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   Series Foreword 

   In recognition of the major role informatics plays in accruing, integrating, and ana-
lyzing data in the biomedical sciences and translating it into clinical practice, a 
series of books on Translational Bioinformatics is being created by united scienti fi c 
forces of the International Society for Translational Medicine (ISTM,   www.istmed.
org    ), Journal of Clinical Bioinformatics (JCBi,   www.jclinbioinformatics.com    ), 
Journal of Clinical and Translational Medicine (CTM,   www.clintransmed.com    ), 
and Springer Publisher. These will cover topics such as genomics, proteomics, 
metabolomics, systems immunology, and biomarkers.  Pediatric Biomedical 
Informatics: Computer Applications in Pediatric Research  is an important volume 
in this series and focuses on core resources in informatics that are necessary to sup-
port translational research in a research-intensive children’s medical center. One 
key challenge is implementing interoperable research and clinical IT systems so 
that data can be exchanged to support translational research. 

 I, as the Editor of Series Books, am privileged and honored to have Prof. Yin Yao 
Shugart as the Editor of this special volume. Dr. Shugart has made signi fi cant con-
tributions to genomic research in the  fi eld of statistical method development and 
application to human genetics. She has been recognized as a successful researcher 
and an international leader in the research  fi eld of cancer and mental health 
research. 

 The part edited by Dr. Shugart strongly focused on the application of these 
sequencing technologies and places them into the context of techniques such as 
genome wide association studies (GWAS), family-based linkage analysis, candidate 
gene based association analysis as well as case-control based association analysis. 
There are numerous situations where these alternative strategies are closely linked, 
for example in the case of family-based analyses using data generated on whole 
exome sequencing (WES) or whole genome sequence (WGS) platforms. The chap-
ters provide plentiful successful examples where researchers have taken advantage 
of WES or WGS and found casual variants in cancer as well as several Mendelian 
disorders. Some of these  fi ndings have revealed a depth of research investigating 
disease etiology and the development of promising tools for personalized medicine, 
enabling earlier diagnosis and targeted treatment. The increasing development of 

http://www.istmed.org
http://www.istmed.org
http://www.jclinbioinformatics.com
http://www.clintransmed.com
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analytical techniques provides a clear route toward greatly improved clinical appli-
cation of these new sources of discoveries. Machine learning (ML), on the other 
hand, is an analytical approach which is of increasing importance in this  fi eld. In the 
introductory chapter, the authors discuss the use of ML for disease risk prediction 
and prognosis and identify successful applications to date. 

 This book has ten chapters each of which stands alone as a thoughtful mini-
review of a speci fi c tool, study design, or broader coverage of a research  fi eld. The 
book is structured in the following manner: Chap.   1     gives an introduction of the nine 
chapters. The chapters are linked through the cohesive nature of both technological 
development and statistical knowledge which must work together to improve under-
standing. Human genetics    (or genomics) has experienced many dif fi culties to reach 
the stage that the data coming from different platforms can be integrated in an 
ef fi cient manner and the gained knowledge translated into therapeutic interventions 
and better prediction tools. 

  Translational computation genomics , as part of the Springer Series on 
Translational Bioinformatics, thoroughly discusses the relevant issues to research-
ers in the  fi eld of human genetics, clinical science, and policy making and provides 
practical guidance to using genomic tools to inform translational research in clinical 
diagnosis as well as treatment. 

 Xiangdong Wang M.D., Ph.D. 
 Professor of Respiratory Medicine 

and Director of Biomedical Research Center 
 Fudan University, Zhongshan Hospital, 

Shanghai, China; 

 Professor (adj) of Clinical Bioinformatics, 
 Lund University Clinical Science, Lund, Sweden   

Series Foreword

http://dx.doi.org/10.1007/978-94-007-5558-1_1
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  Abstract   This chapter presents an overview of the current genomic  fi eld, introduces 
the history of using machine learning for predicative disease studies and provides 
highlights for all nine chapters which have been collected in this book. The authors 
also list the critical concepts illustrated by the authors and point out logical connec-
tions between different chapters.  

  Keywords   Machine learning  •  GWAS  •  Next generation sequencing  •  Rare variants  
•  eQTLs  •  Structural mutation  •  Personalized medicine      

    1.1   Overview 

 This is an exciting time for human geneticists focusing on the mechanisms underlying 
complex traits including cancer, mental health disorders, cardiovascular diseases, 
diabetes and immune disorders. The current excitement stems from three main tech-
nological and analytical developments: (1) the advent of next generation sequencing 
(NGS) techniques, including whole exome sequencing (WES) and whole genome 
sequencing (WGS); (2) the development of bioinformatics tools which improve the 
ef fi ciency and infrastructure for data management and (3) the development of more 
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powerful statistical tools to analyse large and complex data sets. Despite the technical 
and conceptual challenges involved in integrating these advances, researchers have 
already applied NGS approaches to identify disease causal genetic variants and 
demonstrated functional roles via experimental efforts involving careful validations 
across various research groups, within ethnically diverse samples and, at times, 
through animal models. Most importantly, these new developments provide many 
new opportunities for both experienced and new investigators with fresh knowledge 
who can develop novel approaches and conceptual models to incorporate progress 
in molecular genetics, bioinformatics and next generation phenotyping. 

 This book is focused on the application of these sequencing technologies and 
places them into the context of techniques such as genome-wide association studies 
(GWAS), family-based linkage analysis, candidate-gene-based approaches and 
case–control-based association analysis. There are numerous situations where these 
alternative strategies are closely linked, for example, in the case of family-based 
analyses using data generated on WES or WGS platforms. There are already plenti-
ful successful examples where researchers have taken advantage of WES or WGS 
and found casual variants in cancer as well as several Mendelian disorders. Some of 
these  fi ndings have underpinned a depth of research probing disease aetiology and, 
more excitingly, the development of novel tools for personalized medicine, enabling 
earlier diagnosis and targeted cancer treatment. The increasing application and 
development of sophisticated analytical techniques provides a clear route towards 
greatly improved clinical application of these new sources of data. Machine learn-
ing (ML) is an analytical approach which is of increasing importance in this  fi eld. 
In this introductory chapter, we would like to highlight the use of ML for disease 
risk prediction and prognosis and identify the scope of successful applications to 
date. Despite the enthusiasm we feel that evaluation of ML methods in real data sets 
has been limited so far. We also feel that machine learning approaches can serve as 
methods of choice for the integration of the ever more complex data sets being gen-
erated in this, the era of NGS. It is widely recognized that, in the next few decades, 
data integration will play an increasingly important role in understanding genome-
environment interactions involved in the development of human disorders and the 
way measured factors modify the function and expression of genes in the genome.  

    1.2   Machine Learning Approaches: Data Integration 
for Disease Prediction and Prognosis 

 Enormous volumes of genomic data encompassing diverse data types (including 
gene expression, genetic polymorphism, structural mutations, DNA methylation, 
eQTLs and proteomic data) can now be collected relatively cost-effectively for a 
large number of patient samples. For inherited disease research, data integration 
is focused on improving power and accuracy to underpin new discoveries. 
Integration strategies include meta-analysis where evidence from independent, but 
essentially similarly structured (homogeneous) data sets is combined across studies. 
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Meta-analysis has been employed successfully in the context of GWAS (Zeggini 
et al.  2008  )  with resulting increased power and consequent novel discoveries. 

 In a more clinical setting the integration of genomic, proteomic and phenotypic 
data becomes increasingly important as a route to facilitate diagnosis, enhance treat-
ment and establish prognosis. ML methods are particularly powerful for integrating 
heterogeneous data sets in both research and clinical settings. ML is an ‘arti fi cial 
intelligence’ approach involving a range of statistical and optimization approaches 
in which computers ‘learn’ from ‘training’ data sets to enable predictions about 
outcomes in further samples. Applications within a clinical setting include numer-
ous examples which have a focus on de fi ning and re fi ning disease diagnosis. In the 
context of cancer, ML tools have been developed to identify, classify, detect or dis-
tinguish tumours (Cruz and Wishart  2006  ) . However, developing applications for 
ML include disease prediction and prognosis (prediction of disease risk, disease 
recurrence and survivability) which forms part of the translational research empha-
sis towards personalized medicine. This  fi eld is, however, still in relative infancy 
and extensive bioinformatic development, validation and demonstrably robust 
application is required to achieve translational impact. Haskin Fernald et al.  (  2011  )  
de fi ned the analytical bioinformatics challenges faced in the  fi eld of personalized 
medicine as four main areas: processing voluminous, robust, genome data; interpre-
tation of functional impacts of genome variation; integration of data to establish 
gene and phenotype relationships in their full complexity; and translation of discov-
eries into medical practice. ML methods have the potential to become the tools of 
choice for addressing these challenges as they are demonstrably powerful for inte-
grating voluminous data, re fi ning tools for predicting functional impacts, modelling 
genotype and phenotype relationships and for integrating genomic and clinical data 
in a translational manner. 

 ML methods are particularly useful for large, often noisy and heterogeneous data sets. 
A range of alternative approaches include multifactor-dimensionality reduction 
(MDR, Ritchie et al.  2001  ) , neural networks (Motsinger et al.  2008  ) , random forest 
(Bureau et al.  2005  )  and support vector machines (SVM, Cortes and Vapnik  1995  ) . 
Alternative methods have a variety of strengths and limitations which are often 
application-speci fi c (Upstll-Goddard et al.  2012  ) . Within heterogeneous and com-
plex data sets, ML enables inferences that cannot otherwise be established using 
conventional statistics which require variable independence and typically include 
multivariate models based on linear combinations of variables. However, although 
they are often invaluable in the context of non-linear systems where there is a degree 
of variable inter-dependence, ML methods are subject to important limitations and 
careful modelling and evaluation is required to avoid drawing incorrect inferences. 
A critical limitation is the relationship between the number of variables (features) 
measured and the number of samples tested. A sample to feature ratio of at least 
5–10:1 (Somorjai et al.  2003  )  is recommended for a robust model. The problem is 
typi fi ed as the ‘curse of dimensionality’; the number of features characterizing the 
data is ‘too large’ and ‘the curse of dataset sparsity’; the number of samples on 
which these features are measured is ‘too small’ (Somorjai and Nikulin  1993  ) . 
Somorjai et al. noted that even when the sample to feature ratio is increased to the 
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recommended level, sparsity of the dataset can still generate misleading results. 
Similarly, training data sets need to be based on a suf fi ciently large and representa-
tive sample of the whole data set to avoid ‘overtraining’. 

 Support vector machines (SVMs) are state-of-the-art ML methods used for 
‘supervised learning’ to establish training vectors to subsequently classify test sam-
ples. Depending on the number of features tested (two or more), the SVM classi fi er 
identi fi es the line, plane or hyperplane that maximally separates two clusters (the 
‘maximum margin’). The distance between the hyperplane and the closest data 
points on each side (support vector) is maximized. For example, the genotypes at 
two or more single nucleotide polymorphisms could be used in a classi fi er related 
to good and poor patient survival. Non-linear classi fi cations are achieved using a 
‘kernel’ (which may be a linear, polynomial, sigmoid or radial basis function) which 
transforms the data into a high-dimensional space. Such kernels can dramatically 
improve the success of a classi fi er. For data points that are not readily separated in 
the model, there is a parameter which re fl ects the trade-off between minimizing 
misclassi fi cation and maximizing the margin. 

 SVMs are seeing increasing application in disease prediction and prognosis 
models. Some recent applications, focusing on re fi ning clinical counselling and 
treatment pathways, integrate epidemiological data and biomarker expression 
pro fi les. For example, Yu et al.  (  2010  )  develop a classi fi er for diabetes based on 14 
clinical epidemiological risk measures to predict cases of diabetes and pre-diabetes 
in a US population. Wan et al.  (  2012  )  tested 97 cases with nasopharyngeal carci-
noma (NPC) against tissue molecular biomarkers from speci fi c signalling pathways 
and designed SVM models to re fi ne prognosis measures with 5-year follow-up. The 
authors established high power for classifying prognosis with potential to direct 
future therapy. Wang et al.  (  2012  )  developed survival classi fi ers for NPC cases 
based on expression pro fi les of 18 tumour-associated biomarkers. The powerful 
classi fi er is focused on facilitating counselling and individualized patient manage-
ment. Schulte et al.  (  2010  )  used SVM to predict survival for neuroblastoma based 
on expression pro fi les of 430 miRNAs and found highly accurate and independently 
validated survival prediction. Among the studies that have employed ML with 
genetic variants as predictors, Listgarten et al.  (  2004  )  developed SVM modelling 
using three SNPs to discriminate breast cancer cases from controls (with 69% pre-
dictive power). Jiao et al.  (  2012  )  employed ML methods to predict severity of autism 
spectrum disorder (ASD) based on 29 SNPs from 9 ASD related genes. 

 The low penetrance and small effect sizes of most ‘common’ disease variants 
identi fi ed through GWAS currently limit the applicability of this information for 
disease prediction and prognosis (Moore et al.  2010  ) . To date, hundreds of suscep-
tibility loci for more than 70 diseases have been reported by GWAS. Most variants 
have modest relative risks, in the range 1.1–1.2, making them very poor disease 
classi fi ers and questioning their utility in personalized medicine (Moore and 
Williams  2009  ) . However, Moore et al.  (  2010  )  had argued that GWAS analyses have 
ignored the full complexity of disease pathobiology, and the linear modelling frame-
work employed considers individual SNPs in isolation from their genomic and 
environmental context. A more holistic approach recognizes genotype-phenotype 
relationships in their full complexity and encompasses genetic heterogeneity, gene-gene 



51 Introduction

and gene-environment interactions. These complex interactions are likely to comprise 
much of the underlying genetic architecture. ML methods have the capability to 
model this complexity but remain poorly optimized in this context. A particular 
issue is the development of practical routes for feature selection since it is neither 
feasible nor desirable to test millions of genomic variants and their higher-order 
interactions. Moore et al. describe ‘ fi lter’ and ‘wrapper’ strategies for addressing 
this problem in the context of GWAS data. The hugely voluminous data sets now 
being established by next generation sequencing make the further development of 
optimal ML analysis strategies even more pressing if this information is to have 
translational impact (Szymczak et al.  2009  ) .  

    1.3   Overview of Chapter Contents 

 This book has ten chapters each of which stands alone as a thoughtful mini-review of a 
speci fi c tool, study design or broader coverage of a research  fi eld. The book is struc-
tured in the following way: Chap.   1     serves as an introduction to the current status of the 
genomic  fi eld and provides highlights of the nine chapters. The chapters are linked 
through the cohesive nature of both technological development and statistical knowl-
edge which must work together to progress understanding. Human genetics (or genom-
ics) has experienced many dif fi culties to approach the point where the information 
generated by different platforms can be integrated in an appropriate manner and the 
learned knowledge translated into therapeutic interventions or enhanced prediction 
tools. However, translational computational biology as a  fi eld is still young. The need 
for appropriate integration of data from various platforms including GWAS, WES, 
WGS and gene expression arises in a wide spectrum of clinical applications. We hope 
this book provides a  fl avour of the relevant issues to researchers in the  fi eld of human 
genetics, clinical science, and policymaking and attracts graduate students who are 
interested in translational research and are willing to contribute to this promising  fi eld. 

 Below, we provide an overview of individual chapters. In Chap.   2    , Dr. Merikangas 
gives a complete review of most important concepts in genetic epidemiology. In this 
chapter, three co-authors move beyond the traditional risk factors de fi ned by epide-
miologists and review breakthroughs in genomics in recent years. Dr. Merikangas 
gives a precise de fi nition for complex traits and a thorough introduction to genetic 
epidemiology as a tool for pinpointing the role of genetic factors, as well as environ-
mental factors. The de fi nitions of family studies, twin studies, adoption studies, 
migration are also reviewed, and issues relevant to the various designs are consid-
ered. The chapter illustrates the need for a uni fi ed framework for studies of both 
genetic and environment factors, using narcolepsy as an example. Dr. Merikangas’s 
work provides a strong foundation for the remainder of the book. 

 In Chap.   3    , Dr. Devoto and her co-authors shared their extensive knowledge with 
human pedigree data and case–control data. The chapter summarizes important 
ways in which linkage study designs are applicable in the era of sequence analysis. 
For instance, the authors describe examples reported by Yokoyama et al. ( 2011 ). 
The investigators’ goal was to identify germ-line mutations predisposing to melanoma 
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using WGS of a single individual in a family with eight affected relatives in three 
generations as a starting point. They detected a variant in  MITF , a gene known for 
being somatically ampli fi ed or mutated in some of the individuals who are diag-
nosed with melanomas. That particular mutation was present in three out of seven 
affected individuals who were tested in the proband’s family. Subsequent testing of 
additional patients from families of probands with multiple melanomas con fi rmed 
the presence of the  MITF  E318K variant in 31 unrelated cases with at least one  fi rst- 
or second-degree relative diagnosed with the same clinical diagnosis. They also 
conducted linkage analysis of melanoma with E318K under a dominant model with 
reduced penetrance and a 5% phenocopy rate, and obtained a LOD score of 2.7. 
Further, the authors con fi rmed the role of E318K in melanoma using case–control 
association studies and expression pro fi ling analysis. This successful story indi-
cated that traditional linkage analysis can be usefully employed in the analysis of 
variants generated by a WGS approach. While these cited examples are highly 
encouraging, they also remind us of the issue of genetic heterogeneity which is 
expected to occur frequently in families and complicate the hunt for rare mutations. 
As editors, we would like to comment that this issue can potentially be addressed by 
a variety of tactical strategies. One possibility is to treat both genetic penetrance 
(under a dominant model, for genotype AA and Aa) and phenocopy rate (for geno-
type aa) as nuisance parameters using a parametric linkage approach. We anticipate 
that such strategies can work for certain genetic disorders with an underlying unique 
segregation pattern in a limited number of families. We also foresee an opportunity 
for new development of statistical methods to identify rare variants in pedigree 
settings for both qualitative and quantitative traits. (Guo and Shugart  2012 ). 

 Distinct from the previous two chapters, Chap.   4     examines research progress in 
a speci fi c rare disorder. This disease is nasopharyngeal carcinoma (NPC). Dr. 
Jorgensen et al. conducted a thorough review of all candidate genes related to NPC 
(note, this was limited to work published in English) and also commented on the 
 fi ndings provided by two GWAS efforts, one by a research group in Taiwan and 
the other by a group located in Guangzhou, China. Very interestingly, the overlap of 
genetic markers across all studies was extremely limited, making a meta-analysis of 
most NPC data sets effectively impossible. However, two GWAS reports gave similar 
results in terms of the location of the ‘signi fi cantly associated’ variants despite the 
striking differences in sample sizes in the two different studies (less than 300 cases 
and controls in Taiwan and approximately 1,500 cases and 1,500 controls in 
Guangzhou). This observation supports the rationale of conducting GWAS in two 
high-risk areas for NPC even though the population structure for Taiwanese and 
Cantonese is quite different. We predict that meta-analysis conducted using these 
two data sets may reveal novel association signals. Conclusions can be drawn but 
questions remain. One obvious conclusion is that the HLA region is important. 
But the question remains: which haplotype(s) are speci fi cally related to the risk of 
developing NPC? Given our thoughts on the ethnicity difference, we can also specu-
late that there might be two different haplotypes which ‘cause’ the NPC phenotype 
in each population. We envisage that WGS may provide an answer to this question 
and are eager to see more studies carried out that probe the joint effects of gene and 
environment involved in development of NPC. 

http://dx.doi.org/10.1007/978-94-007-5558-1_4
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 In Chap.   5    , Dr. Liu provides an introduction to eQTL studies and thoroughly 
discusses the implication of successful eQTL mapping. It is known that gene expres-
sion levels vary among individuals and can be analysed like other quantitative phe-
notypes such as height and body mass index. The author summarizes a number of 
interesting  fi ndings from eQTL analysis on human post-mortem brains based on 
publications which appeared between 2007 and 2012 and concludes that although 
eQTL mapping in human brain is at its early stage, as a tool, QTL has the potential 
to identify important disease intermediate phenotypes as well as a route to further 
understanding of complex diseases. Furthermore, the author describes several com-
monly used experimental platforms and analytical procedures related to eQTL stud-
ies. He also reviews all literatures on mQTL in which DNA methylation levels at 
speci fi c CpG sites are considered as quantitative traits. More importantly, the author 
provides a list of databases for QTL mapping results which were built by hard-
working scientists who collectively have collated basic scienti fi c knowledge 
enabling the advancement of personal medicine. 

 Chapter   6     focus on role of genetic haplotypes in gene prediction. The authors 
start with a thorough discussion of the theoretical background of haplotype analysis 
and include their own work on the development of a novel likelihood-based method 
that builds predictive models using genotypes collected from unrelated individuals 
and is speci fi cally focused on the HLA region. They propose to  fi rstly construct 
haplotypes of SNPs with HLA alleles and then build the predictive models based on 
the constructed haplotypes. They test this new method on the British 1985 birth 
cohort and show that their prediction accuracy is 10% higher than the method pro-
posed by another group of investigators (Leslie et al. 2008). They further conclude 
that combining all SNPs and HLA data observed from multi-ethnic populations to 
build prediction models will lead to further improvement of prediction accuracy. 
The method proposed in this chapter can be applied to the two existing data sets 
discussed in Chap.   3    . The Taiwanese group reported that an effort was made to build 
haplotypes using the SNP data. However, the analytical approach used by the inves-
tigators was rather traditional. That data set will ultimately be revisited using the 
method proposed in Chap.   6    . It is noteworthy that many immune disorders have 
been reported to be associated with HLA alleles. The novel method discussed in this 
chapter and its potential extension is likely to be frequently used in the future. 

 Chapters   7     and   8     both focus on the topic of WES. Chapter   7     was written by 
Dr. Collins who has a long track record for conducting association mapping using 
different genetic markers generated by different platforms. He co-developed the 
concept of the linkage disequilibrium unit (LDU) with Dr. Morton (Collins and 
Morton  1998 ). Dr. Collins expresses the view that exome sequencing in a relatively 
small number of individuals showing ‘extreme’ phenotypes or more familial sub-
types of complex disease may be productive. Dr. Collins also states that WES and 
WGS both offer the potential to interrogate the cumulative impact of the numerous 
rare variants presumed to underlie a substantial proportion of complex disease 
susceptibility. On the other hand, the author comments that both WES and WGS 
will yield enormous amounts of data and pose many analytical challenges. While 
the cutting edge sequencing technologies provide high-resolution measurements 
of biological quantities, these new biotechnologies also raise novel statistical 
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and computational challenges in areas such as image analysis, base-calling and 
read-mapping in initial analysis together with peak- fi nding. Furthermore, the author 
also introduces the main statistical methods that can be used to analyse both rare 
variants and CNVs. Readers who are eager to grasp analytical concepts relating to 
 de novo  variants ,  the behaviours of rare variants in families versus large cohorts and 
technical details related to sequencing alignment and variant calling, as well as data 
management, will  fi nd this chapter useful. The in-depth statistical framework for 
rare variants analysis can be found in Chap.   8     in which all currently analytical strat-
egies on rare variant hunting are discussed. Drs. Feng and Zhu  fi rst explain the idea 
of ‘collapsing’ and then provide mathematical algorithms on all methods including 
weighted sum association method (WSM) (Feng et al.  2011 ), pooled association 
tests for rare variants, data-adaptive aSUM test, alpha-test (Han and Pan  2010 ), 
sequence kernel association test (SKAT) (Wu et al.  2011 ), and odds ration weighted 
sum statistic (ORWSS) (Price et al.  2010 ). Furthermore, they give a description for 
a general framework developed by Lin and Tang ( 2011 ) for the purpose of detecting 
disease associations with rare variants in sequencing studies. 

 Chapter   9     covers a very important area of human genetics, which is copy number 
variation. Dr. Gu et al. discuss  fi ve ambitious topics which are CNV and segmental 
duplications, rate of segmental duplication and rate of CNV essentiality (or dispens-
ability) in duplicate genes, transcriptional regulation divergence following gene 
duplication, and gene duplication and environmental adaptation. The authors use 
abundant experimental material generated from their own lab. They introduce us to 
the concepts using many vivid examples, revealing a combination of exciting and 
intriguing  fi ndings, and help us to interpret the link between copy number variations 
and complex traits in humans such as psychiatric disorders. 

 Finally, Chap.   10     aims to serve as a bridge to connect the details provided by 
previous chapters and the goal of translational research. Translational medicine, 
based on understanding genomic architecture, is expected to help overcome the 
diagnostic dif fi culties for both cancer and mental illnesses by illuminating common 
patterns of genetic change in speci fi c subtypes of disease. The invention of WGS, 
WES, RNA-seq, Met-seq and ChIp-seq have resulted in powerful ways to interro-
gate the genome. NGS is already transforming both genetic research clinical prac-
tice by providing much better resolution of the underlying genetic mechanisms for 
cancer, mental illnesses and a spectrum of other diseases. Diagnoses are already 
being made with greater precision, and treatments are being individualized based on 
a more thorough understanding of each patient. In this chapter, Qin and Shugart 
focus on this rapidly progressing  fi eld, covering topics on the application of NGS to 
translational medicine in oncology and psychiatry. At the end of this chapter, the 
authors emphasize that our goal as geneticists and molecular biologists is to make 
certain that we can understand genetic variation at a level where it will make a 
signi fi cant contribution to people’s health. Therefore, it is imperative to develop a 
new system for coordinating basic discovery with patient medical records ways that 
facilitate smooth transition to personalized medicine in the future. Epidemiologists, 
statisticians, bioinformaticians, biologists and physicians must work together more 
closely than ever before to ful fi l this ambitious goal.      
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  Abstract   The major aim of this chapter is to provide an overview of the  fi eld of 
genetic epidemiology and its relevance to the identi fi cation of the causes and risk 
factors for human diseases. The most important goal of the methods of genetic 
epidemiology is to elucidate the joint contribution of genes and environmental 
exposures to the etiology of complex diseases. The key study designs used to achieve 
this goal including family, twin, adoption, and migration studies are summarized. 
The  fi eld of genetic epidemiology is expected to have increasing importance with 
advances in molecular genetics.  

  Keywords   Genetics  •  Epidemiology  •  Family studies  •  Twin studies  •  Adoption 
studies  •  Migration studies      

    2.1   Introduction: Genetic Epidemiology 

 Genetic epidemiology is de fi ned as the study of the distribution of and risk factors 
for diseases and genetic and environmental causes of familial resemblance. Genetic 
epidemiology focuses on how genetic factors and their interactions with other risk 
factors increase vulnerability to, or protection against, disease (Beaty  1997  ) . Genetic 
epidemiology employs traditional epidemiologic study designs to explain aggrega-
tion in groups as closely related as twins or as loosely related as migrant cohorts. 
Epidemiology has developed sophisticated designs and analytic methods for identifying 
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disease risk factors. With increasing progress in gene identi fi cation, these methods 
have been extended to include both genetic and environmental factors (MacMahon 
and Trichopoulos  1996 ; Kuller  1979  ) . In general, study designs in genetic epidemi-
ology either control for genetic background while letting the environment vary 
(e.g., migrant studies, half siblings, separated twins) or control for the environment 
while allowing variance in the genetic background (e.g., siblings, twins,    adoptees/
nonbiological siblings). Investigations in genetic epidemiology are typically based 
on a combination of study designs including family, twin, and adoption studies. 

    2.1.1   Family Studies 

 Familial aggregation is generally the  fi rst source of evidence that genetic factors may 
play a role in a disorder. The most common indicator of familial aggregation is the 
relative risk ratio, computed as the rate of a disorder in families of affected persons 
divided by the corresponding rate in families of controls. The patterns of genetic 
factors underlying a disorder can be inferred from the extent to which patterns of 
familial resemblance adhere to the expectations of Mendelian laws of inheritance. 
The degree of genetic relatedness among relatives is based on the proportion of 
shared genes between a particular relative and an index family member or proband. 
First-degree relatives share 50% of their genes in common, second-degree relatives 
share 25% of their genes in common, and third-degree relatives share 12.5% of their 
genes in common. If familial resemblance is wholly attributable to genes, there 
should be a 50% decrease in disease risk with each successive increase in degree of 
relatedness, from  fi rst to second to third and so forth. This information can be used 
to derive estimates of familial recurrence risk within and across generations as a 
function of population prevalence (  l  ) (Risch  1990b  ) . Whereas   l   tends to exceed 20 
for most autosomal dominant diseases, values of   l   derived from family studies of 
many complex disorders tend to range from 2 to 5. Diseases with strong genetic 
contributions tend to be characterized by 50% decrease in risk across successive 
generations. Decrease in risk according to the degree of genetic relatedness can also 
be examined to detect interactions between several loci. If the risk to second- and third-
degree relatives decreases by more than 50%, this implies that more than a single locus 
must contribute to disease risk and that no single locus can largely predominate. 

 The major advantage of studying diseases within families is that disease mani-
festations are more likely to result within families than they are across families from 
the same underlying etiologic factors. Family studies are therefore more effective 
than between family designs in examining the validity of diagnostic categories 
because they more accurately assess the speci fi city of transmission of symptom 
patterns and disorders. Data from family studies can also provide evidence regard-
ing etiologic or phenotypic heterogeneity. Phenotypic heterogeneity is suggested by 
variable expressivity of symptoms of the same underlying risk factors, whereas 
etiologic heterogeneity is demonstrated by common manifestations of expression of 
different etiologic factors between families. Moreover, the family study method 
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permits assessment of associations between disorders by evaluating speci fi c patterns 
of co-segregation of two or more disorders within families (Merikangas  1990  ) .  

    2.1.2   Twin Studies 

 Twin studies that compare concordance rates for monozygotic twins (who share the 
same genotype) with those of dizygotic twins (who share an average of 50% of their 
genes) provide estimates of the degree to which genetic factors contribute to the 
etiology of a disease phenotype. A crude estimate of the genetic contribution to risk 
for a disorder is calculated by doubling the difference between the concordance 
rates for monozygous and dizygous twin pairs. Modern genetic studies employ path 
analytic models to estimate the proportion of variance attributable to additive genes, 
common environment, and unique environment. There are several other applica-
tions of the twin study design that may inform our understanding of the roles of 
genetic and environmental risk factors for disease. First, twin studies provide infor-
mation on the genetic and environmental sources of sex differences in a disease. 
Second, environmental exposures may be identi fi ed through comparison of discor-
dant monozygotic twins. Third, twin studies can be used to identify the genetic 
mode of transmission of a disease by inspection of the degree of adherence of the 
difference in risk between monozygotic and dizygotic twins to the Mendelian ratio 
of 50%. Fourth, twin studies may contribute to enhancing the validity of a disease 
through inspection of the components of the phenotypes that are most heritable. The 
twin family design is one of the most powerful study designs in genetic epidemiology 
because it yields estimates of heritability but also permits evaluation of multigen-
erational patterns of expression of genetic and environmental risk factors.  

    2.1.3   Adoption Studies 

 Adoption studies have been the major source of evidence regarding the joint contri-
bution of genetic and environmental factors to disease etiology. Adoption studies 
either compare the similarity between an adoptee and his or her biological versus 
adoptive relatives or the similarity between biological relatives of affected adoptees 
with those of unaffected or control adoptees. The latter approach is more powerful 
because it eliminates the potentially confounding effect of environmental factors. 
Similar to the familial recurrence risk, the genetic contribution in adoption studies 
is estimated by comparing the risk of disease to biological versus adoptive relatives 
or the risk of disease in biological relatives of affected versus control adoptees. 
These estimates of risk are often adjusted for sex, age, ethnicity, and other factors 
that may confound the links between adoption status and an index disease. 

 With the recent trends toward selective adoption and the diminishing frequency 
of adoptions in the USA, adoption studies are becoming less feasible methods 
for identifying genetic and environmental sources of disease etiology (National 



14 K.R. Merikangas

Adoption Information Clearinghouse  2007  ) . However, the increased rate of 
reconstituted families (families comprised of both siblings and half siblings) may 
offer a new way to evaluate the role of genetic factors in the transmission of 
complex disorders. Genetic models predict that half siblings should have a 50% 
reduction in disease risk compared to that of full siblings. Deviations from this 
risk provide evidence for either polygenic transmission, gene-environment interaction, 
or other complex modes of transmission.  

    2.1.4   Migration Studies 

 Migrant studies are perhaps the most powerful study design to identify environmental 
and cultural risk factors. When used to study Asian immigrants to the USA, this 
study design demonstrated the signi fi cant contribution of the environment to the 
development of many forms of cancer and heart disease (Kolonel et al.  2004  ) . One 
of the earliest controlled migrant studies evaluated rates of psychosis among 
Norwegian immigrants to Minnesota compared to native Minnesotans and native 
Norwegians (Ödegaard  1932  ) . A higher rate of psychosis was found among the 
immigrants compared to both the native Minnesotans and Norwegians and was 
attributed to increased susceptibility to psychosis among the migrants who left 
Norway. It was found that migration selection bias was the major explanatory 
factor, rather than environmental exposure in the new culture. The application of 
migration studies to the identi fi cation of environmental factors is only valid if poten-
tial bias attributed to selection is considered. Selection bias has been tested through 
comparisons of factors that may in fl uence a particular disease of interest in a migrant 
sample and a similar sample that did not migrate.   

    2.2   Applications of Genetic Epidemiology 
to Gene Identi fi cation 

 There is a widespread consensus among geneticists and epidemiologists on the 
importance of epidemiology to the future of genetics and on the conclusion that the 
best strategy for susceptibility risk factor identi fi cation for common and complex 
disorders will ultimately involve large epidemiologic studies from diverse 
populations(Peltonen and McKusick  2001 ; Khoury and Little  2000 ; Yang and 
Khoury  1997 ; Merikangas  2003 ; Merikangas and Risch  2003 ; Risch  1990a  ) . It is 
likely that population-based association studies will assume increasing importance 
in translating the products of genomics to public health. There are several reasons 
that population-based studies are critical to current studies seeking to identify genes 
underlying complex disorders. First, the frequency of newly identi fi ed polymor-
phisms, whether SNPs or other variants such as copy number variations (CNVs), 
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especially in particular population subgroups, is not known. Second, current knowledge 
of genes as risk factors is based nearly exclusively on clinical and nonsystematic 
samples. Hence, the signi fi cance of the susceptibility alleles that have been identi fi ed 
for cancer, heart disease, diabetes, and other common disorders is unknown in the 
population at large. In order to provide accurate risk estimates, the next stage of 
research needs to move beyond samples identi fi ed through affected individuals to 
the population as a whole. Third, identi fi cation of risk pro fi les will require large 
samples to assess the signi fi cance of vulnerability genes with relatively low expected 
population frequencies. Fourth, similar to the role of epidemiology in quantifying 
risk associated with traditional disease risk factors, applications of human genome 
epidemiology can provide information on the speci fi city, sensitivity, and impact of 
genetic tests to inform science and individuals (Khoury and Little  2000  ) . 

    2.2.1   Samples 

 The shift from systematic large-scale family studies to linkage studies has led to the 
collection of families according to very speci fi c sampling strategies (e.g., many 
affected relatives, affected sibling pairs, affected relatives on one side of the family 
only, and availability of parents for study) in order to maximize the power of detecting 
genes according to the assumed model of familial transmission. Despite the increase 
in power for detecting genes, these sampling approaches have diminished the 
generalizability of the study  fi ndings and contribute little else to the knowledge base 
if genes are not discovered. Future studies will attempt to collect both families 
and controls from representative samples of the population so that results can be 
used to estimate population risk parameters and to examine the speci fi city of endo-
phenotypic transmission and so results can be generalized to whole populations.  

    2.2.2   Selection of Controls 

 The most serious problem in the design of association studies is the dif fi culty of 
selecting controls that are comparable to the cases on all factors except the disease 
of interest (Wacholder et al.  2000 ; Ott  2004  ) . Controls should be drawn from the 
same population as cases and must have the same probability of exposure (i.e., 
genes) as cases. Controls should be selected to ensure the validity rather than the 
representativeness of a study. Failure to equate cases and controls may lead to 
confounding (i.e., a spurious association due to an unmeasured factor that is associated 
with both the candidate gene and the disease). In genetic case–control studies, the 
most likely source of confounding is ethnicity because of differential gene and 
disease frequencies in different ethnic subgroups. The matching of controls to cases 
on ethnic background is largely based on self-report; several methods are used to 
screen for and exclude subjects with substantial differences in ancestry.  
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    2.2.3   Risk Estimation 

 Because genetic polymorphisms involved in complex diseases are likely to be 
nondeterministic (i.e., the marker neither predicts disease nor non-disease with 
certainty), traditional epidemiologic risk factor designs can be used to estimate the 
impact of these genetic polymorphisms. Increased attention to alleles as a part of 
risk equations in epidemiology will likely resolve the contradictory  fi ndings from 
studies that have generally employed solely environmental risk factors, such as diet, 
smoking, and alcohol use. Likewise, the studies that seek solely to identify small 
risk alleles will continue to be inconsistent because they do not consider the effects 
of nongenetic biological parameters or environmental factors that contribute to the 
diseases of interest. 

 There are several types of risk estimates that are used in public health. The most 
common is  relative risk , de fi ned as the magnitude of the association between an 
exposure and disease. It is independent of the prevalence of the exposure. The  abso-
lute risk  is the overall probability of developing a disease in an individual or in a 
particular population (Gordis  2000  ) . The  attributable risk  is the difference in the 
risk of the disease in those exposed to a particular risk factor compared to the back-
ground risk of a disease in a population (i.e., in the unexposed). The  population 
attributable risk  relates to the risk of a disease in a total population (exposed and 
unexposed) and indicates the amount the disease can be reduced in a population if 
an exposure is eliminated. The population attributable risk depends on the preva-
lence of the exposure or, in the case of risk alleles, the allele frequency. Genetic 
attributable risk would indicate the proportion of a particular disease that would 
be eliminated if a particular gene or genes were not involved in the disease. For example, 
the two vulnerability alleles for Alzheimer’s disease include the very rare but 
 deterministic alleles  in the  b -amyloid precursor, presenilin-1, and presenilin-2 
genes, which signal a very high probability of the development of Alzheimer’s disease, 
particularly at a young age, and the  susceptibility  allele  e 4 in the apolipoprotein-E 
gene (APOE  e 4) (Tol et al.  1999  ) . The apolipoprotein- E   e 4 (APOE  e 4) allele has 
been shown to increase the risk of Alzheimer’s disease in a dose-dependent fashion. 
Using data from a large multiethnic sample collected by more than 40 research 
teams, Farrer (Farrer et al.  1997  )  reported a 2.6–3.2 greater odds of Alzheimer’s 
disease among those with one copy and 14.9 odds of Alzheimer’s disease among 
those with two copies of the APOE  e 4 allele. Moreover, there was a signi fi cant 
protective effect among those with the  e 2/ e 3 genotype. As opposed to the deterministic 
mutations, the APOE  e 4 allele has a very high population attributable risk because 
of its high frequency in the population. The APOE  e 4 allele is likely to interact with 
environmental risk and protective factors (Kivipelto et al.  2001 ; Kivipelto et al. 
 2002  ) . The population risk attributable to these mutations is quite low because of 
the very low population prevalence of disease associated with these alleles. This 
model of combination of several rare deterministic alleles in a small subset of families 
and common alleles with lower relative risk to individuals but high population attrib-
utable risk is likely to apply to many other complex diseases as well. Genome-wide 
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association studies have now identi fi ed genes for more than 300 diseases and traits, 
such as coronary artery disease, Crohn’s disease, rheumatoid arthritis, and type 1 
and type 2 diabetes (Wellcome Trust Case Control Consortium  2007  )  with 1,291 
publications by the end of 2011 (  www.genome.gov/gwastudies    ) .  Those genetic 
variants appear to confer only modest increases in disease risk (ORs between 1.2 
and 1.5) compared to other established risk factors for common chronic diseases.  

    2.2.4   Identi fi cation of Environmental Factors 

 In parallel with the identi fi cation of susceptibility alleles, it is important to identify 
environmental factors that operate either speci fi cally or nonspeci fi cally on those 
with susceptibility to complex disorders in order to develop effective prevention and 
intervention efforts. Langholz et al.  (  1999  )  describe some of the world’s prospective 
cohort studies that may serve as a basis for studies of gene-disease associations or 
gene-environment interactions. There is increasing evidence that gene-environment 
interaction will underlie many of the complex human diseases. Some examples 
include inborn errors of metabolism, individual variation in response to drugs 
(Nebert  1999  ) , substance use disorders (Heath et al.  2001 ; Rose et al.  2000  ) , and the 
protective in fl uence of a deletion in the CCR5 gene on exposure to HIV (Michael 
 1999  ) . In prospective studies, however, few environmental exposures have been 
shown to have an etiologic role in complex disorders (Eaton  2004  ) . Over the next 
decades, it will be important to identify and evaluate the effects of speci fi c environ-
mental factors on disease outcomes and to re fi ne measurement of environmental 
exposures to evaluate the speci fi city of effects. Study designs and statistical methods 
should focus increasingly on the nature of the relationships between genetic and 
environmental factors, particularly epistasis and gene-environment interaction 
(Yang and Khoury  1997 ; Ottman  1990 ; Beaty and Khoury  2000  ) . For example, 
recent breakthroughs in identifying the mechanisms for hypocretin de fi ciency as the 
causal mechanism in narcolepsy occurred through a convergence of epidemiologic 
studies that documented a recent surge in incidence among those exposed to H1N1 
virus or vaccine, successful application of genome-wide association studies that 
implicated speci fi c autoimmune mechanisms (i.e., the T-cell receptor  a  polymor-
phism), and speci fi city of the  fi ndings for the phenotype of narcolepsy with cataplexy 
rather than narcolepsy alone (Kornum et al.  2011  ) .   

    2.3   Applications, Impact, and Future Directions 

 The advances in bioinformatics and statistical methods described in the following 
chapters will be critical to translation of progress in molecular genetics to human 
diseases. Genetic epidemiologic approaches, particularly the family study design, 
will have renewed importance in facilitating integration between methodological 

http://www.genome.gov/gwastudies
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developments and human diseases. Despite the long history of information provided 
by family studies regarding the genetic architecture of Mendelian diseases as well 
as heterogeneity of complex diseases such as breast cancer (Claus et al.  1993  )  and 
diabetes (Hawa et al.  2002  ) , the family study approach has largely been abandoned 
in psychiatry in favor of very large case–control studies of diagnosed patients from 
clinical samples or registries. Yet, family studies still have an essential role in iden-
tifying cross-generational transmission of phenotypes and genotypes. Family-based 
studies will be even more valuable with application of advances in molecular biology 
to inform interpretation of sequencing data and to distinguish  de novo  from heritable 
structural variants. Based on increasing awareness of the neglect of family studies 
for risk prediction, even in the absence of speci fi cation of disease genetic architec-
ture, the US surgeon general has launched a national public health campaign to 
encourage all American families to learn more about their family health history 
(  http://www.hhs.gov/familyhistory/    ). A positive family history remains a more 
potent predictor of disease vulnerability than nearly all other risk factors combined 
(Meigs et al.  2008  ) . Moreover, since genetic factors, common environmental 
exposure, and sociocultural factors have been shown to jointly contribute to disease 
etiology, family history may ultimately have greater explanatory power than genes 
in predicting risk, particularly if genetic in fl uences are weak. 

 Progress in genomics has far outstripped advances in our understanding of many 
of the complex multifactorial human disorders and their etiologies. Technical 
advances and availability of rapidly expanding genetic databases provide extraordi-
nary opportunities for understanding disease pathogenesis. Over the next decade, 
increasing understanding of the complex mechanisms through which genetic risk 
factors in fl uence disease should enhance the clinical utility of genetics. The above 
issues regarding sampling, complexity of the links between genes and environmental 
factors in multifactorially determined complex diseases, and phenotypic heteroge-
neity also highlight the complexity of etiology of complex human diseases. This 
work demonstrates that predictions that human genomics would lead to a radical 
transformation of medical practice were overly optimistic. In fact, Varmus (Varmus 
 2002  )  concluded that despite the journalistic hyperbole, the sequencing of the human 
genome is unlikely to lead either to a radical transformation of medical practice or even 
to an information-based science that can predict with certainty future diseases and 
effective treatment interventions. Therefore, despite the extraordinary opportunity 
for understanding disease pathogenesis afforded by the technical advances and 
availability of rapidly expanding genetic databases, it is unlikely that we will soon 
experience the light speed progress of genomics in understanding, treating, or 
preventing many of the multifactorial complex human diseases. 

 The chasm between genetic information and clinical utility should gradually 
close as we develop new methods and tools in human genetic and clinical research 
to maximize the knowledge afforded by the exciting advances in genomics. 
   Increased integration of advances in basic sciences and genomics along with infor-
mation from population-based studies and longitudinal cohorts; innovations in our 
 conceptualizations of the disease etiology, particularly the role of infectious agents; 
and the identi fi cation of speci fi c risk and protective factors will lead to more informed 
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 intervention strategies. As we learn more about the role of genes as risk factors, 
rather than as the chief causes of common human diseases, it will be essential to 
provide accurate risk estimation and to inform the public of the need for population-
based integrated data on genetic, biological, and environmental risk factors. 

