
Chapter 4
A Mathematical Approach for Studying
Ca2+-Regulated Smooth Muscle Contraction

Saeil C. Murtada and Gerhard A. Holzapfel

Abstract Smooth muscle is found in various organs. It has mutual purposes such
as providing mechanical stability and regulating organ size. To better understand
the physiology and the function of smooth muscle different experimental setups and
techniques are available. However, to interpret and analyze the experimental results
basic models of smooth muscle are necessary. Advanced mathematical models of
smooth muscle contraction further allow, to not, only investigate the experimental
behavior but also to simulate and predict behaviors in complex boundary conditions
that are not easy or even impossible to perform through in vitro experiments. In
this chapter the characteristic behaviors of vascular smooth muscle, specially those
relevant from a biomechanical point of view, and the mathematical models able to
simulate and mimic those behaviors are reviewed and studied.

4.1 Introduction

Smooth muscle has an important role in hollow organs where it determines the size
and the wall tension of the organ. In blood vessels the smooth muscle has a crit-
ical role in regulating the diameter and the flow resistance which affect the blood
pressure.

To increase the understanding of both basic and clinical/pathophysiological pro-
cesses of smooth muscle, well defined chemomechanical models which couple
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chemical activation with mechanical contraction and relaxation are needed. The
properties of the passive arterial wall have been thoroughly explored both in struc-
tural and mechanical behavior, and there are models available to capture these be-
haviors (Holzapfel et al., 2000; Holzapfel and Ogden, 2010; Schriefl et al., 2012).
The properties of the active tone, which mainly originate from the active smooth
muscle, have been less explored in both structure and contractile behavior, and there
is a pressing need for well-defined models of the smooth muscle to better understand
its mechanical properties.

In the following sections the characteristic smooth muscle behavior is described
and followed up with some approaches of modeling smooth muscle contraction and
active tension development. The main part of this chapter reviews and analyzes a
certain mechanochemical modeling approach for smooth muscle (Murtada et al.,
2010a, 2010b, 2012) which is based on structural observations and experimental
data. It is the single model found in the literature which is able to simulate a realistic
behavior of both smooth muscle active tension development at different stretches
and a realistic muscle length behavior during isotonic quick-releases.

4.2 Smooth Muscle Behavior

Smooth muscle behaves differently in both activation and contraction and has a
different underlying structure compared to skeletal and cardiac muscles. Therefore,
it is important, when modeling and studying smooth muscle behavior, to understand
and consider the characteristic behaviors and parameters relevant for smooth muscle
contraction.

4.2.1 Myosin Kinetics

Smooth muscle contraction is regulated through phosphorylation and dephosphory-
lation of the myosin regulatory light-chains (MRLC) which is governed by two main
enzyme activities, the myosin light-chain kinase (MLCK) and the myosin light-
chain phosphatase (MLCP). By changing the membrane potential through depolar-
ization, certain voltage-operated Ca2+ channels are opened, allowing an influx of
Ca2+ which increases the cytoplasmic calcium. When the cytoplasmic intracellular
calcium increases through an influx of Ca2+ from the extracellular matrix, the Ca2+
bind to the messenger protein calmodulin (CaM), which activates the MLCK. An al-
ternative way to increase the cytoplasmic intracellular Ca2+ is through agonist stim-
ulation, e.g., histamine which attaches to G protein coupled receptors (GPCR) that
activate phospholipase C (PLC) which in turn induces inositol 1,4,5-triphosphate
(InsP3) production and Ca2+ release from the sarcoplasmic reticulum (SR) (Som-
lyo and Somlyo, 2002), see also Fig. 4.1.

When the myosin is phosphorylated, it can attach to the smooth muscle actin fil-
aments through load-bearing cross-bridges that are able to perform power-strokes
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Fig. 4.1 Signaling pathways for Ca2+-regulated myosin phosphorylation. Myosin phosphoryla-
tion/dephosphorylation is regulated by myosin light-chain kinase (MLCK) and myosin light-chain
phosphatase (MLCP). MLCK is activated by a calmodulin (CaM)–Ca2+ complex which depen-
dents on the level of intracellular [Ca2+]. The intracellular Ca2+ may be influenced in differ-
ent ways. Membrane depolarization and agonist stimulation through G protein coupled receptors
(GPCR); during membrane depolarization certain channels on the cell membrane open resulting
in an influx of Ca2+. During agonist stimulation the GPCR activate phospholipase (PLC), which
induces inositol 1,4,5-triphosphate (InsP3) production and releases Ca2+ from the sarcoplasmic
reticulum (SR)

