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Preface

In 19609, the North Atlantic Treaty Organization (NATO) established the Committee
on Challenges of Modern Society (CCMS). From inception, the subject of air
pollution was established as one of the priority problems for study within the
framework of various pilot studies undertaken by this committee. The main activity
relating to air pollution is the periodic organization of a conference series called
International Technical Meeting on Air Pollution Modeling and its Application
(ITM). Pilot countries organizing these meetings have been: United States of
America; Federal Republic of Germany; Belgium; The Netherlands; Denmark;
Portugal and Canada.

This volume contains the abstracts of papers and posters presented at the 32nd
NATO/SPS ITM, held in Utrecht, The Netherlands, from May 7 to 11, 2012. This
ITM was organized by TNO (Host Country) in cooperation with VVM and The
University of British Columbia (Pilot Country). Key topics presented at this ITM
included: Local and urban scale modeling, Regional and intercontinental modeling,
Data assimilation and air quality forecasting, Model assessment and verification,
Aerosols in the atmosphere, Interactions between climate change and air quality,
Air quality and human health.

The ITM was attended by 159 participants representing 35 countries. Invited
papers were presented by S.T. Rao, USA (Model assessment and verification);
George Kallos, Greece (Aerosols in the atmosphere); David Simpson, Norway
(Regional and Intercontinental modeling); and Leendert Hordijk, The Netherlands
(Air quality models and policy).

On behalf of the ITM Scientific Committee and as organizers and editors,
we would like to thank all the participants who contributed to the success of
the meeting. We especially recognize the organizational and support efforts of
the chairpersons and rapporteurs, staff at VVM and TNO. Finally, special thanks
to the sponsoring institutions: TNO (The Netherlands), both Earth, Environment
and Life sciences and Space, The University of British Columbia (Canada), and
the sponsoring organizations NATO Science for Peace and Security; Environment
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viii Preface

Canada; City of Utrecht and European Association for the Science of Air Pollution
(EURASAP). A special grant was given by EURASAP to award prizes to young
researchers for the best paper or poster.

The next meeting will be held in August 2013 in Miami, USA.

Utrecht, The Netherlands Renske Timmermans & Peter Builtjes
(Local Conference Organizers)
Vancouver, BC, Canada Douw G. Steyn

(Scientific Committee Chair)
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History of NATO/CCMS (SPS) Air Pollution
Pilot Studies

Pilot Studies on Air Pollution

International Technical Meetings (ITM) on Air Pollution Modelling
and its Application

Dates and Locations of Completed Pilot Studies:

1969-1974  Air Pollution Pilot Study (Pilot Country: United States of America)
1975-1979  Air Pollution Assessment Methodology and Modelling

(Pilot Country: Germany)
1980-1944  Air Pollution Control strategies and Impact Modelling

(Pilot Country: Germany)

Dates and Locations of Pilot Follow-Up Meetings:
Pilot Country — United States of America (R.A. McCormick, L.E. Niemeyer)

Feb., 1971 Eindhoven, The Netherlands First Conference on Low Pollution
Power Systems Development

July, 1971  Paris, France Second Meeting of the Expert Panel
on Air Pollution Modelling

All subsequent meetings were supported by the NATO Committee for Challenges
to Modern Society, and were designated NATO/CCMS International Technical
Meetings (ITM) on Air Pollution Modelling and its Application, until 2007 when
the designation changed to NATO/SPS with the creation of the NATO Committee
on Science for Peace and Security.
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Climate Change and Air Quality



Chapter 1

Future Air Pollution in Europe

from a Multi-physics Ensemble of Climate
Change-Air Quality Projections

Pedro Jiménez-Guerrero, Sonia Jerez, Juan J. Gomez Navarro,
Raquel Lorente, and Juan P. Montavez

Abstract This work conducts a multi-physics ensemble of air quality projections
in order to elucidate the spreads and uncertainties behind the election of the physical
parameterizations in the regional climate models. Results indicate that the studied
parameterized processes and air pollutants transport and dispersion are closely tied
together, and hence the projected changes are strongly affected by the atmospheric
variables on the projections for air quality.

Keywords Climate change * Air quality * Ensemble

1.1 Introduction

Climate change alone influences the future concentrations of air pollutants through
modifications of gas-phase chemistry, transport, removal, and natural emissions.
The impacts of climate change on air quality may affect long-term air quality
planning, and can be characterized by the use of chemistry transport models
(CTMs). One of the most important components of climate simulation models,
especially of regional climate models (RCMs), are the parameterization schemes.
When coupled to CTMs, they can constitute an important source of uncertainty
for air quality projections. While multi-model ensembles of regional climate
simulations have been widely performed and investigated in an attempt to evaluate
and overcome intermodel-related uncertainties, few studies deal with similar multi-
physics ensembles for elucidating intramodel uncertainties [1]. Therefore, the
main objective of this work is to conduct a comparative numerical modelling
study of air quality projections from a climatic perspective using a multi-physics
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ensemble of MM5-EMEP-CHIMERE simulations. Two aspects will be covered in
this contribution: (1) What is the changing signal of future air pollution in Europe
and what is the associated spread?; (2) Can we isolate the leading processes causing
the largest spreads and therefore the largest uncertainties in regional climate-air
quality projections?

1.2 Methods and Models

Experiments span the periods 1971-2000, as a reference, and 2071-2100, as a
future enhanced greenhouse gas and aerosol scenario (SRES A2). The atmospheric
simulations with MMS5-EMEP-CHIMERE have a horizontal resolution of 25 km
and 23 vertical layers (up to 100 mb), and were driven by ECHAMS outputs. The
ensemble is the result of combining two of the available options for cumulus (CML,
Grell and Kain-Fritsch), microphysics (MIC, Simple Ice and Mixed Phase) and
planetary boundary layer (PBL, Eta and MRF) parameterizations within MMS5. The
analysis presented here, for the sake of brevity, will deal with PM2.5 ground levels.
The ensemble spread (maximum difference among all the ensemble members in
the projected changes) will characterize the intramodel uncertainty relative to the
mean projected changes. In order to isolate the effect of changing the physical
option for a particular parameterized process, we propose a methodology based on
subensembles (subgroups) of simulations. These subensembles are given by fixing
the PBL, the CML or the MIC scheme to one of the two options considered. From
here we can identify the leading schemes (LS), defined as the process (PBL, CML
or MIC) contributing most to the projected spread of PM2.5.

1.3 Results and Discussions

The results associated to meteorological variables can be found elsewhere [2]. For
2-m temperature, the average rise is about 2.5 K for wintertime and up to 6 K during
the summertime over Southwestern Europe. However, it should be highlighted that
the spread of these results is up to 50 % of the estimated warming, which is
mainly caused by changes in the PBL scheme, with MRF providing the largest
temperature increase. The most important change signals for precipitation are, on
average, increases of about 40 mm/month in Western Europe in summer (where
convective precipitation dominates and thus the CML plays a decisive role) and
a generalized reduction in the rest of sites/seasons up to 50 %. Nevertheless, the
spread in the precipitation projections involves even disagreement in the change
sign among the ensemble members.

Projected PM2.5 changes and spreads depict diverse patterns for different areas
of Europe. The largest projected increases of PM2.5 (Fig. 1.1) are mainly located
over southern Europe (Iberian Peninsula and the Balkans region) especially during
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Fig. 1.1 Projected changes (2071-2100 vs. 1991-2000) in PM2.5 concentrations for Europe
(shaded) and associated spread (contours) for DIF (top, left), MAM (top, right), JJA (bottom,
left) and SON (bottom, right)

spring and summertime (up to +5 g m~>) meanwhile more northern areas
show even slight decreases during springtime (—2 wg m~—). The largest spreads
are not always associated to the most important changing signal; for instance,
over the western Mediterranean during JJA there is no noticeable increase in the
concentration of aerosols, but the spread is 5 jLg m~, highlighting the strong
uncertainty associated to PM2.5 projections in this area (the sign of the changing
signal disagrees among simulations). In most parts of the domain, the spread
represents above 100 % of the ensemble-mean projected change for PM2.5.

Figure 1.2 depicts the leading schemes (LS defined as those parameterizations
whose election presents the largest spread) regarding the uncertainty associated
to the seasonal PM2.5 projections presented in Fig. 1.1. If LSs are looked for over
the areas showing the largest spreads, some can be easily distinguished. Over land,
the CML scheme determines the spread, with the KF scheme leading to the largest
variation of the precipitation amount in the future. As well, the large spreads in
PM2.5 changes appearing over the Iberian Peninsula and Eastern Europe in all
seasons (Fig. 1.1) respond mainly to the change of the CML scheme. The use of
the KF scheme combined to the ETA PBL scheme generally leads to the largest
projected increases in the concentrations of PM2.5 over all Europe. However, the
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Fig. 1.2 Schemes leading to the largest spread in PM2.5 projections for DJF (top, left), MAM
(top, right), JJA (bottom, left) and SON (bottom, right)

huge spread affecting the positive signals over some Mediterranean coastal areas
is controlled by the PBL scheme alone especially in autumn and wintertime. The
impacts of temperature on air quality are related to the dependence of gaseous-phase
pollution and aerosols on this variable. While temperature uncertainties mostly
affects gas-phase pollutants, the spreads in precipitation have a strong effect in the
frequency of the washout and therefore in the projected levels and spreads in the
concentrations of aerosols.

1.4 Conclusions

A valuable conclusion drawn from this assessment is that uncertainties affecting
atmospheric variables also affect the air quality patterns and associated spreads,
which show a great sensitivity to the physical configuration of the regional climate
model. In the case of PM2.5, the LS for projected spreads and changes is condi-
tioned by the election of the CML scheme (even modifying the sign of projected
changes), while the PBL and MIC schemes add importance under future conditions
for certain regions. Results further claim for future studies aimed at deepening the
knowledge about the processes and reducing uncertainties.
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Questions and Answers

Questioner Name: Stefano Galmarini

Q: Is intra-model ensemble spread the same as multi-model ensemble spread? What
are the differences, if any?

A: This assessment reveals the great sensitivity of European air quality to future
climate changes, yet highlighting the crucial role played by regional climate model
(RCM) physics in air quality projections. The results of this contribution point
to spreads among various simulations using the same model (intra-model spread)
of similar magnitude to the spreads obtained in multi-model ensembles of air
pollution. Note that in the multi-model ensemble there is a mixture of domain
configurations and resolutions, nesting strategies, dynamic cores and physical
configurations. All these factors contribute to the multi-model ensemble spread,
while in our multi-physics single-model ensemble the spread is only attributable
to the physical configuration of the regional model. Hence, the similar magnitude
of the spreads obtained in both cases suggests that a large part of the multi-model
spread could derive from the fact that the different models employ different physical
configurations.

