
Chapter 9
Multiscale Modeling of Arterial Adaptations:
Incorporating Molecular Mechanisms Within
Continuum Biomechanical Models

Jay D. Humphrey

Abstract Continuum level biomechanical models of arterial adaptations are prov-
ing themselves vital both for understanding better the progression of disease and
for improving the design of clinical interventions. Although these models are most
appropriate to the clinical scale of observation, the underlying mechanisms respon-
sible for such remodeling occur at the molecular scale. The goal of this chapter is
to review a validated continuum level model of arterial adaptations and to suggest
a straightforward approach to incorporate molecular level information within such
models. In particular, it is shown that continuum mixture models reveal naturally
a means to incorporate molecular information within fundamental constitutive re-
lations within the continuum theory. There is, therefore, significant motivation to
continue to formulate molecular level models that are necessary to inform models
at scales that address the Physiome.

9.1 Introduction

The past four decades have brought forth tremendous advances in the continuum
biomechanics of arteries (Humphrey, 2002). Nevertheless, three conspicuous short-
comings have persisted. First, most constitutive relations and stress analyses have
focused on conditions at a single instant, not how the arterial properties and stress
fields evolve due to normal development or in response to perturbed loads, disease,
injury, or clinical treatment. Second, biomechanical analyses have been based on
the assumption that arteries are materially uniform rather than consisting of many
different constituents that turnover at different rates and to different extents while
collectively defining the whole. Third, continuum biomechanical models have em-
ployed phenomenological constitutive relations that have not directly accounted for
the many classes of molecules that control arterial adaptations, including vasoac-
tive, mitogenic, proteolytic, and inflammatory molecules. The primary goal herein
is to encourage a new direction in arterial research whereby one develops multiscale
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models that can predict time-dependent changes in composition, structure, geom-
etry, and properties that occur in response to changes in the biochemomechanical
environment. Although much more data will be needed to model precisely many
of the underlying mechanisms that are responsible for such growth and remodeling
(G&R), expanding data bases provide sufficient guidance on salient aspects of de-
velopment, adaptation, and disease progression for us to begin to interpret these data
within mathematical frameworks. Toward this end, here we consider a constrained
mixture model of tissue-level arterial adaptations that can incorporate molecular in-
formation related to the underlying mechanisms. Areas requiring further research
are then highlighted to encourage continued development of these models.

9.2 Continuum Framework

By growth, we mean a change in mass; by remodeling, we mean a change in struc-
ture. Notwithstanding the many associated complexities at different spatial and tem-
poral scales, we begin by assuming that G&R occurs via quasi-static isothermal
processes, which focuses our attention on equations of mass balance and linear mo-
mentum balance. Moreover, let us assume that the arterial wall can be modeled
as a mixture consisting of N constituents, including α = 1,2, . . . , n insoluble but
structurally significant constituents and i = 1,2, . . . ,N − n soluble but structurally
insignificant constituents. Examples of the former are elastic fibers, fibrillar colla-
gens, muscle fibers, and proteoglycans; examples of the latter include vasoactive,
mitogenic, proteolytic, and inflammatory molecules. We have previously discussed
the utility of employing full mixture equations to describe mass balance for both
classes of constituents, but a rule-of-mixtures relation for the stress response that
can be used to satisfy overall linear momentum balance (Humphrey and Rajagopal,
2002).

Mass balance, in spatial form, can be written as

∂ρi

∂τ
+ div

(
ρivi

) = m̄i , i = 1,2, . . . ,N − n, (9.1)

∂ρα

∂τ
+ div

(
ραvα

) = m̄α, α = 1,2, . . . , n, (9.2)

where ρi and ρα are so-called apparent mass densities (constituent mass per mix-
ture volume) and m̄i and m̄α are the so-called net rates of mass density produc-
tion/removal (which can be positive, zero, or negative); τ ∈ [0, s] is the G&R time,
which is typically much greater than the cardiac cycle timescale t .