through ATP hydrolysis, similar as in skeletal muscle, causing muscle contraction.
The MLCP activity, which governs the dephosphorylation of the myosin regulatory
light-chains, has an effect on the Ca2+ sensitivity for the MRLC phosphorylation.
There are several pathways inhibiting the MLCP, such as Rho-Rho kinase and pro-
tein kinase C. However, here we are not considering variations in MLCP activity.
Smooth muscle is able to maintain active tension while the myosin phosphorylation
decreases. An explanation for this phenomenon was hypothesized by introducing an
attached, non-cycling (or slow-cycling), dephosphorylated cross-bridge (also known
as latch-bridge or latched cross-bridge), see Dillon et al. (1981). The introduction
of such as latched cross-bridge also explains the different contractile behaviors ob-
served for isotonic quick-releases performed at different time after isometric activa-
tion (Dillon et al., 1981).
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Fig. 4.2 A: length-tension behaviors of swine carotid media, where maximal steady-state active
tension is obtained at a certain optimal length L0. The bottom curve is the passive behavior, the
middle curve is the active behavior and the top curve is the total behavior (passive and active)
(Kamm et al., 1989). B and C: active stress development and stretch behavior during isomet-
ric stimulation and isotonic shortening for two different after-loads (Dillon et al., 1981). D: two
force-velocity curves for isotonic quick-releases measured at 1 min and 10 min after isometric
contraction at optimal length (Dillon et al., 1981)

4.2.2 Length-Tension Relationship

Smooth muscle is able to generate active tension over a broad range of muscle
lengths. The active length-tension relationship has a parabolic behavior with max-
imal active tension at an optimal muscle length larger than the slack length, see
Fig. 4.2A. In addition, Figs. 4.2B and C show the respective active stress develop-
ment and stretch behavior during isometric stimulation and isotonic shortening for
two different after-loads.

The origin of the active length-tension behavior, also found in skeletal muscle, is
still not clearly distinguished but there are some hypothesis. One hypothesis is that
the agonist sensitivity may be dependent on the stretch of the smooth muscle (Rem-
bold and Murphy, 1990b). When the [Ca2+] was measured for the same concen-
tration of agonist but at different muscle stretches, it was found that the magnitude
of initial behavior of [Ca2+] function was different for different muscle stretches.
Agonist stimulation (histamine, noradrenalin and so on) activates G protein-related
pathways which leads to an increase in intracellular [Ca2+] to be different from
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the direct membrane depolarizing stimulation (e.g., potassium) pathway, which also
leads to an increase in intracellular [Ca2+]. It should be noted that the length-tension
relationship in smooth muscle is obtained for both membrane depolarization and
agonist stimulation. A more plausible hypothesis is that the length-tension relation-
ship may originate from the structural rearrangements within the smooth muscle
contractile unit, when stretched. This would influence the filament overlap between
the actin and myosin filaments in a smooth muscle contractile unit which has a di-
rect relation to the number of attached cross-bridges, and hence the active tension
produced by the smooth muscle. A connection between the length of the contractile
unit (sarcomere) and the length-tension behavior in muscle has been hypothesized
for a long time (Gordon et al., 1966).

4.2.3 Force-Velocity Relationship

The importance of the chemical and mechanical model combination is demonstrated
when it comes to modeling the characteristic force-(shortening) velocity relation-
ship of muscle. When the isotonic shortening velocity is measured for different
forces (after-loads) a hyperbolic relationship of the force and the shortening velocity
is obtained (Woledge et al., 1985). When extracting the force-velocity relationship,
two certain times are of importance: (i) the time at which the quick-release is per-
formed, i.e. the amount of time of isometric contraction before the quick-release,
and (ii) the time at which the velocity is measured during the isotonic contraction.

When the force-velocity relationship is extracted at different time of isotonic
quick-release, the relationship changes. The shortening velocity is higher when the
quick-release is performed at an early stage of the isometric contraction rather than
at a later stage, see Fig. 4.2D. This behavior supports the hypothesis of non-cycling
latch cross-bridges which are dominant at a later stage of an isometric contraction.