Q: Special attention should be paid to the use of the concepts “accuracy” versus
“uncertainty”.

A: The questioner raises an interest concern. This contribution does not cover the
topic of accuracy of the simulations (e.g. the biases of the different configurations
that are part of the air quality ensemble), since it has been identified elsewhere [3].
This work tries to identify the uncertainty associated to the election of the physics
configuration of the RCM. Uncertainty is here defined as the differences among
the various ensemble members (spread). These differences in the future projections
could be considered as a matter of uncertainty in the change signals (as similarly
assumed in multi-model studies).
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Chapter 2

Influences of Regional Climate Change on Air
Quality Across the Continental U.S. Projected
from Downscaling IPCC ARS Simulations

Christopher Nolte, Tanya Otte, Robert Pinder, J. Bowden, J. Herwehe,
Greg Faluvegi, and Drew Shindell

Abstract Projecting climate change scenarios to local scales is important for un-
derstanding, mitigating, and adapting to the effects of climate change on society and
the environment. Many of the global climate models (GCMs) that are participating
in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report
(ARS) do not fully resolve regional-scale processes and therefore cannot capture
regional-scale changes in temperatures and precipitation. We use a regional climate
model (RCM) to dynamically downscale the GCM’s large-scale signal to investigate
the changes in regional and local extremes of temperature and precipitation that may
result from a changing climate. In this paper, we show preliminary results from
downscaling the NASA/GISS ModelE IPCC ARS Representative Concentration
Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF)
model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035)
and illustrate potential changes in regional climate for the continental U.S. that are
projected by ModelE and WRF under RCP6.0. The regional climate change scenario
is further processed using the Community Multiscale Air Quality modeling system
to explore influences of regional climate change on air quality.

Keywords Regional climate modeling ¢ Climate change * Air quality * CMAQ
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2.1 Introduction

Global climate models (GCMs) and, more recently, global earth system models
are used to simulate the past and future evolution of the Earth’s climate. Because
these models are run for centuries and cover the entire globe, computational
resource considerations limit them to using relatively coarse spatial resolution
(e.g., 1° latitude x 1° longitude). Climate change impacts, however, are experienced
at much finer spatial scales. Regional climate models (RCMs) provide one way to
bridge the gap between coarse future climate scenarios provided by a GCM and
the regional/local scales needed for climate change impact assessments. Previously,
Nolte et al. [5, 6] used the Goddard Institute for Space Studies (GISS) II’ global
climate model as input to the mesoscale meteorological model MMS5 and the
Community Multiscale Air Quality (CMAQ) Model to examine climate change
impacts on regional scale air quality over the continental United States circa 2050.
Surface ozone levels were predicted to increase by 2—5 ppb over much of the eastern
U.S. However, the interpretation of these results was hampered by biases in the
meteorological simulation of current climate.

2.2 Development of Downscaling Methodology

Recognizing the limitations in simulating air quality imposed by errors in down-
scaling, recent work has focused on development and testing of a regional climate
downscaling methodology [1, 2, 7]. The Weather Research and Forecasting (WRF)
model was used to downscale the 2.5° x 2.5° Atmospheric Model Intercomparison
Project (AMIP-II) Reanalysis data [3] (hereafter, R-2), which emulates the spatial
and temporal resolutions of fields provided by a GCM. The R-2 data are the best
available representation at coarse spatial scales of the meteorology that occurred,
and thus can be regarded as “perfect boundary conditions.” During the course of
a continuous simulation of the 20-year period 1988-2007, no observational data
exogenous to R-2 were assimilated in order to maintain consistency with the scale
of data available from a GCM. However, unlike the situation when downscaling
a GCM future climate scenario, the downscaled R-2 simulation can be evaluated
against finer-scale observations or analyses, such as the 32-km North American
Regional Reanalysis (NARR) [4].

The results showed that when forcing WRF only via the lateral boundaries
of a large continental modeling domain, substantial biases can exist over large
regions [1]. These biases can be significantly reduced by using the large-scale
driving fields to constrain or “nudge” the RCM solution. Nudging not only improves
the simulation of mean quantities, but also improves the accuracy of simulated
extreme temperature and precipitation events [7] and the large-scale atmospheric
circulation [2].
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2.3 Modeling Application

The downscaling techniques that were tested and evaluated using the historical data
sets were applied to simulations from the NASA GISS ModelE [8]. Two 11-year
time slices were simulated, one a control run representing current climate around
2000 (nominally 1995-2005) and one following RCP6.0 around 2030 (i.e., 2025—
2035). As shown in Fig. 2.1, WRF projects no change in mean 2-m temperature for
most of the western U.S. and a warming of up to 2 K in the central U.S. during July,
and a much broader warming exceeding 3 K for most of the domain during January.

To examine the implications of this climate scenario for future air quality, the
downscaled meteorology was used to drive the CMAQ chemical transport model.
Two 1-year simulations were conducted using meteorology downscaled from the
current decade GCM simulation (i.e., 1995) and downscaled from the RCP6.0
simulation (i.e., 2025). For both simulations, anthropogenic emissions were based
on the U.S. EPA National Emission Inventory for 2005, while biogenic emissions
were computed online.

The number of days simulated as exceeding the U.S. 8-h average surface ozone
concentration standard of 75 ppb was computed for both annual runs. As shown in
Table 2.1, for these 2 years the future meteorology leads to a substantial (~10 %)
increase in the number of ozone exceedances on an annual basis. However, the
magnitude and location of the change in ozone levels varies widely over the course
of the year, with strong increases in June and July partially offset by decreases
in August. These differences, though plausible, are not statistically significant, as
more years of model simulations are needed to distinguish the climate change

Change in July mean 2-m Temperature K

Fig. 2.1 Change in monthly mean 2-m temperatures downscaled from ModelE by WRF for
(a) January and (b) July

Table 2.1 Domain-wide

number of grid cells with 1995 2025

exceedances of 75 ppb June 17,921 24,539
threshold for daily maximum July 25,000 27,604
8-h average surface ozone August 26,541 21,528

concentrations Annual total 97,905 107,257
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signal from the noise of interannual variability. Both simulations will be extended
to encompass the entire 11-year period, and the analysis will be repeated to discern
the impact of the change in ozone and particulate matter air quality attributable to
regional climate change.

Acknowledgments and Disclaimer The United States Environmental Protection Agency through
its Office of Research and Development funded and managed the research described here. It has
been subjected to the Agency’s administrative review and approved for publication.

References

1. Bowden JH, Otte TL, Nolte CG, Otte MJ (2012) Examining interior grid nudging techniques
using two-way nesting in the WRF model for regional climate modeling. J Clim 25:2805-2823

2. Bowden JH, Nolte CG, Otte TL (2013) Simulating the impact of the large-scale circulation on
the regional 2-m temperature and precipitation climatology. Clim Dyn. doi: 10.1007/s00382-
012-1440-y

3. Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GI (2002) NCEP-
DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631-1643

4. Mesinger F et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343

5. Nolte C, Gilliland A, Hogrefe C (2007) Linking global and regional models to simulate U.S.
air quality in the year 2050. In: Borrego C, Miranda Al (eds) Air pollution modeling and its
application XIX. Springer, Dordrecht, pp 633-647

6. Nolte CG, Gilliland AB, Hogrefe C, Mickley LJ (2008) Linking global to regional models
to assess future climate impacts on surface ozone levels in the United States. J Geophys Res
113:D14307

7. Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional
climate modeling? J Clim 25:7046-7066. doi:10.1175/JCLI-D-12-000048.1

8. Schmidt GA et al (2006) Present day atmospheric simulations using GISS ModelE: comparison
to in-situ, satellite and reanalysis data. J Clim 19:153-192

Questions and Answers

Questioner Name: P. Makar

Q: The model results show effects due to nesting/downscaling very well. What
would be the impact of running an RCM globally? That is, the computers we use
should have reached the state where this is possible. Would you expect similar
effects with a global RCM?

A: It is difficult to differentiate effects due to discontinuities at the lateral bound-
aries from errors in the RCM physics formulations. Though a global version of
WREF has been developed, to my knowledge it has not been used for long-term
simulations, which could help determine whether WREF is in radiative balance. We
are experimenting with using WRF on a hemispheric domain, which may reduce
the influence of lateral boundary conditions. It might also be interesting to conduct
a global-to-regional “Big Brother Experiment” using the WRF model.
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Chapter 3

Projection of Air Quality in Melbourne,
Australia in 2030 and 2070 Using a Dynamic
Downscaling System

Martin Cope, Sunhee Lee, Sean Walsh, Melanie Middleton, Mark Bannister,
Wal Delaney, and Andrew Marshall

Abstract A multi-scale dynamical downscaling system has been set up to investi-
gate future air quality trends in Melbourne, Australia due to climate and/or emission
changes. The system consists of a comprehensive air emissions inventory; an
ensemble of climate trends, a regional climate model for downscaling from synoptic
to regional scale and a meteorological-chemical transport model for downscaling
from regional to urban scale. Air quality projections for 2030 and 2070 suggest that,
in the absence of emission controls, ozone concentrations will increase, leading to
a 20-25 % increase in population exposure. The outcomes for PM2.5 show mixed
results depending on season. The air quality trends with three different emission
scenarios for 2030 were also modelled under the same climate projection. Some
impact measures, such as average ozone concentration, are insensitive to the choice
of emission scenarios, while others such as exposure to nitrogen dioxide show
significant variations for different scenarios.

Keywords Climate-Air Quality * Downscaling ¢ PM2.5

3.1 Introduction

The first part of this paper presents results from simulations of Melbourne’s air
quality over three decades, 1996-2005 (Decade 1), 2025-2034 (Decade 2), 2065—
2074 (Decade 3) with a fixed 2006 local emission inventory to investigate the
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climate penalty, i.e. the effects of climate change. The climate trends from four
global climate models (GCM) were used to drive the regional climate model for
these three decades to investigate the climatic effect on air quality in future decades.
Apart from these annual runs with one selected GCM, January and February
(representing summer) and July and August (winter) of Decade 1 and Decade 3
were simulated with the climate trends of four GCMs. The trends in air quality
due to climate change are presented in terms of exceedence rates against National
Environment Protection Measure Ambient Air Quality Standards (AAQS) and
changes in population exposure.

