
Chapter 12
Intracranial Aneurysms: Modeling Inception
and Enlargement

Paul N. Watton, Haoyu Chen, Alisa Selimovic, Harry Thompson,
and Yiannis Ventikos

Abstract Intracranial aneurysms (IAs) are abnormal dilatations of the cerebral vas-
culature. Computational modeling may shed light on the aetiology of the disease and
lead to improved criteria to assist diagnostic decisions. We briefly review the liter-
ature and present novel models on two topical areas of research activity: modeling
IA inception and modeling IA evolution. We present a novel computational method-
ology to remove an IA and reconstruct the geometry of the (unknown) healthy
artery. This approach is applied to 22 clinical cases (the largest study of its kind
to date) and we analyze whether spatial distributions of hemodynamic stimuli cor-
relate with locations aneurysms are known, a priori, to form. In this study, locations
of aneurysm formation are strongly correlated with regions of high wall shear stress
(WSS) (19/22 positive correlations); however low correlations are observed with
indices which characterize the oscillatory nature of the direction of the wall shear
stress vector, e.g., oscillatory shear index (OSI) (7/22). We subsequently outline
a fluid-solid-growth framework for modeling aneurysm evolution and illustrate its
application to 4 clinical cases depicting IAs. We conclude with a discussion for the
direction of future research in this field.

12.1 Introduction

Intracranial aneurysms (IAs) appear as sac-like outpouchings of the arterial wall in-
flated by the pressure of the blood. Prevalence rates in populations without comor-
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bidity are estimated to be 3.2 % (Vlak et al., 2011). Most remain asymptomatic;
however, there is a small but inherent risk of rupture: 0.1 to 1 % of detected
aneurysms rupture every year (Juvela, 2004). Subarachnoid haemorrhage (SAH)
due to IA rupture is associated with a 50 % chance of fatality (Greving et al., 2009)
and of those that survive, nearly half have long term physical and mental sequelae
(Huang et al., 2011). Preemptive treatment may prevent aneurysm SAH and thus
reduce the associated (large) financial burden, e.g., the total annual economic cost
of aneurysm SAH is £510 M in the UK (Rivero-Arias et al., 2010). However, man-
agement of unruptured IAs by interventional procedures, i.e. minimally invasive
endovascular approaches or surgical-clipping, is highly controversial and not with-
out risk (Komotar et al., 2008). Given the very low risk of IA rupture, there is both
a clinical and an economic need to identify those IAs which are actually in need of
intervention.

Investigating the complex interplay of physical forces and their biological se-
quelae will aid further understanding of the formation and rupture of IAs and their
management, and may lead to a cure (Krings et al., 2011). However, IAs may have
heterogeneous hemodynamic, morphologic, and vascular characteristics associated
with different mechanistic pathways (Sugiyama et al., 2011) and thus this is an
extremely challenging complex problem. Computational models may yield insight
into the aetiology of the disease and offer the potential to aid clinical decisions.
Consequently, research in this area has grown extensively; for recent review articles
see, e.g., Humphrey (2009); Sforza et al. (2011). In this article, we briefly review
computational models which investigate IA inception and IA evolution and present
our most recent models and findings on these topical areas of research.

12.2 IA Inception

IAs preferentially develop at specific locations in the Circle of Willis. Hence it
appears that the hemodynamic environment plays a role in the pathophysiologi-
cal processes that give rise to their formation. This has motivated the development
of methodologies to reconstruct the original healthy geometry of the vasculature
from a diseased geometry depicting an IA: computational fluid dynamic (CFD) an-
alyzes proceed to investigate if particular patterns of hemodynamic stimuli (on the
healthy vasculature) correlate with the location at which an IA is observed to de-
velop, e.g., see the recent studies by Mantha et al. (2006); Baek et al. (2009); Ford
et al. (2009); Shimogonya et al. (2009); Singh et al. (2010). Whilst all these studies
have considered a limited number of clinical cases, i.e. between 1 and 5, interesting
(although somewhat inconsistent) observations have been made (see Table 12.1).
It has been concluded that locations susceptible to aneurysm formation are associ-
ated with: oscillatory wall shear stress (WSS) indicated by a novel index referred to
as the aneurysm formation index (AFI) (Mantha et al., 2006); large temporal fluc-
tuations of the direction of the spatial WSS gradient vector (WSSG) indicated by
a novel index referred to as the gradient oscillatory number (GON) (Shimogonya
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Table 12.1 Summary of IA inception studies. The spatial distributions of various hemodynamic
indices have been compared with known locations of aneurysm formation. It can be seen that
strong correlations are always observed in such studies. However, inconsistencies in conclusions
are present and the study sizes are always small

Study CFD index Positive correlation

Mantha et al. (2006) Low WSS, AFI 3/3

Shimogonya et al. (2009) GON 1/1

Ford et al. (2009) GON 4/5

Baek et al. (2009) High WSS, High Pressure 2/2

Singh et al. (2010) High WSS, High OSI 2/2

et al., 2009); elevated WSS and pressure (Baek et al., 2009); elevated WSS and os-
cillatory shear index (OSI) (Singh et al., 2010); the interested reader is referred to
the relevant articles for specifics of how to calculate these hemodynamic indices.