4.2.4 Smooth Muscle Modeling

By assuming the well-established three-element Hill muscle characteristic, as de-
scribed by Fung (1970) for smooth muscle, the smooth muscle contractile unit is
represented by an elastic serial element and a contractile element. The active ten-
sion produced by the smooth muscle depends on two main principal parameters:
(i) the number of attached load-carrying cross-bridges, and (ii) the (average) elastic
elongation of the attached cross-bridges, both phosphorylated and dephosphorylated
(cf. Rachev and Hayashi, 1999; Yang et al., 2003; Stålhand et al., 2008; Murtada et
al., 2010a).

The kinetics of the smooth muscle myosin phosphorylation, which regulates the
activation of smooth muscle contraction, can be used to define the number of at-
tached load-carrying cross-bridges. The kinetics of myosin phosphorylation and
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the number of load-bearing cross-bridges have been modeled through different ap-
proaches, see, e.g., Peterson (1982); Kato et al. (1984); Hai and Murphy (1988). In
the myosin kinetics model by Hai and Murphy (1988) the latched cross-bridge was
incorporated, and the myosin is described in four different functional states: (M)
unattached and dephosphorylated, (Mp) unattached and phosphorylated, (AMp) at-
tached and phosphorylated, (AM) attached and dephosphorylated. The two states
where the myosin forms a cross-bride between the actin filament which can carry
load are the attached states, AMp and AM. These functional states are coupled
through different rate constants, where some can be related to the phosphorylating
MLCK activity and some to dephosphorylating MLCP activity.

The average elastic elongation of the attached cross-bridges in the smooth mus-
cle contractile unit is a key parameter to model the tension development in smooth
muscle. It corresponds to the elastic serial element in the Hill muscle model. The
average elastic elongation of the attached cross-bridges depends on the total defor-
mation applied on the smooth muscle contractile unit and the sliding of actin and
myosin filaments, which could be related to the contractile element in the Hill mus-
cle model. It is necessary to model both the filament sliding and the average elastic
elongation of the attached cross-bridges to simulate the length change and the ten-
sion development during muscle contraction. Among the smooth muscle models
available in the literature there are some that also considers the filament sliding be-
havior to describe the active tension development and the total deformation of the
smooth contractile unit (cf. Stålhand et al., 2008; Murtada et al., 2010a).

4.3 The Chemomechanical Response in Smooth Muscle—Results

In this section the modeling approach by Murtada et al. (2010a, 2010b, 2012) is
briefly reviewed. This is an approach that is able to simulate both the length-tension
and the force-velocity behavior of smooth muscle in addition to muscle contraction
and relaxation regulated by [Ca2+]i.

In the work by Murtada et al. (2010a, 2010b, 2012), the model by Hai and Mur-
phy (1988) was used to simulate the kinetics of the myosin functional states and the
fraction of attached cross-bridges.

4.3.1 Cross-Bridge Kinetics Model

The active force produced by the smooth muscle is dependent on the number of
attached cross-bridges in a smooth muscle contractile unit. The kinetics of attached
cross-bridges is regulated by the MLCK and MLCP activity, which can be described
by the cross-bridge kinetics model by Hai and Murphy (1988). Chemical kinetics
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Fig. 4.3 Left: fitting results with the model by Hai and Murphy (1988) where the active stress is
nAMp + nAM and the myosin phosphorylation is nMp + nAMp. The phosphorylating reaction rates
k1 and k6 were set to 0.35 s−1 for 5 s followed by 0.085 s−1. The other reaction rates were set to
k2 = k5 = 0.1 s−1, k4 = 0.11 s−1, k3 = 0.44 s−1 and k7 = 0.005 s−1. Right: steady-state values
of the sum of fractions nAMp + nAM and nMp + nAMp for different values of the phosphorylating
reaction rates k1 and k6 (Hai and Murphy, 1988)

can be summarized by the following system of differential equations, i.e.

d

dt

⎡
⎢⎢⎣

nM
nMp
nAMp
nAM

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−k1 k2 0 k7
k1 −(k2 + k3) k4 0
0 k3 −(k4 + k5) k6
0 0 k5 −(k6 + k7)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nM
nMp
nAMp
nAM

⎤
⎥⎥⎦ ,

(4.1)
where nM, nMp, nAMp and nAM are fractions of the myosin functional states M, Mp,
AMp, AM, with the constraint nM + nMp + nAMp + nAM = 1, ni ≥ 0 and k1, . . . , k7
are reaction rates describing the transition between the different functional states.
Hence, the reaction rates k1 and k6 represents the phosphorylation of M to Mp and
AM to AMp by the MLCK activity and the reaction rates k2 and k5 represents
the dephosphorylation of Mp to M and AMp to AM by the MLCP activity. The
reaction rates k3 and k4 represents the attachment and detachment of the cycling
phosphorylated cross-bridges and the reaction rates k7 represents the detachment
of the latch-bridges. The phosphorylating reaction rates k1 and k6 can be coupled
to the internal and also the external [Ca2+]. Figure 4.3 shows the evolution of the
different fraction of the functional states with time using the model by Hai and
Murphy (1988).