The second part of this paper presents air quality trends under both climate and
emission changes. We have modelled three emission scenarios for 2030 under the
same climate projection. The results are also presented in terms exceedence rates
and population exposure.

3.2 The Methodology

The climate trends generated by four GCMs have been used- the Geophysical Fluid
Dynamics Laboratory Climate Model ver. 2.1; the CSIRO Mk3.5 GCM; the United
Kingdom UKMO-HadCM3 GCM; and the German ECHAMS/MPI-OM GCM.
These models were selected on the basis of their performance in modelling key
meteorological features in the Australian region as part of the Climate Futures for
Tasmania project [2]. In that project the climate trends (as represented by the GCM
sea surface temperatures) were corrected for biases and used to force the CSIRO
Conformal Cubic Atmospheric Model (CCAM; [4]), and generate climate over the
Australian region at 60 km grid spacing and then at higher resolution over Tasmania.

The 60 km CCAM meteorological fields have been used to drive high resolution
(nesting down to 3 km grid spacing) meteorological and chemical transport
modeling over Melbourne using TAPM [3], and the CSIRO Chemical Transport
Model (CTM; [1]).

In the first part of this work, the CTM was forced by a 2006 anthropogenic
inventory for all modelled decades. Thus the intent is to first investigate the
relationship between air pollution and climate without the confounding factor
of simultaneous anthropogenic emission changes (other than for sources such as
evaporative VOC with meteorological dependency).

3.3 Air Quality Projection Under Climate Change

The projected changes in air quality due to the climate penalty were determined
by comparing air pollution metrics for future Decade 2 and Decade 3 with
Decade 1. In this paper we present examples for O3 and PM,s. We quantify
these changes using exceedence frequencies of the AAQS and through the use of
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Table 3.1 Average annual
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the Residential Population Exposure metric where exposure is calculated as the
population weighted concentration once a prescribed threshold has been exceeded.

Table 3.1 shows ozone exceedence rates will increase by 110-275 % while PM, 5
shows less significant change in future decades. In this study we have calculated
ozone population exposure using 1-h averaged ozone and a threshold of 25 ppb;
NO, is based on a 1-h concentration and zero threshold; and PM, 5 is based on 24-h
average concentration and zero threshold. Figure 3.1 shows population exposure
to ozone during summer months will increase by 15-30 % for the various GCM
simulations. All GCM results show that population exposure to PM; 5 increases by
4-13 % in summer while most GCM results show it decreases by 2-5 % in winter
due to reduced wood heater usage during warmer winter months.

3.4 Air Quality Projection Under Different Emission
Scenarios

In this study three different emission scenarios were devised to investigate the
impacts of different emission scenarios on air quality under the same climate
projection. We modelled three emission scenarios for 2030, hereafter referred as E1,
E2 and E3. These emission scenarios are developed using different assumptions for
industrial emissions control, location of population growth, development of vehicle
technology, power generation and other categories. E2 is a most likely scenario
while E1 and E3 are alternative scenarios. Figure 3.2 shows differences in annual
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Fig. 3.2 Annual NO, emission in Melbourne from different emission scenarios

NOy emission from various sources in Melbourne with current NO, The model
simulations have been carried out with one GCM, CSIRO MKk3.5.

For all three emission scenarios, 1-h ozone and 24-h PM, s are predicted to
breach the AAQS while 1-h NO;, 8-h CO and 24-h SO, are not expected to
exceed the AAQS. Some air quality metrics such as average ozone concentration
are insensitive to the selection of emission scenarios while others such as exposure
to nitrogen dioxide show significant variations for different scenarios.

3.5 Summary

The air quality trends under climate change with the current emission inventory
and with three different emission scenarios are modelled for Melbourne with a
multi-scale dynamic downscaling system for future decades. The climate penalty
simulations show ozone is most sensitive to climate change with projected increase
in population exposure of 20-30 % with substantial increase of AAQS exceedence
days. Changes in PM; 5 exposure and exceedence rates show seasonal differences,
likely due to a reduction in wood heater emissions for warmer winter months.

Projections from simulation of the combined effects of climate change and
anthropogenic emission change show population exposure to nitrogen dioxide is
very sensitive to the choice of emission scenario while others such as ozone
concentration are not. Both 1-h ozone and 24-h PM; 5 are predicted to exceed AAQS
under all three emission scenarios.

Acknowledgments This work was carried out as a cooperative research project between CSIRO
Marine and Atmospheric Research and Environment Protection Authority Victoria.
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Questions and Answers

Questioner Name: Sebnem Aksoyoglu

Q: Do you keep biogenic emissions constant? Do you take changes in land use into
account?

A: No, biogenic emissions are calculated on the fly in the chemical transport
model, thus it reflects changing meteorological conditions, but we keep surface
characteristics such as land use or leaf area index constant for the future decade
run.

Questioner Name: Volodymyr Nochvai

Q: What is the relationship between exposure assessment values and health effects?
A: We assess impact of air quality on human health with a metric that represents
changes in population exposure for the future decade from the current decade.
Population exposure is defined as pollutant concentration multiplied by population.
With higher concentrations and larger population, total population exposure in the
study region gets higher, thus adverse health impact.



Chapter 4

Investigating Differences in Air Quality Between

Urban and Rural Regions Under Current
and Future Climate Conditions

Andrea Mues, Astrid Manders, Bert van Ulft, Erik van Meijgaard,
Martijn Schaap, and Peter Builtjes

Abstract The differences between air quality in urban and rural regions has been
investigated for the current situation using both observations and modeling and also

for future climate conditions

Keywords LOTOS-EUROS ¢ PM 10 « Air quality * Climate change

4.1 Introduction

Urban regions are very important in relation to air quality and climate change
because they represent the main areas of anthropogenic emissions and a high
proportion of the population lives in urbanized regions and is therefore exposed
to the resulting air pollution. The concentration gradient between an urban region
and its surrounding rural area is mainly caused by different emission density and
composition, different land use, as well as by meteorological effects. In this study
PM10 measurement data from the AirBase database for the years 2003-2008 are
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selected in order to determine the gradient between urban and rural background
concentrations. To analyse whether a chemistry transport model (CTM) is able to
reproduce the observed gradient and to investigate the chemical composition of
PMI10 in urban and rural regions, simulation runs were performed with the CTM
LOTOS-EUROS [3] for 2003-2008 on a 0.5° x 0.25° lon-lat grid covering Europe
(LE_eu) with ECMWF input meteorology. A second run for the year 2008 on a
0.25° x 0.125° lon-lat grid covering The Netherlands and Germany (LE_zoom) was
performed to investigate the impact of different horizontal grid resolutions on the
modeled PM10 concentrations in urban and rural regions.

The air pollution situation in future is expected to change because meteorological
conditions are influenced by climate change and the emission intensity is reduced
when emission reductions plans are carried out. The effect of meteorological
conditions differs for each pollutant (e.g. ozone and PM) and because PM consists
of several components with different physical and chemical properties, the effect
of meteorology on the individual component varies as well. As a consequence the
impact of a changing climate on air pollution levels and the PM composition might
differ between an urban and the surrounding rural region and therefore also the
concentration gradient might change. In this study a one-way coupled model system
consisting of the regional climate model RACMO?2 [4] and LOTOS-EUROS is used
to investigate the effect of climate change on PM concentrations and composition.
Different sets of simulations were produced, for which the output of the GCMs
ECHAMS and MIROC with SRES-A1B for the time period 1970-2060 as well as
ERA-interim data for the time period 1989-2009 were dynamically downscaled
on a 0.5°x0.25° grid using RACMO. LOTOS-EUROS runs were then forced
with the resulting outputs (LE_ERA, LE_ECHAM, LE_MIROC). Anthropogenic
emissions (MACC2005) were kept constant for these runs to focus on the impact of
meteorology.

The main focus in this study is on the urban Ruhr area which is located in the
west of Germany and characterized by a dense cluster of cities, industries and road
networks, surrounded by a rural area with mainly forest and agriculture. For the
Ruhr area, four rural stations and four urban stations were selected in this study.

4.2 Results

The two different horizontal grid resolutions had only a small effect on the modeled
PM10 concentrations and the gradient between urban and rural regions. Therefore
the LE _eu run and the LE_ RACMO simulation runs are used to determine a
concentration gradient.

For the Ruhr area lowest concentrations but large differences between the stations
are found in the surrounding rural area, whereas the concentrations at stations in
the urban area are highest and very similar for the average of the years 2003—
2008 (Fig. 4.1, left). The average over every urban and over every rural stations
results in a concentration gradient of 7.3 pg/m? (34.8 %). The model underestimates
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Fig. 4.1 Measured (grey) and modeled (LE_eu) (black) PM10 concentrations averaged over
2003-2008 (left) and modeled PM10 concentrations averaged over the present-day period (1989—
2009) (right) for LE_ERA, LE_ECHAM and LE_MIROC for different stations in the Ruhr area
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the averaged PM 10 concentrations but the variability of concentration between the
stations is still reproduced (Fig. 4.1, left). This also holds for the gradient, which is
underestimated when considering the absolute difference due to the underestimation
of PM10. But if the gradient is expressed as a percentage the difference between
model results and observation is only small.

Also the simulations with the coupled climate — air quality model system show
a gradient for PM between urban and rural stations for the present-day period. But
simulated concentrations were different for the run using ECHAM and the one using
MIROC boundary conditions and both runs differed significantly from the present-
day simulations with ERA-interim forcing with small implications for the gradient
(Fig. 4.1, right).

The differences between the concentration of PM10 and its components for
the present-day and future period are only between +2 % for LE_ECHAM and
+8 % for LE_MIROC (Fig. 4.2). The differences are smaller than differences
between LE_ERA and LE_ECHAM, LE_MIROC respectively. For LE_ECHAM
most components (except seasalt) decrease but for LE_MIROC they increase under
simulated future climate conditions.

4.3 Discussion

Observations of PM10 showed a concentration gradient between an urban and the
surrounding rural region, which was reproduced by the model. LOTOS-EUROS
indicated that the gradient was mainly due to higher concentrations of the primary
components and elemental carbon in the urban region. The model underestimated
the absolute concentrations and the gradient, due to the lack of a good description



22 A. Mues et al.

Ruhr area LE ECHAM Ruhr area LE MIROC

PRMIS

el NETI| ool J B i), J:Ih L

.