Given the disparates in findings on CFD inception studies to date, there is clearly
the need for a more comprehensive study: we consider a selection of 22 sidewall
IAs, propose a novel method to reconstruct the hypothetical geometry of the artery
without IA and analyze spatial distributions of hemodynamic stimuli on the healthy
vasculature in the specific locations that the IAs are known, a priori, to develop.

12.2.1 Methodology

We have developed a novel approach to reconstruct the hypothetical geometry of
the healthy artery prior to IA formation. Here we briefly outline the methodol-
ogy (see Fig. 12.1 for graphical illustration). Clinical imaging data depicting an
IA is segmented with the software suite @neufuse (developed for the European
project @neurIST, www.aneurist.org ‘Integrated Biomedical Informatics for the
Management of Cerebral Aneurysms’, see Villa-Uriol et al., 2011). A skeleton
of the vasculature is created and the segment containing the IA is removed (see
Fig. 12.1(b)). Given the position vectors of the center points of the upstream and
downstream boundaries (neighboring the aneurysm section), c0 and c1, respectively,
and unit normal vectors to the boundaries n̂0 and n̂1 (see Fig. 12.1(c)), a cubic curve
c(t) = (a1j t

j , a2j t
j , a3j t

j ): i = 1,2,3; j = 0,1,2,3; t ∈ [0,1] is constructed such
that

c(t = 0) = c0, c(t = 1) = c1, c′(t = 0) = κn̂0, c′(t = 1) = κn̂1,

(12.1)

where ′ denotes differentiation with respect to t and κ = |c1 − c0|. The 12 unknown
coefficients aij ∈ R are uniquely determined by the 12 boundary conditions given
by Eq. (12.1). A Frenet-Frame is then defined along the curve c, i.e.

T(t) = c′(t)
|c′(t)| , N(t) = T′(t)

|T′(t)| , B(t) = T(t) × N(t). (12.2)

http://www.aneurist.org
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Fig. 12.1 Methodology to remove sidewall IA and reconstruct original healthy vessel: (a) seg-
mented clinical image of vasculature depicting IA; (b) removal of section containing IA;
(c) a Frenet-Frame is constructed along a curve c(s) between the upstream and downstream bound-
aries of the segment containing the IA that was removed; (d) methodology to smoothly morph the
inlet boundary into the outlet boundary along c; (e) reconstructed healthy vessel

The hypothetical healthy geometry is reconstructed by using the Frenet-Frame to
propagate a closed curve in the N–B plane along c such that the upstream boundary
smoothly morphs into the downstream boundary. This approach takes into account
the natural tortuosity of the artery. The vector equation of the reconstructed healthy
section of arterial surface r(t, θ), θ ∈ [0,2π) can be expressed as

r(t, θ) = c(t) + l(t, θ), (12.3)

where l(t, θ) represents the position vectors of points on the boundary in the
N(t)–B(t) plane along c. l(0, θ) and l(1, θ) are determined from the known posi-
tion vectors of the upstream and downstream boundaries and we choose l(t, θ) to be
a linear combination of these:

l(t, θ) = ∣
∣(1 − t)l(0, θ) + t l(1, θ)

∣
∣(N cos θ + B sin θ). (12.4)

This novel reconstruction method is applied to 22 clinical cases depicting sidewall
IAs. Figure 12.2 illustrates the application of the approach to 20 (segmented) clinical
cases; the geometry of the IA is depicted in light blue whilst the geometry of the
reconstructed segment of healthy artery is in depicted in dark blue.