When assuming maximal stimulated activation the phosphorylating MLCK ac-
tivity can be related and coupled to the extracellular [Ca2+]. In Murtada et al.
(2010a) a Michaelis–Menten kinetics characteristic of the MLCK activity was im-
plemented. The rate constants k1 and k6 are expressed as

k1 = k6 = [CaCaM]2

[CaCaM]2 + K2
CaCaM

, [CaCaM] = α
[
Ca2+]

e, (4.2)
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where [CaCaM] is the concentration of the calcium-calmodulin complex, KCaCaM
is the half-activation constant, α is a positive constant and [Ca2+]e is the external
calcium concentration. In (4.2), [Ca2+]e is not a function of time and the MLCK
reaction rates are constant values.

The MLCK-activity can also be related to the intracellular [Ca2+] by using the
first and fourth equations from (4.1) and setting k1 = k6 and k2 = k5. Thus (Murtada
et al., 2010a),

k1 = k6 = k2(nMp + nAMp) − ( d
dt

nM + d
dt

nAM)

nM + nAM
, (4.3)

which in steady-state reduces to

k1 = k6 = k2 Phos

1 − Phos
, (4.4)

where Phos = (nMp + nAMp) is the fraction of phosphorylated cross-bridges (Rem-
bold and Murphy, 1990a). The relationship between intracellular [Ca2+] and Phos
was estimated in swine carotid SM by measuring aequorin light signal into a sig-
moidal function, i.e.

Phos = −0.04 + 0.686

1 + 10−[3.645(0.004[Ca2+]i−6.018)+18.92] , (4.5)

where [Ca2+]i is the intracellular calcium concentration (Rembold and Murphy,
1990a). In a similar approach as for the external calcium concentration [Ca2+]e in
(4.2), the MLCK-activity can be related to the intracellular calcium concentration
[Ca2+]i according to

k1 = k6 = ε
[Ca2+]hi

[Ca2+]hi + (ED50)h
, (4.6)

where ε is a fitting parameter describing the maximal MLCK activity, h is a pa-
rameter related to the steepness of the relationship and ED50 is the half-activation
constant for [Ca2+]i to MLCK.

Through these approaches the external and intracellular calcium concentrations
can be coupled to the fraction of the attached cross-bridges nAMp + nAM by fitting
the chemical parameters against dose-response relationships (Murtada et al., 2010a)
or by comparing to myosin phosphorylation data (Murtada et al., 2010b, 2012).

4.3.2 Mechanical Model of the Smooth Muscle Contractile Unit

To introduce a description of the average elastic elongation of the attached cross-
bridges in a smooth muscle contractile unit, and a related framework of the filament
sliding evolution law to simulate filament sliding during contraction and relaxation,
a mechanical model is necessary.
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4.3.2.1 Mechanical Framework

In the recent works by Murtada et al. (2010a, 2010b, 2012) a description of a smooth
muscle contractile unit based on structural observations (Herrera et al., 2005) and
filament sliding theory was presented. The model of the smooth muscle contractile
unit consists of two thin actin filaments, each with a certain length, and one thick
myosin filament, with a certain length, which are overlapped. The actin filaments
are organized on each side of the myosin filament from which the filament overlap
Lo can be distinguished. Based on the Hill’s muscle model, the length-change in a
smooth muscle contractile unit is described by the relative actin and myosin filament
sliding ufs caused by the phosphorylated cycling cross-bridges or by an external
load/deformation, and the elastic elongation ue of the attached cross-bridges. Hence,
the stretch of a contractile unit with reference length LCU can be expressed as

λ = lCU

LCU
= LCU + ufs + ue

LCU
, (4.7)

where lCU is the deformed length of a contractile unit. Note that ufs is denoted
positive in extension. When looking at a half contractile unit, the average elastic
elongation of the attached cross-bridges can be described by the average force acting
on the contractile unit and the total elastic stiffness from all the attached cross-
bridges. Thus,

ue

2
=

Pa
NCU

(nAMp + nAM)Lo
δ

Ecb
, (4.8)

where Pa is the measurable active (averaged) first Piola-Kirchhoff stress (engineer-
ing stress), NCU is the number of contractile units per unit area in the reference con-
figuration, δ is the average distance between the cross-bridges, (nAMp + nAM)Lo/δ

is the total number of the attached cross-bridges and Ecb is the elastic stiffness of a
single phosphorylated/dephosphorylated cross-bridge with the unit force per length.
Together with Eq. (4.7) the active stress Pa can be derived as a function of the fila-
ment sliding ufs and the stretch λ, i.e.