 The goal of genomics research is ultimately prevention, the cornerstone of public 
health. An understanding of the signi fi cance of genetic risk factors and proper 
interpretations of their meaning for patients and their families will ultimately 
become part of clinical practice. Clinicians will become increasingly involved in 
helping patients to comprehend the meaning and potential impact of genetic risk 
for complex disorders. As our knowledge of the role of genetic risk factors in 
advances, it will be incumbent upon clinicians to become familiar with knowledge 
gleaned from genetic epidemiologic and genomics research. In the meanwhile, 
use of recurrence risk estimates from family studies best predicts the risk of the 
development of complex disorders.      
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  Abstract   Genetic mapping by linkage analysis has been for many years the  fi rst 
step in the identi fi cation of genes responsible for rare Mendelian disorders. When 
the focus of genetic research shifted toward the study of the more complex common 
disorders, alternative approaches such as association studies were shown to be 
more successful in identifying common variants of small effect that are in part 
responsible for susceptibility to such conditions. Recent advances in technologies 
that make feasible the sequencing of whole exomes or genomes have renewed 
interest in the identi fi cation of rare variants, which are in principle amenable to 
being detected by linkage analysis. As a result, linkage analysis and family-based 
studies in general are being reexamined as an aid to  fi lter and validate results of whole 
exome and whole genome sequencing experiments. This chapter will describe a few 

    F.   Lantieri  
     Division of Human Genetics ,  The Children’s Hospital of Philadelphia ,
  3615 Civic Center Blvd., ARC 1002 ,  Philadelphia ,  PA ,  19104 ,  USA   

   Department of Health Science, Biostatistics Unit ,  University of Genoa ,   Genoa ,  Italy     

    M.  A.   Levenstien        
     Division of Human Genetics ,  The Children’s Hospital of Philadelphia ,
  3615 Civic Center Blvd., ARC 1002 ,  Philadelphia ,  PA ,  19104 ,  USA       

     M.   Devoto   (*)
     Division of Human Genetics ,  The Children’s Hospital of Philadelphia ,
  3615 Civic Center Blvd., ARC 1002 ,  Philadelphia ,  PA ,  19104 ,  USA   

   Department of Pediatrics, Perelman School of Medicine ,  University of Pennsylvania ,
  Philadelphia ,  PA ,  USA   

   Department of Biostatistics and Epidemiology, Perelman School of Medicine ,
 University of Pennsylvania ,   Philadelphia ,  PA ,  USA   

   Department of Molecular Medicine ,  University La Sapienza ,  Rome ,  Italy    
e-mail:  devoto@chop.edu   

    Chapter 3   
 Integration of Linkage Analysis 
and Next-Generation Sequencing Data       

       Francesca   Lantieri   ,    Mark   A.   Levenstien   , and    Marcella   Devoto         



22 F. Lantieri et al.

representative papers that have incorporated linkage analysis and its results in the 
design, execution, and interpretation of whole genome or whole exome sequencing 
studies.  

  Keywords   Linkage analysis  •  Rare variants  •  Family-based studies  •  Whole exome 
sequencing  •  Whole genome sequencing      

    3.1   Introduction 

 Linkage analysis and family-based tests have been a workhorse of genetic mapping 
for Mendelian disease gene identi fi cation. From the beginning of the 1980s, the 
combination of increasingly dense DNA marker maps and powerful software tools 
implementing such tests have led to the identi fi cation of the genes responsible for 
thousands of Mendelian disorders (Botstein and Risch  2003  ) . When the focus of 
genetic research shifted from the rare, highly penetrant monogenic diseases to the 
more common, complex ones, it became evident that linkage analysis was under-
powered to detect the common risk variants with small effects expected under the 
common disease/common variant hypothesis (Risch and Merikangas  1996  ) . Instead, 
genome-wide association studies (GWAS) in case–control datasets have led to the 
identi fi cation of many such variants in a variety of different disorders and traits 
(  http://www.genome.gov/gwastudies/    ). At the same time, it has become clear that 
common variants do not explain all the genetic susceptibility to such traits, and 
evidence has been accumulating that rare, possibly higher penetrant variants also 
underlie susceptibility to common complex traits (Manolio et al.  2009  ) . In addition, 
many Mendelian disorders are too rare for the linkage analysis approach alone to 
work, and thus the corresponding genes still remain undetected. 

 The advent of massive parallel sequencing and the ability to sequence the whole 
exome or even genome of individuals at a relatively low cost has made the discovery 
of all variants present in an individual or family technically possible. These advances 
can lead to successful disease gene identi fi cation, as demonstrated initially in a few 
Mendelian disorders (Bamshad et al.  2011  )  and more recently in some complex 
ones (Zeggini  2011  ) . However, analysis of whole exome or whole genome sequence 
(WES or WGS) data poses noticeable bioinformatics and statistical challenges, and 
the identi fi cation of the true risk variants among the many detected by such experi-
ments has often been compared to  fi nding the classic needle in a haystack. Every 
possible piece of information that can be used to facilitate such effort should be 
considered and incorporated into the analysis, and in this respect, analysis of the 
segregation of candidate risk variants in family members of affected individuals has 
been suggested as particularly useful (Cirulli and Goldstein  2010  ) . In fact, linkage 
analysis can inform interpretation of WES or WGS data both by indicating regions 
of the genome with higher a priori chance of including the risk variants when results 
of linkage studies on the disease of interest are already available and a posteriori by 
limiting further evaluation of candidate variants detected through sequencing only 
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to those that show co-segregation (i.e., linkage) to the disease or trait in families of 
affected individuals. 

 In this chapter, we will describe ways in which linkage analysis and family-based 
data have been incorporated into WES or WGS experiments that have led to the 
identi fi cation of new disease gene variants. We will also discuss methods that have 
been proposed for the speci fi c purpose of integrating the use of family-based data in 
WES or WGS analysis.  

    3.2   Linkage Analysis in WES/WGS Studies 
and Identi fi cation of Disease Genes 

 Co-segregation of variants identi fi ed by WES/WGS and the disease phenotype in 
affected relatives is an obvious  fi lter to impose on results of such experiments to 
reduce the number of candidate variants. As such, numerous studies have used this 
relatively simple strategy (Ng et al.  2010  ) , which, however, does not take full advan-
tage of the power of linkage analysis to identify candidate regions by modeling the 
disease mode of inheritance using allele frequency, reduced penetrance, and pheno-
copy rate. We will not review such studies, as their number is already large and 
increasing, and the approach relatively straightforward (i.e., remove from further 
consideration all variants that are not shared by affected relatives). Rather, we will 
review a few experimental studies that have integrated a formal linkage analysis 
with their sequencing experiments at various stages. As with all reviews, this list is 
necessarily limited, but we hope it will still illustrate different ways in which inves-
tigators are taking advantage of the power of linkage analysis in their sequencing 
experiments for the identi fi cation of disease genes. 

 A good proof of principle of the power of both the linkage and the whole exome 
sequencing approaches is the study of Bowne et al.  (  2011  ) . These authors investi-
gated an Irish family with autosomal dominant retinitis pigmentosa (adRP) by link-
age analysis on 27 members and simultaneously analyzed one unaffected and three 
affected members by WES. No disease-causing mutations or copy-number variants 
had been identi fi ed by standard sequencing or multiplex ligation-dependent probe 
ampli fi cation (MLPA) of known candidate genes. Linkage and haplotype analyses, 
instead, mapped the disease locus to an 8.8-Mb region on chromosome 1p31, with 
a maximum multipoint LOD score of 3.6. The authors selected 11 candidate genes 
from the critical region using several criteria. Speci fi cally, the candidates were asso-
ciated or similar to genes associated with other types of inherited retinal degeneration, 
were included in the sensory cilium proteome or EyeSAGE data, or were highly 
expressed in the retina. Standard sequencing in two affected members and valida-
tion of variants found in both of them using the remainder of the family led to the 
identi fi cation of only one variant, located in  RPE65 . Meanwhile, WES in three 
affected individuals allowed the identi fi cation of 3,437 new variants, reduced to 
1,373 after excluding variants that were synonymous or also found in one control 
DNA. Only three variants remained when restricting to those located in the linkage 
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region, and, of those three variants, the only one present in all three affected indi-
viduals was the same  RPE65  variant identi fi ed with the concurrent linkage-based 
approach. Evaluation of 12 Irish patients with a range of other inherited retinal 
degenerations revealed that one patient, as well as his two affected daughters, 
initially diagnosed with choroideremia but without a mutation in the  CHM  gene, 
had the  RPE65  mutation on the same haplotype as the extended adRP family. 
Combined linkage analysis of the two pedigrees yielded a maximum two-point 
LOD score of 5.3 at 0% recombination from the mutation. The authors commented 
that mutations in  RPE65  are a known cause of recessive RP and Leber congenital 
amaurosis but had never been associated with dominant disease. The less severe 
phenotype with reduced penetrance observed in the families studied by Bowne et al. 
 (  2011  )  was consistent with one mutant allele rather than two. The authors thus 
warned that carriers of “recessive” missense mutations in  RPE65  should be evalu-
ated for subtle signs of disease. They also suggested that, given the co-occurrence 
of choroidal disease in the large adRP family and the diagnosis of choroideremia in 
the smaller family, mutations in  RPE65  may be the cause of choroideremia in families 
in which the typical X-linked gene,  CHM , has been excluded. 

 While many studies have performed linkage analysis prior or in parallel to the 
WES/WGS experiments, as exempli fi ed in the previous paper, others have used it to 
con fi rm co-segregation of the disease phenotype and variants usually identi fi ed in a 
small number of cases prior to further genetic studies and functional characterization. 
Yokoyama et al.  (  2011  )  looked for germ line mutations predisposing to melanoma 
starting from whole genome sequencing of a single individual in a family with eight 
affected relatives in three generations (Fig.  3.1 ) (Yokoyama et al.  2011  ) . From 410 
novel variants thus identi fi ed, a variant in  MITF , a gene known for being somatically 
ampli fi ed or mutated in a subset of melanomas, was found to be present in three out 

  Fig. 3.1    Family 1 showing segregation of the  MITF  E318K variant in some, but not all, affected 
individuals (Yokoyama et al.  2011  ) . The  circled  individual is the one in which the variant was 
identi fi ed by whole genome sequencing       
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of seven cases tested in the proband’s family. Testing of additional patients from 
families with multiple melanoma cases eventually con fi rmed the presence of the 
 MITF  E318K variant in 31 unrelated cases with at least one  fi rst- or second-degree 
relative diagnosed with melanoma. A formal linkage analysis of melanoma with 
E318K was performed under a dominant model with reduced penetrance and a 5% 
phenocopy rate and produced a maximum LOD score of 2.7, a result consistent with 
E318K being an intermediate risk variant. Finally, the authors con fi rmed the role of 
E318K in melanoma by means of case–control association studies as well as expres-
sion pro fi ling and analysis.   

    3.3   WES/WGS with Inconclusive Linkage Data 

 Many linkage studies have resulted in the identi fi cation of candidate regions that, 
however, have not led to the discovery of a speci fi c disease gene. While some of 
these failures may be explained by false-positive  fi ndings (Ioannidis  2005  ) , in other 
cases the size of the candidate region(s) may simply have prevented its full sequencing 
and therefore the disease gene identi fi cation. With the advent of next-generation 
sequencing (NGS) technologies, it is increasingly becoming more cost-effective to 
sequence the whole exome rather than a few target regions that may be relatively 
large in physical size and number of positional candidate genes contained. 

 A recent example of the use of this strategy reported by Louis-Dit-Picard et al. 
 (  2012  )  has led to the identi fi cation of  KLHL3  mutations in familial hyperkalemic 
hypertension (FHHt) (Louis-Dit-Picard et al.  2012  ) . SNP-based linkage analysis in 
one informative family with  fi ve affected and seven unaffected individuals indicated 
six suggestive linkage regions (max LOD = 1.8), spanning a total of 35.6 Mb and 
containing 325 protein-coding genes. Given the number of positional candidate 
genes, the authors performed WES of one unaffected and three affected family 
members. A missense mutation in  KLHL3  was identi fi ed in one of the linkage 
regions on chromosome 5q31, and the same region was reported to be linked in a 
second family by microsatellite analysis (max LOD = 7.3). WES of three members 
of the second family also identi fi ed one missense mutation in  KLHL3 . Direct 
sequencing identi fi ed nonsynonymous  KLHL3  mutations in 11 out of 14 additional 
FHHt patients, including heterozygous as well as homozygous cases. 

 Sobreira et al.  (  2010  )  used WGS in a single individual combined with linkage 
analysis to identify the gene mutated in metachondromatosis (MC), another auto-
somal dominant disorder (Sobreira et al.  2010  ) . Linkage analysis in seven members of 
a family segregating MC had identi fi ed six regions with positive LOD scores covering 
a total of 42 Mb, of which one reached the maximum possible in the small pedigree 
(7p14.1, LOD = 2.5) and two others were compatible with the presence of a single non-
penetrant carrier (8q24.1 and 12q23, LOD = 1.8). Following WGS of a single proband, 
no variants unique to her and with a high likelihood of functional signi fi cance were 
found in  fi ve of these regions. However, one such variant was located in the 12q23 
candidate region and was shown to be present in all affected individuals as well as the 
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hypothetical non-penetrant carrier who, on more careful examination, showed 
symptoms of the disease, as well as did her daughter who had not previously been 
examined. This result clearly points out a possible explanation for the negative results 
of linkage studies that have been followed up by sequencing only the regions of 
maximum LOD scores as well as the importance, never overstated, of careful 
phenotyping. When linkage is inconclusive, like it was in this case, and more than 
one candidate region exists, it is now more ef fi cient to perform a WES or even a 
WGS experiment rather than sequencing several candidate regions using more 
traditional approaches. Interestingly in this case, although the authors performed a 
WGS study, sequencing of the exome only would have been just as fruitful.  

    3.4   Homozygosity Mapping and WES/WGS Studies 

 Homozygosity mapping is a powerful approach for disease gene mapping in cases 
of rare recessive disease observed in consanguineous families (Lander and Botstein 
 1987  ) . Homozygosity mapping is a variation on linkage analysis that exploits the 
fact that in rare autosomal recessive disorders, affected individuals, especially those 
born from consanguineous parents, are expected to be homozygous for alleles 
identical by descent (IBD) at the disease locus and at the marker loci tightly linked 
to it, a condition sometimes referred to as autozygosity. A search for regions of 
linkage can thus be achieved by looking for regions of IBD homozygosity in a few 
affected individuals. This approach has been applied successfully to several rare 
autosomal recessive disorders and is now being further revamped by pairing it with 
results of WES or WGS experiments. 

 A good example of this approach is the study of Wang et al.  (  2011  ) , aimed at 
identifying novel disease alleles or genes involved in Leber congenital amaurosis 
(LCA) by combining genetic mapping with WES (Wang et al.  2011  ) . LCA is a 
genetically heterogeneous eye dystrophy that most often presents as a recessive 
disease. Standard Sanger sequencing of the coding exons from all 15 known LCA 
disease genes in one affected member from a consanguineous family from Saudi 
Arabia had failed to  fi nd the causative homozygous mutation. The authors then 
performed homozygosity mapping by genotyping three affected members using the 
Illumina 370 K SNP array and identi fi ed a single novel region of homozygosity 
spanning 11.2 Mb on chromosome 15 shared by all three affected members. Due to 
the high gene density in this region, direct Sanger sequencing of all coding exons 
was unfeasible. By WES of a single affected individual, they found a total of 370,000 
SNPs and in/dels. After  fi ltering out common variants and variants that did not 
affect protein-coding or splicing regions, they were left with 352 candidate variants. 
The only homozygous missense change in the critical region was located in  BBS4 , 
a gene known to cause Bardet-Biedl syndrome (BBS). BBS is a rare human genetic 
disorder that, similarly to LCA, presents ocular phenotypes as a common clinical 
feature. The authors con fi rmed the presence of the mutation with Sanger sequencing 
and that it segregated with the disorder in the family by direct genotyping of all the 
other members. Moreover, they excluded the presence of this variant in 200 normal 
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matching controls, including 96 from Saudi Arabia, and con fi rmed its pathological 
role in a zebra fi sh model. 

 Using a similar approach, Schrader et al.  (  2011  )  investigated an extended family 
that presented with autosomal recessive spondyloepiphyseal dysplasia (SED), retinitis 
pigmentosa (RP), and a high incidence of corneal abnormalities among affected 
individuals (Schrader et al.  2011  ) . Given the geographical isolate from which the 
family originated, the known consanguinity, and the autosomal recessive inheri-
tance pattern of the disease, the authors hypothesized that the causative mutation 
would be novel and would lie within an extended block of linkage that was homozy-
gous in the affected individuals and heterozygous in the unaffected obligate carriers. 
For this reason, they performed WES in three affected individuals and one unaf-
fected obligate carrier from the family and in parallel applied SNP chip genotyping 
to the same individuals to rule out homozygous microdeletions and to identify 
blocks of linkage surrounding candidate novel variants. Among the variants detected 
by WES, only two uncommon ones were homozygous in all three affected individu-
als and heterozygous in the obligate carrier: a nonsynonymous variant in  RPL3L  
and a 6-bp deletion in  GNPTG . These variants were validated by Sanger sequencing 
and found to co-segregate with the disease in the other 14 family members. 
Furthermore, both variants were located within a 3.5-Mb region of linkage de fi ned 
by homozygosity in affected individuals, containing 202 UCSC genes. The authors 
focused their analysis on the mutation in  GNPTG,  a gene associated with mucolipi-
dosis type III g  (MLIIIg), an autosomal recessive lysosomal storage disorder with a 
broad phenotypic spectrum including progressive destruction of the hip joint, 
increased lysosomal enzyme levels in serum, and reduced lysosomal enzyme levels 
in cultured  fi broblasts. Elevated lysosomal enzyme activity was con fi rmed in the 
serum of affected individuals, and histochemical analysis of a section of the femoral 
head of one member of the family revealed microvesicular changes in the chondro-
cytes. Thus, their approach eventually led to a molecular diagnosis of MLIIIg and 
to a further broadening of the phenotypic spectrum of MLIII. These authors com-
pared the traditional linkage mapping, homozygosity mapping, and whole exome 
sequencing approaches and concluded that the latter should be suf fi cient to identify 
causal mutations in most Mendelian disorders. However, they did recommend SNP 
array genotyping in at least one individual to rule out homozygous deletions and 
duplications that could be missed otherwise. 

 The study of Puffenberger et al.  (  2012  )  in the Amish and Mennonite populations 
of Pennsylvania represents perhaps the best example of the power of the combined 
homozygosity mapping/WES approach (Puffenberger et al.  2012  ) . Taking advan-
tage of the characteristics of these populations, including relative isolation and high 
inbreeding, the same authors had previously identi fi ed the loci for 28 genetic disor-
ders by homozygosity mapping. For 11 of these, however, the corresponding gene 
could not be found, and the authors cited the large size of the candidate regions and 
large number of genes there contained as the main obstacles to achieving this goal. 
The authors looked at seven such diseases where gene mapping had been achieved 
by SNP genotyping using either a 10K or 50K SNP microarray. In six cases, only 
one candidate region had been identi fi ed using either two or more affected individuals 
from a single family or multiple cases from different families; in the remaining case, 
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analysis of two affected siblings, their parents, and six unaffected siblings resulted 
in the identi fi cation of 12 candidate genomic regions each greater than 5 Mb. Even 
when a single genomic region was consistent with linkage, the average size of the 
candidate regions was 4.4 Mb (range 1.6–8.4 Mb), and the average number of genes 
included in them was 79 (range 22–187). Sequencing a number of candidate genes 
included between 2 and 45 for each condition failed to identify the causative variants. 
In contrast, WES of a number of patient samples included between one and  fi ve 
(for a total of 15 cases for all disorders) and subsequent  fi ltering of candidate 
variants led to the identi fi cation of a single causal mutation in all seven diseases, 
 fi ve of which located in genes that had not previously been associated with these 
conditions. Criteria for disease variant identi fi cation included homozygosity in the 
affected patients, localization in the regions of linkage, and absence from dbSNP 
129 and 1000 Genomes Project. All putative disease variants were con fi rmed by 
Sanger sequencing in the cases and their available relatives; their frequency in the 
population was further evaluated in more than 400 chromosomes, and no homozy-
gous controls were identi fi ed. In some instances, the presence of the same mutation 
was con fi rmed in independent cases with the same phenotype, or pathogenicity was 
supported by high PolyPhen2 scores. Finally,  in vitro  studies supported the causal 
relationship between some of the candidate variants and the respective disease 
phenotype. 

 Interestingly, these authors noted that when multiple cases were available, the 
use of WES coupled with the assumption of mutation homozygosity in the patients 
but not in unaffected individuals would have been suf fi cient to identify the disease 
gene mutations even in the absence of mapping data. In fact, in each of these cases, 
only one variant was identi fi ed that satis fi ed these conditions. Even when only a 
single case was sequenced, the number of potentially pathogenic homozygous 
variants was relatively small, perhaps surprisingly given the high inbreeding 
coef fi cients of these populations, and only six variants were not homozygous in 
unaffected controls. In conclusion, the authors suggested that a strategy based on 
WES and a search for homozygous or compound heterozygous novel variants in 
the same gene in multiple affected individuals has a high chance of being success-
ful even in outbred populations. 

 However, a cautionary note on the use of WES comes from the study of Bloch-
Zupan et al. ( 2011 ) of two  fi rst-degree cousins affected with major dental develop-
mental defects (Bloch-Zupan et al.  2011  ) . Because of the high consanguinity in 
the family, the authors used homozygosity mapping to identify a critical region for 
the disease gene located on 6q27-ter and spanning 3 Mb. Sequencing of two candidate 
genes in the critical region led to the identi fi cation of a splice site mutation in 
the  SMOC2  gene that was present in the homozygous state in the two children and 
in the heterozygous state in the children’s carrier parents. To con fi rm that no other 
mutations were present in the children that may explain the phenotype, Bloch-Zupan 
et al. performed WES in one of the two patients. Interestingly, they found out that 
6.6 Kb of the 3-Mb critical region identi fi ed by homozygosity mapping were not 
suf fi ciently covered by the WES data, and speci fi cally the mutation in  SMOC2  
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identi fi ed by traditional sequencing was not detected by WES. Analysis of the 
genomic region containing the mutation showed it to be GC rich, and independent 
sequencing experiments from other projects con fi rmed the de fi cit in sequence coverage. 
The authors concluded that had they only applied the exome-capture approach, they 
would have missed the causative mutation in their patients.  

    3.5   Linkage and WES/WGS in Quantitative Trait Analysis 

 Integration of linkage analysis and sequencing studies can also be used successfully 
for the identi fi cation of the molecular basis underlying a quantitative trait locus 
(QTL), as exempli fi ed by the study of Bowden et al.  (  2010  )  on adiponectin plasma 
levels (Bowden et al.  2010  ) . In this case, variance-component linkage analysis, a 
popular approach for QTL mapping, had identi fi ed a strong linkage signal in a single 
genomic region (3q, LOD = 8.02). The linkage critical region contained an ideal can-
didate for variation in adiponectin plasma level, the adiponectin protein-coding gene 
 ADIPOQ . However, association to common variants in this gene did not explain the 
linkage signal. The authors cleverly used the linkage results to select individuals for 
sequencing by prioritizing families with a higher individual LOD score in the critical 
region. WES of three individuals with values of adiponectin plasma level in the tails 
of its distribution (one high, two low) from two of these families led to the identi fi cation 
of a single variant not previously reported and present in the two low-adiponectin 
samples. Through conventional sequencing and additional genotyping, the same 
rare variant was shown to co-segregate with the plasma adiponectin trait in the 
linkage families and to account for most of the 3q linkage signal. While this study 
may be considered just a proof of principle given the presence of a very strong 
candidate gene in the linkage critical region, it showed that the combination of QTL 
linkage mapping and sequencing of individuals with extreme values of the quantita-
tive trait is a potentially valuable approach for the identi fi cation of rare variants, as it 
has been recently advocated (Cirulli and Goldstein  2010  ) .  

    3.6   Linkage Analysis as an Aid in Designing WES/WGS 
Experiments 

 Bowden et al.  (  2010  )  have shown that results from linkage analysis can be utilized 
in WES/WGS projects to optimize family selection (Bowden et al.  2010  ) . The 
GAW17 dataset provided an opportunity to investigate the ef fi cacy and cost 
ef fi ciency of various strategies for next-generation sequencing sample selection as 
a follow-up to linkage analysis (  http://www.gaworkshop.org    ). The GAW17 dataset 
included genome-wide genotype data as well as exome sequencing for approxi-
mately 3,000 genes for eight simulated pedigrees. In addition, risk factors including 
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age, smoking status, and three quantitative trait variables were provided for each 
individual. Allen-Brady et al.  (  2011  )  performed linkage analyses on these families 
and compared nine approaches for selecting subjects for subsequent partial exome 
sequencing (Allen-Brady et al.  2011  ) . For this study, the authors split the original 8 
pedigrees into 23 smaller pedigrees and used 10 of the 200 replicate datasets pro-
vided by the GAW17 organizers. Using the results from a logistic regression model 
which incorporated the  fi ve risk factors, Allen-Brady et al.  (  2011  )  classi fi ed all indi-
viduals as either high-covariate subjects whose nongenetic risk factors are highly 
predictive of their affection status or low-covariate subjects whose nongenetic risk 
factors are poorly predictive of their affection status. They found that selecting for 
exome sequencing all affected individuals classi fi ed as low-covariate and possess-
ing a linked haplotype identi fi ed in the linkage analysis was the most reliable strat-
egy across both recessive and dominant models. Furthermore, selecting the youngest 
affected individuals may provide a satisfactory alternative in cases where the major 
nongenetic risk factors are unknown. 

 Starting from the GAW17 pedigrees, Cai et al.  (  2011  )  de fi ned as high risk those 
with at least 15 total meioses between case subjects and a statistical excess of dis-
ease ( p  < 0.01) over all 200 replicates, thus identifying 18 pedigrees (Cai et al.  2011  ) . 
They then performed a linkage analysis using the shared genomic segment (SGS) 
method (Thomas et al.  2008  ) , modi fi ed in order to examine sharing among all pairs 
of cases instead of all subjects, and assessed the test statistic against an empirical 
distribution. Following this approach, they successfully identi fi ed at least one region 
containing one true causal variant in 13 out of the 18 high-risk pedigrees. Additional 
causative genes would have been identi fi ed at lower signi fi cance thresholds 
( p   £  0.01), but this would also have increased false-positive  fi ndings. The inability to 
detect the other rare causative variants was ascribed to the small sample size and 
high heterogeneity. Of note, this method considered only pairs of relatives and did 
not take into account the speci fi c relationships between them. The authors claimed 
that when they incorporated the speci fi c relationships into the analysis, they did not 
see substantial improvement in the results. 

 Gagnon et al.  (  2011  )  analyzed the GAW17 data to select which families should 
be sequenced in order to identify rare variants that have large effects on quantitative 
trait variance (Gagnon et al.  2011  ) . They hypothesized that rare functional variants 
segregating with a quantitative phenotype are more likely to be present in families 
with more quantitative trait loci (QTLs) than the other families. For this reason, they 
estimated the mean number of QTLs in each family by segregation analysis assum-
ing an oligogenic linear model and selected one family with more QTLs than the 
average. They then tested this family for linkage using a variance-component oligo-
genic approach. Sequencing data from regions surrounding loci with at least modest 
evidence of linkage (LOD  ³  0.6) were investigated for the presence of rare func-
tional variants, and the variants thus detected were analyzed for association to the 
quantitative traits. By this approach, they identi fi ed one region with a maximum 
LOD of 5.3 ( p  = 4 × 10 −7 ) for one trait and two regions with maximum LOD of 2.02 
( p  = 0.001) for another trait for a total of 216 and 85 variants that were thus tested 
for association with the same traits in all the families. They correctly identi fi ed two 
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rare functional variants, including one private to the family selected for sequencing. 
Both variants were located in regions with a combined LOD score in all families 
greater than 4. All other variants identi fi ed in the family selected for linkage analysis 
were false positives, and all had LOD scores below 2, con fi rming once again the 
importance of linkage evidence in discovering the actual causative variants. The 
authors claimed that prioritizing the sequencing of carefully selected extended fam-
ilies is a simple and cost-ef fi cient design strategy to identify rare functional variants 
that explain a signi fi cant proportion of the trait variance, especially for variants that 
are unlikely to segregate in more than a few families. However, they noted that the 
use of large, multigenerational families remains crucial, and other complementary 
designs are still needed to further decrease type I error, including parallel analysis 
of large samples of unrelated individuals. 

 Other research utilizing the GAW17 dataset focused on the potential of linkage 
studies to guide deep sequencing efforts by narrowing the search space to genomic 
regions under linkage peaks. Choi et al.  (  2011  )  compared the effectiveness of two 
mapping strategies: (1) performing association tests which adjust for familial rela-
tionships on variants identi fi ed by whole exome sequencing and (2) performing a 
linkage analysis followed by targeted sequencing of regions beneath the linkage 
peaks and family-based association on variants identi fi ed in those regions (Choi 
et al.  2011  ) . They found that both mapping strategies demonstrate a limited ability 
to detect association for variants of small effect sizes. In addition, both strategies 
only found the same two loci with a reasonable amount of power (>70%). However, 
the linkage-guided strategy on average required sequencing of only 2.5% of the 
whole exome and found 52% of the associated loci identi fi ed by the whole exome 
sequencing strategy. Choi et al. concluded that while the whole exome sequencing 
strategy appears more powerful, targeted sequencing under linkage peaks still offers 
a viable and cost-effective alternative.  

    3.7   New Methods of Linkage Analysis and WES/WGS Studies 

 One of the challenges of linkage analysis has always been the analysis of large pedi-
grees, which, however, can also provide very valuable information. In place of tra-
ditional linkage analysis as a  fi lter for whole exome sequence data, some groups 
have attempted to  fi nd equally effective strategies that are less computationally 
intense. Markello et al.  (  2012  )  advocated using high-density genotyping panels and 
Boolean logic for recombination mapping efforts (Markello et al.  2012  ) . High-
density genotyping panels provide a relatively cost-effective option that covers 
introns as well as intergenic regions as compared to a strategy that extracts SNPs 
directly from WES. However, double-crossover events in between contiguous 
informative markers are problematic for this approach. Markello et al.  (  2012  )  
showed that the risk of double-crossover events between informative SNPs was 
extremely low through simulation and a literature search to identify the smallest reported 
interval containing a double crossover. In addition, these authors compared their 
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recombination mapping method to a traditional multipoint linkage analysis utilizing 
microsatellite markers and demonstrated that the identi fi ed regions were identical. 
Finally, they incorporated the method into a  fi ltering scheme on variants identi fi ed 
by whole exome sequencing of a single pedigree and identi fi ed two potential disease-
causing mutations in a candidate gene for progressive myoclonic epilepsy type 3. 

 Marchani and Wijsman  (  2011  )  proposed a method to test for linkage that enjoys 
computational advantages because of how it records and groups the inheritance pat-
terns (Marchani and Wijsman  2011  ) . Their method can employ Markov chain Monte 
Carlo (MCMC) techniques to handle large pedigrees and can also be applied to 
common disorders where Mendelian inheritance is not strictly followed and genetic 
heterogeneity is present. Visualization of IBD sharing allows the investigator to 
observe which affected pedigree members share a genetic segment within a region 
tied to a linkage signal. This knowledge allows ef fi cient selection of individuals for 
deep sequencing. The strategy advocated by Marchani and Wijsman  (  2011  )  is to 
select the most distantly related affected individuals who share such a DNA segment. 

 Other research has focused on the utility of gleaning variants directly from next-
generation sequencing for use in linkage studies. Smith et al.  (  2011  )  investigated the 
ef fi cacy of using genotypes generated from WES as a surrogate for array-based 
genotypes in linkage studies (Smith et al.  2011  ) . Limitations of the WES approach 
include coverage gaps in non-exonic regions, higher genotyping error rates, and 
markers with lower heterozygosity. Smith et al.  (  2011  )  performed linkage analyses 
on three pedigrees with different Mendelian neurological disorders employing both 
array-based markers and HapMap phase II SNP genotypes derived from WES. They 
found (1) a substantial number of WES-derived SNPs resided outside of coding 
regions due to a technical artifact of the sequencing method, (2) almost a 100% 
concordance rate for genotypes derived from either of the two methods, signifying 
an acceptable error rate for WES-derived SNPs, and (3) the resulting LOD scores 
for the analyses using genotypes derived from WES closely resembled those for the 
analyses using genotypes acquired by array-based technology at the positions of 
linkage peaks. Smith et al.  (  2011  )  concluded that, while SNP arrays are preferable 
for linkage studies due to better coverage and marker informativeness, generating 
genotypes for linkage studies directly from WES data is a viable option.  

    3.8   Conclusions 

 The advent of NGS technologies and the ability to sequence whole exomes or 
genomes have generated a new interest in the analysis of family data and thus in 
genetic linkage analysis (Bailey-Wilson and Wilson  2011  ) . Linkage analysis is ideal 
for identifying the location of rare disease-causing variants, such as those that are 
the object of analysis in most sequencing studies. Candidate loci identi fi ed by link-
age studies can now be examined more extensively than ever before, leading to a 
new wave of gene discoveries, particularly for Mendelian disorders (Ng et al.  2010  ) . 
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Whether the same success will occur in the analysis of complex traits remains to be 
demonstrated. Nonetheless, it is especially important that all available approaches 
are considered when tackling a dif fi cult question such as the identi fi cation of the 
genetic basis of complex disease, and we recommend that linkage analysis should 
be considered whenever families are available to investigators.      
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  Abstract   Nasopharyngeal carcinoma (NPC) has a unique global distribution 
pattern – Southeast Asia and some other localized regions of the eastern hemi-
sphere – that suggests risk is largely driven by a combination of environmental 
exposures and speci fi c genetic factors. Earlier linkage analysis has implicated loci 
in the human leukocyte antigen (HLA) gene region, thus suggesting a role for 
immunological mechanisms in NPC resistance. Nevertheless, the implications of 
the  HLA  associations remain enigmatic. More recent association studies have sought 
to advance our understanding of the genes important to NPC risk. Reviewed here 
are recent epidemiologic studies that have addressed the genetics of NPC risk, and 
the implications of their collective  fi ndings are discussed. The primary focus is on 
the latest candidate-gene association studies (CGAS) and genome-wide association 
studies (GWAS), and attempts are made to harmonize their  fi ndings and resolve 
discrepancies. Taken together, the studies support the importance of the  HLA  loci, but 
also implicate non-HLA genes both inside and outside the  HLA  region, and suggest 
that the mechanisms of NPC risk go beyond immunology. Finally, recommendations 
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are made to coordinate future CGAS and GWAS to maximize their information 
content and make best use of the limited number of available NPC study 
populations.  

  Keywords   Nasopharyngeal carcinoma  •  Candidate-gene study  •  Genome-wide 
association study  •   HLA       

    4.1   Introduction 

 Current understanding of cancer etiology suggests both genetic factors and environ-
mental exposures play important roles in causation. A major goal of cancer research 
has been to characterize the interplay between these genetic and environmental 
causes. In this regard, nasopharyngeal carcinoma (NPC) is of great interest because 
its unique global distribution pattern suggests that risk is largely dependent upon 
a combination of speci fi c genetic factors and distinct environmental exposures. 
For this reason, NPC can be considered a paradigm for cancer genetics (Simons 
 2011  )  and provides a unique opportunity to inform our understanding of the mecha-
nisms of human carcinogenesis. 

 Regarding environmental risk factors, the strongest associations have been 
made with Epstein-Barr virus (EBV) infection and consumption of salt-preserved 
 fi sh. Much weaker associations have been made with tobacco smoke and alcohol. 
The epidemiological literature on these environmental NPC risk factors is vast, and 
several earlier reviews comprehensively summarize the  fi ndings (Brennan  2006 ; 
Chang and Adami  2006 ; Gallicchio et al.  2006 ; Jeyakumar et al.  2006 ; Wei et al. 
 2010a ; Cao et al.  2011  ) . 

 There is nearly 40 years of evidence suggesting that genetic factors are also 
major drivers of NPC risk. Immigrants from high- to low-risk NPC areas maintain 
their high NPC risk (Parkin and Iscovich  1997  ) . Also, family, twin, and segregations 
studies support genetic factors as strong determinants of NPC risk (Gajwani et al. 
 1980 ; Zeng and Jia  2002 ; Jia et al.  2005 ; Ng et al.  2009  ) . More speci fi cally, there are 
multiple reported associations between NPC and loci linked to the regions of the 
genome where human leukocyte antigen (HLA) genes reside, yet the implications 
of the  HLA  allelic associations remain enigmatic. And the importance of other asso-
ciated loci both within and outside the  HLA  regions has not been thoroughly inves-
tigated. There also is limited understanding of how the major environmental risk 
factors interact with the genotypes. 

 In this review, we summarize the more recent genetic epidemiology reports 
(i.e., last 15 years) regarding NPC risk. We also attempt to identify patterns of evi-
dence within and among studies that bolster the  fi ndings. Further, we discuss the 
implications of the genetic aspects in relation to the environmental risk factors. 
We concentrate mainly on the latest candidate-gene association studies (CGAS) 
and genome-wide association studies (GWAS) and attempt to harmonize their  fi ndings 
and provide potential justi fi cations for any discrepancies. Finally, we suggest new 
avenues for future investigations.  
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    4.2   The Working Model 

 Virtually all NPC tumors express EBV proteins, while normal nasopharyngeal 
tissues do not. And the tendency to reactivate latent EBV virus is highly correlated 
with NPC risk – so much so, that measurement of EBV reactivation is often used 
as an early cancer biomarker in NPC endemic regions (Li et al.  2010  ) . Yet, EBV 
infection is highly prevalent and pandemic, while NPC incidence is low in most 
parts of the world. Nevertheless, in Southeast Asia and some other localized regions 
of the eastern hemisphere, NPC incidence is high and tends to be clustered in 
families. Thus, EBV infection seems to be a necessary but insuf fi cient component of 
the NPC causal mechanism. This has led to the proposition that certain individuals 
carry genetic variants that predispose them to the carcinogenic transforming poten-
tial of EBV, and that these variants are relatively common among the people in NPC 
endemic regions. 

 This is a useful working model of NPC carcinogenesis since the molecular 
mechanisms of EBV reproduction and infection are well known, and the mecha-
nisms of EBV carcinogenic transformation have been intensively investigated in 
the laboratory (Rowe  1999 ; Hatzivassiliou and Mosialos  2002 ; Liu et al.  2006 ; 
Martin and Gutkind  2008 ; Pang et al.  2009  ) . Thus, this model identi fi es a num-
ber of speci fi c host genes that may interact with EBV, and these genes constitute 
promising candidates for investigation in candidate-gene association studies 
(CGAS). 

 Genes with potential relevance to NPC and their biochemical functions were the 
subject of a review by Chou and coworkers (Chou et al.  2008  ) . These genes can be 
clustered into biochemical pathways with speci fi c functions, and this has allowed 
a pathway-based approach to both de fi ne the universe of potentially associated 
genes and facilitate the analytical process (Jorgensen et al.  2009 ; Thomas et al. 
 2009a  ) . EBV-related host genes have been the favored genes for interrogation 
in most of the more recent CGAS. We will, therefore, primarily focus on these 
candidate genes here but will also consider genes from other pathways potentially 
related to NPC.  

    4.3   Candidate-Gene Association Studies 

 The CGAS approach has several advantages, the biggest one being that having a 
strong prior probability reduces the number of variant alleles that must be assessed 
and, thereby, preserves statistical power that would otherwise be reduced due 
to the statistical corrections needed to account for multiple comparisons. The 
increased power is particularly important for interrogations of smaller popula-
tions with lower case numbers. Below we review, by metabolic pathway, recent 
CGAS investigations of NPC (<15 years) that have at least 45 cases and were 
published in English. 
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    4.3.1   Apoptosis and Cell Cycle Arrest Pathways 

 Apoptosis – a programmed cell death that eliminates transformed cells – is thought to 
be downregulated in many types of tumors, including NPC. The genes that regulate 
apoptosis often overlap with the regulatory genes for cell cycle arrest – a protective 
response to DNA damage that allows cells time to repair damage before cell replica-
tion proceeds – since apoptosis is often a consequence of faulty arrest. EBV is 
known to inhibit apoptosis by a mechanism that is thought to involve expression 
of viral transforming protein LMP1 (Xiong et al.  2004 ; Grimm et al.  2005 ; Zheng 
et al.  2007a ; Chew et al.  2010  ) , and also to concurrently inhibit cell cycle arrest 
(Pokrovskaja et al.  1999 ; O’Nions and Allday  2003  ) . Therefore, although apoptosis 
and cell cycle arrest represent very different functions, promoting either cell death or 
survival, respectively, the genes for each pathway will be discussed here collectively. 

 The central player of cell cycle arrest and apoptosis functions is the  TP53  gene, 
which codes for the p53 protein. This protein governs both DNA damage-dependent 
cell cycle arrest and apoptosis. EBV nuclear antigen 3C is thought to modulate 
cellular apoptosis by inhibiting transcription of p53 (Saha et al.  2009 ; Yi et al. 
 2009  ) , and thus may contribute to carcinogenesis. Five (Tsai et al.  2002b ; Tiwawech 
et al.  2003 ; Sousa et al.  2006 ; Hadhri-Guiga et al.  2007 ; Xiao et al.  2010  )  of the 
eight apoptosis and cell cycle arrest CGAS (Deng et al.  2002 ; Tsai et al.  2002a,   b ; 
Tiwawech et al.  2003 ; Cao et al.  2006 ; Sousa et al.  2006 ; Hadhri-Guiga et al.  2007 ; 
Xiao et al.  2010  )  looked at p53, and four of these reported signi fi cant associations 
between  TP53  alleles and NPC (Tsai et al.  2002b ; Sousa et al.  2006 ; Hadhri-Guiga 
et al.  2007 ; Xiao et al.  2010  ) . Four studies that speci fi cally looked at a nonsynonymous 
SNP in codon 72 (Tsai et al.  2002b ; Tiwawech et al.  2003 ; Sousa et al.  2006 ; Hadhri-
Guiga et al.  2007  )  were included in a meta-analysis of codon 72 and NPC risk 
(Zhuo et al.  2009b  ) . [A  fi fth study that we omitted here due to its low case number 
(i.e., 20 cases) (Yung et al.  1997  )  was also incorporated into this meta-analysis.] 
Meta-analysis results indicated signi fi cantly elevated risk associated with the codon 
72 proline allele relative to the arginine allele ( P  < 0.0003). 

 There were also signi fi cant associations reported for  FAS  (Cao et al.  2010b  )  and 
 MDM2  (Xiao et al.  2010  )  – genes that are important to apoptosis. Taken together 
with the meta-analysis for  TP53 , an upstream regulator of apoptosis, the CGAS 
reports support a role for DNA damage-induced apoptosis, and possibly cell cycle 
arrest, in NPC risk.  

    4.3.2   Carcinogen Metabolism and Detoxi fi cation Pathways 

 Studies have shown that cytochrome P450 metabolic pathway is important to 
resistance to cancer (Rodriguez-Antona et al.  2009  ) , including nasopharyngeal 
carcinoma (Hou et al.  2007  ) , particularly among EBV seropositive individuals 
(Hildesheim et al.  2001  ) . It has further been demonstrated that the carcinogenic 
activity of nitrosamines requires bioactivation by cytochrome P450 2E1 ( CYP2E1 ) 
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(Yang et al.  1990  ) . N-nitrosamines are among the known components of salt-
preserved foods and tobacco (Haorah et al.  2001  )  – both environmental risk factors 
for NPC. In particular, nitrosamine metabolism-related DNA adducts have been 
linked to NPC (Dodd et al.  2006  ) . Furthermore, the metabolites of these carcinogens 
can generate reactive oxygen species (ROS), which in turn produce base damage, 
single-strand breaks, and double-strand breaks in DNA (Frenkel  1992  ) . For these 
reasons,  CYP2E1  and other P450 enzymes have been considered prime candidate 
genes for association with NPC, and a number of studies have focused on the 
cytochrome P450 genes (Table  4.1 ). In addition, the glutathione transferase genes, 
which are important for recycling glutathione – an extremely important intracellular 
scavenger of ROS – have also been the focus of studies.  

 There were a total of 11 studies focusing on carcinogen metabolism and 
detoxi fi cation genes (Hildesheim et al.  1995,   1997 ; Nazar-Stewart et al.  1999 ; 
Cheng et al.  2003 ; Jiang et al.  2004 ; Tiwawech et al.  2005 ; Tiwawech et al.  2006 ; 
Guo et al.  2008 ; He et al.  2009 ; Jia et al.  2009 ; Guo et al.  2010  ) , but signi fi cant 
associations were only found for GSTM1,  CYP2A6 , and  CYP2E1 . Of the three, the 
evidence for  CYP2E1  was strongest. One report showed a relatively high overall 
risk of 2.6 (95%CI = 1.2, 5.7), but there was no interaction with smoking or alcohol 
consumption (Hildesheim et al.  1997  ) . Another showed elevated risk only among 
smokers (Jia et al.  2009  ) . Nevertheless, seven different loci within the gene were 
statistically signi fi cantly associated with NPC, with P values ranging from 0.014 to 
0.0001 (Jia et al.  2009  ) . Furthermore, the false-positive report probability for six 
SNPs was <0.015, suggesting that the associations were unlikely to be false. 