Focusing first on the N − n soluble constituents, i.e. Eq. (9.1), it is convenient
to introduce the mass flux j i = ρi(vi − v) where vi − v is sometimes called the
‘diffusion velocity.’ Regardless, Eq. (9.1) can be written at G&R time as

∂ρi

∂τ
+ div

(
ρiv

) = m̄i − div
(
j i

)
, (9.3)
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or if the mixture velocity v is negligible (consistent with a quasi-static assumption
that is used for the structurally significant constituents)

∂ρi

∂τ
= m̄i − div

(
j i

)
. (9.4)

Noting that we have N −n equations to determine N −n constituent mass densities
ρi , we clearly must introduce additional (constitutive) relations for m̄i and j i . For
dilute solutions, the mass flux for diverse molecular species is often approximated
by Fick’s law, which is typically written in terms of molar, not mass, densities. Note,
therefore, that the molar density Ci ≡ ρi/MWi where MWi are molecular masses.
Hence, the mass balance equation for the soluble constituents can be written

∂Ci

∂τ
= Ri − div

(
J i

)
, (9.5)

where Ci are also called concentrations, Ri are reactions responsible for produc-
tion/removal, and by Fick’s law J i = −Di gradCi , where Di are the diffusivities.
Hence, we obtain the classical reaction-diffusion equation

∂Ci

∂τ
= Ri + Di∇2Ci, i = 1,2, . . . ,N − n (9.6)

for all soluble constituents at G&R times τ ∈ [0, s].
The situation is very different for the insoluble, structurally significant, con-

stituents, i.e. Eq. (9.2). We previously introduced an additional assumption that all
structural constituents are constrained to move with the mixture (Humphrey and
Rajagopal, 2002). This assumption coupled with the quasi-static assumption thus
requires that the motions xα = x = 0, whereby velocities are similarly constrained:
vα = v = 0. Equation (9.2) thus can be written

∂ρα

∂τ
= m̄α or

∫
∂ρα

∂τ
dτ =

∫
m̄αdτ. (9.7)

We thus have n equations to determine n mass densities, which again necessitates
the introduction of additional (constitutive) relations for the net production/removal
function. Yet, because m̄α = 0 during periods of tissue maintenance (i.e., balanced
production and removal in unchanging configurations), we have shown previously
that it is convenient to assume a separable representation m̄α(τ ) = mα(τ)qα(s, τ ),
where mα(τ) > 0 is the true rate of mass density production and qα(s, τ ) ∈ [0,1]
is a survival function that accounts for the fact that all cells and proteins have a
finite half-life (Valentín et al., 2009). Hence, the survival function represents the
percentage of constituents produced at time τ that survives to current time s.

It can be shown that use of the separable form for the net production term allows
Eq. (9.7) to be written in a reduced form, namely

ρα(s) = ρα(0)Qα(s) +
∫ s

0
mα(τ)qα(s, τ )dτ, ∀α = 1,2, . . . , n, (9.8)
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which is to say that the current apparent mass density depends on its original value
ρα(0) and the kinetic loss of the original material via Qα(s) ∈ [0,1], as well as
both the subsequent true production mα(τ) and associated loss qα(s, τ ) ∈ [0,1] of
material after s = 0 (the time at which a perturbation initiates G&R). Because the
constituent mass densities are apparent, not true, densities, the total mass density is
computed easily via

ρ(s) =
∑

ρα(s) → 1 =
∑

φα(s), (9.9)

where φα(s) = ρα(s)/ρ(s) are usual mass fractions. Of course, we must recover
ρα(0) at s = 0, which reveals that Qα(0) = 1 in Eq. (9.8).

Because we employ a rule-of-mixtures relation for the stress, linear momentum
for quasi-static G&R is simply the same as that in classical continuum mechan-
ics, namely div t = 0, where t is the Cauchy stress. As in most of biomechanics,
therefore, the significant challenges lie first in formulating appropriate constitutive
relations and second in solving initial-boundary value problems of interest.

