
Chapter 5
A Coupled Chemomechanical Model for Smooth
Muscle Contraction

Markus Böl and Andre Schmitz

Abstract This manuscript presents a chemomechanically coupled three-
dimensional model, describing the contractile behavior of smooth muscles. It bases
on a strain-energy function, additively decomposed into passive parts and an ac-
tive calcium-driven part related to the chemical contraction of smooth muscle cells.
For the description of the calcium phase the four state cross-bridge model of Hai
and Murphy (Am. J. Physiol. 254:C99–106, 1988) has been used. Before the fea-
tures and applicability of the proposed approach are illustrated in terms of three-
dimensional boundary-value problems, the model is validated by experiments on
porcine smooth muscle tissue strips.

5.1 Introduction

Many internal organs such as stomach, intestine, bronchia, urinary bladder, uterus,
airways, or blood vessels are composed by multiple layers of spindle-shaped smooth
muscle cells (SMCs). Focusing on vessel mechanics, vascular smooth muscle cells
are the key component in the vascular system regulating the diameter of vessels,
triggered by various neural, chemical and mechanical signals. Human arteries are
comprised of three distinct layers, the intima, the media, and the adventitia, in which
the proportion and structure of each varies with size and function of the particular
artery.

From the mechanical perspective, the media is the most significant layer in hu-
man healthy arteries. It is the middle layer and is characterized by a complex three-
dimensional network of smooth muscle cells embedded in a matrix of elastin and
collagen fibers (Fritsch and Kuehnel, 2007). However, this architecture gives the
media high passive strength and the ability to resists loads in multiple directions.
Due to the existence of SMCs inside the media it is of particular interest related
to smooth muscle (SM) activation, too. Focusing at cell level, SM contraction is
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Fig. 5.1 Structural and geometrical characteristics of smooth muscles: (a) layers of smooth muscle
cells; (b) isolated smooth muscle cell; (c) single, relaxed unit (myosin heads in skew position);
(d) same contracted unit (myosin heads in vertical position)

rooted on one basic unit, the SMC, see Fig. 5.1(b). These spindle-shaped cells con-
tains a single centrally positioned elongated nucleus and vary notably in size, from
30 µm length in walls of small vessels to 200 µm length and 5 µm width in the intes-
tine, see Rhoades and Bell (2008). They are characterized by a fusiform shape. In
the mid-region they are thickest and tapered at each end. SMs are built up of layers
of cells (Fig. 5.1(a)) that are linked together by various junctional contacts that serve
as points of cell to cell communication and mechanical linkages (dense plaque). The
mechanical contraction is caused by contractile units which consist of two filaments:
actin and myosin, see Fig. 5.1(c). These filaments are present in large numbers and
roughly aligned with the long axis of the cell, see, e.g., Kuo and Seow (2004) and
Seow and Paré (2007). They are loosely associated into thin myofibrils. These my-
ofibrils consist of a centrally located myosin filament surrounded by multiple actin
filaments. In electron micrographs (e.g., Bond and Somlyo, 1982; Hodgkinson et
al., 1995; Herrera et al., 2005) numerous dense staining regions, known as dense
bodies (Fig. 5.1(d)), can be identified scattered throughout the cytoplasm of the cell.
In common with the Z-discs of skeletal muscles, these dense bodies contain the
actin-binding protein α-actinin and appear to serve as anchorage points for actin
filaments of myofibrils. Their association with the system of internal intermediate
filaments essential serve to integrate contractions over the entire cell and allow the
very high degree of shortening achieved by these cells. When actin filaments run
into the cell membrane, they connect the dense bodies and dense plaques. Based on
the coupling by pairs of opposed adjacent dense bodies located on neighboring cells
force transmission is accomplished across cell boundary. Thus, it appears that SMs
are composed on a huge number of contractile units in series as well as in parallel.