12.2.1.1 Computational Fluid Dynamics

The methodological approach to solve the hemodynamics proceeds as follows. The
geometry of the artery without IA is imported into ANSYS ICEM (ANSYS Inc.,
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Fig. 12.2 An illustration of 20 cases with/without IAs. The reconstructed section is depicted in
dark blue whilst the IA is depicted in light blue

Canonsburg, PA) and an unstructured tetrahedral mesh with prism layers lining
the boundary is generated for the fluid domain. Blood is modeled as an incom-
pressible Newtonian fluid with constant density ρ = 1069 kg m−3 and viscosity
η = 0.0035 Pa s. At the arterial wall, no slip, no-flux conditions are applied. Pul-
satile flow and pressure boundary conditions for the inlets and outlets of the fluid
domain are taken from a 1D model of the arterial tree (Reymond et al., 2009) which
has been integrated into the software suite @neufuse. It solves the 1D form of the
Navier-Stokes equation in a distributed model of the human systemic arteries, ac-
counting for the ventricular-vascular interaction and wall viscoelasticity; it was re-
cently validated through a comparison with in vivo flow measurements (Reymond
et al., 2011). The incompressible Navier-Stokes equations which govern the flow
are solved with ANSYS CFX (ANSYS Inc., Canonsburg, PA) using a finite volume
formulation.

12.2.2 Results

CFD simulations are performed on 22 clinical cases with IAs removed. Spatial dis-
tributions of several hemodynamic indices are analyzed and compared with respect
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Fig. 12.3 Examples of spatial distributions of (a) WSS, (b) WSSG, (c) OSI, (d) min(AFI) and
(e) GON (left to right, respectively) for reconstructed healthy vessels without IAs. The upper row
illustrates cases where a positive correlation between an index and the location an IA evolves
occurs whilst the lower row illustrates examples where no correlation is observed

to the known locations of aneurysm formation (LAF). Figure 12.3 illustrates ex-
amples of positive (upper row) and negative (lower row) correlations of the hemo-
dynamic indices WSS, WSSG, OSI, minimum(AFI) and GON with the LAF. We
observed that 19/22 IAs developed in regions that had locally elevated magnitudes
of WSS and GON. However, fewer positive correlations were observed for other
indices, i.e. 7/22 for elevated values of OSI, 7/22 for low values of min(AFI) and
8/22 for elevated values of WSSG.

Our study highlights that care should be taken when interpreting the conclusions
and findings of smaller CFD studies in the literature. For example, we observed
that low values of AFI were associated with 7/22 clinical cases whereas Mantha
et al. (2006) observed correlations in all cases (3/3). Singh et al. (2010) observed
a significant correlation with OSI (2/2) however we observed no such correlation.
Consistent with Baek et al. (2009) we observed a positive correlation with regions
subject to high WSS. Whilst we observed many positive correlations (19/22) with
elevated GON, as observed and remarked by Ford et al. (2009), this index is elevated
in many regions of the artery and thus the significance of this correlation is unclear
and may merit further investigation.

12.3 IA Enlargement

To further our understanding of the aetiology of IA we must further our understand-
ing of the physiological mechanisms that regulate the maintenance of arterial tis-
sue in physiological and pathophysiological conditions. The structure of the artery
is continually maintained by vascular cells. The morphology and functionality of
vascular cells is intimately linked to their mechanical environment. Hemodynamic
forces give rise to: cyclic stretching of the extra-cellular matrix (ECM); frictional
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forces acting on the endothelial layer of the arterial wall; a normal hydrostatic
pressure and interstitial fluid forces due to movement of fluid through the ECM.
Mechanosensors convert the mechanical stimuli into chemical signals which lead to
activation of genes that regulate cell functionality. The physiological mechanisms
that give rise to the development of an aneurysm involve the complex interplay
between the local mechanical forces acting on the arterial wall and the biological
processes occurring at the cellular level. Consequently, models of aneurysm evolu-
tion must take into consideration: (i) the biomechanics of the arterial wall; (ii) the
biology of the arterial wall and (iii) the complex interplay between (i) and (ii), i.e.
the mechanobiology of the arterial wall. Humphrey and Taylor (2008) recently em-
phasized the need for a new class of fluid-solid-growth models to study aneurysm
evolution and proposed the terminology FSG models. These combine fluid and solid
mechanics analyzes of the vascular wall with descriptions of the kinetics of biolog-
ical growth and remodeling (G&R).