 For the glutathione transferase genes, a meta-analysis of deletion alleles for 
 GSTM1  and  GSTT1  was conducted (Zhuo et al.  2009a  ) . It included eight studies, but 
four were of small size or written in a language other than English. So only four of 
the studies met our criteria for inclusion here. The meta-analysis indicated a 
signi fi cant association only for  GSTM1  (OR = 1.42; 95%CI = 1.21, 1.66).  

    4.3.3   DNA Repair Pathways 

 DNA repair processes are known to be dysregulated in NPC tumor cells (Cheung 
et al.  2006 ; Dodd et al.  2006 ; Sckolnick et al.  2006  ) . And EBV has been shown to 
both promote DNA damage and interfere with its repair (Liu et al.  2004,   2005 ; 
Iwakawa et al.  2005 ; Bailey et al.  2009 ; Gruhne et al.  2009 ; Wu et al.  2009  ) . In addi-
tion, it is long established that normal DNA repair capacity is important to cancer 
resistance (Berwick and Vineis  2000  ) . It has also recently been reported that DNA 
repair genes may affect seroreactivation of EBV (Shen et al.  2011  ) , which is highly 
correlated with increased NPC risk (Tam and Murray  1990 ; Ji et al.  2007  ) . Therefore, 
DNA repair genes represent good candidates for NPC association studies. 

 There were eight (Cho et al.  2003 ; Yang et al.  2007,   2008,   2009 ; Zheng et al. 
 2007b,   2011 ; Cao et al.  2006   ; Qin et al.  2011  )  studies of DNA repair genes, 
encompassing a total of 90 different genes. Signi fi cant associations were reported 
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for only four genes ( XRCC1 ,  XPC ,  ERCC1 , and  RAD51L1 ). One of these genes, 
 XRCC1 , was reported to be signi fi cantly associated in three different studies 
(Cho et al.  2003 ; Yang et al.  2007 ; Cao et al.  2006    ) . And in one of those studies, 
 XRCC1  signi fi cance survived even after Bonferroni correction for multiple com-
parisons (Cao et al.  2006    ) . However, the same variant allele (194Trp; rs1799782) 
was reported to be associated with risk (OR homozygous variant = 4.79; 
95%CI = 1.48,15.52) in one study (Yang et al.  2007  ) , while associated with 
protection (OR homozygous variant = 0.48; 95%CI = 0.27,0.86) in another (Cao 
et al.  2006    ) . A third study (Cho et al.  2003  )  reported a protective association for 
a different allelic variant of  XRCC1  (280His, rs25489), but this failed to validate 
in one of the other two studies (Yang et al.  2007  ) . And a recent study that geno-
typed 13 haplotype-tagging SNPs across the entire  XRCC1  gene (Qin et al.  2011  )  
failed to detect any signi fi cant associations with NPC (see below). These differ-
ences in qualitative and quantitative association  fi ndings for  XRCC1 , some for the 
exact same alleles, raise doubts about biological relevance of these statistically 
signi fi cant associations. So despite the three separate reports of  XRCC1  variant 
alleles being associated with NPC, a role of  XRCC1  in NPC risk remains 
questionable. 

 In a recent investigation of 88 DNA repair genes, including  XRCC1 ,  XPC , and 
 ERCC1 , multiple haplotype-tagging SNPs were used to cover the entire sequence of 
each gene (Qin et al.  2011  ) . Seven SNPs within three different genes ( RAD51L1 , 
 BRCA2 ,  TP53BP1 ) were found to be signi fi cantly associated with NPC in the dis-
covery stage (cases/controls = 755/755). However, in the subsequent validation stage 
in a separate study population (cases/controls = 1,568/1,297), only two SNPs that 
were in strong LD with each other ( r   2   = 0.7) maintained signi fi cance. These SNPs 
were both within the  RAD51L1  gene, which codes for a protein important for regu-
lation of homologous recombinational DNA repair. Interestingly, a recent three-
stage GWAS of breast cancer (cases/controls = 9,770/10,799) mapped the 
susceptibility locus to  RAD51L1  (Thomas et al.  2009b  ) , supporting a very important 
role for this DNA repair gene in carcinogenesis. Conversely, the well-characterized 
homologous recombinational DNA repair and familial breast cancer risk gene, 
 BRCA2 , had two SNPs that associated with NPC in the discovery stage of this study; 
however, both failed to validate. Nevertheless, these similar genetic  fi ndings for the 
two cancers suggest a potential commonality in the etiology of NPC and breast 
cancer, at least in terms of DNA repair, and support the notion that dysfunctional 
homologous recombinational DNA repair promotes cancer risk.  

    4.3.4   Cytokines and Growth Factors 

 Various cytokines stimulate cell growth and proliferation and are thought to play 
important roles in the carcinogenic phenotype for several cancers, and cytokines are 
known to interact with EBV-infected cells (Mosialos  2001 ; Kis et al.  2006  ) .  VEGF  
and  EGF  have been reported to be modulated by EBV infection (Miller et al.  1995 ; 



454 From Family Study to Population Study: A History of Genetic Mapping…

Tao et al.  2004 ; Stevenson et al.  2005 ; Krishna et al.  2006 ; Kung et al.  2011  ) , and 
these have received some attention in NPC studies. 

 There were four studies of cytokines and growth factors (Wei et al.  2007c ; 
Gao et al.  2008 ; Nasr et al.  2008 ; Wang et al.  2009a  ) . Two studies reported 
signi fi cant associations between NPC and  VEGF  (Nasr et al.  2008 ; Wang et al. 
 2009a  ) , but both had only marginal signi fi cance ( P  < 0.030 and  P  < 0.029), and 
neither was corrected for multiple comparisons, which would have extinguished 
their signi fi cant. A study of TNF-beta1 showed associations with NPC at two 
different loci with similar point estimates (1.63 and 1.70, respectively) and P values 
(0.009 and 0.006, respectively) (Wei et al.  2007c  ) . But none of these studies have 
been validated.  

    4.3.5   Cell Adhesion 

 Proteins that play a role in cell adhesion often contribute to immunological function, 
stem cell differential, and tumor metastasis (Hirohashi and Kanai  2003 ; Crowson 
et al.  2007 ; Madson and Hansen  2007 ; Watt et al.  2008 ; Florian and Geiger  2010  ) . 
Two association studies focused on the possible association of cell adhesion genes 
with NPC. In one study, the promoter region of the dendritic cell-speci fi c intercellular 
adhesion molecule 3-grabbing non-integrin (DC-SIGN) – a pathogen recognition 
receptor that plays an important role in the susceptibility to various infectious 
diseases – was sequenced in 444 NPC patients and 464 controls (Xu et al.  2010  ) . 
Results showed a highly signi fi cant protective haplotype (OR = 0.69;  P  < 0.0002) 
that retained signi fi cant after 1,000 permutation test runs ( P  < 0.001). This suggests 
that expression of the  DC-SIGN  gene may affect NPC susceptibility, possibly by 
modifying resistance to EBV infection. 

 In another study, the frequency of a variant of the E-cadherin gene promoter that 
had been demonstrated to modify gene expression during  in vitro  cell transfection 
assays (i.e., proved to be functional) was compared in 162 cases and 140 controls 
(Ben Nasr et al.  2010  ) . Signi fi cantly increased risk of NPC for the variant carriers 
was observed (OR = 2.02;  P  < 0.008). There was also a stronger association for NPC 
with the variant for early-onset ( £ 30 years old) NPC – OR = 3.86;  P  < 0.001 – which 
is consistent with genetically based risk (Hemminki et al.  2004  ) .  

    4.3.6   Tumor Suppressor Genes and Oncogenes 

 Tumor suppressor genes and oncogenes are carcinogenesis genes, and they are 
always prime candidates for cancer association studies.  TP53  is the most well-
characterized tumor suppressor gene, and it plays well-described roles in both 
apoptosis and cell cycle arrest. For this reason, NPC association studies of  TP53  
were reviewed in the apoptosis and cell cycle arrest section above. But apart from 
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 TP53 , three other studies investigated potential associations between carcinogenesis 
genes (FUS2, DCL-1, and Tx) and NPC (Duh et al.  2004 ; Ren et al.  2005 ; Feng 
et al.  2008  ) . Of these genes, a signi fi cant association was only reported for a variant 
of the  Tx  gene ( P  < 0.007) (Ren et al.  2005  ) . The  Tx  gene is a transforming gene that 
was isolated from an NPC cell line by DNA transfection and cloning techniques (Li 
et al.  2001  ) . Bioinformatics approaches have shown the transforming gene to be an 
aberrant immunoglobulin kappa light chain gene containing a constant region,  fi ve 
intact joining regions, and  fi ve recombination signal sequences, but lacking the nor-
mal variable regions. The fact that this alternative  in vitro  screening approach has 
identi fi ed a gene with immunological function as a novel NPC tumor suppressor 
gene supports the notion that immune genes may affect NPC risk (see below). 
Nevertheless, the CGAS that reported the NPC risk association for  Tx  was quite 
small (82 cases/80 controls) and has not yet been validated.  

    4.3.7   DNA Methylation 

 A number of studies have suggested that epigenetic factors in fl uence gene expres-
sion in NPC (Lo and Huang  2002 ; Fendri et al.  2009,   2010 ; Niller et al.  2009 ; Wang 
et al.  2009b,   2010a  ) . Furthermore, promoter methylation is thought to be an impor-
tant epigenetic mechanism for controlling gene expression in most cancers 
(Watanabe and Maekawa  2011  ) , and EBV has been shown to interact with cellular 
DNA methylation processes (Niller et al.  2009  ) . Nevertheless, only one study has looked 
at the DNA methylation pathways for candidate NPC genes (Cao et al.  2010a    ) . That 
study revealed a highly signi fi cant association between an allele of the methyle-
netetrahydrofolate reductase ( MTHFR ) gene and NPC ( p  < 0.0006). There also was 
an indication of an interaction with smoking.  MTHFR  plays an important role in 
converting folate into a donor for DNA methylation, and thus could dysregulate 
DNA methylation patterns. However, these reported associations with NPC have 
not yet been validated.  

    4.3.8   Immunological Functions 

 HLA class I genes reside in a highly polymorphic gene region on chromosome 6 
(6p21.3) and encode the proteins responsible for presenting foreign antigens to the 
immune system. As early as 1974,  HLA  variants were implicated in NPC risk 
(Simons et al.  1974  ) , and in 1990 an  HLA -linked loci was reported to be associated 
with a 21-fold increase in risk (Lu et al.  1990  ) . Because of the connection between 
NPC and EBV infection, the notion of host immunological genes affecting NPC 
risk has been considered mechanistically plausible and etiologically attractive, 
and many studies have focused on  HLA  associations. But there have been some 
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obstacles to their interpretation. Although, certain HLA class I alleles have been 
consistently shown to be associated with NPC risk, the reported associations are 
often race, ethnicity, or geographic region dependent. In addition, the  HLA  region 
has been disproportionately interrogated relative to the rest of the genome, suggest-
ing that there might be elevated false-positive rates due to multiple comparisons, 
and likely some publication bias. Lastly, the  HLA  alleles associated with NPC are in 
LD with other genes, both immunological and nonimmunological, inside and out-
side the  HLA  region. For the reasons above, de fi nitive conclusions about the role of 
HLA genes in NPC have been elusive. 

 There are two recent comprehensive reviews of the  fi ndings from  HLA  studies 
(Hassen et al.  2009 ; Li et al.  2009  ) , so those studies are not reviewed here. But we 
address below whether the recent CGAS and GWAS support an association between 
immunological genes and NPC, and whether they inform our understanding of the 
role of immunologic genes in general, or HLA genes in particular, in NPC risk. 

 A total of 19 CGAS have looked at various immune pathway genes (Tsai et al. 
 2002a ; Hirunsatit et al.  2003 ; Jalbout et al.  2003 ; Ho et al.  2006 ; Pratesi et al.  2006 ; 
Song et al.  2006 ; Zhou et al.  2006 ; Ben Nasr et al.  2007 ; Hassen et al.  2007 ; He et al. 
 2007 ; Wei et al.  2007a,   2007b,   2010b ; Farhat et al.  2008 ; Zhu et al.  2008 ; Gao et al. 
 2009 ; Nong et al.  2009 ; Xiao et al.  2009 ; Sousa et al.  2010  ) , and 15 different immune 
genes were studied. The interleukin genes were the largest group of immunological 
genes investigated. Nine studies looked at a total of six interleukin genes ( IL-1B , 
 IL-2 ,  IL-8 ,  IL-10 ,  IL-16 ,  IL-18 ), and all of the genes were reported to be associated 
with NPC in at least one study (Table  4.1 ). However, only one gene, IL-8, was 
reported to be associated with NPC in two separate studies (Ben Nasr et al.  2007 ; 
Wei et al.  2007b  ) . 

 The Toll-like receptors (TLRs) were another group of immunological genes that 
received attention. TLRs play an essential role in initiating the immune response 
against pathogens and can recognize a wide variety of pathogen-associated molecu-
lar patterns from bacteria, viruses, and fungi (de la Barrera et al.  2006  ) . For this 
reason, TLRs were considered candidate genes. To date, three different TLR genes 
( TLR-3 ,  TLR-4 ,  TLR-10 ) were investigated in three different studies (Song et al. 
 2006 ; Zhou et al.  2006 ; He et al.  2007  ) , and all were reported to be associated with 
NPC. In contrast, the  TNFA  gene was investigated in four studies, but only one study 
found a signi fi cant association (Sousa et al.  2010  ) , and even that association was 
marginal ( P  < 0.047). 

 The most highly signi fi cant association for an immunological gene was reported 
for the  PIGR  gene ( P  < 0.00001), which also had the largest reported effect size 
(OR = 2.71; 95%CI = 1.72, 4.23). The  PIGR  gene is part of the immunoglobulin 
superfamily and encodes a poly-Ig receptor that binds to polymeric immunoglobu-
lin molecules at the basolateral surface of epithelial cells (Brandtzaeg  2009  ) . Once 
bound, the complex is then transported across the cell to ultimately be secreted at 
the apical surface.  PIGR  has a role in maintaining mucosal immunity, including 
mucus tissues of the nasopharynx. So it is possible that  PIGR  can modify suscepti-
bility to EBV infection, and this may support a role for HLA genes, although a 
direct connection between HLA genes and  PIGR  has not been established. 
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 Another study took a somewhat different candidate-gene approach. These 
investigators interrogated 15 genes within the 6p21.3 chromosomal region, regard-
less of their putative function. They found highly associated SNPs in three genes 
from this region –  GABBR1 ,  HLA-A , and  HCG9  – with relatively low Bonferroni-
corrected P values (0.0004, 0.0005, 0.0017, respectively). These  fi ndings strongly 
support the notion that the 6p21.3 region associates with NPC. But, because of 
high LD across the region, it is not clear whether these genes are in the NPC causal 
pathway or just represent good markers for a still unknown causative locus within 
the region. 

 In conclusion, the 19 CGAS that focused on immunological genes provide some 
supportive evidence for associations of immunological genes with NPC. However, 
with the possible exceptions of  IL-8  and  PIGR , which had duplicate reports and a 
very low P value, respectively, the evidence is not very compelling. Few of the 19 
studies corrected for multiple comparisons, nor did any validate their  fi ndings. And 
none investigated a possible interaction between the allegedly associated gene and 
EBV infection or exposure. Also, signi fi cant associations between NPC and genetic 
markers in genes selected because of their location within the 6p21.3 region further 
support the importance of this chromosomal region to NPC development, but do not 
inform us on the importance of their speci fi c gene function to NPC. Taken together, 
these studies of immunological gene associations neither supported nor detracted 
from the proposition that HLA genes in fl uence NPC risk.   

    4.4   Genome-Wide Association Studies 

 Two GWAS have focused on NPC endemic populations – one Taiwanese (Tse et al. 
 2009  )  and the other Southern Chinese (Bei et al.  2010  ) . The Taiwanese study had 288 
NPC cases and 297 controls, while the larger Cantonese study had 1,583 cases and 
1,897 controls (in the discovery stage). Despite the differences in sample sizes, both 
studies identi fi ed their most signi fi cant signal in the  HLA  region (6p21) (Fig.  4.1 ).  

 The Taiwanese GWAS (Tse et al.  2009  )  were the  fi rst investigation to identify 
 GABBR1  at 6p21.31 as a promising candidate gene. Furthermore, the difference in 
the expression levels  GABBR1  between NPC tumors and the adjacent normal epi-
thelial tissues suggested an importance of  GABBR1  in development of NPC. More 
interestingly, when the  GABBR1  transcript and protein levels in NPC cell lines 
were examined, downregulation of  GABBR1  protein in two NPC cell lines (AA 
genotype at rs29232) was observed compared with the immortalized nasopharyn-
geal epithelial cell line NP69 (AG genotype at rs29232). The risk allele of rs29232 
was “A,” and thus the homozygous carrier of A allele exhibited a lower protein 
level than the heterozygous carrier. On the other hand, the Taiwanese study did not 
compare the  GABBR1  transcript and protein expression levels between normal and 
cancer cell lines. Therefore, more work is needed to elucidate the relationship 
between the carriers of the “A” allele and levels of gene expression. In a follow-
up study carried out by another group (Li et al.  2011  ) , there was shown to be a 
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downregulation of  GABBR1  transcripts in NPC tumors, which may suggest that 
downregulation of  GABBR1  expression is one of the tumorigenic mechanisms. 
However,  GABBR1  encodes a G-protein-coupled subunit of the gamma-aminobutyric 
acid (GABA) B receptor 1. Its ligand – gamma-aminobutyric acid (GABA) – is the 

  Fig. 4.1    GWAS showing evidence for the association of  HLA  and nasopharyngeal carcinoma risk. 
 Panel a . Manhattan plot of the genome-wide P values of association for the mainland GWA study 
in Southern China (Bei et al.  2010  ) .  Panel b . Manhattan plot of the genome-wide P values of asso-
ciation for the GWA study in Taiwan (Tse et al.  2009  )        
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main inhibitory neurotransmitter in central nervous system and is not known to 
have a role in nonneuronal tissue. So it is dif fi cult to envisage how the  GABBR1  
gene might affect NPC risk. Nevertheless, in tissue expression comparisons, T and 
B lymphocytes have the next highest levels of  GABBR1  expression after neuronal 
tissues (Burren et al.  2010 ; T1DBase team  2011 ), suggesting a role for GABBR1 
in immune function. Regardless of its mechanism,  GABBR1 ’s possible involvement 
in NPC etiology warrants further research. 

 The Cantonese study (Bei et al.  2010  )  also found an association within the  HLA  
region on 6p21. Further, they reported three novel NPC susceptibility loci on 3q26, 
9p21, and 13q12 and identi fi ed several novel risk genes:  TNFRSF19  (tumor necrosis 
factor receptor superfamily, member 19),  MDS1-EVI1  (a zinc- fi nger DNA-binding 
transcription activator), and the  CDKN2A-CDKN2B  gene cluster (cyclin-dependent 
kinases involved in cell cycle arrest). All of these genes have previously been shown 
to be involved with leukemia, supporting their role in carcinogenesis. And it has been 
shown that NPC patients are at higher risk of developing leukemia (Scelo et al.  2007  ) , 
so it can be hypothesized that NPC and leukemia may share common genetic risk 
factors. But it is possible as well that EBV infection is a risk factor for both NPC 
and leukemia (Tedeschi et al.  2007  ) . It is also notable that the  CDKN2A-CDKN2B  
gene cluster is deleted in about 40% of NPC tumors, suggesting a potential tumor 
suppressor function at this locus (Lo and Huang  2002  ) .  

    4.5   Discussion 

 There have been multiple CGAS of NPC that have used pathway-based approaches 
to select candidate genes for interrogation, and a number of SNP variants have been 
reported to be statistically signi fi cantly associated with NPC. Most of these associa-
tions have had small effect sizes and marginal statistical signi fi cance, which might 
be expected based on what we already know about SNP associations with disease 
and the statistical power needed to detect those associations (Park et al.  2010  ) . 
Nevertheless, it is the prevalence of these variants in the population, rather than the 
magnitude of the effect sizes, which drives their potential relevance to the attribut-
able risk of NPC. Of more concern is the fact that few of the reported gene variant 
associations have been validated in a second study population, and very few have 
been shown to be biologically functional or in LD with any functional locus, leaving 
most reported associations uncon fi rmed and inconclusive. 

 Earlier family studies have linked  HLA  loci with NPC risk, and this has precipi-
tated a large number of CGAS that have focused on genes involved in immunologi-
cal functions both inside and outside of the  HLA  region. Although these studies 
have reported some associations between immunological gene variants and NPC, 
they cannot be considered independent con fi rmations of immunologically based 
risk, because the immunological genes have been disproportionately interrogated 
relative to the rest of the genome, so there is an oversampling bias for immune genes. 
Also, there has not been any obvious patterns of association for the immunological 
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genes, and the reported variants are often synonymous coding variants, or in introns 
or other noncoding sequences. This suggests that they must be in LD with an 
unidenti fi ed functional variant in neighboring sequences, if they are truly associated 
with NPC risk. 

 In contrast, GWAS have independently con fi rmed an association between the 
 HLA  region and NPC risk, but have shed no further insight on mechanisms. The 
associated GWAS markers are unlikely to directly impact function themselves, 
again suggesting that they are in LD with yet to be identi fi ed functional loci. None 
of the genes with CGAS reports of associations have turned up in the GWAS, and 
the genes that have been found to be associated with NPC by GWAS were not inter-
rogated in any of the CGAS reports. Thus, there have been no cross con fi rmations 
between CGAS and GWAS. Failure for GWAS to con fi rm associations reported by 
CGAS does not invalidate the CGAS  fi ndings, since a variety of factors can in fl uence 
the sensitivity of GWAS to detect any particular associated SNP. Thus far, GWAS 
investigations of various diseases have only been successful in con fi rming those 
candidate-gene associations that had very large effect sizes (Siontis et al.  2010  ) . 
A contributing factor to the paucity of con fi rmations by GWAS is that CGAS, unlike 
GWAS, do not use standardized platforms and procedures, making direct compari-
sons between GWAS and CGAS dif fi cult. Nevertheless, the lack of con fi rmation 
with GWAS is disheartening. 

 As for the NPC-associated genes identi fi ed by GWAS, only a couple seem to be 
involved in the major candidate pathways, and it is not immediately obvious 
how their known or proposed functions directly modify NPC risk. Thus, they do 
not appear to inform our current understanding of the carcinogenic mechanisms 
of NPC. Again, the gene function associated with the genetic marker needs to be 
identi fi ed and characterized in order to capitalize on the discovered association with 
NPC, even if the association  fi ndings are valid. 

 Regarding GWAS con fi rmation of NPC’s association with the  HLA  locus, this 
 fi nding is gratifying but anticipated. The previous association with  HLA  found 
through family studies is so strong and reproducible (Li et al.  2009  )  that it is hard to 
see how this strong association would not be seen with GWAS. But the GWAS 
 fi ndings do not provide us with any higher resolution of the disease region than the 
linkage analyses do. So GWAS do not bring us any closer than before to the risk 
gene in the  HLA  region. Also, it is not even clear that risk associated with the  HLA  
region has anything to do with HLA genes. This region of the genome is rich 
in genes and rich in diseases that associate with it, including multiple sclerosis, 
epilepsy, schizophrenia, Hodgkin and non-Hodgkin lymphomas, chronic lymphocytic 
leukemia, and breast cancer (McKnight et al.  2009 ; Hawthorn et al.  2010 ; Meng 
et al.  2010 ; Slager et al.  2010 ; Vrzalova et al.  2010 ; Wang et al.  2010b ; Zollino et al. 
 2010 ; McElroy and Oksenberg  2011 ; Moutsianas et al.  2011  ) , and most of these 
diseases are not thought to be primarily due to an  HLA  dysfunction. With the advent 
in whole-genome sequencing technology, we anticipate that there will be better 
de fi nitions for NPC-relevant haplotypes in the  HLA  region, and further biological 
mechanism related to NPC will be clari fi ed with the emergence of reliable haplotypes 
and adequate sample sizes in future studies. 
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 It may be that our knowledge of NPC disease etiology is too imperfect to reliably 
identify likely biochemical pathways for risk modi fi cation. In the advent of GWAS 
of NPC, perhaps the best use of the candidate-gene approach is to perform high-
density SNP interrogations within genomic regions of interest as identi fi ed by GWAS. 
This is the approach taken in two NPC association reports (Guo et al.  2006 ; Li 
et al.  2011  ) . One of these (Li et al.  2011  )  was able to con fi rm in a different population 
the association of NPC with the  GABBR1  gene that was discovered in an earlier 
GWAS (Tse et al.  2009  ) . This association withstood even Bonferroni correction for 
multiple comparisons and is, therefore, quite robust despite the modest effect size 
(OR = 1.67; 95%CI = 1.48, 1.88) of the original GWAS report. 

 Another value of validation by CGAS is that it can typically be achieved in a 
different and smaller study population. These smaller populations are much more 
likely to have complete and useful environmental exposure data, which in turn pro-
vides the potential to assess possible gene-environment interactions. Although it 
should also be possible to explore gene-environmental interactions with GWAS, there 
is seldom adequate exposure information for these larger, often pooled, study popula-
tions. Environmental exposure data allow for adjustments for the environmental 
risk factors and also for assessment of gene-environment interactions in a way that is 
typically not achievable in large GWAS. Controlling for environmental risk factors 
may have the added advantage in that it may boost the power to detect the genetic 
associations. This would be particularly relevant for NPC, where multiple environ-
mental risk factors are known and there are geographic pockets of populations at 
risk. Nevertheless, few of the CGAS to date have utilized environmental data in 
their analytical design. Doing so could signi fi cantly augment the value the CGAS 
approach for NPC. 

 Clearly, GWAS have provided an avenue for evaluation of the association 
between common genetic variants and human diseases. However, most variants 
identi fi ed by GWAS seem to be merely markers rather than being causal for disease, 
and this is undoubtedly the case for NPC. We also know that for the diseases with 
large heritability estimates (i.e., 60–80%) such as NPC, only 5–10% of that herita-
bility has been found by GWAS. 

 The main limitations of GWAS are the following: (1)  Low power due to the issue 
of multiple testing.  To increase the power, populations with large sample sizes might 
help to solve these problems. Although the cost of genotyping has been reduced 
dramatically with the advances of technology, collecting large numbers of patients 
will still be an obstacle. In addition, the power of an interaction study in for GWAS 
dataset is typically low, and analyzing large number of variables in various combi-
nations becomes computationally challenging. (2)  Population differences.  Some SNPs 
that are tightly associated with a disease in one population may be only weakly 
associated with the same disease in other populations. Since many GWAS are based 
on case–control designs, the effect of population admixture could be substantial, 
and the association, to a large extent, may depend on ethnicity-related factors. 
(3)  GWAS are mainly focused on single-nucleotide variations.  Copy number 
variations (CNVs), structural variations (SVs), and deletions have received less 
attention, and (4) gene-gene interactions and gene-environment interactions have 
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often been neglected. In most GWAS, due to the small effect sizes of common 
SNPs, methods used for detecting potential interactions are typically underpowered. 
Large sample sizes and improved analytical techniques might ease these problems. 

 The limitations of GWAS compel epidemiologists and geneticists to further 
consider the contributions of CNVs, SVs (Bansal et al.  2010  ) , gene-gene and gene-
environment interactions, and, in particular, the joint contribution of rare variants 
(frequency less than 1%) to human diseases (Bansal et al.  2010  ) . The advent of 
revolutionary high-throughput sequencing technology (also called “next-generation” 
sequencing or NGS, paralleled sequencing) has paved a way for a better understand-
ing of the origins of human cancer. As a superior model to study  HLA  and virus 
infection and environment-virus-gene interaction, it is plausible to conduct genetic 
study on NPC using next-generation sequencing. The interpretation of carcinogen-
esis of NPC might largely depend on acquiring genetic information from both 
virus and the host, and also the elucidation of their interactions with environmental 
risk factors. 

 Finally, causal variants for NPC will only be found by complete genomic 
sequencing of cases and controls. Currently, we still need to rely on the CGAS and 
GWAS to identify smaller genomic regions where we can focus our sequencing 
efforts. To achieve this goal, CGAS, GWAS, and NGS need to be harmonized with 
each other in order the extract the most information possible from the limited num-
ber of populations available for study. In this regard, the power limitations of GWAS 
due to multiple-comparison corrections should be taken into account, and some 
consideration should be afforded even to nonsigni fi cant multiple-comparison-
adjusted SNPs if their effects sizes are large or if the  fi ndings are supportive of an 
earlier reported CGAS association. Likewise, CGAS should incorporate the current 
GWAS platform markers, in order to validate reported GWAS associations. If this is 
not possible, then analyzing highly correlated SNPs may still allow informative 
cross comparisons between CGAS, GWAS, and NGS results. 

 In short, GWAS should not be viewed as superseding CGAS in the search for 
NPC-associated genetic variants, since both approaches have their strengths and 
weaknesses. However, it is relatively easier to replicate  fi ndings in independent 
GWAS than in CGAS. CGAS  fi ndings are often harder to be replicated due to the 
difference in platforms, imperfect tagging in some of the studies, and impact of 
population strati fi cation. (In CGAS, researchers do not typically have a large enough 
number of SNPs to correct for potential population strati fi cation.) Still, the two 
approaches should be viewed as complementary to each other and preliminary to 
direct sequencing. In the advent of GWAS technology, the best use of CGAS may 
be to con fi rm GWAS  fi ndings by blanketing the region of interest with high-density 
SNP coverage, and thereby validating the GWAS association, while also setting the 
stage for subsequent validation by deep sequencing. 

 The biggest challenge ahead for NPC is likely to be the characterization of gene-
environmental interactions. In light of the very high prevalence of EBV infection 
within the high-risk populations, it may be dif fi cult to achieve the power necessary 
to demonstrate interactions between EBV and genetic factors, unless the interactions 
are very strong. Unfortunately, the potential strength of interactions is something 
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that cannot either be assessed or predicted, based on current data from either CGAS 
or GWAS, and statistical methodologies for quantifying and assessing interactions 
have not yet been validated. Given the presumed necessity that persons at genetic 
risk of NPC avoid environmental NPC exposure risks, the importance of this 
information to targeting public health prevention interventions cannot be overstated 
and is an area that warrants further scienti fi c attention.      
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  Abstract   Genetic mapping of quantitative trait loci (QTL) offers a powerful and 
ef fi cient approach to discover putative regulatory regions of traits and to de fi ne 
novel functional implications of genetic variants. Here we reviewed recent progress 
on QTL mapping of molecular traits, including gene expression, DNA methylation, 
as well as protein expression, metabolites. QTL mapping of molecular traits has 
better chance to succeed in relatively small sample size study as fewer nongenetic 
factors or gene-gene interactions may involve. Knowledge derived from QTL map-
ping will help us to uncover understanding of biology in complex traits and diseases 
and enhance power of genetic association study. In the context of study of complex 
diseases, we focused on expression QTL and methylation QTL, presenting major 
 fi ndings and technique considerations, including experimental platform, sample 
quality, size, and heterogeneity, as well as analytical procedure and signi fi cance 
criteria. Lastly, we discussed the current and future use of QTL data in study of 
complex diseases.  

  Keywords   Complex diseases  •  DNA methylation  •  eQTL  •  mQTL  •  pQTL      

    5.1   Introduction 

 Complex diseases, such as diabetes, Crohn’s disease, asthma, and many neuropsy-
chiatric diseases, have multiple genetic and environmental factors involved. 
Although genetic contribution is apparent, transmission in families do not obey the 
Mendelian rules of inheritance. High prevalence in population, strong heterogeneity, 
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incomplete penetrance, and complex spectrum of phenotypes are frequently 
observed for these diseases. Identi fi cation of their genetic factors promises to bring 
us better understanding of the disease etiology, new treatment, and most importantly 
personalized medicine. But the path reaching this goal is not easy. Actually, it is 
much more dif fi cult than study of rare Mendelian disorders. Prior to 2005, genome-
wide linkage and association studies were thought to be the silver bullets to nail 
down all the common risk genes. Unfortunately, the reality showed us the complex-
ity beyond what we have expected. 

    5.1.1   Genome-Wide Association Study and Its Limitation 

 Genome-wide linkage and association studies made full use of the gradually 
improved genetic map of human genome. With millions of genetic variants, par-
ticularly single nucleotide polymorphisms (SNPs) identi fi ed throughout human 
genome, Affymetrix and Illumina provide affordable SNP microarray or BeadChip 
for “unbiased,” hypothesis-free, genome-wide association test for study of any 
common diseases or traits. 

 Since 2005, with thousands even tens of thousands of samples recruited in 
each study, genome-wide association studies (GWAS) have made signi fi cant 
progress. NHGRI Catalog of Genome-Wide Association Studies (  http://www.
genome.gov/gwastudies    ) has collected more than 1,100 GWASs of more than 
590 diseases or traits by the end of 2011. Except for a few diseases like age-
related macular degeneration (ARMD, (Klein et al.  2005  ) ), most of the diseases 
only have weak-effect loci revealed with odds ratio less than 2. “Missing herita-
bility” has been the most complaint heard about GWAS (Manolio et al.  2009 ; 
Eichler et al.  2010  ) . Actually, “missing biology” may be more problematic: Most 
of the discovered associations linking to SNPs do not have obvious biological 
functions as they are frequently located in intronic or noncoding regions. One 
example is the GWAS signal identi fi ed for the bipolar disorder as summarized in 
Table  5.1 . Most of the associated SNPs are in intronic or intergenic regions with 
no obvious function.  

 Meanwhile, with the linkage disequilibrium (LD), a SNP association frequently 
cannot really pinpoint to a speci fi c gene in a genomic region. Only until we have 
one speci fi c gene and its causal functional variants actual being identi fi ed, we will 
be able to put together the puzzle pieces of the disease biology. The disease gene 
and biological pathway can then be revealed and followed-up. 

 One example is the synonymous coding variant in  PBRM1  gene, rs2251219, 
which was reported to be associated with bipolar and major depression by McMahon 
et al.  (  2010  ) . It was replicated in bipolar but not in major depression (Breen et al. 
 2011  ) . rs2251219 has a nearby nonsynonymous (V355M) variant, rs2289247, in the 
gene  GNL3  (GTPase nucleostemin), which was involved in proliferation of stem 
cells, especially in the central nervous system. Our analysis showed that rs2251219 
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is associated with expression of  GNL3  at both exon and transcript level, in both 
cerebellum and parietal cortex. Therefore, we propose that  GNL3  may be the actual 
risk bipolar disorder gene rather than  PBRM1 , although rs2251219 is 142 Kb away 
from rs2289247. This example also shows that an eQTL could be located right 
inside another gene. Different genes may share not only exons but also regulatory 
elements. Current SNP annotation using only physical location could be function-
ally misleading. 

 While researchers are still working hard to collect more samples to improve sta-
tistical power of GWAS, aiming to identify more weak-effect risk genes, integrating 
knowledge of biological functions of genetic variants into GWAS might be an 
important alternative approach to enhance GWAS power so that weak-effect risk 
genes can be discovered without increasing sample size. 

 Study of biological function of genetic variants will bene fi t both recovering 
missing biological mechanism and discovering of novel weak-effect risk genes.  

    5.1.2   Functionality of Genetic Variants 

 Genetic variants could have their functions de fi ned at various biological levels, from 
molecular functions such as gene expression, protein and lipid level, cellular func-
tions such as cell structure and nerve excitability, to tissue and organ functions such 
as brain activity, till high-order functions such as human cognitive and emotion 
behaviors. In general, the higher level the function is, the more genetic and environ-
mental factors can be involved. Although some high-level functions could be prod-
ucts of relatively simple genetic variants, majority of the high-level functions such 
as human behaviors will have many genetic and environmental factors interplayed, 
consequently, have weaker correlations with genetic variants than gene expression mea-
sures do. It is natural to assume that many higher level functions are built upon orga-
nization of lower level functions. Therefore, study of biological functions at molecular 
level, which are in scope of many -omics, such as genomics and epigenomics, 

   Table 5.1    Bipolar disorder GWAS signals reaching genome-wide signi fi cance   

 Study  Gene  SNPs  Locations 

 PGC (Sklar et al.  2011  )   CACNA1C, ODZ4  rs4765913;  Intronic 
 rs12576775 

 Cichon et al.  (  2011  )   NCAN  rs1064395  3 ¢ UTR 
 McMahon et al. 

(Baum et al.  2008  )  
 PBRM1  rs2251219  Cds-synon 

 Wang et al.  (  2010  )   ASTN2, GABRR1  rs11789399  Intergenic 
 Huang et al.  (  2010a  )   ADM  rs6484218  Intergenic 
 Liu et al.  (  2011  )   CACNA1C  rs1006737  Intronic 
 Ferreira et al.  (  2008  )   ANK3  rs10994336  Intergenic 
 Baum et al.  (  2008  )   DGKH  rs1012053  Intronic 
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deemed to be more fruitful as bigger effect size of genetic variants is expected for 
those traits. These studies will also be essential for understanding of higher level 
phenotypes. 

 Here, we will focus on reviewing recent studies of SNP functions measured by 
genomic and epigenomic methods. Genetic mapping is making more and more con-
tributions to the study of these functionalities, as it can discover novel functions of 
genetic variants more ef fi ciently than traditional biochemical or mutagenesis, trans-
genic animal experiments. Certainly, similar to all other association tests, genetic 
mapping reveals the statistical correlation between measure of a quantitative trait 
and a genomic region. The correlation can only suggest but never prove a causal 
relationship. The actual biology, cause-consequence relationship has to be estab-
lished through follow-up experiments.  

    5.1.3   QTL Mapping and Genetic Variants 

 A quantitative trait can be recorded as a continuous variable in a population. The 
earliest study of a quantitative trait was enzyme activity (Schwartz  1962  ) . Genetically 
mapping quantitative traits, or quantitative trait loci (QTL), began in the 1980s since 
DNA markers were introduced. 

 Mapping of QTLs, just like other genetic traits, can use both linkage and association 
methods. Linkage includes variance components analysis, regression, and nonpara-
metric methods. Association test can be either family-based test or population-based 
test. In general, successful association studies produce better resolution than suc-
cessful linkage studies. This chapter focuses on GWAS mapping of QTL in human. 
QTL mapping can be performed in animal or other model species, like mouse or 
yeast. They are not covered here. 

 A very fruitful practice of QTL mapping so far is the mapping of gene expression 
quantitative traits loci (eQTLs). eQTL mapping started about 15 years ago (Damerval 
et al.  1994  ) . After GWAS was implemented, eQTL mapping study bloomed. Other 
molecular QTL Including gene methylation QTL (mQTL), protein QTL (pQTL), 
and others, gradually have also been presented. Creative use QTL mapping is opening 
a broad venue toward understanding of biology and complex traits.   

    5.2   QTL Mapping of Molecular Traits 

 Molecular traits are de fi ned as phenotypes that can be assessed, mostly quantita-
tively, at molecular level in contrast to morphological phenotypes and behavioral, 
psychological measures. Molecular traits include most of the molecules that are 
currently measured by biochemical and molecular biological methods, such as gene 
expression, DNA methylations, histone modi fi cations, enzyme activity, hormones, 
and metabolites. Most of them are the causes also the products of gene-environment 
interaction at different levels (Fig.  5.1 ).  



655 QTL Mapping of Molecular Traits for Studies of Human Complex Diseases

    5.2.1   eQTL 

 An eQTL refers to a genetic variant in which the genotypes are associated with 
differential gene expression. Through an eQTL mapping study, we can identify poten-
tial regulatory regions in the genome for expression of a speci fi c gene. The simplest 
model is that the genetic variant is either located in a regulatory element or in LD with 
a variant in the element so that the DNA sequence change could affect transcription or 
degradation ef fi ciency. And one needs to bear in mind that the actual causal relation-
ship or regulatory machinery will not be apparent without additional experiments. 

 With millions of SNPs genotyped, a genome-wide eQTL study is normally per-
formed by partitioning the tests into cis- and trans-tests (Fig.  5.2 ). cis- (or local) asso-
ciation is between expression level of one gene and a nearby SNP, one located within 
an arbitrarily de fi ned distance such as 500 Kb or 1–2 Mb. Trans- (or distal) associa-
tions include all non-cis-pairs. The trans- can be associations between the expression 
of a gene on one chromosome and a SNP located on another chromosome.  

 HapMap lymphoblastoid cell lines (LCLs) have been the mostly studied samples 
for eQTL mapping (Monks et al.  2004 ; Morley et al.  2004 ; Stranger et al.  2005, 
  2007 ; Cheung et al.  2005 ; ; Storey et al.  2007 ; Veyrieras et al.  2008 ; Zhang 
et al.  2008  ) . The other human tissues that have been studied include liver (Schadt 
et al.  2008  ) , kidney (Wheeler et al.  2009  ) , blood and subcutaneous adipose tissue 
(Emilsson et al.  2008  ) , and whole blood (Fehrmann et al.  2011  ) , and brain (Myers 
et al.  2007 ; Heinzen et al.  2008 ; Webster et al.  2009 ; Liu et al.  2010  ) , omental 
adipose, subcutaneous adipose, and liver (Dobrin et al.  2011  ) . LCLs from asthma 
patients (Dixon et al.  2007 ; Moffatt et al.  2007  )  and from twins (Min et al.  2011  )  
have also been studied for eQTL. 

  Fig. 5.1    Molecular traits link DNA/RNA to environment and high-order phenotypes       
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 Several review articles have summarized part of the past eQTL studies (Cheung 
and Spielman  2009 ; Cookson et al.  2009 ; Liu  2011  ) . An updated list of brain eQTL 
studies is shown in Table  5.2 .  

 Brain has been the most intensively studied tissue next to the HapMap LCLs. 
These two tissues represent two extreme of eQTL mapping in terms of complexity. 
LCL has relatively uniform cell type, with many environmental in fl uences washed 
out during culture. Brain tissue block could contain hundreds or more different cell 
types and may be affected by lifetime and postmortem environmental in fl uences. 
Different brain regions are structurally and functionally different. LCL sample can 
be prepared freshly and easily. Human brain is rarely accessible alive. Because of 
the complexity and very limited access of brain, eQTL mapping in human brain is 
at its early stage. 

 Most of the published eQTL mapping studies were limited to the summarized 
measure of transcripts, averaging all the splicing forms of each gene. But It is 
estimated that 42–73% of human genes are alternatively spliced (Modrek et al.  2001 ; 
Johnson et al.  2003 ; Clark et al.  2007  ) . Human brain carries even more tissue-speci fi c 
alternative splice forms than other tissue (Xu et al.  2002 ; Johnson et al.  2009  ) . 

 The heritability of splicing isoforms was  fi rst investigated in CEPH LCLs (Kwan 
et al.  2007  )  (Nembaware et al.  2008  ) . Splicing eQTLs were also studied in CEPH 
LCLs using RNA-Seq (Pickrell et al.  2010 ; Montgomery et al.  2010  ) . Hundreds of 
eQTLs for quanti fi cation of exon or whole gene transcripts were identi fi ed by these 
two studies. There are more eQTLs for exons detected than for whole transcripts. 

  Fig. 5.2    Model of SNPs presenting eQTL in cis-association. SNP1 is located inside regulatory 
element1 ( RE1 ). Its A allele has strong binding af fi nity to transcription factor1 ( TF1 ). Its G allele 
does not bind TF1 well and consequently leading to reduced expression. SNP2 is in linkage dis-
equilibrium with SNP1. Therefore, genotypes of both SNP1 and SNP2 show correlation with 
expression.  TSS  transcription start site       
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 Many factors determine the number of eQTLs that can be discovered. They include 
(1) experimental platform, (2) RNA quality, (3) sample heterogeneity, (4) sample size, 
(5) covariates, (6) data analytical procedures, and (7) signi fi cance criteria. 

    5.2.1.1   Experimental Platforms 

 There are three technologies measuring mRNA expression, including microarray or 
BeadChip, real-time quantitative PCR (qPCR), and RNA-Seq. 

 Illumina, Affymetrix, and Agilent are the major vendors of microarray technol-
ogy. Although they all designed array to probe the 30,000 human genes, different 
microarray designs have pros and cons for their use of different numbers of probes 
on each transcript or exon, for the different lengths of oligo probes, and for their 
signal detection methods. Expense is certainly another important factor in the option 
of platform. One major selling point of Affymetrix Human Gene or Exon 1.0 ST 
array is that they provide decent coverage of individual known exons so that expres-
sion of speci fi c splicing isoforms can be assayed and evaluated for eQTL mapping. 

 All microarray technology share built-in limitations due to being hybridization 
based. The oligonucleotide probes may hybridize to duplicated or repeat sequence 
or hit genomic regions with SNPs in populations (Alberts et al.  2007 ; Duan et al. 
 2008 ; Gamazon et al.  2010  ) , which will affect hybridization ef fi ciency. In turn, false 
positives and false negatives can be produced. Ideally, all the probes containing 
SNPs should be excluded from analysis. We established a database for the list of 
expression microarray probes containing common SNPs at   http://bioinfo.psych.uic.
edu/ArrayGenes/SNPsInProbes.jsp    . Additionally, detection of the  fl uorescence sig-
nals has a limited dynamic range so that the measure will not be accurate at the low 
or high ends or out of, the linear correlation (dynamic) range. Lastly, microarray can 
only measure the expression of known targets. Novel transcripts and exons will be 
the blind spot to microarray. 