Vredepea!
Borken
Westerwald
Muelhaim
Essen
Dortmund
Vredepesl
Borken
Westerwald
Muglheim
Essen
Dortmund

Bad Arolsen
Bad Arolsen

Gelsenkirchen

Fig. 4.2 Relative difference between the future and the present-day period for PMI10
components for LE_ECHAM (left) and LE_MIROC (right)

of the formation of secondary organic aerosol and dust emissions, and potentially
other processes and species. The finding that the grid resolution hardly affects the
gradient allows the conclusion that the RACMO — LOTOS-EUROS runs can be used
to investigate the impact of climate change on the concentration gradient from urban
areas to rural regions. On average the effect of the future climate runs on PM10
is only small, therefore emission changes could be more important than climate
change for air pollution in future. Previous studies showed considerable biases in
the climate model results [1] and that the CTM underestimates the variability of
PM with meteorology [2]. Therefore uncertainties in the model system for both the
climate model and the CTM have to be considered when interpreting the model
results.

References

1. Manders AMM, van Meijgaard E, Mues AC, Kranenburg R, van Ulft LH, Schaap M (2012)
The impact of differences in large-scale circulation output from climate models on the regional
modeling of ozone and PM. Atmos Chem Phys Discuss 12:12245-12285

2. Mues A, Manders A, Schaap M, Kerschbaumer A, Stern R, Builtjes P (2012) Impact of the
extreme meteorological conditions during the summer 2003 in Europe on particulate matter
concentrations. Atmos Environ 55:377-391

3. Schaap M, Timmermans RMA, Sauter FJ, Roemer M, Velders GIM, Boersen GAC, Beck JP,
Builtjes PJH (2008) The LOTOS-EUROS model: description, validation and latest develop-
ments. Int J Environ Pollut 32(2):270-289

4. Van Meijgaard E, Van Ulft LH, Van de Berg WJ, Bosveld FC, Van den Hurk BJJM, Lenderink
G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO version 2.1.
KNMI technical report, TR-302



4 Investigating Differences in Air Quality Between Urban and Rural Regions. .. 23
Questions and Answers

Questioner Name: Sebnem Aksoyoglu

Q: Among the modeled species, there was no secondary organic aerosols. Are they
not included in the model?

A: The formation of secondary organic aerosols (SOA) is not included in the
model version used for this study. Due to the dependency of the formation of SOA
on meteorological parameters, SOA is important to consider when discussing the
impact of climate change on air quality. And because the precursors of SOA have
different emission sources (anthropogenic, biogenic) which are also depending on
the location (urban or rural region), SOA might also contribute to the concentration
gradient.

Questioner Name: T. Dore

Q: The model under-estimated measurements of PM10. Can this be partly attributed
to the water content contained in measurements of particulate matter?

A: The analytical results from the chemical speciation of measured PM10 mass
always show a certain percentage of unexplained mass. This unknown part is
anticipated to be to a high fraction water. This water content in the measurements
of PM is not taken into account in the model and contributes therefore to the
underestimation of PM10. But several other important components of PM10 are
not yet included in the model as for example SOA and windblown dust, furthermore
emissions are uncertain just as the description of some processes in the model. This
also contributes significantly to the underestimate of PM10.
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Chapter 5
The Role of Aerosol Properties on Cloud
Nucleation Processes

Stavros Solomos, George Kallos, Jonilda Kushta, A. Nenes, D. Barahona,
and N. Bartsotas

Abstract The clouds that develop in maritime or polluted environments have
significant differences in their properties. A number of modeling sensitivity tests
have been performed to describe the physical processes related to aerosol — cloud
interactions at various stages of cloud development. Precipitation amounts and cloud
structure were found to be very sensitive to changes in the size distribution and
number concentrations of the aerosols. Certain combinations of CCN/IN properties
and atmospheric properties may lead to significant enhancement of convection
and precipitation. These interactions are not linear and it is the synergetic effects
between meteorology and atmospheric chemistry that are responsible for the
variation of precipitation.

Keywords Aerosols * Clouds * CCN e Nucleation

5.1 Introduction

Airborne particles, depending on their size distribution and chemical composi-
tion/solubility, may serve as CCN and/or IN. Natural (e.g. sea salt, dust, volcanic
ash) and anthropogenic (e.g. sulfates, nitrates), are responsible for the formation
of cloud drops and cloud ice particles [2, 3]. For example the effects of particles
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on radiative transfer may either enhance cloud formation or invigorate cloud burn
off. Also, the aerosols that contain soluble matter can form cloud droplets while
insoluble particles such as mineral dust and black carbon act as efficient ice nuclei
(IN). In this work, the impact of natural and anthropogenic aerosols and their
mixture on cloud formation and precipitation has been investigated. A series of
sensitivity runs were performed with the implementation of the recently developed
integrated modeling system — RAMS/ICLAMS [4].

5.2 Sensitivity Tests

The model was set up in a 2D configuration for 12 different mixtures of aerosol
particles, as seen in Table 5.1. Each run lasted for 6 h and the airborne particles were
allowed to act as CCN and/or IN for the formation of clouds. The distribution of the
particles in the model was represented by a three-modal lognormal distribution with
constant geometric dispersion (¢ = 2), assuming various chemical compositions and
concentrations.

Activation of the different aerosol types as CCN resulted in significant variation
in the total accumulated precipitation as indicated in Fig. 5.1. The aerosols that
consisted of dust particles externally coated with soluble material produced similar
precipitation amounts — within the range of 300-350 mm. However, by increasing
the percentage of soluble material, the accumulated precipitation was reduced (e.g.
Case 3, Case 11). This is due to the increased number of cloud droplets resulting
in slower auto-conversion rates of cloud to rain sizes. In Cases 6-8, the particles
were assumed to be completely soluble (NaCl) with different size distribution
characteristics. A slight reduction in total precipitation was found for the aerosols
with the greater particle diameters. Bigger cloud and rain droplets were formed

Table 5.1 Aerosol characteristics for the 12 modeling scenarios

Soluble  Concentration  Mean diameter

Case  Chemical composition  fraction (cm™?) (fine-accumulated-coarse) (jLm)
1 Dust + NaCl 0.2 1,000 0.02-0.2-2
2 Dust 4+ NaCl 0.5 1,000 0.02-0.2-2
3 Dust + NaCl 0.7 1,000 0.02-0.2-2
4 NaCl 1.0 1,000 0.02-0.2-2
5 NaCl 1.0 2,000 0.02-0.2-2
6 NaCl 1.0 1,000 0.05-0.2-2
7 NaCl 1.0 1,000 0.02-0.5-2
8 NaCl 1.0 1,000 0.02-0.2-5
9 Dust 4+ (NH4)2SOy4 0.2 1,000 0.02-0.2-2
10 Dust + (NH4),SO4 0.5 1,000 0.02-0.2-2
11 Dust + (NH4),SO4 0.7 1,000 0.02-0.2-2
12 (NH4),SO4 1.0 1,000 0.02-0.2-2
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Fig. 5.1 Domain total accumulated (6 h) precipitation (mm) for the 12 aerosol scenarios

and precipitation from the ice phase of the cloud was limited. A comparison of
the maximum precipitation rate assuming NaCl (Case 4) and (NH4),SOy4 (Case 12)
particles is seen in Fig. 5.2. In Case 4, the precipitation rate remained relatively high
even during the latest stages of cloud development due to significant contribution of
the ice condensates. This resulted in almost 100 % increase in total precipitation
compared to the rest of the case studies.

These results imply the crucial role of the chemical composition (Table 5.2)
in the temporal evolution of the microphysical processes. For example, as seen in
Fig. 5.3, the activation of ammonium sulphate particles as CCN resulted in increased
cloud droplet concentrations throughout the modelling period, thus suppressing the
formation of precipitable rain droplets. However, the most significant difference
between these two runs comes from the ice stage of the cloud. As seen in Fig. 5.4,
the cloud updrafts in Case 4 were significantly higher than in Case 12 and more ice
was found near the cloud top (Fig. 5.5). Melting and rimming of the frozen elements
invigorated the production of graupel and hail at the middle and higher cloud layers
and the major part of precipitation during 4—6 h simulation was generated from this
stage of the cloud. In order to illustrate the synergetic effects that lead to such severe
phenomena, one more run was performed for exactly the same air quality properties
as in Case 4. However, in this run the initial dew point temperature profile was
reduced by 1 °C. The total accumulated precipitation for this case was 234.41 mm —
which is three times lower than the 792.92 mm of Case 4. Such results imply the
importance of the synergetic effects between air quality and meteorology since a
minor change in any of the two can lead in significant precipitation variability.



30 S. Solomos et al.

1 1 L 1 1 1 I L 1 1 I L L 1 I 1 1 L | 1 1 1
DN i siinsssusnnns S s s ——=—=—=—=—=——=—NaCl————-_
20 =
E 16 -
@ |
S 10
s 12 1=
© i
= ]
8
Q -
4 -
0

0 60 120 180 240 300 360
simulation time (min)

Fig. 5.2 Maximum precipitation rate (mm/h) for Case 4 (NaCl) and Case 12 (NH4SO,)

Table 5.2 Chemical

properties of the aerosol Density Molar mass Yan’t Hoff factor
soluble fraction (kgm—?)  (kgmol~')  (ions molec”")
NaCl 2,165 0.058 2
(NH4),SO4 1,760 0.132 3

The interplay between air quality and high clouds has also been tested within
the framework of the model, assuming initial conditions that are representative of
a cold cloud structure. The amount of ice particles that will activate during cloud
formation depends on the IN concentration, atmospheric conditions and also on
the competition between homogeneous and heterogeneous ice processes, as seen
in Fig. 5.6. For example, by considering 12 different concentrations of dust or
soot particles that can be activated as IN, the respective accumulated precipitation
performed great variance as seen in Fig. 5.7. In general, the precipitation remained
similar for both species until an aerosol concentration of 50 jLg m™>. After this
threshold, the results varied considerably. Maximum precipitation values were
found for the 500 g m™> and for the 1,000 wg m™3 of soot and dust particles
respectively. A significant amount of precipitation for the 1,000 g m™ of soot
scenario was hail. Further increase of the aerosol concentrations resulted in less
precipitation as these clouds contained great amounts of small ice elements and
finally burned off before these condensates managed to grow up to precipitable sizes.
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5.3 Conclusion

Minor changes in the aerosol field can result in significant modification of precipi-
tation. However the correlation is not linear. Certain combinations of air quality and
atmospheric conditions are likely to trigger flood events or, in contrary, to suppress
rainfall. These differences are attributed to the complex role of the aerosols in cloud
microphysics for both the warm and cold stages of the clouds. Additional model runs
and experimental measurements are needed in order to improve our understanding
on the role of airborne particles in cloud microphysics.
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Questions and Answers

Questioner Name: ST Rao

Q: You have presented the role of precipitation in enhancing and suppression of
precipitation. Is the reversed process (scavenging of pollution) well represented and
what are the open points?