Pa = μaL̄o(nAMp + nAM)(λ − ūfs − 1), (4.9)

where μa = L2
CUEcbNCU/(2δ) is a stiffness constant, ūfs = ufs/LCU is the normal-

ized filament sliding and L̄o = Lo/LCU is the normalized filament overlap.

4.3.2.2 Evolution Law of Filament Sliding

The normalized filament sliding ūfs depends on the mechanical state (contraction
and relaxation) of the smooth muscle contractile unit. During muscle contraction,
ūfs is driven by the difference of the internal force of the cycling phosphorylated
cross-bridges (AMp) and any external force acting on the contractile unit. During
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Fig. 4.4 Left: fitting results of the active stress development (Pf = Pa) using the model of Mur-
tada et al. (2010a), with parameter values μaL̄o = 4.5 MPa, η = 60.0 MPa s, κ = 0.93 MPa and
μp = 0.90 MPa. Right: isotonic stretch behavior (λf = λ) for different isotonic after-loads. The plot
at the top right corner is an enlargement of the encircled region for a certain after-load (Murtada
et al., 2010a). Compare with the experimental results presented in Figs. 4.2B and 4.2C

muscle relaxation (extension), ūfs is driven by the resulting force of the external
force acting on the contractile unit, and the internal force from all the attached cross-
bridges (AMp, AM). The evolution law of ūfs is summarized as an active dashpot
where the normalized filament sliding velocity ˙̄ufs is proportional to the difference
of the internal force Pc and the external active force Pa such as

η ˙̄ufs = Pc − Pa, (4.10)

with

Pc =
⎧⎨
⎩

κnAMp, for Pa < κnAMp,

Pa, for κnAMp ≤ Pa ≤ κ(nAMp + nAM),

κ(nAMp + nAM), for Pa > κ(nAMp + nAM),

(4.11)

where η is a positive material parameter and κ is a parameter related to the average
driving/resisting force of the attached cycling and non-cycling cross-bridges (AMp,
AM).

The material parameters were fitted to isometric and isotonic contraction data
performed on intact smooth muscle taenia coli (Arner, 1982), resulting to μaL̄o =
4.5 MPa, η = 60.0 MPa s, κ = 0.93 MPa and μp = 0.90 MPa (the parameter μp is
the shear modulus of the passive matrix material of the smooth muscle cells and the
intermixed fibrous components).

The model was able to predict the active tension development during isometric
contraction and a realistic behavior of the muscle length change during isotonic con-
traction for different after-loads, see Fig. 4.4. However, with the current description
of the ūfs evolution law and the constant filament overlap, the model is not able
to predict the nonlinear behavior of the length-tension and the force-(shortening)
velocity behavior.
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4.3.3 Length-Tension and Force-Velocity Relationships

The ability for smooth muscle to produce active tension over a broad range of mus-
cle lengths, with a maximal active tension development at an optimal muscle length,
is an important characteristic to capture when simulating active smooth muscle con-
traction under large deformation. We have worked out the modeling of the length-
tension behavior through two different approaches, briefly reviewed here. The model
of Murtada et al. (2010a) served as a basis.

In the first approach, the effect of the intracellular calcium concentration [Ca2+]i
and the dispersion of contractile fibers in smooth muscles was investigated (Murtada
et al., 2010b). In the second approach, the effect of filament overlap and filament
sliding behavior in the smooth muscle contractile unit was analyzed (Murtada et al.,
2012).

4.3.3.1 Agonist Sensitivity and Dispersion of Contractile Fibers

In the first approach of Murtada et al. (2010b), two experimental studies of smooth
muscle were used to analyze stretch-dependent agonist sensitivity and the dispersion
effects of contractile fibers in smooth muscles, see Fig. 4.5. This was then used as a
basis for studying the smooth muscle length-tension behavior.