Although it is natural to seek constitutive relations for stress directly (Humphrey
and Rajagopal, 2002), it proves useful to follow advances in nonlinear elasticity
and alternatively seek constitutive relations for the stored energy Wα(s), whereby a
rule-of-mixtures approach can be written conceptually as

W(s) =
n∑

α=1

φα(s)Ŵα(s), (9.10)

noting of course that the stored energy depends on the (finite) deformation experi-
enced by the material, which is to say each of its load-bearing constituents. Prior
studies have suggested, however, that such an approach is limited in its ability to
capture contributions of individual constituents that may turnover continuously at
different rates and to different extents. Hence, following Baek et al. (2006), we let

W(s) =
n∑

α=1

Wα(s), (9.11)

where we postulated, constituent-specific, forms motivated by Eq. (9.8) (which was
derived directly), namely

Wα(s) = ρα(0)Qα(s)

ρ(s)
Ŵα

(
Cα

n(0)(s)
)

+
∫ s

0

mα(τ)qα(s − τ)

ρ(s)
Ŵα

(
Cα

n(τ)(s)
)
dτ,

(9.12)

where the energy stored in individual constituents is assumed to depend on de-
formations experienced by those constituents, which by the principle of material
frame indifference requires dependence on the deformation gradient through the
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right Cauchy-Green tensor: Cα
n(τ)(s). In particular, n(τ) reminds us that this defor-

mation is referred to the natural configuration κα
n (τ ) for that individual constituent

at its time of deposition τ ∈ [0, s]. To appreciate the assumed form in Eq. (9.12),
note that if there is no G&R, then s = 0 and this equation reduces to

Wα(0) = ρα(0)Qα(0)

ρ(0)
Ŵ α

(
Cα

n(0)(0)
) = φα(0)Ŵ α

(
Cα

n(0)(0)
)

(9.13)

(recalling that Qα(0) ≡ 1 by definition), which recovers a simple rule-of-mixtures
relation as desired. It can be shown similarly that the simple rule-of-mixtures rela-
tion is recovered in the case of tissue maintenance, that is, balanced production and
removal in unchanging configurations (Valentín et al., 2009).

Most importantly, Eqs. (9.8) and (9.12) reveal the need to determine three ba-
sic types of constitutive relations for each structurally significant constituent α =
1,2, . . . , n, namely

mα(τ), qα(s − τ), Ŵ α
(
Cα

n(τ)(s)
)
. (9.14)

In our prior implementations (e.g., Baek et al., 2006; Valentín et al., 2009), we have
used phenomenological constitutive relations motivated by tissue level observations
of mechanobiological responses by arteries in response to diverse mechanical loads
(Humphrey, 2008b). For example, we have modeled the energy stored in the elastin
dominated amorphous matrix using a classical neo-Hookean relation and the en-
ergy stored in collagen fibers and passive smooth muscle using classical Fung-type
exponential relations. For the present discussion, it is important to note that the
neo-Hookean relation was first derived based on micromechanical arguments and
exponential relations have been shown to capture well the net mechanical response
of collections of fibers having linear behaviors but a distribution of undulations. It is
suggested that increased attention should be given to the derivation of microstruc-
turally based constitutive relations for the energy stored in individual constituents
as well as interaction energies between constituents. Such relations would enable
better modeling of many disease processes wherein either particular constituents
are absence because of genetic mutations (e.g., fibrillin-1, which stabilizes elastic
fibers, or collagen III, as in Marfan and Ehlers–Danlos IV syndromes, respectively)
or chemomechanical injury (e.g., degradation or fatigue of elastic fibers in aging).
Below, however, let us focus on constitutive relations for mass production and re-
moval, which are unique to G&R theories.