A: Scavenging of aerosols occurs through the aqueous phase and not only through
nucleation. In aqueous phase the processes involved are not fully understood yet.
For example, in water droplets there are several aerosol particles diluted or partially
diluted (different size and composition). When the droplets evaporate, the particles
left have different physical (size, shape) and chemical (composition, solubility)
characteristics. These particles are involved later in nucleation processes and the
results are different (e.g. acting rather as GCCN). In general, we need to understand
these mechanisms quite well and try to further improve the models.

Questioner Name: Talat Odman

Q: What kind of experimental measurements do you use to evaluate evalu-
ate/validate your models? What data do you need to further improve understanding?
Do you have any plans to collect such data?

A: Experimental data sets for such evaluations are always needed. This is especially
true in aerosol-radiation-cloud parameterization. Such data sets are not easily found.
Measurements related to CCN activation, aerosol characterization (physical and
chemical properties) and of course cloud droplet spectra are needed at the most.
For ice nucleation (IN) such data are even more difficult to obtain. Most of the
experimental data for IN are from cloud chamber experiments. CCN, IN and cloud
droplet measurements are usually airborne and difficult to obtain. Satellite data are
useful to a certain degree and for some cases. Obviously, conventional observations
(e.g. wind, temperature, moisture profiles) are extremely useful. Currently we
look for existing data sets from past airborne experimental campaigns. A CCN
measurement campaign is organized by my Group in Saudi Arabia next year.



Chapter 6
Targeted NOy Emissions Control for Improved
Environmental Performance

S. Morteza Mesbah, Amir Hakami, and Stephan Schott

Abstract Nitrogen oxides (NOy) are the main ozone precursors, and NOy control
programs in the US have led to substantial reductions in emissions. However, it
is unknown whether these programs have optimally reduced ozone concentrations.
Current control programs do not account for spatial and temporal specificities
of NOy emissions. In this paper, this shortcoming in traditional trading systems
is addressed and a methodology for identifying optimal NOx emission control
strategies is developed. The proposed method combines an optimization platform
with an adjoint (or backward) sensitivity model. Using the proposed method,
a 2007 case study of 218 US power plants is examined. The results indicate
that differentiating between emissions can significantly enhance environmental
performance.

Keywords NOy ¢ Ozone ¢ Health damage ¢ Abatement cost ¢ Adjoint
of CMAQ

6.1 Introduction

Surface ozone is a threat to human health. Ozone is formed in the atmosphere
by a series of photochemical reactions in the presence of NOy, volatile organic
compounds, and sunlight. To control the damage caused by ozone, NOy emissions
reduction is often required. The total benefit for a society when emissions are
reduced is the same as the total damage (TD) caused by a given amount of emissions.
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To calculate TD, calculation of source-receptor relationships is required. These
relationships, which relate emissions to TD, can be calculated using sensitivity
analysis methods. Forward and backward (or adjoint) methods for formal sensitivity
analysis calculate the derivatives of outputs (i.e., ambient air quality) with respect
to inputs (e.g., emissions). In a single simulation run, the adjoint method calculates
the influences of all sources on a single receptor (or an integrated metric known as
the adjoint cost function), while forward methods calculate the influence of a single
source (or uniform change to a collection of sources) on all receptors. Since the
concern is to calculate the influences from individual sources, the adjoint method is
employed in this work.

6.2 Methodology

The change in damage (A D) is based on mortality only and estimated as follows:
AD=SYyP(1—e P2~ SY,PBAC (6.1)

where S is the value of a statistical life and is taken as $6.8 million in 2007 (US
EPA), Y} is the baseline non-accidental mortality rate (744.8 per 100,000 people for
2007), P is the population, 8 is the epidemiological concentration response factor
which correlates mortality from air pollution to non-accidental death, and AC is the
change in concentrations. f in this work is taken as 0.51 % [3] to conform with the
averaging time of the current US standard for ozone. To calculate the influences of
sources on TD, Eq. (6.1) is used to drive adjoint equations. The adjoint gradient term
(A;) relates the change in TD to changes in emissions (e; ) at source i (A; = dD/de;).
The optimization problem that minimizes the TD in the system is as follow:

Minimize: Zn lD,'(ei), Subject to: Zn & = TC. e € [0.¢)] (6.2)
i= =

where D; is the TD caused by source i, e; is the minimized emission level of source
i, e? is the initial emissions from source i, and T'C is the total cap on emissions.
The solution of this problem leads to an emissions distribution that minimizes the
damage. On the other hand, a cap-and-trade system minimizes total abatement cost
(TAC):

. " 0 : NV 0
Minimize: Zi:l ci (¢ —e;), Subject to: Zi:l e < TC, ¢; €[0,¢]]
(6.3)
where ¢; is the abatement costs of source i. The abatement costs used in this paper

have a general form of ¢; = «; (e? — ei) which is estimated for short-term using the
US EPA’s Integrated Planning Model [1].
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In this paper, the potential improvement in the current cap-and-trade system is
examined using a case study of 218 electric generation coal-fired units that took
part in the US NOy budget trading program in 2007. For air quality simulation
and sensitivity analysis, the gas-phase Community Multiscale Air Quality Modeling
System (CMAQ) version 4.5.1 and its adjoint are used [2]. The modeling period is
from July Ist to July 7th of 2007, and the modeling domain is the continental US
with a 36 km grid cell size and 34 vertical layers.

6.3 Results and Discussion

The current US NOy trading regime does not differentiate emissions based on
their contributions to TD. This system leads to an emissions distribution for
which TAC is minimized. To investigate the potential improvement in the system
performance, three scenarios are considered: command-and-control (CaC), which
assumes emissions are at the allocated level; cap-and-trade (CaT), which is the
current regime in place in the US that minimizes the TAC (Eq. 6.3); and benefit
maximization (BM), which minimizes the TD (Eq. 6.3). For all three scenarios, the
total emission cap is the same (i.e., 204,000 tons of NOy which is the total allocated
allowances to the considered units in the ozone season of 2007). The ozone state of
the CaC scenario is presented in Fig. 6.1.

[ 1 s

Fig. 6.1 The average of daily maximum 8-h ozone concentration for a 7 day modeling period
for CaC
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Fig. 6.2 The improvement of average daily maximum 8-h ozone for the 7 day modeling period by
switching from CacC to CaT (a, left), and from CaC to BM (b, right). The negative values represent
improvements and the positive values represent deteriorations in air quality

Table 6.1 Average damage
and abatement costs ($/ton) CaC CaT BM
for three scenarios Average damage 4218 4,434 2,227

Average abatement cost 1,845 1,306 1,922

The current US ozone standard for ozone (75 ppb) is based on the 4th highest
value of daily maximum 8-h ozone over 3 years. All dark gray areas in Fig. 6.1
that represent the weeklong average values greater than 60 ppb are likely to violate
the ozone standard. The potential improvement in air quality achieved by switching
from CaC to CaT and BM is presented in Fig. 6.2.

The change in air quality under different scenarios occurs only by redistributing
emissions while constraining by the same total cap. There is a small improvement
in air quality under the CaT (Fig. 6.2a). However, the improvements for the BM
are significant and occur in a wide area in the eastern US where ozone issue have
not been resolved to this date. It should be noted that the improvements in daily
values of maximum 8-h ozone are even larger than the average values reported in
Fig. 6.2. The improvements obtained by switching from CaC to BM (maximum of
6 ppb, Fig. 6.2b) indicates a high potential for enhanced air quality. As BM does not
account for the abatement costs, it is a more expensive option. To compare the costs
and damage of all scenarios, average damages and costs are listed in Table 6.1.

The reported values in Table 6.1 are short-term values, and do not represent
long-term costs and benefits. The least costs are realized in the CaT scenario which
minimizes the total abatement cost, but minimum damage occurs in the BM scenario
which is designed to minimize the total damage. Based on these values, replacing
CaT by BM leads to a $616/ton increase in cost, and a $2,207/ton decrease in
damages (for a benefit-to-cost ratio of 3.6).
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The results presented in this paper are derived from 1 week of simulation, and a
longer period of simulation is required for more accurate results. The preliminary
short-term cost-benefit analysis indicates, however, that differentiating between
emissions can lead to a significant enhancement in the performance of the current
US NOy trading system. Differentiation between emissions can be achieved by
exchange rates where traders exchange their emissions based on relative ozone
formation potential of NOy emissions at different locations. Implementation of such
emissions differentiated polices would need further investigation.
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Questions and Answers

Questioner Name: Haluk Ozkaynak

Q: Is the difference between marginal abatement cost and marginal damage driven
mostly by where and how many people are exposed to source-specific emissions?
A: The difference in marginal damages is driven by population exposure to pollution
and source-receptor relationships for the episode, but the difference in marginal
costs depends on the capacity of the plants and their control technologies.

Q: What about uncertainties in the marginal health damage and economic control
costs? How can these be incorporated in cost-benefit analyses?

A: Uncertainties are not considered in this study. The most important uncertainties
are likely to be in source-receptor coefficients, epidemiological concentration
response factors, valuation of damage, and the estimation of abatement costs.
Incorporating these uncertainties into the model requires detailed information and
could be a computationally costly undertaking.

Questioner Name: Yoledymyr Nochvai

Q: What is the mathematical formulation of the adjoint cost function? Is it the same
as sensitivity function?

A: The cost function is not the same as sensitivity function. The sensitivities are the
derivatives of the adjoint cost function with respect to model inputs. For this work,
the adjoint cost function is defined as the total mortality due to short-term ozone
exposure integrated over all grid cells in the US and during the simulation episode.
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Questioner Name: Mark Janssen

Q: The EPA’s IPM model assumes full economic fluidity in the market. The final
implementation of cap-and-trade looked more like economic risk minimization.
How would your paper change knowing this?

A: Any change in the estimation of abatement costs will affect cost minimizations
for the CaT scenario. Therefore, such change will also affect the pattern of
improvements in air quality under the said scenario. However, the significant
improvements under BM will remain unaffected since they do not depend on
abatement costs.