The intracellular calcium measurements at different muscle lengths was coupled
with the Hai and Murphy reaction rates k1 through Eqs. (4.4) and (4.5). The smooth
muscle contractile units were modeled as in Murtada et al. (2010a) with an equiva-
lent evolution law for the filament sliding ūfs and a constant filament overlap. The
passive components in the surrounding matrix was modeled by elastin and one fam-
ily of collagen fibers aligned along the main direction of the contractile units. The
neo-Hookean material was used to model elastin and an anisotropic exponential
function was used to model the anisotropic response (Holzapfel et al., 2000). The
passive stress Pp of the surrounding matrix was derived as

Pp = μp

(
λ − 1

λ2

)
+ 2c1λ exp

[
c2

(
λ2 − 1

)2](
λ2 − 1

)
, (4.12)

where λ denotes the stretch in the loading direction and μp, c1 and c1 are material
parameters. The passive material parameters (μp, c1, c2) were estimated by com-
paring the simulated stress-stretch behavior Pp through Eq. (4.12) with the passive
length-tension experimental behavior of a carotid media (Kamm et al., 1989), with
the results of μp = 1680 Pa, c1 = 5040 Pa and c2 = 0.20 Pa.

The contractile unit orientation dispersion was modeled by introducing an orien-
tation density function ρ(θ, γ ) with rotational symmetry as a function of the angle
θ and the parameter γ which describes the shape of the density function. Hence, the
active stress Pa was expressed as

Pa = μaL̄o(nAMp + nAM)
λ� + ūfs − 1

λ�

[
χ

(
λ − 1

λ2

)
+ (1 − 3χ)λ

]
, (4.13)
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Fig. 4.5 According to Murtada et al. (2010b), smooth muscle cells are modeled through ‘represen-
tative micro-spheres’ which are divided into active and passive components. The active component
is defined by the contractile units that are oriented in different directions and with a certain orienta-
tion density. The passive component is modeled by elastin and collagen fibers aligned in the main
direction of the contractile units

where λ� = [λ2 + 2χ(λ−1 − λ2)]1/2, and χ ∈ [0,1/3] is a dispersion parameter of
the form

χ = π

∫ π/2

0
ρ(θ, γ ) sin3 θdθ, (4.14)

(cf. Gasser et al., 2006). For a detailed description of the choice and fitting of the
orientation density function ρ see Murtada et al. (2010b).

The material parameters were estimated to fit the experimental data of active
isometric tension development performed at two different muscle stretches, μaL̄o =
22.96 MPa, η = 2.215 GPa s, κ = 0.451 MPa and χ = 0.016. To study the effect of
different orientation density functions ρ, the simulation was repeated for different
values of γ , see Fig. 4.6.

When studying the length-tension behavior by modeling the stretch-dependent
agonist sensitivity and the contractile unit orientation density function in smooth
muscle, it was found that agonist sensitivity had a more significant effect on the
length-tension behavior than the dispersion of the contractile units. The stretch-
dependent agonist sensitivity could alone explain the length-tension behavior at the
two studied muscle stretches. However, the [Ca2+]i transient was only studied at two
muscle stretches and it would be more convincing to study the agonist-sensitivity in
smooth muscle with a more detailed set of experimental data of the [Ca2+]i transient
behavior for larger range muscle stretches. The length-tension behavior of smooth
muscle exists for both agonist stimulations and membrane depolarization. However,
studies show little significant change in the myosin phosphorylation behavior during
potassium depolarization at different muscle lengths (Wingard et al., 1995), which
contradicts a length-dependent sensitivity during membrane depolarization.
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Fig. 4.6 Left: fitting results of the active stress developments at λ = 1/0.6 and λ = 0.7/0.6 by
using the model of Murtada et al. (2010b). By repeating this for different orientation density func-
tions ρ(γ ), where γ is a parameter describing the shape of the orientation density function, dif-
ferent behaviors of the predicted stress development at λ = 0.7/0.6 are obtained. Right: passive
length-tension behavior (Murtada et al., 2010b). Compare with the passive length-tension behavior
presented in Fig. 4.2A

4.3.3.2 Filament Overlap and Sliding Behavior

One common explanation for the length-tension behavior is the variation in the fil-
ament overlap in a contractile unit. This hypothesis was studied by introducing a
filament overlap function L̄o which defines the actin and myosin filament overlap
and thereby the number of maximum possible attached cross-bridges in a contrac-
tile unit (Murtada et al., 2012). The filament overlap depends on the lengths of
the actin and myosin filaments, and how these filaments slide with respect to each
other, which was described by the normalized filament sliding ūfs. An initial fil-
ament overlap Lo(ufs = 0) = x0 and an average optimal filament sliding u

opt
fs , for

which optimal filament overlap is reached (∂Lo/∂ufs|ufs=u
opt
fs

= 0), were introduced.