 The qPCR method has a wider dynamic range but may still be affected by SNPs 
in primers or in TaqMan probe-binding sites. Therefore, the results have potential to 
be false because of a poor primer or probe design. Like microarray, qPCR is also 
limited to known targets. 

 With a high price tag, RNA-Seq has signi fi cant advantages over traditional 
expression microarrays and the qPCR method. The dynamic range of RNA-Seq is 
reported to be at least 8,000-fold, a vast improvement over the 60-fold of DNA 
microarrays (Nagalakshmi et al.  2008  ) . Montgomery SB et al. have found that 
approximately ten million reads of sequence can provide a comparable dynamic 
range as a microarray (Montgomery et al.  2010  ) . RNA-Seq’s measure of expression 
will not be affected by SNPs. Instead, allelic expression can be directly measured as 
sequence variants detected in the transcripts (Heap et al.  2010  ) . Most uniquely, 
RNA-Seq allows the identi fi cation of novel transcripts and splicing isoforms. 
Several investigations (Marioni et al.  2008 ; Wang et al.  2009  )  have demonstrated the 
feasibility of using RNA-Seq to pro fi le gene expression in eQTL mapping. The  fi rst 
two RNA-Seq-based eQTL studies used HapMap LCLs (Pickrell et al.  2010 ; 

http://bioinfo.psych.uic.edu/ArrayGenes/SNPsInProbes.jsp
http://bioinfo.psych.uic.edu/ArrayGenes/SNPsInProbes.jsp
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Montgomery et al.  2010  )  and identi fi ed over 100 novel putative protein-coding 
exons and over 1,000 genes with eQTLs at gene or splice variant expression levels. 
Majewski J. and Pastinen T. had a thorough review of RNA-Seq application in 
eQTL mapping (Majewski and Pastinen  2011  ) . As the costs of next-generation 
sequencing gradually decrease, RNA-Seq is expected be used more in eQTL map-
ping studies.  

    5.2.1.2   RNA Quality 

 RNA quality is critical for eQTL as it affects accuracy of measurement of expres-
sion. RNA degrades rapidly, and tissues need to be quickly collected and processed 
carefully. For this reason, studies utilizing tissues collected from living body or 
cultured cells should produce higher quality data in general than using postmortem 
tissues. RNA integrity number (RIN) is a frequently used index of RNA quality 
(Schroeder et al.  2006  ) .  

    5.2.1.3   Sample Heterogeneity 

 Sample heterogeneity involves several levels. One tissue may contain many different 
cell types. Different tissues or cell types could have different gene expression pro fi les. 
Many eQTLs are thus tissue or cell type speci fi c. Study showed that LCL and whole 
blood have distinct eQTL pro fi le (Powell et al.  2011  ) . As discussed above, brain is a 
particularly complex tissue while thousands of cell types blended in the “soup.” 
Some tissues such as leukocyte could be more accessible and homogeneous. 

 In the Multiple Tissue Human Expression Resource (MuTHER) study, three tis-
sues (156 LCL, 160 skin and166 fat) from the same individuals of healthy female 
twins were used for  cis -eQTL analysis. This study demonstrates that 30% of eQTLs 
are shared among tissues, while 29% are exclusively tissue-speci fi c. Even for shared 
eQTLs, 10–20% have signi fi cant tissue differences (Nica et al.  2011  ) . 

 Genetic heterogeneity is another layer of complexity investigators have to deal 
with in eQTL mapping. Population structure, difference of minor allele frequency 
in different ethnic populations, could affect eQTL mapping like all other GWASs. 
Hsiao et al. carefully evaluated the effects in their study (Hsiao et al.  2010  ) . 

 Mixing heterogeneous samples into one study could lead to increased power to 
detecting shared eQTLs after careful controlling the population structure issue, but 
it will overestimate power for detecting population-unique eQTLs.  

    5.2.1.4   Sample Size 

 Sample size is an obvious determining factor for statistic power in eQTL mapping. 
The more samples used, the more eQTLs can be detected, assuming the other factors 
are  fi xed. Based on published studies, one needs less than 100 samples to identify 



715 QTL Mapping of Molecular Traits for Studies of Human Complex Diseases

those very strong cis-eQTLs. When thousands of samples are recruited for eQTL 
mapping, we can expect that most of the transcripts in human genome will reveal 
their eQTLs. 

 Trans-eQTLs requires larger sample collection. With 1,469 unrelated blood samples, 
high-quality trans-associations were detected and replicated in a different set of 
tissues and sample collections (Fehrmann et al.  2011  ) .  

    5.2.1.5   Covariates 

 Covariates may impact on association tests. Lab experiments are subject to batch 
effects, which are systematic, nonbiological variations among experimental batches. 
Since eQTL mapping requires relatively large sample size, measures of expression 
data of all samples in one batch is practically infeasible. In order to minimize batch 
effects, universal technical replicates could be used in all batches to evaluate batch 
effects. Each batch should contain both cases and controls for analysis involving 
case–control comparison to minimize the confounding bias. A number of algorithms 
are available for removing potential batch effects from expression data, and our 
systematic evaluation (Chen et al.  2011a  )  has found ComBat (Johnson et al.  2007  )  
to be the best. 

 Sample demographic information, clinical measures are also important covari-
ates as they may in fl uence gene expression. In study of brain eQTL, postmortem 
interval (PMI) and brain pH are important covariates. Study of cultured cell line 
may have some advantages as many environmental factors, covariates, could be 
washed off during the culture. Study of 47 monozygotic twin pairs did not detect 
signi fi cant contribution of 14 blood biochemical traits and cell count on gene expres-
sion in whole blood and LCL culture (Powell et al.  2011  ) . The covariates should be 
evaluated carefully before putting them aside.  

    5.2.1.6   Analytical Procedures 

 In data analysis, quality control is the  fi rst important thing to do for obtaining reli-
able results. Having discussed above, removing probes that might be affected by 
common SNPs, or nonspeci fi c binding from the analysis, controlling batch effects 
and covariates are important. Surrogate Variable Analysis (SVA) (Leek and Storey 
 2007  )  is a good software to regress out both known and unknown covariates so that 
the residues can be used for eQTL mapping as two studies have used (Liu et al. 
 2010 ; Colantuoni et al.  2011  ) . It could be considered to be a method to obtain robust 
eQTL mapping in samples confounded with other covariates, like affection status, 
and brain pH. New method has been developed and to be test in actual eQTL study 
(Listgarten et al.  2010  ) . 

 Since genotypic data is used in the study, population strati fi cation should also be 
considered in the association tests in a more serious manner when heterogeneous 
population is used.  
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    5.2.1.7   Signi fi cance Criteria 

 Signi fi cance criteria are important for reducing false calling of eQTLs. Because of 
simultaneous tests of large amount of associations, multiple testing may lead to 
false positives without proper correction. Bonferroni correction, permutation, or 
false discovery rate (FDR) have been commonly used. In our own study, we de fi ned 
two levels of signi fi cance: region-wide or genome-wide signi fi cance referring to the 
adjusted  p  for controlling for all the SNPs tested for cis- or trans-association tests, 
respectively. Phenotype-wide signi fi cance refers to the adjusted  p  after additional 
control for the number of expression traits studied. 

 It is worth mentioning that the signi fi cance in replicate study could be relaxed 
depending on the number of positive  fi ndings in the initial discovery studies. 
The direction of association is also very important. Findings that can be replicated 
in multiple datasets will be more credible.   

    5.2.2   mQTL 

 DNA methylation is an important epigenetic modi fi cation on DNA nucleotides 
without changing the actual sequence. It normally occurs at the CpG site changing 
Cytosine to 5-methylcytosine (5mC). DNA methylation is classically considered as 
a major gene expression regulator: Higher methylation represses gene expression. 
This simple relationship is gradually being broken down by the recent  fi ndings after 
the research studies extended into non-promoter regions (Jones  1999 ; Deng et al. 
 2009 ; Ball et al.  2009 ; Rauch et al.  2009  ) . Studies showed that highly expressed 
genes tend to have extensive gene-body methylation and minimal promoter methy-
lation, whereas the bodies of weakly expressed genes are less methylated (Deng 
et al.  2009 ; Ball et al.  2009  ) . 

 Three studies have shown that DNA methylation level at speci fi c CpG sites are 
quantitative traits that can be located by QTL mapping too, as summarized in 
Table  5.3 . The methylation level is quanti fi ed as percentage of methylation at a 
speci fi c CpG site, with values ranging from 0 to 1.  

 Figure  5.3  shows an example of mQTL converging with eQTL for  IRF6 . This is 
one of the very few examples that genotype-expression-methylation has a three-way 
correlation  fi tting the classical model of gene expression regulation.  

 Only the Illumina In fi nium Human Methylation27 and Methylation450 arrays 
are available for accurate measure of DNA methylation at many CpG sites across 
genome. They assay 27 K and 480 K CpG sites in the genome, respectively. A study 
by Chen et al. discovered that about 3,000 probes in the Meth27 array may cross-
hybridize to more than one genomic region, and several hundreds of probes carry 
SNPs (Chen et al.  2011b  ) . We analyzed their data and identi fi ed 58 probes carrying 
common SNPs (MAF  ³  0.05). A list of these “affected” probes is also provided 
through our website (  http://bioinfo.psych.uic.edu/ArrayGenes/SNPsInProbes.jsp    ). 

http://bioinfo.psych.uic.edu/ArrayGenes/SNPsInProbes.jsp


735 QTL Mapping of Molecular Traits for Studies of Human Complex Diseases

   Ta
bl

e 
5.

3  
  M

et
hy

la
tio

n 
Q

T
L

 m
ap

pi
ng

 s
tu

di
es

   

 A
ut

ho
rs

 
 Sa

m
pl

es
 

 Pl
at

fo
rm

s 
 Fi

nd
in

gs
 

 Z
ha

ng
 e

t a
l. 

 (  2
01

0  )
  

 15
3 

ce
re

be
llu

m
 c

or
te

x,
 

C
au

ca
si

an
, 

 A
ff

ym
et

ri
x 

5.
0 

ar
ra

y 
fo

r 
ge

no
ty

pi
ng

; 
In

 fi n
iu

m
 H

um
an

M
et

hy
la

tio
n2

7 
B

ea
dC

hi
ps

 

 73
6 

C
pG

 s
ite

s 
sh

ow
ed

 p
he

no
ty

pe
-w

id
e 

si
gn

i fi
 ca

nt
 c

is
-a

ss
oc

ia
tio

n 
w

ith
 2

,8
78

 S
N

Ps
 

(a
ft

er
 p

er
m

ut
at

io
n 

co
rr

ec
tio

n 
fo

r 
al

l t
es

te
d 

m
ar

ke
rs

 a
nd

 m
et

hy
la

tio
n 

ph
en

ot
yp

es
) 

 T
ra

ns
-a

ss
oc

ia
tio

ns
 o

f 
12

 C
pG

 s
ite

s 
an

d 
38

 
SN

Ps
 r

em
ai

ne
d 

si
gn

i fi
 ca

nt
 a

ft
er

 p
he

no
ty

pe
-

w
id

e 
co

rr
ec

tio
n 

 G
ib

bs
 e

t a
l. 

 (  2
01

0  )
  

 fo
ur

 h
um

an
 b

ra
in

 r
eg

io
ns

 
ea

ch
: c

er
eb

el
lu

m
, f

ro
nt

al
 

co
rt

ex
, t

em
po

ra
l c

or
te

x,
 

an
d 

po
ns

 r
eg

io
ns

 f
ro

m
 1

50
 

in
di

vi
du

al
s 

(6
00

 s
am

pl
es

 
to

ta
l)

 (
E

ur
op

ea
n 

de
sc

en
t)

 

 In
 fi n

iu
m

 H
um

an
H

ap
55

0 
 7,

96
6–

12
,0

81
 c

is
-m

Q
T

L
s,

 2
,8

93
–4

,6
53

 
tr

an
s-

m
Q

T
L

s 
(p

er
m

ut
at

io
n 

fo
r 

SN
Ps

 
te

st
ed

, F
D

R
 f

or
 tr

ai
ts

 te
st

ed
) 

 B
ea

dc
hi

ps
; I

n fi
 ni

um
 H

um
an

M
et

hy
la

tio
n2

7 
B

ea
dC

hi
p 

 B
el

l e
t a

l. 
 (  2

01
1  )

  
 77

 H
ap

M
ap

 Y
R

I 
ce

ll 
lin

es
. 

 H
ap

M
ap

 r
el

ea
se

 2
7 

ge
no

ty
pe

 d
at

a 
w

er
e 

ob
ta

in
ed

 f
or

 3
.8

 M
 a

ut
os

om
al

 S
N

Ps
; I

l 
lu

m
in

a 
H

um
an

M
et

hy
la

tio
n2

7 
D

N
A

 
A

na
ly

si
s 

B
ea

dC
hi

p 

 18
0 

C
pG

 s
ite

s 
in

 1
73

 g
en

es
 th

at
 w

er
e 

as
so

ci
at

ed
 w

ith
 n

ea
rb

y 
SN

Ps
 (

pu
ta

tiv
el

y 
in

 c
is

, u
su

al
ly

 w
ith

in
 5

 k
b)

 a
t a

 f
al

se
 

di
sc

ov
er

y 
ra

te
 o

f 
10

%
 

  N
ot

e:
 A

ll 
th

es
e 

st
ud

ie
s 

us
ed

 m
et

hy
la

tio
n2

7 
ch

ip
, w

hi
ch

 ta
rg

et
s 

27
,0

00
 C

pG
 s

ite
s.

 T
he

 n
um

be
rs

 o
f 

SN
Ps

 te
st

ed
 v

ar
ie

d  



74 C. Liu

  Fig. 5.3    DNA methylation and gene expression of IRF6 is correlated with genotypes of rs2235375. 
DNA methylation and gene expression are negatively correlated (From Zhang et al.  2010  )        

 Besides these two In fi nium BeadChips, DNA methylation level can also be 
accurately measured by pyrosequencing but with a much smaller throughput. 
Methylome sequencing is expected to provide better coverage through the genome. 
But the cost is still prohibitively high today for a population-based study. 

 It should be noted that DNA methylation may be a more complicate biological 
process than we expected. 5-hydroxylmethylcytosine (5hmC) was discovered to be 
abundant in brains (Kriaucionis and Heintz  2009  )  and embryonic stem cells 
(Tahiliani et al.  2009  ) . The function of 5hmC remains largely unknown. It may be 
an intermediate step of DNA demethylation. It may have its own speci fi c binding 
proteins. MeCP2 and other major methyl-CpG-binding proteins will not bind 5hmC 
(Valinluck et al.  2004 ; Jin et al.  2010  ) . 

 The presence of 5hmC may interfere the measure of 5mC. Some enzymatic 
digestion methods and bisul fi te-based methods including In fi nium or pyrosequenc-
ing method cannot differentiate 5hmC from 5mC (Huang et al.  2010b  ) . So the 
BeadChip results should be a measure of combined 5hmC and 5mC. 

 In genome-wide assessment of gene expression-DNA methylation correlation, 
we see many incidence of poor correlations between methylation and expression, 
or positive correlation. 5hmC may partially play a role in that discrepancy. Jin 
et al. reported that in human brain, 5hmC in gene bodies were more positively 
correlated with gene expression than 5mC (Jin et al.  2011  ) . Eventually, mQTL 
mapping will need to be differentiated into mQTL for 5mC and hmQTL for 5hmC. 
But the technology is not there yet. 

 Another interesting observation is that mQTL and eQTL seem to be largely 
independent. SNPs associated with DNA methylation are not the one showing asso-
ciation with expression level. Very few SNPs affect both expression and CpG 
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methylation at the same time(Gibbs et al.  2010  ) . Possible explanations include the 
following: some of the genetically regulated methylations, regardless of 5mC, 5hmC 
difference, do not affect gene expression signi fi cantly or the correlations were not 
detected due to limited statistical power or those regulations were not captured by 
the current technology. If the methylation does not affect expression, would it likely 
to be functional? The answer is “yes” as it will be discussed below, which showed 
the mQTL SNPs were enriched in disease GWAS signals. Our hypothesis-to-be-
tested today is that DNA methylation has function beyond regulating gene expres-
sion. It is known that DNA methylation is also regulating DNA stability (Lorincz 
et al.  2002  ) , repressing retrotransposons (Kuhlmann et al.  2005  ) , imprinting (Li et al. 
 1993  ) . Anything else? ought to be discovered in the future. Better technology 
and larger sample size study will improve our understanding of regulation of both 
gene expression and DNA methylation.   

    5.3   Other Types of Quantitative Traits 

 Many other molecular measures, such as protein and lipid level, enzyme activity, 
and metabolites, can be used for QTL mapping. A few examples are summarized 
below. 

 Melzer et al. studied levels of 42 proteins in 1,200 fasting individuals for their 
associations with about half a million SNPs, to map protein quantitative trait loci 
(pQTLs). Eight cis-associations were detected with effect sizes ranging from 0.19 
to 0.69 standard deviations per allele. A trans-association was observed but failed to 
be replicated (Melzer et al.  2008  ) . 

 GWAS of plasma liver-enzyme in 12,419 individuals revealed six regulatory loci 
reaching genome-wide signi fi cance (Yuan et al.  2008  ) . 

 Study of 363 metabolites in serum of 284 male participants did not detect asso-
ciation that can survive the most conservative multiple testing correction, but two 
loci reach genome-wide signi fi cance with  p  < 4e–8 (Gieger et al.  2008  ) . 

 Metabolic/metabolite quantitative trait locus was also called mQTL. In a study of 
approximately 200 individuals for 526 metabolite traits, concentrations of four 
metabolites, including trimethylamine, 3-amino-isobutyrate, an N-acetylated com-
pound, and dimethylamine, measured in urine or plasma exhibited signi fi cant and 
replicable QTLs (Nicholson et al.  2011  ) . The mapped QTLs can explain 40–64% of 
variations .  

 GWAS mapping of lipid phenotypes in 1,087 individuals using a 100 K genotyp-
ing array failed to produce convincing result (Kathiresan et al.  2007  ) . 

 Thirty-three traits and forty three matched ratios of circulating sphingolipid, 
including sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), 
and glucosylceramide (GluCer) single lipid species, were studied in European pop-
ulations for 4,400 subjects. Thirty two SNPs in  fi ve distinct loci reach genome-wide 
signi fi cance ( p  < 1e–10) (Hicks et al.  2009  ) .  
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    5.4   Software and Algorithm for QTL Mapping 

 Linear regression is the most frequently used method in QTL mapping. Plink 
(Purcell et al.  2007  )  (  http://pngu.mgh.harvard.edu/~purcell/plink/    ) is widely used 
for that. Other software like R/eMap (  http://www.bios.unc.edu/~wsun/software/
eMap.pdf    ) and Matrix eQTL (  http://www.bios.unc.edu/research/genomic_software/
Matrix_eQTL/    ) also can do the job. Matrix eQTL claimed to have the most ef fi cient 
algorithm. Most of the software provides methods for multiple testing correction. 

 In concern of the non-normal distribution of the data, nonparametric methods 
such as Spearman Rank correlation test (Montgomery et al.  2010  )  and Kruskal-
Wallis test (Schadt et al.  2008  )  were also used. But the covariate and power issue 
may limit the use of those nonparametric methods. 

 A different method, VBQTL, uses a probabilistic approach for eQTLs mapping. 
It jointly models contributions from genotype as well as known and hidden con-
founding factors to achieve better power. (Stegle et al.  2010  )  

 Microsoft Linear Mixed Models (LMM-EH-PS) (Listgarten et al.  2010  ) , (  http://
research.microsoft.com/en-us/um/redmond/projects/MSCompBio/MSLMM/    ) uses 
linear mixed-effects models to model hidden confounders in association studies. 
It aims to control experimental batch effects and population structure and other 
possible confounding factors altogether. It was shown to outperform other methods 
including Inter-sample Correlation Emended (ICE) (Kang et al.  2008  )  and Surrogate 
Variable Analysis (SVA)(Leek and Storey  2007  )  for better calibrated p-values and 
maximum power. All these new methods need more careful comparative evaluations 
to  fi nd their best- fi ts in actual studies.  

    5.5   Applications of QTL Mapping in Genetic Studies 
of Complex Diseases 

 Although statistical associations between SNPs and those molecular traits reached 
signi fi cance level, question could still be raised: Are those QTL SNPs truly informa-
tive or directly involved in complex diseases at all? At least three studies showed that 
the disease-associated SNPs from GWASs are signi fi cantly more likely to be eQTL 
SNPs (eSNPs) than to be other random minor allele frequency (MAF)-matched SNPs 
from high-throughput GWAS platforms or from the HapMap(Nicolae et al.  2010 ; 
Richards et al.  2012 ; Gamazon et al.  2012  ) . Signals from the NHGRI GWAS catalog 
were shown to be enriched for eQTLs detected in HapMap LCLs (Nicolae et al. 
 2010  ) . Schizophrenia GWAS SNPs with  p  < 0.5 were enriched with eSNPs detected 
in brain originally reported by Myers et al.  (  2007  )  and Webster et al. (Richards et al 
 2012  )  Bipolar disorder GWAS signals with  p  < 0.001 or < 0.0001 were all enriched 
with eQTL and mQTL SNPs detected in cerebellum(Gamazon et al.  2012  ) . 

 GWAS of complex diseases have been restrained by the multiple testing problem 
when millions of SNPs are tested. If we can limit the tests to functional SNPs, 
number of tests may be greatly reduced. Our study using only mQTL SNPs detected 

http://pngu.mgh.harvard.edu/~purcell/plink/
http://www.bios.unc.edu/~wsun/software/eMap.pdf
http://www.bios.unc.edu/~wsun/software/eMap.pdf
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/MSLMM/
http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/MSLMM/
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in cerebellum has proved that it is a fruitful practice. A novel bipolar disorder 
association was discovered for SNP rs12618769, which can survive the lowered 
genome-wide signi fi cance threshold coming with the reduced number of tests 
(Gamazon et al.  2012  ) . This association is replicated in three datasets, including the 
largest bipolar collection from Psychiatric Genomics Consortium (PGC, 11,974 
cases and 51,792 controls) with  p  = 0.0031. SNP rs12618769 is a cis-mQTL of 
 INPP4A . 

 In a Crohn’s disease (CD) study, after con fi rming overrepresentation of cis-
eQTLs in the known CD-associated loci, association studies of eSNPs identi fi ed 
two likely novel risk genes:  UBE2L3  and  BCL3  for CD (Fransen et al.  2010  ) . 

 Several other GWASs of psychiatric diseases have also incorporated brain eQTL 
data to enhance the statistical powers, leading to identi fi cation of novel risk genes. 
The papers are expected in 2012. 

 We are moving into the era of next-generation sequencing (NGS). NGS is 
expected to be fruitful for the purpose of complex disease association mapping. 
Individuals are likely to carry tens of millions of DNA variants, and testing all the 
variants for disease association unselectively would be a statistical nightmare, 
requiring impossibly large sample sizes. Limiting the studies to functional variants 
or the most likely relevant genes will be the optimal and probably the only choice. 
QTL mapping of molecular traits will be one ef fi cient approach discovering those 
functional variants. Meanwhile, this need will push the QTL mapping to the use of 
NGS to replace SNP array as many of the variants detected in NGS cannot be tested 
in SNP array.  

    5.6   Database for QTL Mapping Results 

 While QTL mapping studies are blooming, several databases have been created for 
collecting and sharing those results. A number of databases have dedicated for shar-
ing eQTL data, including Scandb (  http://www.scandb.org/newinterface/about.html    ), 
Genevar (GENe Expression VARiation,   http://www.sanger.ac.uk/resources/soft-
ware/genevar/    ), and eQTL Browser (  http://eqtl.uchicago.edu/help.html    ). 

 Scandb provides rich annotation for both SNP and gene (Gamazon et al.  2010  ) . 
eQTL data used those from the HapMap data. A unique feature of this database is 
that it incorporates LD information among SNPs. CNV is also included. 

 Genevar allows researchers to investigate eQTL associations within a gene locus 
of interest in real time. It currently contains gene expression and genotype data from 
three cell types ( fi broblast, LCL, and T-cell) of 75 Geneva GenCord individuals(Dimas 
et al.  2009  )  and three tissue types (166 adipose, 156 LCL and 160 skin samples) 
from healthy female twins of the MuTHER resource(Nica et al.  2011  ) . 

 eQTL Browser collected seven eQTL datasets and provided interface similar 
to HapMap browser: Liver eQTL by Schadt et al.  (  2008  ) ; brain eQTL by Myers 
et al.  (  2007  ) ; HapMap LCL by Stranger et al.  (  2007  ) , Veyrieras et al.  (  2008  ) , 
Pickrell et al.  (  2010  ) , and Montgomery et al.  (  2010  ) ; and monocyte eQTL by 
   Zeller et al. ( 2010 ). 

http://www.scandb.org/newinterface/about.html
http://www.sanger.ac.uk/resources/software/genevar/
http://www.sanger.ac.uk/resources/software/genevar/
http://eqtl.uchicago.edu/help.html


78 C. Liu

 NCBI GTEx (Genotype-Tissue Expression,   http://www.ncbi.nlm.nih.gov/gtex/
GTEX2/gtex.cgi    ) eQTL Browse now carries seven datasets of LCL, brain, and liver 
from four studies (Stranger et al.  2007 ; Schadt et al.  2008 ; Montgomery et al.  2010 ; 
Gibbs et al.  2010  ) . 

 Phenotype-Genotype Integrator (PheGenI,   http://www.ncbi.nlm.nih.gov/gap/
PheGenI    ) merges NHGRI genome-wide association study (GWAS) catalog data 
with several databases housed at the National Center for Biotechnology Information 
(NCBI), including Gene, dbGaP, OMIM, GTEx, and dbSNP. 

 PharmGKB (  http://www.pharmgkb.org/    ) provide SNPs associated with drug 
response along with curated data of pharmacogenomics literature. Most of the data 
were not reviewed in this chapter. 

 So far, no single database integrated all the QTL mapping studies that have been 
published. Existing databases could be considered as good prototypes of an ideal 
database that can facilitate the studies of complex diseases. We hope that, with bet-
ter comprehensive data integration, more risk genes of complex diseases will be 
discovered. 

  Summary,  new experimental platform will ensure better coverage and more accu-
rate measure of all the molecular traits. Larger sample size study of all the disease-
relevant tissues or their proxies will be investigated for QTL mapping. These studies 
will provide rich functional annotation of human genetic variants. They will serve 
as important disease intermediate phenotypes and a venue approaching understand-
ing of complex disease.      

  Acknowledgement   I would like to thank Drs. Judith Badner, Yin Yao Shugart, and Chao Chen 
for critical readings and comments.  
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  Abstract   A haplotype refers to a set of multiple SNP alleles from one parental 
genome and has a clear genetic interpretation, often as a biologically meaningful 
quantity. With the current biotechnologies for genotyping diploidic human genomes 
(a pair of haplotypes), however, genotype data include only partial haplotype 
information and, in general, are insuf fi cient to directly infer a pair of haplotypes 
(with more than two SNP loci) since SNP genotypes are typed locus-by-locus. 
Using genotype data, haplotype analysis methods refer to a class of statistical genetic 
analysis methods, for inferring haplotypes, or estimating haplotype frequencies 
(and related statistics), or assessing haplotypic associations with a phenotype. These 
methods are an important set of statistical tools for genetic analyses. With advent of 
both genotyping/sequencing technologies, we anticipate an increasing interest in 
haplotype-based association analysis. In this chapter, we have introduced the concept 
of haplotype and its roles in genetic studies, have also documented the aspects of 
earlier method developments, have described some key methods and related software, 
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and have discussed the renewed interest in recent years. While exhaustively reviewing 
literature on haplotype analysis is not of primary interest, this chapter serves an 
introduction to the haplotype analysis, opening a door to a rich and dynamic set of 
literature accumulated in the past decades.  

  Keywords   Haplotype  •  Haplotype inference  •  Haplotype-based association  •  Gene 
prediction      

    6.1   Introduction 

 Human genome consists of 22 autosomal chromosome pairs and one sex chromo-
some pair. One member of each chromosome pair is inherited from a person’s father; 
the other member of the pair is inherited from that person’s mother. The whole 
genome includes approximately ~20–25 thousand genes and 3.2 billion nucleotide 
base pairs (Bentley et al.  2001 ; Venter et al.  2001  ) . The sequences of nucleotides 
from the same chromosome, either paternal or maternal chromosome, are called 
haplotypes. Haplotypes dictate the RNA transcriptions and hence proteins and 
therefore are considered as functional units. Many genes have been identi fi ed to be 
associated with diseases (King et al.  2002  ) . In the previous association studies, different 
types of genetic markers were used to map disease-associated gene, such as the 
restricted length polymorphisms (RFLP) (Lander and Botstein  1986  ) , short tandem 
repeats (STR) (Gyapay et al.  1994  ) , microsatellite (NIH/CEPH Collaborative 
Mapping Group  1992 ; Murray et al.  1994  ) , human leukocyte antigen (HLA) alleles, 
and single nucleotide polymorphisms (SNPs) (Wang et al.  1998 ; Zhao et al.  1998  ) . 
   The statistical methods developed for analyses include the linkage analyses for 
mapping disease traits (Zhao et al.  1998  )  and association analyses for  fi ne-mapping 
(Xiong and Guo  1997  )  and characterizing genetic functions (Collins and Morton 
 1998  ) . Due to the breathtaking development of SNP array technologies in recent 
years, SNPs are now commonly used as genetic markers in the recent either candidate 
gene association studies or genome-wide association studies (GWAS). 

 For candidate gene association studies, multiple SNPs within a candidate gene 
are typically genotyped. The most commonly used technologies generate unphased 
SNP genotypes (without knowing the parental origin of the alleles). Therefore, 
haplotypes would not be directly obtained from the genotyping. Although some 
genotyping technologies can generate haplotypes directly by dissecting out single 
chromosomes (Green et al.  1998 ; Patil et al.  2001  ) , such technologies are experi-
mentally challenging and cost prohibitive for the use in human research. One way 
to construct individual haplotypes from unphased genotypes is to genotype for 
other family members of that person (Wijsman  1987  ) , which is considered as expen-
sive and unpractical. A practical option is to statistically infer individual haplotypes 
from unphased genotypes. A latter option has been used widely in the genetic 
research. Clark’s heuristic algorithm was probably among the  fi rst statistical methods 
for inferring haplotypes from genotypes of unrelated individuals (Clark  1990  ) . 
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Several maximum likelihood methods were developed thereafter (Excof fi er and 
Slatkin  1995 ; Hawley and Kidd  1995 ; Long et al.  1995 ; Stephens et al.  2001 ; Lin 
et al.  2002 ; Niu et al.  2002 ; Qin et al.  2002 ; Li et al.  2003 ; Stephens and Donnelly 
 2003  ) . Many of those methods successfully and ef fi ciently inferred haplotypes 
and were implemented in various different software packages. Their inference for 
haplotypes was evaluated (Li et al.  2007  ) . 

 There are also haplotype-based association methods developed to correlate the 
candidate genes with the disease phenotype (Epstein and Satten  2003 ; Stram et al. 
 2003 ; Zhao et al.  2003 ; Chen et al.  2004 ; Lin  2004 ; Schaid  2004 ; Spinka et al.  2005 ; 
Lin and Zeng  2006 ; Tzeng et al.  2006 ; Zeng et al.  2006  ) . 

 In anticipation of GWAS, major research efforts were placed in identifying 
haplotype blocks genome-wide (Daly et al.  2001 ; Goldstein  2001 ; Patil et al.  2001 ; 
Gabriel et al.  2002 ; Cardon and Abecasis  2003 ; Altshuler et al.  2005  ) . However, 
while GWAS have been routinely conducted, few have published results based on 
haplotype associations and most studies have focused on SNP associations instead. 
Two reasons might be for the use of SNP-based instead of haplotype-based analyses 
in conducting GWAS analysis. First, SNP-based association analysis is easier to 
analyze and the results tend to be more stable than those from the haplotype analysis 
(due to reconstructing haplotype structures from multiple unphased SNPs). Secondly 
and more importantly, there is not universally agreed haplotype block de fi nition and 
the blocks are likely different between the study populations. 

 So far, GWAS have identi fi ed at least 2,000 SNPs that are associated with common 
diseases and related traits (  http://www.genome.gov/gwastudies    ). Based on these 
SNPs hits, researchers desire to identify the functional units (haplotypes) that con-
tribute to the genetic associations. It is notable from those  fi ndings that several SNP 
hits were in the human major histocompatibility complex (MHC) region (Larsen 
and Alper  2004 ; Sabeti et al.  2007 ; The Wellcome Trust Case Control Consortium 
 2007 ; Asano et al.  2009 ; Hirsch fi eld et al.  2009 ; Stefansson et al.  2009 ; Tse et al. 
 2009 ; Reveille et al.  2010 ; Fellay et al.  2011  ) . Many HLA alleles within MHC had 
long been known as associations with many infectious, autoimmune diseases, and 
other immune-related diseases. To bridge the new and old  fi ndings, there is a need 
to link the SNPs with HLA alleles. HLA alleles can be considered as haplotypes of 
variants within 1 or 2 hypervariable regions in the HLA gene region. Based on their 
linkage equilibrium (LD) with the SNPs within the  fl anking region of the HLA 
genes, several methodologies were developed to predict HLA alleles using SNP 
genotypes (Leslie et al.  2008 ; Li et al.  2011 ; Zhang et al.  2011  ) . 

 With the current advent of high throughput sequencing technologies, the 1000 
Genomes Project Pilot 3 had completed sequencing of targeted regions, including 
906 genes and 8,140 exons, of 697 healthy subjects and saved in a database at a 
public domain. The full sequences of those genes or exons will provide the research 
community a great opportunity to reanalyze the GWAS data to study the gene 
associations with the diseases. Anticipating for that effort, we constructed the models 
that predict the gene alleles (like HLA alleles) from the SNPs within and  fl ank the 
genes using the methods described in (Li et al.  2011 ; Zhang et al.  2011  ) . The details 
are presented elsewhere. The research community can use these models to predict 

http://www.genome.gov/gwastudies
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the gene alleles from their GWAS data and correlate the gene alleles with the disease 
phenotypes for associations. 

 The chapter is organized as the following: the haplotype inference methods and 
their comparisons are presented in Sect.  6.2 , the haplotype-based association 
methods and their comparisons are in Sect.  6.3 , and the methods of predicting gene 
alleles using SNP genotypes are in Sect.  6.4 . This chapter intends to help readers 
become familiar with some haplotype analysis history and does not strive to be an 
exhaustive review of all methods. We hope this chapter will help the readers in 
selecting the appropriate methods for their analyses. We have developed the soft-
ware to perform the analyses discussed in this chapter. The website for the software 
download is provided at the end of this chapter.  

    6.2   Haplotype Inference 

 A key component in all haplotype-based analyses is to infer haplotypes from 
unphased genotypes. In this section, we start with describing the statistical frame-
work and the methods for haplotype inference. 

 Consider a sample of  n  unrelated individuals from a study population. From each 
individual sample, we select     q   SNP loci in a speci fi c region, e.g., a candidate gene, 
for genotypes. The genotype at each locus consists of two alleles, one from the 
maternal chromosome and another from the paternal chromosome. The parental 
origin of alleles is called phase. Since the phase of genotypes is generally not available, 
the haplotypes have to be inferred from the unphased genotypes. Let     ( )= ¼1, ,i i iqG g g
  denote the genotypes of the     q   SNPs for the  i- th individual. When a genotype 
is heterozygous (consists of two different alleles), there are two resolutions for 
phase. If     iG   is heterozygous at  m  loci, there are     2m   possible resolutions for phase 
which results in    -12m   distinct pairs of haplotypes. Each possible pair of haplotypes is 
associated with a probability that should be a function of haplotype frequencies in 
the study population. Suppose there are  T  distinct haplotypes in the population. 
Let     ( )= ¼1 2, , ,π π π πT   denote the frequencies of the  T  haplotypes. The distribution 
of haplotypes is assumed to follow a multinomial distribution with the parameter   p  . 
Let     ( )= ¼1 2, , ,i i i iqP p p p   denote the phase of     iG   with the phase of the  fi rst heterozy-
gous  fi xed. Given phases    

iP   , genotypes    
iG   uniquely determine a pair of haplotypes 

(diplotype)     ( ), ,� ��
i ih h   i.e.,     ( )=| ,� ��i i i iG P h h   . The likelihood function of genotypes given 

the haplotype frequencies may be written as

    1 1 1

( ) ( | ) ( | , ) ( ) ( , | ) ( ),
i i

n n n

i i i i i i i
i i iP P

L f G f G P f P f h h f Pp p p p
= = =

= = =Õ Õå Õå � ��
   (6.1)  

where     ( , | ) ( | ) ( | )i i i if h h f h f hp p p=� �� � ��   under Hardy-Weinberg Equilibrium 
(HWE),     ( | )� πif h   and     ( | )�� πif h   are the probabilities of haplotypes     �ih   and     ��ih
  given the population’s haplotype frequencies     p   , and     ( )if P   is the prior prob-
ability of phase. The estimate of   p   is obtained from maximizing the likelihood ( 6.1 ). 
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The posterior distribution of phase, which determines the probability of 
diplotype, is then estimated from the estimate of haplotype frequency   p   by 
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 Different methods make different assumptions for the prior distribution     ( )if P    
and employed different algorithms to maximize the likelihood function in ( 6.1 ). The 
probability of phase     ( )if P   is assumed to be constant in all the empirical methods 
including expectation-maximization (EM) and equating equation (EE) methods. 
Excof fi er and Slatkin used the expectation-maximization (EM) algorithm to obtain 
the maximum likelihood (ML) estimators of   p   and the bootstrap method to estimate 
the standard errors of estimators of   p   (Excof fi er and Slatkin  1995  ) . When the num-
ber of SNP genotypes is large, the computation for ML estimators becomes a great 
burden. Qin et al. utilized the partition ligation computational strategy along with 
EM algorithm to infer haplotypes with large numbers of SNP loci (implemented in 
PL-EM) (Qin et al.  2002  ) . We applied the estimation equation technique and the 
partition strategy to effectively infer haplotypes with large data sets and to effec-
tively estimate the frequencies of haplotypes and standard errors of the estimated 
haplotype frequencies (Li et al.  2003  ) . Our method was implemented in HPlus. 

 Unlike the empirical approaches described above, the Bayesian methods assume 
a prior distribution of phase which is not constant. For example, Stephens and 
Donnelly assumed that the haplotypes were coalescent during the evolution process 
and modeled for the mutations and the recombination rates (Stephens and Donnelly 
 2003  ) . The model, called a coalescent-based model, has been the basis of many 
population-based statistical phasing methods, including PHASE (Li and Stephens 
 2003  ) , fastPHASE (Scheet and Stephens  2006  ) , MACH (Li et al.  2010  ) , and 
IMPUTE2 (Howie et al.  2009  ) . PHASE was considered as the most accurate method 
but less computationally ef fi cient among the four programs (Browning and Browning 
 2011  ) . MACH and IMPUTE2 were mostly used for imputing the genotypes at the 
un-genotyped loci. 

 Another Bayesian approach assumed a prior distribution of haplotype frequency 
    π   that follows a Dirichlet distribution with hyper-parameter    ( )1,..., T

~
b b b=    

(Niu et al.  2002  ) . Using Gibbs sampling algorithm, the authors sampled a pair of 
compatible haplotypes for each individual and estimated the haplotype frequencies. 
This method was implemented in HAPLOTYPER. 

 Li et al. carried out the comparisons of the performances between two empirical 
methods (PL-EM as an EM method and HPlus as an EE method) and two Bayesian 
methods (PHASE as a coalescent-based method and HAPLOTYPER as a GIBB 
sampling method) based on X-chromosome data from HapMap project and simula-
tions (Li et al.  2007  ) . Each method yields the estimation of haplotype frequencies 
and the prediction for the individuals’ diplotypes. The accuracy of the estimation 
of haplotype frequencies from each method was evaluated by the similarity index

de fi ned as    
1

ˆ ˆ( ; ) 1 0.5 | |
T

j j
j

I p p p p
=

= - -å   , where     jp   and     ˆ jp   are the true and the estimated 
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frequency of the  j- th haplotype. The value of the similarity index ranges from zero 
to one corresponding to the accuracy that ranged from 0 to 100%. The accuracy of 
the prediction for the individuals’ diplotypes was measured by the percent of correct 
prediction. The simulations showed that all four methods yielded very similar and 
accurate results using both measures. Table  6.1  shows the comparison results based 
on the X-chromosome data of the mothers in HapMap trios. Given the parent-child 
trio X-chromosome data, the phases of the mothers’ genotypes on the X-chromosome 
could be resolved completely; therefore, the mothers’ true haplotypes on the 
X-chromosome became known. The whole X-chromosome was divided into several 
hundreds of haplotype blocks. Among these, 500 blocks were randomly selected 
and inferred for their haplotype pairs using each of the four methods. The results 
were compared with the true haplotypes. The comparisons showed that all four 
programs yielded 99% or greater accuracy in both haplotype frequency estimation 
and diplotype prediction averagely over 500 blocks (Table  6.1 ). HPlus gave the 
narrowest range [0.83, 1.0] and PHASE gave the widest range [0.29, 1.0] in both 
accuracy measures. Moreover, HPlus was more than 100 times computationally 
ef fi cient than PHASE. PHASE probably produced more accurate estimates for rare 
haplotypes than other methods, under appropriate assumption for the corresponding 
population genetic model.   

    6.3   Haplotype-Based Association 

 Below, we  fi rst introduce the models and estimations and then present a comparison 
of the estimation results of the prospective and retrospective approaches using 
simulations under various models of haplotype distribution. 

   Table 6.1    Performances of haplotype inference methods   

 Performances 

 Empirical method  Bayesian method 

 PL-EM  HPlus  PHASE  HAPLOTYPER 

  Similarity index  
 Mean  0.989  0.990  0.986  0.991 
 Median  1.0  1.0  1.0  1.0 
 Standard deviation  0.029  0.024  0.040  0.024 
 Range  (0.733, 1.0)  (0.833, 1.0)  (0.292,1.0)  (0.733,1.0) 

  Prediction rate  
 Mean  0.989  0.990  0.990  0.991 
 Median  1.0  1.0  1.0  1.0 
 Standard deviation  0.029  0.025  0.040  0.025 
 Range  (0.733, 1.0)  (0.833, 1.0)  (0.283, 1.0)  (0.733, 1.0) 



896 Renewed Interest in Haplotype: From Genetic Marker to Gene Prediction

    6.3.1   Models and Estimations 

 Let  y  
 i 
  denote the phenotype and  X  

 i 
  denote the environmental covariates (such as 

subjects’ characteristics and clinical variables) 
.
  The phenotype can be a quantitative 

(continuous) measure (e.g., blood pressure) or a qualitative (binary) measure (e.g., 
disease status in a case-control study) or an on-set time (e.g., the time to develop a 
disease in a cohort study). Suppose a primary interest of the study is to correlate the 
gene with the phenotype and to adjust for environmental covariates. For a continu-
ous or binary phenotype, the log-likelihood function based on the observed data 
then may be written as

    
1 1 ( , ) ( )

( , ) log ( | , ) log ( | ( , ), ) ( , | , ),β π
= = Î

= =å å å
� ��

� �� � ��
i i i

n n

i i i i i i i i i i i
i i h h S G

l f y G X f y h h X f h h G X    (6.2)  

where   b   is a vector of the association parameters of haplotypes and other covariates 
with the phenotype and   p   is a vector of haplotype frequencies;     ( )iS G   represents a 
set of all possible pairs of haplotypes (diplotypes) that give arise to the genotypes 
    iG   ;     (( ) | )� ��

i i i if h ,h G ,X   is the distribution of a haplotype pair given the genotype and 
covariates; and    ( ( ), )� ��

i i i if y | h ,h X   is a penetrance function of the phenotype with 
genetic and other covariates. The design matrix of genetic part is determined by the 
hypothesis test of interest and a genetic model, such as recessive, dominant, or additive 
model. If one wants to test the effect of a speci fi c haplotype  h  in contrast to all other 
haplotypes, the design matrix for the  i- th individual with a haplotype pair     ( )� ��

i ih ,h   is 
an indicator function    ( )� ��

i iI h = h& h = h   under a recessive model,     ( )� ��
i iI h = h | h = h

  under a dominant model, and     ( ) ( )+� ��
i iI h = h I h = h   under an additive model. 

Another hypothesis test of interest is to test the joint effects of multiple haplotypes 
in contrast to a reference haplotype. In general, the most common haplotype is 
treated as the reference. To be speci fi c, suppose there are  m  possible haplotypes, 
    1 2 mh ,h ,…,h   in descending order according to their frequencies    1 2³ ³ ³� mp p p   .
The design matrix of genetic part is a vector of  m-1  indicator functions, 
    ( )� �� � �� � ��

i 2 i 2 i 3 i 3 i m i mI(h = h )+ I(h = h ),I(h = h )+ I(h = h ),…,I(h = h )+ I(h = h )   for haplo-
typic analysis and     ( )� �� � �� � ��

i 2 i 2 i 2 i 3 i m i m& & I(h = h h = h ),I(h = h h = h ),…,I(h = h h = h )   
for diplotypic analysis. For rare haplotypes/diplotypes, the associated sample sizes 
prohibit direct assessments. One can either combine all rare haplotypes/diplotypes into 
a compound haplotype/diplotype or group them to the reference haplotype/diplotype. 