Chapter 7
Attribution of Ozone Pollution Control
Benefits to Individual Sources

Amanda Pappin, Amir Hakami, Jaroslav Resler, Jitka Liczki,
and Ondrej Vlcek

Abstract Adjoint sensitivity analysis of numerical models provides a platform
for directly linking public health effects with air quality for evaluating emission
control policies in a more straightforward manner. We link epidemiological and
valuation statistics to the adjoint of CMAQ and calculate sensitivities of short-term
mortality-related benefits in Canada, the U.S. and Europe to anthropogenic NOy and
VOC emissions across two continental domains. Our results show significant spatial
variability in impacts of NOy and VOC emissions reduction on short-term mortality.
We estimate that sensitivities of mortality-related benefits to 10 % NOy emissions
reductions in major cities reach monetary values in excess of $635K/day in Europe
and $355K/day in North America. We find that when the cumulative effects of
anthropogenic emissions on O3 and NO, population exposure are considered, NOx
emissions reductions generally yield higher mortality-related benefits than the same
relative reductions in VOC emissions.

Keywords Air pollution mortality * Health benefits « CMAQ adjoint
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7.1 Introduction

Air pollution decision making becomes more straightforward when public health
impacts (e.g. mortality, morbidity) are directly linked to emission sources. Currently,
regulatory frameworks use air quality models in a forward or source-oriented
manner, where the effectiveness of an emission control strategy is evaluated
by projecting a change in emissions forward in time to estimate impacts (e.g.
health effects) across all receptors. This type of approach is often scenario-based
and unsuitable for estimating the marginal contributions of individual sources
towards health benefits or costs as a whole (i.e. source specificity). Adjoint
(backward) sensitivity analysis is a complementary approach that allows for cal-
culation of spatiotemporal contributions of emission sources (or their reduction)
to concentration-based health metrics. In this work, we conduct adjoint sensitivity
analysis to estimate the response of national mortality (in terms of a monetary value
or “benefit”’) to anthropogenic NOy and VOC emissions at each location across
Canada, the U.S., and Europe using the Community Multiscale Air Quality Model
adjoint (CMAQ-adjoint).

7.2 Methodology

We define our sensitivity metrics, or adjoint cost functions, as the monetary value of
the national mortality count for (1) Canada, (2) the U.S. and (3) Europe. Here, we
look strictly at gas-phase pollutants correlated with short-term mortality. Mortality
calculations for Canada and Europe are performed on the basis that both ozone
(O3) and nitrogen dioxide (NO,) have been correlated with short-term mortality
in Canadian and/or European epidemiological studies. In the U.S., epidemiological
evidence suggests a strong correlation between short-term mortality and O3, but not
NO;. In all cases, we define the cost function using a Taylor series expansion to
the exponential epidemiological functions describing the response of mortality to
changes in pollutant concentrations (Eq. 7.1).

AM = MyPBAC (7.1)

Here, AM is the change in mortality count (relative to a baseline), My is the all-
age, non-accidental baseline mortality rate (#/population-year), P is the population,
P is the pollutant-specific coefficient derived from relevant epidemiological studies,
and AC is the change in pollutant concentration for a specified averaging period.

This is a proof-of-concept study to demonstrate applicability of the adjoint
method in source attribution of health outcomes. Therefore, we use similar B-values
of 8.39 x 107* ppb~! for daily 1-h maximum O3 and 7.48 x 10~* ppb~! for 24-h
average NO, [2] for Canada and Europe despite the wide range of epidemiological
findings for these domains. For the U.S., we use a B-value of 3.9 x 10™* for daily
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1-h maximum Oj3 [3]. Finally, we monetize the mortality counts using the value of
a statistical life (VSL) for different regions/countries ($5.7M, 2011 PPP for Canada
from Health Canada’s Air Quality Benefits Assessment Tool; $8.1M, 2011 PPP for
the US from the U.S. EPA, and $2.8M, 2011 PPP for Europe from Bell et al. [1]).

Using CMAQ-adjoint, we calculate the derivatives of national mortality valuation
due to exposure to Oz (and NO, for Canada and Europe) with respect to emissions
of each model species, and average over the modeling period. Our preliminary
simulations for Canada and the U.S. are conducted for August 2007, while our
European simulation is conducted for a 2-week period from June 15-30, 2009.
We calculate sensitivities at horizontal resolutions of 36 and 27 km for the North
American and European domains, respectively.

7.3 Results and Discussion

Our adjoint simulations provide the spatiotemporal distribution of sensitivities of
the adjoint cost functions (i.e. benefits from avoided mortality) over the domain
(Fig. 7.1a—c). These sensitivities are scaled to amount to the monetary amount that
a nation would expect to benefit by if anthropogenic emissions of NOy or VOCs in
a given location were reduced by 10 %.

Local and long-range influences of NOy emissions on national mortality are
evident in Fig. 7.1a—c, while VOC emission influences have a tendency to be more
localized. Domestic emission patterns are strong drivers of mortality-related costs
or benefits (depending on perspective) as a result of demographic trends and regions
of concentrated anthropogenic activity.

In Canada, a significant portion of the benefits come from highly populous areas
of south-eastern Ontario/Quebec (Fig. 7.1a). The sensitivities of mortality to NOy
emissions in these regions reach peak values of $300K/day (upwind of Toronto,
Ontario). That is, if NOy emissions in that grid cell within the Toronto region were
reduced by 10 %, Canada (not necessarily Toronto) would expect to benefit by that
daily amount from reduced exposure to O3 and NO,. Sensitivities for Canada are
positive across the domain due to the inclusion of NO; in the cost function. Where
O; shows a negative sensitivity to NOy emissions, larger, positive sensitivities
related to NO, exposure contribute to an overall benefit. Influences coming from
locations in the north-eastern U.S. and the western provinces (sensitivities upwards
of $65K/day for NOy) are also notable in Fig. 7.1a. These locations of high influence
correspond to areas of high NOy emissions and/or populous Canadian areas. VOC
emissions have significantly lower influences on mortality, with the largest benefit
seen around Vancouver, British Columbia, with a gradient of $45K/day for a 10 %
reduction.

Contributions of North American NO, and VOC emissions towards short-term
mortality in the U.S. are significantly higher in magnitude as compared to Canada
(Fig. 7.1b) due to larger populations and emissions in the U.S. Sensitivities of
short-term mortality to NOy emissions (from O; exposure only) reach upwards
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Fig. 7.1 Average daily sensitivities of (a) Canadian, (b) U.S., and (¢) European short-term
mortality to a 10 % reduction in anthropogenic NOy (left) and VOC (right) emissions. Sensitivity
values for Canada and Europe are due to exposure to O3 and NO, while values for the U.S. are due
to O3 exposure only

of $355K/day (Atlanta, Georgia). A few locations show negative sensitivities to
NOy, such as Los Angeles, California, whose sensitivity is -$255K/day for that
same 10 % reduction in emissions. In other words, reducing emissions in this
particular location would increase national exposure to daily 1-h maximum O3 in
the U.S. In Los Angeles, there is a significant, positive sensitivity to VOC emissions
reduction ($575K/day), indicating the highly NOy-inhibited/VOC-limited regime in
this metropolitan environment.
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Our preliminary results for Europe show sensitivities that are considerably
larger than those for North American NOy emissions reduction, but comparable
for VOCs (Fig. 7.1c). Overall, higher population densities generally lead to larger
influences over the European domain. Similar to Canada, inclusion of NO, in
the exposure-based sensitivity metric results in widespread positive sensitivities
(benefits) with respect to NOy emissions reduction (with the exception of the
U.K.). The largest benefits are attributed to emissions in Barcelona, Spain, whose
sensitivities are $635K/day for NOy and $155K/day for anthropogenic VOCs.
Significant contributions are also seen from the Southern Mediterranean shipping
routes.

In contrast to the North American domain, spatial heterogeneities observed in
European contributions do not simply follow population centres and have a more
regional structure (such as areas of influence over Germany and France). Due to
complexities over the European domain, delineating regional trends may require
longer and higher resolution adjoint simulations.
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Questions and Answers

Questioner Name: Wouter Lefebvre

Q: Would including PM (or its components) in your results change your costs?
Would it, in your opinion, eliminate the negative costs per vehicle? If no, would it
then be advised to encourage people to drive more?

A: Firstly, our analysis only considers gas-phase pollutant exposure as the adjoint
to CMAQ for PM is still under development. Including PM would indeed affect the
health benefit sensitivities and hence the transportation cost estimates we calculate.
In some cities, dis-benefits (or negative sensitivities) associated with NOx emissions
reduction would be outweighed by the beneficial impacts of reduced national
exposure to secondary PM. However, in strongly NOy-inhibited urban environments
where substantial negative sensitivities exist, we expect that the negative costs
per vehicle removed might still exist. Reduced mobile emissions of NOy usually
accompany reduction in co-pollutants such as primary PM, so the overall benefit in
a multi-pollutant analysis is likely to be positive.
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The results of this work do not necessarily suggest that people should be
encouraged to drive in locations that show negative sensitivities. Long-term air
quality planning would incorporate a combination of local and particularly regional
emission controls (e.g. power plants) that would cause urban environments to
become less and less NOy-inhibited. Therefore, these dis-benefits are likely to
become smaller as more progressive controls take effect.

Questioner Name: Sergey Napelenok

Q: Do you think your results will change by picking different episode lengths?

A: We have noticed that the temporally-averaged benefit sensitivities do change over
various simulation periods due to a strong dependency on meteorology. For long-
term air quality planning, it is advised to perform adjoint sensitivity analysis over
more than just a single season of 1 year to capture intra-season and intra-annual
variability.



Chapter 8
Country-Wide Health Impact Assessment
of Airborne Particulate Matter in Estonia

Kaisa Kesanurm, Erik Teinemaa, Marko Kaasik, Tanel Tamm, Taavi Lai,
and Hans Orru

Abstract This study is aimed to assess the health impacts of outdoor PM; s
concentrations to entire population of Estonia. As the air quality monitoring network
in Estonia is rather sparse (six urban, three rural and a few industrial sites), the
exposure assessment was based on long-term modelling, controlled by monitoring
data from existing stations. The model runs were performed with IairViro modelling
system, including the Eulerian MATCH model for country-wide run with 5 km grid
resolution and AirViro urban model with 200 m grid resolution for five major cities.
The database of pollution sources includes industrial, transport and domestic heating
emissions. The average annual PM, 5 concentrations were found 7-9 g/m3 at most
of rural and in 9—13 pug/m? typically at urban areas, up to 30 wg/m® in some parts
of capital city Tallinn. To estimate the health risks, the base-line national health
statistics and exposure-response coefficients from previous epidemiological studies
(ACS, APHEIS), were applied. It was found that on average 600 (CI 95 % 155—
1,061) premature deaths per year are caused by PM; 5 pollution in Estonia, which
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has population nearly 1.3 million. On average 5 months of life are lost, maximum
14 months in some parts of Tallinn. About 900 additional hospitalizations due to
pulmonary and cardiovascular diseases occur per year.