Thus the optimal filament overlap L
opt
o was defined as

L
opt
o = Lo

(
ufs = u

opt
fs

) = u
opt
fs

2
+ x0. (4.15)

Together with the boundary conditions, a continuous parabolic function of the fila-
ment overlap Lo was expressed as

Lo = ufs − u2
fs

2u
opt
fs

+ x0 =
(

ūfs − ū2
fs

2ū
opt
fs

+ x̄0

)
LCU, (4.16)

where x̄0 = x0/LCU and ū
opt
fs = u

opt
fs /LCU, see Fig. 4.7.

The initial filament overlap x̄0 and the optimal filament overlap ū
opt
fs were defined

through two equations: the definition of the stretch of a contractile unit (4.7) at
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Fig. 4.7 Half contractile unit with the initial filament overlap x0 between the myosin and actin
filament. By introducing an optimal filament sliding distance u

opt
fs in a contractile unit, the filament

overlap function Lo can be described by a parabolic function with an optimal filament overlap
u

opt
fs /2 + x0 (Murtada et al., 2012)

optimal muscle length, i.e.

λopt = 1 + ū
opt
fs + ū

opt
e , (4.17)

where ū
opt
e = u

opt
e /LCU, and by assuming that the fraction of the active stress at

reference length P0 and at the optimal length Popt is equal to the fraction of the
filament overlaps at the reference length and the optimal length, i.e.

P0

Popt
= x̄0

ū
opt
fs /2 + x̄0

. (4.18)

Hence, the active stress of a contractile unit with varying filament overlap was ex-
pressed as

Pa = μaL̄o(ūfs)(nAMp + nAM)(λ − ūfs − 1), (4.19)

where L̄o(ūfs) = Lo(ūfs)/LCU.
One common way of studying the contractile mechanism in smooth muscle is to

measure the shortening velocity during isotonic quick-release. The relationship be-
tween the shortening velocity and the after-load during isotonic quick-release can be
described through a hyperbolic function, also known as Hill’s equation (cf. Woledge
et al., 1985), i.e.

(F + a)(v + b) = (F0 + a)b, (4.20)

where F is the isotonic after-load, F0 is the isometric force at which the quick-
release is performed, v is the muscle shortening velocity and a, b are fitting param-
eters. Based on the assumption that the velocity v reflects somewhat the behavior of
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filament sliding ūfs, which was supported by Guilford and Warshaw (1998), a simi-
lar hyperbolic function was used to redefine the evolution law of the relative filament
sliding ūfs, thus

(Pa + α)(−˙̄ufs + β) = (Pc + α)β, (4.21)

which can be rewritten as

˙̄ufs = β
Pa − Pc

Pa + α
. (4.22)

When comparing the evolution law of the filament sliding ūfs, as presented in Mur-
tada et al. (2010a), with the updated evolution law (Murtada et al., 2012) it can be
seen that the two evolution laws do not differ that much from each other.

The evolution law for ūfs was further extended to also allow the simulation of
isotonic muscle extension such as

˙̄ufs = β1
Pa − Pc

Pa + α
− β2

Pa − Pc

Pa − PLBC
, (4.23)

where PLBC is the maximal load-bearing capacity of the contractile units (yield
stress) (Dillon et al., 1981), and β1 and β2 are fitting parameters. The internal stress
Pc, which is governed by the number of attached cycling and non-cycling cross-
bridges (depending on the mechanical state of the smooth muscle) is dependent on
the varying filament overlap L̄o as well. Hence, based on Eq. (4.11), the internal
stress Pc during contraction was quantified as

Pc = κAMpL̄o(ūfs)nAMp, (4.24)

and during muscle relaxation (extension) as

Pc = κAMpL̄o(ūfs)nAMp + κAML̄o(ūfs)nAM, (4.25)

where κAMp is a parameter related to the force due to a power-stroke of a single
cross-bridge and κAM is related to the force-bearing capacity of a dephosphorylated
attached (latch) cross-bridge during muscle extension.