In comparison to experimental investigations there exist only a few approaches
describing parts of the biochemical-mechanical process in SM activation by means
of mathematical models. Looking at this type of models it stands out that a huge
number of these models is realized in a one-dimensional framework, see, e.g., Fay
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and Delise (1973), Gestrelius and Borgström (1986), Lee and Schmid-Schönbein
(1996a,b), Miftakhov and Abdusheva (1996), Rachev and Hayashi (1999), Yang et
al. (2003a,b), Zulliger et al. (2004), Herrera et al. (2005), Bates and Lauzon (2007),
Bursztyn et al. (2007), Stålhand et al. (2008) and Murtada et al. (2010). All these
models have the main restriction that they are implemented in form of so-called
stand-alone programmes. Hence, only limited estimations are possible as the chemo-
mechanical behaviors of smooth muscles significantly depend on their geometry
undergoing large deformations it is essential to take a three-dimensional modeling
approach into account. However, to the authors knowledge, there only exists one
three-dimensional coupled chemomechanical modeling approach presenting three-
dimensional boundary-value problems, see Schmitz and Böl (2011). Herein, steady
state characteristics of the calcium concentration are presented, only.

The present contribution concentrated on the development of a three-dimensional
chemomechanical SM model including dynamic behavior of the calcium concen-
tration. Section 5.2 introduces the governing equations of a coupled boundary-
value problem for SM chemomechanics. Before the manuscript is concluded with
Sect. 5.4, Sect. 5.3 shows illustrative numerical examples.

5.2 Field Equations of Smooth Muscle Chemomechanics

5.2.1 Kinematics

As this work focuses on the modeling of vascular smooth muscle tissue, an aniso-
tropic material with outstanding directions for collagen bundles and SMC layers has
to be considered. Collagen bundles as well as SMC layers are aligned tangentially
with the wall of the vessel (Herlihy and Murphy, 1973; Walmsley and Murphy,
1987; Dahl et al., 2007) accomplished by the angle Φ , see Fig. 1 in Schmitz and
Böl (2011). The in-wall dispersions Θc/s (c = collagen and s = SM layer) lead-
ing to arbitrary direction vectors which are able to describe the collagen and SMC
orientations in the reference configuration using so-called unit direction vectors

Mc/s =
⎛
⎝

cosΘc/s cosΦ

cosΘc/s sinΦ

sinΘc/s

⎞
⎠ . (5.1)

Consequently, the structural tensors

Zc/s = Mc/s ⊗ Mc/s (5.2)

can be constructed by means of the dyadic product including the directional infor-
mation of a certain SMC layer Ms or collagen fiber bundle Mc. This allows the
computation of corresponding stretches

λ2
c/s = I4,c/s = C : Zc/s, (5.3)
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where the fourth invariant I4,c/s can be expressed as scalar product of the right
Cauchy-Green tensor C and Zc/s.

5.2.2 Balance Equations

Using classical non-linear continuum mechanics, a coupled problem of chemo-
mechanical SM contraction is formulated in terms of two primary field variables,
namely the placement ϕ(X, t) and the calcium concentration c(X, t). Consequently,
a chemomechanical state S of a material point X at the time t is defined as

S (X, t) = {
ϕ(X, t), c(X, t)

}
. (5.4)

Spatial as well as temporal evolution of the primary field variables are governed by
two basic field equations: the balance of linear momentum and the diffusion-type
equation of excitation through calcium.

The balance of linear momentum in spatial form

divσ + b̄ = 0 in B (5.5)

describes the quasi-static stress equilibrium. Herein b̄ is the given spatial body force
per unit reference volume. The operator div[•] indicates the divergence with respect
to the spatial coordinates x, and σ denotes the Cauchy stress tensor given as

σ = 2J−1F
∂Ψ (ϕ)

∂C
FT, (5.6)

depending on the deformation measures C and F as well as on a strain-energy func-
tion Ψ (ϕ), see Sect. 5.2.3. The mechanical problem is completed by essential and
natural boundary conditions,

ϕ = ϕ̄ on ∂Bϕ and t = t̄ on ∂Bσ . (5.7)

The surface stress traction vector t̄, defined on ∂Bσ , is related to the Cauchy stress
tensor σ via the Cauchy stress theorem t̄ := σn, where the outward surface normal
is specified as n.