Keywords PM e« Health impact * MATCH-model

8.1 Introduction

Urban air pollution poses a significant public health problem. Every year it causes
a large number of premature deaths, hospitalizations, and various other types of
morbidity. Generally, air pollution contributes to a decrease of up to 1 year of
life expectancy in Europe [1]. Particulate matter is one of the most studied and
problematic pollutants due to its toxicity and relatively high concentrations. Estonia
is an example of a transitional country that regained its independence from the
Soviet Union in 1991. Currently, the car fleet and main air pollution sources are
relatively similar to other European countries, and especially similar to the Nordic
countries. The biggest problems are related to the use of studded tires and the
high proportion of population using local heating. Among the pollutants, the main
concern is relatively high levels of particulate matter, which is a common problem
in other European countries as well.

This study aims to assess the health impacts of PM, s concentrations to entire
population of Estonia, to clarify the main sources and exposures, study their
associations with cardiovascular and pulmonary health effects, and estimate the
extent of those effects on territorial basis.

8.2 Models and Methods

As the air quality monitoring network in Estonia is rather sparse (six urban,
three rural and a few industrial sites), the exposure assessment in this study
is based on long-term modelling, controlled by monitoring data from existing
stations. The model runs were performed with lairViro system operated by Estonian
Environmental Research Centre, including the Eulerian MATCH model [2] for
country-wide run with 5 km grid resolution and AirViro urban model with 200 m
grid resolution for five major cities: Tallinn, Tartu, Narva, Kohtla-Jarve, Pdarnu. The
national AirViro-based database of pollution sources includes industrial and traffic
emissions (over 600 point sources, about 5,000 km of streets and roads).

As roughly a half of Estonian population live in locally heated habitats, an
assessment of domestic heating emissions was performed specially for this study.
The emissions are based on questionnaire study on locally heated habitats in Tartu
[3] and emission factors by Karvosenoja [4]. The emissions are upscaled for entire
country, based on census of people and habitats 2001, that enables to distinguish the
distant-heated and locally heated dwelling areas and also specific fuel consumption
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patterns of two urban types — family houses and old densely built-up areas (mixed
fuels) — and rural-type (highly dominating firewood) inhabited areas.

Based on comparison with monitoring results in existing stations, a non-linear
empirical correction was made in modelled yearly average concentrations: initial
values were systematically overestimated in cities, possibly due to overestimation
of street emissions.

To estimate the cardiovascular and pulmonary health risks, the national health
statistics and exposure-response coefficients from previous epidemiological studies
(ACS [5], APHEIS [6]), were applied. The years of life lost (YLL), decrease
of life expectancy and number of additional hospitalisations were calculated for
municipalities.

8.3 Results and Discussion

The calculated average annual PM, 5 concentrations range from 5 jLg/m? at remote
islands to 30 pwg/m’ in some parts of the capital Tallinn, being 7-9 wg/m?® at
most of rural and in 9-13 pg/m? typically at urban areas (Fig. 8.1) The modeled
concentrations in Tallinn are given in Fig. 8.2, rural background is not included.
It was found that on average 600 (CI 95 % 155-1,061) premature deaths per year
are caused by PM, s pollution in Estonia, which has population nearly 1.3 million,
on average 5 months of life are lost (Fig. 8.3), maximum 14 months in some parts of
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Fig. 8.1 Average concentrations of PM, s in municipalities
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Fig. 8.2 Average concentrations of PM, 5 in Tallinn city (ng/m?). Bullets indicate positions of
monitoring stations: Liivalata — street; Rahu — industrial, Oismée — urban background

Decrease of life expectancy (years)

Fig. 8.3 Decrease of life expectancy due to PM, s, years
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Tallinn. About 900 additional hospitalisations due to pulmonary and cardiovascular
diseases occur per year. These statistics are nearly at European average level.

However, these results are based on exposure estimates for residential areas.
Actually, working and socially active people spend about a half of time outside of
home: at work, leisure, driving, walking and moving by other means. E.g. a person
living in a municipality adjacent to Tallinn and working in the city-center of Tallinn
40 h per week, gets roughly 50 % higher exposition than expected on residential
basis. On the other hand, leisure trips of urban people decrease their exposure. And
last but not least: indoor effects may change the exposure dramatically.

Nevertheless, this study shows that health effects of ambient particulate matter
pollution are not negligible in Estonia, in urban areas in first order.

Acknowledgments This study is funded by Estonian Ministry of Environment, Estonian Centre
of Environmental Investments, and Estonian National Targeted Financing Project SFO180038s08.
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Questions and Answers

Q: Your map of PM2.5 in Tallinn seems to indicate that the monitoring stations
are not optimally located to sense the distribution of PM2.5. Have the monitoring
authorities considered using model output to design the monitoring network?

A: All the stations have specific purpose: street, urban background and urban-
industrial (incl. marine port). Perhaps we should have some station in relatively
clean outskirts, but that depends on finances.



Chapter 9

Temporal Collinearity Amongst Modeled
and Measured Pollutant Concentrations
and Meteorology

Valerie Garcia, P.S. Porter, Edith Gégo, and S.T. Rao

Abstract The results from epidemiology time series models that relate air quality
to human health are often used in determining the need for emission controls in the
United States. These epidemiology models, however, can be sensitive to collinearity
among co-variates, potentially magnifying biases in the parameter estimates caused
by exposure misclassification error or other deficiencies in the time series models by
orders of magnitude. As a result, we examined collinearity among several covariates
typically used in air quality epidemiology time series studies (ozone, fine particulate
matter and its species, and temperature). In addition, we examined the ability of a
bias-correction technique applied to estimates simulated by the Community Multi-
scale Air Quality (CMAQ) model to “fill-in” for the spatial and temporal limitations
of observations for purposes of reducing exposure misclassification. Specifically, we
evaluated whether the bias-adjusted CMAQ estimates could replicate the correlation
among variables seen in the observations. The results presented are for a domain
east of the Rocky Mountains for the entire 2006 year and indicate that collinearity
among covariates varies across space.

Keywords Epidemiology * CMAQ
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9.1 Introduction

The United States Environmental Protection Agency (USEPA) relies predominantly
on epidemiology time series studies to estimate future health impacts of emission
controls [1]. High correlation among explanatory variables used in these studies can
result in inaccurate results when applied in health impact assessments. In addition,
the assignment of the wrong exposure value differentially (misclassification) can
mask the true health effect of a pollutant [2]. To address these two issues, this
study examines (1) the collinearity that exists among ozone, particulate matter and
its species, and temperature; and (2) whether we can fully represent this natural
relationship among covariates in the deterministic, 3-dimensional Community
Multiscale Air Quality (CMAQ) model. This latter objective is particularly relevant
due to the paucity of measurements for some pollutants (e.g., speciated fine
particulate matter) that are typically measured once- in-3-days at relatively few
locations in the U.S.

Figure 9.1 shows an example of a typical time series model used in an epidemi-
ology study and the collinearity between ozone and temperature for ten summers
(1997-2006) in New York State. Collinearity can also exist between ozone and fine
particulate matter. Multicollinearity among covariates can magnify the effect of bias
introduced by autocorrelation, misclassification error or other model deficiencies
by orders of magnitude. Thus, while it doesn’t necessarily reduce the predictive
power or reliability of a model when all collinear covariates are included, it can
affect calculations regarding individual predictors, such as when the main effects
coefficients are used to assess health impacts. If the covariates (and relationship
among them) in the new dataset differ from the data that was fitted, it can introduce
large errors in predictions [3].

Misclassification (inaccurately assigning exposure across space or time dif-
ferentially) can also introduce errors in epidemiology time series studies. Air
quality models, such as CMAQ, can help fill in missing measurement data but
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contains some bias due to uncertain emissions and meteorology input data, as
well as limited knowledge of the physical and chemical processes governing the
formation of ambient pollutants. Hence, CMAQ model estimates were combined
with observations [4] to produce bias-adjusted pollutant estimates with the objective
of providing more spatially and temporally complete ambient air pollutant data for
use in epidemiology studies. As part of this study, we examined the ability of the
model alone, and the bias-adjusted model to reproduce the relationships that exist
in the observed covariates used in a standard epidemiology study.

The objectives of this study were to (1) examine whether the temporal variability
seen intimated by CMAQ and adjusted CMAQ reflect those seen in observations,
and (2) understand what pollutants are correlated with each other and with
temperature.

9.2 Approach

Maximum daily 8-h averaged ozone (O3), and 24-h averaged fine particulate matter
(PM, 5), sulfate (SQOy), nitrate (NO3), ammonium (NHy), elemental carbon (EC)
and organic carbon (OC) were calculated from measurements obtained from the
USEPA’s Air Quality System database (http://www.epa.gov/oar/data/aqsdb.html)
for 2006. Measurements of O; and PM, 5 were available for each day, whereas,
measurements for PM, s species were available for 1-in-3 days only. Daily averages
were also calculated from the hourly concentrations simulated by the CMAQ model
v.4.5 at a 12 km horizontal grid resolution. The meteorology and emissions inputs
for this simulation were from the Fifth-Generation NCAR/Penn State Mesoscale
Model (MM5) and EPA’s 2001 National Emissions Inventory, respectively. The
12-km simulation encompassed most of the Eastern U.S. and was nested within
a 36 km x 36 km horizontal grid simulation covering the contiguous U.S. using the
same model configuration as the 12-km nested simulation. Finally, the observations
and modeled estimates were combined using a multiplicative adjusted bias approach
described in [4] to produce daily averaged estimates as described above. To
summarize the process, the ratio of observed to modeled values is calculated for each
grid cell containing an observation. These ratios are interpolated using a kriging
technique and then applied to the CMAQ estimates to produce a “bias-adjusted”
value for each CMAQ grid cell. Pearson correlation coefficient (R) was calculated
to measure the temporal dependencies.