9.3 Towards Multiscale Constitutive Relations

Two of the best studied arterial adaptations are responses to sustained alterations
in blood pressure and flow, the former of which is particularly relevant to hyper-
tension research. It is well accepted that large arteries tend to grow and remodel
so as to keep the mean circumferential stress σθ = Pa/h and the wall shear stress
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τw = 4μQ/πa3 each near target/homeostatic values (e.g., σh
θ and τh

w , respectively,
where P,a,h,μ and Q are blood pressure, luminal radius, wall thickness, blood
viscosity, and volumetric flow, respectively). As shown previously (Humphrey,
2008a), if we let parameterize the change in blood pressure from normal and pa-
rameterize the change in blood flow from normal (e.g., γ = 1.5 for a 50 % sustained
increase in pressure), then it is easy to show that a → ε1/3ah and h → γ ε1/3hh

(where the subscripts h denote homeostatic values) to maintain/restore the stresses
to homeostatic targets in response to modest alterations in blood pressure or flow.
Whereas these simple relations describe the extent of the morphological adaptations,
they cannot describe the time-course of such changes or the associated changes in
structure or properties. In contrast, the G&R framework described by Eqs. (9.8) and
(9.12) can address both the extent and rate of each of these changes.

Fundamental to geometric and structural changes in arteries are changes in rates
of turnover of structurally significant constituents such as the smooth muscle and
fibrillar collagens. For example, we have shown that the following constitutive rela-
tions (cf. Eq. (9.14)) provide a good description of large artery adaptations to both
altered blood pressure and flow:

mα(τ) = mα
B

(
1 + Kα

σ σ − Kα
τw

τw

)
, (9.15)

qα(s − τ) = exp

[
−

∫ s

τ

Kα
q

(
1 + σ(τ̃ )2)dτ̃

]
, (9.16)

where the stress differences are given by

σ = σ − σh

σh
, τw = τw − τh

w

τh
w

, (9.17)

with σ an appropriate scalar metric of intramural stress. Note, too, that the gain-
type parameters K in Eqs. (9.15) and (9.16) modulate the stress-mediated changes in
mass production and removal. Although these particular functional forms are among
the simplest possible, basal rates are recovered (mα

B and Kα
q ) when the stresses equal

their homeostatic targets, as desired, and associated simulations have captured many
salient aspects of observed adaptations (Valentín and Humphrey, 2009a,b). Note,
too, that the survival function recovers first order kinetic decays as suggested by
much of the data (cf. Humphrey, 2008b).

At this juncture, it is important to recognize that these constitutive relations are
motivated by mechanobiological observations, yet they are phenomenological. For
example, it is well known that collagen synthesis is increased by increases in cyclic
stretch/stress of smooth muscle cells. It is also well known that increases in wall
shear stress increase endothelial cell production of the vasodilator nitric oxide (NO)
and decreases in wall shear stress increase endothelial cell production of the vaso-
constrictor endothelin-1 (ET-1); see Fig. 9.1 and Humphrey (2008b). Moreover, NO
decreases the production of collagen by smooth muscle cells whereas ET-1 increases
the production rate (hence the minus sign in Eq. (9.15) for the shear stress mediated
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Fig. 9.1 Schema of possible mechano-induced production of vasoactive molecules, nitric oxide
(NO) and endothelin-1 (ET-1), by endothelial cells (EC) in response to changes in cyclic wall shear
stress and circumferential wall stretch. Diffusion and consumption of the vasoactive molecules re-
sults in stimulation of smooth muscle cell (SMC) vasoactivity and proliferation as well as synthesis
of extracellular matrix proteins

term). It is also becoming increasingly clear that altered stress affects the produc-
tion, activation, and effectiveness of proteolytic enzymes (e.g., matrix metallopro-
teinases; Humphrey, 2008b).