12.3.1 Methodology

In this section, we describe our FSG computational framework for modeling IA evo-
lution. It utilizes and extends the novel abdominal aortic aneurysm (AAA) evolution
model developed by Watton et al. (2004) and Watton and Hill (2009) which was later
adapted to model IA evolution (Watton et al., 2009b; Watton and Ventikos, 2009)
and extended to consider transmural variations in G&R (Schmid et al., 2010, 2011).
The aneurysm evolution model incorporates microstructural G&R variables into a
realistic structural model of the arterial wall (Holzapfel et al., 2000). These describe
the normalized mass-density and natural reference configurations of the load bear-
ing constituents, and enable the G&R of the tissue to be simulated as an aneurysm
evolves. More specifically, the natural reference configurations that collagen fibers
are recruited to load bearing remodels to simulates the mechanical consequences
of: (i) fiber deposition and degradation in altered configurations as the aneurysm
enlarges; (ii) fibroblasts configuring the collagen to achieve a maximum strain dur-
ing the cardiac cycle, denoted the attachment strain. The normalized mass-density
evolves to simulate growth/atrophy of the constituents (elastin and collagen). The
aneurysm evolution model has been integrated into a novel FSG framework (Watton
et al., 2009a) so that G&R can be explicitly linked to hemodynamic stimuli. More
recently, the G&R framework has been extended to link both growth and remodeling
to cyclic deformation of vascular cells (see Watton et al., 2012).

Figure 12.4 depicts the FSG methodology. The computational modeling cycle
begins with a structural analysis to solve the systolic and diastolic equilibrium defor-
mation fields (of the artery/aneurysm) for given pressure and boundary conditions.
The structural analysis quantifies the stress, stretch, and the cyclic deformation, of
the constituents and vascular cells (each of which may have different natural ref-
erence configurations). The geometry of the aneurysm is subsequently exported to
be prepared for hemodynamic analysis: first the geometry is integrated into a phys-
iological geometrical domain; the domain is automatically meshed; physiological
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Fig. 12.4 Fluid-solid-growth computational framework for modeling aneurysm evolution

flow rate and pressure boundary conditions are applied; the flow is solved assum-
ing rigid boundaries for the hemodynamic domain. The hemodynamic quantities
of interest, e.g., WSS, WSSG are then exported and interpolated onto the nodes of
the structural mesh: each node of the structural mesh contains information regard-
ing the mechanical stimuli obtained from the hemodynamic and structural analyzes.
G&R algorithms simulate cells responding to the mechanical stimuli and adapting
the tissue: the constitutive model of the aneurysmal tissue is updated. The structural
analysis is re-executed to calculate the new equilibrium deformation fields. The up-
dated geometry is exported for hemodynamic analysis. The cycle continues and as
the tissue adapts an aneurysm evolves.

Development of an IA is associated with apoptosis of vascular smooth muscle
(VSM) cells (Kondo et al., 1998), disrupted internal elastic laminae, the breakage
and elimination of elastin fibers (Frösen et al., 2004), a thinned medial layer and
G&R of the collagen fabric (Juvela, 2004). The site of origin is strongly related to
hemodynamic WSS (Kondo et al., 1997). It is postulated that high WSS is related
to the initiation of IA formation (Ahn et al., 2007); note that this hypothesis is con-
sistent with our observations in Sect. 12.2. However, whilst high WSS appears to
be associated with the inception of an IA, low WSS is thought to give rise to its
continued enlargement (Shojima et al., 2004).

To simulate IA inception, we prescribe a localized loss of elastin in a small cir-
cular patch of the arterial domain (the elastin is modeled with a neo-Hookean con-
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stitutive model Watton et al., 2009c). The collagen fabric adapts to restore home-
ostasis and a small perturbation to the geometry alters the spatial distribution of
hemodynamic stimuli that act on the lumenal layer of the artery. This enables sub-
sequent degradation of elastin to be linked to deviations of hemodynamic stimuli
from homeostatic levels via evolution equations. As the elastin degrades and the
collagen fabric adapts (via G&R) an IA evolves. Watton et al. (2009a) adopted this
approach to investigate the evolution of IAs assuming degradation of elastin was
linked to high WSS or high WSSG. Given that a region of elevated WSS occurs
downstream of the distal neck of the model IA and elevated spatial WSSGs occur
in the proximal/distal neck regions, this approach led to IAs that enlarged axially
along the arterial domain, i.e. it did not yield IA with characteristic ‘berry’ topolo-
gies. Consequently, Watton et al. (2011a) linked elastin degradation to low WSS and
restricted the degradation of elastin to a localized region of the arterial domain: this
yielded IAs of a characteristic saccular shape that enlarged and stabilized in size.
Although interesting insights were obtained in both studies, an inherent limitation
was that the IAs evolved on a cylindrical section of artery and consequently the spa-
tial distribution of hemodynamic stimuli is non-physiological. This motivated the
application of the FSG modeling framework to patient-specific vascular geometries.
For a detailed description of the model methodology, we refer the interested reader
to Watton et al. (2011b, 2012). Here we briefly illustrate the application of the FSG
modeling framework to 4 clinical cases.