 The parameters (  b  ,   p  ) can be estimated using the estimating equation:
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where  Z  
 i 
  is the design matrix,  K  is a vector of indicator function of haplotypes, and 
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under HWE is the posterior probability of     ( , )� ��
i ih h   given the phenotype and covariates. 

The standard error of the estimate is obtained using the sandwich estimation from a 
product of the information matrix and the expectation of estimating equation. 

 For a case-control study, Prentice and Pyke  (  1979  )  showed that the prospective 
maximum likelihood estimation of ( 6.2 ) yields valid results even though data is 
retrospectively ascertained. 

 However, the assumption of HWE might not hold in some cases. The violation 
of the assumption for HWE in the estimation would lead to estimation bias. The 
case-control design is mostly used for studying rare diseases. With the assumption

of a rare disease, the posterior probability    ( )( ), , ,� ��
i i i i if h h y G X    in ( 6.3 ) approximates

to     { } { }Îå ( , ) ( )
exp( ) ( ) ( ) / exp( ) ( ) ( )� ��

� �� � ��β β
i i i

i i i i i i i ih h S G
y Z f h f h y Z f h f h   . The details of the 

derivation are referred to (Zhao et al.  2003  ) . With this approximation, the estimating 
equation for   p   depends on the genotype data from controls only. This modi fi cation 
potentially costs estimation ef fi ciency for estimating association parameter,   b  . Another 
approach for analyzing the case-control data is the retrospective maximum likelihood 
method that models the distributions of haplotypes and covariates and conditions on 
case and control status. Like the prospective analysis, the retrospective analysis 
assumes HWE for haplotypes. In general, a retrospective approach is more ef fi cient 
than a prospective approach under the model assumption. However, the retrospective 
estimates are subject to the model assumption. The violation of model assumption 
causes bias in the estimation results. Instead, a prospective approach is robust to the 
model assumption, which in this case is the HWE assumption made for the true 
haplotypes. Later in this section, we present a comparison of the estimation results of 
the two approaches using simulations under various models of haplotype distribution. 

 In a cohort study, the study subjects are usually observed for the development of 
a particular phenotype. The phenotype on-set time is recorded for those who develop 
a phenotype and the observation time is recorded for those who have not developed 
the phenotype during the observation period, which is referred as a censor time. Let 
 T  

 i 
  and  C  

 i 
  denote for the phenotype on-set time and the censor time, respectively. The 

observed data can be denoted as    D = ¼( , , , ), 1,2, ,i i i iy G X i n  , where     = min( , )i i iy T C   , 
and     ( )D =i i iI T C£   . According to Cox proportional hazard model, the hazard func-
tion given the  i- th individual’s pair of haplotypes     ( , )� ��

i ih h   and the environmental 
covariates  X  

 i 
  is

     ( )( ) 0, , ( ) ,iZ
i i it h h X t ebl l=� ��

   (6.4)  

where  Z  
 i 
  is the design matrix of the haplotypes in the formations described above and 

the covariates  X  
 i 
  .  The likelihood function given the observed data is proportional to

     { }( ) ( )( )0
( , ) ( )
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i

i

i i i

Z
p i i i i
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L y e f h h Xbb p
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   (6.5)  

where     L0 ( )t   is the cumulative baseline hazard function, it can be estimated using 
Breslow estimator. The association parameters     β   and the haplotype frequencies     π
  were estimated jointly in (Lin  2004  ) . However, since the haplotype frequencies do not 
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depend on the association parameters and environmental covariates, we recommend 
estimating    π   and     β   separately. After replacing   p   by its estimate, the estimation 
of     β   is then carried using the Lin’s EM algorithm. In the ( k  + 1)st iteration of the 
maximization step (M-step), the estimator    +( 1)β̂ k   is the solution of the estimating 
function
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where     (·| , )i iE G X   is the expectation with respect to the posterior distribution of 
diplotypes given genotypes  G  

 i 
  and covariates  X  

 i 
 . Then the corresponding estimator 

of     L0 ( )t   is updated by

     
( 1)
0

ˆ1

^

1

( )
( ) .

( ) ( | , )
k

i

n
k i i

n
Zi

j i i i
j

I y t
t

I y y E e G Xb
L +

=

=

£ D
=

³
å
å

   (6.7)  

In E-step, we update the posterior distribution of diplotypes given genotypes and 
covariates using the following formula:
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   (6.8)  

Our simulations showed that this modi fi ed estimation procedure not only esti-
mated     β   as ef fi ciently as Lin’s but also improved the convergence of estimations of 
both parameters (not shown).  

    6.3.2   Comparison of Prospective and Retrospective Analysis 
for Haplotype Association in Case-Control Studies 

 Satten and Epstein ( 2004 ) conducted extensive simulations for comparison of 
prospective and retrospective analysis for haplotype association using simulations. 
The genotype data was simulated based on  fi ve SNPs on chromosome 22 from the 
Finland-United States Investigation of Non-Insulin Dependent Diabetes Mellitus 
(FUSION) Genetics Study (Valle et al.  1998  ) . The haplotype frequency estimated in 
the FUSION data is given in Table  6.2 . The genotypes were simulated by randomly 
drawing a pair of haplotype according to the following distribution:
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where     ¼1 2, , ,π π π m   are the haplotype frequencies given in Table  6.2  and  F  is a 
 fi xation index. HWE assumption holds only when  F  equals to zero. HWE assump-
tion does not hold for any other value of  F . The prospective analysis was done using 
Schaid method (Schaid  2004 ) and Zhao et al. method (Zhao et al.  2003  )  and the 
retrospective analysis was done using Epstein and Satten method (Epstein and Satten 
 2003 ). The conclusions of the simulation were that (1) the prospective and the ret-
rospective approach were comparable when assuming the haplotype effect on dis-
ease followed an additive model; (2) for dominant and recessive models of 
haplotype effect, the retrospective approach was more ef fi cient than the prospective 
approach; and (3) with respect to the retrospective approach, the prospective 
approach was more robust to the departure from the model assumption HWE. Satten 
and Epstein ( 2004 ) concluded that the bias of the retrospective analysis dramatically 
reduced if the  fi xation index as a model parameter was estimated in the retrospective 
analysis.  

 The distribution in ( 6.8 ) is just another assumption for the distribution of haplotype 
pairs. In reality, we do not know the true distribution, especial for the population mixed 
with cases and controls. The distribution can be in another form that is different 
from the one in ( 6.8 ). Prentice and Zhao  (  1991  )  gave a general model for any multi-
variate distribution of continuous and discrete random variables. For haplotypes, the 
general model is in the following quadric form:

     
1( , ) [ ( ) ],θ-= + + ¢D ¢� � �f H H exp H H H HF    (6.10)  

where     = ¼1( , , )mH h h   is the set of all possible haplotypes,     D   is the normalizing 
constant, the canonical parameter     θ   is a function of haplotype frequencies, and     F
  quanti fi es the departure from the HWE. 

   Table 6.2    Haplotypes of the 
 fi ve SNPs and their frequencies 
used in the simulation study 
(obtained from the FUSION 
study)   

 Haplotype  Frequency 

 10010  0.3327 
  01100    0.2489  
 11011  0.1416 
 01011  0.1409 
 10100  0.0611 
 10110  0.0336 
 01111  0.0129 
 11100  0.0101 
 00010  0.0063 
 00100  0.0037 
 01101  0.0035 
 00110  0.001 
 10000  0.0009 
 11110  0.0009 
 01110  0.0007 
 11111  0.0007 
 01101  0.0005 
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 To evaluate the bias and the power of the prospective and the retrospective 
analysis for the SNP data generated from the distribution that is different from ( 6.8 ) 
like the distribution in the model in ( 6.9 ), we conducted our simulations. The pro-
spective analysis in our simulations was done using the Zhao et al. method (Zhao 
et al.  2003  )  and the retrospective analysis using the Lin and Zeng’s method (Lin and 
Zeng  2006  ) , an extension of the Epstein and Satten ( 2003 ) method by including 
covariates. First, we repeated Satten and Epstein’s simulations (Epstein and Satten 
 2003 ) for choosing  F  = 0, 0.2, 0.4, and 0.6 and the parameter of the second haplo-
type “01100” listed in Table  6.2 ,   b   

 2 
  = 0 under the null hypothesis and   b   

 2 
  = log(1.5), 

log(1.2) under alternative hypothesis for a recessive model and a dominant/additive 
model, respectively. For each con fi guration of simulation parameters, we generated 
500 cases and 500 controls and repeated the simulation 5000 times. The summary 
of simulation results is presented in Table  6.3 . In general, our simulation results 
mostly agree with the results from Satten and Epstein (Epstein and Satten  2003 ). 
Under HWD (departure from HWE), if the parameter  fi xation index was estimated 
in the retrospective analysis, the bias reduced but the ef fi ciency over the prospective 
analysis reduced as well, especially for a dominant model. We experienced some 
non-convergence in the retrospective analysis. The number of convergences out of 
5,000 simulations is reported under the last column under each analysis method in 
Table  6.3 . We also evaluated the joint haplotypes association estimation. The con-
clusion is similar to the one for the speci fi c haplotype effect under additive model.  

 We then generated the genotype data from the distribution of ( 6.9 ) with 
    F = F = = - -23 32 , 1.0, 0.5,0.5,1.0ϕ ϕ   and the rest of elements in     F   to be zero, which 
indicates that the pair of the 2nd haplotype and the 3rd haplotype is deviated from 
HWE. The summary of these simulations is presented in Table  6.4 . The prospective 
analysis continued yielding unbiased estimate for any genetic effect models, either 
recessive, or dominant, or additive model. The retrospective analysis yielded biased 
estimates under the recessive and dominant model. Estimating the  fi xation index in the 
retrospective analysis did not reduce the bias since the distribution of haplotypes was 
in a different model from the  fi xation model. Interestingly, the bias of the retrospective 
analysis under the additive model was comparable to the one of prospective analysis, 
but the retrospective analysis and the prospective analysis had similar power.  

 These simulations showed that the retrospective analysis yielded higher 
power than the prospective analysis under the recessive and dominant model if 
the assumption of HWE held. But it would yield false positive  fi ndings if the 
assumption of HWE did not hold. Instead, the prospective analysis was robust to the 
assumption of HWE.   

    6.4   Gene Prediction 

 The current SNP genotyping platforms have several hundred SNP probes within or 
in the  fl anking region of each HLA locus. Although it was found that some common 
HLA alleles could be tagged by a single or multiple SNPs, this is not the case for 
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 Model  log OR(    Gb   )  F 

 Prospective analysis 

 Bias  SE 
 95% 
coverage  Size/power 

 Of 
converges 

 Recessive  log(1.0)  0.0  0.013  0.276  0.952  0.048  5,000 
 0.2  −0.013  0.219  0.951  0.049  5,000 
 0.4  0.013  0.191  0.946  0.054  5,000 
 0.6  −0.016  0.170  0.953  0.047  5,000 

 log(1.5)  0.0  0.055  0.264  0.944  0.437  5,000 
 0.2  0.006  0.212  0.949  0.509  5,000 
 0.4  0.016  0.183  0.947  0.648  5,000 
 0.6  0.013  0.166  0.951  0.706  5,000 

 Dominant  log(1.0)  0.0  0.009  0.131  0.944  0.056  5,000 
 0.2  −0.011  0.130  0.952  0.048  5,000 
 0.4  0.009  0.134  0.950  0.050  5,000 
 0.6  −0.009  0.137  0.952  0.048  5,000 

 log(1.2)  0.0  0.009  0.133  0.946  0.308  5,000 
 0.2  0.000  0.130  0.955  0.276  5,000 
 0.4  0.008  0.135  0.947  0.298  5,000 
 0.6  −0.017  0.139  0.943  0.225  5,000 

 Additive  log(1.0)  0.0  0.008  0.106  0.946  0.054  5,000 
 0.2  −0.009  0.096  0.954  0.046  5,000 
 0.4  0.007  0.090  0.953  0.047  5,000 
 0.6  −0.007  0.083  0.950  0.050  5,000 

 log(1.2)  0.0  −0.005  0.106  0.947  0.382  5,000 
 0.2  0.005  0.098  0.942  0.499  5,000 
 0.4  0.019  0.087  0.949  0.639  5,000 
 0.6  0.001  0.084  0.949  0.606  5,000 

 Joint 
haplotype 

 log(1.0)  0.0  0.012  0.120  0.953  0.047  5,000 
 0.2  −0.009  0.109  0.946  0.054  5,000 
 0.4  0.006  0.101  0.949  0.051  5,000 
 0.6  −0.010  0.091  0.954  0.046  5,000 

 log(1.2)  0.0  −0.005  0.120  0.954  0.308  5,000 
 0.2  0.009  0.110  0.949  0.422  5,000 
 0.4  0.027  0.098  0.945  0.562  5,000 
 0.6  0.004  0.093  0.949  0.519  5,000 

 Table 6.3    Comparison of the haplotype association estimation results from the prospective analysis 
and the retrospective analysis in case-control studies (genotype data generated under  fi xation model 
with  n  = 500 for each control and case group)  
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 Retrospective analysis 

 Under HWE  Under HWD 

 Bias  SE 
 95% 
coverage 

 Size/
power 

 Of 
converges  Bias  SE 

 95% 
coverage 

 Size/
power 

 Of 
converges 

 −0.011  0.216  0.950  0.050  4,907 
 0.663  0.185  0.067  0.933  4,931  −0.019  0.181  0.950  0.050  4,911 
 1.229  0.177  0.000  1.000  4,939  0.009  0.163  0.947  0.053  4,894 
 1.698  0.173  0.000  1.000  4,961  −0.022  0.150  0.951  0.049  4,901 
 0.020  0.191  0.946  0.615  4,910 
 0.639  0.173  0.054  1.000  4,922  −0.037  0.169  0.949  0.589  4,905 
 1.197  0.159  0.000  1.000  4,589  0.001  0.151  0.953  0.768  4,922 
 1.598  0.140  0.000  1.000  2,778  −0.001  0.144  0.953  0.795  4,919 
 0.006  0.122  0.948  0.052  4,905 

 −0.281  0.122  0.356  0.644  4,946  −0.012  0.128  0.952  0.048  4,912 
 −0.536  0.123  0.008  0.992  4,957  0.006  0.132  0.949  0.051  4,893 
 −0.826  0.123  0.000  1.000  4,977  −0.010  0.137  0.953  0.047  4,899 
 0.014  0.123  0.942  0.359  4,891 

 −0.285  0.120  0.347  0.131  4,931  −0.002  0.128  0.954  0.280  4,898 
 −0.565  0.123  0.003  0.878  4,978  0.008  0.134  0.949  0.306  4,936 
 −0.884  0.123  0.000  1.000  4,986  −0.018  0.138  0.945  0.227  4,925 
 0.007  0.106  0.946  0.054  4,906 

 −0.011  0.115  0.925  0.075  4,942  −0.009  0.095  0.952  0.048  4,911 
 0.008  0.125  0.899  0.101  4,954  0.007  0.088  0.949  0.051  4,894 

 −0.013  0.132  0.880  0.12  4,977  −0.009  0.081  0.951  0.049  4,900 
 −0.006  0.104  0.948  0.387  4,903 
 0.042  0.117  0.897  0.575  4,935  0.001  0.095  0.943  0.507  4,899 
 0.102  0.121  0.796  0.754  4,960  0.014  0.084  0.947  0.643  4,919 
 0.113  0.133  0.739  0.755  4,991  −0.003  0.080  0.952  0.618  4,931 
 0.009  0.116  0.953  0.047  4,902 

 −0.012  0.128  0.919  0.081  4,949  −0.01  0.106  0.947  0.053  4,917 
 0.008  0.139  0.902  0.098  4,952  0.007  0.098  0.949  0.051  4,899 

 −0.016  0.146  0.877  0.123  4,974  −0.011  0.089  0.952  0.048  4,900 
 −0.008  0.115  0.949  0.319  4,899 
 0.047  0.128  0.900  0.497  4,933  0.005  0.105  0.950  0.438  4,903 
 0.111  0.135  0.799  0.692  4,964  0.022  0.093  0.948  0.575  4,919 
 0.117  0.148  0.761  0.687  4,990  0.001  0.090  0.952  0.536  4,932 
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   Table 6.4    Comparison of the haplotype association estimation results between the prospective 
quadratic model with  n  = 500 for each control and case group)   

 Model 
 log 
OR(    Gb   ) 

     
f

   

 Prospective analysis 

 Bias  SE 
 95% 
coverage  Size/power 

 Of 
converges 

 Recessive  log(1.0)  −1.0  0.028  0.252  0.948  0.052  5,000 
 −0.5  −0.021  0.264  0.948  0.052  5,000 
 0.0  −0.016  0.276  0.957  0.043  5,000 
 0.5  −0.038  0.304  0.950  0.050  5,000 
 1.0  −0.043  0.328  0.952  0.048  5,000 

 log(1.5)  −1.0  −0.009  0.241  0.947  0.375  5,000 
 −0.5  0.012  0.250  0.951  0.398  5,000 
 0.0  0.003  0.262  0.954  0.347  5,000 
 0.5  0.010  0.282  0.953  0.331  5,000 
 1.0  0.026  0.307  0.954  0.312  5,000 

 Dominant  log(1.0)  −1.0  0.010  0.131  0.947  0.053  5,000 
 −0.5  −0.012  0.129  0.948  0.052  5,000 
 0.0  −0.018  0.129  0.954  0.046  5,000 
 0.5  −0.007  0.13  0.948  0.052  5,000 
 1.0  0.005  0.132  0.948  0.052  5,000 

 log(1.2)  −1.0  0.005  0.132  0.951  0.295  5,000 
 −0.5  −0.012  0.130  0.949  0.252  5,000 
 0.0  0.001  0.130  0.952  0.284  5,000 
 0.5  0.012  0.131  0.956  0.310  5,000 
 1.0  −0.008  0.133  0.953  0.256  5,000 

 Additive  log(1.0)  −1.0  0.011  0.102  0.947  0.053  5,000 
 −0.5  −0.011  0.103  0.951  0.049  5,000 
 0.0  −0.014  0.105  0.953  0.047  5,000 
 0.5  −0.010  0.108  0.947  0.053  5,000 
 1.0  −0.002  0.112  0.951  0.049  5,000 

 log(1.2)  −1.0  0.011  0.101  0.951  0.475  5,000 
 −0.5  −0.011  0.104  0.951  0.387  5,000 
 0.0  −0.002  0.106  0.952  0.406  5,000 
 0.5  0.015  0.108  0.952  0.450  5,000 
 1.0  −0.008  0.110  0.953  0.339  5,000 

 Jointhaplotype  log(1.0)  −1.0  0.014  0.120  0.950  0.050  5,000 
 −0.5  −0.007  0.120  0.952  0.048  5,000 
 0.0  −0.020  0.120  0.952  0.048  5,000 
 0.5  −0.006  0.120  0.959  0.041  5,000 
 1.0  −0.004  0.122  0.951  0.049  5,000 

 log(1.2)  −1.0  0.016  0.120  0.946  0.378  5,000 
 −0.5  0.000  0.121  0.954  0.323  5,000 
 0.0  0.000  0.121  0.948  0.326  5,000 
 0.5  0.020  0.121  0.953  0.380  5,000 
 1.0  −0.005  0.122  0.953  0.292  5,000 
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analysis with the retrospective analysis in case-control setting (genotype data generated under 

 Retrospective analysis 

 Under HWE  Under HWD 

 Bias  SE 
 95% 
coverage 

 Size/
power 

 Of 
converges  Bias  SE 

 95% 
coverage 

 Size/
power 

 Of 
converges 

 0.233  0.200  0.754  0.246  4,929  0.173  0.205  0.845  0.155  2,599 
 0.093  0.212  0.911  0.089  4,939  0.044  0.212  0.943  0.057  2,134 

 −0.039  0.218  0.958  0.042  4,905  −0.076  0.220  0.951  0.049  2,036 
 −0.234  0.238  0.851  0.149  4,914  −0.255  0.247  0.832  0.168  2,173 
 −0.454  0.255  0.580  0.420  4,893  −0.466  0.255  0.567  0.433  2,480 

 0.188  0.184  0.810  0.873  4,930  0.14  0.187  0.878  0.804  2,496 
 0.111  0.190  0.895  0.772  4,902  0.069  0.189  0.937  0.687  2,268 

 −0.024  0.194  0.955  0.514  4,919  −0.055  0.197  0.953  0.441  2,025 
 −0.194  0.201  0.872  0.198  4,901  −0.206  0.202  0.863  0.172  2,025 
 −0.384  0.212  0.584  0.048  4,895  −0.395  0.215  0.568  0.045  2,446 
 −0.076  0.121  0.900  0.100  4,930  −0.049  0.127  0.921  0.079  2,656 
 −0.056  0.121  0.928  0.072  4,937  −0.036  0.123  0.942  0.058  2,189 
 −0.017  0.12  0.955  0.045  4,907  0.000  0.121  0.957  0.043  1,997 

 0.051  0.121  0.933  0.067  4,910  0.058  0.121  0.925  0.075  2,046 
 0.121  0.123  0.829  0.171  4,873  0.121  0.123  0.827  0.173  2,310 

 −0.084  0.123  0.892  0.133  4,926  −0.055  0.126  0.927  0.173  2,779 
 −0.054  0.122  0.924  0.177  4,893  −0.031  0.123  0.942  0.231  2,257 
 −0.006  0.122  0.950  0.299  4,906  0.009  0.123  0.951  0.334  2,118 

 0.058  0.123  0.925  0.505  4,884  0.061  0.120  0.926  0.498  2,077 
 0.115  0.124  0.842  0.673  4,880  0.116  0.124  0.836  0.678  2,298 
 0.010  0.108  0.940  0.060  4,930  0.013  0.109  0.938  0.062  2,714 

 −0.011  0.106  0.947  0.053  4,937  −0.007  0.104  0.951  0.049  2,216 
 −0.015  0.104  0.953  0.047  4,906  −0.013  0.102  0.953  0.047  2,001 
 −0.010  0.103  0.953  0.047  4,910  −0.011  0.103  0.953  0.047  2,005 
 −0.002  0.102  0.959  0.041  4,885  −0.005  0.101  0.960  0.040  2,243 

 0.022  0.106  0.941  0.503  4,927  0.021  0.104  0.943  0.509  2,564 
 −0.006  0.106  0.946  0.409  4,900  −0.006  0.104  0.954  0.409  2,198 
 −0.002  0.105  0.951  0.413  4,913  −0.007  0.105  0.950  0.395  1,927 

 0.006  0.103  0.958  0.437  4,882  0.002  0.103  0.964  0.421  1,934 
 −0.025  0.099  0.956  0.306  4,899  −0.027  0.099  0.957  0.306  2,152 

 0.012  0.116  0.951  0.049  4,931  0.016  0.115  0.949  0.051  2,668 
 −0.011  0.115  0.951  0.049  4,939  −0.007  0.113  0.956  0.044  2,173 
 −0.021  0.116  0.952  0.048  4,900  −0.019  0.114  0.957  0.043  1,944 
 −0.011  0.116  0.953  0.047  4,908  −0.010  0.116  0.952  0.048  1,962 
 −0.006  0.118  0.949  0.051  4,884  −0.008  0.118  0.952  0.048  2,229 

 0.019  0.115  0.945  0.411  4,928  0.019  0.113  0.942  0.423  2,520 
 −0.003  0.116  0.949  0.337  4,895  −0.004  0.114  0.955  0.333  2,157 
 −0.003  0.116  0.951  0.337  4,916  −0.008  0.116  0.950  0.329  1,897 

 0.012  0.116  0.949  0.379  4,894  0.006  0.116  0.947  0.356  1,892 
 −0.012  0.116  0.951  0.302  4,902  −0.014  0.116  0.951  0.292  2,119 
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rare HLA alleles. However, since HLA alleles are found on multiple haplotype 
backgrounds (Walsh et al.  2003  ) , they can be tagged or predicted by SNP haplo-
types. Leslie et al. have developed an IBD-based method to predict HLA alleles 
using  phased  haplotypes from parent-offspring trio data (Leslie et al.  2008  ) . The 
method was applied to build models predicting HLA-A, -B, -C, -DRB1, and -DQB1 
alleles in high and intermediate resolution using the data of 45 parent-offspring trios 
with European ancestry from Utah. The models were then validated using the British 
1958 birth cohort data. The prediction accuracy ranged from 72 to 89% for predicting 
high-resolution alleles and 84 to 93% for predicting intermediate resolution HLA 
alleles. The requirement of phased haplotypes limits the available data to use and 
thereby limits the accuracy to predict rare HLA alleles for the IBD-based method. 

 To overcome this limitation, we introduced a new likelihood-based method that 
builds predictive models using genotypes from independent samples (Li et al.  2011  ) . 
The key idea was similar to our haplotype inference method as described in Sect.  6.2 . 
Rather than constructing haplotypes of SNPs alone, here we constructed haplotypes 
of SNPs together with HLA alleles. Then predictive models for HLA alleles from 
SNP genotypes were built based on the constructed haplotypes. The predictive models 
were validated using an independent data set. The prediction accuracy was measured 
by the percentage of correctly predicted HLA alleles in the validation set. Applying 
the method to the data generated by a GWAS of hematopoietic cell transplant (HCT) 
outcomes of cohort of ~1,500 patient-donor pairs, we used the unrelated donor data 
(about a half of the cohort donors) to build the predictive models and used the 
related donor data to validate the prediction. The prediction accuracy ranged from 
79 to 97% for predicting HLA alleles in high resolution and 93–98% for predicting 
HLA alleles in intermediate resolution. To compare our results with the results from 
(Leslie et al.  2008  ) , we applied the protective models to the British 1985 birth 
cohort. Our prediction accuracy was 10% higher than the prediction accuracy using 
the method of (Leslie et al.  2008  )  on average (Table  6.5 ). The prediction accuracy 
generally depends on the copies of speci fi c alleles in the training data set used for 
building the predictive model. Figure  6.1  shows the relationship between the 

   Table 6.5    Comparison of HLA allele prediction accuracy for the British 1958 birth cohort data 
(genotyped by Affymetrix 500K) between using the predictive models described in Leslie et al. 
 (  2008  )  and Li et al.  (  2011  )    

 Gene 
 Predictive 
model 

 Prediction accuracy (%) 
at high resolution in 4 digits 
(call rate %) 

 Prediction accuracy at 
intermediate resolution in 2 
digits (call rate %) 

 CT = 0  CT = 0.5  CT = 0.9  CT = 0  CT = 0.5  CT = 0.9 

 HLA-A  Leslie et al.  89  91 (93)  97 (58)  93  94 (94)  95 (29) 
 Li et al.  96  96 (99)  98 (88)  97  97 (100)  99 (90) 

 HLA-B  Leslie et al.  82  85 (88)  93 (66)  84  87 (89)  94 (65) 
 Li et al.  94  95 (98)  97 (82)  95  95 (100)  97 (89) 

 HLA_DRB1  Leslie et al.  72  76 (88)  83 (51)  86  90 (88)  95 (55) 
 Li et al.  85  90 (81)  99 (38)  97  98 (99)  98 (77) 

 HLA_DQB1  Leslie et al.  77  80 (88)  93 (29)  90  91 (89)  97 (31) 
 Li et al.  94  95 (98)  98 (80)  99  99 (100)  99 (97) 
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predictive accuracy and the number of observed alleles in the training set used to 
build the predictive model.   

 To evaluate the performance of these predictive models further, we (Zhang et al. 
 2011  )  investigated several practical issue and concluded that (1) including imputed 
SNPs in MHC using HapMap data in addition to genotyped ones can improve the 
accuracy of prediction; (2) SNPs generated by different platforms yield a compa-
rable accuracy of predictions; (3) the prediction models built based on the data from 
a particular population can be used for predicting HLA alleles from SNP genotypes 
generated from different study populations of the same ethnicity; and (4) combining 
all available SNP and HLA data that observed from multiethnic populations to build 
prediction models generally improves the prediction accuracy as well. 

 Consider a random sample of  n  individuals. On each individual, the genotype of 
an HLA gene is denoted by     = � ��i i ih h h   , where     �ih   and     ��ih   are two HLA alleles of the  i -th 
individual. Suppose that on each individual sample, we have  q  SNPs  fl anking the HLA 
locus, denoted as    = ¼1 2( , , , )i i i iqG g g g   . In this section, we denote the pair of haplo-
types of     iG   as     ( , )� ��

i iH H   , where     � iH   and     �ih   are on the same chromosome and     ��iH   and 
    ��ih   are on the other chromosome. Given the expected LD between the HLA gene and 
 fl anking SNPs, the joint distribution of the HLA and SNP genotypes is expressed as

     Î Î

= =å å
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( ) ( ),
� �� � ��� �� � ��

� �� � ��� �� � ��
i i i i i i i i i i i i

i i i i i i i i i i
h H h H S h G h H h H S h G

f h G f h H h H f h H f h H
   (6.11)  

  Fig. 6.1    Relationship between the prediction accuracy for each allele in the validation set and the 
number of copies of the allele observed in the training set       
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where     ( , )i iS h G   is the set of all haplotype pairs that give arise to the genotypes 
    ( , )i ih G   ,     ( )� �

i if h H   and     ( )�� ��
i if h H   are the distributions of joint haplotype of HLA and 

SNPs, and the last equation holds under the Hardy-Weinberg equilibrium (HWE). 
The haplotype     � �i ih H   is assumed to have a multinomial distribution expressed as

     
( )( ) Pr( ) ,=

Î

= Õ � �� � i iI h H hH
i i

hH

f h H hH
Q

   (6.12)  

where     Pr( )hH   is the frequency of observing a joint haplotype of HLA and SNPs, 
    hH   , the indicator function     =( )� �

i iI h H hH   equals to one if the inside equality holds 
and zero otherwise, and     Q   is the set of all possible joint haplotypes of HLA and 
SNPs. The similar formulation is for the distribution of     �� ��i ih H   . To estimate the 
haplotype frequency    Pr( )hH   , we employed the likelihood method, via maximizing 
the following log-likelihood function:

     
( ) ( )

1 ( , ) ( , )

log Pr( ) .= + =

Î= Î Q

æ ö
= ç ÷

è ø
å å Õ � ���� ��

� ��� ��

i i i i

i i i i i i

n
I h H hH I h H hH

hHi h H h H S h G

l hH    (6.13)  

The detailed estimation procedure was described in (Li et al.  2003  ) . 
 According to the Bayesian rule, the predictive probability for HLA alleles given 

SNP genotypes can be written as

    

( ) ( )

( , ) ( , )

( ) ( )

( , ) ( , )

Pr( )
( , )

Pr( | ) ,
( , ) Pr( )

Q

= + =

ÎÎ
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= =
å Õ

å å å Õ

� ��� ��

� ��� ��

� ��� ��

��� ��� � ��� ��

���
���

���

I hH hH I hH hH

hHhH hH S h G

I hH hH I hH hH

hh hHhh hH hH S h G

hH
f hh G

hh G
f hh G hH    (6.14)  

where the  fi rst summation in the denominator is over all possible genotypes at the 
HLA locus and the second summation in the denominator and the  fi rst summation 
in the numerator are over all possible joint haplotype pairs that are consistent with 
the genotypes of HLA and SNPs. 

 The above predictive probability for any pair of HLA alleles takes values between 
zero and one. It is possible for more than one pair of HLA alleles to be associated 
with a positive predictive probability. In practice, the pair associated with the high-
est predictive probability is then called the predicted HLA result. If we accept all 
predicted results regardless of their associated predictive probabilities, then we 
make calls for all samples and the call rate is 100%. In the case of requiring higher 
con fi dence on prediction results, one could make a call only if the predicted result 
is associated with a probability above a threshold, e.g., 0.5 or 0.9. In this case, the 
call rate is possibly less than 100%. 

 An important step in building a successful predictive model is to select a mini-
mum number of SNPs that predict HLA alleles with the most accuracy. To achieve 
this goal, we constructed an objective function based upon the Akaike information 
criterion (AIC) (Koehler and Murphree  1988  ) , which maximizes the log-likelihood 
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function and penalizes on the number of additional haplotype parameters to be 
estimated,

    

( ) ( )

( , ) ( , )

( ) ( )

(

 

) (  , , )

Pr( )

log ( ),
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Q m k
hH    (6.15)  

where the  fi rst logarithmic term in the above equation is the negative log likelihood 
of predictive probabilities given all SNP genotypes in the training set and the second 
term equals the difference of the number of haplotypes of HLA-SNP ( m ) and the 
number of HLA alleles ( k ). Note that the  fi rst term of the objective function decreases 
when the number of SNPs in the model increases. Increasing the number of SNPs 
in the model increases the number of haplotypes and, therefore, increases the num-
ber of parameters for estimation. To avoid over  fi tting the model, the second term is 
added in the objective function. Our goal is to  fi nd the optimal set of SNPs to mini-
mize the objective function. 

 In the current chip design, there are none or a few SNP probes within the HLA 
loci. Thus, we had to include the SNPs from  fl anking region of each HLA locus. 
Linkage disequilibrium between SNPs and HLA alleles generally decreases with 
increasing distance between the SNP and HLA locus. Choosing the boundary 
for SNPs to be used in predictive model was guided by evaluating the objective 
function. The boundary was set when the objective function reached to the minimum. 
To make the selection process ef fi cient, we proposed an SNP selection procedure 
starting from the SNPs within HLA locus and gradually expending to the SNPs at 
both sides of  fl anking region by adding one SNP at a time using a combination of 
forward selection and backward elimination scheme.  

    6.5   Summary 

 Haplotype-based analyses are useful in genetic associations. While they are unlikely 
to be applicable for all circumstances, they have their own utilities. In this chapter, 
we have identi fi ed several areas where more complex haplotype analysis, debatably 
more sophisticated genetic analyses, is quite helpful. To reiterate, haplotype analysis 
is desirable if the focus is on a well-de fi ned biological unit such as multiple SNPs 
within a speci fi c gene, speci fi c exon, or regulatory region (introns, or promoters, or 
even intergenetic regions) and the goal is to identify functional elements locating on 
the same chromosome. Discoveries of any haplotype-based associations are more 
readily to be validated with functional studies or sequence experiments. At risk of 
being criticized, the haplotype analysis is more like “surgeon’s knife,” which is 
applicable only for speci fi c situations.  
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    6.6   Software 

  HPlus  (  http://qge.fhcrc.org/hplus/    ) performs the haplotype analyses that include 
estimating haplotype frequency, inferring individuals’ haplotypes from SNP geno-
types, and correlating SNP haplotypes with a phenotype that is either quantitative, 
or binary, or time-to-event. 

  MAGprediction  (  http://qge.fhcrc.org/MAGprediction/    ) predicts highly polymor-
phic gene alleles, HLA alleles in particular, using unphased SNP data. The software 
includes two models: a training module that builds prediction models using user-
provided HLA and SNP data and a prediction module that predicts the HLA alleles 
based on either the several available models built by us or on results from the train-
ing module.      
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  Abstract   Sequencing the 1% of the genome coding for proteins (the exome) offers 
a powerful and often cost-effective route to identifying genetic mutations underlying 
Mendelian disease. It is possible that exome sequencing in a relatively small number 
of individuals showing ‘extreme’ phenotypes or more familial subtypes of complex 
disease may also be productive. Larger-scale exome and whole genome sequencing 
studies offer the potential to interrogate the cumulative impact of the numerous rare 
variants presumed to underlie a substantial proportion of complex disease suscepti-
bility. Exome and, particularly, whole genome sequencing studies yield enormous 
amounts of data and pose many analytical challenges. Aside from issues concerning 
the production of high-quality sequence reads and the management and manipula-
tion of huge databases, a major concern, in the early stages of analysis, is the reli-
able alignment of the short sequence reads against a reference genome. A wide 
range of algorithms and software tools for alignment have been developed and 
implemented for this most critical step in every analysis ‘pipeline’. A similarly rich 
set of platforms and analytical tools are available to facilitate the reliable calling of 
DNA variants. Given the excellent resources now available, the production of a 
well-characterised database cataloguing novel and known variants in an individual 
exome is achievable. However, the dif fi culty of teasing out causal variants from 
the vast amount of neutral or irrelevant variation presents the greatest challenge. 
I review here the techniques and tools that have been developed and applied for the 
analysis of exome data. Exome mapping of genes involved in Mendelian disease 
has met with considerable success thus far, while applications to complex traits look 
promising given analysis of suf fi ciently large numbers of case and control exomes.  

    A.   Collins   (*)
     Genetic Epidemiology and Bioinformatics Research Group, Faculty of Medicine , 
 University of Southampton ,   Duthie Building (808), Tremona Road , 
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    7.1   Introduction 

 Thousands of genetic variants for both Mendelian diseases and complex traits have 
been identi fi ed as causal or associated with disease phenotypes in recent years. 
These have usually been identi fi ed through linkage mapping, in the case of 
Mendelian disease, and candidate gene studies or genome-wide association studies 
(GWAS) in the case of complex traits. For complex diseases the majority of the 
implicated single nucleotide polymorphism (SNP) variants are associated indirectly 
with disease, usually to a genomic region. Because these regions can be large and/
or inter-genic, GWAS associations may or may not indicate whether a speci fi c gene 
is compromised and involved in disease. In contrast, sequencing enables the 
identi fi cation of all variants in a genome or genomic region such that an individual 
variant can, in favourable circumstances, be  fi rmly identi fi ed as causal. For this 
reason exome sequencing and whole genome sequencing are already revolutionis-
ing the way genetic studies are undertaken. 

 Recent years have seen dramatic changes in the development and application of 
DNA sequencing technology. The traditional Sanger sequencing method employ-
ing capillary electrophoresis remains the ‘gold standard’ in terms of the length of 
the reads and the accuracy of the sequence (Harismendy et al.  2009  ) . However, 
‘next-generation sequencing’ (NGS) methods generate 3 or 4 orders of magnitude 
more sequence at greatly reduced cost compared to the Sanger approach. These 
methods sequence DNA molecules spatially separated in  fl ow cell and attached to 
a solid surface. The process employs optical imaging to record the sequential addi-
tion of nucleotides in the sequencing reaction. This enables millions of sequencing 
reactions to take place in parallel. The  fi rst massively parallel NGS platform was 
launched in 2005 (Majewski et al.  2011  ) . NGS radically overcomes the problem of 
limited scalability of the Sanger approach (Reis-Filho  2009 ; Lander  2011  )  and is 
capable of generating hundreds of mega- to giga-base pairs (bp) of nucleotide 
sequence in a single run. Millions of overlapping sequence reads are then aligned 
and compared to a reference genome to identify differences (polymorphisms). 
Targeted sequencing of genomic regions of particular interest, of which the most 
important is undoubtedly the entire exome (the protein-coding exons of all genes), 
has bene fi ts with respect to reduced cost, data management and increased sequence 
coverage (for a given quantity of DNA). Exome sequencing typically involves 
sequencing the ends of fragments from the sheared sample DNA – either one end 
(single-end sequencing) or both ends (paired-end sequencing) of the fragments. 
The sequence read lengths are typically in the range of 35–150 bp for Illumina 
platforms (  http://www.illumina.com/applications/sequencing/targeted_resequenc-
ing.ilmn    ) and ~400 base pairs for the Roche 454 sequencer (  http://www.roche.
com/products/product-list.htm?type=researchers&id=4    ). The exome comprises 

http://www.illumina.com/applications/sequencing/targeted_resequencing.ilmn
http://www.illumina.com/applications/sequencing/targeted_resequencing.ilmn
http://www.roche.com/products/product-list.htm?type=researchers&id=4
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only ~1% of the genome (~30 Mb), so an average ‘depth’ of coverage of the exome 
of 75 can be achieved with 3 Gbp of sequence, whereas 90 Gbp would be required 
for 30-fold-depth coverage of the whole genome (Majewski et al.  2011 ; Bainbridge 
et al.  2010  ) . 

 The exome is the best understood component of the genome for relating sequence 
to function and, similarly, to directly link genetic variants with disease causality 
(Kumar et al.  2011  ) . For Mendelian disorders exome sequencing offers a powerful 
route to identifying the underlying allelic variants since the majority of this class of 
disease genes are known to disrupt protein-coding sequences. Kryukov et al.  (  2007  )  
have shown that most rare non-synonymous (missense) alleles are likely to be 
deleterious, unlike the majority of noncoding sequences. The exome is therefore 
particularly enriched for variants underlying Mendelian traits. There is also increasing 
evidence that exome sequencing offers a route to understanding complex disease. 
For example, it has been shown that rare variants are over-represented in genes 
already identi fi ed (usually by GWAS) as containing common variants involved in 
complex disease. Johansen et al.  (  2010  )  determined a signi fi cant burden (‘mutation 
skew’) of 154 rare missense or nonsense variants in 438 individuals with hypertrig-
lyceridemia, compared to a signi fi cantly lower burden in controls, within four genes 
known to contain common variants for this condition. Support for the observation 
of rarer alleles with potentially higher disease penetrance residing within genes 
implicated by GWAS comes from the study by Rivas et al.  (  2011  ) . Working on the 
in fl ammatory bowel disease (IBD) phenotypes, the authors identi fi ed novel rare 
variants which contribute a greater component to the population risk variance than 
the known common IBD variants in the  CARD9 ,  NOD2 ,  CUL2  and  IL18RAP  genes. 
Lehne et al.  (  2011  )  questioned whether missing the regulatory elements that may 
impact disease phenotype, but are situated outside the exome sequence regions, 
would reduce the value of applying exome sequencing to complex disease. For most 
of complex diseases examined, the authors found that most of the association signal 
from ‘suggestive’ common variants was found within the coding regions rather than 
introns. Although they did not consider rare variation directly, the work supports 
exome sequencing as a strategy to search for genetic variation associated with 
complex disease. 

 Despite its evident advantages and early successes, exome sequencing has a 
number of disadvantages and problems, aside from the obvious lack of information 
from the bulk of the noncoding genome. Exon capture requires the use of comple-
mentary nucleic acid ‘baits’ to trawl sequence reads from speci fi c exons. Since 
these are ‘small’ targets, this can result in uneven coverage of exonic regions, and 
the baits themselves are only as complete as the information derived from gene 
annotation and other reference databases. There is also a degree of low-depth 
hybridisation away from the targets in non-exonic regions although the overlap of 
sequence reads extending a short distance either side of the bait probes provides 
some information on adjacent regions. There is a trend towards increasing the 
coverage of exonic and adjacent regions in the newer products. Perhaps more important 
than concerns about coverage are a wide range of data analytical considerations, 
reviewed here.  
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    7.2   Strategies for Exome Projects 

 The strategy chosen for an exome sequencing study depends on the known, expected 
or hypothesised genetic mode of inheritance. The costs and analytical challenges of 
sequencing hundreds of exomes to pursue the complete spectrum of rare variation 
underlying complex disease are likely to be prohibitive for all but large consortia for 
the foreseeable future. At the other end of the spectrum, highly successful studies 
focussed on a small number of related individuals have been achieved for Mendelian 
diseases. Between these two extremes is perhaps the most intriguing prospect: 
sequencing a small number of affected relatives showing relatively strong familial 
patterns for a complex trait and/or focussing on a distinct disease subtype or indi-
viduals showing an ‘extreme’ phenotype of a common disease might identify impor-
tant rare variation. Success depends on the existence of forms of complex disease 
closer to the Mendelian end of the disease spectrum, and strategies include focus on 
individuals with particularly severe forms of a disease and/or markedly early onset. 
For complex diseases there remains a substantial degree of uncertainty about how 
best to design such studies, but I consider here some of the  fi ndings to date. 

    7.2.1   Mendelian Disorders 

 Fewer than half of the allelic variants underlying monogenic diseases showing a 
Mendelian pattern of inheritance have been identi fi ed. The dif fi culty with  fi nding 
many of these genes arises from the rarity of affected cases or case families, the 
existence of similar phenotypes determined by independent mutations (locus 
heterogeneity) and the reduced reproductive  fi tness limiting the further analysis of 
key pedigrees. Many of these more dif fi cult diseases arise as  de novo  mutations and 
are not therefore amenable to linkage analysis. However, exome sequencing offers 
a route to progress and initial applications, focussed on a number of Mendelian 
disorders, have identi fi ed high-penetrance genes through sequencing a very small 
number of affected family members. Ng et al.  (  2009  )  were the  fi rst to demonstrate 
the utility of exome sequencing to identify Mendelian disease variants. As 
proof of principle, the authors sequenced the exomes of four unrelated cases with 
Freeman-Sheldon syndrome, a disease for which the causal variant was known, and 
eight control samples. The authors  fi ltered out common and presumed unimportant 
variation identi fi ed in HapMap and dbSNP and demonstrated that disease variants 
could be mapped solely by exome sequencing of a few cases. The gene for Miller 
syndrome (Ng et al.  2010a  )  was the  fi rst example of a gene found for a disease of 
unknown cause.    The DHODH gene was mapped using four affected cases in three 
independent pedigrees, data  fi ltered against public SNP variant databases, and 
veri fi ed by Sanger sequencing in three additional Miller families. To maximise the 
chance of identifying the gene, the authors considered a dominant model with at 
least one novel non-synonymous SNP, splice variant or coding indel. Their reces-
sive model required genes with at least two novel variants which were either in the 
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same position (homozygous) or in different positions (as a possible compound 
heterozygote but conditional on, unknown, phase). The success of this enterprise 
depended to a large extent on the choice of disease. Miller syndrome is a very rare 
Mendelian disease, and so causal variants were unlikely to be present in reference 
databases or control exomes. Mapping a rare recessive gene is easier than a domi-
nant gene because fewer genes within the affected individual’s exome will have two 
novel or rare non-synonymous variants. The lack of genetic heterogeneity in the 
sample of individuals studied was also advantageous, and the authors emphasise 
the importance of ethnic uniformity in the ancestry of affected cases (Europeans in 
this case) reducing the likelihood of genetic heterogeneity. 