The second field equation describes the calcium concentration inside the SM
tissue. The well-known Fick’s second law

ċ = −div q in B (5.8)

predicts how diffusion causes the concentration field c to change with time. Herein,
the diffusion flux vector

q = −d(ϕ)∇xc (5.9)
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relates to the calcium concentration gradient ∇xc via the deformation dependent,
anisotropic diffusion tensor d(ϕ). Based on the microstructure of SM tissue the
diffusion tensor

d(ϕ) = disoI + daniso

n

n∑
i=1

ZR
i (5.10)

is additively decomposed into an isotropic (related to the elastin and matrix mate-
rial) and an anisotropic part (related to the collagen fibers in SMCs) including the
appropriate diffusion coefficients diso and daniso, respectively. The number of con-
sidered directions inside the SM tissue is controlled by n and I denotes the identity
tensor. Further,

ZR
i = RZiRT = FMi

|FMi | ⊗ FMi

|FMi | (5.11)

are the rotated structural tensors without the stretch component U of the deformation
gradient F = RU, whereby R is the rotation tensor.

Analogously to the momentum balance, the calcium field equation also uses cor-
responding essential and natural boundary conditions

c = c̄ on ∂Bc and q = q̄ on ∂Bq . (5.12)

The diffusion surface flux term q̄ is related to the spatial flux vector through the
Cauchy-type formula q̄ := q · n.

5.2.3 An Active Artery Model

In this section we give a short review over the governing constitutive equations for
the active artery model. Thus, the used strain-energy function for the media layer

Ψ (ϕ) = Ψe + Ψc + Ψs (5.13)

is additively decomposed in the three components: the load-bearing proteins elastin
(Ψe) and collagen (Ψc) and the active, contractile SMCs (Ψs).

5.2.3.1 Elastin

The first component of the strain-energy function Ψe stays for elastin, a protein used
to build up load-bearing structures in creature tissue. As flexible elastin molecules
are randomly arranged in a three-dimensional network, the isotropic neo-Hookean
material model

Ψe = μe

2
(I1 − 3) (5.14)
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has been chosen to mirror such characteristics. Herein, the shear modulus μe as
single material parameter seems sufficient. Further, the first invariant I1 = tr C is
defined as the trace of C.

5.2.3.2 Collagen

The second main connective tissue component in arteries, collagen (Ψc), dominates
their mechanical behavior by a stress-stretch relation of exponential type along the
fiber direction. Experimental observations by, e.g., Dahl et al. (2007) indicate that
collagen fibers are preferably aligned with the vessels longitudinal axis, helically
and circumferentially. Thus, the dispersion of the collagen fibers by incorporation
angles Θc,i has been measured. In doing so, the relative frequency fc has been re-
garded to fulfill the relation

∑nc
i=1 fc,i = 1 with nc being the number of different

directions i. For the modeling of such material characteristics, the used strain en-
ergy is weighted in every incorporated direction with the corresponding, measured
collagen fraction fc,i and can be written as

Ψc =
nc∑

i=1

fc,iΨc,i . (5.15)

Herein, the strain-energy functions

Ψc,i =
{

c1
2c2

exp[c2(λ
2
c,i − 1)2] if λc,i ≥ 1,

0 else,
(5.16)

depend on two material constants, c1 and c2, see Holzapfel et al. (2000).

5.2.3.3 Smooth Muscle Cells

The third component in arteries are mainly circumferentially oriented SMCs. How-
ever, it stands out that there is a certain stretch at which the generated force reaches
a maximum value, see Schmitz and Böl (2011). Having those experimentally ob-
tained force-stretch characteristics in mind, the strain-energy function of a single
SMC or a layer of SMCs reads

Ψs =
ns∑

j=1

fs,jΨs,j . (5.17)

According to the findings of Walmsley and Murphy (1987) the active strain-energy
function has been weighted with the SMC volume fractions fs,j in every incorpo-
rated direction j . Further, ns denotes the number of considered directions and the
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direction dependent strain-energy functions

Ψs,j = s1

2
(nC + nD)

[(
2 + λs2

max

)(
λmaxλ

2
s,j − 1

3
λ3

s,j − λ2
maxλs,j

)

+ λ
3+s2
s,j

3 + s2
− 2λmaxλ

2+s2
s,j

2 + s2
+ λ2

maxλ
1+s2
s,j

1 + s2

]
+ Pmaxλs,j . (5.18)

Herein, s1 is a stress-like material parameter and s2 is a dimensionless constant. Fur-
ther, λs specifies the SMC stretch and λmax defines the stretch at which the generated
stress