9.3 Discussion and Results

Bias-adjusted CMAQ estimates captured the temporal variability seen in obser-
vations for most pollutants (objective 1). Challenges, however, still remain in
estimating EC because of the high spatial and temporal heterogeneity of this
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Fig. 9.2 Collinearity between PM2.5, and ozone and SO4 (panel a), EC and OC (panel b), and
NO3 and NH4 (panel c¢). Second row of each panel shows ability of bias-adjusted CMAQ to
replicate the collinearity among observed pollutant concentrations shown in first row. Each circle
represents Pearson’s correlation (R) between the indicated pollutants across 365 days at each
monitoring location

pollutant. In addition, spatial differences in capturing the observed temporal vari-
ability were seen for OC along the Southern coastline and NO3 along the Western
edge of the domain and in the South. With regard to collinearity among variables
(objectives 2 and 3), ozone is positively correlated with PM; s, SO, and temperature
at most sites, reflecting the dominant SO, component of PM; s mass and its common
source with secondarily formed ozone from photolysis. Strong spatial patterns
existed for several pollutants, with very strong spatial correlations between ozone
and nitrate and ammonium in the Southeastern U.S. (not shown). As expected, PM, s
is highly correlated with most of its constituents (Fig. 9.2), but surprisingly, not
as correlated with NOs;, perhaps due to seasonal differences (e.g., high correlation
in winter, but relatively low correlation in summer for the domain studied). The
correlation between PM, s, and EC and OC is strongest in the upper Northwest
portion of the domain, most likely due to wood burning. Correlation between PM; 5
and NHy is dominant in the Eastern U.S.

Disclaimer The United States Environmental Protection Agency through its Office of Research
and Development funded and collaborated in the research described here under EP-D-10-078 to
Porter-Gego. It has been subjected to Agency review and approved for publication.
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Chapter 10
Reconstruction of Past and Prediction of Future
Benzo[a]pyrene Concentrations Over Europe

Johannes Bieser, Armin Aulinger, Volker Matthias, and Markus Quante

Abstract Benzo[a]pyrene (BaP) is a highly carcinogenic substance that is created
as an unintentional byproduct of combustion processes.

In order to simulate the development of European BaP concentrations between
1980 and 2020 a consistent emission dataset for the time span 1980-2010 was
created using the SMOKE-EU emission model. Moreover, a variety of different
emission scenarios for the year 2020 was created to estimate the future development
of BaP emissions. The emission datasets have been used as input for a modified
version of the Chemistry Transport Model (CTM) CMAQ. This CMAQ version
is to our knowledge the only regional CTM to include the heterogeneous reaction
of particulate BaP with ozone which, besides wet deposition, is the main sink of
atmospheric BaP.

It was found that BaP concentrations have been decreasing strongly between
1980 and 2000. This is due to the large reduction of primary BaP emissions
from industrial processes, residential wood and coal burning, and vehicle exhausts.
Depending on the emission scenario, simulated BaP concentrations over Europe
between 2000 and 2020 are changing by —25 to +5 %. Because further reduction
of industrial BaP emissions is supposed to be low, the future development depends
mainly on the amount of wood used for heat production. Also changes of emissions
of ozone precursors showed to impact the degradation of BaP.

Finally, several regions were identified in which the annual BaP target value
of 1 ng/m® was exceeded. In 1980 this was the case for the Po-valley, the Paris
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metropolitan area, the Rhine-Ruhr area, Vienna, and Madrid. Predictions for 2020
lead to exceedances in the Po-valley, the Paris metropolitan area, and Vienna.

Keywords Benzo[a]pyrene ¢ Atmospheric concentrations ® Chemistry transport
modeling « CMAQ ¢ BaP ¢ Scenario’s

10.1 Introduction

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon. It is almost solely
emitted from incomplete combustion processes. Many experimental and epidemi-
ological studies have proven BaP to be toxic and carcinogenic. Therefore, in
1998 BaP was included in the UN/ECE POP-Protocol which commits all ratifying
parties to reduce all major sources of BaP. In 2010 the European Union officially
established a target value for BaP concentrations in ambient air of 1 ng/m® on annual
average.

The aim of this study is to quantize the effects of emission reductions of
different sources for BaP and emissions of ozone precursors on atmospheric
BaP concentrations. For this reason multiple runs of a chemistry transport model
(CTM) using different emission scenarios for the years 1980, 2000 and 2020 were
performed.

10.2 Methodology

For this model study hourly gridded emissions for the years 1980, 2000, and 2020
were created with the SMOKE for Europe model [1]. The SMOKE for Europe
emission model uses national total emissions as input data. For ozone precursors,
primary aerosols and aerosol precursors national total emissions from the European
Monitoring and Evaluation Program (EMEP) were used.

For BaP, however, a consistent emission inventory for the time range 1980-2020
does not exist. Especially before the year 2000 inventories mostly included total
PAH emissions only. Because the percentage of BaP in the total PAH emissions is
highly uncertain, only emission inventories which explicitly include BaP were used
for this study. Furthermore, the emission factors (EF) of BaP from various sources
found in the literature are subject to large uncertainties (e.g. factor of 5-10 for wood
combustion) [7]. The usage of different EFs can lead to large differences in the
estimated annual total BaP emissions. The officially reported emissions as provided
by EMEP show large differences between different countries [5]. It is suggested that
these differences are due to different methodologies used by the reporting national
authorities.

Because of these findings, only BaP emissions as estimated by experts were used.
For the year 1980 national total BaP emissions were taken from Pacyna et al. [6].
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Emission data for the year 2000 as well as different estimates for BaP emissions in
2020 were taken from TNO [3]. Finally, the different emission inventories needed
to be harmonized in order to create consistent BaP emissions for the time range
1980-2020. This was achieved mainly by adjusting the EFs for wood combustion
in the 1980 inventory.

The fate of BaP in the atmosphere was simulated with a modified version of the
Community Multiscale Air Quality (CMAQ) modelling system, which is developed
under the leadership of the US Environmental Protection Agency.

The original CMAQ model was enhanced to include the atmospheric degradation
of BaP. Degradation by OHe and photolysis were implemented as first order
reactions. The reaction of BaP with ozone was implemented as a heterogeneous
reaction of gaseous ozone with BaP bound to organic aerosols following Kwamena
et al. [4] which assume a Langmuir-Hinshelwood type reaction.

10.3 Results and Discussion

To evaluate the simulated atmospheric concentrations of BaP for the year 2000 a
comparison to observations has been performed. The modelling system was able to
reconstruct the annual average concentrations as well as the inter-annual variability
(Fig. 10.1). Because the measurement data at many stations is influenced by local
emission peaks, the model results are generally lower than the observations. A more
detailed evaluation of the model results can be found in Bieser et al. [2].

Between 1980 and 2000 the annual average concentrations of BaP over Europe
decreased from 0.1 to 0.06 ng/m>. This is mainly caused by large reductions of BaP
emissions from industrial production processes due to the political and technical
development in the late twentieth century. Depending on the future emission
scenario the simulated BaP concentrations over Europe in 2020 vary between 0.042
and 0.064 ng/m> (Fig. 10.2). A key finding is that lower total BaP emissions can
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Fig. 10.1 Comparison of simulated and observed (bold line) BaP concentrations. The CTM
CMAQ has been run using different meteorological fields from COSMO-CLM (solid thin line)
and MMS5 (dashed)
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Fig. 10.2 Contribution of BaP emissions from different source types (light colors) to near surface
atmospheric concentrations of BaP (dark colors) for different years

lead to higher atmospheric concentrations. This is caused by the different spatial
and temporal distribution of the sources for BaP. The most important factor is
that industrial production processes show almost no inter-annual variability while
emissions related to heating take place during the cold seasons only. However,
due to the high availability of ozone, emissions in summer have only a small
impact on annual average BaP concentrations. Figure 10.2 illustrates the BaP
emissions and their impact on the atmospheric concentrations for the different model
scenarios. Additionally, other species were found to have a large impact on BaP
concentrations. Changes of ozone precursors lead to an additional 10 % decrease of
BaP concentrations between 2000 and 2020. This can be explained by lower ozone
minima during night time due to decreasing NOx emissions from road traffic.

Finally, four regions were identified in which the annual average BaP concentra-
tions exceeded the European target value of 1 ng/m? for all modelled years. These
are the metropolitan areas around Paris, Milan, Vienna and Moscow.
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Questions and Answers

Questioner Name: Stefano Galmarini

Q: Why is BaP not measured regularly and what is the precision of measurements
given a target value of 1 ng/m??

A: For measurements of particulate atmospheric BaP the coefficient of variation
is about 10 % and the detection limit, using a high volume sampler over 24 h,
is in the range of 50-100 pg/m®. Thus, the minimum sampling duration is
given by the atmospheric concentrations of BaP. The highest resolution of BaP
measurements currently available are 24—72 h averages. However at most stations
BaP measurements are not taken continuously. This is because of the fact that the
samples need to be analyzed manually in the laboratory and the samples can not be
stored because of degradation processes.

Questioner Name: Marina Astitha

Q: Have you tried to run the model on higher resolutions and investigated the impact
on comparisons with measurements and the spatial distribution of BaP?

A: So far we have run CMAQ-BaP on a 54 x 54 km? and a 24 x 24 km? grid.
Our emission data allow for resolutions up to 5 x5 km?. We have planned to
perform nested CMAQ runs with resolutions up to 6 x 6 km?. Since we have only
compared modelled BaP concentrations with observations from rural background
measurement stations we do not expect a significant improvement of model
performance using higher resolutions. This is of course not necessarily true for
urban areas. However, due to the large spatial and temporal uncertainties of BaP
emissions from wood burning it is not clear if the model is able to reproduce local
urban observations.
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Evaluating Alternative Exposure Metrics Used
for Multipollutant Air Quality and Human
Health Studies

Haliik Ozkaynak, Vlad Isakov, Lisa Baxter, Stephen E. Graham,
Stefanie Ebert Sarnat, Jeremy A. Sarnat, James Mulholland, Barbara Turpin,
David Q. Rich, and Melissa Lunden

Abstract Epidemiologic studies of air pollution have traditionally relied upon
surrogates of personal pollutant exposures, such as ambient concentration mea-
surements from fixed-site pollutant monitors. This study evaluates the performance
of alternative measured and modeled exposure metrics for multiple particulate and
gaseous pollutants, in the context of different epidemiologic studies performed by
EPA, Rutgers/Rochester/LBNL and Emory/Georgia Tech researchers. Alternative
exposure estimation approaches used, included: central site or interpolated moni-
toring data, regional pollution levels based on measurements or models (CMAQ)
and local scale (AERMOD) air quality models, hybrid models, statistically blended
modeling and measurement data, concentrations adjusted by home infiltration rates
based on LBNL algorithms, and population human exposure (SHEDS and APEX)
model predictions. The Emory/Georgia Tech team examined the acute morbidity
effects of ambient traffic-related pollutants (CO, NOx, PM;,s and PM,s EC)
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