 Strategies that might accelerate the mapping of Mendelian disorders in the future 
include, for recessive models, identifying genes within shared tracts of homozy-
gosity to reduce the pool of potential candidate variants for further consideration. 
Krawitz et al.  (  2010  )  introduced identify-by-descent  fi ltering to map the recessive 
gene for hyperphosphatasia mental retardation syndrome (HPMRS or Mabry 
syndrome) in a family with three affected siblings. They developed a hidden Markov 
model to identify regions with shared identical, maternal and paternal haplotypes 
but not necessarily derived from a common ancestor. They were then able to 
identify whether each sibling had the same (identity by descent = 2) homozygous 
or heterozygous genotype. This process reduced the pool of candidate genes with 
mutations in all three sibs from 14 to 2 and led to the identi fi cation of the PIGV gene 
as causal.  

    7.2.2   De Novo Variants 

 For ‘sporadic’ disease sequencing of unaffected parents may facilitate rapid 
identi fi cation of important  de novo  mutations involved in disease. Girard et al. 
 (  2011  )  sequenced exomes and parents of 14 schizophrenia probands with no previ-
ous family history and identi fi ed 15  de novo  mutations in eight probands. This is a 
higher  de novo  mutational burden than the ‘background’ mutation rate as indicated 
by the 1000 Genomes Project. Four of the 15 mutations were predicted to lead to a 
premature stop codon in genes hypothesised to have a role in the disease.  

    7.2.3   Cancer Germline and Tumour Studies 

 A route to further understand the genetic basis of cancer is offered by the exome 
sequencing in both germline and tumour DNA from the same patient and searching 
(by subtraction of the germline variants) for novel somatic mutations. An early 
success for this approach is described by Tiacci et al.  (  2011  )  who exome-sequenced 
germline and tumour DNA from an index patient with hairy-cell leukaemia (HCL). 
The  fi ndings included a somatic heterozygous mutation in the BRAF gene which 
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was known to produce an oncogenic protein. Remarkably, the same variant was 
identi fi ed by Sanger sequencing as present in all 47 additional HCL patients they 
were screening but in none of their 195 patients with other forms of peripheral 
B-cell lymphoma or leukaemia. The power of this approach to identify recurrent 
somatic mutations driving further downstream somatic changes was clearly demon-
strated. The  fi ndings also support BRAF mutation screening as a diagnostic tool to 
distinguish HCL from other B-cell lymphomas and identify HCL as a clinically 
distinct entity from other ‘HCL-like’ disorders.  

    7.2.4   Rare Variants in Families: Extreme Phenotypes 

 Feng et al.  (  2011  )  consider strategies for mapping rare variants in complex disease 
in the context of family data. The authors recognise the critical issues which reduce 
power, namely, locus heterogeneity (McClellan and King  2010  ) , allelic heterogene-
ity (2,000 pathogenic mutations have been reported in BRCA2), problem of pheno-
copies (affected individuals in a family that do not share the predisposing mutations) 
and apparent oligogenic patterns of inheritance due to segregation of many common 
moderate-risk loci. Nevertheless, Cirulli and Goldstein  (  2010  )  argue that family-
based designs, particularly for families showing phenotypes from the extremes of a 
trait distribution, are most likely to achieve success for complex traits until the costs 
of sequencing reduce suf fi ciently to favour very large case-control designs. 
Simulations support a two-stage design with sequencing of two affected individuals 
per pedigree that are not too closely related to generate an excessive number of 
false-positive genes or too distantly related to increase the risk of including a 
phenocopy in the comparison.  

    7.2.5   Rare Variants in Large Cohorts: Mutational Load 

 Cooper and Shendure  (  2011  )  consider the interpretive challenge of the ‘multiple 
hypothesis testing’ problem presented by the enormous number of variants identi fi ed 
in genome sequences and the abundance of false discoveries. They argue that exper-
imental or computational approaches to assess variant function can provide esti-
mates of the prior probability that a given variant is phenotypically important, 
thereby boosting discovery power. Such empowering classi fi ers include SIFT scores 
that use ‘evolution as the best measure of deleteriousness’, the observation that 
sequences not removed by natural selection are likely to be important. Application 
of a comprehensive range of functional and predictive tools is likely to be required 
for complete characterisation of important low-frequency variation identi fi ed in 
large cohorts of patients with common forms of disease. Evolutionary models 
predict that rare deleterious mutations spread across a large number of genes may have 
a cumulative effect (mutational load) to increase susceptibility to complex disease. 
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In this scenario a given mutation may be present in only a few individuals and have 
a negligible effect on trait variation, but, in combination with many similar variants, 
the burden of mutation may underlie causality (Howrigan et al.  2011  ) . Pooled asso-
ciation tests and collapsing methods (Price et al.  2010 ; Dering et al.  2011  )  provide 
routes to testing mutational burden in large-scale genetic studies.   

    7.3   Exome Data 

 Data from a sequencer are typically presented in FASTQ format in which there are 
four lines per read comprising sequence identi fi cation labels, raw sequence and 
quality scores for each of the bases in the sequence (  http://en.wikipedia.org/wiki/
FASTQ_format    ). The quality score represents, as a single ASCII character, the 
probability ( p ) that the base call it refers to is incorrect. The Sanger version of 
the Phred quality score is  Q  

sanger
  = −10 log 

10
   p . Two such FASTQ  fi les are generated 

for paired-end sequencing with sequential entries corresponding to the sequenced 
ends of each DNA fragment. Li et al.  (  2009a  )  describe the now standard ‘sequence 
alignment/map’ (SAM) format for storing short read alignments and mapping 
coordinates against a reference sequence. A software package (SAMtools) is used 
for processing such  fi les and has options for positional sorting, indexing, format 
conversion and calling and viewing variants. The standardised format allows for 
ef fi cient capture of read and alignment information by de fi ning codes that characterise 
aligned sequences and identi fi ed variations from the reference sequence. These 
include, for example, codes to represent matches and mismatches, insertions, 
deletions and sequences with ‘soft’ and ‘hard’ clipping to represent non-matched 
sequences which are either present or missing from the alignment. Their CIGAR 
format provides a compact way of storing good alignments and also representing 
bases misaligned to the reference genome. The SAM format has a binary equivalent 
 fi le (BAM  fi le) which improves processing performance by supporting more rapid 
retrieval of aligned sequences in speci fi c genomic regions. 

    7.3.1   Sequence Alignment 

 Accurate alignment of short read sequences against a reference genome is the most 
critical step towards cataloguing the polymorphisms represented in a sample. The 
process requires a reliable reference genome with known sequence and millions of 
short reads from the sample genome. Many algorithms have been developed to align 
sequence reads against the reference genome. Li and Homer  (  2010  )  and Ruffalo 
et al.  (  2011  )  survey the range of sequence alignment packages. Short read alignment 
packages include Bowtie (Langmead et al.  2009  ) , BWA (Li and Durbin  2009  ) , 
MAQ (Li et al.  2008  ) , mrsFAST (Alkan et al.  2009  ) , Novoalign (  http://www.novo-
craft.com/main/index.php    ), SHRiMP (Rumble et al.  2009  )  and SOAPv2 (Li et al. 

http://en.wikipedia.org/wiki/FASTQ_format
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 2009b  ) . Of these, BWA is one of the most frequently used aligners. It exploits indexing 
built using the Burrows-Wheeler transformation (Burrows and Wheeler  1994  )  
which enables fast searching and generates a quality score that can be used to 
reject poorly supported alignments. Ruffalo et al. undertook a simulation-based 
comparison and noted that the different approaches trade off speed and accuracy to 
optimise detection of different variant classes. Some algorithms were more ef fi cient 
at different stages in the alignment process. For example, BWA and SOAP were 
found to align genomes quickly but required signi fi cant time to index the genome, 
whereas Novoalign required less time for indexing time but performance showed 
greater dependence on the number of reads. Novoalign offers high sensitivity and 
speci fi city with respect to accuracy of alignments and uses information on base 
qualities at all stages in the alignment (Li and Homer  2010  )  although this impacts 
on speed of the alignment. However, higher performance can be achieved by 
running the message passing interface (MPI) version on a computer cluster and 
exploiting multithreading.  

    7.3.2   Variant Calling 

 Given an aligned set of reads, it is essential to identify and ‘mark’ duplicate reads so 
that they do not in fl uence variant calling. Tools to achieve this include PICARD 
(  http://sourceforge.net/apps/mediawiki/picard/index.php?title=Main_Page    ) and 
SEAL (Pireddu et al.  2011  ) , an alignment tool which combines BWA with the detec-
tion and removal of duplicate reads. Duplicates are likely to be PCR artefacts from 
the library preparation stage or optical duplicates from the sequencer. Duplicates are 
most simply de fi ned as those reads that map to exactly the same locations. Other 
quality control preprocessing includes base quality score recalibration (applied to a 
BAM  fi le) (  http://www.broadinstitute.org/gsa/wiki/index.php/Base_quality_score_
recalibration    ) .  This procedure recalibrates the scores to more accurately re fl ect the 
probability of mismatching the reference genome. The Genome Analysis Tool Kit 
(GATK) provides quality score recalibration which targets not only overall base 
quality inaccuracy but identi fi es higher quality subsets of bases by accounting for 
decline in base quality known to occur towards the ends of sequence reads. 

 Tools such as GATK and SAMtools are capable of identifying short indels in 
exome data, but accurate characterisation of indels in exome data is challenging. For 
example, short indels tend to occur in the vicinity of tandem repeats, but accurate 
alignment in these regions is dif fi cult. Furthermore, where an indel is present, it may 
create local misalignments against the reference sequence which can generate false 
SNP calls. Therefore, local realignment around indels is required to minimise the 
number of mismatching bases (  http://www.broadinstitute.org/gsa/gatkdocs/release/
org_broadinstitute_sting_gatk_walkers_indels_IndelRealigner.html    ). Local realign-
ment aims to resolve regions with misalignments caused by indels into clean reads, 
prior to applying tools to identify the variant content of the exome. Calling variants 
while using the information from more than one exome simultaneously increases 

http://sourceforge.net/apps/mediawiki/picard/index.php?title=Main_Page
http://www.broadinstitute.org/gsa/wiki/index.php/Base_quality_score_recalibration
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http://www.broadinstitute.org/gsa/gatkdocs/release/org_broadinstitute_sting_gatk_walkers_indels_IndelRealigner.html
http://www.broadinstitute.org/gsa/gatkdocs/release/org_broadinstitute_sting_gatk_walkers_indels_IndelRealigner.html
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the quality of variant calls. GATK’s Uni fi edGenotyper module employs a Bayesian 
genotype likelihood model to derive the most likely genotypes as applied to multiple 
samples simultaneously. The program also generates a posterior probability for a 
segregating variant allele as well as genotype at each locus. 

 VarScan (Koboldt et al.  2009 ,   http://varscan.sourceforge.net/    ) is designed for 
identifying SNPs and indels in NGS data and is particularly suited to  fi ltering in 
tumour-normal (tumour-germline) paired samples. Given such paired data, VarScan 
tests the somatic status of each variant and classi fi es them as germline, somatic or 
loss of heterozygosity by comparing the read counts between samples. VarScan 
uses the ‘pileup’  fi les of variant output from the SAMtools program from the 
germline and tumour DNAs simultaneously. Variant positions shared between both 
 fi les meeting the minimum read depth coverage are compared and variants classi fi ed 
accordingly. Filtering against a germline sample of variants has obvious bene fi ts in 
terms of reducing variant volume and complexity in the expectation of identifying 
recurrent ‘driver’ mutations that underlie the disease.  

    7.3.3   Filtering and Identifying Disease Susceptibility Genes 

 Sets of variant calls from an exome sequence include a large number of false posi-
tives. Suggested quality control  fi lters, as implemented, for example, in the GATK 
program, include removal of variants at sites with low mapping quality scores and 
removal of apparent heterozygotes in which one allele is supported by less than 30% 
of sequence reads, variants not supported by reads mapping to both strands (strand 
bias). A signi fi cant difference of NGS from traditional Sanger sequencing is that the 
error rates for the called bases are markedly higher. This underlies the importance 
of obtaining high coverage ‘depth’ (the number of independent sequence reads 
aligned at one location). For this reason the removal of variants supported by only 
low read depth (e.g. 10 reads or less) is an important QC step. 

 Even given robust quality control throughout the analytical pipeline, the result-
ing  fi le of SNPs and indels will contain many thousands of variants. The most press-
ing issue is how to determine the relationship (if any) of speci fi c variants identi fi ed 
to the disease phenotype(s). Annotation of variants and  fi ltering to identify and 
remove ‘unimportant’ variation can be achieved by tools such as Annovar (Wang 
et al.  2010  )  which enables local download of all variants in genomic databases 
(1,000 genomes, dbSNP, etc.) and provides tools for  fl exible  fi ltering to remove 
common variation unlikely to be involved in disease. This is not straightforward 
since a number of these databases, such as recent versions of dbSNP, contain known 
rare and disease-causing variants which might be relevant to the phenotype under 
investigation. However, reduction in complexity of voluminous data at this stage is 
essential since an individual exome is likely to carry ~10,000 amino acid altering 
SNPs (Ng et al.  2010b  ) . A (probably small) proportion of these are likely to negatively 
impact health, but the majority simply contribute to the large diversity of proteins 
and have little or no deleterious impact. For Mendelian diseases it is likely that the 
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rare high-penetrance variants involved are private to affected individuals fully 
supporting the value of  fi ltering out the common variation represented in genomic 
databases. Ef fi cient  fi ltering reduces the pool of potential disease in fl uencing 
variants enabling cost-effective follow-up of a much smaller number of genes and/
or variants. Studies of Mendelian disorders assume a single highly penetrant coding 
mutation is suf fi cient to cause disease and that mutation is very rare and probably 
restricted to affected individuals. The volume of variation can be much reduced 
by only considering variants that change the protein sequence (non-synonymous), 
coding indels and splice acceptor and donor site changes. However, for non-Mendelian 
traits, it is known, from GWAS studies, that common intronic, regulatory and 
synonymous variation has an impact on disease, and so  fi ltering is likely to lose 
information. Even after  fi ltration against common variant databases, and after 
considering only protein-changing variants, the high number of variants in an individual 
exome is large enough to challenge further progress . In silico  approaches computa-
tionally evaluate potential disease severity of variants by making multispecies 
comparisons and using models of molecular evolution (Kumar et al.  2011  ) . The degree 
of conservation at individual positions and databases of permitted substitutions 
indicates the potential impact of a given change. It is known that disease-associated 
SNPs are over-represented at locations in the genome that have changed to only a 
limited degree over evolutionary time. Variants at locations conserved throughout 
vertebrates are more likely to be involved in Mendelian disease, and the same 
has been found to be true for the locations of somatic variation in cancers. Intense 
purifying selection against damaging variants at these locations is likely to occur 
through a reduction in reproductive  fi tness. For this reason molecular evolutionary 
predictions are considered less useful for complex disease where later onset has 
limited impact on fecundity. However, there is a spectrum of genetic disease from 
single-gene Mendelian disorders to complex traits. Therefore,  in silico  prediction 
may be valuable for more ‘extreme’ forms of complex disease (e.g. early onset, 
more severe disease subtypes, familial cases). Ranking variants by their predicted or 
known effect on protein function and their degree of conservation using tools, such 
as SIFT (Kumar et al.  2009  ) , PolyPhen2 (Adzhubei et al.  2010  ) , LRT (Chun and Fay 
 2009  )  and MutationTaster (Schwartz et al.  2010  ) , and composite databases of func-
tional predictions such as dbNSFP (Liu et al.  2011  )  is an important further step 
towards reducing data depth and complexity. The various algorithms output scores 
which quantify the extent to which a non-synonymous variant is likely to be delete-
rious. Such an approach has already been used with success to prioritise novel 
variants for follow-up in Mendelian disease studies (Ng et al.  2010a  ) . SIFT (‘Sorting 
Tolerant From Intolerant’,   http://sift.bii.a-star.edu.sg/    ) predicts the effect on protein 
function of single amino acid changes. The SIFT algorithm works by searching for 
similar sequences that are likely to have matching functions, generates an alignment 
of those sequences and computes probabilities for all possible substitutions from 
the alignment. Those with  p  < 0.05 are classi fi ed as deleterious mutations or, other-
wise, tolerated. PhyloP (Pollard et al.  2010  )  similarly provides a conservation 
score highlighting locations that are conserved from invertebrates to humans in 
which substitutions are highly likely to disrupt critical protein function. PolyPhen2 
(  http://genetics.bwh.harvard.edu/pph2/    ) also predicts the impact of an amino acid 

http://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/


1157 Analytical Approaches for Exome Sequence Data

substitution on protein structure and function. The algorithm uses sequence and 
structural features to evaluate the impact of amino acid replacements within a 
multiple sequence alignment of homologous proteins, the extent of modi fi cation of 
the resultant protein, and whether the substituted allele originated at a particularly 
mutable site. The alignment process uses the set of homologous sequences and 
employs clustering to construct and re fi ne their multiple alignment. The functional 
signi fi cance of a substitution is predicted from the set of features by a naive Bayes 
classi fi er (Adzhubei et al.  2010  ) . Chun and Fay  (  2009  )  develop a likelihood ratio 
test (LRT,   http://www.genetics.wustl.edu/j fl ab/lrt_query.html    ) which compares the 
null model of neutral codon evolution to the alternative model that the codon has 
evolved under negative selection. Deleterious mutations are considered to be the 
non-synonymous SNPs that signi fi cantly disrupt the constrained codons de fi ned 
by the LRT. The LRT generates a p-value for the likelihood ratio test of codon 
constraint. The test is developed from data for 32 vertebrate species. Chun and Fay 
 (  2009  )  found, however, a disturbingly low degree of overlap between predictions 
made by the LRT, SIFT and PolyPhen with 76% of predictions unique to one of 
the three methods and only 5% of predictions made by all three. With this in mind 
Liu et al.  (  2011  )  argue that, because the various alternative algorithms have their 
own strengths and weaknesses, it is useful to construct a consensus prediction. 
This is presented in their dbNSFP database (  http://sites.google.com/site/jpopgen/
dbNSFP    ) which contains functional predictions from multiple algorithms compiling 
predicted scores for non-synonymous variants from SIFT, PolyPhen2, LRT, 
MutationTaster and PhyloP.  

    7.3.4   Collapsing Methods for Rare Variants in Large Samples 

 Rarer variants are likely to be enriched for alleles with functional disease impact 
and may show larger effect sizes than common alleles as a consequence of purifying 
selection. However, the penetrance of most of these variants is likely to be compara-
tively low (Bodmer and Bonilla  2008  ) . Therefore, for most complex disease 
phenotypes, the cumulative impact of many rare variants is likely to contribute 
signi fi cantly to the disease phenotype. However, the power to detect such alleles is 
low due the relatively low penetrance, the small number of copies of a given variant 
present and the need for stringent correction for the number of variants tested. For 
this reason analytical approaches for large samples have been developed that test 
for the combined effects of a set of rare variants, thereby greatly reducing the 
number of statistical tests while maximising power. Such a ‘collapsing’ approach 
requires prior speci fi cation of the set of variants to be combined to make the test. 
Li and Leal  (  2008  )  point out that misclassi fi cation resulting from the collapsing of 
nonfunctional variants with functional sites adversely affects the power of the test. 
Misclassi fi cation can arise when noncausal variants are included and when func-
tional variants are excluded because they either have not been sequenced or have 
incorrectly been classi fi ed as nonfunctional by bioinformatics tools. In contrast 
multiple-marker methods which test several sites for their in fl uence on phenotype 
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simultaneously are more robust to misclassi fi cation, but potentially less powerful 
than collapsing methods. Li and Leal’s combined multivariate and collapsing (CMC) 
method aims to maximise power while being robust to misclassi fi cation. This and 
related tests are reviewed by Dering et al.  (  2011  ) . The collapsing method de fi nes an 
indicator variable  X  for the jth case individual to de fi ne whether or not that subject 
carries any rare variant in the target of interest (e.g. a gene) such that  X j = 1 when a 
rare variant is present and 0 when absent with  Y j similarly de fi ned for controls. The 
test made is for association of multiple rare variants in which the proportion of rare 
variants in cases and controls differ. This is a  fi xed allele-frequency threshold 
approach for which power was investigated by Price et al.  (  2010  ) . The authors 
examined different thresholds at which to de fi ne a variant as ‘rare’ (their T1 and T5 
models representing 1 and 5% allele-frequency thresholds, respectively). They also 
describe a version of the test which weights (under the null hypothesis of no asso-
ciation) the contribution of each SNP by the inverse square root of the expected 
variance, based on allele frequencies computed from controls. This approach gives 
much higher weights to very rare variants. Price et al. propose a variable threshold 
approach which assumes an unknown threshold T for which variants with a MAF 
below the threshold are more likely to be functionally important than those above. 
The authors compute the maximum test statistic over a wide range of values of 
T to obtain the maximum of the threshold speci fi c test statistics. The p-values are 
determined (as in all collapsing methods) by permutation tests. 

    An important addition to the range of collapsing approaches incorporates 
predicted functional information that improves the statistical test. Price et al.  (  2010  )  
incorporated PolyPhen2 probabilistic scores for neutral and deleterious amino acid 
changes as weights in the regression. In their simulation study, setting the signi fi cance 
level to  p  = 0.05, power was higher at 60 and 69% for the variable threshold and 
variable threshold with PolyPhen scores models, respectively, compared to 55, 50 
and 54% for the T1, T5 and weighted threshold models, respectively. 

 Luo et al.  (  2011  )  point out some of the limitations of collapsing methods, noting 
that variants at different genome locations may have different effect sizes which are 
unlikely to be determined only by their frequencies and collapsing without assigning 
weights that are functions of variant frequencies cannot fully exploit information 
of genetic effect sizes; multiple rare variants may be correlated, so grouping them 
needs to take this into account. They develop functional principal component analysis 
(FPCA)-based statistics for which they determine higher power to detect association 
with rare variants and enhanced ability to  fi lter out sequence errors.  

    7.3.5   Copy Number    Variant (CNV) and Loss of Heterozygosity 
Analysis 

 Test for structural variation has been typically undertaken using array comparative 
genome hybridization (CGH) which tests up to one million probes and can detect 
variants in the size range of 10–25 kilobases. But much higher resolution can be 
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achieved from sequence data, and Yoon et al.  (  2009  )  develop methods for detecting 
CNVs in whole genome sequences. However, similar application to exome sequence 
data presents dif fi culty because the read sequence distribution is not random or 
unbiased and the read depths do not follow a normal distribution from which 
deviations suggest the presence of a copy number variant. However, if the biases 
are controlled, exome sequencing data present the opportunity to detect structural 
variants at much higher resolution and extend the utility of the data beyond the 
identi fi cation of single nucleotide variants and small indels. The problems 
presented by the discrete nature of the exome read distribution are considered by 
Sathirapongsasuti et al.  (  2011  )  who describe a method to detect copy number varia-
tions (CNVs) and loss of heterozygosity (LOH) in exome data. The approach uses 
normalised depth ratios in paired samples (such as tumour/germline) that have been 
processed in a similar way, including library preparation, and share similar average 
depth of coverage. This approach was shown to identify CNVs as small as 120 pb 
representing single exons with higher than average coverage. The read depth 
data can be more  fl exibly used in non-matched exome samples, for example, by 
using data from a pool of control exomes to serve as, effectively, a matched control 
sample (since the average copy number is likely to be two given a suf fi ciently large 
number of control exomes).  

    7.3.6   Strategies for Ef fi cient Analysis and Data Management 

 The alignment of short sequence reads has been regarded as a major bottleneck in 
the analysis of NGS data (Li and Homer  2010  ) . However, improving the algorithms 
and the development of tools which exploit distributed processors has reduced 
this bottleneck, at least for exome sequence. Important developments include 
platforms which automate pipelines and provide integration of bioinformatics tools 
to facilitate exome analysis. An example is Galaxy (Goecks et al.  2010 ,   http://galaxy.
psu.edu/    ) which provides a web-based platform to facilitate accessibility of NGS 
data analysis, exploiting the latest informatics tools, while tracking data provenance 
and ensuring reproducibility of analysis pathways undertaken. Galaxy is intended 
to free users from the necessity to develop computer code and the need to learn the 
implementation details of individual software packages. Galaxy offers a framework 
for performing exome studies which enables reconstruction of the analysis 
pathways undertaken by capturing details of analyses performed through a web 
interface. Perhaps most signi fi cant, given that that exome sequencing will shortly be 
superseded by far more challenging whole genome sequencing, is the development 
of a cloud computing enabled version (  http://www.genomeweb.com/informatics/
galaxy-joins-host-bioinformatics-projects-embracing-cloud-infrastructure-option    ). 
Cloud computing, in which computation is offered as a service, provides access 
to much greater computational power and storage than is available to an individual 
lab. Cloud computing is therefore regarded as a route to reducing some of the 
concerns about the management and analysis from the on-going and developing 
NGS ‘data deluge’.   

http://galaxy.psu.edu/
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    7.4   Conclusions 

 A range of strategies are being employed to exploit exome sequencing for the 
identi fi cation of rarer variation underlying Mendelian disease and complex traits. 
Genotyping a small number of affected individuals in families showing strongly 
Mendelian patterns of inheritance has already proven to be a highly successful 
strategy with several important genes identi fi ed. Such an approach relies on the 
sharing of underlying causal variant(s) between family members. With higher 
penetrance variants, it is possible to combine evidence from linkage in these 
scenarios to reduce the list of potential causal targets. Thus, targeted follow-up can 
focus on the variants identi fi ed in these regions. For more complex phenotypes 
strategies include investigating cases with ‘extreme’ or otherwise unusual pheno-
types (e.g. early onset disease, well-de fi ned disease subtypes). Such an approach 
assumes that a relatively small number of moderate-penetrance variants might 
emerge as contributory to disease. In this situation family-based designs, where 
possible, are likely to reduce the overall complexity and number of targets for 
follow-up. Extensive  fi ltration based on known or predicted gene function further 
delimits variants for greater consideration. From the study of cancer genomes, novel 
somatic variation can be identi fi ed by  fi ltering out germline variation. 

 With respect to all studies involving complex disease in unrelated individuals, 
statistical analysis is plagued by low power and one strategy is to combine rare 
variants for analysis using some form of ‘collapsing’ approach. 

 In the longer term whole genome sequencing will replace exome sequencing and 
provides a range of new problems. The most obvious of these arises from the fact 
that it is now possible to produce DNA sequence more quickly and cheaply than 
the computing infrastructure can be developed to manage it (Stein  2010  ) . Indeed the 
cost of sequencing is now decreasing much faster than the cost of storage of 
the data, and storage costs are likely to exceed the cost of production in the near 
future. Further development of novel strategies including cloud computing, in which 
hardware, runtime and data storage are effectively rented for speci fi c projects, offers 
a credible way forwards. The Galaxy package has been implemented successfully 
on the    Elastic Compute Cloud (EC2) web service offered by Amazon and provides 
a comprehensive range of cloud-enabled tools for NGS analysis. Such develop-
ments are promising although, as Stein  (  2010  )  points out, there remain major 
obstacles with respect to the network bandwidth and the transfer of huge volumes 
of data on and off networks. It is clear that the future development and application 
of NGS offers both great promise and major challenges.      
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  Abstract   Although the genome-wide association studies, which are based on 
common disease-common variants (CDCV) hypothesis, have great success in 
dissecting the genetic architecture of human diseases, their limitation of explaining 
the missing heritability motivated researchers to test the hypothesis that rare 
variants contribute to the variation of common diseases, that is, common disease/
rare variants (CDRV) hypothesis. The fast developed high-throughput next genera-
tion of sequencing technologies has made the studies of rare variants practicable. 
Statistical approaches to test associations between a phenotype and rare variants 
are rapidly developing. Overall, the key idea of these methods is to test a set of 
rare variants in a de fi ned region or regions by collapsing or aggregating rare variants. 
To improve the statistical power, several weighting strategies to the rare variants 
and/or adding the informative covariates in the model have been published. In this 
chapter, some of these methods which can use unrelated individuals and family 
members are introduced.  

  Keywords   GWAS  •  Common disease-common variants  •  Common disease rare 
variants  •  SNPs  •  Haplotype  •  Collapsing  •  Aggregation      

    8.1   Introduction 

 Genome-wide association studies (GWAS) have revealed signi fi cant evidence that 
speci fi c common DNA sequence differences among people in fl uence their genetic 
susceptibility to more than 60 different common diseases and created novel 
hypotheses for biological mechanism underlying complex diseases or traits. 
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 However, it also raises some important questions on the roles of rare variants in 
human complex disease. The statistical methods commonly used in GWAS are 
typically underpowered to detect any effects of rare variants. In this review, we 
mainly focus on the rapidly developing methods to improve the statistical power 
for rare variants analysis; in particular, we described the methods with great details 
in the context of next generation sequencing data. 

    8.1.1   Success of GWAS and Its Limitation 

 With many investigators’ effort in the last decades, our understanding of the 
genetic basis of disease risk has been improved greatly through genome-wide 
association studies (GWAS). The purpose of the GWAS is to uncover the connec-
tion between speci fi c genes and their expression and then to expedite the 
identi fi cation of genetic risk factors for the development or progression of disease. 
To date, hundreds of GWAS have been performed to uncover the associate between 
particular genetic variations and diseases, such as hypertension, bipolar disease, 
coronary artery disease, diabetes, and cancer (Birney et al.  2007 ;  Consortium 
WTCC  2007 ; Heid et al.  2010 ; Lango Allen et al.  2010  ) . These eminent studies 
have successfully found thousands of genes which highly associate with hundreds 
of traits. As of 2nd quarter 2011, the US National Human Genome Resource 
Institute (NHGRI) GWAS catalogue lists 1,449 genome-wide signi fi cant associa-
tions with 237 traits and diseases spread across all auto chromosome except the Y 
chromosome  (  Hindorff et al.  ) . 

 Originally, GWAS were designed as a genetic association study to capture a 
large proportion of the common variation in the human genome in a population by 
using the high-throughput genotyping technologies, and it was believed that the 
number of genotyped samples can provide suf fi cient power to detect variants of 
modest effect.    However, GWAS, which is dominated by the simply statistical 
hypothesis common disease-common variants (CDCV), has challenged the miss-
ing heritability problem that the genetic variants identi fi ed by GWAS only account 
a small fraction of heritability observed in family studies (Manolio et al.  2009  ) .    For 
example, height is known to be a heritable trait with estimated heritability around 
0.8 from family or twin studies, which implies about 80% of the individual varia-
tion and is attributable to genetic factors. Although the three    GWAS in 2008 
(Gudbjartsson et al.  2008 ; Lettre et al.  2008 ; Weedon et al.  2008  )  identi fi ed 40 
previously unknown variants, each one only explains 0.3–0.5% of the phenotypic 
variance. The results from GWAS suggest that there must be genetic factors con-
tributing to common complex diseases that are simply not amenable to detection 
via the GWAS strategy (Pritchard  2001  ) . Some researchers argue that the missing 
heritability may be accounted for by many rare variants with relatively large effec-
tive sizes, or interactions, such as gene-gene or gene-environment interactions 
(Bansal et al.  2010 ; Manolio et al.  2009 ; Zuk et al.  2012  ) .  
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    8.1.2   Detecting Rare Variants 

 There has been growing debate over the nature of the genetic contribution to 
individual susceptibility to common complex. Comparing with the CDCV, common 
disease rare variant (CDRV) argues that multiple rare DNA sequence variants are 
major contribution of genetic susceptibility to common disease. Differing from that, 
a common variant usually has modest or low disease penetrance; a rare variant 
has relatively large disease penetrance. With the new sequencing technologies and 
publication of 1000 Genomes Project  (  2010  ) , we are at the era that can test the 
CDRV hypothesis. By directly testing many rare variants on candidate genes, these 
studies have identi fi ed collections of rare variants associated with phenotypic 
variation, such as multiple functional variants in  IFIH1 ,  NPC1L1 ,  PCSK9 ,  SLC12A3 , 
 SLC12A1,  and  KCNJ1  associated with type I diabetes, sterol absorption, plasma 
levels of LDL-C, and blood pressure (Cohen et al.  2005,   2006 ; Ji et al.  2008 ; 
Nejentsev et al.  2009  ) . 

 In the following section, we will introduce statistical methods for testing rare 
variant association that can be applied for unrelated individuals.   

    8.2   Data Description and Methods 

 Below we  fi rst (in Sect.  8.2.1 ) describe the data structure of any genetic variants 
either located in a candidate gene or a genomic region and clearly de fi ne the relevant 
parameters. We then exhaustively review all of the previously published methods 
focusing on statistical collapsing (between Sects.  8.2.2.1  and  8.2.2.11 ). 

    8.2.1   Data Describe 

 Assume we test the association of genetic variants and disease status in a candidate 
gene or region, which includes     L   SNPs in it, and total     N    unrelated individuals with 
either quantitative traits or binary traits being collected. Further, let  y

i
  denote the 

quantitative trait or binary trait and use  A
j
  and  a

j
  denote the two alleles of  j th 

SNP, in which     iA    always refers to the rare allele and has an allele frequency  p
i
 . 

Furthermore, let code     = 0,1 or 2ijx    be the number of minor alleles at the  j th SNP 
carried by the  i th individual, where     = ¼1, ,i N    and     = ¼1, ,j L  .  

    8.2.2   Methods 

 Between Sects.  8.2.2.1  and  8.2.2.11 , we will provide mathematical details for each 
method illustrated and will also provide our insights of speci fi c merits and limita-
tions of each method. 
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    8.2.2.1   Collapsing Method 

 In contrast to common variants, the power of traditional statistical methods to detect 
rare variant association is usually poor and requires large sample sizes due to the 
small minor allele frequencies (MAF) of rare variants. Although a rare variant indi-
vidually may make only a tiny contribution to a phenotypic variation, collectively 
rare variants may uncover a substantial proportion of missing heritability (Gibson 
 2010 ; Manolio et al.  2009  ) . Based on this principle, collapsing method has been 
proposed to improve statistical power for a binary trait. To do this, we de fi ne an 
indicator variable     iG    for the  i th individual as     = 1iG    if rare variant(s) is(are) 
present, otherwise as     = 0iG   . The detection of an association of multiple rare 
variants is transformed into a test of whether the proportions of individuals with rare 
variants in cases and controls differ. Then any single SNP association test that is 
applied in GWAS can be applied here, such as a chi-squared test for a contingence 
table or a regression analysis. In 2006, Cohen et al. suggested a method to compare 
the number of rare variants unique to either cases or controls using Fisher’s exact 
test (Cohen et al.  2006  ) . This method is simple and fast, but it has its limitation. 
If the number of SNPs in a considered region is large, it has more chance that variable 
    iG    will be coded as 1, and then there will be little difference between cases and 
control, resulting poor statistical power. One way to improve this method is consid-
ering the number of rare variants presented in an individual rather than simply coding 
1 or 0 for the individual. Another way is partitioning the region into several small 
regions and then use multivariate test proposed by Li and Leal  (  2008  ) .  

    8.2.2.2   Combined Multivariate and Collapsing 

 To take advantage of both the multiple marker tests and the collapsing method, Li 
and Leal  (  2008  )  considered an extension of the collapsing method, which they termed 
the combined multivariate and collapsing (CMC) method. For a considered region, 
they  fi rst divide the markers (e.g., SNPs) within the region into groups according 
certain criteria (e.g., allele frequencies) and then collapse the rare variants within 
each group using the method describe in Sect.  8.2.2.1 . To analyze the groups of 
collapsed rare variants, a multivariate test such as Hotelling’s     2T    test is applied. 

 The shortcoming of this method is that the power will decrease when the number 
of subgroups increases. The criteria of the partition also can affect the power of the 
test. Furthermore, collapsing method assumes that each rare variant has the same 
contribution to the disease susceptibility and this may not be true in reality.  

    8.2.2.3   Weighted Sum Association Method (WSM) 

 Madsen and Browning  (  2009  )  proposed a statistic for testing a prespeci fi ed collapsed 
set of variants that weights each variant by its frequency, thus allowing one to
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include variants of any frequencies into the collapsed set. This approach proceeds

by de fi ning the genetic score of individual  i  as     
=

= å
1

γ
L

ij
i

j j

x

w
  , where a nonzero     jw    is 

the weight of  j th variant and is de fi ned by     = -(1 )j j jw Np p   . Madsen and Browning 
suggested that the MAF     jp    is estimated by controls only. Thus, for individual     i   ,     γ i    
represents a single core that is obtained by combining information from all the     L    
variants in the region of interest. An association test is performed by testing this 
score rather than testing the individual variants. Madsen and Browning  (  2009  )  sug-
gest using a nonparametric Wilcoxon’s test for the association test and calculating 
the p-value using a permutation approach. 

 When the interesting region includes multiple common variants, Feng et al. 
(    2011 ) suggest the power of WSM will decrease. Although Madsen and Browning 
 (  2009  )  did not suggest using a threshold model, a prede fi ned threshold     α   , such that 
the weight will be 0 if a variant with     >αMAF    and this SNP will be exclude from 
the test, can often improve the power when only rare variants are associated with a 
disease status. However, it is dif fi cult to select an optimal threshold in practice. 
Price et al.  (  2010  )  proposed a variable-threshold approach for testing rare coding 
variants to solve this problem.  

    8.2.2.4   Pooled Association Tests for Rare Variants 

 To obtain the optimal MAF threshold     α    for which variants with a MAF below     α    
are substantially more likely to be functional than are variants with an MAF above 
    α   , a data-driven z-score     ( )αz    for each allele-frequency threshold     α    is computed, 
and the maximum z-score across different values of     α    is de fi ned as zMax. Then a 
permutation procedure is used to assess the statistical signi fi cance of zMax, allow-
ing zMax in the permuted data to be attained at values of     α    different from those in 
un-permuted data to ensure the validity of the permutation test. We refer the reader 
to Price et al.  (  2010  )  for details about the calculation of the z-scores and for testing 
the statistical signi fi cance of the variants using this method. 

 Besides  fi nding the optimal cutoff of MAF     α   , Price et al. also proposed using the 
functional relevance of the individual variants to de fi ne the weights. They suggest 
using the PolyPhen-2 scores (Ramensky et al.  2002 ; Adzhubei et al.  2010  ) , which 
evaluate the possible functional effect of an SNP by calculating the distributions of 
PolyPhen-2 probabilistic scores for neutral and damaging amino acid changes. We 
refer the reader to Price et al.  (  2010  )  for details about this method.  

    8.2.2.5   A Data-Adaptive aSum Test (Consider the Direction) 

 Han and Pan  (  2010  )  proposed a data-adaptive modi fi cation to sum test and aimed 
to strike a balance between utilizing information on multiple markers in linkage 
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disequilibrium and reducing the cost of large degrees of freedom or of multiple 
testing adjustment. For the rare variants, the logistic regression model

     =

= = +å0
1

Logit Pr( 1) β β
L

i c ij c
j

y x
   

is applied to test any possible association between the disease and SNPs. Under null 
hypothesis     =0 : 0βcH   , the test statistics has an asymptotic     

2χ    distribution with 1 
degree of freedom (DF). The main advantage of this sum test is that, because it tests 
on only one parameter     βc   , there will be no power loss due to large DF or multiple 
testing adjustments. However, the test may have reduced power with a small     ˆ

cb   , the 
maximum likelihood estimate of     cb   , when the SNPs have different directions of 
contribution, that is, some of variants in the region are harmful and others are 
bene fi cial. The data-adaptive sum test (aSum) adapts the coding     ijx    of each SNP  j  by 
adding a sign based on the estimated coef fi cient of logistic regression of SNP  j . 

 Furthermore, they modify aSum test to combine the rare variants into one group 
and the common variants into another group by summing over their genotypic cod-
ing, then test on the two corresponding regression coef fi cients in a logistic regres-
sion model (termed aSumC test). There are two potential advantages of this method. 
First, this test can overcome the problem with different association directions of the 
functional variants, from which both the CMC and the WSM tests suffer with pos-
sibly signi fi cant power loss. Second, with only two groups, the aSumC may have a 
much smaller number of DF and thus higher power than the CMC test. 

 Hoffmann and Witte (Hoffmann et al.  2010  )  proposed a general framework 
of the aSum test by adding the weight     iw    in the logistic regression, that is, 

    
=

é ù
= + ê ú

ë û
å0

1

( ) α γ
L

i j ij
j

g y w x   , where g is the link function and the weight     jw    is de fi ne 

by     -1 / (1 )j jp p   , similar as the Madsen and Browning’s weight.  

    8.2.2.6   Alpha Test 

 C-alpha is a well-established and powerful test for the presence of a mixture of 
biased and neutral coins (Neyman and Scott  1966 ; Zelterman and Chen  1988  ) . 
Neale et al.  (  2011  )  tailored the C-alpha score test and applied it to test a set of rare 
variants for association. Under the assumption that the rare variants are distributed 
at random across the subjects, the binomial     ( , )n p    distribution evaluates the proba-
bility of observing a particular variant     y    times in the cases out of     n    total. Under the 
balanced sample of cases and controls, in other word that     = 0.5p   , the     y    to be 0,1 
and 2 for  n  = 1 are expected with probability 0.25, 0.5, and 0.25, respectively. If 
some variants are causal, the higher proportion of doubletons with     = 2y    and/or 
    = 0y    is expected. Due to each variant cannot provide suf fi cient information to 
draw a  fi rm conclusion about the association, the C-alpha test was applied to detect 
a pattern across the full set of rare variants in the target region. 
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 In detail, for the  j th variant, assume  y
j
  is a binomial ( n

j
  ,  p

j
 ) if the rare variants 

was observed  n
j
  times. Under the null hypothesis,  p

j
  =  p 

0
 (say 0.50 if cases and 

controls are equal in number), and under the alternative hypothesis,  p
j
  follows a 

mixture distribution across the     L    variants with some variants detrimental ( p
j
  >  p 

0
), 

some neutral, and some protective ( p
j
  <  p 

0
). The C-alpha test statistic

     

2
0 0 0

1

[( ) (1 )],
L

j j j
j

T y n p n p p
=

= - - -å
   

contrasts the variance of each observed count with the expected variance. The vari-
ance of     T   is derived by

     = =

= - - -å å
max

2 2
0 0 0 0

2 0

( ) [( ) (1 )] ( | , ),
n n

n u

c m n u np np p f u n p
   

where     ( )m n    is the number of variants with     n    copies and     0( | , )f u n p    denotes the 
probability of observing     u    copies of the  i th variant assuming the binomial model. 

The resulting test statistic is de fi ned as     = ~ (0,1)
T

Z N
c

  . The null hypothesis will be 

rejected when     Z    is larger than expected based on a one-tailed standard normal 
distribution. 

 The C-alpha test is a non-burden-based test and is hence robust to the direction 
and magnitude of effect, and this allow the C-alpha test to have improved power 
over other burden-based tests, especially when the effects are in different directions. 
But the covariate is not easier to be adjusted in the C-alpha. Also, the C-alpha test 
uses permutation to obtain a p-value when linkage disequilibrium is present among 
the variants, and the approach also has not been generalized to analysis of quantita-
tive trait.  

    8.2.2.7   Sequence Kernel Association Test (SKAT) 

 Wu and Lin (Wu et al.  2011  )  introduced the kernel function into the regression 
model and combine the SNPs in the considered region with linear or nonlinear 
weights. The sequence kernel association test (SKAT) extends kernel machine-
based tests for rare variants with more accurate asymptotic approximations in the 
tail distribution. This method is supervised for the joint effects of multiple variants 
in a region on a phenotype; it is  fl exible and computationally ef fi cient to test for 
association between genetic variant in a region and a continuous or dichotomous 
trait while easily adjusting for covariates. 

 The SKAT test starts with a linear model

     0 ,= + + +a bi i'Z 'Xi iy a e    
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when the phenotype are continuous traits, and the logistic model

     0logit ( 1) ,iP y a= = + +i i'Z 'Xa b    

when the phenotype are binary traits (e.g.,  y  = 0/1 for case or control). Here, 
    = ¼1 2( , , , )i i imz z ziZ    denotes the covariates,     = ¼1 2( , , , )i i iLx x xiX    denotes the geno-
types for the     L    variants within the region,     0α    is an intercept term,     1[ , , ]'ma a= ¼'a    
is the vector of regression coef fi cients for     m    covariates.     1[ , , ]'Lb b= ¼'b    is the 
vector of regression coef fi cients for the     L    observed gene variants in the region, 
and for continuous phenotypes,     ε i    is an error term with a mean of zero and a vari-
ance of     2σ   . 