The material parameters in the mechanical model were fitted to isometric tension
development and to isotonic shortening velocities from swine carotid media (Dillon
et al., 1981; Murtada et al., 2012), resulting in μa = 5.3 MPa, α = 26.7 kPa, β =
β1 = 0.0083 s−1 and κAMp = 204 kPa. The material parameters β2 and κAM were
fitted to sudden extension experiments resulting to β2 = 0.0021 s−1 and κAM =
61.1 kPa. The parameters in the filament overlap function L̄o were fitted to ū

opt
fs =

0.48 and x̄0 = 0.8544 by means of the conditions in Eqs. (4.17) and (4.18) together
with length-tension experimental data from swine carotid media (Murtada et al.,
2012). By using Eq. (4.19) together with a filament sliding evolution law and the
kinetic model by Hai and Murphy (1988), the active stress Pa was simulated for
different stretches λ, see Fig. 4.8. The simulated results show very good correlations
with experimental data obtained from swine carotid media.
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Fig. 4.8 Left: isometric active stress development for different muscle stretches λ activated
by a certain intracellular calcium transient using the filament overlap model of Murtada et al.
(2012); related material parameters are μa = 5.3 MPa, α = 26.7 kPa, β = β1 = 0.0083 s−1 and
κAMp = 204 kPa. Right: isotonic shortening and extension velocities for different after-loads (Mur-
tada et al., 2012). Compare with the shortening velocity presented in Fig. 4.2D

Through the updated evolution law based on Hill’s equation (4.22), the model
was able to simulate a (very) realistic nonlinear behavior of the isotonic force-
velocity relationship seen in smooth muscle. With the extended evolution law (4.23)
a realistic behavior of the force development during sudden muscle extension and
also the extension velocity were obtained. One of the advantages with the mathe-
matical form of the extended filament sliding evolution law is the convenience of
reducing it to its original form (4.22) when only simulating sudden muscle shorten-
ing.

4.4 Discussion and Concluding Remarks

In the present chapter, a review of a mathematical approach for studying smooth
muscle contraction and relaxation was presented. There are several different smooth
muscle models available in the literature and they have some characteristics in com-
mon, however the reviewed approach (Murtada et al. 2010a, 2010b, 2012) is one
of the few which is able to simulate a realistic mechanochemical behavior of iso-
metric contraction and relaxation at different muscle stretches and isotonic shorten-
ing/extension through one single model. The described approach models the active
tension development by considering the number of attached cross-bridges, the aver-
age elastic elongation of attached cross-bridges and the filament sliding theory.

With the implemented filament overlap function, the model is able to simulate
the well-known length-tension behavior which is very relevant for smooth muscle
organs functioning at a large range of deformations. The model couples intracel-
lular calcium [Ca2+] with muscle contraction and relaxation through the Hai and
Murphy myosin kinetics model (Hai and Murphy, 1988) and the smooth muscle
model of Murtada et al. (2012). The myosin kinetics model describes the myosin
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in four different functional states where two are load-bearings and coupled through
seven reaction rates. The behavior of the active stress is proportional to the sum of
the fractions of the load-bearing myosin functional states and is, therefore, very de-
pendent on the behavior of the myosin kinetics model. However, it is not so trivial
to define the reaction rates in the Hai and Murphy model and also to validate the
simulated fraction values of attached cross-bridges. The Hai and Murphy kinetics
model is rather old; it suggests the existence of a slower latch state myosin, where
the myosin is dephosphorylated and attached, which has not been shown experimen-
tally. In the last years several advances have been proposed in the understanding of
myosin-actin kinetics so that an update of the myosin kinetics model would be a
very valuable task.

The mechanical model presented in this chapter is based on structural observa-
tions and has a relatively low number of material parameters which can be related to
the physical properties of the smooth muscle. For example, the physical parameter
μa in the smooth muscle model (defined by the length of the contractile unit LCU,
the elastic stiffness of a single cross-bridge Ecb, the average distance between the
cross-bridges δ and the contractile unit density NCU) was investigated by comparing
it with experimental data of LCU, Ecb, δ and NCU. It was found that it corresponds
very well with the experimental data of the physical measurable units (Murtada et
al., 2012) supporting the description and the fitted value of μa. However, there are
still several items that can be improved such as an improved myosin kinetics model,
which is not dependent on a latch state, and a further developed filament sliding
evolution law.

With a realistic chemomechanical model of smooth muscle activity it is possible
to study more complex boundary-value problems that are clinically and pathophys-
iologically relevant by implementing the coupled model into a three-dimensional
finite element code. An implementation of the model into a finite element code also
allows to study the effects of time-dependent changes in Ca2+ for different inter-
nal pressures of an intact artery that are relevant for both short-term and long-term
changes in the vascular wall.
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