Pmax = κ(nC + nD), (5.19)

depending on the parameter κ , reaches its maximum. The whole contraction process
is triggered by the chemical degree of activation (nC + nD) provided by Hai and
Murphy (1988), describing the time and calcium dependent contraction kinetics.
This model is described by the differential equation system

⎡
⎢⎢⎣

ṅA
ṅB
ṅC
ṅD

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−k1 k2 0 k7
k1 −(k2 + k3) k4 0
0 k3 −(k4 + k5) k6
0 0 k5 −(k6 + k7)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nA
nB
nC
nD

⎤
⎥⎥⎦ , (5.20)

composed of four first order differential equations in time for four chemical states
nA, nB, nC, and nD. As these are fractions, nA + nB + nC + nD = 1 has to be hold.
The first two, nA and nB, represent non-force generating states whereas the last
two, nC and nD, are related to generated force and thus, be mechanically significant.
Further the rate constant have been used as published in Schmitz and Böl (2011),
in doing so k1 = k6 and k2 = k5. SMC contraction is triggered by an increase in
intracellular calcium which is controlled by the calcium-dependent rate constants
k1 and k6. Thus, a simple relation is given by

k1 = k6 = (α[Ca2+])2

(α[Ca2+])2 + K2
CaCaM

, (5.21)

where α > 0 is a positive constant, [Ca2+] characterizes the calcium concentra-
tion, and KCaCaM denotes the half-activation constant for the calcium-calmodium
complex [CaCaM]. In this approach the rate parameters ki have to be identified by
experimental data (Hai and Murphy, 1988; Yang et al., 2003a,b).

5.3 Numerical Examples

This section aims to study how the chemical excitation affects the mechanical be-
havior at muscle level. In doing so, we first validate the presented modeling ap-
proach with experiments by Herlihy and Murphy (1973) before in a second step the
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Table 5.1 Material parameters for porcine carotid artery tissue. As the media and the adventitia
exhibit a certain amount of elastin and collagen, the mechanical behavior of these two constituent
is described by Eqs. (5.14) and (5.16), respectively. In order to distinct between the appropriate
material parameters, upper indexes have been used, med = media and adv = adventitia

Parameter Value Unit Reference

Media

s1 1247.6 kPa Herlihy and Murphy (1973)

s2 2.0 – Herlihy and Murphy (1973)

κ 291.0 kPa Herlihy and Murphy (1973)

λmax 1.248 – Herlihy and Murphy (1973)

Θmed
s,1/2 ±4.5 ° Herlihy and Murphy (1973)

f med
s,1/2 0.5 – Herlihy and Murphy (1973)

cmed
1 23.7 kPa Herlihy and Murphy (1973)

cmed
2 1.7 – Herlihy and Murphy (1973)

Θmed
c,i cp. Fig. 6 in ° Dahl et al. (2007)

f med
c,i cp. Fig. 6 in – Dahl et al. (2007)

μmed
e 7.0 kPa Herlihy and Murphy (1973)

Adventitia

cadv
1 4.74 kPa Wang et al. (2006)

cadv
2 1.7 – Wang et al. (2006)

Θadv
c,1/2/3/4 0/−45/45/90 ° chosen

f adv
c,1/2/3/4 0.25/0.25/0.25/0.25 – chosen

μadv
e 0.7 kPa Wang et al. (2006)

Table 5.2 Material parameters needed for the calcium diffusion inside the SM tissue

Parameter Value Unit Reference

KCaCaM 178.0 nMol Yang et al. (2003a,b)

α 35 · 10−6 – Arner (1982)

diso 4.0 · 10−3 mm2/s chosen

daniso 0.0 mm2/s chosen

dependence of the chemical activation on the contraction characteristics has been
studied. If not otherwise specified, the material parameters listed in Tables 5.1 (me-
chanical parameters) and 5.2 (parameters for the calcium diffusion) are used for the
following simulations.
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Fig. 5.2 Model validation using experimental data by Herlihy and Murphy (1973) obtained from
medial strips (Θstrip = 85.5◦): (a) force-stretch response from experiment and model and (b) results
of the finite element simulation. Deformed shape and von Mises stress distribution at λstrip = 1.2

