios
during the period of interest may result in additional uncertainty in NOX emissions.

Questioner Name: J. Silver

Q: The comparison between OMI and LOTOS-EUROS showed a seasonal bias. Is
this mainly due to the model or the observations?

A: Many studies shown this bias between chemistry transport model and observa-
tion. The discrepancies observed between the tropospheric OMI NO2 tropospheric
column and its modelled counterparts should occur mainly in the higher part of the
atmosphere due to a lack of sources such as lightning and incorrect estimates of the
lifetime of NO2 at higher altitude. On the other hand, comparison studies between
OMI and ground based observations have also shown that OMI was biased high.
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