12.3.2 Examples of FSG Models of IA Evolution

Figure 12.5 (upper row) illustrates 4 clinical cases depicting IAs. The IA is removed
(as in Fig. 12.1(b)) and replaced with a short cylindrical section on which IA evo-
lution is simulated. The cylindrical section is smoothly reconnected to the upstream
and downstream sections of the parent artery (middle row; see Selimovic et al.,
2010, for methodology). In all four cases, IA inception is prescribed, i.e. an initial
degradation of elastin is prescribed in a localized region of the domain, the collagen
fabric adapts to restore homeostasis and a small localized outpouching of the artery
develops. This perturbs the hemodynamic environment: subsequent degradation of
elastin is linked to low levels of WSS. It can be seen that the modeling framework
gives rise to IAs with different morphologies, i.e. IAs with: asymmetries in geome-
tries (a3,d3); well-defined necks (b3); no neck (c3). For an in depth analysis of
simulation results for case (a3), e.g., evolution of elastin strains, collagen strains,
concentrations of constituents and evolving diastolic/systolic geometries, the inter-
ested reader is referred to Watton et al. (2011b). Interestingly, for this particular
case, which depicts an IA at (perhaps) a relatively early stage of formation (crudely
inferred from its small size), the qualitative asymmetries of the simulated IA (see
(a3)) are in agreement with the patient aneurysm (a1) and thus (tentatively) support
the modeling hypotheses for elastin degradation (low WSS drives degradation) and
collagen adaption.
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Fig. 12.5 Segmented clinical imaging data depicting IAs (a1–d1). IAs are removed the geometry
of the healthy artery reconstructed (a2–d2). Computational models of IAs on patient specific ge-
ometries with degradation of elastin linked to low WSS (a2–d2). The color-map depicts WSS (Pa)

12.4 Discussion

In this chapter, we first (briefly) reviewed the application of CFD models to inves-
tigate IA inception and presented a novel methodology for reconstructing the ge-
ometry of the healthy artery prior to IA formation. We investigated the correlation
between IA inception and the spatial distribution of several hemodynamic indices
(WSS, WSSG, OSI, AFI and GON) for 22 clinical cases depicting sidewall IAs.
To our knowledge this is the largest (and most complete) CFD inception study, of
its kind, to date. Consistent with previous observations, we observed that locations
of aneurysm formation (LAF) occur in regions of the artery subject to high WSS.
However, correlation of LAF with indices that characterize the oscillatory nature of
the flow, i.e. OSI and min(AFI), do not seem as strong as (sometimes) previously
observed. Hence, we suggest care should be taken: (i) when interpreting conclusions
of studies which have been deduced from a small number of clinical cases; (ii) ar-
ticulating the significance of conclusions of CFD studies which involve relatively
few cases. Moreover, we point out that whilst CFD has a role to play in guiding our
understanding of vascular disease, it needs to be coupled with improved modeling
(and understanding) of the mechanobiology of the arterial wall to gain real insight
into the aetiology of vascular disease. This motivates the need for multi-scale mod-
els which integrate the biology and the (solid and fluid) biomechanics of the arterial
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wall, i.e. FSG models, such as the one we presented. Such models provide the foun-
dations to model not only aneurysm evolution but other vascular diseases.

It is envisaged that models of IA and AAA evolution may ultimately lead to pre-
dictive models that have diagnostic application on a patient specific basis. Given that
this will yield very substantial healthcare and economic benefits, there is significant
growth of research in this area. However, whilst models of aneurysm evolution have
gained increasing sophistication over the past decade, many further improvements
are still required. For instance, there is a need to incorporate explicit representations
of vascular cells (endothelial cells, fibroblast cells and smooth muscle cells), their
interactions and the signaling networks (Schmid et al., 2011) that link the stim-
uli acting on them to their functionality in physiological, supra-physiological and
pathological conditions. There is also a need for implementation of more sophisti-
cated constitutive models to represent, e.g., the collagen fiber recruitment distribu-
tion (Hill et al., 2012) and dispersion and the active and passive response of vas-
cular smooth muscle cells (Murtada et al., 2010). Lastly, improved understanding
and modeling of how this complex micro-structure adapts in pathological condi-
tions is needed: the modeling framework needs to be validated and/or calibrated
against physiological data; animal models undoubtedly have a role to play in this
respect (Zeng et al., 2011). Such enhancements will offer the potential for patient-
specific predictive models of vascular disease evolution and intervention. They will
benefit patients immensely because the decision on whether to/how to intervene
will be founded upon a robust concentration of knowledge with respect to patient-
specific vascular physiology, biology and biomechanics. Of course, the challenging
and multi-disciplinary nature of such research implies collaborations are essential.
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