Whereas phenomenological equations can be very useful for simulations, as we
learn more and more about the mechanobiology, there is an opportunity—indeed a
responsibility—to move toward more mechanistic modeling. For example, it is now
known that the increase in collagen synthesis by smooth muscle cells in response to
increased mechanical stress/stretch (cf. Fig. 9.1) is mediated by complex signaling
pathways that involve multiple vasoactive molecules and cytokines. For example, it
appears that increased cyclic stress (as in hypertension due to increased pulse pres-
sure) causes smooth muscle cells to increase their production of angiotensin-II and
possibly to change associated receptor-ligand binding, which in turn stimulates the
production of latent transforming growth factor beta (TGF-β) that can be activated
by mechanical stress and ultimately lead to collagen production. Hence, there is an
opportunity to use reaction-diffusion equations (9.6) to quantify local changes in
‘effector molecules’ that in turn influence directly the rates of mass production and
removal (cf. Fig. 9.1). For example, one could consider mass density production for
collagen (α = c) such as

mc(τ) = mc
B

(
1 + Kc

TGFCTGF + Kc
ET1CET1 − Kc

NOCNO + · · · ). (9.18)

Similarly for smooth muscle (α = m), which depends in part on the concentration
of platelet-derived growth factor (PDGF), one could consider

mm(τ) = mm
B

(
1 + Km

PDGFCPDGF + Km
ET1CET − Km

NOCNO + · · · ). (9.19)
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In other words, rather than purely phenomenological forms represented by
Eq. (9.15), molecular level information could be used to inform the continuum level
analysis. Similar relations could be determined for the survival function, which
should include terms accounting for concentrations of active proteases. Moreover,
relations for changes in molecular production can be derived from appropriate ex-
periments, as, for example, studies of the effects of changing wall shear stress on
the production of NO, as, for example (Humphrey, 2008b)

CNO = CNO
B

{
ζ + β

[
1 − exp

(−δτ 2
w

)]}
, (9.20)

where (ζ,β, δ) are parameters required to fit the data (e.g., ζ,β, δ = 0.37,0.63, and
−8.89 as reported in Humphrey, 2008b). In this way, molecular level (mechanistic)
relations can be combined simply with continuum level models that have already
proven useful in modeling diverse aspects of arterial G&R.

9.4 Discussion

Bioengineers and clinicians must similarly address arterial adaptations at a macro-
scopic scale—including normal changes due to development or exercise as well as
disease progression, responses to treatment, and so forth. Classical examples include
quantification of wall thickening and stiffening in hypertension, changing caliber
in exercise or arterio-venous fistulas, stenoses in vein grafts, evolving atheroscle-
rotic plaques, aneurysms, and so forth (Taylor and Humphrey, 2009). Continuum
level biomechanical modeling has proven fundamental to studying such tissue-level
changes and will likely remain so for purposes of diagnosis, interventional plan-
ning, medical device design, and many other daily activities. Nevertheless, we must
also exploit our growing understanding of the molecular level mechanisms that dic-
tate macroscopic manifestations. We submit here that a consistent mixture theory
framework for growth and remodeling allows one to account naturally for spatial
and temporal changes in effector molecules via classical reaction-diffusion equa-
tions, which in turn can be used to inform improved constitutive relations for cell
and matrix turnover that are fundamental to the tissue-level analyses that are vi-
tal for so many aspects of research and clinical care. Indeed, we emphasize that the
present G&R framework, which focuses on changes to the arterial wall, is also easily
coupled to sophisticated computational fluid dynamics simulations of the hemody-
namics (Figueroa et al., 2009), thereby permitting both multiscale and multi-physics
studies. Moreover, we emphasize that the multiscale approach presented here (fo-
cused mainly on informing continuum level constitutive relations with molecular
level information) is but one possible multiscale approach. Hayenga et al. (2011),
recently showed that agent based models can similarly be integrated with continuum
level G&R models, hence providing yet another level of multiscale modeling.

In summary, there is a pressing need for continued research on the molecular
mechanisms responsible for arterial adaptations and disease progression, particu-
larly given the complex multifunctional capabilities of the large number of effector
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molecules, including vasoactive, mitogenic, proteolytic, and inflammatory. Discov-
ery of appropriate mechanobiological relations can and should be incorporated in
continuum level models.
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