 Under the null hypothesis     =0H : 0β    or     = = = =1 2 0�β β βL
   ,  the standard L-DF 

likelihood ratio test has little power. Given the additional assumption that each     βi   
follows an arbitrary distribution with a mean of zero and a variance of     τjw   , where 
    τ    is a variance component and     jw    is a prespeci fi ed weight for variant j, the SKAT 
can improve the power by testing     =0H : 0τ   . To do the test, the variance-component 
score statistic

     
¢= - -ˆ ˆ( ) ( )Q u uy K y    

is applied. In the above formula,     XWX'=K   ,     û    is the predicted mean of     y    under 
    0H   , that is,     �= +0

ˆˆ α αu Z    for continuous traits and     �-= +1
0

ˆˆ logit ( )α αu Z    for dichoto-
mous traits, and     0α̂    and     �α    are estimated under the null hypothesis by regressing     y    
on the covariates     X    only. Here,     X    is an     ´N L    matrix with the     -( , ) thi j    element 
being the genotype of  j th variant in  i th individual, and     = ¼1( , , )Ldiag w wW    con-
tains the weights of the     L    variants.     K    is an     ´N N    matrix with the     ¢ -( , ) thi i    ele-
ment equal to     ¢ ¢=

= å 1
( , )

L

i i j ij i jj
K w X XX X   .     (•,•)K    is called the weighted linear 

kernel function, and     ¢( , )i iK X X    measures the genetic similarity between individual 
    i    and     ¢i    in the region via the     L    markers. An attractive feature of SKAT is the abil-
ity to model the epistatic effects of sequence variants on the phenotype within the 
 fl exible kernel machine regression framework. To do so, the term     i'Xb    
was replaced by a more  fl exible function     ( )f iX   in the linear and logistic model. 
    ( )f iX    allows for the interactions of rare variant by rare variant or common variant 
by rare  variant. For the purpose of rare variant analysis, the weighted 

quadratic kernel can be chosen as     ¢ ¢=
= +å 2

1
( , ) (1 )

L

i i j ij i jj
K w X XX X    or the weighted 

identity by state (IBS) kernel     ¢ ¢=
= å 1

( , ) ( , )
L

i i j ij i jj
K w IBS X XX X   . A question is how 

to choose     jw    in the kernel function, which can affect statistical power. Wu et al. 
 (  2011  )  suggested     1 2~ ( ; , )j jw Beta MAF a a   , the beta distribution function with 
prespeci fi ed parameters     1a    and     2a    evaluated at the sample MAF using both cases 
and controls for the  j th variant in the data. The setting     =1 1a    and     =2 25a    was sug-
gested because it increases the weight of rare variants while still putting decent 
nonzero weights for variants with MAF 1–5%. When the outcome is dichotomous, 
no covariates are included and all     = 1iw   ; the SKAT test statistic Q is equivalent to 



1298 Rare Variants Analysis in Unrelated Individuals

the C-alpha test statistic T. Hence, SKAT can be seen as a generalized C-alpha test 
that does not require permutation but calculates the p-value analytically, allows for 
covariate adjustment, and accommodates either dichotomous or continuous 
phenotypes.  

    8.2.2.8   A General Framework for Detecting Disease Associations 
with Rare Variants in Sequencing Studies 

 Lin and Tang  (  2011  )  also proposed a so-called general framework for association 
testing with rare variants by combining mutation information across multiple variant 
sites within a gene and relating the enriched genetic information to disease pheno-
types through appropriate regression models. This framework in theory covers all 
major study designs (i.e., case-control, cross-sectional, cohort and family studies) 
and all common phenotypes (e.g., binary, quantitative, and age at onset), and it 
allows the incorporation of arbitrary covariates (e.g., environmental factors and 
ancestry variables). 

 Using the prede fi ned notation, the logistic regression model logit P( y
i
=1) = 

    +i i'Z 'Xa b    is applied here, where vector     = ¼1 2(1, , , , )i i imz z ziZ    denotes the  m  
covariates. Let     b tx=   , where     τ    is a scalar constant and     /x b t=   . Then the logistic 
regression model becomes

     logit Pr( 1) ,i iy St= = + i'Zg    

where     
iS = i'Xx   . Note that     

1( , , )'Lx x x= ¼    is a     ´1L    vector of weights and that     iS    is 
a weighted linear combination of     ¼1 2, ,i i iLx x x    with     ijx    receiving the weight     ξ j   . Here, 
    ξ    is referred as the weight function. The score statistic for testing the null hypothesis 
    =0 : 0τH    takes the form
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where     ĝ    is the restricted maximum likelihood estimator of γ and solves the 

equation     
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  . Under     0H   , the test statistic     = 1/2/T U V    is asymptotically 

standard normal. In the absence of covariates,
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where     -
=

= å1 1

N

ii
y N y   . 

 Since the setting of weight function     ¢= ¼1( , , )ξ ξ ξL
   is unknown and must be 

determined biologically or empirically, several considerations were discussed:

    1.    If the choice of weight function     x   or the limit of the estimate of     x    is proportional 
to     b   , then the statistic     T    is the most powerful among all valid tests. Otherwise, 
    U    is no longer the score statistics. But it can be proved that statistic     T    is asymp-
totically standard normal under     0H    regardless how     x    is chosen.  

    2.    This method allows not only for multiple allele-frequency thresholds but 
also for different types of weight functions. It can be shown that for  K  
choices of     x  , which could correspond to different thresholds or different 
types of weight functions or both, the maximum of the absolute test statis-
tics     max

1, ,
max | |k

k K
T T

= ¼
=    is applied, where the test statistics     = 1/2/k k kT U V    is 

de fi ned for the  k th choice of     x   . The score statistics     kU   and its variance in

  the test statistics     kT    are de fi ned by     
¢

¢
=

æ ö
= -ç ÷

+è ø
å

ˆ

ˆ
1 1

γ

γ

i

i

ZN

k i kiZ
i

e
U Y S

e
   and 

    

1

2

1

1

1 1 1

N N N N

k i ki i ki i i i i i ki i
i i i i

V v S v S Z v Z Z v S Z
-

= = = =

æ ö æ ö æ ö
= - ç ÷ ç ÷ ç ÷è ø è ø è øå å å å    with corresponding  k th 

    iS    denoted by     kiS   . If     maxt    would be the observed value of     maxT   , then the p-value 

is given by    

     > = - < ¼ <max max 1 max maxPr( ) 1 Pr(| | , ,| | ),kT t T t T t    

which is evaluated by treating     ¢¼1( , , )KT T    as a K-variant normal random 
vector with mean 0 and a covariance matrix of     = ¼{ ; , 1, , }klr k l K   , where
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å å   . The     0H   will be rejected if the p-value is smaller 

than the nominal signi fi cance level     α   .  
    3.    If set     1( 1, , )j j Lx = = ¼   , then statistic     T    is a burden test. If it is sure that com-

mon variants are not associated with the phenotype, then setting     0jx =    if MAF 
of  j th SNP     >jp c   , where     c    is a prespeci fi ed threshold (such as     c   =0.02 or 

0.01). If setting     1/2{ (1 )} ( 1, , )j j jp p j Lx -= - = ¼   , then the weight function is the 
same as that of Madsen and Browning. Differing from the Madsen and Browning’s 
and Price et al. method, this method does not need permutation when sample is 
large enough. This method can also accommodate covariates and the result holds for 
all phenotypes. In addition, the SKAT statistic can be written as     2

1

L

j jj
Q Ux

=
= å   , 

where     jU    is the  j th component of the score statistic for testing the null hypothesis 
    = 0β    in the above de fi ned logistic regression model. The C-alpha statistic of 
Neale et al.  (  2011  )  is a special case of     Q    with     1jx =    for binary traits without 
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covariates.    If statistic     U    is rewritten as     
1

L

j jj
Ux

=å   , Han and Pan  (  2010  )  statistic 

is a special case of     U    (for binary traits without covariates ) in which     1jx = -    if 
    ̂ 0jx <   , and the corresponding  p -value <0.1 and     1jx =    otherwise.      

    8.2.2.9   Haplotype-Based Collapsing Test 

 Besides directly using the genotype to collapse the rare variants, comparing haplo-
type frequencies between cases and controls (Zhu et al.  2010 ; Guo and Lin 
 2009 ; Li et al.  2010 ; Zhu et al.  2005,   2010  )  is another way to analyze the rare 
variants. These methods assume that the haplotypes created by the common and 
rare variants are able to tag multiple rare ungenotyped variants. Since very rare 
variants are usually not well tagged by common variants (Durbin et al.  2010  ) , 
the haplotype-based methods may only work for identifying rare variants with 
MAF>0.5% (Li et al.  2010  ) . 

 We introduce the two-stage approach here. At the  fi rst stage, a set of susceptibil-
ity haplotypes is identi fi ed by comparing their frequencies between cases and con-
trols using a subset of samples. At the second stage, the cumulative susceptibility 
haplotype frequencies are compared using the rest of samples. 

 In detail, assuming total     N    individuals of whom     un    are unaffected (controls) 
and the remaining     - uN n    are affected (cases). At stage 1, we randomly select     n    
(    < un   ) unaffected and     m    (    < - uN n   ) affected individuals. We assume that the dis-
ease is rare and that the unaffected individuals are representative of the general 
population. Assume there are     k    different haplotypes     ¼1 2, , , kh h h    with observed 
haplotype frequencies     ¼1 2, , , kp p p    in the selected cases. Correspondingly, the  i th 
haplotype has haplotype frequency     0

ip    in the controls. Then the risk haplotype set 
is de fi ned as
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where     = 1.28λ    or 1.64 is a prede fi ned number that affects the misclassi fi cation rate 
and power. 

 It has been demonstrated that rare risk haplotypes can be enriched in affected 
sibpairs (Zhu et al.  2010 ), and this information can be used to de fi ne risk haplotype 
as using unrelated individuals. When we have affected sibpairs available, we can 
de fi ne risk haplotype set using affected sibpairs. Assume there are  M  affected sib-
pairs and the haplotypes have been inferred, then the rare risk haplotype set for 
affected sibpairs can be de fi ned by
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where     0, ,i i ih p p    are the haplotype, its frequency in affected sibpairs and controls, 
respectively, and     γ    is de fi ned as before. Here we used     3M    because there are only 
    3M    independent haplotypes in  M  sibpairs under the null hypothesis. 

 At the second stage, we test association of the risk set of haplotypes de fi ned at 
stage 1 using the remaining     -un n    unaffected individuals and the     - -uN n n    
affected individuals. We compare the sum of the risk haplotypes frequencies in the 
cases and controls by Fisher’s exact test. The weighted sum test, which is an exten-
sion of the two-stage method, was studied by Li et al.  (  2010  ) . 

 To apply haplotype-based methods, haplotype phases have to be inferred, which 
adds a substantial computational burden. However, since we only need to infer the 
haplotype phases once in any data analysis, the computation is still within feasible 
limits. When risk variants are extremely rare (<0.5%), the power of haplotype-based 
methods can be low.  

    8.2.2.10   Odds Ratio Weighted Sum Statistic (ORWSS) 

 Price et al.  (  2010  )  demonstrated that the weights by Madsen and Browning  (  2009  )  
are proportional to the log odds ratio for a variant. In addition, a coef fi cient in a 
logistic regression is equivalent to the logarithm of the corresponding odds ratio. 
Feng and Zhu (Feng et al.  2011 ) proposed a method, for the binary trait, which 
directly uses the odd ratio of a variant as the weight for that variant, rather than the 
variance estimated in controls. That is, the odds ratio between allele  A  at the  j th SNP 
and a disease status using a 2 × 2 table was calculated. Since only rare variants are 
interested in and the corresponding 2 × 2 table may consist of entries with 0 observa-
tions, the amended estimator of the odds ratio by adding 0.5 to each cell was applied. 
It has been suggested that the amended estimator of the odds ratio behaves well 
(Agresti  2002  ) . Then, let     γ j    denote the logarithm of the amended odds ratio testing 
for the association of allele  A  at the  j th SNP using all the cases and controls. 

 If     iy    is a quantitative trait, the estimated coef fi cient     γ j    of a linear regress model 
    

0i ij j iy x= + +γ γ ε    can be used as the weight for the  j th variant. In detail, the weight 

of the  j th SNP is de fi ned as     ( ) ( )
( )

1 1

2 2

1

ˆ
-¢ =

=
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= =
-

å
å
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ij i ji
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γ   , where     jx    and 

    y    are the mean of  j th SNP and quantitative trait  Y , respectively. 

 For the rare variants, the estimated coef fi cient     ˆ jg    may vary widely if the sample 
size is not large enough. Based on this consideration, the weight can be de fi ned by 

    j
ˆ

sd

g   , where     sd    is the standard error of     ˆ jg   . 

 The power of the existing rare variant methods is dependent on the threshold used 
to de fi ne a rare variant, which can result in misspeci fi cation of risk variants by either 
including neutral variants or excluding risk variants (Zawistowski et al.  2010  ) . Price 
et al.  (  2010  )  addressed this issue via a variable MAF threshold at the cost of more com-
putation. This problem can be worse for these pooling methods when both common 
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and rare variants contribute to disease risk. When the MAF threshold is increased, 
many common neutral variants are also included – resulting in a dilution of associa-
tion evidence. To overcome this limitation, the weight for the  j th SNP is de fi ned as

     

, if  or
,

0,

 

 

j j j
j

c c
w

otherwise

g gg g s g sì > + < -ï= í
ïî    

where     σ    is the standard deviation calculated from     = ¼, 1,γ j j L   ,     = 1.64c    or 1.28 

is a parameter, and     γ    is the mean. After de fi ning the weight in this way, a same test 
procedure as Madsen and Browning’s can be applied for the association test.  

    8.2.2.11   Combining Related and Unrelated Individual Together 
to Detect Rare Variants 

 Previously, it was demonstrated that rare risk variants will be enriched in ascer-
tained families such as affected sibpairs (Zhu et al.  2010 ). Here, we illustrate how 
to use families, such as affected sibpairs or discordant sibpairs, to de fi ne the 
weights. Then a same test procedure as Madsen and Browning’s test can be applied 
to do the association test. This method was called sibpair-based weighted sum 
statistic test (SPWSS) and it has been shown that with the same size of genotype 
effect, using family data can greatly increase statistical power in detecting rare risk 
variants (Feng et al.  2011 ). Here, the assumption that a minor allele is either a risk 
allele or neutral was made, but the similar methods can be applied to detect protec-
tive variants. 

      (1) Affected Sibpair Design 
 Assume there are     sibN    affected sibpairs and  L  SNPs in the region. Further assume a 
SNP has two alleles  A  and  a , and  A  always refers to the minor allele for all the SNPs 
as de fi ned before and let ~ represent either the  A  or  a  allele at any SNP. Denote the 
 i th sibpair’s genotypes of the  L  SNPs as     ( )= ¼11 21 12 22 1 2( , ),( , ), ,( , )i i i i i i L i Lg g g g g g g    
where     1 2( , )i j i jg g    refers to the  j th SNP’s genotypes for the  i th sibpair. There is no 
need to differentiate the  fi rst or second sib here. The idea here is that if  A  at the  j th 
SNP is a risk allele, the weight for this allele  A  should be proportional to the ratio of 
the risk from both affected sibpairs carrying A to that in general population. If this 
is the case, the weight will only depend on the alleles carried at the  j th SNP. To do 
this, two scenarios are considered. First, if both affected sibs carry  A  at the  j th SNP, 
the weight of  A  at this SNP is proportional to
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where     ( )1 2( , ) ( ~, ~)i j i jPr g g A A1f = =   . Second, if one sib carries  A  at the  j th SNP 
and the other does not, the weight of  A  is dependent on how many other sites have 
an  A  allele carried by the other affected sib. That is, the weight is proportional to

     

1 2

1 2
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where     
2 1 2( , ) ( ~, ), of sib 2i j i jP g g A aa A present at other sitesf é ù= =ë û   .    In the above 

equation, we always assume the  fi rst sib carries allele A when one of the two sibs 
carries allele A at the  j th marker for easy description. 

 Based on above equations, a genotype score for each SNP in a sibpair can be 
de fi ned. To do so, the genotype score of the  j th SNP carried by  i th affected sibpair 
was de fi ned as
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 In the above equation, the second term was divided by 2 because either one of the 
sibs may carry the  A ~  genotype at the  j th SNP. The formulas for calculating     1f    and 
    2f    are given by
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where     jp    is the A allele frequency at the  j th SNP which is estimated only in  controls. 
There is also an assumption that all SNPs are in linkage equilibrium for obtaining 
    2f   . This may not be a reasonable assumption in the real data. However, simulations 
suggest that this assumption has little effect on the testing results (Feng et al. 
 2011  ) . 

 For the  j th SNP, we then calculate     
=

= å
1

1 �γ
sibN

j ij
isib

g
N

  , which is the average of the 

genotype scores across whole affected sibpairs. Under the alternative hypothesis, in 
which only a subset of variants are risk variants, we would expect these variants to 
be outliers. We thus de fi ne the weight for the  j th SNP to be
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where     γ    and     σ    is the mean and standard deviation calculated from     = ¼, 1,γ j j L    
and     c    is a prespeci fi ed parameter. The power of the test later should be dependent 
on the choice of    c  , which is usually set 1.28 or 1.64.  

      (2) Discordant Sibpair Design 
 For discordant sibpairs, assume the  fi rst sib is always chosen to be affected and the 
second is always unaffected, and there are     sibN    discordant sibpairs. The weight of 
allele  A  at the  j th SNP should be proportional to
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 In the same way as for affected sibpairs, the weights for discordant sibpairs can 
be de fi ned.     
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    8.3   Discussion 

 Although there is a heat debate about the hypotheses of CDCV and CDRV, the 
identi fi cation and characterization of the effects of rare variants on common disease 
will play central parts in the future genetic studies. The contribution of the rare variants 
to complex diseases has already been reported for type 2 diabetes (Bonnefond et al. 
 2012  ) , and rare variants will undoubtedly uncover some missing “heritability.” 
However, more robust and powerful statistical methods for analyzing rare variants 
are still needed. The statistical methods discussed here will still need to be evaluated 
in practice. It should not be doubted that a better understanding of the genetic archi-
tecture and the underlying biology of complex diseases will help us to develop more 
powerful statistical methods to detect disease variants.      
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  Abstract   Due to genome-wide or local chromosome duplication events, in almost 
all organisms, many genes are represented as several paralogs (duplicate genes) in 
the genome with related but distinct functions (gene families). After accumulating 
mutations in coding sequences and regulatory regions, duplicate genes may have 
more opportunity to diversify in protein function and/or regulatory network, leading 
to an increase of organismal complexity. With the explosive increase of high-
throughput data, however, it has been realized that gene duplication is a much more 
complicated process, and the underlying mechanisms may vary considerably in dif-
ferent organisms. In this chapter, we shall focus on a few important issues related to 
copy-number variation, gene essentiality, transcriptional, and epigenetic divergence 
between duplicate genes.  

  Keywords   Gene duplication  •  Copy-number variation  •  Gene essentiality  •  Protein 
function  •  Gene regulation      

    9.1   Introduction 

 Many organisms have undergone genome-wide or local chromosome duplication 
events during their evolution (Ohno  1970  ) . As a result, many genes are represented as 
several paralogs in the genome with related but distinct functions (gene families). 
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Gene duplication and subsequent functional divergence have been universally regarded 
as an important means to provide raw genetic materials for evolution; see Innan and 
Kondrashov  (  2010  )  for a recent review. After accumulating mutations in coding 
sequences and regulatory regions, partly because of redundancy, duplicate genes may 
have more opportunity to diversify in protein function and/or regulatory network, 
leading to an increase of organismal complexity. The conceptual framework 
includes three main evolutionary fates of a newly born duplicate copy, that is, 
neofunctionalization (acquisition of new functions) (Ohno  1970  ) , subfunctionaliza-
tion (partitioning of ancestral functions) (Force et al.  1999 ; Lynch and Force  2000  ) , or 
nonfunctionalization (being a pseudogene), as well as many combinations of above 
(Innan and Kondrashov  2010  ) . With the explosive increase of high-throughput data, 
however, we have realized that gene duplication is a much more complicated process. 
Moreover, the underlying mechanisms may vary considerably in different organisms. 
Because of the complexity of this problem, in this chapter, we shall focus on a few 
issues to which our research group has made some contributions.  

    9.2   CNV and Segmental Duplications 

 Copy-number variation (CNV) is a new type of genetic variation. Technically, 
CNVs are de fi ned as deletions or duplications greater than 1 kb in size. It was 
recently found that CNVs are abundant in the human genome; roughly, between any 
two individual humans, the number of base-pair differences due to CNVs is over 
100-fold higher than that of SNPs (Zhang et al.  2009a ; Conrad et al.  2010  ) . Moreover, 
many diseases are associated with CNVs in the genome, such as autism and schizo-
phrenia (Sebat et al.  2007 ; Lupski  2007 ; McCarthy et al.  2009 ; Pinto et al.  2010  ) . 

 Study of tandem or segmental duplications (SD) has been advanced considerably 
by the discovery of CNVs that are pervasive in virtually all eukaryotes. The muta-
tional mechanisms giving rise to CNVs in the population may underlie gene duplica-
tion and gene loss. In simple terms, a gene within the CNV region can be  fi xed and 
maintained in the population as a functional duplicate gene. Conversely, a duplicated 
copy could disappear in the population or remain in the genome as the relic of a 
pseudogene (Korbel et al.  2008  ) . Hence, CNV and SD are the two facets of the same 
genomic dynamics at the population level and at the species level, respectively. 

 It is evident from genome-wide surveys that CNVs exhibit a highly nonuniform 
distribution along chromosomes (Nguyen et al.  2006 ; Cooper et al.  2007 ; Campbell 
et al.  2011  ) . Similarly, the  fi xed segmental duplicated genes in the genome also 
show a large variation. For example, the mouse and opossum have more than 1,000 
olfactory receptor genes but the human only has 387 olfactory receptor genes 
(Niimura and Nei  2007  ) . Thus, one of most interesting issues about the relationship 
between CNVs and segmental duplicates is to what extent the CNVs’ distribution 
and the following  fi xation process toward SDs are driven by the neutral process 
versus positive selection. 

 The nonrandom distribution of CNVs in the genome may have three potential 
causes. First, it may be due to technological biases in the detection of CNVs, but 
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several analyses indicated that this explanation is unlikely to be responsible for the 
trend (Zhang et al.  2009a ; Girirajan et al.  2011  ) . Second, mutational hot spots, that 
is, locus-speci fi c differences in the rate at which CNVs are formed, may cause this 
disparity. Finally, the third cause is natural selection acting differentially on differ-
ent CNV events. It should be noticed that discriminating the remaining two poten-
tial causes (mutation or selection) is not straightforward. Though mutation bias, 
fi xation by natural selection or random drifts have been studied extensively for 
SNPs, they have been much less studied for CNVs (Korbel et al.  2008  )    . 

 A number of studies have shown that in the human and mouse, the mutation rate 
of CNV varies dramatically in different regions of each chromosome, resulting in a 
highly nonuniform distribution of CNVs along a chromosome (Korbel et al.  2008 ; 
Zhang et al.  2009a ; Fu et al.  2010 ; Sudmant et al.  2010  ) . For instance, Fu et al. 
 (  2010  )  conducted a genome-wide population genetic analysis and estimated that the 
mutation rate of CNVs varies up to 10 3 -fold. Substantial evidence has shown that 
mutational mechanisms giving rise to copy-number mutations are strongly corre-
lated with local genomic architecture, making particular regions systematically 
more prone to such mutations. For example, recent studies clearly showed that 
regions  fl anked by SDs of high sequence similarity are much more likely to harbor 
copy-number variation than other genomic sites, probably as a result of nonallelic 
homologous recombination (Sharp et al.  2005 ; Redon et al.  2006 ; Cooper et al. 
 2007  ) . Fu et al.  (  2010  )  found that about 60% of CNV hot spots overlap with SDs, 
whereas only <20% of non-hot-spot CNV regions (CNVRs) involve SDs; 
 p  = 7.63 × 10 −15  (Fisher’s exact test) for YRI,  p  = 4.39 × 10 −12  for CEU, and  p  = 7.62 × 10 −9  
for CHB + JPT (Fig.  9.1 ). Hence, subtelomeric regions represent hot spots for inter-
chromosomal recombination (Linardopoulou et al.  2005  )  and segmental duplication 
of genomic sequence (Derti et al.  2006  ) , as well as an enrichment of CNVs in 
subtelomeric regions (Redon et al.  2006  ) . In addition, breakage or fusion of chro-
mosomes during mammalian genome evolution may have in fl uenced the rate of 
duplication (and loss) of gene families across species.  

  Fig. 9.1    The percentage 
of copy-number variation 
regions ( CNVRs ) 
overlapping with SDs 
(Figure adapted from Fu 
et al.  2010  )        
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 Fixation of duplicated genes in the population can be driven by natural selection 
or only by random effects. Nei et al.  (  2008  )  argued that, as long as the number of 
gene copies is within the upper and lower limits determined by the physiological 
requirements of the organism, intraspeci fi c CNV variation is almost neutral. An 
observation used as strong evidence favoring the neutral CNV hypothesis is that 
such mutations can exist with weak or no phenotypic consequences. Indeed, the 
existence of CNV variations in a large sample of “normal” individuals indicates that 
many such mutations confer minimal to no phenotypic consequence within humans. 
At the very least, such copy-number variants do not have substantial deleterious 
effects. On the other hand, evolutionary studies of some large gene families as well 
as related pseudogenes support this hypothesis. For instance, Nozawa et al.  (  2007  )  
reported that no signi fi cant difference exists in the amount of CNVs between func-
tional and nonfunctional (pseudogene) sensory receptor genes, a gene family that 
has been found particularly prone to the structural variation (Redon et al.  2006 ; 
Korbel et al.  2007  ) . 

 The effects of purifying selection imposed on copy-number variations are par-
ticularly visible for deletions. For instance, recent studies have revealed that pro-
tein-coding genes, and also other genomic elements including highly conserved 
noncoding regions, tend to be depleted among CNVs (Derti et al.  2006 ; Redon et al. 
 2006 ; Korbel et al.  2007  ) . Cooper et al.  (  2007  )  invoked purifying selection to explain 
the enrichment in gene-poor regions for CNVs not overlapping SDs, because such 
variants would have a lower likelihood of disrupting protein-coding sequence than 
mutations in gene-rich regions. Furthermore, CNVs more often involve genes 
encoding proteins located at the periphery of the interaction network. This suggests 
that duplication of highly connected proteins can be deleterious, probably due to 
stoichiometric constraints to avoid abnormal phenotypes (Korbel et al.  2008  ) . In 
several  Drosophila  populations, Dopman and Hartl  (  2007  )  have shown that genes 
encoding proteins with more protein–protein interactions are more likely to be 
underrepresented in CNVs, consistent with the claim that purifying selection on 
dosage-sensitive genes results in the removal of extra gene copies that may cause 
dosage imbalance. 

 In addition to purifying selection, positive selection has been implicated in 
shaping the distribution of CNVs and duplicated genes in the genome. Functional 
biases in the genes that are associated with CNVs may provide an indication of 
adaptive selection. The genes associated with environmentally responsive func-
tions such as sensory perception and immunity tend to be affected by CNVs, while 
genes related to fundamental cellular processes are underrepresented (Feuk et al. 
 2006 ; Nguyen et al.  2006 ; Redon et al.  2006 ; Cooper et al.  2007 ; Korbel et al. 
 2008  ) . By computational analysis, Jiang et al.  (  2007  )  reported some evidence for 
positive selection in hot spots of recently formed segmental duplications in humans, 
as these hot spots are presumably subject to recurrent  de novo  gene duplications. A 
variety of studies have found signs of positive selection at the level of amino acid 
replacement for recently duplicated genes in human and other species, such as 
morpheus69 and RanBP2 (Ciccarelli et al.  2005  ) , or DUF1220 (Popesco et al. 
 2006  )  families. 
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 Zhang et al.  (  2011  )  identi fi ed 1,828 young primate-speci fi c genes in humans, 
most of which showed a rapid protein sequence evolution and are upregulated in the 
neocortex, the evolutionarily newest part of the human brain. As the timing of the 
emergence of these young genes (probably related to CNVs) was coincident with 
the evolutionary period during which the neocortex was expanding, they suggested 
a role of potential positive selection on the evolution of these genes. A recent study 
in the salivary amylase protein Amy1 showed that AMY1 gene copy number in 
human populations likely underlies diet-related positive selection pressures (Perry 
et al.  2007  ) . However, the genetic biases of CNVs could be alternatively explained 
by the reduced ef fi ciency of purifying selection in eliminating deleterious changes 
in humans (Nguyen et al.  2008  ) . In some cases of CNVs spanning more than one 
gene, the positive effect of gene duplication or loss may balance or overshadow the 
potentially negative impact of protein dosage imbalances and consequently may 
drive the  fi xation of CNVs in particular regions of the genome.  

    9.3   Rate of Segmental Duplication and Rate of CNV 

 Fu et al.  (  2010  )  conducted a genome-wide population genetic analysis and esti-
mated that the mutation rate of CNVs varies up to 10 3 -fold, with the average roughly 
around 10 −5  per locus per generation (excluding two extremes in both sides). 
Assuming that the generation of primates is roughly 15 years, the mutation rate of 
CNVs can be transformed as 10 −5 /15  »  6.7 × 10 −7  per locus per year = 0.67 per locus 
per million years. That is quite a high mutation rate, compared with other mutation 
types such as SNPs. Note this estimate approximates the genome-wide average. For 
mutation hot spots of CNVs (>10 −3  per locus per generation), the turnover time for 
a single mutation occurring in a locus (gene) could be as short as 15,000 years. 
Since  fi xation of CNVs in the population is the origin of duplication genes, with 
respect to population genetics, it would be interesting to compare the mutation rate 
of CNVs and the evolutionary rate of new duplicate genes. 

 Bailey et al.  (  2002  )  estimated that at least 5% of the human genome consists of 
segmental duplications. They calculated that the span of the segmental duplications 
in the human genome ranges from ten to hundred of kilobases, with >90% identity 
at the nucleotide level between ancestral and duplicate segments. On the basis of 
neutral expectation of sequence divergence (molecular clock), this corresponds to 
duplications that have emerged over the past ~40 million years of human evolution. 
If these estimates are largely correct, one can obtain a rough estimate for the evolu-
tionary rate of segmental duplications. Assume that the total number of genes in the 
ancestral primate genome in 40 million years (Myr) ago is ~25,000. Thus, the initial 
rate of segmental duplication can be roughly estimated as  v  = 5% × 25000/40 ~ 31 
genes/Myr/genome. That is, on average, there are about 31 genes that are duplicated 
per million years in the genome. 

 On the other hand, it has been estimated that the retention frequency of dupli-
cates could be from  f  = 13% (yeast) to 24% ( Arabidopsis ). If the fate of duplicates in 
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human is similar to yeast or  Arabidopsis , we  fi nd the emergence of new paralogous 
(functional) genes with the rate of  l  =  f × v  ~ (4.0–7.6) genes/Myr/genome. 
Interestingly, Gu et al.  (  2002  )  estimated that the (stationary) rate of small-scale gene 
duplications is 3.2–5 genes/Myr/genome, during the course of vertebrate evolution 
but before the mammalian radiation. As segmental duplications are the major con-
tribution to small-scale duplication events, one may conclude that these two rough 
estimates are close. Actually they are more similar when the genome size difference 
is taken into account. Assume that a vertebrate genome is on average, ~15,000 
genes. Then, the rate of small-scale duplication during primate lineage can be 
revised as (3.2–5)/15,000 ~ (2.1–3.3)  ×  10 −4  per gene per Myr. From Bailey et al.’s 
 (  2002  )  data, the rate is (4.0–7.6)/25,000 ~ (1.6–3.0)  ×  10 −4  per gene per Myr. 

 We thus conclude that the emergence rate of new genes via segmental duplications 
may be roughly constant during the course of vertebrate evolution to primates, with 
the magnitude of (2 ~ 3)  ×  10 −4  per gene per Myr. Yet, this estimate is considerably 
lower (<1%) than the mutation rate of CNVs, which is 0.67 per locus per million 
years. It seems that, in spite of abundant copy-number variation in the genome, only 
a very small portion of CNVs can be  fi xed in the population. Our tentative analysis 
supports the notion that the majority of CNVs are neutral or nearly neutral for a 
given range of copy number. A small portion of CNVs are deleterious or adaptive 
because of the dosage effects. Of course, more data and accurate analyses are needed 
for having a deep understanding of the relationship between copy-number variation 
and segmental duplication.  

    9.4   Essentiality (or Dispensability) in Duplicate Genes 

 Functional compensation of duplicate (paralogous) genes has been thought to play 
an important role in genetic robustness (Winzeler et al.  1999 ; Gu  2003 ; Gu et al. 
 2003 ; Kamath et al.  2003 ; Conant and Wagner  2004 ; Guan et al.  2007 ; Dean et al. 
 2008  ) . Indeed, existence of a close paralog in the same genome could result in null 
mutations of the gene with little effect on the organismal  fi tness (nonessential gene), 
as observed in diverse organisms such as yeast, nematode, and Arabidopsis (Gu 
et al.  2003 ; Conant and Wagner  2004 ; Guan et al.  2007 ; Dean et al.  2008 ; Hanada 
et al.  2009,   2010 ; Gu  2010  ) . In addition, large-scale double-knockout experiments 
in yeast and Arabidopsis demonstrate that the genetic redundancy is not just a tran-
sient consequence of gene duplication, but is often a long-term retained evolution-
ary stable state maintained by natural selection (Vavouri et al.  2008 ; Hanada et al. 
 2009 ; Li et al.  2010 ; VanderSluis et al.  2010 ; van Wageningen et al.  2010  ) . 

 However, the role and magnitude of the duplicate genes contributing to genetic 
robustness in mammals remain controversial (Hsiao and Vitkup  2008 ; Liang and Li 
 2007 ; Liao and Zhang  2007 ; Su and Gu  2008 ; Wang and Zhang  2009 ; Makino et al. 
 2009 ; Liang and Li  2009 ; Qian et al.  2010  ) . Two studies on mouse knockout pheno-
types (Liang and Li  2007 ; Liao and Zhang  2007  )  observed that the proportion of 
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essential genes ( P  
 E 
 ) is similar between duplicate genes and singletons in mouse, 

sharply contrasted with those well-known  fi ndings that removing a duplicate gene 
usually generates less deleterious phenotypes than removing a singleton gene (Gu 
et al.  2003 ; Conant and Wagner  2004 ; Guan et al.  2007 ; Dean et al.  2008  ) . Although 
recent reports pointed out the strong bias of mouse knockout data toward develop-
mental genes, whole genome duplication-derived genes, or ancient duplicated 
genes, after correcting for these confounding factors, the relationship between phe-
notypic effect and gene duplication in the mouse still appears to be much weaker 
than those in the yeast and nematode (Su and Gu  2008 ; Makino et al.  2009 ; Liang 
and Li  2009  ) . Moreover, the effect of genetic buffering (measured by  P  

 E 
  of single-

tons) is correlated with the protein sequence conservation as well as the protein–
protein interactivity, making the efforts to seek the cause–effect relationship more 
complicated. 

 The effect of gene duplications on genetic robustness depends on the distribu-
tion of young duplicate genes in the current genome. Therefore, its impact varies 
among species, mainly because each species has its unique age distribution of 
gene duplications. For instance, due to recent polyploidizations, duplicate genes 
may dominate the genetic robustness in plant genomes (Wendel  2000  ) . Indeed, we 
(Su and Gu  2008  )  found that the effect of duplicate genes on mouse genetic 
robustness is duplication age dependent. The histogram in Fig.  9.2  clearly shows 
that mouse knockout experiments have been designed to avoid recently duplicated 
genes. For example, only 1.4% of duplicated genes in the knockout set were dated 
within 100 mya (around or after the mammalian radiation), compared to 19.6% in 
the mouse genome set   . Consequently, the ages of duplicate genes in the mouse 
knockout dataset are typically around 500–700 mya (in early vertebrates), with a 
long tail toward even more ancient ones (>1,000 mya). In other words, the sam-
pling bias toward ancient duplicates in the currently available mouse knockout 
target genes has been nontrivial. Recently, gene duplications, those duplicated 
around the mammalian radiation or in the rodent lineage, are expected to have 
signi fi cant contributions to the genetic robustness in the current mouse genome. 
While these young duplicates were  considerably underrepresented in the mouse 

  Fig. 9.2    Duplication age 
distribution of mouse genome 
set ( blue bars ) and knockout 
gene set ( green )       
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knockout dataset, the observed  proportion of essential duplicate genes is upwardly 
biased toward the value of singletons.  

 We reanalyzed the updated mouse knockout phenotype data in Mouse Genome 
Database (MGD) (Eppig et al.  2005  )  (unpublished). Consistent with previous stud-
ies (Liang and Li  2007 ; Liao and Zhang  2007 ; Su and Gu  2008  ) , the updated mouse 
knockout dataset shows no statistical difference of  P  

 E 
  between singletons and dupli-

cates (47% vs. 46.3%;  P  > 0.05), which holds after ruling out the potential con-
founding effect from coding sequence conservation, protein–protein connectivity, 
functional bias, or the bias of duplicates generated by whole genome duplication 
(WGD). After using a simple bias-correcting procedure (Su and Gu  2008  )  to calcu-
late a bias-corrected  P  

 E 
 , we predicted that  P  

 E 
  = 41.7% for all duplicate genes, which 

is impressive, compared to  P  
 E 
  = 46.3% observed in sample duplicates and  P  

 E 
  = 47% 

in sample singletons (Su and Gu  2008  ) . However, we emphasize here that even after 
taking this sampling bias into consideration, the difference between  P  

 E 
  for single-

tons and  P  
 E 
  for duplicates at the mouse genome level remains small. 

 We call this controversy  the mouse knockout duplicate puzzle.  Resolving this 
issue may have a signi fi cant impact on biomedical sciences since knockout mice 
have been widely used as animal models of human diseases. There is no disagree-
ment that some of these ancient duplicates may have undergone substantial func-
tional divergence to have lost the capacity of functional compensation. Consequently, 
the contribution of functional compensation by young duplicates has been canceled 
by the contribution of higher intrinsic importance of ancient duplicates (Liang and 
Li  2009  ) . Yet, the central issue for the underlying mechanism remains unsolved. We 
speculate that rapid increase of organismal complexity (as measured by the number 
of cell types in the early stage) may play a crucial role on resolving the mouse 
knockout duplicate puzzle.  

    9.5   Transcriptional Regulation Divergence Following Gene 
Duplication 

 Gene duplication is an evolutionary force for increased diversity and complexity of 
gene regulation and expression (Gu et al.  2004 ; Teichmann and Babu  2004  ) , which 
facilitates an organism’s adaptation to environmental changes or other biological 
competitions. It is commonly accepted that expression divergence between dupli-
cate genes is an importantly  fi rst step of functional divergence after the gene dupli-
cation. A considerable amount of research studies has been published in attempt to 
unveil the underlying mechanism of expression divergence between duplicates. In 
the following we brie fl y discuss three types of regulation modes:  cis -regulation, 
 trans -regulation and epigenetic regulation. 

  Cis-regulatory divergence:  As the most direct effect on gene expression regula-
tion, how the  cis -regulatory control diverges after gene duplication has been the hot 
topic in this  fi eld. It has been reported that duplicate genes of many organisms 
have experienced rapid  cis -regulatory divergence and thus specialization of gene 
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 regulatory control, including the yeasts (Papp et al.  2003 ; Tirosh and Barkai  2007 ; 
Singh and Hannenhalli  2010  ) , insects (Nielsen et al.  2010 ; Datta et al.  2011  ) , plants 
(Lockton and Gaut  2005 ; Chen et al.  2010  ) , and vertebrates (Bird et al.  2007 ; Woolfe 
and Elgar  2007 ; Kostka et al.  2010 ; Lee et al.  2010 ; Nowick et al.  2010  ) . Rapid  cis -
regulatory divergence and specialization may be driven by the accelerated evolution 
in the noncoding sequence, probably due to the relaxed selective constraints in 
redundant duplicates (Bird et al.  2007  ) . For example, Woolfe and Elgar  (  2007  )  ana-
lyzed seven pairs of teleost-speci fi c paralogs involved in early vertebrate develop-
ment and observed a pattern of  cis -element retention and loss between Fugu 
paralogs, implying possible regulatory subfunctionalization. Subfunction in expres-
sion domains was also found in insects and plants (Lockton and Gaut  2005 ; Nielsen 
et al.  2010  ) . Papp et al.  (  2003  )  argued that, except for the degenerative complemen-
tation, positive selection may occur on the  cis -regulatory motif after yeast gene 
duplication, contributing to the regulatory neofunctionalization between yeast 
duplicates. In addition, fast evolution of exonic splicing enhancers and silencers 
shortly after the gene duplication provided another level of regulatory differentia-
tion in duplicate genes (Zhang et al.  2009b  ) . 

  Trans-regulatory divergence:  In spite of the positive correlation between  cis -
regulatory motif divergence and the expression divergence of duplicate genes that is 
biologically intuitive (Castillo-Davis et al.  2004 ; Zhang et al.  2004  ) , only a limited 
amount (about 2–3%) of expression variation can be explained by  cis -motif diver-
gence (Zhang et al.  2004  ) . This observation suggested that other  trans -acting factors 
may play some important roles in in fl uencing the pattern of expression divergence. 
Using yeast regulatory interaction data (transcription factor (TF) target gene) by the 
ChIP technology (Lee et al.  2002  )  and yeast microarrays, Gu et al.  (  2005  )  estimated 
that, after the gene duplication, the evolutionary rate of regulatory interactions is, on 
average, about one order of magnitude (tenfold) faster in the young duplicates than 
that in the ancient duplicates, indicating a rapid evolution of gene expression shortly 
after the gene duplication. To provide an overview of the full landscape of regula-
tory network evolution, a novel strategy termed “genetical genomics” was proposed 
to address quantitative variation in gene expression, called expression quantitative 
trait loci (eQTL); see Jansen and Nap  (  2001  )  for a recent review. By this approach, 
Zou et al.  (  2009b  )  applied the yeast genome-wide  trans -acting eQTL data ( trans -
genetic variation responsible for the gene expression variation) to investigate the 
evolutionary pattern of the genetic regulatory system between duplicate genes. The 
main results of this study are (1) the divergence of  trans -acting eQTLs between 
duplicate pairs increases with evolutionary time, using the distance of synonymous 
substitutions or nonsynonymous substitutions between duplicates as a proxy 
(Fig.  9.3 ), and (2)  trans -acting eQTL divergence can explain about 21% of the vari-
ation in expression divergence between young duplicate pairs (using the cutoff 
 K  

 S 
  < 2.0); when the TF-target interactions are combined, the proportion of explain-

able variation can be up to 27%.  
  Epigenetic divergence:  An increasingly accepted evolutionary force for expres-

sion divergence between duplicate genes is differential epigenetic control. Different 
epigenetic stage/tissue-complementary silencing patterns by DNA methylation 
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between duplicate pairs may favor recently duplicated genes to survive (Rodin and 
Riggs  2003  ) . It was suggested that many newly born duplicates will be translocated 
to ectopic chromosome locations, often on different chromosomes, to escape the fate 
of pseudogenization. As a result, this may create a different chromatin  environment 

  Fig. 9.3    Divergence of  trans -acting eQTLs between duplicate pairs ( D  
 t-eQTL 

 ) increases with syn-
onymous distance  K  

 S 
  (panel  A ) or nonsynonymous distance  K  

 A 
  (panel  B ) between duplicate pairs. 

Error bar indicates standard error       
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and thus lead to different epigenetic regulation between two duplicate copies (Rodin 
and Parkhomchuk  2004 ; Rodin et al.  2005  ) . MicroRNA (miRNA) is also a potential 
epigenetic factor affecting gene regulation evolution (Huang and Gu  2011  ) , through 
sophisticated regulation and evolution on the 3 ¢  UTR where most miRNA target 
sites are located. After investigating the miRNA-mediated transcriptional regulation 
between human and mouse duplicate genes, Li et al.  (  2008  )  found that miRNA tar-
gets are signi fi cantly overrepresented in duplicate genes and shared miRNA regula-
tors between them decrease with evolutionary time. Moreover, ancient duplicates 
seem more likely to be regulated by miRNAs, probably because of the acquirement 
of miRNA regulation over time since gene duplication or underpresentation of 
young human/mouse duplicates involved in miRNA regulation.  