5.3.1 Model Validation

For the model validation active and passive tension experiment performed on
porcine medial strips (Herlihy and Murphy, 1973) have been used, see Fig. 5.2(a).
Following the experimental protocol, the porcine strips have been completely acti-
vated so that a temporally converged contraction process is existent. Two main ori-
entations (Θs,1/2 = ±4.5◦) of SMC layers with equal SMC fractions (fs,1/2 = 0.5)
have been measured. Strips with dimensions h/w/t = 8.0/1.3/1.0 mm have been
dissected along the SMCs alignment, namely Θstrip = 85.5°. According to the ex-
perimental boundary conditions in Herlihy and Murphy (1973) we approximate
them by fixing both ends of the strip in all directions. For the collagen dispersion of
porcine, medial tissue experimental data by Dahl et al. (2007) have been used. The
values for the rate constants of the chemical model have been taken from Hai and
Murphy (1988) as these are rooted on data obtained by Singer and Murphy (1987)
investigating swine tissue as well. Hence, a consistent parameter set is created, see
Table 5.1.

Figure 5.2(a) indicates that the proposed model accurately captures the force-
stretch behavior. As the tissue strip is aligned with the loading direction in the strips
long axis high stress values can be identified, see Fig. 5.2(b).

5.3.2 Muscle Tissue Strip

In order to show the ability of the model a three-dimensional tissues example, dis-
sected from vessels is used, see Fig. 5.3. The strip is characterized by two layers,
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Fig. 5.3 Porcine tissue strip
dissected from an artery. The
strip has the dimensions
l/w/ta/tm = 3.0/3.0/0.1/0.1 mm

the contractible media (tm = 0.1 mm, light grey) and the adventitia (ta = 0.1 mm,
dark grey). In the proposed example we are interested in the tissue response when a
completely deactivated strip with an extracellular calcium concentration being ini-
tially zero is exposed to an environment with an external calcium concentration of
[Ca2+] = 500 mMol. This example is closely related to the experimental work of
Arner (1982).

In order to analyze the contraction process the main variables, i.e. the calcium
concentration [Ca2+], the chemical concentrations (nC + nD), and the equivalent
von Mises stress σvM have been tracked during contraction. In doing so, Fig. 5.4
illustrated the results for four discrete time steps t = 10/30/80/250 s. Focusing on
the calcium concentration (first line) a converged state is achieved in dependence on
the choice of the diffusion coefficients, here this situation occurs at time t = 80 s.
The chemical states (nC + nD) in the second line display a small delay with respect
to the calcium concentration, see, e.g., at time t = 30 s. Also here, the converged
state arises after 80 seconds. In the third line the distribution of the equivalent von
Mises stress is illustrated. Small stresses can be detected for the first time step (10 s).
As the media differs from the adventitia by a higher stiffness also the stress values
a higher. This is impressively documented at time t = 30 s where the maximum
stress is achieved. The stress increases continuously until at 80 seconds a decrease
can be observed. During further activation the stress again increases. Focusing on
the overall deformation of the strip a clear bending deformation can be seen that
continuously increases. This bending arises from the fact that the layers are aligned
asymmetrical and that the media contracts, only.
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Fig. 5.4 Progress of the main variables [Ca2+], (nC +nD), and σvM during SM contraction. For the
sake of clarity the deformed strip has been cut virtually, so that the distribution of the appropriate
variables can be identified

5.4 Conclusion

In this work, a monolithic coupled two field approach for the chemomechanical pre-
diction of smooth muscle contraction has been developed and implemented into the
framework of the finite element method. The strain-energy function of the mechani-
cal model consists of three parts associated with the constituents inside a SM tissue.
The chemical part has been represented using the four state model by Hai and Mur-
phy (1988) triggered by the dynamic state of the calcium concentration inside the
muscle.

It has been shown that the model shows an excellent agreement with experimen-
tal data. As the model is implemented into the finite element method it is possible
to study the deformation behavior of SM contraction in a three-dimensional way.
In doing so, deactivated tissue strips have been virtually loaded by an external cal-
cium concentration, leading to a diffusion of the calcium trough the strip. As two
layers, the media and the adventitia, have been considered the strip’s deformation is
dominated by a bending mode what seems to be a reasonable result.

We conclude by noting that such class of models in combination with the realis-
tic three-dimensional SM geometries may provide significant contributions for the
understanding, identification and treatment of SM activation.
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