    9.6   Gene Duplication and Environmental Adaptation 

 An evolving system is the process of organisms constantly adapting themselves to 
the changing environment through natural selection. High variable environmental 
circumstances require that organisms have multiple and sensitive stress sensing and 
response mechanisms which demand constant innovation. Gene duplication may 
provide new genetic materials for adapting to the changing environment. Many 
investigations have observed that duplicate genes are associated with biological pro-
cesses interacting with the external environments in both prokaryotes (Sanchez-
Perez et al.  2008 ; Bratlie et al.  2010 ; Chia and Goldenfeld  2011  )  and eukaryotes 
(Moore and Purugganan  2005 ; Rizzon et al.  2006 ; Hanada et al.  2008 ; Ames et al. 
 2010  ) . Several examples are as follows: (1) Ames et al.  (  2010  )  demonstrated that 
yeast lineage-speci fi c duplicate genes and strain-speci fi c duplicates (or CNV) are 
abundant, with detectable bias in speci fi c functions correlated with the environment 
from which they were isolated. (2) Chen et al.  (  2008  )  and Podrabsky  (  2009  )  
provided a detailed case study illustrating the important role of gene duplication 
in the adaptation to subfreezing temperatures in the Antarctic notothenioid  fi sh. 
(3) Yamanaka et al.  (  1998  )  studied the CspA family, the major cold-shock protein 
in  E. coli.  The authors observed nine members of the family from  cspA  to  cspl  
generated by a series of gene duplications, many of which have particular roles of 
responding to different environmental stresses, such as  cspA ,  cspB,  and  cspG  
responsible for cold-shock stress and  cspD  for nutritional deprivation. And (4) other 
well-known examples include the expansion of the olfactory receptor gene family in 
mammalian and adaptive immunity-related genes such as major histocompatibility 
complex (MHC), T-cell receptors (TCR), and immunoglobulins (Ig) in vertebrate 
genomes by gene duplications (Firestein  2001 ; Azumi et al.  2003 ; Niimura and 
Nei  2003  ) . Increased sensory adaptation to different odorant molecules in the 
environment in fl uences mammalian behavior considerably in fl uencing food-seeking, 
mate and offspring-identifying, as well as danger-escaping. Meanwhile, genetic 
and somatic diversity of immune-related genes help organisms to prevail in an 
evolutionary “arms race” with pathogens. 
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 In addition to providing new genetic materials, gene duplication and subsequent 
divergence can offer diversi fi ed regulatory system with certain regulatory elements 
for variable regulations, which allows organisms to  fl exibly deal with different 
external stimuli (Lopez-Maury et al.  2008  ) . Zou et al.  (  2009a  )  explored the evolution 
of stress-regulated gene expression among duplicate genes in  Arabidopsis thaliana  
after reconstructing the putative ancestral stress regulation patterns. They observed 
that duplicate genes experienced substantial changes (loss, gain, or switch) of stress 
responses, especially for the lost events. Interestingly, ancestral stress response 
partitioning was highly asymmetric between duplicate genes, as well as differential 
losses of DNA regulatory elements. Hence, (asymmetric) mutations in the regula-
tory element after the gene duplication help the organism to improve the capacity of 
 fl exible responsiveness to altered environmental stresses. 

 We (Zou et al.  2011  )  recently provided direct evidence which supports the notion 
that gene duplication may contribute to environmental adaptation by providing new 
stress sensing and regulatory response mechanisms through the gain of TATA box, 
a core promoter element in eukaryote. TATA box motif appears to play a unique role 
in stress-related, multi-stimulus response genes, as shown to be associated with 
variably expressed genes (Basehoar et al.  2004 ; Walther et al.  2007  ) . TATA box is 
signi fi cantly enriched in duplicate genes compared with singletons in the human, 
worm,  Arabidopsis,  and yeast. We further conducted extensive genomic analyses to 
investigate the evolution of TATA box among over 700 yeast gene family phyloge-
nies. After reconstructing the ancestral TATA box states (presence or absence) that 
were usually TATA box absent (Table  9.1 ), we (Zou et al.  2011  )  found a signi fi cantly 
higher number of TATA box gains than losses that occurred after yeast gene dupli-
cations; the overall gain/loss ratio is about 3 – 4 (Table  9.2 ). Our result suggests that 
the enrichment of the TATA box in yeast duplicate genes may be the consequence 
of consecutive gains of new TATA boxes since gene duplication. These TATA-gain 
duplicate genes, on average, have experienced greater expression divergence than 

   Table 9.1    Ancestral TATA box state reconstruction for  S. cerevisiae  gene families by parsimony 
principle   

 Two paralogs  At least three paralogs 

 Ancestral TATA box 
state  Number of families  Ancestral TATA box state  Number of families 

 TATA (+)  49  TATA (+)  27 
 TATA (−)  368  TATA (−)  161 
 Ambiguity  125  Ambiguity  37 

   Table 9.2    Events of TATA box switches during the yeast gene family evolution according to dif-
ferent parsimony optimizations   

 Parsimony optimization  TATA box gains  TATA box losses  Binomial test 

 ACCTRAN  75  26   P  < 10 −5  
 DELTRAN  78  23   P  < 10 −7  
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their closely related TATA-less genes (genes without TATA box in the promoter) 
duplicate partners, only under environmental stress conditions. Under normal phys-
iological conditions, they have similar expression divergence. Besides TATA-gain 
duplicates, that is, acquiring a new TATA box after gene duplication, stress-associ-
ated functional categories are enriched, such as transport, cell membrane, and extra-
cellular process. Putting everything together, Zou et al.  (  2011  )  concluded that gain 
of the TATA box (a stress-sensitive regulatory motif) after gene duplication may be 
an important mechanism for organisms to adapt to drastically changing environ-
ments via more  fl exible and sensitive expression regulation program which also 
leads to the preservation of such duplicate genes in the genome.    

    9.7   Concluding Remarks: Toward a New View of Gene 
Duplication? 

 Almost in all eukaryotes, gene duplication is the major mechanism to provide new 
genetic material resources for increasing the diversity and complexity of protein 
function and gene regulation, facilitating adaptation to environmental change or 
other biological competition. However, the underlying mechanisms to achieve this 
goal may differ considerably among different organisms, alongside differences in 
the ancient environments when the duplications occurred. Hence, we question some 
recent efforts aimed at the establishment of a universal model for duplicate preser-
vation and divergence that can be conceptually applied to all organisms.      
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  Abstract   Because the genetic architecture of human complex disease remains 
elusive, the clinical application of current genetic knowledge remains a formidable 
challenge. The  fi eld of translational genomics is rapidly progressing with the 
development of next-generation sequencing (NGS) technologies. NGS is poised to 
produce a sea change in clinical practice by providing new insights into our under-
standing of complex human diseases. In this review, we will discuss a broad range 
of issues on how NGS will transform current genetic research especially in the areas 
of cancer and mental health.  
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sequencing  •  Human complex disease  •  Cancer  •  Mental disorder      

    H.-D.   Qin   
     Unit of Statistical Genomics, Division of Intramural Research Programs , 
 National Institute of Mental Health (NIMH)/NIH ,   Building 35; Room 3A-1006 , 
 Bethesda ,  MD ,  USA    
e-mail:  qinh2@mail.nih.gov  

     A.   Scott  
     Department of Medicine ,  Johns Hopkins University ,   600 North Wolfe Street, 
Blalock Building, Room 1033 ,  Baltimore ,  MD ,  USA    

    H.  Z.   Wang   •     Y.  Y.   Shugart (*)  
     Unit of Statistical Genomics, Intramural Research, Program , 
 National Institute of Mental Health ,   35 Convent Drive, 
Room 3A1000 ,  Bethesda ,  MD   20892-3719 ,  USA    
e-mail:  wangh13@mail.nih.gov  ;   kay1yao@mail.nih.gov   

    Chapter 10   
 From GWAS to Next-Generation Sequencing 
on Human Complex Diseases: The Implications 
for Translational Medicine and Therapeutics       

      Hai-De   Qin         ,    Alan   Scott   ,    Harold   Z.   Wang      , and    Yin   Yao   Shugart        



158 H.-D. Qin et al.

    10.1   Introduction 

 Cancer and mental disorders are two groups of disorders in which the contribution 
of genetic components to the risk of disease is substantial and in which multiple 
environmental factors are also involved. Mathematically, the pathogenesis of 
complex disease can be described as multiple random events occurring in multidi-
mensional space. The pathogenesis process can undergo selection as the result of 
accumulating events during disease progression, thereby producing multiple pheno-
types that can be recognized as a complex disease. 

 Worldwide, there were 12.6 million new incident cases of cancer in 2008 with 7.6 
million deaths (Ferlay et al.  2010 ). Narrowing the distance between laboratory research 
and clinical applications is challenging but urgently needed. In the past several decades, 
scientists have made strong efforts to  fi ll in this gap. Although some  fi ndings have led to 
the invention of drugs, the majority of patients with cancer would bene fi t mainly from the 
early screening program, surgery, and radiotherapy. Chemotherapy, for example, has 
little effect on cancer treatment for patients with late-stage metastatic diseases. As cancer 
progresses, cancer cells acquire multiple somatic mutations resulting in highly hetero-
geneous genetic patterns and the development of different phenotypes. Consequently, 
for any given chemotherapy regime, some cancer cells are likely to escape. 

 It has been recognized that poor diets, tobacco uses, virus infections, occupational 
exposures, and environmental pollutions count for over 65% of cancer causes 
(The American Cancer Society  2007  ) . Most of the environmental risk factors 
have profound impacts on the genome, producing both somatic mutations and 
epigenetic changes. These environmental insults accumulate and are stored in the 
human genome. Genetic alteration is not only the hallmark of cancer but also the 
driving force, leading to the selection of clonal populations that results in progres-
sion, relapse, and metastasis. The simultaneous pro fi ling of genomic alterations, 
including deletions, insertions, substitutions, and structural variations of patients 
with cancer, is technically feasible, and techniques are being developed to use 
unique genomic features of a patient’s tumour (e.g. translocations) to follow pro-
gression and optimize treatment strategies (Leary et al.  2010  ) . 

 Compared to cancer, neuropsychiatric disorders are usually not lethal, but they 
have profound negative effects on people’s daily lives and may last the course of a 
lifetime. For example, some mental disorders associated with permanent brain 
dysfunction manifest their symptoms as early as childhood. About 30% of the 
population suffers from some form of mental disorder, and the prevalence has 
remained unchanged despite increased awareness and new treatments (Kessler and 
Wang  2008 ; Kessler et al .   2005 ; MacKenzie et al .   2005  ) . It is estimated that only 
30% of patients with mental disorders received treatment between 2001 and 2003 
(Bartley et al .   2011 ; Chukwujama and Gormley  2011 ; Petersen  2011  ) . 
Schizophrenia, bipolar, cognitive impairment, and autism are serious disorders that 
affect a large number of the population. For example, about 6 children per 10,000 
are diagnosed with autism, and at least 18.7 per 10,000 are diagnosed with some 
form of pervasive developmental disorder. These numbers highlight the need for 
special services and education for a large group of children (Fombonne  1999  ) . 
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 To date, diagnosis and treatment of neuropsychiatric disease is still challenging 
due largely to the unclear mechanisms of aetiology. To diagnose a patient with 
cancer, oncologists use a variety of imaging tools such CT, MRI, and PET, and 
then con fi rm and further classify the tumours based on histology.    Psychiatrists 
must evaluate a patient’s mental status, personality, and cognitive function and 
sometimes use neurophysiologic measurements and sophisticated neuroimaging 
techniques (e.g. PET scan). As a result, a psychiatrist faces the dilemma of 
distinguishing a patient’s disease from over 300 subtypes of mental illness 
(American Psychiatric Association  2000  ) , and the resulting diagnosis largely 
relies on the experience of the psychiatrist. Psychiatrists also dispute the underlying 
basis for different mental illnesses, and due to misclassi fi cation or heterogene-
ity of the diseases, the therapeutics they select may not be the most effective. 
Moreover, therapy by antipsychotic drugs, antidepressants, mood stabilizers, 
and antianxiety agents, which are non-targeting drugs, might produce signi fi cant 
side effects depending on the disease or the patient’s ability to metabolize a 
particular pharmaceutical. 

 Translational medicine, based on understanding genomic architecture, is expected 
to help overcome the diagnostic dif fi culties for both cancers and mental illnesses by 
illuminating common patterns of genetic change in speci fi c subtypes of diseases. 
The invention of next-generation sequencing (NGS), including applications such as 
whole genome sequencing (WGS), whole exome sequencing (WES), RNA-Seq, 
Met-seq, and ChIP-Seq, has resulted in powerful new ways to interrogate the 
genome. NGS is already transforming genetic research and clinical practice by pro-
viding us with a much better resolution of underling genetic mechanisms for cancer, 
mental illnesses, and a spectrum of other diseases. Already, diagnoses are being 
made with greater precision, and treatments are being individualized based on a 
more thorough understanding of each patient. In this review, we focus on this rap-
idly progressing  fi eld, covering topics on the application of NGS to translational 
medicine in oncology and psychiatry.  

    10.2   Pre-NGS: Genome-Wide Association Study 
on Cancers and Mental Disorders 

 By using SNP genotyping arrays that target common variants, hundreds of 
genome-wide association studies (GWAS) have been published since 2007. A 
summary of these studies is available at   www.genome.gov/gwastudies/    . This 
approach was premised on the ‘common diseases, common variants’ hypothesis 
and was made possible by (1) technologies, largely by Affymetrix and Illumina, 
to rapidly and inexpensively genotype thousands to millions of single nucleotide 
polymorphisms (SNP) and (2) by the HapMap project that identi fi ed these 
variants by sequencing the genomes of samples collected from populations around 
the world. In this section we summarize some of the  fi ndings from GWAS studies 
in cancer and mental illness. 

http://www.genome.gov/gwastudies/
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    10.2.1   Using GWAS to Identify Risk Variants for Cancers 

 Over 30 (sub)types of tumours have been investigated by GWAS, including solid 
tumours, leukaemia, and lymphomas. For breast cancer, multiple GWAS studies 
have con fi rmed reproducible signals near  FGFR2 , the region between  TOX3  to 
 CHD9 , and near  TNP1  to  DIRC.  Twenty-three other genes signi fi cantly associated 
with breast cancer risk were also found (Table  10.1 ). For prostate cancer, GWAS 
studies have identi fi ed 46 loci that have shown association with cancer risks .  Among 
them  CALM2P1-SOX9, HNF1B, FAM84B-SRRM1P1, CXorf67-NUDT11, LMTK2, 
LOC100289162, MSMB, PDLIM5, POU5F1B-MYC, SRRM1P1-POU5F1B, 
TPCN2-MYEOV,  and  VGLL3-CHMP2B  are con fi rmed by multiple GWAS studies 
(Table  10.1 ). Furthermore,  AGPHD1, BAT3, CHRNA3, CLPTM1L, TERT,  and  TP63  
have been found to be signi fi cantly associated with lung cancer risk in multiple 
GWAS studies, and additional evidence suggest the same for at least 9 additional 
genes. For hepatocellular carcinoma, GWAS studies identi fi ed  HLA-DQB1 – HLA-
DQA2, HLA-S-MICA,  and  KIF1B.  Moreover, GWAS studies identi fi ed at least 14 
such loci/genes for pancreatic cancer and 4 such genes for gastric cancer 
(Table  10.1 ).   

    10.2.2   GWAS Studies on Mental Disorders 

 Several mental illnesses have been investigated by GWAS, including bipolar 
disorder, schizophrenia, autistic disorder, Alzheimer’s disease, and obsessive–
compulsive disorder (OCD). The pioneering GWAS study in complex genetic 
disorders was conducted by the Wellcome Trust Case Control Consortium 
(WTCCC), which included 14,000 cases of seven common diseases and 3,000 
shared controls. For bipolar disorder, the results suggested that the SNPs in the 
gene  CACNA1C  showed strong evidence of association (WTCCC  2007  ) . That 
result was validated in a study of 4,387 cases and 6,209 controls by another 
group at the Massachusetts General Hospital (Ferreira et al .   2008  )  who, in addition 
to  CACNA1C , identi fi ed a novel locus,  ANK3 . By 2011, at least 15 genes/loci were 
shown by different groups to be associated with bipolar disorder at the threshold 
of  P  < 10 −7  (Table  10.1 ). 

 Another GWAS study on bipolar disorder was conducted by the Psychiatric 
GWAS Consortium in 2011 (Ripke et al . ). In this study, 7,481 European ancestry 
cases and 9,250 European ancestry controls were genotyped in the discovery 
stage of the study and then replicated in 4,496 European ancestry cases and 42,422 
European ancestry controls. Eighteen signi fi cant SNPs in the initial phase of 
the study were replicated. Among them, two SNPs located in  CACNA1C  and  ODZ4  
showed strong evidence of association ( P  < 10 −7 ). In addition, a combined analysis 
of schizophrenia and bipolar disorder yielded strong association evidence for SNPs 
in  CACNA1C  and in the region of  NEK4–ITIH1–ITIH3–ITIH4 . 
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   Table 10.1    Genes associated with cancers or mental disorders in GWAS studies a    

    Complex disease  Associated genes/loci in GWAS studies 

  Cancer  
 Breast cancer   FGFR2, TOX3-CHD9, TNP1-DIRC, C10orf1, 

C19orf62, C6orf97-ESR1, CDKN2BAS, COL1A1, 
EMBP1, FGF10-MRPS30, IFITM9P-CCND1, LSP1, 
RNF146, RPL26P19-MAP3K1, RPL31P43-RPL36P14, 
SLC4A7, SRRM1P1-POU5F1B, TERT, ZMIZ1 , 
and  ZNF365  

 Prostate cancer   AGAP7-RPL23AP61, AR-OPHN1, C2orf43, CALM2P1-SOX9, 
CCHCR1, COL6A3-MLPH, CXorf67-NUDT11, DPF1-
PPP1R14A, EEFSEC, EHBP1, FABP5L1-KLF12, 
FAM84B-SRRM1P1, FGF10, FOXP4, FSHR, GGCX-
VAMP8, HNF1B, IRX4-IRX2, ITGA6, KLK3-KLK2, 
KRT78-RPL7P41, LMTK2, LOC100289162, MLPH, 
MSMB, NUDT11-TRNAE37P, PDLIM5, POU5F1B-MYC, 
RFX6, RPL19P16-FGFR2, RPL6P14-TET2, 
RPS25P10-BIK, SKIL-CLDN11, SLC22A3, SLC25A37-
NKX3-1, SQRDL-SEMA6D, SRRM1P1-POU5F1B, TERT, 
TH-ASCL2, THADA, TPCN2-MYEOV, TUBA1C-PRPH, 
VGLL3-CHMP2B, ZBTB38, ZNF652  

 Lung cancer   AGPHD1, BAT3, CHRNA3, CLPTM1L, TERT, TP63, C3orf21, 
DYNC2H1-PDGFD, EIF4E2, MTMR3, NOP56P1-RPL13P, 
TNFRSF19-MIPEP  

 Pancreatic cancer   ABO, BACH1, C10orf84-PRLHR, DAB2, FABP5L1-KLF12, 
FABP5L1-KLF12, FAM19A5, IL17F, NR5A2, 
TFF2-TFF1  

 Gastric cancer   CHEK2, PLCE1, PRKAA1, ZBTB20  
 Hepatocellular carcinoma   HLA-DQB1–HLA-DQA2, HLA-S-MICA, KIF1B  

  Mental disorder  

 Bipolar disorder   CACNA1C, ODZ4, ANK3-ARL4P, CACNA1C, CYCSP16-
PNRC1, DGKH, HLA-B–DHFRP2, HSPD1P6-TRANK1, 
LMAN2L, NCAN, ODZ4, PALB2, PDE10A-C6orf176, 
PPM1M, RPL23AP39-RPL21P17, RPLP0P5-MARK1, 
TLR4-DBC1  

 Schizophrenia   BRP44, CNNM2, CSMD1, HIST1H2AH-RPL10P2, 
HLA-DRB1–HLA-DQA1, ITIH4, LSM1, MAP1LC3P-TCF4, 
NKAPL, NOTCH4, NT5C2, PRSS16-TRNAI28P, 
RPL26P9-FLJ35409, RPL34P22-TSPAN18, RPS17P8-
GLULP6, SDCCAG8, SPA17-NRGN, TCF4, and TRIM26; 
1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32–q24.33, 
6p21.32–p22.1 (MIR137), and 18q21.2  

 Autism disorder   MACROD2,MSNL1-CDH9  
 Alzheimer’s disease   ABCA7, APOC1, BIN1-CYP27C1, CD2AP, CD33, CLU, 

CLU-SCARA3, CR1, EDAR-SH3RF3, EPHA1-TAS2R62P, 
GAB2, MS4A4E-MS4A4A, MS4A6A, MTHFD1L, 
PICALM-FNTAL1 ,  PVRL2 , and  TOMM40  

   a Summarized based on NHGRI GWAS Catalo, accessed by 28 Jan 2012; the catalogue includes 
1,160 publications and 5,768 SNPs. URL:   http://www.genome.gov/GWAStudies/index.cfm      

http://www.genome.gov/GWAStudies/index.cfm
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 At least 19 genes or loci have been suggested to have signi fi cant associations 
with schizophrenia (Table  10.1 ). A recent GWAS study revealed signals on 1p21.3, 
2q32.3, 8p23.2, 8q21.3 and 10q24.32–q24.33, 6p21.32–p22.1 ( MIR137 ), and 
18q21.2 are associated with schizophrenia (Ripke et al .   2011  ) . In addition,  MYO18B  
(Purcell et al .   2009  )  and 2q37.2 and 2q34 (Stefansson et al .   2009  )  were also 
proposed as susceptibility loci for schizophrenia. 

 The susceptibility loci for other psychiatric disorders have also been identi fi ed, 
such as  MACROD2  (Anney et al .   2010  )  and the region between  MSNL1 and CDH9  
gene (Wang et al .   2009  )  for autistic disorder, and 18 genes for Alzheimer’s disease 
(Table  10.1 ).   

    10.3   The Implications from GWAS Findings on the  HLA  
Region: Pleiotropy of Genes Among Complex Disorders 

 A gene is de fi ned as pleiotropic when it in fl uences multiple phenotypic traits, 
and pleiotropy is a common property of genes (Sivakumaran et al .   2011  ) . For 
instance, mutations in the  PAH  gene for phenylketonuria can cause mental retar-
dation, hair loss, pigmentation abnormalities, etc. Likewise, the tumour sup-
pressor gene p53, mutated in many different cancers, can also be considered 
pleiotropic. 

 It is well established that multiple cancers share the same pathway of activated 
oncogenes, including  Ras, PI(3)K, mTOR ,  NF-kappa B, and others  (Eccleston and 
Dhand  2006  ) . At least seven major signalling pathways are found in both cancer and 
stem cells, including  JAK/STAT, Notch, MAPK/ERK, PI3K/AKT, NF-kappa B, Wnt,  
and  TGF-beta  pathways (Dreesen and Brivanlou  2007  ) , suggesting same pathways 
can be involved in both disease and normal development. These key common path-
ways provide attractive targets for drug design. 

 The same concept could be applied to multiple mental disorders. Many psychiat-
ric disorders are closely correlated to one another (also termed co-aggregated) 
because of their common neurobiological basis in the human brain. For instance, 
autism and familial major mood disorder, both of which show strong heritability, are 
etiologically and genetically correlated (DeLong  2004  ) . Familial correlations 
and aggregations of multiple mental disorders are also observed in eating disorders 
and mood disorders (Mangweth et al .   2003  ) , bipolar disorder, and schizophrenia (Van 
Snellenberg and de Candia  2009  ) . 

 It has been proposed that there may be a link between variation of the  HLA  genes 
and virus infections in both cancers and psychiatric disorders. To date, at least four 
GWAS studies show a statistically signi fi cant association between schizophrenia 
and the  HLA  region, including the ISC consortium (Purcell et al .   2009  ) , the SGENE-
plus consortium (Stefansson et al .   2009  ) , the MGS consortium (Shi et al .   2009  ) , and 
a recent study by Ripke et al.  (  2011  ) . 
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 Likewise, GWAS studies of cancer have revealed that the  HLA  region is associated 
with many virus-related human cancers. Examples include Kaposi’s sarcoma, thyroid 
carcinomas, ovarian/cervical cancer, herpes lymphoma, and liver cancer. GWAS 
studies with large samples of nasopharyngeal carcinoma (NPC) in populations 
in southern China ( HLA- A) (Bei et al .   2010  )  and Taiwan (Tse et al .   2009  )  con fi rmed 
that  HLA  region ( HLA-A ,  HLA-F , and  GABBR1  within chromosome 6p21.3) is 
signi fi cantly associated with NPC risk, con fi rming Simons’  fi rst  fi nding in the early 
1970s (Simons  2011 ; Simons and Day  1977 ; Simons et al .   1975,   1976,   1977  ) . 
Nasopharyngeal carcinoma is characterized by Epstein–Barr virus infections and is 
prevalent in the Cantonese population. 

 In fact,  HLA  is associated with many other diseases related to viral infections 
(Fig.  10.1 ). Autistic disorder and schizophrenia, both associated with  HLA,  might 
also be virus related. It has been suggested that congenital rubella (MMR), hepatitis 
B, measles virus, and other viruses might contribute to autistic disorder (Le 
Blanc et al .   2003 ; Gallagher and Goodman  2010  ) , and Chlamydophila psittaci, 
human endogenous retrovirus W, Chlamydophila pneumoniae, Borna disease virus, 
Toxoplasma gondii, and human herpes virus 2 might contribute to schizophrenia 
(Arias et al .   2011  ) . Future studies will be needed to con fi rm hypotheses regarding 
the role of the immune system in human complex diseases.   

  Fig. 10.1     HLA  loci are associated with multiple human diseases related to virus infection.    Note, 
indicates disease and number of loci with  p -value <0.001. x-axis indicates the plot of −log10 
( p -value) by chromosome, vertical y-axis indicates the chromosome number, only chromosome 
1–chromosome 7 are shown. These plots are modi fi ed from the plots that generated in the GWASdb 
database (URL:  http://jjwanglab.org:8080/GWASdb    , Li et al .   2011b  )        

 

http://jjwanglab.org:8080/GWASdb
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    10.4   Limitations of GWAS and the Rise of Next-Generation 
Sequencing Approach 

 Clearly, GWAS has provided a valuable tool for studying the associations between 
common genetic variants and human diseases. Many hundreds of SNPs have been 
identi fi ed that show signi fi cant associations with elevated cancer risk. Of the top 
434 signi fi cant SNPs identi fi ed in 162 GWAS studies in the period of 2005–2008, 
40% are located in introns of genes, 50% map to regions without any reported genes, 
and only 10% are within genes. The vast majority of variants identi fi ed by GWAS 
seem to be markers for something that are near causal factors but are not causal 
themselves. Criticisms have been raised about the limitations of GWAS studies, 
many of which have been well addressed in Chap.   4     by Jorgensen (see Sect.   4.5     in 
this book). 

 The limitations of GWAS have motivated human geneticists to reconsider the 
contribution of CNVs, SVs, gene–environment, gene–gene interactions, and rare 
variants in the pathogenesis of complex diseases. The ‘common disease, common 
variants’ hypotheses have evolved into the ‘common disease, rare variants’ hypoth-
eses. Fortunately, the development of revolutionary high-throughput sequencing 
technologies has made this idea testable. Several large-scale sequencing projects 
for various cancers have been initiated, including the Cancer Genome Project 
(CGP;   http://www.sanger.ac.uk/genetics/CGP    ) at the Wellcome Trust Sanger 
Institute in the United Kingdom, The Cancer Genome Atlas (TCGA;   http://cancerge-
nome.nih.gov    ) by the National Cancer Institute in the United States, and a campaign 
launched by the International Cancer Genome Consortium (ICGC, RUL:   http://
www.icgc.org    ) involving 27 sequencing projects in Asia, Australia, Europe, and 
America. These projects aim to obtain a comprehensive description of genomic, 
transcriptomic, and epigenomic changes in 50 different tumours. In the near future, 
ICGC will release a map of somatic mutations for each speci fi c cancer in the study.  

    10.5   Next-Generation Sequencing Platforms and Statistical 
Models for Risk and Outcome Prediction 

 The promise of next-generation sequencing (NGS) technologies is that they can 
provide many orders of magnitude more data than the original Sanger sequencing 
methods developed in the 1970s and used to generate the  fi rst human genome 
sequences. In general, NGS sequencing has a higher error rate than conventional 
methods, but this is compensated for by greater read depth (i.e. more independent 
reads per position). Examples of these instruments are those made by Roche, 
Illumina, and Life Technologies. A similar sequencing method, available only as a 
service, is provided by Complete Genomics. While each company touts the advantages 
of their instrument and technology, they are all limited to reads of a few hundred 
bases, and each has particular biases in the data. A third generation of NGS 

http://dx.doi.org/_6
http://dx.doi.org/10.1007/978-94-007-5558-1_4
http://www.sanger.ac.uk/genetics/CGP
http://cancergenome.nih.gov
http://cancergenome.nih.gov
http://www.icgc.org
http://www.icgc.org
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technologies based on sequencing true single molecules is also being developed by 
companies such as Paci fi c Biosciences and Oxford Nanopore, but it remains to be 
seen if they will replace existing methods or  fi ll speci fi c niches such as longer reads 
for contig assembly. 

 Because of the cost bene fi ts of NGS and the clever applications that have been 
developed (e.g. targeted capture using biotinylated probes), these methods have 
largely displaced standard sequencing and may soon be used as a substitute for 
genome-wide association arrays. Five major uses for NGS are (1) ‘whole’ genome 
sequencing (WGS), (2) ‘whole’ exome sequencing (WES), (3) transcript sequenc-
ing (i.e. RNA-Seq), (4) sequencing of genome isolated by chromatin immunopre-
cipitation (   ChIP-Seq), and (5) methylation sequencing (bisulphite sequencing) 
[‘whole’ in quotation marks because neither method actually captures the entirety 
of the genome or exome]. The variety of applications continues to grow, and, col-
lectively, these methods are giving new insights into disease mechanisms. A large 
number of scienti fi c papers have been published using NGS, and this is likely to 
increase as costs continue to drop with the goal of the $1000 (per) genome expected 
shortly (Meyerson et al.  2010 ; Wong et al.  2011 ; Davey et al.  2011  ) . 

 One of the main challenges of NGS in cancer studies is to determine the driving 
mutations among the thousands to millions of passenger mutation mutations seen in 
any individual cancer cell. Over 20 statistical analysis approaches have been devel-
oped for rare variant association studies, and dozens of bioinformatic tools have 
been developed for functional assessment of sequence variations. These issues have 
been well reviewed in the literature (Bansal et al.  2010  ) . Among the statistical 
approaches, collapsing methods have been demonstrated to be powerful. They have 
also been developed to accommodate quantitative traits and applied to various 
designs, including family-based studies. 

 As genome sequencing becomes a clinical tool, reliable statistical models will be 
needed to link the genetic alterations to treatment strategies and disease outcomes. 
Building models based on machine learning methods, that is, random forests or 
SVM (support vector machines), might provide good prediction performances. The 
NGS-based statistical models should be trained on large cohorts in order to gain 
suf fi cient speci fi city and sensitivity for prediction.    The genetic models alone or 
when combined with epidemiological data (e.g. smoking) and traditional clinical 
data (e.g. staging) should increase the performance of risk and outcome prediction.  

    10.6   Application of Next-Generation Sequencing 
to Human Complex Diseases 

 To date, several cancers have been investigated by NGS, including renal carcinoma, 
AML (acute myelogenous leukaemia), lung cancer, breast cancer, melanoma, and 
small-cell lung cancer (Table  10.2 ). Li et al .   (  2011a  )  sequenced ~18,000 genes in 
10 associated hepatitis C hepatocellular carcinomas with validation in 106 tumour 
samples to show that mutations in the  ARID2  gene occurred in 18.2% of individuals 
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with HCV-associated HCC in the United States and Europe. Agrawal et al .   (  2011  )  used 
the same approach to study 32 HNSCC and found that 47% patients had mutations 
in  TP53  and 15% patients had mutations in  NOTCH1 . Using NGS, Lee identi fi ed a 
wide variety of somatic variants, including more than 50,000 high-con fi dence single 
nucleotide variants in a patient with lung cancer. In particular, they found one in the 
known oncogene  KRAS , 391 in other coding regions, and 43 structural variations in 
the whole genome (Lee et al.  2010  ) .  

   Table 10.2    Recent studies on cancers pursuing casual rare variants using next-generation sequencing 
technology   

 Cancer type  Sample  Method a   Reference 

 Renal carcinoma  7  ES  Varela et al .   (  2011  )  
 Hepatocellular carcinoma  47  ES  Harring et al .   (  2011  )  
 MSS and MSI colorectal cancer  4  ES  Timmermann et al .  

 (  2011  )  
 Breast cancer cell line HCC1954 

and a lymphoblast cell line from
 the same individual, HCC1954BL 

 2  ES and TS  Varela et al .   (  2010  )  

 Metastasizing uveal melanomas  2 pairs  ES  Harbour et al .   (  2010  )  
 Child fatal classic Kaposi’ sarcoma  1  ES  Byun et al .   (  2010  )  
 Nephronophthisis-related ciliopathies  10  ES  Otto et al .   (  2010  )  
 Terminal osseous dysplasia (TOD)  6  ES  Sun et al .   (  2010  )  
 AML (acute myelogenous leukaemia)  1  WGS  Ko et al .   (  2010  )  
 Glioblastoma  Cancer Genome 

Atlas Research 
Network ( 2008 ) 

 Lung cancer  2  WGS  Campbell et al .  
 (  2008  )  

 Breast cancer  24  WGS  Stephens et al .  
 (  2009  )  

 Melanoma  1  WGS  Pleasance et al .  
 (  2009a  )  

 Small-cell lung cancer  1  WGS  Pleasance et al .  
 (  2009b  )  

 AML (acute myelogenous leukaemia)  1  WGS  Pleasance et al .  
 (  2010  )  

 Breast cancer  1  WGS  Shah et al .   (  2009b  )  
 Breast cancer  1  WGS  Ding et al .   (  2010  )  
 Lung cancer  1  WGS  Lee et al .   (  2010  )  
 Granulosa-cell tumours of the ovary  15  TS  Shah et al .   (  2009a  )  
 Melanoma  11  TS  Berger et al .   (  2010  )  
 Chronic myelogenous leukaemia 

cell line and prostate cancer 
 6  TS  Maher et al .   (  2009  )  

 CCL-243  K-562 cell line   1  TS  Levin et al .   (  2009  )  
 Oestrogen-receptor-alpha-positive 

metastatic lobular breast cancer 
 1  TS  Shah et al .   (  2009b  )  

 B-cell lymphomas  2  TS  Morin et al .   (  2010  )  
 Prostate cancers  25  TS  P fl ueger et al .   (  2010  )  

   a  ES  exome sequencing,  WGS  whole genome sequencing,  TS  transcriptome sequencing  
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 NGS has also been applied to several mental disorders. Xu et al .   (  2011  )  sequenced 
53 sporadic cases with schizophrenia and identi fi ed 40  de novo  mutations in 27 
cases. One of these mutations,  DGCR2 , is located in the previously de fi ned schizo-
phrenia-predisposing microdeletion region (22q11.2) (Xu et al .   2011  ) . O’Roak et al .  
( 2011 ) using exome sequencing identi fi ed severe  de novo  mutations in sporadic 
autism spectrum disorders. Using transcriptomic analysis, Voineagu et al .  demon-
strated the existence of dysregulated splicing of  A2BP1  ( FOX1 )-dependent alterna-
tive exons in the autistic brain. The results of their study were consistent with GWAS 
data and gene expression analysis (Voineagu et al .   2011  ) . 

 Notably, at least  fi ve studies have used NGS to identify novel genes involved 
in intellectual disabilities (Topper et al .   2011  ) . Caliskan et al .   (  2011  )  identi fi ed a 
novel mutation for autosomal recessive non-syndromic mental retardation in the 
 TECR  gene. Najmabadi et al .   (  2011  )  identi fi ed 50 novel genes for recessive cog-
nitive disorders by sequencing 136 consanguineous families with autosomal 
recessive intellectual disability. Edvardson et al .   (  2009  )  sequenced 13 patients 
from eight Ashkenazi Jewish families and identi fi ed a homozygous mutation in 
the  TMEM216  gene in all affected individuals. Krawitz et al.  (  2010  )  identi fi ed 
 PIGV  mutations in hyperphosphatasia mental retardation syndrome. Vissers et al .  
identi fi ed unique non-synonymous  de novo  mutations in nine genes for mental 
retardation  (  2010  ) . 

 Needless to say, NGS has opened up a new era for understanding how environmental 
factors alter the human genome and paved the way to a better understanding of 
origins of human complex diseases (Pfeifer and Hainaut  2010  ) .  

    10.7   Impacts on Disease Diagnosis and Classi fi cation 

 One of the biggest impacts of NGS may be on the diagnosis of complex dis-
eases. Currently, classi fi cation of cancer type and stage is largely based on 
pathology characterizations, that is, histological examination of tumour sec-
tions. Molecular classi fi cation based on biomarkers has shown high accuracy 
and has been successfully applied to several cancers. For instance, breast cancer 
can be classi fi ed into several subtypes by the expression of various biomarkers, 
including ER +  (luminal A, luminal B) and ER − . ER −  can be further divided into 
two subtypes: HER2 +  and basal-like (ER − , PR − , and HER2 −  , also called triple-
negative breast cancer). Targeting cancer biomarkers can be very helpful in 
treatment. For example, a monoclonal antibody targeted against the HER2 
biomarker – Herceptin ®  (trastuzumab) – is in clinical use. Also, diagnostic kits 
based on several key genes are already commercially available for clinical prac-
tice (i.e. Oncotype DX ™ , MammaPrint ® , THEROS Breast Cancer Index SM , 
Breast Onc Px ™ , and MapQuant Dx ™ ). Cancer classi fi cations based on gene 
expression pro fi ling (also called gene expression signatures) by microarray 
technologies or RNA-Seq shows even higher accuracy for breast cancer 
classi fi cation than standard biomarkers (Sorlie et al.  2001  ) . Gene expression 
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signatures have been proposed in various types of cancers over the last 10 years, 
and it was recently suggested that a classi fi cation based on miRNAs might have 
highly predictive and be superior to protein biomarkers. 

 Pro fi ling genome-wide genetic or epigenetic alterations could lead to the dis-
covery of more speci fi c markers for the diagnosis of human complex diseases. 
In the last several years, more than a thousand loci have been shown to be 
signi fi cantly associated with cancers by SNParray in GWAS studies. However, 
only a few of them have been explained by biological studies, and most of the 
SNPs lack predictive value for cancer diagnosis or classi fi cation due to the small 
effect sizes. The limitation of currently available genetic markers means that 
most markers are functionally distal from the underlying mechanism However, 
using statistical methods, we are able to identify common genetic alterations 
that characterize certain types of cancers in the absence of their mechanism. 
This strategy is much like the protein biomarkers identi fi ed in cancers, such as 
the PSA level in prostate cancer and AFP in liver cancer, both of which are used 
as diagnosis markers without a clear understanding of their biological 
signi fi cance. Information about genetic or epigenetic changes could be used for 
complex disease classi fi cation and diagnosis similar to the traditional protein 
biomarkers (Esteller  2008  ) . For instance, the hypermethylated gene  GSTP1  is 
potentially useful for prostate cancer diagnosis and has already undergone early 
clinical testing (Baden et al .   2009,   2011 ; Vener et al .   2008  ) . 

    In contrast to association studies, NGS of the whole cancer genomes, in par-
ticular the paired cancer-normal methods, is able to identify somatic mutations 
in actual malignancies and is more likely to reveal the mutations that drive the 
cancer as well as possible environmental causes based on the types of mutations 
that are observed. An early study was conducted in trying to use a genetic marker 
identi fi ed by NGS, a 6-bp deletion in  GPNTG  gene, for diagnosis of retinitis 
pigmentosa ,  a rare disease with high heritability causing skeletal abnormalities 
(Schrader et al.  2011  ) . The application of NGS in the  fi eld of oncology also 
shows encouraging results. Yokoyama et al.  (  2011  )  screened a few individual 
from a pedigree affected with melanoma and detected one mutation in  MITF  
gene (G1075A, P.E318K, rs149617956). Then they found the E318K variant 
was also associated with melanoma in a large case–control sample collected 
from Australia and in another independent case–control sample from England 
(Yokoyama et al.  2011  ) .    Welch et al. suggested that NGS can even identify cyto-
genetically invisible oncogenes (bcr3 PML–RARA) in a patient with acute pro-
myelocytic leukaemia (APL) (Welch et al.  2011  ) . In the same issue of the 
journal, Link et al. reported a novel cancer mutation (a 3-kbp deletion in  TP53  
gene) by using whole genome sequencing of a patient with therapy-related AML 
(tAML) (Link et al.  2011  ) . All of these studies re fl ect the power of the NGS in 
cancer diagnosis and treatment. As NGS technologies continue to improve, 
comprehensively charactering genetic alterations in small amounts of tissue or 
even circulating tumour cells could become feasible.  
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    10.8   Novel Drug Discovery, Personalized Medicine and 
Prognosis Prediction Based on Next-Generation 
Sequencing 

 The discovery of drugs that speci fi cally target cancer cells will rely on the knowledge 
of speci fi c molecular pathways that are disrupted in each cancer case. Several 
genetically targeted drugs have already been established by cell biology studies and 
traditional genetic approaches. Gleevec ®  (imatinib), for example, binds to an active 
site in certain mutated tyrosine kinases, blocking their activity and leading to cancer 
cell apoptosis. It is likely that people could use the same strategy to design other 
novel drugs. For example, the  EGFR  pathway has several targets for potential 
cancer treatments, including  EGFR  mutations in NSCLC (non-small-cell lung 
cancer),  BRAF  mutations in melanoma and thyroid cancer, and  KRAS/BRAF  mutations 
in colorectal cancer (Table  10.3 ). Other potential treatments target abnormal genes 
created by chromosomal translocations or gene ampli fi cations, such as ATRA 
(all-trans retinoic acid) treatment for the  RARA–PML  translocation in acute promy-
elocytic leukaemia (APL), imatinib/dasatinib treatment for  BCR–ABL  translocations 
in chronic myelogenous leukaemia (CML), ge fi tinib/erlotinib treatment for 
 EML–ALK  translocations in NSCLC, trastuzumab/lapatinib treatment for  HER2  gene 
ampli fi cation in breast cancer and in upper GI cancer, and ge fi tinib/erlotinib treatment 
for  EGFR  mutations in lung cancer (Table  10.3 ). NGS can not only detect previously 
identi fi ed mutations associated with a given cancer but can also identify novel mutations 
that are potential targets for further drug discovery.  

 Patients respond to treatment in distinct ways. Some patients might be more 
responsive to radiotherapy, while others might respond better to cytotoxic T-cell 
biotherapy. The reasons for their different responses may lie in the somatic mutations 
in their cancer cells or the inherited variation in their normal genomes. Personalized 
medicine offers the expectation that physicians would be able to make the best choice 
from a panel of available drugs for a speci fi c patient or, conversely, to identify which 
subpopulation of patients is most suitable for a particular drug or treatment method. 
A small number of protein markers have been routinely used to predict drug response. 
For example, ER (oestrogen receptor) levels have been used as a predictor for oestrogen 
antagonists and c-ErBB2 for trastuzumab/trastuzumab emtansine (T-DM1) in breast 
cancer treatment. Recent clinical trial conducted by Genentech/Roche showed that 
treatment with T-DM1 resulted in a marked improvement for women with HER2-
positive metastatic breast cancer. It should be possible to make better predictions 
based on sequence information, and we would expect as more data accumulates, there 
will be a transition to DNA- or RNA-based predictors (Andersen et al.  2010 ; Ji et al. 
 2009  ) . In another example, at least 64 clinical publications have been conducted to 
investigate the relationship of p53 to clinical outcomes following chemotherapy 
in ovarian cancer cases (Hall et al.  2004  ) . While there has been much progress in this 
area, clinically useful predictions based on genomic data remain challenging. 
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 The National Institute of General Medical Science (NIGMS) of the NIH has 
funded the Pharmacogenmics Research Network, a study to identify signi fi cant 
sequence variants that affect drug responses. As part of the program, a free online 
database, the Pharmacogenomics Knowledge Base (  http://www.pharmgkb.org    ) has 
been created that lists genetic variants associated with diseases and drug responses 
from clinical studies. It is expected that as phargkb.org continues to catalogue vari-
ants associated with drug responses, this database will become an increasingly use-
ful tool for physicians and their patients.  

    10.9   Public Health Signi fi cance 

 Preventive disease interventions are clearly more ef fi cient than treating diseases 
after they appear. Examples include smoking control, which has dramatically 
reduced lung cancer prevalence; early screening for breast and colon cancer; and 
vaccine programs for cancer-causing viruses such as the HPV for cervical cancer. 

 NGS is likely to identify additional targets for intervention. More than 400 genes 
have been reported to be associated with intellectual disability (ID) and related cog-
nitive disorders (CDs). Several common pathways such as synaptic plasticity, Ras 
and Rho GTPase signalling, and chromatin remodelling are implicated. These may 
provide an opportunities for future therapeutic interventions (van Bokhoven  2011  ) . 
Talkowski ME et al .  used exome sequencing to study a region of 2p23.1, where 
multiple lines of evidence demonstrated the existence of microdeletions or translo-
cations. Subsequently, the authors identi fi ed a mutation in the methyl-CpG-binding 
domain in the  MBD5  gene from this region as a signi fi cant risk factor for autism 
spectrum disorder (ASD) and warrants consideration as a clinical marker in ASD 
(Talkowski et al .   2011  ) .  

    10.10   Summary 

 We continue to discover more about how genetic variations in normal and cancer 
cells affect the phenotypes, though much remains to be learned. With continuing 
improvements in the technology, it is clear that sequencing will become an increas-
ingly important tool in predicting the risk of disease and in discovering new 
approaches of prevention. If technologies such as nanopore sequencing become a 
reality, it is quite possible that the reduction of cost and the increase in speed of 
genome sequencing will move genomic analysis from the research laboratory to the 
clinical laboratory faster than expected. However, we must develop a new frame-
work for coordinating basic discovery with patient medical records in a way that we 
can transition to the medicine of the future. Statisticians,    bioinformaticists, biologists, 
and physicians must work together more closely than ever before to achieve this 
promise.      

http://www.pharmgkb.org
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